
SG24-2034-01

International Technical Support Organization

http://www.redbooks.ibm.com

Tivoli Enterprise Internals and
Problem Determination

Richard Hawes, Victoria Stevens, Bob Cashion, Rhonda Childress, Gary Louw, Morten Moeller

Tivoli Enterprise Internals and
Problem Determination

March 1999

SG24-2034-01

International Technical Support Organization

© Copyright International Business Machines Corporation 1998, 1999. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (March 1999)

This edition was written between November 1998 and February 1999. The contents will mostly apply to
the levels of the respective products current at that time, in particular 3.6 and 3.6.1. However, most of
the information will be of use at both prior and later levels of the Tivoli Enterprise Framework and
applications. Where information is very specific to release level, a mention of that fact is included in the
text. This edition completely supercedes the previous version titled TME 10 Internals and Problem
Determination.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept.OSJB Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 689.

Take Note!

Contents

Figures . xvii

Tables. xxv

Preface . xxvii
The Team That Wrote This Redbook .xxvii
Tivoli Management Product Names . xxix
Comments Welcome . xxx

Part 1. Introduction, Installation, and Framework Components 1

Chapter 1. Overview . 3
1.1 Generic Problem Determination Outline . 6
1.2 Sources of Additional Information . 6
1.3 When Is an Endpoint not an Endpoint?. 7

Chapter 2. Tivoli Object Database Architecture 9
2.1 The Tivoli Enterprise Management Challenge 9
2.2 Tivoli Enterprise Architecture Overview . 10

2.2.1 About CORBA 1.1 . 11
2.2.2 Tivoli Enterprise CORBA Implementation 13
2.2.3 Tivoli Enterprise Heterogeneity and Interoperability 14
2.2.4 Management Services . 15

2.3 Tivoli Object Architecture Implementation. 16
2.3.1 Tivoli Object Request Broker . 16
2.3.2 Tivoli Authorization Principals . 17
2.3.3 Communication between Objects . 17
2.3.4 Transactions. 19
2.3.5 Persistent Storage - The Tivoli Object Database 21
2.3.6 Instance Management . 27

2.4 Tivoli Objects . 31
2.4.1 Object References . 31
2.4.2 Object IDs . 34
2.4.3 Endpoint Objects . 40
2.4.4 Object Relationship . 41
2.4.5 The Tivoli Base Object . 44
2.4.6 TMA Endpoints . 45
2.4.7 Database Profile Managers . 46
2.4.8 Gateway Methods. 48

2.5 Troubleshooting Tips Using the Object Database 52
2.5.1 Finding the Method Executable . 52
© Copyright IBM Corp. 1998, 1999 iii

2.5.2 If the Method is Unknown . 53
2.5.3 Method Errors. 55

2.6 Object Tools Summary . 56

Chapter 3. The Tivoli Core Installation Process 59
3.1 Installation Overview . 59
3.2 General Pre-Install Checks, Hints, and Tips . 60

3.2.1 UNIX . 61
3.2.2 Windows NT . 61
3.2.3 NFS Mounts . 62
3.2.4 Environment Files and Variables . 63
3.2.5 Automatic Startup versus Remote Startup 63
3.2.6 Deciding When a Reinstall is Best . 63

3.3 Tivoli Server Installation . 64
3.3.1 Server Install: Behind the Scenes . 64

3.4 Tivoli Client Installation . 65
3.4.1 Client Install: Behind the Scenes . 66
3.4.2 Reinstalling Clients . 68
3.4.3 Uninstalling a PC Agent . 69
3.4.4 Uninstalling a TMA Endpoint. 70

3.5 Finding Out What’s Installed. 71
3.6 General Troubleshooting Tips for Installation Problems 74

3.6.1 Common Errors . 75
3.6.2 Windows NT Specifics . 75

3.7 Additional Troubleshooting for a TMR Server Installation 77
3.7.1 Common Server Install Problems . 77

3.8 Additional Troubleshooting for a Client Installation 78
3.8.1 Common Client Install Problems. 78

3.9 Installation CD-ROM Contents . 79
3.9.1 CD-ROM Installation Tools . 80

Chapter 4. Tivoli Software Installation Service 83
4.1 SIS Component Overview . 83

4.1.1 SIS Considerations. 84
4.2 Installation of SIS . 85

4.2.1 Installation Procedure . 85
4.3 Using SIS . 87

4.3.1 Starting the SIS Graphical User Interface 87
4.3.2 Building the Install Repository . 91
4.3.3 Select Target for Install. 93
4.3.4 SIS Response Files . 94
4.3.5 Using SIS to Install Tivoli Products . 97
4.3.6 Tuning SIS . 103
iv Tivoli Enterprise Internals and Problem Determination

4.3.7 Synchronize SIS with TMR . 104
4.4 Troubleshooting SIS . 105

4.4.1 SIS Log Files . 105
4.4.2 Troubleshooting SIS Desktop Launches 106
4.4.3 Troubleshooting SIS Startup. 107
4.4.4 Troubleshooting SIS Locks . 108
4.4.5 Troubleshooting SIS Usage . 110
4.4.6 Important SIS Files and Executables . 111

Chapter 5. Tivoli Object Database Backup . 113
5.1 The Tivoli Backup Process . 113
5.2 The Backup Process . 114

5.2.1 Before Starting Tivoli Backups . 114
5.2.2 Backup Roles and Access Rights . 115
5.2.3 Running Backup from the Tivoli Desktop 116
5.2.4 Running Backup from the Command Line. 118
5.2.5 Backup Process Behind the Scenes . 119
5.2.6 Temporary Backup File Considerations 120

5.3 The Restore Process . 121
5.3.1 Restore Roles and Access Rights. 121
5.3.2 Restore Example . 121

5.4 Rescue Operation . 122
5.5 Items Not Restored from a Backup . 123
5.6 Troubleshooting Backup and Restore Operations. 124

5.6.1 Restore with -r and - r -R Options . 125
5.6.2 Changing the Default Backup Directory 125
5.6.3 Database Cannot Be Backed Up . 125
5.6.4 Malformed ASCII Exception . 126
5.6.5 IOM Route Time-Outs. 126
5.6.6 Identifying Managed Nodes . 126
5.6.7 Implications of Using an Old Backup . 127

Chapter 6. Commands and Logs for Troubleshooting 131
6.1 The odstat Command . 132

6.1.1 Structure of the odstat Output. 134
6.1.2 odstat Options . 137

6.2 The odadmin Command . 138
6.2.1 Default odadmin Information. 138
6.2.2 Configuring the TMR Server . 140

6.3 The wtrace Command . 140
6.3.1 Trace Usage Overview . 141
6.3.2 Using a Trace to Investigate a Method 143
6.3.3 Troubleshooting a Failure with odstat and wtrace 144
 v

6.3.4 Another Example of Analyzing wtrace and odstat 148
6.3.5 Troubleshooting Using Only wtrace . 153
6.3.6 HMAC Encrypted Data Error. 161
6.3.7 Damaged Database odstat and wtrace Example. 163

6.4 Log Files in the Database Directory . 171
6.4.1 Transaction Log Files and tmstat . 172
6.4.2 The oservlog File . 175
6.4.3 The epmgrlog File. 178
6.4.4 The gatelog File . 178

6.5 Endpoint lcfd.log File . 181
6.6 Other Commands . 182

6.6.1 The objcall Command. 182
6.6.2 The idlcall Command . 183
6.6.3 The idlattr Command . 183
6.6.4 The resolve Command . 184
6.6.5 The irview Command . 185
6.6.6 The tmstat Command . 185

Chapter 7. Tivoli Framework Core Services . 187
7.1 Tivoli Administrators . 187

7.1.1 Authorization Roles . 187
7.1.2 Policy Regions . 188
7.1.3 Creating Administrators . 190
7.1.4 Using a Single Tivoli Administrator for Multiple Users 195
7.1.5 ID Mapping . 199
7.1.6 Removing and Deleting Administrators 203
7.1.7 Administrator Commands . 204
7.1.8 Administrator Roles . 206
7.1.9 Interregion Administration. 207
7.1.10 Summary of Hints for Defining Administrators. 207
7.1.11 Hints for Troubleshooting Administrators 208

7.2 Notices . 209
7.2.1 Subscribing Tivoli Administrators to Notice Groups. 209
7.2.2 Notice Commands . 209
7.2.3 Restoring the Notices Database . 210
7.2.4 Re-Reading Old Notices . 210
7.2.5 wsndnotif - Adding a Notice from the Command Line 212
7.2.6 Troubleshooting Notice Groups . 215

7.3 Interconnected TMRs . 216
7.3.1 The Tivoli Name Registry . 216
7.3.2 Connecting TMRs . 218
7.3.3 Updating Resources . 221
7.3.4 Resource Visibility . 222
vi Tivoli Enterprise Internals and Problem Determination

7.3.5 Interregion Updates and Object Time Stamps. 226
7.3.6 Resource Flags . 228
7.3.7 Scheduling Updates . 230
7.3.8 Disconnecting TMRs. 230
7.3.9 Troubleshooting TMR Connections . 230
7.3.10 Troubleshooting Interconnected TMRs 231

7.4 Task Library . 238
7.4.1 Tivoli Tasks . 239
7.4.2 Tivoli Jobs . 239
7.4.3 Task Library Features. 240
7.4.4 Task Library Survival Guide . 240
7.4.5 Task and Job Internals . 246
7.4.6 Task Library Commands. 249
7.4.7 Troubleshooting Tasks and Jobs . 250
7.4.8 Task Library Common Errors . 253

7.5 Scheduler . 255
7.5.1 Scheduler Commands . 255
7.5.2 Tips for Working with the Scheduler . 256
7.5.3 Troubleshooting Common Scheduler Errors 257

7.6 Multiplexed Distribution and Bulk Data Transfer 259
7.6.1 Mdist . 259
7.6.2 Repeaters. 260
7.6.3 Bulk Data Transfer and Inter-Object Messaging 271

7.7 UserLink and Dynamic Host Configuration Protocol (DHCP) 273
7.7.1 Dynamic IP Addressing and Tivoli . 273
7.7.2 The UserLink/DHCP Service . 274
7.7.3 DHCP Support for Windows NT Managed Nodes 275
7.7.4 DHCP Support for PC Managed Nodes 275
7.7.5 Installing the UserLink/DHCP Service. 276
7.7.6 UserLink Daemon . 281
7.7.7 Retrieving Software Packages . 282
7.7.8 Installing the UserLink Browser . 285
7.7.9 Troubleshooting UserLink . 285

Chapter 8. Tivoli Enterprise and Firewalls . 287
8.1 Background . 287
8.2 Tivoli Communications . 287

8.2.1 Inter-ORB Communications . 288
8.2.2 Inter-TMR Communications . 288
8.2.3 Inter-Object Messaging (IOM). 289
8.2.4 Endpoint and Gateway Communications 289
8.2.5 Applications Not Using Framework Services. 290

8.3 Ports and Port Ranges . 290
 vii

8.4 Firewall Considerations . 293
8.4.1 Packet Filtering . 294
8.4.2 Machine Considerations - Upstream . 296
8.4.3 TMR Considerations - Upstream. 296
8.4.4 TCP Connection Source Filtering . 297
8.4.5 Network Address Translation (NAT) . 297

8.5 Case Study 1 - Hub to Remote Through Firewalls 304
8.6 Case Study 2 - Dual TMR Setup with Firewalls 309

Chapter 9. RDBMS Interface Module (RIM) . 313
9.1 Applications Using RIM . 313

9.1.1 Applications Moving to RIM . 313
9.2 Installing RIM . 314

9.2.1 Creating Application Database Tables 314
9.3 Understanding RIM . 316

9.3.1 RIM Behind the Scenes . 316
9.3.2 RIM APIs . 316
9.3.3 RDBMS_Interface Translation Layer. 317
9.3.4 Vendor Adaptor Layer. 317

9.4 RIM on Framework 3.6 . 318
9.4.1 Creating RIM 3.6 Objects . 318
9.4.2 Client Application Communication with RIM 3.6 320

9.5 Troubleshooting RIM . 322
9.5.1 Finding the RIM Objects Defined in a TMR 322
9.5.2 Displaying the Settings for a RIM Object. 322
9.5.3 Changing RIM Object Information . 322
9.5.4 Changing the RIM Host Machine Name 323
9.5.5 Troubleshooting Example: Failure to Connect with RDBMS . . . 324
9.5.6 RIM Specifics . 329

9.6 Queries . 330
9.6.1 Queries with RIM 3.6 . 333
9.6.2 Tivoli Roles Needed to Execute Queries. 334

9.7 Designing Your Tivoli Environment for RIM 334

Part 2. Tivoli Enterprise Products . 337

Chapter 10. Software Distribution . 339
10.1 Differences with Software Distribution Version 3.6 339
10.2 Installation . 339
10.3 Tivoli Software Distribution Internals . 340

10.3.1 Tivoli Methods Used by Software Distribution 341
10.3.2 The Distribution Processes . 341

10.4 Repeaters and Networks . 344
viii Tivoli Enterprise Internals and Problem Determination

10.4.1 Initiating BDT/IOM . 347
10.5 Setting Timeout Values for a Distribution . 348

10.5.1 Configuration Script Timeout . 348
10.5.2 Repeater Manager Timeout . 349
10.5.3 High-Level TCP Timeout. 349
10.5.4 Gateway Session Timeout . 350

10.6 File Package Definition. 350
10.6.1 File Package Policies . 352

10.7 Troubleshooting Software Distribution . 352
10.7.1 Troubleshooting Checklist . 353
10.7.2 PC Managed Node Troubleshooting Specifics 355

10.8 Software Distribution and Other Log Files 356
10.8.1 Software Distribution Log . 356
10.8.2 Tivoli PC Agent Tracing and Other Log Files 360
10.8.3 TMA Tracing and Other Log Files . 366

10.9 Using the PC Agent w Commands on a TMA Endpoint 370
10.9.1 Removing the Dependency Set for Software Distribution 373

Chapter 11. AutoPack. 375
11.1 Introduction . 375

11.1.1 PC Operating System Type Considerations 376
11.2 Notes on Installing AutoPack . 376
11.3 AutoPack Control Center . 377
11.4 The AutoPack Agent. 378
11.5 AutoPack Properties and Operations . 379
11.6 Creating an AutoPack. 379

11.6.1 Pre-Scan . 380
11.6.2 Software Installation . 381
11.6.3 AutoPack Build . 381
11.6.4 AutoPack Properties . 384

11.7 Distributing AutoPack Profiles . 384
11.7.1 AutoPack Install of Software . 384
11.7.2 AutoPack Removal of Software . 384

11.8 AutoPack Policy . 385
11.8.1 Default Policy . 385
11.8.2 Validation Policy . 385

11.9 Troubleshooting AutoPack . 385
11.9.1 Common Problems . 386
11.9.2 Where to Find Error Information . 386

Chapter 12. Distributed Monitoring . 387
12.1 New Features in Distributed Monitoring Version 3.6 389
12.2 Installation Considerations . 390
 ix

12.2.1 The Distributed Monitoring Application Install 390
12.2.2 TMA Endpoint Distributed Monitoring Install 391
12.2.3 Monitoring Collections . 392

12.3 Getting Started with Distributed Monitoring. 393
12.4 Defining Monitors . 394
12.5 Customizing Tivoli Distributed Monitoring . 396

12.5.1 User-Defined Monitors . 397
12.5.2 Asynchronous Monitors . 398

12.6 Tivoli Distributed Monitoring Proxies. 400
12.6.1 Distributed Monitoring Environment Variables 400
12.6.2 Distributed Monitoring Proxies . 402

12.7 Distributing Monitors. 402
12.7.1 Local Profile Copies . 403
12.7.2 Distributing Distributed Monitoring Profiles 404
12.7.3 Distributing Profiles Using the GUI . 407
12.7.4 Distributing Profiles Using the Command Line 408

12.8 The Distributed Monitoring Sentry Engine 408
12.9 Troubleshooting Distributed Monitoring . 410

12.9.1 Troubleshooting Distributed Monitoring Profile Distribution . . . 411
12.9.2 Troubleshooting Monitor Execution. 416
12.9.3 Monitoring Command Overview . 419
12.9.4 The wlseng Command . 420

12.10 Interpreting Sentry Engine Information . 423
12.10.1 Determining Monitor Timing . 423
12.10.2 Understanding Monitoring Probe Information 427
12.10.3 Understanding Monitoring Response Information 428

12.11 Distributed Monitoring Recovery Tools . 429

Chapter 13. Inventory. 431
13.1 Tivoli Inventory Overview . 431

13.1.1 Other Sources of Information . 434
13.2 Inventory Installation Considerations . 435

13.2.1 Inventory Scanning Space Requirements 435
13.3 Inventory Installation . 436

13.3.1 Installing Inventory on the TMR Server 436
13.3.2 Creating the Configuration Repository 437
13.3.3 Installing Queries . 439
13.3.4 Adding Software Signatures . 440
13.3.5 Installing Inventory on Gateways . 441
13.3.6 Installing Managed Nodes . 441
13.3.7 Installing Inventory on PC Managed Nodes 442
13.3.8 Installing Inventory on TMAs. 442

13.4 Configuring Inventory . 443
x Tivoli Enterprise Internals and Problem Determination

13.5 Customizing Inventory . 444
13.6 Distributing the Inventory Profile. 446
13.7 Inventory Scanning Process . 447

13.7.1 Scanning Programs . 449
13.8 Inventory’s Use of Methods . 450

13.8.1 UNIX Managed Node . 450
13.8.2 Windows NT Managed Node . 452
13.8.3 PC Managed Node . 453
13.8.4 TMA Endpoints . 454

13.9 Inventory Commands . 454
13.10 Querying the Inventory Database . 456
13.11 Troubleshooting Inventory . 457

13.11.1 The Endpoints . 457
13.11.2 The Managed Node . 457
13.11.3 The Gateway . 459
13.11.4 The RIM Host . 459

Chapter 14. User Administration . 461
14.1 Changes to User Administration with Release 3.6 461

14.1.1 Endpoint Management . 462
14.1.2 Immediate Propagation of Passwords. 462
14.1.3 Interaction with Tivoli Security Management 462
14.1.4 Technology Preview Program . 462

14.2 Profile Policy . 463
14.2.1 Default Policy . 463
14.2.2 Validation Policy . 464

14.3 Creating and Using User and Group Profiles 464
14.3.1 Creating Profiles . 465
14.3.2 Populating Profiles . 466
14.3.3 Distributing Profiles . 467

14.4 Deleting a User Profile . 470
14.5 File Versions . 471

14.5.1 Extracting File Versions . 472
14.6 User Profile Passwords . 472
14.7 User Profile Home Directories . 473

14.7.1 Local Home Directory . 473
14.7.2 Remote Home Directory . 473
14.7.3 Problems with Creating Home Directories. 474

14.8 User Administration Notice Group . 474
14.9 NIS Domains . 474

14.9.1 NIS Default Policies . 475
14.9.2 NIS Validation Policies . 476
14.9.3 Creating Fake NIS Domains . 477
 xi

14.9.4 General Approach to User Administration Customization 479
14.10 User Administration Data . 479
14.11 User Administration Methods . 480
14.12 Troubleshooting User Administration . 480

14.12.1 Code Level Consistency . 480
14.12.2 Populate Considerations. 480
14.12.3 Distribute Considerations . 481
14.12.4 Interregion Considerations . 481
14.12.5 Modifying Records . 481
14.12.6 Other Troubleshooting Hints and Tips. 483

14.13 The wpasswd Command . 484

Chapter 15. Security Management . 485
15.1 Tivoli Security Management Installation . 487

15.1.1 Security Notice Group. 489
15.2 TMR and Policy Region Roles . 489
15.3 Populating and Distributing Profiles . 490

15.3.1 Populating Records . 490
15.3.2 Security Profile . 490
15.3.3 Distribution Options . 491

15.4 Auditing . 491
15.5 Security Tasks . 491
15.6 Tivoli Access Control Facility . 492

15.6.1 TACF Architecture . 493
15.6.2 TACF Utilities . 495
15.6.3 TACF User Mapping . 495
15.6.4 Distributing and Populating with TACF 496
15.6.5 TACF Command Line . 496
15.6.6 TACF Initialization File . 497

15.7 Tips and Troubleshooting . 498
15.7.1 TACF Trace . 498
15.7.2 Distribute and Populate Failures . 500
15.7.3 Access Problems . 501
15.7.4 System Policy Problems . 503
15.7.5 Miscellaneous Considerations . 504

15.8 Integrating with Tivoli Enterprise Console. 505
15.9 TACF Security Monitors . 505
15.10 Migrating SeOS Access Control to TACF 506

Chapter 16. Enterprise Console . 507
16.1 TEC Central Event Server . 507
16.2 Distributed Event Console . 511
16.3 Central Event RDBMS Through RIM. 512
xii Tivoli Enterprise Internals and Problem Determination

16.4 Distributed TEC Gateway . 512
16.5 Distributed Event Adapters . 512

16.5.1 How Event Adapters Send Events to the Event Server 513
16.6 TEC Installation . 513

16.6.1 Pre-Installation Steps . 514
16.6.2 Install Enterprise Server . 514
16.6.3 Install Enterprise Console and TEC Adapters 516
16.6.4 Troubleshooting Installation . 516

16.7 Troubleshooting TEC . 517
16.7.1 TEC Server Troubleshooting . 517
16.7.2 Event Console Troubleshooting . 522
16.7.3 Rule Base Errors . 533

Chapter 17. Tivoli Output Manager . 539
17.1 Expected Audience and Knowledge . 539
17.2 Output Manager/Destiny Overview . 539

17.2.1 Destiny Background Processes . 539
17.2.2 Destiny Tools . 541

17.3 Troubleshooting Destiny Problems . 542
17.3.1 GUI. 543
17.3.2 Destiny Direct Client (Windows NT/95) 544
17.3.3 SLP Client (Windows NT/Unix) . 544
17.3.4 Destiny Output Server (Windows NT) 545

17.4 Troubleshooting a Push Operation . 546
17.4.1 Successful Push Operation. 546
17.4.2 Failed Push Operation . 548

17.5 Unknown Log Problem Determination. 549
17.6 Frequently Asked Questions. 559
17.7 Error Solution Tables . 559

Chapter 18. Remote Control . 575
18.1 Tivoli Remote Control Installation . 576

18.1.1 Patches . 577
18.2 Preparing to Use Remote Control . 577

18.2.1 Authorizing Administrators . 577
18.2.2 Creating the RemoteControl Object . 578
18.2.3 Setting Default Policies. 579
18.2.4 Defining Gateways for Remote Control 584

18.3 Taking Control of a Target . 586
18.3.1 Remote Control Trace . 588

18.4 Troubleshooting Remote Control . 589
18.4.1 Framework Troubleshooting . 589
18.4.2 Windows Eventlog . 589
 xiii

18.4.3 Trace Files . 590

Part 3. Additional Information . 593

Appendix A. Tivoli’s Use of Windows NT . 595
A.1 Introduction . 595

A.1.1 Intended Audience . 595
A.1.2 Scope . 595
A.1.3 Conventions . 596
A.1.4 Other Resources. 596
A.1.5 Acknowledgments. 596

A.2 Tivoli Authentication Package. 597
A.2.1 Why TAP Is Needed . 597
A.2.2 Understanding TAP . 597
A.2.3 How TAP Works . 598
A.2.4 Understanding the Tivoli Remote Access Account 599
A.2.5 Order of Account Selection. 600
A.2.6 wsettap.exe and wlcftap.exe. 601

A.3 Tivoli Accounts . 601
A.3.1 Accounts Created . 601
A.3.2 Accounts Used by Tivoli Enterprise . 603
A.3.3 Identifying Under Which User a Given Process Will Run 606
A.3.4 Options for the SET_USER . 609
A.3.5 Privileged Account Tivoli Version Comparison 610
A.3.6 Domain Controllers . 612

A.4 Security . 613
A.4.1 Changes to NT Accounts Used by Tivoli Enterprise. 613
A.4.2 File System Issues . 614
A.4.3 Permissions on Installation Directories. 614
A.4.4 Location of the oserv.exe . 615
A.4.5 Changes in the NT Domain . 615

A.5 Tivoli Enterprise Install and Removal . 615
A.5.1 Installation of the Tivoli Remote Installation Package 616
A.5.2 Creation of a Tivoli Managed Node . 617
A.5.3 Un-installing TMF . 619
A.5.4 Installation of the Tivoli Management Agent. 621
A.5.5 Preparing an NT for a Tivoli Installation . 624

A.6 Environment Issues . 625
A.6.1 DLL Conflicts . 625
A.6.2 How Shell and Perl Scripts Work on NT . 626
A.6.3 Dependencies and TMA . 626
A.6.4 Name Resolution/WINS . 627
A.6.5 Sourcing the Tivoli Environment . 627
xiv Tivoli Enterprise Internals and Problem Determination

A.6.6 Tivoli Desktop for TMF . 628
A.6.7 Performance Tuning for Tivoli. 628
A.6.8 Non-US Keyboard Issue . 628
A.6.9 Port Restriction Causes TIME_WAIT to Last 169 Seconds 629
A.6.10 Tivoli Files Placed Under %SYSTEMROOT% 629

A.7 Tivoli Specific Commands and Terminology for NT 631
A.8 Useful Microsoft and Third Party NT Commands 632

A.8.1 Built-in NT Commands . 632
A.8.2 Other Utilities . 632

A.9 General Issues . 633
A.9.1 Issues with TAP . 633
A.9.2 Start-Up of oserv. 635
A.9.3 Using TRAA with Tasks . 636
A.9.4 General Framework . 636

A.10 PC Agent Overview. 637
A.10.1 PC Agent Design . 637
A.10.2 PC Agent Running as a Console Application 637
A.10.3 PC Agent Running as Service . 637
A.10.4 PC Agent Running as a User-Defined Account 637

A.11 Version 3.6 Methods Using $root_user idmap 638

Appendix B. RDBMS Management . 645
B.1 Installation. 646
B.2 Directories for ESM Database Management Files 653
B.3 Adding ESM Tasks . 654

B.3.1 ChangeOracleHome Task . 655
B.3.2 DiscoverOracleDB Task . 655

B.4 TME 10 Enterprise Console Operations . 656
B.5 ESM Frequently Asked Questions . 658

B.5.1 Oracle Framework . 658
B.5.2 Oracle7 Distributed Monitoring . 659
B.5.3 Oracle User Management. 662

B.6 Troubleshooting the ESM Framework . 662
B.6.1 Troubleshooting ESM TMR Server Installs. 663
B.6.2 Reinstalling Failed Server Installations. 663
B.6.3 Troubleshooting ESM Managed Node Installs 664
B.6.4 ESM Database Registration . 664
B.6.5 Removing a Database Object . 666
B.6.6 ESM Roles . 666
B.6.7 ESM Notice Group . 667
B.6.8 Database Operations . 667
B.6.9 Symbolic Links . 668
B.6.10 Background Daemons . 668
 xv

B.7 Troubleshooting ESM Distributed Monitoring . 668
B.7.1 ESM Distributed Monitoring Installation . 669
B.7.2 ESM Distributed Monitoring Notice Groups 669
B.7.3 User and Group ID with Insufficient Access 669
B.7.4 Removing Monitors. 670
B.7.5 Required Roles . 671
B.7.6 Database and Instance Collection . 671
B.7.7 Monitoring Tasks . 671
B.7.8 Further Problem Determination at the Endpoint 672

B.8 Troubleshooting ESM Oracle User Managment. 672
B.8.1 Installation of ESM User Management . 673
B.8.2 User Management Notice Groups . 673
B.8.3 User Management Roles . 673
B.8.4 Overview of Passwords in OracleUser Profiles 673
B.8.5 Deleting Database User Records . 675
B.8.6 Background Daemons . 676

B.9 Removing ESM Database Management Software 677

Appendix C. RDBMS Install Examples . 679
C.1 Installing an Oracle RDBMS . 679

C.1.1 Installing Oracle on UNIX 7.3.2.1 . 679
C.1.2 Oracle Installation Verification . 685

Appendix D. Special Notices . 689

Appendix E. Related Publications . 693
E.1 International Technical Support Organization Publications 693
E.2 Redbooks on CD-ROMs . 693
E.3 Other Publications. 694

How to Get ITSO Redbooks . 697
IBM Redbook Fax Order Form . 698

List of Abbreviations. 699

Index . 703

ITSO Redbook Evaluation . 715
xvi Tivoli Enterprise Internals and Problem Determination

Figures

1. Tivoli Management Environment Software Components. 11
2. CORBA Operation Request . 13
3. Tivoli Enterprise Application Interfaces . 14
4. Management Services in the X/Open Reference Model 15
5. Object Communication across ORBs . 18
6. Distinguished Objects List from wlookup . 23
7. Resource Objects List from wlookup . 24
8. Instance Manager Layout . 29
9. Policy Region Object Relationships . 30
10. Class and Instance Object Relationship . 42
11. TMA Downcall Architecture . 49
12. TMA Upcall Architecture . 51
13. Sample Output from the oservlog After New Install 65
14. Windows NT Services Dialog. 76
15. SIS High-level Design . 84
16. SIS Install Options Dialog . 86
17. SIS Desktop Dialog . 88
18. Contents of IR Directory. 91
19. Example of Provided Product Directories and Files. 92
20. Example of the ID Line in a .IND File. 95
21. Example of a SIS Response File with Conflicting Definitions 96
22. Example of SIS Log File for Imported Response File 97
23. Example of ‘fp” Line in .IND File . 100
24. Usage of the image_report Command. 100
25. Sample image_report - ep.IND . 101
26. Sample image_report - Specific Interpreter Types 102
27. Example of sis-<hostname>.out - xhost Error . 107
28. SIS Warning on First Initialization of a Shared IR 108
29. SIS IR Read-Only Mode Warning . 109
30. SIS Shared IR - No Write Access . 109
31. SIS Shared IR Type Warning. 110
32. Backup Tivoli Management Region Dialog . 117
33. Restoring the Notices Database . 123
34. Changing the Default Backup Directory. 125
35. Using tar to Display the Machines in the Backup. 127
36. Displaying Backup Objects for all the Managed Nodes 127
37. Example of Problem When Using Old Backups. 128
38. Typical odstat Output . 133
39. Default odadmin Information . 139
40. Sample odadmin odlist. 140
© Copyright IBM Corp. 1998, 1999 xvii

41. Typical wtrace Output . 142
42. odstat - wln. 145
43. Link Failure wtrace Part 1 of 2 . 146
44. Link Failure wtrace Part 2 of 2 . 147
45. Un-Subscribe Endpoint Failure odstat . 148
46. Un-Subscribe Failure wtrace - Part 1 of 4 . 149
47. Un-Subscribe Failure wtrace - Part 2 of 4 . 150
48. Un-Subscribe Failure wtrace - Part 3 of 4 . 151
49. Un-Subscribe Failure wtrace - Part 4 of 4 . 152
50. Subscribe Failure wtrace - Part 1 of 6 . 154
51. Subscribe Failure wtrace - Part 2 of 6 . 155
52. Subscribe Failure wtrace - Part 3 of 6 . 156
53. Subscribe Failure wtrace - Part 4 of 6 . 157
54. Subscribe Failure wtrace - Part 5 of 6 . 158
55. Subscribe Failure wtrace - Part 6 of 6 . 159
56. HMAC Error in wtrace - Part 1 of 2 . 161
57. HMAC Error in wtrace - Part 2 of 2 . 162
58. Policy Region Label Change wchkdb Errors . 163
59. Policy Region Label Change wtrace - Part 1 of 2 165
60. Policy Region Label Change wtrace - Part 2 of 2 166
61. Policy Region Label Change wls and wlookup Output 167
62. Policy Region Label Change Name Registry Correction 167
63. Attributes of Task Library . 168
64. Correcting Profile Manager Name for Task Library Object 168
65. Desktop Policy Region Label Change Failure wtrace - Part 1 of 2 169
66. Desktop Policy Region Label Change Failure wtrace - Part 2 of 2 170
67. Correcting the Label of the Presentation Object 171
68. Log Files in $DBDIR . 171
69. Sample of tmstat Output - Part 1 of 2 . 173
70. Sample of tmstat Output - Part 2 of 2 . 174
71. Typical oservlog Output . 177
72. Typical epmgrlog Output - Endpoint Login. 178
73. Typical Gatelog with Default Debug Level of 0 . 179
74. Sentry Profile Distribution Gatelog - Debug Level 6 180
75. Typical lcfd.log - Inventory Profile Distribution . 181
76. Typical lcfd.log - Gateway Unavailable . 181
77. Sample of a Desktop Containing Policy Regions. 189
78. Setting Managed Resources for a Policy Region 190
79. Set Login Names Dialog - before and after Pressing Enter 194
80. Administrator Login Name versus Current Login Name 195
81. Multiple Use Tivoli Administrator - Administrator Properties 196
82. Multiple Use Tivoli Administrator - Set Login Names. 197
83. Multiple Use Tivoli Administrator - Notice Group Messages 198
xviii Tivoli Enterprise Internals and Problem Determination

84. Multiple Use Tivoli Administrator - Notice Group Messages 2. 199
85. Entering an ID Map for a Tivoli Administrator User Login Name 202
86. Administrator Using an ID Map . 203
87. Output from the wgetadmin Command . 205
88. Error Opening a Notice Group - Contains No Unread Notices 211
89. Looking at Notices from the Command Line . 212
90. Using wsndnotif to Create a Notice . 213
91. The New Notice Shown in the Read Notices Dialog 213
92. Looking at the New Notice in Notice Group Messages 214
93. Looking at Previously-Read Notices in Notice Group Messages. 215
94. Interregion Remote Connect Dialog. 219
95. Interregion Secure Connect Dialog . 219
96. Update Resources from Multiple TMRs . 221
97. Remote TMR Can See Query in the GUI. 225
98. Partial Listing of wlsconn . 227
99. wlsconn After Updating the Administrator Resource 228
100.Resource Exchangeable Status Script . 229
101.Two-Way Connected TMRs . 232
102.Using the wdisconn Command to Disconnect TMRs 232
103.TMR Disconnect Failed . 233
104.Update Resource Roles for an Administrator . 237
105.Creating a Task . 242
106.Creating a Job . 244
107.Executing a Task. 245
108.Output of the wgetsched Command . 256
109.Example of a wgetsched Command with Verbose Output 257
110.Scheduler Not Running Message . 258
111.Repeater Example Environment . 266
112.Point-to-Point Distribution . 266
113.Repeater Source to Many Nodes Distribution . 267
114.Non-Repeater Source to Many Nodes Distribution 268
115.Non-Repeater Source to Many Nodes All Targets of One Repeater . . . 268
116.Non-Repeater Source to Many Nodes Not Targets of Own Repeater . . 269
117.Distribute to Single Target of One Repeater and Multiple of Another . . . 270
118.Non-Repeater to Targets in Another TMR . 271
119.Creating a PC Managed Node for a DHCP PC. 277
120.Unique Client Name . 278
121.Default Server . 279
122.Communication Between PC Agent and usrlnkd 282
123.UserLink/DHCP Browser. 283
124.Managed Nodes Separated by NAT Device . 300
125.TMA Endpoint Login Across NAT Device . 302
126.Hypothetical Internet Architecture - Dallas Hub 305
 xix

127.Hypothetical Internet Architecture - SF and NY Offices 306
128.Hypothetical Internet Architecture - Boston and Hartford 307
129.Dual TMR Implementation Across Firewall . 310
130.RIM Components . 316
131.How an Application Uses RIM. 321
132.wlookup - Listing the RIM Objects in Your TMR.. 322
133.Listing the Information for a RIM Object - wgetrim 322
134.Changing a RIM Object Name - wsetrim. 323
135.Deleting a RIM Object - wdel. 324
136.Creating a New RIM Object - wcrtrim . 324
137.RIM Connection Failure Message in the Desktop 325
138.Example of wgetrim. 325
139.Example of wrimtest . 326
140.Example of RIM Call in odstat Output . 327
141.Example of RIM Error in wtrace Output. 328
142.Example Output of RIM Tracing with wrimtrace 329
143.Creating a Query through the GUI . 331
144.Running a Query to Select Subscribers for Software Distribution. 332
145.Subscribers Selected after Running a Query . 333
146.Sample of Distribution Route. 344
147.Example of Setting a Repeater Parameter . 346
148.Sample of New Software Distribution Log Format 356
149.Sample odstat - TMR Server and Source Host for a PC Managed Node 361
150.Sample odstat and ps - Repeater for PC Agent 362
151.Event Viewer Events from the Software Distribution. 364
152.Example of a tivoli.log File from a W95 Machine 365
153.Contents of lstagt.bat File . 366
154.Odstat - TMR and Source Host . 367
155.Odstat - Repeater/Gateway for the TMA Endpoint 367
156.Setting the Gateway Debug Level. 368
157.Gatelog Sample with Debug Level 6 . 369
158.Output from TMA Endpoint tmesdist.log File. 370
159.Log File from Software Distribution . 370
160.Distributed Monitoring Profiles in a Profile Manager 387
161.Distributed Monitoring (Sentry) Entities. 389
162.Directories Used by TMA Endpoints for Distributed Monitoring (3.6) . . . 392
163.Select a Tivoli Distributed Monitor. 395
164.Edit a Tivoli Distributed Monitor. 396
165.User-Customized Distribution Actions for Monitors 398
166.Distributed Monitoring Profile Distribution Defaults 405
167.The Sentry Engine. 408
168.Using wgetsub for Profile Manager with SentryProfiles 411
169.Output of odstat from SentryProfile Distribution 414
xx Tivoli Enterprise Internals and Problem Determination

170.Output from odstat Showing Restart of Sentry Engine 415
171.Response Failure Reported in the SentryStatus Notice Group. 416
172.The dm36.log File - SentryEngine Startup (Log Level 3) 418
173.The dm36.log File - SentryEngine Running (Log Level 3) 419
174.Output from wlseng for All Severity Levels Every Two Days 422
175.Output from wlseng with Custom Hours Set . 423
176.C Source to Convert Monitor Startup Time Value 424
177.Distributed Monitoring - Start Monitoring Activity 425
178.The Inventory Profile . 432
179.Inventory Process Overview . 434
180.Inventory Query Installation Scripts. 439
181.New Inventory Resources . 443
182.Inventory Roles . 444
183.Inventory Profile Dialog . 445
184.Managed Node Options . 448
185.Hardware and Software Inventory Data . 449
186.Methods Involved in a UNIX Scan. 450
187.Methods Involved in a Windows NT Scan. 453
188.Methods Involved in a PC Scan . 454
189.Odstat - RDBMS Failure (Part 1 of 2) . 458
190.Odstat - RDBMS Failure (Part 2 of 2) . 459
191.Creating a User Administration Profile . 465
192.User Profile Properties Dialog . 466
193.Security Profile . 485
194.TACF Security Architecture. 494
195.Tracing TACF Options in seos.ini File. 499
196.Example of TACF Trace - TCP Access (Telnet) Denied 500
197.Example of TACF Trace - Write Access to File Denied 500
198.Example of TACF Trace - oserv Not Authenticated 501
199.TEC Daemon Relationship Diagram . 508
200.Output from wtdumprl - Example 1 . 509
201.Output from wtdumprl - Example 2 - Parse Error 510
202.Output from wtdumprl - Example 3 - Slot Not Defined 511
203.TEC Event Data Flow . 512
204.Dialog for TEC Install . 515
205.RIM Host Settings - wgetrim . 515
206.Example Extracted from .tec_diag_config File . 518
207.Example RIM Trace Log - Database Not Running 519
208.Event Server - Database Engine Not Running Error Dialog 519
209.Event Server Cannot Connect to Database Error - wstartesvr 519
210.Checking Status of Event Server and Database Server 520
211.Example Output for wtdbspace Command . 521
212.TEC Server -Database Engine Not Running Error Dialog. 522
 xxi

213.Assign Event Groups to the Event Console . 523
214.Example Output of wlseg Command. 524
215.Output from wlssrc Command. 525
216.Output from wtdumper Command . 526
217.Services Panel for TEC Adapter Control on Windows NT 527
218.Configuration File for a Logfile Adapter. 528
219.TEC Adapter Daemon Start-up Excerpt from init.tecad_logfile 529
220.Changing TECIO Stanza for Error Output to a File 530
221.New Rule Base Path . 534
222.Error Panel for Wrong Rulebase Path. 535
223.TEC Server Parameters (How to Turn on Rule Base Trace) 535
224.Reload Rule Bases (GUI) . 536
225.Command Line Tracing of Rule Bases . 536
226.Remote Control Creation Dialog . 578
227.Setting New Remote Control Default Policy for a Policy Region. 580
228.Remote Control FilteredList Endpoint Selection Policies 582
229.Remote Control DefinableTargetList Endpoint Selection Policies. 583
230.Default Policies for Controlling the Remote Control Session 584
231.Using rc_def_gw Policy to Define a Remote Control Gateway 585
232.Using rc_def_ports Policy to Define Remote Control Gateway Ports . . . 586
233.Remote Control Session Initialization without RC Gateway 587
234.Remote Control Session Initialization with RC Gateway. 587
235.Remote Control Controller Event . 590
236.Extract from a Remote Control Trace File. 591
237.Create ESM Database Object . 647
238.Registering Dialog for Oracle Database . 647
239.Script to Create ESM Sentry Profiles, Page 1. 650
240.Script to Create ESM Profiles, Page 2 . 651
241.Script to Create ESM Profiles, Page 3 . 652
242.ESM Capacity_Planning Monitors. 653
243.Possible Error Message when Creating ESM Task Library 655
244.Import of Oracle and Sybase .baroc Files into a New Rule Base 657
245.TEC .baroc File Hierarchy for Database Management 658
246.Equation to Calculate the Free Space Fragmentation Index. 661
247.ESM Command Line Database Startup . 667
248.ESM Command Line Database Shutdown . 668
249.Output Example for Oracle Sentry Notice Group 669
250.Panel to Set UID and GID in Profiles . 670
251.Oracle Database User Profile . 674
252.Edit TEC Oracle Database User . 675
253.Web-Based Oracle Installation . 683
254.Listener.ora File for Oracle . 684
255.Tnsnames.ora File for Oracle . 684
xxii Tivoli Enterprise Internals and Problem Determination

256.Oracle Server Manager GUI . 685
257.Tnsping Output for Oracle on AIX . 686
258.Tnsping Output for Oracle on NT . 686
259.Status Command of Oracle Listener Control Facility 687
 xxiii

xxiv Tivoli Enterprise Internals and Problem Determination

Tables

1. Files Written During Server Installation . 77
2. Files Written at Installation Time . 78
3. Output from odstat . 134
4. Administrator Commands for Troubleshooting . 204
5. Notice Group Commands . 210
6. Default Policies in a Task Library. 248
7. Validation Policies in a Task Library . 248
8. Task Library Commands . 249
9. Scheduler Commands . 255
10. Tivoli Port Usage Summary . 292
11. RIM Installation Options . 319
12. RIM Installation Options (Cont.). 320
13. File Package Properties. 350
14. Software Distribution Log File Error Messages . 357
15. AutoPack Distribution Source and Targets . 376
16. Actions Taken When Distributing SentryProfiles 406
17. wdistrib Parameters for SentryProfiles. 408
18. Inventory Scanning Programs . 450
19. .RCS File Version Commands Summary. 472
20. NIS Default Policies . 475
21. NIS Validation Policies. 476
22. NIS Notice Group Severity Levels . 476
23. User Management Methods. 480
24. Event Console Column Attributes, Types, and Values 532
25. Destiny Composer Configuration Issues . 559
26. Destiny Conductor Configuration Issues . 561
27. Destiny Dbase Issues . 562
28. Destiny Destination Status Issues . 562
29. Destiny E-mail Issues . 563
30. Destiny LQM Issues. 563
31. Destiny Mapper Issues . 565
32. Destiny Netwatcher Issues . 567
33. Destiny NQM Issues . 567
34. Destiny Pager Issues . 568
35. Destiny Print Issues . 568
36. Destiny Spoolman Issues . 569
37. Destiny Trashman Issues . 573
38. Remote Control - 3.6 Supported Platforms . 576
39. Tivoli Files Placed in %SYSTEMROOT% . 629
40. Tivoli-Specific Commands and Terminology for NT. 631
© Copyright IBM Corp. 1998, 1999 xxv

41. Methods That Use the $root_user ID Map. 638
42. Supported Databases and Components for ESM 645
43. Output Files and Error Logs for ESM Oracle Server Installation on UNIX663
44. Output Files and Error Logs for ESM Oracle Client Installation on UNIX 664
45. ESM Distributed Monitoring Background Daemons. 668
46. Roles Required for Distributing to Next Level of Subscribers 673
47. Roles Required for Distributing to All Levels of Subscribers 673
48. Roles Required for Distributing from the Endpoint. 673
49. ESM User Profile Background Daemons. 676
xxvi Tivoli Enterprise Internals and Problem Determination

Preface

If you can discover more about how products work, then you can easily
resolve problems when things go wrong and, more importantly, prevent
problems in the first place. This redbook provides under-the-covers
information and techniques for problem determination and problem source
isolation (PD/PSI) in the Tivoli Enterprise Management environment. You will
also find many examples of log files, trace, and other output from both normal
and failing scenarios. This redbook is based on internal Tivoli training
documentation yet expands on that information and includes scenarios that
will help those implementing Tivoli solutions perform PD/PSI. This redbook
details the Tivoli Framework and the major Tivoli Enterprise applications
including TEC, Software Distribution, and Distributed Monitoring.

This material is invaluable to customers, systems integrators, and field
service personnel when assisting with problem determination in a Tivoli
environment.

This book is divided into three parts. The first part provides introductory
material, documentation on product installation including the Software
Installation Service (SIS), and details on core Framework components.
Chapter 1 contains an introduction to the topics covered elsewhere in this
redbook. Part two provides detailed discussions on each of the major Tivoli
Enterprise Products that work with the Framework. The third part of the book
provides additional information on related topics.

This book’s primary function is to be used as a reference tool. However,
because each chapter provides a great deal of background information, it
would be beneficial to read through this entire redbook.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Richard Hawes is a Senior Tivoli Security Specialist at the International
Technical Support Organization, Austin Center. He holds a BSc in Computer
Science and writes extensively on Tivoli framework and security issues.
Richard is a Tivoli Certified Enterprise Consultant. Before joining the ITSO in
early 1997, Richard was based in the UK providing on-site server
troubleshooting and problem management across Europe.
© Copyright IBM Corp. 1998, 1999 xxvii

Victoria Stevens is a Senior Engineer in level three support at Tivoli
Systems, Austin. She has been with Tivoli since joining customer support in
1994. Victoria was the originator of the material upon which this redbook is
based, and she continues to teach Tivoli Internals classes to Tivoli Support
and Development personnel. Victoria holds a Computer Science degree from
Texas A&M University.

Bob Cashion is a Senior Systems Engineer with Perot Systems Corporation,
a Tivoli Business Partner based in Dallas, Texas. He has 20 years experience
in the Information Technology field, working in application development,
operations, systems programming, and systems management. He has more
than three years experience working the Tivoli product set and is a Tivoli
Certified Enterprise Consultant. His areas of expertise are Framework, RIM,
Distributed Monitoring, and TEC. Bob has consulted for several large
corporations implementing Tivoli Enterprise environments in the finance and
services industries.

Rhonda Childress is an I/T Architect with IBM Global Services Strategic
Outsourcing in St. Louis, MO. She has over 15 years experience in the
information technology field and has worked in Application Development, System
Programming, System Administration, and System Architecture. Rhonda has
worked with the Tivoli product suite for over three years architecting Tivoli
solutions and leading implementation teams for IBM Global Services. She has
also consulted on several US domestic and international IBM Global Services
engagements. Her areas of expertise in Tivoli are Architecture planning and
implementation, Framework, Software Distribution, and Distributed Monitoring.

Gary Louw is a Senior Systems Engineer with IBM in Ontario, Canada. Gary
has over 18 years experience in support, first with hardware, and more
recently, with UNIX. For the last two years, he has been providing technical
support for Tivoli products. Gary often performs troubleshooting on customer
sites. His areas of expertise include the Tivoli Framework, TEC, and the
Deployment products as well as a variety of operating system platforms
including Windows NT, AIX, OS/2, and NetWare.

Morten Moeller is an Advisory I/T Specialist with IBM, Denmark. He has 10
years of experience in the Distributed Systems Management field designing
and implementing solutions to centrally manage workstations and LANs.
Morten has been working with the TIvoli products for the past year. Prior to
entering the DSM arena, Morten primarily worked with DB2 and application
development on the MVS platform. Today, his areas of expertise include
Framework, Software Distribution, Inventory, Distributed Monitoring, and
Remote Control. Morten has consulted major enterprises spanning form
xxviii Tivoli Enterprise Internals and Problem Determination

manufacturing and retail/distribution to I/T outsourcers and financial
institutions.

This is the second edition of this publication. The authors of the first edition
(February 1998) were:

Richard Hawes, Victoria Stevens, Ana Lina Bernal, Peter Dominke, Simon
Moore, and Ivan Zabala.

A project of this scale and technical depth requires time and assistance from
many people. We would like to extend our thanks to the following people for
their invaluable contributions:

Ben Allums
David Hooks
David Parrish
Elizabeth Bagley
John Pozdro
Kendall Collett
Kurt McBride
Mark Goewey
Mike Hahn
Nancy Ball
Patrick Hykkonen
Roland Reed
Russ Cunningham
Sadu Bajekal
Sean Starke
Terence Quinn
Tim Little
Caroline McDonnell
Tivoli Systems

Rick Rhea
Rusty Myers
Scott Dengler
IBM Global Services

Tivoli Management Product Names

In an effort to eliminate any confusion about the names for Tivoli’s expanding
line of management products, Tivoli has recently been through a brand
naming review. Those already familiar with the products mentioned in this
 xxix

publication will be used to seeing the names as TME 10 Security
Management, TME 10 Distributed Monitoring, and so on.

The new naming convention for these enterprise software management
products will replace TME 10 with Tivoli. The new names are Tivoli Security
Management and Tivoli Distributed Monitoring. This change may seem trivial,
but the consistency comes from more dramatic changes on other products,
such as Unison Destiny, which is now Tivoli Output Manager. Most of the
products previously referred to as “TME 10 Name” are now part of Tivoli
Enterprise, a collection of products aimed at major system management
solutions across large corporations distinct from other areas, such as Tivoli
CrossSite and Tivoli Service Desk.

Many Tivoli products current at the time of writing (3.6 and 3.6.1 releases) are
still using the older names. However, throughout this publication we have
endeavored to use the new names wherever practical, as Tivoli publicity
material and future versions will be using the new names. This includes
references to the Tivoli Management Agent often referred to in the past as the
Lightweight Client Framework (LCF).

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 715
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
xxx Tivoli Enterprise Internals and Problem Determination

Part 1. Introduction, Installation, and Framework Components
© Copyright IBM Corp. 1998, 1999 1

2 Tivoli Enterprise Internals and Problem Determination

Chapter 1. Overview

The Tivoli Enterprise Management suite aims to make distributed systems
and application management relatively easy. It achieves this through a
consistent interface and the use of models, such as management by
subscription. While the systems administrator can perform many tasks with
relative ease, the code Tivoli and their partners provide to achieve those
tasks is extraordinarily complex. With the solid foundation of the Tivoli
Management Framework, this complexity can remain largely masked from the
administrator. However, with such a sophisticated set of products, there will
be occasions when those designing, testing, and implementing Tivoli
solutions will encounter situations that are not resolved by reference to
product manuals alone.

In problem-solving situations, you need to understand what is going on
between the product components, what messages and trace output means,
and what extra actions you can take to try to resolve a problem. This book
starts with what is probably the most difficult subject: the core of the Tivoli
Management Environment, the Tivoli Object Database. One of the reasons
applications fit in so well to the Framework paradigm is the object-oriented
nature of Tivoli Enterprise. No discussion of advanced problem-solving
techniques would be complete without an understanding of the database
Tivoli maintains for all objects in the management environment. If you are
new to objects, methods, and the like, Chapter 2, “Tivoli Object Database
Architecture” on page 9 will be difficult reading. However, you should try to
gain some level of understanding of what we are trying to describe there. If
you are already familiar with a particular Tivoli application, you should find the
information in the subsequent product chapters useful even without a clear
understanding of Chapter 2.

If there are any problems installing a Tivoli product, then it is not likely to work
in the desired manner. Therefore, the next topic we discuss is the installation
process. The emphasis in Chapter 3 is the installation of the Framework, but
much of the information will be relevant to patches and products since they all
use the same or similar installation methods. This is extended to multiple
installations through the Software Installation Service described in Chapter 4.

If we had to pick only one message to get across in this book, it would be the
importance of regular and appropriate backups. This is especially true when
troubleshooting. You may need a good backup to return to, or you may need
to take backups before performing some procedure. We talk about the
backup process in Chapter 5.
© Copyright IBM Corp. 1998, 1999 3

Whatever problem you are investigating, there is a core set of commands and
log files that you are likely to use. Before we talk about specific products, we
cover general problem determination commands, log files, and procedures in
Chapter 6.

Most of the applications make regular use of Tivoli Framework services. In
Chapter 7, we take a look at how these services function and the steps you
can take if they are not functioning correctly. A lot can depend on getting the
right administrative authority, checking in the right place for notices,
understanding the implications of interconnected TMRs, and so on.

The introduction of the Tivoli Management Agent has been the most
significant innovation in the systems management arena since Tivoli first
introduced Framework based management. As an important part of making
systems management really scalable, we intended to dedicate a chapter to
this topic. However, we found that this topic could fill an entire book.
Therefore, we cover only certain problem determination tips throughout this
book.

Tivoli recently introduced a new product specifically designed for managing
systems outside of a company’s firewall, Tivoli CrossSite. There are still
many cases when some form of Tivoli Enterprise management will involve
firewalls, and because of this, Chapter 8 covers this topic.

The RDBMS Interface Module (RIM) is a component of the Framework. We
decided to devote Chapter 9 entirely to RIM for two reasons: Getting it set up
correctly can be tricky but is vital for the applications that use it to function
correctly. Furthermore, RIM will play a more significant role in the future as
more of the Framework and applications make use of it.

This concludes the first part of this book. The second part looks at the
Enterprise applications themselves.

In Chapter 10, we start on the core Tivoli applications with a look at Tivoli
Software Distribution. Understanding its use of repeaters and file package
definitions will help to explain many types of failure. A discussion of Software
Distribution is not complete without AutoPack, and we take a detailed look at
this feature in Chapter 11.

Tivoli Distributed Monitoring is arguably one of the simpler products to
implement in a distributed environment. Nevertheless, like any product that
relies on customization, timing dependencies, and other factors, there may
be occasions when you will need to know more about items, such as the
Sentry engine. Chapter 12 provides this information.
4 Tivoli Enterprise Internals and Problem Determination

Many of the problems associated with products, such as Tivoli Inventory, can
be related to the setup or configuration of a RIM database connection.
Chapter 13, “Inventory” on page 431 covers this topic and other aspects of
problem-solving one of Tivoli’s most popular applications.

Tivoli User Administration is often implemented with a great deal of
customization. In Chapter 14,we discuss a number of techniques you might
employ if User Administration is not behaving as you expect.

Although relatively new, Tivoli Security Management is becoming a significant
part of the Tivoli Enterprise suite. The product has excellent documentation,
particularly in the UNIX arena, but we offer more tips in Chapter 15.

Chapter 16, “Enterprise Console” on page 507 is near the end of the book,
but it is by no means the least important. The Tivoli Enterprise Console (TEC)
is a cornerstone of Tivoli’s product set working with almost every other Tivoli
product. TEC is also perhaps one of the most expandable products in the
suite, and this can lead to inconsistencies. TEC could probably fill another
book in itself, but we have selected a few key topics to discuss, such as TEC
server, Event Console, and Rule Base problems.

Tivoli Output Manager is new to the Tivoli portfolio and is perhaps less well
known. For those working with this important addition to the Tivoli product
line, Chapter 17, “Tivoli Output Manager” on page 539 will prove invaluable.

Another product being widely deployed in Tivoli Enterprise environments is
Tivoli Remote Control. This application is very sensitive to different network
configurations; so, understanding more about how it works can help make the
most of this product in any environment. We cover Remote Control in Chapter
18.

Since the first edition, this redbook has already grown significantly. We could
probably produce several volumes if we tried to cover every Tivoli product, so
instead, we have instead concentrated on a core set (covering most of Tivoli
Enterprise). However, information used by Tivoli support personnel on other
topics can benefit the wider audience of a redbook, and so we conclude with
a set of appendices in part 3 on related aspects of Tivoli Enterprise
Management. These include a discussion describing how Tivoli utilizes
Windows NT, and appendices on database management and database
installation.
Overview 5

1.1 Generic Problem Determination Outline

If you start to receive errors, and you have questions about the cause, this
generic outline for problem determination may help. You will need to review
other chapters of this book (such as Chapter 6, “Commands and Logs for
Troubleshooting” on page 131, and in particular Section 6.3.1, “Trace Usage
Overview” on page 141) in order to understand what to do at each stage. If
you have a scenario that you can re-create, the following is a generic list of
steps to perform to gather documentation:

To obtain an overall picture:

1. Do odadmin odlist to determine the number of machines and to keep for
reference purposes.

2. Do odadmin alone to get information, such as the port range restrictions (if
any) in place.

3. Do odadmin environ get to determine the environment the oserv is using.

To gather data from each suspected machine:

1. Logon as root and as a Tivoli root administrator.

This helps ensure you are not experiencing authority problems.

2. Do odadmin trace errors then odadmin trace objcalls.

3. Re-create the problem.

On every involved machine, including the TMR server:

4. Do odstat -v >odstat.txt.

5. Do wtrace -jk $DBDIR >wtrace.txt (or %DBDIR% for Windows NT).

6. Collect above txt files plus oserv.log and any useful system logs.

7. Set odadmin trace off.

8. Then odadmin trace errors to revert to the default of just logging errors.

The trace should help you determine the failing objcall.

1.2 Sources of Additional Information

The primary source for information for a Tivoli customer is their Tivoli or IBM
representative. Customers can also register for Tivoli’s support Web site at
http://www.support.tivoli.com. This site is a rich source of help, frequently
asked question (FAQ) lists, and so on. Other external sources of information
6 Tivoli Enterprise Internals and Problem Determination

include Tivoli user groups - one particularly useful site is that of the Tivoli
South West Users Group at http://www.tivoli.isis2000.com where you can
subscribe to a digest of Tivoli information.

Also see Appendix E, “Related Publications” on page 693 regarding other
publications. The Tivoli product manuals from Version 3.6 include problem
determination information, and there are many redbooks covering most Tivoli
products in more detail.

1.3 When Is an Endpoint not an Endpoint?

The terms client, endpoint, and node are often used interchangeably when
people talk about machines in a Tivoli environment. To avoid confusion, we
define here the terms we use in this publication:

LCF Abbreviation for Lightweight Client Framework, an old
term for what is now referred to as the Tivoli
Management Agent (TMA). File names and other
references still use lcf in some places (such as the
TMA daemon, lcfd).

Endpoint In general, usage in this book endpoint means the
target of a management operation - typically a TMA
endpoint or a managed node (see below). For
example, for Tivoli User Administration, an endpoint
might include the OS/390 TMA endpoint or a Windows
NT server configured as either a TMA endpoint or a
managed node. For inventory, an endpoint might be
any supported managed node, proxy, or TMA
endpoint.

TMA Endpoint Is a system with the Tivoli Management Agent
installed on it - a system that communicates with the
TMR through an endpoint gateway. A TMA endpoint
can also be a managed node if the managed node
code is installed on it. Sometimes, we may refer to the
code installed on a TMA endpoint as just the TMA. To

Scripts and commands for problem determination could make matters
worse if used incorrectly. Always ensure complete backups have been
taken and seek the advice of qualified Tivoli personnel (for example,
Support or Tivoli Professional Services) for any significant actions.

Note
Overview 7

reduce repetition, we may just use endpoint to mean a
TMA endpoint when a TMA endpoint has been
identified by the context.

Managed Node Is a system with the full Tivoli Framework installed. At
the time of writing, this could be a Windows NT, UNIX,
or OS/2 system (although most applications do not
recognize OS/2 as a managed node). Note that the
TMR server is also a managed node.

Client A Managed Node.

PC Managed Node Is the object maintained on a managed node to
manipulate data for a PC on which the PC Agent is
installed.

PC Agent The code on a PC allowing it to be managed from a
TMR through a managed node.
8 Tivoli Enterprise Internals and Problem Determination

Chapter 2. Tivoli Object Database Architecture

This chapter explains Tivoli Enterprise’s object-oriented environment. This is
crucial to help gain an in-depth understanding of how Tivoli works and to
perform advanced problem determination activities without jeopardizing the
integrity of the Tivoli management database. Reading this material will also
help you become familiar with the terminology that is commonly used when
working with Tivoli’s platform and applications. This is a very complex
subject. If you find this chapter too complex, but have Tivoli application
experience, you should find plenty of other information in the later chapters
that will still be of use to you.

The definitions we have given are not necessarily 100 percent compliant with
the CORBA specifications. Instead, we have tried to relate the various terms
used to illustrate the hierarchy and the Tivoli implementation. An existing
knowledge of Object Oriented technology will help you to understand this
chapter. Otherwise, persevere! You may need to read the chapter through
more than once to grasp all the concepts presented.

Much of this chapter is based on information provided in the Tivoli Advanced
Development Environment (ADE) documentation. If you want to explore this
subject more fully, you should refer to that source.

2.1 The Tivoli Enterprise Management Challenge

Tivoli Enterprise is a suite of distributed systems management products that
address the following system management needs in a distributed computing
enterprise:

Heterogeneity Runs on many different platforms. System administrators
need not be concerned with the machine architecture. The
network environment can support multiple architectures, so
the management platform must be heterogeneous to reduce
administrative complexity.

Interoperability Enables many different platforms to operate together. A
system administrator using one machine type can manage
resources on other machine types regardless of the
architecture. Such interoperability extends heterogeneity,
enabling system administrators to seamlessly manage any
type of machine from any other type of machine.

Scalability Handles large computing enterprises. Managing networks
comprising thousands of nodes can produce serious
© Copyright IBM Corp. 1998, 1999 9

difficulties for system administrators. Using Tivoli Managed
Regions (TMRs) system administrators can easily distribute
changes (such as creating a new user) to large networks.

Distributed Provides services across distributed systems, spreading the
systems management work load. Not only do managed
nodes maintain their own object databases, applications
share the management burden by allowing major tasks to be
handled by separate machines. Examples include TEC and
RIM servers and Distributed Monitoring engines.

Robust APIs Enables all products and customer-developed applications
to work together and leverage standard APIs.

Dependability System-management transactions ensure consistency and
can back out half-completed operations across the network.
This can be very important in large distributed environments
where multiple administrators can simultaneously perform
operations.

CORBA The Object Management Group (OMG) proposed CORBA
1.1 as a standard for all common Object Request Broker
(ORB) systems. Tivoli Enterprise is compliant with this
standard.

2.2 Tivoli Enterprise Architecture Overview

The Tivoli Enterprise applications all share a common framework, the Tivoli
Framework. The Tivoli Framework is an open, object-oriented framework that
includes a set of managers, brokers, and agents that conform with the Object
Management Group (OMG) Common Object Request Broker Architecture
(CORBA) specifications.

This technology allows major differences between computer operating
systems to be hidden from the Tivoli user and, to some extent, the
applications. It allows key services to be encapsulated in objects that can be
used by multiple management applications. The Tivoli Framework provides
platform-independence, a unifying architecture for all applications, and the
ability for third-party vendors to easily adapt their offerings or plug them into
the framework, allowing systems administrators to manage a wide variety of
IT resources in a consistent way. In addition, a robust set of APIs and
services enables customers to write their own applications that plug into and
leverage the Tivoli Framework.

Figure 1 illustrates the Tivoli product structure.
10 Tivoli Enterprise Internals and Problem Determination

Figure 1. Tivoli Management Environment Software Components

Tivoli Enterprise represents several major advancements for managing large
networks of heterogeneous, distributed systems. It has two primary
components: a comprehensive management platform (Tivoli Framework), and
a set of X/Open-compliant APIs.

The Tivoli Framework is built around an implementation of the OMG CORBA
1.1 environment. It also provides an implementation of the enabling services
adopted by X/Open as the basis for a systems management framework.

2.2.1 About CORBA 1.1
The Object Management Group (OMG) is a non-profit, international
association of more than 300 companies. Its goal is to define an architectural
object framework through a series of detailed interface specifications.

OMG’s CORBA specification introduces the Interface Definition Language
(IDL) and the concepts of an object request broker (ORB) and basic object
adaptor (BOA). The ORB and BOA provide a mechanism for invoking objects
and returning the results to requestors.

CORBA 1.1 specification presents an open system of service requestors and
service providers in which the requestors are isolated from the providers.
Requests are initiated without regard to the location or implementation of the

Tivoli
Management

PlatformTivoli

Tivoli

Tivoli

Tivoli

Tivoli

(hw and sw
inventory)

(event mgmt.)

Tivoli AEF
(Application Extension

Facility Toolkit)

Tivoli ADE
(Advanced Developer’s

Environment Toolkit)

Tivoli EIF
(Event Integration

Facility Toolkit)

Tivoli

Modules
(3rd-party product

integration)

Third-Party
Application

Third-Party
Application

Inventory
Software

Distribution

Others...

(Framework)

Distributed
Monitoring

User

Tivoli

Enterprise
Console

Security
Mgmt

Admin

Partner

AEF Extension
Tivoli Object Database Architecture 11

service provider. The service provider could be on the same machine or on
another system of a different architecture somewhere across the network.

CORBA 1.1 specifies interfaces to a set of low-level object services. It does
not, however, specify implementation, security, or installation. Nor does it
offer a means for multi-vendor ORB interoperability or C++ language
bindings. These are up to the implementor to determine and, as in the case of
the Tivoli Framework, can significantly enhance the function of a
CORBA-based product. The architecture uses three concepts to achieve the
integration of a wide variety of object services in many different languages
and systems:

Object encapsulation: The object providing a requested service does so
within its own context, which means that each object has the ability to
respond differently to the same request. Thus, two different objects can
support the same interface, and each can maintain a different implementation
of that interface.

Complete service requestor/provider isolation: Allows service requestors
to make requests of a provider regardless of the provider location or
implementation. A service request includes a service identifier (operation
name), a provider identifier (object reference), and other optional data.

Interface and implementation separation: Interfaces are defined without
regard to the way in which they are implemented.

Within the CORBA 1.1 architecture, there are three primary components: The
client, the object implementation, and the ORB/BOA.

The client is the requestor of a service that an object implementation
provides. The ORB delivers the request from the client to the object
implementation through the BOA. The object implementation then performs
the requested service, and any return data is delivered back to the client.
Note that the client and object may or may not reside on the same physical
computer system.

The client and the object implementation are isolated from each other.
Neither has any knowledge of the other except through their interfaces to the
ORB and BOA. Client requests are independent of the object implementation
location and the programming language in which they are implemented.

Furthermore, clients and object implementations are not capable of direct
communication (clients can only initiate requests, and object implementations
can only provide services at the request of a client). Figure 2 on page 13
12 Tivoli Enterprise Internals and Problem Determination

shows the steps involved when a client requests an operation of some object
implementation. The request is shown as step 1.

Figure 2. CORBA Operation Request

The ORB delivers the request to the BOA (step 2) that activates the process
under which the object implementation runs. The BOA then invokes the
method associated with the request by way of the server skeleton (step 3).

When the method is completed, the BOA manages the termination of the
method (step 4) and coordinates the return of any results to the client (steps
5 and 6). Alternatively, if a request is unknown until run-time, the Dynamic
Invocation Interface (DII) is used to build a request that is used in place of a
client stub linked at compile time.

2.2.2 Tivoli Enterprise CORBA Implementation
On top of the CORBA ORB and the enabling services are a set of
management services, user interface services, and advanced application
services. These combined services form the application programming
interface to which systems management applications are written and make up
the Tivoli Advanced Development Environment (ADE). If you really want to
understand methods and the Tivoli implementation, it is recommended that
you spend some time reviewing the ADE documentation and keep it handy
(all 16+ books!) for reference purposes.

Figure 3 on page 14 identifies the application interfaces and their
relationships to each other:

Dynamic
Invocation
Interface

Client
Stub

Direct
ORB
Interface

Server
Skeleton

Basic
Object
Adapter
(BOA)

Object
Request
Broker

Client Client

Client Request

Results

2 5

16 3 4
Tivoli Object Database Architecture 13

Figure 3. Tivoli Enterprise Application Interfaces

You can choose to write to one or more layers from this API or substitute
alternate services and libraries from third parties as appropriate. Tivoli
provides support for the same programming interfaces across all
Framework-supported architectures, which provides a significant portability
layer. Currently, some of these interfaces are better documented than others.
Tivoli continues to strive to be a genuinely open platform and API
documentation gets better with every revision.

2.2.3 Tivoli Enterprise Heterogeneity and Interoperability
Tivoli Enterprise supports heterogeneous systems management. This means
that the Tivoli server can be any supported architecture type, and that Tivoli
clients can be any mix of supported architecture types.

In heterogeneous networks, applications have traditionally been required to
explicitly cope with the data requirements of each platform. Each time the
application transmits data, it must be able to convert the data from the native
format to the destination format.

The Tivoli Framework ORB removes this consideration from application
programming. When a request to run an operation on some object is made, a
client stub initiates the request, collects the data associated with the request,
and converts the data from its current format to a common format.

This process (known as data marshalling) is performed in accordance with
the ASN.1 standard. ASN.1 converts data to a canonical or simplistic form for
transmission to a machine of an undetermined platform type.

Tivoli and Third-Party Applications

Advanced Application Services

UI Services

Enabling Services

CORBA ORB plus Security

Operating System & Transport
14 Tivoli Enterprise Internals and Problem Determination

When the data conversion is complete, the client stub passes the marshalled
data to the ORB. The ORB then sends the data to the BOA and ultimately to
the appropriate server skeleton. The server skeleton then reformats the data
according to the requirements of the destination object implementation.

2.2.4 Management Services
The system management framework fits into the X/Open reference model
and is built on top of an OMG CORBA 1.1 foundation. It provides a set of
enabling management services for applications.

These services include policy, extensibility, scheduling, collections, and
instance management. When used with other interfaces and services found in
Tivoli, they enable the development of sturdy, feature-rich systems
management applications.

The following figure illustrates the X/Open reference model and shows the
management services component indicating those areas that the Tivoli
Framework targets.

Figure 4. Management Services in the X/Open Reference Model

TME10 specifically focuses on managing policy-driven objects. This
management includes the mechanisms and facilities that enable the
establishment and enforcement of policy on these objects.

Object Request Broker

C
om

m
on

 F
ac

ili
tie

s

M
an

ag
em

en
t S

er
vi

ce
s

Object Services

User Interface

Managed Objects

Management
Applications

Hosts
File

System

Data
Source Print

Customization
Scheduling

Instance Manager
Collections

Object Interface

Non-Object Interface
Tivoli Object Database Architecture 15

2.3 Tivoli Object Architecture Implementation

Having looked at the basics of the CORBA ORB model, we can start to look in
more detail at the Tivoli implementation of an object-oriented management
environment

2.3.1 Tivoli Object Request Broker
CORBA 1.1 only specifies the architecture of the ORB model and the
provision of the ORB interfaces but not the ORB implementation. The ORB
could, for example, be implemented as part of an operating system or as a
stand-alone process.

The Tivoli Framework provides object, management, and desktop services
and includes an implementation of the APIs adopted by X/Open for a systems
management framework.

The Tivoli object dispatcher (oserv) is the main component of the Tivoli
Framework run-time. It is implemented as a single multi-threaded process
and runs on each TME client within a TMR and on the Tivoli server for that
TMR (commonly referred to as the TMR server). The object dispatcher
consists of an ORB, the BOA, and related services. The object dispatcher
running on the TMR server provides additional services, including security,
such as administrator authentication, ORB and object location resolution and
implementation inheritance resolution. You may see the acronym ALI
(Authentication, Location, and Inheritance) referring to the TMR server. The
Tivoli ORB is a continually-running program separate from the operating
system.

The Tivoli ORB communicates with the server and the client through separate
stubs and skeletons through an inter-process communication facility. A
secure remote procedure call (RPC) used to invoke operations on remote
objects provides principal authentication and authorization.

The framework services support all the major CORBA 1.1 components:

 • An ORB

 • A BOA

 • A Tivoli-extended IDL compiler (TEIDL) with both ANSI C and Bourne shell
language bindings

 • An interface repository

 • The interfaces required for a Dynamic Invocation Interface (DII)
16 Tivoli Enterprise Internals and Problem Determination

2.3.2 Tivoli Authorization Principals
Tivoli maintains a database of principal privileges and defines a simple
means of controlling which principals have access to which methods. For
authorization purposes, a TME principal is a Tivoli administrator or user with
an entry in the Tivoli database of principals. If Kerberos is in use, the Tivoli
principal is a Kerberos principal name. For more information about Kerberos
in Tivoli see the Tivoli Framework Planning and installation Guide. If Kerberos
is not in use, the principal name has the format user@machinename for UNIX or
Domain\user@machinename for Windows NT. You can check the principal of the
user you are using by issuing:

objcall 0.0.0 o_get_principal

When an administrator or a user invokes a method, an operation on an
object, Tivoli looks up the principal’s name (using the appropriate form). This
name is then cross-referenced to a Tivoli administrator, and the roles are
checked. A Tivoli administrator is defined to have one or more roles over the
objects in one or more object groups.

2.3.2.1 Security Object Groups
To simplify security management, objects created in Tivoli are assigned as
members of one or more object groups. A security object group is a named
logical entity to which one or more objects belong and over which an
administrator is granted one or more roles. Security object groups typically,
but not always, align with policy regions in which managed resources are
grouped.

The result looks like an access matrix in which a role for a principal can be
verified for many resources in one step. The use of object groups simplifies
role management by substantially reducing the number of entries that must
be changed when a principal’s credentials are modified.

2.3.3 Communication between Objects
As already stated, the object dispatcher (oserv) provides communication
between objects in Tivoli Enterprise. The Tivoli ORB uses a secure RPC
service layered on top of TCP. This provides secure peer-to-peer
communication between ORBs when an operation is invoked on a remote
object. The secure RPC service is layered on top of TCP/IP using either
domain sockets or the transport layer interface (TLI). An application is never
aware of the particular protocol in use; it just invokes the operation on an
object by calling the client stub (produced by the TEIDL compiler) or using the
DII to build a request at run-time.
Tivoli Object Database Architecture 17

The following figure depicts the interaction between two ORBs when an
object on one machine invokes an operation on an object that resides on a
remote machine:

Figure 5. Object Communication across ORBs

A client can run any object method for which a client stub exists locally. The
actual location of the object implementation is irrelevant to the invoking client.
When a method of object 1 invokes the client stub of a method of object 2, a
message is sent to the local ORB. The message specifies the method, object,
and arguments of the request (step 1).

The ORB on MN2 communicates with the TMR server to determine whether
the principal is authorized to invoke the operation on object 2 (step2). If the
principal is authorized to invoke the operation, the server also determines the
location of object 2 and resolves any implementation inheritance as
necessary.

This information is then returned to the ORB in MN2 in a cryptographically
sealed credentials package (step 3). MN2’s ORB then forwards the request to
MN3’s ORB (step 4), which in turn, invokes the desired method of object 2
(step 5).

When the method completes, the results are passed back to MN3’s ORB
(step 6), which returns them to MN2’s ORB (step 7). Finally, the results are
delivered to the invoking object (step 8). Database interaction occurs for
object query operations or for modifications taking place on object attributes.

DB

DB

DB

ORB

ORB

TMR
Server

Object 1

Object 2

1

2 3

4

5 6

7

8

ORB

Managed
Node 2 (MN2)

Managed
Node 3 (MN3)
18 Tivoli Enterprise Internals and Problem Determination

As already mentioned, the normal interaction between ORBs is through a
secure RPC service layered on top of TCP (using port 94). The next section
gives more detail about an additional mechanism used to exchange
information between objects.

2.3.3.1 Inter-Object Messages
The Tivoli Inter-Object Message (IOM) service provides a
connection-oriented bi-directional service between methods of different
objects that is independent of the object services layer and operating system.
This service is designed for applications that require an asynchronous
bi-directional method-to-method communication and transport facility. It is
used either when an application explicitly chooses to use it or when the
object-to-ODB-to-ODB-to-object mechanism described above results in data
transfer of greater than 16 KB.

The IOM service requires participating methods or client programs to be
threaded. Using threaded methods is necessary for one of two reasons:

 • A thread in the client is required for method invocation.

 • A thread in the server is needed for communication after the client has
been started.

Refer to Section 7.6.3, “Bulk Data Transfer and Inter-Object Messaging” on
page 271 for more information about IOM.

2.3.4 Transactions
In order to provide reliable management operations, Tivoli makes use of
transactions. A failure in an operation means the transaction can be rolled
back to a known state (automatically) and ensures object database updates
remain as consistent as possible.

This section provides some background information about Tivoli transactions.
Refer to 6.4.1, “Transaction Log Files and tmstat” on page 172 for more
information.

The ports used by the oserv are selected from the range available. Note
that odadmin set_port_range can be used to limit the port ranges used by an
oserv. The port range can be reset to not restricted using odadmin
set_port_range “” .

Note
Tivoli Object Database Architecture 19

There are three types of transactions:

Top transaction Runs independently of other transactions

Sub transaction Runs as dependent process of parent Top transaction

Revocable transaction Can run as either Top or Sub transaction

Within the boundaries of the context, any object request that is made is
executed in the context of the transaction. Each object request can have a
Top, Sub, Revocable, or None relationship with the current transaction. If the
object request has a Top, then that request operates completely independent
of the transaction and exists in its own separate transaction context. If the
object request has a Sub relationship with the current transaction, then a
failure of that request will cause the entire transaction to abort and all
changes to be rolled back. If the object request has a Revocable relationship
with the current transaction, then the calling process must trap the exception
thrown by the failing request and determine whether or not to abort or commit
the current transaction. If the object request has a None relationship, then its
success or failure has no effect on the current transaction, and the request
itself is not executed in the context of any transaction.

2.3.4.1 Transaction Locks
To summarize the transaction process:

 • No changes are committed until all Sub transactions have completed
successfully.

 • All Sub transactions must complete before the resources used by the
transaction are released back to the system.

 • As changes are not final until all Sub transactions are complete and the
changes are committed, they could be revoked through a roll-back, and so
a resource that has been updated as part of a transaction cannot be
accessed by any other process or transaction.

Transaction locks protect against racing conditions and protect data integrity
in the case of an aborted transaction. A racing condition can exist when two
processes attempt to update the same resource at the same time. In this

Modifying Tivoli transactions should NOT be used as a routine method of
problem determination. Altering transaction data can have serious and
irreversible affects on the operation of a TMR. We advise you to use this
information to find out more about what is going on in the TMR and use
other methods to attempt to rectify problems.

Note
20 Tivoli Enterprise Internals and Problem Determination

case, the last process to finish determines the final result. The data integrity
problem can arise if a process outside a transaction is allowed to access a
resource that has been changed as part of a separate transaction. If a
process addresses a resource, assuming it to be correct, and then a
transaction aborts and rolls back to an old value, the process has just acted
on bad data.

2.3.4.2 Process Locks
A process lock can occur when a process begins a transaction, and that
transaction is waiting for a resource that has been allocated or is in use by
another transaction.

As locked resources can impact active transactions, long running
transactions with many Sub transactions are more likely to cause process
locks. Therefore, long running transactions should be avoided wherever
possible. An example of an administrator initiating a long-running transaction
would be a shell script that creates large numbers of PC managed nodes
using wcrtpcmngnode.

The side-effect of transaction based resource locks is that any given process
that requires access to a resource locked by a transaction will be denied
access until the locking transaction completes. If the transaction fails to
complete, the process can remain locked indefinitely. It is possible that user
defined tasks/jobs that execute w commands or make object requests can
inadvertently cause a long running transaction.

2.3.4.3 Lock Relationships
Locks on resources can be inherited from other transactions and can be
passed through the transaction cycle. Inherited locks can cause current and
future transactions to stall while waiting for resources to be released back to
the system.

Locks are passed between object requests that are organized in a hierarchy,
such as request A calls request B, request B calls request C. Any resource
lock obtained by request C is passed back to request B when C completes
and then back to request A when request B completes.

2.3.5 Persistent Storage - The Tivoli Object Database
Tivoli stores object information in an internal, distributed object-oriented
database. The database stores transient object information in a physical
location. This is in the directory referenced by the $DBDIR environment
variable in UNIX or %DBDIR% in Windows NT. The main file is odb.bdb. The TMR
Tivoli Object Database Architecture 21

server also uses an inherited method database called imdb.bdb to resolve
implementation inheritance.

Having all management data stored in a database file means that if the
process operating on the object is destroyed, the object is still intact. There is
also persistent storage for object attributes. Distributed transaction services
included in the framework make sure that all modifications to the database
occur. The TMR server database contains TMR-wide management objects,
such as policy region objects as well as references to objects located in client
databases. Each TMR client maintains a database of local objects and
objects that have been distributed to it, such as profiles. Database
commands, such as wchkdb and wbkupdb are included to perform consistency
checks on the database and any restoration it might need. See Chapter 5,
“Tivoli Object Database Backup” on page 113 for more information.

2.3.5.1 Tivoli Name Registry
The Tivoli Name Registry (TNR) is a quick lookup table of object labels and
object IDs. For example, a process can use the TNR to find an object ID from
an object’s label. It could then use that ID to work with the object. The TNR is
also the link between objects residing in separate TMRs. If you have
interconnected TMRs, you periodically update the resources between the
TMRs (using wupdate or the GUI) to make one TMR aware of the other’s
objects. What is actually happening is the name registry is being updated to
contain a reference to the OID of the object on the remote TMR. Tivoli
implements the TNR in an object in the object database.

The name registry is the focal point for the prevention of name-space
conflicts. As a lookup service, it provides a portable and efficient means for
determining the object reference of a named resource. The TNR is also a
single point from which applications can quickly and efficiently generate lists
of resources, such as Available Machines.

Within Tivoli, most objects in the TNR can be divided into two categories:
Distinguished objects associated with a single TMR, and resource objects
that are typically associated with an application that models some system
resource.

A distinguished object is usually an object unique to a TMR with a well-known
name. Distinguished objects are frequently used as service providers (for
example, the notification registry or the scheduler). Distinguished objects
relate specifically to a TMR and are not exchanged during an update of
resources between interconnected TMRs.
22 Tivoli Enterprise Internals and Problem Determination

The wlookup command is our command line interface into the TNR. We can
use wlookup -a or wlookup -ar distinguished to list all the distinguished
objects that are registered in a database. Remember that these will always be
local to a TMR, and you will not see distinguished objects from a connected
TMR.

New distinguished types for V3.6 are:

SWDistUserLink This distinguished object class contains the interfaces
(methods) used when an enduser uses the UserLink
function from a Web browser to pull distribution packages.

SwdistRIMSupport This object is used to write distribution reports to the
inventory database. It is added by the wswdistrim -c
command to enable the historical database feature and is
deleted by wswdistrim -d.

Figure 6 is an abridged listing showing some of the types returned by wlookup
-a (with the new ones highlighted):

Figure 6. Distinguished Objects List from wlookup

Resource objects are instances of Tivoli classes that are generally used to
represent some system resource. There is usually more than one instance of
a resource type. Examples of resources include Tivoli administrators,
managed nodes, profile managers, and so on. The name of a resource object
is usually specified by the administrator when the object is created.

Resource objects are exchanged between TMRs during an interconnected
TMR update of resources. We can list resource objects through wlookup -R as
shown in Figure 7 on page 24.

New Resource objects for V3.6 are:

DefaultCGIItems For Inventory and Software Distribution

wlookup -a !Display a list of distinguished types that are registered

Administrators 1212391543.1.168#TMF_Administrator::Collection_GUI#
Regions 1212391543.1.194#SharedPolicyRegions::Engine#
RepeaterManager 1212391543.1.365
SWDistUserLink 1212391543.1.825#SWD_Ulink::UserLink#
Scheduler 1212391543.1.157#TMF_Scheduler::scheduler#
ServerManagedNode 1212391543.1.347#TMF_ManagedNode::Managed_Node#
SwdistRIMSupport 1212391543.1.854#SwdistRIM#
TME_server 1212391543.0.0
TMRBackup 1212391543.1.371#TMF_SysAdmin::InstanceManager#
TaskRepository 1212391543.1.214#TMF_Task::TaskRepository#
lost-n-found 1212391543.1.524#TMF_TGC::CollectionGUI#
Tivoli Object Database Architecture 23

LCF-NtLcfInstall Executes method NtLcfInstall found in the lcf_bundle
directory to configure and create the Windows NT TMA
Endpoint

Uninstall Contains an entry for each product that can be
automatically removed with wuninstall.

EndpointManager is not new but is now in the resource list and can be seen
with wlookup -ar EndpointManager. In V3.2, this was not listed in the resource
list and could not be seen with wlookup -ar.

Figure 7 is an abridged list of resource types from the wlookup -R command:

Figure 7. Resource Objects List from wlookup

When a TMR is initially installed, the TNR is created. The user-friendly names
are then registered with their associated object references for the local
distinguished objects. See “Object IDs” on page 34 and “Object References”
on page 31 for more information about object names and references.

When additional resource types (such as policy regions, Tivoli administrators,
and profile managers) are created, they are registered with the TNR. When
an application is installed, new resource type (class) names are also
registered with the TNR. Note that it is up to applications to determine
whether their objects need to be registered in the TNR.

When an instance of a resource is deleted, the entry in the TNR is removed.

As already mentioned, we use wlookup to look through the TNR. A set of
directory service functions in the application services run-time library (wls,
wcd, and so on) provide a similar direct interface to the operations of the
object database itself. However, the object database does not include any
reference to connected TMRs (except through the NameRegistry object); so,

wlookup -R !Display a list of resource types that are registered

ACP
Classes
DefaultCGIItems
DefaultHTMLItems
distinguished
Endpoint
EndpointManager
EnterpriseClient
EventServer
LCF-NtLcfInstall
LocatorDatabase
Uninstall
24 Tivoli Enterprise Internals and Problem Determination

wls and similar commands will only show resources in the current TMR. See
Section 2.4.1.1, “Registered Names” on page 32 for further details on
referencing objects by name.

2.3.5.2 Managed Resources
Tivoli uses object technology to model real-world resources. In the context of
Tivoli Enterprise, resources are Tivoli representations of elements in a
computing enterprise. They may be things, such as computers, or they may
be a set of rules that govern a system or set of systems. Resources that are
subject to certain sets of rules within Tivoli are called managed resources.
Tivoli calls the predefined rules that govern them policies.

Managed resources provide a model of the physical resources to be
managed by Tivoli applications. In addition, they can mask platform-specific
characteristics that present problems for portability and interoperability. It
doesn’t necessarily matter to a Tivoli administrator whether a set of file
system-type managed resources includes UNIX, Windows NT, or even MVS
instances since the model alleviates problems associated with platform
specifics.

2.3.5.3 Collections
A collection is a set of objects or references to objects. Objects, such as
resource objects within a collection, are called members. You can query a
collection or have an operation applied to the members of the collection.

Because collections can refer to other collections, they can be organized into
hierarchies. Moreover, because collections are groups of references to
objects, an object could belong to any number of collections. Note that some
collection types, such as policy regions, alter the membership rules. It is not
possible to be a member of multiple policy regions. A collection can be
heterogeneous, meaning that it can collect objects of different types.

You usually see this collection hierarchy through the Tivoli desktop. When
you start the desktop, the GUI shows you the contents of your own
administrator collection. When you open a region, the GUI shows the
contents of the region collection, and so on.

When working with collections and objects, Tivoli draws a distinction between
removing and deleting. If you remove an object from the desktop, or use wrm,
the object is removed from that desktop collection. If you delete an object
from the desktop, or use wdel, that object is deleted. You can theoretically
delete a collection without deleting its members and remove the last
collection to which an object belongs without deleting the object, orphaning
Tivoli Object Database Architecture 25

the object. In practice, Tivoli prevents you from performing such an operation
where it does not make sense.

In the Tivoli Framework Reference Manual you can see various commands
for managing collections (wdel, wcd, wln, wls, wmv, wpwd, wrefresh, and wrm).
These commands are operating directly on the object database and use the
UNIX file system analogy to manage the collections and the objects that
belong to the collection.

The following example illustrates this hierarchy. The names used are all
case-sensitive:

wls / ! List the root ’directory’ of the object collection hierarchy
Administrators
CurrentNtRepeat
EndpointManager
FpblockEngine
Installation
InterRegion
InterfaceRepository
InventoryUserLink
Library
MessageCatalog
NameRegistry
NetloadFactory
NotificationServer
PasswordModifier
Regions
RepeaterManager
SWDistUserLink
Scheduler
ServerManagedNode
SwdistRIMSupport
TME_server
TMRBackup
TaskRepository
lost-n-found

wls /Administrators ! Show the contents of the Administrators container
Root_gblnt-region
Root_tivdev01-region

wls /Administrators/Root_tivdev01-region ! Look at Root_tivdev01-region’s ’Desktop’
Notices
Administrators
EventServer
UserLocator
EndpointManager
Scheduler
Root_tivdev01-region

Working with wls, wcd, and so on, refers to the local database. You will not
see objects using these commands that do not contain a reference in the
local database. Use wlookup to list resources in interconnected TMRs.

Note
26 Tivoli Enterprise Internals and Problem Determination

tivdev01-region
wls /Administrators/Root_tivdev01-region/tivdev01-region
NT_Indicator ! Indicator Collection
PcMN_Inventory ! Inventory Profile
NT-MN_Sentry ! Sentry Profile
PcMN01 ! PC Managed Node

The containers may be used a number of ways to refer to the same objects.
For example, we could use wls /Regions to start looking down the tree from
the highest level of regions.

2.3.5.4 Interconnected TMR Resource Exchange
TMRs and the name registry are closely related. As mentioned in “Tivoli
Name Registry” on page 22, when two TMRs are connected to each other in
a two-way connection, the TNR in each region can exchange information with
the other about registered resources. This must be initiated through the GUI
or using wupdate.

For one-way TMR connections, the information is passed only from the
managed TMR to the managing TMR. The reason for such resource
exchanges is that an application may need access to all the known resources
in all connected TMRs. This information is obtained solely from information
contained within the TNR of the local TMR. See Section 7.3, “Interconnected
TMRs” on page 216 for more information about interconnected TMRs.

2.3.6 Instance Management
So far, we have looked at how objects can be stored hierarchically in
collections. There is a hierarchy in another dimension that has more to do
with how an object is created and how it behaves (you may find it useful to
refer to Figure 8 on page 29 while reading this section). The instance
management service provides much of the required infrastructure for objects
to be logically associated with and managed by other objects. These objects
support a common interface, and they are subject to a set of common
policies.

Working with containers in this way demonstrates one area where a good
naming convention helps. Using names ending in some indicator of what
the object represents, such as -PM for a profile manager, -Region for a
policy region, and so on, makes them easy to distinguish. Although this is
good naming practice, note that you could also use the -l switch when
using the wls command. This will show the object label, which usually
identifies the type of the object.

Implementation Tip
Tivoli Object Database Architecture 27

The instance management service starts with a library interface and zero or
more object’s instances supporting the instance manager interface.
Remember, an object is either a distinguished object or a model for some
system resource type. The instance management interface defines the
fundamental operations that support the management of multiple instances of
an object type (or class). This support includes policy management and
maintaining a record of the managed instances of the object type.

The relationship between an instance and an associated instance manager is
one-to-one. The application services, however, support several instance
managers that manage objects of the same type, one for each TMR.

Multiple instance managers are used for a variety of reasons, including
scalability, availability, and configuration control. An object that supports the
library interface (a library object) maintains a list of all instances of instance
manager objects within a TMR. In this way, a library object serves as the
common source of information about the known types of objects within a
TMR. Compare this with the object database collection hierarchy that
represents how those objects relate to the installed environment.

A library object also maintains information about each type of object
managed by instance managers, including whether they have policies
associated with them. Finally, there is one library object for each TMR.

The objects provided by a management application can be divided into one or
more object types (classes) that may be managed by one or more instance
managers. An object type (such as the ManagedNode type) is a set of objects
that share a common interface. Each object of the same type (such as a
defined managed node) is called an instance of the type.

To summarize the systems management framework, object types (classes)
are associated with a particular instance manager. The instance managers
are registered with, and stored in, the library, which provides a central
repository for system administration object information within a TMR.

An instance manager can have references to one or more policy regions to
encapsulate a set of management policies. In this case, the manager is said
to represent a managed resource type (see Section 2.3.5.2, “Managed
Resources” on page 25). A Tivoli Policy Region defines default and validation
management policies. These are encapsulated and implemented in the policy
default objects and policy validation objects associated with an instance
manager. They also support high-level operations that manage a particular
object type.
28 Tivoli Enterprise Internals and Problem Determination

It is common knowledge that a default policy, through policy default objects,
supports operations to coordinate the creation of objects as well as defines
the initial (default) values of the policy-driven object attributes. Likewise, for
validation policy, policy validation objects support methods that validate initial
values or changes to object attributes.

The following figure summarizes the library, instance manager, object policy,
and object instance hierarchy:

Figure 8. Instance Manager Layout

We can use wls -l /Library to list all the instance managers by showing all
the members of the TMRs library collection. The -l option displays the object
ID (OID) and label of each member:

wls -l /Library !List all the instance managers below the object library.
.
. ! Partial list follows:
.
1212391543.1.287#TMF_SysAdmin::InstanceManager# ProfileManager
1212391543.1.287#TMF_SysAdmin::InstanceManager# ManagedNode
1212391543.1.287#TMF_SysAdmin::InstanceManager# PcManagedNode
1212391543.1.287#TMF_SysAdmin::InstanceManager# Endpoint
1212391543.1.287#TMF_SysAdmin::InstanceManager# PolicyRegion
.

Note that if you wanted to display a list of all instances of the managed node
object type, you could use wls -l /Library/ManagedNode.

Library Object
(1 for each TMR)

Instance
Manager 1

Instance
Manager 2

Instance
Manager n

Instance

Policy Default
Object

Policy
Validation

Object

Object
Instance
Object

Instance
Object
Tivoli Object Database Architecture 29

2.3.6.1 Policy Regions
A policy region is a special type of collection; it is a collection of policy-driven
objects. Like all collections, policy regions can be arranged hierarchically
according to organization and administrator-specific criteria. Furthermore,
they can contain any set of managed objects as specified by an administrator.

A policy region can also contain other policy region objects. A policy region
object that is a member of another policy region is known as a subregion and
may inherit its parents’ policies or specialize them.

Figure 9. Policy Region Object Relationships

This figure shows the object relationships between a policy region and its
managed resources, and at the same time, identifies which are also linked by
collections and memberships. There is a reference to an instance manager
for each managed resource type. Instances of the managed resources are
shown as members of the policy region. They will also be members of their
instance manager’s collection. For example, profile manager resource
objects will be found in /Library/PolicyRegion/regionname as well as in
/Library/ProfileManager. The library container provides collections for all
resources grouped by resource type. The enforced policies are shown
separated into default and validation types.

Policy Region

Policy Region
Object 1

Policy Region
Object 2

Policy Region
Object n

Subregion

Policy Default
Object

Policy
Validation

Object

Object
Resource

Object

Instance Manager
(collection)

Library
Object

(collection)

(Collection Members)

Managed
Resource

Instance Mgr
30 Tivoli Enterprise Internals and Problem Determination

The commands wls -l and wlookup -ar produce similar results:

wls -l /Library/ProfileManager
1212391543.1.606#TMF_CCMS::ProfileManager# ACPdefault
1212391543.1.868#TMF_CCMS::ProfileManager# TivoliDefaultPhoneProfileMgr
1212391543.1.969#TMF_CCMS::ProfileManager# TivoliDefaultPM
1212391543.1.979#TMF_CCMS::ProfileManager# Inventory
1212391543.1.1256#TMF_CCMS::ProfileManager# TME 10 Security
1212391543.1.1281#TMF_CCMS::ProfileManager# Sentry
1212391543.1.1290#TMF_CCMS::ProfileManager# Sentry2
1212391543.1.1293#TMF_CCMS::ProfileManager# Inventory1
1212391543.1.1409#TMF_CCMS::ProfileManager# NT_FilePackage2
1212391543.1.1473#TMF_CCMS::ProfileManager# NT_UserAdmin2
1212391543.1.1475#TMF_CCMS::ProfileManager# NT_SecAdmin2

wlookup -ar ProfileManager
ACPdefault 1212391543.1.606#TMF_CCMS::ProfileManager#
Inventory 1212391543.1.979#TMF_CCMS::ProfileManager#
Inventory1 1212391543.1.1293#TMF_CCMS::ProfileManager#
NT_FilePackage2 1212391543.1.1409#TMF_CCMS::ProfileManager#
NT_SecAdmin2 1212391543.1.1475#TMF_CCMS::ProfileManager#
NT_UserAdmin2 1212391543.1.1473#TMF_CCMS::ProfileManager#
Sentry 1212391543.1.1281#TMF_CCMS::ProfileManager#
Sentry2 1212391543.1.1290#TMF_CCMS::ProfileManager#
TME 10 Security 1212391543.1.1256#TMF_CCMS::ProfileManager#
TivoliDefaultPM 1212391543.1.969#TMF_CCMS::ProfileManager#
TivoliDefaultPhoneProfileMgr 1212391543.1.868#TMF_CCMS::ProfileManager#
ep_inventory 1998892590.1.998#TMF_CCMS::ProfileManager#
ep_monitors 1998892590.1.1121#TMF_CCMS::ProfileManager#

The main difference here is that wlookup includes objects from interconnected
TMRs. The last two objects in the wlookup output (ep_inventory and
ep_monitors) are from another TMR. As you can see, they have a different
region number.

2.4 Tivoli Objects

Now we can look in more detail at how objects reference each other and how
we can reference objects from the CLI. We will also describe the Tivoli
concept of a unique object ID (OID) and the relationship between objects in
the Tivoli management object database.

2.4.1 Object References
When an object is referenced from a CLI command, the reference is not
usually going to be an absolute object reference like those used in
programming. Instead, a user-friendly name is used. This user-friendly name
comes from a name given to the object by the user of the application, such as
when a policy region is created. Here, we will describe the two different forms
of names that can be used with CLI commands:

 • Registered names

 • Object paths
Tivoli Object Database Architecture 31

Tivoli CLI programs support both naming schemes. Sometimes, you will find it
more convenient to use one form over the other. If you receive an error
message indicating that a resource cannot be found, try a different naming
convention.

2.4.1.1 Registered Names
A registered name is the name by which a resource instance is registered
with the Tivoli Name Registry (TNR) when it is created (see also Section
2.3.5.1, “Tivoli Name Registry” on page 22). Every resource has a name and
is an instance of some particular type. For example, a policy region called
rh0255b-region has a name rh0255b-region and is of type PolicyRegion. The
syntax for specifying a resource using the registered name facility is
@type:name, where type is the resource type and name is the particular instance
of that resource on which you wish to perform some operation.

Some examples of using registered names as arguments for directory-style
commands are:

wls @PolicyRegion:rh0255b-region
wmv @ManagedNode:ayers-rock @PolicyRegion:rh0255b-region

These commands list the contents of the rh0255b-region policy region and
then move the ayers-rock managed node to that region. This is equivalent to
the drag-and-drop method of the GUI. The TNR is responsible for resolving
the name type and finding the referenced resource.

The name registry does not allow two resources of the same type to have the
same name within a single TMR. However, it is possible for resource names
to be duplicated within two (or more) connected TMRs. This would most likely
happen when connecting TMRs that had been operating independently. Once
the name registry is updated between the TMRs, Tivoli prevents you from
creating a new resource that has the same name in the same resource type
in another interconnected TMR.

If you attempt to perform an action on a resource with a duplicated name, an
error message is returned, and the action is not performed. To avoid this

To see all the resource types listed in the TNR, use the wlookup -R
command. Since all resource types must also have an instance manager,
you could also use wls /Library to get a list of instance managers that will
use the same name. Note that the Tivoli Framework and applications can
choose not to include objects in the TNR.

Note
32 Tivoli Enterprise Internals and Problem Determination

situation, you should either rename one of the resources or differentiate
between the resources by appending a region name to the resource name, as
follows:

wls @ManagedNode:moria#moria-Region

This qualification by TMR name is usually handled automatically for
operations initiated through the GUI.

2.4.1.2 Object Paths
We have already seen examples of object paths in 2.3.6, “Instance
Management” on page 27. Object Paths are similar to path names in file
systems, and here you are manually traversing the object hierarchy rather
than relying on the TNR to resolve registered names. A path reference can be
relative or absolute. A relative path can start with any character including the
special path components dot (.) and double-dot (..). An absolute path is one
that starts with a slash (/) character.

The syntax for specifying a resource using the object path name style is
/distinguished/parent/[type:]name, where distinguished is a resource type,
such as Regions, parent is the start of the object path name, such as a policy
region name. Type is used to further identify a resource, and name is the
particular instance on which you wish to perform some operation.

Some examples of object path names used as arguments for commands are
as follows:

wls /Regions/rh0255b-region
or
wcd /Regions/rh0255a-region
wmv ../rh0255b-region/ayers-rock ../Servers-region

You often use the optional type qualifier when you need to name a particular
resource that has the same name as some other resource of a different type.
For example, suppose policy region Engineering-region had a profile
manager called Servers and a policy subregion also called Servers. To
specify the profile manager and not the subregion using an object path name,
you could use the following:

wls /Regions/Engineering-region/ProfileManager:Servers

As mentioned in 2.3.5.3, “Collections” on page 25, you could have a resource
naming convention that included the resource type that would remove the
need to have to qualify types in this way.
Tivoli Object Database Architecture 33

If you specify a resource using an absolute path, its location is not ambiguous
between connected TMRs. However, if you use a relative path, both your
home and current administrator collection must be located before the
resource can be found. Each administrator’s home collection is
/Administrators/Name, where Name is the administrator’s Tivoli name. If you
have recently issued a wcd command, Tivoli contains a record that specifies
the location of the current administrator collection. Otherwise, no such record
exists, and in this case, the current administrator collection can be
ambiguous if there are multiple connected TMRs. For example, suppose you
are an administrator named John (with a login name johnc) in TMR A, and
there is another administrator named John (with a login name of jsmith) in
TMR B. When you specify an action to be performed on a resource, Tivoli
searches for the /Administrators/John collection. The search finds collections
belonging to you and jsmith. Because Tivoli cannot determine which home
collection you meant to specify, an error message is returned, and the action
is not performed. You can execute the wcd command to change to the correct
administrator collection to prevent this problem from occurring.

If a path begins with a single period (.) or a double period (..), the object path
is a relative path. A relative path is like an absolute path, except it is relative
to the current working collection. Every administrator object maintains an
object path to the administrator’s current position in the hierarchy. This can be
likened to the current working directory in a file system. Administrators can
use the wcd command to change their current working collection or use wpwd to
check the current working collection. An administrator also has a home
collection, which is the object path to the administrator’s desktop object
(/Administrators/AdminName).

2.4.2 Object IDs
An object ID (OID) is a three-part identifier of the form 1264987995.1.326.
The OID is made up of the following:

 • The region number. Objects in Tivoli 3.0 and above have ten-digit region
numbers (1264987995 in the example above). Objects in Versions 2.1 to
2.5 have six-digit region numbers, and objects in releases prior to 2.x had
four-digit region numbers. Region numbers are generated at TMR server
install time using an algorithm designed to make them unique. Note,
however, that due to the random element in the region number generation,
there is a small possibility that two TMRs could generate the same region
number. If this happens, then one of the regions will need to be reinstalled
if it was to be connected to another region with the same number.

 • The object dispatcher (oserv) number. Sometimes referred to as the
host number. For performance reasons, Tivoli recommends up to 200 be
34 Tivoli Enterprise Internals and Problem Determination

defined in any one TMR. Dispatcher numbers are assigned in the order
managed nodes are installed. The TMR server will be dispatcher 1, the
next managed node installed will be 2, and so on. If a node is deleted and
reinstalled, it will receive a new number, the next in the sequence.

 • The object number. This is a number for the object itself.

The region number will be the same for all hosts in a TMR. The object number
will be unique among objects in a single host but could be the same as object
numbers in other hosts. Tivoli never reuses object dispatcher (host) numbers
even if a host is removed and added later. This always makes the
combination of the three numbers unique.

There is a special OID for an object called the base object. See Section 2.4.5,
“The Tivoli Base Object” on page 44 for more information on this object.

During a Tivoli server install, the object database is built by taking a pre-built
database from the install media and altering those objects that are specific to
the new TMR. A standard server database already consists of around 400
objects before you start adding any applications or customizations. This fact
can also be a help when navigating your way around objects. For example, if
you see an administrator object with an object number around 190 (x.1.190),
then this will be the Tivoli root administrator as this ID already existed in the
database when it was first created.

2.4.2.1 Displaying Object Contents with objcall
We have already seen that we can use directory-type commands (wls, wpwd,
wmv, and so on) to explore and, to some extent, manipulate resource objects
in the object database. To find out more about Tivoli objects, we need to
make use of object calls.

Tivoli provides the objcall command to make direct object calls from the
command line. The format of the command is objcall OID method, where OID
is the OID of the object, as described, above and method is a valid object

If you wish to experiment with the commands presented here, be sure to
check any warnings given in this chapter and review Chapter 6,
“Commands and Logs for Troubleshooting” on page 131 and the Tivoli
Framework Reference Manual for more information. Experimentation
should always be limited to a stand-alone test system, and be sure to have
excellent backups before trying any of this in a live environment.

Note
Tivoli Object Database Architecture 35

method. One commonly used method is contents. This simply displays the
contents of an object or its attributes and methods.

The following example shows the contents (attributes and methods) of an
object (in this example, the object is a managed node). First, we use wlookup
to list all managed nodes in the region so we can find the OID of the one we
wish to know more about:

wlookup -ar ManagedNode !find all the Managed Node instances
itso2 1998892590.1.348#TMF_ManagedNode::Managed_Node#
itso3 1295714281.1.348#TMF_ManagedNode::Managed_Node#
rh2900b 1998892590.2.7#TMF_ManagedNode::Managed_Node#

Next, we use objcall to invoke the contents method on that object:

objcall 1998892590.2.7 contents !find the attributes/methods of the object rh2900b
ATTRIBUTE:_BOA_id
ATTRIBUTE:class_objid
ATTRIBUTE:collections
ATTRIBUTE:consumers
ATTRIBUTE:databases
ATTRIBUTE:label
ATTRIBUTE:last_failed
ATTRIBUTE:members
ATTRIBUTE:pres_object
ATTRIBUTE:pro
ATTRIBUTE:pro_name
ATTRIBUTE:profile_push_order
ATTRIBUTE:push_trans_commit_behavior
ATTRIBUTE:resource_host
ATTRIBUTE:skeleton
ATTRIBUTE:sort_name
ATTRIBUTE:state
ATTRIBUTE:subscriptions

You can see from this list that there are no methods in a managed node
object. Since the methods for all managed nodes are the same, the methods
for a managed node object are in a behavior object. The behavior object OID
is in an attribute (called behavior) of the object class (instance manager) of
the managed node and not in a managed node instance itself.

2.4.2.2 Finding an Object’s Class and Class Contents
The following example shows how to find the class (implemented by the
instance manager) of an object and all the contents and the methods of the
class (the methods being in the behavior object).

1. First, we find the OID of the original object (in this case, a managed node)
using wlookup:

Method, attribute, resource-type, and other names used in commands are
case sensitive.

Note
36 Tivoli Enterprise Internals and Problem Determination

wlookup -r ManagedNode rh0255a !find the Object id of the managed node rh0255a
1264987995.2.7#TMF_ManagedNode::Managed_Node#

2. If we want, we can use the getattr method on an objcall to get the
contents of the label attribute, the label of the object. If there is a problem
with the method, we can use another IDL calling mechanism, idlattr, to
take a look at the label from the OID. This is a double-check to make sure
we have the correct OID from the previous step:

objcall 1264987995.2.7 getattr label !get the label
rh0255a !label of the MN instance object is rh0255a

OR:

idlattr -t -g 1264987995.2.7 label TMF_ManagedNode::Managed_Node !get the label
rh0255a !label of the MN instance object is rh0255a

Using objcall OID getattr attrname or idlattr -t -g OID attributename
typename is a little like objcall OID contents. However, instead of looking at
the contents of an object (which may include attributes and methods),
idlattr with the -g flag gets the contents of the attribute itself.

3. We can get the OID of the class object (instance manager) as follows:

objcall 1264987995.2.7 getattr class_objid
1264987995.1.322#TMF_SysAdmin::InstanceManager#

Or:

idlattr -t -g 1264987995.2.7 class_objid Object !get instance manager of MN
1264987995.1.322#TMF_SysAdmin::InstanceManager#

So OID 1264987995.1.322 is the instance manager for the managed node
object.

Or:

#wls -od /Library/ManagedNode
1264987995.1.322#TMF_SysAdmin::InstanceManager#

4. Here, we take a look at the label of the instance manager to confirm it is
the instance manager of the ManagedNode class:

objcall 1264987995.1.322 getattr label

Unless you are very familiar with object attributes, or you are
experimenting on a properly isolated test system, it is recommended that
you use objcall OID getattr instead of the idlattr command. If using
idlattr, be sure to always use the -g (get) flag. The default is otherwise to
set (-s) the attribute, an activity that could alter the execution of a method.
Recovery from such a situation may include the restore of a previous
database backup. See also Chapter 6, “Commands and Logs for
Troubleshooting” on page 131.

Important
Tivoli Object Database Architecture 37

Or:

idlattr -t -g 1264987995.1.322 label TMF_SysAdmin::InstanceManager !Get label
ManagedNode !This is the label of the object class (Instance Manager) of the MN

5. Now, we’ll get the OID of the behavior object from the behavior attribute in
the class. The behavior object has the methods of the class:

objcall 1264987995.1.322 getattr behavior !Find object id of behavior object
1264987995.1.324

Or:

idlattr -t -g 1264987995.1.322 behavior TMF_SysAdmin::InstanceManager
1264987995.1.324

6. And now we can objcall OID contents to list the contents of the managed
node class behavior object, thus listing all the attributes and methods:

objcall 1264987995.1.324 contents !Attributes & methods of the class ManagedNode
ATTRIBUTE:label
ATTRIBUTE:skeleton
METHOD:_get_label
METHOD:_set_label
METHOD:add_interface
METHOD:add_interface_done
METHOD:add_ip_interface
METHOD:architecture
METHOD:avail_space
METHOD:cancel
METHOD:contact_host
METHOD:deep_read_dir
METHOD:define_tme_ip_interface
METHOD:del_ip_interface
METHOD:delete_things
METHOD:display_view
METHOD:display_xterm
METHOD:edit_interface
METHOD:edit_interface_done
METHOD:execute_task
METHOD:files_transfer
METHOD:get_ip_interface
METHOD:hostid
METHOD:install_directory
METHOD:interpreter
METHOD:list_ip_interfaces
METHOD:make_directory
METHOD:memory_size
METHOD:name
METHOD:ok
METHOD:os_name
METHOD:os_release
METHOD:os_version
METHOD:present_parent
METHOD:privileged_deep_read_dir
METHOD:privileged_files_transfer
METHOD:privileged_make_directory
METHOD:privileged_read_dir
METHOD:privileged_read_from_file
METHOD:privileged_read_link
METHOD:privileged_receive_files
METHOD:privileged_remove_file
METHOD:privileged_set_file
38 Tivoli Enterprise Internals and Problem Determination

METHOD:privileged_set_files
METHOD:privileged_stat_file
METHOD:privileged_system
METHOD:privileged_transmit_files
METHOD:privileged_write_to_file
METHOD:read_dir
METHOD:read_from_file
METHOD:read_link
METHOD:receive_files
METHOD:refresh_view
METHOD:reg_notify_ip_change
METHOD:remove
METHOD:remove_file
METHOD:remove_interface
METHOD:reset
METHOD:set_file
METHOD:set_files
METHOD:set_ip_interface
METHOD:stat_file
METHOD:system
METHOD:system_time
METHOD:system_time_zone
METHOD:test_method
METHOD:toggle_state
METHOD:toggle_state_ok
METHOD:toggle_state_switch
METHOD:transmit_files
METHOD:undefine_tme_ip_interface
METHOD:unreg_notify_ip_change
METHOD:write_to_file
METHOD:xterm

To summarize the steps we found:

1. Using wlookup we found the OID of the object. In the example, the object is
an instance of the object managed node.

2. We looked at the label attribute that gave us rh0255a as the label of the
instance.

3. Then we found the reference of the class object, the instance manager.
4. We checked the label of this object and saw that it was ManagedNode.

This is the Instance Manager for the object type managed node, or in
other words, this is the class of the managed node object.

5. To find all the methods of the class Managed node, we found the object
that has all the methods of the class, the behavior object.

6. Then we looked at the contents of the behavior object, and it showed all
the methods for the class (in the example, the methods are for the
managed node class).

In Section 2.4.4.1, “A Quicker Way to Find a Method” on page 42 we will see
a slightly quicker way of getting to the OID of the behavior object through the
resolve method.

Now comes the clever part. Let us suppose we were experiencing some
problem with this object, in this case, a managed node. We might want to try
Tivoli Object Database Architecture 39

running one of the methods by hand from this managed node object. A simple
test here would be to use objcall to kick off the managed node object’s
_get_label method:

objcall 1264987995.2.7 _get_label !Note OID is of a managed node
@@rh0255a !Result is the label

As the managed node object inherits the methods of its class, we can call a
class method using the managed node instance object.

2.4.3 Endpoint Objects
The object ID for TMA objects (dataless endpoints) is constructed using the
triplet form (region.object_dispatcher.object_number) and appending a plus
sign (+). This results in an object ID of the form R.D.P+, where

R Is the TMR region number.

D Is the number of the object dispatcher for the endpoint.

P Is the object number of the prototype object of the class for which the
method is defined.

When using objcall to do something like objcall OID getattr, many
methods will give you results with additional bits of data that appear as odd
ASCII characters before the information you are interested in (as in the
previous objcall OID _get_label example). When working from the
command line and retyping the data, this is not a problem. However, when
using scripts or piping information, you may need to try alternatives (such
as idlattr) or use string manipulation to ensure you have just the piece
you need.

Note

The intention here is to help you understand how to find methods in use
and how to try to run them by hand if the need arises. The example we
used is pretty harmless. We used methods that are non-destructive in
nature and could actually reassure us that a given object can be contacted
and is functioning. However, unless you are sure of what a method will
achieve, you risk irrevocably damaging your object database. Before
taking any such actions, back up your TMR. We recommend testing it first
on a test machine that can be reinstalled if a problem occurs. Tivoli support
is not going to be able to assist in the reversal of damage caused by an
inappropriate use of objcall. The only option will be a restore of a previous
database backup.

Important
40 Tivoli Enterprise Internals and Problem Determination

+ Indicates a TMA object reference.

The object dispatcher number uniquely identifies an endpoint. The TMR
server maintains a mapping of endpoint dispatcher numbers to gateway
objects; So, it can route a request to the appropriate gateway. TMA objects
are not created as instances in the object system and do not have a unique
per object state maintained for them by the object system. Therefore, there is
no need to create an instance of each object on endpoints as you do in the
full framework. Instead, they are born when an appropriate prototype object
and an appropriate endpoint dispatcher number are combined in this form.
The endpoint method runs on the endpoint without calling the
create_instance method.

To make use of TMA objects, you obtain from the registry or profile manager
an object in the above form and invoke it. The system locates the appropriate
shared state (defined by the prototype object) and services the method
request at the appropriate location. Because there is no object data
associated with an object by the system, applications have to assume
responsibility for maintaining their own persistent store outside the context of
the TMA base services.

2.4.4 Object Relationship
We have seen that the database is made up of classes. We have also seen
an example that demonstrates that each class has base objects that all of the
instances of that class inherit. Most classes have the following objects:

 • Behavior Object (BO). Objects that define the functions of the class and
methods to implement the class.

 • Display Object (DO). Presentation object. All compiled DSLs that make up
the dialogs for the class as well as all methods and attributes for the
presentation.

 • Extended Behavior Object (XBO). All customized behavior methods.

 • Default Policy Object (DPO). Default policy methods.

 • Validation Policy Object (VPO). Validation policy methods.

 • Prototype Object (PO). The object that the new member will resemble.
This is where all the attributes of a class are kept.

A list of all the classes is in the library class object.

When a new instance of a class is created, it is cloned from the prototype
object. It can have its own display object and extended behavior object for
customizations on the instance, but in general, it looks to the extended
Tivoli Object Database Architecture 41

behavior object of the class, then to the behavior object for methods, and
finally, to the display object for presentation dialogs.

The following figure shows the object’s relationship:

Figure 10. Class and Instance Object Relationship

2.4.4.1 A Quicker Way to Find a Method
The following sequence of steps is designed to show how the object
hierarchy works. The objective here is to find the xterm method used both by
the wxterm command and the xterm option from a managed node icon in the
GUI.

As we have seen before, the xterm method should be found on the behavior
object for the ManagedNode class. Perhaps by looking at an oservlog or a
trace, we know the method name is xterm and that the managed node object
can initiate the xterm method. Here is a slightly quicker way of finding the
object that contains this method:

Scenario 1:

wlookup -ar ManagedNode !find all the instances of the Managed Node class to get OID
k124a 1562489759.2.7#TMF_ManagedNode::Managed_Node#
rh0255a 1264987995.2.7#TMF_ManagedNode::Managed_Node#
rh0255b.itsc.austin.ibm.com 1264987995.1.327#TMF_ManagedNode::Managed_Node#
rh0255c.itsc.austin.ibm.com 1562489759.1.327#TMF_ManagedNode::Managed_Node#
rh0255e 1562489759.3.7#TMF_ManagedNode::Managed_Node#
tivdev02 1482082604.1.326#TMF_ManagedNode::Managed_Node#

Class object

Presentation
object

Behavior object

Extended
Behavior object Instance

Instance
Presentation object

Default Policy
object

Validation
Policy object

Prototype
object
42 Tivoli Enterprise Internals and Problem Determination

Now, because we know that xterm can be called by the ManagedNode object,
we can use a method called resolve to find out where the xterm method
resides. The resolve method works back up the invocation chain and reports
the OID of the object that contains the method:

objcall 1264987995.2.7 resolve xterm !Find the OID of the Behavior object
1264987995.1.324 !This is a quick way to do it..!

objcall 1264987995.1.324 contents !methods of the class ManagedNode
ATTRIBUTE:label
ATTRIBUTE:skeleton
METHOD:_get_label
METHOD:_set_label
METHOD:add_interface
METHOD:add_interface_done
METHOD:add_ip_interface
METHOD:architecture
METHOD:avail_space
METHOD:cancel
METHOD:contact_host
METHOD:deep_read_dir
METHOD:define_tme_ip_interface
METHOD:del_ip_interface
METHOD:delete_things
METHOD:display_view
METHOD:display_xterm
METHOD:edit_interface
METHOD:edit_interface_done
METHOD:execute_task
METHOD:files_transfer
METHOD:get_ip_interface
METHOD:hostid
METHOD:install_directory
METHOD:interpreter
METHOD:list_ip_interfaces
METHOD:make_directory
METHOD:memory_size
METHOD:name
METHOD:ok
METHOD:os_name
METHOD:os_release
METHOD:os_version
METHOD:present_parent
METHOD:privileged_deep_read_dir
METHOD:privileged_files_transfer
METHOD:privileged_make_directory
METHOD:privileged_read_dir
METHOD:privileged_read_from_file
METHOD:privileged_read_link
METHOD:privileged_receive_files
METHOD:privileged_remove_file
METHOD:privileged_set_file
METHOD:privileged_set_files
METHOD:privileged_stat_file
METHOD:privileged_system
METHOD:privileged_transmit_files
METHOD:privileged_write_to_file
METHOD:read_dir
METHOD:read_from_file
METHOD:read_link
METHOD:receive_files
METHOD:refresh_view
Tivoli Object Database Architecture 43

METHOD:reg_notify_ip_change
METHOD:remove
METHOD:remove_file
METHOD:remove_interface
METHOD:reset
METHOD:set_file
METHOD:set_files
METHOD:set_ip_interface
METHOD:stat_file
METHOD:system
METHOD:system_time
METHOD:system_time_zone
METHOD:test_method
METHOD:toggle_state
METHOD:toggle_state_ok
METHOD:toggle_state_switch
METHOD:transmit_files
METHOD:undefine_tme_ip_interface
METHOD:unreg_notify_ip_change
METHOD:write_to_file
METHOD:xterm ! **Here is the xterm method**

In this example, you first find the object ID of the object, then you use the
command objcall with the resolve method to find the behavior object. Then
you can use the contents method to see all the attributes and methods. In the
list of methods, we confirm that the xterm one is here.

2.4.5 The Tivoli Base Object
All objects inherit from the base object, which is made up of methods and a
few objects. Its object ID is 0.0.0, or regionnumber.1.0. This object has a few
attributes but is mainly made up of methods. This, for example, is where the
resolve method resides:

objcall 0.0.0 contents !Find all the methods and attributes of the Base Class
ATTRIBUTE:HostLocation
ATTRIBUTE:NameRegistry
ATTRIBUTE:fileioRef
ATTRIBUTE:master_base_oid
ATTRIBUTE:oserv
ATTRIBUTE:security_objid
ATTRIBUTE:skeleton
METHOD:addattr
METHOD:bo_set_acl
METHOD:clone
METHOD:contents
METHOD:corba_setattr
METHOD:echo
METHOD:get_host_location
METHOD:get_master_base
METHOD:get_name_registry
METHOD:get_oserv
METHOD:get_security_objid
METHOD:getattr
METHOD:i_getattr
METHOD:i_setattr
METHOD:is_visible
METHOD:o_add_groups
METHOD:o_addattr
44 Tivoli Enterprise Internals and Problem Determination

METHOD:o_backup
METHOD:o_clone
METHOD:o_contents
METHOD:o_get_capabilities
METHOD:o_get_groups
METHOD:o_get_principal
METHOD:o_getattr
METHOD:o_is_visible
METHOD:o_remove_groups
METHOD:o_restore
METHOD:o_rmattr
METHOD:o_rmobj
METHOD:o_self
METHOD:o_set_groups
METHOD:o_setattr
METHOD:o_visible
METHOD:oi_add
METHOD:oi_get_list
METHOD:oi_move
METHOD:oi_remove
METHOD:oi_stat
METHOD:om_add_header
METHOD:om_create
METHOD:om_debug
METHOD:om_define
METHOD:om_enable
METHOD:om_get_acl
METHOD:om_get_definition
METHOD:om_get_implid
METHOD:om_get_roles
METHOD:om_get_sig
METHOD:om_remove
METHOD:om_set_acl
METHOD:om_set_catalog
METHOD:om_set_id
METHOD:om_set_implid
METHOD:om_set_roles
METHOD:om_set_sig
METHOD:om_stat
METHOD:om_undefine
METHOD:resolve
METHOD:rmattr
METHOD:rmobj
METHOD:self
METHOD:setattr
METHOD:visible

2.4.6 TMA Endpoints
It is very important to understand the concepts of database and dataless
Profile Managers - as well as the distinction between database mode and
dataless mode endpoints.

A profile manager operates in one of two modes: Database and dataless.

The database profile manager, which operates in database mode, is available
in all releases of the Tivoli Framework. The dataless profile manager, which
operates in dataless mode, was introduced in the Tivoli Framework, Version
3.2. To see an example of the considerations important to applications with
Tivoli Object Database Architecture 45

dataless and database profile managers, see 12.7.1, “Local Profile Copies”
on page 403.

2.4.7 Database Profile Managers
In database mode, a profile manager distributes profiles to the subscriber’s
profile database. If the subscriber is a database endpoint (such as managed
node, profile manager, or sentry proxy), the profile data is written to the
subscriber’s profile database.

Because TMA endpoints do not have a profile database to write to, database
profile managers cannot distribute to TMA endpoints. A database profile
manager can only have subscribers of the following types:

 • Managed nodes
 • PC managed nodes (not applicable for Distributed Monitoring)
 • NIS domains
 • NetWare managed sites
 • Other profile managers - database as well as dataless
 • SentryProxies (for Distributed Monitoring only)

Remember, the database of database profile manager refers to the target of
the distribution not the database in which the profile manager keeps its own
information. A database profile manager distributes to the profile database of
its subscriber.

2.4.7.1 Dataless Profile Managers
In dataless mode, a profile manager writes directly to the system files of its
subscribers.

A dataless profile manager can have the following types of subscribers:

 • TMA endpoints
 • Managed nodes
 • PC managed nodes (not applicable for distribution of SentryProfiles)
 • NIS domains
 • NetWare managed sites
 • SentryProxies (for Distributed Monitoring only)

A dataless profile manager distributes to the system files on all endpoints -
regardless of the type. If the endpoint does have a profile database, this is
bypassed during profile distribution. The effect of this is, that if a managed
node is subscribed to a dataless profile manager, there will be no local copies
after distribution of the profile. Local profiles are available only when
46 Tivoli Enterprise Internals and Problem Determination

distributed from database profile managers. Refer to 12.7.1.2, “Local Profile
Copies and Dataless Profile Managers” on page 404 for more information.

Since there are no system files attached to a profile manager, dataless profile
managers cannot distribute to other profile managers, which require profiles
to be written to a profile database.

Even though a dataless profile manager indeed does have a profile database
of its own, in which it keeps profiles and subscriber information, it is referred
to as dataless because it distributes profiles to the dataless endpoint on its
subscribers.

2.4.7.2 TMA Endpoint Methods
A dataless endpoint method is a method that runs directly on a TMA
endpoint. It is implemented using the special application mini-runtime library,
libmrt, which contains a subset of Tivoli operations.

When a TMA endpoint method is invoked, the endpoint uses the method
executable stored in its method cache. If the method is not in the cache or is
not the most current version, the gateway downloads the correct method to
the endpoint, and it is added to the endpoint's cache for future use.

There are two caches:

 • The method header cache is located on the gateway. The method header
contains the path to the method executable, the ACLs, the user and group
IDs, and the path to the dependencies for the method. It does not contain
the executable. The master copy of the method header cache is stored on
the TMR server; the gateway's method header cache is a copy.

 • A method cache is located on the endpoint. The endpoint cache contains
executables, scripts, and their dependencies. The master copy is on the
gateway; a copy of executables is downloaded to the endpoint as needed.

Endpoint methods are based on Tivoli prototype objects and support many
features of that model, including IDL bindings and setuid and setgid methods.
But endpoint methods differ from full framework methods in these ways:

 • Unlike the full framework, the TMA is single-threaded. Endpoint methods
must be single-threaded, and only per-method methods are supported for
endpoint methods. That is, each time a method is invoked on an endpoint,
a new instance of the method executable loads, executes, and terminates.

 • There is no transaction support for endpoints in the TMA environment.
Gateways do not provide transaction management services to endpoint
methods.
Tivoli Object Database Architecture 47

 • Besides the executable containing the method, a method may require
supporting files, such as shared libraries, message catalogs, or other files.
These supporting files are called dependencies and are defined as such in
a method's definition. The gateway ensures that all dependencies for a
method are downloaded to the endpoint before invoking a method.

In the full framework, only the file path name of the method body or
implementation, the binary program, or script that contains the method entry
point, is stored in the method header. Any supporting files that the method
requires are assumed to be present because all binaries, libraries, message
catalogs, and so on, are installed on every managed node and TMR server.
However, TMA endpoints do not have any methods or supporting files
present on them when endpoints are initially installed. Method bodies are
identified in the standard method header and are downloaded when needed.
Because the dependencies (or supporting files) must also be downloaded
when missing, the dependencies must be called out in the endpoint method
so they can be present when needed.

2.4.8 Gateway Methods
A gateway method runs on the gateway servicing the endpoint. It runs as the
result of either an upcall request from an endpoint or a request from another
managed node. After the gateway method executes, the results are passed
back to the endpoint or to the managed node that made the call.

2.4.8.1 Downcalls
A method request that originates on a managed node (or higher) and
executes on a TMA endpoint is termed a downcall. This occurs when the
gateway invokes a method on an endpoint. In a downcall, the gateway routes
a stub call to the endpoint, and an endpoint method runs on the endpoint as a
result. The downcall originates from an object call made from any managed
node in the TMR or from the TMR server.

The plus sign (+) denotes deferred authorization. That is, the authorization for
the object takes place at the gateway. A plus sign also indicates that the
object is transient in nature, and that the ID may be short-lived; they have no
state and are referred to as abstract objects. In the case of a TMA endpoint,
the endpoint object ID will remain the same for the life of the endpoint, the
transience applies more to task methods, and so on. The object ID is
constructed on the fly using the Class Prototype Object (CPO) as shown in
2.4.4, “Object Relationship” on page 41. These object IDs are used during
downcalls. The equivalent for upcalls is the minus sign (-).
48 Tivoli Enterprise Internals and Problem Determination

The endpoint receives the name of the program to execute, its arguments,
and runs the program. After the endpoint method completes, the endpoint
returns the results back through the gateway. The gateway returns the results
back to the caller. If the requested method executable does not already exist
on the endpoint, or does exist but is out of date (relative to the gateway), the
method executable is downloaded to the endpoint. If the method has
dependencies, such as libraries, they are also downloaded. The following
brief sequence summarizes a downcall from a managed node to an endpoint:

Figure 11. TMA Downcall Architecture

1. The client makes a request to perform an action on an endpoint - an
objcall on a managed node, such as a scan operation.

2. The TMR server maps the dispatcher in the object to a gateway object ID.
The gateway object ID is used to determine which managed node the
gateway is running on.

TMR
Server

Managed
Node

MN

Gateway

TMA
Endpoint

stub

Locate gateway

Method request

cache miss

imdb

gwdb

results

implementation

Local invoke

Remote invoke

Method start

lcfd

1

2

3

4

5

6

The plus sign (+) in the object reference distinguishes that this is a
downcall and, therefore, the object runs on an endpoint.

Note
Tivoli Object Database Architecture 49

3. The TMR object dispatcher sends the request to the client that made the
request, and the client invokes the method on the gateway’s managed
node.

4. The gateway resolves the method on the corresponding behavior object
and performs authorization of the invocation by the invoking Tivoli
principal.

5. The method runs on the endpoint: The parameters are sent, the method
runs, the MDist data is transmitted from the gateway if needed, and the
results are passed back to the gateway.

6. The gateway then returns the results to the caller.

2.4.8.2 Upcalls
Upcalls occur when endpoint applications initiate Tivoli operations in the TMA
environment. This section describes the sequence that occurs when an
application makes an upcall, and the following section describes the TMA
upcall architecture.

General information about upcalls
Upcalls are method requests that originate at the TMA endpoint. The
endpoint can only invoke methods on the managed node associated with its
gateway not on any arbitrary object in the TMR. This design maintains
scalability: Upcalls are handled at the gateway without going to the TMR
server each time because information obtained from the TMR server is
cached at the gateway. The gateway can authorize and resolve the method
invocation; so, the TMR server does not have to be involved. The upcall
consists of a class name, the name of the method to be run, and the
arguments for the method. The gateway then resolves the prototype object
for the class name and constructs the object call to invoke the method.

The sequence of an upcall
Unlike a method invocation in the full framework, an upcall always runs a
gateway method on the host machine of the gateway. The gateway attempts
to resolve the method and do the necessary authorization without making a
call to the object dispatcher on the TMR server. The method header can be
retrieved from the method header cache, as it is for downcalls. The gateway
tells the managed node object dispatcher to start a gateway method; the
object dispatcher starts the daemon for the method (the upcall collector), if
not already started, and the daemon then proceeds. Results are returned
through the gateway daemon back to the endpoint.

This is the flow of control when an endpoint does an upcall, invoking a
gateway method:
50 Tivoli Enterprise Internals and Problem Determination

Figure 12. TMA Upcall Architecture

1. An application signals a request to run a method beyond the endpoint and
gateway, such as logging a notice group item.

2. The endpoint sends the request to the gateway consisting of a class
name, the name of the method to be run, and the arguments for the
method.

3. If the gateway can resolve the method header, it tells the object dispatcher
on the managed node to invoke the method. If it cannot resolve the
method header, it goes to the TMR server to get the header and, when the
header is returned to the gateway, the gateway tells the managed node to
invoke the method.

4. The method is invoked on the gateway.

5. Results are passed back to the gateway.

6. The gateway passes the results back to the endpoint.

TMR
Server

MN

Gateway

TMA
Endpoint

stub

cache miss

imdb

gwdb

results

implementation

Upcall start

Local invoke

Upcall start

lcfd

1

2

4

5

6

3

Results MN

The minus sign (-) on the object reference denotes that the endpoint
initiated the upcall. See “Downcalls” on page 48 for a description of the
plus and minus signs.

Note
Tivoli Object Database Architecture 51

2.5 Troubleshooting Tips Using the Object Database

You should be able to use what you learn from this chapter about the object
hierarchy and the tools provided with the Tivoli Framework to use objcall,
idlcall, and idlattr.

2.5.1 Finding the Method Executable
If a method fails for some reason, you might try to find out more about it from
the object database. You might also want to find the executable and verify, for
example, that it is the correct one (easily done if a method works on one
system but not another. You can then compare the two). You will probably do
some or all of the following:

 • Duplicate the problem or action.

 • Trace with odstat and/or wtrace.

 • Identify the method from the gathered documentation.

 • Find the executable responsible for method:

1. Execute the following command to find the behavior object (BO) OID.

objcall <Object ID> resolve <method>

2. Execute the following command to find the type of the method listed in
the last line of the result of the command.

The method type can be:

intrinsic Method is built into the oserv.
default Method is looked up for architecture of current

system.
<platform type> Method is custom for the specified platform.

You can also find some attributes with this command, such as the
default user ID, to use:

Unless you are very familiar with object attributes, or you are
experimenting on a properly isolated test system, it is recommended that
you use objcall OID getattr instead of the idlattr command. If using
idlattr, be sure to always use the get (-g) flag. The default is otherwise to
set (-s) the attribute, an activity that could alter the execution of a method.
Recovery from such a situation may include the restore of a previous
database backup. See also Chapter 6, “Commands and Logs for
Troubleshooting” on page 131.

Important
52 Tivoli Enterprise Internals and Problem Determination

objcall <behavior object id> om_stat <method>

3. If you have a default method type, you can find the binary path of the
method by executing this command:

objcall <behavior object id> om_get_definition <method> default

The following is an example of how to find the binary of a method:

objcall 1264987995.2.7 resolve avail_space !Find the Behavior object id
1264987995.1.324

objcall 1264987995.1.324 om_stat avail_space !to get the type of the method.
CATALOG=
SET_USER= !User ID with which the method execute.
SET_GROUP= !Group ID with which the method execute.
EXPORT=TRUE
EXECUTE=FALSE
default !This is the type of the method.

objcall 1264987995.1.324 om_get_definition avail_space default !get the path of the
STORAGE=/TAS/MANAGED_NODE/man_node_skel1 !binary of the method
MODEL=queued-obj-daemon

The binary file of the method will be at $BINDIR/TAS/MANAGED_NODE (in
UNIX) or %BINDIR%\TAS\MANAGED_NODE (in Windows NT) and the
executable in this example is man_node_skel1.sh (or .exe as appropriate).

2.5.2 If the Method is Unknown
If you know the class object you can use the following commands to find all
the methods of the object:

wls -od /Library/<resource> !find the class OID (Instance Manager)
idlattr -tg <class OID> behavior <object type> !get the Behavior OID
objcall <behavior OID> contents !find all the methods of the object

If you have a managed node instance name, you can use the following
commands to find all the methods and their parameters (note that this will list
all the methods for the class specified, not including those available to an
instance through inheritance):

wlookup -r ManagedNode <instance> !Find the name of the class object type
irview <type name> contents !Find the methods and their full names
irview <type name>::<meth_or_at> describe !get the method description using

!the full name of the method

A more extensive example of using irview is shown next. Here we can find
the parameters of the method avail_space. The parameters are described
below the ParameterDescription label:

bash$ wlookup -r ManagedNode itso2 !Get full class name of MN instance itso2
1212391543.1.347#TMF_ManagedNode::Managed_Node#

bash$ irview TMF_ManagedNode::Managed_Node contents !example of method’s full names
Tivoli Object Database Architecture 53

1212391543.1.4##4@TMF_ManagedNode::Managed_Node::os_name
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::os_version
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::os_release
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::system_time
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::system_time_zone
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::memory_size
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::avail_space
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::create_profile
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::update_sub_label
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::set_local_label
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::is_supported_interface
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::set_policy_region_name
1212391543.1.4##4@TMF_ManagedNode::Managed_Node::get_cache_info
.....
..... !(remaining lines deleted)

bash$ irview TMF_ManagedNode::Managed_Node::avail_space describe !Get method description
OperationDescription
 name: avail_space
 id: TMF_ManagedNode::Managed_Node::avail_space
 defined in: TMF_ManagedNode::SysInfo
 TypeCode: ulong
 kind: tk_ulong
 to_orb_free: 0
 size: 4
 # parms: 0
 mode: NORMAL
 ParameterDescription
 name: directory
 id: TMF_ManagedNode::Managed_Node::avail_space::directory
 defined in: TMF_ManagedNode::SysInfo::avail_space
 TypeCode: string
 kind: tk_string
 to_orb_free: 1
 size: 4
 # parms: 1
 mode: IN
 ExceptionDescription
 name: ExStdlib
 id: SysAdminException::ExStdlib
 defined in: SysAdminException
TypeCode: SysAdminException::ExStdlib
 kind: tk_struct
 to_orb_free: 1
 size: 44
 # parms: 19
 ExceptionDescription
 name: ExUsage
 id: SysAdminException::ExUsage
 defined in: SysAdminException
 TypeCode: SysAdminException::ExUsage
 kind: tk_struct
 to_orb_free: 1
 size: 40
 # parms: 17
 ExceptionDescription
 name: ExNotFound
 id: SysAdminException::ExNotFound
 defined in: SysAdminException
 TypeCode: SysAdminException::ExNotFound
 kind: tk_struct
 to_orb_free: 1
 size: 36
54 Tivoli Enterprise Internals and Problem Determination

 # parms: 15

Now that we have the method description including parameter and data type,
how can we use it?

Well, knowing that the directory name is required as a string. Here is an
example of using this non-intrusive method:

bash$ idlcall 1212391543.1.347 avail_space ’"h:/"’

262440 !There is 262Mb free in drive H:

bash$ idlcall 1212391543.1.347 avail_space ’"\tmp"’
{ USER_EXCEPTION SysAdminException::ExSystem { "Exception:UserException:SysAdmin
Exception::ExException:SysAdminException::ExSystem" "TasExCat" 17 "%5$t{%c} (%3$
d): system problem: ‘%7$s’" 912738032 { 0 } "ntfsinfo: exit 1: Can’t cd to
mp: The filename, directory name, or volume label syntax is incorrect." }}

Therefore, by using an invalid path parameter (\tmp), we discover that the
error is returned from ntfsinfo, a tool found in $BINDIR/tools for NT. In this
example, ntfsinfo was called by the binary man_node_skel1 of the method
avail_space.

2.5.3 Method Errors
There are two common errors that occur with methods that are incorrectly
setup: NO_METHOD and NO_IMETH. These errors are generally found on
custom methods. Use the following steps to look into these two types of
errors:

1. Use odstat to identify the method having problems. See Section 6.1, “The
odstat Command” on page 132 for more information about this command.

2. Use objcall <object id> resolve <method>. If the object cannot find the
method, there is something wrong with its inheritance. Check its class
Extended Behavior Object whose OID is in the extension attribute of the
class object and Behavior Object (OID in behavior attribute) for the listing
of methods.

3. Use objcall <behavior id> om_stat <method> to find the type of the method.
The method type can be:

intrinsic Method is built into the oserv.

default Method is looked up for architecture of current system.

<platform type> Method is custom for the specified platform.

4. So long as the type is not intrinsic, use objcall <behavior OID>
om_get_definition <method> <type> to list the storage location for the
method in relation to $BINDIR.

5. Check the permissions and the name of the file (for custom methods).
Tivoli Object Database Architecture 55

There are two identities a method uses when executing:

ACL Identifies which administrative role is needed to run the method.

ID Identifies the UNIX user ID the method uses to run.

To find the ACL for a method, you can use the following command:

objcall <behavior object id> om_get_acl <method>

It will give you the valid roles for the method.

To find the UNIX user ID and group ID with which the method will run, you can
try the following command:

objcall <behavior object id> om_stat <method>

The SET_USER and the SET_GROUP are the values that are used. These
will either be set with a name, such as nobody, or they will contain an asterisk
(*) meaning they will use the user ID and group ID passed by the caller.

2.6 Object Tools Summary

The following is a list of main object commands:

 • objcall. Used on objects to execute methods:

objcall <object id> <method> <arg>

 • idlcall. Used to execute IDL/TEIDL methods:

idlcall <object id> <method> <args>

 • idlattr. Used to get and set attribute values:

idlattr -t [g,s] <object id> <attr_name> <attr_type>
Note: Set (-s) is the default.

If the objcall method fails, try using idlcall or idlattr to execute methods or
get/set the values of attributes.

The following is a list of commands used to get object IDs and method or
attribute names:

odstat See Chapter 6, “Commands and Logs for Troubleshooting” on
page 131.

wtrace See Chapter 6, “Commands and Logs for Troubleshooting” on
page 131.

wlookup Looks up an instance of a resource from the name registry input:
wlookup -R

wlookup -ar <resource>
56 Tivoli Enterprise Internals and Problem Determination

wlookup -r <resource> <instance>
The output is: ObjectID#corba-description# instance

wls Looks up an object in the local TMR database:
wls [-odl] [Path] wls [-odl] /Library/<resource>

The ADE manuals provide more information about methods and attribute
types. There is also the command called irview that can display information
about methods and attributes:

irview repository-id [contents|describe|describe_contents|check_consistency]

For more information about these commands, please see the Tivoli
Framework Reference Manual, the on line manual pages (man command in
UNIX or START \tivoli\man\w32-ix86\man\MPG.HLP in Windows NT) or Chapter
6, “Commands and Logs for Troubleshooting” on page 131.
Tivoli Object Database Architecture 57

58 Tivoli Enterprise Internals and Problem Determination

Chapter 3. The Tivoli Core Installation Process

Due to the (mostly hidden) complexity of the Tivoli products, the installation
process must accomplish a great deal, such as determining the correct code
to load on different interpreter types. With the introduction of the new
Software Installation Service (SIS - Chapter 4, “Tivoli Software Installation
Service” on page 83), installing clients and applications has become easier.
However, it still helps to understand the original install process in some detail
for a number of reasons:

1. The TMR server cannot be installed with SIS.

2. SIS still invokes most of the standard install process under the covers.

3. An install of the occasional single machine does not warrant the use of
SIS.

We also use this install chapter to describe the layout of the Tivoli CDs.

3.1 Installation Overview

Several components must be installed to create the Tivoli Enterprise
environment. Because the Tivoli server’s oserv coordinates communication
between the oservs on each Tivoli client, the TMR server must be installed
first:

TMR server Either the wserver command or setup.exe (Windows
NT) can be used to install the Tivoli server.

Tivoli clients A remote Tivoli installation can be performed on
clients (managed nodes) from the TMR server by
using the wclient command or the Tivoli Desktop.
The Software Installation Service (SIS) can install
clients once the TMR server is installed.

Tivoli endpoints Installation of TMA endpoints can be performed using
winstlcf command, or the Tivoli Desktop, or by local
installation on the endpoint.

Tivoli applications Each Tivoli application must be installed on each
TMR server and each individual client that will use it.
Application installations can be made with either the
winstall command or the Tivoli Desktop. SIS can
also be used to install applications.

Tivoli patches Patches must be installed on each TMR server and
each individual client that will use it. Patch
© Copyright IBM Corp. 1998, 1999 59

installations can be performed using the wpatch
command or the Tivoli Desktop. SIS will also install
patches.

The interfaces for all install components send information to the same
installation engine.

3.2 General Pre-Install Checks, Hints, and Tips

There are a number of things you should do before installing a server, client,
or application. For all installations you should:

 • Read the product release notes.

 • Back up your Tivoli database (as well as performing any normal system
backups).

This section provides other hints for things to check when installing either a
Tivoli server or a client on UNIX and Windows NT.

It is extremely important that backups be performed immediately before
and immediately after a product installation or before a major maintenance
procedure, such as the creation of several managed nodes. These
backups should be kept on a separate tape and in a secure place as part of
a comprehensive backup and recovery strategy.

Important

 • Do not use the c-shell for installing on UNIX systems.

 • Do not try and install across TMR boundaries. Always install
applications in the local TMR.

 • If a previous install has failed, you can specify an exclamation mark (!)
at the beginning of the path names in the install dialog. This will force an
overwrite for any existing directories.

 • If you have not created the Tivoli install directories prior to starting the
installation, remember to select that directories should be created.
When the dialog appears, the check box is not selected by default.

General Tips for Installs
60 Tivoli Enterprise Internals and Problem Determination

3.2.1 UNIX
The install process performs some space checking once the install gets
going, but you will save a lot of time if you check for adequate Tivoli code and
database file system space in advance. To make your system easier to
manage, you may want to define some new file systems for Tivoli. You have
to ensure that your file systems are large enough to contain all the Tivoli files
(refer to the product release notes and user manuals to determine file space
requirements). Tivoli, by default, will install most of its files into /var and /usr.
There are a number of reasons why you may want to set up specific Tivoli file
systems:

 • You avoid problems where other applications may fill up space in /var and
/usr file systems.

 • You can back up and restore individual file systems defined on your
system, although this may still be a little complex for Tivoli products.

 • You can control the overall disk structure and layout.

Default directories created are:

/etc/Tivoli This directory is small at install time and can be left as
part of the /etc file system.

/var/spool/Tivoli Make a new file system for this and specify that it should
be mounted at system restart.

/usr/local/Tivoli This is the largest of the directory trees created by
Tivoli. Create the file system and specify that it should
be mounted at system restart.

Tivoli will also write install and other log files to /tmp.

The Tivoli Framework Planning and Installation Guide also contains details
on how to check for sufficient system swap space and process slots for
various UNIX types.

3.2.2 Windows NT
The drive where you want to install Tivoli must be formatted with NTFS. You
can check this from the My Computer window. Right-click on the desired drive
icon and select properties. The general page includes the file system type.
You can also check this from an NT command prompt with CHKDSK d: (where
d: is the drive where you will install Tivoli). You can convert a FAT file system
to NTFS using the convert utility. See the Windows NT online help for more
information.
The Tivoli Core Installation Process 61

Tivoli files for Windows NT are, by default, stored under the \Tivoli directory
on the root of the selected drive.Tivoli will also write install and other log files
to %DBDIR%\tmp.

You should verify through the Control Panel system applet that you have
sufficient swap space defined. The Tivoli Framework Planning and
Installation Guide discusses this requirement.

3.2.2.1 Tivoli Remote Execution Service
You have to locally install the Tivoli Remote Execution Service (also known as
the Tivoli Remote Installation Package or TRIP) from the Tivoli Framework
CD on one Windows NT system before you can install an NT managed node
or TMA endpoint from a UNIX TMR server. This system will then be identified
to Tivoli by the variable name CurrentNTRepeat. All subsequent Windows NT
installs will copy the TRIP binaries from this machine. Note that it may be
necessary to install TRIP manually on another machine or reconfigure
CurrentNTRepeat if you wish to install a Windows NT system that may have
access problems due to domain security configuration.

3.2.3 NFS Mounts
NFS mounting of binaries can save time in installing with maintenance of
patches and system backups. The mounts can be made read-only to clients
as long as there is at least one machine for each architecture that has root
write access to the binaries. All managed nodes using tasks must have root
write access also.

If problems occur with a new installation, make sure the CD-ROM is mounted
on the TMR server.

During an installation, the install engine should return the name of the NFS
server where the files will be placed. For example, if the client is spot, and the
NFS server is decimal, the install message will look like the following:

[Installing product: Tivoli/Sentry 2.5 Monitors

Unless you cancel, the following operations will be executed:
For the machines in the independent class:
hosts(spot)
need to copy the machine independent Binaries to:

decimal:/decimal/data1/Tivoli/rainbow/25/bin/generic
62 Tivoli Enterprise Internals and Problem Determination

3.2.4 Environment Files and Variables
Tivoli installation can be affected by /etc/wlocalhost. This is an executable
used to identify a machine when a name is specified that is not returned from
uname -a. When using the server’s full IP name, the .rhosts file must be set up
correctly, or the system will perform a remote server install.

The install also uses two environment variables, EtcTivoli and o_dispatch,
which are used for the location of the /etc/Tivoli directory and the TCP/IP port
where the oserv will run respectively. Modification of these variables is NOT
supported by Tivoli.

3.2.5 Automatic Startup versus Remote Startup
Automatic startup creates or modifies system startup files to automatically
start the oserv whenever the system is rebooted.

Remote startup requires the use of the odadmin commands to stop and restart
the oservs in your TMR from one location. There are two files modified in
UNIX: /etc/services and /etc/inetd.conf.

3.2.6 Deciding When a Reinstall is Best
When did your last Tivoli database backup occur? Many problems can be
solved by restoring just the server’s database to a known stable state.
Difficult client problems can also be resolved faster through reinstallation.
Most customizations are done on the server. Distributions with exact copy
options can reduce recovery time.

Never share NFS-mounted binaries across machines in different TMRs.

Note

If you don’t have your license key handy during a reinstall, use odadmin
get_platform_license > filename to make the oserv give you the key before
you remove the old installation. You can then cut and paste it from filename
during the new install process.

Reinstall Tip
The Tivoli Core Installation Process 63

3.3 Tivoli Server Installation

The Tivoli Framework Planning and Installation Guide provides plenty of
information on the actual install process. Here, we list the most important
items to remember when performing a TMR server installation.

Before installing the Tivoli Framework on the server, the user must have
determined the following:

 • Login ID with access as root (for UNIX) or Administrator (for NT).

 • A TMR name and server name.

 • The TMR installation password (optional).

 • The Tivoli license key.

 • The path(s) where the files will reside.

 • For Windows NT, a Tivoli remote access account (TRAA) if binaries will be
shared over the network. See Section 3.4, “Tivoli Client Installation” on
page 65 for more information regarding TRAA.

Once the Install or Install and Close buttons are chosen, the information is
verified, and the installation begins.

3.3.1 Server Install: Behind the Scenes
The server installation performs the following:

 • Transfers binaries, libraries, man pages, and message catalogs to the
server.

 • It is more secure if the TRAA used for sharing binaries in a Windows NT
domain is a user with less privileges than the local Administrator’s
account.

 • Do not install the TMR server on a Windows NT Primary Domain
Controller (PDC). It can cause problems if you use the domain
administrator account and password for installs.

 • Use the local administrator account on machines in a Windows NT
domain.

 • The first NT system installed with TRIP in a TMR is identified by the
variable CurrentNtRepeat. TRIP is copied from this machine to other NT
systems during the install. This variable may need to be changed if
there are access problems between this machine and new clients.

Notes for Windows NT Installs
64 Tivoli Enterprise Internals and Problem Determination

 • Installs a template of the object database and modifies it to include the
server’s name, region number, interpreter type, and so on. We can see
this activity in the oservlog of a new server installation as shown in Figure
13:

Figure 13. Sample Output from the oservlog After New Install

The following is a list of some of the attributes that changed during the server
installation:

 • Region number
 • Secret key (ALI refers to the TMR server)
 • Hostname
 • IP address
 • Encryption level

The default object database shipped with the install code includes a
place-holder machine name. This name (stout in this case) appears in this
file. You might see this name when looking directly at objects in the object
database. This name is replaced with the user-supplied name in externalized
objects. If the server icon on the desktop does not show the correct server
name, then the installation did not complete and was, therefore,
unsuccessful.

3.4 Tivoli Client Installation

The Tivoli Framework Planning and Installation Guide provides plenty of
information on the actual install process. Here, we list the most important
items to remember when performing a Tivoli managed node installation.

The user provides the following information to begin a client installation:

 • A root (UNIX) or Administrator (Windows NT) ID and password or
equivalent. Trusted host access is not recommended in UNIX systems
because it can compromise general network security.

Nov 06 16:08:21: $converting odlist region numbers (2099999999 -> 1360991896)
Nov 06 16:08:21: $changing ALI’s secret key to new random value.
Nov 06 16:08:22: $Database mismatch (from stout/146.84.27.11)
Nov 06 16:08:22: $Migrating ALI.
Nov 06 16:08:22: $changing encryption type from none to simple
Nov 06 16:08:22: TME 10 Framework (tmpbuild) #1 Thu Oct 3 08:08:58 CDT 1996
Copyright Tivoli Systems, an IBM Company, 1996. All Rights Reserved.
TMR 1360991896. ORB 1. TMR server local:94. Port 94.
pid 24052
The Tivoli Core Installation Process 65

 • The TMR installation password if one was used during the Tivoli server
installation.

 • The client’s name.

 • The installation location.

 • For Windows NT clients:

 • The first Windows NT machine must have Tivoli Remote Execution
Service (also known as TRIP—Tivoli Remote Installation Protocol)
installed and running before a client installation can take place. It
enables remote operations that would normally use UNIX rexec to be
performed. See also “Tivoli Remote Execution Service” on page 62.

 • A remote access account must be established to allow the Tivoli client
to access the remote Tivoli binaries. The Tivoli Remote Access
Account (TRAA) is established either through the GUI installation
procedure or by using the wsettap command. The wsettap registers the
TivoliAP.dll in the NT LSA registry key:

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Lsa

Some products (such as Banyan Vines) have been known to add a
blank entry under LSA. If TivoliAP is added after that blank line, it will
not be found. Removing the blank entry resolves the problem. Refer to
Appendix A.2.4, “Understanding the Tivoli Remote Access Account” on
page 599 for more information.

Once the Install or Install and Close buttons are chosen, the information is
verified, and the installation begins.

3.4.1 Client Install: Behind the Scenes
While the user waits for the client installation to complete, Tivoli performs the
following actions. The pre-installation and installation steps are detailed
below.

3.4.1.1 Pre-Installation steps
 • On Windows NT clients:

 • TRIP is installed on the client enabling the execution of commands on
Windows NT clients from another managed node and rexec
communication with the TMR server.

On the NT machine, a drive is mapped to a previously installed
managed node, the TRIP binaries are copied, and the service is
installed. The first NT system in the Tivoli environment with TRIP
66 Tivoli Enterprise Internals and Problem Determination

installed is designated the NT repeater. The repeater can then
distribute TRIP to any other NT clients in the TMR.

 • On all clients:

 • Tivoli determines the client interpreter type.

 • Checks for software dependencies, if any.

 • Checks for adequate disk space to store binary, library, and database
components.

 • Checks for previously installed software. A file with a product-related
name is stored in various .installed directories after a successful
installation. These directories exist for binaries, libraries, message
catalogs, and other components. If the installation engine finds
previously installed components, it will not install them again. The
following shows some of the .installed files. Note that a product will not
necessarily have files installed in all areas:

3.4.1.2 Installation Steps
Once the pre-requisites for the install have been checked, the user sees the
Unless you cancel message explaining what will take place during the install.
If everything is correct, and the user selects to continue installing, then the
following activities take place:

 • The NT client asks for the TRAA password.

 • Transfers binaries, libraries, man pages, and message catalogs to client.
The connection takes place through rexec or rsh.

 • Creates the database directory and creates the database by doing the
following:

 • Creates the file_versions directory.

 • Runs install2.cfg, which performs the following substeps:

#ls $DBDIR/.installed $BINDIR/.installed $LIBDIR/.installed
/usr/local/Tivoli/bin/aix4-r1/.installed:
Inventory_BIN pa_3.1.2-TMP-0001_BIN pa_TMF_3.1_SP1_BIN
TMF_BIN pa_Inventory_3.1_BIN
pa_3.1-TMP-0033_BIN pa_TMF_3.1.2_BIN

/usr/local/Tivoli/lib/aix4-r1/.installed:
TMF_LIB pa_TMF_3.1.2_LIB
pa_3.1.2-TMP-0001_LIB pa_TMF_3.1_SP1_LIB

/var/spool/Tivoli/rh0255c.itsc.austin.ibm.com.db/.installed:
Inventory_ALIDB pa_3.1.2-TMP-0001_ALIDB pa_TMF_3.1.2_ALIDB
TMF_ALIDB pa_Inventory_3.1_ALIDB pa_TMF_3.1_SP1_ALIDB
The Tivoli Core Installation Process 67

 • Starts oserv on the client (creating oservlog):

oserv -i -h <TME_host>

 • Puts the client IP address in the server’s odlist.

 • Creates three client objects in the TMR database.

When completed, it contacts the installation script to continue the
installation.

 • Configures the database by performing the following substeps:

 • Runs client.cfg on the client.

 • Creates database objects. On clients, the database is created from
scratch. On the TMR server the database is created from a pre-defined
database file.

3.4.2 Reinstalling Clients
Any partially installed clients must be removed before they can be reinstalled.

3.4.2.1 To Remove Tivoli from a Windows NT Client
To remove Tivoli from a Windows NT client, perform the following steps from
the NT client:

1. Remove the oserv service from the NT service manager:

oinstall -remove

2. Remove TRIP from the NT service manager:

trip -remove

3. Remove the TAP internal key and unregister the TivoliAP.dll with the local
security authority. If you are going to reinstall a client using a different
installation password, remove the TivoliAP.dll from the
%SystemRoot%\system32 directory because Tivoli will not overwrite an
existing file:

wsettap -d

4. Remove the NT client code from the TMR server. See the next section,
3.4.2.2.

3.4.2.2 To Remove a Partially or Fully-Installed Client from the TMR
To remove a partially or fully-installed client for the TMR, perform the
following steps:

1. Determine where, or if, a client is installed with one of the following
commands:
68 Tivoli Enterprise Internals and Problem Determination

 • wlookup -ar clientname

 • wls /Library/clientname

 • odadmin odlist

2. Make sure the oserv is not running on the client.

3. Perform one or more of these steps in order from the server until the client
is successfully removed:

 • wrmnode clientname

Removes the specified client from the Tivoli database.

 • wrmnode clientname -d dispatcher-number

Shuts down the dispatcher of the specified managed node and
removes it from the Tivoli database. The dispatcher number can be
obtained with the odadmin odlist command.

 • odadmin odlist objects dispatcher-number

Displays the object IDs of the objects owned by the dispatcher. If there
are less than three objects, run the following to remove the dispatcher
and its objects from the TMR. References to the objects will still
remain.

 • odadmin odlist rm_od dispatcher-number

Removes the node.

4. Run wchkdb -u to update the Tivoli resource database.

5. Remove the client’s database directory.

6. The client can now be reinstalled.

3.4.3 Uninstalling a PC Agent
The removal of the PC Agent involves two actions:

1. Removal of the Tivoli code on the machine

2. Deletion of the PC managed node pointing to the machine

3.4.3.1 Removal of the Tivoli Code on the Machine
This task is very simple. Just delete the directory - along with all
subdirectories - in which the PC Agent was installed. Usually, this directory is
C:\Tivoli\TmeAgent.

Before removing the TmeAgent directory, references to the programs should
be removed. On Windows NT services, definitions will have to be removed.
On Windows NT and 95 TME Agent Registry, information should be removed,
The Tivoli Core Installation Process 69

and for all TME Agents, automatic start-up of programs may have to be
removed.

Removing services
For Windows NT this task is accomplished using the INSTSVC
program in C:\Tivoli\tmeagent\win32. To remove a service use the
command: C:\tivoli\tmeagent\win32\instsvc -r

Removing TME agent registry information
On Windows NT and Windows 95, the TME Agent registry subkey in
the HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli registry path should be
removed.

Removing autostart

Windows xx:
Remove the tmeagent registry key in the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
registry path

OS/2:
Remove references to c:\tivoli\tmeagent\tivos2.exe program from
either c:\startup.cmd or the tcpexit.cmd in c:\mptn\bin\tcpexit.cmd
or c:\tcpip\bin\tcpexit.cmd.

Having removed all references to the TME Agent programs, the TME Agent
directory should be deleted.

3.4.3.2 Deletion of the PC Managed Node
Use the wdel @PCManagedNode:<pc-managed-node-label> to delete the definition
of the PC managed node related to the TME Agent just removed.

3.4.4 Uninstalling a TMA Endpoint
Removal of a TMA endpoint falls into two parts:

1. Remove the TMA code and references to it from the machine on which
it is installed.

2. Remove the Endpoint definition from the Endpoint Manger.

3.4.4.1 Removing TMA Code
To remove the installation of a TMA endpoint from a Unix machine, the only
actions required are to remove the binaries and directories in which the TMA
code is installed. Also, any references to these files should be removed.
Before removing the files and directories, the TMA endpoint should be
stopped. The necessary steps are:

Stop the endpoint Run the lcfd.sh stop command
70 Tivoli Enterprise Internals and Problem Determination

Remove the code Use the rm command. The typical location for the TMA
endpoint would be /usr/local/Tivoli/lcf

To remove a TMA endpoint from an Intel machine, the same actions apply
with the additional step of stopping and removing the lcfep program running
on Windows 95 and NT. During installation, an uninstall command-file is build
somewhere in the installation path:

Windows %LCF_ROOT%\uninst.bat

OS/2 %LCF_ROOT%\bin\%interp%\mrt\uninstal.cmd

Before uninstalling, all Tivoli application should be stopped. For all
applications, except Distributed Monitoring, this is handled in the uninstall
script by stopping the lcdf program that most applications rely on. To
explicitly stop the Distributed Monitoring before uninstalling, use the wstopeng
command.

For Windows NT and Windows 95 TMAs, it is also recommended that the
registry key - holding the name of the subdirectory of %LCF_ROOT%\DAT in
which the current configuration files are held - is deleted. The following key,
and all subkeys, should be removed from the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\lcfd

3.4.4.2 Remove the Endpoint Definition
To delete all information in the TMR regarding the endpoint just removed, it
should be removed form the Endpoint Manager. This can be obtained using
the GUI or the wdelep <endpoint> command.

3.5 Finding Out What’s Installed

The following commands can be used to determine which files have been
installed in the TMR:

 • wlookup -ar with a parameter of either ProductInfo or PatchInfo lists the
products and patches installed in the TMR server:
The Tivoli Core Installation Process 71

The list is sorted alphabetically. Note that because Tivoli never reuses
object numbers, the last part of the OID can tell you the order in which the
products and patches were installed. In this list, TMF_3.1_SP1 (479) was
installed first, and 3.1.2-TMP-0001 was installed last (573).

 • The wlsinst -ah command lists the installed products and patches and the
host names and interpreter types of the machines on which they were
installed (this data is parsed from that you can also see from idlcall $OID
_get_locations):

#wlookup -ar ProductInfo
Inventory 1360991896.1.500#TMF_Install::ProductInfo#
Inventory_3.1 1360991896.1.551#TMF_Install::ProductInfo#
Tivoli_Inventory_PC_Scanning_Program 1360991896.1.561#TMF_Install::ProductInfo#

#wlookup -ar PatchInfo
3.1-TMP-0033 1360991896.1.493#TMF_Install::PatchInfo#
3.1.2-TMP-0001 1360991896.1.573#TMF_Install::PatchInfo#
Inventory_3.1 1360991896.1.538#TMF_Install::PatchInfo#
TMF_3.1.2 1360991896.1.486#TMF_Install::PatchInfo#
TMF_3.1_SP1 1360991896.1.479#TMF_Install::PatchInfo#
72 Tivoli Enterprise Internals and Problem Determination

 • The image_report program in $BINDIR/TAS/INSTALL lists the Tivoli
products or patches, on the CD-ROM, to be installed in the TMR. Specify
the name of the index file in the CD-ROM directory when using this
command:

 Product List

TME 10 Framework
 rh0255c.itsc.austin.ibm.com aix4-r1
 k124a aix4-r1
 rh0255e w32-ix86
 k124a aix4-r1
 rh0255e w32-ix86
 k124a aix4-r1
 rh0255e w32-ix86
 rh0255c.itsc.austin.ibm.com aix4-r1

Patch List

TME 10 Framework Patch 3.1-TMP-0033
 k124a aix4-r1
 rh0255c.itsc.austin.ibm.com aix4-r1
TME 10 Framework Patch 3.1.2-TMP-0001
 rh0255c.itsc.austin.ibm.com aix4-r1
 k124a aix4-r1
 rh0255e w32-ix86
 k124a aix4-r1
 rh0255e w32-ix86
 k124a aix4-r1
 rh0255c.itsc.austin.ibm.com aix4-r1
TME 10 Framework Maintenance Release 3.1.2
 rh0255c.itsc.austin.ibm.com aix4-r1
 k124a aix4-r1
 rh0255e w32-ix86
 k124a aix4-r1
 rh0255e w32-ix86
 k124a aix4-r1
 rh0255e w32-ix86
 rh0255c.itsc.austin.ibm.com aix4-r1
TME 10 Framework Version 3.1 Service Pack 1
 rh0255c.itsc.austin.ibm.com aix4-r1
 k124a aix4-r1
 rh0255e w32-ix86
 k124a aix4-r1
 rh0255e w32-ix86
 k124a aix4-r1
 rh0255e w32-ix86
 rh0255c.itsc.austin.ibm.com aix4-r1
The Tivoli Core Installation Process 73

3.6 General Troubleshooting Tips for Installation Problems

This section details items to check when problems occur during the
installation process.

#$BINDIR/TAS/INSTALL/image_report
Usage: image_report [-a regex] [-c cdrom-dir] [-f] [product [product-2] ...]
 -a only report on media packets architectures that match the given regex.
 for example, to select the sunos4 specific packets, pass:
 -a ’(sunos4)|(generic)’
 -c cdrom image directory [defaults to the current working directory]
 -f give full listing of the contents of each media packet

 the product list is a list of the install index names and does not need
 the .IND extention. If no products are given on the command line, all
 install indexes found in the cdrom image directory are listed.

#ls
ade_31_s.ind file12.pkt file17.pkt file21.pkt file26.pkt file4.pkt
file9.pkt cfg file13.pkt file18.pkt file22.pkt file27.pkt
file5.pkt patches.lst file1.pkt file14.pkt file19.pkt file23.pkt
file28.pkt file6.pkt tmf_31_s.ind file10.pkt file15.pkt file2.pkt
file24.pkt file29.pkt file7.pkt file11.pkt file16.pkt file20.pkt
file25.pkt file3.pkt file8.pkt

#$BINDIR/TAS/INSTALL/image_report -a solaris2 tmf_31_s
/mnt14478
 Installation Media Report
 TME 10 Framework Version 3.1 Service Pack 1
 TMF_3.1_SP1 Package Platform Size Compress Ratio Date Built
 File (Install check file) (MB) Size
 ==
 Libraries solaris2 1.75 0.82 2.14 2/18 4:10
 FILE1.PKT ()
 Server Database solaris2 0.30 0.09 3.33 2/18 4:11
 FILE15.PKT ()
 Client Database solaris2 0.00 0.00 1.03 2/18 4:11
 FILE22.PKT ()
 Binaries solaris2 3.04 1.75 1.74 2/18 4:11
 FILE8.PKT ()
 --
 Product total 5.09 2.66 1.9

#$BINDIR/TAS/INSTALL/image_report -a aix4-r1 ade_31_s
/mnt14478
 Installation Media Report
 TME 10 ADE Version 3.1 Service Pack 1

ADE_3.1_SP1 Package Platform Size Compress Ratio Date Built
 File (Install check file) (MB) Size
 ==
 Binaries aix4-r1 0.09 1.87 0.05 2/18 4:11
 FILE13.PKT ()
 Header Files aix4-r1 0.15 0.09 1.73 2/18 4:11
 FILE20.PKT ()
 Libraries aix4-r1 1.96 1.05 1.87 2/18 4:11
 FILE6.PKT ()
 --
 Product total 2.20 3.00 0.7
#

74 Tivoli Enterprise Internals and Problem Determination

3.6.1 Common Errors
Check for the following possibilities common to most types of install:

 • Error e=5 - permissions

The most common cause of this error is that you have created the Tivoli
Install directories manually, and some or all of the directory permissions in
the path are incorrect. This comes from the underlying operating system.
System error code 5 is usually an access denied message such as could
not run a method as nobody.

 • Error e=1 - wrong usage:

A system call was incorrectly initiated, or an invalid call was made. Check
tivoli.cinstall file for messages.

 • Error s=9 (or 6 on HP) - library path problem:

The exit errors (e=) are usually errors Tivoli received from the system or
some other application. You may be able to use system documentation to
obtain more information about the cause of the errors. In Windows NT, try
NET HELPMSG n where n is the number following e=. In many cases, the error
can reflect a problem that happened on another system. When this
happens, the system error you receive locally may not be as meaningful.

 • Directory permission:

For example, in UNIX /dev/null, /usr, /usr/local and /usr/local/Tivoli (if
/usr/local or /usr/local/Tivoli already exist) must all be rwxr-xr-x. Other
products may change the permissions as Oracle does for /dev/null.

 • Lack of space:

Check space and permissions on $DBDIR and /tmp for UNIX and %DBDIR% for
Windows NT.

3.6.2 Windows NT Specifics
Refer also to Appendix A., “Tivoli’s Use of Windows NT” on page 595.

If you have installed TRIP, and you still have problems installing the Windows
NT system as a managed node, use the following checklist:

 • Is the Tivoli Remote Execution Service running?

This can be checked by looking at the Services dialog in NT accessed
through the Control Panel. The following diagram shows that the service is
automatically started, and that it is currently running:
The Tivoli Core Installation Process 75

Figure 14. Windows NT Services Dialog

You can also check from a command prompt with the command net start.
Tivoli Remote Execution Service needs to be listed in the output. If it is not,
you can type net start trip to start it.

TRIP can be run in a debug mode. Go to the services dialog and stop the
Tivoli Remote Execution Service or type net stop trip at a command
prompt. Start the TRIP executable from a command prompt using trip
-debug.

Note that if you have a different application running an rexecd, such as
Exceed, TRIP will not start, and the Tivoli install process will fail.

 • Is the tmersrvd ID defined to the NT machine?

Use the Start>Programs>Administrative Tools>User Manager for Domains
dialog or use the net user command to check if the ID exists. If not, then
add the ID with the following attributes: ID is tmersrvd, PW as no
password required, password never expires and do not prompt to change
PW. Add it to the global Domain Users group. You can also create this
account by cloning the standard Windows NT guest user ID. This ID must
be able to log on locally.

 • Check that the Tivoli_Admin_Privileges local group was added to NT
through the same dialog as above or by using the net localgroup
command.
76 Tivoli Enterprise Internals and Problem Determination

3.7 Additional Troubleshooting for a TMR Server Installation

The following table highlights the log files written during a TMR server
installation:

Table 1. Files Written During Server Installation

3.7.1 Common Server Install Problems
The following is a list of common server installation problems:

 • Copying CD-ROM

Use wcpcdrom in the original install directory where wpreinst.sh was
executed:

wcpcdrom /cdrom /cdrom.shadow

This creates a directory tree of soft links pointing to /cdrom. Small files
(.cfg, .ind) are copied, so they can be edited if required.

There have been cases where wcpcdrom alone does not create the right
letter case for files causing a problem when the link is used during
installation. If you receive file-not-found messages after using wcpcdrom,
you need to check for this problem.

If you want to create a disk-based image to install from, the recommended
process is to use the Software Installation Service (SIS). The steps below
provide another way to create a CD-ROM image of the Framework on your
disk if you still need to do so. This is not supported by SIS:

cd /
mkdir temp.dir
wcpcdrom /cdrom /temp.dir

Note: This wcpcdrom command just creates links.

mkdir /TME3
cd /temp.dir
tar -chf - . * (cd /TME3; tar -xvf -)

Note: This copies the image to disk.

cd /
rm -r temp.dir

File UNIX Directory NT Directory Location

tivoli.sinstall /tmp %DBDIR%\tmp Server

oservlog $DBDIR$ %DBDIR% Server

install.cfg.error
install.cfg.output

/tmp %DBDIR% Server
The Tivoli Core Installation Process 77

Where /temp.dir is a temporary directory, /cdrom is the path to your
CD-ROM device, and /TME3 is the final destination of the image.

There is a file called file0.tar created here, which you can use in place of
the WPREINST.SH command.

Copy file0.tar to a temporary directory and then untar it. This basically
creates the same structure as WPREINST.SH would, and all you have to do to
install a TMR server is run ./wserver -c /<temp dir> from the temporary
directory.

 • Host name:

If you install the server using the fully qualified domain name, you will
have to set up a .rhosts entry for the server; otherwise, Tivoli thinks that a
remote install is being performed and uses rsh.

3.8 Additional Troubleshooting for a Client Installation

The following table highlights the log files written during a TMR client
installation:

Table 2. Files Written at Installation Time

3.8.1 Common Client Install Problems
The following is a list of common client installation problems:

 • Resolving names:

Try to rlogin back and forth. Check the IP address and hostname and
check for /etc/wlocalhost.

 • Multiple network interfaces on the client:

Most platforms include a netstat command that can be quickly used to
check the local configuration.

Look for a cannot map hostname error in oservlog.

File UNIX Directory NT Directory Location

tivoli.cinstall /tmp %DBDIR%\tmp Server

oservlog $DBDIR$ %DBDIR% Client & Server

install2.cfg.error
install2.cfg.output

/tmp %DBDIR%\tmp Client

client.cfg.error
client.cfg.output

/tmp %DBDIR%\tmp Client
78 Tivoli Enterprise Internals and Problem Determination

 • CD not mounted to the TMR server:

The installation of a client is driven by the server and requires numerous
server updates. It is possible to mount the CD at the client and start the
install, but due to the interaction with the server, this could fail. The most
likely reason would be a slow connection between the client and the
server, thus causing media packet failures.

 • Encryption key:

Indicated by a could not encrypt/decrypt data error in oservlog. The user
was denied authorization due to missing or wrong password. Retype the
password, fix the odadmin set_install_pw command or start the oserv
specifying the install key using oserv -s install_key.

3.9 Installation CD-ROM Contents

A Tivoli product CD-ROM contains the following types of files:

.IND Index files. List what components are on the CD for each interpreter
type.

.PKT File packets. Tivoli Software Distribution-type packages containing
the binaries. These can be expanded with sapack. See 3.9.1,
“CD-ROM Installation Tools” on page 80.

.CFG Configuration files. Descriptions of the .PKT files and location of any
before and after scripts.

.LST Contents or patch list. Used to build list of items available for install
for the GUI.

The following shows what index, configuration, and contents files look like.
(This example is from a 3.1 release CD. The format is the same for later
releases). You can use this information to find out what components are
installable on what interpreter types or whether libraries are included in the
install:
The Tivoli Core Installation Process 79

3.9.1 CD-ROM Installation Tools
The sapack command is used to create and expand file packages. During a
client installation, sapack is transferred to the client and used to extract the
binaries and other files until the oserv is started (after which unpack is
performed through the fps_unpack method).

 • Prior to Release 2.0.2, problems occurred if the install bundle was deleted
(extracted with wpreinst.sh) and clients could not be installed. To solve

#grep aix tmf_31_s.ind
TMF_3.1_SP1:fp:LIB:aix3-r2::2500:5
TMF_3.1_SP1:fp:LIB:aix4-r1::2534:6
TMF_3.1_SP1:fp:BIN:aix3-r2::3347:12
TMF_3.1_SP1:fp:BIN:aix4-r1::3423:13
TMF_3.1_SP1:fp:ALIDB:aix3-r2::298:19
TMF_3.1_SP1:fp:ALIDB:aix4-r1::298:20
TMF_3.1_SP1:fp:DB:aix3-r2::4:26
TMF_3.1_SP1:fp:DB:aix4-r1::4:27
(Format of IND file is prodname:fp:Target DIR:Interpreter::Size:Packet File Number)

#more ./cfg/file1.cfg
#*TFP-v2.01
#version=TMF_3.1_SP1_LIB_solaris2
do_compress=y
do_checksum=y
stop_on_error=n
create_dirs=y
keep_paths=y
file_cksums=y
unix_default_dir_uid=0
unix_default_file_uid=0
unix_default_dir_gid=0
unix_default_file_gid=0
post_notice=n
default_file_mode=0755
default_dir_mode=0755
unix_before_prog_from_src=y ! Yes use on UNIX
unix_before_prog_path=/a/tivoli/builds/3/TMP_3.1/prod \ ! path of script
/solaris2/patches/scripts/TMF_31_SP1/LIB_before_unix.sh
nt_before_prog_from_src=y ! Yes use on NT
nt_before_prog_path=/a/tivoli/builds/3/TMP_3.1/prod/ \ ! path of script
/solaris2/patches/scripts/TMF_31_SP1/LIB_before_nt.sh
#
File List:
#
%
.placeholder
libas.so
libas_imp.so
librim.so
libtable.so
libtas.so
%

#more patches.lst
TMF_31_S:TME 10 Framework Version 3.1 Service Pack 1
ADE_31_S:TME 10 ADE Version 3.1 Service Pack 1
80 Tivoli Enterprise Internals and Problem Determination

this problem, the install bundle is now placed in the binary tree and should
not be removed.

 • The sapack command is not documented, and direct use is therefore not
supported by Tivoli. If you want to use it, it does have helpful usage
statement, just run sapack with no arguments to see it.

 • To extract the before or after scripts using sapack, perform the following:

o_dispatch=100 <path_to_sapack> -Dinstall_progs=y -u <path_to_pkt>

We set o_dispatch to 100 to ensure we do not execute the script on a
currently-running TMR. The afterscript always runs; so, we must prevent it
from modifying the current TMR.

 • For architecture types that are released on separate media, run
wpreinst.sh and extract their sapack and copy it into the install bundle
directory.

The sapack command expands files into the current directory. The
recommended steps for usage (on a test system only) are:

1. Create a new directory

2. Copy the PKT file to be unpacked into the directory

3. Copy the $BINDIR/TAS/Install/sapack utility

4. Export o_dispatch to a port value that is not in use

5. Run sapack -up PKTname to preview the unpack

6. Run sapack - u PKTname (or sapack -Dinstall_progrs=y -u PKTname if you
wish to save the script that is run)

#cd /usr/local/Tivoli/bin/
#./client_bundle/bin/aix4-r1/sapack
Usage: ./client_bundle/bin/aix4-r1/sapack [-C dir] [-Dkey=value] [-pPl] [-N name] fp-desc > fpblk
 ./client_bundle/bin/aix4-r1/sapack -u [-C dir] [-Dkey=value] [-pPl] [-N name] fpblk
 ./client_bundle/bin/aix4-r1/sapack -ur [-C dir] [-Dkey=value] [-N name] fpblk
The Tivoli Core Installation Process 81

82 Tivoli Enterprise Internals and Problem Determination

© Copyright IBM Corp. 1998, 1999 83

Chapter 4. Tivoli Software Installation Service

The Tivoli Software Installation Service (SIS) is an application designed for
faster and easier installation of Tivoli products in a Tivoli Management Region
(TMR). SIS can push products to Tivoli clients and is intended to provide
increased functionality over the standard Tivoli installation process used in
previous releases of the Tivoli Framework. Using SIS, you can create an
install repository (IR) that contains the installation images of the products,
determine a product configuration for some or all of the machines in your
Tivoli Management Region, and install that configuration on the machines
you choose.

4.1 SIS Component Overview

This session gives a high level overview of the concepts of SIS.

There are three components to SIS. They are:

 • The Tivoli Software Installation Service Binaries:

The Tivoli SIS server is any managed node (including the TMR server)
that has the SIS binaries installed on it. Using either the graphical user
interface (GUI) or the command line interface, you can invoke the Tivoli
Software Installation Service that runs on the SIS server.

 • The Install Repository:

SIS introduces the concept of an Install Repository (IR). The IR holds the
images of all the products or patches that are to be installed using SIS.
Products are imported into the IR either through the GUI or through the
command line interface(CLI). You control which products are to be
installed on which targets. During the installation of SIS, you specify the
location of the IR. You may find it useful to set a variable, $IR. The Install
Repository location will be referenced in scripts and commands in this
chapter by the variable $IR. Note that this variable is not defined or used
by SIS itself.

 • A Response File:

Response files are text files that contain product and machine attributes
that are required by SIS for an installation, such as:

 • Product install directory paths

 • Machine name

 • Machine access methods

 • Operating system type

 • Password settings

 • Login account information

You can define specific attributes for a product and machine, or use a
global set of attributes for all machines, and pass these values to SIS in a
response file.

Figure 15 shows the high-level design of SIS:

Figure 15. SIS High-level Design

The steps for implementing SIS are:

1. Build the IR, and import the product images you need into the Install
Repository by SIS GUI or using the CLI.

2. Once the IR has been built, you can configure what products you want to
install on which nodes. This is done through the SIS GUI or through a
Response File.

3. Invoke the SIS Installation Engine to dispatch and install products to the
machines you specified by either GUI or CLI.

4.1.1 SIS Considerations
You should note the following about SIS:

 • SIS does not support installing to nodes located in interconnected TMRs.
However, to conserve disk space, the Install Repository can be shared
between different TMRs.

Tivoli: Software Installation Service
High-Level Design

Install
Repository Disk

Store

SIS GUI or
CLI

SIS Installation
Engine

Dispatch
Engine

Response
File

Managed Nodes
and Machines
84 Tivoli Enterprise Internals and Problem Determination

 • You can not use SIS to install any products or patches on an Endpoint.
However, you can create an Endpoint itself using SIS on Windows NT or
UNIX. This is discussed in the next paragraph.

 • SIS can not create Endpoints on any other machines without the PC agent
running on them. This means if you want to create a Windows 95,
Windows 98, Windows 3.x, OS/2, or NetWare Endpoint using SIS; it must
already be a PC managed node.

4.2 Installation of SIS

The SIS server 3.6 can run on AIX, HP-UX, Solaris, and Windows NT
platforms, and is installed from either the Tivoli desktop or command line
using the traditional framework install methods. Refer to the user manual and
release notes for details of OS versions and levels supported.

4.2.1 Installation Procedure

Use the following guidelines to help you plan your SIS installation:

 • SIS requires sufficient disk capacity to hold the images of the software SIS
will be pushing and installing. To help reduce disk space requirements,
SIS 3.6 introduces the concept of a shared IR. A shared IR uses either
UNIX NFS mounts or Windows NT sharing to share a single IR among
several SIS servers.

 • Software prerequisites (Operating System fixes and Tivoli Patches. Note,
always check the release notes).

 • Network topology. Installation from a SIS server will involve a great deal of
network traffic.

For Windows NT systems:

1. You must run the bash command shell for the SIS command line
commands contained in this document.

2. The correct directory for all SIS command line programs is:

$BINDIR/../generic_unix/SIS

Note

Do not forget to perform a Tivoli backup before you install any product on
your TMR.

Reminder
Tivoli Software Installation Service 85

 • The Tivoli Management environment. The products in use, the distribution
of managed nodes and other systems, and so on.

In order to install and use SIS, you need to have the following installed:

 • The TMR server.

 • The managed node on which you want to install SIS (this could be the
TMR server if desired).

 • For Windows NT managed nodes, bash.exe, version 11 or later (included in
Tivoli Management Framework 3.6, 3.2 and 3.2.1 and on the SIS CD
ROM).

Note also that SIS requires a Java Virtual Machine to run, which can limit
the versions of platforms on which it can run.

For more information about Planning activities, please refer to Mass
Installation Using SIS - SG24-5109.

After preparing for the installation, you can start the Tivoli desktop and use
the traditional installation method to install SIS on the machine you choose as
the SIS server. You can also use the winstall command to install the SIS
server. The install for SIS has an install options dialog as shown in Figure 16.

Figure 16. SIS Install Options Dialog

SIS can be installed on any managed node including the TMR server.
However, for performance reasons, it is recommended that you install
the SIS software on a managed node that is not the TMR server.

Note
86 Tivoli Enterprise Internals and Problem Determination

In the install options dialog, you need to perform the following actions:

1. Specify the type of IR you will be using. There are four types of IR you can
have:

Non-Shared This option does not allow you to share this repository
with SIS running in another TMR.

Read-Only Read-Only allows SIS to read the products from this
repository but will not allow users to add or remove
products from the repository.

Shared This option allows the repository to be shared by SIS
running in other TMRs for both reading as well as
importing and removing Tivoli products for this repository.

Auto Auto will set the mode of the IR for the user. If the IR
specified in the installation options appears to have an
existing Install Repository (that is
$IR/TMR/Defaults/interp.sis-36 exists), then the IR mode
is set to Shared. If this file does not exist, the IR mode is
set to Non-Shared.

You should set this value and not rely on SIS to provide a default.

2. Specify the path where your IR is to be located in the Install Repository
Location field. If necessary, the directory specified will be created during
the installation process. Remember to allow for sufficient disk space for
product images that will be imported.

3. After finishing the installation, you must completely restart the Tivoli
desktop. This means you must shut down all Tivoli desktops started in that
TMR. Now when you open the Desktop action bar pull down and select
Install from the pull down list, the Software Installation Services... option
is now available

For more information about installing SIS, please refer to the Tivoli
Software Installation Service User’s Guide.

4.3 Using SIS

This section provides details on the components you will work with to use the
Software Installation Service.

4.3.1 Starting the SIS Graphical User Interface
You can start SIS from the Tivoli desktop or the command line. To start from
the desktop perform the following steps:
Tivoli Software Installation Service 87

1. From the Tivoli desktop menu select Desktop --> Install --> Software
Installation Service... to launch the SIS desktop.

2. When you are prompted for the Tivoli Installation password by the Get
Installation password dialog, enter the framework installation password, if
you had specified one, and select OK. If you do not have an installation
password, select OK. At this point, the SIS desktop, as shown in Figure
17, should be displayed.

Figure 17. SIS Desktop Dialog

The desktop start method is the supported method for starting the SIS GUI. If
it is necessary to start SIS from the command line (for example, if directed to
do so by Tivoli support), you can enter, in a UNIX environment:

$BINDIR/../generic_unix/SIS/sisgui

In Windows NT environment, enter:

sh %BINDIR%/../generic_unix/SIS/sisgui

From the SIS dialog, you can choose:

Install To startup the software installation procedure.

Synchronize with TMR

To synchronize the IR with the TMR server database and
update product and managed node installation information in
the IR.
88 Tivoli Enterprise Internals and Problem Determination

Quit To close Tivoli Installation Service and remove TMR, IR, and
usage locks.

About To view SIS product information.

View Logs To view the HTML log files generated by SIS.

The following occurs when SIS starts:

1. SIS writes to the $IR/sis-<node>.out file for both shared and non-shared
IRs.

2. SIS creates the necessary locks. There are four locks created during SIS
startup:

TMR lock When the SIS starts, it will create the TMR lock in the object
database using wregister -i SIS <SIS nodename>. The TMR
lock prevents other users within the TMR from using SIS at
the same time. That is, this prevents two users from
attempting to distribute to the same machine at the same
time. Instead, the second user would see a warning
message describing the TMR lock and displaying the host
name where SIS is being executed within the TMR.

IR lock The IR lock prevents multiple users in different TMRs from
using the IR directory in write mode concurrently. A warning
message will be displayed to all users after the initial launch
of SIS. This warning lists the hostname and region name of
the machine running the initial SIS. If the IR is used in
shared mode, the user has the option of continuing in
read-only mode. If the IR is used in read-only mode, the IR
lock is not created. The IR lock is created as a file ir.lck
when SIS starts.

Usage lock The IR can be shared between different TMRs at the same
time. The first node that starts SIS has the write authority.
Other nodes in different TMRs can still use the IR and will

The Install Repository can be shared between different versions of
SIS, and in order to maintain compatibility with SIS 1.0, SIS 3.6 will
create a lock file in two directories:

$IR/ir.lck
$IR/TMR/Defaults/ir.lck

$IR/ir.lck is used by SIS 1.0, $IR/TMR/Defaults/ir.lck is for SIS 3.6.

Note
Tivoli Software Installation Service 89

create the usage lock when they start SIS. The usage lock
file is $IR/TMR/Defaults/ULOCK/<nodename>.lck.

CLOSEDIR.lck Used by wimport -remove in the ULOCK directory.

3. SIS reads the products in the IR.

SIS first checks for the existence of the $IR/TMR/Defaults/miniprod.sav
(non-shared IR) or $IR/TMR/<region number/miniprod.sav (shared IR) file.
If this file exists, SIS will read the product information. The miniprod.sav
file is the product index file that indicates where to find the product detail
information. If SIS can not find the miniprod.sav, it will scan the
$IR/Framework, $IR/Products, $IR/Patches, and $IR/Upgrades directories
to build miniprod.sav.

There is a product.sav in separate directories for each product. The
directory depends on the type of product, Framework, Patches, Products,
or Upgrades. The directory structure for both the shared and non-shared
IR is: $IR/<product type>/<product name>. SIS reads the product.sav for
detailed product information. If the product.sav does not exist, SIS can
create it according to the .IND file in each product directory.

4. Synchronize with the TMR.

SIS checks for the existence of $IR/TMR/Defaults/minitmr.sav
(non-shared IR) or $IR/TMR/<region number>/minitmr file. If this file
exists, SIS will read the pointer information about the managed nodes
within a TMR and the Tivoli products currently installed in the TMR from
this file. The actual information is stored in the tmr.sav file. If the
minitmr.sav doesn’t exist, SIS looks for the TMRSync.out and if it does not
find it then SIS runs the $BINDIR/../generic_unix/TMRSync.sh script to build
the TMRSynch.out to synchronize the IR with the TMR. This script queries
the TMR for the information.

For each TMR using the Install Repository, there is a tmr.sav in the
$IR/TMR/Defaults (non-shared IR) or $IR/TMR/<region number> (shared

If you find the products information is not correct, just delete
miniprod.sav, product.sav and restart SIS.

Note

If you need to re-synchronize with TMR server when SIS starts, just
delete the minitmr.sav, then start SIS

SIS 1.0 checks $IR/tmr.sav when it starts

Note
90 Tivoli Enterprise Internals and Problem Determination

IR) directory. SIS reads the tmr.sav for detailed TMR information. If the
tmr.sav does not exist, SIS will create it when Software Installation Service
is launched.

If there are some problems during SIS startup, refer to 4.4.3,
“Troubleshooting SIS Startup” on page 107 for more information.

4.3.2 Building the Install Repository
The IR contains all products and patches available for installation on to
machines by SIS. In the IR directory you specified during SIS installation are
the following directories:

 • Framework/

 • Products/

 • Patches/

 • Upgrades/

These directories contain the .IND files and file packages for Tivoli products.
Each version of Framework, Products, Patches, or Upgrades is stored in a
separate directory. There is also a product.sav file in each directory. This file
is created according to the .IND file when you initially build the IR or when
you add products/patches to the IR. The product.sav also stores product
defaults. Refer to 3.9, “Installation CD-ROM Contents” on page 79 for more
information about .IND files. An example of the top level IR directory is
shown in Figure 18.

Figure 18. Contents of IR Directory

[root]ls -l
total 72
drwxrwsrwx 4 root sys 512 Nov 15 09:54 Framework
drwxrwsrwx 2 root sys 512 Nov 15 09:47 GIF
drwxrwsrwx 3 root sys 512 Nov 15 09:48 Patches
drwxrwsrwx 32 root sys 2560 Nov 19 11:22 Products
drwxrwsrwx 3 root sys 512 Nov 15 09:47 TMR
drwxrwsrwx 3 root sys 512 Nov 15 09:48 Upgrades
drwxrwsrwx 24 root sys 512 Nov 15 09:47 bin
drwxr-sr-x 12 root sys 512 Nov 19 16:41 log
drwxrwx--- 2 root system 512 Nov 15 08:57 lost+found

[root]ls -l
total 16
drwxrwsrwx 3 root sys 1024 Nov 15 09:52 TME10_ENDPOINT
S_4.1
drwxrwsrwx 3 root sys 512 Nov 15 09:56 TMF-3.6
Tivoli Software Installation Service 91

When SIS is installed, the IR contains several prepackaged product image
directories. Other directories contain only a .IND file. These prepackaged
.IND files contain tags that provide SIS with additional information not

provided in the product images of the product CD-ROMs. When the product
that corresponds to the .IND file is imported, the prepackaged tags are
merged with the imported product .IND file.

An example of what the provided product directories looks like is shown in
Figure 19.

Figure 19. Example of Provided Product Directories and Files

[root]ls -l |more
total 248
drwxrwsrwx 2 root sys 512 Nov 15 09:48 ACF-3.6-TME_10_Enterprise_
Console_3.6_Adapter_Configuration_Facility
drwxrwsrwx 3 root sys 512 Nov 15 10:28 ARMEP_36-TME_10_Distribute
d_Monitoring_ARM_EndPoint_version_3.6
drwxrwsrwx 3 root sys 512 Nov 15 10:28 ARMMON_36-TME_10_Distribut
ed_Monitoring_ARM_Monitors_version_3.6
drwxrwsrwx 3 root sys 512 Nov 15 10:25 ARM_36-TME_10_Distributed_
Monitoring_ARM_Agent_version_3.6
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Admin-3.0-Tivoli_Admin_3.0
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Admin-3.1-TME_10_User_Admi
nistration_3.1_
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Admin-PCFPGEN_3.0-Tivoli_A
dmin_3.0_PC_Filepack_Utilities
drwxrwsrwx 2 root sys 512 Nov 15 09:48 AdminPcFp-3.1-TME_10_User_
Administration_3.1_PC_Filepack_Utilities
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Courier-3.0-Tivoli_Courier
_3.0
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Courier-3.1-TME_10_Softwar
e_Distribution_Release_3.1
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Courier-3.6-TME_10_Softwar
e_Distribution,_Version_3.6
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Inventory-3.6-TME_10_Inven
tory,_Version_3.6
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Inventory-Tivoli_Inventory
_Application
drwxrwsrwx 2 root sys 512 Nov 15 09:48 Inventory_3.1-TME_10_Inven
tory_Version_3.1,_for_NT_only
drwxrwsrwx 3 root sys 512 Nov 15 10:26 NTMonitors35-3.6-TME_10_Di
stributed_Monitoring_NT_Monitors
drwxrwsrwx 2 root sys 512 Nov 15 10:26 Sentry2.0.2-3.0-Tivoli_Sen
try_Version_3.0
drwxrwsrwx 3 root sys 1024 Nov 15 10:39 Sentry2.0.2-3.6-TME_10_Dis
tributed_Monitoring_3.6
drwxrwsrwx 2 root sys 512 Nov 15 09:48 TACFPLUS-TACF_Tasks,_Monit
ors,_and_Event_Integration_v3.6
drwxrwsrwx 2 root sys 512 Nov 15 09:48 TEC_CONSOLE-3.6-TME_10_Ent

[root]ls -l
total 16
-rwxrwxrwx 1 root sys 27 Nov 15 09:48 CONTENTS.LST
-rwxrwxrwx 1 root sys 595 Nov 15 09:48 COURIER.IND
92 Tivoli Enterprise Internals and Problem Determination

Tivoli products and patches must be imported into the IR before they can be
installed on the machines in the TMR using SIS. For more information of how
to import Tivoli products images into IR, please refer to Mass Installation
Using SIS - SG24-5109 or the Tivoli Software Installation Service User’s
Guide.

4.3.3 Select Target for Install
SIS allows you to install products on selected machines. For each selected
machine, SIS will communicate with it to determine the operating system
type.

For a new UNIX or NT machine, you will need to have either the
root/Administrator password or use the trusted host option. NT is supported
by rexec through TRIP only, no trusted host access. There is also one new
option FTP/Account that is only for OS/400. For the machines created by the
traditional Tivoli installation method, you can synchronize SIS with TMR
server using the TMRSync.sh command.

From SIS, the Windows 3.x, 95 and 98, NetWare, and OS/2 platforms can
only be used if they are PC managed nodes. You will not be able to use SIS
to load the Tivoli Management Agent if the PC Agent is not already installed
but rather should use the traditional Tivoli installation methods and then
synchronize the TMR.

For new Windows NT managed nodes, if TRIP is not present, there will be a
window to prompt you to remotely install TRIP. If you want to install TRIP
remotely, there must be at least one Windows NT managed node that has
already installed TRIP, and it must be in a domain with a trust relationship
with the domain for the Windows NT machine you are trying to install. SIS will
auto install TRIP using this managed node as a repeater to distribute TRIP to
other Windows NT machines as you select. See also A.5.1, “Installation of the
Tivoli Remote Installation Package” on page 616, and 3.2.2.1, “Tivoli Remote
Execution Service” on page 62.

Before SIS copies the product images into the IR, it will check the disk
space. If there is not enough space, it will display a warning window to tell
you how much space is available and how much is needed for the products
you want to import. You can either expand your IR space and continue or
exit the import.

Note
Tivoli Software Installation Service 93

4.3.4 SIS Response Files
Response Files are text files that allow you to automate product installations.
When using the CLI, you need to provide a response file to SIS to tell the
install engine what product to install, to which machine, and the method to
use for installation.

By using the GUI Install Details screen, you can define a target machine you
want to create (or add) and what products to push to that target machine.
After this, you can export the information to a response file. This file can then
be edited and/or re-imported into the GUI for use or to be used in a command
line installation with the command wsis <response file>.

You can see more Response File examples in Mass Installation Using SIS -
SG24-5109.

4.3.4.1 Response File Considerations
The passwords for the root/Administrator of the target machine is in clear text
format in the response file. You can edit it directly. If you don’t want to put the
password into the response file, set the keyword promptForPassword=yes in the
response file. If this keyword and option are used, SIS will prompt you for the
password during installation. If you put the password into the response files,
you will need to take the proper precautions to secure these files.

When you use SIS to install products on a large quantity of machines, you
can export the installation information of one machine and then edit it through
your favorite text editor to add the information about other machines. At this
point, you could either install using CLI or, after re-importing the file, through
the GUI.

You can get the keywords about the install directories from the .IND file in the
product packages. The .IND file specifies installation options including install
directories, port specifications, database systems, and so on. For example,
install directory information is located in the id line of the file. It is
recommended that you use the GUI to export a response file for a sample
machine and use this as a template to add new machines in your response

When you add a new machine, SIS will check the network connection to it.
You can only add a new machine if it is available. This can help reduce
installation errors caused by network problems.

Note
94 Tivoli Enterprise Internals and Problem Determination

file. By using this method, it will be easier to build the response file, and it will
be more accurate.

Figure 20 shows the ep.IND file from the
$IR/Framework/TME10_FRAMEWORK_4.1 directory. The highlighted lines
were used in the response file that is displayed in Figure 21 on page 96.

Figure 20. Example of the ID Line in a .IND File

Be careful when using both byProduct and byNode definition in one response
file. SIS will attempt to parse the byNode section first, then the byProduct
section. If there are any conflict in definitions, the byProduct selections will
generally be overwritten by the byNode selections. Figure 21 on page 96
contains a response file with conflicting definitions.

TME10_ENDPOINTS_4.1:description:TME 10 Endpoints (v4.1):TME10_ENDPOINTS_4.1
TME10_ENDPOINTS_4.1:lcf_install:
TME10_ENDPOINTS_4.1:patch_id:TME10_ENDPOINTS_4.1
TME10_ENDPOINTS_4.1:id:BIN2:binaries:both::default=@lcf_stage@:ThisDir=@BIN2@;ThisHo
st=@HostName@;ThisPkg=BIN2;BINDIR=@BINDIR@;INTERP=@Arch@;:
TME10_ENDPOINTS_4.1:fp:BIN2:solaris2::2589:1
TME10_ENDPOINTS_4.1:fp:BIN2:aix4-r1::1891:2
TME10_ENDPOINTS_4.1:fp:BIN2:hpux10::2006:3
TME10_ENDPOINTS_4.1:fp:BIN2:w32-ix86::1916:4
TME10_ENDPOINTS_4.1:fp:BIN2:sunos4::372:5
TME10_ENDPOINTS_4.1:fp:BIN2:windows::856:6
TME10_ENDPOINTS_4.1:fp:BIN2:win95::839:7
TME10_ENDPOINTS_4.1:fp:BIN2:nt::1000913:8
TME10_ENDPOINTS_4.1:fp:BIN2:nw3::3171:9
TME10_ENDPOINTS_4.1:fp:BIN2:nw4::3223:10
TME10_ENDPOINTS_4.1:fp:BIN2:os2::738:11
TME10_ENDPOINTS_4.1:fp:BIN2:netware::738:12
TME10_ENDPOINTS_4.1:id:@EndpointLabel@:Endpoint
Label:product::default=@HostName@::
TME10_ENDPOINTS_4.1:gui:L:EndpointLabel:product:
TME10_ENDPOINTS_4.1:id:@InstallBaseDirectory@:Path to install
endpoint:product::default=@lcf_default@::
TME10_ENDPOINTS_4.1:gui:L:InstallBaseDirectory:product:
TME10_ENDPOINTS_4.1:id:@GatewayIP@:Gateway IP address:product::::
TME10_ENDPOINTS_4.1:gui:L:GatewayIP:product:
TME10_ENDPOINTS_4.1:id:@GatewayPort@:Gateway Port:product::default=9494::
TME10_ENDPOINTS_4.1:gui:L:GatewayPort:product:
TME10_ENDPOINTS_4.1:id:@EndpointPort@:Optional port for
endpoint:product::default=9494::
TME10_ENDPOINTS_4.1:gui:L:EndpointPort:product:
TME10_ENDPOINTS_4.1:id:@EndpointStartupOpts@:Additional Options for
endpoint:product::::
TME10_ENDPOINTS_4.1:gui:L:EndpointStartupOpts:product:
TME10_ENDPOINTS_4.1:id:@EndpointStartupTimeout@:Time to wait for the endpoint
to connect:product::default=300::
TME10_ENDPOINTS_4.1:gui:L:EndpointStartupTimeout:product:
Tivoli Software Installation Service 95

Figure 21. Example of a SIS Response File with Conflicting Definitions

In the above example, the target machine pctmp109 may use an
InstallationBaseDirectory of c:/Tivoli/lcf1 since this keyword conflicted with
the definitions in the byNode section. This type of conflict can cause
unpredictable results and should be avoided.

After the response file is created, you can then use the wsis <response file>
command to install to target machines, or you can import the response file in
the GUI and install to target machines. The resulting log file for SIS importing
response file is shown in Figure 22 on page 97. You can see that SIS first
parsed the byNode section then the byProduct section. The result of the
installation is determined by the byProduct section.

[machine pctmp109]
access=rexec
userid=Administrator
password=password
interp=w32-ix86

[byProduct]
aliasname2=pctmp109

[byNode]
pctmp109=aliasname1

[alias aliasname1 TME10_ENDPOINTS_4.1-client-]
@EndpointLabel@=pctmp109
@InstallBaseDirectory@=c:/Tivoli/lcf
@EndpointPort@=9494
@EndpointStartupOpts@=
@EndpointStartupTimeout@=300
GatewayName=Broadcast to Gateways
PolicyRegionName=None
tapUser=
TapPassword=
EndpointEnableRestart=No
Overwrite=

[alias aliasname2 TME10_ENDPOINTS_4.1-client-]
@InstallBaseDirectory@=c:/Tivoli/lcf1

[globals]
InstallPassword=
AskBeforeReboot=false
InstallAlgorithm=Install to Machines Maximizing Network Bandwidth
96 Tivoli Enterprise Internals and Problem Determination

Figure 22. Example of SIS Log File for Imported Response File

4.3.5 Using SIS to Install Tivoli Products
You can use SIS to install the Tivoli Framework, products, and patches.

The following sections detail the flow when SIS installs new endpoints or
managed nodes and products.

4.3.5.1 Run Prerequisite Checks
There are four types of prerequisites: Client, Product, Patch, and Endpoint.
The type of prerequisite that is run depends on what is being installed.

About to parse the "by node" section

Parsing node section.
 -- Seaching InstallInfo for (pctmp109, TME10_ENDPOINTS_4.1-client-)
InstallInfo found.
Beginning import of response file attributes into InstallInfo object.
@EndpointLabel@ == pctmp109
@InstallBaseDirectory@ == c:/Tivoli/lcf
@EndpointPort@ == 9494
@EndpointStartupOpts@ ==
@EndpointStartupTimeout@ == 300
GatewayName == Broadcast to Gateways
PolicyRegionName == None
tapUser ==
TapPassword ==
EndpointEnableRestart == No
Attribute import successful.
bout to parse the "by product" section

Parsing product section.
 -- Seaching InstallInfo for (pctmp109, TME10_ENDPOINTS_4.1-client-)
InstallInfo found.
Beginning import of response file attributes into InstallInfo object.
@InstallBaseDirectory@ == c:/Tivoli/lcf1
Attribute import successful.

About to start the massive UD check.....
massive UD check done!!!

SIS can be used to create TMA endpoints, but at the time of writing, you
can not use SIS to install products that require installation to the endpoints.
For some Tivoli products, such as Tivoli Security Management and Tivoli
Remote Control, you need to install some extra code on the endpoints. If
you want to use these products, you will still need to use the Tivoli
traditional installation method or Tivoli Software Distribution.

Note
Tivoli Software Installation Service 97

Client Prerequisites performs the following tasks:

 • Connection test - Tests ability for SIS Server to talk with the client. It
attempts connectivity by running this prerequisite on the remote client. If
the connectivity attempt times out, then this prerequisite fails.

 • Bash prerequisite - Windows NT only. Verifies that the bash.exe Version 11
or later is installed on the Windows NT machines.

 • Shell prerequisite - UNIX only. Verifies that root shell is either Bourne or
Korn shell.

 • /dev/null permission - UNIX only. Verifies that /dev/null has world write
access.

 • NT kbdus.dll - Windows NT only. Verifies that the Windows NT node has
the US keyboard DLL installed in the system directory. This DLL is
necessary for SIS to create Windows NT managed nodes.

 • NTFS - Windows NT Only. Verifies that the client database directory is a
local NTFS directory.

 • Existing DBDIR - Checks for the existence of a managed node database in
the $DBDIR. If the $DBDIR on that node contains an existing managed
node database, a new managed Node will not be created unless the
overwrite flag is checked for the database directory.

 • Two way communication - Checks to make sure the client can ping the
TMR server. It does this by running the ping command on the client.

Endpoint Prerequisites (except AS/400) performs the following tasks:

 • Connection test.

 • Bash prerequisite - Windows NT Only.

 • Shell prerequisite - UNIX only.

 • /dev/null permission - UNIX only.

 • NT kdbus.dll - Windows NT only.

 • Two way communication with TMR server.

The actions taken by these prerequisite checks are the same as the Client
Prerequisites. Endpoint prerequisites also adds the following check:

 • Two way communication with gateway check - Checks to make sure the
client can ping the gateway it will use to login. It does this by running the
ping command on the client.

AS/400 Endpoint Prerequisites performs the following tasks:
98 Tivoli Enterprise Internals and Problem Determination

 • Disk Space - Verifies that a minimum of 20MB of free disk space is
available.

 • Authority - Verifies that the AS/400 account specified in either the ADD
MACHINE dialog of the user ID in the response file has the authority to
issue the RSTLICPGM command and has *SAVSYS special authority.

 • Allow object restore - the QALWOBJRST system value must specify *ALL
or *ALWPGMADP. This value specifies whether or not objects with
security sensitive attributes can be restored.

 • Slip Installation - Determines if the 1TMELCF product is already installed.

 • Connection with the gateway - Verifies that the endpoint can open a
TCP/IP socket to the gateway and port specified.

Product and Product Prerequisites

 • Connection to target - Verifies that the machine from which you are
installing and the target machine can successfully communicate with each
other.

4.3.5.2 Disk Space Probe
The disk space probe is run to ensure that there is enough disk space for the
file package.

When checking disk space, SIS first determines the disk space of each
directory SIS will use and compares this to the file pack size. The file size is
the next to last field of the fp line shown in the .IND file for the product/patch.
From this file, we use only the disk space for any file package marked generic
and the interpreter type of the target machine. As SIS determines size
requirements, the size of the file package is subtracted from the free space
available at each target directory. This is how SIS determines if enough disk
space is available. If using NFS mounts or Windows NT shares to share man
pages, and so on, SIS will track all file packs going to the same physical disk.

For SIS to be able to perform the prerequisite checks, the AS/400
account (specified in the ADD MACHINE dialog for the GUI or userid in
the response file) must have authority to issue the RSTOBJ command.

Note

You can add user defined prerequisites as you need through the SIS
GUI.

Note
Tivoli Software Installation Service 99

The amount of necessary disk space will be calculated based on the size of
the file pack not the file pack multiplied by the number of machines sharing
that physical drive.

For example, to install an endpoint for a AIX, locate the line containing the
correct interpreter type aix4-r1 in Figure 23. The correct line is
TME10_ENDPOINTS_4.1:fp:BIN2:aix4-r1::1891:2. The next to last field for this entry is
1891. This number is in KB. So, the amount of disk space necessary for an
AIX endpoint is roughly 1.84MB.

Figure 23. Example of ‘fp” Line in .IND File

Another way to obtain the amount of disk space is to run an image_report. You
will need to have the path to the directory that contains the .IND file, the
name of the .IND file, and either the interpreter type or you can product a
report with all interpreter types.

The syntax of image_report is shown in Figure 24:

Figure 24. Usage of the image_report Command

Figure 25 on page 101 shows one example of the image_report command.

TME10_ENDPOINTS_4.1:fp:BIN2:solaris2::2589:1
TME10_ENDPOINTS_4.1:fp:BIN2:aix4-r1::1891:2
TME10_ENDPOINTS_4.1:fp:BIN2:hpux10::2006:3
TME10_ENDPOINTS_4.1:fp:BIN2:w32-ix86::1916:4
TME10_ENDPOINTS_4.1:fp:BIN2:sunos4::372:5
TME10_ENDPOINTS_4.1:fp:BIN2:windows::856:6
TME10_ENDPOINTS_4.1:fp:BIN2:win95::839:7
TME10_ENDPOINTS_4.1:fp:BIN2:nt::1913:8
TME10_ENDPOINTS_4.1:fp:BIN2:nw3::3171:9
TME10_ENDPOINTS_4.1:fp:BIN2:nw4::3223:10
TME10_ENDPOINTS_4.1:fp:BIN2:os2::738:11
TME10_ENDPOINTS_4.1:fp:BIN2:netware::738:12

Usage: image_report [-a regex] [-c cdrom-dir] [-f] [product [product-2] ...]
 -a only report on media packets architectures that match the given regex.
 for example, to select the sunos4 specific packets, pass:
 -a ’(sunos4)|(generic)’
 -c cdrom image directory [defaults to the current working directory]
 -f give full listing of the contents of each media packet

 the product list is a list of the install index names and does not need
 the .IND extention. If no products are given on the command line, all
 install indexes found in the cdrom image directory are listed.
100 Tivoli Enterprise Internals and Problem Determination

Figure 25. Sample image_report - ep.IND

The sample of the image_report in Figure 25 shows all operating
system/interpreter sizes for the ep.IND file. This method can be used if you
are unsure of the correct interpreter. However, in long listings, it may be more
preferable to specify the interpreter type. In the example in Figure 26 on page
102, the image_report was specifically requested for generic and aix4-r1. The
generic interpreter type files will always be delivered regardless of the
operating system type. This is why you cannot deselect this operating system
type when importing through the GUI.

$BINDIR/TAS/INSTALL/image_report -c
/var/spool/Tivoli/IR/Frameork/TME10_ENDPOINTS_4.1 ep

 Installation Media Report
 TME 10 Endpoints (v4.1)
 /var/spool/Tivoli/IR/Framework/TME10_ENDPOINTS_4.1
 TME10_ENDPOINTS_4.1 Pa Platform Size Compress Ratio Date Built
 File (Install check file) (MB) Size
 ==
 binaries solaris2 2.59 0.22 11.85 11/17 17:02
 FILE1.PKT ()
 binaries nw4 3.22 0.55 5.83 11/17 17:02
 FILE10.PKT ()
 binaries os2 0.74 0.24 3.12 11/17 17:02
 FILE11.PKT ()
 binaries netware 0.74 0.00 738000 11/17 17:02
 FILE12.PKT ()
 binaries aix4-r1 1.89 0.32 5.87 11/17 17:02
 FILE2.PKT ()
 binaries hpux10 2.01 0.29 6.90 11/17 17:02
 FILE3.PKT ()
 binaries w32-ix86 1.92 0.57 3.34 11/17 17:02
 FILE4.PKT ()
 binaries sunos4 0.37 0.22 1.73 11/17 17:02
 FILE5.PKT ()
 binaries windows 0.86 0.49 1.74 11/17 17:02
 FILE6.PKT ()
 binaries win95 0.84 0.52 1.62 11/17 17:02
 FILE7.PKT ()
 binaries nt 1.91 0.57 3.35 11/17 17:02
 FILE8.PKT ()
 binaries nw3 3.17 0.54 5.86 11/17 17:02
 FILE9.PKT ()
 --
 Product total 20.25 4.53 4.5
Tivoli Software Installation Service 101

Figure 26. Sample image_report - Specific Interpreter Types

4.3.5.3 File Package pushed
This is when the products are actually distributed to the node. All the file
packages and after scripts are performed in this portion.

4.3.5.4 Managed Node and Endpoint Install Considerations
Related to the previous discussion are the following notes about using SIS to
create managed nodes and TMA endpoints.

SIS install of a managed node
The first NT managed node in the TMR must have TRIP installed. SIS can not
automatically install TRIP to the first NT managed node.

There are three installation options in SIS:

 • Run Prerequisites & Probe Only - This will run the prerequisites and disk
space checks, no installation occurs.

 • Install to Machines independently - This means that installation will not
wait to optimize a file package push. This will maximize network traffic
since this algorithm does not attempt to combine MDist pushes.

 • Install to Machines Maximizing Network Bandwidth - This will take full
advantage of MDist repeaters.

$BINDIR/TAS/INSTALL/image_report -c /var/spool/Tivoli/IR/Framework/TME_ENDPOINTS_4.1
-a ’(aix4-r1)|(generic)’ ep

 Installation Media Report
 TME 10 Endpoints (v4.1)
 /var/spool/Tivoli/IR/Framework/TME10_ENDPOINTS_4.1
 TME10_ENDPOINTS_4.1 Pa Platform Size Compress Ratio Date Built
 File (Install check file) (MB) Size
 ==
 binaries aix4-r1 1.89 0.32 5.87 11/17 17:02
 FILE2.PKT ()
 --
 Product total 1.89 0.32 5.9

The two main differences between SIS and the traditional installation
method are:

 • SIS adds Prerequisite and disk space checks.

 • SIS can install products in parallel.

Note
102 Tivoli Enterprise Internals and Problem Determination

It’s recommended that you run a prerequisite and probe check before the
installation to make sure that all prerequisites are met.

SIS install of a TMA endpoint
When using SIS to create a TMA endpoint, you can specify the gateway
where this endpoint will log in. During installation, it will attempt to log into the
gateway you defined. If the gateway is not available, you will get an
installation failure message.

In this instance, even though you got an error message, the TMA endpoint
installation is already finished. The next time you restart the endpoint, and if
the gateway you defined is available, it will then log into the gateway
successfully.

If you Synchronize with the TMR, all machines that are TMA endpoints will be
deleted from the IR. You have to check your endpoint information from the
Tivoli Desktop, gateway Manager.

4.3.6 Tuning SIS
SIS can be used to install Tivoli products or patches for hundreds of
machines at the same time by both GUI or CLI. But in a production
environment, be careful of the number of machines that you want to install at
any one time for the following reasons:

 • The number of machines that can have files installed on them at the same
time is defined in the $DBDIR/sis.ini, as DISPATCHTHREADS=20. 20 is
the default number. It’s recommended that you do not change this value
unless the application is encountering resource problems. If SIS is
consuming too much system resources, adjust the number of
DISPATCHTHREADS downward. For more information about sis.ini,
please refer to the Tivoli Software Installation Service User’s Guide.

 • SIS will open a thread for each machine that you install for parallel
installation; so, it will need a lot of system resource if you want to install
products on many machines at the same time. It may be necessary to
modify the system-specific process configuration.

When you export the Response File, you will need to select one of these
install options. If you choose Install, it will not check the disk space again.
So, please make sure there is enough disk space for products.

Note
Tivoli Software Installation Service 103

 • SIS will keep detailed log files for everything it does. So you will get many
log files if you install products on many machines. Performing installations
in smaller batches helps to manage the task of reviewing log files in the
case of a problem.

4.3.6.1 Unsuccessful Install
If something happens during an installation, such as the network going down,
SIS will not register the products unless the installation completed before the
connection failed. If the installation is broken during the transfer of files, such
as BIN or LIB files, you can just reinstall and select to overwrite the files. If it
is broken at the update to Tivoli database files, it is likely that you will need to
restore Tivoli backup files to get back the environment before your installation
started and then reinstall.

4.3.7 Synchronize SIS with TMR
SIS is separate from the Tivoli Framework; it needs to synchronize with the
TMR to make sure that all the information in the IR is up to date. If you are
using the Tivoli traditional installation method to install some products after
installing SIS, synchronize with the TMR to update your IR. You will also need
to synchronize with the TMR if you delete a managed node.

There are two options for synchronizing:

 • Auto Synchronize with TMR

SIS will auto-synchronize with the TMR at startup if
$IR/TMR/Defaults/miniprod.sav or minitmr.sav does not exist. If
miniprod.sav does not exist, SIS will first rebuild the products information,
then synchronize with the TMR, even if the minitmr.sav file exists. If only
minitmr.sav does not exist, SIS will first load the products information
according miniprod.sav, then will synchronize with the TMR to get node
information.

 • Manual Synchronize with TMR

You can select the Synch with TMR button in SIS desktop, as shown in
“SIS Desktop Dialog” on page 88, whenever you want to synchronize with
the TMR.

From the command line you can run
$BINDIR/../generic_unix/SIS/TMRSync.sh to synchronize the IR and the
TMR.
104 Tivoli Enterprise Internals and Problem Determination

4.3.7.1 What Happens during Synchronize with TMR
SIS will run TMRSync.sh to synchronize with the TMR, and will execute wlsinst
-av for information about what products are installed on what nodes, wlookup
for ProductInfo, PatchInfo, and the Installation objects.

TMRSync.sh will put the information in a temporary file $TMPDIR/TMRSync.out,
and SIS will parse this file and build the minitmr.sav and tmr.sav.

SIS will then copy the TMRSync.out to IR/log/iu-<date> directory and remove
the tmp file.

When SIS synchronizes with the TMR, all of the endpoints in your SIS
machine list will be lost since SIS will not keep any endpoint information.

4.4 Troubleshooting SIS

This section describes actions you can take if you encounter problems while
using SIS.

4.4.1 SIS Log Files
SIS creates log files for each SIS session. The following table documents the
log files available from SIS:

Source File Name and Location

SIS product installation ‘wtemp‘/tivoli.cinstall

Uninstall of SIS ‘wtemp‘/wuninst.log

If there are hundreds or thousands of machines in your TMR,
synchronizing SIS with the TMR may take half an hour or more to
complete. In order to not execute TMRSync.sh during SIS startup, it’s
recommended that you backup miniprod.sav, minitmr.sav, tmr.sav files and
check them before you start SIS. SIS will not execute the TMRSync.sh to
synchronize with the TMR if it can find these files when it starts.

It is better to use one install method in your TMR. If you use SIS for Tivoli
installs, try to keep using SIS. Otherwise, if you change back to traditional
install, and then want to use SIS again, you will have to synchronize SIS
with the TMR.

Note
Tivoli Software Installation Service 105

4.4.2 Troubleshooting SIS Desktop Launches
If there are some errors starting the SIS desktop, check the following:

 • If you can not get the Software Installation Service... menu in the Tivoli
desktop after SIS install, make sure to exit all desktops and re-start the

Synchronization of TMR * $IR/TMRSync.out-<date>-<time>

sisclean $DBDIR/tmp/sisclean.log

Importing products into the IR * $IR/iu-<date>-<time>/<product
name>.IND-<date2>-<time2>

Installing products on targets * $IR/iu-<date>-<time>/<target
name>-<date2>-<target2>.html

Stdout and stderr information from SIS sis-<hostname>.out
Hostname is the hostname from which SIS
is executed.

Stdout and stderr information from the
wimport command

wimport-<hostname>.out
Hostname is the node from which the
wimport command is issued.

Stdout and stderr information from the
wsis command.

wsis-<hostname>.out
Hostname is the node from which wsis
command is issued.

Import response file information * $IR/iu-<date>-<time>/rf-<date2>-<target2
>.html

Initialization of SIS * $IR/iu-<date>-<time>/tmrInitLog.html

Detailed results of pushing each file
package per product per target machine *

$IR/iu-<date>-<time>/<target>/<product>
/FILEXX.PKT.log

* When SIS uses the IR in non-shared mode, these log files reside in $IR/log. In shared
mode, these files reside in $IR/TMR/<region number>/log.

The date and time stamp on the directory structure iu-<date>-<time> is the
date and time the SIS session was started.

The date2 and time2 stamps are the date and time stamp of when the action
occurred, that is, when the product was installed.

Most of the log formats are in HTML format. To view these logs, you can select the View
Log button or use any Web browser.

Source File Name and Location
106 Tivoli Enterprise Internals and Problem Determination

Tivoli desktop. In some cases, it may be necessary to re-cycle the oserv
for the menu item to appear to ensure the desktop cache is cleared.

 • Make sure your X server grants permission for the SIS X client to display.
xhost + <hostname> must be performed even if SIS X client is running local
to the X server. Figure 27 is an example of an sis-<hostname>.out in this
situation.

Figure 27. Example of sis-<hostname>.out - xhost Error

 • Make sure the /etc/Tivoli directory on SIS server contains the correct Tivoli
environment.

 • If there still are problems when launching from a Tivoli desktop, start SIS
directly from the command line using sisgui. If SIS still does not start, try
re-booting the machine or re-install SIS.

 • If the SIS starts correctly from the command line, but not from the Tivoli
desktop, use launch_sis, sisgui and sisguisub.sh with the “-x” debug flag
and re-direct stderr to a file. The debug output should help determine the
cause of the problem.

4.4.3 Troubleshooting SIS Startup
If you have problems during the startup of SIS, check the following:

 • Check the $IR/sis-<node>.out file and $IR/log/iu-<date>/sis-<date>.html
files for error messages.

 • If you are using a shared repository, make sure you can create a file in the
IR directory. If SIS does not have write access to the IR directory, SIS will
not start.

 • If the IR load fails, delete the IR/TMR/miniprod.sav and restart SIS. This
will rebuild the miniprod.sav. If the repository load continues to fail, the IR

Xlib: connection to "hptmp9:0.0" refused by server

Xlib: Client is not authorized to connect to Server

SIGSEGV 11* segmentation violation
location=7B03D530.
stackbase=7B03AE84, stackpointer=7B03D438
.
.
.

Tivoli Software Installation Service 107

may be corrupted. If this is the case, you should re-install SIS and create a
new IR.

 • If the TMR Synchronization fails or does not contain the correct
information, delete the $IR/TMR/minitmr.sav files. This will cause the
minitmr.sav to be rebuilt during when SIS starts. If the TMR
Synchronization fails, run the $BINDIR/../generic_unix/SIS/TMRSync.sh
script manually and check $TMP/TMRSync.out file.

 • As a general rule, if SIS does not start correctly, delete the
$IR/TMR/miniprod.sav and $IR/TMR/minitmr.sav and re-start SIS.

4.4.4 Troubleshooting SIS Locks
As discussed in 4.3.1, “Starting the SIS Graphical User Interface” on page 87,
locks are created during the SIS initialization. When SIS is closed, these
locks are deleted. The following will detail information concerning
troubleshooting SIS locks and lock messages.

If you are sharing an IR, you will see the warning message that SIS had an
error loading repository products and is rebuilding, as in Figure 28. You will
also see this screen if you deleted the miniprod.sav file. For shared IRs, you
will not be destroying any existing information for any other TMRs or
managed nodes using the shared IR.

Figure 28. SIS Warning on First Initialization of a Shared IR

The warning in Figure 29 on page 109 is displayed if another TMR or
managed node is already using the IR. Remember, the first TMR or managed

For SIS 1.0, it is the $IR/product.sav

Note

For SIS 1.0, it is IR/tmr.sav and IR/TMRSync.out

Note
108 Tivoli Enterprise Internals and Problem Determination

node that has the Shared IR type will establish the IR lock. From here, you
can use the IR in ReadOnly mode, that is, you will not be able to import
products, change global defaults of products, or change shared prerequisites.

Figure 29. SIS IR Read-Only Mode Warning

If you do not have write access to the IR, you will receive the warning
message in Figure 30. If this warning is in error, check the type of IR you are
using and make sure you can create a file in the IR directory.

Figure 30. SIS Shared IR - No Write Access

When you are using a shared IR, an IR lock is created by the first TMR or
managed node that accesses the IR with a Shared IR type. Subsequent
TMRs or managed nodes that access that IR in Shared IR type will see the
warning message as in Figure 31 on page 110. If you are sure that the node
is not running SIS, you can select the Delete Lock button and continue. If
not, you can select the Exit button. At this point, you can either wait for the
node to complete the SIS installation, or you may place the IR type into
ReadOnly.
Tivoli Software Installation Service 109

Figure 31. SIS Shared IR Type Warning

If there is a problem with the IR lock, you can delete the lock file ir.lck from
the $IR and $IR/TMR/Defaults directories. If there is a problem with the
usage lock, you can delete the usage lock ULOCK from the
$IR/TMR/Defaults directory. And if there is a problem with the TMR lock, you
will need to remove it with the wregister -u SIS <nodename> command.

4.4.5 Troubleshooting SIS Usage
SIS keeps the detailed information in the log files. These log files are
extremely useful when trying to troubleshoot SIS.

If there are problems when installing products, check the disk space of your
file systems. SIS has an installation progress window that will show the error
message received if there is not enough disk space available. The amount of
disk space necessary is located in the appropriate file packet for the product.
See 4.3.5.2, “Disk Space Probe” on page 99 for how to determine the amount
of necessary disk space.

When you are using SIS, especially on a Windows NT machine, you may run
into an Mdist problem. This error will occur if there is not enough swap space.
Extend the swap space and try again. Below is one example of Mdist error:

STDOUT:-----
{ 1 { 2010427741.3.7 "wgres1" } } -1

STDERR:-----
110 Tivoli Enterprise Internals and Problem Determination

IdlSystemExec:idlParse() Token does not start with a single quote: {
Token number 2

FATAL: Appending MDist error file ...
File Package:
"/IR/Products/RC_CTL_M-3.6-TME_10_Remote_Control_Controller_3.6__
Managed_Nodes_/FILE61.PKT"
Operation: install (m=5)
Finished: Tue Nov 16 17:38:22 1998

When you delete one managed Node from your TMR server and synchronize
your SIS node with TMR database, if you find the information about the node
is still there, it is because the Tivoli object database on the TMR server is not
correct. Execute the wchkdb -u command to clean up your TMR database.

4.4.6 Important SIS Files and Executables
Listed below is a summary of the some important SIS directories and files:

$DBDIR/ir.loc This file specifies the location of the Install Repository. This is
a text file and can be edited. You can edit this file BEFORE
THE FIRST INVOCATION of SIS, and SIS will read this file
and establish the location of the IR. However, if the location of
the IR needs to be changed after the initial invocation of SIS,
you will need to edit this file and then execute
$BINDIR/../generic_unix/SIS/PointIR.

IR directory All of the IR files are located in the directory you specified for
IR during SIS Installation.

$BINDIR/../generic_unix/SIS/ contains the following files:

BUILD.TXT This file contains the build version of SIS. It can be used to
determine what version of SIS you are using.

FindIR This script is used to determine the location of the Install
Repository.

PointIR This script is used to update the location of the Install
Repository after the first invocation of SIS.

TMRSync.sh This script is used to synchronize SIS with TMR.

If the $DBDIR/ir.loc file has been deleted, this file can be recovered with:

$BINDIR/../generic_unix/SIS/FindIR > $DBDIR/ir.loc

Note
Tivoli Software Installation Service 111

launch_sis This script is called by the desktop to launch SIS.
112 Tivoli Enterprise Internals and Problem Determination

Chapter 5. Tivoli Object Database Backup

Tivoli keeps all its management data and resource definitions in a distributed
database. The TMR server’s database contains all the objects from the whole
TMR. Each managed node keeps a subset related to itself. These databases
must be backed up on a regular basis. The backup should be done not just at
scheduled regular intervals but before and after a big change, such as a
product installation.

You can backup the database for one or several clients and the TMR server
or all of the TMR from either the command line or the desktop. Make this
backup immediately or schedule a regular backup operation.

There are two methods for restoring a database. The first is the standard
method to use if a system is otherwise operational (and the oserv is running).
The second is referred to as a rescue operation and is used if the oserv
cannot be started.

5.1 The Tivoli Backup Process

Tivoli’s main management database resides on the TMR server, and there
are local databases on each managed node (PC managed nodes do not have
databases). If these databases become lost or corrupted, Tivoli will lose track
of resources being managed and the applications being used to manage
them. Therefore, backups should be performed often while developing the
Tivoli environment and regularly once Tivoli is deployed.

Backups are performed on the TMR server and client database files. Because
the Tivoli Object Dispatcher (oserv) can be writing to the Tivoli database at
any time, the built-in backup mechanism should be used instead of a simple
tar or cpio file. This mechanism uses a snapshot process to capture the data
while it is stable to prevent the loss of data.

It is recommended that you shut down the oserv (for example with odadmin
shutdown) if you need to do a tar or cpio backup.

The Tivoli backup process provides an easy way to ensure all machines are
located and backed up to a single location.

Tivoli does not store data on a TMA endpoint. Therefore, the backup
mechanism discussed in this chapter only applies to managed nodes.

Note
© Copyright IBM Corp. 1998, 1999 113

5.2 The Backup Process

Like the rest of Tivoli, the backup process is an object-oriented process. At
managed node install time, a backup object is created in the Tivoli Object
Database for each managed node. You can view a list of backup objects
using the following command:

wls -o /Library/BackupClient

Note that if a backup object was not created for a managed node install, this
could indicate that the install did not complete correctly (see Section 5.6.3,
“Database Cannot Be Backed Up” on page 125).

5.2.1 Before Starting Tivoli Backups
Besides scheduling, there are two ways to initiate the Tivoli management
database backup:

 • Tivoli Desktop

 • Command line

It is advisable to periodically check the consistency of the database before
performing a backup. Tivoli provide the wchkdb command for this purpose. The
normal invocation would be with the -u flag. For more information on wchkdb
see the on-line manual page or the Tivoli Framework Reference Manual.

Backups should be performed immediately before and immediately after
a product installation or major maintenance procedure, such as the
creation of numerous managed nodes. These backups should be kept on
a separate tape and in a secure place for the life of the system. The
backup could be the only way to rescue a management machine in some
circumstances.

Important
114 Tivoli Enterprise Internals and Problem Determination

5.2.2 Backup Roles and Access Rights
There are a number of security features used in the backup process. You
need to check the following:

 • You must have the backup or super role in the TMR to create a backup
and the restore or super role in the TMR to perform a restore.

 • The Administrator also requires a valid user login name and a group name
for the machine in which the backup file will be stored.

To change the user login name and group name, open the Administrators
window, right-click the administrator icon and select Edit Properties....
Be sure you have the desired IDs and then restart the Tivoli Desktop if a
change was made. These changes must be done from the Tivoli Desktop
because there is no command for this action.

 • The ID used will need write permissions for the directory that will contain
the backup file.

The following is a list of ways to ensure correct access:

 • Create a new backup group of all administrators who will perform backups
and assign ownership of the backup directory to that new group.

 • Change the permissions on the backup directory to allow anyone to write
to the directory. (This is not recommended as a permanent solution).

 • Create a task for administrators with the backup role that runs as root and
performs the wbkupdb command.

 • Schedule the backups as the root administrator and let Tivoli perform the
work.

 • Change the user login name and group name to a valid one that has
enough permissions to make the backup. The steps to change the user

A wchkdb of a large TMR (say 200 managed nodes) can take as much as 30
hours depending on the complexity of the database. This makes it
impractical to run a wchkdb at every backup or impossible if you make a
daily backup. An alternative is to use the wchknode command that performs
a simple check on a range of object dispatcher numbers you provide. The
wchknode command is not as comprehensive as wchkdb. wchkdb, which will
verify the integrity of the structure of all the objects in the database. The
wchknode command simply checks that all objects respond to an objcall to
get their label.

Note
Tivoli Object Database Backup 115

login name and group name of a administrator are explained in “Backup
Roles and Access Rights” on page 115.

5.2.3 Running Backup from the Tivoli Desktop
Use the following steps to back up one or more machines in the TMR:

1. Place the TMR in maintenance mode. Note that this completely stops any
other systems from communicating to the TMR server’s oserv.

2. Select Backup... from the Desktop menu to display the Backup Tivoli
Management Region dialog.

Be careful when writing backups to an NFS file system. You must
consider the implications of using root on NFS file systems.

Important

Under most circumstances, putting the Tivoli oserv in maintenance
mode will not affect day-to-day business operations in a live
environment unless, for example, the oserv is a central system used for
all event reporting. It has no effect on other applications in a system.
The stop will simply make Tivoli management of that system wait until
the oserv is taken out of maintenance mode. Certain independent
processes, such as monitors will still run.

Remember
116 Tivoli Enterprise Internals and Problem Determination

Figure 32. Backup Tivoli Management Region Dialog

3. Select one or more managed nodes from the Available managed nodes
scrolling list and press the left arrow button. The chosen managed nodes
are moved from the Available managed nodes scrolling list to the Backup
these managed nodes scrolling list. You can select any combination of
clients and the TMR server to be backed up. If you wish to back up the
entire TMR, select all managed nodes listed in the Available managed
nodes scrolling list. This dialog also allows you to set the destination node
of the save image and the device and file name of the backup. The %t
shown includes the date in the file name.

4. Specify the machine on which the backup image or device is located in the
Save image on node field.

5. Specify the device or file name in which the backup is to be saved in the
Device/File field.

6. Press the Estimate Backup Size button. The Estimate Backup Size
dialog is displayed.

7. Assuming the estimated size can be adequately handled, press Close to
return to the Backup Tivoli Management Region dialog. See Section 5.2.6,
“Temporary Backup File Considerations” on page 120 for more information
on space requirements during backup.
Tivoli Object Database Backup 117

8. Press Start Backup to begin an immediate back up of the selected
managed nodes. The Backup Status dialog is displayed, and the backup
operation begins. You can also press Schedule Backup... to schedule a
backup for a later time.

9. Press the Close button when the backup operation completes. The
Backup Status dialog is closed, and you return to the Backup Tivoli
Management Region dialog.

10.Repeat steps 2 through 9 to backup another set of managed nodes in the
local TMR or press Close to close the Backup Tivoli Management Region
dialog and return to the Desktop window.

5.2.4 Running Backup from the Command Line
The wbkupdb command backs up and restores Tivoli databases. You can
provide a list of managed node names as arguments to the wbkupdb
command. We give a couple of examples here, but for more information, see
the on-line manual page for the wbkupdb command or the Tivoli Framework
Reference Manual.

5.2.4.1 Examples of the wbkupdb Command
The following example backs up the TME10 database for all managed nodes
in the TMR from which the wbkupdb was run. The backups are written to the
user-defined file /usr/backups/TMR1.bk.

% wbkupdb -d /usr/backups/TMR1.bk

The wbkupdb command calls a shell script. When the -d parameter is used
with the wbkupdb command, you must specify the path where the file will
be saved. In all cases, including the Windows NT DOS command
prompt, you must specify the character forward slash (/) and not the
backslash (\). If the backslash (\) is used the script will escape the
following character, and the path and file name will not be interpreted
correctly. You will see a message, such as freopen failed with code 13.

NT Users Note

The backup file will be created in the specified directory in the TMR server
unless you specify that the backup will be created in another managed
node. Use the -h option to specified the managed node in which the backup
file will be created.

Important
118 Tivoli Enterprise Internals and Problem Determination

The second example backs up the database of a single managed node,
rh0255a. In this example, a destination directory and file name are not
specified. The backup is, therefore, written to the directory containing the
Tivoli database directory under a subdirectory called backups. The
subdirectory is created if it did not exist when the wbkupdb command was run:

% wbkupdb rh0255a

5.2.5 Backup Process Behind the Scenes
The following steps are taken by the backup process during a database
backup:

1. The list of clients is generated if it was not passed through the backup
dialog or the wbkupdb command. This list can be generated outside of the
backup process using the command:

wls /Library/BackupClient

2. The list of files needing to be backed up is found for the server and for the
clients. These lists can be generated outside the backup process using
the following commands:

BIO=’wlookup -r Classes TMF_BackupImpl’
idlcall $BIO _get_server_files
idlcall $BIO _get_client_files

3. The backup host is contacted, and the backup file is created and opened.

4. A popup dialog stating that the backup process is beginning is displayed
on active desktops.

5. A transaction is begun.

6. For each managed node passed in through the dialog, command line, or
generated list, the backup process will do the following:

1. Determine if the managed node is the TMR server or a client.

2. Contact the managed node and start snapshot method passing in the
list of files to be backed up. The method executable is a shell script
called $BINDIR/TAS/BACKUP/snapshot.sh for UNIX or
%BINDIR%\TAS\BACKUP\snapshot for Windows NT.

3. The managed node synchronizes its database to write any outstanding
transactions.

4. Database files are tarred and compressed.

5. The database is synchronized a second time, and the files are tarred
and compressed and compared to the first snapshot. If they match, the
Tivoli Object Database Backup 119

backup process continues; otherwise, this step is repeated up to three
more times before failing.

7. Data is sent back to the server using an established IOM channel. See
Section 7.6.3, “Bulk Data Transfer and Inter-Object Messaging” on page
271 for more information about IOM.

8. The TMR server backs up its own database. By default, backups are put
into a directory called backups, one directory up from $DBDIR
($DBDIR/../backups), with a name that includes a time and date stamp.

9. The transaction ends.

10.A notice is logged and sent to a notice group.

11.If the backup process fails, then messages may be written to the
backupdb.log file.

5.2.6 Temporary Backup File Considerations
As you can see from the previous list of backup steps, when Tivoli performs a
backup, it creates two copies of the backup file to compare. If you backup
from the desktop, this compare file is written to the database directory. If you
run backup from the command line using the wbkupdb command, the compare
file is written to the current directory. In both cases, the directory in which the
file is written should have as much available disk space as the largest
compressed database. If the directory does not have enough space, you can
change the directory in which this file is created by setting a Tivoli oserv
environment variable. This is the TMPDIR environment variable on UNIX or
the TEMP or TMP environment variables on Windows NT Systems.

The following steps detail how to set the TMPDIR environment variable
specifically for the oserv. You can also use these steps to set the TEMP and
TMP variables by substituting TMPDIR with the appropriate variable name:

1. Retrieve the current environment settings and write them to a file using the
following command:

odadmin environ get > file_name

2. Append the new TMPDIR setting to the file you created:

echo “TMPDIR=/home/big_dir” >> file_name

3. Write the environment settings back to Tivoli using the following
command:

odadmin environ set < file_name

The temporary backup file is deleted when the backup procedure completes.
120 Tivoli Enterprise Internals and Problem Determination

5.3 The Restore Process

If a disk drive on a Tivoli client fails, or the file system that stores the
management information gets corrupted or is lost, the management data can
be recovered by restoring the TMR server and/or Tivoli clients from an earlier
backup. Tivoli usually reports irreparable damage to the object database
using messages, such as Persistent storage failure. When this happens,
there is usually little option but to revert to a backup of the database. You can
also use this process to restore the database after upgrading a client or the
server to a new version of the operating system.

You can restore one client, several clients, the TMR server, or the entire
TMR. Since the nature of a restore operation affects the underlying database
of a client or the server, you can only restore the data from the command line.

There is a distinction between a standard restore operation and a rescue
operation. A standard restore can take place when a managed node’s object
dispatcher is running. If the system is in such a state that even the oserv
cannot be started, then there is a rescue procedure to restore the database.

5.3.1 Restore Roles and Access Rights
You must have the restore or super role in the TMR to perform a restore. If
you are performing a rescue operation, you must be Administrator (NT) or
root (UNIX) on the machine where the crashed database is located.

5.3.2 Restore Example
The wbkupdb command not only backs up but also restores TME10 databases.
You can provide a list of managed node names as arguments to the wbkupdb
command. Here, we present an example of using wbkupdb to restore a system.
For further information see the on-line manual page for the wbkupdb command
or the Tivoli Framework Reference Manual.

The following command example restores a single managed node, rh0255a.
The backup file used to restore the managed node is /usr/backups/TMR1.bk.

As with the backup, the Administrator also requires a valid user login
name and a group name for the machine on which the backup file is
stored. They also needs read permissions for the directory that contains
the backup file. See also Section 5.2.2, “Backup Roles and Access
Rights” on page 115.

Note
Tivoli Object Database Backup 121

% wbkupdb -r -d /usr/backups/TMR1.bk rh0255a

5.4 Rescue Operation

If the object dispatcher that is to be restored is not running (and presumably
cannot be run because its database is corrupted or missing), you can extract
the database manually and put the files in the correct location in the database
directory. This process is known as a rescue operation. If you are performing
a rescue operation, you must be Administrator (NT) or root (UNIX) on the
machine where the crashed database is located. The following is an example
using csh of a rescue of a TMR server.

tar xvf /var/spool/Tivoli/backup.db shasta
x shasta, 1027749 bytes, 2008 tape blocks
uncompress -c <shasta | tar tvf -
rwxr-sr-x 0/0 0 Jun 18 13:53 1994 file_versions.restore/
rwxr-sr-x 0/0 0 Jun 17 12:17 1994
file_versions.restore/RCS/
rwxr-sr-x 0/0 0 Jun 17 12:17 1994
file_versions.restore/.staging/
rwxr-sr-x 0/0 0 Jun 17 12:17 1994
file_versions.restore/.staging/RCS/
rw------- 0/1 786432 Jun 23 17:15 1994 imdb.bdb.restore
rw------- 0/1 16384 Jun 23 17:42 1994 notice.bdb.restore
rw------- 0/0 0 Jun 23 17:42 1994 notice.log.restore
rw------- 0/14194304 Jun 23 17:39 1994 odb.bdb.restore
rw------- 0/0 0 Jun 23 17:41 1994 odb.log.restore
rw------- 0/0 726 Jun 23 16:15 1994 odlist.dat.restore

set olddir=’pwd’

cd $DBDIR ! %DBDIR% for Windows NT

uncompress -c < $olddir/shasta | tar xvf -

You cannot specify another machine in the wbkupdb command as a source
for the restore action, so you have to be logged into the machine that has
the backup file to make the restore from that file.

Note

For Windows NT, instead of using the uncompress -c command shown in
this example, use compress -cd .

Note
122 Tivoli Enterprise Internals and Problem Determination

set files=”imdb.bdb odb.bdb odb.log odlist.dat”

foreach fn (4s)
? mv $fn.restore $fn
? end

If you are rescuing a client rather than the TMR server, the set files= line
should be:

set files=”odb.adj odb.bdb odb.log”

If you need this process and do not have this great redbook handy, it is
documented in the on-line manual page for wbkupdb. You should make a point
of checking the main page for the release you intend to perform this operation
on as file names, or the number of files may change.

5.5 Items Not Restored from a Backup

During a backup, the wbkupdb command also saves any old versions of files
(file_versions) and the notification database (notice.bdb). Normally, these are
not restored since you probably do not want to read old notices that have
already been read. If you wish to restore the notices for some reason, such
as a problem with the current notices database, you can restore them using
the steps given in Figure 33. This example assumes the TMR server is called
odie . The commands must be run at the TMR server; notices are not held on
the managed nodes.

Figure 33. Restoring the Notices Database

cd $DBDIR/../backups
ls -l
total 4064
-rw-r--r-- 1 root root 20722064 Nov 26 10:32 DB_Nov26-1032
mkdir /tmp/work
cd /tmp/work
tar -xvf $DBDIR/../backups/DB_Nov26-1032 odie
mv odie odie.Z
olddir=‘pwd‘
cd $DBDIR
uncompress $olddir/odie
tar -xvf $olddir/odie notice.bdb.restore
tar -xvf $olddir/odie notice.log.restore
odadmin shutdown
mv notice.bdb.restore notice.bdb
mv notice.log.restore notice.log
odadmin start
Tivoli Object Database Backup 123

The file_versions directory is also not restored. If you want to see old
revisions of system files, the files can be moved from the file_versions.restore
directory as necessary.

5.6 Troubleshooting Backup and Restore Operations

This section describes the pitfalls you are likely to encounter during backup
and restore. Be sure to check for the backupdb.log file. If it has a non-zero file
size, then look at the file for error messages. Before we describe some
additional points, some of those we have already covered in this chapter can
be summarized as follows:

Authorization Such as incorrect role or rights to the backup directory.
See “Backup Roles and Access Rights” on page 115
and “Restore Roles and Access Rights” on page 121 for
more information.

Temporary File Tivoli uses a temporary backup file as a staging site
while it copies the databases. For more information, see
“Temporary Backup File Considerations” on page 120.

Windows NT Use a forward slash for the -d parameter even when
using Windows NT. See Section 5.2.4, “Running Backup
from the Command Line” on page 118 for details.

Backup Location The backup will always go to the TMR server unless you
specify otherwise. See Section 5.2.4.1, “Examples of
the wbkupdb Command” on page 118 regarding the -h
flag.

Notices Notices are not normally restored. See Section 5.5,
“Items Not Restored from a Backup” on page 123 for
more information on a manual restore process.

In a Windows NT environment, use compress -d instead of the uncompress
command shown.

Note

The snapshot script can be edited with echo statements inserted to help
identify where in the process a problem is occurring.

Troubleshooting Tip
124 Tivoli Enterprise Internals and Problem Determination

5.6.1 Restore with -r and - r -R Options
Restoring through wbkupdb with the -r option causes the oserv to be
re-executed once the restore is complete. The object dispatcher will then use
the changes.

Restoring with -r -R copies the backup files (*.restore) to the database
directory without restarting the oserv. The changes will be picked up at the
next oserv start or restart.

5.6.2 Changing the Default Backup Directory
The default backup directory does not get changed if the database directory
changes. The backup process does not use the DBDIR environment variable.
Use the following commands if you must change the default back up directory
or need to view what the system thinks it is:

Figure 34. Changing the Default Backup Directory

Other interesting methods in the backup class object include
_get_default_host, which is the host that will be backed up if none are
specified, and _get_server_files and _get_client_files that are the files to be
backed up.

5.6.3 Database Cannot Be Backed Up
There may be occasions when Tivoli will refuse to backup the database. This
could have been caused by an incomplete installation that was not identified
as such. To identify this cause, use the following commands:

wlookup -ar ManagedNode -n rh0255a

where rh0255a is the name of the machine in question.

A fully installed managed node will look something like this:

TaskExecute 1264987995.2.9#TMF_ManagedNodesureTaskExecute#
BackupClient 1264987995.2.13#TMF_Backup::Client#
imp_TMF_UI::DesktopList 1264987995.2.15#TMF_UI::DesktopList#
imp_TMF_UI::Extd_DesktopList 1264987995.2.28#TMF_UI::Extd_DesktopList#

If you are missing any of these entries, such as the BackupClient object, there
is a potential that the Tivoli client was not fully installed and will need to be

wlookup TMRBackup !find backup class OID
1264987995.1.351#TMF_SysAdmin::InstanceManager#
idlcall 1264987995.1.351 _get_default_device !use idlcall to get clean output
“/var/spool/Tivoli/backups/DB_%t”#
idlcall 1264987995.1.351 _set_default_device ‘”/usr/local/backup/DB_%t”’
Tivoli Object Database Backup 125

removed and reinstalled. Note that since release 3.6.1, the backup process
will automatically skip any clients that do not have backup objects.

5.6.4 Malformed ASCII Exception
Sometimes the database is too busy to be backed up. This is often
characterized by the following error:

Error - Unknown internal error: shell method wrote malformed ASCII exception

This comes from the snapshot program and indicates that the database is
being updated too frequently to tar off the database before it changes. An
error message stating that the system is too busy also may display.

To resolve this message, you must either put the TMR in maintenance mode
to make the backup or try to wait until the TMR server is not so busy.

5.6.5 IOM Route Time-Outs
Clients send their backup files to the server through an Inter-Object
Messaging (IOM) channel. The clients must be able to contact the server by
the IP address used to install the server. If the server does not get a response
from the client, it will generate an IOM time-out error. This is a communication
error. One common example is if the IP address of the TMR server has been
changed. Be sure that there is communication between server and clients (for
example, using ping by both name and address) and that you have followed
the steps of changing the IP address in the TMR server. These steps are
described in the Tivoli Framework Planning and Installation Guide in the
chapter “Tivoli Maintenance and Troubleshooting.”

5.6.6 Identifying Managed Nodes
The backup file is a tar file of compressed tar files. Sometimes you need to
know what machines are in a backup file. To do this, you need to use the tar
command with the -t option as in the following example:

The above example shows what you would see for TMP 3.0, 3.1.1, and
3.1.2 but not TMP 3.2. You can apply the same method to see if a
managed node was not completely installed. Compare the output of the
wlookup between one node that does backup and another that does not.

Important
126 Tivoli Enterprise Internals and Problem Determination

Figure 35. Using tar to Display the Machines in the Backup

If you want to check that all managed nodes have a backup object and will,
therefore, be available for backups, you can use the following command to
display a list of backup objects:

wls -o /Library/BackupClient

An example of this command is shown in the following figure:

Figure 36. Displaying Backup Objects for all the Managed Nodes

Note that the label for the backup object for the TMR server is unlikely to
reflect the true name of the server. The name shown will be the name that
was in the default database that gets used at install time to build the server
database. For Windows NT, for example, the name will be gator, and for
certain UNIX interpreters the name would be stout. Ordinarily, the backup
object label is not exported to the user.

5.6.7 Implications of Using an Old Backup
Data would generally be restored from the most recent backup. Reverting to
earlier backups could introduce new problems. This is demonstrated in the
following example:

Suppose that you have two machines, a TMR server and a managed node,
and you have three backups taken for these machines. The first was taken
before the managed node install; the second was taken when the managed
node was installed; and the third has both machines after an installation of an
application (such as Tivoli Distributed Monitoring). The environment is shown
in Figure 37 on page 128:

tar -tvf $DBDIR/../backups/DB_Oct20-1609
-rw------- 0 3 2207243 Oct 20 11:09:44 1997 rh0255b.itsc.ibm.com
-rw------- 0 3 15256 Oct 20 11:09:51 1997 rh0255a

wls -o /Library/BackupClient
1264987995.1.350#TMF_Backup::Client# stout.tivoli.com
1264987995.2.13#TMF_Backup::Client# rh0255a
Tivoli Object Database Backup 127

Figure 37. Example of Problem When Using Old Backups

If you restore Backup 1 (which applies to the TMR server only), the managed
node does not exist in the backup; so, the TMR server database will no longer
contain any record of it even though the managed node has Tivoli installed
and running. If, after this, you restore Backup 2, it will only restore the server
pieces because the managed node is not an object in the TMR server’s
database, and the TMR cannot find it even though it exists in the backup.
After this, you could experience some strange behavior.

The machines can communicate with each other, but the managed node
believes that TME10 Distributed Monitor is installed, but the TMR server does
not have it installed after restoring Backup 2. Now, if you try to open the Tivoli
Desktop on the managed node, an error occurs because it will try to find
TME10 Distributed Monitor objects that are not defined in the TMR server.

To correct this problem, you have to restore Backup 2 a second time. Now,
the TMR server has the object (managed node) defined from the previous
restore of Backup 2, and it can send the Backup 2 restore to the managed
node, and the TME10 Distributed Monitor objects will disappear.

This situation should only arise if there was a problem restoring from your last
backup. Otherwise, in this example you would have used Backup 3 from the
beginning.

Remember that a restore will restore the entire database and that managed
node’s memory of objects. Another potential problem would arise if a Tivoli

TMR Server
Managed Node

Backup 1
Backup 2

Backup 3
Tivoli Distributed Monitoring Installed

Backup 1: TMR Server Installed
Backup 2: TMR Server with Managed Node Added
Backup 3: TMR Server and Managed Node with Distributed Monitoring Added
128 Tivoli Enterprise Internals and Problem Determination

managed node was reinstalled since the last backup. If it were a complete
reinstall, the object dispatcher number (the second part of the OID) would be
a new number. To register the reinstalled node with the TMR server, the old
version would first have to be removed. If the managed node was now
restored from an old backup, the dispatcher number would revert to the old
one, and the TMR server would no longer recognize it. The solution to this
problem would be to have reliable backups taken following the reinstall of the
managed node.
Tivoli Object Database Backup 129

130 Tivoli Enterprise Internals and Problem Determination

Chapter 6. Commands and Logs for Troubleshooting

When you are troubleshooting problems with Tivoli, there are a number of
important commands that will help you. The three you will most commonly
use for techniques described in this book are:

odstat Lists currently-running methods and method histories.
odadmin Lists the managed nodes in a TMR and configures different

aspects of how the Tivoli object dispatcher (oserv)
communicates, such as defining IP addresses and
interconnected regions.

wtrace Formats the odtrace.log, which is created when tracing objcalls,
services or errors (tracing is invoked with odadmin trace options).

Tivoli performs logging by default during installations in the following
locations:

 • /tmp on UNIX
 • %DBDIR%\tmp on Windows NT or OS/2

Additional logs can be found in the database directory that is locatable
through the following variable names:

 • $DBDIR on UNIX
 • %DBDIR% on Windows NT or OS/2

The database directory contains other files that can be used as debugging
tools:

epmgrlog The endpoint manager log.
gatelog The gateway log.
odb.log The Tivoli database transaction log.
notice.log The Tivoli notice database transaction log.
gwdb.log The Tivoli gateway database transaction log.
oservlog The error log of the Object Dispatcher (oserv).
odtrace.log The file that the wtrace command reads and translates.

On a TMA endpoint, there is also a log file in the /lcf/dat/xx path.

lcfd.log The endpoint log.

In some cases, you may need to get into the more complex area of direct
manipulation of the Tivoli object database. You can hand-run methods,
identify method source files, and so on.
© Copyright IBM Corp. 1998, 1999 131

Chapter 2, “Tivoli Object Database Architecture” on page 9 describes the
object hierarchy in some detail and gives examples of using the following
commands that are also briefly described in this chapter in “Other
Commands” on page 182:

objcall Performs a Tivoli object call (non-IDL) from the command line.
idlcall Performs a Tivoli Extended IDL call from the command line.
idlattr Gets or sets object implementation attributes.
irview Views all method and attribute names and details for a resource.

We also give an example in this chapter of a command used to review
transaction status:

tmstat Displays the status of current transactions and locks.

The full syntax of these commands is given in the Tivoli Framework
Reference Manual.

Another command sometimes used is resolve. This command finds the OID
of an object that contains a given method or attribute. We are not covering
this command as it is not a fully supported Tivoli command, does not appear
in all platforms, and the same function can be achieved with the resolve
method - an example of which is shown in Chapter 2, “Tivoli Object Database
Architecture” on page 9.

6.1 The odstat Command

This command displays the history of methods executed on the node it is run
on. The listing will include the last 200 methods run since the oserv was
started including those that are currently running. The output is in the order of
currently running first then the history of completed methods starting with the
oldest. All of the data contained within an odstat output can be retrieved from

Most activities described in this book do not involve changes to the object
database. However, direct object invocations, IDL calls, and attribute
changes in the Tivoli object database have the potential to cause
unpredictable results and possibly the complete failure of your TMR.
Recovery, if at all possible, would usually involve at least a restore of the
object database. Tivoli support personnel are not able to assist in rectifying
such changes. We recommend you backup your object database before
performing any direct manipulation, test changes first on an isolated test
TMR, and keep a log of every action performed.

 Important
132 Tivoli Enterprise Internals and Problem Determination

the output of wtrace. However, using odstat is a much friendlier way to view
this data. You would use the wtrace output once you understood what was
going on through odstat. A typical output using default parameters looks like
Figure 38:

Figure 38. Typical odstat Output

You can see the two sections: The first containing active methods, and the
second with a history of completed methods.

In the example in Figure 38, the first four lines are the method threads that
are running. You can see that the threads are:

 • Scheduler:

2 O+bhdoq run 0 0 Wed13:58 1264987995.1.158#TMF_Scheduler::scheduler# start

 • Desktop:

29 O+hdoqs run 0 0 10:25:05 1264987995.1.478#TMF_UI::Extd_Desktop# uiserver
32 O+hdoq 1-29 run 0 0 10:25:10

_active = 5 n_free = 195
tid type ptid State StdO StdE Start Err Method
 2 O+bhdoq run 0 0 Wed13:58 1264987995.1.158#TMF_Scheduler::scheduler# start
 29 O+hdoqs run 0 0 10:25:05 1264987995.1.478#TMF_UI::Extd_Desktop# uiserver
 32 O+hdoq 1-29 run 0 0 10:25:10 1264987995.1.179#TMF_Administrator::Configuration_GUI#
launch

 469 O+ run 0 0 16:31:17 1264987995.1.2 query odstat

---- history ----
 259 O+hdoq 1-29 done 18 0 13:59:34 1264987995.1.488#TMF_PolicyRegion::GUI# launch
 275 O+ 1-259 done 55 0 13:59:35 1264987995.1.462#TMF_Query::QueryLibraryPD# _get_pres_object
 276 O+hdq 1-259 done 90 0 13:59:35 1264987995.1.488#TMF_PolicyRegion::GUI# get_policy_default
 277 O+ 1-276 done 40 0 13:59:35 1264987995.1.407#TMF_NetWare::PD# _get_label
 278 O+ 1-259 done 55 0 13:59:35 1264987995.1.407#TMF_NetWare::PD# _get_pres_object
 279 O+hdq 1-259 done 104 0 13:59:35 1264987995.1.488#TMF_PolicyRegion::GUI# get_policy_default
 280 O+ 1-279 done 35 0 13:59:35 264987995.1.334#TMF_PcManagedNode::PcManagedNodePD# _get_label
 281 O+ 1-259 done 55 0 13:59:35 1264987995.1.334#TMF_PcManagedNode::PcManagedNodePD#
_get_pres_object
 282 O+hdq 1-259 done 99 0 13:59:35 1264987995.1.488#TMF_PolicyRegion::GUI# get_policy_default
 283 O+ 1-282 done 33 0 13:59:35 1264987995.1.316#TMF_ManagedNode::Managed_NodePD#
_get_label
 284 O+ 1-259 done 27 0 13:59:35 1264987995.1.316#TMF_ManagedNode::Managed_NodePD#
_get_pres_object
 285 O+hdq 1-259 done 101 0 13:59:35 1264987995.1.488#TMF_PolicyRegion::GUI# get_policy_default
 286 O+ 1-285 done 36 0 13:59:35 1264987995.1.271#TMF_CCMS::ProfileManagerPolDef# _get_label
 287 O+ 1-259 done 55 0 13:59:35 1264987995.1.271#TMF_CCMS::ProfileManagerPolDef#
_get_pres_object
 288 O+hdq 1-259 done 91 0 13:59:35 1264987995.1.488#TMF_PolicyRegion::GUI# get_policy_default
 289 O+ 1-288 done 33 0 13:59:35 1264987995.1.221#TMF_Task::TaskLibraryPD# _get_label
 290 O+ 1-259 done 55 0 13:59:35 1264987995.1.221#TMF_Task::TaskLibraryPD# _get_pres_object
 291 O+ 1-259 done 6 0 13:59:35 1264987995.1.489#TMF_UI::Presentation# _set_parents
 292 O+hdq 1-259 done 183 0 13:59:35 1264987995.1.14#TMF_SysAdmin::Library#
select_indirectly_managed
 293 O+hdoqs 1-259 done 6 0 13:59:35 1264987995.1.478#TMF_UI::Extd_Desktop# connect
 294 O+ho 1-29 done 18 0 13:59:40 1264987995.1.490#TMF_Task::TaskLibrary# display_view_callback
 295 O+ 1-294 done 55 0 13:59:41 1264987995.1.490#TMF_Task::TaskLibrary# _get_pres_object
 296 O+ 1-294 done 55 0 13:59:41 1264987995.1.490#TMF_Task::TaskLibrary# _get_pres_object
 297 O+ 1-294 done 63754 0 13:59:41 1264987995.1.232#TMF_UI::Presentation# _get_dialogs
 298 O+hdoqs 1-294 done 6 0 13:59:41 1264987995.1.478#TMF_UI::Extd_Desktop# broadcast
 299 O+ 1-294 done 7684 0 13:59:42 1264987995.1.232#TMF_UI::Presentation# _get_bitmaps
 300 O+hdq 1-29 done 3463 0 13:59:42 1264987995.1.232#TMF_UI::Presentation# get_icon_info
 301 O+hdq 1-29 done 3752 0 13:59:43 1264987995.1.237#TMF_UI::Presentation# get_icon_info
 302 O+ done 15 0 14:04:15 0.0.0 get_name_registry
 303 O+hdoq done 109 0 14:04:15 1264987995.1.26 lookup
 304 O+hdq done 131 0 14:04:15 1264987995.1.14#TMF_SysAdmin::Library# find_members
 305 O+hdq done 195 0 14:04:15 1264987995.1.227#TMF_SysAdmin::InstanceManager# find_members
 306 O+ done 15 0 14:04:50 0.0.0 get_name_registry
 307 O+hdoq done 109 0 14:04:50 1264987995.1.26 lookup
Commands and Logs for Troubleshooting 133

1264987995.1.179#TMF_Administrator::Configuration_GUI# launch

The first desktop thread (tid=29) is started by the tivoli command. The
second (tid=32) is a child of the first and is the thread of the administrator
desktop itself. We can see from this that one administrator currently has a
desktop open. We could also look at the administrator object (OID
1264987995.1.179) to find out who this administrator actually is. We could
match the OID with one returned by wlookup -ar Administrator, or we look
at the object label with something, such as objcall OID _get_label.

 • odstat command:

469 O+ run 0 0 16:31:17 1264987995.1.2 query odstat

 The rest of the lines are the history of completed methods.

6.1.1 Structure of the odstat Output
Refer to the following table during the explanation of the odstat output format
(note that this table was built from a 2.6 odstat, but the principals are the
same for all releases):

The column headings are as follows:

1. tid - The thread ID. You may sometimes see two threads generated from
a single object call. One for the object call itself, and one for the method
being invoked.

2. type - The thread and method type. The thread type flags are:

Table 3. Output from odstat

tid type ptid State Std
O

Std
E

Start Err Method

 9 O+bhdoq run 0 0 Fri09:35 111111.1.163#TMF_Scheduler::scheduler# start

 10 O+bhdoq run 0 0 Fri09:35 111111.1.546#SentryEngine::engine# run_engine

 1056 O+hdoq run 0 0 Fri11:41 111111.1.371#TMF_UI::Desktop# uiserver

 1060 O+hdoq 1-1056 run 0 0 Fri11:41 111111.1.184#TMF_Administrator::Configuration_GUI# launch

1091 O+hdoq 1-1056 run 0 0 Fri11:41 111111.1.630#TMF_PolicyRegion::GUI# launch

1244 O+hdoq 1-1056 run 0 0 Fri11:42 111111.1.656#TMF_CCMS::ProfileManager# launch

1250 O+hdoq 1-1056 run 0 0 Fri11:42 111111.1.632#TMF_CCMS::ProfileManager# launch

1967 O+hdoq run 0 0 Sat14:14 111111.1.372#TMF_UI::Desktop# uiserver

1974 O+hdoq 1-1967 run 0 0 Sat14:14 111111.1.639#TMF_Administrator::Configuration_GUI# launch

3025 O+hdoq run 0 0 15:13:18 111111.1.373#TMF_UI::Desktop# uiserver

3029 O+hdoq 1-3025 run 0 0 15:13:21 111111.1.184#TMF_Administrator::Configuration_GUI# launch

3153 O+ run 0 0 15:15:11 111111.1.2 cntl odstat
134 Tivoli Enterprise Internals and Problem Determination

O Object call thread (attached to an object request), indicating that the
method was invoked here but is running elsewhere.

M Method thread. The object method was invoked on a different
system, but the object is located on this system, and the method is,
therefore, running here.

O+ Object call and method threads are the same, indicating that the
caller and method are both situated locally.

The method type flags are:

a Asynchronous object call.
q Queueing method.
o Per-object method.
b One-way object call.
h Help method.
d Daemon (long-running) method. typically handling one request at a

time.

So O+bhdoq in the first row indicates that the object call and method threads
are the same. This is a one-way invocation of a helping, queueing,
daemon, per-object method implementation.

3. ptid - Parent thread ID. This is the thread ID of the object call whose
method made the current object call. If this field is blank, the object call is
external (such as from the command line). The number before the dash is
the dispatcher number where the parent thread resides. This may be
another system that you should investigate. The number after the dash is
the thread ID in the parent’s object dispatcher.

4. State - One of the following states for an object call thread:

init The thread has been initialized.
ali The thread is performing a TME server lookup on the TME

server’s database. If a thread is in this state for some time, it could
be very difficult to get a response from the server. You may have
difficulties getting the odstat output if this is the case. You should
then try the odstat -k option. ALI is used to refer to the TMR
server and stands for Authorization, Location, and Inheritance, the
three major functions of the TMR server.

mwait The thread is waiting for the associated method thread to
complete.

rwait The thread is waiting for the caller to collect the results of an
asynchronous (often remote) object call. You will see these, for
example, during a distribution.

done The object call is complete.
coord The method is serving as a transaction coordinator.
err An internal error terminated the thread.
Commands and Logs for Troubleshooting 135

The following is a list of states for method threads:

init The thread has been initialized.
gmeth The thread is obtaining the method code from another dispatcher.
hdwt The thread is waiting for the daemon-method process (of a

non-queueing daemon) to be ready to accept another request.
run The method is running.
serv The thread is performing an object services call.
done The method is complete.
twait The method is waiting on transaction status to commit or abort.

5. StdO - Number of bytes written to standard output by the method (hardly
used in recent releases).

6. StdE - Number of bytes written to standard error by the method. Most
threads do not write to standard error.

7. Start - When the thread started. This will be a time if it is on the same day.
Otherwise, it will be a named day and time. If the thread started more than
a week ago, you would not be able to tell it from this output (you would
have to refer to the wtrace output).

8. Err - The thread’s error status. If this field is blank, no error occurred.
Otherwise, this field is one of the following:

e=n The method returned n (decimal) as its exit code. Tivoli avoids
codes 0-21 reserving them for system-defined errors. Tivoli
application error codes start at 22. You can refer to the o.h file in
the Tivoli include directory if Tivoli ADE has been installed for a
listing of generic Tivoli errors. See also the paragraph below about
exit codes.

s=n The method died due to signal n.
S=n The method died due to signal n and produced a core file. The

core file is unlikely to help anyone unless a debug version of a
module was provided by Tivoli development.

XXX An uppercase word indicates an error in the object dispatcher.

Exit codes (e=) can come from the system Tivoli is running on, the Tivoli
Framework, or an application with no indication of which it is. It may be
necessary to look at different sets of error documentation to find out which
is the most likely source. You may be able to use system documentation to
obtain help regarding system-produced errors. Most UNIX systems
include some form of error.h file that lists the system error codes and often
a short description. On OS/2, you can type HELP number (such as HELP 5).
On Windows NT, you can type net helpmsg number as follows:

net helpmsg 5
Access is denied.
136 Tivoli Enterprise Internals and Problem Determination

net helpmsg 1067
The process terminated unexpectedly.

9. Method - Text of the method invocation. The first value is the object ID of
the object in whose context the method was invoked. (See Section 2.4.2,
“Object IDs” on page 34). Next is a pound sign (#), the CORBA Interface
Repository name information, and another pound sign. The next word is
the name of the method itself. Any following words are the arguments to
the method.

For example:

111111.1.184#TMF_Administrator::Configuration_GUI# launch

might be a valid entry. This is an interesting entry because from it we can
tell that the administrator with object number 184 has this particular
desktop open. (There are three administrator desktops open in the sample
listing.) We can see a list of administrators and their object numbers using
wlookup -ar Administrator. The same applies for the profile managers in
the example listing. We could use wlookup -ar ProfileManager to compare
the object numbers and determine which profile managers were in use.

The odstat command shows the first 80 characters of the method
invocation.

6.1.2 odstat Options
There are many useful options for odstat (see the Tivoli Framework
Reference Manual for more options and details). Here are a few examples of
useful invocations:

odstat List currently-running methods and history of most recent 200.
odstat -c Lists only the currently-running methods.
odstat -v (verbose output) Lists system process IDs and error codes for

each method. This can be very useful and is usually a good

System-generated errors can be misleading. There could be many
generations involved between the object where the problem really exists
and the object where an error was generated. Keep this in mind when
looking at system-generated errors.

Note

For IDL-generated methods, arguments are not visible using odstat.
See the wtrace command for more information.

Note
Commands and Logs for Troubleshooting 137

set of data to collect for support personnel, but it does make
the listing more difficult to read. You may need to experiment
to determine whether to use -v or not. You might wish to use
the process ID to kill a hung process. If this is the case, do not
kill UNIX Tivoli processes with -9; otherwise, the
transactions may not close correctly.

odstat -d Lists oserv daemon methods that are currently running and
belong to Tivoli. Some that you might expect to see here are
not displayed in this command (such as the notices daemon).

odstat -o OID Runs the command on the specified object dispatcher.
odstat -k $DBDIR <pid_of_oserv>

Runs the command on an oserv that is running but not
responding. You need root authority to run this command.

6.2 The odadmin Command

The odadmin command is the Object Dispatcher (oserv) Administration
interface. This command provides configuration information about the server
and allows you to change this information. To run this command, you will
require a Tivoli administrator with super or senior role in the TMR.

The odadmin command has very good built-in help. Use odadmin help, or
odadmin help <option name> for quick access to help information.

6.2.1 Default odadmin Information
You can execute the odadmin command alone, and it will output information
about the local object dispatcher as shown in Figure 39 on page 139:

The odadmin command requires the oserv daemon to be running to function
fully. The oserv should start automatically when the managed node starts
up. If you have to manually start the oserv in UNIX, you can run odadmin
start or /etc/Tivoli/oserv.rc start. For Windows NT, use the Services
icon in the Control panel to start the Tivoli Object Dispatcher service or use
NET START OSERV from the command prompt.

Note
138 Tivoli Enterprise Internals and Problem Determination

Figure 39. Default odadmin Information

The information displayed is as follows:

 • The Tivoli Management Region number generated when the TMR server
was installed.

 • The object dispatcher number. Number 1 is the TMR server. Each
subsequent client installed gets the next number available.

 • The machine interpreter type.
 • The path of the database directory.
 • The path of the binaries directory.
 • Encryption level used within the TMR.
 • Whether Kerberos is being used within the TMR.
 • Whether Remote desktop connection (using Tivoli Desktop for Windows)

is allowed.
 • The path of shared libraries (UNIX only).
 • Version and copyright information.
 • What port range the oserv is restricted to using when requiring access to

TCP ports.
 • State flags in use indicates whether down-stream host information is

cached (TRUE) or whether the host is contacted each time (FALSE). This
exists on the TMR server only.

 • State checking indicates whether polling is used to keep host state
information up to date.

 • If state checking is in use, then the polling interval is used.
 • Whether DHCP addressing is allowed.

odadmin
Region = 1264987995
Dispatcher = 1
Interpreter type = aix4-r1
Database directory = /var/spool/Tivoli/rh0255b.itsc.austin.ibm.com.db
Install directory = /usr/local/Tivoli/bin
Inter-dispatcher encryption level = simple
Kerberos in use = FALSE
Remote client login allowed = TRUE
Install library path =
/usr/local/Tivoli/lib/aix4-r1:/usr/lib:/usr/local/Tivoli/install_dir/iblib/aix4-r1:/
usr/lib:/usr/local/Tivoli/lib/aix4-r1:/usr/lib:/usr/local/Tivoli/lib/aix4-r1:/usr/lib
TME 10 Framework (tmpbuild) #1 Thu Oct 3 08:08:58 CDT 1996
Copyright Tivoli Systems, an IBM Company, 1996. All Rights Reserved.

Port range = (not restricted)
State flags in use = TRUE
State checking in use = TRUE
State checking every 180 seconds
Dynamic IP addressing allowed = FALSE
Commands and Logs for Troubleshooting 139

For obtaining information on connected managed nodes, you can use the
odadmin odlist command. This will show you the status of the managed node,
its IP address, the port, and the host name alias. It also includes flags
indicating the status of the node’s TMR connection as shown in Figure 40:

Figure 40. Sample odadmin odlist

If the first flag is a question mark (?), this indicates that the state of the
connection is unknown due to the cache being out of date. If it is a minus sign
(-), then the remote dispatcher is down. A c indicates that the local oserv is
connected to the remote oserv.

6.2.2 Configuring the TMR Server
The configuration above can be changed using the different options of the
odadmin command. Use odadmin help and odadmin help <option name> or refer
to the Tivoli Framework Reference Manual for more detail on these options.

The one option we use a number of times in this chapter, and frequently when
looking into problems, is the trace option. The trace option defines how much
information the oserv writes to the odtrace.log file. See the next section on
wtrace for more information about how we use this parameter.

6.3 The wtrace Command

The wtrace command reads the file in the database directory, called
odtrace.log, that was generated by the oserv. This file is a static 1 MB in size
and resides in $DBDIR, (%DBDIR% for NT or OS/2). The trace file size can
be changed using the -t switch on the oserv command. You will need to
manually start the oserv in order to specify this switch.

The rate at which odadmin data is written to the file depends on the oserv’s
trace level. This section gives some directions on how to use wtrace to
investigate method problems. More detail on the command syntax and output
format can be found in the Tivoli Framework Reference Manual.

Three types of methods can be tracked by oserv in the trace set with the
odadmin trace command:

odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1264987995 1 ct- 94 9.3.1.234 rh0255b.itsc.austin.ibm.com

2 ct- 94 9.3.1.233 rh0255a.itsc.austin.ibm.com
1562489759 1 ct- 94 9.3.1.235 rh0255c.itsc.austin.ibm.com
140 Tivoli Enterprise Internals and Problem Determination

errors Default setting. Record errors in the oservlog file.

objcalls Usual setting to use for problem determination. Trace object
method invocation.

services Track Authentication, Location, and Inheritance (ALI) services
requested of the TMR server. This will quickly fill a trace file.

Once the data is collected, it is in the file. This is important to remember
because, unlike odstat, wtrace, this can provide debugging information if the
oserv is down or has been recycled.

The wtrace output contains everything that is also found in an odstat output;
however, it is quite detailed and can be hard to read. Having a corresponding
odstat output can make reading wtrace much easier. See Section 6.1, “The
odstat Command” on page 132 for more information on odstat.

6.3.1 Trace Usage Overview
If you are having problems that are not easily resolved by the messages
Tivoli provides, the following is a suggested sequence of steps to use tracing
to help:

1. Set the tracing option with the odadmin trace command. You can use the
following options (in order because errors tends to switch the others off):

odadmin trace errors Turns on error tracing (recommended)
odadmin trace services Turns on service tracing (optional)
odadmin trace objcalls Turns on object call tracing (recommended)

2. Execute the command odstat. This will help separate the methods that are
involved in the problem by inserting two objcalls into the trace. Once you
are familiar with reviewing traces, you may wish to skip this step and rely
solely on finding process IDs or some other method.

3. Regenerate the problem.

4. Execute another odstat -v> /<PATH>/odstat_output.

5. Execute a wtrace -jk $DBDIR > /<PATH>/wtrace_output
(optionally, use -jHk if the trace mentions binary hex data to get the hex
data dumped in the output with an attempted ASCII translation).

6. Sometimes you also need the oservlog file.

7. Turn off the trace with odadmin trace off.

8. Turn on the default with odadmin trace errors.
Commands and Logs for Troubleshooting 141

Figure 41 is an example of the wtrace output. For each record, the first line
will contain the thread ID, the thread and method flags, the parent thread ID,
if one exists, and any error codes. The next few lines are similar to the rest of
the data in an odstat output. A useful extra in the trace data is the name of
the Tivoli principal that effectively called the method and the path of the
method executable:

Figure 41. Typical wtrace Output

A Trace block type code. This example is a local error block.
B Method TID.
C Method type.
D Calling method TID or PTID.

In this sample, TID 828 active on dispatcher 1.
E Size of buffer.
F Error code field.

See /Tivoli/include/<$INTERP>/tivoli/defines.h if you have ADE.
G Context object ID.

For -ic, -oc, -ec, and -eo, the object that was the target of the object
call.
For -is or -os, the object that is making the service call.

The tracing introduces some impact on the oserv. Some timing-sensitive
problems have been known to go away once tracing is started. After
investigating a system, you should always return to tracing errors only.
Leaving other tracing enabled will have a negative performance impact.

Note

A B C D E F
loc-ic 830 M-H 1-828 0 e=12
 Time run: [Mon 16-Nov 00:35:50]
 Object ID: 1212391543.1.0 <--------- G
 Method: get_name_registry <---- H
 Method Args: NameRegistry <----------- I
 Principal: TIVTOR\Administrator@gblnt.dev.t (0/0) <--- J
 Path: getattr <-------------- K
 Trans Id:
 {
 1212391543:1,1212391543:1,39:1166 <---- L
 },
 {
 1212391543:1,1212391543:1,39:1167 <---- M
 },
 {
 1212391543:1,1212391543:1,39:1168 <---- N
 },
142 Tivoli Enterprise Internals and Problem Determination

H Method called.
I Arguments to the method.
J Principal (Administrator) that will service object request.
K Full path to program that will service object request.
LMN Active transactions, (See 6.4.1, “Transaction Log Files and tmstat” on

page 172).

6.3.2 Using a Trace to Investigate a Method
To find the method, you will use the two output files of the odstat and wtrace
commands:

1. From the odstat output, identify the thread ID where the error occurred
(column 1 in Table 3 on page 134).

2. Find the same tid in the wtrace output.

3. Identify the Method, Input Data, and Results for that method.

4. You can then identify the principal that ran the method, for example:
Principal: root@rh0255b.itsc.austin.ibm.com (-2/-2)

The first part is the user that ran the method, and the numbers in the
parentheses are the user ID (-2) and group ID (-2) actually used to run the
method.

5. If you are experienced and feel confident running this test, you can
execute the method manually to reproduce the problem and run tests; in
general, this would only be under guidance from an authorized support
individual:

objcall OID <Method> <Input Data>
or
idlcall OID <Method> <Input Data>

When the numbers in the parentheses are less than 0, the method is run
as nobody.

Note
Commands and Logs for Troubleshooting 143

Other actions you could take may include looking at the contents of methods
or finding the executable for a method. Refer to Section 2.5.1, “Finding the
Method Executable” on page 52 for more information about methods and
executables.

6.3.3 Troubleshooting a Failure with odstat and wtrace
Figure 42 on page 145 shows an odstat taken during a problem using the wln
command.

If you are going to invoke any methods by hand, be sure to check any
warnings given in this chapter and review Chapter 2, “Tivoli Object
Database Architecture” on page 9 and the Tivoli Framework Reference
Manual for more information. Experimentation should always be limited to
a stand-alone test system. Be sure to have excellent backups before trying
any of this in a live environment, which you do at your own risk.

Note
144 Tivoli Enterprise Internals and Problem Determination

Figure 42. odstat - wln

In the above example, we see that a failure occurred in thread ID 128
move_to_policy_region that was spawned by tid 127 add_object. This failure
causes tid 127 to post an e=12 message, which means the method threw an
exception. To find out why, we need to look at a wtrace.

The sequence of events was initiated by the command wln when an
Administrator attempted to link a managed node to a policy region.

The following wtrace will show more detail on this failure in tid 128:

n_active = 5 n_free = 195
tid type ptid State StdO StdE Start Err Method
3 O+b run 0 0
21:13:42 1367707114.1.327#TMF_ManagedNode::Managed_Node# logfi
5 O+bhdoq run 0 0 21:13:42 1367707114.1.699#SentryEngine::engine#
run_engine
6 O+bhdoq run 0 0 21:13:42 1367707114.1.158#TMF_Scheduler::scheduler#
start
296 O+ run 0 0 21:15:41 1367707114.1.2 query odstat
---- history ----
113 O+ 1-5 done 15 0 21:13:52 0.0.0 get_name_registry
114 O+hdoq 1-5 done 9954 0 21:13:52 1367707114.1.26 region_get_all
115 O+ done 15 0 21:13:55 0.0.0 get_name_registry
116 O+hdoq done 109 0 21:13:55 1367707114.1.26 lookup
117 O+hdq done 132 0 21:13:55 1367707114.1.14#TMF_SysAdmin::Library#
find_members
118 O+hdq done 127 0 21:13:55
1367707114.1.185#TMF_SysAdmin::InstanceManager# find_members
119 O+hdoq done 97 0 21:13:55 1367707114.1.26 lookup
120 O+hdq done 56 0 21:13:55 1367707114.1.4 lookup_id
121 O+hdq done 168 0 21:13:55 1367707114.1.4##2@TMF_PolicyRegion::GUI
describe
122 O+hdq done 4614 0 21:13:55 1367707114.1.4##2@TMF_PolicyRegion::GUI
_get_type
124 O+hdoq done 109 0 21:13:55 1367707114.1.26 lookup
125 O+hdq done 131 0 21:13:55 1367707114.1.14#TMF_SysAdmin::Library#
find_members
126 O+hdq done 134 0 21:13:55
1367707114.1.322#TMF_SysAdmin::InstanceManager# find_members
* 127 O+hdq done 90 0 21:13:55 e=12 1367707114.1.1116#TMF_PolicyRegion::GUI#
add_object
* 128 O 1-127 done 0 0 21:13:55 SCALL
1367707114.34.7#TMF_ManagedNode::Managed_Node# move_to_policy_region
Commands and Logs for Troubleshooting 145

Figure 43. Link Failure wtrace Part 1 of 2

loc-ic 118 M-hdq Extern 45
 Time run: [Mon 18-May 21:13:55]
 Object ID: 1367707114.1.185#TMF_SysAdmin::InstanceManager#
 Method: find_members
 Principal: root@hermes.torsm.can.ibm.com (-2/-2)
 Path: /aix4-r1/TMF/BASESVCS/Collection_prog1
 Input Data: (encoded):
 {
 0
 }
 "nt4-region$" 2

loc-oc 118 127
 Results: (encoded):
 {
 1
 [
 {
 "1367707114.1.1116#TMF_PolicyRegion::GUI#" "nt4-region"
 }
]
 }
 "OBJECT_NIL"

loc-ic 126 M-hdq Extern 46
 Time run: [Mon 18-May 21:13:55]
 Object ID: 1367707114.1.322#TMF_SysAdmin::InstanceManager#
 Method: find_members
 Principal: root@hermes.torsm.can.ibm.com (-2/-2)
 Path: /aix4-r1/TMF/BASESVCS/Collection_prog1
 Input Data: (encoded):
 {
 0
 }
 "̂ TEST01-MN$" 2

loc-oc 126 134
 Results: (encoded):
 {
 1
 [
 {
 "1367707114.34.7#TMF_ManagedNode::Managed_Node#" "TEST01-MN"
 }
]
 }
 "OBJECT_NIL"
146 Tivoli Enterprise Internals and Problem Determination

Figure 44. Link Failure wtrace Part 2 of 2

In thread 118, we get the OID of the nt4-region policy region. This is the
policy region to which we will link the Managed Node. Below is the equivalent
idlcall to find the member from the InstanceManager:

idlcall 1367707114.1.185 find_members ’{ 0 } "nt4-region" 2’

In thread 126, we get the OID of the TEST01-MN managed node that we will
link to the policy region above. Below is the idlcall :

idlcall 1377707114.1.322 find_members ’{ 0 } "TEST01-MN" 2’

Both tid 118 and tid 126 are executed as nobody (-2/-2).

In thread 127, we start to add the managed node object to the policy region.
Note the OID for the Object ID and in the input data as gathered above. This

loc-ic 127 M-hdq Extern 57
 Time run: [Mon 18-May 21:13:55]
 Object ID: 1367707114.1.1116#TMF_PolicyRegion::GUI#
 Method: add_object
 Principal: root@hermes.torsm.can.ibm.com (-2/-2)
 Path: /aix4-r1/TMF/BASESVCS/Policy_prog1
 Trans Id:
 {
 1367707114:1,1367707114:1,169:3
 },
 {
 1367707114:1,1367707114:1,169:4
 }
 #3
 Input Data: (encoded):
 "1367707114.34.7#TMF_ManagedNode::Managed_Node#"

rem-ic 128 M-H 1-127 51
 Time run: [Mon 18-May 21:13:55]
 Object ID: 1367707114.34.7#TMF_ManagedNode::Managed_Node#
 Method: move_to_policy_region
 Principal: root@hermes.torsm.can.ibm.com (0/0)
 Path: /w32-ix86/TAS/CCMS/profile_organizer
 Input Data: (encoded):
 "1367707114.1.1116#TMF_PolicyRegion::GUI#"

rem-oc 128 SCALL 0

loc-oc 127 e=12 90
 Results: (encoded):
 "Exception:StExcep::SystemException:StExcep::OBJ_ADAPTER"
 {
 38 1
 }
Commands and Logs for Troubleshooting 147

spawns thread 128, which will be executed remotely on the Windows NT
managed node as seen by the w32-ix86 path of the executable and the rem-ic.

Thread 127 is executed as nobody (-2/-2), but tid 128 is executed as root
(0/0) and fails with SCALL on the remote object dispatcher. Thread 127 now
aborts with an OBJ_ADAPTER system exception, error 38.

A quick check on this managed node shows that the oserv service is inactive.

This problem is a very simple example, but the objective is to understand
what we see in the wtrace.

6.3.4 Another Example of Analyzing wtrace and odstat
Figure 45 shows the output from odstat when an un-subscribe of a TMA
endpoint from a profile manager fails.

Figure 45. Un-Subscribe Endpoint Failure odstat

In this example, we can see from tid 4791 that we have experienced a failure
when attempting to unsubscribe a TMA endpoint from a profile manager.
Thread 4797, which is spawned by this process, indicates a failure with the
endpoint key value in the endpoint manager database ($DBDIR/epmgr.bdb)

Let us take a closer look at what steps were performed by reviewing the
wtrace that follows:

* 4791 O+hdoq 1-4614 done 367 0 12:42:20 e=12
1998892590.1.1121#TMF_CCMS::ProfileManager# unsubscribe
 4792 O+ 1-4791 done 15 0 12:42:20 0.0.0 get_name_registry
 4793 O+hdoq 1-4791 done 109 0 12:42:20 1998892590.1.26 lookup
 4794 O+hdq 1-4791 done 64 0 12:42:20
1998892590.1.14#TMF_SysAdmin::Library# lookup_object
 4795 O+hdq 1-4791 done 9 0 12:42:20
1998892590.1.958#TMF_PolicyRegion::GUI# is_validation_enabled
 4796 O+hdoq 1-4791 done 111 0 12:42:20 1998892590.1.26 lookup
* 4797 O+hdoqs 1-4791 done 367 0 12:42:20 e=12
1998892590.1.517#TMF_LCF::EpMgr# get_endpoint_key_value
148 Tivoli Enterprise Internals and Problem Determination

Figure 46. Un-Subscribe Failure wtrace - Part 1 of 4

loc-ic 4791 M-hdoq 1-4614 131
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.1121#TMF_CCMS::ProfileManager#
 Method: unsubscribe
 Principal: root@itso2.dev.tivoli.com (-2/-2)
 Path: /aix4-r1/TAS/CCMS/profile_organizer
 Trans Id:
 {
 1998892590:1,1998892590:1,6:27845
 }
 #4
 Input Data: (encoded):
 {
 1
 [
 {
 "1998892590.9.508+#TMF_Endpoint::Endpoint#" "pctmp112"
 }
]
 }
 2
 {
 "null" 0 false
 }

loc-is 4791 getattr 0 flags
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.1121#TMF_CCMS::ProfileManager#
 Method: unsubscribe

loc-is 4791 lock 11
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.1121#TMF_CCMS::ProfileManager#
 Method: unsubscribe
 Input Data: (ascii): subscribers

loc-ic 4792 M-H 1-4791 0
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.0
 Method: get_name_registry
 Method Args: NameRegistry
 Principal: root@itso2.dev.tivoli.com (0/0)
 Path: getattr
 Trans Id:
 {
 1998892590:1,1998892590:1,6:27845
 },
 {
 1998892590:1,1998892590:1,6:27846
 }
 #3
loc-oc 4792 15
 Results: (ascii): 1998892590.1.26
Commands and Logs for Troubleshooting 149

Figure 47. Un-Subscribe Failure wtrace - Part 2 of 4

loc-ic 4793 M-hdoq 1-4791 42
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.26
 Method: lookup
 Principal: root@itso2.dev.tivoli.com (-2/-2)
 Path: /aix4-r1/TMF/BASESVCS/TNR_prog1
 Input Data: (encoded):
 "distinguished" "Library"

loc-oc 4793 109
 Results: (encoded):
 {
 "1998892590.1.14#TMF_SysAdmin::Library#" "Library"
 {
 "null" 0 false
 }
 }

loc-ic 4794 M-hdq 1-4791 37
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.14#TMF_SysAdmin::Library#
 Method: lookup_object
 Principal: root@itso2.dev.tivoli.com (-2/-2)
 Path: /aix4-r1/TMF/BASESVCS/Collection_prog1
 Input Data: (encoded):
 "ProfileManager"
 {
 0
 }

loc-is 4794 getattr 0 members
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.14#TMF_SysAdmin::Library#
 Method: lookup_object

loc-oc 4794 64
 Results: (encoded):
 "1998892590.1.288#TMF_SysAdmin::InstanceManager#"
loc-ic 4795 M-hdq 1-4791 58
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.958#TMF_PolicyRegion::GUI#
 Method: is_validation_enabled
 Principal: root@itso2.dev.tivoli.com (-2/-2)
 Path: /aix4-r1/TMF/BASESVCS/Policy_prog1
 Trans Id:
 {
 1998892590:1,1998892590:1,6:27845
 },
 {
 1998892590:1,1998892590:1,6:27847
 }
 #3
 Input Data: (encoded):
 "1998892590.1.288#TMF_SysAdmin::InstanceManager#"
150 Tivoli Enterprise Internals and Problem Determination

Figure 48. Un-Subscribe Failure wtrace - Part 3 of 4

loc-is 4795 getattr 0 classes
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.958#TMF_PolicyRegion::GUI#
 Method: is_validation_enabled
loc-os 4795 getattr 1.8K
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.958#TMF_PolicyRegion::GUI#
 Method: is_validation_enabled
 Method Args:
 0.1.261#TMF_Query::QueryLibraryPD#d„
 Results: (binary) (dump suppressed)
loc-oc 4795 9
 Results: (encoded):
 false

loc-is 4791 lock 13
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.1121#TMF_CCMS::ProfileManager#
 Method: unsubscribe
 Input Data: (ascii): subscriptions
loc-ic 4796 M-hdoq 1-4791 50
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.26
 Method: lookup
 Principal: root@itso2.dev.tivoli.com (-2/-2)
 Path: /aix4-r1/TMF/BASESVCS/TNR_prog1
 Input Data: (encoded):
 "distinguished" "EndpointManager"
loc-oc 4796 111
 Results: (encoded):
 {
 "1998892590.1.517#TMF_LCF::EpMgr#" "EndpointManager"
 {
 "null" 0 false
 }
 }
loc-ic 4797 M-hdoq 1-4791 76
 Time run: [Fri 20-Nov 12:42:20]
 Object ID: 1998892590.1.517#TMF_LCF::EpMgr#
 Method: get_endpoint_key_value
 Principal: root@itso2.dev.tivoli.com (-2/-2)
 Path: __epmgr_implid
 Trans Id:
 {
 1998892590:1,1998892590:1,6:27845
 },
 {
 1998892590:1,1998892590:1,6:27848
 }
 #3
 Input Data: (encoded):
 "1998892590.9.508+#TMF_Endpoint::Endpoint#" "subscriptions"
Commands and Logs for Troubleshooting 151

Figure 49. Un-Subscribe Failure wtrace - Part 4 of 4

We begin our operation with the un-subscribe in tid 4791 where we see the
OID of the profile manager as well as the TMA endpoint.

Next, the profile manager is locked for the pending change.

In tid 4792, we get the OID of the name registry, and in tid 4793, we perform a
lookup of distinguished object Library, and from this, we find the profile
manager class object, or instance manager, in tid 4794.

We next check for validation policies on the policy region for this profile
manager in tid 4795:

idlcall 1998892590.1.958 is_validation_enabled 1998892590.1.288

loc-oc 4797 e=12 367
 Results: (encoded):
 "Exception:UserException:SysAdminException::ExException:SysAdminE
 xception::ExInvalid:SysAdminException::ExNotFound"
 {
 "Exception:UserException:SysAdminException::ExException:
 SysAdminException::ExInvalid:SysAdminException::ExNotFound"
 "TasExCat" 4 "%5$t
 {
 %c
 }
 (%3$d): resource ‘%7$s’ not found" 911587340
 {
 0
 }
 ""
 }

loc-oc 4791 e=12 367
 Results: (encoded):
 "Exception:UserException:SysAdminException::ExException:SysAdminE
 xception::ExInvalid:SysAdminException::ExNotFound"
 {
 "Exception:UserException:SysAdminException::ExException:
 SysAdminException::ExInvalid:SysAdminException::ExNotFound"
 "TasExCat" 4 "%5$t
 {
 %c
 }
 (%3$d): resource ‘%7$s’ not found" 911587340
 {
 0
 }
 ""
 }
152 Tivoli Enterprise Internals and Problem Determination

In tid 4796, we perform another lookup to get the OID of the endpoint
manager:

idlcall 1998892590.1.26 lookup ’"distinguished" "EndpointManager"’

Thread 4797 attempts to get the endpoint key value for pctmp112 from the
endpoint manager, which fails with resource not found.

In this example, another Administrator had actually deleted the Endpoint with
a wdelep command, the subscriber reference, however, still exists in the GUI.

A wchkdb -u corrects this and removes the subscriber from the Profile
Manager.

6.3.5 Troubleshooting Using Only wtrace
The following wtrace is from a subscription failure:
Commands and Logs for Troubleshooting 153

Figure 50. Subscribe Failure wtrace - Part 1 of 6

loc-ic 826 M-hdoq 1-719 174
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.1281#TMF_CCMS::ProfileManager#
 Method: subscribe
 Principal: TIVTOR\Administrator@dhcp32-186. (10104368/0)
 Path: /w32-ix86/TAS/CCMS/profile_organizer
 Trans Id:
 {
 1212391543:1,1212391543:1,64:410
 }
 #4
 Input Data: (encoded):
 {
 16777216
 [
 {
 {
 {
 "1998892590.22.508+#TMF_Endpoint::Endpoint#" "rh2900b-ep"
 }
 "OBJECT_NIL" "" ""
 }
 0 false
 {
 0
 }
 }
]
 }

loc-is 826 getattr 0 label
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.1281#TMF_CCMS::ProfileManager#
 Method: subscribe
loc-os 826 getattr 17
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.1281#TMF_CCMS::ProfileManager#
 Method: subscribe
 Results: (binary) (dump suppressed)

loc-is 826 getattr 0 pro
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.1281#TMF_CCMS::ProfileManager#
 Method: subscribe
loc-os 826 getattr 50
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.1281#TMF_CCMS::ProfileManager#
 Method: subscribe
 Results: (binary) (dump suppressed)
154 Tivoli Enterprise Internals and Problem Determination

Figure 51. Subscribe Failure wtrace - Part 2 of 6

loc-ic 827 M-H 1-826 0
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.0
 Method: get_name_registry
 Method Args: NameRegistry
 Principal: TIVTOR\Administrator@dhcp32-186. (0/0)
 Path: getattr
 Trans Id:
 {
 1212391543:1,1212391543:1,64:410
 }
 {
 1212391543:1,1212391543:1,64:411
 }
 #3
loc-oc 827 15
 Results: (ascii): 1212391543.1.26

loc-ic 828 M-hdoq 1-826 42
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.26
 Method: lookup
 Principal: TIVTOR\Administrator@dhcp32-186. (10104368/0)
 Path: /w32-ix86/TMF/BASESVCS/TNR_prog1
 Input Data: (encoded):
 "distinguished" "Library"
loc-oc 828 109
 Results: (encoded):
 {
 "1212391543.1.14#TMF_SysAdmin::Library#" "Library"
 {
 "null" 0 false
 }
 }

loc-ic 829 M-hdq 1-826 37
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.14#TMF_SysAdmin::Library#
 Method: lookup_object
 Principal: TIVTOR\Administrator@dhcp32-186. (10104368/0)
 Path: /w32-ix86/TMF/BASESVCS/Collection_prog1
 Input Data: (encoded):
 "ProfileManager"
 {
 0
 }
loc-is 829 getattr 0 members
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.14#TMF_SysAdmin::Library#
 Method: lookup_object
Commands and Logs for Troubleshooting 155

Figure 52. Subscribe Failure wtrace - Part 3 of 6

loc-os 829 getattr 1.8K
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.14#TMF_SysAdmin::Library#
 Method: lookup_object
 Method Args: venBased„
 Results: (binary) (dump suppressed)
loc-oc 829 64
 Results: (encoded):
 "1212391543.1.287#TMF_SysAdmin::InstanceManager#"
loc-ic 830 M-hdq 1-826 58
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.195#TMF_PolicyRegion::GUI#
 Method: is_validation_enabled
 Principal: TIVTOR\Administrator@dhcp32-186. (10104368/0)
 Path: /w32-ix86/TMF/BASESVCS/Policy_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,64:410
 },
 {
 1212391543:1,1212391543:1,64:412
 }
 #3
 Input Data: (encoded):
 "1212391543.1.287#TMF_SysAdmin::InstanceManager#"
loc-is 830 getattr 0 classes
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.195#TMF_PolicyRegion::GUI#
 Method: is_validation_enabled
loc-os 830 getattr 1.8K
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.195#TMF_PolicyRegion::GUI#
 Method: is_validation_enabled
 Method Args:
 543.1.1376#PcRC::RemoteControlPD#d
 Results: (binary) (dump suppressed)
loc-oc 830 9
 Results: (encoded):
 true
loc-ic 831 M-H 1-826 109
 Time run: [Sun 22-Nov 12:05:42]
 Object ID: 1212391543.1.195#TMF_PolicyRegion::GUI#
 Method: pm_val_subscribers
 Method Args: pm_val_subscribers
 Principal: TIVTOR\Administrator@dhcp32-186. (0/0)
 Path: getattr
 Trans Id:
 {
 1212391543:1,1212391543:1,64:410
 },
 {
 1212391543:1,1212391543:1,64:413
 }
 #3
156 Tivoli Enterprise Internals and Problem Determination

Figure 53. Subscribe Failure wtrace - Part 4 of 6

 Input Data: (encoded):
 {
 50331648
 [
 "pm_val_subscribers" "Sentry" "rh2900b-ep"
]
 }
 {
 0
 }
 {
 0
 }
loc-oc 831 40
 Results: (encoded):
 {
 67108864 "0x54 0x52 0x55 0x45 "
 }
 {
 0
 }
 0

loc-ic 832 M-H 1-826 0
 Time run: [Sun 22-Nov 12:05:43]
 Object ID: 1212391543.1.1281#TMF_CCMS::ProfileManager#
 Method: _get_flags
 Method Args: flags
 Principal: TIVTOR\Administrator@dhcp32-186. (0/0)
 Path: i_getattr
loc-oc 832 12
 Results: (encoded):
 16777216

loc-ic 833 M-hdoq 1-826 50
 Time run: [Sun 22-Nov 12:05:43]
 Object ID: 1212391543.1.26
 Method: lookup
 Principal: TIVTOR\Administrator@dhcp32-186. (10104368/0)
 Path: /w32-ix86/TMF/BASESVCS/TNR_prog1
 Input Data: (encoded):
 "distinguished" "EndpointManager"
loc-oc 833 111
 Results: (encoded):
 {
 "1212391543.1.517#TMF_LCF::EpMgr#" "EndpointManager"
 {
 "null" 0 false
 }
 }
Commands and Logs for Troubleshooting 157

Figure 54. Subscribe Failure wtrace - Part 5 of 6

loc-ic 834 M-hdoq 1-826 77
 Time run: [Sun 22-Nov 12:05:43]
 Object ID: 1212391543.1.517#TMF_LCF::EpMgr#
 Method: get_endpoint_key_value
 Principal: TIVTOR\Administrator@dhcp32-186. (10104368/0)
 Path: __epmgr_implid
 Trans Id:
 {
 1212391543:1,1212391543:1,64:410
 },
 {
 1212391543:1,1212391543:1,64:414
 }
 #3
 Input Data: (encoded):
 "1998892590.22.508+#TMF_Endpoint::Endpoint#" "subscriptions"
loc-ic 835 M-hdoq 1-834 46
 Time run: [Sun 22-Nov 12:05:44]
 Object ID: 1212391543.1.26
 Method: lookup
 Principal: TIVTOR\Administrator@dhcp32-186. (10104368/0)
 Path: /w32-ix86/TMF/BASESVCS/TNR_prog1
 Input Data: (encoded):
 "distinguished" "InterRegion"
loc-oc 835 120
 Results: (encoded):
 {
 "1212391543.1.378#TMF_InterRegion::Connection#" "InterRegion"
 {
 "null" 0 false
 }
 }
loc-ic 836 M-ho 1-834 15
 Time run: [Sun 22-Nov 12:05:44]
 Object ID: 1212391543.1.378#TMF_InterRegion::Connection#
 Method: get_connection
 Principal: TIVTOR\Administrator@dhcp32-186. (10104368/0)
 Path: g:\Tivoli\bin/w32-ix86/TAS/InterRegion/InterRegion_prog1.exe
 Input Data: (encoded):
 "NULL" 783164535
loc-is 836 getattr 0 TMRs
 Time run: [Sun 22-Nov 12:05:44]
 Object ID: 1212391543.1.378#TMF_InterRegion::Connection#
 Method: get_connection
loc-os 836 getattr 1.8K
 Time run: [Sun 22-Nov 12:05:44]
 Object ID: 1212391543.1.378#TMF_InterRegion::Connection#
 Method: get_connection
 Method Args: nection#d„
 Results: (binary) (dump suppressed)
158 Tivoli Enterprise Internals and Problem Determination

Figure 55. Subscribe Failure wtrace - Part 6 of 6

loc-oc 836 2.0K
 Results: (binary) (dump suppressed)
rem-ic 837 M-H 1-834 50
 Time run: [Sun 22-Nov 12:05:44]
 Object ID: 1998892590.1.26
 Method: lookup
 Principal: TIVTOR\Administrator@dhcp32-186. (0/0)
 Path: /aix4-r1/TMF/BASESVCS/TNR_prog1
 Input Data: (encoded):
 "distinguished" "EndpointManager"
rem-oc 837 111
 Results: (encoded):
 {
 "1998892590.1.517#TMF_LCF::EpMgr#" "EndpointManager"
 {
 "null" 0 false
 }
 }
rem-ic 838 M-H 1-834 77
 Time run: [Sun 22-Nov 12:05:45]
 Object ID: 1998892590.1.517#TMF_LCF::EpMgr#
 Method: get_endpoint_key_value
 Principal: TIVTOR\Administrator@dhcp32-186. (0/0)
 Path: __epmgr_implid
 Input Data: (encoded):
 "1998892590.22.508+#TMF_Endpoint::Endpoint#" "subscriptions"
rem-oc 838 577
 Results: (encoded):
 1998892590.1.1158#TMF_CCMS::ProfileManager# "dataless
 subsc_all FALSE
 {
 "Sentry2.0"
 {
 1998892590.1.1163#TMF_CCMS::ProfileManager# "ep-sub"
 subsc_all FALSE
 {
 1998892590.1.1218#TMF_CCMS::ProfileManager# "SWD
 subsc_all FALSE
 {
rem-ic 839 M-H 1-826 0
 Time run: [Sun 22-Nov 12:05:45]
 Object ID: 1998892590.22.508+#TMF_Endpoint::Endpoint#
 Method: _get_label
 Principal: TIVTOR\Administrator@dhcp32-186." (0/0)
 Path:
rem-oc 839 DISP_UNAVAIL 0
loc-oc 826 e=12 91
 Results: (encoded):
 "Exception:StExcep::SystemException:StExcep::COMM_FAILURE"
 {
 570425344 16777216
 }
Commands and Logs for Troubleshooting 159

In the above example, we have a two-way interconnection between
dhcp32-186 and itso2. The Administrator on dhcp32-186 has attempted to
subscribe a TMA endpoint on itso2 to a local profile manager.

What is not known at the time is that this endpoint is unavailable. It has, in
fact, completed a login to a gateway in a 3rd TMR.

We really begin the subscribe operation in tid=826 and will be executing
methods on local OID:1212391543.1.1281#TMF_CCMS::ProfileManager# to
subscribe remote OID:1998892590.22.508+#TMF_Endpoint::Endpoint#, which is
rh2900b-ep.

We begin by getting the label attribute for the profile manager OID and the
policy region in which it is defined. Next, we get the OID of the name registry
and perform further lookups to find out what validation policies are enabled
for the policy region, as seen in tid 830.

In tid 832, we validate the endpoint subscriber rh290b-ep for the profile
manager Sentry.

We locate our local endpoint manager in tid 833, and in tid 834, we attempt to
get the endpoint key value for rh2900b-ep in region 1998892590, which is all
the subscription information for this endpoint.

In tid 837, we get OID: 1998892590.1.517#TMF_LCF::EpMgr# as the remote
endpoint manager OID and then send a remote request to this object in tid
838, as shown by the rem-ic to get the endpoint key values.

The output of the remote call rem-oc lists all the current profile manager
subscriptions for this Endpoint. Notice that they are all in remote region
1998892590.

Finally, in tid 839, we send another remote request to the endpoint to retrieve
its label attribute value, which fails with rem-oc DISP_UNAVAIL

The initiating thread 826 now throws an exception with a COMM_FAILURE
for this endpoint.

Be aware that wep ls does not show the connection status, so check on the
local TMR in which the endpoint exists with wep <name> status.

In this case, we get a response of unable to determine endpoint status;
endpoint may be unreachable.
160 Tivoli Enterprise Internals and Problem Determination

6.3.6 HMAC Encrypted Data Error
This wtrace looks at an HMAC error following a distribution to an endpoint:

Figure 56. HMAC Error in wtrace - Part 1 of 2

loc-ic 815 M-hdoq 1-648 750
 Time run: [Mon 16-Nov 00:35:42]
 Object ID: 1212391543.1.517#TMF_LCF::EpMgr#
 Method: push_copy_in
 Principal: TIVTOR\Administrator@gblnt.dev.t̂ B (10104288/0)
 Path: /w32-ix86/TAS/CCMS/profile_manager_GUI
 Input Data: (encoded):
 {
 67108864
 [
 "push_copy_in" "lcf_endpoint" "1212391543.15.508+#TMF_Endp
 oint::Endpoint#" "1212391543.1.1601#Sentry::All#"
]
 }
 {
 184549376
 [
 "WD_DIALOG_OWNER=1212391543.15.508+#TMF_Endpoint::Endpoint#" "WD_GADGET_PATH=

collectiongroup.subscribers.1212391543x15x508+#TMF_Endpoint::Endpoint#" "
WD_SOURCE_PATH=collectiongroup.subscribers.1212391543x15x508+#TMF_Endpoint:

 :Endpoint#" "WD_DIALOG_NAME=main" "WD_DIALOG_INSTANCE=127: 0" "WD_DESKTOP_OID
=1212391543.1.529#TMF_UI::Extd_Desktop#" "WD_DESKTOP_PID=173" "WD_DESKTOP_HOST
=gblnt" "WD_DISPLAY=gblnt:0" "WD_OCO_OID=1212391543.1.178#TMF_Administrator:

 :Configuration_GUI#" "LANG=en"
]
 }
loc-ic 854 M-hdoq 1-838 206
 Time run: [Mon 16-Nov 00:35:55]
 Object ID: 1212391543.1.662
 Method: rpt
 Principal: TIVTOR\Administrator@gblnt.dev.t̂ C (10104288/0)
 Path: __gateway_internals_implid
 Trans Id:
 {
 1212391543:1,1212391543:1,39:1189
 }
 #4
 Input Data: (encoded):
16777216
 {
 16777216
 [
 {
 "1212391543.15.508+#TMF_Endpoint::Endpoint#"
 {
 0
 }
 }
]
 }
"engineUpdate"
 {
 "null" 0 false
 }
 0
 {
 637534208 "0x42 0x63 0x32 0x34 0x35 0x34 0x39 0x38 0x36 0x39 0x34 0x37 0x49

0x34 0x30 0x36 0x32 0x49 0x31 0x34 0x64 0x38 0x39 0x34 0x38 0x31 0x34 0x64
0x38 0x39 0x34 0x38 0x20 0x67 0x62 0x6c 0x6e 0x74 "

 }
loc-oc 854 448
 Results: (encoded):
 {
 16777216
{
 "1212391543.15.508+#TMF_Endpoint::Endpoint#"
}

Commands and Logs for Troubleshooting 161

Figure 57. HMAC Error in wtrace - Part 2 of 2

 12
{

"ExErrorMsg" 251658240 false
{

 "Exception:UserException:SysAdminException::ExException:ExErrorMsg
" "NULL" 0 "%7$M" -1111929034

 {
 16777216
 {
 "NULL" "decrypt_data: HMAC does not match encrypted data!" -1
 {
 "TMF_Types::_sequence_string_StringList"
 318767104 false
 {
loc-oc 815 e=12 1.2K
 Results: (encoded):
 "Exception:UserException:SysAdminException::ExException:SysAdminException::ExFailed"
 {
 "Exception:UserException:SysAdminException::ExException:
 SysAdminException::ExFailed" "CCMS_catalog" -620756992 "Distribute failed for

some subscribers:" -1011265738
 {
 33554432
 {
 "SysAdminException::ExFailed" 251658240 false
 {
 "Exception:UserException:SysAdminException::ExException:SysAdminException

::ExFailed" "CCMS_catalog" 738263040 "Distribute of profile ’%7$s’ failed
for some subscribers " -1011265738

 {
 "NT_Disk" }
{
 "SysAdminException::ExFailed" 251658240 false
 {
 "Exception:UserException:SysAdminException::ExException:SysAdminException

::ExFailed" "CCMS_catalog" -637534208 "Distribute failed for subscriber
’%7$s’: " -1111929034

 {
 16777216
 [
 {
 "ExErrorMsg" 251658240 false
 {
 "Exception:UserException:SysAdminException::ExException:

ExErrorMsg" "NULL" 0 "%7$M" -1111929034
 {
 0
 }
{
 16777216
 [
 {
 "NULL" "decrypt_data: HMAC does not match encrypted data!" -1
 {
 "TMF_Types::_sequence_string_StringList" 318767104 false
 {
 0
 }
]
 }
 "gblnt-epbad"
 }
 }
]
 }
 "NULL"
 }
162 Tivoli Enterprise Internals and Problem Determination

The problem, in this case, was that the endpoint had been reinstalled, but the
old subscriber had not been removed from the profile manager, and the old
endpoint had not been removed with wdelep followed by wchkdb -u. In this
case, any distribution to the old object will fail with the HMAC error. This
means that the gateway/repeater information for this endpoint is not correct.
Verify all endpoints (they must be on-line) with wep <EP_name> status and
delete those with wdelep that are redundant.

6.3.7 Damaged Database odstat and wtrace Example

In the remainder of this section, we try to figure out a way of resolving a far
more complex problem and one in which the odstat and wtrace does not
provide any errors of the type e=xx, as in the previous examples.

In this sample, an Administrator has attempted to rename a policy region
using low-level commands as a test to see if he could do so for all the policy
regions through a shell script, that is, changing the label of the OID.

The first run of wchkdb throws out an exception for every object within the
policy region, as shown in Figure 58:

Figure 58. Policy Region Label Change wchkdb Errors

There have been numerous notes throughout this redbook telling you not to
set attribute values with low-level commands. This is an example of how
the database can be damaged and the laborious procedure involved to
rectify the situation, if at all possible; in some cases, recovery may not be
possible at all. Use wtrace and ’w’ commands, but low-level commands
should only be used under direction from Tivoli support. Always backup
your database.

Note

wchkdb: Checking object database:
..
wchkdb: Processing "dev01_tasks" (1212391543.1.2371#TMF_Task::TaskLibrary#):
The cached policy region name "tivdev01-region" does not match the name of region
1212391543.1.2369#TMF_PolicyRegion::GUI#.
..
wchkdb: Processing "Sentry_dev_NT" (1212391543.1.2372#TMF_CCMS::ProfileManager#):
The cached policy region name "tivdev01-region" does not match the name of region
1212391543.1.2369#TMF_PolicyRegion::GUI#.
..
Commands and Logs for Troubleshooting 163

The Administrator issued the command idlattr -ts 1212391543.1.2369 label
Object tivprod01-region, and now the database is in a mess. This OID is that
of a policy region, and it was originally labelled tivdev01-region.

Our task is to try and fix this database problem.

We begin with tracing the wchkdb, but all we can see is that the lookup on the
name registry does show the new label/name for the policy region, and that
the check_db methods for the task library and Sentry policy region return the
same error messages seen above during the wchkdb. (We will show this
shortly). So, next we list the contents of /Library/PolicyRegion and compare
this output with wlookup -ar PolicyRegion to see if we can find any obvious
errors that we can fix. We do, in fact, find some discrepancies in these object
directories, but even after repairing what we see, the wchkdb still fails as
before.

We will now have to dig a little deeper to see which attributes would have to
be updated to correctly reflect the cross-referenced names as expected.
164 Tivoli Enterprise Internals and Problem Determination

Figure 59. Policy Region Label Change wtrace - Part 1 of 2

loc-ic 7079 M-hdq 1-7011 0
 Time run: [Thu 26-Nov 18:41:52]
 Object ID: 1212391543.1.2369#TMF_PolicyRegion::GUI#
 Method: get_type_name
 Principal: TIVTOR\Administrator@localhost (10104384/0)
 Path: /w32-ix86/TMF/BASESVCS/Policy_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,82:6024
 },
 {
 1212391543:1,1212391543:1,82:6025
 },
 {
 1212391543:1,1212391543:1,82:6093
 }
 #3
loc-is 7079 getattr 0 class_objid
 Time run: [Thu 26-Nov 18:41:52]
 Object ID: 1212391543.1.2369#TMF_PolicyRegion::GUI#
Method: get_type_name
loc-os 7079 getattr 58
 Time run: [Thu 26-Nov 18:41:52]
 Object ID: 1212391543.1.2369#TMF_PolicyRegion::GUI#
 Method: get_type_name
 Results: (binary) (dump suppressed)
loc-ic 7080 M-H 1-7079 0
 Time run: [Thu 26-Nov 18:41:52]
 Object ID: 1212391543.1.184#TMF_SysAdmin::InstanceManager#
 Method: _get_label
 Method Args: label
 Principal: TIVTOR\Administrator@localhost (0/0)
 Path: i_getattr
 Trans Id:
 {
 1212391543:1,1212391543:1,82:6024
 },
 {
1212391543:1,1212391543:1,82:6025
 },
 {
 1212391543:1,1212391543:1,82:6093
 },
 {
 1212391543:1,121239
loc-oc 7080 29
 Results: (encoded):
 "PolicyRegion"
loc-oc 7079 29
 Results: (encoded):
 "PolicyRegion"
loc-ic 7081 M-hdoq 1-7011 41
 Time run: [Thu 26-Nov 18:41:52]
 Object ID: 1212391543.1.26
 Method: local_lookup
 Principal: TIVTOR\Administrator@localhost (10104384/0)
 Path: /w32-ix86/TMF/BASESVCS/TNR_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,82:6024
 },
 {
 1212391543:1,1212391543:1,82:6025
 },
 {

1212391543:1,1212391543:1,82:6095
}
#3

 Input Data: (encoded):
 "PolicyRegion" "tivprod01-region"
Commands and Logs for Troubleshooting 165

Figure 60. Policy Region Label Change wtrace - Part 2 of 2

loc-oc 7081 111
 Results: (encoded):
 {
 "1212391543.1.2369#TMF_PolicyRegion::GUI#" "tivprod01-region"
 {
 "null" 0 false
 }
 }

loc-ic 7146 M-hdq Extern 12
 Time run: [Thu 26-Nov 18:41:53]
 Object ID: 1212391543.1.2371#TMF_Task::TaskLibrary#
 Method: check_db
 Principal: TIVTOR\Administrator@localhost (10104384/0)
 Path: /w32-ix86/TMF/BASESVCS/NameRegBase_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,82:6159
 },
 {
 1212391543:1,1212391543:1,82:6160
 }
 #3
 Input Data: (encoded):
 true 0 true
loc-ic 7147 M-hdq 1-7146 12
 Time run: [Thu 26-Nov 18:41:53]
 Object ID: 1212391543.1.2371#TMF_Task::TaskLibrary#
 Method: check_db
 Principal: TIVTOR\Administrator@localhost (10104384/0)
 Path: /w32-ix86/TMF/BASESVCS/Collection_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,82:6159
 },
 {
 1212391543:1,1212391543:1,82:6160
 },
 {
 1212391543:1,1212391543:1,82:6161
 }
 #3
 Input Data: (encoded):
 true 0 true

loc-oc 7147 627
 Results: (encoded):
 {
 16777216
 [
 {
"Exception:UserException:SysAdminException::ExException:TMF_Application::DBCheckException:TMF_SysAdmin_DBCheck:
:RegionDBCheck::ExBadPRName"
 {
"TMF_SysAdmin_DBCheck::RegionDBCheck::ExBadPRName"
 251658240 false
 {
"Exception:UserException:SysAdminException::ExException:TMF_Application::DBCheckException:TMF_SysAdmin_DBChe
ck::RegionDBCheck::ExBadPRName" "checkdb_errors" 268435456 "The cached policy region name "%8$s" does not match the
name of region %7$s." 1105681718
 {
 0
 }
"1212391543.1.2369#TMF_PolicyRegion::GUI#" "tivdev01-region"
 }
166 Tivoli Enterprise Internals and Problem Determination

As stated before, the wtrace does not help us in any way. We will now show
the discrepancies in /Library/PolicyRegion and wlookup -ar PolicyRegion and
then fix them.

Figure 61. Policy Region Label Change wls and wlookup Output

As seen in Figure 61, the lookup of all policy regions shows two instances of
the same OID but with unique labels. The OID is 1212391543.1.2369.

After unregistering tivdev01-region with the name registry, the wlookup output
is as expected:

Figure 62. Policy Region Label Change Name Registry Correction

G:\tmp>wlookup -ar PolicyRegion
ACPdefault 1212391543.1.604#TMF_PolicyRegion::GUI#
TEC36Region 1212391543.1.572#TMF_PolicyRegion::GUI#
TME 10 Security 1212391543.1.1253#TMF_PolicyRegion::GUI#
Test1 1212391543.1.1286#TMF_PolicyRegion::GUI#
Test2 1212391543.1.1288#TMF_PolicyRegion::GUI#
Tivoli/Sentry Defaults-gblnt-region 1212391543.1.744#TMF_PolicyRegion::GUI#
TivoliDefaultPhoneRegion 1212391543.1.866#TMF_PolicyRegion::GUI#
TivoliDefaultSecurityPolicyRegion 1212391543.1.1244#TMF_PolicyRegion::GUI#
tivprod01-region 1212391543.1.2369#TMF_PolicyRegion::GUI#
gblnt-region 1212391543.1.195#TMF_PolicyRegion::GUI#
tivdev01-region 1212391543.1.2369#TMF_PolicyRegion::GUI#

G:\tmp>wls -l /Library/PolicyRegion
1212391543.1.195#TMF_PolicyRegion::GUI# gblnt-region
1212391543.1.572#TMF_PolicyRegion::GUI# TEC36Region
1212391543.1.604#TMF_PolicyRegion::GUI# ACPdefault
1212391543.1.744#TMF_PolicyRegion::GUI# Tivoli/Sentry Defaults-gblnt-region
1212391543.1.866#TMF_PolicyRegion::GUI# TivoliDefaultPhoneRegion
1212391543.1.1244#TMF_PolicyRegion::GUI# TivoliDefaultSecurityPolicyRegion
1212391543.1.1253#TMF_PolicyRegion::GUI# TME 10 Security
1212391543.1.1286#TMF_PolicyRegion::GUI# Test1
1212391543.1.1288#TMF_PolicyRegion::GUI# Test2
1212391543.1.2369#TMF_PolicyRegion::GUI# tivprod01-region

G:\tmp>wregister -ur PolicyRegion tivdev01-region

G:\tmp>wlookup -ar PolicyRegion
ACPdefault 1212391543.1.604#TMF_PolicyRegion::GUI#
TEC36Region 1212391543.1.572#TMF_PolicyRegion::GUI#
TME 10 Security 1212391543.1.1253#TMF_PolicyRegion::GUI#
Test1 1212391543.1.1286#TMF_PolicyRegion::GUI#
Test2 1212391543.1.1288#TMF_PolicyRegion::GUI#
Tivoli/Sentry Defaults-gblnt-region 1212391543.1.744#TMF_PolicyRegion::GUI#
TivoliDefaultPhoneRegion 1212391543.1.866#TMF_PolicyRegion::GUI#
TivoliDefaultSecurityPolicyRegion 1212391543.1.1244#TMF_PolicyRegion::GUI#
tivprod1-region 1212391543.1.2369#TMF_PolicyRegion::GUI#
gblnt-region 1212391543.1.195#TMF_PolicyRegion::GUI#
Commands and Logs for Troubleshooting 167

Unfortunately, wchkdb still fails as before.

We now have to think of what attributes for the task library and the Sentry
profile manager will reference the policy region. In Figure 63, we use objcall
OID contents to list the attributes of the task library object:

Figure 63. Attributes of Task Library

In Figure 64,we check the pro_name attribute with an objcall and correct it
using idlattr:

Figure 64. Correcting Profile Manager Name for Task Library Object

Updating this attribute value did not resolve the problem either. Let us
attempt to return the policy region label to the original from the Tivoli desktop.
This too fails due to an object of type Presentation already in existence with
the same old label of tivdev01-region.

We can see this failure in the following wtrace of the operation to change the
policy region label from the desktop:

bash$ objcall 1212391543.1.2372 contents
ATTRIBUTE:_BOA_id
ATTRIBUTE:class_objid
ATTRIBUTE:collections
ATTRIBUTE:databases
ATTRIBUTE:flags
ATTRIBUTE:label
ATTRIBUTE:last_failed
ATTRIBUTE:members
ATTRIBUTE:pres_object
ATTRIBUTE:pro
ATTRIBUTE:pro_name
ATTRIBUTE:profile_push_order
ATTRIBUTE:push_trans_commit_behavior
ATTRIBUTE:resource_host
ATTRIBUTE:skeleton
ATTRIBUTE:sort_name
ATTRIBUTE:state
ATTRIBUTE:subscribers
ATTRIBUTE:subscriptions

G:\tmp>objcall 1212391543.1.2372 getattr pro_name
d tivdev01-region

idlattr -ts 1212391543.1.2372 pro_name Object tivprod01-region
168 Tivoli Enterprise Internals and Problem Determination

Figure 65. Desktop Policy Region Label Change Failure wtrace - Part 1 of 2

loc-is 14178 getattr 0 pres_object
 Time run: [Thu 26-Nov 20:55:11]
 Object ID: 1212391543.1.2369#TMF_PolicyRegion::GUI#
 Method: _set_label
loc-os 14178 getattr 50
 Time run: [Thu 26-Nov 20:55:11]
 Object ID: 1212391543.1.2369#TMF_PolicyRegion::GUI#
 Method: _set_label
 Results: (binary) (dump suppressed)
loc-ic 14179 M-hdq 1-14178 26
 Time run: [Thu 26-Nov 20:55:11]
 Object ID: 1212391543.1.2370#TMF_UI::Presentation#
 Method: _set_label
 Principal: TIVTOR\Administrator@localhost (10104288/0)
 Path: /w32-ix86/TMF/BASESVCS/NameRegBase_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,83:12118
},
 {
 1212391543:1,1212391543:1,83:12119
 }
 #1
 Input Data: (encoded):
 "tivdev01-region"
loc-is 14179 getattr 0 label
 Time run: [Thu 26-Nov 20:55:11]
 Object ID: 1212391543.1.2370#TMF_UI::Presentation#
 Method: _set_label
loc-ic 14180 M-hdq 1-14179 26
 Time run: [Thu 26-Nov 20:55:11]
 Object ID: 1212391543.1.2370#TMF_UI::Presentation#
 Method: _set_label
 Principal: TIVTOR\Administrator@localhost (10104288/0)
 Path: /w32-ix86/TMF/BASESVCS/Policy_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,83:12118
 },
 {
 1212391543:1,1212391543:1,83:12119
 },
 {
 1212391543:1,1212391543:1,83:12120
 }
 #3
 Input Data: (encoded):
 "tivdev01-region"
loc-is 14180 setattr 26 label
 Time run: [Thu 26-Nov 20:55:11]
 Object ID: 1212391543.1.2370#TMF_UI::Presentation#
 Method: _set_label
 Input Data: (encoded):
 "tivdev01-region"
Commands and Logs for Troubleshooting 169

Figure 66. Desktop Policy Region Label Change Failure wtrace - Part 2 of 2

What we have discovered is that there is an OID 1212391543.1.2370 that has
the policy region label. In Figure 67 on page 171, we will try to set this to
tivprod01-region.

loc-os 14180 setattr 0
 Time run: [Thu 26-Nov 20:55:11]
 Object ID: 1212391543.1.2370#TMF_UI::Presentation#
 Method: _set_label
loc-ic 14182 M-hdq 1-14180 76
 Time run: [Thu 26-Nov 20:55:11]
 Object ID: 1212391543.1.132#TMF_TNR::InstanceManager#
 Method: update_label
 Principal: TIVTOR\Administrator@localhost (10104288/0)
 Path: /w32-ix86/TMF/BASESVCS/Collection_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,83:12118
 },
 {
 1212391543:1,121
 Input Data: (encoded):
 "1212391543.1.2370#TMF_UI::Presentation#" "tivdev01-region"
loc-ic 14185 M-hdoq 1-14179 75
 Time run: [Thu 26-Nov 20:55:12]
 Object ID: 1212391543.1.26
 Method: change_label
 Principal: TIVTOR\Administrator@localhost (10104288/0)
 Path: /w32-ix86/TMF/BASESVCS/TNR_prog1
 Trans Id:
 {
 1212391543:1,1212391543:1,83:12118
 },
 #3
 Input Data: (encoded):
 "Presentation" "tivdev01-region" "tivdev01-region"
loc-oc 14185 e=12 509
 Results: (encoded):
 "Exception:UserException:SysAdminException::ExException:SysAdminE
 xception::ExInvalid:SysAdminException::ExExists:SysAdminException:
 :ExEntryExists"
 {
 "Exception:UserException:SysAdminException::ExException:
 SysAdminException::ExInvalid:SysAdminException::ExExists:
 SysAdminException::ExEntryExists" "TNR_errors" 100663296
 "A resource instance of type "%8$s" named "%7$s" already exists."
 -2147066314
 {
 0
 }
 "tivdev01-region#1212391543" "Presentation"
170 Tivoli Enterprise Internals and Problem Determination

Figure 67. Correcting the Label of the Presentation Object

The final check of the database above ultimately corrects the last problems
by updating the name registry entry, and a subsequent wchkdb runs clear.

We have, eventually, fully recovered!

6.4 Log Files in the Database Directory

The DBDIR environment variable points to the Tivoli management database
directory. This directory contains a number of potentially useful log files listed
in Figure 68 (from a UNIX system):

Figure 68. Log Files in $DBDIR

The odb.log, notice.log, and gwdb.log are transaction files, explained in 6.4.1,
“Transaction Log Files and tmstat” on page 172.

The odtrace.log can not be read by normal editors, it is parsed by the wtrace
command (see 6.3, “The wtrace Command” on page 140) and is a log of
oserv errors, object method invocations, and ALI services.

The epmgrlog and gatelog files are new from Version 3.2. They are text files
that record status information about the endpoint manager and gateway as
well as transactions between the endpoint manager, gateway, and endpoint.

idlattr -tg 1212391543.1.2370 label string
"tivdev01-region"

idlattr -ts 1212391543.1.2370 label Object tivprod01-region

G:\Tivoli\db\gblnt.db>wchkdb -u

wchkdb: Preparing object lists:
wchkdb: Checking object database:
..
wchkdb: Processing "tivprod01-region" (1212391543.1.2370#TMF_UI::Presentation#):
 The object named "tivprod01-region" of type "Presentation" does not have an entry in
the name registry when it should.

-rw-rw-rw- 1 0 0 83077 Nov 16 20:50 epmgrlog
-rw-rw-rw- 1 0 0 6888 Nov 16 20:50 gatelog
-rw-rw-rw- 1 0 0 0 Nov 16 22:14 gwdb.log
-rw-rw-rw- 1 0 0 0 Nov 16 20:46 notice.log
-rw-rw-rw- 1 0 0 0 Nov 16 22:14 odb.log
-rw-rw-rw- 1 0 0 1048576 Nov 16 00:35 odtrace.log
-rw-rw-rw- 1 0 0 33013 Nov 17 13:25 oservlog
Commands and Logs for Troubleshooting 171

These files are covered in sections 6.4.3, “The epmgrlog File” on page 178
and 6.4.4, “The gatelog File” on page 178.

The oservlog captures all error and information messages from the oserv
daemon and is a text file explained in 6.4.2, “The oservlog File” on page 175.

For a TMA endpoint, the /Tivoli/lcf/dat directory will contain a log file called
lcdf.log. This is described in 6.5, “Endpoint lcfd.log File” on page 181.

6.4.1 Transaction Log Files and tmstat
The odb.log, notice.log and gwdb.log are used by the oserv, notices, and
gateway daemons, respectively. They should never be erased because they
could contain transaction data. The odb.log, notice.log, and gwdb.log are
used by Tivoli to allow roll-back of database transactions on odb.bdb,
notice.bdb, and gwdb.bdb database files in the event of a transaction failure
or abort. They may increase in size while transactions are still pending, but
once transactions are completed (committed), they should return to zero.

You can use tmstat to check for transaction locks. If they do not return to a
zero file size, then that could be an indicator of a problem.

An odadmin db_sync will flush the object database, which should zero the log
file. This synchronization process occurs naturally in the oserv every three
minutes. Do NOT delete any of these log files.

The logls command can be used to output a readable version of a transaction
log file. Working with transactions is not a common problem determination
technique; so, the output will not be meaningful to you unless you are already
familiar with Tivoli transactions.

6.4.1.1 The tmstat Command
The tmstat command provides a way to interact with Tivoli transactions. As
already stated, anything that could potentially modify transactions should be
used with caution. Unless directed by Tivoli Support, you are only likely to use
tmstat to look at the current status of transactions.

Modifying Tivoli transactions should NOT be used as a routine method of
problem determination. Altering transaction data can have serious and
irreversible affects on the operation of a TMR. We advise you to use this
information to find out more about what is going on in the TMR and use
other methods to attempt to rectify problems.

Note
172 Tivoli Enterprise Internals and Problem Determination

Figure 69. Sample of tmstat Output - Part 1 of 2

Figure 69 shows the first part of a tmstat output obtained by running tmstat
-av. The information presented is as follows:

A Transaction ID (contains three parts):
 • Home region and dispatcher number
 • Originating region and dispatcher number
 • Transaction thread ID (two part colon-separated number)

B Type of transaction
C State of transaction
D Some specific Resources are allocated to the transaction - Yes/No
E Polling indicates if transaction is waiting or active
F Indicates if Coordinator Manager is active
G Indicates if parent process is active
H Indicates thread assigned to process

Transactions for 0.0.0

 A B C D E F G H
 Trid Type State Resources Polling Coord Parent MTid
 --
{1212391543:1,1212391543:1,100:310}
 Top-T running No No running running 642
{1212391543:1,1212391543:1,100:310},{1212391543:1,1212391543:1,100:311}
 Revoke-Trunning No No running running 643
{1212391543:1,1212391543:1,100:310},{1212391543:1,1212391543:1,100:311},
{1212391543:1,1212391543:1,100:325}
 Revoke-Tcommit Yes Yes running running 663
Commands and Logs for Troubleshooting 173

Figure 70. Sample of tmstat Output - Part 2 of 2

The information in the second part of the tmstat output, shown in Figure 70,
appears when locks are present and is as follows:

A Identifies the Object ID and name of a locked resource
B Identifies the Transaction ID of all transactions in the hierarchy that own

the lock
C State of transaction - held or released
D Mode of the lock - read or write

6.4.1.2 Troubleshooting Process Locks
The best approach is to find the Top level transaction that holds the lock of
the resource that is causing the process to lock with tmstat, then kill the
corresponding process for this thread ID, as found in odstat. If it is not
possible to kill the process, then you could use tmcmd to abort this Top level
transaction ID (see below). The abort should cause the locks to be released
and, thus, allow the blocked process to run normally. By aborting the Top
level transaction, all temporarily held data changes are rolled back. This
should result in a consistent state for any of the objects involved in that
transaction.

n_active = 15 n_free = 185
tid type ptid State StdO StdE Start Err Method
633 O+hdoq 1-77 run 0 0 11:40:00

1212391543.1.2307#TMF_PcManagedNode::Pc_Managed_Node# push_copy_in
642 O+hdoq 1-633 run 0 0 11:40:04

1212391543.1.1409#TMF_CCMS::ProfileManager# default_push_profiles
643 O+hdoq 1-642 run 0 0 11:40:05

1212391543.1.1410#FilePackage::FpoCore# default_push
673 O+ho 1-643 run 0 0 11:40:11

1212391543.1.347#TMF_ManagedNode::Managed_Node# fp_dist
693 O+ahdoq 1-673 run 0 0 11:40:19

1212391543.1.2307#TMF_PcManagedNode::Pc_Managed_Node# fps_install

Locks for 0.0.0
Object Name
--
1212391543.1.26 NameRegistry!PcManagedNode <------------- A

 ----Locker--------------State----Mode-----
{1212391543:1,1212391543:1,100:310},{1212391543:1,1212391543:1,100:311}

 held read
1212391543.1.26 NameRegistry!EndpointManager

 ----Locker--------------State----Mode-----
{1212391543:1,1212391543:1,100:310},{1212391543:1,1212391543:1,100:311},
{1212391543:1,1212391543:1,100:330}

 ^ held read
 | ^ ^
 | | |
 B C D
174 Tivoli Enterprise Internals and Problem Determination

 • To prevent false reporting of data and errors, processes that lock should
only be terminated from the Top transaction.

If only the offending Sub transaction is terminated, only portions of the
transaction may be rolled back causing potential future problems.
Therefore, only kill Top level transactions if possible.

In the above examples, if we had a problem, and found we could not kill the
processes for thread IDs 633 or 642 (push_copy_in and
default_push_profiles), we could abort the transaction with the command:

tmcmd abort {1212391543:1,1212391543:1,100:310}

To determine if you have a process lock problem, you can monitor the odb.log
file (found in $DBDIR for Unix and %DBDIR% for NT). See Chapter 6,
“Commands and Logs for Troubleshooting” on page 131 for more information
about odb.log. If this file stays at a constant size, or more importantly,
consistently grows in size for no obvious reason, then you may have a lock
problem.

6.4.2 The oservlog File
This can be a very helpful file, providing information about the oserv daemon,
such as when it started, shutdowns, errors, and information messages.

The following is an explanation of some of the more common errors you may
see in the oservlog:

6.4.2.1 Hdaemon Exit while in Use
This error message is followed by a hexadecimal exit code that corresponds
to an exit code in odstat. Usually, this is used when the oserv has crashed or
is not running. Sometimes, it can be the scheduler daemon.

The more common error codes are: a, b, 1, 5, 9. These translate to s=10, s=11,
e=1, e=5, and e=9, respectively.

6.4.2.2 Cannot Map Address
This error message displays when the oserv receives a request from an IP
address that is not registered in odadmin odlist. It gives the IP address in

We do not recommend that you manually kill transactions. This example is
provided to show you the process if you are directed to do this by Tivoli
Support or if you have a test TMR that you do not mind trashing.

Important
Commands and Logs for Troubleshooting 175

hexadecimal. The address can be translated by taking every two digits and
translating them from hexadecimal to decimal. This message is common with
multi-interface systems.

When you find this error you have to:

1. Convert the address to dotted decimal format.

For example: x’B35487B’ is 11.53.72.123

2. Determine the correct dispatcher number for this address.

3. Add the new address in the Tivoli Database using odadmin odlist

add_ip_alias .

An example of handling this error is as follows:

Convert the address two hex digits at a time from right to left. This is
because, if the address begins with zero, the leading zero will be
dropped from the hexadecimal number displayed.

Note
176 Tivoli Enterprise Internals and Problem Determination

Figure 71. Typical oservlog Output

6.4.2.3 ipc_accept Failed: IPC Shutdown
This message generally appears if the oserv is shut down while the desktop
is up. Some inter-process communication (IPC) function died. The wtrace
output will show the time of failure.

This message states that the oserv is unable to start. In this example,
destination dispatcher unavailable means either the client is not able to

more oservlog
Oct 27 16:58:01: /̂usr/local/Tivoli/bin/aix4-r1/TAS/SCHEDULER/TMF_sched killed by
signal 15
Oct 27 16:59:31: $Exiting gracefully, saving id’s...
Oct 27 16:59:31: $reexec: started
Oct 27 16:59:36: TME 10 Framework (tmpbuild) #1 Thu Oct 3 08:08:58 CDT 1996
Copyright Tivoli Systems, an IBM Company, 1996. All Rights Reserved.
TMR 1264987995. ORB 1. TMR server local:94. Port 94.
Oct 27 14:58:31: @Cannot map address 635a2070 port 94 to an odnum

bc
ibase=16
70
112
20
32
5A
90
63
99
quit

odadmin odlist add_ip_alias 2 99.90.32.112
odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1264987995 1 ct- 94 9.3.1.234 rh0255b.itsc.austin.ibm.com
 2 ct- 94 9.3.1.233 rh0255a.itsc.austin.ibm.com

99.90.32.112 99.90.32.112
1562489759 1 ct- 94 9.3.1.235 rh0255c.itsc.austin.ibm.com
odadmin odlist add_hostname_alias 2 99.90.32.112 newalias
#odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1264987995 1 ct- 94 9.3.1.234 rh0255b.itsc.austin.ibm.com
 2 ct- 94 9.3.1.233 rh0255a.itsc.austin.ibm.com

99.90.32.112 99.90.32.112 newalias
1562489759 1 ct- 94 9.3.1.235 rh0255c.itsc.austin.ibm.com
odadmin odlist delete_ip_alias 2 99.90.32.112 99.90.32.112
odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1264987995 1 ct- 94 9.3.1.234 rh0255b.itsc.austin.ibm.com
 2 ct- 94 9.3.1.233 rh0255a.itsc.austin.ibm.com
 99.90.32.112 newalias
1562489759 1 ct- 94 9.3.1.235 rh0255c.itsc.austin.ibm.com
Commands and Logs for Troubleshooting 177

contact the server, or the server does not recognize the client. This problem
usually occurs with multiple network interfaces.

6.4.2.4 @od_init: Unable to Establish Connection to ALI
The client cannot contact the TMR server. The client cannot resolve the name
it has for the server.

6.4.2.5 !oserv:odlist init Failed. IPC Shutdown
An inter-process communication (IPC) function died unexpectedly.

6.4.2.6 !oserv:odlist init Failed. System Call Failed
Some system function failed. Sometimes, you may be able to find a
system-generated message or message number in a log.

6.4.3 The epmgrlog File
This text file will only exist on the TMR server as it is an endpoint manager.

Figure 72 is an example of epmgrlog showing an endpoint login:

Figure 72. Typical epmgrlog Output - Endpoint Login

6.4.4 The gatelog File
This flat text file will exist on any managed node that is defined as a gateway
(including the TMR server). The amount of information logged in this file
depends on the logging level set.

Some examples of gatelog are shown in the following figures, Figure 73 on
page 179 and Figure 74 on page 180:

1998/11/16 22:04:10 +05: * * * booting
1998/11/16 22:04:18 +05: opening 1212391543.1.662
1998/11/16 22:04:18 +05: found 4 endpoints from itso1_gw
1998/11/16 22:04:22 +05: endpoint prototype 508
1998/11/16 22:04:22 +05: * * * boot complete
1998/11/16 22:04:25 +05: iom query 1212391543.1.662
1998/11/16 22:04:32 +05: get_endpoints: Requesting search for 1212391543.18.508+
#TMF_Endpoint::Endpoint#
1998/11/16 22:04:41 +05: get_endpoints: Requesting search for 1212391543.18.508+
#TMF_Endpoint::Endpoint#
1998/11/16 22:09:42 +05: dispatcher 18 logging in with code 2
1998/11/16 22:09:42 +05: 1212391543.18.508+ assigned to 1212391543.1.662#TMF_Gateway::Gateway#
1998/11/16 22:09:43 +05: - itso4-ep 1212391543.18.508+#TMF_Endpoint::Endpoin
t# 1212391543.1.662#TMF_Gateway::Gateway#
1998/11/16 22:09:43 +05: + itso4-ep 1212391543.18.508+#TMF_Endpoint::Endpoin
t# 1212391543.1.662#TMF_Gateway::Gateway#
1998/11/16 22:09:43 +05: writing epmgr.bdb/1212391543.1.662.bdb for 18
1998/11/16 22:09:43 +05: updating ali map
178 Tivoli Enterprise Internals and Problem Determination

Figure 73. Typical Gatelog with Default Debug Level of 0

1998/11/06 11:09:45 +06: gateway boot: started booting.
1998/11/06 11:09:45 +06: gateway boot: debug level is 9.
1998/11/06 11:09:46 +06: gateway boot: endpoint manager is 1351550138.1.517#TMF_
LCF::EpMgr#.
1998/11/06 11:09:46 +06: gateway boot: endpoint prototype is 508.
1998/11/06 11:09:46 +06: gateway boot: impl root is c:/Tivoli/bin/lcf_bundle.
1998/11/06 11:09:46 +06: gateway boot: port is 9494.
1998/11/06 11:09:46 +06: found network interface: 146.84.32.173
1998/11/06 11:09:47 +06: gateway boot: received ep cache from epmgr containing 5
 items.
1998/11/06 11:09:47 +06: tcp server: waiting for connection on 0.0.0.0+9494...
1998/11/06 11:09:47 +06: udp server: waiting for connection on 0.0.0.0+9494...
1998/11/06 11:09:47 +06: starting dbcheck
1998/11/06 11:09:47 +06: gateway boot: gateway boot completed successfully.
1998/11/06 11:09:47 +06: dbcheck: cache is clean
1998/11/06 11:09:47 +06: dbcheck: finished
1998/11/06 11:11:23 +06: dgram in: 514 bytes
1998/11/06 11:11:23 +06: udp server: waiting for connection on 0.0.0.0+9494...
1998/11/06 11:11:23 +06: sched: got a job
Commands and Logs for Troubleshooting 179

Figure 74. Sentry Profile Distribution Gatelog - Debug Level 6

1998/11/20 11:06:02 +05: tcp server: waiting for connection on 0.0.0.0+9494...
1998/11/20 11:06:02 +05: mdist: Registering Repeater Manager: 1212391543.1.365
1998/11/20 11:06:02 +05: reader_thread: received data: session=2f, type=16, len=218
1998/11/20 11:06:02 +05: new_session: 20f30a1f, connecting to 146.84.32.186+1450...
1998/11/20 11:06:03 +05: upcall start: from=146.84.32.186+1450, class=SentryGateway,
method=ChangeIcon
1998/11/20 11:06:03 +05: mdist: TMF_rptm_mgr::rpt_register called, tuning parms:
1998/11/20 11:06:03 +05: mdist: mem_max = 10000
1998/11/20 11:06:03 +05: mdist: disk_max = 50000
1998/11/20 11:06:03 +05: mdist: disk_hiwat = 50000
1998/11/20 11:06:03 +05: mdist: disk_time = 1
1998/11/20 11:06:03 +05: mdist: disk_dir = g:/Tivoli/db/gblnt.db/tmp/
1998/11/20 11:06:03 +05: mdist: net_load = 500
1998/11/20 11:06:03 +05: mdist: max_conn = 100
1998/11/20 11:06:03 +05: mdist: stat_intv = 180
1998/11/20 11:06:03 +05: mdist: Opening cache file: g:\Tivoli\db\gblnt.db\tmp\pmap2
1998/11/20 11:06:03 +05: mdist: in_spool_thread started: TID = 1386e58
1998/11/20 11:06:04 +05: mdist: out_spool_thread started: tid = 1386ed8 client =
[1212391543.47.508+#TMF_Endpoint::Endpoint#]
1998/11/20 11:06:04 +05: mdist: in_spool_thread finished: TID = 1386e58
1998/11/20 11:06:04 +05: downcall: Method body /bin/w32-ix86/TME/SENTRY/dogEndpoint found.
1998/11/20 11:06:04 +05: downcall: dependency /lib/w32-ix86/libccms_lcf.dll found.
1998/11/20 11:06:04 +05: downcall: dependency /sentry/w32-ix86/wntmon.exe found.
1998/11/20 11:06:04 +05: downcall: dependency /sentry/w32-ix86/wntmon.dll found.
1998/11/20 11:06:04 +05: downcall: dependency /sentry/w32-ix86/wntevlog.exe found.
1998/11/20 11:06:05 +05: downcall: dependency /bin/w32-ix86/tools/ntprocinfo.exe found.
1998/11/20 11:06:05 +05: downcall: dependency /bin/w32-ix86/tools/ntfsinfo.exe found.
1998/11/20 11:06:05 +05: downcall: dependency /bin/w32-ix86/tools/sh.exe found.
1998/11/20 11:06:05 +05: downcall: dependency /bin/w32-ix86/tools/bash.exe found.
1998/11/20 11:06:05 +05: downcall: dependency /bin/w32-ix86/tools/awk.exe found.
1998/11/20 11:06:05 +05: downcall: dependency /bin/w32-ix86/tools/perl.exe found.
1998/11/20 11:06:05 +05: downcall: dependency /bin/w32-ix86/tools/touch.exe found.
.
.
1998/11/20 11:06:05 +05: downcall: dependency /msg_cat/C/SentEng.cat found.
1998/11/20 11:06:05 +05: downcall: dependency /msg_cat/fr_FR/SentEng.cat found.
1998/11/20 11:06:05 +05: downcall: dependency /msg_cat/ja_JP/SentEng.cat found.
1998/11/20 11:06:06 +05: downcall: dependency /msg_cat/pt_BR/SentEng.cat found.
1998/11/20 11:06:06 +05: downcall: dependency /sentry/generic/SNMP/Compaq.OID found.
1998/11/20 11:06:06 +05: downcall: dependency /sentry/generic/SNMP/rfc1213.OID found.
1998/11/20 11:06:06 +05: destroying session 20f30a1f
1998/11/20 11:06:06 +05: idmap: user ($root_user,w32-ix86) -> Administrator
1998/11/20 11:06:06 +05: new_session: 20f30a20, connecting to 146.84.32.186+1322...
1998/11/20 11:06:11 +05: reader_thread: received data: session=20f30a20, type=9, len=52
1998/11/20 11:06:11 +05: reader_thread: received data: session=20f30a20, type=5, len=72
1998/11/20 11:06:11 +05: destroying session 20f30a20
1998/11/20 11:06:11 +05: mdist: Finished out_spool to 1212391543.47.508+#TMF_Endpoint::Endpoint#
1998/11/20 11:06:11 +05: mdist: Result length for 1212391543.47.508+#TMF_Endpoint::Endpoint# = 0
1998/11/20 11:06:11 +05: mdist: out_spool_thread finished: tid = 1386ed8 client =
[1212391543.47.508+#TMF_Endpoint::Endpoint#]
1998/11/20 11:06:11 +05: reconnect_thread: connection from 146.84.32.186+1462
180 Tivoli Enterprise Internals and Problem Determination

With debug level 6, all endpoint login attempts, as well as upload and
download calls to or from the endpoint, will be written to the log. Refer to the
wgateway command for more information on setting the debug level.

6.5 Endpoint lcfd.log File

The lcfd.log file can be found in the /Tivoli/lcf/dat directory and will contain a
log of the endpoint login as well as any upload or download calls to or from
the gateway. The amount of data recorded depends on the logging, or debug
level. This section shows examples of the log and tells you how to set the
level.

Figure 75 shows an example of lcfd.log. This log was produced at debugging
level 1 when a Tivoli Inventory profile was distributed:

Figure 75. Typical lcfd.log - Inventory Profile Distribution

The log in Figure 76 was also taken using debug level 1 and shows the
messages logged when the gateway is not available:

Figure 76. Typical lcfd.log - Gateway Unavailable

Nov 17 21:08:00 1 lcfd node_login: listener addr ’0.0.0.0+2950’
Nov 17 21:08:02 1 lcfd gblnt-eplocal is dispatcher 22 in region 1212391543
Nov 17 21:08:02 1 lcfd write login file ’lcf.dat’ complete
Nov 17 21:08:02 1 lcfd Logging into new gateway...
Nov 17 21:08:02 1 lcfd gblnt-eplocal is dispatcher 22 in region 1212391543
Nov 17 21:08:02 1 lcfd write login file ’lcf.dat’ complete
Nov 17 21:08:02 1 lcfd final pid: 398
Nov 17 21:08:02 1 lcfd Login to gateway 127.0.0.1+9494 complete.
Nov 17 21:08:02 1 lcfd Ready. Waiting for requests (0.0.0.0+2950). Timeout 120.

Nov 17 21:37:51 1 lcfd Spawning:
g:\Tivoli\lcf\dat\3\cache\bin\w32-ix86\TME\INVENTORY\INV_ENDPT\inv_endpt_meths.exe, ses: 17bfda6a
Nov 17 21:42:40 1 lcfd Spawning:
g:\Tivoli\lcf\dat\3\cache\bin\w32-ix86\TME\INVENTORY\INV_ENDPT\inv_endpt_meths.exe, ses: 17bfda6b

Nov 17 13:56:42 1 lcfd Doing initial login broadcast...
Nov 17 13:56:42 1 lcfd No gateway found.
Nov 17 13:56:43 1 lcfd node_login: listener addr ’0.0.0.0+2950’
Nov 17 13:56:43 1 lcfd Trying last known gateway ...
Nov 17 13:57:28 1 lcfd gw login failure: i=2147483647 : ../../src/comm/netio.c:2
13 [cti_create_client or cti_timed_create_client] : loc=3, cls=2, dec=999, sys=1
0060, tli=0, evt=0
Nov 17 13:58:13 1 lcfd gw login failure: i=0 : ../../src/comm/netio.c:213 [cti_c
reate_client or cti_timed_create_client] : loc=3, cls=2, dec=999, sys=10060, tli
=0, evt=0
Nov 17 13:58:13 0 lcfd 11/17/98 01:57:44 (4): resource ‘’ not found
Commands and Logs for Troubleshooting 181

The debug level of lcfd can be changed during start-up with the -d flag. Refer
to the lcfd command in the Tivoli Framework Reference Manual.

Other important files in the /Tivoli/lcf/dat directory on the endpoint are the
last.cfg configuration file and lcf.dat file, which contains the list of available
gateways and the endpoint OID.

The cache sub-directory will contain the binaries downloaded from all method
calls to the gateway.

6.6 Other Commands

This section gives short descriptions of a number of commands you may use
in certain problem determination exercises. The full syntax of each command
is given in the Tivoli Framework Reference Manual. It is strongly
recommended that, if you are going to be using any commands that directly
manipulate the object database, you become familiar with the Tivoli
Advanced Development Environment (ADE) documentation. The ADE
manuals go into much more detail about the use and structure of the object
database.

6.6.1 The objcall Command
Request the specified object to run the specified method with zero or more
arguments. This command exits with the method’s exit code and is only used
for non-IDL methods.

No Tivoli role is required to run the objcall command, but you must have the
roles required by the method you want to run:

Most activities described in this book do not involve changes to the object
database. However, direct object invocations, IDL calls, and attribute
changes in the Tivoli object database have the potential to cause
unpredictable results and possibly the complete failure of your TMR.
Recovery, if at all possible, would usually involve at least a restore of the
object database. Tivoli support personnel are unlikely to be able to assist in
rectifying such changes. We recommend you back up your object database
before performing any direct manipulation. Test changes first on an
isolated test TMR and keep a log of every action performed.

Important
182 Tivoli Enterprise Internals and Problem Determination

objcall [-a] [-b] [-c group:role:...] [-e] [-F filedescriptor] [-k
len] [-n] [-p port] [-s] [-T transtype] OID METHOD [args...]

For example, we can run an object’s contents method using the format
objcall OID method as follows:

Various methods are documented throughout the product chapters. Check
the index under method for a list of those covered in this publication.

6.6.2 The idlcall Command
Invokes IDL operations from the shell command line. In practice, we will use
idlcall to provide output in a slightly different (often cleaner) format than
objcall when exporting and importing data for scripts:

idlcall [-T transtype][-v] targetobject operationID [args]

The targetobject argument specifies the clear text string representation of
the target; in Tivoli, we use the OID.

The operationID specifies the operation name, optionally fully qualified as a
CORBA repository ID (for example TMF_Task::TaskLibrary::remove_job).

The args specifies any input or in/out arguments.

For example:

idlcall 1264987995.1.345 TMF_task::TaskLibrary::remove_job job_name

6.6.3 The idlattr Command
This command gets or sets object implementation attributes:

idlattr -t [-s | -a | -g | -v] targetobject attrname typename [value]

The -t indicates that the argument list contains the attribute type name in the
CORBA repository ID format (this is required).

The -s or -g indicate a set or get operation.

objcall 1264987995.1.227 contents
ATTRIBUTE:_BOA_id
ATTRIBUTE:actions
ATTRIBUTE:behavior
ATTRIBUTE:class_objid
ATTRIBUTE:class_type
ATTRIBUTE:collections
Commands and Logs for Troubleshooting 183

The targetobject will usually be an OID.

The attrname specifies the unscoped attributed name, such as label or
behavior.

The typename specifies the fully-scoped attribute type.

The value argument will be required if you are executing a set operation.

The following example gets the behavior attribute from the OID specified. The
OID is of an instance manager (class object). The behavior attribute contains
the OID of that class’ behavior object. The subsequent objcall uses the
contents method to list the contents of the behavior object:

Note that, in most cases, you would use objcall OID getattr rather than
idlattr.

6.6.4 The resolve Command
The resolve command may not be implemented on all interpreter types. It is
not a standard, documented, or Tivoli-supported command. It does the same
job as objcall OID resolve methodname (or attributename). That is, it
determines in which object a given method or attribute resides so long as that
method or attribute is inherited by the object whose OID is specified. This
command will just save a little typing:

resolve 1234567890.1.347 xterm

and is equivalent to:

objcall 1234567890.1.347 resolve xterm

Note that if neither -g or -s are specified, then the default is -s. You are
unlikely to want to do this until you are very familiar with the attribute in
question. If you are trying to look at an attribute (get) and omit -g and -s,
idlattr will perform a set operation, and because you did not specify any
data, idlattr will try to obtain the data from stdin.

Note

idlattr -tg 1264987995.1.322 behavior TMF_SysAdmin::InstanceManager
1264987995.1.324
objcall 1264987995.1.324 contents
ATTRIBUTE:label
ATTRIBUTE:skeleton
METHOD:_get_label
184 Tivoli Enterprise Internals and Problem Determination

6.6.5 The irview Command
This command is used to find unknown methods and attribute names and
arguments to attribute types:

irview repository-id [contents | describe | describe_contents |
describe_interface | lookup_name | lookup_id | _get_name| _get_type |
_get_defined_in | _get_mode | check_consistency | get_inherited_interfaces]

See 2.5.2, “If the Method is Unknown” on page 53 of Chapter 2 for an
example of using irview.

6.6.6 The tmstat Command
The transaction mechanism is complex and not open to user manipulation.
However, you can use this command if you want to examine the current
transactions, locks, and their states. You are unlikely to need this command
often, but it does give you a way of seeing what is going on from a transaction
perspective.:

The oserv maintains the transaction logs. If there are problems with the logs,
then messages will be included in the tmstat output.

See 6.4.1, “Transaction Log Files and tmstat” on page 172 and 2.3.4,
“Transactions” on page 19 for more information and refer to the tmcmd in the
Tivoli Framework Reference Manual to force a transaction state change.

tmstat

 Transactions for 0.0.0

 Trid Type State Resources Polling Coord Parent MTid
--

{1264987995:1,1264987995:1,14:10343}
 Top-T running No No running running 12890
{1264987995:1,1264987995:1,14:10343},{1264987995:1,1264987995:1,14:10344}
 Revoke-Trunning No No running running 12891
{1264987995:1,1264987995:1,14:10343},{1264987995:1,1264987995:1,14:10344},
{1264987995:1,1264987995:1,14:10345}
 Revoke-Tcommit No Yes running running 12892
{1264987995:1,1264987995:1,14:10343},{1264987995:1,1264987995:1,14:10344},
{1264987995:1,1264987995:1,14:10345},{1264987995:1,
1264987995:1,14:10346}
 Revoke-Tcommit No Yes running running 12893
Commands and Logs for Troubleshooting 185

186 Tivoli Enterprise Internals and Problem Determination

Chapter 7. Tivoli Framework Core Services

This chapter provides an overview and a look at the internals of the following
core Framework services:

 • Tivoli Administrators

 • Notices and Notice Groups

 • Interregion issues

 • Tasks Library

 • The Scheduler

 • Multiplexed Distribution and BDT/IOM

 • UserLink and DHCP

7.1 Tivoli Administrators

During this section, the references to the system root account apply to both
UNIX root accounts and Windows NT Administrator accounts. Throughout
this book, when we refer to administrators, we usually mean Tivoli
administrators or the person performing an administration function depending
on the context.

Tivoli uses administrators to delegate the use of the system root account
without giving those administrators the system password or complete control.
There are two ways to facilitate this delegation of system management tasks:

Authorization roles Roles that define the scope of control an administrator
has over objects in a TMR.

Policy Regions Resources that can be grouped into specific policy
regions, and only the assigned administrators can see
and manage the resources.

7.1.1 Authorization Roles
These roles can be set throughout the TMR or on specific policy regions.
Setting roles for each policy region gives administrators control over only the
resources in that region. For a complete list of roles and the activities they
enable administrators to perform, see the Tivoli Framework Planning and
Installation Guide.

When you generate a task, an administrator with the correct authority can
specify that the task will run using the properties of another administrator.
© Copyright IBM Corp. 1998, 1999 187

See 7.4.4.2, “Creating a Task” on page 241 for more information about this
capability.

7.1.2 Policy Regions
A policy region is a special collection or container in which resources are
created and managed. The resources within a policy region can be governed
by allowing only certain administrators to have control. We can also make use
of resource policies. The two types of resource policies are default and
validation:

Default Policy Defines default values for attributes when a new
instance of a resource is created.

Validation Policy Defines the valid values for attributes that are checked
when a new instance is created or modified. Validation
policies run when you set and close the dialog. This will
check what values an administrator is attempting to
assign against those that they are permitted to assign.

Default and validation policy is described in some detail in the Tivoli
Framework User’s Guide.

Figure 77 on page 189 shows an administrator’s desktop containing policy
regions.
188 Tivoli Enterprise Internals and Problem Determination

Figure 77. Sample of a Desktop Containing Policy Regions

Each policy region can be assigned Managed Resources. This determines
which types of resources can be managed within that policy region. You can
change managed resources for a Policy Region by holding the right mouse
button on the required policy region and selecting Managed Resources....
Note that only the resources listed in Current Resources can be created and
managed by this policy region (see Figure 78). Failing to select the correct
managed resources for a policy region is a common mistake when creating
new regions or adding new Tivoli applications.
Tivoli Framework Core Services 189

Figure 78. Setting Managed Resources for a Policy Region

7.1.3 Creating Administrators
Most system administrators have a Tivoli administrator that maps to their
login, but users of multiple systems can use the same Tivoli administrator
through the use of the login names feature (see Section 7.1.4, “Using a
Single Tivoli Administrator for Multiple Users” on page 195). Depending on
your administration policy, you may find it necessary to maintain a Tivoli
administrator ID for each system administrator. The following are two
examples of when this might be necessary:

 • Each administrator needs different authorization roles.

 • Actions performed at the target may be logged locally with the user login
name or ID-mapped name specified during the creation of a Tivoli
administrator. If the Tivoli administrator account was shared, then this
would not identify which person performed the action unless something
was also generated in a Tivoli notice group.

Each system to be managed by Tivoli may already have user account names
defined for administration. In many sites, these administrative accounts may
use many different names. In addition, these names may differ from those a
Tivoli Administrator will log in with when they first connect to a system. This
leads us to three entities defined with a Tivoli administrator:

 • The label used to identify the administrator within Tivoli.

 • A mechanism for identifying which Tivoli administrator will be used based
on the account that the person used when they signed onto the system.
190 Tivoli Enterprise Internals and Problem Determination

 • The ability to perform an operation using another system-specific account
name.

The combination of these entities allows someone to log on to a system and
perform a Tivoli operation. So, for example, the Tivoli administrator definition
determines that the user who logged in as viki should become Tivoli
administrator SWDistAdmin, and that when performing an action on a
Windows NT endpoint, that action should be performed as the user
Administrator.

Therefore, a Tivoli administrator record defines a relationship between the
user account name (or names) an administrator logs into the system with to
the Tivoli administrator name and to the user names required to perform
activities on managed systems. In our example, an administrator may log into
UNIX using the name viki. When this user starts the Tivoli desktop, providing
the user is authenticated, they will receive a Tivoli administrator desktop that
could be of a different name, such as SWDistAdmin. Now, when the
SWDistAdmin Tivoli administrator starts a task on a Windows NT managed
node, the user that is used for access to the Windows NT system might be
another name, such as Administrator. Once defined, viki simply needs to log
in to UNIX (or the Desktop for Windows) and start her administrative
activities.

Tivoli uses the term Set Login Name (or Current Login Names) to refer to the
user name with which an administrator logs into the system. The term
Administrator Name (or Administrator Label) refers to the name used to
uniquely identify a Tivoli administrator. The terms User Login Name and
Group Name refer to the names used to initiate requests on systems of
different operating system types. The User Login and Group Names can also
be specified by ID maps that can pick out a different user name to use for
each platform type to which a management request is going. How these
names are implemented is covered in the rest of this section.

The creation of a Tivoli administrator can be done through the desktop or
using the command wcrtadmin. In the examples presented here, we show the
desktop methods. The wcrtadmin command is detailed in the Tivoli Framework
Reference Manual.

Choosing Create & Close from the Create Administrator dialog will fail unless
you perform the steps to set up an administrator, as follows:

 • Enter the administrator name, which also becomes the icon label.

 • Enter a User Login Name.

 • Enter a Group Name.
Tivoli Framework Core Services 191

 • Select Set TMR Roles... or Set Resource Roles... for this administrator.

 • Select Set Logins....

The main fields of this dialog are as follows:

Administrator name The contents of this field will be used to generate an
object name and icon label for the administrator.

User login name User name that will be used for Tivoli activities
detailed below. This name must be defined as a
system user on the TMR server and all targets where
this administrator will perform Tivoli activities.

Group name Group name that will be used for certain Tivoli
activities detailed below.

The user and group names must exist on all the targets used by the
administrator but do not have to match the person’s login name. UNIX
numeric user and group IDs are not allowed. Since an administrator may
have different user names on different systems, it is possible to map the user
login name and group name to an alternative name specific to a platform
type. See Section 7.1.5, “ID Mapping” on page 199 for more information on
this feature. An ID map is specified in these fields by preceding the name with
the dollar sign ($).

An administrator uses these names for functions, such as:

 • Opening an Xterm for a Managed Node.

 • Performing a Tivoli database backup.

 • Executing any tasks where the user or group name is specified as asterisk
(*).

 • Writing to a log file.

7.1.3.1 Create Tivoli Administrator Example
Suppose we want to create a Tivoli administrator for a user called smoore
who may only administer from the k124a node. The user name this
administrator will need to use for Tivoli activities on the endpoints is
ausres48. Depending on the activities performed, this user ID may also need
to exist on managed nodes on which processes will be run:

1. Open the Administrators Icon from the main Tivoli desktop.

2. Select Create > Administrator...
192 Tivoli Enterprise Internals and Problem Determination

3. We specified a name/icon label for the administrator (Users_from_k124a),
the user account, and group to use for administrative actions (ausres48
and staff).

4. Select Set TMR Roles.... This dialog lists current and available roles for
the TMR for the chosen administrator. We selected the user role for this
administrator in the TMR.

5. Selecting Set Login Names... brings up the dialog shown in Figure 79.
Here we specify the system users that will use this Tivoli administrator ID.
For our example, we want smoore to use this Tivoli administrator for Tivoli
operations and only when he is logged in at the node k124a.austin.ibm.com
(smoore@k124a.austin.ibm.com). At this point you must press Enter to add
the Login Name. Only when the newly-entered Login Name appears in the
Current Login Names list, can we use Set & Close.

Note that login names can not appear in the Current Login Names list for
more than one Tivoli administrator. Framework prevents you from adding a
login name that already exists in the current login names list of another
Tivoli administrator in the same TMR, but it does not prevent you from
specifying an unqualified name in one record and a qualified name in
another. Prior to Framework 3.2, this would result in the first match
succeeding. From 3.2 onward, Framework first checks all entries for an
exact match. For example, if you had damian as a current login name for
one administrator and damian@basingstokeMN in another administrator’s list,
prior to 3.2, a user logging in as damian from basingstokeMN could
function as the administrator with just damian in the current login name list
if that one matched first.

Important
Tivoli Framework Core Services 193

Figure 79. Set Login Names Dialog - before and after Pressing Enter

At this point, we can select Create & Close from the Create Administrator
dialog. However, there are two further properties that you can set:

 • Resource Roles - Rather than specify a role that would apply to every
resource in the TMR, it is preferable to restrict the definition of roles to
particular resources. Typically, this would be used to enable a chosen role
in selected policy regions.

 • Notice Groups - You need to choose which notice groups to which this
administrator will subscribe. These should be limited to just those relevant
to the activities that administrator will perform. See also “Notices” on
page 209.

7.1.3.2 Example of User Login Name and Current Login Name
Refer to Figure 80 on page 195 for the screens for this scenario:

 • User smoore@k124a.austin.ibm.com starts the desktop on the k124a
managed node from a dtterm session.

 • Then, they open the rh0255c.itsc.austin.ibm.com-region Policy Region.

 • Then, they click with the right mouse button on the k124a icon and select
xterm.

Even though smoore started the desktop on the k124a managed node, the
xterm still runs with user ID ausres48, the User Login Name entered in the
Create Administrator dialog.
194 Tivoli Enterprise Internals and Problem Determination

The xterm method has been designed to use the User Login Name. The
group that is selected is nobody. This behavior is up to each method to
determine.

Figure 80. Administrator Login Name versus Current Login Name

7.1.4 Using a Single Tivoli Administrator for Multiple Users
Often, at large sites, there are groups of people who perform similar jobs
staffing that job on a seven days a week, 24 hours a day basis. One example
of these kinds of individuals would be an operations group whose job it may
be to watch for any alerts generated by Distributed Monitoring. Another group
may be a call center group, whose job can entail pushing out software
distribution packages. In any case, these groups of individuals may all have
the same icons, notices, and other items on their desktop. As these groups
grow, and people change roles within an organization, the administration of
these groups of users can become a burden.

Using the set login names function on a desktop, you can define a single
Tivoli administrator, but associate multiple login names with that one

The ausres48 user ID is defined on k124a as a UNIX user ID. It must also
be defined on all other managed nodes where smoore will be expected to
run Tivoli-related processes.

NOTE
Tivoli Framework Core Services 195

administrator. All actions that occur in Tivoli will be logged to a notice group
with the login name not the Tivoli administrator name. With this, you can
maintain a single desktop but still enforce accountability for actions within
Tivoli.

To demonstrate an example of this, we created a Tivoli administrator,
unix_oper. As shown in Figure 81, the user login name that will be used to
execute actions on the endpoints was tivop, and the group was staff.

Figure 81. Multiple Use Tivoli Administrator - Administrator Properties

We also set the login names to be childres and rhonda, two UNIX operations
personnel, shown in Figure 82.
196 Tivoli Enterprise Internals and Problem Determination

Figure 82. Multiple Use Tivoli Administrator - Set Login Names

The UNIX operator rhonda started a Tivoli desktop and distributed software.
The software distribution notice group had the entry shown in Figure 83 on
page 198. Note that, although the Tivoli administrator used for the operation
was unix_oper and the user account used to execute the operation was tivop,
the notice is logged under the name the operator logged into the system with,
rhonda.
Tivoli Framework Core Services 197

Figure 83. Multiple Use Tivoli Administrator - Notice Group Messages

Next, the UNIX operator childres started a Tivoli desktop and did a software
distribution. We can see in Figure 84 on page 199 that the entry in the
software notice group is logged under the childres user.
198 Tivoli Enterprise Internals and Problem Determination

Figure 84. Multiple Use Tivoli Administrator - Notice Group Messages 2

So, for each of the notices, you can see the operator who performed the
action is logged, and so an audit trail is provided.

7.1.5 ID Mapping
Tivoli Administrator set (or current) login names determine which Tivoli
administrator attributes and desktop will be used based on which ID someone
used to login to the operating system. The user login name or properties
determine which ID will be used to run tasks and other activities that the
administrator initiates. But what happens if the ID for running tasks needs to
be different on different platform types? For example, the root user of the
Tivoli Framework is root on UNIX systems and Administrator on Windows NT.
Tivoli Framework Core Services 199

Tivoli allows these types of differences through the use of ID mappings that
can be managed with the widmap command. Two default ID maps, root_user
and root_group, are set when the Framework is installed, as detailed below:

Use of an ID map is specified when the administrator is created using the
Create Administrator dialog. Instead of entering a user name or group name,
an ID map name can be specified by preceding it with a dollar sign ($), as in
$root_user.

When an ID map is used, Tivoli will check the interpreter type on which the
task is to be run and then look up the name to use as specified in the ID map.

7.1.5.1 ID Mapping Example
In “Creating Administrators” on page 190, we created a Tivoli administrator
with the label Users_from_k124a. We originally had the login name for this
administrator as ausres48 and the group as staff. We also added a Set Login
Name for smoore. The result was that when smoore logged in, he became
the Tivoli administrator Users_from_k124a, and when he performed certain
operations, they were executed as ausres48 on the targets.

To demonstrate ID mapping, we are going to modify the way the Tivoli
administrator Users_from_k124a is represented on different platforms by
using an ID map. The map name that we will use is ausres48_user. With this

#widmap
usage:
 widmap list_maps
 widmap add_map|rm_map|list_entries <mapname>
 widmap add_entry <mapname> <interp> <idname>
 widmap rm_entry|resolve_entry <mapname> <interp>

#widmap list_maps
root_group root_user#

#widmap list_entries root_group
default root
sunos4 wheel
aix3-r2 system
aix4-r1 system

#widmap list_entries root_user
default root
w32-ix86 Administrator
nw3 supervisor
nw4 Admin
os400-v3r2 QTIVROOT
os400-v3r7 QTIVROOT
200 Tivoli Enterprise Internals and Problem Determination

ID map, we wish to continue to use ausres48 to execute operations on all
platforms except AIX. On AIX, we now wish to use the name stanley.

The following widmap commands add the new ausres48_user map, add an
entry to that map to specify stanley as the user to use on AIX, and set the
default to ausres48 that will be used for all other platforms. Finally, we check
that the entries were created successfully:

#widmap add_map ausres48_user
#
#widmap add_entry ausres48_user aix4-r1 stanley
#
#widmap add_entry ausres48_user default ausres48
#
#widmap list_entries ausres48_user
aix4-r1 stanley
default ausres48
#

If the system is recognized as the aix4-r1 interpreter type, then Tivoli will use
stanley. For any other system (Windows NT, Sunsoft Solaris and so on), Tivoli
will use ausres48 as the user ID.

We must now modify the properties of the Tivoli administrator,
Users_from_k124a, by changing the user login name from ausres48 to the ID
map, $ausres48_user, as shown in Figure 85 on page 202.

There is no parameter that defines whether a map is for a group or a user;
so, it is a good idea to name the map with an extension of either user or
group. It will be a lot easier to find them using widmap list_maps.

Implementation Tip
Tivoli Framework Core Services 201

Figure 85. Entering an ID Map for a Tivoli Administrator User Login Name

We can run the same test for the User Login Name that we used in “Example
of User Login Name and Current Login Name” on page 194. The user smoore
will start a desktop on the k124a managed node and select an xterm from the
policy region, then goes back to the same machine, k124a.
202 Tivoli Enterprise Internals and Problem Determination

Figure 86. Administrator Using an ID Map

As we can see in Figure 86, the user ID selected by Tivoli is stanley because
the k124a managed node has the aix4-r1 interpreter type.

7.1.6 Removing and Deleting Administrators
A common problem with deleting administrators from the Administrator dialog
is that users choose Remove instead of Delete. Removing administrators
from the Administrator dialog does not remove them from the database, but
deleting them does. The Remove option exists because some users wanted
to create administrators and then remove them from the GUI where less-
experienced administrators might accidentally delete them. Most often, the
less-experienced administrator accidentally removes an administrator that
they wanted to delete.

You cannot have more than one user for an interpreter type in a single
map. It is not possible, for example, to specify the use of one user in one
Windows NT domain and a second user in another domain.

There can also be a problem when mixing National Language Support
(NLS) versions of operating systems, such as Windows NT. The
Administrator ID must be the same spelling on all systems. Windows NT, by
default, will use language-specific names for Administrator in each NLS
version.

Note
Tivoli Framework Core Services 203

To solve this problem, use wlookup -ar Administrator to list administrators
defined to Tivoli and then use wln to link the required administrator object
back to a the Administrators collection, as in the following example:

The wrm command can be used to remove a resource from an administrator’s
desktop without deleting it. Note that wln and wrm can be used to add and
remove other types of resource and not just administrators, as detailed
below:

wln <resource> <administrator>

where <resource> is @Resource:name or /Library/Resource/name and
<administrator> is @Administrator:adminname or /Administrators/adminname.

For wrm:

wrm adm_resource

where <adm_resource> is /Administrators/adminname.

7.1.7 Administrator Commands
There are several commands that can be used when troubleshooting
administrator problems. Two of these commands are listed below:

Table 4. Administrator Commands for Troubleshooting

Activity Context Required Roles

Get Administrator Information
wgetadmin

Administrators admin (to get information
about other
administrators)

Set Administrator Information
wsetadmin

Administrators super or senior

wlookup -ar Administrator
Root_outback-region 1999200098.1.192#TMF_Administrator::Configuration_GUI#
Viki 1999200098.1.566#TMF_Administrator::Configuration_GUI#
root@outback 1999200098.1.192#TMF_Administrator::Configuration_GUI#
viki 1999200098.1.566#TMF_Administrator::Configuration_GUI#
wls /Administrators
Root_outback-region ! Viki is defined but not in the collection
wln @Administrator:Viki /Administrators
204 Tivoli Enterprise Internals and Problem Determination

Figure 87 on page 205 details the output of the wgetadmin command.

Figure 87. Output from the wgetadmin Command

The information that can be listed is:

 • Administrator label

 • Administrator logins

 • Global roles: TMR resource roles

 • Policy region roles: roles specific to a policy region. The policy region
listed for Users_from_k124a is:

Profiles-rh0255c

From 3.6, there is a new command related to managing administrators
called wauthadmin. This command sets and revokes Tivoli root authority in
the TMR. The first installed administrator in a TMR begins as a root
administrator, and this command allows others to be added. A Tivoli root
administrator has root authority on UNIX and Administrator authority on
Windows NT. Use wauthadmin -l or -lv to show a list of root administrators.

Note

wls /Administrators
Root_rh0255c.itsc.austin.ibm.com-region
Users_from_k124a
Root_tivdev02-region
Root_rh0255b.itsc.austin.ibm.com-region
#
wgetadmin Root_rh0255c.itsc.austin.ibm.com-region
Administrator: Root_rh0255c.itsc.austin.ibm.com-region
logins: root@rh0255c.itsc.austin.ibm.com
roles: global super, senior, admin, user, install_client, install_product
 security_group_any_admin user
 Root_rh0255c.itsc.austin.ibm.com-region admin, user, rconnect
notice groups: TME Administration, TME Authorization, TME Diagnostics, TME Scheduler
#
wgetadmin Users_from_k124a
Administrator: Users_from_k124a
logins: smoore@k124a.austin.ibm.com
roles: Users_from_k124a admin, user, rconnect
 security_group_any_admin user
 global user
 Profiles-rh0255c Inventory_view, Inventory_scan, Inventory_edit,
Inventory Query
notice groups:
#

Tivoli Framework Core Services 205

If a Policy Region is in a disconnected TMR, you will see only the
Object ID instead of the name, but the roles will still display.

 • Security groups: non-policy region groups that can have specific roles:

 • Scheduler (not listed)

 • Administrator (not listed)

Note that the following two should not be modified from the default.

 • security_group_any_admin: allows methods with the role of any to be
used.

 • Specific roles for an administrator. For example, with
Root_rh0255c.itsc.austin.ibm.com-region the roles are:

admin, user, rconnect.

7.1.8 Administrator Roles
Administrators performing specific functions (those not administering
everything), should have minimal roles in the TMR and the appropriate roles
in the policy regions that they administer. This enables the creation of new
resources without making them automatically accessible.

There are two disadvantages to this policy:

 • Appropriate roles must be added to each administrator managing the
resource.

 • Adding new administrators takes longer because you have to select each
resource and assign roles individually.

Tivoli users are not always aware of where roles are required. Appropriate
roles are often given in a subset of the locations where those roles are
needed, but less obvious locations are often missed.

Take, for example, an administrator who wants to distribute a file package.
The file package lives in a profile manager that lives in a policy region. But, in
order for the administrator to successfully distribute the file package, the
administrator must have the appropriate role in the policy region where the
file package resides and in the policy region (or regions) where the endpoints
exist.

The wgetadmin and wsetadmin commands do not enable viewing or changing
an administrator’s user name or group name.

Note
206 Tivoli Enterprise Internals and Problem Determination

7.1.9 Interregion Administration
Given the correct interregion connections, a Tivoli administrator created in
TMR A can perform actions on TMR B but cannot run commands directly from
TMR B. The oserv authenticates a user as an administrator in the local TMR,
and then any actions performed by the administrator are authorized before
being executed. An oserv will not authenticate an administrator from a remote
TMR.

Also, you cannot have more than one administrator with the same login
name. It is recommended that administrators perform work in their own TMR.

There are several layers of checking to determine whether an administrator
has permission to perform an activity:

 • Administrator is authenticated as a Tivoli administrator. This only happens
within the local TMR. Each administrator who will be performing tasks
must be defined in the TMR where they perform the task.

 • Administrator is authorized to perform the activity based on the
authorization roles.

 • Activity is performed as the user and role specified in the method. This
requires the correct user, group, and roles to be defined.

7.1.10 Summary of Hints for Defining Administrators
This list summarizes hints from the previous sections:

 • You should avoid giving remote root access. Always specify a host name if
you want to allow a root user to use a Tivoli administrator name (use
something like root@hostx.domain).

 • If you set a Login Name, no checking for the validity of the user name is
done by Tivoli when the administrator is created or modified. There is no
check that the user actually exists until a method needing the user name is
executed.

Roles are not hierarchical. A senior role does not imply administrator or
user. However, some applications and methods do implement their own
form of hierarchy. For example, a user with super role could execute a user
role method for example. To be sure, always assign the correct roles as
listed by the product documentation.

Note
Tivoli Framework Core Services 207

 • Using the asterisk (*) in the user ID and group fields when defining a task
will map them to the user login name and group name in the Create
Administrator dialog. ID maps can also be used in the task fields when
defining tasks. See Section 7.4.4.2, “Creating a Task” on page 241 for
more information.

 • Create Administrator dialog - The minimum setup is to set the fields in the
Create Administrator dialog plus setting the logins and roles.

 • You will have to subscribe the relevant users to notice groups as new
applications are installed.

 • You cannot grant roles that you do not have unless you are the root
administrator on the TMR where you are granting the roles.

 • Roles are not hierarchical. They must be selected and used individually.

 • User and Group ID maps can be used when the same administrator has
different user names on different platforms.

 • You should specify minimal roles in the TMR and specific roles in the
appropriate policy region.

 • Roles do map directly across connected TMRs, except super for the TMR,
which maps to user for the remote TMR.

 • You should not try and set the same current login name (through the Set
Login Name dialog) for more than one administrator.

 • Tivoli, at Versions prior to 3.1.2, would not prevent you from deleting the
last Tivoli administrator with the wdel command.

 • For an NT administrator user ID, you should also enter the NT domain
when setting a Login Name. For example:

domain/user@managed_node

7.1.11 Hints for Troubleshooting Administrators
 • Does the administrator have the proper role to perform the activity?

 • If trying to perform something out of Tivoli, such as write a file, does the
Tivoli administrator have the appropriate platform (for example, UNIX or
Windows NT) permissions?

 • BAD_ID in the error means the account name is not valid on the target on
which the method is being executed.

 • UNAUTHORIZED could be the logon is not valid, or the authorization role
is not high enough to perform the task.
208 Tivoli Enterprise Internals and Problem Determination

7.2 Notices

Almost every systems management action in Tivoli will result in a notice being
posted in a notice group. This is particularly useful for an administrator
overseeing the work of other administrators.

7.2.1 Subscribing Tivoli Administrators to Notice Groups
Each time a new product is installed, the administrators who are
administering that application must be subscribed to any new notice groups if
they want to see the notices. Unfortunately, they must be assigned to each
individual administrator either through the desktop or the command line.

7.2.2 Notice Commands
The following commands are used to debug and view notices. The syntax for
these commands is in the Tivoli Framework Reference Manual:

wlsnotif Lists all current notices for an administrator. This command can
be used to list the subjects or full text of notices.

wtailnotif Lists new notices as they become available. This command can
be very useful when re-creating problems. This will connect to
the notification server and display new notices as they are
posted. When you are re-creating a problem, you can have a
window open with wtailnotif running for notices posted by
specific administrators or watching for notices to selected notice
groups or select notices to be displayed based on their priority.
The output will include the date and time of the notice, the group
it was posted to, its priority, the administrator, and the activity
that took place (notice text). This saves having to keep going
back to the notice board and scanning through for unread
notices. Note that using wtailnotif does not mark the notices as
read; the notice board activity is unaffected.

wsndnotif Sends a notice to a specified notice group. It is useful in
debugging TEC Notification Adapter problems and can be used
in custom scripts. See also Section 7.2.5, “wsndnotif - Adding a
Notice from the Command Line” on page 212.

wexpnotif Expires all or some notices of a specified notice group. This
command is helpful if there was a run-away application that
posted too many notices and filled up disk space. Notices expire
automatically after 186 hours (one week).
Tivoli Framework Core Services 209

The database containing notices is automatically extended as new ones are
added and will automatically reduce itself as they expire.

Table 5. Notice Group Commands

7.2.3 Restoring the Notices Database
Notices are not restored during a normal restore. This is because the backup
could be several weeks/months old, and the old notices may or may not be
relevant. Prior to restoring a previous Notices database, especially if you had
an unplanned restore of the TMR, you will want to explore the information
contained in the notice group for any information that may lead to cause of
any problems. The old notices and the notice database can be restored with
the wbkupdb command. See Section 5.5, “Items Not Restored from a Backup”
on page 123 for more details.

Notices previously marked as read can only be re-read from the desktop if
there is at least one notice in the notice group. Old notices can be re-read
from the command line using the wlsnotif command if you have the number
of the notice. See Section 7.2.4, “Re-Reading Old Notices” on page 210 for
details on how to read notices again in a group where all notices are marked
as read.

Notices work like Usenet News in that there is one central notice database
called notice.bdb where all notices are posted, and each administrator object
is responsible for keeping track of which notices have been read.

7.2.4 Re-Reading Old Notices
Suppose you want to look at the old notices in the Authorization group for the
root administrator. If you left at least one notice marked as unread, then this
would work, but the last time you went into the group, you selected all of them
as read. Now, when you try to select the TME Authorization Notices, you get
an error:

Activity Context Required Role

wlsnotif TMR user, admin, senior, super

wtailnotif TMR senior, super

wsndnotif TMR user, admin, senior, super

wexpnotif TMR senior, super
210 Tivoli Enterprise Internals and Problem Determination

Figure 88. Error Opening a Notice Group - Contains No Unread Notices

There are several ways to get around this problem:

1. Make sure you never close a Notice Group unless you have at least one
notice marked as unread.

2. Look at the list of notices from the command line. Use the wlsnotif, but
you must know the notice number if you want to view a notice marked as
read. The wlsnotif command lists only unread notices by default.

3. Manually add a new notice to the Notice Group you want to open using the
wsndnotif command. Now you can go back to the GUI and open the Notice
Group. See Section 7.2.5, “wsndnotif - Adding a Notice from the
Command Line” on page 212.

The following example shows a subscription to four notice groups using the
command wlsnotif -g. We can read a notice from the TME Authorization
Notice Group as long as we know the number. We can list only the header by
using the wlsnotif -l option.
Tivoli Framework Core Services 211

Figure 89. Looking at Notices from the Command Line

Note that we had to put the notice group name inside quotation marks
because of the space in the label name: TME Authorization.

7.2.5 wsndnotif - Adding a Notice from the Command Line
If you need to add a new notice so that you can re-open the notice group from
the GUI, use the wsndnotif command, as shown in Figure 90:

#wlsnotif -g
TME Administration
TME Authorization
TME Diagnostics
TME Scheduler
#
#wlsnotif -n ’TME Authorization’ 23 | more
Notice-id: 23
Date: Mon Nov 17 20:46:45 CST 1997
Notice-Group-Name: TME Authorization
Priority: Notice
Sent-By-Administrator: root@rh0255c.itsc.austin.ibm.com

Roles Changed for Administrator Users_from_k124a
The resource roles for the administrator named Users_from_k124a were changed. Us
ers_from_k124a now has the following resource roles:

 Tivoli/Sentry Defaults-tivdev02-region

#
#wlsnotif -l -n ’TME Authorization’ 23
#23 Mon Nov 17 20:46:45 Roles Changed for Administrator Users_fr
#

212 Tivoli Enterprise Internals and Problem Determination

Figure 90. Using wsndnotif to Create a Notice

The wsndnotif command will allow input on new lines when you press Enter.
To finish input and send the notice, you must press Ctrl-D.

The wlsnotif command will now show that there is an unread notice in the
TME Authorization group without supplying a notice number.

If you want to view the Notices from the GUI again:

1. You have to re-open the Notices object from the main desktop. You can
see that the TME Authorization notice group has one unread notice:

Figure 91. The New Notice Shown in the Read Notices Dialog

wsndnotif "TME Authorization" Notice
This notice is to allow me to re-open the Notice Group from the GUI
Simon
#D
#wlsnotif -n "TME Authorization"
Notice-id: 25
Date: Fri Nov 21 12:10:17 CST 1997
Notice-Group-Name: TME Authorization
Priority: Notice
Sent-By-Administrator: root@rh0255c.itsc.austin.ibm.com

This notice is to allow me to re-open the Notice Group from the GUI
Simon

#

Tivoli Framework Core Services 213

2. Select the group and Open. You can see the new notice listed in the
panel.

Figure 92. Looking at the New Notice in Notice Group Messages

3. To see the old notices, you must select View>Display Old Messages.
214 Tivoli Enterprise Internals and Problem Determination

Figure 93. Looking at Previously-Read Notices in Notice Group Messages

You can see from this figure that the Notice numbers now start at 8 again,
and they have a tick mark to signify that they have been read.

7.2.6 Troubleshooting Notice Groups
In the case where notices are not being posted to a notice group, check the
following:

 • Is the appropriate notice group defined to the Distributed Monitoring
monitor, Software Distribution file package, and so on?

 • Through the command line, can you post to the notice group?

 • If multiple people are using a Tivoli Administrator desktop, check the
previous notices. Someone else may have read the notice and marked it
as read.
Tivoli Framework Core Services 215

 • Is the administrator you are using subscribed to the notice group?

7.3 Interconnected TMRs

Tivoli Framework allows TMRs to be connected. This gives greater flexibility
in the following areas:

 • Performance - The network and memory demands may become too large
for one server. See the release notes for products you are installing to find
the performance considerations.

 • System administration - Multiple TMRs enable administration at a local
level, either to meet organizational or geographical needs. An additional
benefit of local administration is fault resiliency due to that fact that a
failure will only affect resource management for the one TMR and not all
resources in the enterprise.

 • Security - An additional TMR can be used to restrict local administrators’
access to certain machines within the enterprise. An additional TMR
enables differing encryption levels within a Tivoli environment.

With the super authorization role and the TMR password, a user can connect
or disconnect two or more TMRs.

7.3.1 The Tivoli Name Registry
The Tivoli Name Registry (TNR) provides a fast, space-saving way to access
objects in:

 • Large server object databases

 • Multiple connected TMRs with differing speed connections

Each TMR contains a name registry object. The name registry lists names of
both local TMR and interregion objects. It resembles a table of contents for
the Tivoli object database and all remote databases and contains only
references to objects in those databases.

All objects in the TMR that need to be referenced should be registered in the
name registry when created, unregistered when deleted, and updated when
their label is changed. Information from remote TMRs must be updated
regularly to maintain accurate data.

You can use the wlookup command to view the objects from remote TMRs.

For a detailed description of the Tivoli Object Hierarchy and the name
registry, see Chapter 2, “Tivoli Object Database Architecture” on page 9.
216 Tivoli Enterprise Internals and Problem Determination

7.3.1.1 Interconnected TMR Name Registry Usage
A Tivoli application can look at the local name registry to find the references
to the remote resources. This removes the need for an expensive process to
scan for a resource in each of the connected TMRs. Even though a remote
TMR may not be available, a complete list of managed nodes can be
retrieved locally.

The following screen shows output from several commands displaying the
connections and the local and remote resources in the Name Registry:

Note the relationship between the region numbers in the result of the wlsconn
command and the output from the wls and wlookup commands. Here is a
summary of interregion-related commands:

wlsconn
 MODE NAME SERVER REGION
 <----> rh0255b.itsc.austin.ibm.com-region rh0255b.itsc.austin.ibm.com 1515280903
 <----> tivdev02-region tivdev02 1482082604

odadmin region
Region TME Srvr ipaddr port
1360991896 rh0255c.itsc.austin.ibm.com 9.3.1.235 94 1360991896.1.0
1482082604 tivdev02.itsc.austin.ibm.com 9.3.1.134 94 1482082604.1.0
1515280903 rh0255b.itsc.austin.ibm.com 9.3.1.234 94 1515280903.1.0

wls /Library/PolicyRegion
rh0255c.itsc.austin.ibm.com-region
Profiles-rh0255c
Queries-rh0255c

wlookup -ar PolicyRegion
Profiles-rh0255c 1360991896.1.552#TMF_PolicyRegion::GUI#
Queries-rh0255c 1360991896.1.562#TMF_PolicyRegion::GUI#
TEC31Region 1515280903.1.673#TMF_PolicyRegion::GUI#
TEST-tivdev 1482082604.1.641#TMF_PolicyRegion::GUI#
Tivoli/Sentry Defaults-tivdev02-region 1482082604.1.596#TMF_PolicyRegion::GUI#
rh0255b.itsc.austin.ibm.com-region 1515280903.1.196#TMF_PolicyRegion::GUI#
rh0255c.itsc.austin.ibm.com-region 1360991896.1.196#TMF_PolicyRegion::GUI#
test-rh0255b 1515280903.1.536#TMF_PolicyRegion::GUI#
tivdev02-region 1482082604.1.195#TMF_PolicyRegion::GUI#

wlookup -ar ManagedNode
k124a 1360991896.2.7#TMF_ManagedNode::Managed_Node#
rh0255a 1515280903.2.7#TMF_ManagedNode::Managed_Node#
rh0255b.itsc.austin.ibm.com 1515280903.1.327#TMF_ManagedNode::Managed_Node#
rh0255c.itsc.austin.ibm.com 1360991896.1.327#TMF_ManagedNode::Managed_Node#
rh0255e 1360991896.3.7#TMF_ManagedNode::Managed_Node#
rh0255f 1515280903.3.7#TMF_ManagedNode::Managed_Node#
tivdev02 1482082604.1.326#TMF_ManagedNode::Managed_Node#

wlookup -ar TaskLibrary
T/EC Tasks 1515280903.1.675#TMF_Task::TaskLibrary#
tl-tivdev02 1482082604.1.633#TMF_Task::TaskLibrary#
Tivoli Framework Core Services 217

wlsconn Displays a list of connected TMRs listed in the
database.

odadmin region Displays local and remote TMRs registered by
the oserv.

wls /Library/PolicyRegion Lists only local policy regions.
wlookup -ar PolicyRegion Displays the local and remote policy regions.
wlookup -ar ManagedNode Displays local and remote managed nodes.
wlookup -ar TaskLibrary Displays local and remote task libraries.

Note that wls does not use the name registry and, therefore, only displays
locally-defined objects. In contrast, wlookup reads the name registry and will
return information about resources in any connected TMR as long as those
resources have been updated (see also Section 7.3.3, “Updating Resources”
on page 221).

It is important to try and give a good label name to resources that will be
shared across TMRs. When you look at the Top Level policy regions
(Desktop> TMR Connections> Top Level Policy Regions...), only the label
names appear under each icon. This could become very confusing if label
names are the same for policy regions and other resources in different TMRs.

This can be equally frustrating when looking at items in a selection list, for
example, in the Set Resource Roles dialog for an administrator.

7.3.2 Connecting TMRs
A secure or remote TMR connection can be made from the desktop or with
the wconnect command. The required role to connect TMRs is super.

A user must determine the following before making a TMR connection:

 • The region name, region number, root or Administrator password, and
interregion password for the remote TMR.

 • Whether to use a one-way or two-way connection.

 • Whether to use a secure or remote connection type.

Remote Connect means that you can initiate the entire connection from one
machine. In this case, you must enter the password of the root administrator
for the remote TMR server.

Figure 94 on page 219 details the Interregion Remote Connect dialog:
218 Tivoli Enterprise Internals and Problem Determination

Figure 94. Interregion Remote Connect Dialog

Secure connect means that you must initiate the connection from both TMRs.
It is secure because you do not have to enter the password of the root
administrator in the remote TMR, and that root password is, therefore, not
sent over the wire.

Figure 95 details the Interregion Secure Connect Dialog. Note that no trusted
host login information is required in the dialog:

Figure 95. Interregion Secure Connect Dialog
Tivoli Framework Core Services 219

7.3.2.1 Secure and Remote Connections
A secure connection does not require a remote login to connected TMRs.
Connection requests are required by each communicating TMR. Each side
will do the following:

 • Add the remote TMR’s host name, region number, and encryption level to
the Interregion object (wlookup InterRegion). The interregion object keeps
this data in an attribute called TMRs.

 • Try to communicate with the remote TMR.

 • If communication is successful, add TMR name to interregion object and
exchange resources.

A remote connection allows one TMR to provide all of the connection request
information and make the connection. Remote connections perform the same
steps as a secure connection, but the rexec or rcmd is used to communicate to
and start the connection in the remote TMR. To perform remote connections,
the TMR making the connection must have the remote TMR server’s root
password or be a trusted host. Note, that for Windows NT, we cannot use
trusted host, we must use TRIP with the shell service option. As it is possible
to disable TRIP after the initial install, you may need to check that TRIP is
installed and running to perform the TMR connection.

7.3.2.2 One-Way and Two-Way Connections
One and two-way connections determine the visibility of interconnected
TMRs resources.

A one-way connection requires one of the TMRs to act as the manager of the
other TMRs resources. The managed TMR will not be able to view the
managing TMRs resources.

Secure and remote are only methods of making a connection not different
types of connection. The only different types are one-way and two-way.

Note

This type of connection can cause applications to fail. For example, Tivoli
Distributed Monitoring can be set up so that monitors will change indicator
collections on the other side of a connection. In a one-way connection
scenario, the remote managed TMR where the monitor is running cannot
see the local managing TMR’s Indicator Collection resources.

Important
220 Tivoli Enterprise Internals and Problem Determination

A two-way connection allows each interconnected TMR to view all of the
other’s resources as long as they are updated regularly.

7.3.3 Updating Resources
Updating resources, sometimes referred to as a resource exchange, is
performed manually from the Update Resources dialog (TMR
Connections->Update Resources...) or with the wupdate command.

Updating resources is a pull operation. A TMR can request an update of its
name registry, but it cannot push its current name registry resource to a
remote TMR. There is one exception to this. When TMRs are first connected,
the administrator is asked if resources should be updated immediately upon
connection. The request is made on each TMR before the interconnect is
completed.

Figure 96 details the Updated Resources from Multiple TMRs dialog.

Figure 96. Update Resources from Multiple TMRs
Tivoli Framework Core Services 221

Because resource information is updated between name registries at
administrator-defined intervals, there are caching issues with viewing remote
resources in the local name registry. New resources created in the remote
TMR are not available in the name registry of a connected TMR until the next
update is performed.

7.3.4 Resource Visibility
Visibility describes available resources in the name registry or in collections.
A collection is an object (an administrator’s desktop, a policy region, and so
on) that can hold a list of references to other objects in the system. When an
administrator opens a collection object, the member objects are displayed.
Once TMRs have been connected, member objects could be located in a
remote TMR.

For example, a newly-created managed node object in TMR A can be visible
in TMR B as soon as it is created if it resides within a collection path that has
a point visible in TMR B. This is true even though the new managed node will
not be visible in the managed node resource type in the name registry in TMR
B until the next update of resources from TMR A.

Name Registry visibility applies to:

 • Available lists, as in Available Subscribers in a Profile Manager window.

Plan resource updates carefully. Not all updates in a TMR will affect the
exchanged resources. Tivoli product manuals generally list which
resources can and should be exchanged. See also Section 7.3.7,
“Scheduling Updates” on page 230.

 • If you create a new managed resource (something that requires the
Create option on the menu bar of the desktop) then you will need to
perform an update of resources between TMRs. To save time, you can
select a single resource type to be updated using the TMR Connections
> Update Resources... option, or the wupdate command.

 • If you remove a resource, such as a file package or a monitor, then an
update of resources would also be required.

 • If you modify an existing resource, for example, update a task or change
the attributes of an administrator, you do not require an update of
resources. The name registry on connected TMRs only contains a
reference to instance labels and their object IDs not the contents of the
objects.

Important
222 Tivoli Enterprise Internals and Problem Determination

 • Resources listed with the wlookup command.

 • Resources referenced from the command line with @Resource:instance.

Collection Path visibility applies to:

 • Resources viewed by opening collections on the desktop. Collections here
refer to any kind of a container object that is visible from the GUI.

 • Resources managed through the file system-type commands (wls, wmv, and
so on).

 • Resources referenced from the command line with /xxx/yyy.

The following example shows screens from TMRs rh0255b and rh0255c. A
query has been created in TMR rh0255c. The name of the query is FIND_NT.

In TMR rh0255c, the query is in the local database confirmed with wls and is
also in the name registry, as shown with wlookup. In this case, only the queries
in the local database are in the name registry. Another way to see this with
wlookup is that all the object IDs start with the TMR number of rh0255c:

In TMR rh0255b, wls shows that the only query local to this TMR is Get-AIX.
Using wlookup, the FIND_NT query has not been added to the local name
registry because the resource type Query has not been exchanged since
FIND_NT was created. Three other queries were previously exchanged with
TMR rh0255c: Find-AIX, Q-AIX-Cmd, and Q-AIX-Cmdline. Therefore, the lookup
for the FIND_NT query fails when you use wruninvquery from the command line:

#wls -l /Library/Query
1360991896.1.565#TMF_Query::Query# Find-AIX
1360991896.1.566#TMF_Query::Query# Q-AIX-Cmdline
1360991896.1.567#TMF_Query::Query# Q-AIX-Cmd
1360991896.1.576#TMF_Query::Query# FIND_NT
#wlookup -ar Query
FIND_NT 1360991896.1.576#TMF_Query::Query#
Find-AIX 1360991896.1.565#TMF_Query::Query#
Q-AIX-Cmd 1360991896.1.567#TMF_Query::Query#
Q-AIX-Cmdline 1360991896.1.566#TMF_Query::Query#
#wruninvquery -l FIND_NT
rh0255e
#

Tivoli Framework Core Services 223

However, in TMR rh0255b, the query can be seen through the GUI by
selecting Desktop> TMR Connections> Top Level Policy Regions...,
opening the rh0255c-Queries PolicyRegion and then Q-test. The policy
region containing the query library, Q-test, has been exchanged before, so
the collection path is available to TMR rh0255b. If you run a distribution from
the GUI and want to select from your subscribers using this query, it will run
correctly. Figure 97 details a GUI query:

wls -l /Library/Query
1515280903.1.773#TMF_Query::Query# Get-AIX
wlookup -ar Query
Find-AIX 1360991896.1.565#TMF_Query::Query#
Get-AIX 1515280903.1.773#TMF_Query::Query#
Q-AIX-Cmd 1360991896.1.567#TMF_Query::Query#
Q-AIX-Cmdline 1360991896.1.566#TMF_Query::Query#
wgetquery -f FIND_NT
An instance named "FIND_NT" of resource "Query" was not found.
wruninvquery -l FIND_NT
An instance named "FIND_NT" of resource "Query" was not found.
224 Tivoli Enterprise Internals and Problem Determination

Figure 97. Remote TMR Can See Query in the GUI

In TMR rh0255b, you can select to update the resources from rh0255c. This
can be achieved using the GUI Desktop> TMR Connections> Update
Resources..., or by using the wupdate command. Now you can see the
FIND_NT query listed in the output from wlookup, as detailed below. Using
wruninvquery will also work.
Tivoli Framework Core Services 225

7.3.5 Interregion Updates and Object Time Stamps
Each resource type in the name registry carries a time stamp. This time
stamp is updated when:

 • A new resource instance is added.

 • An existing resource instance’s information changes.

 • A resource instance is removed.

Each interregion object has a per-TMR/per-resource time stamp for the last
time it received an update from a resource in a connected TMR. This time
stamp is used to determine whether or not an update of a remote resource
type is necessary.

For example, in TMR B, the resource type ManagedNode has a time stamp.
In connected TMR A, an interregion object keeps a time stamp that records
the last time the resource type ManagedNode was updated in TMR B. If an
administrator in TMR A requests an update of the ManagedNode resource
type from TMR B, the interregion object in TMR A first checks the local time
stamp against the time stamp in the name registry of TMR B. If the local time
stamp is not older than the remote one, the resource is assumed to have not
changed, and no exchange of data takes place.

wupdate -r Query rh0255c.itsc.austin.ibm.com-region
#
wlookup -ar Query
FIND_NT 1360991896.1.580#TMF_Query::Query#
Find-AIX 1360991896.1.565#TMF_Query::Query#
Get-AIX 1515280903.1.773#TMF_Query::Query#
Q-AIX-Cmd 1360991896.1.567#TMF_Query::Query#
Q-AIX-Cmdline 1360991896.1.566#TMF_Query::Query#
#
wgetquery -f FIND_NT
Name: FIND_NT
Description: Find machines with Windows_NT
RDBMS User: inventory
View: INVENTORYDATA
Fields:
 TME_OBJECT_ID
 TME_OBJECT_LABEL

Where Clause:

 (BOOTED_OS_NAME = ’Windows NT’)#
wruninvquery -l FIND_NT
rh0255e
#

226 Tivoli Enterprise Internals and Problem Determination

If the interregion time stamp in TMR A is older than the one in the name
registry in TMR B, then the entire resource is updated. This means that all of
the instances of the resource ManagedNode from TMR B are brought into
TMR A and merged into the ManagedNode resource in the name registry in
TMR A.

A user can force an update of resources, regardless of the time stamp, with
the wupdate -f option.

In 3.6, you can now see the date and time stamp when a resource was last
exchanged with another TMR. The command to use is wlsconn
remote-regionname.

In Figure 98, we look at a partial listing of the TMR itso3 resources
exchanged with TMR rh2900a. On rh2900a, we looked at the resources prior to
issuing the wupdate command. Notice the date and time stamp on the
Administrator resource of 11/19/98 07:11:55:

Figure 98. Partial Listing of wlsconn

We then issued the wupdate -r Administrator Guyincharge command to update
the Administrator resource. We had previously added two Tivoli
Administrators in the Guyincharge region on itso3. Reissuing the wlsconn
Guyincharge command gives the result in Figure 99 on page 228.

rh2900a: wlsconn Guyincharge

Name: Guyincharge
Server: itso3
Region: 1295714281
 Mode: two_way
 Port: 94

Resource Name Last Exchange
------------- -------------
TMF_Notice 11/09/97 03:22:34
Administrator 11/19/98 07:11:55
PolicyRegion 11/16/98 04:24:17
TaskLibrary 11/16/98 04:46:08
Tivoli Framework Core Services 227

Figure 99. wlsconn After Updating the Administrator Resource

Note the time and date stamp on the Administrators resource has changed to
12/16/98 07:08:44, the date and time the wupdate command completed.

7.3.6 Resource Flags
Each resource in the name registry carries a set of flags that affect how it is
exchanged. A resource can be exchangeable, non-exchangeable, or custom:

 • exchangeable

An exchangeable resource can be updated between TMRs. When an
instance of an exchangeable resource is created in TMR A, and the
resource type is updated in connected TMR B, the newly-created resource
from TMR A becomes visible in the name registry of TMR B.
exchangeable is the default for all resource types.

 • non-exchangeable

A non-exchangeable resource cannot be updated between TMRs. This is
for resources that need only be visible within a single TMR. Examples of
non-exchangeable resources in the Tivoli Framework are:

 • Distinguished - use wlookup -a to display distinguished resources.

 • Classes.

 • Presentation objects.

 • ActiveDesktopList objects.

rh2900a: wlsconn Guyincharge

Name: Guyincharge
Server: itso3
Region: 1295714281
 Mode: two_way
 Port: 94

Resource Name Last Exchange
------------- -------------
TMF_Notice 11/09/97 03:22:34
Administrator 12/16/98 07:08:44
PolicyRegion 11/16/98 04:24:17
TaskLibrary 11/16/98 04:46:08
228 Tivoli Enterprise Internals and Problem Determination

 • custom

A custom resource defines its own methods when exchanged between
TMRs. If a resource’s custom flag is set, all instances of the resource
receive a callback when updated.

The resource that is implemented needs to support the InterRegionUpdate
interface defined in the TMF_Application.idl file by providing an
implementation for the update resource operation. This is documented in
the Tivoli Advanced Development Environment manuals.

There are three custom resource types shipped with the Tivoli Framework:

 • TaskRepository

 • AdministratorCollection

 • TopLevelPolicyRegion

Figure 100 is a script that shows whether resources are exchangeable,
non-exchangeable, or custom in your environment:

Figure 100. Resource Exchangeable Status Script

#!/bin/sh -e

TNR=‘wlookup NameRegistry‘

for resource in ‘wlookup -R‘
do
 exchangable=‘idlcall $TNR TMF_TNR::Resource::get ’"’$resource’"’ |
awk
’{print $4}’‘

if [$exchangable = 0]
 then
 echo "$resource\t\tnon-exchangable"
 elif [$exchangable = 1]
 then
 echo "$resource\t\texchangable"
 elif [$exchangable = 2]
 then
 echo "$resource\t\tcustom"
 elif [$exchangable = 3]
 then
 echo "$resource\t\texchangable,custom"
 fi
done
exit 0
Tivoli Framework Core Services 229

7.3.7 Scheduling Updates
Updating resources can be a fairly expensive process. The update runs as a
single transaction. The update method obtains a write lock in the local name
registry for any resource types that are updated and a read lock for resources
in remote TMR(s). If the update method runs for any significant amount of
time, other methods are locked out of portions of the name registry until it
completes. In remote TMRs, where only read locks are held, this may not be
a problem. However, in the local TMR, where write locks are held, even
lookups are blocked. This can cause severe performance problems.

7.3.7.1 Rules for Updating Resources
 • Do not schedule updates too often. Once a TMR deployment reaches a

steady state, there is no reason to update resources more than twice a
day. For example, once a day, during non-peak hours is preferable. An
immediate update of a single resource type can be forced with the wupdate
command.

 • Do not schedule updates in interconnected TMRs at the same time.
Stagger scheduled updates at least 30 minutes apart.

7.3.8 Disconnecting TMRs
TMRs can be disconnected from the desktop or with the wdisconn command.

When TMRs are disconnected, all resources in the name registry from the
remote TMR are automatically removed. However, be aware that
collection/collection-member inter-object references and
subscriber/subscribee relationships that cross the region boundaries are not
cleaned up. Managed nodes subscribed to profile managers in remote TMRs
is one example. These references must be cleaned up with the wchkdb -ux
command.

The disconnect is secure if one of the TMRs is not available. If one of the
TMRs is not available, you should use wdisconn -s.

7.3.9 Troubleshooting TMR Connections
Some useful commands used for Troubleshooting connection problems are:

wdisconn <region-name>

Disconnect a TMR. You can specify a region name, or use
the -r option to specify the region number. Using the
desktop TMR Connections> Disconnect... you can only
select a TMR by name.
230 Tivoli Enterprise Internals and Problem Determination

wdisconn -s <region-name>

Disconnects only one side of the TMR connection. The -r
option can be used for the region number if required.

wlsconn Lists the current connections. The desktop option is TMR
Connections> List Connections....

wupdate Exchanges resources between TMRs. Select TMR
Connections> Update Resources... from the desktop.

odadmin region List all the regions recognized as currently available by
the oserv. This includes the local region and is only
available from the command line. Useful options are:

add_region Allows the addition of a region - useful when
connections have only been partially made and a failure
occurred.

delete_region Another useful option to delete a region to clean up
partially-completed or failed connections.

A TMRs name used for a connection is the same as the default policy region
created during the installation of the TMR sever.

After disconnecting TMRs, you should always run a wchkdb -ux to clean up
any invalid references.

7.3.10 Troubleshooting Interconnected TMRs
This section contains advice on problems you may encounter when managing
interconnected TMRs. Many of these problems are easier to explain with
reference to a diagram; so, the following problems will refer to Figure 101 on
page 232.
Tivoli Framework Core Services 231

Figure 101. Two-Way Connected TMRs

7.3.10.1 Unable to Connect Previously-Connected TMRs
Issue the wlsconn command on TMR A to see if there is still a connection to
TMR B. Login to TMR B’s server and do the same. If only TMR B shows that
the connection is active, issue the wdisconn command with the -s flag from
TMR B.

Figure 102. Using the wdisconn Command to Disconnect TMRs

It is advisable to run a wchkdb -ux -o <filename> after the disconnect has
completed. The -o stores references to problem objects in a file. Subsequent

Primary TMR

TMR A TMR B
2-Way

MN A

PC MN Group 1 PC MN Group 2

MN B

wlsconn
 MODE NAME SERVER REGION
 <----> rh0255c.itsc.austin.ibm.com-region rh0255c.itsc.austin.ibm.com 1360991896
 <----> tivdev02-region tivdev02.itsc.austin.ibm.com 1482082604
wdisconn -s tivdev02-region
wlsconn
 MODE NAME SERVER REGION
 <----> rh0255c.itsc.austin.ibm.com-region rh0255c.itsc.austin.ibm.com 1360991896
wchkdb -ux
232 Tivoli Enterprise Internals and Problem Determination

checks can then just use that file as input rather than rechecking every
object.

If errors occurred during the check, you can try taking some corrective
actions before running wchkdb again. This time, however, replace -o with
-f.This speeds up the check by just looking at the objects listed in filename.
The next wchkdb will show if the errors persist. There may be occasions where
simply running the check more than once is enough to resolve the errors.
This is the format of wchkdb to use when specifying an input filename:

wchkdb -ux -f <filename>

7.3.10.2 Unable to Disconnect a TMR
If you are unable to disconnect a TMR, either both or just one TMR will show
the connection.

Both TMRs show a connection:

Figure 103. TMR Disconnect Failed

If disconnecting TMRs fails, check that both TMRs are showing a connection
by using either the desktop TMR Connections> List Connections... or the
wlsconn command.

If TMR B does not have the TMR A region listed in the output from the odadmin
region command, use the following command on TMR B:
Tivoli Framework Core Services 233

odadmin region add_region <region_#> <regionname> <oserv_port>
<encryption_level>

where:

region_# The region number of TMR A.

regionname The name of the TMR A region.

oserv_port The port number that oserv is running on in TMR A
(default is 94).

encryption_level The level of encryption used for the TMR Connection. The
default is simple.

You will also be prompted for a password, which should be the same
encryption password that you used for the initial connection.

Once you have added the region manually, you can reissue the wdisconn
command from TMR B.
234 Tivoli Enterprise Internals and Problem Determination

The sample screen shows that:

1. wlsconn, the tivdev02-region is connected.

2. The oserv does not know about the resource when odadmin region is
entered.

3. The tivdev02-region is added manually using odadmin region add_region.

4. odadmin region now agrees with the wlsconn command, tivdev02-region is
connected, and oserv knows it.

5. wdisconn tivdev02-region command is issued to disconnect the TMRs.

6. wlsconn and odadmin region now agree that tivdev02-region has been
disconnected.

wlsconn
 MODE NAME SERVER REGION
 <----> rh0255b.itsc.austin.ibm.com-region rh0255b.itsc.austin.ibm.com 1515280903
 <----> tivdev02-region tivdev02 1482082604

odadmin region
Region TME Srvr ipaddr port
1360991896 rh0255c.itsc.austin.ibm.com 9.3.1.235 94 1360991896.1.0
1515280903 rh0255b.itsc.austin.ibm.com 9.3.1.234 94 1515280903.1.0

odadmin region add_region 1482082604 tivdev02.itsc.austin.ibm.com 94 simple
Remote region key:

odadmin region
Region TME Srvr ipaddr port
1360991896 rh0255c.itsc.austin.ibm.com 9.3.1.235 94 1360991896.1.0
1482082604 tivdev02.itsc.austin.ibm.com 9.3.1.134 94 1482082604.1.0
1515280903 rh0255b.itsc.austin.ibm.com 9.3.1.234 94 1515280903.1.0

#wlsconn
 MODE NAME SERVER REGION
 <----> rh0255b.itsc.austin.ibm.com-region rh0255b.itsc.austin.ibm.com 1515280903
 <----> tivdev02-region tivdev02 1482082604

wdisconn tivdev02-region

wlsconn
 MODE NAME SERVER REGION
 <----> rh0255b.itsc.austin.ibm.com-region rh0255b.itsc.austin.ibm.com 1515280903

odadmin region
Region TME Srvr ipaddr port
1360991896 rh0255c.itsc.austin.ibm.com 9.3.1.235 94 1360991896.1.0
1515280903 rh0255b.itsc.austin.ibm.com 9.3.1.234 94 1515280903.1.0
#

Tivoli Framework Core Services 235

Only one TMR shows a connection:
If only one side shows a connection, then you can try a one-sided disconnect
from the TMR where the connection appears active, as shown below:

wdisconn -s region-name

7.3.10.3 Unable to See the Remote Resources from Your TMR
To ensure that both TMR servers reflect that there is a connection use wlsconn
or (Desktop> TMR Connections> List Connections...).

Have the relevant resources been updated across the TMR connection since
they were added/deleted in their home TMR?

Updates can be scheduled or done manually using the GUI (Desktop > TMR
Connections > Update Resources...) or through the command line with
wupdate (or wupdate -f to only update changed resources based on time
stamps. See the Tivoli Framework User’s Guide section on resource updates
for details).

See also Section 7.3.3, “Updating Resources” on page 221.

7.3.10.4 Unable to Perform Actions on Remote Objects
Does your administrator user ID have the authority to operate on objects in
policy regions in the remote TMR?

This can be achieved two ways:

1. Give the administrator the correct level of access across the policy regions
in the remote TMR. Update the TMR Roles option when updating or
creating an Administrator.

2. Select specific roles for selected resources using the Resource Roles
option when creating or updating an administrator.
236 Tivoli Enterprise Internals and Problem Determination

Figure 104. Update Resource Roles for an Administrator

You cannot update the roles for resources that you cannot manage yourself
or update the resource roles of an administrator that has higher privileges.

7.3.10.5 Only One TMR Is Seeing the Shared Resources
 • Remember that the exchange of resources is a pull operation. The TMR

not seeing any remote resources has probably not issued a wupdate to the
other TMR.

 • If you have a one-way connection, only the managing TMR will see the
remote resources. The manager option can be selected during a secure
connection or the managing TMR will be the one from which the remote
connect was started.

See also Section 7.3.3, “Updating Resources” on page 221.
Tivoli Framework Core Services 237

7.3.10.6 An Application Fails across TMR Boundaries
 • Check that you have a two-way connection. Many applications that run

across a connection need to return information to the TMR from which
they were started. If the process and information can only flow one way,
the application may not function correctly.

 • Check that the application is installed on both TMR A and TMR B plus all
the managed and PC managed nodes. For instance, running an Inventory
scan on TMR A for resources in TMR B requires that the product be
installed on both TMR servers and all of the machines you wish to scan in
both TMRs.

7.3.10.7 Installation Fails across TMR Connections
The installation of applications is not supported over TMR connections.
Unfortunately, the standard installation process does not check this, and it will
allow the installation to start.

The potential for this situation is known by Tivoli, and they are working on a
resolution.

7.3.10.8 Both TMRs in a One-Way Connection Are Set to Manager
Go to the TMR that should be managed and do a one-sided disconnect:

wdisconn -s <region-name>

Once the disconnect is complete, you can reissue the connection request
with the correct settings.

7.4 Task Library

Today, it is a common requirement that you must execute an operation across
the network. Examples include executing a binary file, making a backup,
shutting down a process, and many others.

The Tivoli Framework provides the mechanism for the execution of processes
through tasks and jobs.

Do NOT attempt installing across TMR Connections; Tivoli may overwrite
and make updates in either TMR. It could mean a complete recovery of
both TMRs from backup is necessary, or if you do not have a complete
backup of your machine and databases, a complete reinstall!

Important
238 Tivoli Enterprise Internals and Problem Determination

Like all the resources in Tivoli, the tasks and jobs are grouped in another
resource called the task library. All these resources are available once you
have installed the Framework.

7.4.1 Tivoli Tasks
A task in Tivoli:

 • Is the definition of the network operation that has to be executed.

 • Can be executed several times.

 • Is stored in a task library.

The definition of the task includes:

 • Name of the task (Label).

 • Platform in which the task will be executed.

 • Tivoli role(s) required to execute the task.

 • User and group under which the task will be executed.

For example, the administrator test has admin as the role in the policy region
where the task library resides, but in the policy region in which the task will be
executed, the administrator has user. Assuming this administrator has no
TMR roles, the role required to execute the task must be user in order for this
administrator to be able to execute the task in that policy region. If the
administrator had a TMR role specified, then that role could be used as the
required role for the task.

7.4.2 Tivoli Jobs
A job is a task, but it already has a number of run-time parameters set
including:

 • The list of targets in which the task will be executed.

 • The execution mode - Serial, one target at a time or parallel, all
subscribers simultaneously.

 • The output format - Desktop or saved to a file.

The required role defined in the task is not the role the administrator has in
the policy region where the task library is but the one that you have
assigned in the policy region in which the task endpoint resides.

NoteNote
Tivoli Framework Core Services 239

The principal difference between a task and a job is that the job has sufficient
data associated with it to be scheduled, and the task does not.

Therefore, if you want to execute the operation several times at
predetermined intervals:

1. Define the task.

2. Define the job.

3. Schedule the execution of the job.

7.4.3 Task Library Features
Tasks libraries store binary files or scripts that we generally refer to as
executables. When you create a task, an image of the executable that you
have specified to run will be stored in the TMR server’s binary tree.

You can pass arguments to a task, but by default, you can only do this
executing the task from the command line. If you want to pass any argument
using the GUI environment, you will need to use the Task Library Language
(TLL). You will need to use wtll to export task library definitions into a flat text
format. You can then modify the TLL and use wtll to import the definition
again.

The task library has default and validation policies:

 • Default task library policies set the available options of endpoints and
profile managers to run the task or job.

 • Validation task library policies validate the creation and execution of the
task or job in a task library

All these policies can be customized using a shell script to set or validate
data. This customization will enable you to set options to determine which
users you can run as well as validating users.

7.4.4 Task Library Survival Guide
All of the following actions can be executed by the desktop or by command
line.

If you modify the executable used in a task, you will have to re-specify the
executable in the task definition so that it can be refreshed in the TMR
server binary tree.

Note
240 Tivoli Enterprise Internals and Problem Determination

7.4.4.1 Creating a Task Library
When creating a task library, you will need to follow these steps:

1. You will need the senior role to create a task library.

2. Select the policy region where the task library will reside.

3. From the menu, select the option of Create and then Task Library. If the
resource does not appear, you will have to assign this resource to the
policy region (select the policy region, press the right button of the
mouse, and then select Managed Resources, select the Task Library
resource and move it to the current resources list).

4. Set the label of the task library.

5. Press Create and Close.

6. Now, you can create any task and job in the task library.

7. Or, at the command line, type wcrttlib library_name pr_name.

7.4.4.2 Creating a Task
Refer to the following steps when creating a task:

1. You will need admin role to create a task.

2. Select the task library where the task will reside and double click this icon.

3. From the menu, select Create and select the Task option.

4. Fill in the name of the task, the platform, the role or roles required, and the
user and group to run the task.
Tivoli Framework Core Services 241

Figure 105. Creating a Task

5. Optionally, at the command line type: wcrttask -t task_name -l lib_name
[-g group_name] [-u user_name] -r role [-c comments] {-i interp_type

mannode_name filename}...

7.4.4.3 Creating a Job
Follow these steps when creating a job:

1. You will need admin role to create a job.

If you specify asterisk (*) in the Execution Privileges, then the task will run
using the user ID (or mapped ID) that the person who executes the task
logged in with. This ID must exist in the endpoint where the task is to run.

Note
242 Tivoli Enterprise Internals and Problem Determination

2. Select the task library where the job will reside and double-click this icon.
3. From the menu select Create and select the Job option.
4. Fill in the name of the job.
5. Select the Task Name.
6. The execution can be:

Parallel Will execute the job for all the endpoints at the same time.
Serial Will execute one at a time.
Staged Will execute in blocks of n endpoints. For example, in blocks

of five endpoints with an interval of ten seconds.
7. Select the parameters of time-out (in seconds), and if you selected the

staged option, you will have to fill in the staging count and the interval of
time between them.

8. Select the task endpoints or profile managers.
9. Select Create and Close.
Tivoli Framework Core Services 243

Figure 106. Creating a Job

Or at the command line type: wcrtjob -j job_name -l library_name -t
task_name -M mode [-s interval -n number] -m time-out -o output_format [-D

| -d mannode_name -f file_name][-h mannode_name][-p prof_manager_name]

The only difference between executing a task and creating a job is that the
job will save all the information so that it can be used easily by
double-clicking on the icon. A job can also be scheduled as it has all the
information included that is needed for it to run.

Note
244 Tivoli Enterprise Internals and Problem Determination

7.4.4.4 Executing Tasks and Jobs
1. Select the task or job you want to execute. Double-click the icon of the

task or job.

2. If you select a task, you will have to fill in the execution mode, the
platform, the role or roles, and the user and group to run the task. Then
select the option of Execute & Dismiss.

3. If you double-click a job, it will be executed.

4. You can the see if the execution of the task or job was successful in the
desktop or in the log file you specify.

Figure 107. Executing a Task

Or at the command line: wruntask -t task_name -l library_name {-h node...|
-p profile_mgr...} [-a argument] [-e name=value] [iE] [-T transtype] [-M

mode [-s interval -n number]][-m time-out][-o output_format]
Tivoli Framework Core Services 245

7.4.5 Task and Job Internals
This section gives a little more detail about the task creation, distribution
process, and the use of default and validation policies.

7.4.5.1 Creating a task
When you create a task, the following occurs behind the scenes:

 • The host that was specified in the Executable for Task window is
contacted, and the task is copied to the TMR server. The directory that is
used is

$BINDIR/../interp/TAS/TASK_LIBRARY/bin/regionnumber/

The name of the task is:

tasklibraryname_machinegenerated

7.4.5.2 Distribution of the Task Executables
Every time you execute a task, the server distributes to the targets:

 • Executable files to run

 • Access control list for the task

 • Arguments for the task

 • Environmental variables

 • User and group name required

 • Time-out value

The Tivoli method that is invoked is the run_task method. At the target, this
method decrypts the task information, gets the correct executable for that
interpreter type, and forks/execs the executable to perform the task. When
the task is done executing, the distributed task is removed, and the output is
collected and returned to the caller.

Framework 3.6 now allows tasks to be run on PC managed node or TMA
endpoints. In the case of a PC managed node, the TMR distributes the task to
the temporary directory, and the run_task method on the TMR will contact the

The name of the task is now stored differently than pre 3.6. Previously,
every time a task was edited and modified, the previous copies were
kept in the directory. The same task was appended with a version
number starting at 0 for the original task. Framework Version 3.6 now
only keeps a single copy of the task.

Note
246 Tivoli Enterprise Internals and Problem Determination

home host of the target PC managed node and will spawn the task through
the PC Agent.

For TMA endpoints, the task is sent to the TMA endpoint. The TMR method
run_task then spawns the run_task method on the gateway. The gateway will
then cause a downcall of task_endpoint to the TMA endpoints, and the task is
run returning any status to the TMR server.

By default, the distribution of the binaries is only in the TMR server (ALI), but
when you have Tivoli applications, like Distributed Monitoring, that use
executables stored in the task library, it will be useful to distribute the binaries
to the file servers either in the local TMR (LOCAL) or interconnected TMRs
(GLOBAL).

Distributing the executable to all the file servers in a TMR gives the
application faster access to the executable, and it will be more flexible and
extensible.

You can distribute the task binaries with the command line:

wdisttask -q library_name
wdisttask -s library_name mode
wdisttask -d library_name task_name

There is no extension associated with the task; therefore, a default
extension is associated with the task on the endpoint when it is distributed.
This extension depends upon the interp type being used. For generic and
any of the UNIX interp types, the extension is sh. For Windows 95 and NT,
the extension is cmd.

Note

The distribution of tasks does not use MDist. The TMR Server will still use
an IOM channel if data >16K, but the server makes a direct contact with
each target. There is no use of mem_max or other tuning parameters.

Note

You cannot use the wdisttask to pre-stage tasks on target systems. These
are useful only if an application, such as Distributed Monitoring, is running
tasks. Running tasks or jobs from the TMR will still cause the tasks to be
distributed to the target systems.

Note
Tivoli Framework Core Services 247

7.4.5.3 Task Library Policies
As we have said before, the default and validation policies are used in the
task library.

Figure 6 provides a list of the different policies in a task library. First, the
default policies:

Table 6. Default Policies in a Task Library

Figure 7 provides the validation policies:

Table 7. Validation Policies in a Task Library

You can look at the policies with:

wlspol [-d | -v] TaskLibrary

Use wlspol to list the names of the policy default objects, such as
BasicTaskLibrary.

wlspolm [-d | -v] TaskLibrary

Default Policies Description

tl_def_dist_mode Default mode for distributing task binaries
throughout a TMR. The default is ALI.

tl_def_man_nodes Default list of managed nodes, as displayed
in the Execute Task and Create Job dialogs.

tl_def_prof_mgrs Default list of profile managers, as displayed
in the Execute Task and Create Job dialogs.

tl_def_set_gid Default group ID - This is an actual ID not
GID

tl_def_set_uid Default user ID - This is an actual ID not UID.

Validation Policies Description

tl_val_dist_mode Validates the endpoints on which a task or
job will run.

tl_val_prof_mgrs Validates the profile managers on which a
task or job will run.

tl_val_set_gid Validates the assigned group name of a task
or job (Uses the actual name, not GID)

tl_val_set_uid Validates the assigned user name of a task
or job (Uses the actual name, not UID).
248 Tivoli Enterprise Internals and Problem Determination

Use wlspolm to list policy methods assigned to the TaskLibrary resource. It will
display a list, such as the ones shown in the tables above.

wgetpolm [-d | -v] TaskLibrary BasicTaskLibrary {policy}

Use wgetpolm to list the body or constant value of a default or validation policy
method.

wputpolm [-d | -v] TaskLibrary BasicTaskLibrary {policy}
< binary of the new policy>

Use wputpolm to replace a policy method’s body.

For more details about these commands, consult the Tivoli Framework
Reference Manual.

7.4.6 Task Library Commands
The following table summarizes the task library commands:
Table 8. Task Library Commands

Command Purpose Role

wcrtjob Creates a new job in a task
library

Admin, Senior, Super

wcrttlib Creates a new task library Admin, Senior, Super

wcrttask Creates a new task in a task
library

Admin, Senior, Super

wdeljob Deletes a job from a task
library

Admin, Senior, Super

wdeltask Deletes a task from a task
library

Admin, Senior, Super

wdisttask Controls the distribution of
task binaries fro a task
library

wgetjob Lists information about a job User, Admin, Senior,
Super

wgettask Lists information about a
task

User, Senior, Super

wlstlib Lists information about a
task library

User, Senior, Super

wrunjob Executes a job The role specified in the
job definition
Tivoli Framework Core Services 249

7.4.7 Troubleshooting Tasks and Jobs
This is a collection of tips that may be useful in investigating problems with
tasks:

 • Be sure that your script or binary file is working as it should be,
independent of the task/job process.

 • You can use Tivoli to open an xterm on the machine where the problem
task is running. You can use:

wxterm -h ManagedNode -display mydesktop:0

Not only does this give you the xterm, but it also confirms that remote
initiation of programs is possible. The xterm will run with the same
environment as the task.

 • Remember, that normally the first line of a task script must be #!/bin/sh.
However, if the task is to execute in a PC managed node or TMA endpoint,
then this line must be omitted.

 • If the task is created on a UNIX TMR, and the target systems are Windows
95 or NT, the lines of the task must end in ^M (Ctrl-M).

 • The binary directory of the tasks must be writable for creating new tasks.
The path of this directory is:
/<install-dir>/<interpreter-type>/TAS/TASK_LIBRARY/regionnumber/bin

 • To change the policy region validation to allow root to run tasks, perform
the following steps:

1. wcrtpol -v TaskLibrary new_name_for_library_copy

2. wgetpolm -v TaskLibrary new_name_for_library_copy tl_val_set_uid

>file_name

wruntask Executes a task The role specified in the
task definition

wsetjob Sets the properties of a task Admin, Senior, Super

wsettask Sets the properties of a task Admin, Senior, Super

wtaskabort Aborts a task transaction
and rolls back any
uncommitted changes

Can only be used in a
script and does not work
by command line

wtll Imports and exports task
library definitions

User, Admin, Senior,
Super

Command Purpose Role
250 Tivoli Enterprise Internals and Problem Determination

3. Edit the file_name and remove the checks for root. Keep the part that
says: echo TRUE and exit 0.

4. wputpolm -v TaskLibrary new_name_for_library_copy tl_val_set_uid

<filename

5. If the desktop is running, exit the desktop and restart it.

6. Open the policy region window.

7. Under Properties/Managed Resource Policies, open the button for
Validation Policy and when you see this new policy, select it.

 • If you are using commands from the Framework, you MUST set up the
environment variables in the script, as follows:

UNIX: /etc/Tivoli/setup_env.sh

NT: c:/winnt/system32/drivers/etc/Tivoli/setup_env.cmd

 • List the task and jobs within a library. Use the command:

wlstlib library_name

Does the task associated with the job still exist?

 • List the properties of a task:

wgettask [-F file_name] task_name library_name

For example:

 • List the properties of a job:

wgetjob job_name library_name

For example:

[root@itso3]/> wgettask endpoint TaskLibrary
Task Name endpoint
User Name *
Group Name
Task ACL senior:super:user
Supported Platforms
 w32-ix86 <install-dir>/w32-ix86/TAS/TASK_LIBRARY/bin/1295714281/T
askLibrary__vhyadwba
Task Comments
 Task Name : TaskLibrary/endpoint
 Task Created : Thu Dec 17 18:05:13 1998
 Task Created By : root@itso3
 Task Files
 w32-ix86 itso3 /tmp/task.txt
 Distribution Mode : ALI
 Task Comments :
--
Tivoli Framework Core Services 251

 • Exporting and Importing task library definitions:

wtll [-F] export_file -l library_name

wtll [-i] [-r] -p policy_region [-P Preprocessor] import_file

The following screen on page 251 shows a wtll export file:

[root@itso3]/swdist/logs/task> wgetjob datejob TaskLibrary
Job Name : datejob
Task Name : leedate
Execution Mode : parallel
Timeout : 60
Output Format : task header
 return code
 standard output
 standard error output
 save output to file
 itso3
 /swdist/logs/datejob.log

Managed Nodes :
Profile Managers : UNIXPM (ProfileManager)

If the target of a job is a profile manager, the subscribers of the profile
manager are resolved when the task is run. So, if you originally create a job
that has the profile manager UNIXPM as a target, the subscribers to the
UNIXPM profile manager are retrieved EACH TIME the job is run.

Note
252 Tivoli Enterprise Internals and Problem Determination

7.4.8 Task Library Common Errors
 • time out

The task exceeded the amount of time allowed in the time-out setting.

 • getpwname failed with code ##

You are trying to execute the task with a user that does not have an
account on the destination managed node where it is trying to run the task.

The user MUST exist before the task can be run.

 • Getting method fork failed errors.

This can be an OS resource problem, for example, swap space, lack of
threads, and so on.

TaskLibrary “task-rh0255b” {
 Context = (“_!_”,”*”,1);
 Distribute = (“_!_”,”ALI”,1);
 HelpMessage = (“_!_”,”Conventional Task Library”,1);
 Requires = (“_!_”,”>2.5”,1);
 Version = (“_!_”,”1.0”,1);

 ArgLayout Filename{
 TextChoice FileBrowser;
 ButtonLabel = (testmsg_BrowserButton);
 };

 Task backup {
 Description = (“_!_”,”Upgraded Task”,1);
 HelpMessage = (“_!_”,”No Help Available”,1);
 Uid = (“_!_”,”root”,1);
 Gid = (“_!_”,”bin”,1);
 Comments = (“_!_”,”Task Name : task-rh0255b/backup
Task Created : Thu Oct 16 14:49:31 1997
Task Created By : root@rh0255b.itsc.austin.ibm.com
Task Files
 default rh0255a /usr/local/bin/backuptmr
Distribution Mode : ALI
Task Comments :

--
“,1);
 Roles = (“_!_”,”user”,1);
 Argument (testmsg_ArgDirname){
 Layout = “Filename”;
 MustMatch = “̂ /.*”;
 };
 Implementation (“default”) Binary “0.default”;
 };

}

Tivoli Framework Core Services 253

 • command exited with signal 5, core=false

This error can occur if you change any default or validation policy, and the
script has an error.

For example:

You might want to change the tl_def_dist_mode to LOCAL. If you remake the
script with the echo command, you will have this error because the echo
adds a new line character, so you will have to use printf like this:

#!/bin/sh
printf LOCAL
exit 0

 • ’open’ failed with code ’13’: ’Permission denied

This error occurs in tasks when the user ID running the task does not have
permission to write to the log file. If you are receiving this on tasks, also
have the output come to the desktop. If the desktop output is correct, but
you are receiving the code 13, then check permission. On jobs, this error
was seen under two circumstances. You did not have permission to write
to the log file or the task specified in the job does not have a valid userid
on the target system.

 • (14): no permission for ‘TaskLibrary/rhondatask’ for operation

‘run_task’

The person running the job or task does not have the authority to run the
task. Check the Task ACL with the wgettask command. Check the TMR
roles for the administrator. Remember: Roles are not hierarchical. Add an
appropriate role to either the administrator or to the task.

 • ’COMMconnect_host’ failed with code ’79’:’rh2900c’ or pctmp109
(Endpoint): ipc_create_remote failed: unable to connect to

146.84.32.208+9494: (67) IPC shutdown

The target endpoint agent (TMA or PC) was not running on the endpoint.

 • (4): resource ‘leedate’ not found

The task leedate was deleted, but the job still references it. This error was
received when running the job referencing the leedate task.
254 Tivoli Enterprise Internals and Problem Determination

7.5 Scheduler

As its name suggests, the scheduler can be used to schedule jobs, backups
and profile distributions. To begin to schedule a job, you simply drag and drop
the icon of the job onto the icon of the scheduler.

7.5.1 Scheduler Commands
Table 9 is a quick summary of the scheduler commands:

Table 9. Scheduler Commands

Refer to the Tivoli Framework Reference Manual for more details.

Command Purpose Role

wdelsched Removes jobs from the scheduler Super, Senior, Admin

wedsched Edits a job that currently exists in
the scheduler

Super, Senior, Admin

wenblsched Disable or enables scheduled jobs Super, Senior, Admin

wgetsched Retrieves information on jobs
currently scheduled

Super, Senior, Admin,
User

wschedjob Schedules a job that exists in the
task library

Super, Senior, Admin

wstartsched Starts the TME10 scheduler Super, Senior

If you are still having problems, you can do the following to gather more
information about the errors:

1. Enable the wtrace of errors and objcalls.

2. Execute an odstat.

3. Regenerate the problem.

4. Execute an odstat and keep it in a file.

5. Execute wtrace -jk $DBDIR and keep it in another file.

See Chapter 6, “Commands and Logs for Troubleshooting” on page
131.

Note
Tivoli Framework Core Services 255

7.5.2 Tips for Working with the Scheduler
Use the wgetsched command to make sure the job you are scheduling is really
in the scheduler. Output from the command is shown in Figure 108:

Figure 108. Output of the wgetsched Command

Check for the name of the job, the date and time scheduled, and the
Administrator.

Check the scheduler for entries that repeat. Do not delete a Tivoli
Administrator that has jobs in the scheduler. Doing this will cause the job not
to run. You need to use the wgetsched command and find all jobs that the
administrator is running and get the scheduler ID number. Then issue the
wgetsched command in verbose mode and get all information relative to the
job so you can recreate the job once the administrator is deleted. Finally, you
need to delete the job from the scheduler with the wdelsched command and
re-add it using a different administrator. If you have already deleted the
administrator, then every time the scheduled job is run, it will fail, and a notice
will be logged.

[root@itso3]/swdist/logs/task> wgetsched
 Job ID Job Label Admin Date & Time Enbld Repeat Re
try Cancel
 ------ --------------- --------------- ------------------------ ----- ------ --
--- ------
 000001 update X-TMR re root@itso3 Thu Dec 17 20:30:00 1998 YES YES
NO NO
 000004 filepackage root@itso3 Fri Dec 18 03:20:00 1998 YES NO
NO NO
 000008 going to be del Lee@itso3 Fri Dec 18 16:45:00 1998 YES YES
NO NO
256 Tivoli Enterprise Internals and Problem Determination

Figure 109. Example of a wgetsched Command with Verbose Output

For jobs that are regularly scheduled or repeat jobs, at least once a week run
the wgetsched command in verbose mode and save their definitions. If the
scheduler must be cleaned, you can use these definitions to recreate the
scheduler jobs.

7.5.3 Troubleshooting Common Scheduler Errors
In some cases, when you try to obtain the list of jobs scheduled, you may
obtain the error shown in Figure 110 on page 258. If so, you will need to start
the scheduler again by typing the following command at the command line:
wstartsched

[root@itso3]/swdist/logs/task> wgetsched
 Job ID Job Label Admin Date & Time Enbld Repeat Re
try Cancel
 ------ --------------- --------------- ------------------------ ----- ------ --
--- ------
 000001 update X-TMR re root@itso3 Thu Dec 17 21:00:00 1998 YES YES
NO NO
 000004 filepackage root@itso3 Fri Dec 18 03:20:00 1998 YES NO
NO NO
 000008 going to be del Lee@itso3 Fri Dec 18 16:45:00 1998 YES YES
NO NO

[root@itso3]/swdist/logs/task> wgetsched -v -s 8
ID : 8
Name : rhondajob
Label : going to be deleted
Description : This is a job from the Task Library.
Administrator : Lee@itso3
Original Time : Fri Dec 18 16:45:00 1998
Next Time : Fri Dec 18 16:45:00 1998
Enabled : Yes
Repeat Type : Finite
Repeat Increment : 5
Repeat Unit : Minute
Repeat Times : 5
Retry Type : None
Retry Increment : 0
Retry Unit : Minute
Retry Times : 0
Cancel Job : No
Cancel Increment : 0
Cancel Unit : Minute
Email :

And so on
Tivoli Framework Core Services 257

Figure 110. Scheduler Not Running Message

When you execute the command wstartsched, it may seem to start the
scheduler, but when you try to retrieve the list of jobs, you still get the
scheduler not running error. If this happens, the scheduler must be cleaned.
Another indicator of this problem is the following in the oservlog:

Oct 22 17:01:34: ^hdaemon exit while in use: (0xa)
Oct 22 17:03:08: ^hdaemon exit while in use: (0x6)

7.5.3.1 Cleaning the Scheduler
You can clean up the scheduler by executing the following script in the TMR
server:

#!/bin/sh
. /etc/Tivoli/setup_env.sh
index=0
SCHED=‘wlookup Scheduler‘
objcall $SCHED stop
set -e
NUM_CRED=‘objcall $SCHED contents| grep CredDatabase| wc -l‘
while $index -lt $NUM_CRED
do
 objcall $SCHED rmattr BDBPG:CredDatabase:$index
 index=‘expr $index + 1‘
 echo $index
done
index=0
NUM_SCHED=‘objcall $SCHED contents| grep SchedulerDatabase| wc -l‘
while $index -lt $NUM_SCHED
do
 objcall $SCHED rmattr BDBPG:SchedulerDatabase:$index
 index=‘expr $index + 1‘
done
wstartsched
258 Tivoli Enterprise Internals and Problem Determination

7.6 Multiplexed Distribution and Bulk Data Transfer

Tivoli depends on the distribution of data to collections of managed nodes in
order to implement the management by subscription model. In addition, there
are many applications and services that utilize the transfer of data from one
managed node to another or to many others. The following is a list of the
main concepts we will describe here:

Multiplexed Distribution This Framework service, usually known as
Mdist, handles the simultaneous distribution of
data from one managed node to one or many
others through the use of repeaters.

Repeaters Repeaters are responsible for forwarding data to
a collection of one or more clients nominated as
targets served by that repeater.

Bulk Data Transfer Usually abbreviated to BDT, data transfers over
16 K in size (alterable from 3.2 onward) do not
rely on the usual oserv to oserv communication
over port 94. Instead, they use BDT, which sets
up an Inter-Object Messaging channel.

Inter-Object Messaging Known as IOM, this mechanism allows an
objects to open up a direct connection to
another object on a remote node for data
transfer.

These are services that are provided by the Tivoli Framework.

7.6.1 Mdist
This function can be used whenever a managed node needs to transfer
information to more than one endpoint. It is used for the distribution of many
kinds of information, not only by products, such as Tivoli Software
Distribution.

Mdist is designed to maximize data throughput by:

 • Distributing in parallel to multiple systems.

 • Sending a single copy of data to one or more designated hosts called
repeaters, which redistribute it in parallel to other hosts.

 • Spreading the distribution load across hosts.

Its usage is highly-dependent on how much data is to be distributed, how
often it is to be distributed, and in what time frame. If a node invokes Mdist,
Tivoli Framework Core Services 259

the data to be distributed will always be sent through a repeater. The basic
steps for starting this process are:

 • The managed node determines Mdist will be used because the distribution
is to more than one node.

 • Mdist contacts the TMR to request a distribution. A method called
obj_route is called. This sends a list of target nodes to the repeater
manager in the TMR server. The TMR server will return information to the
Mdist node listing which (if any) repeater should be used to achieve the
distribution.

 • If the data is greater than 16 KB, Mdist passes a dkey (see “Bulk Data
Transfer and Inter-Object Messaging” on page 271) to the TMR server for
a node to come back to the Mdist system to read the data. The TME
server contacts the Mdist node’s repeater and passes on the dkey.

 • If the data is less than 16 KB, then the TMR server returns the repeater
location to the Mdist node, which will then contact the repeater directly.

 • If greater than 16 KB, the repeater contacts the Mdist node with the dkey
and establishes an IOM channel to receive the data.

7.6.2 Repeaters
Tivoli defines a repeater as a Tivoli managed node that can distribute data in
parallel to one or more clients. A repeater can receive and distribute data or
be the source and, therefore, only distribute it.

When a TMR server is created, it becomes:

 • The default repeater. The TMR server will distribute to any client that is not
in the range of another repeater where the range is a configurable listing
of target managed nodes

 • The repeater manager keeps the configuration of all the repeaters.

UNIX - There are no explicit limitations to the number of active
distributions able to be processed through a TCP/IP and Mdist repeater.
This will be dictated by the available power of the machine being used as
a repeater (maximum number of processes and file descriptors for each
process, network buffers, memory, local disk buffering) and the
surrounding network connections.

NT - Inbound maximum connections for an NT server is 10. Outbound is
subject to the same conditions as UNIX.

Note
260 Tivoli Enterprise Internals and Problem Determination

The number of repeaters needed in your enterprise will depend on a number
of factors:

 • Number of unique data packages.

 • Complexity of each package.

 • Frequency of distributions.

 • Availability of targets.

 • Network bandwidth.

There are some important considerations about what type of machine to
designate as a repeater:

 • Free space for the Mdist temporary files.

 • Virtual memory. Each target may require up to 1.5 MB when you count
memory required for the spawning of new processes, and so on.

 • Enough TCP connections.

Each repeater has the following features, all of which can be tuned with the
wrpt command using the parameter name given in parenthesis (see also “The
wrpt Command” on page 262 and Section 10.4, “Repeaters and Networks” on
page 344):

 • Maximum Memory (mem_max)

The maximum amount of memory the distribution consumes on this
repeater before paging to disk. The default is 10,000 KB.

 • Maximum Disk (disk_max)

The maximum amount of disk space the distribution consumes on this
repeater before halting incoming data. The default is 50,000 KB.

 • Working Directory (disk_dir)

The directory used for disk paging. This directory is also used for swap
files on most operating systems. Multiple distributions performed
simultaneously tend to fill this space causing the distributions to fail. If this
is a heavily-used repeater for large file distributions, the working directory
should be moved. The default is /tmp.

 • Maximum Simultaneous Connections (max_conn)

The maximum number of simultaneous parallel connections. If the number
of targets is greater than the number of maximum simultaneous
connections, and the size of the data distribution exceeds mem_max and
disk_max combined, only the first max_conn targets will receive the
distribution, and the rest will fail. The default is 100.
Tivoli Framework Core Services 261

 • Operation Time-out (stat_intv)

The maximum amount of time to wait (in seconds) before aborting a
nonresponsive network connection to a target. If a connection has been
made, and no data is pulled during the time specified by the stat_intv
variable, an Operation Timeout Exceeded message is displayed. The default
is 180 seconds.

Two similar situations are based on the operating system of the source
and not based on Tivoli MDist configuration parameters:

 • If the source times out contacting the target when establishing contact,
you get a Dispatcher Unavailable message.

 • If the target times out in trying to contact the source when establishing
contact, you get a High level TCP timeout message. This timeout time is
dependent on the operating system of the source machine and is not
under the control of the Tivoli software.

 • Network Load (net_load)

The maximum amount of data (in KB/sec) that the repeater will put on the
network for each distribution. The default is 500 KB/sec.

 • Network Spacing (net_spacing)

The amount of time (in milliseconds) to wait between each 16 KB write to
the network. This variable is not displayed by wrpt query unless it has a
non-zero value. The default is 0 ms.

 • Disk Threshold (disk_hiwat)

The amount of disk usage (in KB) after which a delay occurs between new
disk block allocations. The default is 50,000 KB. In general, this should
match disk_max.

 • Disk Usage Rate (disk_time)

The delay (in seconds) to wait between disk block allocations after the
disk threshold has been reached. The default is 1.

7.6.2.1 The wrpt Command
The wrpt command is used to create, tune, and delete repeaters. See also
Section 10.4, “Repeaters and Networks” on page 344 for more details on
repeaters and repeater configuration.

For the best performance the two most important tuning parameters in a
repeater are net_load and max_conn.

Note
262 Tivoli Enterprise Internals and Problem Determination

 • wrpt - Lists all the repeaters.

In the example below, the TMR server is connected with another two TMR
servers; so, each server is a default repeater.

The first output column contains the host names followed by the host number
in square brackets []. The flags in the second column can be:

w Indicates that the entry is a WAN entry site.

d Indicates the entry is the default repeater site.

The third column contains the range of hosts served by the repeater.

 • wrpt -t <repeater_name> - Lists the current configuration parameters for a
repeater.

In the example below, the first is an NT server, and the second is a UNIX
server, all the features are the same, the only difference is the disk_dir
configuration.

To execute the wrpt command you need senior role.

Note

wrpt
rh0255b.itsc.austin.ibm.com [1] wd- [default]
tivdev02 [1] wd- [default]
rh0255c.itsc.austin.ibm.com [1] wd- [default]

wrpt -t tivdev02
mem_max = 10000
disk_max = 50000
disk_hiwat = 50000
disk_time = 1
disk_dir = “C:/Tivoli/db/tivdev02.db/tmp/”
net_load = 500
max_conn = 100
stat_intv = 180
wrpt -t rh0255b.itsc.austin.ibm.com
mem_max = 10000
disk_max = 50000
disk_hiwat = 50000
disk_time = 1
disk_dir = “/tmp”
net_load = 500
max_conn = 100
stat_intv = 180
Tivoli Framework Core Services 263

 • wrpt -n <repeater_name> <range=#,#,#> - Creates a new repeater.

The repeater name must be the same as the one used when you created
the managed node. If you have interconnected TMRs, you can only create
a repeater in the local TMR.

 • wrpt -t <repeater_name> parameter <new_value> - Tunes a repeater.

You can tune all the repeaters including the ones that are in TMRs that are
interconnected.

 • wrpt -L - Lists the active distributions.

 • wrpt -k <id> -t <repeater_name> parameter <new_value> - Tunes a repeater
temporarily but only for the distribution already in progress.

odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1562489759 1 ct- 94 9.3.1.235 rh0255c.itsc.austin.ibm.com
 2 ct- 94 9.53.65.156 k124a.austin.ibm.com
 3 ct- 94 9.3.1.173 rh0255e.itsc.austin.ibm.com
1482082604 1 ct- 94 9.3.1.134 tivdev02.itsc.austin.ibm.com
1264987995 1 ct- 94 9.3.1.234 rh0255b.itsc.austin.ibm.com
 2 ct- 94 9.3.1.233 rh0255a.itsc.austin.ibm.com
wrpt -n k124a range=3
wrpt
rh0255b.itsc.austin.ibm.com [1] wd- [default]
tivdev02 [1] wd- [default]
rh0255c.itsc.austin.ibm.com [1] wd- [default]
k124a [2] --- [3]

wrpt -t tivdev02
mem_max = 10000
disk_max = 50000
disk_hiwat = 50000
disk_time = 1
disk_dir = “C:/Tivoli/db/tivdev02.db/tmp/”
net_load = 500
max_conn = 100
stat_intv = 180
wrpt -t tivdev02 max_conn=20
wrpt -t tivdev02
mem_max = 10000
disk_max = 50000
disk_hiwat = 50000
disk_time = 1
disk_dir = “C:/Tivoli/db/tivdev02.db/tmp/”
net_load = 500
max_conn = 20
stat_intv = 180
264 Tivoli Enterprise Internals and Problem Determination

wrpt -q <source> <target> [...<target>] - Runs the tst_route method
(similar to obj_route) and returns the distribution route to the specified
targets.

Here, k2 is a repeater to hood and cook and identifies orac as the repeater
serving aspen and vail.

7.6.2.2 Repeater Examples
In the following examples, we use the simple environment shown in Figure
111 on page 266. We will show here the different possibilities involved in
repeater configurations.

wrpt -L
 8 fp_distribute Oct 31 10:50:11 464/0 [80-464]
wrpt -k 8 -t rh0255b.itsc.austin.ibm.com net_load=200

wrpt -q k2 aspen vail hood cook orac
--[RPT:k2 [2]]

|--[RPT:orac [103]]
| |--aspen [46]
| |--vail [73]
|
|--hood [19]
|--cook [41]

Throughout these examples, you should note that any managed node that
is not a repeater can only distribute data to one other managed node at a
time. Multiple distributions must always go through a repeater.

TMA Endpoints do not act as repeaters or distribute data to other nodes.

Note
Tivoli Framework Core Services 265

Figure 111. Repeater Example Environment

The systems rh0255b, rh0255c, and tivdev02 are all managed nodes and
repeaters within TMR A (TMRA is the TMR server). The lines indicate the
repeater relationship. For example, rh0255b is a repeater for rh0255a and
rh0255f.

Point-to-Point
In point-to-point, the source node is not necessarily a repeater itself, and it is
distributing to a single target within its own repeater range (see Figure 112). A
query of the route would look like this:

wrpt -q rh0255e k124a
--[RPT:rh0255e [3]]
 |--k124a [2]

Figure 112. Point-to-Point Distribution

Here, rh0255c is a repeater that is distributing to one node, k124a.

Source repeater to many nodes
Here, the source machine is again a repeater, but this time it is distributing to
many nodes (Figure 113 on page 267). The repeater rh0255b wants to
distribute to rh0255a and rh0255c. We can see from the following routing

TMRB

tivdev21
tivdev02

TMRA

rh0255c.itsc.austin.ibm.comrh0255b.itsc.austin.ibm.com

rh0255a rh0255f rh0255e k124a

rh0255e k124a
266 Tivoli Enterprise Internals and Problem Determination

information that rh0255a and rh0255c are both targets for rh0255b, and
rh0255b will distribute direct to them simultaneously:

wrpt -q rh0255b rh0255a rh0255c
--[RPT:rh0255b.itsc.austin.ibm.com [6]]
 |--rh0255a [2]
 |--[RPT:rh0255c.itsc.austin.ibm.com [4]]

Figure 113. Repeater Source to Many Nodes Distribution

Source machine is not a repeater
In this scenario, the source machine rh0255a, that is not a repeater, wants to
send a distribution to tivdev02 and rh0255c (Figure 114). The routing is
returned as follows:

wrpt -q rh0255a tivdev02 rh0255e
--[RPT:rh0255a [2]]
 |--[RPT:rh0255b.itsc.austin.ibm.com [6]]
 | |--tivdev02 [5]
 | |--[RPT:rh0255c.itsc.austin.ibm.com [4]]

The TMR server directs rh0255a to contact its repeater to perform the
distribution. Then rh0255b can distribute to tivdev02 and rh0255c.

rh0255c.itsc.austin.ibm.com

rh0255b.itsc.austin.ibm.com

rh0255a
Tivoli Framework Core Services 267

Figure 114. Non-Repeater Source to Many Nodes Distribution

Non-repeater to multiple targets all part of one repeater
Here, rh0255a wants to distribute to k124a and rh0255e. These nodes are
both served by the same repeater, rh0255c. The routing is as follows:

wrpt -q rh0255a k124a rh0255e

--[RPT:rh0255a [2]]

 |--[RPT:rh0255c.itsc.austin.ibm.com [4]]

 | |--k124a [2]

 | |--rh0255e [3]

This routing tells rh0255a to request rh0255c to repeat the data to the desired
nodes (Figure 115).

Figure 115. Non-Repeater Source to Many Nodes All Targets of One Repeater

rh0255c.itsc.austin.ibm.com

rh0255b.itsc.austin.ibm.com

rh0255a

tivdev02

rh0255c.itsc.austin.ibm.comrh0255b.itsc.austin.ibm.com

rh0255a

rh0255e k124a
268 Tivoli Enterprise Internals and Problem Determination

Non-repeater to multiple targets not part of own repeater
Now, rh0255a wants to distribute to tivdev02, rh0255e, and k124a, the last
two of which are not targets of rh0255c’s repeater (rh0255b). The routing is
as follows:

wrpt -q rh0255a tivdev02 rh0255e k124a
--[RPT:rh0255a [2]]
 |--[RPT:rh0255b.itsc.austin.ibm.com [6]]
 | |--tivdev02 [5]
 | |--[RPT:rh0255c.itsc.austin.ibm.com [4]

| | |--rh0255e [3]
| | |--k124a [2]

This routing shows that rh0255a will use rh0255b as a repeater. Then,
rh0255b will request rh0255c to perform the repeating function to rh0255e
and k124a (Figure 116).

Figure 116. Non-Repeater Source to Many Nodes Not Targets of Own Repeater

Distribute to single target of one repeater and multiple of another
There is a special case when the data will not go through the designated
repeater to reach a node. Suppose tivdev02 wanted to distribute to rh0255f,
rh0255e, and k124a. The route will look like this:

wrpt -q tivdev02 rh0255f rh0255e k124a
--[RPT:tivdev02 [5]]
 |--[RPT:rh0255b.itsc.austin.ibm.com [6]]
 | |--rh0255f [7]

|--[RPT:rh0255c.itsc.austin.ibm.com [4]
| |--rh0255e [3]
| |--k124a [2]

rh0255c.itsc.austin.ibm.com

rh0255b.itsc.austin.ibm.com

rh0255a

tivdev02

rh0255e k124a
Tivoli Framework Core Services 269

Because going through the repeater, rh0255b would just add an extra step to
the distribution to rh0255f. tivdev02 will actually distribute directly to rh0255f
(Figure 117 on page 270). If we were distributing to more than one node
under rh0255b’s jurisdiction, then the data would be repeated by rh0255b. So
the wrpt output does not always exactly reflect what actually happens. You
need to interpret it knowing how the repeater mechanism works.

Figure 117. Distribute to Single Target of One Repeater and Multiple of Another

Non-repeater to hosts in another tmr
Here, rh0255a wishes to send data to tivdev21 and tivdev22 (Figure 118).
Providing we have the correct TMR connections and resource updates, the
repeater manager will return the following information for wrpt:

wrpt -q rh0255a tivdev21 tivdev22

--[RPT:rh0255a [2]]

|--[RPT:TMRB [1]]

| |--tivdev21 [3]

| |--tivdev22 [4]

|

rh0255c.itsc.austin.ibm.com

rh0255b.itsc.austin.ibm.com

rh0255f

tivdev02

rh0255e k124a
270 Tivoli Enterprise Internals and Problem Determination

Figure 118. Non-Repeater to Targets in Another TMR

In summary, a non-repeater can only send data to one other node at a time.
For distributions to multiple nodes, Mdist will find a repeater to perform the
distribution. If a repeater has to send data to a single node normally served
by a different repeater, then the second repeater will not be used as it just
adds an extra step. Note that this means a repeater could be distributing data
to a machine you might not expect it to.

7.6.3 Bulk Data Transfer and Inter-Object Messaging
Bulk Data Transfer (BDT) is a technique used when large data transfers
(typically greater than 16 KB) are required between objects on separate
systems. Rather than have the data go from object on system A through
oserv on system A to oserv on system B to object on system B, BDT utilizes a
technique know as Inter-Object Messaging (IOM). IOM establishes a direct
network connection between two methods (hence inter-object). This not only
makes transferring large amounts of data more efficient, but there is also less
work for an oserv. The terms BDT and IOM are often used interchangeably to
mean the same thing. Strictly speaking, BDT is what we need to do, and IOM
is how we do it.

BDT/IOM:

 • Is used anytime the data is being transferred is larger than 16 KB in size.

 • Does not use the port 94 for transferring the data.

 • Is not just used during multiplexed distributions.

For transferring small bits of data (less than 16 K) back and forth, the server
and managed node use the already open ports (managed nodes) or re-open

rh0255b.itsc.austin.ibm.com

rh0255a tivdev21

TMRB

tivdev22
Tivoli Framework Core Services 271

the known ports (6543 for PC managed nodes and usually 9494 for TMAs).
Anytime there is a chance for large amounts of data to be sent, the TMR
Server and managed node will attempt to open an Inter Object Messaging
(IOM) channel. This is the process:

1. TMR Server opens a new port above 1023 (subject to set_port_range
restrictions for managed node).

2. TMR Server discovers its own IP-address:

It checks for a /etc/wlocalhost file (or for NTs a registry entry found
with the wlocalhost command) and if it exists, uses this text name to
do a gethostbyname to return the IP-address.

If this doesn’t exist, it does a gethostname function call to find out
what its own host name is, then does a gethostbyname on that name
to find out its own IP-address.
This is in case there are multiple adapters in the server.

3. The TMR Server then makes up a dkey consisting of IP-address:
port#:secretkey and sends this to the open port of the endpoint.

4. The endpoint will then open some port above 1023. For managed
nodes, the port number used is subject to the set_port_range
restrictions. For TMAs and PC managed nodes, the port opened is
assigned by the operating system. Then the endpoint attempts to
connect to the IP-address and port# sent in the dkey.

From 3.1.3, 3.2 with SuperPatch and 3.6 and above, the dkey now
also includes the string host name from step 2.

Note

When the string host name is sent, it is used if name resolution is
successful using the host name provided. This allows the endpoint to
connect back using the address provided through local name
resolution instead of needing to have a route back to a specific IP
address.

Note
272 Tivoli Enterprise Internals and Problem Determination

7.7 UserLink and Dynamic Host Configuration Protocol (DHCP)

This section explains how the UserLink/DHCP component works and
illustrates the install process. This will help you configure and troubleshoot it.

7.7.1 Dynamic IP Addressing and Tivoli
Dynamic Host Configuration Protocol (DHCP) allows an organization to
dynamically assign IP addresses to PCs in the network. When a PC connects
to the network, the DHCP server assigns the PC an available address from a
defined range of addresses. Each PC leases the address it receives. When
the lease time expires, the IP address is disassociated with the PC and
returned to the list of available IP addresses (lease periods were specified
when your organization configured DHCP.)

Tivoli relies heavily on using the correct IP address for managed nodes and
endpoints. In order to function well in a DHCP environment, Tivoli provides
the UserLink component in the Tivoli Framework. This support is provided for
the following managed resources:

 • Windows NT managed nodes.

 • Windows 3.x, Windows 95, or Windows NT PCs running an IP agent.

 • All endpoint clients.

The UserLink/DHCP service provides IP address synchronization between
the PC agent and its associated PC managed node. PC agents communicate
directly with the UserLink/DHCP service passing to the service the PC's
current IP address and the name of its associated PC managed node. The
UserLink/DHCP service then updates the IP address maintained by the PC

Every possible effort should be made in order to avoid IOM transfers to PC
managed nodes and TMAs crossing Firewalls. Since the port number
opened to receive data on the endpoints cannot be controlled, the Firewall
should open all ports for the endpoints.

Firewall Considerations

Install the UserLink on the Tivoli server and on any managed node that will
service requests from PCs. This daemon accepts requests from PCs to
update their IP address or distribute file packages to them.

Note
Tivoli Framework Core Services 273

managed node. An end user can also manually update the PCs IP address
using the UserLink browser.

The UserLink/DHCP service can be installed on any managed node in the
TMR. You can install it on the TMR server, but this is not a requirement.
When you install a TCP/IP agent, you are prompted for the location of the
service. Once installed, the PC agent contacts the service on the server you
specified. A single UserLink/DHCP service provides DHCP support for all
Windows PC agents in the TMR.

If you have Windows NT managed nodes that require DHCP support, you
must install an NT TMR server in your environment. Ensure that the NT TMR
server is running WINNS for name resolution; DNS cannot resolve addresses
allocated for DHCP address leases (you can use DNS for non-DHCP client
name resolution).

You must first configure DHCP in your environment. The Framework does not
provide DHCP; it simply enables you to use DHCP and Tivoli in your
computing environment.

When a Tivoli PC managed node connects with the TMR server, the PC
managed node passes its current IP address to the server. If the IP address
is different from that previously known for the PC managed node, the server
updates its address mappings. The TMR server can resolve IP address
changes caused by DHCP as well as those caused by moving a machine to a
new subnet. You can configure a PC agent to update its IP address at start up
only or at regular intervals while the agent is running.

7.7.2 The UserLink/DHCP Service
The UserLink/DHCP service, also known as the usrlnkd daemon, has two
purposes:

 • Provides IP address synchronization for PC managed nodes and NT
managed nodes using DHCP.

 • Enables an end user on a Windows, Windows 95, or Windows NT PC to
retrieve Tivoli Software Distribution profiles, which include file packages
and AutoPacks, using the UserLink browser.

The TMR server oserv needs to be configured to allow dynamic IP address
support using the following command: odadmin allow_dynamic_ipaddr TRUE

Note
274 Tivoli Enterprise Internals and Problem Determination

For DHCP support, the communications between the PC and the
UserLink/DHCP service are straightforward:

1. When the PC is booted, or if the agent is configured to update the IP
address at intervals, the PC agent contacts the UserLink/DHCP service
sending the PCs IP address.

2. The UserLink/DHCP service runs the set_ip.pl script and creates the
pc_name.ip file. This file is created in the $BINDIR/TAS/USERLINK
directory or in the directory specified by the USRLNKD_STAGING_PATH
environment.

3. The service updates the IP address in the PC managed node object.

If an end user manually updates the IP address using the UserLink browser,
the same set of actions occurs.

7.7.3 DHCP Support for Windows NT Managed Nodes
If you have Windows NT managed nodes that require DHCP support, you
must install an NT TMR server in your environment. Ensure that the NT TMR
server is running WINNS for name resolution; DNS cannot resolve addresses
allocated for DHCP address leases (you can use DNS for non-DHCP client
name resolution).

When a request comes in from an NT managed node running DHCP, and the
NT TMR server has dynamic IP address support enabled, it checks and
confirms its IP address in the odlist. If the IP address is not there, the server
checks the host name in the odlist and then uses WINNS to resolve the IP
address. The server then updates the IP address in the odlist to the managed
node’s request.

7.7.4 DHCP Support for PC Managed Nodes
If you have PC managed nodes that require DHCP support, you must
complete the followings steps. Prior to performing these steps, you must
configure DHCP in your environment:

1. Install the UserLink/DHCP service on a TMR server or managed node in
your TMR. You must install the service on at least one managed node in a
TMR, though this managed node need not be the TMR server. Tivoli

The UserLink/DHCP service is provided for PCs running the PC agent;
Tivoli endpoints need not rely on this service.

Note
Tivoli Framework Core Services 275

recommends that you install one UserLink/DHCP service for each 200
DHCP clients. The service’s performance is also dependent on the
managed node’s operating system, specifically, the number of available
file descriptors and process IDs.

2. Create a PC managed node for each PC that will use the UserLink/DHCP
service.

3. Install and configure the PC agent on each of the PCs for which you
created a PC managed node.

If you want to enable your PC users to retrieve file packages and AutoPacks,
complete the steps described above, and install the UserLink browser on
each PC. The UserLink browser also enables the end user to manually
update the PCs IP address.

7.7.5 Installing the UserLink/DHCP Service
The UserLink/DHCP service can be installed on any server or managed node
in the TMR. A single UserLink/DHCP service can provide DHCP support for
all PC agents in the TMR. Tivoli recommends that you do not install the
service on the TMR server to avoid undue load on the TMR server.

The authorization roles required to install the UserLink/DHCP service are
product_install or super for all the TMR. You can install the UserLink/DHCP
service from the desktop or the command line.

The steps of how to install the DHCP using the Tivoli Desktop and the
command line are explained in the Chapter 12 of the Tivoli Framework
Planning and Installation Guide, Version 3.2. This chapter also explains how
to change the default directory in which the UserLink/DHCP service
temporary files are created.

7.7.5.1 Creating a PC Managed Node
You must create a PC managed node for each PC in your TMR. For PCs
using DHCP, you should create the PC managed node before installing the
PC agent on the PC. When the PC agent is started, and if it is configured to
do so, it passes its IP address to the DHCP service. The service then

Do not install the UserLink/DHCP service on a Windows NT PC
managed node. The UserLink/DHCP service and the PC agent both use
port 6543 to communicate with the TMR server, forcing you to shut down
the PC agent to run the UserLink/DHCP service.

Note
276 Tivoli Enterprise Internals and Problem Determination

forwards the address to the PC managed node. Thus, the PC managed node
should exist first to receive this IP address.

The steps to create PC managed nodes are explained in the Tivoli
Framework Planning and Installation Guide, Version 3.2.

You should select both No radio buttons in the lower-half of the dialog. By
doing so, you indicate that the PC managed node will represent a PC that is
running DHCP, and that the PC is currently off-line, respectively. Figure 119
on page 277 shows the Add Hosts dialog.

Figure 119. Creating a PC Managed Node for a DHCP PC

7.7.5.2 Installing and Configuring the PC Agent
You must install and configure the PC agent to enable communication with
the PC. The steps in the following procedures describe the part of the PC
agent installation that is specific to the UserLink/DHCP service. Note that to
customize the agent, you must edit the TMEAGENT.CFG file using a text
editor:

1. Begin the PC agent installation as described in the Tivoli Framework
Planning and Installation Guide, in the chapter “Installing a PC Agent.”

2. Enter the name of the machine on which you are installing the agent when
the following dialog is displayed:
Tivoli Framework Core Services 277

Figure 120. Unique Client Name

The name you enter in this dialog must be the same that you used when
creating the PC managed node for the PC. Ensure that you type it the
same as before. This updates the DefaultServer entry in the
TMEAGENT.CFG file.

3. The setup program displays a series of dialogs to lead you through
configuring the agent to either run under a Tivoli NetWare repeater or to
use the UserLink/DHCP service for IP address synchronization.

Select the Yes button when the dialog ask you to use a default server for
DHCP IP Synchronization.

4. Enter the server or managed node on which you installed the
UserLink/DHCP service as shown in Figure 121 on page 279. You can
specify either the name or the IP address.

If a TCP/IP agent is running under a Tivoli NetWare repeater, DHCP
support is provided by the NetWare repeater.

Note
278 Tivoli Enterprise Internals and Problem Determination

Figure 121. Default Server

5. Finish the PC agent installation.

6. Include the following entries, in the TMEAGENT.CFG file, which is
installed in the C:\ETC directory on all operating systems except NetWare.
For NetWare, the TMEAGENT.CFG file is installed in the ETC directory of
the SYS volume.

DefaultServer=hostname

Identifies the name of the server or managed node on which the
UserLink/DHCP service is installed. You can also enter this name during
the PC agent installation.

UpdateIPAtBootup=YES

Updates the IP address each time the PC agent is started. By default, this
entry is set to NO.

AutoUpdateIP=YES

Specifies that the agent should automatically update the IP address based
on a time interval. The interval is set by the UpdateIPInterval entry.

AlwaysUpdate=YES

Specifies that updating should continue even after a successful update. If
this entry is set to NO, AutoUpdateIP is disabled once the LinkStatus entry
is set to GOOD.

UpdateIPTries=number
Tivoli Framework Core Services 279

Indicates how many times the agent should attempt to update the IP
address after an initial failure.

UpdateIPInterval=minutes

Specifies the number of minutes between AutoUpdateIP attempts. You
can enter between 5 and 144000 minutes. The default is 1440, which is
equivalent to one day.

By modifying these entries, you can alter the DHCP behavior to better suit
your environment. Tivoli recommends that you configure the agent to
update its IP address when the agent is started and at specified intervals
after start up. The interval at which the agent updates its IP address
should correspond to the length of the PCs lease of the IP address.

Other entries that enable DHCP support but that should not be edited
include:

UpdateIPDate=date

Indicates the last date and time that the IP address was successfully
updated. This information is used to determine when the next update
should occur.

UpdateIPStamp=stamp

Used internally by the PC agent.

LinkStatus=status

Indicates the status of the connection between the PC agent and the
UserLink/DHCP service. This entry is set to GOOD when the agent has
successfully passed the current IP address to the UserLink/DHCP service.

If you put @h or @H in the CLIENTNAME entry in the TMEAGENT.CFG
file, the agent uses the host name as the client name when it runs. This
enables the PC agent to automatically update its client name if the host
name has changed through DHCP. You can see the change when
opening the properties window of the PC managed node. This is only
supported for PC agent 4.009 or a later version. This is not supported
on the LAN Workplace stack.

Note 1

If you change the name of the PC managed node by selecting the open
editable properties of the managed node, WIN95ClientObjectID is
changed to ClientObjectID.

Note 2
280 Tivoli Enterprise Internals and Problem Determination

See Appendix C of the Tivoli Framework Planning and Installation Guide,
Version 3.2 for a detailed description of the TMEAGENT.CFG file.

7. Restart the PC agent.

7.7.6 UserLink Daemon
The UserLink daemon (usrlnkd) is designed to listen for requests from PCs to
change their IP address or to receive file packages. When UserLink is
installed on managed nodes, the usrlnkd will run on that machine. When
installing the PCs, there will be options to designate the contact host. This
allows the load to be spread out within the TMR.

The steps of the PC agent communication and the UserLink daemon are as
follows:

1. The PC agent running set_ip.pl:

 • Sends the pc_name to usrlnkd.

 • The pc_name.ip file in $BINDIR/TAS/USERLINK is created.

 • The IP address in the PC managed node object is updated.

2. Queries running gt_version.pl:

 • Lookup all file packages, PC manager, and subscribers.

 • Send list of file packages.

 • Create two files in $BINDIR/TAS/USERLINK pc_name.err and pc_name.ver.

3. Communication and distribution occur over port 6543:

 • Runs pulldist.pl.

 • Sends the name of the PC managed node and file package.

An NT managed node cannot run both a UserLink daemon and the PC
agent. Both daemons listen on the same port (6543).

Note

The UserLink agent (used to get the software distribution packages)
has a configuration file called usrlnk16.ini (Windows 3.x) or
usrlnk32.ini (Windows 95 or NT) used to configure the timing for IP
address updates.

Note
Tivoli Framework Core Services 281

Figure 122. Communication Between PC Agent and usrlnkd

7.7.7 Retrieving Software Packages
Another purpose of the UserLink/DHCP service is to enable an end user on
Windows, Windows 95, or Windows NT to retrieve Tivoli Software Distribution
profiles, which include file packages and AutoPacks, using the UserLink
Browser.

The UserLink browser, which you must install in addition to the service, is
illustrated in Figure 123 on page 283.

UserLink
Client

usrlnkd

PC Agent

Managed Node

PC Managed Node3 1 32
282 Tivoli Enterprise Internals and Problem Determination

Figure 123. UserLink/DHCP Browser

The UserLink browser communicates directly with the UserLink/DHCP
service to determine the available file packages and AutoPacks and to
retrieve the selected ones.

When the PC user presses the Refresh List button on the UserLink browser,
the browser queries the UserLink/DHCP service for a list of file packages and
AutoPacks to which the PC managed node is subscribed. The
UserLink/DHCP service returns the list of available file packages and
AutoPacks to the browser. When the user selects the profile to retrieve and
presses the Download button, the selection is passed through the
UserLink/DHCP service. The file package, or AutoPack, is then distributed to
the PC managed node.

The following steps describes the actions that are taken for a software
retrieval:

1. The UserLink browser sends the PC managed node’s name and request
to the UserLink/DHCP service.
Tivoli Framework Core Services 283

2. The service runs the get_versions.pl script and performs the following
actions:

 • The script searches the Tivoli database for all file packages and
AutoPacks and their corresponding profile managers.

 • The get_versions.pl script then checks the subscription list of each
profile manager for the PC managed node and generates a list of
available profiles for the PC managed node.

 • The script creates the pc_name.ver and pc_name.err files in the
$BINDIR/TAS/USERLINK directory or in the directory specified by the
USRLNKD_STAGING_PATH environment variable.

If the UserLink/DHCP service is not installed on the TMR server, the
get_versions.pl script runs on the managed node where the service is
installed (the UserLink server) but initiates database lookups on the TMR
server. The TMR server generates and sends the list of available profiles
to the UserLink server. The service then creates the .ver and .err files
locally.

3. The UserLink/DHCP service sends the list of profiles to the UserLink
browser on the PC managed node.

If an end user retrieves, or pulls, one of the available file packages or
AutoPacks, the following occurs:

1. The UserLink browser sends the request to the UserLink/DHCP
service. This request includes the PC managed node's name and the
name of the requested profile.

2. The UserLink/DHCP service runs the pulldist.pl script, which runs the
wdistfp command. You can modify this script and add the -u argument
to the wdistfp command. The -u argument displays a dialog that
illustrates the progress of the distribution based on the file package
size.

3. The requested file package or AutoPack is distributed to the PC
managed node. The PC agent receives the profile over the port 6543
and installs the files.

The -u option for the wdistfp command is a new feature of Tivoli
Software Distribution. It allows you to create a file package, calculate
its size, and store it. When the distribution to a PC occurs, it uses the
size to calculate the status of how much data has been sent to the
PC. To use this feature, the -u option must be added to the wdistfp
command in pulldist.pl.

Note
284 Tivoli Enterprise Internals and Problem Determination

7.7.8 Installing the UserLink Browser
For an end user to retrieve a Tivoli Software Distribution profile or to update
the PCs IP address manually, you must first install the UserLink browser.
Recall that the UserLink browser is supported on only Windows, Windows 95
and Windows NT machines. For instructions on using the UserLink browser,
see the on-line help provided with the browser (in the same directory in which
the UserLink browser is installed).

For instructions on how to install the browser see the Tivoli Framework
Planning and Installation Guide. This chapter explains how to install the
browser either using the setup.exe command that is included in the CD or
using a Tivoli Software Distribution Package.

7.7.8.1 UserLink Browser Version System
Creating file packages with ^# at the end denotes file package versions.

Pushes to the agent do not update the UserLink .cfg file. Write a configuration
program to update these files so that the UserLink client browser knows
which file package is the latest.

The UserLink daemon keeps the version information in .cfg files on the PC.

7.7.9 Troubleshooting UserLink
Whether the end user is updating the IP address, refreshing the profile list, or
pulling a software package, the UserLink/DHCP daemon will generate a log
file. This file is created in the directory where the usrlnkd service resides. If
the UserLink/DHCP service is not running, use the wstartul command on the
machine where the service is installed.

There are several common problems that can occur when trying to perform
UserLink queries:

 • Cannot find the UserLink Server. Verify that all the installation process
(especially the PC agent ones) are OK.

 • UserLink daemon is not running (usrlnkd). This daemon is started
automatically by the oserv at oserv boot time. It can also be started with
the wstartul command.

 • Cannot find the get_versions.pl. This script is found in the user link
directory and is searched for relative to the usrlnkd directory path.

You can see if there is an error between the PC agent and the usrlnkd by
looking at the pc_name.err or pc_name.ip files. Starting the UserLink daemon
Tivoli Framework Core Services 285

by hand displays all connections and communications it received on standard
out. Use the following to start the usrlnkd daemon by hand:

cd $BINDIR/TAS/USERLINK

./usrlnkd

This can be a useful way to find errors between the PC agent and usrlnkd
daemon conversation.
286 Tivoli Enterprise Internals and Problem Determination

Chapter 8. Tivoli Enterprise and Firewalls

This chapter is based on a White Paper written within Tivoli product support.
Updates to this paper can be obtained by registered customers from the Tivoli
Support Web site at:

http://www.support.tivoli.com

The general purpose of this chapter is to discuss the ramifications and issues
associated with installing the Tivoli Framework in a firewall environment. We
discuss the general areas where Tivoli 3.6 deployment is influenced by
firewalls and give guidelines for those implementing Tivoli in a security
conscious environment.

8.1 Background

With the Internet creating a virtual extension of your enterprise cyber-space,
Network users often transcend the domains of their private Network across
public Netspace. Network security is, therefore, an essential facet of every
installation. Firewalls are Network access control devices that are used in
securing the Network perimeter of an enterprise installation. The use of
firewalls in a Tivoli Framework installation creates interesting issues during
deployment.

Firewall placement influences the workings of the Tivoli installation. This
paper addresses these issues in an effort to clarify the questions and myths
surrounding this topic. Note that Tivoli also has a suite of products dedicated
to secure systems management in an Internet environment known as Tivoli
CrossSite.

8.2 Tivoli Communications

This section summarizes the different kinds of networking connections
established between Tivoli components in an installation. Understanding the
Network connectivity paths is key in understanding Tivoli operation in firewall
environments.

All TMR Servers, managed nodes/gateways, endpoints, PC managed nodes,
and NetWare Servers must have the TCP/IP protocol installed, configured,
and operational on their systems. This is a fixed requirement for the Tivoli
Framework to function. The only exception is IPX/SPX for Netware Managed
Nodes, but Tivoli does not support operations between a TMR server and
IPX/SPX Managed Nodes through firewalls.
© Copyright IBM Corp. 1998, 1999 287

The various types of communications can be summarized as follows:

 • Inter-ORB communications

 • Inter-TMR communications

 • Inter-Object Messaging (IOM)

 • Endpoint and gateway communications

 • Applications not using Framework Services

8.2.1 Inter-ORB Communications
Inter-ORB communication is the basic interaction mechanism between the
different Object Request Brokers (ORBs, also known as oservs) in the
installation. Another name for this is Inter-dispatcher communication. It uses
TCP connections. The communication takes place whenever requests from
one managed node invoke a remote method on another managed node. The
Inter-ORB communication also manages communications between a
Managed Node and a TMR Server when a method request needs to be
authorized and its implementation details resolved. This connectivity is also
termed as the Object-Call or objcall channel.

The ORB that initiates the connection acts as a TCP client, while the ORB
that accepts the request is the TCP server. The roles of TCP client and TCP
server are in the context of the request and do not necessarily have any
relationship to Tivoli roles of Client and Server. In other words, an ORB that is
a server to one remote ORB can also invoke TCP client requests on other
remote ORBs.

The ORB dispatchers that communicate over this connection have a
sustained TCP connection over TCP port 94. These connections can only be
disrupted due to Network faults or if a dispatcher is restarted.

8.2.2 Inter-TMR Communications
A TMR is defined as a set of managed nodes controlled by one TMR Server.
In addition, multiple TMR servers can be linked together to assist in making
the managed enterprise scalable. Once they are linked, managed resources
can be exchanged, and the two TMRs can more or less function like one
extended TMR. See 2.3.5.4, “Interconnected TMR Resource Exchange” on
page 27 for more information on exchanging resources.

The communications between two ORBs of two TMR servers is known as
Inter-TMR communication. From a Network communication perspective, the
288 Tivoli Enterprise Internals and Problem Determination

Inter-TMR communication follows the exact same pattern as Inter-ORB
communications.

8.2.3 Inter-Object Messaging (IOM)
This is a communication channel that allows exchange of bulk data between
two object implementations. This exchange takes place independent (or
out-of-band or OOB) of the objcall channel. The creation of IOM channels is
during method execution on an on-demand basis. The IOM connection
channels also connect using TCP. Examples of OOB communications
typically run over ephemeral TCP ports above 1023. These OOB connections
can be tuned using commands to the Tivoli oserv through mechanisms
described later in this chapter.

IOM channels are created by a method that wants to initiate bulk data
transfers greater than 16 K Bytes in size with a remote method of an object.
This connection will require use of OOB communications ports.
Communications less than 16 K bytes in size run over the existing TCP port
94 communications mechanism.

The local method acts as an IOM-channel TCP server. It selects a listening
port and starts up a Network server and passes the connection information to
the remote method. This information, known as the DKEY, gets transferred
securely through the objcall channel as an argument to this remote method.
The remote method at the other end, when invoked, uses the DKEY to
establish the client end of the IOM TCP connection. Once the bulk data is
exchanged, the IOM connection gets torn down at both ends.

Examples of users of IOM calls are Tivoli User Administration, Tivoli Software
Distribution, and the Tivoli InSecure Logfile Adapter (provided with the Tivoli
Enterprise Console).

See 2.3.3.1, “Inter-Object Messages” on page 19 for more information.

8.2.4 Endpoint and Gateway Communications
An endpoint running the TMA package first uses UDP to advertise its
presence in the enterprise. Gateways read UDP messages destined for the
gateway port. Once an endpoint is recognized as valid, it is assigned a
permanent gateway. The endpoint then connects as a TCP client to the TCP
server on the gateway daemon. Note that this connection is not constant; it is
broken down between each login activity. The endpoint TMA server listens,
typically, on TCP port 9494 and also accepts TCP client connections coming
down from the gateway.
Tivoli Enterprise and Firewalls 289

Unlike managed nodes, TMA endpoints only communicate with gateways.
From a Tivoli perspective, they do not need to communicate between
themselves.

8.2.5 Applications Not Using Framework Services
Some of the Tivoli applications do not always use the Framework services for
Network communication and so will not honor port ranges you set. These
application actions include:

 • UserLink client to UserLink server

 • NetWare Managed Site to NetWare Repeater

 • PC Managed Node to PC Agent

 • TEC non-secure event logging (posting)

8.3 Ports and Port Ranges

As previously discussed, the Object Dispatcher service listens on TCP port
94. This is a registered port, assigned to Tivoli by the Internet Assigned
Numbers Authority (IANA). All Inter-ORB and Inter-TMR communications with
the Object Dispatcher use this port as the destination. Object call requests
cause the oserv to create TCP client connections (to the remote object
dispatcher service) using ephemeral ports (TCP ports above 1023).

The object-call induced client ephemeral connections, the IOM channel
server, and IOM ephemeral client connections can (optionally) locally bind to
a port from a pre-selected port range. This port range selection in Release
3.6 is on a per-TMR basis. In Release 3.6.1, this port range selection is
further enhanced to allow selection on a per-managed node basis. The
selection is done using the odadmin set_port_range command. This feature of
selecting port ranges plays a major role in firewall environments. The port
range can be reset to no restriction using odadmin set_port_range ““ .

It is important to understand that if a port range is set through the odadmin

set_port_range command, that ALL TMRs must be able to communicate on
either a subset of the ports defined or all TCP ports for inter-TMR
communications to work properly.

When one has set the port range for the communications, it is important for
the implementor to understand that this range is changeable in the future.

The MDist service used for fanning out data uses IOM channels to multiplex
data transfer to a large number of destinations. Once a port range is selected,
290 Tivoli Enterprise Internals and Problem Determination

all subsequent IOM traffic for MDIST fan-outs will use ephemeral ports from
this range. MDist repeaters (including the TMR server) must have a large
number of ports available to choose from. A good rule of thumb is to provide a
range that is three times the number of managed nodes in the system.

This suggestion comes from:

 • One port for every managed node that a node needs to interact with for
inter-ORB connections.

 • One port for each IOM connection that is opened at the repeater node.

 • One port for padding for more simultaneous IOM connections.

There are some differences in the port selection algorithm between NT and
Unix. Although implementation related, the rest of this section addresses
these differences to help you to understand Tivoli behavior at deployment.

The algorithm differences stem from having to get around some of the
non-standard (X/OPEN non-compliance) features of the Winsock API. On
Unix, a port is considered IN USE if it is held in the TCP TIME-WAIT state and
binds to these ports fail appropriately. On NT, subsequent binds to ports
already in TIME-WAIT bind successfully but fail during the connect () call.

On Unix, when a managed node/gateway binds to a port from the range,
Tivoli starts at the lowest number in the range and hunts for a port that will
bind successfully. If bind () fails, the Tivoli communication moves to the next
port in the port-range and retries the bind. This bind attempt continues, until
the bind () finds an available port. It finally gives up the search when the
upper bound in the range is reached.

On Windows NT, Tivoli always remembers the last port bound and connected
successfully from this range. Subsequent bind attempts start from the next
port. If the bind fails, the algorithm proceeds just like in the UNIX case, except
that when the upper bound is reached, it wraps around until the previous
successful port range is reached. This wrap-around is needed because we
may start at a port range that is already the upper boundary. This practice has
been found to be more efficient than starting from the lower boundary and
moving up.

However, if the NT bind succeeds, but the connect () fails with
EADDRINUSE, the algorithm makes five more attempts to bind and
reconnect, each time bumping the port by one. When all five attempts fail to
connect, it gives up.
Tivoli Enterprise and Firewalls 291

The gateway daemon/service is free to listen on any port chosen during the
gateway creation. This is not registered with the IANA. The gateway port
selection is totally unrestricted. The default port for the gateway daemon is
9494.

The endpoint TMA also listens on a well-known port selected during
installation. Like the gateway port, its selection is unrestricted and defaults to
9494 (in Release 3.6.1 this default will be changed to 9495). If the selected
port is unavailable (this can happen if the daemon is terminated and restarted
within the 2-segment TCP lifetime), the TMA can be configured to either fail
immediately or pick an arbitrary port that is available.

After an endpoint upgrade, the TMA is restarted and bound to the same
preferred port chosen during selection. This, again, plays an important role
for framework installation with firewalls.

It should also be pointed out that during installation time Tivoli may require
the use of TCP port 513 (rexec) to install the product properly. Additional
discussions of this should be held with your Network administrator/firewall
administrator to determine if this will be a problem in your specific
environment. If it is, have the port opened ONLY for the period that one must
install a node/client, and then the port can be closed.

Gateway TCP client connections to endpoints use ephemeral ports. In
Releases 3.6 and 3.6.1, gateways reside on managed nodes. If port selection
is chosen on the managed node, the gateway daemon initiated client
connections will honor this selection and find an ephemeral port from this
range.

Endpoint TCP client connections also use ephemeral ports. Endpoint
ephemeral ports cannot be selected. There would be too much overhead
managing port information for tens of thousands of endpoints in addition to
the migration and login strategies currently allowed for endpoints.

Table 10 summarizes the port specific information:

Table 10. Tivoli Port Usage Summary

Type of
Connection

TCP Server
Listening Port

TCP Client
Ephemeral Port

Protocol /Duration

Inter-ORB 94 Either chosen from
selected range or
assigned by OS

TCP / Sustained
292 Tivoli Enterprise Internals and Problem Determination

8.4 Firewall Considerations

Firewalls come in several flavors. Firewalls, typically, either consist of
network layer filters to protect access to networks and hosts or as application
proxies that monitor the services that are allowed to operate across the
boundaries of the corporation.

Inter-TMR 94 Either chosen from
selected range or
assigned by OS

TCP / Sustained

Inter-Object
Messaging

Chosen from
selected range or
assigned by OS

Chosen from
selected range or
assigned by the OS

TCP / On-Demand
creation for duration
of bulk-data
exchange

Endpoint Initial
Login

Gateway server port
chosen at
installation (default
9494)

Ephemeral port
provided by the OS
at the endpoint

UDP / Initial login to
determine assigned
gateway

Endpoint
Normal Login
to gateway or
upcalls

Gateway server port
chosen at
installation (default
9494)

Ephemeral port
chosen by OS at the
endpoint.

TCP Connection is
not kept after login

Secure LogFile
Adapter

94 None TCP / Sustained
during periods of
activity

Insecure
Logfile Adapter

Chosen from a
selected range or
assigned by OS

Ephemeral port
chosen by OS at the
endpoint

TCP / Sustained
during periods of
activity

Remote
Control

Chosen from a
selected range or
assigned by OS or
port 2501

None TCP / Sustained
during the period of a
session

Gateway’s
client
connection to
endpoint
(downcalls)

Endpoint server port
chosen at
installation (default
9494/5)

Ephemeral port
chosen either from
the selected port
range or assigned by
OS at the gateway

TCP / Sustained for
the duration of a
downcall or control
packets

Type of
Connection

TCP Server
Listening Port

TCP Client
Ephemeral Port

Protocol /Duration
Tivoli Enterprise and Firewalls 293

One of the most important issues of using firewalls is their level of
transparency to user applications while maintaining the sanctity of the
Netspace. Since the Tivoli framework is a system management infrastructure,
this level of transparency is influenced by the firewall placement relative to
the Tivoli components.

The Tivoli Framework currently operates only with Network layer (ISO layer 3
and above) firewalls. Application proxies need to be provided by firewall
vendors, such as Checkpoint FW-1, IBM SNG, Eagle Raptor, or the like.

Virtual Private Networks (VPN) is another firewall strategy that is growing in
acceptance. Typically, VPNs should be transparent to Tivoli; however, no
official testing has been done to validate Tivoli operations under a VPN
infrastructure.

TCP/IP tunnels through firewalls using technologies, such as SSH or GRE
tunnels, work with Tivoli provided that end-to-end IP and above connectivity
is reliable. SSH or GRE tunnels, in many instances, provide greater security
than a traditional firewall but are outside the scope of this chapter.

8.4.1 Packet Filtering
Routers often embed firewall functionality inside them. These usually do
packet filtering by parsing out Network layer information from packet headers
as packets flow through the router. The router is configured to monitor header
fields, such as source and destination address, source and destination ports,
protocol used, and so forth. Firewalls permit or deny access based on filters
set for these fields.

In a three tier TME3.6 installation, firewalls may be needed between server
and managed nodes that spread across disparate Networks. Placing firewalls
between a TMR server and a gateway is quite common since gateways are
repeaters. For readability sake, this chapter labels such firewalls as upstream
firewalls.

The considerations for upstream firewalls are as follows:

 • Port range selection on managed nodes is turned on. Obviously, for
someone deploying firewalls, this is a basic requirement.

 • TCP protocol must be allowed to flow through.

 • Filtering by source and destination address of the managed nodes can
restrict traffic to the set of managed nodes that span across the firewall.
Note that not all managed nodes may need to talk to each other.
294 Tivoli Enterprise Internals and Problem Determination

 • Inter-ORB connectivity requires TCP port 94 to be permitted as a
destination port. The source port must be one from the selected Tivoli port
range for the TCP client (request-originating) ORBs.

 • Inter-TMR connectivity, again, requires that port 94 be permitted if there
are two TMR servers being connected across a firewall.

 • Ports selected for IOM client connections need to be let through.

 • In Release 3.6.1, port selection is available on each managed node.
Consider two managed nodes that communicate with each other (for
example, when a repeater on one managed node distributes data to the
other managed node). The firewall port selection between them may have
to be tailored to suit the port selection chosen specifically for these two
managed nodes. This functionality also increases administrative overhead
on a Managed Node from an Operating System maintenance perspective.

 • TME installation uses network services, such as rexec and TRIP (Tivoli’s
version of rexec, for NT, see Appendix A.5.1, “Installation of the Tivoli
Remote Installation Package” on page 616), which do not allow port
selection for connectivity. Thus, the firewall needs to let through rexec type
connections during the deployment. Once deployed, the firewall port
ranges can be tightened.

Firewalls between gateways and TMA endpoints pose some challenges.
These are labeled here (again, only from a readability standpoint) as
downstream firewalls. Tivoli feels that putting firewalls between endpoints
and gateways is not a best practice for a security conscious environment and
should require careful discussions and investigations before implementing
such an approach.

Downstream firewalls, if deployed, must accommodate all of the following
factors for gateway to endpoint communications to work:

 • TMA endpoints initiate login packets using UDP client connections to the
gateway UDP server. UDP is used during gateway fail-over/recovery
modes too. Allow UDP packets (destined for the gateway listening port) to
flow through upstream from the endpoints towards the gateways.

 • As mentioned before, endpoint ephemeral ports are not controlled. The
only deterministic port (that can be selected) on the endpoint is the TMA
daemon (service) listening port. Firewalls must not be configured to
restrict the endpoint source port range.

 • Gateway downstream client connections choose ephemeral ports from the
port range selected for the managed node. This range ought to be large
enough to allow the gateway to service all its endpoints during
distributions. Remember, gateways act as repeaters for their endpoints.
Tivoli Enterprise and Firewalls 295

 • The gateway repeater should be tuned (max_conn) to ensure that the
distributions do not time-out waiting for available ports.

 • TME supports endpoints configured with DHCP. If the endpoint that has
already registered loses its DHCP lease and either reconnects by
restarting the TMA daemon or does an up-call with the new IP address,
the new IP address is dynamically updated in the endpoint manager.
However, firewalls between must be configured to be insensitive to this IP
address change.

8.4.2 Machine Considerations - Upstream
Machines located outside (upstream) of a firewall should have specific
TCP/IP routing policies set up on them to ensure additional conflicts and
compromises are not inflicted on an internal (downstream) Network. These
include making the external machines only have a static TCP/IP route to the
internal (downstream) TMR server. The router between the Internet and the
external Network should have explicit TCP deny filters for access from the
Internet for the ports opened to an external Tivoli client. This router should
only have explicit TCP permit filters for the machine to talk the protocol(s),
permitted doing its normal work and the ports that Tivoli requires to talk to the
internal TMR server.

Next, these nodes should have their default TCP/IP route set to the
external/internal firewall interface. This coupled with the router access-list
inclusions, and the explicit permit filters for said node provide additional and
logical security for the machines to limit their port exposure from the Internet
and keep these machines from being launching points to the internal
Networks. This should be done to each machine external (upstream) of a
firewall that runs the Tivoli products.

8.4.3 TMR Considerations - Upstream
In sites that have significant concerns over opening inbound/outbound ports
to a large number of upstream (external) systems, deploying a small TMR
outside of the firewall may be worth considering. This adds some additional
complexity to the deployment as sufficient system, disk, and memory
requirements must be accommodated on this machine. The attractiveness of
placing a TMR externally is relatively clear in that only one external machine
needs to communicate to one internal system. If this is done, the TMRs on
both sides still need the odadmin set_port_range command run on them. Also
the internal (downstream) TMR and the external (upstream) TMR cannot
exchange resources, or the internal TMR will attempt to communicate with
the external machines directly.
296 Tivoli Enterprise Internals and Problem Determination

Tivoli Software Distribution to the external systems becomes a two-step
operation:

1. The internal TMR must distribute a file package to the external machine.

2. The external TMR must have defined tasks to watch for file package
arrival and then be able to run an after script to distribute to the subscribed
managed nodes.

The external nodes must use the TEC Secure Logfile adapter, so that all
events are sent to the external TMR for logging. Then the external TMR will
send (through a notice group subscription being setup) these notices to the
internal TMR for action by support groups.

In this case, the considerations from the section before this for ports and
firewall/router strategies should be used in addition to port strategies outlined
here.

8.4.4 TCP Connection Source Filtering
Although there is this concept of TMR server and TMR client from a Tivoli
management perspective, there is no distinction as to who can initiate a TCP
connection. Filtering on direction of connections, therefore, does not work
very well unless, of course, the roles of TMR managed nodes is restricted.

One can, for instance, configure managed nodes and expect them only to
initiate client TCP connections to remote ORBs or remote repeaters. Either
the destination port used should be port 94 or for IOM, the one sent by the
repeater in the DKEY. Repeaters choose ports from the selected port range.
This knowledge can be used to toss out any other initiated client connections.

8.4.5 Network Address Translation (NAT)
Tivoli 3.6 supports Network address translation but with significant specific
guidelines. With the Internet explosion, there is a large proliferation of
Internet addresses worldwide. The usual practice is to assign a globally
unique address to each host that uses TCP/IP. This assignment is
administered by a central Internet authority.

Enterprises using TCP/IP for internal connectivity have been assigning IP
addresses for the internal Networks without actually getting this space
assigned by the Internet authorities. This causes a problem. Assigning
globally unique addresses to every TCP/IP host on the planet means the Ipv4
address space will be exhausted in the near future. We will not, at this time,
address Ipv6 address space, as Hosts within enterprises are being
partitioned into public and private address spaces. By partitioning this way,
Tivoli Enterprise and Firewalls 297

companies can manage their internal Networks on TCP/IP conserving the
unique global addresses only for those hosts that must be on the real
Internet. Hosts on private Networks that need an Internet address, therefore,
have to depend on some address translation schemes to present themselves
uniquely on the Internet.

In practice, a customer of an Internet Service Provider will be provided a
Class C(/24 or /28) network for their external (upstream) network. This same
customer may or may not have internal (downstream) a registered internal
network IP address range. If not, addresses, such as 32.0.0.0/8 or
192.9.200/24 or 10.0.0.0/8, which are parts of the IANA reserved/special use
IP address blocks, may be utilized inside of a customer network. RFC 1597
and RFC 1631 provide detailed information about Network Address
Translation devices and IP Address Allocation for Private Internets.

Network address translation devices (NAT) act as a conduit between these
two spaces. NAT devices typically create virtual address routers between the
two spaces along with the additional ability of transforming IP addresses and
ports. By deploying NAT on private network boundaries, unregistered hosts
can be made visible on the Internet. NAT devices, therefore, also act as
firewalls.

Often NAT devices are physically distinct from port filtering-based firewalls.
Some NAT devices serve dual roles of address conversion and also do port
mappings. There are also NAT/Firewalls that do Port Address Translation
(PAT), but PAT devices are neither tested, nor supported by, Tivoli at this
time.

8.4.5.1 NAT Requirements for Tivoli Enterprise
The Tivoli 3.6 general requirements for NAT support are as follows:

 • The NAT mappings from private to public addresses must be static, that is,
the mappings do not change dynamically. In other words, there is a 1-1
permanent mapping between private addresses to public IP addresses (no
time slicing/sharing of public addresses).

 • The NAT device acts as a proxy DNS server to ensure that client systems
can resolve host name addresses on both sides of the NAT address
spaces.

 • The NAT device acts as a router to route IP traffic between the public and
private networks.
298 Tivoli Enterprise Internals and Problem Determination

NAT firewalls can be placed between any two TME components. There are
further restrictions and limitations for NAT support based on its placement.
Three separate cases come up:

 • NAT devices between TMR server and managed nodes or between any
two managed nodes.

 • NAT between gateways and endpoints.

 • NAT between inter-TMR servers.

The rest of this section addresses these cases individually.

8.4.5.2 NAT between Two Managed Nodes
When a managed node is installed and activated for the first time, its ORB
connects to the TMR server. The server’s odlist keeps track of Network
addresses and other properties of all such managed nodes in its TMR. The
server distributes this odlist to all managed nodes in the TMR when they
come up.

Thus, if the server sees a mapped address for a NAT mapped node, all other
managed nodes associate this particular (NAT-mapped) managed node’s
presence in the TMR only through this mapped address. This restricts the
NAT-mapped managed node to ONLY be manageable from points that are
across the NAT box. In Figure 124, the TMR server and managed nodes,
MN1-MN3, reside on the same (north) side of the NAT device. Only these
nodes may run methods on a managed node MN4 (on the south side of the
NAT box). MN5 cannot run methods on MN4 (since MN5 is on the opposite
side of the TMR server).
Tivoli Enterprise and Firewalls 299

Figure 124. Managed Nodes Separated by NAT Device

IOM across NAT
For processing IOM communications across NAT devices, the DKEY is
passed to the remote method. In Release 3.6, the DKEY now also contains
the host name of the IOM connection server, which is usually the repeater.
The IOM client connection node now resolves the host name of the repeater
(assuming the NAT box does name resolution) to establish the IOM
connection. Only if the name resolution fails, does the client resort to the IP
address embedded in the DKEY. This new feature allows MDist repeaters and
their destination targets to reside on either side of the NAT box.

8.4.5.3 NAT between Gateway and TMA Endpoint
With Release 3.6, we have the ability to implement NAT between gateway
and endpoints. Earlier, gateways and endpoints had to reside in the same
address space. Now, one can separate gateways and endpoint address
spaces by placing NAT devices between them.

This is useful because we can now manage endpoints that reside in separate
name spaces from one single TMR. This is usually the case when there is a
TMR with a centralized server and gateway set up is in one domain while
managing far-flung endpoints in multiple domains. In such environments, NAT
is essential as a security measure and also needed to keep the respective
private domain addresses unique.

NAT Firewall

MN1 MN2 MN3

TMR
Server

MN4 MN5
300 Tivoli Enterprise Internals and Problem Determination

The additional requirements, in this case, over and above the general
requirements for NAT, are the following:

 • Users need to provide fully qualified host names for gateways for
endpoints to resolve.

 • Users need to write a gateway selection policy script to assign gateways
to endpoints.

 • The NAT box must forward UDP protocol datagrams across.

 • When starting up the TMA agent daemon/service, users must provide
initial gateway information (-g option for lcfd) as fully qualified host
names.

TMA Endpoint Login across NAT
This section describes the TMA endpoint login mechanism across a Network
address translation (NAT) device. Consider the TMR server and gateways to
reside in one IP name space domain called the server domain. We will call
this domain name space dev.server.com. This domain appears north of the
NAT device.

TMA endpoints running the TME3.6 Tivoli Management Agent can be in
different client domains. These endpoints reside south of the NAT device and
log into the server domain through the NAT device. Figure 125 on page 302
depicts the initial login sequence for an endpoint residing south of the NAT
device.
Tivoli Enterprise and Firewalls 301

Figure 125. TMA Endpoint Login Across NAT Device

An endpoint has the Tivoli Management Agent (TMA) service (daemon)
installed on it. It initiates the initial login sequence (#1 in Figure 125). The
TMA service attempts to log into a gateway by sending UDP datagrams.
Details about the login gateway IP address and port are provided from the
following:

 • The command line where the TMA application service is launched from.

 • A last.cfg file in the TMA installation area that provides this information of
last known initial gateways saved from prior logins.

 • A UDP broadcast datagram that is received by all hosts residing on the
client endpoints subunit.

TMR
Server

Endpoint
Manager

Gateway
G1 Gateway

G2

"server" domain

2

5 4

3

6 7 81

NETWORK ADDRESS TRANSLATION DEVICE
(NAT)

E2

E1

E3

Client domain

Client domain

Client domain

N
or

th
S

ou
th
302 Tivoli Enterprise Internals and Problem Determination

In some environments, the third option may not be possible since the NAT
box may not entertain broadcasts across its two domains.

On receiving the initial login request, a gateway G1 checks to see if this
endpoint is already assigned to itself. If not, it forwards this request (#2) to
the endpoint manager that resides on the TMR server. The endpoint manager
executes two policy scripts. It first runs the allow_install_policy script to
determine whether this endpoint requesting a log-in is permitted to log into
the TMR. If the endpoint is eligible to login, the endpoint manager runs the
select_gateway_policy script. This script echoes a list of gateway OIDs
assigned to service this endpoint.

The endpoint manager runs a method on each of the gateway OIDs and picks
one as the assigned gateway (#3 and #4).

This assigned (and failover) gateway IP information is then sent back to the
login gateway G1 and, subsequently, to the logging endpoint (#5 and #6).
Normally, this information is in the form of IP addresses.

The endpoint has now found its bearings. It logs (normal login) into the
assigned gateway G2 (#7). The assigned gateway G2 already knows about
this endpoint, accepts the normal login (#8), thus completing the entire login
sequence.

The real IP addresses sent down (in #5 and #6) have no significance south of
the NAT device. The assigned gateways in the select_gateway_policy script
detail the gateway’s fully qualified host name (FQHN) of the gateway along
with the OID. This is done by appending the FQHN to the OID, the strings
separated by the “|” (pipe) symbol. Note, since the select_gateway_policy
script is tokenized on white spaces, no spaces should appear between the
OID, the pipe symbol, and the FQHN of the gateway.

An example is a gateway paris fully qualified as paris.dev.server.com with an
OID 123267682.1.529. It will appear in the select_gateway_policy script as
follows:

/**/
#!/bin/sh
echo "123267682.1.529|paris.dev.server.com ""
exit 0
/**/

Once a selection of gateways with the above format is listed in the policy
script, endpoints will receive the FQHNs (instead of IP addresses) for
Tivoli Enterprise and Firewalls 303

assigned (and failover) gateways during steps #5 and #6 of the login
mechanism. The endpoints will retain these FQHNs.

8.4.5.4 NAT between TMR Server to Another TMR Server.
There is very little one can do today with NAT devices spread between two
TMRs. The local odlist maintained by one TMR is exchanged with the remote
TMR during the interconnection process.

Most likely, the managed nodes in one TMR will not be NAT-mapped within
their own TMR, the odlist exchange will exchange the unmapped addresses.
These are useless for inter-TMR connectivity among two dispatchers across
NAT.

However, if all managed nodes of both TMRs are mapped (statically) across
NAT devices spanning across the two TMRs, such that both TMR servers see
the same addresses for all managed nodes they manage, some management
of hosts across NAT-separated TMRs may be possible.

This has not been tested. The case study in 8.5, “Case Study 1 - Hub to
Remote Through Firewalls” on page 304 covers this hypothetical scenario.

For now, if we at least map the TMR servers (again with static mappings)
across NAT, then, currently, one TMR will be able to get IOM channels and
MDist to operate correctly across the TMRs. The reason is because MDist
repeaters exist on either TMR servers, and if the subscriptions between the
two TMRs are handled correctly, users are able to push profiles across the
TMR. There is an example of this in the case study.

8.5 Case Study 1 - Hub to Remote Through Firewalls

This case study describes an installation at hypothetical companies with a
particular focus on connectivity through firewalls. Company details mentioned
here are purely fictitious, and any resemblance to real-life companies is
coincidental. The installation architecture is oversimplified to mainly focus on
the firewall aspects.

Information Management Inc. (IMI) is a company that provides system
management services to other companies. They are headquartered in Dallas,
Texas with branches in San Francisco and New York. They provide system
management and information technology services for clients First Town Bank
of Boston (FTBB) and Eternal Insurance Inc. in Hartford, Connecticut.
304 Tivoli Enterprise Internals and Problem Determination

IMI uses Tivoli to manage their customers as well as to manage their own
sites. IMI offices have their own public and private IP addresses, and so do
their customers.

IMI headquarters in Dallas provides a hub TMR. Local IMI managed nodes
and endpoints connect to this TMR. All hosts in the Dallas office have
registered IP addresses. The Dallas office configuration is illustrated in
Figure 126.

Figure 126. Hypothetical Internet Architecture - Dallas Hub

IMI is connected to San Francisco through the Internet. Managed nodes and
endpoints in San Francisco have public IP addresses and are part of this
TMR. The IMI office in New York, however, uses private IP addresses and
has its own local TMR. New York is connected to Dallas using private leased
lines.

Figure 127 illustrates the San Fransisco and New York networks.

IMI Hub TMR Server

Managed Node
IMI - DL5

Gateway
IMI - DL1

Gateway
IMI - DL2

NAT FW-7 FW-1 FW-6 FW-3

To FW-8 To FW-2

Endpoint
IMI - DL3

Endpoint
IMI - DL4

San Francisco Boston

To FW-4

New York Hartford

To FW-5

Dallas
Tivoli Enterprise and Firewalls 305

Figure 127. Hypothetical Internet Architecture - SF and NY Offices

Clients, First Town Bank of Boston (FTBB) and Eternal Insurance Inc. in
Hartford (EII), both have private IP spaces. IMI also has their own endpoints
that reside in the customer premises. These networks are illustrated in Figure
128.

FW-2

Managed Node
IMI - SF1

Gateway
IMI - SF2

Gateway
IMI - SF3

Endpoint
IMI - SF6

Endpoint
IMI - SF4

Endpoint
IMI - SF5

San Francisco

Managed Node
IMI - NY1

Gateway
IMI - NY2

FW-8

Endpoint
IMI - NY3

Endpoint
IMI - NY4

TMR Server

New York
306 Tivoli Enterprise Internals and Problem Determination

Figure 128. Hypothetical Internet Architecture - Boston and Hartford

Although IMI expects to manage each client locally, it also expects to perform
some management tasks (for example, distributions) from the IMI
headquarters. Each client TMR is connected to the hub TMR in Dallas. The
hub and spoke TMR spaces are delineated by Network-filtering firewalls and
NAT devices, as needed.

Note that for simplicity in the preceeding diagrams, network level details,
such as LANs, bridges and routers, are not shown unless necessary in the
context of the discussion. Network connectivity is shown only from a Tivoli
perspective.

For the sake of this discussion, executing methods on endpoints is
considered equivalent to invoking the method on the controlling gateway’s
ORB. The downcall from there is handled by the gateway.

Nomenclature for host names use the convention: company acronym -
location - number.

Example: IMI-DL2 is an IMI owned resource located in Dallas, while IMI-BO5
is an IMI resource in Boston. The location is omitted for EII and FTBB, which,
in this case study, are assumed to have single sites.

Gateway
FTBB - 3

NAT FW-4

Endpoint
IMI - BO1

Endpoint
IMI - BO2

FTBB
TMR Server

Endpoint
FTBB - 4

Endpoint
FTBB - 5

Boston

Gateway
EII - 2

NAT FW-5

Endpoint
IMI - HT7

Endpoint
IMI - HT6

EII TMR Server

Endpoint
EII - 3

Endpoint
EII - 4

Gateway
IMI - HT5

Hartford
Tivoli Enterprise and Firewalls 307

The following observations can be made for this setup:

 • The IMI-HQ TMR has managed nodes and endpoints that are local
(Dallas) and remote (San Francisco) to the TMR server. The SF office has
public addresses. All managed nodes/endpoints in SF come into the TMR
using the Network filter firewall FW-1.

 • Hosts, such as IMI-DL5, can source file packs and act as repeaters that
distribute to managed nodes and endpoints in SF. The gateways IMI-SF1
and IMI-SF3 act as repeaters for endpoints IMI-SF4 to IMI-SF6.

 • FW-1 and FW-2 play the role of upstream firewalls that control traffic
between the hub and SF. They do this by filtering packets based on source
and destination addresses as well as port range selections on managed
nodes IMI-TMR, IMI-DL5, IMI-SF1, and gateways IMI-SF2 and IMI-SF3.

 • The New York office has private IP addresses. Firewall FW-2 (NAT
equipped) maps these addresses statically to public addresses. The
IMI-HQ-TMR hub server connects the NY-TMR server into inter-regions.
After the connections, NY-TMR exchanges its odlist with the hub server.
This odlist contains unmapped addresses for managed nodes in NY.

The address for the NY-TMR server can be changed to the mapped address
by doing an odadmin region change_region <mapped_addr> command at the hub
TMR. This allows the hub TMR to communicate with the NY TMR server.
Note that this can only be done for the NY-TMR server and managed nodes
IMI-NY1/IMI-NY2 cannot be managed from the hub TMR in Dallas.

Nonetheless, profile distributions between the hub TMR and NY TMR can be
made possible by doing the following:

1. Create a profile manager PM-NY in the NY-TMR.

2. Subscribe managed nodes and endpoints in NY (IMI-NY1 to IMI-NY4) as
subscribers to this profile manager PM-NY.

3. Create a profile manager PM-DL in the hub TMR in Dallas.

4. Subscribe PM-NY to PM-DL.

5. Distribute profiles created in PM-DL down to all levels. Distributions
across regions use TMR servers as repeaters. Thus, distributions from
PM-DL will use the repeaters at either end of the NAT box. Once PM-NY
gets incoming records, the repeater in NY-TMR will push down to the leaf
nodes IMI-NY1 to IMI-NY4.

Firewall FW-8 does address and port filtering to make sure that the only
nodes communicating between the TMRs are the servers. Both, clients FTBB
and EII have private address spaces, and thus, have the same restrictions
308 Tivoli Enterprise Internals and Problem Determination

that the nodes in NY have with respect to its managed nodes and servers
connecting to the hub TMR.

As such, in this environment, we only allow distributions to flow from the hub
TMR to IMI customer’s nodes in Boston and Hartford. All other management
of these hosts have to be done from their local TMRs.

The IMI owned endpoints at FTBB Boston, though, are more manageable.
Endpoints IMI-BO2 and IMI-BO-3 have the ability to login across the NAT box
to the IMI gateway IMI-DL1 and merge as managed clients of the hub TMR.
Other gateways in the DL TMR can act as assigned and fail-over gateways.
Firewall FW-3 should not do any port filtering for endpoints IMI-BO-2 and
IMI-BO-3.

The EII TMR setup is similar to FTBB except that here, the gateway for the
IMI endpoints IMI-HT5/HT7, resides in the private EII address space. This
gateway is mapped across the NAT box FW-5, and it is on the same side of
the endpoints IMI-HT6 and IMI-HT7.

There are several reasons for doing this as opposed to what was done for IMI
owned endpoints at FTBB. For instance, assume IMI has a security policy to
disallow UDP packets into the hub TMR from across the Internet. Endpoints
need UDP for initial login. With this restriction, endpoints, such as IMI-BO-2,
cannot successfully execute their initial login across the firewalls.

Another reason is that, in the EII case, the gateway IMI-HT5 (also the
repeater for the IMI endpoints) allows distribution traffic across the Internet to
be minimized by being a focal distribution point for the IMI-HT endpoints. As
before, firewalls FW-3 and FW-6 must not make any assumptions about ports
used by IMI endpoints at their customer sites.

8.6 Case Study 2 - Dual TMR Setup with Firewalls

Figure 129 on page 310 illustrates one other successful methodology to
deploy TMA 3.6 in an Internet firewall environment that many customers are
using. It is included to give another perspective of TMA deployments. In this
example, there are two separate TMRs due to customer resiliency issues. In
the setup shown, there are no TMA endpoints logging in through a firewall,
and all machines are managed nodes in the DMZ network.
Tivoli Enterprise and Firewalls 309

Figure 129. Dual TMR Implementation Across Firewall

One TMR is located outside the firewall and the other is inside. Note that the
internal and external TMRs do not exchange resources. In this example the
only purpose of the external TMR is the use of distributed monitors so no
resource exchanges are needed. External TEC events are sent to the internal
TMR TEC console for monitoring.

Machines being managed only send monitoring events to the (external) TMR
server. They need no direct route to the internal network. Internet inbound
and outbound traffic is blocked on these systems except for Tivoli and normal
service ports.

The internal and external TMRs could have Tivoli Cross-Site security
monitors running for additional monitoring alerts.

Each TMR server has a default route to the firewall which has ports 94 and
the range specified in the TMR. These are bi-directionally enabled only
between the TMR servers. The external TMR server has internet inbound and
outbound traffic blocked and a static route only to the internal TMR server

Internal
TMR Server

Internal
TEC Server

Firewall

External
TMR Server

Endpoint

Endpoint

Endpoint

Endpoint Endpoint Endpoint
310 Tivoli Enterprise Internals and Problem Determination

plus select machines within DMZ. The internal TMR server has the default
route to firewall which has ports 94 plus the TMR range bi-directionally
enabled only between the TMRs. The internal TMR host is only allowed
intranet traffic on the firewall and a static route only to the external TMR
server (plus any internal required routes).
Tivoli Enterprise and Firewalls 311

312 Tivoli Enterprise Internals and Problem Determination

Chapter 9. RDBMS Interface Module (RIM)

The RDBMS Interface Module (RIM) is designed to allow Tivoli applications
that collect or generate large amounts of data to store that data in third-party
databases. The goal of RIM is to allow the applications to have a common set
of APIs to get and store data. RIMs job is to convert the data provided
through those APIs to the format used by the various database vendors.

9.1 Applications Using RIM

The Tivoli applications that store and use large amounts of data are being
migrated to use external databases. At the time of writing, there are four
applications that use RIM, but others are expected to follow. The current
applications, and the way they use the database, are:

Tivoli Inventory Collects and stores hardware and
software information about TME managed
nodes, PC managed nodes, and TMA
Endpoints.

Tivoli Enterprise Console Collects, filters, and acts upon events
coming in from resources across the
enterprise.

Tivoli Software Distribution Distributes software to endpoints.
Software Distribution will write information
to the database with every file package
distribution and use the same
configuration repository as Tivoli
Inventory. This is an optional interface
enabled by installing Software Distribution
Historical Database modules.

Tivoli NetView Manages Network resources and shows
live topology. NetView has an option to
use relational databases through RIM to
record event data, collected
measurements, and topology snapshots.

9.1.1 Applications Moving to RIM
The following are likely to be other applications that will use RIM:

Tivoli Distributed Monitoring This product does not rely on RIM directly
but may write data to the Performance
Reporter database in future releases.
© Copyright IBM Corp. 1998, 1999 313

Tivoli User Administration Creates and manages user and group
system accounts. The current number of
attributes for each managed user can be
over 100.

9.2 Installing RIM

RIM is a component of the Tivoli Management Framework. RIM is installed
with the Framework, and then each application that uses it creates the
appropriate RIM objects. The application installation usually consists of two
steps

 • Creating the user ID and user tables in the RDBMS server.

 • Creating the RIM component for the application to connect to the RDBMS
server.

9.2.1 Creating Application Database Tables
The TME applications supply scripts to create the necessary tables, views,
and users on the RDBMS server. Even though RIM means the application
does not need to know the specifics of each database implementation, these
scripts used to build the tables do need to be vendor specific. This means
that each time RIM expands to support another database, there will need to
be a product update that provides new scripts for that database. The tables
and views that are created make up the databases for the applications that
use RIM. The following is an example of the tivoli_syb_admin.sql script
supplied by Inventory 3.6 for use with Sybase:

The RIM support for Oracle on Windows NT is linked against ORANT71.DLL,
which is the Dynamic Link Library supplied with Oracle 7.1. For RIM
support for Oracle on Windows NT to work, this file must be installed and
must be in the local path. Unfortunately, the name of this library was
changed in Oracle 7.2 and Oracle 7.3, and ORANT71.DLL does not get
installed with Oracle 7.2 and Oracle 7.3. However, ORANT71.DLL is available
on the Oracle 7.2 and Oracle 7.3 installation media.

From the Oracle 7.3 media, the ORANT71.DLL can be copied from the
NT_X86\V7\RSF72 directory to the %ORACLE_HOME%\bin directory. Two other
DLL modules, CORENT23.DLL and MSVCRT10.DLL, are required for wrimtest to
work with Oracle 7.3. These DLL modules can be copied from the Oracle
7.3.3 installation media after the Oracle 7.3.3 installation.

Using Oracle 7.x on Windows NT
314 Tivoli Enterprise Internals and Problem Determination

use master
go
create database inventory on master
go
alter database inventory on master = 20
go
sp_dboption "inventory", "trunc. log on chkpt.", true
go
sp_addlogin tivoli, tivoli, inventory
go
use inventory
go
sp_adduser tivoli
go
grant create table to tivoli
go
grant create view to tivoli
go
quit

1. It is recommended that you work with an experienced DBA to set up
your databases.

2. The scripts that define your application database and tables are created
when you install your application, such as TEC or Inventory.

3. Define your own database volumes, for example, with Sybase, the
default device is master (see above script). Use different device names
for your database and log. This is more suitable for database recovery.
Note that some Tivoli product scripts may specify master, and these
should be changed.

4. Check that you are defining enough space for your environment. For
example, check the number of machines that will be scanned by
Inventory or the number of events that you expect with TEC.

5. The Tivoli user ID provided during installation is used as the database
and table creator. This means, in most implementations, that the
database should be created using the same account information as
supplied during initial installation. If your installation needs to use a
different user ID, use the wsetrim command to change the user ID. This
command is used to change any of the RIM objects settings and will be
explained in detail later in this chapter.

Note
RDBMS Interface Module (RIM) 315

9.3 Understanding RIM

From the Tivoli application user’s perspective, RIM is invisible. An application
using RIM will gather and store data in the RDBMS, but there is no interaction
or involvement by the user. For a detailed description of RIM and how it works
with the Tivoli applications, refer to the Using Databases with Tivoli
Applications and RIM redbook, SG24-5122

9.3.1 RIM Behind the Scenes
Several components work together to make communication through RIM
possible. The client application uses RIM APIs to make a request to gather
and retrieve data. The RDBMS_Interface translation layer receives the
request from the client, looks up the RIM host, and sends the request to the
RIM host. The third component is the vendor adaptor layer, which sends
vendor-specific requests to the database.

Figure 130. RIM Components

9.3.2 RIM APIs
There are several Tivoli APIs that an application can use to store and retrieve
information from an external database. Using API calls allows the application
to be database vendor unspecific. These APIs can be seen as IOM
commands in a wrimtrace output on the RIM host when an application has
been using RIM.

RIM Client
Application

RIM Link Library
(RIM APIs)

RIM IDL Interface
(Translation Layer)

RIM_Oracle_prog RIM_Sybase_prog Future DB Progs

RIM VAL (Vendor Adaptor Layer)

RIM Host
Managed

Node

Managed Node
with

Client Application
316 Tivoli Enterprise Internals and Problem Determination

A list of RIM calls that can be seen using wrimtrace includes:

connect
iom_session
release
database
commit
rollback
execute_sql
quote_value
insert
insert2
update
update2
retrieve
retrieve2
delete
delete2

Refer to Tivoli Framework Reference Guide for more information about using
wrimtrace. Note that odadmin environ get RIM_DB_LOG shows you where the log
will be written, and that you have two tracing options besides TRACE_OFF which
give database errors (ERROR) or the contents of the IOM packets
(INFORMATION). When you change the trace level, be sure to kill the
RIM_databasename_PROG process, as described in the manual.

9.3.3 RDBMS_Interface Translation Layer
The translation layer acts as the engine behind the RDBMS_Interface API. It
performs two major tasks:

 • Looks up the correct server with which to connect.

 • Translates data passed through the API as an any into an SQL string
involving operations on the data model tables, rows, and columns
(database records and fields).

9.3.4 Vendor Adaptor Layer
The lowest layer of the RDBMS_Interface is the stub functions making calls to
an actual vendor-specific library adopted for a given combination of RDBMS
vendor and platforms. This layer consists of hooks to vendor-specific library
calls. Each vendor instance of this layer is implemented as a separate
dedicated C program.
RDBMS Interface Module (RIM) 317

9.4 RIM on Framework 3.6

This section looks at how RIM works in the Framework 3.6 release.

9.4.1 Creating RIM 3.6 Objects
RIM for Framework 3.6 includes support for four database products:

 • Sybase
 • Oracle
 • DB2 (Unix only)
 • MS SQL (NT Only)

These databases can be specified in the GUI or using the wcrtrim command.
Details on how the wcrtrim and wsetrim commands work are included later in
this chapter.

The common installation options used to define RIM objects are:

1. Database Vendor - either Sybase, Oracle, MS_SQL, or DB2.

2. RIM host (TME RDBMS access host) - A Tivoli managed node with client
access to the RDBMS database server. This option can only be set
through the command line. The dialog does not allow you to change or set
this field. It automatically sets the RIM host option to the TMR server.

3. RDBMS User ID.

4. RDBMS Password.

Vendor specific options:

1. Database ID

2. Database Home

3. Database Server ID

4. Instance ID (DB2 only)
318 Tivoli Enterprise Internals and Problem Determination

The following tables describe the RIM object parameters in more detail:

Table 11. RIM Installation Options

Install Option Sybase Oracle

Database Vendor Sybase Oracle (default on GUI)

TME RDBMS Access
Host

RIM HostName1 RIM HostName1

Database ID Name of the database that
the application will use.1

$ORACLE_SID
Oracle SID listed in
transnames.ora file.

Database Home2 $SYBASE
The value that Sybase sets
in this environment
variable.

$ORACLE_HOME
The value that Oracle sets
in this environment
variable.

Database Server ID $DSQUERY
Sybase name for the
server.4

$TWO_TASK
Label in transnames.ora
file.5

Database User ID tec for Tec application and
tivoli for Inventory
application.

tec for Tec application and
tivoli for Inventory
application.

Password6 The password is for the database user. You’ll be prompted
for the password when using the wcrtrim command.

NOTES:
1. Must be a managed node or the TMR Server.
2. The database name will depend on the application. By default,

Inventory uses inventory, and TEC uses tec.
3. If the RIM host is the RDBMS, then this will be the default directory

where the file resides. If the RIM host is not the RDBMS, then this
value will be the name of the directory that you copy the file to. Use
forward slash even when specifying a Windows NT home.

4. The name for the sybase server is usually in a UNIX environment
variable called DSQUERY. This is a unique Sybase name for the server,
not always the same as the machines IP address.

5. You do not need to enter a server ID for Oracle if the RIM host is the
RDBMS.

6. The password is set automatically by applications, such as Inventory
and TEC, so it does not appear in the dialog at install time. If you need
to re-create a RIM object, make sure you know both the user and
password for access to the database. Check this information with your
database administrator. If password for the user ID is changed in the
RDBMS, then use the wsetrimpw command to change the password in
the RIM object.
RDBMS Interface Module (RIM) 319

Table 12. RIM Installation Options (Cont.)

9.4.2 Client Application Communication with RIM 3.6
RIM performs the following actions using the values provided (see also
Figure 131 on page 321):

Install Option MS SQL DB2

Database Vendor MS_SQL DB2

TME RDBMS Access
Host

RIM HostName1 RIM HostName1

Database ID Name of the database that
the application will use.2

Name of the database that
the application will use.2

Database Home3 The directory where MS
SQL is installed, such as:
C:\mssql.

$DB2HOME
The value that DB2 sets in
this environment variable.

Database Server ID server name where
MS/SQL Server is installed.

tcpip

Instance Home not applicable. $INSTHOME

Database User ID tec for Tec application and
tivoli for Inventory
application.

tec for Tec application and
tivoli for Inventory
application.

Password4 The password is for the database user. You’ll be prompted
for the password when using the wcrtrim command.

NOTES:
1. Must be a managed node or the TMR Server.
2. The database name will depend on the application. By default,

Inventory uses inventory and TEC uses tec.
3. If the RIM host is the RDBMS, then this will be the default directory

where the file resides. If the RIM host is not the RDBMS, then this
value will be the name of the directory that you copy the file to. Use
forward slash even when specifying a Windows NT home.

4. The password is set automatically by applications, such as Inventory
and TEC, so it does not appear in the dialog at install time. If you need
to re-create a RIM object, make sure you know both the user and
password for access to the database. Check this information with your
database administrator. If password for the user ID is changed in the
RDBMS, then use the wsetrimpw command to change the password in
the RIM object.
320 Tivoli Enterprise Internals and Problem Determination

1. Application 1 asks TMR A for the object ID of the required RIM host. The
TMR looks in the name registry and finds that Application 1’s RIM host is
RIM Host X.

2. Application 1 requests an action of RIM Host X. This request is routed
through TMR A.

3. RIM Host X uses the directory value for Database Home and looks at the
appropriate configuration file. These are:

 • interfaces file for Sybase,
 • tnsnames.ora file for Oracle.

4. RIM Host X looks up how to contact the RDBMS server matching the
name of the Server ID to an entry in the configuration file.

5. RIM Host X contacts the RDBMS server and performs the action for the
database specified in the Database ID field. It accesses this database
using the user ID and password that has been set for Application 1’s RIM
object.

6. Once the request is completed by the RDBMS server, RIM Host X passes
the data through an IOM channel directly to that managed node.

Figure 131. How an Application Uses RIM

Managed Node
Application 1

IOM
Channel

RIM Host X

RDBMS
Server

TMR A
RDBMS Interface Module (RIM) 321

9.5 Troubleshooting RIM

This section lists a series of activities you may wish to perform when working
with RIM applications.

9.5.1 Finding the RIM Objects Defined in a TMR
The Tivoli name registry contains a RIM item that references all the RIM
objects in the TMR. RIM objects from other connected TMRs will also be
listed if the resource has been updated:

Figure 132. wlookup - Listing the RIM Objects in Your TMR.

9.5.2 Displaying the Settings for a RIM Object
We use wgetrim to display RIM object settings:

Figure 133. Listing the Information for a RIM Object - wgetrim

9.5.3 Changing RIM Object Information
The wsetrim command is used to change RIM object information. It will only
allow you to set the following parameters:

[-n new_name] The new name of the RIM object.

[-d database] The name of the database in the RDBMS server.

root@rh0255c:~# wlookup -ar RIM
inventory 1562489759.3.35#RIM::RDBMS_Interface#
root@rh0255c:~#

You can not use a RIM object from an interconnected TMR. The RIM Host
must always be local within a TMR.

 Note

root@rh0255c:~# wgetrim inventory
RIM Host: rh0255e
RDBMS User: tivoli
RDBMS Vendor: Sybase
Database ID: Inventory
Database Home: /sybase/install
Server ID: rh0255e
root@rh0255c:~#
322 Tivoli Enterprise Internals and Problem Determination

[-u user] The name of the user that can operate on the database.

[-H rdbms_home] The directory where the RDBMS vendor-specific
configuration file resides.

[-s server_id] The name of the RDBMS server.

[-I instance_home] The directory where the DB2 instance was created.

rim_name The current name of the RIM object you are changing.
This parameter is always required.

The following screen shows how to change the name of the RIM object from
inventory to appl2 using the CLI:

Figure 134. Changing a RIM Object Name - wsetrim

9.5.4 Changing the RIM Host Machine Name
You can only have one RIM host for each application in a TMR. If you wish to
change the RIM host, then all RIM objects using the same RIM host have to
be deleted and re-created specifying the new RIM host name.

To delete a RIM object you can use wdel. Running wlookup after wdel confirms
that the object has been deleted.

The RIM host name and the RDBMS Vendor options cannot be changed
by using the wsetrim command. If you need to change either of these two
options, you must delete the existing RIM object and recreate it.

 Note

root@rh0255c:~# wsetrim -n appl2 inventory
root@rh0255c:~# wlookup -ar RIM
appl2 1562489759.3.35#RIM::RDBMS_Interface#
root@rh0255c:~# wgetrim appl2
RIM Host: rh0255e
RDBMS User: tivoli
RDBMS Vendor: Sybase
Database ID: Inventory
Database Home: /sybase/install
Server ID: rh0255e
RDBMS Interface Module (RIM) 323

Figure 135. Deleting a RIM Object - wdel

When you re-create the RIM object, you use the wcrtrim command. You are
creating a new RIM object; so, you will be prompted for the user’s database
password.

Figure 136. Creating a New RIM Object - wcrtrim

9.5.5 Troubleshooting Example: Failure to Connect with RDBMS
A distribute failure was indicated to the administrator with the dialog shown in
Figure 137 on page 325:

root@rh0255c:~# wlookup -ar RIM
appl2 1562489759.3.35#RIM::RDBMS_Interface#
root@rh0255c:~# wdel @RIM:appl2
root@rh0255c:~# wlookup -ar RIM
root@rh0255c:~#

root@rh0255c:~# wcrtrim -v Sybase -h newhost -d Inventory -u tivoli
-H /sybase/install -s rh0255e inventory
RDBMS password:
root@rh0255c:~# wgetrim inventory
RIM Host: newhost
RDBMS User: tivoli
RDBMS Vendor: Sybase
Database ID: Inventory
Database Home: /sybase/install
Server ID: rh0255e
root@rh0255c:~#
324 Tivoli Enterprise Internals and Problem Determination

Figure 137. RIM Connection Failure Message in the Desktop

This problem was created by changing the settings of the Inventory RIM
object. A wgetrim shows that the Database Home directory has been changed
to /tmp. The interfaces file for Sybase will not be found there.

Figure 138. Example of wgetrim

To check whether or not a RIM object can connect to the database, use the
wrimtest command. If you get a Session Opened message, then RIM
connected to your database. You can then execute a retrieve or any SQL

#wgetrim inventory
RIM Host: k124a
RDBMS User: tivoli
RDBMS Vendor: Sybase
Database ID: inventory
Database Home: /tmp
Server ID: rh0255e
#

RDBMS Interface Module (RIM) 325

command against the database to view data. Figure 139 is an example of
using wrimtest:

Figure 139. Example of wrimtest

This example showed using wrimtest to list data from the TEC Event
Repository table (tec_t_evt_rep) showing columns msg, class, and origin.
Refer to the Tivoli Framework Reference Manual or the wrimtest main page
for details on using the wrimtest command.

Figure 140 on page 327 shows an odstat output from TEC not starting up
because the RIM object is not configured correctly. Since this is a very large
output, many lines have been deleted to just show sample messages. The
thread in error is 13166 near the bottom:

[root@itso2]/> wrimtest -l tec
Resource Type : RIM
Resource Label : tec
Host Name : itso2
User Name : tec
Vendor : Sybase
Database : tec
Database Home : /data/sybase
Server ID : ITSO2
Instance Home :
Opening Regular Session...Session Opened
RIM : Enter Option >g
Table Name > tec_t_evt_rep
Enter <Field Name> [/n] [/s /l /f /d [<Value>]Editor? [y/n] [Default n] >
1 > msg
2 > class
3 > origin
4 >
Where Clause >
Retrieve) Num of Rows [0] >
Row 0
 msg : (0) Distributed Monitoring TACF_Monitors/TACF Files on
host hptmp9-ep Wed Dec 2 10:12:00 CST 1998 CST

Status: >>> critical <<<

TACF Files (TracingFile) () Greater than 1(Previous: 1.38 KB
Current: 1.38 Effective: 1.38)

 class : (0) Tacf_LogFileSize
 origin : (0) 146.84.32.34
RIM : Enter Option >x
Releasing session
[root@itso2]/tmp>
326 Tivoli Enterprise Internals and Problem Determination

Figure 140. Example of RIM Call in odstat Output

Figure 141 on page 328 shows the wtrace output for the same error. The
complete output is too large, so we have just shown the thread that actually
produced the error, 13166. The RIM_iom_session method failed because RIM
could not make a connection to the RDBMS:

n_active = 14 n_free = 186
 tid type ptid State StdO StdE Start Err Method
 1 SYS
 7 O+bhdoq run 0 0 Mon14:16 1998892590.1.158#TMF_Scheduler::sch
eduler# start
 11 O+bhdoq run 0 0 Mon14:16 1998892590.1.616#SentryEngine::engi
ne# run_engine
 86 SYS
 105 O+hdoqs run 0 0 Mon14:17 1998892590.1.530#TMF_UI::Extd_Desk
top# uiserver

---- history ----

 13141 O+bhdoq done 6 0 11:18:27 1998892590.1.885#Tec::Se
rver# start_server
 13142 O+hdq1-13141 done 6 0 11:18:27 1998892590.1.885#Tec::Serv
er# _set_state
13147 O+hdq1-13142 done 6 0 11:18:27 1998892590.1.881#Tec::Inst
anceManager# update_state
 13148 O+hdq1-13141 done 290 0 11:18:28 1998892590.1.885#Tec::Serv
er# get_backrefs
13151 O+hdoq1-13141 done 6 0 11:18:28
1998892590.1.179#TMF_Administrator::Configuration_GUI# refresh_member
 13152 O+hdq 1-105 done 5100 0 11:18:28 1998892590.1.865#TMF_UI::P
resentation# get_icon_info
 13153 O+hdq 1-4509 done 5100 0 11:18:28 1998892590.1.865#TMF_UI::P
resentation# get_icon_info
*13154 O 1-13141 done 0 0 11:18:28 NO_METHOD 1998892590.1.881#Tec::In
stanceManager# refresh_member
 13155 O+ 1-13141 done 47 0 11:18:28 0.0.0 get_host_location
 13156 O+ 1-13141 done 47 0 11:18:28 0.0.0 get_host_location
 13157 O+hdoq1-13141 done 43 0 11:18:28
1998892590.1.348#TMF_ManagedNode::Managed_Node# install_directory
 13158 O+ 1-13157 done 15 0 11:18:28 0.0.0 get_oserv
 13159 O+ 1-13157 done 26 0 11:18:28 1998892590.1.2 query insta
ll_dir
 13160 O+hdoq1-13141 done 24 0 11:18:29
1998892590.1.348#TMF_ManagedNode::Managed_Node# interpreter
 13161 O+ 1-13160 done 15 0 11:18:29 0.0.0 get_oserv
 13162 O+ 1-13160 done 7 0 11:18:29 1998892590.1.2 query inter
p
*13163 O+ho 1-13141 done 352 0 11:18:29 e=12 1998892590.1.885#Tec::Serv
er# is_dataserver_running
 13164 O+ 1-13163 done 15 0 11:18:29 0.0.0 get_name_registry
 13165 O+hdoq1-13163 done 105 0 11:18:29 1998892590.1.26 lookup
*13166 O+hdoq1-13163 done 352 0 11:18:29 e=12 998892590.1.905#RIM::RDBM
S_Interface# RIM_iom_session
 13167 O+hdq1-13141 done 6 0 11:18:29 1998892590.1.885#Tec::Serv
er# _set_state
RDBMS Interface Module (RIM) 327

Figure 141. Example of RIM Error in wtrace Output

If we now look at the RIM trace log from the same exception, we will see a
more detailed description of the problem.

loc-ec 13166 M-hdoq 1-13163 54 e=12
 Time run: [Tue 01-Dec 11:18:29]

 Object ID: 1998892590.1.905#RIM::RDBMS_Interface#
 Method: RIM_iom_session
 Principal: root@itso2.dev.tivoli.com (-2/-2)
 Helper pid: 50532 Path: /data/usr/local/Tivoli/bin/aix4-r1/TAS/RI
M/RIM_Sybase_prog

 Input Data: (encoded):

 {
 40 "0x32 0x34 0x35 0x34 0x39 0x38 0x36 0x38 0x33 0x30 0x49 0x33
 0x35 0x31 0x30 0x30 0x49 0x32 0x30 0x30 0x30 0x34 0x62 0x34 0x38
 0x32 0x30 0x30 0x30 0x34 0x62 0x34 0x38 0x20 0x69 0x74 0x73 0x6f
 0x32 0x00 "
 }

 Results: (encoded):
 "Exception:UserException:SysAdminException::ExException:RIM:
 :ExRIMError:RIM::ExRIMConnectFail"
 {
 "Exception:UserException:SysAdminException::ExException:
 RIM::ExRIMError:RIM::ExRIMConnectFail" "rim_errors" 1 "Could
 not connect to RDBMS server to access database %7$s." 912532709

 {
 0
 }
 "tec" 0
 }
328 Tivoli Enterprise Internals and Problem Determination

Figure 142. Example Output of RIM Tracing with wrimtrace

Here we can see the connect operation failed because it could not find a file
or directory. This was because the Database Home field in the tec RIM object
definition was incorrectly typed. After correcting the RIM object using wsetrim,
the database connected successfully, as shown in the second half of the
above screen.

9.5.6 RIM Specifics
When an exception is thrown, any RDBMS-specific error messages are
included in the exception. Error messages are also logged to a file.
Exceptions contain:

 • RIM error message

 • Database function that caused the error

 • Return code from the database function

 • Database error message

Before the exception occurs, a message is written to the RIM log. The default
error log file is /tmp/rim_db_log but the location can be changed by creating a
RIM_DB_LOG variable in the oserv environment by using the command:

odadmin environ set RIM_DB_LOG “pathname”

00050532 [Tue Dec 1 11:44:50 1998] Connection ID: 0, Operation: val_connect, DB Call:
val_connect
0õÐ 8̃ ?X lH0ṏ ðT.ÆðT0õÐðTÑ.ï̧ ðTÑ.çHðTDB-Library Error: Could not open interface
file.DB-Library Reports OS Error No such file or directory

00050534 [Tue Dec 1 11:45:33 1998] Trace Message - Connection ID:: Connecting to IOM
Channel
00050534 [Tue Dec 1 11:45:33 1998] Trace Message - Connection ID:: Beginning IOM Loop
00050534 [Tue Dec 1 11:45:38 1998] Trace Message - Connection ID::
IOM Command: RELEASE
row_param: <NULL>
rows: <NULL>
number1: 0
number2: 0
string1:
string2:
00050534 [Tue Dec 1 11:45:38 1998] Trace Message - Connection ID::
REPLY IOM Command : RELEASE Result : Success
rows: <NULL>
00050534 [Tue Dec 1 11:45:38 1998] Trace Message - Connection ID:: Ending IOM Loop
RDBMS Interface Module (RIM) 329

The command to trace RIM calls in versions of the Tivoli Framework from 3.2
and above is wrimtrace rim_object <options>. Where rim_object is the name
of a valid RIM object, such as tec or inventory, and the valid options are:

TRACE_OFF Turns tracing off
ERROR Returns error codes
INFORMATION Shows the SQL commands passed by RIM

To turn both ERROR and INFORMATION tracing on at the same time, concatenate
them with the pipe symbol enclosed in double quotes. For example:

wrimtrace tec "ERROR|INFORMATION"

9.6 Queries

Creating a query will allow you to perform functions, such as a search of the
Inventory database and select machines, based on the attributes stored in
the database when an Inventory scan was performed.

In order to activate the last wrimtrace command, you must restart the RIM
daemon. One method is to set the trace options, kill the daemon, and the
next RIM action will restart the daemon. Remember to set tracing off and
kill the daemon again when you have finished tracing. The RIM daemon
name will be RIM_<dbvendor>_prog (ex. RIM_Sybase_prog). You may also see
a RIM_generic_prog daemon running as well. Go ahead and kill that daemon
as well.

 Note
330 Tivoli Enterprise Internals and Problem Determination

Figure 143. Creating a Query through the GUI

Figure 143 shows a query for finding the machines with the AIX operating
system that exist in a specific TMR. The SQL wild card character is percent
(%).

You may need this type of query when more than one TMR is using the same
Inventory database. When performing the query while selecting subscribers,
for either another Inventory scan or a software distribution, you will ensure
that only one TMRs objects will appear in the Subscribers list.

Figure 144 on page 332 shows how to run the previous query when selecting
machines for a Software Distribution:
RDBMS Interface Module (RIM) 331

Figure 144. Running a Query to Select Subscribers for Software Distribution
332 Tivoli Enterprise Internals and Problem Determination

Figure 145. Subscribers Selected after Running a Query

Instead of selecting individual machines from the Subscribers list, you select
the Query button, select the Query Library, and then the appropriate query.
Once selected, you can Execute. Figure 145 shows that only k124a is an AIX
machine in the 1360991896 region. You can execute multiple queries, each
with different selection criteria. The newly-selected machines will be
appended to the list for the distribution.

9.6.1 Queries with RIM 3.6
The Create Query dialog in Framework 3.6 allows you to specify the
database that you want to query. As long as the RIM host knows about the

You may experience problems if you try to create a query through the
command line and then try to edit the same query through the desktop.

Note
RDBMS Interface Module (RIM) 333

RDBMS server, you can query any database including a non-TME
application’s database.

9.6.2 Tivoli Roles Needed to Execute Queries
For a Tivoli administrator to be able to execute queries, they must have at
least RIM_View authorization. If they will be updating information, they will
also need RIM_Update authorization.

9.7 Designing Your Tivoli Environment for RIM

There are many considerations when designing an environment that will use
RIM. Some brief notes follow that should help when considering your design:

 • You can have one RIM host for each application in a TMR.

 • You can have one or more RDBMS servers. They do not have to be
managed nodes. If you want the RDBMS server to be a RIM host, then it
can only perform that role for one TMR where it must be a managed node.

 • Multiple RIM hosts can share one RDBMS.

 • Beware of performance bottlenecks if you are considering the following:

 • Using a TMR server, or another application server as a RIM host in a
busy environment.

 • Several applications sharing one RDBMS server. This could be through
one or more RIM hosts.

 • Sharing the RDBMS across TMRs.

 • Each RIM host, whether they are in the same TMR or not, must have
direct IP connectivity to the RDBMS server.

 • In Framework 3.6, the RIM host must also have direct IP connectivity to
the managed node with the application making database requests. The
RIM host can then open the IOM channel when returning the data for any
database operations.

 • Tivoli does not support a configuration that tries to share a RIM object
across TMR connections.

 • If you share one RDBMS server between two RIM based applications
using the same database, their records will be automatically stored with a
reference to their region. A query from either region will see the objects
placed there by any TMR’s application.
334 Tivoli Enterprise Internals and Problem Determination

 • You can have multiple RDBMS servers in a TMR being referenced by
different RIM objects. In this case, you only need to re-create the RIM
objects that are using the RDBMS server being updated.

In a situation where TMRs are sharing the same database for Inventory
data, ensure that you design your queries correctly if you do not want to
see other TMR machines in the result of your queries. See Section 9.6,
“Queries” on page 330.

Note
RDBMS Interface Module (RIM) 335

336 Tivoli Enterprise Internals and Problem Determination

Part 2. Tivoli Enterprise Products
© Copyright IBM Corp. 1998, 1999 337

338 Tivoli Enterprise Internals and Problem Determination

Chapter 10. Software Distribution

Tivoli Software distribution is used by many customers for distributing,
installing, and controlling software. There are many features that provide a
great deal of function but whose complexity make this application one of the
more challenging ones when it comes to resolving problems. In this chapter,
we concentrate more on the standard Software Distribution file package. This
is used when all that is required is to get a particular set of files from a source
system into specific locations on a target system. If the installation is to a PC
platform, and involves more complexity, such as the modification of
initialization files, then the usual choice would be to use AutoPack. The
AutoPack feature is the subject of Chapter 11, “AutoPack” on page 375.

Recent versions of Tivoli Software Distribution have included troubleshooting
information in the Tivoli Software Distribution Reference Manual.

10.1 Differences with Software Distribution Version 3.6

There are some differences between Software Distribution 3.6 and previous
releases. Besides the support for the Tivoli Management Agent (TMA)
environment, these include:

 • Better and more meaningful error messages.

 • Individual logging of the nested file packages in the Software Distribution
logs.

 • Different format for Software Distribution logs.

These differences are highlighted throughout this chapter

10.2 Installation

For the new TMA environment, Tivoli Software Distribution has two main
components: Tivoli Software Distribution 3.6 (server component) and the
Tivoli Software Distribution 3.6 gateway package. In addition to these
components, Tivoli Software Distribution 3.6 is shipped with an extensive
API, the TEC Integration module, and Tivoli Software Distribution 3.6 RDBMS
support.

For both the TMA and classical Tivoli environment, the Tivoli Software
Distribution 3.6 Server has to be installed on the TMR server, on all
designated source hosts, and on those managed nodes from which you
would like to administer Tivoli Software Distribution.
Software Distribution 339

The Tivoli Software Distribution Server Component is identified by a name
such as:

TME 10 Software Distribution, Version 3.6

This appears in either the traditional Tivoli installation method or SIS. This
component mainly consists of the file package editor, the AutoPack object
editor, the GUI for launching the distribution operations (display object), the
server engine, and the CLI commands.

The Tivoli Software Distribution gateway component is identified by:

Software Distribution Gateway, Version 3.6

Again, this is in either the traditional Tivoli installation method or SIS. This
component must be installed on each managed node that has been
designated as a TMA gateway and will serve the software distribution
functions to the Tivoli Management Agents. The gateway component is the
repository of all the distribution binaries that are necessary to repeat the data
to the TMA endpoints. The gateway will also act as the repository of methods
that are downloaded to the endpoints at distribution time.

Each of the Tivoli Software Distribution components can be installed using
the Tivoli Desktop GUI, command line interface (CLI), or Software Installation
Service (SIS).

You can refer to the redbook New Features in Tivoli Software Distribution 3.6,
SG24-2045 for more information on 3.6 specifics.

10.3 Tivoli Software Distribution Internals

In this section, we will cover the overall process used by a Software
Distribution and introduce the Tivoli methods that are involved.

A Software Distribution can involve the following types of machine:

 • The TMR server

 • The file package source host

 • The TMA gateway

 • The repeater

 • Software Distribution targets: PC managed node, managed node, or TMA
endpoint
340 Tivoli Enterprise Internals and Problem Determination

A distribution will take place either from a managed node (including the TMR
server) to another managed node, or from a managed node to a PC managed
node or TMA endpoint. Between these two, there may be a number of
intermediary steps including the use of repeaters and/or TMA gateways.

10.3.1 Tivoli Methods Used by Software Distribution
Every file package distribution is handled by up to five main methods:

 • A push method - fp_push, default_push, or fp_push_with_size

 • fp_dist

 • rpt

 • fps_install

 • fp_endpoint (TMA)

The push method runs on the TMR server and is called the master method.
This master method will coordinate the entire distribution process and spawn
subsequent methods. The push method performs the following main steps:

1. Gets the file package and list of targets.

2. Runs the fp_val_operation validation policy.

3. Calls the fp_dist method on the source host.

Depending on the form you use to distribute a file package, the push method
can be:

fp_push If the file package is distributed from the File -> Distribute
option on the file package Properties or using the wdistfp
command.

default_push If the file package is distributed from the Profile Manager ->
Distribute on the profile manager window or by using drag
and drop.

fp_push_with_size

If the size of the package was calculated, and you distribute
it by using the command wdistfp -u to include the size in the
package information. This is the push method that is
spawned.

10.3.2 The Distribution Processes
When the fp_dist method is called on the source host with a list of targets
and data, it performs the following sequence:
Software Distribution 341

1. Calls the obj_route method on the repeater manager to determine how the
file package will be routed to each target.

2. Bundles the contents of the file package into a data stream.

3. If the source host is a repeater, it distributes the data stream to all targets
within its range, calling the fps_install method on each. If the target is a
managed node, fps_install is called through the oserv. If the target is a
PC managed node, the fps_install is initiated through the PC managed
node’s home host.

4. If a repeater, which has a target of the distribution in its range, is included
in the source host’s range, the source host calls the rpt method on the
repeater and passes the data stream and list of targets to it.

5. If the source host is not a repeater, it calls the rpt method on the source
host’s repeater and passes the data stream and list of targets.

Each repeater then:

1. Distributes the data stream to all targets in its range, calling the
fps_install method on each (either directly through the oserv or the home
host if the target is a PC managed node).

2. If a repeater, which has a target of the distribution in its range, is included
in the repeater’s range, it then calls the rpt method on the
(sub)repeater(s) and passes the data stream and list of targets to it.

3. When the fps_install method finishes, it returns its completion status,
such as whether the operation succeed or failed, to the fp_dist or rpt
method (the method that called it). The fp_dist method does not complete
until all the fps_install and rpt methods that it called have returned.

If the Always flag is not set as an argument for the repeater, the source host
will establish a point-to-point communication to the target. This is usually
the case if there is only one target in the distribution list.

To see the repeater settings, enter the command: wrpt. In this example,
itso3 does not have the Always flag set, rh2900a and rh2900c have the Always
flag set.

wrpt
itso3 [1] wd- []
rh2900a [1] wda []
rh2900c [4] -da []

Note
342 Tivoli Enterprise Internals and Problem Determination

4. Correspondingly, it returns its results to the push method used. The push
method completes after the fp_dist method completes. As the push
method returns, it writes the information to any specified log file and Tivoli
Notice Board.

The following figure gives an overview of the Software Distribution method:

Figure 71. Software Distribution Method Overview

When you distribute a file package to a TMA endpoint, the method interaction
is slightly different.

The rpt method now contacts the gateway cache for the existence of the
fps_install method and checks the TMA endpoint for the existence of the
appropriate executable - fp_endpoint:

1. Contacts the gateway cache for the existence of the fps_install method.

2. Checks the TMA endpoint for the fp_endpoint executable. If the
fp_endpoint executable is not present in the cache on the endpoint, the
gateway will initiate a downcall and load the fp_endpoint executable into
the cache.

The redbook New Features in Tivoli Software Distribution 3.6, SG24-2045
has more information on Software Distribution 3.6 internals.

fps_install on the targets

rpt on the repeater

fp_dist on the
source host

fp_push on the TMR server
Software Distribution 343

10.4 Repeaters and Networks

As we have seen, Software Distribution can rely on repeaters. It will use the
Mdist and BDT/IOM Framework Services. Refer to section 7.6, “Multiplexed
Distribution and Bulk Data Transfer” on page 259 for a more detailed
description of these services.

The MDist feature can be configured by using the wrpt command. Several
options to be used when setting up Software Distribution include:

wrpt -L - Displays active distribution as follows:

The first item is the Software Distribution identifier (ID), the second is the
name of the process followed by the start date and time and the last numbers
are the statistics in the format: in/est_size [out_min-out_max].

wrpt -q src targets - Displays the distribution route.

The example in Figure 146 shows the route a software distribution would take
from the source host itso3 to the final TMA endpoint pctmp112.

Figure 146. Sample of Distribution Route

See also 7.6.2, “Repeaters” on page 260 for more information on repeater
configuration.

wrpt -t - Tunes the repeater.

There are several tuning parameter associated with Software Distribution,
and the recommendations in this chapter should be treated as a general rule
of thumb. In general, the default repeater settings are not typically adequate
for most environments and will need some tuning.

wrpt -L
 1 fp_distribute Nov 10 17:10:14 112/0 [0-0]
#

The following

[root@itso3]> wrpt -q itso3 pctmp112
--[RPT:itso3 [1]]
 |--[RPT:rh2900a [1]]
 | |--[RPT:rh2900a [1]]
 | | |--pctmp112 [29]
 | |

 |
344 Tivoli Enterprise Internals and Problem Determination

mem_max The amount of memory where the data is initially spooled to
on the repeater. Since a hard drive is not slower than a LAN
or WAN link, this value can be small and the data can be
spooled to disk. A good size is 10 MB (mem_max=10000).

disk_max The amount of disk space to be used for spooling data once
mem_max is full. disk_max needs to be at least 10 to 20 percent
larger than your largest distribution.

disk_hiwat This parameter is the high water mark for the disk. When the
repeater reaches this value, it tells the source host to slow
down sending data. This should be 10 to 20 percent less
than your largest distribution.

disk_dir This is the directory/file system that is used to spool data.
This file system free space MUST be larger than disk_max.

net_load KB per second used in a distribution. This is the amount of
network bandwidth that will be used. This should be tuned
for individual WAN/LAN links. Because this parameter is
present, you should try to have a repeater at a central site
for each WAN type. This will enable you to tune the repeater
for each link (T1, 56k, and so on).

max_conn This is the number of machines a repeater will distribute to
simultaneously. Each connection will use approximately 1.5
MB of memory when counting requirements for spawning
new processes. Keep this parameter low, around 25, unless
you have plenty of memory.

stat_intv This specifies a timeout value for connections between a
repeater and its managed nodes or PC managed nodes.
The duration of the connection includes the time it takes to
distribute each data packet to the target system. This

Tivoli Software Distribution 3.6 corrects some errors that were previously
related to using the disk_dir parameter. Previously, on UNIX systems the
filesystem used for disk_dir needed to have other write permissions. Tivoli
now writes the temporary files as root. Also, if you incorrectly specify the
disk_dir directory (maybe it does not exist), Software Distribution will use
the directory/file system that is returned from the wtemp command to use as
the disk_dir directory/filesystem. This could cause unexpected errors in
your environment if there is insufficient space or authorization for the
temporary file system.

Note
Software Distribution 345

parameter, working in conjunction with the net_load, is,
again, why you would want to have a repeater for each WAN
type.

Each of these parameters are global. If you have more than one distribution
going through the repeater at once, each value is used independently. For
example, if max_conn is set to 10, and you have two simultaneous distribution
using that repeater, there will be 20 connection, not 10 and 30 MB of memory
will be used, nor 15 MB.

The example in Figure 147 is setting the max_conn parameter from the default
value of 100 to a value of 25.

Figure 147. Example of Setting a Repeater Parameter

An additional parameter that is available on the repeater is the Repeater
Manager timeout parameter. This parameter controls the amount of time each
repeater node will wait for distribution status after sending the entire data
stream to a target endpoint. If you use this parameter, you will need to test
the timing on the slowest machine available. This is also a TMR server level
parameter - that is, it is set at the TMR level and will affect all repeaters in
that TMR. This parameter cannot be changed during a distribution. By
default, this value is set to 0, meaning wait indefinitely. To view the existing
value, use wrpt -T. To set this value, use wrpt -T [seconds].

[root@itso3]> wrpt -t rh2900c
mem_max = 50
disk_max = 50000
disk_hiwat = 50000
disk_time = 1
disk_dir = "d:\tmp"
net_load = 500
max_conn = 100
stat_intv = 2

[root@itso3]> wrpt -t rh2900c max_conn=25

[root@itso3]> wrpt -t rh2900c
mem_max = 50
disk_max = 50000
disk_hiwat = 50000
disk_time = 1
disk_dir = "d:\tmp"
net_load = 500
max_conn = 25
stat_intv = 2
346 Tivoli Enterprise Internals and Problem Determination

The last option for wrpt of particular interest is wrpt -A -k id -.

This aborts an active distribution. You must enter the ID of the distribution
that you obtained with wrpt -I.

10.4.1 Initiating BDT/IOM
See Section 7.6.3, “Bulk Data Transfer and Inter-Object Messaging” on page
271 for a description of BDT and IOM.

When the target is a managed node, the source machine determines the size
of the file package. If is larger than 16 KB (configurable from Framework 3.2
onward), the source machine allocates the next available port number and
opens it to listen for a file package request from the target machine. The
source machine then passes a dkey to the target. The dkey comprises the IP
address of the source host or repeater from which the file package will be
distributed and the allocated port number. The managed node connects to the
IOM channel specified by the IP address and port number from the dkey.
Once the source host or repeater detects that the node is connected to the
IOM channel, it sends the file package data stream to it. The managed node
reads and processes the data stream.

When the target is a PC managed node, the same determination and port
selection is made. The source machine then passes a dkey to the managed
node with which the PC managed node is associated (PC managed node’s
home host). The managed node then passes the dkey to its PC managed
node over port 6543. Specifically, the dkey is passed to the PC agent on the
PC managed node. The agent on the PC managed node connects to the IOM
channel specified by the IP address and port number from the dkey. Once the
source host or repeater detects that the PC agent is connected to the IOM
channel, it sends the file package data stream to the agent. The agent reads
and processes the data stream.

When the target is a TMA endpoint, again the same determination and port
selection is made. The source host passes the dkey to the gateway that is
associated with the target endpoint. The gateway will then connect to the
source or repeater IOM channel specified by the IP address and port number

Remember that you can also tune most repeater parameters during the
active distribution:

wrpt -k id -t repeater_name parameter=new_value

Note
Software Distribution 347

from the dkey. Simultaneously, the gateway contacts the endpoint to initiate
the fps_install method.

When the source host or repeater finishes sending the file package data
stream, it closes its IOM connection. Similarly, when the managed node, PC
agent, or TMA endpoint finishes processing the file package data stream, it
closes its connection and returns completion status.

For more information see the Tivoli Software Distribution Reference Manual.

10.5 Setting Timeout Values for a Distribution

Tivoli Software Distribution provides server and client level time-out
parameters. These parameters enable you to set a time interval, that once
reached, either the server or client will interrupt a distribution.

Setting these time-outs will help you to avoid situations caused by hung
distributions. Examples of these are:

 • BARC scripts that are looping or hanging. These include any scripts that
could require the user to take action, such as closing a pop-up status
window.

 • Down nodes, including systems that are in the process of rebooting, are
off-line or completely disconnected from the Network.

 • Communications problems, such as breaks in the communications
channel during distribution.

You need to set each of the distribution time-out parameters before
distributing a Software Distribution Profile. The parameters are:

 • Configuration script time-out

 • Repeater Manager time-out

 • High level TCP time-out

 • Gateway session time-out

These parameters are described in the remainder of section 10.5. For further
information, refer to the Tivoli Software Distribution User’s Guide.

10.5.1 Configuration Script Timeout
Configuration scripts are the Before, After, Remove, and Configuration
(BARC) scripts. Set the progs_timeout keyword in the file package definition to
specify a timeout value for each BARC script running on the client. This value
348 Tivoli Enterprise Internals and Problem Determination

should be customized for each file package. You should set the progs_timeout
by running each BARC script in a file package separately on the slowest type
of processor that will receive this file package. Take the longest time and set
the progs_timeout to twice that time. You will only be able to change this
setting by using the wsetfpopts command or by exporting the file package,
changing the value, and re-importing it.

For example, you have a file package that has a before script that checks
disk space, checks for the presence of several DLLs at the correct level, and
checks for a pre-requisite software package to have been installed. You have
an after script that moves files/DLLs from a staging area (and any files/DLLs
that it may be replacing, those files/DLLs are moved to a replacement hold
area), adds registry entries and icons to the desktop. You have a remove
script that moves files/DLLs from a temporary replacement hold area, deletes
any files/DLLs that were new, deletes the registry entries, and removes the
icons from the desktop. On a 486 processor machine, you run each of these
scripts individually and receive the following times:

Before script: 10 seconds

After script: 135 seconds

Removal script: 100 seconds

The value used for the progs_timeout should be 135 * 2 or 270 seconds. So,
the entry in the exported file package should read:

progs_timeout=270

10.5.2 Repeater Manager Timeout
This timeout is a server-level timeout for all repeaters in a TMR. This value is
stored on the repeater manager. This parameter specifies how long each
repeater node will wait for distribution status after sending the entire data
stream to a target managed node or PC managed node. If the target does not
respond in the allotted time, the repeater logs a distribution error and
terminates the connection. This timer only starts after the file package is
distributed to the target system. Therefore, packet-transfer time and before
script times are not included in this timeout value.

10.5.3 High-Level TCP Timeout
This is the stat_intv parameter available on the repeater configuration. This
value sets a time after which a blocked connection between the repeater and
the client system is terminated. If the repeater stops transmitting data to the
client for an interval that exceeds the stat_intv setting, the session is
Software Distribution 349

terminated. This value should be set to a value greater than the time it will
take to run the longest configuration script on the target.

10.5.4 Gateway Session Timeout
This specifies a timeout value for connections between a gateway and its
endpoints. This parameter provides the same functionality for the TMA
endpoint as the stat_intv parameter does for the managed node and PC
managed node. You configure this parameter by using the wgateway
command.

10.6 File Package Definition

When you create a file package, you can customize some of its properties
from the GUI. Other properties are only available by exporting the file
package or by using the wsetfpopts command. You can export the file
package definition using the GUI or by CLI:

wexprtfp [[-a] [-c] -f [managed_node:]filename] fp_name

The exported package can then be modified and imported again. There are a
lot of properties, but here is a short list of some of the most important:

#*TFP-v2.05 Tivoli Filepack (version v2.05)
backup_fmt=
list_path=
file_cksums=n
append_log=n
src_before_prog_path=
src_before_input_path=
src_before_as_uid=
src_after_prog_path=
src_after_input_path=
src_after_as_uid=
prog_env=
log_file_uid=
log_file_gid=
log_file_mode=
progs_timeout=0

Table 13 provides a description of these properties:

Table 13. File Package Properties

Keyword Description

backup_fmt Specifies a format used to make a backup of files that
exist at the target.
350 Tivoli Enterprise Internals and Problem Determination

list_path Specifies the directory on the target in which to write the
log file containing a list of all files and directories
distributed to or removed from the target. The log file is
fpname.log.

file_cksums Indicates whether to use checksums on the individual
files in the file package to detect differences between the
source file and the target file rather than just modified
time, ownership, group membership, and file mode. This
is only relevant when any_changes are indicated for
distribute.

append_log Specifies whether to append a notice to the log file when
file package distribution, commit, or removal operations
are performed.

src_before_prog_path Specifies programs to be run on the source host after the
file package is distributed to the targets.

src_before_input_path Specifies files to be passed through standard input to the
programs specified by the src_before_prog_path.

src_before_as_uid Specifies the UID of the user under which to run
src_before_prog_path.

src_after_prog_path Specifies programs to be run on the source host after the
file package is distributed to the targets.

src_after_input_path Specifies files to be passed through standard input to the
programs specified by the src_after_prog_path.

src_after_as_uid Specifies the UID of the user under which to run
src_after_prog_path.

prog_env Specifies a string which will be the subject of a putenv
before any configuration program is run in a UNIX
machine. The string is a list of name=value.

log_file_uid Specifies the UID of the log file specified by the log_file
keyword.

log_file_gid Specifies the GID of the log file specified by the log_file
keyword.

log_file_mode Specifies the file mode of the log file specified by the
log_file keyword.

unix_on_error_prog_path Specifies a program to be run on a UNIX target if an error
stops the distribution of a file package.

Keyword Description
Software Distribution 351

Further details of these parameters can be found in the Tivoli Software
Distribution Reference Manual.

10.6.1 File Package Policies
Refer to the Tivoli Software Distribution Reference Manual for details of the
numerous default and validation policies. Default and validation policies
provide enforced guidelines for file package and AutoPack properties and
operations. AutoPack policies start with ap_, and file package policies begin
fp_.

10.7 Troubleshooting Software Distribution

Problems with Software Distribution are usually caused by:

 • Configuration errors

 • Network problems

 • Target problems

Software Distribution provides a number of sources of information about
errors:

Log file A detailed list of the success or failure of the
distribution for each target. Generally, you should
enable this option for every file package. The log file
has more information than the associated Software
Distribution notice group posting or e-mail options.

progs_timeout Sets the client-level timeout value for all configuration
programs (BARC) specified in the file package definition.
This timeout value will apply to each configuration script
and is reset as each script begins on an individual target.

Keyword Description

You can create a master file package with all the properties you wish to
configure. Every time you then create a new package, select the files you
wish to distribute, save the changes, and clone the package with a new
name. By doing this, you will not have to export the definition, set the
properties, and import it again.

File Package Tip
352 Tivoli Enterprise Internals and Problem Determination

Distribution preview This dialog can be used but is not always reliable.

Definition file The file package definition file is a text file describing
the settings of all of the file package options
obtained by exporting a file package.

wgetfpattr Gets the attributes for a file package.

wrpt Gets/sets repeater information.

10.7.1 Troubleshooting Checklist
If the results are not as expected, the following checklist should help identify
possible causes:

1. The first step in troubleshooting is to examine the log file associated with
the distribution. Generally, the Send to log file on option should be
enabled when performing a distribution because it contains more
information than either the e-mail option or the post a notice option.

2. The file package definition associated with the file package should also be
examined. Export the file package from the GUI or use the wexprtfp
command. Options to check include:

 • preproc/postproc

Check the filters defined here. The data runs through these just before
it leaves the source and just after arriving at the target.

 • stop_on_error

Specifies whether to fail a distribution to a target when any error is
encountered.

 • backup_fmt

Specifies both whether and where backups are for overwritten files.

 • list_path

Where the list of files distributed was written.

 • prog_env

The environment used by the configuration programs on the target.

 • log_file

The name of the log file written.

 • log_host

The host location of the log file.
Software Distribution 353

3. Check the file list section of the file package definition. Ensure that shell
commands are properly written and that modifiers for directories and file
names are relevant. Also check the exclude files section to make sure that
the files excluded are relevant.

4. Check to make sure that you can execute the configuration scripts (BARC)
on a target machine without failures. You may want to manually transfer
files to a machine and manually run the scripts and check for failures.

5. Disable the configuration scripts and re-enable them one at a time until a
failure occurs. Check them for the following:

File locations Are the programs where Software Distribution expects
to find them? Remember, the configuration programs
must be on either the source host or the target. Are the
proper input files present?

Program validity Are the programs properly written? Will they run on the
target operating system(s)? If the target is a UNIX
system, is the UID option set properly?

Source host Check the before and after programs.

6. Check the methods. Look for fps_install in an odstat output (see Chapter
6, “Commands and Logs for Troubleshooting” on page 131). There should
be one for each target if the target is a PC managed node. For TMA
endpoints, you will need to place the gateway(s) into debug level 6 to see
the upcall, downcall, and repeater information.

7. Monitor the network and watch for packet movement. The net_load could
be set so low that it appears to be hung.

8. Create a test file package scenario using the GUI, the CLI and the original
file package definition. If the file package is large (over 16 KB), create a
file package smaller than 16 KB. Distribute and check the results of each
of these. Do you get the same problems (and vice versa)?

9. Interregion failures usually occur because the source or destination
cannot ping the other TMR server. Create the file package in the same
TMR as the targets receiving them. Can the file packets be successfully
distributed now?

10.Make the managed node that is the host for a PC managed node target a
repeater.

11.Make sure all gateways are repeaters.

You can experiment with different sized file packages and the use of scripts to
try to identify under which circumstances problems occur:
354 Tivoli Enterprise Internals and Problem Determination

1. Send a file package less than 10 KB without any scripts.

2. Send a file package around 500 KB without any scripts.

3. Send another 10 KB package with scripts.

4. Send another 500 KB package with scripts.

10.7.1.1 Lost-n-found
Lost-n-found can also be a useful source of information. Since Version 2.02,
Tivoli Software Distribution has registered callbacks for wchkdb to check for
these file packages. The three file-related issues that are checked are:

 • Does a file package have a source host that no longer exists?
 • Does a file package have a log host that no longer exists?
 • Does a file package have a nested file package that has been deleted (or

whose parent has been deleted)?

If any of these cases apply, wchkdb moves the file package to /lost-n-found.
Run the command wls /lost-n-found to check for these file packages. The
wmvfpobj command can be used to move a file package back to a profile
manager.

10.7.2 PC Managed Node Troubleshooting Specifics
To be a target for a distribution, a PC managed node must be running on the
Network with the Tivoli PC agent. You should check that the PC managed
node is valid. Some platform types can fail because there are not enough
resources allocated. For example, there may not be enough sockets or
enough memory for buffering (the PC agent requires at least 10 sockets).
This is a problem specific to the transport stack in use.

When performing distributions to PC managed nodes, remember:

 • Every line of a DOS/Windows configuration program script must have a
new-line character at the end. UNIX systems do not automatically add a
new-line character to end of each line of a file. You can add the character
in vi by typing control-V (^V) and then control-M (^M).

 • _default.pif must be set to the background.

 • Tivoli log files are written to the /tmp (environment variable) directory.

 • The Windows NT service agent writes to the event log. The Windows NT
console agent writes to its own DOS window.

When working with the tmeagent.cfg file, refer to the Tivoli Framework
Planning and Installation Guide.
Software Distribution 355

10.8 Software Distribution and Other Log Files

There are many log files to review if problems occur with Software
Distribution, some provided by Software Distribution and some provided by
other components that are utilized by Software Distribution. These files are
the subject of this section.

10.8.1 Software Distribution Log
From 3.6, the format for the software distribution logs has changed. These
format changes now include the size of the distribution and information
concerning nested file packages. In Figure 159 on page 370, we distributed a
nested file package. You can now see the success/failure of each nested file
package within a file package. The nest level information will be contained in
the Software Distribution log even if no nested file packages are present. The
nest will be 0 in this instance:

Figure 148. Sample of New Software Distribution Log Format

Size will always be -1 (to Tivoli Software Distribution - this is analogous to I
don’t know) UNLESS you do the following: On the file package you click the
right mouse button and instruct Tivoli to calculate the size of the file package.
After this is complete, you must use the command line to distribute the file
package. The command to use to do this is wdistfp with the -u option.
However, this will cause a Software Distribution progress bar to be displayed
on the endpoint (TMA or PC Agent).

The designated Software Distribution log file has a brief description of any
problem in the distribution. The error messages listed in Table 14 on page
357 and their causes are not meant to be all-inclusive, but to capture some of

File Package: "test1reg"
Operation: install (m=5)
Finished: Thu Dec 10 16:02:16 1998

Source messages:
<none>

pctmp109:SUCCESS
size=-1, nest_level=0
size=-1, nest_level=1

pctmp112:SUCCESS
size=-1, nest_level=0

size=-1, nest_level=1
================
356 Tivoli Enterprise Internals and Problem Determination

the errors, we were able to simulate. Some of the error messages you might
encounter are:

Table 14. Software Distribution Log File Error Messages

Error message from error log Reasons for error and possible corrective actions

Cannot create tmp file
(C:\Tivoli\db\rh2900a.db\tmp\pma
p24). errno=Permission denied

You do not have the correct permissions for the directory in a
repeater setting. To correct, use the wrpt -q command to trace
the route from the source host to the endpoint. Locate the
suspect repeater. Use the wrpt -t repeater_name command
to find the setting for the disk_dir parameter. Check the
permissions on that folder or file or file system. You must have
world write permission or you will get this error message. Note:
You should only see this error message if you are using NT
repeaters. If you are using UNIX repeaters, the writes to the
disk_dir directory now occur as root (before 3.6 user ID was
nobody). This error can occur with either the TMA endpoint or
PC managed node agent.

recv_session: timeout (300 seconds)
waiting to receive from
146.84.32.212+9494

There was no communication from the gateway to the TMA
endpoint for 300 seconds. If the BARC scripts are taking longer
than this time, or if there are network issues, increase the value
of this parameter by using:
wgateway gatewayname set_session_timeout
numberofsecs.
This error message also occurs if the lcfd terminates during a
distribution, or if the endpoint process is not running prior to the
start of the distribution.

decrypt_data: HMAC does not match
encrypted data

As each TMA endpoint is created, a special encryption key is
also created and known to the endpoint and the TMR. If you
attempt to distribute anything to an endpoint, and these keys do
not match, you will receive this error. To correct, use the http
interface and check the gateway that the endpoint is bound to.
This interface will also show the correct Tivoli endpoint name.
See also 6.3.6, “HMAC Encrypted Data Error” on page 161.

Unable to resolve method
fps_install starting from object
1351550138.1.508

The gateway component of Software Distribution was installed
on the gateway; however, the server component was not
installed on the object 1351550138.1.508. To find the TMR, use
wlookup -ar ManagedNode | grep ‘1351550138.1’ . The
appropriate managed node should be returned. Use the Tivoli
command wlsinst -ha to verify Software Distribution is not
installed on the server. Install Software Distribution and resubmit
distribution. This error will occur with the TMA endpoint.

ipc_create_remote failed: unable to
connect to 146.84.32.208+9494: (67)
IPC shutdown

The target machine was turned off for either the TMA endpoint
or PC managed node Agent. Use ping to check to see if the
endpoint is available. Turn the endpoint back on.
Software Distribution 357

iom_timed_send failed with code 67:
communication failure

TMA endpoint was powered down in the middle of a distribution.
Communication was lost. Turn the endpoint back on and
redistribute. Also saw this error when there was not enough disk
space on the target machine for a TMA endpoint.

Input thread abort This error occurs when the TMR or repeater runs out of virtual
memory. This error will occur with either the TMA endpoint or PC
managed node agent.

Fri Dec 11 08:59:31 CST 1998 (17):
system problem: Write Failed. File
(/tmp/pmapQdHjMr). errno=No space
left on device
1998892590.1.1320#TMF_Gateway::
Gateway#’

There was not enough physical disk space available on the
repeater. Clean up the file system or drive, or use the wrpt -t
repeater disk_dir=newplace to use a different file
system/disk. This error will occur with either the TMA endpoint
or PC managed node agent.

Write: c:/temp/smit.script: No
space left on device

This error occurred when there was not enough disk space
available on the PC managed node. This is a different error
message than was received for disk space on a TMA endpoint.

An internal error occurred: destination
dispatcher unavailable

An oserv process was unavailable along the route of the
endpoint, TMA, or PC managed node. To see the route, use the
wrpt -q command. Also, correlate all endpoint errors of this
type and try to narrow the search for which TMR or repeater
could be causing the problem. Also, verify the availability of all
TMRs/repeaters with the wping command. This error will occur
with either the TMA endpoint or PC managed node agent.

Could not create process: No such file
or directory

A configuration script was not found. This script was either not
in the specified place on the source host or on the endpoint. If
you are using the PC managed node w commands (wdskspc or
wseterr) on a TMA endpoint, you will need to use the wdepset
commands to allow these commands to be downcalled to the
TMA endpoint. See 10.9, “Using the PC Agent w Commands on
a TMA Endpoint” on page 370 for instructions on how to do this.

Process did not complete in the
specified timeout

The configuration script did not complete in the amount of time
specified in the progs_timeout parameter in the file package for
a TMA endpoint. If this is happening on a majority of endpoints,
you will need to increase the progs_timeout amount.

c:/keeptkng.bat script timed out. The configuration script did not complete in the amount of time
specified in the progs_timeout parameter in the file package for
a PC managed node agent. If this is happening on a majority of
endpoints, you will need to increase the progs_timeout
amount.

Error message from error log Reasons for error and possible corrective actions
358 Tivoli Enterprise Internals and Problem Determination

Script stderr: [The name specified is
not recognized as an internal or
external command, operable program
or batch file.]

On the TMA endpoint, the end user terminated the configuration
program.

iom_timed_send’ failed with code ‘38’:
‘ OR code 67.

The PC managed node agent was down prior to the start of the
distribution. This PC managed node is using a Windows NT
repeater. Restart the agent. If this error is pervasive, contact
Tivoli support.

Attempt to connect to ‘w98’ failed with
errno 79.

The PC managed node agent was down prior to the start of the
distribution. This PC managed node is using a UNIX repeater.
Restart the agent. If this error is pervasive, contact Tivoli support

Attempt to connect to ‘w98’ failed with
errno 78

The PC managed node was down prior to the start of the
distribution. This PC managed node is using a UNIX repeater.
Turn the PC on.

Script stderr: [The system cannot
execute the specified program.]

The ID does not have permission to execute the program
specified in the BARC script or the script itself could not be
found. Check permissions on the directory/folder and on the
program itself. This error message occurs for TMA endpoints.

’c:/keeptkng.bat’ couldn’t start script The before script did not have the appropriate permissions or
the script could not be found. If you are running the script from
the target, make sure the script exists. If the script exits, check
the permissions on the folder/directory and script. This error
message occurs for PC managed node Agents.

An internal error occurred: IPC
shutdown

This error was received when a gateway was restarted in the
middle of a distribution. There could be other causes for this
error.

Timeout (300 seconds) waiting to
receive from 146.84.32.208+9494

The TMA endpoint did not respond to the gateway. In actuality,
the agent was shutdown in the middle of a distribution. This error
message can also be received if there is heavy Network traffic
between the gateway and the TMA endpoint.

Requested resource not found A specified dependency set was removed from a method. This
error occurs on a TMA endpoint.

Resource
‘c:/Tivoli/bin/lcf_bundle//bin/w
32-ix86/agentcli/wdskspc.exe’ not
found

If you specified a dependency set, check the dependency set
location on the gateway. The downcall is unable to locate the
dependency set. This error occurs on a TMA endpoint.

Error message from error log Reasons for error and possible corrective actions
Software Distribution 359

10.8.2 Tivoli PC Agent Tracing and Other Log Files
When you are using the PC Agent with Software Distribution 3.6 or later, you
can use the following to trace the methods and processes you will see
running on the various TMRs and repeaters participating in the distribution.

10.8.2.1 odstat Trace for a PC Agent Distribution
This example demonstrates a distribution from a TMR (also acting as the
source host) to a PC managed node through a repeater (also acting as the
PC Home Host). In Figure 149 on page 361, there is an abbreviated sample
of the odstat command output.

Refer to 6.1, “The odstat Command” on page 132 for a description of the
odstat output. The pieces we are especially interested in are the thread ID
(the first number, the parent thread ID, prefixed with a dispatcher number as
in 1-14819 and the method name, last on the line). The lines in Figure 149 on
page 361 picked out with bold numbers are explained in the text following the
figure.
360 Tivoli Enterprise Internals and Problem Determination

Figure 149. Sample odstat - TMR Server and Source Host for a PC Managed Node

odstat -v

1 14819 O+hdoq1-14311 done 18 0 09:31:34 1295714281.1.1099#FilePac
kage::FpoCore# fp_push
 service: "202 attr ’push_time’ dat:..6u0.:" err=0 pid=78134
 14820 O+ 1-14819 done 47 0 09:31:34 0.0.0 get_host_location
 service: "" err=0 pid=0
 14821 O+ 1-14819 done 57 0 09:31:34 1295714281.1.1095#TMF_CCMS
::ProfileManager# get_policy_region
 service: "" err=0 pid=0
 14822 O+ 1-14819 done 15 0 09:31:34 0.0.0 get_name_registry
 service: "" err=0 pid=0
 14823 O+hdoq1-14819 done 109 0 09:31:34 1295714281.1.26 lookup
 service: "" err=0 pid=31012
 14824 O+hdq1-14819 done 59 0 09:31:35 1295714281.1.14#TMF_SysAdm
in::Library# lookup_object
 service: "201 attr ’members’ dat:" err=0 pid=76416
14825 O+hdq1-14819 done 9 0 09:31:35 1295714281.1.1069#TMF_Poli
cyRegion::GUI# is_validation_enabled
 service: "201 attr ’classes’ dat:" err=0 pid=11574
*14826 O+hdoq1-14819 done 613 0 09:31:35 e=12 1295714281.1.26 lookup
 service: "" err=0 pid=31012
 14827 O+hdoq1-14819 done 105 0 09:31:35 1295714281.1.26 local_loo
kup
 service: "" err=0 pid=31012
*14828 O+hdoq1-14819 done 324 0 09:31:35 e=12 1295714281.1.1006#Tec::Se
rver# connect_agent
 service: "" err=0 pid=18582
2 14829 O+ho 1-14819 done 24 0 09:31:35 1295714281.1.348#TMF_Manag
edNode::Managed_Node# fp_dist
.
3 14832 O+hdoq1-14829 done 12 0 09:31:35 1295714281.1.366 _get_fin
al_timeout
 service: "201 attr ’final_timeout’ dat:" err=0 pid=9648
 14833 O+hdoq1-14829 done 95 0 09:31:36 1295714281.1.26 lookup
 service: "" err=0 pid=31012
4 14834 O+hdoq1-14829 done 292 0 09:31:36 1295714281.1.366 obj_rout
e
.
14843 O+hdoq1-14829 done 7580 0 09:33:08 1295714281.1.1100#FilePac
kage::FpoCore# get_fp_data
 service: "201 attr ’description’ dat:" err=0 pid=79154
5 14844 O a 1-14829 done 162 0 09:33:10 1998892590.1.1320 rpt
14845 O+aho1-14829 done 30 0 09:33:17 1295714281.1.348#TMF_Manag
edNode::Managed_Node# fp_operation
 service: "" err=0 pid=15044
.
6 14851 O+hdoq1-14829 done 6 0 09:37:59 1295714281.1.348#TMF_Mana
gedNode::Managed_Node# privileged_write_to_file
 service: "" err=0 pid=15048
 14852 M 2-12177 done 0 0 09:37:59 1295714281.1.348#TMF_Manag
edNode::Managed_Node# echo
service: "" err=0 pid=0
7 14853 O+hdoq1-14829 done 6 0 09:38:01 1295714281.1.348#TMF_Mana
gedNode::Managed_Node# privileged_set_file
 service: "" err=0 pid=15048
Software Distribution 361

Figure 150. Sample odstat and ps - Repeater for PC Agent

The PC Agent distribution outlined in the above figures show the odstat
output from the TMR/Source Host to the Repeater/PC Home Host. The
following describes the odstat information in Figure 149 and Figure 150:

1. Line 1 shows the fp_push method on the TMR that is initiating the Software
Distribution. This method is the parent of all the other distributions.The
thread ID is 14819.

2. Line 2 shows the next major method, fp_dist. The thread ID is 14829 and
its parent thread ID is 14819:

14829 O+ho 1-14819 done 24 0 09:31:35
1295714281.1.348#TMF_ManagedNode::Managed_Node# fp_dist

3. The third method we are interested in seeing is the _get_final_timeout.

4. The fourth method is the obj_route method. This is the child thread of the
fp_dist method thread.

5. The fifth method is the repeater method. You will have a repeater method
on the source host for each repeater participating in a distribution. This
method will become the parent for the repeater method on the managed
node whose OID begins with 1998892590.1. The thread ID of 14844 will be
seen in the odstat of 1998892590.1.7 (use odadmin odlist to find the OID of
the managed node - or wlookup -ar ManagedNode | grep ‘1998892590.1’) as
a parent thread of 1-14844 .

6. At this point, you will want to do a wlookup -ar ManagedNode | grep

‘1998892590.1’ to discover the repeater is itso2 . To look at the odstat on
the other managed node, use the odstat command with the -o OID option.
From the output in Figure 150 on page 362, on line 8 you can see the rpt
method for this distribution. The thread ID is 13174 and the parent thread
ID is 1-14844 . This is the thread ID from line 5.

odstat -o 1998892590.1.7-cv

8 13174 M hdoqs 1-14844 run 0 0 09:34:57 1998892590.1.1320 rpt
 service: "" err=0 pid=29030
 13178 O+ahdoqs1-13174 run 0 0 09:34:59 1998892590.1.1320 rpt
service: "" err=0 pid=29030
9 13182 O+ahdoq 1-13178 run 0 0 09:34:59 1998892590.1.1230#TMF_Pc
ManagedNode::Pc_Managed_Node# fps_install
 service: "" err=0 pid=47932

ps -ef | grep skel (run this on the repeater)
root 15214 49512 1 09:35:14 pts/0 0:00 grep skel
 root 47932 28164 0 09:34:59 - 0:00 pc_mannode_skel1
362 Tivoli Enterprise Internals and Problem Determination

7. The rpt method on the repeater will then invoke another repeater method,
which in turn, will invoke an fps_install method for each endpoint the
repeater will distribute to. You will also see a pc_mannode_skel1 process on
the repeater for each fps_install method running. The number of each of
these methods/processes that will run simultaneously is dependent on the
max_conn setting in the repeater.

8. After all fps_install methods are complete from all repeaters participating
in the distribution, control is returned to the calling parent, the fp_dist
method. After that, this method calls the methods to write to the log files,
as in lines 6 and 7.

9. Finally, the distribution is complete, and any notices are written to the
notice groups, and any pop-ups occur on the appropriate desktop.

10.8.2.2 Additional Sources of Information for the PC Agent
On NT endpoints, you should see a connection event, receive event, and
disconnect event in the application event log with the source of TME Agent.
These events will remain in the event view log until deleted. Examples are
shown in Figure 151 on page 364.

You can determine the endpoint of a distribution from the OID on the
fps_install method. To do so use:

idlattr -t -g 1998892590.1.1230 label string

An example of a response might be:

"rh2900c"

Note
Software Distribution 363

Figure 151. Event Viewer Events from the Software Distribution

On Windows 95 endpoints, there is a tivoli.log file that will include similar
information. This file is located in the %SYSTEMROOT% directory. You can use the
wgetfile command to retrieve these logs. When the Windows 95 Agent is
restarted, this file is recreated; so, you need to retrieve this file as soon as
possible after a distribution error.
364 Tivoli Enterprise Internals and Problem Determination

Figure 152 is an example of the tivoli.log file:

Figure 152. Example of a tivoli.log File from a W95 Machine

Three commands that can be useful on endpoints with PC Agents are:

wdir HostName DirPath - remotely lists a directory.

wgetfile HostName RemoteFile LocalFile - retrieves a file from HostName.

wputfile HostName RemoteFile LocalFile - puts a file on HostName.

Note

wgetfile machinename c:/windows/temp/tivoli.log /tmp/w98tivoli.log

12/15/98 11:51:03 : TME Windows 95 Agent, Version 5.000
12/15/98 11:51:03 : Release: 5.000 Build 01
12/15/98 11:51:03 : initializing
12/15/98 11:51:03 : REQUEST-WINSOCK V2.0:
12/15/98 11:51:03 : WINSOCK V1.1:
12/15/98 11:51:03 : temp: ’C:\WINDOWS\TEMP’
12/15/98 11:51:03 : msgcat: ’c:\etc’
12/15/98 11:51:03 : Listening on Port: 6543
12/15/98 11:51:03 : Hostname: rh2900m.dev.tivoli.com
12/15/98 11:51:03 : IP Address: 146.84.32.180
12/15/98 11:51:03 : statistics:
12/15/98 11:51:03 : Request Packet Size: 820
12/15/98 11:51:03 : Data Packet Header Size: 20
12/15/98 11:51:03 : Service Port: 6543
12/15/98 11:51:04 : Setting CLIENTNAME to:
12/15/98 11:51:04 : w98pc
12/15/98 11:51:26 : connection from itso3
12/15/98 11:51:26 : PEERINFO
12/15/98 11:51:26 : hostname: rh2900m
12/15/98 11:51:26 : hosttype: 0x1000
12/15/98 11:52:06 : *** Windows 95 Properties ***
12/15/98 11:52:06 : Version Major: 3
12/15/98 11:52:06 : Version Minor: 95
12/15/98 11:52:06 : Coprocessor Installed: TRUE
12/15/98 11:52:06 : Serial Ports : 1
12/15/98 11:52:06 : Floppy Drives : 1
12/15/98 11:52:06 : Physical Memory (Total): 74997760
12/15/98 11:52:06 : (Avail): 47869952
12/15/98 11:52:06 : Virtual Memory (Total): 74997760
12/15/98 11:52:06 : (Avail): 47869952
12/15/98 11:52:06 : PEERINFO , complete
12/15/98 11:52:06 : DISCONNECT itso3, complete
12/15/98 11:54:34 : connection from itso3
12/15/98 11:54:34 : RECEIVE ’courier file package’ from ’itso3’ (file package stream)
(file package install)
12/15/98 11:55:46 : RECEIVE ’test1reg’ from ’itso3’, complete
12/15/98 11:55:46 : elapsed time: 72 seconds
12/15/98 11:55:46 : DISCONNECT itso3, complete
Software Distribution 365

 • The line with the time stamp of 11:51:03 reflects information that is put into
the log file when the agent starts up.

 • The lines that have the time stamp of 11:52:06 show a request for a
wpcmngnode from itso3.

 • The line with the time stamp of 11:54:34 shows the connection with the
source host of itso3.

 • The lines with the time stamp of 11:55:46 shows the PC managed node
finished receiving the file package and elapse time information.

 • If there are other errors, they are usually captured in this file.

With the PC Agent version 5.001, both the Windows 95 and NT targets have
a file lstagt.bat in the c:\etc directory. This file contains the target directory
for the last distribution performed to the machine. This is shown in Figure
153:

Figure 153. Contents of lstagt.bat File

10.8.3 TMA Tracing and Other Log Files
When you are using the TMA endpoint from Software Distribution 3.6, the
following shows the methods and processes you will see running on the
various TMR, repeaters, and gateways participating in the distribution.

10.8.3.1 Odstat Trace for a TMA Distribution
This example demonstrates a distribution from a TMR (also acting as the
source host) to a TMA endpoint through a repeater (also acting as the
gateway).

On rh2900c the contents of the lststg.bat file is:

set LstAgt=c:\temp
366 Tivoli Enterprise Internals and Problem Determination

Figure 154. Odstat - TMR and Source Host

Figure 155. Odstat - Repeater/Gateway for the TMA Endpoint

There are several differences you will see here. The first is that the source
host no longer runs the obj_route method, but rather, does a simple lookup for
the gateway. The gateway then does some lookup information and starts the
repeater, but at this point, this is all we can see from the odstat output from
TMR/source host and gateway/repeater. For more detailed information about
which machines are participating in the software distribution, we will have to
put the gateway into debug level 6 for verbose upcall, downcall, and repeater
information. An example of setting the debug level is shown in Figure 156 on
page 368.

17739 O+hdoq1-17703 done 18 0 15:27:02 1295714281.1.1099#FilePac
kage::FpoCore# fp_push
 service: "202 attr ’push_time’ dat:..6u..:" err=0 pid=18308
 17754 O+ho 1-17739 done 24 0 15:27:03 1295714281.1.348#TMF_Manag
edNode::Managed_Node# fp_dist
 service: "" err=0 pid=79254
 17773 O a 1-17754 done 198 0 15:28:10 1351550138.1.585 rpt
17966 O+hdoq1-17754 done 957 0 15:31:16 1295714281.1.26 lookup
 service: "" err=0 pid=23374
 17967 O+hdoq1-17754 done 6 0 15:31:16 1295714281.1.348#TMF_Mana
gedNode::Managed_Node# privileged_write_to_file
 service: "" err=0 pid=81764
 17968 O+hdoq1-17754 done 6 0 15:31:16 1295714281.1.348#TMF_Mana
gedNode::Managed_Node# privileged_set_file
 service: "" err=0 pid=81764

45 M hdoqs1-17773 done 198 0 15:33:22 1351550138.1.585 rpt
 service: "" err=0 pid=0
 46 O+hdoq 1-45 done 95 0 15:33:22 1351550138.1.26 lookup
 service: "" err=0 pid=0
 47 O+hdoq 1-45 done 90 0 15:33:22 1351550138.1.365 rpt_regi
ster
 service: "201 attr ’tune_1351550138.1.585’ dat:" err=0 pid=45
 48 O+ 1-47 done 15 0 15:33:22 0.0.0 get_name_registry
 service: "" err=0 pid=0
.
.
55 O+ahdoqs 1-45 done 198 0 15:33:26 1351550138.1.585 rpt
 service: "" err=0 pid=0
 56 O+hdoq 1-55 done 95 0 15:33:26 1351550138.1.26 lookup
 service: "" err=0 pid=0
 57 O+hdoq 1-55 done 90 0 15:33:26 1351550138.1.365 rpt_regi
ster
 service: "201 attr ’tune_1351550138.1.585’ dat:" err=0 pid=0
 58 O+hdoq 1-55 done 12 0 15:33:27 1351550138.1.365 _get_fin
al_timeout
 service: "201 attr ’final_timeout’ dat:" err=0 pid=0
Software Distribution 367

Figure 156. Setting the Gateway Debug Level

From the gateway log located in $DBDIR, you can see additional information
concerning the upcalls, downcalls, and MDist parameters in use during the
software distribution. An example of this is in Figure 157 on page 369. The
lines beginning with bold numbers are explained in the text following the
figure.

bash$ wgateway rh2900a-gateway set_debug_level 0
bash$ wgateway rh2900a-gateway describe
Object : 1351550138.1.585#TMF_Gateway::Gateway#
Hostname : rh2900a
Port : 9494
Timeout : 300
bash$ wgateway rh2900a-gateway set_debug_level 6
bash$ wgateway rh2900a-gateway describe
Object : 1351550138.1.585#TMF_Gateway::Gateway#
Hostname : rh2900a
Port : 9494
Timeout : 300
Debug level : 6
bash$ wgateway rh2900a-gateway restart

If the debug level is 0, the wgateway describe command will not show a
debug level.

You must restart the gateway if you change the debug level.

Note
368 Tivoli Enterprise Internals and Problem Determination

Figure 157. Gatelog Sample with Debug Level 6

 • Line 1 in Figure 157 shows the fps_install method being invoked. The
distribution ID = 1, corresponds to the information you will receive if you
issue the wrpt -L command to look at the current distributions.

 • Lines 2 - 9 show the repeater configuration for this distribution.

 • Line 10 shows the downcall from the gateway to the TMA endpoint to
ensure the fp_endpoint method is present on the endpoint.

 • Line 11 shows the downcall for the wdskspc.exe, such as the fp_endpoint
method. Reference 10.9, “Using the PC Agent w Commands on a TMA
Endpoint” on page 370 for information on making the PC Agent w
commands accessible from the TMA endpoint.

1 1998/12/14 15:33:26 +06: mdist: distribution ID = 1, method = fps_install, size = 0
1998/12/14 15:33:26 +06: mdist: Registering Repeater Manager: 1351550138.1.365
1998/12/14 15:33:27 +06: mdist: TMF_rptm_mgr::rpt_register called, tuning parms:
2 1998/12/14 15:33:27 +06: mdist: mem_max = 10000
3 1998/12/14 15:33:27 +06: mdist: disk_max = 50000
4 1998/12/14 15:33:27 +06: mdist: disk_hiwat = 50000
5 1998/12/14 15:33:27 +06: mdist: disk_time = 1
6 1998/12/14 15:33:27 +06: mdist: disk_dir = /Tivoli/db/rh2900a.db/tmp
7 1998/12/14 15:33:27 +06: mdist: net_load = 500
8 1998/12/14 15:33:27 +06: mdist: max_conn = 2
9 1998/12/14 15:33:27 +06: mdist: stat_intv = 180
1998/12/14 15:33:27 +06: mdist: Opening cache file:
C:\Tivoli\db\rh2900a.db\tmp\pmap3
1998/12/14 15:33:27 +06: mdist: in_spool_thread started: TID = 454140
1998/12/14 15:33:27 +06: mdist: out_spool_thread started: tid = 4544b0 client =
[1351550138.1.585]
10 1998/12/14 15:33:27 +06: downcall: Method body
/bin/w32-ix86/TAS/MANAGED_NODE/fp_endpoint found.
11 1998/12/14 15:33:27 +06: downcall: dependency /bin/w32-ix86/agentcli/wdskspc.exe
found.
12 1998/12/14 15:33:27 +06: idmap: user ($root_user,w32-ix86) -> Administrator
1998/12/14 15:33:28 +06: idmap: group ($root_group,w32-ix86) -> root
13 1998/12/14 15:33:28 +06: new_session: 19060027, connecting to
146.84.32.208+9494...
1998/12/14 15:33:28 +06: reader_thread: received data: session=19060027, type=9,
len=52
1998/12/14 15:34:46 +06: mdist: in_spool_thread finished: TID = 44e690
13 1998/12/14 15:34:46 +06: mdist: objcall_wrapup with timeout = infinite.
1998/12/14 15:34:46 +06: mdist: in_spool_thread finished: TID = 454140
1998/12/14 15:36:27 +06: reader_thread: received data: session=19060027, type=5,
len=134
1998/12/14 15:36:27 +06: destroying session 19060027
14 1998/12/14 15:36:27 +06: mdist: Finished out_spool to
1351550138.188.508+#TMF_Endpoint::Endpoint#
1998/12/14 15:36:27 +06: mdist: Result length for
1351550138.188.508+#TMF_Endpoint::Endpoint# = 64
1998/12/14 15:36:27 +06: mdist: out_spool_thread finished: tid = 4544b0 client =
[1351550138.188.508+#TMF_Endpoint::Endpoint#]
1998/12/14 15:36:27 +06: mdist: out_spool_thread finished: tid = 44e8c0 client =
[1351550138.1.585]
Software Distribution 369

 • Line 12 shows the mapping of the $root_user for the w32-ix86 interpreter
is the Administrator ID.

 • Line 13 shows the connection to the TMA endpoint that is the target of this
distribution.

 • Lines 14 through to the end show the connections to the TMA endpoint.

10.8.3.2 Additional Sources of Information for TMA Endpoints
In addition to the odstat, gateway log and software distribution log, there is an
additional file present on the TMA endpoints in the LCF_DATDIR directory. By
default the LCF_DATDIR directory is c:\Tivoli\lcf\dat\1. The file’s name is
tmesdist.log. This file contains information on the last software distribution
that occurred to that endpoint. The information that is contained in the
tmesdist.log is very similar to the information in the Software Distribution log.
Occasionally, there is additional information. Also, if for some reason the
Software Distribution log has been deleted or not received, you can get this
log from the TMA endpoints. A sample of a tmesdist.log file is in Figure 158:

Figure 158. Output from TMA Endpoint tmesdist.log File

The corresponding Software Distribution log file is shown in Figure 159:

Figure 159. Log File from Software Distribution

10.9 Using the PC Agent w Commands on a TMA Endpoint

The TMA endpoint does not have the w commands that were previously used
by the PC Agent available to it. Some of these commands were:

temp script: nt_before: c:/Tivoli/lcf/dat/1/Tiv169.bat
size=-1, nest_level=0
starting program: c:/Tivoli/lcf/dat/1/Tiv169.bat
’c:/Tivoli/lcf/dat/1/Tiv169.bat’ script complete: status = 0

Source messages:
<none>

pctmp109:SUCCESS
temp script: nt_before: c:/Tivoli/lcf/dat/1/Tiv169.bat
size=-1, nest_level=0
starting program: c:/Tivoli/lcf/dat/1/Tiv169.bat
’c:/Tivoli/lcf/dat/1/Tiv169.bat’ script complete: status = 0
370 Tivoli Enterprise Internals and Problem Determination

wdskspc Used to check the amount of available disk space prior to sending
the file package to the target.

wseterr Used to set error codes in configuration scripts. This is used to
signal Software Distribution to stop distribution on errors.

You can make these commands available to the endpoints in a number of
ways. You can do a software distribution and distribute the commands to the
TMA endpoints. The disadvantage to this method is that, if an executable
changes, you will have to redistribute this executable to all the TMA
endpoints.

A preferable option would be to use the wdepset command and download the
commands to the cache area located on the TMA endpoint. If the executable
should change, the gateway will reload the executable.

You can only use the wdepset command to make commands available on the
TMA endpoint. The wdepset command is available through the Application
Developers Environment (ADE). Therefore, you will need to have ADE
installed on all the TMRs in your environment where you wish to use wdepset.
ADE installs like any other application.

The steps for making these commands available are:

1. Decide on the name for this dependency set. In this example we are using
a dependency set name of wcommands_depends.

2. Select the binaries you wish to have placed on the TMA endpoint. If you
are only using the wdskspc and wseterr commands, only download those
commands. The binaries for these commands reside on the gateways,
usually in the $BINDIR/../lcf_bundle/bin/interptype/PCagent_clis. It is
advisable to check a gateway or two to validate this is indeed the case for
your installation.

3. Determine a target location on the endpoint for these executables. In this
example, we are going to place these executables out of cache. That is,
this is a dependency file that is not deleted if the endpoint cache becomes
full. If you wish to leave this in the endpoint cache, please reference -
Tivoli ADE - Application Development for the Lightweight Client
Framework (3.6). The location can be in relation to the LCF_DATDIR
directory. The LCF_DATDIR directory is an environment variable set by

For Windows executables, you will also need to discover which (if any)
DLLs are also required.

Note
Software Distribution 371

the endpoint upon start-up. It can be viewed by specifying -d3 (debug level
3) as a start-up parameter to the Tivoli Endpoint on the Windows NT
Services GUI (Settings -> Control Panel -> Services) and then viewing the
lcfd.log file. This location can also be a relative patch. We recommend
placing it under the folders/directories where the TMA endpoint code was
installed.

4. On the TMR server, you will now issue the command to create the
dependency set, wdepset. The usage is as follows:

Where wcommands_depends is the dependency set name and w32-ix86 is the
interpreter type (Windows NT). This is followed by the executable source
path beyond %BINDIR%/../lcf_bundle and the executable is placed out of
cache in the destination path beyond %LCF_DATDIR%.

5. After the dependency set is created with your executables, you will need a
nested dependency set which will have the original courier_lcf
dependency and your dependency, as follows:

6. Once the nested dependency set is created, it must be associated with the
Software Distribution methods so that the executables will automatically
be downloaded, if needed, to the TMA endpoint prior to distribution. This is
done by using the wchdep command. This command associates a
dependency set with a particular method header. The method headers that
are used are the fps_install and fps_uninstall methods. The class name
for these methods is TMF_FP. An example of the usage is:

wdepset -c wcommands_depends -a w32-ix86 \
bin/w32-ix86/PCagent_clis/wdskspc.exe +p ../../ \
-a w32-ix86 bin/w32-ix86/PCagent_clis/wseterr.exe +p ../../

bash$ wdepset -c all_swd_deps -a depset @DependencyMgr:courier_lcf \
> -a depset @DependencyMgr:wcommands_depends
(None)
depset:
 1351550138.1.762#Depends::Mgr#
 1351550138.1.1411#Depends::Mgr#

bash$ wchdep @Classes:TMF_FP @DependencyMgr:all_swd_deps fps_install
bash$ wchdep @Classes:TMF_FP @DependencyMgr:all_swd_deps fps_uninstall
bash$ wgateway rh2900a-gateway dbcheck
372 Tivoli Enterprise Internals and Problem Determination

7. Finally, the gateway method cache must be synchronized with the TMR
server. To do this use, the wgateway command. You must synchronize each
gateway with the TMR server, as follows:

8. The wdskspc and wseterr commands are now available for use from the
TMA endpoint.

10.9.1 Removing the Dependency Set for Software Distribution
As Software Distribution is enhanced, you may need to delete the additional
dependency set from the software distribution methods. To do this:

1. Use the wchdep to restore the courier_lcf as the dependency set on the
fps_install and fps_uninstall methods and synch the gateway(s). The
following is an example of how to do this:

2. Delete the dependency set from the Dependency Manager, as follows:

bash$ wlookup -ar Gateway
hptmp9-gw 1351550138.93.19#TMF_Gateway::Gateway#
rh2900a-gateway 1351550138.1.585#TMF_Gateway::Gateway#
rh2900c-gateway 1351550138.4.21#TMF_Gateway::Gateway#
bash$ wgateway hptmp9-gw dbcheck
bash$ wgateway rh2900a-gateway dbcheck
bash$ wgateway rh2900c-gateway dbcheck

bash$ wchdep @Classes:TMF_FP @DependencyMgr:courier_lcf fps_install
bash$ wchdep @Classes:TMF_FP @DependencyMgr:courier_lcf fps_uninstall
bash$ wgateway rh2900a-gateway dbcheck

bash$ wdepset -d @DependencyMgr:all_swd_deps
bash$ wdepset -d @DependencyMgr:wcommands_depends
Software Distribution 373

374 Tivoli Enterprise Internals and Problem Determination

Chapter 11. AutoPack

The AutoPack is a resource type provided for Software Distribution since
release 3.1. To distribute an application to a PC platform, you would generally
have to include some form of configuration of the target system after the
application itself was copied over. For example, there may be INI files to
update or Windows registry entries to change. With the standard Software
Distribution file package, you could achieve most of this through before and
after scripts. AutoPack is a simpler way to achieve the same result by using a
snapshot method of capturing configuration data. Note that AutoPack does
not apply to the UNIX platforms.

While an AutoPack is a profile and resides in a profile manager much like a
file package, AutoPacks enable you to distribute software without doing
anything outside of its normal process. There is no need to create and run
configuration programs. With AutoPack, all scripts necessary to install the
software are built-in. The AutoPack utility identifies and contains instructions
to make the necessary system changes when installing a software package.
When you distribute an AutoPack, Software Distribution performs a scriptless
installation on the target PC.

11.1 Introduction

AutoPacks, like file packages, are profiles that reside in a profile manager.
The AutoPack tool can be used to install software for the following
subscribers:

 • PC managed nodes.

 • Windows NT managed nodes.

 • NetWare managed site clients.

 • TMA Endpoints

There are three components that make up the AutoPack utility:

TMR server It must have Software Distribution AutoPack Version 3.1
and higher installed, and is needed to create AutoPack
profiles.

ACC AutoPack Control Center. This is installed as a separate
application on a PC, and is needed to create the AutoPack
.PAK file that will be distributed.

AutoPack Agent This is installed on PC endpoints (Windows NT managed
node or PC managed node) and automatically installed on
© Copyright IBM Corp. 1998, 1999 375

a TMA endpoint. It is needed to receive and unpack
AutoPack packaged files.

11.1.1 PC Operating System Type Considerations
The following must be taken into consideration when creating and distributing
AutoPacks:

 • If the target is a Windows NT managed node, Software Distribution must
be installed on the target's TMR server or an interconnected TMR server.
Also, the AutoPack agent must be installed on the target.

 • If the target is a PC managed node, Software Distribution must be
installed on the target's TMR server or an interconnected TMR server. The
PC agent and AutoPack agent must be installed on the target.

 • If the target is a NetWare managed site, Software Distribution must be
installed on the target's TMR server or an interconnected TMR server and
the Tivoli NetWare Repeater (TNWR). The PC and AutoPack agents must
be installed on the NetWare managed site's clients.

 • If the target is a TMA endpoint, the agent is installed automatically when
the TMA endpoint is first installed. Note that a managed node or a PC
managed node can also be a TMA endpoint.

The following table illustrates which machine types can receive an AutoPack
distribution based on where the AutoPack was created:

Table 15. AutoPack Distribution Source and Targets

11.2 Notes on Installing AutoPack

The Tivoli Software Distribution Release Notes specify the Framework and
Software Distribution release levels that are necessary to install and use
AutoPack. The following are the components and locations of Software
Distribution that must be installed in order to use the AutoPack utility:

AutoPack File
Created On

Distribution Targets

Win 3.1 Win 95 NT 3.51 NT 4.0

Win 3.1 YES NO NO NO

Win 95 NO YES NO NO

NT 3.51 NO NO YES NO

NT 4.0 NO YES NO YES
376 Tivoli Enterprise Internals and Problem Determination

1. Install the Tivoli Software Distribution 3.1 (or higher) on the TMR server
and on the managed nodes that have desktops.

2. Install the AutoPack Control Center on any PC that will be used to create
AutoPack files. The installation is performed by running the SETUP.EXE
program, which can be found in the PC/ACC directory on the Tivoli
Software Distribution CD-ROM.

3. Install AutoPack agent on any PC (Windows NT managed node or PC
managed node) that will be receiving an AutoPack. This installation is
done by creating an AutoPack profile for the AP_AGENT.PAK file found on
the Software Distribution installation media. Once the profile is created, it
can be distributed to any PC endpoint receiving an AutoPack. Note that a
TMA endpoint already has the AutoPack agent installed by default.

11.3 AutoPack Control Center

An AutoPack profile comprises an AutoPack file that is created using the
Autopack Control Center. An AutoPack file contains all files necessary to
install an application including scripts that perform system configuration
changes needed to install the selected application. You install the AutoPack
Control Center on a PC in your Tivoli environment.

The AutoPack Control Center (ACC) should be installed on a pristine PC. A
pristine system is recommended because ACC works by comparing a system
before and after the application or data you wish to distribute has been
installed. Many applications use the same .DLL files. Some application
installations detect that the needed .DLL file is already installed on the PC
and, therefore, do not try to reinstall it. If you create an AutoPack in this type
of environment, the AutoPack will not pick up the .DLL because it was not
installed. An attempt to install the .DLL application on a new PC that has no

The PC used to create the AutoPack images does not need to run any
other Tivoli software.

Note

You can install the AutoPack Control Center on any Windows 3.x, Windows
95, or Windows NT machine. The PC need not have the PC agent installed,
and, in fact, Tivoli recommends that the PC have minimal software
installed.

Note
AutoPack 377

other applications installed on it could fail because the .DLL would not be
copied.

The AutoPack Control Center will allow modification of the definition file
(.DEF) for the AutoPack at creation time. This allows for the addition of the
necessary DLL at a later time.

The steps of installing the Autopack Control Center are explained in the Tivoli
Software Distribution User’s Guide and in the Tivoli Software Distribution
Autopack User’s Guide (from 3.6).

11.4 The AutoPack Agent

The AutoPack agent facilitates the distribution and installation of application
files on the PC. Before the AutoPack agent can be installed, the PC must be
a Windows NT managed node or a PC managed node (The PC agent must
be installed and connected as a PC managed node) or the PC must be
installed as a TMA endpoint that automatically installs the AutoPack agent.
With the senior or super authorization role, the AutoPack agent can be
created from the Tivoli desktop as follows:

1. In the Policy Region dialog, add the AutoPack and Profile Manager
resources to the policy region’s list of managed resources.

2. Create a profile in which the AutoPack will reside.

3. Set the AutoPack’s properties in the Set AutoPack Properties dialog.

The steps of installing the AutoPack agent are explained in Tivoli Software
Distribution User's Guide or the Tivoli Software Distribution Autopack User’s
Guide.

Older versions of the AutoPack agent cannot parse an AutoPack file that
is generated by the new AutoPack Control Center. If the following error
appears in the PC agent error log after distribution, install a new version
of the AutoPack agent on the client system and redistribute the
AutoPack profile:

12/15/97 10:43:09 [E] Expecting ’target_dir =’ at \
line 3, but found target_dir=C:

Note
378 Tivoli Enterprise Internals and Problem Determination

11.5 AutoPack Properties and Operations

An AutoPack is a Tivoli Software Distribution profile that is similar to a file
package but provides a simpler, more convenient way to create installable
images for Windows, Windows 95, and Windows NT PCs managed by Tivoli.
An AutoPack profile comprises an AutoPack file that you create using the
AutoPack Control Center, which is a Software Distribution product that is
installed on a PC. The AutoPack file contains all files necessary to install
almost any application, such as Microsoft Word or the Netscape Navigator,
including scripts that perform system configuration changes needed to install
the selected application.

After you create and edit the properties of an AutoPack, you can distribute
the AutoPack to its subscribers (Windows NT managed nodes, PC managed
nodes, NetWare managed site clients, TMA endpoints, and other profile
managers). When you distribute the AutoPack, the application files contained
in the file are distributed to the target machines.

11.6 Creating an AutoPack

1. Install the AutoPack Control Center on a Windows, Windows 95, or
Windows NT machine. This PC should have minimal software installed.

2. Run the AutoPack Control Center to create an AutoPack file. Creating this
file entails:

1. Taking a pre-install, or baseline, snapshot of the PCs drive and system
configuration. AutoPack scans up to two drives (system root and
destination drive) taking a snapshot of the file system and collecting
the contents of certain system files that are stored in the baseline
directory.

2. Installing the desired software package. User installs the desired
application or applications using the application install method, FTP, or
any other method.

3. Taking a post-install snapshot. AutoPack scans the PC a second time
collecting the same file system and configuration file snapshots and
creates a file package definition file.

4. Specifying distribution options for the AutoPack file.

3. Build the AutoPack file. Once any desired changes are made to the
definition file (.DEF), change file (.CHG), or replace file (.REP), the
AutoPack (.PAK) file is created.
AutoPack 379

4. Create an AutoPack profile on a managed node using the Tivoli Desktop
or command line. You cannot distribute an AutoPack file directly from the
PC on which it was created; it has to reside on a managed node, and a
system would not be pristine if it were a managed node. Thus, you must
copy the AutoPack file from the PC to a managed node and associate it
with an AutoPack profile. See “Profile Setup” in the Tivoli Software
Distribution User’s Guide or the Tivoli Software Distribution Autopack
User’s Guide for information on creating, cloning, setting subscribers for,
and deleting AutoPacks.

5. Set the properties of the AutoPack, specifying where the AutoPack file will
reside as described in this chapter. In this step, the file is actually copied
from the PC where it was created and saved with the AutoPack profile.

For information about Setting AutoPack properties, calculating the size of an
AutoPack, distributing an AutoPack, and removing an AutoPack, see the
Tivoli Software Distribution User's Guide or the Tivoli Software Distribution
Autopack User’s Guide.

11.6.1 Pre-Scan
The first step to creating an AutoPack is the pre-scan. The scan begins with
the user choosing the target hard-drive where the application will be installed.
When the scan starts, it will scan the target hard-drive and the system drive
(where the operating system is installed). The list of files that the scan will
search through can be modified through the ACC dialog or through the
AUTOPACK.INI file located in the %SYSTEMROOT% directory.

You cannot create an AutoPack file to perform OS upgrades and
installations.

Note

Removing an AutoPack removes all distributed files and directories on
the target machines and reverses any system changes performed by the
AutoPack.

Note

Users should make changes to the Files to Monitor and Files to
Exclude lists instead of the AUTOPACK.INI file.

Note
380 Tivoli Enterprise Internals and Problem Determination

The pre-scan gathers the following information and stores it in *.1ST files
found in the baseline directory on the PC:

 • AUTOEXEC.1ST - Current contents of the autoexec.bat file on the system
drive.

 • CONFIG.1ST - Current contents of the config.sys file on the system drive.

 • FILESYST.1ST - A list of all of the directories and files on the installation
and system drives.

 • INIFILES.1ST - Current contents of all of the .INI files in the system root
directory.

 • REGISTRY.1ST - Contents of the HKEY_LOCAL_MACHINE\SOFTWARE
and HKEY_CLASSES_ROOT registry hives (for Windows 95 and
Windows NT scans).

 • DESKTOP.1ST, STARTMENU.1ST - All of the desktop icons and contents
of the start menu (for Windows 95 and NT 4.0).

 • PROGRAMS.1ST - Contents of program groups (common on Windows
NT).

11.6.2 Software Installation
The second step in creating an AutoPack is to install the software on the PC.
This can be any number of software packages or could even be FTPing the
necessary files to the PC.

11.6.3 AutoPack Build
There are three parts to the post-installation step. First, the post-scan creates
*.2ND files which correspond to all the *.1ST files created during the pre-scan

If the target directory is different from the system drive and the
AutoPack Control Center discovers an autoexec.bat and/or config.sys
on both drives, it will gather both versions.

Note

Check which registry hives your version of AutoPack is monitoring. You
can edit the autopack.ini file in the [RegistryMonitor] section to include,
for example, HKEY_LOCAL_MACHINE\System\CurrentControlSet. AutoPack
will then automatically detect any newly-created services and will create
them when the AutoPack is installed on another system.

Registry Tip
AutoPack 381

step. The second part generates the files that will be used to create the
AutoPack image:

 • .DEF AutoPack definition file. This file is the Software Distribution
definition file that is used to create the .PAK file. It contains the after and
removal script paths and arguments as well as a listing of the application
files to install.

 • .REP AutoPack replace files. This is a list of the files that were replaced
during the software installation.

 • .CHG Contains a description of all the system files that need to be
changed.

You can change any of the basic distribution settings. Once complete, the
*.PAK file is created. This is the only file that needs to be kept, although, if the
three configuration files (*.DEF, *.REP, *.CHG) are kept along with the
installed files, then any necessary changes can be made and a new *.PAK file
can be created at any time.

11.6.3.1 The .CHG File
The .CHG file contains all of the system and registry changes that must take
place on the target PC. It includes the following:

 • arguments - Lists the target directory, staging directory, log level, and prep
machine's information.

 • file_system - Includes changes to the %SystemDrive% directory, which
includes shared file systems.

 • win_registry - Includes keys and values added to the registry for Windows
95 and Windows NT machines. The monitored keys include
HKEY_LOCAL_MACHINE\SOFTWARE and HKEY_CLASSES_ROOT.

 • win-inifile - List all .INI files in the %SystemRoot% directory, the %WinDir%
directory for Windows and Windows 95 machines, and in the Files to
Monitor property sheet.

 • win_programs - Includes program manager changes, such as shortcuts,
icons, and groups, and the Start Menu/Programs folder on NT 4.0 and
Windows 95 machines.

 • win_explorer - Lists Windows Explorer changes including shortcuts and
folders for Windows 95 and NT machines.

Briefcases in Microsoft Office are not supported.

Note
382 Tivoli Enterprise Internals and Problem Determination

 • config_sys - Includes the config.sys file on the C: and %SystemDrive%
drives. The AutoPack Control Center will always monitor this file even if it
is removed from the list.

 • autoexec_bat - Includes the autoexec.bat file on the C: and %SystemDrive%
drives. The AutoPack Control Center will always monitor this file even if it
is removed from the list.

11.6.3.2 The .DEF File
The .DEF file lists all of the properties of the AutoPack as displayed in the
AutoPack Contents dialog. This file can be modified before the *.PAK file is
created. This allows some of the system-specific values to be changed. For
example, you can create one AutoPack that installs a software application on
C: and another AutoPack that installs the same software application on D:.
The file list in the *.DEF file can also be modified if there were .DLL files that
were not installed because they already existed on the machine.

11.6.3.3 The .REP File
The .REP files list the files that were replaced during the installation and will
be replaced in the target PCs during the AutoPack distribution. This file will
be empty if no files were replaced during the installation.

11.6.3.4 The .PAK File
The AutoPack file is created using sapack (executable for pack software, this
file comes with the Tivoli installation), the .DEF file, the .CHG file, and the
application installed files and directories. AutoPack uses a new version of
sapack that supports staging and destination locations for files.

11.6.3.5 The .ERR File
If there is a problem creating the .PAK file from the generated files, then a
.ERR file is created containing any errors that were generated.

Only the DOS 5.0 format of this file is supported.

Note

Only the DOS 5.0 format of this file is supported.

Note
AutoPack 383

11.6.4 AutoPack Properties
After creating the AutoPack .PAK file in the AutoPack Control Center, a profile
representing the AutoPack has to be created on the TMR server. After the
profile is created, the properties must be set providing the source host and
location of the AutoPack file. The profile properties can be set up in one of
three ways:

 • The AutoPack file is on a managed node, and the node name and path are
used in the AutoPack properties dialog. The image can be created on
another system and copied by hand to the specified managed node.

 • The file is on a PC managed node and copied to a specified managed
node. In this case, provide the PC name and path where the image is
stored and the managed node name and path where the image is to be
copied.

 • The file is on a managed node and needs to be copied to a specified
managed node.

11.7 Distributing AutoPack Profiles

Having created the AutoPack profiles and set up the desired properties, we
can now use them to install and remove software.

11.7.1 AutoPack Install of Software
After the AutoPack properties are set, it can be distributed to any supported
PC endpoint or to a profile manager that has PCs as subscribers. The
AutoPack is distributed as any other Software Distribution file package
(meaning same Software Distribution methods are running).

When the endpoint receives the AutoPack, it will lay down the application files
as listed in the .DEF file. It then runs the wsysupd.bat script that runs the
wsyschg.exe program passing it the keyword after (%1) and the path to the
.CHG file (%2) that is the input file for the script. This after script will make all
the necessary changes to the system file.

11.7.2 AutoPack Removal of Software
The software installed through AutoPack can be removed from the PC
endpoints by using the Remove from hosts... option on the AutoPack. When

The PC endpoint must already have the AutoPack agent installed.

Note
384 Tivoli Enterprise Internals and Problem Determination

this option is used, the request is sent to the PC endpoint, and the
wsysupd.bat script is run as a removal script passing the keyword remove and
the path to the .CHG file as arguments to the wsyschg.exe program. This will
remove all the changes that were made to the system files and remove all the
installed files and directories.

11.8 AutoPack Policy

There are two default and three validation policy methods provided for the
AutoPack profile.

11.8.1 Default Policy
 • ap_def_autopack_file - Sets the default path for new AutoPack profiles.

 • ap_def_autopack_host - Sets the default host for new AutoPack profiles.

11.8.2 Validation Policy
 • ap_val_autoapck_host_file - Validates the set source host and source path

for new or modified AutoPack profiles.

 • ap_val_name - Validates the name given to an AutoPack profile.

 • ap_val_operation - Validates the following:

 • Distribute/Remote - If the AutoPack profile is being distributed or
removed from PC endpoints, then the validation policy is given the
name of the profile and a list of targets.

 • Copy - If the AutoPack is copying from a PC managed node or NT
managed node to a target managed node, then the validation policy is
given the name of the profile, the host name and path of the source
machine, and the host name and path of the target machine.

11.9 Troubleshooting AutoPack

Since the introduction of Software Distribution Version 3.1, the AutoPack
Control Center for Windows has included on-line help. This contains a
detailed description of all of the features of the AutoPack Control Center. It is
a good source for troubleshooting information as well as a user's perspective
of the tool - you should also review the information now contained in the
troubleshooting section of the Tivoli Software Distribution Autopack User’s
Guide.
AutoPack 385

11.9.1 Common Problems
The following is a list of common AutoPack problems:

 • Locked files preventing the package contents from being written on the
target.

 • Operations that require re-booting need to be identified. Some may still be
possible to achieve.

 • Operating system upgrades are generally not possible due to version
considerations, locked files, and so on.

 • Installing Exceed, the xclient product, is known to have problems.

These problems require additional actions that can not be done by AutoPack.

11.9.2 Where to Find Error Information
When creating the AutoPack file, there is one log file created:

.ERR File The AutoPack Control Center's log file. It will contain any
errors that occurred while the AutoPack file was being
created.

When installing or removing AutoPack files, three log files are generated:

<log file> When setting up the AutoPack file, there is an option to log to
a file. To set this up, the user provides the host name and path
of where to write the log file. This file will contain errors
relative to the distribution from the source machine to the
endpoints.

autopack.log Records messages or errors when installing or removing
AutoPack files.

tivoli.log The PC agent log file.
386 Tivoli Enterprise Internals and Problem Determination

Chapter 12. Distributed Monitoring

Tivoli Distributed Monitoring is used to monitor various local system
resources in any TMR server, managed node, NetWare Server, or TMA
endpoint in the Tivoli framework and generate Network-wide events and
alarms. A Proxy facility also allows the extension of monitoring to systems
outside the Tivoli Management environment.

One or more monitors, which will be distributed to the target machines, are
defined within a profile - known as a SentryProfile. This resides, just like other
profiles, in a profile manager to which targets can be subscribed (see Figure
160).

Figure 160. Distributed Monitoring Profiles in a Profile Manager

Each of the individual monitors are based upon a standard monitor, which is
provided in a set of Monitoring Collections. A Monitoring Collection is
© Copyright IBM Corp. 1998, 1999 387

basically a set of programs, each designed to request specific information
from the system on which it is run, that return a value to the monitor. Along
with the programs, a set of definitions ensures that the monitor is given the
correct number and types of arguments when the monitor is created. Many
monitors can be added to a single SentryProfile, which is the smallest single
entity that can be distributed to one or more endpoints.

Each SentryProfile can be associated with an IndicatorCollection. This is a
common object where the result of an execution of any monitor from the
SentryProfile at any endpoints is logged. Optionally, an icon on the Tivoli
Administrator GUI can be updated in order to provide a visual indication of a
critical situation or a pending problem.

When defining a monitor, a monitor is selected from a monitoring collection,
and information for controlling the behavior of the monitor is supplied. This
control information describes the hows, the whats, the whens, and so forth,
but not the whys and the wheres. The wheres are determined when the
monitor is distributed, and the whys are a matter of decision in each individual
implementation.

If the built-in monitoring collections do not exactly meet the requirements for
monitoring, custom monitor collections can be developed and added to the
Distributed Monitoring environment, but the same deployment considerations
apply as for the monitoring collections supplied by Tivoli. However, the use of
monitoring collections custom-built from scratch is rare. Instead, customized
monitors are very easily built using standard shell-monitors from the
Universal monitoring collection provided by Tivoli.

Monitoring can be asynchronous, event-driven, or based on polling at defined
intervals. Basically, all monitors in the standard monitoring collections are
designed to support exception handling - creating an alarm if the actual value
meets certain criteria. The standard monitors do not report historical data or
react to average values. To obtain this functionality, custom script collections
should be developed.

At the endpoints, a Sentry Engine controls the monitoring process itself,
determining when each monitor should be fired and launching automated
responses. Each monitor from every SentryProfile that has been distributed
to the endpoint is represented in the Sentry Engine’s working area - the
Engine Database - as a monitoring probe. These components are shown in
Figure 161.
388 Tivoli Enterprise Internals and Problem Determination

Figure 161. Distributed Monitoring (Sentry) Entities

Distributed Monitoring uses the familiar management by subscription
paradigm of the Tivoli Framework; and policies governing the creation,
modification, and distribution can be applied.

Tivoli Distributed Monitoring supports customisations to X/Open message
catalogs to provide more detailed log information. Also supported are Proxies
to allow monitoring of resources hosted on other targets including
non-Tivoli-enabled equipment and the use of additional environment
variables.

Also a graphing capability using a standard browser is available. Refer to the
Tivoli Distributed Monitoring User’s Guide or the redbook A first look at TME
10 Distributed Monitoring 3.5, SG24-2112.

12.1 New Features in Distributed Monitoring Version 3.6

In Tivoli Distributed Monitoring version 3.6, support for TMA endpoints has
been implemented. Since TMA endpoints can be implemented as a
supplement to a managed node, it is preferred to install the TMA on a
managed node that just needs to be monitored. If there is a need to create or
modify SentryProfiles at a managed node, the full Distributed Monitoring
application should be installed on the managed node.

50

40

30

20

10

 0

10

20

30

40

50

120

100

80

0

20

20

40

60

60

40

FF
OO

C
O

C
O

50

40

30

20

10

 0

10

20

30

40

50

120

100

80

0

20

20

40

60

60

40

FF
OO

C
O

C
O

Engine
Database

50

40

30

20

10

 0

10

20

30

40

50

120

100

80

0

20

20

40

60

60

40

FF
OO

C
O

C
O

Maintaining
Probe

System Files

Sentry
Engine

oserv
Database

50

40

30

20

10

 0

10

20

30

40

50

120

100

80

0

20

20

40

60

60

40

FFOOCOCO

Dat
ab

as
e

Dist
rib

ut
io

n

Dat
ab

as
e

Dist
rib

ut
io

n

Distributed Monitoring 389

12.2 Installation Considerations

Deploying Distributed Monitoring requires detailed planning. Not only
planning of the actual monitoring process - what to monitor, where to monitor,
when to monitor, how often to monitor, how to react to the monitor responses,
and so forth - but also planning of what binaries need to be available and
where and when.

Along with the Distributed Monitoring application itself, the product is shipped
with a number of built-in monitoring collections - groups of programs that are
used for monitoring specific resources within all or specific types of monitored
endpoints. These are made available to all types of endpoints by installing
them on the TMR Server.

12.2.1 The Distributed Monitoring Application Install
Distributed Monitoring is installed on TMR servers and managed nodes just
like any other Tivoli application using either Software Installation Services,
the GUI, or the winstall command. No specific installation activities, except
for installing the TMA endpoint itself, are required to enable monitoring on
TMAs.

Distributed Monitoring, and all the monitoring collections used, have to be
installed on the TMR Server. Netware Monitoring Collections, if used,
additionally need to be installed on all gateways.

To distribute the SentryProfiles (activate monitoring) to any other managed
node besides the TMR server itself, Distributed Monitoring should be installed
on each managed node that is to be monitored. This ensures that the
Distributed Monitoring binaries are present on each managed node and ready
for use. Another way to enable monitoring at a managed node is to install a
TMA on the managed node. The managed node is then enabled for
monitoring without using disk space locally for the Distributed Monitoring
binaries. In order to avoid problems, only one implementation of Distributed
Monitoring should be active on a managed node at any one time. The use of
both the full managed node and the TMA implementations of Distributed
Monitoring on the same node should be restricted to migration usage.

To activate monitoring on TMA endpoints, Distributed Monitoring has to be
installed on the gateways that the TMAs are connecting through. By installing
Distributed Monitoring on the gateway, the binaries used by the TMA become
available to the TMA and are downloaded from the gateway when needed. To
be absolutely certain that the TMAs can get the required binaries,
disregarding the state of the preferred gateway, Distributed Monitoring should
390 Tivoli Enterprise Internals and Problem Determination

either be installed on any gateway that accepts logins from monitored TMAs
or allow_install and login policies for the TMA endpoints should be developed
to check for the need for, and existence, of a proper Distributed Monitoring
installation on the current gateway.

Since gateways can currently only be implemented on managed nodes, the
Distributed Monitoring installation process is similar to that on the managed
node.

By installing Distributed Monitoring on a gateway, the managed node that
hosts the gateway automatically becomes a candidate for monitoring.

12.2.2 TMA Endpoint Distributed Monitoring Install
No specific installation process is needed to activate Distributed Monitoring
on a TMA endpoint. The files and directory structures that are required to run
Distributed Monitoring on a TMA are downloaded from the gateway at the
time the first SentryProfile is distributed to the TMA. This is handled in the
following way:

1. The Sentry Endpoint method - dogendpoint - is invoked as a normal
download method. After the first invocation, it will be in the method cache
on disk at the endpoint the first time it is automatically downloaded by the
endpoint process (lcfd). By default, the endpoint method is cached in the
directory:

($LCF_DATDIR)\CACHE\BIN\$(INTERP)\TME\SENTRY

2. Dogendpoint discovers that the Sentry Engine (dm_ep_engine) and the
GNU-tools for the required platform that it depends upon are not installed.
It invokes an upcall to retrieve them from the endpoint gateway. Note, that
although these modules are being downloaded and run in a very similar
way to ordinary endpoint methods, they will not be stored in the method
cache. Instead, they are stored in a subdirectory structure off the current
dat-directory ($LCF_DATDIR) of the TMA.

The reason for this is to make sure that all required files are available to the
engine when a monitor is triggered. In the usual TMA environment, all
required files are downloaded from the gateway (if not found in the TMA
cache) and flushed from the cache when space is required to hold other
files. The implications of downloading files for monitoring in a
cache-constrained environment could lead to very lengthy monitor
transactions and even inaccurate responses from the monitors.

Note
Distributed Monitoring 391

Figure 162 shows the Distributed Monitoring directory structure for a TMA
endpoint:

Figure 162. Directories Used by TMA Endpoints for Distributed Monitoring (3.6)

A positive side effect of this implementation is that the Distributed Monitor
engine on TMAs does not rely on resources from the gateway. Once
launched from the TMA, the engine is independent from the TMA itself. This
enables the Distributed Monitoring engine to perform its duties from the point
when the TMA is started until the engine is stopped (using the wstopeng
command), the system is shut-down, or the engine-program
(dm_ep_engine.exe) is killed.

12.2.3 Monitoring Collections
The monitoring collections are only installed on the TMR server. When
installed, each monitoring collection is added to the framework using an
object of the type MonitoringCapabilityCollection.

Whenever an engine needs to run a monitor from a collection that is not
currently loaded, the monitor is requested from the TMR server.

Directory referenced
by $(LCF_DATDIR)

TMA Engine configuration

Distributed Monitoring
TMA binaries

TMA Engine task working area

TMA Engine work area for Inspector
graphical data
392 Tivoli Enterprise Internals and Problem Determination

12.3 Getting Started with Distributed Monitoring

When working with Tivoli Distributed Monitoring, the following four basic
components are used:

 • Distributed Monitoring profiles (SentryProfiles)

A Tivoli Profile designed to hold monitor collections. The SentryProfile
holds information common to all monitors in the collection, some of which
are:

 • IndicatorCollection to use
 • Defaults for distribution
 • Default monitoring schedule

 • Monitors

A record within the SentryProfile defining the characteristics of a monitor.
The monitor definition includes:

 • Monitor to use - from MonitorCollection
 • Resource to be monitored - if applicable
 • Threshold levels
 • Monitoring schedule
 • Responses

 • Monitoring Collections

Collections of standard monitors grouped by capability. In addition,
user-supplied monitoring probes, such as shell scripts and binaries, can
be incorporated as well as monitors provided by other Tivoli applications.
Scripts and executables can be distributed as part of the monitor setup
process.

 • Indicator Collections

List of indicators used to determine the state of a Tivoli Distributed
Monitoring profile and log information on each SentryProfile in the
collection.

When monitoring, four default severity levels are provided: Critical, severe,
warning, and normal. In addition, user defined severity levels can be added.
Based on the severity level of a monitor value, various automated actions can
be invoked. The following is a list of standard responses:

 • GUI pop-ups.

 • Visible changes to icons in IndicatorCollections.

 • E-mail that can be sent to any valid e-mail address (not limited to Tivoli
administrators).
Distributed Monitoring 393

 • Tivoli notification to a designated notice group.

 • File logging - local or on a remote managed node.

 • Local or remote user-defined response agents (programs or tasks).

 • Posting of Tivoli Enterprise Console (TEC) events. When passing events
on to TEC, the severity level can be mapped to those used by TEC. From
Distributed Monitoring 3.6 onwards, a primary and a secondary
EventServer can be specified.

12.4 Defining Monitors

Prior to defining monitors in Distributed Monitoring, the following three
prerequisites have to be in place:

1. Profile managers should be created. To hold the SentryProfiles database
type, profile managers should be used, and use of dataless profile
managers should be for TMA subscribers only.

2. The managed resources type SentryProfile should be added to the
managed resources of the Policy Region in which the profile manager is
created.

3. The current administrator should be granted one or more of the following
Tivoli roles:

super in order to create SentryProfiles and set policies

admin to edit and distribute SentryProfiles, maintain subscribers, and
create and manipulate IndicatorCollections

user browse SentryProfiles and IndicatorCollections

Creating monitors in Distributed Monitoring requires two steps:

1. Add monitors

2. Edit monitors

Through the Tivoli desktop, users add and edit Tivoli Distributed Monitoring
monitors with the dialogs shown in Figure 163 and Figure 164 on page 396.
394 Tivoli Enterprise Internals and Problem Determination

Figure 163. Select a Tivoli Distributed Monitor
Distributed Monitoring 395

Figure 164. Edit a Tivoli Distributed Monitor

12.5 Customizing Tivoli Distributed Monitoring

In addition to the built-in monitors found in the monitoring collections, custom
monitors can be added when required. This can be accomplished in one of
two ways:

 • The simplest way is by supplying, and optionally distributing, in-line
monitoring scripts used with the User Monitor-Numeric Script and User
Monitor-String Script monitors of the Universal monitoring collection.

 • The complicated way is by adding custom made monitoring collections.
This should only be used to apply Distributed Monitoring capabilities to
subsystems and customer application systems.

Resource
Information

Response
Actions

Monitor
Configuration
Buttons

Threshold
Settings
396 Tivoli Enterprise Internals and Problem Determination

The User Monitor Script monitors are time-driven. They are fired, like most
other monitors, in accordance with a schedule defined for each monitor. In
some cases, it may be more adequate to define monitors that are truly
event-driven. These would be fired whenever a specific event occurs. To
support those types of adapters, the Universal monitoring collection supplies
two special monitors: User Monitor - Asynchronous string and User Monitor -
Asynchronous numeric, which can be fired from programs or custom scripts
using the wasync command - whenever the specified event is detected. A
typical use of this feature is reporting specific events to Distributed Monitoring
from within Tivoli (and non-Tivoli) tasks and jobs, such as scripts used for
backup, software distribution, and so on.

12.5.1 User-Defined Monitors
Tivoli Distributed Monitoring supports the easy addition of user-defined
custom monitors. A user can supply the path to a binary executable or shell
script that will return a numeric or string value that can be evaluated. This
allows users to create monitors that specifically return the information that
might be unique to their environment. Custom monitors can be registered -
using the waddcust command and made available to any new Tivoli Distributed
Monitoring node that is created although this is not the same as adding
monitors through collections created with the Monitoring Capabilities
Subscription Language (MCSL). See the next section for more information on
collections.

Custom monitors and asynchronous monitors support the use of comments
that will be passed to responses for added information. The types of
responses that will utilize these comments are pop-up dialogs, TEC events,
Tivoli notices, e-mail, log files, and custom responses.

When using custom monitors, the script or executable must be local to the
Tivoli Distributed Monitoring engine on the endpoint. Tivoli Distributed
Monitoring provides a way of copying the custom scripts at the time the
SentryProfile is distributed to the endpoints. The Distribution Actions dialog is
shown in Figure 165 on page 398.
Distributed Monitoring 397

Figure 165. User-Customized Distribution Actions for Monitors

12.5.2 Asynchronous Monitors
Asynchronous monitors respond to events sent to the Tivoli Distributed
Monitoring engine tagged with a given channel name. Channel names are
determined by users and may be registered with the waddchan command to be
available from the desktop.
398 Tivoli Enterprise Internals and Problem Determination

Tivoli Distributed Monitoring supports two different timing options for resource
monitoring: Polled and asynchronous. Polled timing is the most common. It
uses a scheduler to determine when a resource will be monitored. One
example is monitoring the host status every two hours.

The second form of timing is asynchronous. This is used by creating a
channel that the Tivoli Distributed Monitoring engine will listen for activity
from. When some outside source detects a predefined threshold, a signal is
sent to a specified Tivoli Distributed Monitoring channel to trigger the event.

There are three ways to report events to Tivoli Distributed Monitoring
asynchronously:

 • Use the wasync command - This command can be used on the command
line or through a script:

wasync -c WhizzoEvent -s 1 -i ‘Event Info’.

It is recommended that all asynchronous channels are registered even
though it is not mandatory. When defining an asynchronous monitor using
the GUI, the channel name can simply be entered in the input-box, and no
checks are made for the existence of the channel. If the channel was
added using waddchan prior to the monitor definition, it will appear in the
pulldown-list of available channels.

When using the channel in a wasync command, no checks are made to
ensure that the channel is registered. If the syntax of the wasync command
is correct, no error messages will be issued to indicate that the channel
specified does not exist.

In short, it is the responsibility of the administrator to ensure that the
channel name used in monitors and wasync commands correspond. The
waddchan command is only used to ease monitor definition using the GUI,
and for documentation purposes, using the wlschan command.

Registering Channels

In Tivoli Distributed Monitoring 3.6, the use of the wasync command is
restricted to users who are authenticated in the Framework with an ID that
maps to root_user.

Use the widmap command to check for authorization mappings.

wasync note
Distributed Monitoring 399

 • Use the IDL interface structure - This method has to be used within a C
program.

 • Use a C function call that bypasses the Object Request Broker (ORB) -
This method has to be used within a C program and communicates
directly with the Tivoli Distributed Monitoring engine process.

12.6 Tivoli Distributed Monitoring Proxies

A Distributed Monitoring Proxy is basically an object of the SentryProxy class
residing on a managed node. It is used to monitor, and report status, from a
resource residing outside the current Tivoli environment or to monitor
resources hosted by a machine/device different from the hosting managed
node. An example of using SentryProxies to manage resources outside the
hosting managed node is to monitor the status of the IP-interfaces on another
managed node, thus, providing reporting of IP-problems for the monitored
node even if the node’s own IP-interface is broken.

When a proxy is defined, the managed node on which it resides is determined
as well as the name of the proxy. Profiles are distributed, as normal, using the
proxy as subscriber; and whenever the monitors report status, the name of
the proxy is used as reporting node.

The actual monitor running on the proxy-endpoint is not aware that it is, in
fact, running on a proxy-endpoint. Therefore, only customized scripts capable
of performing the actual monitoring of the remote resource should be used
with proxies. This is why a filter can be applied to a proxy-endpoint to keep
monitors from specific monitoring collections from running on the
proxy-endpoint.

Tivoli Distributed Monitoring supports the use of proxies to pass additional
environment variables to custom sentries/responses and to allow monitoring
of non-Tivoli-managed endpoints.

12.6.1 Distributed Monitoring Environment Variables
Typical Tivoli Distributed Monitoring endpoints (managed nodes) have a set
of environment variables that are passed and used by custom monitor and
custom response-scripts. The following is a list of environment variables that

See the appendices of the Tivoli Distributed Monitoring User’s Guide for
the syntax of these system calls.

Note
400 Tivoli Enterprise Internals and Problem Determination

are available to both typical monitors and to Tivoli Distributed Monitoring
proxies:

Engine specific variables:

 • ACCEPTABLE_VALUE
 • CHANGE
 • COMPARED_TO
 • CRITERION
 • DELTA
 • EFFECTIVE_VALUE
 • HOSTNAME
 • INTERNAL_ID
 • INTERP
 • LASTSTAMP
 • MONITOR
 • MONITOR_ID
 • NAME
 • o_dispatch
 • PATH
 • PREV_VALUE
 • PROBE
 • PROBE_ARG
 • PROFILEOID
 • RELATION
 • RESPONSELEVEL
 • TIME
 • TZ
 • UNITS
 • USERINFO
 • VALUE

Implicit endpoint variables:

 • ADMIN - Name of administrator who most recently distributed the Tivoli
Distributed Monitoring profile

 • ENDPOINT - Name of endpoint object. With typical Sentries, this name
and OID will be the same as host name and host OID. With Tivoli
Distributed Monitoring proxies, this name and OID can be different.

 • ENDPOINT_CLASS
 • ENDPOINT_OID
 • HOST
 • HOST_OID
 • OPERATOR - Access ID used by administrator for authorization
Distributed Monitoring 401

The above environment variables are available to all types of Tivoli
Distributed Monitoring endpoints, managed nodes, SentryProxies, and TMA
endpoints.

Refer to the Tivoli Distributed Monitoring User’s Guide for further details on
using environment variables in custom monitor or response scripts.

12.6.2 Distributed Monitoring Proxies
Tivoli Distributed Monitoring endpoints can be managed nodes, TMA
endpoints, or proxies. When a Tivoli Distributed Monitor is distributed to a
proxy, there is still just a single Tivoli Distributed Monitoring engine on the
Tivoli managed node that is updated, but the environment variables
associated with the monitor will be different to allow different endpoints to be
monitored. For example, custom scripts would be able to have one script use
the $ENDPOINT or $HOST environment variables to distinguish between
monitored targets.

Tivoli Distributed Monitoring proxies also support the creation of additional
environment variables that can be used by custom monitors and responses.

12.7 Distributing Monitors

Having completed the profile definition, the time has come to distribute the
monitors defined in the profiles to the endpoints on which the specified
monitors should run.

Understanding and correctly using profile managers are key elements in the
success of your deployment of Distributed Monitoring.

It is very important to understand the concepts of database and dataless
Profile Managers as well as the distinction between database mode and
dataless mode endpoints. This is described in 2.4.6, “TMA Endpoints” on
page 45.

If a monitor is distributed to both a managed node and a SentryProxy
hosted by the same managed node, two copies of the monitor will be
active. In case of an asynchronous monitor, both monitor copies will be
triggered when the wasync command is run to report an event.

Note
402 Tivoli Enterprise Internals and Problem Determination

12.7.1 Local Profile Copies
A Tivoli administrator can change the system or user-configuration files
distributed in the original profile. However, local overwrites can complicate
your deployment. If possible, use a hierarchy that does not require local
changes. An administrator can make local changes to only those profiles
stored in the Tivoli Configuration Change Management System (CCMS)
database. These profiles are:

 • Adapter Configuration Facility Profile
 • GroupProfile
 • SecurityProfile
 • SentryProfile
 • UserProfile

12.7.1.1 Local Copies of Profiles in Database Profile Managers
Using database profile managers, a copy of each profile (except AutoPack,
FilePackage, and InventoryProfile profiles) is stored at each level of the
distribution hierarchy. Therefore, after distribution from a database profile
manager, each managed node, including the TMR Server, maintains a local
copy of all profiles in its client database.

The local profile copy is kept in the local oserv database and is listed along
with the original SentryProfiles in a wlookup -ar SentryProfile command.

The above output from the wlookup command shows that local profile copies
of the SentryProfile Universal exists on ep-sub, itso2, and rh2900b and local
copies of the NT-monitoring SentryProfile are located on ep-sub and itso2.

wlookup -ar SentryProfile | sort
NT-monitoring 1998892590.1.1433#Sentry::All#
NT-monitoring@ep-sub 1998892590.1.1439#Sentry::All#
NT-monitoring@itso2 1998892590.1.1440#Sentry::All#
TACF Monitors 1998892590.1.1338#Sentry::All#
TivoliSentryDefaults#Guyincharge 1295714281.1.613#Sentry::All#
TivoliSentryDefaults#unixspoke 1998892590.1.614#Sentry::All#
universal 1998892590.1.1441#Sentry::All#
universal@ep-sub 1998892590.1.1442#Sentry::All#
universal@itso2 1998892590.1.1443#Sentry::All#
universal@rh2900b 1998892590.2.69#Sentry::All#
Distributed Monitoring 403

12.7.1.2 Local Profile Copies and Dataless Profile Managers
Using dataless profile managers, the profile information is written directly to
the system or application files. Therefore, subscribers of dataless profile
managers do not maintain a local copy of the profile. TMA endpoints do not
have an object database; so, they cannot have a local copy of a profile.
Managed nodes do, indeed, have an object database, but distribution from
dataless profile managers bypasses the database and writes directly to the
system files.

12.7.2 Distributing Distributed Monitoring Profiles
Having understood the basics of database and dataless Profile Managers
and the way they operate when in relation to database and dataless
endpoints, managing the distribution of SentryProfiles seems to be a fairly
simple and straight-forward task, but the story does not end here.

For each SentryProfile, the default behavior of the distribution is stored along
with the profile itself. These values can be modified by the administrator from
within the Profile Properties dialog using the File-Distribution Defaults...
option. The default options are shown in Figure 166:

Remember, that after modifying a local profile copy, it has to be
redistributed in order to become active. This may seem obvious when
dealing with profile copies in profile managers, but is less obvious, yet still
true, when working with local profile copies owned by managed nodes.

Note
404 Tivoli Enterprise Internals and Problem Determination

Figure 166. Distributed Monitoring Profile Distribution Defaults

The Distribute To options control the scope of the distribution. The two
possible values are:

Next level Copies the profile only to the selected subscribers. In a Tivoli
3.6 environment, distributing to database endpoints, managed
nodes, and profile managers sends the profile to the database
of the subscriber. For managed nodes, this means that
nothing is loaded into the SentryEngine at distribution time. To
make the selected SentryProfile active on a managed node
instantly, the All Levels option should be used.

All Levels Copies the profile to the selected subscribers and their
subscribers (if any). This option only has an effect on
managed nodes and profile managers subscribing to the
profile manager.

It should be noted that since the Distribute To options controls how profiles
are being copied down the subscriber-hierarchy made up by profile
managers, the Distribute To option has no effect when distributing from a
dataless profile manager.

The way the distribution of monitors within a SentryProfile to the endpoints
handles local profile copies is controlled by the Distribute Will option. This
takes one of two opposite values:
Distributed Monitoring 405

Exact Copy Makes the local profile copy an exact copy of the
one distributed and overwrites all local
modifications

Preserve Modifications Updates only monitor parameters in the local copy
that haven’t been changed since the original
distribution.

The Distribute Will options will, when used with distributions from a dataless
profile manager, have the following effects:

Exact Copy Updates the system files on the selected
endpoint(s) with the information from all
SentryProfiles within the profile manager hosting
the profile being distributed.

Preserve Modifications Updates the system files on the selected
endpoint(s) with the information from the profile
being distributed if, and only if, any monitor within
the profile being distributed has been modified
compared to the last distribution of the profile to
the selected endpoint(s), even if the monitoring
probe representing the selected profile at the
endpoint(s) has been deleted.

The actions performed when using the Distribute To and Distribute Will
options can be summarized, as in Table 16:

Table 16. Actions Taken When Distributing SentryProfiles

Distributing from Database
Profile Manager

Distributing from Dataless
Profile Manager

All Levels Copies the profile to the selected
subscribers and all the
subsequent subscribers
including SentryEngines on
managed nodes.

Monitors are loaded into the
engine database instantly if they
are distributed for the first time or
have been modified since the
last distribution.

Be aware that the effects of the Distribute Will option, as used with the
database profile manager, does apply to the dataless profile managers
where local profile copies are not used.

Note
406 Tivoli Enterprise Internals and Problem Determination

When distributing a profile, the push method is run from the TMR server.
When the endpoints have received the distributed monitors, these are
merged into the system files and/or local oserv database and the sentry
engine database is reloaded using the engineUpdate method.

12.7.3 Distributing Profiles Using the GUI
Using the GUI to distribute the SentryProfile, the following should be noted:

 • When using drag-and-drop to distribute a single SentryProfile, the default
distribution actions, set within the selected profile, are used.

 • When distributing a profile manager, all the profiles, including
SentryProfiles within that profile manager, will be distributed to all
subscribers using the default distribution options for each profile.

Next level Copies the profile to the selected
subscribers only.

Monitors are loaded into the
engine database instantly if they
are distributed for the first time or
have been modified since the
last distribution.

Exact copy Makes an exact copy of the
profile being distributed in the
local database of the endpoint
overwriting any modifications
that might have been applied to
the local profile copy.
Distributing a profile with exact
copy will force the Sentry Engine
to reload the entire database
and all monitors.

Overwrites information in the
system files with information
from all SentryProfiles in the
actual Profile Manager being
distributed.

Preserve
Modifications

Merges the distributed profile
with existing records updating
only the information that has not
been modified locally.
No monitors will be loaded into
the engine database after
distributing with Preserve
Modifications.

Distributes only the profile being
distributed if, and only if, the
profile has been modified. Since
no local modifications exists, the
resulting monitoring probes are
exact copies of the distributed
profile.

Distributing from Database
Profile Manager

Distributing from Dataless
Profile Manager
Distributed Monitoring 407

12.7.4 Distributing Profiles Using the Command Line
When using the wdistrib -l command, the parameters map to GUI
parameters as follows:

Table 17. wdistrib Parameters for SentryProfiles

12.8 The Distributed Monitoring Sentry Engine

On all endpoints where Distributed Monitoring is running the Sentry Engine is
the central component. The engine is responsible for firing the individual
monitors that have been distributed to the endpoint invoking any response
actions, such as running a script, a program, or returning the result to an
Indicator Collection, a task, a logfile, a TEC Server, and so on.

Figure 167. The Sentry Engine

Referring to the diagram in Figure 167, the functions of the managed node
SentryEngine are:

Exact copy Preserve
Modifications

From database profile manager overall maintain

From dataless profile manager overall_no_merge over_opts

112

2

3
4

567
8

9

10
11

5 0
4 0
3 0
2 0
10
 0
10
20
30
40
50

12 0
10 0
8 0

0
2 0

2 0
40
60

60
40

FFOOCOCO

Eng ine
D atabase

System
Files

oserv
D atabase

S entry
E ng ine

1

2

3

4

5

6

7

50
40
30
20
10
 0
10
20
30
40
50

120
100
80

0
20

20
40
60

60
40

FFOOCOCO

50
40
30
20
10
 0
10
20
30
40
50

120
100
80

0
20

20
40

60

60
40

FFOOCOCO

50
40
30
20

1 0
 0

1 0
2 0
3 0
4 0
5 0

1 20
1 00
80

0
2 0

20
4 0

6 0

6 0
4 0

FFOOCOCO

aa
aa

ddd

as
as

as
s

as
as

sa
s s

as
ss

s

a ss
s sss

s

ss
s sss

ss
s s

aaaaddd

asasass

asassass

asss

aaa addd
asa sass
asa ssass
ass ss
ass sssss
sss sss
sss s

TM R Server
408 Tivoli Enterprise Internals and Problem Determination

1. The endpoint receives the SentryProfile.

2. Information from the SentryProfile is stored in local profile copies or
system files.

3. If needed, the SentryEngine is started; otherwise, it is advised that a new
SentryProfile has been received.

4. The engine database is reloaded from the local profile copies and system
files.

5. The SentryEngine reads the database and builds the ready-list.

6. When the timer indicates that a monitor should be fired, the monitor
inspects the required resources and reports back to the SentryEngine.

7. The SentryEngine determines if a response-action should be initiated
running a task, updating an Indicator Collection, adding a notice to a
NoticeBoard, and initiates the required action.

The Sentry Engine is started automatically as a boot method when the Tivoli
subsystem initiates on an endpoint. For TMR servers and managed nodes,
this happens when the oserv program starts. On TMA endpoints, the start of
the lcfd program also starts the Sentry Engine. If the Sentry Engine, for some
reason, is not running, it will be started when any engine-command (wlseng,
wlsprb, wclreng, and others) is executed against the Sentry Engine. This
implies that the Engine will also be started if a SentryProfile is distributed to
the endpoint, or the endpoint is unsubscribed from a profile manager
containing SentryProfiles.

When using tasks as response actions in a monitor that are run on
managed nodes, it is vital for the execution of that task that it has been
distributed to the managed node on which the monitor is run.

To distribute the task, write the following from the TMR Server:

wdisttask -s tasklibrary LOCAL
wdisttask -d tasklibrary taskname

Remember, that distribution of tasks only completes successfully if ALL
managed nodes in the TMR are running at the time of distribution. The
same is true for creation of new tasks in task libraries with a
distribute-attribute of LOCAL.

On TMA endpoints, the tasks will be made available through the
framework.

Working with Tasks
Distributed Monitoring 409

When the Sentry Engine starts, control information describing all the
individual monitors that has been distributed to the endpoint is loaded into
memory. This is normally referred to as the engine database. As long as the
Sentry Engine is running, or until the engine database is cleared using the
wclreng command, the Sentry Engine maintains this control information for
each individual monitor adding responses and new firing times.

While running, the Sentry Engine periodically dumps the state of the engine
database to the $DBDIR/.sntcfg or $LCF_DATDIR/.sntcfg directory. This is known
as checkpointing, and is primarily performed in order to preserve the
responses from previous monitor runs. This enables the Sentry Engine to be
able to compare responses with previous runs if relative conditions, such as
Increase of 5%, are specified.

The Sentry Engine exits when the engine is stopped, either explicitly by
issuing the wstopeng command, or by stopping the object dispatcher (oserv).

Dependent on the type of endpoint, there is a slight difference in the way the
engine database is instantiated. This is due to the fact that managed nodes
hold local profile copies, and TMA endpoints do not. Since the Sentry Engine
on a managed node can operate in both database and dataless mode, its
engine database is loaded from both the local oserv database and the system
files in the .sntcfg directory. TMA Endpoints load the engine database just
from the .sntcfg directory.

Having loaded the engine database with monitor probes, the engine then
loads the monitors from the Monitoring Collections as they are needed.

12.9 Troubleshooting Distributed Monitoring

There are a number of things that can be checked if Distributed Monitoring is
not working as expected. This section includes some checks and tips for
troubleshooting.

Troubleshooting Tivoli Distributed Monitoring falls into two parts:

 • Troubleshooting the profile distribution
 • Troubleshooting the Sentry Engine
410 Tivoli Enterprise Internals and Problem Determination

12.9.1 Troubleshooting Distributed Monitoring Profile Distribution
Before troubleshooting the distribution process itself, it might be handy to be
able to tell which profiles have been distributed to which subscribers and
when. This information can be gathered from database type endpoints for
each profile manager using the wgetsub -l command.

Figure 168. Using wgetsub for Profile Manager with SentryProfiles

The information in Figure 168 shows that the profile universal was distributed
to endpoints itso2, itso3, and rh2900b, and the profile NT-monitoring was
distributed to ep-sub and rh2900b.

There is no way to gather the same information from dataless endpoints, but
for all endpoints, the wlseng and wlsprb commands show which monitors are
active in the SentryEngine.

In order to pinpoint problems related to profile distribution, the finer details of
the distribution process will have to be fully understood. This is the subject of
the next topic.

12.9.1.1 How SentryProfile Distributions Work
Distribution of a profile manager for Distributed Monitoring takes place in two
phases:

1. Using MDist (a framework service), the profile is sent from the TMR Server
to the dogEndpoint program on the endpoint using an IOM channel. If the
endpoint has a local database, such as managed nodes, the local
database is updated with the new profile.

2. A second IOM channel is opened between the dogEndpoint process and
the local sentry or endpoint engine process, and data is fed to the engine.

wgetsub -l @sentry
ep-sub Sentry2.0: NT-monitoring_1998892590.1.1433#Sentry::All#,

last distribute Wed Dec 09 13:18:35 1998

itso2 Sentry2.0: universal_1998892590.1.1441#Sentry::All#,
last distribute Wed Dec 16 12:02:53 1998

itso3 Sentry2.0:
universal_1998892590.1.1441#Sentry::All#,

last distribute Wed Dec 09 15:03:26 1998

rh2900b Sentry2.0: universal_1998892590.1.1441#Sentry::All#,
last distribute Wed Dec 16 13:45:50 1998

NT-monitoring_1998892590.1.1433#Sentry::All#,
last distribute Wed Dec 16 12:07:14 1998
Distributed Monitoring 411

After the engine receives the data, it updates the files in the
$DBDIR/.sntcfg or $LCF_DATDIR/.sntcfg directory.

Refer to 7.6.3, “Bulk Data Transfer and Inter-Object Messaging” on page 271
for details on how IOM sessions are initiated and controlled.

If other applications, such as software distribution, work fine to the endpoint,
the first phase of the transfer should also work for distributed monitoring. In
case of a problem, it is the second phase with errors when the endpoint is
attempting to connect back to itself.

If you repeat what the IOM transfer is attempting to do, you will generally find
the problem. The hostname command will find the same name it's looking at
then resolve this hostname to an IP address. See if you can ping the address.
The problem is normally hostname resolution on the endpoint; it cannot
resolve its own name, or it cannot talk to itself through the loopback adapter.
If loopback is down, the transfer will fail.

12.9.1.2 Troubleshooting Distributions
Troubleshooting distribution of SentryProfiles is very similar to that of other
profiles, so the output from the odstat and wtrace commands are the basic
sources of information. The troubleshooting involves three basic steps:

1. Verifying IP connectivity and name resolution - including local name
lookup

2. Tracing the IOM sessions - external as well as internal

3. Tracing attributes

When setting up tracing with odadmin trace, it is essential that both objcalls
and services are specified and that the order is objcalls first and then
services. The services trace parameter enables tracing of manipulation of
object-attributes and is vital for gathering complete trace information for
distribution of SentryProfiles.

odadmin trace objcalls
odadmin trace services
412 Tivoli Enterprise Internals and Problem Determination

In a Tivoli environment using TMA endpoints, it is important to remember that
there are more than two players active during distribution. The gateway plays
a very active role in the process, and what’s happened on the gateway is just
as important as what’s going on at the TMR server and at the TMA endpoint.
However, this is only true when distributing to TMA endpoints. Dataless
endpoints on managed nodes do not use the gateway, and, therefore, it does
not make sense to trace the gateway when experiencing distribution
problems on a managed node.

When troubleshooting distributions, always look for the push method in the
odstat output from the TMR server or managed node hosting the profile.
Then, follow the transaction hierarchy looking for errors or peculiarities such
as NO_METHOD.

The example in Figure 169 on page 414 shows an odstat output where it is
attempting to distribute a Sentry profile to a TMA endpoint after having
stopped the gateway.

When tracing the gateway, a debugging level of 9 should be used. Use the
wgateway command to set the debug level and remember to restart the
gateway to activate the changes:

wgateway <gateway set_debug_level 9
wgateway rh2900b-gateway restart

On endpoints, the contents of the /tmp/dm36.ll file should be 4 to indicate
full debugging of the Sentry components. To accomplish this, the following
command can be used:

echo 4 > /tmp/dm36.ll

Trace Levels
Distributed Monitoring 413

Figure 169. Output of odstat from SentryProfile Distribution

Prior to the push method, a number of methods concerned with the GUI
interactions used for distributing are run. The push itself is run in thread-ID
(TID) 4705. It launches a number of sub-processes to ensure that all
pre-requisites are available before performing the distribution.

In this case, the interesting sub-process hierarchy is 4113-4715-4736/4737,
which ends with a NO_METHOD condition indicating that the rpt method on the
gateway at dispatcher 2 (the full oid is 1998892590.2.21) could not be found.

* 4692 O+hdoq 1-4509 done 935 0 17:47:29 e=12 1998892590.1.517#TMF_LCF::EpMgr# push_copy_in
 4693 O+ 1-4692 done 15 0 17:47:29 0.0.0 get_name_registry
 4694 O+hdoq 1-4692 done 97 0 17:47:29 1998892590.1.26 lookup
 4695 O+hdq 1-4692 done 46 0 17:47:29 1998892590.1.4 lookup_id
 4696 O+hdq 1-4692 done 148 0 17:47:29 1998892590.1.4##2@Sentry::All describe
 4697 O+hdq 1-4692 done 2136 0 17:47:29 1998892590.1.4##2@Sentry::All _get_type
 4698 O+ 1-4692 done 60 0 17:47:30 1998892590.1.1162#Sentry::All# _get_profile_organizer
 4699 O+hdoq 1-4692 done 111 0 17:47:30 1998892590.1.26 lookup
 4700 O+hdoqs 1-4692 done 577 0 17:47:30 1998892590.1.517#TMF_LCF::EpMgr# get_endpoint_key_value
 4701 O+ 1-4692 done 25 0 17:47:30 1998892590.1.1162#Sentry::All# _get_label
 4702 O+hdoqs 1-4692 done 6 0 17:47:30 1998892590.1.955#TMF_UI::Extd_Desktop# execute
 4703 O+hdoq 1-4692 done 551 0 17:47:30 1998892590.1.1158#TMF_CCMS::ProfileManager# default_push_profiles
 4704 O+ho 1-4703 done 461 0 17:47:30 1998892590.1.1162#Sentry::All# default_push
 4705 O+hdq 1-4704 done 461 0 17:47:30 1998892590.1.1162#Sentry::All# push
 4706 O+hdoq 1-4705 done 219 0 17:47:31 1998892590.1.1158#TMF_CCMS::ProfileManager# get_record
 4707 O+ 1-4705 done 15 0 17:47:31 0.0.0 get_name_registry
 4708 O+hdoq 1-4705 done 88 0 17:47:31 1998892590.1.26 lookup
 4709 O+ 1-4705 done 81 0 17:47:31 1998892590.0.0 get_identity
 4710 O+ 1-4705 done 31 0 17:47:31 1998892590.1.179#TMF_Administrator::Configuration_GUI# _get_label
 4711 O+hdoq 1-4705 done 1128 0 17:47:31 1998892590.1.1158#TMF_CCMS::ProfileManager# get_record
 4712 O+hdoq 1-4705 done 6 0 17:47:32 1998892590.1.1158#TMF_CCMS::ProfileManager# set_records
 4713 O+ho 1-4705 done 461 0 17:47:32 redirect push
 4714 O+hdoq 1-4713 done 2054 0 17:47:32 1998892590.1.1158#TMF_CCMS::ProfileManager# get_record
 4715 O+hdoq 1-4713 done 461 0 17:47:32 1998892590.1.1158#TMF_CCMS::ProfileManager#
push_with_actions
* 4716 O+ 1-4715 done 698 0 17:47:32 1998892590.1.1158#TMF_CCMS::ProfileManager# _get_subscribers
 4717 O+ 1-4715 done 15 0 17:47:32 0.0.0 get_security_objid
 4718 O+ 1-4715 done 29 0 17:47:32 1998892590.0.0 idmap_list_maps
 4719 O+ 1-4715 done 57 0 17:47:32 1998892590.0.0 idmap_list_entries root_group
 4720 O+ 1-4715 done 102 0 17:47:32 1998892590.0.0 idmap_list_entries root_user
 4721 O+ 1-4715 done 15 0 17:47:33 0.0.0 get_name_registry
 4722 O+hdoq 1-4715 done 95 0 17:47:33 1998892590.1.26 lookup
 4723 O+hdoq 1-4715 done 236 0 17:47:33 1998892590.1.366 obj_route
 4724 O+ 1-4723 done 15 0 17:47:33 0.0.0 get_name_registry
 4725 O+hdoq 1-4723 done 690 0 17:47:33 1998892590.1.26 get_all
 4726 O+hdoq 1-4723 done 237 0 17:47:34 1998892590.1.26 get_all
 4727 O 1-4723 done 18 0 17:47:34 1295714281.1.517 get_rpt_format
 4728 O+hdoqs 1-4723 done 168 0 17:47:34 1998892590.1.517 get_rpt_format
 4729 O+hdoq 1-4728 done 260 0 17:47:34 1998892590.1.26 region_get_all
 4730 O+hdoq 1-4723 done 690 0 17:47:34 1998892590.1.26 get_all
 4731 O+hdoq 1-4723 done 237 0 17:47:34 1998892590.1.26 get_all
 4732 O+hdoqs 1-4723 done 168 0 17:47:34 1998892590.1.517 get_rpt_format
 4733 O+hdoq 1-4732 done 260 0 17:47:35 1998892590.1.26 region_get_all
 4734 O+hdoq 1-4715 done 95 0 17:47:35 1998892590.1.26 lookup
4735 O+hdoq 1-4715 done 12 0 17:47:35 1998892590.1.366 _get_final_timeout
* 4736 O a 1-4715 done 0 0 17:47:35 NO_METHOD 1998892590.2.21#TMF_Gateway::Gateway# rpt
* 4737 O 1-4715 done 0 0 17:47:38 NO_METHOD 1998892590.2.21#TMF_Gateway::Gateway#
fps_cancel
 4738 O+ 1-4713 done 25 0 17:47:38 1998892590.1.1158#TMF_CCMS::ProfileManager# _get_label
 4739 O+ 1-4713 done 15 0 17:47:38 0.0.0 get_name_registry
 4740 O+hdoq 1-4713 done 128 0 17:47:38 1998892590.1.26 lookup
 4741 O+bhdq 1-4713 done 6 0 17:47:38 1998892590.1.88#TMF_SysAdmin::InstanceManager# log_notice
 4742 O+hdoqs 1-4692 done 6 0 17:47:39 1998892590.1.955#TMF_UI::Extd_Desktop# execute
 4743 O+hdq 1-4509 done 8719 0 17:47:39 1998892590.1.75#TMF_Message::Catalog# get_message_catalog
 4744 O+hdq 1-4509 done 2639 0 17:47:39 1998892590.1.75#TMF_Message::Catalog# get_message_catalog
414 Tivoli Enterprise Internals and Problem Determination

Further investigation will now have to be performed on the managed node
hosting the 1998892590.2.21 gateway.

The next example in Figure 170 shows the methods involved on the gateway
when the SentryEngine on a TMA initiates. The SentryEngine had
deliberately been stopped (using the wstopeng command) and was then forced
to restart using the wlseng command. The odstat output shows the three basic
methods used by the wlseng command at the endpoint (1998892590.22.508+)
which are:

tmr_examine Inspects the engine database for timer data

mp_examine Inspects the engine database for monitor probe data

ra_examine Inspects the engine database for response data

Figure 170. Output from odstat Showing Restart of Sentry Engine

 3328 O done 296 0 10:58:26 1998892590.1.4##6@LCFData::ep_tnr_info_s describe
 3329 O done 115 0 10:58:26 1998892590.1.26 lookup
 3330 O done 18178 0 10:58:26 1998892590.1.75#TMF_Message::Catalog# get_message_catalog
 3331 O done 1146 0 10:58:26 1998892590.22.508+#TMF_Endpoint::Endpoint# tmr_examine
---------- records removed
 3337 M hdq done 4790 0 10:58:55 1998892590.2.581- GetCollList
 3338 O+ 2-3337 done 15 0 10:58:56 0.0.0 get_name_registry
 3339 O 2-3337 done 109 0 10:58:56 1998892590.1.26 lookup
 3340 O 2-3337 done 64 0 10:58:56 1998892590.1.14#TMF_SysAdmin::Library# lookup_object
 3341 O 2-3337 done 33 0 10:58:56 1998892590.1.540#TMF_SysAdmin::InstanceManager# get_prototype
 3342 O 2-3337 done 111 0 10:58:56 1998892590.1.26 lookup
 3343 O 2-3337 done 188 0 10:58:56 1998892590.1.26 lookup
 3344 O 2-3337 done 97 0 10:58:56 1998892590.1.26 lookup
 3345 O 2-3337 done 57 0 10:58:56 1998892590.1.4 lookup_id
 3346 O 2-3337 done 296 0 10:58:56 1998892590.1.4##6@LCFData::ep_tnr_info_s describe
 3347 O 2-3337 done 111 0 10:58:56 1998892590.1.26 lookup
* 3348 O 2-3337 done 373 0 10:58:56 e=12 1998892590.1.517#TMF_LCF::EpMgr# add_boot_method
 3349 O 2-3337 done 4811 0 10:58:57 1998892590.1.26 region_get_all
 3350 O done 1327 0 10:58:58 1998892590.22.508+#TMF_Endpoint::Endpoint# mp_examine
 3351 M hdq done 54077 0 10:59:01 1998892590.2.581- GetColl
 3352 O 2-3351 done 134 0 10:59:01 1998892590.1.26 local_lookup
 3353 O 2-3351 done 32253 0 10:59:01 1998892590.1.834#SentryMonitoringCapability::Collection#
_get_collection
 3354 M hdq done 20259 0 10:59:03 1998892590.2.581- GetColl
 3355 O 2-3354 done 126 0 10:59:03 1998892590.1.26 local_lookup
 3356 O 2-3354 done 13877 0 10:59:03 1998892590.1.822#SentryMonitoringCapability::Collection#
_get_collection
* 3357 M hdq done 0 0 10:59:04 e=6 1998892590.2.581- GetTask
 3358 O+ 2-3357 done 45 0 10:59:04 0.0.0 get_host_location
 3359 O+hdoq 2-3357 done 30 0 10:59:04 1998892590.2.7#TMF_ManagedNode::Managed_Node# install_directory
 3360 O+ 2-3359 done 15 0 10:59:05 0.0.0 get_oserv
 3361 O+ 2-3359 done 13 0 10:59:05 1998892590.2.2 query install_dir
 3362 O done 1329 0 10:59:06 1998892590.22.508+#TMF_Endpoint::Endpoint# ra_examine
 3363 M hdq done 150431 0 10:59:07 1998892590.2.581- GetColl
 3364 O+ 2-3363 done 15 0 10:59:07 0.0.0 get_name_registry
 3365 O 2-3363 done 4811 0 10:59:07 1998892590.1.26 region_get_all
 3366 O 2-3363 done 129 0 10:59:07 1998892590.1.26 local_lookup
 3367 O 2-3363 done 116856 0 10:59:07 1998892590.1.858#SentryMonitoringCapability::Collection#
_get_collection
 3368 M hdq done 19 0 10:59:11 1998892590.2.581- ChangeIcon
 3369 O 2-3368 done 4811 0 10:59:11 1998892590.1.26 region_get_all
 3370 O 2-3368 done 25530 0 10:59:11 1998892590.1.816#SentryMonitoringCapability::Collection#
_get_collection
-------- a number of _get_collection entries removed
 3407 O 2-3368 done 41478 0 10:59:27 1998892590.1.851#SentryMonitoringCapability::Collection#
_get_collection
* 3408 O+bhdq 2-3368 done 0 0 10:59:28 e=6 1998892590.2.581- QueueConsumer
Distributed Monitoring 415

12.9.2 Troubleshooting Monitor Execution
Monitors are distributed from the server and run on each individual system. In
debugging Tivoli Distributed Monitoring problems, there are many pieces of
information required to narrow down a problem.

For managed nodes, the very first place to look is in the Notice Board. By
default, all failing monitor runs report their status to the SentryStatus group of
the Notice Board. Remember to add this group to the Notice Board
Subscriptions for each of the administrators that will handle Distributed
Monitoring.

.

Figure 171. Response Failure Reported in the SentryStatus Notice Group

The notice in Figure 171 shows a notice from a monitor monitoring the state
of application DM_TEST. The detailed information tells us that problems were
encountered when issuing the response with the warning severity.

Adding notices to the Notice Board when problems occur in firing responses
is only implemented for managed nodes - not for TMA endpoints. The reason
for this is that the Notice Board and the oserv process of the TMR Server
would be overloaded if the same problem occurred on thousands of
416 Tivoli Enterprise Internals and Problem Determination

endpoints simultaneously, which could happen if a monitor generating the
problems is distributed to the endpoints.

Tivoli Distributed Monitoring supplies a number of commands that can be
used to get detailed information on the SentryEngine itself, the different
monitoring probes running in the engine, and commands to manipulate
monitors and monitoring probes.

In addition, from Tivoli Distributed Monitoring Version 3.6, the Sentry Engine
on a TMA endpoint maintains a logfile, $LCF_DATDIR\dm36.log, which shows the
activity of the engine. The level of detail is controlled by the file
/tmp/dm36.ll.This file holds only a number indicating the log level similar to
the log level parameter of the lcfd engine itself. The log levels are:

0 No information
1 Minimal logging
2 Tracing and moderate output
3 Detailed information and tight loops
4 Data

Level 4 generates a large amount of data and should only be used in certain
cases. For general troubleshooting, level 2 or 3 is recommended. Figure 172
on page 418 is an example of a file generated with log level 3 for the
initialization of the SentryEngine of a TMA endpoint:
Distributed Monitoring 417

Figure 172. The dm36.log File - SentryEngine Startup (Log Level 3)

As was shown in Figure 172, first the engine database is initialized, then the
Collections are loaded, and then the engine starts the loop checking for
monitors on the ready list.

Figure 173 on page 419 shows an extract from the dm36.log firing a monitor
probe, Task 2, and checking for responses. In this case, the response action
was to update an icon in an IndicatorCollection, which had been removed.
Therefore, the response Upcall (Icon) failed.

Dec 09 15:37:34 1 DM3.6 Sentry Engine Log
Dec 09 15:37:34 2 DM3.6 Initialized private marshaling code
Dec 09 15:37:34 2 DM3.6 Initialized data store
Dec 09 15:37:34 2 DM3.6 Loading collection list...
Dec 09 15:37:34 2 DM3.6 Connecting to ’127.0.0.1+9494’
Dec 09 15:37:34 2 DM3.6 Loaded capabilities
Dec 09 15:37:34 2 DM3.6 Beginning the engine run loop previous time =913239420
Dec 09 15:37:34 2 DM3.6 Beginning the engine run loop current minute =913239420
Dec 09 15:37:34 2 DM3.6 ready list is empty!
Dec 09 15:37:34 2 DM3.6 call to wait for connection seconds =26
Dec 09 15:37:35 2 DM3.6 recieved message of =32
Dec 09 15:37:35 2 DM3.6 message code is 23
Dec 09 15:37:35 2 DM3.6 returned from connection thread call
Dec 09 15:37:35 2 DM3.6 Beginning the engine run loop current minute =913239420
Dec 09 15:37:35 2 DM3.6 ready list is empty!
Dec 09 15:37:35 2 DM3.6 call to wait for connection seconds =25
Dec 09 15:37:35 2 DM3.6 recieved message of =31
Dec 09 15:37:35 2 DM3.6 message code is 24
Dec 09 15:37:35 2 DM3.6 returned from connection thread call
Dec 09 15:37:35 2 DM3.6 Beginning the engine run loop current minute =913239420
Dec 09 15:37:35 2 DM3.6 ready list is empty!
Dec 09 15:37:35 2 DM3.6 call to wait for connection seconds =25
Dec 09 15:37:35 2 DM3.6 recieved message of =31
Dec 09 15:37:35 2 DM3.6 message code is 25
Dec 09 15:37:35 2 DM3.6 returned from connection thread call
Dec 09 15:37:35 2 DM3.6 Beginning the engine run loop current minute =913239420
Dec 09 15:37:35 2 DM3.6 ready list is empty!
Dec 09 15:37:35 2 DM3.6 call to wait for connection seconds =25
Dec 09 15:38:00 2 DM3.6 connect exception: Timeout after 0 secs.
Dec 09 15:38:00 2 DM3.6 returned from connection thread call
Dec 09 15:38:00 2 DM3.6 Beginning the engine run loop current minute =913239480
Dec 09 15:38:00 2 DM3.6 Adding probe 0 to the ready list
Dec 09 15:38:00 2 DM3.6 Adding probe 1 to the ready list
Dec 09 15:38:00 2 DM3.6 Adding probe 2 to the ready list
Dec 09 15:38:00 2 DM3.6 Adding probe 3 to the ready list
Dec 09 15:38:00 2 DM3.6 Adding probe 4 to the ready list
Dec 09 15:38:00 2 DM3.6 Adding probe 5 to the ready list
Dec 09 15:38:00 2 DM3.6 Adding probe 6 to the ready list
418 Tivoli Enterprise Internals and Problem Determination

Figure 173. The dm36.log File - SentryEngine Running (Log Level 3)

If the information available in the dm36.log is not enough to pin-point the
problem, the following has to be checked, especially when monitoring through
custom scripts or using response scripts, prior to any further investigation:

 • Ensure any custom monitor script contains #!/bin/sh at the start and exit
0 at the end.

 • Check the file permissions for the program in use for correct access rights.

 • Check the user name and group name being used.

 • Try setting the response level to always and log to file. Then you can
review the log file.

12.9.3 Monitoring Command Overview
The following commands can be used to determine how Distributed
Monitoring is set up and running:

Dec 09 15:38:02 2 DM3.6 Beginning the engine run loop current minute =913239480
Dec 09 15:38:02 2 DM3.6 running a probe from the ready list
Dec 09 15:38:02 2 DM3.6 Task 6
(<NT_System><SysUpTime><p3#p3_1351550138.1.1159#Sentry::All#__2e1351550138.119.0+>)
NOT ready
Dec 09 15:38:02 2 DM3.6 Task 5
(<NT_System><FileRdOperPerSec><p4#p4_1351550138.1.1160#Sentry::All#__0e1351550138.119
.0+>)
NOT ready
Dec 09 15:38:02 2 DM3.6 Task 4
(<NT_IP><GramsPerSec><p1#p1_1351550138.1.1157#Sentry::All#__0e1351550138.119.0+>)
NOT ready
Dec 09 15:38:02 2 DM3.6 Task 3
(<NT_EventLog><Secevent><p2#p2_1351550138.1.1158#Sentry::All#__1e1351550138.119.0+>)
NOT ready
Dec 09 15:38:02 2 DM3.6 Task 2
(<NT_EventLog><Syswarnevent><p2#p2_1351550138.1.1158#Sentry::All#__0e1351550138.119.0
+>)
ready
Dec 09 15:38:02 2 DM3.6 probe 2 ran, checking for responses
Dec 09 15:38:02 2 DM3.6 Connecting to ’127.0.0.1+9494’
Dec 09 15:38:03 1 DM3.6 Upcall (Icon) failure: Wed Dec 9 15:48:52 CST 1998 (2):
operation ‘requested resource not found’ failed
Dec 09 15:38:03 2 DM3.6 Task 1
(<TME_Monitors><ObjCallsmade><p3#p3_1351550138.1.1159#Sentry::All#__1e1351550138.119.
0+>)
NOT ready
Dec 09 15:38:03 2 DM3.6 Task 0
(<Universal><appStatus><p3#p3_1351550138.1.1159#Sentry::All#__0e1351550138.119.0+>)
NOT ready
Dec 09 15:38:03 2 DM3.6 call to wait for connection seconds =0
Dec 09 15:38:04 2 DM3.6 connect exception: Timeout after -1 secs.
Dec 09 15:38:04 2 DM3.6 returned from connection thread call
Distributed Monitoring 419

 • On the TMR Server:

wlsmon Lists the monitors for a SentryProfile providing a view of the
top level monitor on the server’s database.

wdumpsnt Exports the monitor definition to be saved to a file and is used
to create another identical monitor.

wloadsnt Imports the monitor definition.

wsetmon (+ or - d) Enables or disables a monitor.

 • On Sentry engines, commands can be run on any managed node with a
parameter to specify the desired node:

wclreng Clears the Sentry engine on the client specified. Useful if a
monitor was inadvertently defined to run too often.

wdelprb Deletes a specified Sentry monitor from a client engine (not
available on TMA endpoints).

wrunprb Runs a specified Sentry monitor from a client engine.

wlseng Lists the contents of the Sentry engine.

12.9.4 The wlseng Command
The wlseng command provides very detailed output of what is happening in a
Sentry engine.

There are three main sections of output from the wlseng command:

Timer Lists timing information about when Sentry will start and
how often it will run.

Monitoring probes Lists the values for each severity level and the current
value of the monitor.

When running the wclreng, wrunprb, or wlseng commands on a TMA
endpoint, it is necessary to source-in the proper environment.

This can be achieved from the command line with the following command:

UNIX: $LCF_DATDIR/dm_env.sh

Intel: %LCF_DATDIR%\dm_env.cmd

When running the commands from a managed node, use the -z flag to
specify that the host referenced in the host argument of the command is a
TMA endpoint.

Usage Note
420 Tivoli Enterprise Internals and Problem Determination

Responses Lists what action(s) will take place for each severity
level of a monitor.

The wlseng command, without any arguments, outputs information from the
endpoint where the command was invoked. The command with the name of
an endpoint will get information from endpoint and the -l option will give a
long listing.

12.9.4.1 wlseng Examples
The example in Figure 174 on page 422 is the output from a monitor with all
severity levels going off every two hours on week days. In the first response,
you can see an entry for severity level marked asterisk (*). This means
always, and in this case, an entry will be written to a file. You will also see that
this monitor has two responses for critical severity, the second of which is
how a task is listed. Note that the emphasis on some of the words is ours and
is not normally in the output.
Distributed Monitoring 421

Figure 174. Output from wlseng for All Severity Levels Every Two Days

The next example in Figure 175 on page 423 lists output from a monitor that
has custom hours set:

Timer:
<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>> 2:H:Y8,17:Y18,7:Y1,5:N6,0:N0,23:N0,6:Custom hours:
Custom days:861830400

Wakeup: 04/23/97 18:20:00 (112 minutes from now)
Monitoring probes:
<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>> ("@U_Sentry_2hr_weekday","@G_Sentry_2hr_weekday",
"Sentry_2hr_weekday1980366669.1.327")diskusedpct("/") > 95 : "critical", > 90 :
"severe", > 80 : "warning", : "normal";

Last value: <none>
Responses:
<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>> <<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sen
try_1980366669.1.637#Sentry::All#__1e1980366669.1.327>> *

file("@U_Sentry_2hr_weekday","@G_Sentry_2hr_weekday","0","/var/adm/DiskUsage",
"38x1980366669.1.539#SentryEngine::engine#snapon");

<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>>
<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>> normal

icon("@K_Sentry_2hr_weekday");

<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>>
<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>> warning

popup("0","54x1980366669.1.179#TMF_Administrator::Configuration_GUI#Root_snapo
n31-region");

<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>>
<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>> severe

mail("0","mhahn@tivoli.com"),notify("0","Sentry-urgent"),tec("29x1980366669.1.5
97#Tec::Server#EventServer","CRITICAL","0");

<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>>
<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>> critical

popup("0","54x1980366669.1.179#TMF_Administrator::Configuration_GUI#Root_snapo
n31-region"),notify("0","Sentry-urgent"),tec("29x1980366669.1.597#Tec::Server#Event
Server","FATAL","0");

<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>>
<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_1980366669.1.637#Sentry::
All#__1e1980366669.1.327>> critical

[Tasks: snapon_tasks:CleanRoot]
422 Tivoli Enterprise Internals and Problem Determination

Figure 175. Output from wlseng with Custom Hours Set

The intention of this configuration was that anyone playing Doom during
working hours will cause mail to be sent to the big_cheese_admin. Actually, this
example shows a common mistake. This monitor will have to find two copies
of Doom running (>1) in order for the severe level to be triggered.

The next section provides more detail on interpreting the output from wlseng.

12.10 Interpreting Sentry Engine Information

Using the wlseng command (see “wlseng Examples” on page 421) we can find
out everything about a monitor that Distributed Monitoring is using. The three
sections of the output are described in more detail here.

12.10.1 Determining Monitor Timing
With the output from wlseng, we can read information about when the monitor
will next run, the intervals, and so on. The Timer section of the wlseng output
is made up of the identification, how often the monitor will go off (scheduling),
and when the monitor will next go off.

The identification area looks like this:

<<Unix_Sentry><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_234907.1.
532#Sentry::All#__0e234907.1.332>>

 • The first field is the name of the Sentry monitor collection.

 • Field two is the name of the monitor.

Timer:

<<Unix_Sentry><daemonct><Sentry_custom_hours#Sentry_custom_hours_1980366669.1.638#Se
ntry::All#__0e1980366669.1.327>> 20:m:N8,17:N17,8:Y1,5:N6,0:Y17,6:N0,6:Custom
hours:Custom days:861822900

Wakeup: 04/23/97 17:15:00 (156 minutes from now)

Monitoring probes:
<<Unix_Sentry><daemonct><Sentry_custom_hours#Sentry_custom_hours_1980366669.1.638#Se
ntry::All#__0e1980366669.1.327>>
("@U_Sentry_custom_hours","@G_Sentry_custom_hours","Sentry_custom_hours1980366669.1.
327")daemonct("doom") > 1 : "severe", : "normal";

Last value: <none>

Responses:
<<Unix_Sentry><daemonct><Sentry_custom_hours#Sentry_custom_hours_1980366669.1.638#Se
ntry::All#__0e1980366669.1.327>>
<<Unix_Sentry><daemonct><Sentry_custom_hours#Sentry_custom_hours_1980366669.1.638#Se
ntry::All#__0e1980366669.1.327>> severe

mail("0","big_cheese_admin@tivoli.com");
Distributed Monitoring 423

 • Field three is the full name of the SentryProfile. The OIDs listed are for the
SentryProfile and the node running the monitor, respectively.

The schedule piece looks something like this:

10:m:Y8,17:Y18,7:Y1,5:Y6,0:N0,23:N0,6:Custom hours:Custom
days:805477500

This is broken up as follows:

10:m Interval - This example runs every 10 minutes.

Y8,17 Yes, runs between 8:00 - 17:00 (Standard hours).

Y18,7 Yes, runs between 18:00 - 7:00 (Standard hours).

Y1,5 Yes, runs Monday through Friday.

Y6,0 Yes, runs Saturday and Sunday.

NO,23 No, custom hours not set.

NO,6 No, custom days not set.

Custom hours Defines custom hours.

Custom days Defines custom days.

805477500 Initial startup time. This is the number of seconds since
midnight (GMT) on January 1st, 1970. Newer releases show
the converted time in wlseng output. Figure 176 is a C
source example that can be used to convert this time:

Figure 176. C Source to Convert Monitor Startup Time Value

#include <stdio.h>
#include <time.h>
main(int argc, char **argv)
{
long t = atoi(argv[1]);
struct tm lt = *localtime(&t);
struct tm gt = *gmtime(&t);
printf(“Local: %s”, asctime(<));
printf(“Universal: %s”, asctime(>));
{

run as follows:
convert_time 805477500
424 Tivoli Enterprise Internals and Problem Determination

 • The next occurrence section will look like:

Wakeup: 01/27/96 13:35:00 (9 minutes from now)

The wrunprb command can be used to execute a monitor immediately that is
on an engine. The syntax is:

wrunprb <collection_name> <monitor_name> <sentry_profile_name>

12.10.1.1 When Monitors Do Not Run when Expected
When a monitor is created, one of the parameters it is given is an initial start
time. This is under the Set Monitoring Schedule window where it shows the
Start monitoring activity. This is shown in Figure 177:

:

Figure 177. Distributed Monitoring - Start Monitoring Activity

The monitor is given a start date including:

Tivoli uses the digit 0 to represent Sunday - A user may enter 7, but it will
be stored as 0.

The initial startup time and the interval are always used to determine when
the monitor will next run. It will not run immediately after a Sentry engine is
restarted. (A monitor can be run immediately using wrunprb.)

Notes
Distributed Monitoring 425

 • Month
 • Day
 • Year
 • Hour
 • Minute
 • Am/Pm

This generates an absolute count of the number of seconds from midnight
(GMT) on January 1st, 1970 that this monitor is supposed to start at.

The time is based upon the LOCAL setting on the TMR Server (the TZ setting
shown in odadmin environ set).

When this monitor is distributed, the wlseng -l command shows in the Timer
section three pieces:

 • The absolute time to first fire
 • The translated time (in local time)
 • The delta or offset from the current local time

After the Custom days section, a number is shown. This is the absolute count in
seconds when the monitor should first fire. This number is translated to GMT
(also called coordinated universal time) and further converted using the
LOCAL setting of the oserv TZ variable (odadmin environ get) to produce the
Waketime: In this example, 03/04/98 17:20:00.

The wlseng command then does a system call to the localtime() function to
return the system timezone adjusted time and uses this time to calculate the
(n minutes from now) part of the entry.

So, how does this effect when the monitor will really fire?

On the machine running the monitor, if the TZ variable the oserv uses is set to
the same timezone as the local timezone setting, or is not set (the default) the
probe will fire at the same time in all timezones. This is not the same local
time, that is 5pm, but the same absolute time. If the probe was set to fire at
6pm US Central time, it will fire at 7pm US Eastern, 5pm US Mountain, and
4pm US Pacific time. This may not be the expected behavior!

If the TZ variable the oserv uses is set to the same timezone for ALL
machines, that is CST6CDT, then the monitor will fire at the same LOCAL

Timer:
 <<Universal><scustom>........,6:Custom hours:Custom days:889053600
 Wakeup: 03/04/98 17:20:00 (353 minutes from now)
426 Tivoli Enterprise Internals and Problem Determination

time, 5pm in all timezones. Setting the TZ variable to other than the local
timezone affects the entire oserv environment. This will cause the Tivoli
scheduler to run processes at times different from the expected times. Do this
with EXTREME CAUTION.

By default, the TZ variable may not be set for a specific platform. This can
cause the monitors to fire at unexpected times. Always make sure the oserv
environment variable is set so you know when the monitors will fire. To check
the settings do:

odadmin environ get

to modify:

odadmin environ get >filename
edit filename and change/add the TZ variable to the set.

Example:

odadmin environ get
PATH=/bin:/usr/bin
SHLIB_PATH=
TZ=CST6CDT <---
NLSPATH=/opt/Tivoli/msg_cat/%L/%N.cat

then do:

odadmin environ set <filename
odadmin reexec <disp#> from the TMR Server or stop/start the oserv on the
machine.

Now all of the monitors should be firing at predictable times.

12.10.2 Understanding Monitoring Probe Information
With the output from wlseng, we can interpret information about the monitor
probes themselves. The Monitoring Probes section of the output contains
identification, severity level, and last probed value information.

 • The identification section looks like this:

<<Sentry2.0><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_234907.1.
531#Sentry::All#__0e234907.1.332>>

This is the same identification as used in the Timer part of the output and
is broken down as follows:

 • The first field is the name of the Sentry monitor collection.

 • Field two is the name of the monitor.
Distributed Monitoring 427

 • Field three is the full name of the Sentry profile.

 • The next line defines the severity levels that will equate with the values
returned from the probe:

("@U_Sentry_2hr_weekday","@G_Sentry_2hr_weekday","Sentry_2hr_weekday
234907.1.332")diskusedpct("/") > 95 : "critical", > 90 : "severe", >
80 : "warning", : "normal";

In this case, if the disk used percentage count rose above 95, this would
be indicated as critical, above 90 up to 95 would be severe, above 80 up
to 90 would be warning, and other values would be considered normal.

 • The last probed value is listed next. In our case, this was:

Last value: <none>

12.10.3 Understanding Monitoring Response Information
With the output from wlseng, we can interpret information about the monitor
response configuration. The Responses section contains an entry for each
severity level defined. This consists of identification and action for each
severity level information.

 • The identification section heads each Responses entry and looks like this:

<<Sentry2.0><diskusedpct><Sentry_2hr_weekday#Cool_Sentry_234907.1.
531#Sentry::All#__0e234907.1.332>>

This is the same identification as used in the Timer and Monitoring Probes
parts of the output and is broken down as follows:

 • The first field is the name of the Sentry monitor collection.

 • Field two is the name of the monitor.

 • Field three is the full name of the Sentry profile.

 • The severity line will be the identification string repeated and followed by
the severity name.

 • The action entry can be one or more of the following (separated by
commas):

icon Change indicator collection icon.
popup Pop-up dialog on listed administrator’s desktops.
mail Send e-mail to specified e-mail addresses (does not have to be

Tivoli administrators).
notify Post Tivoli notice to specified notice group.
file Log to specified file.
tec Send an event to Tivoli Enterprise Console. The entry identifies

the TEC server and the corresponding TEC severity level.
428 Tivoli Enterprise Internals and Problem Determination

exec Execute command.
taskname The name of a Tivoli task to execute.

12.11 Distributed Monitoring Recovery Tools

If there are difficulties manipulating the Sentry Engine or distributing monitors
to a specific endpoint, two tools are available from the Tivoli US Support
Center through your normal support channels:

clear_dm.sh Clears the Sentry Engine totally and cleans-up any left over
attributes in the oserv database that may be the cause of
the problems.

wreloadeng.sh A tool to rebuild the Sentry Engine based upon the
subscriptions and what has previously been distributed to
that endpoint.

These tools are not part of the standard Tivoli product and may not be
available in all locations. In most localities, you should be able to obtain a
copy by contacting your IBM or Tivoli representative.
Distributed Monitoring 429

430 Tivoli Enterprise Internals and Problem Determination

Chapter 13. Inventory

Tivoli Inventory is a hardware and software inventory-gathering application
designed to help system administrators monitor and record changes in
software and hardware configurations.

13.1 Tivoli Inventory Overview

Tivoli Inventory collects and stores hardware and software information about
the systems within a single TMR. Inventory uses a third-party relational
database management system (RDBMS) through the Tivoli Framework RIM
component. The RDBMS is used to store all the information gathered.

Inventory can gather information from a variety of platforms. These platforms
are UNIX managed nodes (as of Version 3.6, software information can also
be gathered), Windows NT managed nodes, PC managed nodes (Windows
NT, Windows 3.1.1, Windows 95, Windows 98, NetWare, and from NetWare
managed PCs by way of Tivoli’s Netware Managed Site). With Tivoli Inventory
Version 3.6, information can also be gathered from TMA endpoints - including
all the above platforms and OS/2 Warp 4.0 and OS/2 Warp Server 4.0.

Information to be included in the inventory database is basically hardware
and software information collected from the endpoints. Furthermore, the
UserLink Inventory HTML interface can be used to let end-users supply
specific information, and user-scripts can be developed to gather additional
data. The basic Inventory database-schema supports the information
gathered by the Tivoli supplied scanning programs. When including additional
information from UserLink Inventory or custom-built scanning scripts, the
database schema has to be updated in order to hold the additional
information. Please refer to the Tivoli Inventory User’s Guide for further
details on expanding the database schema.

Like other Tivoli applications, Tivoli Inventory is based on the
management-by-subscription paradigm. This means that the information
controlling the actions is kept in a profile, which is distributed to an endpoint.
The specialized profile for the Inventory application, not surprisingly, has the
name, InventoryProfile.

Detailed information on what to do and how to do it is kept in the inventory
profile. As shown in Figure 178 on page 432 the inventory profile controls
whether to scan, to import, or both. In addition, it can be specified what to
scan: Hardware, software, and/or user-data through a script.
© Copyright IBM Corp. 1998, 1999 431

Figure 178. The Inventory Profile

The Save Results in Database option was introduced in Inventory 3.2. This
option specifies whether to compare the MIF files from a scan with the
previous scanning results and transfer only the differences to the TMR
Server, which passes them on to the RIM host. If no previous scan exists, or
Replace with Current Results is specified, the full content in the MIF files is
transferred to the RIM host, through the TMR Server, for insertion into the
Configuration Repository.
432 Tivoli Enterprise Internals and Problem Determination

No matter what kind of information is gathered from the endpoints, the basic
function of the Inventory application can be split into:

Scanning A scanning program or script is started at the endpoint. This
gathers the desired information and stores it in a Management
Information File (MIF) file in accordance with the Desktop
Management Task Force (DTMF) Version 2.0 MIF file
specifications. This process is fully handled on the endpoint with
the exception of TMA endpoints that may have to download
programs from the gateway.

When the scanning completes, the resulting MIF file is stored
where it is readily available for the following import.The actual
location varies dependent upon the type of the endpoint that was
scanned:

TMA The MIF files are stored on the endpoints themselves.
They are stored along with the scanning programs,
which are downloaded from the gateway to the
$LCFROOT\inv\SCANNER directory.

PC Managed Node and NetWare Managed Sites
The MIF files are uploaded to the resource-host of the
PC managed node. Here, they are stored in a directory
named after the full object ID of the scanned node in the
$DBDIR\inventory directory.

Managed Node
When a managed node is scanned, the MIF files are
stored in a subdirectory, in the $DBDIR\inventory
directory, named after the full object ID of the managed
node itself.

Import The consolidated data is uploaded to the TMR Server,
then on to the RIM host and into the Inventory
Configuration Repository implemented in an RDBMS.

The Inventory processes are outlined in Figure 179 on page 434:

The Enduser Access option is new with Inventory 3.6.

This parameter controls whether the inventory profile is shown in the
UserLink Inventory HTTP page when it is loaded from an endpoint
subscribing to the profile. This enables the user to initiate scanning of the
workstation.

New with Tivoli Inventory 3.6
Inventory 433

Figure 179. Inventory Process Overview

1 The Inventory is distributed to the endpoints.

2 For TMA endpoints, there might be a need to download the proper
scanning programs from the gateway.

3 The scanning program is launched and the results saved in the MIF
files.

4 For PC managed nodes, the resulting MIF files are uploaded to the
managed node hosting the PC managed node.

5 On import, data from the MIF files are optionally compared to the files
from the last run, and data is parsed into database format and is
uploaded to the TMR Server.

6 The TMR Server passes the data on to the RIM host.

7 The RIM host loads the data into the RDBMS.

13.1.1 Other Sources of Information
When working with Tivoli Inventory, in addition to the product manuals, the
following sources of information are available:

 • Redbook SG24-5112 Using Databases with Tivoli Applications and RIM.

Inventory
RIM

Managed Node

MIF-files

TMA Endpoint

MIF-Files

MIF-files

7

2

1

3

5
5

1

3
3

4

5

6

PC Managed
Node

1

Managed Node

Gateway

MIF-Files

RIM Host

TMR Server
434 Tivoli Enterprise Internals and Problem Determination

 • Redbook SG24-2135 TME 10 Inventory 3.2: New Features and Database
Support.

 • Support FAQ database at http://www.support.tivoli.com

13.2 Inventory Installation Considerations

The Inventory application consists of three main components:

Inventory
This component has to be installed on the TMR Server and can be
applied to managed nodes that will be part of the Inventory
environment. The Inventory component contains all the binaries
and control files needed to create and distribute inventory profiles,
run inventory commands from the CLI, as well as execute hard-
and software-scans on a managed node.

Inventory Gateway
This component is installed on all gateways that will support TMA
endpoints. The component contains the methods needed to run
Inventory scans on the TMA endpoints, and when applied to the
gateways, they can be accessed by the TMAs through upcalls. In
order to be able to scan the gateway itself, either the Inventory
(managed node) component or a TMA endpoint must be installed
on the gateway.

PC Scanning Program
This is installed on top of the PC Agent on NetWare Managed
Sites and PC managed nodes to enable them for scanning.

13.2.1 Inventory Scanning Space Requirements
During deployment planning, a vital parameter is disk space. In order to do
this correctly, it is important to remember that more than one copy of the
scanning results are stored, and that the scanning results from PC managed
nodes and NetWare Managed Sites are stored at the managed node acting
as a resource host or the NetWare Server, respectively.

Calculating the space requirements for an Inventory deployment is not an
easy task. The space needed depends very much on how much information
the software scanners are told to look for and where to look. For planning
purposes, the following space requirements (for the scanning results only)
should be used as guidelines.
Inventory 435

13.2.1.1 PC Managed Nodes/Managed Nodes
The data from the last scan (the MIF files) are stored on each PC managed
node in directory scan\output in the PC managed node installation directory. A
hardware scan typically produces about 35 Kilobytes of data. A software scan
from a typical workstation produces about 130-170 Kilobytes. So, the data
space needed on the PC managed node will be around 200 Kilobytes.

This figure comes from a scan with the option to scan only for files of type
EXE, DLL, NLM, and so on, which is always recommended. Also, bear in
mind that a big server with huge disks can produce a lot more software scan
data.

The data from the last two scans of each PC managed node are stored on its
resource host, in directory $DBDIR\inventory\<PcManNodeObjId>, where the scan
data for the managed node itself is also stored.

An office with one managed node and ten PC managed nodes would require
an average space on the managed node of 4.4 MB (11 hosts * 2 * 0.2 MB).

An office with one managed node and 100 PC managed nodes would require
an average space on the managed node of 44.4 MB (101 hosts * 2 * 0.2 MB).

13.2.1.2 TMAs / Gateways
The data from the last two scans are stored on each endpoint PC in the
directory $LCFROOT\Tivoli\lcf\inv\Scanner. So, each endpoint needs about 0.4
MB.

Only inventory data from the gateway (managed node) itself is stored on the
gateway. So, each gateway needs about 0.4 MB.

13.3 Inventory Installation

There are six phases to deploying Tivoli Inventory detailed in this section:

1. The TMR Server installation phase
2. Creating the Configuration Repository
3. The gateway installation phase
4. The managed node installation phase
5. The PC managed node installation phase
6. The TMA installation phase

13.3.1 Installing Inventory on the TMR Server
Installing Tivoli Inventory on the TMR Server serves two purposes:
436 Tivoli Enterprise Internals and Problem Determination

1. It enables the use of the Inventory application within the TMR.

2. It provides the scripts required to set up the Configuration Repository in a
RIM-connected external RDBMS.

Installation is initiated using the familiar Tivoli installation dialog or using the
winstall command.

13.3.1.1 RIM Installation Options
During installation, the installation options will ask several questions about
the RDBMS and how to communicate with it. As with any product using RIM
and a RDBMS, the DBA should be involved in the installation process.

For hints and tips on which values to supply to the various fields relating to
the RDBMS, refer to the installation chapter in the Tivoli Inventory User’s
Guide and Chapter 9, “RDBMS Interface Module (RIM)” on page 313.
Another fine source of information regarding RIM is the redbook SG24-5112
Using Databases with Tivoli Applications and RIM.

Having supplied the parameters for the installation process to automatically
create the inventory RIM object, the installation process continues the same
as any other Tivoli installation. Refer to the Tivoli Inventory User’s Guide for
details.

13.3.2 Creating the Configuration Repository
The Tivoli Inventory application requires an RDBMS that is active and
running. This database should be available, locally or through TCP/IP, to what
is, or what will become, the RIM host supporting Inventory within the TMR.

Refer to the Tivoli Inventory Release Notes for your version of Inventory for
information on currently supported databases. Note that even though the
Tivoli Framework may support a database, Inventory will not support it until
the scripts are available to set up the schema.

The RIM methods that the RIM host needs to access the RDBMS are
provided by the Tivoli Framework. Therefore, Inventory only needs to be
installed on the RIM host if you want to scan that host as a managed node
not as a TMA.

RIM Note
Inventory 437

Tivoli Inventory provides configuration scripts that create the actual Inventory
database, the RDBMS user for Inventory, and all the views and schemas used
by Inventory within the database server. The setup scripts can be found in
$BINDIR/TME/INVENTORY/SCRIPTS/RDBMS. The following list shows the Inventory
3.6 scripts:

The Configuration Repository can be created either before or after installing
Inventory on manage nodes, gateways, PC managed nodes, or Netware
managed sites as long it is available when the first scanning is initiated
distributing an inventory profile.

To create the Configuration Repository, do the following:

1. Log into the RDBMS as a user that has DBADM authority.
2. Execute the tivoli_DBNAME_admin.sql.
3. Log out from the RDBMS.
4. Log in as the newly created Tivoli RDBMS user, typically tivoli using the

password tivoli.
5. Execute the tivoli_DBNAME_schema.sql.
6. Log out as required.

If you are installing Inventory with Oracle as the RDBMS on an HP-UX
system, make sure there is a tmersrvd user ID.

Oracle / HP-UX Note

pwd
/usr/local/Tivoli/bin/aix4-r1/TME/INVENTORY/SCRIPTS/RDBMS
ls -l
-rwxr-xr-x 1 root system 324 Jul 30 17:46 tivoli_db2_admin.sql

-rwxr-xr-x 1 root system 52357 Jul 30 17:46 tivoli_db2_schema.sql

-rwxr-xr-x 1 root system 271 Jul 30 17:46 tivoli_ms_sql_admin.sql

-rwxr-xr-x 1 root system 63061 Jul 30 17:46 tivoli_ms_sql_schema.sql

-rwxr-xr-x 1 root system 745 Jul 30 17:46 tivoli_ora_admin.sql

-rwxr-xr-x 1 root system 74663 Jul 30 17:46 tivoli_ora_schema.sql

-rwxr-xr-x 1 root system 1286 Jul 30 17:46 tivoli_syb_admin.sql

Prior to running the scripts to create the Configuration Repository, the
scripts themselves, especially tivoli_DBNAME_admin.sql, should be tailored
by the DBA for device usage, user definitions, and space allocation.

Note
438 Tivoli Enterprise Internals and Problem Determination

Access to the newly created database can be tested using the wrimtest
command. Details are in Chapter 9, “RDBMS Interface Module (RIM)” on
page 313.

13.3.3 Installing Queries
Having created the Configuration Repository, we can add query libraries and
queries.

The queries supply a set of standard reports gathering information from the
Configuration Repository. These are provided primarily for use by the system
administrators but can also be used internally by the Tivoli applications to
generate lists of endpoints in the environment that has certain common
attributes.

Furthermore, in order to be able to use the hardware and software inventory
options for defined nodes/subscribers from the GUI (place the cursor on the
desired subscriber and press the right mouse button), the Inventory queries
have to be installed.

Tivoli Inventory provides a script to create the query library and related
queries. This can be found in $BINDIR/TME/INVENTORY/SCRIPTS/QUERIES. The
following list shows the Inventory 3.6 query scripts:

Figure 180. Inventory Query Installation Scripts

To install the Tivoli Inventory query library, and the queries within the library,
run the install_queries.sh script.

As usual, refer to the Tivoli Inventory User’s Guide for details.

13.3.3.1 Adding Support for Software Distribution 3.6
In an Inventory 3.6 environment, where Tivoli Software Distribution 3.6 is
used, a set of queries, especially designed to report the status of installed
software components, can be applied.

To do this, run the subscription_queries.sh script from
$BINDIR/TME/INVENTORY/SCRIPTS/QUERIES.

pwd
/usr/local/Tivoli/bin/aix4-r1/TME/INVENTORY/SCRIPTS/QUERIES
ls -l
-rwxr-xr-x 1 root system 11611 Jul 30 17:47 inventory_queries.sh
-rwxr-xr-x 1 root system 4351 Jul 30 17:47 subscription_queries.sh
Inventory 439

13.3.4 Adding Software Signatures
When scanning for software, Tivoli Inventory locates name, date, and size
information of files in accordance with the options set in the inventory profile.
Date, name, and size-information for each individual file, found by the
scanning process, is conveyed back to the Configuration Repository through
the tivsscan.mif and imported into the table INSTALLED_UNKNOWN_FILE.

Tivoli provides a set of files holding the equivalent date, name, and size
information for known files along with an application name. This information is
known as a software signature. The signatures can be imported into the
SOFTWARE_SIGNATURE_FILE table of the Configuration Repository.

The list of files in one table and set of signatures in another are joined in the
INSTALLED_SOFTWARE_VIEW to provide support for querying or reporting
of what software components are installed where. This kind of information
obviously relies heavily on what software signatures are installed.

The standard Tivoli software signatures are delivered in the
$BINDIR/TME/INVENTORY/SCRIPTS/SIGNATURES directory:

Updated signature files can be downloaded by registered customers from the
Tivoli support Web site: http://www.support.tivoli.com/inv

To install a signature file, use the wfilesig command:

wfilesig -a -f <filename>

To add file signatures for applications not covered by the signature collections
provided by Tivoli, either the wfilesig command or the Software Signature
Editor, provided with the UserLink Inventory html-interface, which can add,
modify, or delete signatures, can be used.

pwd
/usr/local/Tivoli/bin/aix4-r1/TME/INVENTORY/SCRIPTS/SIGNATURES
ls -l
-rwxr-xr-x 1 root system 17693 Jul 30 17:47 HPUX_SIGS.INI
-rwxr-xr-x 1 root system 11985 Jul 30 17:47 SOLARIS_SIGS.INI
-rwxr-xr-x 1 root system 682960 Jul 30 17:47 SWSIGS.INI

The wfilesig command can be used to generate a list of all the installed
software signatures using an undocumented argument -z. This option is
used to fill the HTML-based Inventory software signature editor.

Usage tip
440 Tivoli Enterprise Internals and Problem Determination

13.3.5 Installing Inventory on Gateways
Inventory gateway installation only applies when using Tivoli Inventory
Version 3.6 or later.

The sole purpose of installing Tivoli Inventory 3.6 on a gateway is to make the
Tivoli Inventory files available to TMAs connected to the TMR through the
gateway.

The Inventory gateway should, like other gateway components, be installed
on all the gateways in the TMR in order to support the scanning of endpoints
regardless of which gateway the endpoints are connected through.

The installation process is initiated from the TMR Server and is performed
through SIS, the installation GUI, or using the winstall command. See Tivoli
Inventory User’s Guide for details.

To use Inventory to scan a gateway, it would either need to be installed on the
gateway as a managed node, or the scan could take place if the gateway
were also a TMA endpoint.

13.3.6 Installing Managed Nodes
In order to be able to scan managed nodes for information regarding
hardware and software using Tivoli Inventory, the application has to be
installed explicitly on each managed node. The installation process makes
the needed files, executables, message catalogs, and so on, available to the
managed node.

Besides providing the capability of scanning hardware and software
information from the managed node, installing Tivoli Inventory on a managed
node enables the creation and distribution of inventory profiles on/from the
managed node itself and the use of inventory commands on that managed
node.

If providing scanning capabilities is the only purpose for installing Tivoli
Inventory on a managed node, new options have to be considered when
using Tivoli Inventory Version 3.6. If a TMA has been installed on the
managed node, this can be used for scanning purposes. The files supporting
the scanning process will be downloaded from the gateway as needed, thus

With Tivoli Inventory Version 3.6, the Inventory gateway cannot be installed
on an OS/2 gateway.

OS/2 note
Inventory 441

minimizing the disk usage and administration/maintenance effort at the
expense of Network usage. From a scanning perspective, the use of a TMA,
instead of the managed node itself, does not result in any restrictions since
Tivoli Inventory does not, as many Tivoli applications do, copy profiles to the
local oserv database of the managed nodes. From a scanning-only point of
view, the two implementations are identical, and the use of TMA is preferred if
operational or Network issues does not contradict it.

Installation on a managed node is similar to installation on the TMR Server.
The installation has to be initiated from the TMR Server, and the installation
GUI, SIS, or the winstall command can be used. During installation, the RIM
options must be supplied, but since the inventory RIM object has already
been created, the values given will not be used to create a new RIM object.
Further details can be found in the Tivoli Inventory User’s Guide.

13.3.7 Installing Inventory on PC Managed Nodes
Adding support for the Tivoli Inventory application on PC managed nodes
requires the installation of the PC Scanning Program, which is in the same
Inventory CD-ROM and can be installed through the Product Install dialog or
SIS.

13.3.8 Installing Inventory on TMAs
No specific installation process is required to include TMAs in the Inventory
environment except that of installing the Tivoli Inventory gateway component
on the gateways. As for other applications supporting the TMAs, the needed
modules will be downloaded to the TMAs when needed.

The files needed to scan for hardware and software information on a TMA
endpoint is downloaded to the TMA using ordinary up and downcalls to/from
the gateway, and thus, are eligible for deletion if the download cache on the
TMA grows beyond the predefined size. Even though the files are under
control of the TMA cache, all of them but one are not stored in the

The PC Scanning Program MUST be installed in all the PCs that will be
scanned. The PC Scanning Program installation requires that the Tivoli
Framework PC Agent Version 5.000 or above must be installed first.

With Inventory Version 3.6, it is not possible to install the PC Scanning
Program on a PC managed node that has the same label as an existing
managed node.

PC Managed Node Notes
442 Tivoli Enterprise Internals and Problem Determination

$LCF_DATDIR\cache directory. Instead they are stored in an inv directory off the
$LCFROOT directory. The exception from that rule is the inv_endpt_meths.exe
program. This program is used to control communication with the gateway
and the TMR Server and for scanning for software. On TMAs, this program is
stored in: $LCF_DATDIR/cache/bin/w32-ix86/TME/INVENTORY/INV_ENDPT

The results from the scanning process, the MIF files, will be stored in the
same location as the hardware scanning programs. This is also true for the
software MIF file tivsscan.mif.

13.4 Configuring Inventory

On the TMR server, there are new database classes and roles created when
Inventory is installed. You need to update these resources in the policy region
that will make use of them.

The new object classes are:

 • InventoryProfile
 • Query (created by Framework)
 • QueryLibrary (created by Framework)
 • RIM (created by Framework)

These should be made current resources in the policy regions in which you
will operate Inventory.

Figure 181. New Inventory Resources

The new roles are:
Inventory 443

 • Inventory_view
 • Inventory_scan
 • Inventory_edit
 • Inventory_query
 • Query_view (created by Framework)
 • Query_execute (created by Framework)
 • Query_edit (created by Framework)

Figure 182. Inventory Roles

The new profile (InventoryProfile) allows Inventory to be set up with the
management-by-subscription paradigm. The clients to be scanned are added
to the profile manager, and the Inventory equivalent of distribute performs a
scan on all or a subset of those clients. After a successful scan, the
information is stored in the Inventory database. This information can be seen
from the endpoint pull-down menu or through queries and reports from the
database.

13.5 Customizing Inventory

The behavior of the scanning process is customized in each individual
inventory profile. In the profile, it is determined what to scan for. None, or all
three options, hardware, software and script, can be activated simultaneously.
444 Tivoli Enterprise Internals and Problem Determination

When using a custom script to provide a user-information MIF file, the script
itself is kept within the inventory profile and, thus, automatically distributed to
the endpoints.

Similar to the selection of what to scan, decided in the profile is what data to
import into the Configuration Repository. Again, all or none can be selected.
When selecting Custom MIF File, the selections made in Custom MIF Files
To Be Read (at the bottom right in the panel) becomes active.

New with Inventory 3.6 is the End User Access that, when enabled, allows
end users to initiate the scanning through the UserLink Inventory Interface.

Figure 183. Inventory Profile Dialog
Inventory 445

For Intel machines, Inventory 3.6 also offers scanning of the BIOS data as
well as scanning of DMI resources on Windows NT and Windows 95.

13.6 Distributing the Inventory Profile

Inventory profiles are distributed in the same way as other profiles in the
Tivoli framework either through the GUI or through the CLI using the wdistrib
command.

Unlike other profiles, however, the inventory profile does not support the
notion of local profile copies and can, therefore, not leave copies to be
modified somewhere in the distribution hierarchy. Whenever an inventory
profile is distributed to a subscribing profile manager, the subscribers of the
subscribing profile manager will receive the inventory profile. The distribution
works as though the -a (all levels) parameter of the wdistrib command is
always applied.

Likewise, because local profile copies are not used, the wdistrib options to
control exact copy versus preserve modifications does not apply to inventory
profiles.

Remember to exercise caution when defining the filters for software file
scanning. Information for each and every file caught by the filter will be
stored in the Configuration Repository. This can be an extensive amount of
data.

For PC managed nodes, the tivsscan.mif file is stored in two versions on
the managed node acting as resource host for the PC managed node.
Since the MIF files can become large, it should be planned to make
adequate space available on the managed node.

Scanning software files

When a distribution is initiated, the first thing Inventory does is to connect
to the Configuration Repository through the RIM host. This occurs
regardless of whether data actually will be imported into the Configuration
Repository or not.

The implications of this behavior are that, in order to distribute an inventory
profile, both the RDBMS server and the RIM host have to be available even
if the inventory profile only initiates scanning processes.

Note
446 Tivoli Enterprise Internals and Problem Determination

13.7 Inventory Scanning Process

Inventory collects hardware and software information from endpoints. When a
scan is initiated on a managed node, PC managed node, NetWare managed
site, or TMA endpoint, the following occurs:

1. Inventory runs scanning software (scanner) on each endpoint.

2. The scanner gathers information and writes it to a MIF file.

When an import is initiated on a managed node, PC managed node, on a
NetWare managed site of TMA the following occurs:

1. The MIF files are compared and passed. On PC managed nodes, this
process is performed by the resource host. For all other types of
endpoints, this process is handled locally.

2. If Update with Differences is specified in the inventory profile, the MIF
files from the current and the previous scans are compared, and
differences are converted into database format.
If Replace with Current Results is specified, the current MIF files are
converted into database format.
For PC managed nodes, this process is performed by the resource host.

3. The database-formatted data is sent to the TMR Server that sends it on to
the RIM host where it is loaded into the Configuration Repository.

To see the information collected, you can select the icon of the managed
node or PC managed node scanned and click the right button of the mouse
and select one of the Hardware/Software Inventory options as shown in
Figure 184 on page 448:
Inventory 447

Figure 184. Managed Node Options

When you look at the Inventory hardware or software data for a managed
node, you will see one of the following windows as shown in Figure 185 on
page 449:
448 Tivoli Enterprise Internals and Problem Determination

Figure 185. Hardware and Software Inventory Data

13.7.1 Scanning Programs
As of Tivoli Inventory Version 3.2.2, the scanning program was developed
entirely by Tivoli. In previous versions, the Intel-based endpoints were
scanned by a program from Intel.
Inventory 449

With the redesign of the scanning programs, they are split into the several
parts shown in Table 18:

Table 18. Inventory Scanning Programs

13.8 Inventory’s Use of Methods

This section discusses the process and some of the methods in use when an
Inventory scan is performed.

13.8.1 UNIX Managed Node
The ip_push method is started on the server and communicates through
MDist to begin the Inventory scan. See also section 7.6.1, “Mdist” on page
259.

A UNIX managed node endpoint runs ip_discover, which collects hardware
information and sends it back to the RIM host. This is illustrated in Figure
186.

Figure 186. Methods Involved in a UNIX Scan

Intel Unix

Hardware scanner tivhscan.exe sysinfo

Bios scanner mrmbios.exe N/A

Dmi scanner dmiscan.exe N/A

Software scanner inv_endpt_meths.exe

ip_discover on the UNIX
managed nodes return data

RIM host inserts into RDBMSip_push on the TME server
450 Tivoli Enterprise Internals and Problem Determination

Here are two examples of an odstat of this process. The first is in the TMR
server, and the other is from the managed node after you execute a scan.

In the following example, you can see:

 • The call of the ip_push method on thread 13053.

 • The checking of the connection with the RDBMS through the RIM host on
threads 13059 and 13060.

 • The call of ip_discover in the managed node (13068).

 • Updating information from the scan in the RDBMS (13074, 075, 096, and
100).

13042 O 1-12954 done 18 0 15:08:04 1515280903.2.7#TMF_ManagedNode::Managed_Node# push_copy_in
13043 M hdoq 2-4705 done 97 0 15:08:05 1515280903.1.26 lookup
13044 M hdq 2-4706 done 51 0 15:08:05 1515280903.1.4 lookup_id
13045 M hdq 2-4707 done 162 0 15:08:06 1515280903.1.4##2@InventoryProfile describe
13046 M hdq 2-4708 done 2482 0 15:08:06 1515280903.1.4##2@InventoryProfile _get_type
13047 M 2-4709 done 59 0 15:08:07 1515280903.1.758#InventoryProfile# _get_profile_organizer
13048 M 2-4710 done 21 0 15:08:07 1515280903.1.758#InventoryProfile# _get_label
13049 M hdoqs 2-4711 done 6 0 15:08:07 1515280903.1.478#TMF_UI::Extd_Desktop# execute
13050 M hdoq 2-4712 done 242 0 15:08:07 1515280903.1.538#TMF_CCMS::ProfileManager# default_push_profiles
13051 O+ho 1-13050 done 152 0 15:08:09 1515280903.1.758#InventoryProfile# default_push
13052 O+hdq1-13051 done 152 0 15:08:09 1515280903.1.758#InventoryProfile# push
13053 O+hdq1-13052 done 152 0 15:08:10 1515280903.1.758#InventoryProfile# ip_push
13054 O+ 1-13053 done 15 0 15:08:10 0.0.0 get_name_registry
13055 O+hdoq1-13053 done 675 0 15:08:10 1515280903.1.26 object_get_all
13056 O+hdoq1-13053 done 536 0 15:08:11 1515280903.1.538#TMF_CCMS::ProfileManager# get_subscription_tree
13057 O+ 1-13056 done 886 0 15:08:11 1515280903.1.538#TMF_CCMS::ProfileManager# _get_subscribers
13058 O+hdoq1-13053 done 111 0 15:08:11 1515280903.1.26 lookup
13059 O+hdoq1-13053 done 18 0 15:08:12 1515280903.1.755#RIM::RDBMS_Interface# RIM_connect
13060 O+hdoq1-13053 done 12 0 15:08:13 1515280903.1.755#RIM::RDBMS_Interface# RIM_release
13061 O+hdoq1-13053 done 95 0 15:08:13 1515280903.1.26 lookup
13062 O+hdoq1-13053 done 167 0 15:08:13 1515280903.1.345 obj_route
13063 O+ 1-13062 done 15 0 15:08:14 0.0.0 get_name_registry
13064 O+hdoq1-13062 done 545 0 15:08:14 1515280903.1.26 get_all
13065 O+hdoq1-13062 done 545 0 15:08:14 1515280903.1.26 get_all
13066 O+hdoq1-13053 done 241 0 15:08:15 1515280903.1.26 lookup
13067 O+ 1-13053 done 18 0 15:08:16 1515280903.1.713#TMF_Install::ProductInfo# _get_locations
13068 O a 1-13053 done 2521 0 15:08:16 1515280903.2.7#TMF_ManagedNode::Managed_Node#
ip_discover
13069 O+hdoq1-13053 done 97 0 15:08:22 1515280903.1.26 lookup
13070 O+hdq1-13053 done 59 0 15:08:22 1515280903.1.4 lookup_id
13071 O+hdq1-13053 done 174 0 15:08:22 1515280903.1.4##2@TMF_NetWare::ManagedSite describe
13072 O+hdq1-13053 done 3018 0 15:08:22 1515280903.1.4##2@TMF_NetWare::ManagedSite _get_type
13073 O+hdoq1-13053 done 111 0 15:08:23 1515280903.1.26 lookup
13074 O+hdoq1-13053 done 18 0 15:08:23 1515280903.1.755#RIM::RDBMS_Interface# RIM_connect
13075 O+hdoq1-13053 done 12 0 15:08:23 1515280903.1.755#RIM::RDBMS_Interface#
RIM_delete_rows
13076 O+hdoq1-13053 done 12 0 15:08:23 1515280903.1.755#RIM::RDBMS_Interface# RIM_delete_rows
.....
13095 O+hdoq1-13053 done 12 0 15:08:24 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13096 O+hdoq1-13053 done 12 0 15:08:24 1515280903.1.755#RIM::RDBMS_Interface#
RIM_insert_rows
13100 O+hdoq1-13053 done 12 0 15:08:24 1515280903.1.755#RIM::RDBMS_Interface#
RIM_update_rows
13101 O+hdoq1-13053 done 12 0 15:08:24 1515280903.1.755#RIM::RDBMS_Interface# RIM_update_rows
13102 O+hdoq1-13053 done 12 0 15:08:24 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13120 O+hdoq1-13053 done 12 0 15:08:25 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13129 O+hdq1-13053 done 60 0 15:08:25 1515280903.1.4 lookup_id
13130 O+hdq1-13053 done 821 0 15:08:25 1515280903.1.4##8@RIM::ExRIMRDBMSCallFailed describe
13131 O+hdoq1-13053 done 12 0 15:08:25 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13132 O+hdoq1-13053 done 12 0 15:08:25 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13133 O+hdoq1-13053 done 12 0 15:08:25 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13134 O+hdoq1-13053 done 12 0 15:08:25 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13135 O+hdoq1-13053 done 12 0 15:08:25 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13136 O+hdoq1-13053 done 12 0 15:08:25 1515280903.1.755#RIM::RDBMS_Interface# RIM_insert_rows
13137 O+hdoq1-13053 done 12 0 15:08:25 1515280903.1.755#RIM::RDBMS_Interface# RIM_release
13138 O+hdoq1-13053 done 128 0 15:08:25 1515280903.1.26 lookup
13139 O+hdq1-13053 done 6 0 15:08:25 1515280903.1.88#TMF_SysAdmin::InstanceManager# connect
13140 M hdoqs 2-4714 done 6 0 15:08:26 1515280903.1.478#TMF_UI::Extd_Desktop# execute
Inventory 451

In the second example, you will only see the ip_discover method. If you look
at the fourth column and compare it with the first example, you will see the
thread ID 1-13068, which is the TMR server calling this method and the thread
ID for the caller of the method.

13.8.2 Windows NT Managed Node
A Windows NT managed node endpoint runs ip_discover, which collects
hardware and software information and sends it back to the RIM host through
the TMR Server.

 • Runs tivhscan to gather hardware information and store it in
%DBDIR%\Inventory\OID.

 • Runs inv_endpt_meth which collects software data in %DBDIR%/Inventory/OID.

 • Parses the Inventory data and sends it to the TMR Server, which conveys
it to the RIM host. This is illustrated in Figure 187 on page 453.

4703 M hdoq1-13042 done 18 0 15:08:05 1515280903.2.7#TMF_ManagedNode::Managed_Node#
push_copy_in
4704 O+ 2-4703 done 15 0 15:08:05 0.0.0 get_name_registry
4705 O 2-4703 done 97 0 15:08:05 1515280903.1.26 lookup
4706 O 2-4703 done 51 0 15:08:05 1515280903.1.4 lookup_id
4707 O 2-4703 done 162 0 15:08:06 1515280903.1.4##2@InventoryProfile describe
4708 O 2-4703 done 2482 0 15:08:06 1515280903.1.4##2@InventoryProfile _get_type
4709 O 2-4703 done 59 0 15:08:07 1515280903.1.758#InventoryProfile# _get_profile_organizer
4710 O 2-4703 done 21 0 15:08:07 1515280903.1.758#InventoryProfile# _get_label
4711 O 2-4703 done 6 0 15:08:08 1515280903.1.478#TMF_UI::Extd_Desktop# execute
4712 O 2-4703 done 242 0 15:08:08 1515280903.1.538#TMF_CCMS::ProfileManager#
default_push_profiles
4713 M ho 1-13068 done 2521 0 15:08:17 1515280903.2.7#TMF_ManagedNode::Managed_Node#
ip_discover
4714 O 2-4703 done 6 0 15:08:27 1515280903.1.478#TMF_UI::Extd_Desktop# execute
4715 O+ done 15 0 15:11:30 0.0.0 get_oserv
4716 O+ done 44012 0 15:11:30 1515280903.2.2 query odstat
4717 O+ done 14 0 15:29:30 0.0.0 o_self
4718 O+ done 15 0 15:29:30 0.0.0 get_oserv
4719 O+ done 15 0 15:29:30 0.0.0 get_security_objid
4720 O+ done 0 0 15:29:31 1515280903.2.2 cntl odtrace errors
4721 O+ done 14 0 15:29:38 0.0.0 o_self
4722 O+ done 15 0 15:29:38 0.0.0 get_oserv
4723 O+ done 15 0 15:29:38 0.0.0 get_security_objid
4724 O+ done 0 0 15:29:38 1515280903.2.2 cntl odtrace objcalls
4725 M hdoq1-13143 done 18 0 15:29:51 1515280903.2.7#TMF_ManagedNode::Managed_Node#
push_copy_in
4726 O+ 2-4725 done 15 0 15:29:51 0.0.0 get_name_registry
4727 O 2-4725 done 97 0 15:29:51 1515280903.1.26 lookup
4728 O 2-4725 done 51 0 15:29:52 1515280903.1.4 lookup_id
452 Tivoli Enterprise Internals and Problem Determination

Figure 187. Methods Involved in a Windows NT Scan

13.8.3 PC Managed Node
The resource host (managed node) of the PC managed node runs
ip_discover to collect hardware and software information, which tells the PC
to run tivhscan.bat and/or tivsw.bat.

After the scan in the PC, the following files can be found in the scan\output
directory of the PC managed node installation directory:

 • config.mif
 • mrmbios.mif
 • tivhscan.mif
 • tivsscan.mif
 • tivsscan.txt

These files are uploaded to the resource host and, if Update with
Differences is specified in the inventory profile, compared to the result of the
previous scan. The resulting information will then be sent to the RIM host
through the TMR Server to get inserted into the Configuration Repository.
The old MIF files are renamed to *.BK2, and the new MIF files are given the
extension BK1; so, they will be used as described previously at the next scan.

Figure 188 on page 454 illustrates the methods involved.

*ip_discover on the NT Managed Nodes

 RIM host inserts into RDBMSip_push on the TME server

* run tivhscan and inv_endpt_meth
* parse data
* return data
Inventory 453

Figure 188. Methods Involved in a PC Scan

13.8.4 TMA Endpoints
The hosting gateway runs the ip_discover to collect hardware and software
information, which tells the TMAs to run sysinfo/tivhscan and/or
inv_endpt_meth.

The MIF files are compared to those from the previous scan, and the results
are uploaded to the TMR Server through the gateway, which acts just like the
managed node in the PC managed node scenario. The TMR Server sends
the data on to the RIM host.

13.9 Inventory Commands

The following commands are useful when working with Inventory and other
RIM applications:

wlookup Can be used to identify all the RIM objects in the database:

wlookup -ar RIM
inventory 1515280903.1.755#RIM::RDBMS_Interface#
sybase 1515280903.3.34#RIM::RDBMS_Interface#
tec 1515280903.3.32#RIM::RDBMS_Interface#

wgetrim Lists information about a RIM object:

wgetrim inventory

ip_push on the TMR server

* tivsscan.bat and/or
tivsw.bat

RIM host inserts data in RDBMS

* ip_discover on the Managed Node
* parse data
454 Tivoli Enterprise Internals and Problem Determination

RIM Host: rh0255b.itsc.austin.ibm.com
RDBMS User: tivoli
RDBMS Vendor: Sybase
Database ID: inventory
Database Home: /sybinst
Server ID: rh0255e

wsetrim Changes the database information for a RIM object.

wviewmn Returns hardware and software information about a managed
node:

wviewmn rh0255b.itsc.austin.ibm.com
Hardware System Id : 1515280903.1.327#TMF_ManagedNode
::Managed_Node#
Hardware Architecture :
Booted Operating System Name : AIX
Booted Operating System Version : 4.2
Processor Model : UNKNOWN
Processor Speed : 1
Physical Memory (KB) : 65536
Paging Space (KB) : 196608
Time of Last Scan : 1997-11-13 14:59:23

wviewpcmn Returns hardware and software information about a PC managed
node:

wviewpcmn rh0255d
Hardware System Id : 7D8BJ9TD9+ZKPVV1LQK800000566 [Wed Nov 12
18:00:25 1997]
Hardware Architecture : ISA
Booted Operating System Name : Windows 95
Booted Operating System Version : 3.95
Processor Model : 486 DX2
Processor Speed : 66
Physical Memory (KB) : 32268
Paging Space (KB) : 32268
Time of Last Scan : 1997-11-21 14:50:45
wviewpcmn -s rh0255d
Microsoft DOS XMS Driver 3.95
Microsoft Windows 95 4.00.950
Microsoft Network Client 4.2
Microsoft DOS Command Processor 7.0
Microsoft DOS Command Processor 7.0
Microsoft Windows Write X

There are a number of ways to get a list of the tables Inventory creates in the
database:
Inventory 455

 • Look in the Inventory manuals. This is not necessarily going to be
accurate.

 • Use SQL commands, such as sp_help in Sybase (but this will not list all
columns in the table).

 • Look in $BINDIR/TAS/RIM/SQL/scripts and look at the schema files for
Oracle, Sybase, and so on, and look for the CREATE TABLE paragraphs:

13.10 Querying the Inventory Database

All the information that you have in the database can be consulted by queries
defined in the Query Libraries. You can execute these queries for tasks such
as a Software Distribution, subscribing managed nodes to a profile manager,
and others.

When you run a query, the information is retrieved from a set of database
tables. The fields from which the information is retrieved are determined by
the RDBMS view specified for the query. A view is a custom table that groups
and retrieves information from related fields.

CREATE TABLE COMPONENT_MONITOR (
MONITOR_NAME varchar(32) NOT NULL,
SOFTWARE_COMPONENT_NAME varchar(32) NOT NULL,
SOFTWARE_COMPONENT_VERSION varchar(32) NOT NULL, COMPONENT_LANGUAGE_EDITION
varchar(16) NOT NULL, MONITOR_PROFILE_NAME varchar(32) NOT NULL
)
go

ALTER TABLE COMPONENT_MONITOR
ADD PRIMARY KEY (MONITOR_NAME, SOFTWARE_COMPONENT_NAME, SOFTWARE_COMPONENT_VERSION,
COMPONENT_LANGUAGE_EDITION, MONITOR_PROFILE_NAME)
go

Having added custom data to the scanning, new tables have been
introduced in the database schema of the Configuration Repository. To
make these tables available to the queries, the tables or views defined over
these tables should be added to the QUERY_VIEWS table.

Examples of this can be found in the script used to create the original
database schema. For example:
$BINDIR/TME/INVENTORY/SCRIPTS/RDBMS/tivoli_syb_schema.sql

Look for lines like:
insert into QUERY_VIEWS (VIEW_NAME) values (’SWDISTDATA_VIEW’)

User Defined Data
456 Tivoli Enterprise Internals and Problem Determination

All the standard views, defined when creating the Configuration Repository
database schema, are described in the Tivoli Inventory User’s Guide.

13.11 Troubleshooting Inventory

Inventory does not provide any log files. The standard sources of information,
such as odstat, wtrace, and tmstat commands, must be used.

Troubleshooting an inventory profile distribution involves more nodes
including the endpoint, the managed node hosting the profile, and the RIM
host. For TMAs, the gateway also has to be taken into account.

13.11.1 The Endpoints
To pinpoint a problem during scanning of the endpoints, the following
information can be useful:

Time-stamp of the MIF and BK1 files
The time-stamp of the MIF file(s) indicates the last time the
scanning was performed successfully. The time-stamp of the
bk1-files indicates the previous successful scan.

The process list
During scanning, use the proper utility to list the active processes
to see if the expected program is running.
On OS/2, use the pstat utility, on Windows 95 and Windows NT
use the task list or ntprocinfo (NT only).

13.11.2 The Managed Node
You are likely to encounter problems in Inventory if you do not assign the
correct Inventory roles to the administrator. You will probably have problems
when executing Inventory commands through the CLI.

This is illustrated in the following example:

wviewmn rh0255b.itsc.austin.ibm.com

An authorization error of type “insufficient authorization” occurred

Summary of possible error conditions:
“insufficient authorization” means that you have insufficient TME authorization to perform the operation
“permission denied” means that you have insufficient operating system privileges to perform the operations.
“authorization information expired” means that a task’s authorization to run has expired
“Kerberos ticket expired” means that your Kerberos ticket expired and you must run kinit to get a new ticket.
“Kerberos unauthorized request” means that Kerberos has rejected the operation.
“Delegation Credential failure” means that invalid security credentials were used in the operation.
Inventory 457

You can also see the error in the odstat output:

Similarly, if the Configuration Repository cannot be contacted, either because
any of the RDBMS components are down or the RIM host is not running, you
will receive a Could not connect to RDBMS message.

The odstat output indicating the same situation is shown in the following
figures:

Figure 189. Odstat - RDBMS Failure (Part 1 of 2)

4496 O+hdoq done 122 0 14:51:17 1360991896.1.26 lookup
4497 O+hdoq done 110 0 14:51:17 1360991896.1.26 lookup
*4498 O done 0 0 14:51:17 UNAUTHORIZED

1360991896.2.33#RIM::RDBMS_Interface# RIM_connect
4499 O 1-1361 done 23523 0 14:51:28
1360991896.2.35#TMF_PcManagedNode::Pc_Managed_Node# toggle_state

4500 M 2-325 done 40925 0 14:51:29
1360991896.1.344#TMF_UI::Presentation# _get_dialogs

* 3773 O+hdoq 1-2207 done 745 0 13:03:34 e=12
1293184718.1.347#TMF_ManagedNode::Managed_Node# push_copy_in
 3774 O+ 1-3773 done 15 0 13:03:37 0.0.0 get_name_registry
 3775 O+hdoq 1-3773 done 97 0 13:03:38 1293184718.1.26 lookup
 3776 O+hdq 1-3773 done 51 0 13:03:39 1293184718.1.4 lookup_id
 3777 O+hdq 1-3773 done 162 0 13:03:39 1293184718.1.4##2@InventoryProfile
describe
 3778 O+hdq 1-3773 done 2482 0 13:03:40 1293184718.1.4##2@InventoryProfile
_get_type
 3779 O+ 1-3773 done 60 0 13:03:41 1293184718.1.1595#InventoryProfile#
_get_profile_organizer
 3780 O+ 1-3773 done 23 0 13:03:42 1293184718.1.1595#InventoryProfile#
_get_label
 3781 O+hdoqs 1-3773 done 6 0 13:03:42
1293184718.1.529#TMF_UI::Extd_Desktop# execute
* 3782 O+hdoq 1-3773 done 745 0 13:03:43 e=12
1293184718.1.1594#TMF_CCMS::ProfileManager# default_push_profiles
* 3783 O+ho 1-3782 done 745 0 13:03:44 e=12 1293184718.1.1595#InventoryProfile#
default_push
* 3784 O+hdq 1-3783 done 745 0 13:03:44 e=12
1293184718.1.1595#InventoryProfile# push
* 3785 O+hdq 1-3784 done 745 0 13:03:45 e=12
1293184718.1.1595#InventoryProfile# ip_push
 3786 O+ 1-3785 done 15 0 13:03:45 0.0.0 get_name_registry
 3787 O+hdoq 1-3785 done 998 0 13:03:45 1293184718.1.26 object_get_all
 3788 O+hdoq 1-3785 done 843 0 13:03:45
1293184718.1.1594#TMF_CCMS::ProfileManager# get_subscription_tree
 3789 O+ 1-3788 done 873 0 13:03:46
1293184718.1.1594#TMF_CCMS::ProfileManager# _get_subscribers
458 Tivoli Enterprise Internals and Problem Determination

Figure 190. Odstat - RDBMS Failure (Part 2 of 2)

13.11.3 The Gateway
Use the ordinary odstat, wtrace type of information to locate problems
regarding up- and downcalls.

13.11.4 The RIM Host
To capture any problems in the RDBMS interactions, use the facilities
supplied by the wrimtrace command documented in Chapter 9, “RDBMS
Interface Module (RIM)” on page 313.

3790 O+ 1-3788 done 438 0 13:03:46
1293184718.1.1122#TMF_CCMS::ProfileManager# _get_subscribers
 3791 O+ 1-3788 done 225 0 13:03:46
1293184718.1.1633#TMF_CCMS::ProfileManager# _get_subscribers
 3792 O+hdoq 1-3785 done 112 0 13:03:46 1293184718.1.26 lookup
* 3793 O+hdoq 1-3785 done 358 0 13:03:47 e=12
1293184718.1.1063#RIM::RDBMS_Interface# RIM_iom_session
 3794 O+hdoq 1-3785 done 97 0 13:03:58 1293184718.1.26 lookup
 3795 O+hdq 1-3785 done 56 0 13:03:58 1293184718.1.4 lookup_id
 3796 O+hdq 1-3785 done 802 0 13:03:58
1293184718.1.4##8@RIM::ExRIMConnectFail describe
 3797 O+ 1-3783 done 15 0 13:03:58 0.0.0 get_name_registry
 3798 O+hdoq 1-3783 done 97 0 13:03:58 1293184718.1.26 lookup
 3799 O+hdq 1-3783 done 63 0 13:03:58 1293184718.1.4 lookup_id
 3800 O+hdq 1-3783 done 802 0 13:03:59
1293184718.1.4##8@InventoryProfile::ExIPError1 describe
 3801 O+hdq 1-3783 done 56 0 13:03:59 1293184718.1.4 lookup_id
 3802 O+hdq 1-3783 done 802 0 13:03:59
1293184718.1.4##8@RIM::ExRIMConnectFail describe
 3803 O+ 1-3782 done 15 0 13:03:59 0.0.0 get_name_registry
 3804 O+hdoq 1-3782 done 97 0 13:03:59 1293184718.1.26 lookup
 3805 O+hdq 1-3782 done 63 0 13:03:59 1293184718.1.4 lookup_id
 3806 O+hdq 1-3782 done 802 0 13:03:59
1293184718.1.4##8@InventoryProfile::ExIPError1 describe
 3807 O+hdq 1-3782 done 56 0 13:03:59 1293184718.1.4 lookup_id
 3808 O+hdq 1-3782 done 802 0 13:03:59
1293184718.1.4##8@RIM::ExRIMConnectFail describe
 3809 O+hdq 1-3773 done 63 0 13:03:59 1293184718.1.4 lookup_id
 3810 O+hdq 1-3773 done 802 0 13:03:59
1293184718.1.4##8@InventoryProfile::ExIPError1 describe
 3811 O+hdq 1-3773 done 56 0 13:04:00 1293184718.1.4 lookup_id
 3812 O+hdq 1-3773 done 802 0 13:04:00
1293184718.1.4##8@RIM::ExRIMConnectFail describe
Inventory 459

460 Tivoli Enterprise Internals and Problem Determination

Chapter 14. User Administration

Tivoli User Administration is a profile-based application that runs on the Tivoli
Framework. The base product manages UNIX, Windows NT, and NetWare
user accounts. It also manages UNIX group accounts, Windows NT, and
NetWare group account memberships as well as Network Information Service
(NIS) management. Additional products extend Tivoli User Administration to
manage accounts on many other platforms including Lotus Domino/Notes,
the OS/390 Security Server, OS/400, and so on.

User and group management are profile-based applications that can be
distributed to profile manager endpoints. NIS support is provided as an
endpoint that allows you to distribute user and group profiles to it and
manage the other NIS maps.

Most large organizations will make many customizations to User
Administration, such as modifying polices or altering the GUI operation using
the Tivoli Application Extension Facility (AEF). This is the way User
Administration is extended by most products, such as those mentioned
above.

It needs to be stressed that the most important part of a Tivoli User
Administration implementation is prior planning. If you do not have a sound,
detailed design for managing user and group resources, you will have
problems implementing and supporting these resources with User
Administration. Refer to the Tivoli User Administration Design Guide,
SG24-5108 redbook for how to design a User Administration implementation
before attempting to architect and implement your solution. See also
SG24-5339 The OS/390 Security Server Meets Tivoli for information on
managing users on OS/390.

14.1 Changes to User Administration with Release 3.6

Almost all of the information presented in the chapter applies to all recent
releases of Tivoli User Administration. This section introduces the major
changes to User Administration in the 3.6 release:

 • Endpoint Management

 • Immediate Propagation of Passwords

 • Interaction with Tivoli Security Management

 • Technology Preview Program
© Copyright IBM Corp. 1998, 1999 461

14.1.1 Endpoint Management
User Administration 3.6 can now manage Windows NT and Novell NetWare
as TMA endpoints. This requires the User Administration gateway to be
running on the endpoint gateways. TMA endpoint for UNIX support is also
being added with release 3.6.1. The NetWare TMA endpoint for User
Administration was completely re-written for 3.6. You should use this instead
of NetWare PC managed nodes if you are running Version 3.6 or higher. Note
that the use of a TMA endpoint means that we can use the lcfd.log for
problem determination.

14.1.2 Immediate Propagation of Passwords
Password changes made through wpasswd are effective in all user profiles that
contain records about the user as soon as the system is propagated. A new
option, wpasswd -L, allows for password changes to immediately propagate to
all subscribers for all profiles containing that user without distribution.

14.1.3 Interaction with Tivoli Security Management
User Administration 3.6 interacts more closely with Tivoli Security
Management, enabling you to use a role-based security model to implement
a comprehensive, consistent security policy across your enterprise.

14.1.4 Technology Preview Program
User Administration 3.6 includes two new innovative technologies you can
install and evaluate. They are:

 • LDAP Connection - a utility that provides a method for managing user
accounts on any system accessible through the Lightweight Directory
Access Protocol (LDAP).

 • OnePassword - a utility that enables users and administrators to change
users’ passwords in the Tivoli database and distribute the updated
passwords to subscribed endpoints.

These Technology Preview utilities are not covered in this redbook.

If you are managing TMA endpoints, it is a good rule of thumb to install the
User Administration gateway on all of your endpoint gateway servers. This
way, if you move endpoints around or reconfigure your gateways, you know
User Administration for TMA endpoints will still work.

Important Note
462 Tivoli Enterprise Internals and Problem Determination

14.2 Profile Policy

There are default and validation policies set up for all attributes in user and
group profiles. These policies can be edited either from the profile GUI or the
CLI. Many implementations of User Administration will involve modifications
to default and validation policies; so, we will spend some time reviewing
policies as they apply to User Administration here.

From the GUI, this is done from the profile dialog under Edit->Default Policy
or Edit->Validation Policy. From the command line interface, use the wgetpol
command to extract the policy, then use the wputpol command to replace the
old policy with the new or updated one.

Each attribute’s policy can be set to a constant, a script, a regular expression
(validation policy only), or none. When using a script, you choose the
arguments to be sent.

Default and validation policies are stored in the profile and can be set for any
attribute on any profile or profile copy. This allows different policies on the
top-level profile and on profile copies.

For a complete list of the default and validation policies, see the Tivoli User
Administration User and Group Management Guide.

14.2.1 Default Policy
When adding new records to a profile, all fields can be manually generated
with their default values by using the Generate Defaults button or by creating
the user after filling in a minimal set of attributes. Default policy is run by
going through each attribute one at a time and trying to generate the default
value. If there is not enough information to generate the default, then that
attribute will be skipped, and the next attribute’s default policy is run. When
all attributes have been checked, the process will start again until there are
either no more values to generate with default values or no more values can
be generated, which would result in an error.

If the policy type is set to constant while using a script, the script will be
erased. These policies are stored as attributes, which is not the same as
policies for other resources. Policies can differ greatly from one user profile
to the next, but with some other types of resources, the policy is set for all
resources of that type in a given policy region.

Note
User Administration 463

14.2.2 Validation Policy
Validation policy is used to validate the values of a profile attribute upon
saving a newly-created or modified record. It can also be checked when the
wvalidate command is run against a profile, or Validate is selected in the
GUI. By default, there is no validation policy set for customized attributes.

Validation policies for profile copies are different. The following lists the
different conditions in which validation policy is checked:

 • If the profile copy has no local modifications (changed attributes or
policies), no validation is done.

 • If the profile copy has a local modification to an attribute, that attribute is
validated when that record attribute changes.

 • If the profile copy has a local modification to a validation policy for a
particular attribute (such as the shell), the values of that attribute are
validated for all pushed records (only those records pushed to the profile
copy will have their shell attribute validated).

14.3 Creating and Using User and Group Profiles

When a profile is created, only one copy exists. This copy must live in a
profile manager. After the profile is created, records can be added one record
at a time or by populating from a system file. Valid endpoints to populate a
User Administration profile from are managed nodes, NIS Domains, and TMA
endpoints. When records are added, the administrator can supply some of
the values, and other values can be filled by default policy. Validation policy
will also be used to check each of the attribute values to ensure they conform
to the policy set for an individual profile.

Populate does not run default policy for any attribute by design. If you
customize a user profile, and then add attributes with default values, when
the profile is populated, the new attributes will not have default values.

Note

Validation policy will, by default, prevent the adding of UNIX UID 0
accounts.

Note
464 Tivoli Enterprise Internals and Problem Determination

14.3.1 Creating Profiles
Tivoli User Administration adds the UserProfile and GroupProfile profile
types. A profile is created using the normal profile creation mechanisms of
the Tivoli Framework.

Figure 191. Creating a User Administration Profile

14.3.1.1 User Profile Properties
The properties (attributes) in use in a user record vary depending on the
platform type being managed. If all the systems being managed were of one
or two platform types, many customers use wdelusrcat to remove categories
from dialogs and policies for unused platforms. Conversely, adding RACF
support, for example, will add over 100 new attributes.

If you are managing TMA endpoints with User Administration, you must
use Dataless profile managers to subscribe those endpoints.

Reminder
User Administration 465

Figure 192 on page 466 shows a user profile containing a number of user
records in which you can see some of the attributes, such as UNIX Login
Name, Telephone, and so on.

Figure 192. User Profile Properties Dialog

14.3.1.2 UID Allocation
In User Administration Version 3.1.4 and above, the UID allocation algorithm
has been changed from earlier versions to improve performance. The default
UID policy has wallocid -l $MIN_UID -u $NOBODY. You probably want to
change each new profile to have valid lower and upper bounds for UIDs.
Otherwise, the next created user will always be the last UID + 1.

14.3.2 Populating Profiles
Populating is the function of taking all the users or groups from the system
account files and adding them as records to a User Administration user or
group profile.

Features of populate are:

 • Populate will fail validation for UIDs for root and nobody (unless you
change the validation policy).
466 Tivoli Enterprise Internals and Problem Determination

 • Population does not run default policy.

 • Populate cannot get NT or NetWare passwords. UNIX passwords are
retrieved in their UNIX-encrypted form.

The wpopusrs command allows you to provide a list of user names as an input
file. User Administration will then connect to the endpoint you designate as a
source for population and retrieve the user data for each user in the list you
provided.

14.3.3 Distributing Profiles
Once a profile is populated, it can be distributed to the endpoints. The
endpoints available to receive profiles are determined by the profile manager
and can consist of the following resource types:

 • NisDomain

 • Managed node (UNIX or Windows NT)

 • TMA endpoints (UNIX from 3.6.1 onwards, NetWare, or Windows NT)

 • Profile manager

When distributing a profile from the desktop, there are four options. These
four options are:

 • Next Level
 • All Levels
 • Preserve Local Modifications
 • Exact Copy

The Next Level and All Levels distribution options dictate how far down the
subscription chain the profile is distributed.

Next Level Moves the profile to the next object, which could be any one of
the profile manager's subscribers including another profile
manager.

When distributing a profile with Next Level to a profile manager, managed
node, or NisDomain, the system user files of the ultimate destination are not
modified. Instead, the copy of the profile in the Tivoli database on that
endpoint is updated with the changes to the profile. Distributing to the next

UNIX TMA support for User Administration is a release 3.6.1 enhancement
and only covers Tier 1 UNIX platforms.

TMA Note
User Administration 467

level allows another administrator to make specialized changes at the
managed node level. For example, if you have a set of users in the top level
profile that are global users (accounts on every machine), and this user
profile is distributed to the next level of a managed node, users can be added
that have accounts on just this managed node.

All Levels Distributes a copy of the profile to each object in the
subscription chain. Whether the subscriber is a managed node,
NisDomain, or a profile manager with subscribed managed
nodes or TMA endpoints, then the system files are updated.

The Preserve Modifications and Exact Copy options dictate how
modifications made in the Tivoli database for the local system and/or the
system files are affected by the distribution of the profile.

Preserve Modifications Any changes made on the local copy of this profile
(for example, in a managed node Tivoli database
or a subscribing profile manager) are not
overwritten.

For example, if a distributed user profile is edited at the managed node level,
and the top-level (original) profile is distributed with Preserve Modifications,
then the changes at the local copy will not be overwritten. This also applies to
the system files.

When profiles are distributed with Preserve Local Modifications, only the
records that have changed are actually pushed. For example, if a user profile
with 200 users has been distributed at least once, then any subsequent
distribution will only push out those user records that have changed, not all
200. If you wish to distribute all records, you would use Exact Copy.

Exact Copy Used to replace the local copy and system files with the
contents of the distributed profile.

Distributing to all levels with the Exact Copy option is not as simple as it
looks. Exact Copy distributes the profile to the endpoint. If this is a NisDomain
or managed node with a local copy of user profiles, User Administration
combines all the records of that profile type and applies them to the endpoint
system files. Exact copy means that the system files will look exactly like all

If you are at the managed node or NIS domain level (that is, you
double-clicked on the managed node icon), and you do a distribute, it is the
same as All Levels, and it will modify system files.

Note
468 Tivoli Enterprise Internals and Problem Determination

profiles that have been distributed to it, removing any changes that have
been made locally to the system files.

As no merging can take place on a TMA endpoint (as there is no data held in
a Tivoli database on a TMA endpoint), an Exact Copy distribution directly to
an endpoint from a dataless profile manager would result in the endpoint
system files matching exactly just the data that was distributed. Note,
however, that this behavior may vary from one platform type to another. For
example, the OS/390 endpoint will not delete users as a result of an exact
copy distribution of a user profile. The normal way to signal to the endpoint
that a user should be deleted is to delete an existing user record from the
Tivoli user profile. This explicit delete action will always result in the deletion
of the user from the endpoint system files (with the exception of the
previously mentioned reserved IDs, such as Administrator or UID 0 users).

14.3.3.1 Additional Command Line Distribution Method
Problems occur when users don’t want to distribute with Exact Copy but do
want all records to be distributed. For example, a user accidentally removes
some entries from the /etc/group file, but the user does not want to distribute
with the Exact Copy option because local modifications were made.
Distribution with Preserve Modifications does nothing because none of the
user profile records have been changed.

There are three options for distributing profiles:

 • Merge and distribute changed records (Preserve Modifications).

Using Exact Copy with user profile distribution never removes the UNIX
root user or the Windows NT Administrator account. It will, however,
remove all other accounts including other NT administrators and other
UNIX system accounts if they are not defined in the profile.

If you defined a user profile containing a new user account named MyDog,
with no other accounts in the profile, then distributed that profile alone
using All Levels and Exact Copy options, then MyDog and UNIX root
accounts would be the only accounts left on the target systems.

Note

The Exact Copy distribution option replaces all passwords in the system
files.

Password Note
User Administration 469

 • Merge and distribute all records.

 • Make an exact copy and distribute all records (Exact Copy).

The second option above is a hidden command line option for the wdistrib
command. This option distributes all the records in a profile without making
an exact copy. The option is over_opts.

wdistrib -l over_opts <prof_name>

This option will replace all the passwords in the system file.

14.4 Deleting a User Profile

Deleting a user profile deletes the original profile and its records from the
profile manager. It also (optionally) deletes copies of the profile from the
profile manager's subscribers. It does not delete user account information
from the subscribing endpoints. To delete the user account from the
subscribing endpoints, you must delete the records from the profile, then
distribute the empty profile to the endpoints. This deletes everything that was
previously defined in the profile. There are a few exceptions. For example,
Tivoli User Administration will not remove the following:

 • UNIX root (ID 0) users.

 • Any NIS directives in the configuration files on a UNIX endpoint.

 • The Administrator user on a Windows NT.

 • The ADMIN account on a NetWare endpoint.

The Merge functionality just described does not work the same for TMA
endpoints as it does for other resource types. Merging will NOT occur
unless all the profiles for that TMA endpoint are in the same dataless
profile manager it is subscribed to. An option to make merge work is to
subscribe the TMA endpoint to a dataless profile manager and then
subscribe that dataless profile manager to multiple data based profile
manager(s) containing the Profile(s) for that TMA endpoint. This way, the
dataless profile manager acts as a central location for merging the profiles
together. With managed nodes, the merging takes place in the local Tivoli
database of the managed node.

Merging Profiles Note
470 Tivoli Enterprise Internals and Problem Determination

So, to stop Tivoli User Administration from managing a particular user
account, the process would be as follows:

1. Create a temporary profile.

2. Move the user to another profile - as this does not constitute a deletion
from the original profile, a distribution of the original profile will not delete
the user from the endpoint.

3. Delete the user from the new profile.

4. Delete the temporary profile. Be careful not to distribute this profile after
deleting the user, or the user will be deleted from the target system.

14.5 File Versions

The use of file versioning for User Administration gives the system
administrator a backup to go to in case of emergency. This is only available
for UNIX managed nodes. Tivoli uses a revision control system (RCS) to
update and maintain versions of system files. The directory Tivoli defines for
file versioning is $DBDIR/file_versions. This directory contains a file hierarchy
matching the system files that are modified. For example, a user profile
distributed to a UNIX box will have a $DBDIR/file_versions/etc/RCS/passwd
file. Likewise, if you distribute the same user profile to an NIS domain, you
would find a $DBDIR/file_versions/var/yp/src/passwd file.

The location of the file versions directory is stored as an attribute in the Tivoli
object database. To get or set the location of the file versions directory, you
can use the following commands:

Get the OID for fileioRef object:

#idlattr -tg 0.0.0 fileioRef Object
1234567890.1.322#TMF_FileIO#

Use fileioRef OID to get or set the directory name:

#idlattr -tg 1234567890.1.322#TMF_FileIO# versioning_area string

The UNIX root account is determined by the 0 UID. The Windows NT and
NetWare accounts are keyed by their text names. The US English version
of Tivoli User Administration will not remove an NT account named
Administrator, but it will remove administrator accounts using other names
including Administrator in other languages where the spelling is different.

Note
User Administration 471

#idlattr -ts 1234567890.1.322#TMF_FileIO# versioning_area string
‘"newpath/file_versions"’

14.5.1 Extracting File Versions
Backups of configuration files modified by the distribution of user or group
profiles are kept in $DBDIR/file_versions/system_directory/config_file. Each
backup has a v extension. Table 19 on page 472 summarizes the RCS
commands that can be used to view and manipulate versioned configuration
files.

Table 19. .RCS File Version Commands Summary

Refer to the Tivoli Framework Reference Manual for more information on the
use of these commands.

14.6 User Profile Passwords

When user profiles are distributed, user passwords are only overwritten in the
system files if the password itself is changed in the profile (or if wpasswd -l,
wdistrib over_opts, or Exact Copy is run). Any other field in the user record
can be changed, and the system password will not be overwritten.

For all the other fields, the following applies:

If anything in the user record is changed, the entire user record is distributed
to the endpoint. For example, if the user’s shell in the system file is changed

Command Purpose

wci Checks in RCS revisions.

wco Checks out RCS revisions.

wident Identifies files.

wrcs Changes RCS file attributes.

wrcsdiff Compares RCS revisions.

wrcsmerge Merges RCS revisions.

wrlog Prints log messages and other information about RCS files.

The password field is the only field in the user record that behaves this
way. UID can optionally behave this way from Version 3.6.1.

Note
472 Tivoli Enterprise Internals and Problem Determination

(meaning it is different than in the Tivoli database), and the user’s GCOS
information is changed in the Tivoli database, the user’s shell will be changed
back to the value in Tivoli when the profile is distributed.

An additional field was added to the UserProfile resource from Version 2.5
onward. This attribute is named profile_oneshots. This attribute contains a list
of users created with pre-expire password set to TRUE. Directly after
distributing the profile for the first time after the user(s) have been created,
User Administration traverses this list to reset the flag to FALSE. This ensures
that the users’ passwords will not be set to pre-expire (in the system files) if
something is changed in the user record within User Administration.

14.7 User Profile Home Directories

A user record can have a local or remote home directory. Windows NT users
do not have home directories defined within User Administration. However,
documentation does exist on how to get User Administration to maintain
Windows NT home directories using AEF (for an example see chapter 6 of
the redbook Getting Started with Tivoli User Administration, SG24 2015).

The contents of the UNIX home directory for any user are by default copied
from /etc/Tivoli/Tivoli_Admin. The default permissions of the home directory
are 700. This can be changed with the umask default policy. (For example, a
umask of 18 will provide a directory permission of 755; 18 is octal). The files
in the directory will be 644. Changes to the umask default policy must be
done before user records are added to the profile.

14.7.1 Local Home Directory
When the local option is used for a user record’s home directory, then the
home directory is created on the endpoint that will receive it. The home
directory will only be created when it is distributed the first time to all levels.

14.7.2 Remote Home Directory
When the remote option is used for a user record’s home directory, the home
directory is created on the host that is exporting the file system if it is a Tivoli
managed node or if it is mounted on the TMR server as root-writable. The
remote home directories are created when the profile is distributed to the next

Umask values before Version 3.1 were decimal, after 3.1, they are octal.

Note
User Administration 473

level for the first time. If the server is not a managed node, then the files will
be created on the TMR server.

14.7.3 Problems with Creating Home Directories
If the system that is trying to create the home directory does not have root
write access to the directory, the home directory creation will fail, but the user
will still be created.

14.8 User Administration Notice Group

Tivoli User Administration adds a notice group. Use this to track operations
during installations and upgrades and any changes to user profile records.
The notice will include date and time stamps and the record that changed and
the name of Tivoli administrator who performed the task.

14.9 NIS Domains

Network Information Service (NIS) is a profile endpoint. It allows you to
manage the NIS maps on an NIS server through the user and group profiles
as well as editing the other maps through Tivoli on the NIS icon. Tivoli User
Administration does not support the creation of the NIS server or NIS replica
servers. NIS must already be set up.

NIS may encounter problems, such as the following:

 • Cannot distribute profile to NIS domain.

 • Cannot make or push an NIS map.

Some of the best ways to look at problems when distributing to NIS domains
are:

 • Turn off automatic make and push of maps.

 • Distribute to the next level, then distribute to all levels.

 • Do the make and push by hand.

 • Distribute to a fake NIS Domain.
474 Tivoli Enterprise Internals and Problem Determination

14.9.1 NIS Default Policies
Table 20 contains the methods for setting custom default policies for NIS
maps:

Table 20. NIS Default Policies

The methods call shell scripts that you can modify to set a new default policy
are shown here, and you can set default policy on a per-map basis.

Method Description

nis_def_map_makeflag Sets the initial value of a map’s makeflag.

nis_def_map_pushflag Sets the initial value of a map’s pushflag.

nis_def_map_makescript Sets the initial value of a map’s make script.

nis_def_map_pushscript Sets the initial value of a map’s push script.

nis_def_map_push_targets Creates the initial list of push targets for a map.

nis_def_map_sourcefile Sets the initial value of a map’s source file.

Creating a user with a local home directory on an NIS endpoint adds the
user to the NIS password map but does not create the home directory.
Always use remotely mounted Home Directories for NIS, even if the NIS
server is the file server.

NIS Note 1

If you ever distribute user/group profiles directly to the managed node
where the NisDomain resides, you most likely will NOT be able to ever
distribute the same type of profile to the NisDomain. You will get some
error message about a conflict of target files.

NIS Note 2
User Administration 475

14.9.2 NIS Validation Policies
Table 21 contains the methods for setting custom validation policies for NIS
maps:

Table 21. NIS Validation Policies

Tivoli User Administration NIS management provides a level of control over
when notices are generated. The desired verbosity of an application (with
respect to notices) is very user-specific, and, therefore, giving the user a
means to control it is essential. To allow this to happen, User Administration
NIS has a notice-level attribute set on each NIS domain object. For each
operation the NIS application performs at a user’s request, a fixed set of
notification events occur. These events are listed in the table below. If the
notice level of the domain is set higher than the notification event’s level, then
a notice is generated for that notice event. Otherwise, no notice is generated.

Table 22. NIS Notice Group Severity Levels

Method Description

nis_val_make_map Validates the make operation.

nis_val_push_map Validates the push operation.

nis_val_add_map Validates a map before adding it to an NIS domain.

nis_val_remove_map Validates a map before removing it from an NIS domain.

nis_val_map_source_name Validates the name of the source file for the specified
map.

nis_val_map_source_attrs Validates the file system security of a map source file.

nis_val_domain_label Validates the NIS domain label name against a naming
policy.

nis_val_master_server Validates the master server.

nis_val_delete_domain Validates deletion of an NIS domain.

Severity Level

DEFAULT 5

CRITICAL 9

ERROR 7

MAJOR 6

NORMAL 5
476 Tivoli Enterprise Internals and Problem Determination

The valid notice levels can range from 0 to 9. Level 0 notices provide the
most verbose information.

While a notice event may generate a notice, the type of notice is determined
by the notice event itself. Some events are debug events, which are useful
only for debugging the application. Other notice events are useful when
training a novice administrator. Some notice events reflect errors or critical
conditions and, therefore, have a high level.

If the notice level set on a domain is 5, then all notice events with level 5 and
above will generate a notice. It is strongly recommended that you leave the
setting at 5 for normal use. Since error notices are generated at level 7,
setting the notice-level above 7 will suppress error conditions.

Information logged in events with a notice level of 3 or less may not be
meaningful to anyone except Tivoli Customer Support. For detailed listing of
all the actions that can be logged for NIS Notifications, see the Tivoli User
Administration NIS Management Guide.

14.9.3 Creating Fake NIS Domains
One useful method when working with NIS problems is creating fake NIS
domains. The fake NIS domain will undergo the same methods that an NIS
domain will. The only difference is that there is no make or push file at the
end and there are no yp processes running. The following are the commands
needed to create a fake NIS domain (wcrtdomain is documented in the Tivoli
User Administration NIS Management Guide):

INFO 4

NIT 2

DEBUG 1

Severity Level
User Administration 477

There are various uses for fake NIS domains besides testing NIS problems
and implementations. One example is the migration of Tivoli user data from
one TMR to another. In an all UNIX environment, you could distribute your
user data to a fake NIS domain and then use populate in the second TMR to
bring all the data into the second TMR.

Create a dummy NIS domain on host rainbow.
mkdir /etc/yp/src
cd /etc/yp/src
head -50 /etc/passwd > passwd
head -50 /etc/aliases > aliases
mkdir nbNIStest
wcrtdomain -c /etc/yp/src /etc/yp/src nbNIStest @rainbow @PolicyRegion:"Nancy’s
Region"
echo $?
0
list sourcefile for maps
wlsmaps -s @nbNIStest
aliases /etc/yp/src/aliases
passwd /etc/yp/src/passwd
create new profile manager
wcrtprfmgr @PolicyRegion:"Nancy’s Region" nbPM
200205.1.741#TMF_CCMS::ProfileManager# nbPM
echo $?
subscriber to ProfileManager
wsub @ProfileManager:nbPM @NisDomain:nbNIStest
echo $?
0
create UserProfile
wcrtprf @ProfileManager:nbPM UserProfile "nbUSER NIStest"
200205.1.743#UserProfile# nbUSER NIStest
echo $?
0
create some new users
wcrtusr -h /is/user2 -t MOUNTED -S overlook:/export/is/user2 -u 107
@UserProfile:"nbUSER NIStest" user2
wcrtusr -h /engr/user3 -t MOUNTED -S crescent:/export/engr/user3 -u 201
@UserProfile:"nbUSER NIStest" user3
wcrtusr -h /staff/user4 -t MOUNTED -S chisos:/export/staff/user4 -u 874
@UserProfile:"nbUSER NIStest" user4
wcrtusr -h /mgr/user5 -t MOUNTED -S rainbow:/export/mgr/user5 -u 305 @UserProfile:
"nbUSER NIStest" user5
Where
-h xxxxxx corresponds to Add User dialog field for Home Directory Path...
-t xxxxxx Home Directory Type
-S xxxxxx Server Path...
distribute user profile to <fake> NIS domain
wdistrib -m -l maintain @UserProfile:"nbUSER NIStest" @NisDomain:nbNIStest
echo $?
0

478 Tivoli Enterprise Internals and Problem Determination

14.9.4 General Approach to User Administration Customization
Most installations will benefit from customization of User Administration. To
avoid problems caused by the modifications, use the following tips:

 • Change one policy at a time and test it.

 • Do not change everything at once.

 • Test changes in an isolated or lab environment before trying to implement
them in production.

 • If you make too many changes without incremental testing, debugging
User Administration problems can become extremely complicated

 • If you experience a problem, you can run tests on a profile that has not
been modified to see if it is the customizations that are the cause of the
problem

 • Avoid changing the default user profile (TivoliDefaultUserProfile). This is
the profile used when you create a new profile from scratch. Instead, you
should modify an existing profile and then use that as a source for cloning.
If you encounter problems with a modified profile, you can then return to
the default profile for testing. Also, the default profile may be modified by
Tivoli updates.

14.10 User Administration Data

There are several databases that Tivoli User Administration uses within the
Tivoli management object database to keep up with user and group records.
They are:

 • UserNameDB
 • UID
 • GroupNameDB
 • GID
 • LocatorDatabase

These databases have references into user and group profiles and are used
with the UserLocator application and with commands, such as wlsids and
wlsnams, that are commonly used in default and validation policies. These are
part of the Tivoli Name Registry; so, TMR commands, such as wlookup and
wregister, can be used here.

These databases are examples of what may move to RIM in future
implementations.
User Administration 479

14.11 User Administration Methods

Table 23 lists the method calls that can be observed with odstat and wtrace
when trying to trace problems with User Administration:

Table 23. User Management Methods

14.12 Troubleshooting User Administration

This section lists some of the most common problems you may come across
and how to deal with them.

14.12.1 Code Level Consistency
The TMR must have one consistent level of User Administration installed. For
example, if you are going to Version 3.6, then all nodes in that TMR must be
brought up to 3.6. If you have Tier 2 systems that are not available at the
same level, you must stay with the Tier 2 level of Tivoli User Administration
for the entire TMR in which the Tier 2 systems reside.

14.12.2 Populate Considerations
The following considerations apply to User Administration record population:

 • If the subscriber node is a managed node, Tivoli User Administration must
be installed on that node before you can populate a profile from it. If the
subscriber is a TMA endpoint, then the User Administration gateway must
be installed on the endpoint gateway before you can populate a profile
from an endpoint on that gateway.

Method Path to binary

UserProfile_synchronize /TME/USERMANAGEMENT/umbo_skel1

UserProfile_verify /TME/USERMANAGEMENT/umbo_skel1

change_password /TME/USERMANAGEMENT/umbo_skel1

um_discover /TME/USERMANAGEMENT/umbo_skel1

um_discover_ext /TME/USERMANAGEMENT/umbo_skel1

um_gen_strlist /TME/USERMANAGEMENT/umbo_skel1

um_runcmd /TME/USERMANAGEMENT/umbo_skel1

um_set_login /TME/USERMANAGEMENT/umbo_skel1

um_update /TME/USERMANAGEMENT/umbo_skel1
480 Tivoli Enterprise Internals and Problem Determination

 • The populate will fail validation for UNIX UIDs for root and nobody (by
default).

 • Populate cannot get NT or NetWare passwords.

 • If you encounter a problem with populate from a UNIX box, run the
platform command to check /etc/password and /etc/group. The command
will be something like pwck (Solaris) or pwdchk (AIX) and grpck (Solaris and
AIX). This will provide a syntax sanity check.

14.12.3 Distribute Considerations
If you are having trouble getting a User Administration profile distributed, the
following tips may help:

 • Verify that Tivoli User Administration is installed on the managed nodes
you are managing, and User Administration gateway is installed on your
endpoint gateways if you are managing TMA endpoints.

 • Remember that Distribute with Exact Copy will erase system accounts
such as nobody, adm, bin, lp, and any non-root uid 0 account unless they
are explicitly in a user profile. Also, Exact Copy will overwrite all
passwords.

 • Pushing to Windows NT Backup Domain Controllers (BDC) can cause
problems and is not recommended. The PDC should always be used as
the target. This is more of a problem with versions of User Administration
prior to 3.6.

 • The administrator doing the distribution will need root write access to
home directory file systems in order to create home directories.

14.12.4 Interregion Considerations
If you are having problems distributing to another TMR, verify that the
systems in that TMR are running the same version of Tivoli User
Administration, and that a TMR resource update has taken place recently.
Some resource updates are critical to User Administration working across
TMR boundaries. Which resources to exchange really depends on your
specific Tivoli environment. If all User Administrator profiles are kept on a
central TMR, then you do NOT want to exchange resources, such as the
Name database and UID database.

14.12.5 Modifying Records
The following is a list of things to check that may lead you to the source of
problems encountered when making changes to records or will help Tivoli
support representatives to assist you:
User Administration 481

 • Was the record populated or added?

 • Are you in a top-level profile?

 • What type, local or remote, is the home directory?

 • Are there AEF customizations?

 • Extensive AEF customizations can be extremely complex. Without
detailed AEF and User Administration experience, you are unlikely to
be able to do much to resolve AEF customization issues.

 • Try testing without the AEF customizations to isolate if the problem is in
base Tivoli or in your AEF customizations.

 • Be aware that upgrading User Administration from 2.x to 3.x will
disable any AEF changes. It will be necessary to reapply the changes
following the upgrade. This will probably be the same for any upgrade
including a future upgrade from 3.x to 4.x.

 • There is little Tivoli can do to prevent syntax errors in stand-alone shell
scripts. Users should run sh -n on their scripts before they import them
as AEF actions. Tivoli just runs them as they are typed in; it is not
designed to ensure that actions are syntactically correct.

 • Check for any policy customizations. If you have a custom policy, and you
have also changed TivoliDefaultUserProfile, then create a new profile and
execute the following commands and try same thing again. If it then works,
then the problem is the Policy customizations you previously did:

wsetdefpol UNIX DISABLE <profile_name>
wsetdefpol UNIX ENABLE <profile_name>
wsetdefpol NT DISABLE <profile_name>
wsetdefpol NT ENABLE <profile_name>
wsetdefpol NW DISABLE <profile_name>
wsetdefpol NW ENABLE <profile_name>

Disabling and re-enabling default policy in this way deletes any customer
policy definitions. Note that this only applies to the platform types provided
in the base product (UNIX, NetWare, and Windows NT).

 • What are the administrator’s TMR and policy region roles? Some
commands will need TMR roles.

 • You can use wtailnotif to track notices.

 • Where is the endpoint? Check if it is in an interconnected TMR.

 • Look at the oservlog for any indications of a problem.
482 Tivoli Enterprise Internals and Problem Determination

14.12.6 Other Troubleshooting Hints and Tips
This is a list of miscellaneous tips worth noting:

 • If you receive a failure in the GUI, trying the CLI may make it work or
provide more information about the failure. This is particularly true if the
GUI was customized.

 • CLI commands to manipulate User Administration profiles do not work on
interconnected TMRs; they must be executed locally within the TMR.
Either use the GUI, or login to the remote TMR system and execute the
command locally.

 • Certain endpoints, such as Windows NT, can put a lot of detail about
errors in the notice group, and this should be checked as well as other
logs.

 • Implementing password aging on AIX 3.2.5 can be difficult because it uses
per-system password aging rather than per-user password aging.

 • The number of users in a profile can have a major impact on the
performance of distributions or GUI operations. Prior to 3.6, the
recommendation was to keep profiles down to 500 users or less. You
should avoid having more than 1,500-2,000 users in one 3.6 profile. More
than 2000 users in a profile can cause massive slow-downs because of
the way Tivoli transactions work. Performance on distributions to UNIX
depends upon the size of the /etc/passwd and /etc/aliases files as well as
the size of the profile being distributed. What actually happens is a
wpopulate is done to a virtual profile, then the distributed profile is merged
into the virtual profile, then the virtual profile is sent down to the system
files.

 • If you change the common login name, by definition, it will change all other
login names.

 • A few other tricks to try:

 • Unsubscribe and delete pushed copies. Then re-subscribe and try
again.

 • Make Exact Copy to next level, then Preserve Local Modifications to
system files.

 • Push a new profile with one dummy user to test distribution and
populate.

 • Always distribute a newly populated profile before making changes.
User Administration 483

14.13 The wpasswd Command

The wpasswd command is used to modify a user’s password in user profiles. It
is not meant to replace the UNIX passwd command. However, you may want
your users to make use of wpasswd without retraining them to use a new
command. Replacing passwd with wpasswd is not recommended because this
would require a very clever wrapper to be created. The man page for wpasswd
gives a few reasons:

The wpasswd command is not intended to be a replacement for the UNIX
passwd command. wpasswd will not run if the oserv process is not running on
the local host or if the Tivoli server is down. You may need to change UNIX
passwords when a host is in “single-user mode” or other times when the
oserv process is down.

If you wanted to write a wrapper, it would need to respond correctly to the
following situations:

 • The script being called by a Tivoli administrator changing a regular user's
password by a regular user changing his own password or by root.

 • The oserv being down.

 • The system being in single-user mode.

 • The TMR connection being down if connected to a central TMR.

 • The handling of local accounts not managed by User Administration (such
as root and kroot).

 • The handling of expired passwords and login issues.

 • Being invoked by a Tivoli administrator who does not have admin role for
the user profiles.

 • The case where the UNIX password and the Tivoli password were so
different that the comparison with the old password did not work in all
cases.

 • User interrupts (^C).

Do not ever change a password in a copy of a profile. You cannot unchange it
(only change it back if you knew the original password), and wpasswd won’t
work for a user, as the password the user gives will not match. The copy’s
password value will stay unless you do a distribution with Exact Copy or
over_opts and reset everybody’s password. The other option, in this case,
would be to unsubscribe the subscriber and delete the offending profile copy.
484 Tivoli Enterprise Internals and Problem Determination

Chapter 15. Security Management

While Tivoli User Administration manages the creation and authentication of
users, Tivoli Security Management manages the access control those users
will encounter. Security Management is transparent to the end users. They
continue to use the normal login and access methods to use IT resources.
Security Management works with the access control mechanisms of
supported endpoints to determine the access rights users have to defined
resources. For example, for Windows NT, Tivoli Security Management
manipulates the Security Account Manager (SAM) database to ensure users
have the desired access rights and permissions.

The special case for Security Management is the UNIX platforms. For UNIX,
a new security product is included called the Tivoli Access Control Facility
(TACF). This intercepts resource calls from users and applications and
applies access control mechanisms defined in security management profiles.

Troubleshooting Tivoli Security Management is going to be largely a question
of troubleshooting either TACF or someone else’s security system (such as
the Windows NT SAM or MVS RACF).

Security Management provides four types of record that can be defined within
a security profile.

Figure 193. Security Profile
© Copyright IBM Corp. 1998, 1999 485

Access is managed in a hierarchical fashion. Users are collected together
into groups that fit into the company organizational structure. That group is
then assigned roles that correspond to the job functions members of that
group will perform. The roles define the access capabilities for sets of
resources. In addition, there is a set of attributes that can be set for whole
systems to implement system policy. These include items, such as password
controls (maximum and minimum lengths, and so on). The four security
record types: Groups, roles, resources and system policy can all exist in the
same security profile.

The security profile contains definitions of all groups, resources, roles, and
system-wide policies, each of which is stored in its own type of record.
Records are stored in a system-independent format that allows profile
records to be distributed across an enterprise that contains many different
system types.

As important as describing what Security Management is, it is equally
important to give examples of what it is not. There should be no
misconceptions of what the product is designed to provide:

 • It does not alter the security of the Tivoli framework.

This means it is not a framework security product. It is possible to use
Security Management to enhance framework security, for example, by
managing access controls for file systems where the Tivoli applications
reside or restricting connectivity to systems running Tivoli software.

 • It does not manage Web server, database, or application security.

Security Management can manipulate the access control to the files in use
in these programs; or in UNIX, we can say which processes can have
access. However, each of these examples usually maintain their own
security information (access controls, users, and so on). Security
Management is not provided with interfaces to these security mechanisms
(at the time of writing). With the 3.6 release, Security Management is more
easily extended using AEF in a similar fashion to Tivoli User
Administration making the addition of new endpoints (such as a database)
a possibility.

Security Management, as a tool, helps security administrators to enforce a
consistent security policy enterprise-wide by providing a means to centrally
define and distribute these policies to their enterprise systems' local security
databases.

Policies defined with Security Management specify the allowable access to
system-level resources (files, accounts, printers, etc.) on UNIX and Windows
486 Tivoli Enterprise Internals and Problem Determination

NT managed nodes and TMA endpoints. Only Windows NT machines, which
belong to a Windows NT Domain, are supported; stand-alone NT
Workstations are not. Additional platforms, as with Tivoli User Administration,
are supported through add-on modules (examples include OS/390 Security
Server and OS/400).

Security Management, on all platforms besides UNIX, uses the native
security system. For example, on Windows NT, distributing a profile modifies
the access control lists on the real NT resources defined in the profile. This
means they must exist, or an error will be raised. Population varies by
platform but will generally not discover all resources on the endpoint.

When distributing/populating from an NT endpoint, NT global groups are
mapped to security group records, and NT local groups are mapped to role
records. This imposes some restrictions, foremost among them being that
group records should only be distributed to Primary Domain Controller (PDC)
machines.

System policy maps to the policies accessible through the Windows NT User
Manager. Distributed to a PDC, this affects the domain’s policy. On other
machines, it has only local effect. Distribution of system policy to a BDC will
fail as the copy of its account database is read-only.

Editing records directly within Windows NT is discouraged as we need to
keep the information between Windows NT and Security Management
synchronized. Security Management manages an NT domain user account
for each global group managed with a group record. This user account named
tme_groupname is for internal use only. Do not edit this user account.

Security Management implemented on UNIX will be discussed in 15.6, “Tivoli
Access Control Facility” on page 492.

15.1 Tivoli Security Management Installation

Tivoli Security Management installs like any other Tivoli Framework
application either through the Desktop Installation mechanism, the command
line with winstall, or using Software Installation Services (SIS). While it will
work hand-in-hand with User Administration, it is not a prerequisite. There are
a few points regarding installation to note about this product:

 • There are five components to Tivoli Security Management:

 • Tivoli Security Management (for the TMR server and any managed
node that will use Security Management).
Security Management 487

 • Tivoli Security Management for gateways (for each managed node that
will serve as a gateway for TMA endpoints).

 • Tivoli Access Control Facility (TACF, for UNIX managed nodes and
UNIX TMA endpoints only).

 • TACF Installation Utilities (for each managed node from which you will
install TACF onto UNIX TMA endpoints).

 • Security Tasks, Events, and Monitors.

 • TACF can only be installed on supported UNIX endpoints. This is a subset
of UNIX systems and levels supported by the Framework. Check the
release notes for details.

 • When installing TACF, the administrator chooses the location where the
binaries will be stored. This will not necessarily be the Tivoli $BINDIR.

 • If you subsequently add products, such as Tivoli Distributed Monitoring or
TEC, you will need to reinstall the monitors and events component to
make the security ones available, therefore, plan on installing these
products before Security Management.

 • The ownership rights of TACF and many of its processes belong to the
user ID tmesec. The User IDs of TACF Administrators field allows you to
define additional TACF administrators. Avoid setting root as a TACF
administrator as this will give root the ability to kill TACF processes and,
thereby, circumvent the security policies.

 • To remove Tivoli Security Management products from a managed node or
the TMR server use the wuninst command. To remove TACF from UNIX
endpoints use wuninsttacf.

TACF may be installed anywhere on the system; it does not have to reside
under the Tivoli directory structure hierarchy. There is only one restriction
regarding location; it must be installed to a local file system. For convenience,
a link, /usr/seos, is created to the root of the TACF installation. Additionally,
links to the TACF binaries are created in $BINDIR/bin; so, you should always
be able to find these on a system.

When TACF is installed, a local user, tmesec, is created. This is the account
used by Security Management to administer TACF. This account is as
powerful in TACF as root is in UNIX; so, the same means used to secure root
against misuse should also be applied to tmesec.

Because TACF must constantly reside and run on a system, it does not fit into
the on-demand download model of a standard TMA endpoint. Thus, TACF
must be installed like a product, even on an endpoint. Since the standard
488 Tivoli Enterprise Internals and Problem Determination

installation mechanisms will not install software on a TMA endpoint, the TACF
Endpoint Installation Utilities must be used to install TACF. The TACF
Endpoint Installation Utilities must be installed on the gateway serving the
endpoint. The install utility, winsttacf, utilizes a reduced version of Tivoli
Software Distribution to install TACF on the endpoint.

TACF is very sensitive to operating system versions. Installing on
unsupported versions could result in a variety of problems. This issue must
also be considered before upgrading the operating system on a machine
running TACF. Refer to the Security Management Release Notes for specifics
on supported versions.

15.1.1 Security Notice Group
Tivoli Security Management adds a Security notice group. Use this to track
operations during installations and upgrades and any changes to security
profile records. The notice will include date and time stamps, the details of
any record change that took place (including what was changed), and the
name of the Tivoli administrator who performed the task.

15.2 TMR and Policy Region Roles

The new Tivoli administrator roles for Tivoli Security Management are as
follows:

 •security_admin

This assigns authority to administer access to system-level resources.
Here are some of the functions that an administrator with this role can
perform:

 • Create and modify security group, security role, and security resource
records.

 • Create and modify System Policy records.
 • Distribute security profiles.

 •security_auditor

This assigns authority to audit the use of system resources and to control
which security events are logged. This role is required to execute the Audit
Report Generator task.

 •security_operator

This assigns authority to view all security resource data.

Existing authorization roles still apply to some functions related to managing
security profiles. For example, assigning security profiles as managed
Security Management 489

resources in a policy region requires a senior authorization role in the policy
region.

Full details of the authorization roles required to perform each function are
documented in the Tivoli Security Management User’s Guide.

15.3 Populating and Distributing Profiles

This section details some considerations for populating and distributing Tivoli
security profiles.

15.3.1 Populating Records
Note that the population of records will vary depending on the endpoint type.
Population from UNIX will be from TACF records and not from any native
UNIX access control mechanism. This means UNIX files, groups, and other
system specific resources are not searched. UNIX groups can be added to
the TACF database by executing the UxImport command, or by using the
Synchronize TACF/UNIX Users and Groups task.

For Windows NT, population will create a security group record for each NT
global group, and a role record will be created for each NT local group. Be
aware that as a group record corresponds to an NT global group, and as you
cannot define a global group on an NT workstation, that you cannot distribute
a group record to an NT workstation. With the exception of SYSTEM resource
records, NT resource records cannot be populated from the profile. All other
resource records must be populated at the record level. If this action was
permitted, every file, directory, and registry entry on the endpoint would be its
own resource record. The Resource record of type SYSTEM is given the
name User Rights. NT System Account Policy is used to populate the
Security System Policy.

15.3.2 Security Profile
Security Management is a profile based application. Security policies are
represented by Security Profiles that must be distributed to the endpoint to be

The 3.6.1 release introduces a whole new set of so-called Fine-grain roles.
These allow a finer distinction of a security administrator’s capabilities. For
example, an administrator could be allowed to create a role but not a
group, and so on. See the release notes for Tivoli Security Management
3.6.1 (or manuals for subsequent releases) for details.

New Roles in 3.6.1
490 Tivoli Enterprise Internals and Problem Determination

put into effect. The security model is a three-tiered, role-based model
described in some detail in Tivoli Security redbooks (such as SG24-2021,
SG24-5101, and SG24-5339) as well as the product manuals.

You should note that it makes little sense to have multiple system policy
records in a single profile; the last one pushed to an endpoint wins.

Groups, Roles, and Resources connect together to define the security policy.
These connections can span across Security Profiles, but all Security Profiles
involved will need to be distributed to the endpoint.

The Tivoli Security Management Users Guide has a detailed description of all
resource types provided by default

15.3.3 Distribution Options
As with Tivoli User Administration, we have options to distribute to all or next
level and using preserve modifications or exact copy.

It is unlikely that you will want to use all levels and exact copy. This option will
replace any existing definitions and remove any that are not in the profile
being distributed. Check the Tivoli Security Management Users Guide
sections “Setting Distribution Defaults” and “Distributing Security Profiles”, for
limitations with Exact Copy distribution, as not all records will necessarily be
overwritten.

15.4 Auditing

Most of the controls Security Management puts in place can be audited with
settings for access attempts, such as failures only, success only, and no
auditing. The default auditing level is for failures only.

TACF has a warning mode for auditing. You can define the controls you want
to put in place, but TACF will allow all accesses and generate a warning if the
controls would have resulted in failed access. This is a very useful feature for
testing new installations.

15.5 Security Tasks

Tivoli Security Management provides a set of tasks that allow administrators
to run security jobs. These tasks and jobs behave in the same way as all
other tasks and jobs in allowing the execution characteristics to be changed,
for example:
Security Management 491

 • On which systems the tasks/jobs will run.
 • Where the output is displayed.
 • Whether to run serially, in parallel, or staged in groups.

The following tasks are provided:

 • Tivoli Security Audit Report tasks:

 • Endpoint Audit Report
 • TME Security Database Report

 • TACF tasks:

 • Add/Remove TACF Auditor/Administrator
 • Backup TACF Database
 • Disable Concurrent Logins
 • Enable/Disable TACF Trace
 • Extract TACF Trusted Programs
 • Restore TACF Database
 • Show TACF Auditors/Administrators
 • Start TACF Servers
 • Stop TACF Servers
 • Synchronize TACF/UNIX Users & Groups
 • TACF root Compliance Report
 • TACF Database Maintenance
 • TACF Run-time Statistics Report
 • TACF/UNIX Integrity Report
 • Terminate TACF User

These tasks are all described in the Tivoli Security Management User’s
Guide. Note that during installation, Security Management does not assume it
should place the task libraries in an existing Policy Region. It places them in
policy regions created specifically for the Security Management install.
Whether you leave them there or not depends on your own administrative
requirements.

15.6 Tivoli Access Control Facility

TACF is Tivoli’s name for the SeOS technology licensed from Memco. It is a
critical part of Security Management on UNIX systems providing a
non-intrusive, yet powerful, extension beyond the 9-bit/uid/gid UNIX native
security. By non-intrusive, we mean the kernel does not need to be
re-compiled to install TACF, nor are the objects being secured modified in any
way. When TACF is shut down or de-installed, resource access remains as it
was under UNIX before TACF.
492 Tivoli Enterprise Internals and Problem Determination

There are three main pieces to TACF itself:

 • Kernel extension
 • Daemons
 • Security database

The kernel extension replaces a subset of the standard system calls with
security checking routines of its own. If the security check fails, failure is
immediately returned. If the check succeeds, the original system call is
invoked and the results returned. Note that TACF must allow access then
UNIX. Both must be successful for access to be granted; TACF does not
grant a way around UNIX security.

There are at least three and as many as five daemons that comprise an
active TACF instance. The three most important, which are always present,
provide the core services of TACF, and are:

seosd Handles authorization checks
seagent Performs actions on behalf of seosd
seoswd Watches over protected resources and other daemons

These daemons cannot be killed; only an authorized TACF administrator can
shut them down. The other two daemons are used to provide optional extra
functionality:

selogrd Forwards TACF audit records to a central collection point. TACF
TEC integration relies on selogrd.

serevu Enforces login failure policy.

TACF also maintains its own security database containing all the security
information for TACF: The groups, users, and resource ACLs. The seosd
daemon will refer to the database whenever a security check is requested.
Additionally, items, such as password history, expiration, and last login, are
stored here.

15.6.1 TACF Architecture
The TACF process places hooks in system services that need to be
protected; therefore, control is passed to TACF before the service is
performed. When a user requests a system service that is protected by TACF,
the process accesses the object record and checks to see if the user is
allowed access to the object. Access rules and policies are defined in the
TACF database that is installed on each UNIX managed node. The TACF
database contains information about the resources, groups, roles, and
system policies that are applicable for that node. The basic structure of the
access rule is an Access Control List (ACL) that is attached to the protected
Security Management 493

record. An ACL is a list of users or groups that are allowed access to a
particular object along with the access authority for each user or group.

Figure 194. TACF Security Architecture

In this:

1. A process makes a system call, such as root invoking bin/passwd.
2. Kernel routine for system call (open) is looked up in UNIX kernel table.
3. Kernel looks up address of routine which services the (open) request

(seos_open) and invokes it.
4. TACF version of system call checks with seosd if requested access to

object is allowed for this user.
5. seosd checks the rules in the TACF security database.
6. seosd returns Permit or Deny.
7. If Permit, the system-supplied kernel routine is invoked, and results are

passed back to calling process.
8. If Deny, return failure (EPERM) to the calling process.

TACF has administrator and auditor roles just as Security Management does.

Administrators have the authority to create, modify, and delete access rules
defined in the database as well as the ability to shut down TACF (only root
can start TACF). Auditors may view the rules and the audit logs. These roles
are completely distinct and separate from the similar Tivoli authorization

TA C F S ecurity A rch itec tu re

P erm it

U N IX K ernel

TA C F D atabase

F ILE /e tc/shadow

root (R W)

open("/e tc/shadow ", O _R D W R , 0644)

A ccess=R .W
F ile="/e tc /passw d"
u id=0

seoswd
se osd

seagent

sysca ll tab le

open
seos_ open()se tu id seos_ se tu id

brk rea l_b rk

TA C F Ke rn el A dd-on
seos_ope n

rea l_open

rea l_o pen ()

p ro ce ss#p assw d

va lid f ile descrip to r

6

82

1

4
5

7

3

494 Tivoli Enterprise Internals and Problem Determination

roles: security_admin and security_auditor. TACF administrators and auditors
can be created at install time or later through the Add / Remove Auditor /
Administrator task.

15.6.2 TACF Utilities
Several utilities are included with TACF, mostly for administration:

secons For controlling the daemons (stopping them, enabling tracing,
obtaining information).

selang A CLI to the security database. With selang, an administrator can
check on the rules created by Security Management or add their
own.

Additional utilities exist that replace or supplement existing UNIX password or
su utilities, such as sepass and sesu. Note, that as of 3.6.1, sepass is not
integrated in any way with the Tivoli User Administration wpasswd command.
This integration is planned for a future release.

15.6.3 TACF User Mapping
Unlike UNIX, TACF permissions are granted based on who you log in as, not
based on your effective/real/saved UIDs. So su and setuid/setgid executables
have no effect on the access rights granted/denied through TACF although
they still affect UNIX rights.

UNIX system calls return numeric IDs instead of names to the caller. TACF
allows the definition of rules using names instead of IDs; so, TACF installation
automatically generates and installs a Lookaside Database on all TACF
endpoints. This lookaside database provides the resolution of TACF ID to
name. The installation process also creates the user tmesec, and the groups
tme_aud and tme_sec on each UNIX managed node and endpoint if they do
not already exist. As the /etc/passwd and /etc/group files are not likely to be
the same on all nodes, the ID assigned to tmesec, tme_aud and tme_sec will
most probably be unique. If the same ID is preferred on all nodes, create the
user and groups manually or with a product, such as Tivoli User
Administration, before installing TACF. If the ID of the user or group is
changed at a later stage, to prevent conflicts within NIS maps, as an
example, you must synchronize all TACF managed node and endpoint
databases using the job Create/Update TACF Lookaside Database.
Security Management 495

15.6.4 Distributing and Populating with TACF
Distributing a security profile to UNIX causes the rules in the TACF security
database to be updated. Security profiles can only be populated from records
already in the TACF database:

 • Roles cannot be populated on UNIX.
 • Group records are mapped into TACF groups. TACF groups are not UNIX

groups and need not contain the same members.
 • Roles have no physical mapping.

TACF resources protect UNIX resources, yet the UNIX resource need not
even exist. The protection will come into effect when the UNIX resource is
created. TACF also allows a test or warning mode. If set, the rules on an
object are not enforced. However, should an access take place that normally
the rules would deny, an audit record is generated. This is exposed in
Security Management through the Warning attribute on Resources.

15.6.5 TACF Command Line
Under normal circumstances, it will not be necessary to interface directly with
TACF from the command line. Instead, Tivoli Security Management adds a
number of commands to the TME environment, such as wcrtsec. These are
what you would use for normal command line activities. Using the command
line, however, as opposed to w commands, such as wcrtsec, might be more
useful in problem determination where you are getting unexpected access or
denial of access to resources.

The user ID tmesec owns the TACF database and most of the associated files.
It is defined as a TACF user with attributes that allow it to add, modify, and
delete resources and accessors. Other user IDs, for example root, may have
the authority to start up the command line environment but could be restricted
to only viewing resources and accessors.

TACF commands are available to run in two environments:

 • TACF command shell

These commands interface directly with the objects and resources defined
in the TACF Database.

 • UNIX environment

These commands interface with the UNIX operating system allowing you
to add, modify, and delete UNIX users and groups and modify file
permissions from within the TACF command line interface.

To access the TACF command line:
496 Tivoli Enterprise Internals and Problem Determination

1. Login as tmesec.

2. Set up the Tivoli environment:

. /etc/Tivoli/setup_env.sh

3. Enter: selang

This will give you the TACF prompt:

TACF>

You can enter help to get a list of commands and environment unix or
environment tacf to switch between the UNIX and TACF command sets.

Refer to the Tivoli Security Management Reference Manual for TACF or the
redbook SG24-2021 Managing Access from Desktop to Datacenter for more
details on the commands available. This command interface can be used to
determine what TACF believes is the status of resources, user groups, and
other features.

15.6.6 TACF Initialization File
The TACF initialization file is called seos.ini and will be located in the
top-level directory specified during TACF installation, such as:

/usr/local/Tivoli/TACF/seos.ini

The /usr/seos link can also be used to find this file:

/usr/seos/seos.ini

The initialization file seos.ini defines the environment in which TACF will
start. You can find a full description in the Tivoli Security Management
Reference Manual for TACF, but here is some of the information that it
contains. Replace the directory name with the directory of your installation:

 • Installation directory:

Default : /usr/local/Tivoli/TACF

 • Directory of the seadm rules and other configuration files:

Default : /usr/local/Tivoli/TACF/data

 • TACF database:

Default : /usr/local/Tivoli/TACF/seosdb

 • TACF log files (including the audit log):

Default : /usr/local/Tivoli/TACF/log/seosd.audit
/usr/local/Tivoli/TACF/log/seosd.error
/usr/local/Tivoli/TACF/log/seosd.trace
Security Management 497

 • Start up file for TACF Daemons:

Default : /usr/local/Tivoli/TACF/rc.SeOS.base

 • Symbolic link to TACF directory:

Default : /usr/seos -> /usr/local/Tivoli/TACF

 • Options for TACF trace messages.

 • Options for resolving IP addresses to host names.

15.7 Tips and Troubleshooting

Unfortunately, although the concepts behind Security Management are
simple, the details are many and complicated. Controlling access to a
resource can sometimes have much further reaching consequences than
expected. Also, because of its power, Security Management will often take
the blame for many failures with which it has no connection.

However, there is usually a fairly good source of information for resolving
these problems - the audit logs. Since access failures are generally audited,
there will often be an audit record detailing the failure: Who attempted the
access, how the attempt was made, and so on. This is important because
what the users think they are doing is not necessarily the whole story.

With TACF, there is a tracing tool. The seosd daemon can provide a trace of its
activities if requested though secons (-t+ to turn on, -t- to turn off). This trace
is written to /usr/seos/log/seosd.trace and shows what authorization checks
seosd is performing as well as what commands are being executed against
the database.

15.7.1 TACF Trace
TACF tracing can be controlled through the initialization file seos.ini. Figure
195 on page 499 shows the relevant lines from seos.ini:
498 Tivoli Enterprise Internals and Problem Determination

Figure 195. Tracing TACF Options in seos.ini File

To start a full trace, set:

trace_to = file

Or from user ID tmesec or a user with the ADMIN attribute, enter:

secons -t+

To watch the trace as resources are accessed:

tail -f /usr/local/Tivoli/TACF/log/seosd.trace

or

secons -tv

To check the status of the trace:

; The destination of trace messages. There are several valid options:
; file - Trace messages are written to a file.
; none - Trace messages are not written at all.
; file,stop - Trace messages are written to a file and automatically
; disabled once the daemon has passed it’s initialization.
; Default Value: file,stop
trace_to = file

; Location of the file to which trace messages are written
; Default Value: /usr/seos/log/seosd.trace
trace_file = /usr/local/Tivoli/TACF/log/seosd.trace

; Trace file type. This can be one of the following values:
; text - The trace messages file is a text file.
; binary - The trace messages file is a binary file which
; reduces the size required by this file.
; Default Value: text
trace_file_type = text

; Location of a trace filtering file.
; Default value: /usr/local/Tivoli/TACF/etc/trcfilter.
init
trace_filter = /usr/local/Tivoli/TACF/etc/trcfilter.in
it

; Free space to leave in filesystem when trace_to file is allowed.
; When less than this space is free, trace will be disabled (in KB)
; Default Value: 1024 (1MB)
trace_space_saver = 5120
Security Management 499

secons -ts

The trace is automatically disabled if free space in the file system gets too
low. Figure 196 shows an example of a TACF trace where a Telnet access
attempt was denied:

Figure 196. Example of TACF Trace - TCP Access (Telnet) Denied

Figure 197 shows the trace entries for a write to file access denied:

Figure 197. Example of TACF Trace - Write Access to File Denied

In the above examples, Result: ’P’ means Permitted action, and Result: ’D’
means Denied action.

15.7.2 Distribute and Populate Failures
The endpoint methods for populate/distribute are security_discover and
security_update . These do not call other methods; so, it is not really possible
to determine the point of failure from odstat or wtrace . On TACF, however, it is
possible to use both the audit log and tracing to determine what commands
were executed and what failed. On NT, some information may be available in
the Application section of the Event Log, but it is usually of little value except
for identifying known problems. Of course, it is possible that the error
occurred before any records were processed.

For distribute/populate to work on UNIX, TACF must be running at the time.
Otherwise, Security Management will not be able to access the security

INET : P=764 , from 146.84.32.173:2749 port 23
INET > Result: ’D’ 146.84.32.173->23, [0,-1], stg=406
 Why? HOSTNET entry in TCP service ACL
FORK : P=764 U=0 G=-1 Child=7255 Pgmd
FILE : P=7255 (/usr/sbin/inetd) U=0 (D=40000003 I=d
FILE > P=7255 (/usr/sbin/inetd) U=0 /etc/passwd S
EXEC : P=7255 U=0 G=0 (D=40000008 I=2978) Pgm3
EXECARGS: ’telnetd’
GPEERNAM: P=7255 , ADDR=146.84.32.173, N=-1839980371

EXEC : P=7285 U=0 G=103 (D=40000008 I=12671) Pgmi
EXECARGS: ’vi testfile’
FILE : P=7285 (/usr/bin/vi) U=0 (D=40000005 I=1751e
FILE > (/usr/bin/vi) Result: ’P’ [stage=59 gstag=59 AC]
 Why? Resource universal access check
FILE : P=7285 (/usr/bin/vi) U=0 (D=40000005 I=1751e
FILE > (/usr/bin/vi) Result: ’D’ [stage=69 gstag=0 AC]
 Why? No rule granting access to resource
500 Tivoli Enterprise Internals and Problem Determination

database. It is important to remember that TACF rules apply to Tivoli just as
they do to other applications. Since the endpoint methods run as tmesec and
tmesec is protected with a SURROGATE rule, oserv or lcfd would normally be
prevented from starting the method. These processes must be granted
special access allowing them to circumvent the rule. However, since this
privilege cannot be granted without some sort of authentication, oserv or lcfd
must be reliably identified. There are cases where this identification cannot
be made. Should should this happen, the method will fail with s=9 because
TACF sends a SIGKILL to the method daemon.

Restarting oserv or lcfd on the node should correct this problem. Figure 198
shows this case in a seosd trace:

Figure 198. Example of TACF Trace - oserv Not Authenticated

15.7.3 Access Problems
Possibly the most frequent problems are those that revolve around access
being granted or denied unexpectedly on an object. These are much more
common on UNIX than on NT.

On UNIX, these almost always boil down to who TACF identifies as the user.
Often, this is because the lookaside database is out of synchronization. This

Example: oserv recognized properly (seosd.trace)

FORK : P=29769 U=0 G=60001 Child=29804 Pgm:/data/Tivoli/bin/solaris2/bin/oserv
SGID > P=29804 U=0 (RG=0 EG=0 SG=0) to (RG=60001 EG=60001 SG=60001) ()
BYPASS
SETGRPS : P=29804 to
LOGIN : P=29804 User=tmesec Terminal=0.0.0.0
LOGIN > Result: ‘P’ [stage=11 gstag=54 rv=0] ACEEH=45
EXEC : P=29804 U=101 G=60001 (D=80001f I=239233)
Pgm:/data/Tivoli/bin/solaris2/TME/SECURITYE/SecEpt

Example: oserv not recognized properly (seosd.trace and odstat)

FORK : P=17321 U=0 G=60001 Child=29740 Pgm:
SGID > P=29740 U=0 (RG=1 EG=1 SG=1) to (RG=60001 EG=60001 SG=60001) ()
BYPASS
SETGRPS : P=29740 to
SUID : P=29740 U=0 (R=0 E=0 S=0) to USER.tmesec (R=101 E=101 S=101) D=00000000
I=0
ACTION : TACF killed P=29740
SUID > Result: ‘D’ [stage=69 gstag=0 ACEEH=42 rv=0]
Why? No rule granting access to resource

* 6424 O+hdq done 90 0 15:50:13 e=12 2119115577.1.584#SECURITYP::SecurityProfile#
populate_ext

* 6425 O+hdq 1-6424 done 0 0 15:50:13 s=9 2119115577.1.348#TMF_ManagedNode::Managed
_Node# security_discover
Security Management 501

can be checked by running sebuildla -U (or the Show TACF Lookaside
Database task) and seeing if the user is listed in the output (and that the UID
listed is correct). If not, the user will never be identified correctly by seosd
and will always be given default access. To correct this, the lookaside
database must be rebuilt using sebuildla -u (or the Create/Update TACF
Lookaside Database task).

15.7.3.1 Example: Lookaside Database Consistency Problem
On our neptune system, we can check who the system believes the currently
logged on user to be:

neptune$ id
uid=102(tuser1) gid=1(other)

Next, we use the TACF command sewhoami to confirm that TACF thinks the
currently logged on user is the same:

neptune$ /usr/seos/bin/ sewhoami
tuser1

Now we will attempt a resource access for which tuser1 is supposed to have
the necessary rights:

neptune$ cat /tmp/example
cat: cannot open /tmp/example

To check if tuser1 is supposed to have access, we start selang and check the
file ACL in the TACF database:

neptune$ selang
TACF selang v2.02 (2.01) - TACF command line interpreter
Copyright (c) 1996-1997 Tivoli Systems Inc.
Portions of Tivoli-Access-Control-Facility
Copyright (c) by MEMCO Software Ltd.
TACF> sf /tmp/example (sf is short for showfile)
(localhost)
Data for FILE ̀ /tmp/example'

Defaccess : None
Acls :
Accessor Access
tuser1 (USER) R, W, X, Cre, Del, Chown, Chmod, Utime, Sec, Rename
Audit mode : Failure
Owner : tmesec
Create time : 01-Apr-1998 14:26
Update time : 01-Apr-1998 14:27
Updated by : kirwin
TACF> quit
502 Tivoli Enterprise Internals and Problem Determination

So, tuser1 is supposed to have all rights to /tmp/example. Therefore, we’ll
check the audit log for all records from the date and time we tried the access
attempt:

neptune$seaudit -a -sd 01-APR-1998 -st 14:29
01 Apr 98 14:29 D FILE tuser1 Read 69 3 /tmp/example /usr/bin/cat
neptune.dev.tivoli.com
Total Records Displayed 1

The audit log entry shows a Denial of a FILE access request (D FILE) for user
tuser1 performing a read. So we use sebuildla -U to check if our user is
correctly specified in the lookaside database:

neptune$sebuildla -U | grep tuser1

tuser1 is not there, and the database will need to be re-synchronized. A
second possibility for a similar problem is that the user had used su. TACF
grants access based on logon, not euid/ruid. Running the sewhoami command
will display the user as identified by TACF; so, this problem would have been
spotted much earlier in the above example as shown here:

neptune$id
uid=15704(kirwin) gid=40(Development)
neptune$su
Password:
neptune# id
uid=0(root) gid=1(other)
neptune#sewhoami
kirwin

Even though we su to root, TACF still treats us as the original user (kirwin).

Tasks will run as if the user designated in the task had logged in, and access
will be given accordingly. No Access always wins when there is an access
rights conflict. Otherwise, access rights are cumulative amongst all Roles to
which a user belongs.

15.7.4 System Policy Problems
With TACF, the implementation of some of the System Policy features might
not work as expected:

 • Password Quality

Password quality checks are only done if the sepass utility is used to
change passwords. As of 3.6, sepass is not integrated with Tivoli User
Administration’s wpasswd.

 • Grace Logins and Password Expiration
Security Management 503

Grace logins and password expiration is handled with the segrace utility. To
be effective, all login profiles must execute segrace.

 • Lockout Policy

Lockout policy requires use of the serevu daemon. While this will be
configured properly when distributing a System Policy record, with
Security Management 3.6, serevu will not revoke accounts unless started
by a TACF administrator su'ed to root. Note that serevu, unlike seosd,
seagent and seoswd, is not automatically protected against kill.

For most system policies, it is necessary to have the user defined to TACF in
order for it to work. This can be accomplished by using the Synchronize
TACF/UNIX Users & Groups task.

15.7.5 Miscellaneous Considerations
This is somewhat of a catch-all. There are many problems which aren't
obviously connected to the access control policies but appear to be traceable
to the distribution of a security profile (the converse is also true - it may look
like security profile rules are responsible, but they are not). These are in
particular the problems that rely on the audit logs. Often, something is
indirectly accessing a resource in a way that was overlooked.

One example of such a problem is illustrated by CONNECT resources and
ftp.

Attempting to use ftp from a remote machine, a user can connect, but upon
attempting to list directory contents, an error occurs. Why should this be?
CONNECT resources restrict connections going out - not in. The audit logs
reveal that the machine running TACF is opening a connection to the remote
machine (because passive mode client is the default, the server must open
the data channel). If the user does not have access to the CONNECT
resource, the open of the data channel back to the remote host will be
denied.

SunOS does not log login failures, and Solaris only logs failures if five
failures occur during an attempt. Since TACF relies on operating system
logs to detect login failures, lockout policy is necessarily restricted on these
interpreter types.

Note
504 Tivoli Enterprise Internals and Problem Determination

Another example is /etc/passwd, /etc/shadow, and login. Every user must
have at least read access to these files, or they cannot log in (since login
can’t validate their password otherwise).

If the audit logs leave doubt as to the cause, try using the tracing in TACF.
While generally no more useful than the audit logs (as auditing is always
occurring, but tracing must be turned on), it will show all accesses - not just
those being audited.

Sometimes it's not clear whether Security Management is causing a problem.
At least on UNIX, shutting down TACF can help determine this, though
usually the audit log is proof enough.

Refer to the Tivoli Security Management Reference Manual for TACF or to
the redbook Managing Access from Desktop to Datacenter: Introducing TME
10 Security Management, SG24-2021, for more information on TACF tracing.

15.8 Integrating with Tivoli Enterprise Console

The Tivoli Security Management Users Guide includes an overview of
auditing, installing, and configuring the TEC log file adapter for TACF. It also
discusses treating managed nodes as endpoints (as the log file adapter for
TACF can only be installed on endpoints) and the limitations of the TEC log
file adapter for TACF. The same Users Guide also contains details of all the
event classes.

15.9 TACF Security Monitors

The Tivoli Security Management Users Guide provides information required
when using the waddmon command to add monitors. The TACF Security
Monitors monitoring collection provides three monitoring sources: TACF files
to monitor trace and audit files created by TACF, TACF daemons, and TACF
file systems to monitor the amount of free disk space in the file systems in
that the TACF audit and where trace files are created.

Monitors provided with Tivoli Security Management are:

Restricting access to system files or to resource types without fully
considering the implications can be very dangerous, going as far as to
making the system unusable. Use of the warning attribute when on UNIX is
strongly encouraged in such cases.

Note
Security Management 505

 • TACF Server
 • TACF Watchdog Server
 • TACF Audit Log Routing Server
 • Audit File Size
 • Audit Log File Size
 • Audit Log File Free Space

15.10 Migrating SeOS Access Control to TACF

The Tivoli Security Management Users Guide contains an appendix for
assistance with migrating SeOS installations to TACF.
506 Tivoli Enterprise Internals and Problem Determination

Chapter 16. Enterprise Console

Tivoli Enterprise Console (TEC) is a rule-based event management
application that uses a central server to process incoming events. These
events are generated by adapters running on hosts throughout a TMR. These
events can apply to Networks, systems, databases and applications. The TEC
acts as a central collection point for alarms and events from a variety of
sources, including those of Tivoli applications, Tivoli partner applications,
customer applications, Network management platforms, and relational
database systems. The central TEC server machine (a managed node)
serves as the location of the event server.

The TEC consists of the following Components:

 • Central Event Server

 • Distributed Event Consoles

 • Central Event RDBMS (using RIM)

 • Distributed TEC Gateway

 • Distributed Event Adapters

16.1 TEC Central Event Server

When an event occurs in the enterprise, it travels to the event adapter on a
host that translates it into a syntax that the event server can understand. The
adapter is either a TME or non-TME adapter. This distinction defines how the
event will reach the event server. A TME event adapter sends events through
the object request broker (oserv) on that managed node, to the oserv on the
TEC server, and then to the tec_server process. A non-TME event adapter
will send events from the adapter directly to the tec_reception process on the
event server.

The TEC server consists of five daemons that run on the event server host
and process an event. The tec_server process is the controller for the other
four processes. When an event comes into the tec_reception, the event is
cached in memory and written to the reception log in the database. The event
is then sent to the tec_rule engine where it is processed. Based on the rules

There can be only one event sever in the TMR, and it should be separate
from the TMR server. A dedicated machine is best.

Note
© Copyright IBM Corp. 1998, 1999 507

defined for that event class, the tec_rule process defines the actions that
need to be taken and passes the actions to the tec_dispatch process to be
executed. The tec_dispatch process writes to the event repository in the
database and updates the event consoles. If there are programs or tasks to
be run for this event, the tec_task process is contacted. Figure 199 shows
this relationship.

Figure 199. TEC Daemon Relationship Diagram

The event server provides a centralized location for the management of
events. The event server performs several functions:

 • Logging
 • Applying rules
 • Correlating events
 • Responding automatically to events
 • Updating the event console
 • Processing input from the event console
 • Delaying responses to events

cache

oserv

Event
Adapter

tec_reception

cache

tec_server

tec_rule

cache

tec_dispatch

Event
Console

tec_task

Database Reception log

Event repository

Task
repository
508 Tivoli Enterprise Internals and Problem Determination

 • Escalating events

The event information is placed into a reception log, processed by a Prolog
rule engine, and moved into an event repository.

There is a command called wtdumprl to show the contents of the reception
log. This command is very helpful when an application sends an event that
does not appear on the Event Console. The reception log normally tells us
what went wrong. For example, Figure 201 on page 510 shows a class
(nt_CpuPrcCpuTime) that is not defined and is generating a parse error. This
is the error you will see if you do not import the necessary baroc file into the
current rule base and load it. Figure 202 on page 511 shows an example of
an event containing a slot (probe) not being defined in the event baroc
definition (universal_countstr).

The engine, or rule base, can recognize events and perform tasks to
determine if it can respond to or modify the event automatically. The server
creates an entry in a relational database for each incoming event.

The next three screens show some examples of a wtdumprl output:

Figure 200. Output from wtdumprl - Example 1

1~370~0~877419610(Oct 21 1997)
EVENT
TEC_Start;source=TEC;msg="TEC Event Server initialized";END

END EVENT
PROCESSED

1~371~0~878766447(Nov 05 1997)
EVENT
TEC_Start;source=TEC;msg="TEC Event Server initialized";END

END EVENT
PROCESSED
Enterprise Console 509

Figure 201. Output from wtdumprl - Example 2 - Parse Error

1~79~0~875384794(Sep 27 1997)
EVENT
nt_CpuPrcCpuTime;
source=’SENTRY’;
sub_source=’CPU’;
severity=’FATAL’;
origin=’9.164.194.178’;
sub_origin=’tp760dom’;
hostname=’tp760dom’;
adapter_host=’tp760dom’;
distrib_admin=’Root_tp760dom-region’;
response_level=’warning’;
probe=’PrcCpuTime’;
probe_arg=’0’;
tmr=’1675599057’;
dispatcher=’1’;
prev_value=’10.9793’;
value=’35.31’;
effective_value=’35.31’;
collection=’NT_Processor’;
info=’’;
monitor=’Percent Processor Time’;
units=’(percent)’;
relation=’Greater than’;
relation_delta=’’;
msg=’Sentry CPU/Percent Processor Time on host tp760dom 09/27/97 08:25:07

Status: >>> warning <<<

Percent Processor Time (0) Greater than 20
(Previous: 10.9793 (percent) Current: 35.31 Effective: 35.31)
’;
END

END EVENT
PARSING_FAILED~’Line 1: Class nt_CpuPrcCpuTime undefined’

1~84~0~875385040(Sep 27 1997)
EVENT
TEC_Stop;source=TEC;msg="TEC Event Server shut down";END

END EVENT
PROCESSED

1~85~0~875463018(Sep 28 1997)
EVENT
TEC_Start;source=TEC;msg="TEC Event Server initialized";END

END EVENT
510 Tivoli Enterprise Internals and Problem Determination

Figure 202. Output from wtdumprl - Example 3 - Slot Not Defined

16.2 Distributed Event Console

TEC uses distributed event adapters to collect information, a central event
server to process the information, and a distributed event console to present
the information to the operators. Event consoles display event messages
appropriate for specific administrators based on their responsibilities.
Consoles can be configured to display groups of events from the available
adapters. This allows for easy separation and assignment of system
maintenance tasks to the appropriate administrators. Users can have
independent or shared views of events.

1~86~0~875463731(Sep 28 1997)
EVENT
universal_countstr;
source=’SENTRY’;
sub_source=’Sentry_Profile’;
severity=’CRITICAL’;
origin=’9.164.194.178’;
sub_origin=’tp760dom’;
hostname=’tp760dom’;
adapter_host=’tp760dom’;
distrib_admin=’Root_tp760dom-region’;
response_level=’critical’;
probe=’countstr’;
probe_arg=’test, g:\temp\test, ’;
tmr=’1675599057’;
dispatcher=’1’;
prev_value=’’;
value=’1’;
effective_value=’1’;
collection=’Universal’;
info=’’;
monitor=’File pattern matches’;
units=’’;
relation=’Equal to’;
relation_delta=’’;
msg=’Sentry Sentry_Profile/File pattern matches on host tp760dom 09/28/97 06:21:42

Status: >>> critical <<<

File pattern matches (test, g:\temp\test,) Equal to 1
(Previous: Current: 1 Effective: 1)
’;
END

END EVENT
PARSING_FAILED~’Line 11: Slot probe not defined in class’
Enterprise Console 511

16.3 Central Event RDBMS Through RIM

TEC 3.6 uses RIM to access and store event data on relational databases.
Both the reception log and the event repository are RDBMS tables accessed
through the RIM. RIM gives us the ability to choose and connect to a wide
choice of RDBMS. Currently, TEC and RIM support Oracle, Sybase, DB2,
and MS/SQL.

See Chapter 9, “RDBMS Interface Module (RIM)” on page 313 for more
information about RIM.

16.4 Distributed TEC Gateway

If you need to run event adapters on TMA endpoints, then you will need the
TEC gateway process running on each endpoint gateway those TMA
endpoints will be connected to. This is done by installing the Adapter
Configuration Facility (ACF) on each endpoint gateway server.

16.5 Distributed Event Adapters

Event information is collected by event adapters and sent to the event server.
Adapters are usually small daemon processes that run on the client host. The
host machines can be managed or non-managed nodes. When an event
adapter detects an event generated by a source, it formats a message and
sends it to the event server.

Figure 203 shows an outline of the TEC event data flow:

Figure 203. TEC Event Data Flow

At the time of writing, DB2 was supported only on UNIX and MS/SQL only
on NT. Informix support was planned for the 3.6.1 release.

 Note

Resource or
Application

Adapter
To
Event
Server

Event Raw
Information

Translated
Events
512 Tivoli Enterprise Internals and Problem Determination

16.5.1 How Event Adapters Send Events to the Event Server
This section describes the way event adapters get events to the event server
from different types of machines.

16.5.1.1 From a TMA Endpoint
Adapters running on endpoints send their events to a TEC gateway process
running on the endpoint gateway that the endpoint is connected to. The TEC
gateway, in turn, bundles events and forwards them on to the event server
through the oserv.

16.5.1.2 From a Managed Node
Adapters running on managed nodes send their events through the oserv.

16.5.1.3 From a Non-Tivoli Node
Adapters running on non-Tivoli nodes send their events directly to the event
server using an IP socket. These non-secure adapters must configure the
host name or IP address of the event server in the ServerLocation field in the
configuration file.

For a detailed description of how these event adapters work, refer to the
Tivoli Enterprise Console Adapters Guide.

16.6 TEC Installation

This section covers the following topics:

 • Pre-installation steps

 • Install Enterprise Server

 • Install Enterprise Console

Tivoli versions of the Logfile, OS/2, Windows NT Event, and SNMP
adapters in TEC 3.6 only run on TMA endpoints. Any managed nodes that
you want to run these adapters on must also be setup as TMA endpoints.
A single node can be configured as both a managed node and a TMA
endpoint. If you do this, be careful when distributing ACF profiles, as both
the managed node label and the TMA endpoint label will show up in the
subscriber list. Make sure you use the TMA endpoint label.

Non-Tivoli versions of these adapters are available and could be run on
these managed nodes.

 Note

Tivoli versions of the Logfile, OS/2, Windows NT Event, and SNMP
adapters in TEC 3.6 only run on TMA endpoints. Any managed nodes that
you want to run these adapters on must also be setup as TMA endpoints.
A single node can be configured as both a managed node and a TMA
endpoint. If you do this, be careful when distributing ACF profiles, as both
the managed node label and the TMA endpoint label will show up in the
subscriber list. Make sure you use the TMA endpoint label.

Non-Tivoli versions of these adapters are available and could be run on
these managed nodes.
Enterprise Console 513

 • Create new rule bases

16.6.1 Pre-Installation Steps
Before starting an installation, you should:

 • Ensure you are using a RIM-supported RDBMS.

 • Confirm the RPC Portmapper is running (UNIX only) by issuing the
command rpcinfo -p.

There are a number of considerations when installing databases for use with
TEC. In Appendix C, “RDBMS Install Examples” on page 679, we have
detailed an example of how to install Oracle 7.3.2.1 for use with TEC. Much
of the installation will apply to different UNIX types and for other applications
that use RIM. The rest of this chapter assumes the RDBMS is installed. We
use Oracle for examples here and have included information about usage of
other RDBMSs. An excellent source for RDBMS installation and setup
documentation is the TME10 Inventory 3.2: New Features and Database
Support Redbook, SG24-2135.

16.6.2 Install Enterprise Server
Install the TEC Enterprise Server according to the installation instructions in
the Tivoli Enterprise Console Users Guide.

Depending on the Tivoli environment, the Database Server, RIM Host, and
TMR server may reside on different systems. Many different combinations are
possible. For more information about this see Chapter 9, “RDBMS Interface
Module (RIM)” on page 313. Based on this information, the code for the TEC
Server and the TEC Console may reside on different systems as well. The
console code gets installed on the TMR server or a managed node, and is
accessed through an administrator desktop. Rule builder and server code go
together on the same machine.

Using the regular install GUI or SIS, the dialog box in Figure 204 pops up.
This populates the RIM values for the RIM object named tec.

If you use, or intend to use, Tivoli User Administration in your TMR for
performance reasons, Tivoli recommends you DO NOT install the TEC
Server on the TMR Server.

Tivoli User Administration Implementation
514 Tivoli Enterprise Internals and Problem Determination

Figure 204. Dialog for TEC Install

The dialog has some field names that do not match with the names used in
the Oracle environment or for the RIM host. The fields Database Vendor and
Database Home do not need to be discussed because the field name says
clearly what should go in here. But the Database ID field and the Database
Server ID field need some explanation. To show the relation between these
fields and RIM data, it is necessary to get the RIM host settings and to have
in mind what you have defined in the tnsnames.ora file. The RIM host settings
can be displayed with the wgetrim rimname or changed with the wsetrim
command. Figure 205 shows our RIM settings for the RIM object named tec:

Figure 205. RIM Host Settings - wgetrim

This screen shows our tec RIM host settings
root@rh0255f:~etc# wgetrim tec
RIM Host: rh0255f
RDBMS User: tec
RDBMS Vendor: Oracle
Database ID: D1
Database Home: /oracle/home/app/oracle/product/7.3.2
Server ID: D1
Instance Home:
Enterprise Console 515

16.6.3 Install Enterprise Console and TEC Adapters
This section contains considerations for installing the Enterprise Console and
TEC Adapters.

16.6.3.1 Enterprise Console
Each Tivoli administrator can have their own individual enterprise console.
The installation of the console and adapters should be a trivial task.

16.6.3.2 TEC Adapters
If you are installing TEC adapters on TMA endpoints, you must use the
Adapter Configuration Facility (ACF) to configure and install these adapters.
Be sure and install ACF on each of the endpoint gateways that will have
endpoint adapters communicating through them. Since endpoints can move
from one gateway to another, it is a good practice to install ACF on all
endpoint gateways if you are going to use endpoint adapters.

When you install ACF on the endpoint gateway, the TEC gateway process is
installed there as well.

16.6.4 Troubleshooting Installation
If you are using SIS to install these products, then refer to Chapter 4, “Tivoli
Software Installation Service” on page 83 to see how to review your
installation log files.

If you are still using the conventional installation process, there are multiple
output files in the /tmp directory on UNIX or in the %DBDIR%/tmp directory
on Windows NT that the installation process writes. These files are located on
the TMR server system not on the machine hosting the RIM host or the TEC
server. For each Tivoli product installed, these files should be saved and
moved to another location. These files can have one of the following
extensions:

.sinst TEC server installation files.

.cinstall Tivoli client and application installation files.

Tivoli versions of the Logfile, OS/2, NT Event, and SNMP Adapters only run
on TMA endpoints. If you were previously running one of these adapters in
secure mode and NOT using ACF to configure them, then you will have to
manually enter the configuration information into a 3.6 ACF profile.

Note
516 Tivoli Enterprise Internals and Problem Determination

.output Lists normal output during product installation on the TEC server
and managed nodes containing event adapters.

.error Lists problems that occurred during product installation on the TEC
server and managed nodes containing event adapters.

Some TEC files in /tmp begin with tec and are easy to identify. If an
installation fails, the last few lines of the .error file will contain troubleshooting
information.

16.7 Troubleshooting TEC

There are a number of commands that are very helpful when trying to
understand what is going on with TEC:

wtdbclear Clear the reception log and event repository.
wtdumprl Display the events in the reception log.
wtdumper Display the events in the event repository.
wstartesvr Start the enterprise server from command line.
wstopesvr Stop the enterprise server from command line.
wtdbstat Show the RDBMS database server status.
wstatesvr Show the TEC server status.
wgetrim tec Display the RIM parameters.
wsetrim Change RIM parameters.
wlseg -f Lists event groups and their filters.
wlssrc Lists the available event sources.

There will be an example for each command later in this chapter where the
command will be used to look at a problem.

16.7.1 TEC Server Troubleshooting
When one of the TEC processes fails, the master process (tec_server)
attempts to restart it. If it cannot restart the process, tec_server brings them
all down. For each of the five processes, error conditions are written to a file
in /tmp on the TEC server system with that process name. If any of these
have trouble initializing, error logs are written at the end of the file. These are
the file names and process names for each process:

 • /tmp/tec_master tec_server

 • /tmp/tec_reception tec_reception

 • /tmp/tec_rule tec_rule

 • /tmp/tec_dispatch tec_dispatch

 • /tmp/tec_task tec_task
Enterprise Console 517

These paths are specified in a file called .tec_diag_config in the
$BINDIR/TME/TEC directory on the TEC server system as shown in Figure
206.

Figure 206. Example Extracted from .tec_diag_config File

If the event server will not start, there are several common reasons to check
for:

 • The database engine is not running.

 • The database is full.

 • The portmapper is not running.

tec_master
#############

tec_master Highest_level error
tec_master Master error /tmp/tec_master
tec_master Master_Msg error /tmp/tec_master
tec_master Master_Synchro error /tmp/tec_master
tec_master Master_Exec error /tmp/tec_master

low level modules
tec_master Exit_Msg error /tmp/tec_master
tec_master Tec_Baroc error /tmp/tec_master
tec_master Timer error /tmp/tec_master

IPC modules
tec_master Ipc error /tmp/tec_master
tec_master Ipc_Accept error /tmp/tec_master
tec_master Ipc_Dsend error /tmp/tec_master
tec_master Ipc_Alive error /tmp/tec_master
tec_master Ipc_Server error /tmp/tec_master

Pool modules
tec_master Pool error /tmp/tec_master
tec_master Pool_Master error /tmp/tec_master

Msg modules
tec_master Msg error /tmp/tec_master
tec_master Msg_HI error /tmp/tec_master
tec_master Msg_DP error /tmp/tec_master
tec_master Msg_EP error /tmp/tec_master
tec_master Msg_TP error /tmp/tec_master
tec_master Msg_OK error /tmp/tec_master
tec_master Msg_GO error /tmp/tec_master
tec_master Msg_AC error /tmp/tec_master
tec_master Msg_NA error /tmp/tec_master
tec_master Msg_CA error /tmp/tec_master
tec_master Msg_CC error /tmp/tec_master
tec_master Msg_NE error /tmp/tec_master
tec_master Msg_RR error /tmp/tec_master
518 Tivoli Enterprise Internals and Problem Determination

Figure 207 shows an example from the RIM trace log while trying to start the
event server while the DB2 database engine was not running.

Figure 207. Example RIM Trace Log - Database Not Running

The dialog box in Figure 208 was displayed on the Tivoli Desktop when trying
to start the event server from the GUI when the DB2 database engine was not
running.

Figure 208. Event Server - Database Engine Not Running Error Dialog

When the database engine is running, but the event server can not connect to
the database, the messages in Figure 209 would be generated when trying to
start TEC:

Figure 209. Event Server Cannot Connect to Database Error - wstartesvr

When the database is full, the RDBMS might be running, but the event server
will not start. There are several ways to check this:

 • running the command wstatesvr

T00030200 [Tue Nov 17 17:12:03 1998] Connection ID: 0, Operation: val_connect:SQL
Connect, DB Call: val_connect:SQLConnect
 DB2 Error Code: -1032 SQLState:08001[IBM][CLI Driver] SQL1032N No star
t database manager command was issued. SQLSTATE=57019

[root@itso2]/> wstartesvr
The TME 10 Enterprise Console Server is initializing...
Mon Nov 9 12:39:54 CST 1998 (17): system problem: ‘Could not connect to RDBMS s
erver to access database tec.’
Enterprise Console 519

 • running the command wtdbstat

In the case where the database is full, the commands will generate the
outputs shown in Figure 210:

Figure 210. Checking Status of Event Server and Database Server

When the database is full:

 • The tec_rule or tec_reception file in /tmp states that the process was
terminated with an error code 81 or 17.

 • wtdbspace reports the database is 100 percent full (see Figure 211 for an
example of the wtdbspace command).

.

% wstatesvr
The Tivoli/Enterprise Console Server is NOT running.
% wtdbstat
The RDBMS database server is running.

For TEC 3.6, the wtdbspace command has not been implemented for
DB2 or MS/SQL. This functionality will be added in a future release.

 Note
520 Tivoli Enterprise Internals and Problem Determination

Figure 211. Example Output for wtdbspace Command

To fix this problem, use the wtdbclear command. The wtdbclear command has
a lot of important parameters that should be used carefully. Lookup the man
pages for this command before using it.

In the case where portmapper is not running, the event server won’t start and
the database server will not be running. You can check to see that the
portmapper is running by issuing the command: rpcinfo -p. This is only
relevant to UNIX systems; there is no portmapper on Windows NT.

When the database is not running, and you try to start the TEC Event server,
the RIM Object tec was not found message in Figure 212 will appear:

root@rh0255f:~mnt# wtdbspace

Tablespace Usage:
Tablespace Used for Allocated Used Free %Used %Free
---------------- ------------ ---------- ---------- ---------- -------- --------
TEC_DATA_TS Data 50 MB 3.03 MB 46.97 MB 9.35 % 90.65 %
TEC_TEMP_TS Temporary 10 MB 0 MB 10 MB 0 % 100 %

Table Details:
Name Rows Reserved Data pages Index pages Unused pages
-------------------- ------- ------------ ------------ ------------ ------------
tec_t_clt_req_log 0 48 KB 2 KB 4 KB 42 KB
tec_t_evt_rec_log 823 1448 KB 56 KB 1368 KB 24 KB
tec_t_evt_rep 708 238 KB 204 KB 4 KB 30 KB
tec_t_gem_threshld 0 32 KB 2 KB 2 KB 28 KB
tec_t_isa 1708 80 KB 70 KB 0 KB 10 KB
tec_t_op_ass_log 708 48 KB 20 KB 2 KB 26 KB
tec_t_role 0 32 KB 2 KB 2 KB 28 KB
tec_t_severity 6 32 KB 2 KB 2 KB 28 KB
tec_t_slots_evt 10324 958 KB 880 KB 36 KB 42 KB
tec_t_status_event 4 32 KB 2 KB 2 KB 28 KB
tec_t_status_task 4 32 KB 2 KB 2 KB 28 KB
tec_t_task_rep 0 48 KB 2 KB 4 KB 42 KB
 ------------ ------------ ------------ ------------
 3028 KB 1244 KB 1428 KB 356 KB

The percent used number in wtdbspace is calculated by counting the
number of database extents dedicated to the tec tables. Oracle does not
reallocate extents in the case of a DELETE statement, and that's what
wtdbclear uses. Oracle will reallocate those extents on demand so they are
available for use. Use the table detail report in wtdbspace to confirm that you
have deleted rows and, thereby, created space.

Oracle Note
Enterprise Console 521

Figure 212. TEC Server -Database Engine Not Running Error Dialog

When getting this message, the following commands should be used to check
the actual status:

wgetrim tec To see if the RIM host is configured correctly.

wrimtest -l tec To see if the RIM host is working correctly.

wstatesvr To see if the TEC Server is running or not

wtdbstat To see if the database server is running or not.

16.7.2 Event Console Troubleshooting
The most common error with the event console is the removal of an event
console icon from the desktop rather than a deletion. An administrator cannot
create a new event console for this user. To fix this, perform the following:

1. Re-link the object with:

wln /Library/EnterpriseClient/admin-name /Administrators/admin-name

2. Delete the event console and create a new one.

Many problems occur because a user does not have the proper roles or has
too many roles. These problems usually become apparent when an
administrator is unable to perform actions on an event. Check to make sure
they have the appropriate role and that they do not accidentally have the
none role selected. The dialog in Figure 213 will show up by using right
mouse button on the event console icon and choosing the Assign Event
Group menu item:
522 Tivoli Enterprise Internals and Problem Determination

Figure 213. Assign Event Groups to the Event Console

Other problems can occur because of filters that are too restrictive. If too
many filters are set, it can take a long time to open a console. To list event
groups and their filters, use the following command:

wlseg -f

A sample output for this command follows in Figure 214 on page 524:
Enterprise Console 523

Figure 214. Example Output of wlseg Command

16.7.2.1 The Event Does Not Appear in the Event Console
When an event does not appear in the event console, the following steps may
help, most of which are described in the rest of this section:

 • Event console

 • Is the event source defined?

 • Is the event source being used as a filter in an event group?

 • Is the event group assigned to the right administrator?

 • Is the correct .baroc file being used?

 • Event server

 • Did the event get to the event server system?

 • Did the event server receive the event?

 • Event adapter

 • Is the adapter running?

 • Is the event server location properly specified?

 • Did the adapter send the event?

wlseg -f
Network:
 bitmap: genapp48
 filters:
 id 0, class: EVENT, source: SNMP, sub_source: *, origin * sub_origin *
 id 1, class: EVENT, source: SNM, sub_source: *, origin * sub_origin *
 id 2, class: EVENT, source: HPOV, sub_source: *, origin * sub_origin *
 id 3, class: EVENT, source: NV6K, sub_source: *, origin * sub_origin *
Performance:
 bitmap: genapp48
 filters:
 id 4, class: EVENT, source: LOGFILE, sub_source: *, origin * sub_origin *
 id 5, class: EVENT, source: NT, sub_source: *, origin * sub_origin *
Security:
 bitmap: genapp48
 filters:
 id 6, class: EVENT, source: LOGFILE, sub_source: *, origin * sub_origin *
 id 7, class: EVENT, source: NT, sub_source: *, origin * sub_origin *
System:
 bitmap: genapp48
 filters:
 id 8, class: EVENT, source: AS400_MSGQ, sub_source: *, origin * sub_origin *
 id 9, class: EVENT, source: LOGFILE, sub_source: *, origin * sub_origin *
 id 10, class: EVENT, source: NT, sub_source: *, origin * sub_origin *
All:
 bitmap: genapp48
 filters:
 id 11, class: EVENT, source: *, sub_source: *, origin * sub_origin *
524 Tivoli Enterprise Internals and Problem Determination

Is the event source defined?
Run the command wlssrc to see if the source of the event is defined to the
event server. Source is the value that tells the event server which adapter is
sending the event. Sources are used as a filter value to determine which
events will show up in the event console.

Figure 215. Output from wlssrc Command

Is the event source being used as a filter in an event group?
Run the command wlseg -fa or open the dialog shown in Figure 213 on page
523. This displays the event groups that are defined. Event groups are logical
groupings of related events into one spot in the event console. For any given
event group, there must be at least one filter. Look for a source filter within
the event group. Then check to see if the event group with the appropriate
source filter is assigned to the administrator in whose event console the event
is expected.

Is there is a parsing failure, is the correct baroc file being used?
Check the defined event classes for the rule bases. The command wlsrbclass
RuleBaseName displays the event classes defined for the rule base. Be aware
that the RuleBaseName is case sensitive.

Did the event get to the event server system?
TEC events come from the event adapters, are processed by the event
server, stored in the RDBMS, and are displayed in the event console GUI.
The problem with missing events could be anywhere along this route.

Did the event server receive the event?
The easiest way to answer this question is to check the output of wtdumprl
and the wtdumper commands. Figure 216 on page 526 shows the output from
wtdumper:

wlssrc
Source Name

LOGFILE
NV6K
HPOV
NT
SENTRY
TEC
SNMP
SNM
AS400_MSGQ
AS400_ALERT
NV390MSG
NV390ALT
Enterprise Console 525

Figure 216. Output from wtdumper Command

See Figure 202 on page 511 to compare the wtdumper output in Figure 216 to
a wtdumprl output. Events that are displayed on the event consoles come from
the event repository, which is what wtdumper displays. If the event is not in
wtdumper, it will not show up in the event console.

If an event shows as being processed in wtdumprl and does not show up in the
wtdumper output, the event must have been dropped by the rule base.

If wtdumprl generates no output, the database is probably full. Run wtdbclear
to reduce the size of the logs and restart the server. A parsing failed message
indicates what wasn’t defined to the server or rule base. If you get output, but
the event is not here, the event server didn’t receive it.

Is the adapter running?
If the event is not getting to the event server, then the adapter should be
checked to see if it is running or not.

wtdumper
ES~1~879461181(Nov 13 16:46:21 1997)~1~TEC_Start~
TEC~~~~~~OPEN~
~[admin]~MINOR~
Nov 13, 1997 22:46~
TEC Event Server initialized~
~0~
0~0~ES~1~879813086(Nov 17 18:31:26 1997)~1~TEC_Start~
TEC~~~~~~OPEN~
~[admin]~MINOR~
Nov 18, 1997 00:31~
TEC Event Server initialized~
~0~
0~0~ES~1~879973724(Nov 19 15:08:44 1997)~1~TEC_Start~
TEC~~~~~~OPEN~
~[admin]~MINOR~
Nov 19, 1997 21:08~
TEC Event Server initialized~
~0~
0~0~ES~1~880480032(Nov 25 11:47:12 1997)~1~TEC_Start~
TEC~~~~~~OPEN~
~[admin]~MINOR~
Nov 25, 1997 17:47~
TEC Event Server initialized~
~0~
0~0~ES~1~880495825(Nov 25 16:10:25 1997)~1~TEC_Start~
TEC~~~~~~OPEN~
~[admin]~MINOR~
Nov 25, 1997 22:10~
TEC Event Server initialized~
~0~
0~0~#
526 Tivoli Enterprise Internals and Problem Determination

On Windows NT, this can be done by checking the services panel, as shown
in Figure 217:

Figure 217. Services Panel for TEC Adapter Control on Windows NT

In Figure 217, you can see an example of two TEC Adapters:

 • TECNTAdapter

 • TECSNMPAdapter

The services panel allows us to get the actual status, to start and stop the
adapter, and to set parameters to automatically or manually start the adapter
while the system is re-booting. On UNIX systems, the TEC adapters must be
stopped and started manually using script files. Refer to the Tivoli Enterprise
Console Adapters Guide for specific stop/start commands for each adapter.

Is the event server location properly specified?
Check if the event server location is properly specified in the
/etc/Tivoli/tecad/etc/adapter.conf file and if a filter is preventing the event from
being generated. The important line is the ServerLocation=@EventServer line.
For example, if there are several TEC servers available, make sure the right
server is addressed within this statement. The default is shown in this
example. If it is a Tivoli Version adapter, the server port is not necessary
because the oserv IOM channel is used.

For a non-Tivoli adapter, the ServerLocation must be the host name or IP
address of the event server. The ServerPort line needs to be uncommented,
and the port number should be the port that the event server is listening on.
Figure 218 shows an example of the configuration file for the logfile_adapter:
Enterprise Console 527

Figure 218. Configuration File for a Logfile Adapter

If there are interconnected TMRs or multiple event servers, then the
EventServer entry in this file might need to be modified. When using the
keyword TestMode=Yes, it is possible to specify a logfile location instead of a
server location with the ServerLocation keyword. This will allow us to send the
output to a file without using any connections to another machine. It helps for
testing the adapter locally.

Did the adapter send the event?
There should be a daemon process running for each TEC adapter on a host.
These daemons can be configured to start at oserv start time, or at system
boot time if it is an non-Tivoli adapter. The start up file for the logfile adapter
can be found in /etc/Tivoli/tecad/bin/init.tecad_logfile (see Figure 219 on
page 529).

TE/C LogFile adapter configuration file.
#
$Date: 1995/11/27 16:23:48 $
#
$Source: /tivoli/development/src/2.0/apps/tec/adapters/logfile/conf/
aix4-r1.conf/tecad_logfile.conf,v $
#
$Revision: 1.1 $
#
$Id: tecad_logfile.conf,v 1.1 1995/11/27 16:23:48 wgg Exp $
#
Description:
#
(C) COPYRIGHT TIVOLI Systems, Inc. 1994.
Unpublished Work
All Rights Reserved
Licensed Material - Property of TIVOLI Systems, Inc.
#

ServerLocation=@EventServer
BufEvtPath=/etc/Tivoli/tec/logfile.cache
ServerPort=9999
EventMaxSize=4096

Filter:Class=Logfile_Base
Filter:Class=Logfile_Sendmail
Filter:Class=Amd_Unmounted
Filter:Class=Amd_Mounted
528 Tivoli Enterprise Internals and Problem Determination

Figure 219. TEC Adapter Daemon Start-up Excerpt from init.tecad_logfile

If the adapter is running, but no activity is generated in the output file, check
that this event is properly defined and formatted in the adapter. Look at the
file /etc/Tivoli/tecad/etc/tecad_logfile.err. This file resembles the diagnostic
file for the server, a series of stanzas defined as /dev/null by default.

Change the TECIO stanza to send standard out to a text file as in Figure 220
on page 530:

#!/bin/sh
script to start/stop the logfile adapter: tecad_logfile must
point to the tme or non_tme adapter executable in the bin dir.
#
$Date: 1996/10/17 20:29:35 $
#
$Source: /tivoli/development/src/2.0/apps/tec/adapters/logfile/bin/
init.tecad_logfile,v $
#
$Revision: 1.33 $
#
$Id: init.tecad_logfile,v 1.33 1996/10/17 20:29:35 jmills Exp $
#
Description:
#
(C) COPYRIGHT TIVOLI Systems, Inc. 1994.
Unpublished Work
All Rights Reserved
Licensed Material - Property of TIVOLI Systems, Inc.
#
.
.
.
else
 echo "Starting syslogd..."
 case $INTERP in
 aix3-r2|aix4-r1)
 startsrc -s syslogd
 ;;
 solaris2|dgux5)
 /usr/sbin/syslogd
 ;;
 hpux9|hpux10)
 /etc/syslogd
 ;;
 sunos4)
 /usr/etc/syslogd
 ;;
 *)
 syslogd
..
Enterprise Console 529

Figure 220. Changing TECIO Stanza for Error Output to a File

Restart the adapter. Examine this output file to trace the adapter behavior.
The following steps outline this procedure:

1. tail -f outputfile

2. Generate event

3. Check for DISCARD

4. Waiting, sent, or fail

If the event is discarded by the adapter, add the event to the following files
using the appropriate syntax:

/etc/Tivoli/tecad/etc/tecad_logfile.baroc (for logfile adapter)

/etc/Tivoli/tecad/etc/tecad_logfile.cds (for logfile adapter)

Plus:

/etc/Tivoli/tecad/etc/tecad_logfile.fmt (for logfile adapter)

/etc/Tivoli/tecad/etc/tecad_snmp.oid (for snmp adapter)

16.7.2.2 Event Console Initialization is Too Slow
If your TEC consoles are taking too long to start-up, one problem may be the
size of your local event cache for your TEC console. This cache is configured
from the GUI dialog for Event Console -> Event Group -> Options -> Message
Time Limits. The longer your time limits are set for, the larger the cache, and,
thus, the longer it takes to bring up the console. This is controlled at the
individual TEC client level.

Another factor could be the number and complexity of event group filters. The
more event groups and filters you setup, the longer it will take your console to

.

.

.
#
MODULE = TECIO
#
TECIO MINOR /tmp/tec_outfile
TECIO MAJOR /tmp/tec_outfile
TECIO FATAL /dev/null
TECIO LOW /dev/null
TECIO NORMAL /dev/null
TECIO VERBOSE /dev/null
530 Tivoli Enterprise Internals and Problem Determination

initialize, as it must retrieve all the data for each event group before control is
given back to the user.

16.7.2.3 ACF Distribution Failure
To trace what is occurring and what may be going wrong during an ACF
distribution, turn on the following tracing:

To turn on gateway logging:

wgateway gateway-name set_debug_level # where # is 0 through 9

The log file is found in $DBDIR/gatelog.

To turn on endpoint logging:

./opt/Tivoli/lcf/dat/1/lcf_env.sh (use directory path for your endpoint)
cd $LCF_DATDIR
./lcfd.sh stop

Edit last.cfg in this directory and change log_threshold=1 to log_threshold=4

Restart the lcfd daemon with:

./lcfd.sh start

This log file is located in $LCF_DATDIR/lcfd.log. This is the best place to start
to see what failed on the endpoint during distribution.

16.7.2.4 NT Event Adapter Running at 100 percent CPU
If your NT event adapter is running at 100 percent CPU utilization, and you
have installed NT Service Pack 4, you may have overlaid the eventlog.dll file
that Tivoli needs to run the NT log adapter. Service Pack 4 installs a newer
version of eventlog.dll which is incompatible with the NT event adapter. If
you chose to backup files replaced by the service pack, you may be able copy
it back over. Otherwise, you will need to obtain the version of eventlog.dll
prior to SP4 (dated 4/30/97 size: 50960).

16.7.2.5 Columns on Event Console not Wide Enough
The EnterpriseClient class and objects have attributes for setting the TEC
Message Viewer column widths and headings. The new attributes are of the
form <column>_cw (for setting the column width) and <column>_cn (for setting
Enterprise Console 531

the column name or heading). The complete list of attributes, their IDL types,
and their default values is given in Table 24:

Table 24. Event Console Column Attributes, Types, and Values

Setting column widths and headers
You can use the Tivoli Framework command line interface idlattr to retrieve
and modify these attributes. Use wlookup -ar EnterpriseClient to get a list of
TEC console objects (EnterpriseClient_OID). After modifying a console
object, the changes will be effective the next time that the console is
initialized.This has to be done for each individual enterprise client console
you want to modify.

Column Widths Column Headers

status_cw short 8 status_cn string "Status"

class_cw short 20 class_cn string "Class"

severity_cw short 12 severity_cn string "Severity"

origin_cw short 16 origin_cn string "Origin"

hostname_cw short 16 hostname_cn string "Hostname"

message_cw short 32 message_cn string "Message"

date_cw short 22 date_cn string "Date"

administrator_cw short 22 administrator_cn string "Administrator"

event_key_cw short 22 event_key_cn string "EVENT_KEY"

action_f_cw short 1 action_f_cn string "F"

id_cw short 22 id_cn string "ID"

action_r_cw short 1 action_r_cn string "R"

repeat_count_cw short 22 repeat_count_cn string "Repeat Count"

action_s_cw short 1 action_s_cn string "S"

source_cw short 16 source_cn string "Source"

sub_origin_cw short 16 sub_origin_cn string "Sub-Origin"

sub_source_cw short 16 sub_source_cn string "Sub_Source"

action_u_cw short 1 action_u_cn string "U"

dpage_key_cw short 16 dpage_key_cn string "dpage-key"
532 Tivoli Enterprise Internals and Problem Determination

The general form to retrieve an attribute value is:

idlattr -tg <EnterpriseClient_OID> <attribute> <type>

The general form to modify an attribute value is:

idlattr -ts <EnterpriseClient_OID> <attribute> <type> <value>

Examples:

To retrieve an attribute value:

idlattr -tg <EnterpriseClient_OID> status_cn string

To modify an attribute value:

idlattr -ts <EnterpriseClient_OID> status_cn string \"Health\"

16.7.3 Rule Base Errors
Rule base errors usually fall into two categories:

 • Problems creating new rule bases.

 • The server crashes and restarts itself.

The reason you should never change the default rule base directory contents
is that the default rule base contains default rules and default .baroc files,
which are necessary for each new rule base. If this is changed, the base can
be corrupted, and each new rule base will be corrupted as well. A corrupted

Refer to the warnings in Chapter 6, “Commands and Logs for
Troubleshooting” on page 131 before using idlattr calls in your TMR.
Always backup the Tivoli database before performing any direct
manipulation.

Note

Be sure and include the backward slashes (\) before the the double quotes
(") when modifying the column headers. This prevents the shell from
stripping the double quotes from the command.

Note

Never change the default rule base directory contents.

Important
Enterprise Console 533

rule base will not compile, and this makes it useless because it is not
loadable to the TEC. In the case that there is no valid rule base for the TEC, it
will not start. That means whenever creating a new rule base, create a new
directory for its contents.

In addition, having an unmodified default rule base allows you to have a
stable rule base to be used at any time for testing. If the default rule base is
corrupted, a backup is provided in $BINDIR/TME/TEC/default_rb.tar.

The dialog for creating a new rule base path is shown in Figure 221:

Figure 221. New Rule Base Path

There is another consideration when creating a new rule base directory on
Windows NT. You might be inclined to use the form
Hostname:Drive:\DirectoryPath\, but this will fail. You need to use forward
slashes as in Hostname:Drive/DirectoryPath/. Doing it the wrong way doesn’t
cause a problem until an attempt to edit the rules. At this point, the dialog in
Figure 222 pops up, and its meaning is not clear:
534 Tivoli Enterprise Internals and Problem Determination

Figure 222. Error Panel for Wrong Rulebase Path

If the event server crashes and (possibly) restarts itself, it may be caused by
a problem in the rule base. When the oserv restarts, it tries to restart TEC (if
TEC is set to auto-start). If this happens, get the rule base and the list of
events that were sent. Output from wtdumprl helps provide the events.

Perform the following:

1. Recompile the rule base with tracing on.

Figure 223. TEC Server Parameters (How to Turn on Rule Base Trace)

2. Recompile the rule base with tracing:

Check this
button to
turn on the
rule base
trace.
Enterprise Console 535

wcomprules -t RuleBaseName

3. Reload the rule base (see Figure 224 on page 536).

Figure 224. Reload Rule Bases (GUI)

4. Stop and start the TEC server.

5. Generate events until the server crashes.

6. Look at the trace file to see where the failure occurred.

The procedures shown in the previous figures use the GUI interface. What it
looks like when using the command line interface for the same scenario is
illustrated in Figure 225:

Figure 225. Command Line Tracing of Rule Bases

Use the right mouse
button on the rule base
icon for which the menu
should be opened.

% wtdumprl
% wsetesvrcfg -t /tmp/rules.trace
% wcomprules -t RuleBaseName
% wloadrb RuleBaseName
% wstopesvr
% wstartesvr
% wpostesmsg -r severity -m “Value for mesg slot” slot=val slot=val E_CLASS SOURCE
% vi /tmp/rules.trace
536 Tivoli Enterprise Internals and Problem Determination

To see what went wrong with the events, the first thing to try is the wtdumprl
command. Depending on how many entries it has, it is necessary to use
certain parameters with this command to get only those entries you are
looking for. Figure 200 on page 509, Figure 201 on page 510, and Figure 202
on page 511 show examples of wtdumprl outputs.

Next, check the rule base itself. First determine that it is actually being used.
Use the wlscurrb command to determine which rule base is currently loaded
into the event server. The command, wlsrb -d RuleBaseName, will tell you the
name of the rule base and its physical directory location.There can be
multiple rule bases, but only one can be loaded into the event server at a
time. In the rule base directory, there will be subdirectories called
TEC_CLASSES and TEC_RULES. All event class definitions will be in the
TEC_CLASSES directory in files called <name>.baroc. All rules will be in
TEC_RULES directory in files called <name>.rls.

16.7.3.1 Rules Don’t Work Properly
Compile the rules with tracing on and look at the trace output. Get the rule
base and a list of events for which the behavior is not as anticipated.

16.7.3.2 Rule Base Loading Is Lengthy and Fills Up File System
When rules are loaded into the event server, three directories in the rule base
directory (wlsrb -d) are copied into $DBDIR/tec/rb_dir; TEC_CLASSES,
TEC_RULES, and TEC_TEMPLATES. In actuality, what really happens is
everything under the rule base directory is copied to the $DBDIR/tec/rb_dir
directory. If you did not create your rule base in a new or empty directory,
then all of the other files and directories in your rule base directory will also
get copied.

16.7.3.3 Server Crashes in Response to an Event
Again, suspect an imperfectly crafted rule: One that perhaps does what you
told it to do rather than what you wanted it to do! Load the default rule base.
Stop and start the event server. Send the errant event. If the server does not
crash, refer to Figure 223 on page 535 on tracing rule output.

Be sure and turn tracing off when you are done testing. Otherwise, you
might end up with a huge /tmp/rules.trace file and overflow your file
system. To turn off tracing from the command line, use the wsetesvrcfg -t
command.

Note
Enterprise Console 537

16.7.3.4 Forced Clearing of the Rules Cache Event
This event signifies that the rules cache is not large enough for the
correlations being performed in the rulebase. The Event Cache, also known
as the Rules Cache, is configurable in the event server parameters. The rules
cache is maintained for rule correlation purposes. Adjust this value to hold all
the events you will need to correlate on but not more than you need. Setting
this value too high will adversely impact TECs performance.

Each rule in the rulebase will use this cache to correlate with incoming
events. If the rulebase uses primitives like ALL_INSTANCES or
ALL_DUPLICATES, and the rules cache is large, CPU usage may increase
proportionately, and the time to process a rule through the rule base will
increase as well. It is important to use templates, such as commit_rule
(commits the rule set), commit_set (commits the whole rulebase), and
commit_action (commits just the rule), to minimize the amount of time an event
spends in rules processing.

In addition, CLOSED events can take up space in the rules cache and should
be cleaned out proportionate to the number of events coming in and being
processed and the number of events you want to correlate. The longer it
takes to process events through the rulebase, the longer it will be for
tec_reception to pull new events from the memory buffer, and thus, from the
reception log.
538 Tivoli Enterprise Internals and Problem Determination

Chapter 17. Tivoli Output Manager

This chapter documents troubleshooting information for Tivoli Output
Manager. This product was previously known as Tivoli Destiny, and this name
is used throughout this chapter. This information has been generously
donated by the original authors in Tivoli support and education and has been
mostly reproduced as-is.

17.1 Expected Audience and Knowledge

This material was originally aimed at Level 2 Customer Support
representatives. You are expected to:

 • Have successfully completed Tivoli’s Destiny Overview course or have
equivalent experience.

 • Have reviewed the Destiny Server Administration Manual.

This chapter has the following topics:

Output Manager/Destiny Overview:
Provides an overview of Output Manager processes and tools.

Troubleshooting Destiny Problems:
Describes basic troubleshooting information for Output Manager.

Frequently Asked Questions:
Provides information on how to access FAQs.

Error Solutions:
Provides tables of solutions to various types of problems.

17.2 Output Manager/Destiny Overview

This section provides a description of the Output Manager background
processes and tools that can be used to help understand the current state of
Output Manager.

17.2.1 Destiny Background Processes
In order for Destiny to perform its job, it makes use of several background
processes. Each process works together to do the following:

 • Get a document to its designated destination.

 • Clean up entries in the database.

 • Communicate messages to and from each process.
© Copyright IBM Corp. 1998, 1999 539

 • Get ready for the next document to process.

These processes are described below:

17.2.1.1 Netman
The Netman process must be running before any other Destiny process can
run. It is typically set up to automatically start when the Destiny server boots
up. This process listens to the port address configured when Destiny was
installed. Without the port listening process, no other Destiny process can
function. To see if this process is running, it can be viewed by going to Control
Panel>Services>Destiny Netman.

17.2.1.2 Spoolman
The Spoolman process is the parent process for all Destiny background
processes running on a Destiny server. Spoolman starts up all the required
background processes. When Spoolman detects a catastrophic error from
one of the processes, or if Spoolman is stopped, Spoolman will attempt to
shut down all background processes. To see if Spoolman is running, simply
bring up Task Manager.

17.2.1.3 Mapper
The Mapper process is the first to determine that a new file has somewhere to
go. It either creates an entry in the NEWS database for LQM (Local Queue
Manager) or for NQM (Network Queue Manager) on the Node where the file
first appears. If the file is to be sent to another Node, then NQM will handle
the file and send it to the designated Node. If the file is destined to a local
Queue, then the file is handed off to LQM.

17.2.1.4 LQM
This is the Local Queue Manager (LQM), which handles any transactions that
are destined for a local Queue. There will be an LQM process for every
Queue defined within Destiny. LQM adds entries into the NEWS database in
case it has to forward a file to a remote Queue.

17.2.1.5 NQM/NQM Child
The NQM/NQM Child process handles files destined for a Queue not found
on the node on which it first appeared. Network Queue Manager (NQM)
follows three rules to get a file to the proper place:

1. Send to the target node directly. If this fails, perform step two.

2. Send to own Default Routing Manager (DRM). If this fails, perform step
three.

3. Send to own Domain Manager (DM).
540 Tivoli Enterprise Internals and Problem Determination

If all three steps fail, then the file will be marked as being in an error state.

17.2.1.6 NetWat
NetWat is the process NQM relies on to actually get a file from one node to
another on the Network. If necessary, NetWat places entries into the NEWS
database on the node the file is going to.

17.2.1.7 DirWatch
DirWatch processes files placed in a configured directory and deletes them
once processed.

17.2.1.8 Trashman
Trashman is the last process involved when a document is processed by
Destiny. Its job is to make sure all pieces of a document have been processed
and flagged as done.

17.2.1.9 Logman
The Logman process usually runs (based on Spoolman_Log_Period found in
Destiny.ini) once a day. Logman purges documents from the NEWS database
queues flagged as printed and deleted.

17.2.1.10 DestDirnt
The DestDirnt process is not a Spoolman child process. However, it may run
on a Destiny server if the customer has also installed Destiny Direct on the
server machine. DestDirnt handles getting Destiny Direct documents into the
NEWS database for processing by Destiny.

17.2.2 Destiny Tools
Destiny has two tools that are installed on the server but not documented in
the user guide. The tools reside in the \DESTINYHOME\util directory. These
tools are SQLView (an application) and DISP (a batch file).

17.2.2.1 SQLView
SQLView is a simple GUI that allows you to view entries in the database. It
works with SQL and JET installations:

1. Using Windows Explorer, simply drill down to the \DESTINYHOME\util
directory.

2. Double-click on the SQLView application. The application is very easy to
use.

3. Select the database you want to view.

4. Select the desired table.
Tivoli Output Manager 541

5. Select the number of records you want selected at a time.

You are allowed to select only two SQL statements (you can’t override the
SQL statement line). One SQL statement selects ALL records in the selected
table. The other SQL statement will display a count of ALL records in the
selected table.

17.2.2.2 DISP
DISP is a batch file that does a tail notif command on the desired stdlist
file:

1. Get to a command prompt and cd to the \DESTINYHOME\util directory.

2. Now type DISP filename (for example, DISP UNKNOWN). This will display the
contents of the desired stdlist file followed by a pause.

As long as you have not closed the command prompt window, as processes
write entries to the stdlist file, the activity will be displayed in the open
command window. This is a good tool for watching Destiny process
documents in real time.

17.3 Troubleshooting Destiny Problems

In most cases, Destiny troubleshooting involves reviewing an error log or
viewing a pop-up error. Once the error is found, then an action to correct the
problem can be determined.

Problems in Destiny can be classified into four broad areas:

 • GUI

 • Destiny Direct Client (NT/95)

 • SLP Client (NT/Unix)

 • Destiny Server (NT)

First, determine in which of these areas the difficulties are occurring. To
further isolate the problem, you might ask the following questions about the
setup. For example:

 • Does the problem occur with all or just some of the input programs
(Dirwatch, Destiny Direct, Destiny Transport)?

 • Does the problem occur with all or just some of the output destinations
(printer, email, pager)?

 • Are you using NT 4.0 SP3 on their server?
542 Tivoli Enterprise Internals and Problem Determination

 • Are you using SQL or JET?

Once you have determined in what area the problem is occurring, you can
then proceed to diagnose the problem.

17.3.1 GUI
Two applications make up the GUI portion of Destiny:

 • Composer (for configuring Destiny)

 • Conductor (for daily operations)

Once you know it is a GUI problem, then you need to know if the problem is in
Composer or Conductor.

17.3.1.1 Composer
To start up Composer, go to the Start>Destiny>Composer menu. Errors
within Composer will be either pop-up style or can be found in the client
directory within the Destiny home directory in a file named composer.log.

Questions to ask would include:

 • Is it a configuration issue?

 • What is being configured?

 • Is the GUI allowing the configuration to be saved?

 • Is the GUI allowing the configuration to be modified?

 • Are there any errors of any kind (on screen or in
\DESTINYHOME\client\composer.log)?

 • Is it a Push issue?

 • Is the Push working (verify with Conductor to view configuration)?

 • Are there any errors of any kind (on screen or in
\DESTINYHOME\client\composer.log)?

17.3.1.2 Conductor
To start up Conductor, go to the Start>Destiny>Conductor menu. Errors
within Conductor will be either pop-up style or can be found in the client
directory within the Destiny home directory in a file named conductor.log.

Questions to ask would include:

 • Does Conductor return incorrect information?

 • Is starting/stopping of Spoolman an issue?
Tivoli Output Manager 543

 • Is starting/stopping a Destination an issue?

 • Is starting/stopping a Queue an issue?

 • Is starting/stopping a Watcher an issue?

 • Is there trouble moving a document from one Queue to another?

 • Are there any errors of any kind (on screen or in
\DESTINYHOME\client\conductor.log)?

17.3.2 Destiny Direct Client (Windows NT/95)
Destiny Direct runs on Windows NT or Windows 95. There are no error log
files for Destiny Direct. All errors on the Direct side will be Windows pop-up
style error boxes.

Questions to ask could include:

 • What OS is the customer running Destiny Direct under (Windows NT or
95)?

 • Are you able to log in to the server from Direct?

 • Are you able to get to the Direct: Print Destinations window?

 • Are you able to see the desired Destination for the document from Direct?

 • Does the document print at all (from Windows NT/Windows 95 versus
Destiny Direct)?

17.3.3 SLP Client (Windows NT/Unix)
SLP runs on both NT and Unix. The syntax of the commands is identical on
both platforms although a few parameters (such as -crlf) won’t necessarily
make sense on the NT platform. Questions to ask could include:

 • Has the slp.ini file been configured? Review the slp.ini settings.

 • Can you ping the desired Destination (if a printer)?

 • Can you print to the desired Destination using LPR (if a printer)?

 • Does Destiny even see the document coming from SLP (verify by viewing
the \DESTINYHOME\stdlist\yyyy.mm.dd\unknown stdlist file)?

 • Is the document reaching a Destination of any kind (verify by using
Conductor and viewing each Queue)?

 • Any errors of any kind (in the stdlist file located in
\DESTINYHOME\stdlist\yyyy.mm.dd\unknown)?
544 Tivoli Enterprise Internals and Problem Determination

17.3.4 Destiny Output Server (Windows NT)
The Output Server portion is the heart of Destiny. Most activity can be viewed
by using Conductor or by viewing one of the error logs (resides in
\DESTINYHOME\stdlist\yyyy.mm.dd where yyyy.mm.dd = year.month.day
Spoolman or Conductor was last started).

17.3.4.1 Unknown
The Unknown error log is the main log showing daily activity on the Output
Server. Most of Destiny’s background processes post messages to this log
file (resides in \DESTINYHOME\stdlist\yyyy.mm.dd\Unknown where yyyy.mm.dd =
year.month.day Spoolman or Conductor was last started).

17.3.4.2 Condserv
Condserv is the error log for the Conductor application. If there is difficulty
with Conductor, look at the contents of this log file. This file will list
transactions from the Conductor point of view (resides in
\DESTINYHOME\stdlist\yyyy.mm.dd\Condserv where yyyy.mm.dd = year.month.day
Spoolman or Conductor was last started).

17.3.4.3 Netman
The Netman file lists network activity on each Output Server (resides in
\DESTINYHOME\stdlist\yyyy.mm.dd\Netman where yyyy.mm.dd = year.month.day
Spoolman or Conductor was last started).

17.3.4.4 Netwat
The Netwat file lists messages passed between Output Servers (resides in
\DESTINYHOME\stdlist\yyyy.mm.dd\Netwat where yyyy.mm.dd = year.month.day
Spoolman or Conductor was last started).

17.3.4.5 Conductor
The Conductor file resides in the \DESTINYHOME\client directory. If there are
problems with the use of Conductor, then this log file can be useful (by
development) in deciphering what the problem might be.

If you exit Conductor and get back into Conductor, then the conductor.log file
will get overwritten. It is important to rename the conductor.log file before
restarting Conductor.

17.3.4.6 Composer
The Composer file resides in the \DESTINYHOME\client directory. If there are
problems with the use of Composer, then this log file can be useful (for Tivoli
development) in deciphering what the problem might be.
Tivoli Output Manager 545

If you exit Composer and get back into Composer, then the composer.log file
will get overwritten. It is important to rename the composer.log file before
restarting Composer.

17.4 Troubleshooting a Push Operation

In Destiny, the Enterprise and Domain configuration information is maintained
in two databases:

 • Enterprise information is kept in the UED (Unison Enterprise Database).

 • Domain information is kept in the SCD (Spoolmate Configuration
Database).

Changes are made to these databases by using the Destiny Composer
application, which modifies and reads these two databases.

Day-to-day control of Destiny (stopping and starting nodes and queues,
resubmitting jobs, etc.) is performed through the use of the Destiny
Conductor application. Conductor reads and modifies a third database known
as the NEWS database, which maintains information about the Destiny Node
on which it exists. In addition to node-specific information, the NEWS
database also must include information about the node’s respective
Enterprise (UED) and Domain (SCD).

Information from the UED and SCD is replicated through the Destiny Push
operation. A Push operation is performed by:

1. Selecting a Node or Domain in Composer

2. Using the Composer->Push command

3. Selecting whether to replicate the following:

 • Enterprise information (UED) – select Enterprise Configuration

 • Domain information (SCD) – select Destiny Domain Configuration

 • Both – select All

If a node is highlighted when a Push operation is performed, then the selected
information will be replicated to that Node only. If a Domain is highlighted
when a Push operation is performed, then the selected information will be
replicated to all nodes in that Domain.

17.4.1 Successful Push Operation
If a Push operation is unsuccessful, then the NEWS database will not contain
the latest information about its Enterprise and Domain. Since Conductor
546 Tivoli Enterprise Internals and Problem Determination

reads the NEWS database, the Destiny Administrator will not be able to
perform day-to-day operations on Destiny objects that have not been
replicated to the NEWS database through a Push operation. Therefore, a
successful Push operation is imperative to Destiny operability.

Information related to the Push operation is logged in two log files—Netwat
and UEDSERV. These files are located in the Destiny\stdlist directory
structure.

The log files for a successful Push operation are as shown on the screens that
follow:

Destiny\stdlist...NETWAT
NETWATCHER7708:16:20/INFO: WATCHER_STARTED sent to caller [3010.19]
NETWATCHER7708:16:20/INFO: Waiting for message from caller [3010.23]
NETWATCHER7708:16:20/INFO: Receiving DB_Push message [3010.27]
NETWATCHER7708:16:20/INFO: Waiting for import to terminate [3010.18]
NETWATCHER7708:16:20/INFO: Waiting for import to terminate [3010.18]
NETWATCHER7708:16:20/INFO: Waiting for message from caller [3010.23]
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* NetWat.c:2893: ERROR: SOCKET_ERROR [3004.12]
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* NetWat.c:243: ERROR: ReceiveData() failed [3004.3]
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* NetWat.c:245: ERROR: Terminating
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* NetWat.c:2927: ERROR: SOCKET_ERROR [3004.12]
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* **
NETWATCHER7708:16:20/* NetWat.c:2959: ERROR: SendData() failed [3004.8]
NETWATCHER7708:16:20/* **
NETWATCHER7734:16:20/INFO: WATCHER_STARTED sent to caller [3010.19]
NETWATCHER7734:16:20/INFO: Waiting for message from caller [3010.23]
NETWATCHER7734:16:20/INFO: Receiving DB_Push message [3010.27]
NETWATCHER7734:16:20/INFO: Waiting for import to terminate [3010.18]
NETWATCHER7734:16:20/INFO: Waiting for import to terminate [3010.18]
NETWATCHER7734:16:20/INFO: Waiting for message from caller [3010.23]
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* NetWat.c:2893: ERROR: SOCKET_ERROR [3004.12]
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* NetWat.c:243: ERROR: ReceiveData() failed [3004.3]
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* NetWat.c:245: ERROR: Terminating
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* NetWat.c:2927: ERROR: SOCKET_ERROR [3004.12]
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* **
NETWATCHER7734:16:20/* NetWat.c:2959: ERROR: SendData() failed [3004.8]
NETWATCHER7734:16:20/* **
Tivoli Output Manager 547

17.4.2 Failed Push Operation
If a Destiny Node is configured with the wrong Network Name, or a Destiny
Node is configured using the Network Name of a non-Destiny computer, you
will receive a Push failed on following nodes error for each Node configured
incorrectly. The error header will read Push UED Error or Push SCD Error. The
UEDSERV log will be updated with a successful Push operation; however, the
Netwat log will not get updated with any information.

17.4.2.1 Solution
Verify that each Node for which you are receiving the above error message(s)
is configured correctly. You should do the following:

1. Check the Node Properties in Composer. See if you can ping the Network
Name of the problematic node.

2. Check to see if Netman is running on the problematic node. This can be
done through either NT’s Task Manager, or Control Panel -> Services.

3. If Microsoft SQL Server is being used, check to see if MSSQL is running on
the problematic node.

4. From the Enterprise Server, see if you can ping the Network Name of the
problematic node.

Destiny\stdlist...UEDSERV
Tivoli Destiny 1.1.0b10
Export version: 8
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.

 Exporting tbl_users
 Exporting tbl_security_roles
 Exporting tbl_user_security_roles
 Exporting tbl_groups
 Exporting tbl_group_security_roles
 Exporting tbl_dist_list
 Exporting tbl_dist_list_details
 Exporting tbl_nodes
 Exporting tbl_node_communications
 Exporting tbl_destinations
 Exporting tbl_domains
 Exporting tbl_calendars Tivoli Destiny 1.1.0b10
548 Tivoli Enterprise Internals and Problem Determination

17.5 Unknown Log Problem Determination

The Unknown stdlist file will contain the daily activity of Spoolman and all of
its child processes since the last time Spoolman was started. These
processes are:

 • Spoolman

 • LQM

 • NQM

 • Dirwatch

 • Logman

 • Mapper

 • Trashman

The format for most messages in this file is PROCESS:HH:MM/INFO [mesgno].
PROCESS is the background process generating the message. HH:MM is the time.
INFO is a message generated by the process. [mesgno] is the message
number. A typical message would look as follows:

SPOOLMAN:11:27/INFO:Starting Fileaid process to check consistency of
SPOOLMAN:11:27:database [3001.80]

When Destiny starts up, the unknown file will look like the example listed on
the pages that follow. Although lengthy, these are the typical messages that
will be seen when starting up the Spoolman process and all its child
processes.

The fileaid process checks the database for inconsistencies. The fileaid
errors generated up to, and including, Version 1.1.0 are normal for SQL
installations. These errors will be eliminated in a future release.

The Trashman error near the end of this list is an actual error. If you were
diagnosing the problem, then this would be information you would need to fix
the problem.

The number of messages shown is based on the number of queues and
Destinations configured on the server where Spoolman is running. If more
queues and Destinations are configured, then you will see more messages.
Tivoli Output Manager 549

Tivoli Destiny 1.1.0
Conductor version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
Tivoli Destiny 1.1.0
Spoolman version: 8
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
SPOOLMAN:07:14/INFO: Starting Fileaid process to check consistency of
SPOOLMAN:07:14/database [3001.80]
SPOOLMAN:07:14/INFO: Performing check FixJoes -- Check for JOEs in an
SPOOLMAN:07:14/invalid state.
SPOOLMAN:07:14/Selected JOEs will be set to Ready; Printing JOEs will be
SPOOLMAN:07:14/set to Error. [3022.4]
SPOOLMAN:07:14/* **
SPOOLMAN:07:14/* fileaid.c:583: ERROR: OpenDatabase failed for , user -
SPOOLMAN:07:14/* [3001.14]
SPOOLMAN:07:14/* **
SPOOLMAN:07:14/* **
SPOOLMAN:07:14/* fileaid.c:583: ERROR: OpenDatabase failed for , user -
SPOOLMAN:07:14/* [3001.14]
SPOOLMAN:07:14/* **
SPOOLMAN:07:14/* **
*
* [23 DUPLICATE ENTRIES DELETED] *
*
SPOOLMAN:07:14/* **
SPOOLMAN:07:14/* fileaid.c:583: ERROR: OpenDatabase failed for , user -
SPOOLMAN:07:14/* [3001.14]
SPOOLMAN:07:14/* **
SPOOLMAN:07:14/INFO: Fileaid performed no actions on NEWS database [3001.83]
SPOOLMAN:07:14/INFO: Got watcher DemoInput [3001.45]
SPOOLMAN:07:14/INFO: Got watcher FAX [3001.45]
SPOOLMAN:07:14/INFO: Got watcher GHColor5M [3001.45]
SPOOLMAN:07:14/INFO: Got watcher GHlj4si [3001.45]
SPOOLMAN:07:14/INFO: Got watcher PagerIN [3001.45]
SPOOLMAN:07:14/INFO: Got watcher Reports [3001.45]
SPOOLMAN:07:14/INFO: Got queue DemoWeb [3001.57]
SPOOLMAN:07:14/INFO: Got queue DirectoryPush [3001.57]
SPOOLMAN:07:14/INFO: Got queue DMEMAIL [3001.57]
SPOOLMAN:07:14/INFO: Got queue DMFAX [3001.57]
SPOOLMAN:07:14/INFO: Got queue LJ5si [3001.57]
SPOOLMAN:07:14/INFO: Got queue Pager [3001.57]
SPOOLMAN:07:14/INFO: Got queue MailNotifyQ [3001.57]
SPOOLMAN:07:14/INFO: Got queue Notifications [3001.57]
SPOOLMAN:07:14/INFO: Got queue LJ4si [3001.57]
SPOOLMAN:07:14/INFO: Got queue GHColor [3001.57]
SPOOLMAN:07:14/INFO: Starting watcher DemoInput [3001.25]
SPOOLMAN:07:14/INFO: Starting watcher FAX [3001.25]
SPOOLMAN:07:14/INFO: Starting watcher PagerIN [3001.25]
SPOOLMAN:07:14/INFO: Starting watcher Reports [3001.25]
SPOOLMAN:07:14/INFO: Starting mapper process [3001.59]
SPOOLMAN:07:14/INFO: Starting NQM process [3001.60]
SPOOLMAN:07:14/INFO: Starting LQM for DemoWeb [3001.32]
SPOOLMAN:07:14/INFO: Starting LQM for DirectoryPush [3001.32]
SPOOLMAN:07:14/INFO: Starting LQM for DMEMAIL [3001.32]
550 Tivoli Enterprise Internals and Problem Determination

SPOOLMAN:07:14/INFO: Starting LQM for DMFAX [3001.32]
SPOOLMAN:07:14/INFO: LQM not started for 9 [3001.61]
SPOOLMAN:07:14/INFO: Starting LQM for Pager [3001.32]
SPOOLMAN:07:14/INFO: Starting LQM for MailNotifyQ [3001.32]
SPOOLMAN:07:14/INFO: Starting LQM for Notifications [3001.32]
SPOOLMAN:07:14/INFO: Starting LQM for LJ4si [3001.32]
SPOOLMAN:07:14/INFO: Starting LQM for GHColor [3001.32]
SPOOLMAN:07:14/INFO: Starting TrashMan process [3001.62]
Tivoli Destiny 1.1.0
DirWatcher version: 5
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
DemoInput:07:14/INFO: OpenSession succeeded [3007.6]
Tivoli Destiny 1.1.0
DirWatcher version: 5
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
PagerIN:07:14/INFO: OpenSession succeeded [3007.6]
Tivoli Destiny 1.1.0
DirWatcher version: 5
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
Reports:07:14/INFO: OpenSession succeeded [3007.6]
Tivoli Destiny 1.1.0
DirWatcher version: 5
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
FAX:07:14/INFO: OpenSession succeeded [3007.6]
Tivoli Destiny 1.1.0
LQM version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:14/INFO: My queue name is DirectoryPush [3002.13]
Tivoli Destiny 1.1.0
LQM version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:14/INFO: My queue name is MailNotifyQ [3002.13]
Tivoli Destiny 1.1.0
LQM version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:14/INFO: My queue name is DemoWeb [3002.13]
Tivoli Destiny 1.1.0
LQM version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:14/INFO: My queue name is DMEMAIL [3002.13]
Tivoli Destiny 1.1.0
LQM version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:14/INFO: My queue name is DMFAX [3002.13]
Tivoli Destiny 1.1.0
LQM version: 10
Tivoli Output Manager 551

(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:14/INFO: My queue name is Pager [3002.13]
Tivoli Destiny 1.1.0
Mapper version: 13
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
MAPPER:07:15/mapper.c:5063: INFO: Mapper Process Started.. [3006.54]
Tivoli Destiny 1.1.0
NQM version: 6
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.

My Domain name is Austin
My Node name is Corpus_Christi
My Domain Manager is Macarena

NQM:07:15/INFO: Updating old assigned records to not assigned [3003.10]
Tivoli Destiny 1.1.0
LQM version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:15/INFO: My queue name is Notifications [3002.13]
Tivoli Destiny 1.1.0
LQM version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:15/INFO: My queue name is LJ4si [3002.13]
LQMDIRECTORYPUSH:07:15/INFO: This is not a forwarding queue [3002.27]
LQMDMEMAIL:07:15/INFO: This is not a forwarding queue [3002.27]
LQMPAGER:07:15/INFO: This is not a forwarding queue [3002.27]
LQMMAILNOTIFYQ:07:15/INFO: This is not a forwarding queue [3002.27]
LQMDIRECTORYPUSH:07:15/INFO: Got destination DIRECTORYPUSH [3002.30]
LQMDMEMAIL:07:15/INFO: Got destination DMEMAIL [3002.30]
Tivoli Destiny 1.1.0
LQM version: 10
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
LQM:07:15/INFO: My queue name is GHColor [3002.13]
LQMDEMOWEB:07:15/INFO: This is not a forwarding queue [3002.27]
LQMPAGER:07:15/INFO: Got destination Pager [3002.30]
LQMMAILNOTIFYQ:07:15/INFO: Got destination MailNotify [3002.30]
LQMDEMOWEB:07:15/INFO: Got destination DemoWeb [3002.30]
LQMDMFAX:07:15/INFO: This is not a forwarding queue [3002.27]
LQMNOTIFICATIONS:07:15/INFO: This is not a forwarding queue [3002.27]
LQMDMFAX:07:15/INFO: Got destination DMFAX [3002.30]
LQMNOTIFICATIONS:07:15/INFO: Got destination DemoWeb [3002.30]
LQMNOTIFICATIONS:07:15/INFO: Got destination DIRECTORYPUSH [3002.30]
LQMNOTIFICATIONS:07:15/INFO: Got destination DMEMAIL [3002.30]
LQMNOTIFICATIONS:07:15/INFO: Got destination DMFAX [3002.30]
LQMGHCOLOR:07:15/INFO: This is not a forwarding queue [3002.27]
LQMNOTIFICATIONS:07:15/INFO: Got destination lj4 [3002.30]
LQMLJ4SI:07:15/INFO: This is not a forwarding queue [3002.27]
LQMGHCOLOR:07:15/INFO: Got destination GHColor5M [3002.30]
552 Tivoli Enterprise Internals and Problem Determination

The following list of messages is an example of what you might see when
shutting down Spoolman and all its processes. Again, if more queues and
Destinations are configured on the server, then you will see more messages.

Tivoli Destiny 1.1.0
Trashman version: 7
(C) Copyright Tivoli Systems, an IBM Company 1982, 1998
All rights reserved.
TRASHMAN:07:15/trashman.c:1058: INFO: Trashman Process Started.. [3009.54]
LQMNOTIFICATIONS:07:15/INFO: Got destination LJ5si [3002.30]
LQMLJ4SI:07:15/INFO: Got destination GHlj4si [3002.30]
LQMNOTIFICATIONS:07:15/INFO: Got destination Pager [3002.30]
LQMNOTIFICATIONS:07:15/INFO: Got destination MailNotify [3002.30]
LQMNOTIFICATIONS:07:15/INFO: Got destination GHlj4si [3002.30]
LQMNOTIFICATIONS:07:15/INFO: Got destination GHColor5M [3002.30]
TRASHMAN:07:16/* **
TRASHMAN:07:16/* trashman.c:1318: ERROR: Cannot obtain Watcher File name
TRASHMAN:07:16/* [3009.14]
TRASHMAN:07:16/* **
TRASHMAN:07:16/trashman.c:676: INFO: InActive SEL record updated with DONE
TRASHMAN:07:16/state for SEL ID 61 [3009.60]
TRASHMAN:07:16/trashman.c:676: INFO: InActive SEL record updated with DONE
TRASHMAN:07:16/state for SEL ID 62 [3009.60]
TRASHMAN:07:16/trashman.c:676: INFO: InActive SEL record updated with DONE
TRASHMAN:07:16/state for SEL ID 64 [3009.60]
TRASHMAN:07:16/trashman.c:676: INFO: InActive SEL record updated with DONE
TRASHMAN:07:16/state for SEL ID 65 [3009.60]
Tivoli Output Manager 553

TERMINATING due to system shutdown event
TERMINATING due to system shutdown event
TERMINATING due to system shutdown event
TERMINATING due to system shutdown event
TERMINATING due to system shutdown event
TERMINATING due to system shutdown event
TERMINATING due to system shutdown event
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* INFO: LQM for queue LJ5si terminated [3001.47]
SPOOLMAN:11:09/* **
TERMINATING due to system shutdown event
TERMINATING due to system shutdown event
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* INFO: LQM for queue Pager terminated [3001.47]
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* INFO: LQM for queue MailNotifyQ terminated [3001.47]
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* INFO: LQM for queue Notifications terminated [3001.47]
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* INFO: LQM for queue LJ4si terminated [3001.47]
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* INFO: LQM for queue GHColor terminated [3001.47]
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* INFO: Trashman terminated [3001.49]
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/* spoolman.c:281: ERROR: Terminating
SPOOLMAN:11:09/* **
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to DemoInput [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to FAX [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to PagerIN [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to Reports [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to DemoWeb [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to DirectoryPush [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to DMEMAIL [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to DMFAX [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to Mapper [3001.74]
SPOOLMAN:11:09/INFO: Sending STOP_PROCESS to NQM [3001.74]
SPOOLMAN:11:09/INFO: Waiting for termination of watcher DemoInput [3001.67]
SPOOLMAN:11:09/INFO: Waiting for termination of watcher FAX [3001.67]
SPOOLMAN:11:09/INFO: Waiting for termination of watcher PagerIN [3001.67]
SPOOLMAN:11:09/INFO: Waiting for termination of watcher Reports [3001.67]
SPOOLMAN:11:09/INFO: Waiting for termination of LQM for DemoWeb [3001.68]
SPOOLMAN:11:09/INFO: Waiting for termination of LQM for DirectoryPush
SPOOLMAN:11:09/[3001.68]
SPOOLMAN:11:09/INFO: Waiting for termination of LQM for DMEMAIL [3001.68]
SPOOLMAN:11:09/INFO: Waiting for termination of Mapper [3001.69]
SPOOLMAN:11:09/INFO: Waiting for termination of Nqm [3001.70]
MAPPER:11:09/* **
MAPPER:11:09/* mapper.c:4660: ERROR: Stop Message issued by parent process
MAPPER:11:09/* [3006.10]
MAPPER:11:09/* **
554 Tivoli Enterprise Internals and Problem Determination

The following example is what you would see when sending a document to a
printer. Since Notifications is turned on, you will also see LQMNOTIFICATIONS
displaying several messages as well. If Notifications was turned off, then you
would not see these messages.

NQM:11:09/INFO: STOP_PROCESS received from SpoolMan [3030.4]
NQM:11:09/INFO: Stopping all NQMChildren [3003.9]
TERMINATING due to system shutdown event
NQM:11:09/* ***
NQM:11:09/* nqm.c:420: ERROR: Terminating
NQM:11:09/* ***
FAX:11:09/INFO: CloseSession succeeded [3007.7]
TERMINATING due to system shutdown event
PagerIN:11:09/INFO: CloseSession succeeded [3007.7]
Reports:11:09/INFO: CloseSession succeeded [3007.7]
SPOOLMAN:11:09/INFO: Waiting for termination of watcher DemoInput [3001.67]
DemoInput:11:09/INFO: CloseSession succeeded [3007.7]
SPOOLMAN:11:09/INFO: Waiting for termination of watcher Reports [3001.67]
TERMINATING due to system shutdown event
Tivoli Output Manager 555

LQMLJ5SI:10:55/INFO: Sending command to device manager: %NF -jobid 23 -name
LQMLJ5SI:10:55/"Other.xls" -control
LQMLJ5SI:10:55/"d:\Destiny\spool\HP_LaserJet_5Si\07021998105539.ctl" -handle
LQMLJ5SI:10:55/"LJ5si" -data
LQMLJ5SI:10:55/"d:\Destiny\spool\HP_LaserJet_5Si\07021998105539.DAT"
LQMLJ5SI:10:55/[3002.19]

iJobID = 23
 Name = Other.xls
 Handle = LJ5si
 Data = d:\Destiny\spool\HP_LaserJet_5Si\07021998105539.DAT
 Control = d:\Destiny\spool\HP_LaserJet_5Si\07021998105539.ctl

LQMLJ5SI:10:55/INFO: Received message from device manager: %AK -jobid 23
LQMLJ5SI:10:55/[3002.20]
LQMLJ5SI:10:55/INFO: DM_ACKNOWLEDGE received [3002.37]
LQMNOTIFICATIONS:10:55/INFO: Setting status of destination ID 5 to b
LQMNOTIFICATIONS:10:55/[3002.21]
MAPPER:10:55/INFO: Document Other.xls owned by ldm from watcher
MAPPER:10:55/HP_LaserJet_5Si matched filter LJ5si-0 [3006.69]
MAPPER:10:55/INFO: Document Other.xls owned by ldm from watcher
MAPPER:10:55/HP_LaserJet_5Si - using handle LJ5si [3006.72]
MAPPER:10:55/mapper.c:2744: INFO: JOE created for SEL ID 101 [3006.50]
MAPPER:10:55/mapper.c:425: INFO: SEL record updated for SEL ID 101 [3006.51]
MAPPER:10:55/mapper.c:525: INFO: Active SEL record updated with MAPPED state
MAPPER:10:55/for SEL ID 101 [3006.52]
LQMLJ5SI:10:56/INFO: Received message from device manager: %OF -jobid 23
LQMLJ5SI:10:56/-pageno 0 [3002.20]
LQMLJ5SI:10:56/INFO: DM_OUTPUT_FILE received [3002.36]
LQMLJ5SI:10:56/INFO: Received message from device manager: %OF -jobid 23
LQMLJ5SI:10:56/-pageno 100 [3002.20]
LQMLJ5SI:10:56/INFO: DM_OUTPUT_FILE received [3002.36]
LQMLJ5SI:10:56/INFO: Received message from device manager: %DF -jobid 23
LQMLJ5SI:10:56/[3002.20]
LQMLJ5SI:10:56/INFO: DM_DONE_FILE received [3002.32]
LQMLJ5SI:10:56/INFO: Sending command to device manager: %AK -jobid 23
LQMLJ5SI:10:56/[3002.19]
LQMLJ5SI:10:56/INFO: Received message from device manager: %EX [3002.20]
LQMLJ5SI:10:56/INFO: Device Manager for LJ5si terminated successfully
LQMLJ5SI:10:56/[3001.52]
LQMLJ5SI:10:56/INFO: Setting status of destination ID 8 to r [3002.21]
LQMLJ5SI:10:56/INFO: Setting status of destination ID 8 to b [3002.21]

 GetCommandLocale() HP LaserJet 5Si
 GetCommandDevName() LJ5si
 GetCommandDevType() a
 GetCommandPersistFlag() 0
 GetCommandHelpFlag() 0
LQMNOTIFICATIONS:10:56/INFO: Received message from device manager: %RY
LQMNOTIFICATIONS:10:56/-major 1 -minor 0 [3002.20]
LQMNOTIFICATIONS:10:56/INFO: DM_READY received [3002.38]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %NF -jobid
LQMNOTIFICATIONS:10:56/12 -name "Other.xls" -handle "LJ5si" -data
LQMNOTIFICATIONS:10:56/"d:\Destiny\spool
556 Tivoli Enterprise Internals and Problem Determination

LQMNOTIFICATIONS:10:56/otify\07021998105549.NTF" -init
LQMNOTIFICATIONS:10:56/"d:\Destiny\init\dm-smtp.ini" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Received message from device manager: %AK
LQMNOTIFICATIONS:10:56/-jobid 12 [3002.20]
LQMNOTIFICATIONS:10:56/INFO: DM_ACKNOWLEDGE received [3002.37]
LQMNOTIFICATIONS:10:56/INFO: Received message from device manager: %OF
LQMNOTIFICATIONS:10:56/-jobid 12 -pageno 0 [3002.20]
LQMNOTIFICATIONS:10:56/INFO: DM_OUTPUT_FILE received [3002.36]
LQMNOTIFICATIONS:10:56/INFO: Received message from device manager: %RQ
LQMNOTIFICATIONS:10:56/-jobid 12-sHandleDesc -sInputDevName -sDocumentName
LQMNOTIFICATIONS:10:56/-sFileName -sOutputFile -sCreationTime -sOwnerName
LQMNOTIFICATIONS:10:56/-sUserName -sFullName -sEmplNum -sAccountName -sTitle
LQMNOTIFICATIONS:10:56/-sGroupName -sBusAddress -sBusPhoneNum -sBusEmail
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sInputDevName "HP_LaserJet_5Si" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sDocumentName "Other.xls" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sFileName "Other.xls" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sOutputFile "Other.xls" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sCreationTime "1998-07-02 10:55:49" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sOwnerName "ldm" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sUserName "ldm" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sFullName "Larry McWilliams" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sEmplNum "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sAccountName "ldm" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sTitle "Destiny Admin" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sGroupName "AdminGroup" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sBusAddress "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sBusPhoneNum "5124361842" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sBusEmail "larry.mcwilliams@tivoli.com" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sBusFax "4361899" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sBusPager "8887652019" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sBusBin "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sOtherPhoneNum "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sOtherEmail "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sOtherFax "" [3002.19]
Tivoli Output Manager 557

LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sOtherPager "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sOtherBin "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -cConfFlag "n" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sOtherAddress "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sDefaultAddress "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sDefaultPhoneNum "5124361842" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sDefaultEmail "larry.mcwilliams@tivoli.com"
LQMNOTIFICATIONS:10:56/[3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sDefaultFax "4361899" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sDefaultPager "8887652019" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sDefaultBin "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sNoteIPAddress "146.84.110.18" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sNoteDNSName "lmcwilli.ausdev.tivoli.com"
LQMNOTIFICATIONS:10:56/[3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sNoteWindowsName "LMCWILLI" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sNoteConnectionMode "IPADDRESS,DNS,NET" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sNotePortNumber "32223" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sNoteProcessName "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %IN -jobid
LQMNOTIFICATIONS:10:56/12 -sNoteCookie "" [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Sending command to device manager: %EI -jobid
LQMNOTIFICATIONS:10:56/12 [3002.19]
LQMNOTIFICATIONS:10:56/INFO: Received message from device manager: %OF
LQMNOTIFICATIONS:10:56/-jobid 12 -pageno 30 [3002.20]
LQMNOTIFICATIONS:10:56/INFO: DM_OUTPUT_FILE received [3002.36]
LQMNOTIFICATIONS:10:56/INFO: Received message from device manager: %OF
LQMNOTIFICATIONS:10:56/-jobid 12 -pageno 40 [3002.20]
LQMNOTIFICATIONS:10:56/INFO: DM_OUTPUT_FILE received [3002.36]
LQMNOTIFICATIONS:10:56/INFO: Received message from device manager: %OF
LQMNOTIFICATIONS:10:56/-jobid 12 -pageno 50 [3002.20]
LQMNOTIFICATIONS:10:56/INFO: DM_OUTPUT_FILE received [3002.36]
TRASHMAN:10:56/trashman.c:676: INFO: InActive SEL record updated with DONE
TRASHMAN:10:56/state for SEL ID 100 [3009.60]
 56
 56
LQMLJ5SI:10:56/INFO: Received message from device manager: %RY -major 1
LQMLJ5SI:10:56/-minor 0 [3002.20]
LQMLJ5SI:10:56/INFO: DM_READY received [3002.38]
558 Tivoli Enterprise Internals and Problem Determination

17.6 Frequently Asked Questions

All FAQ data that is available is on the Tivoli web site. FAQs are updated on
an hourly basis. A Tivoli customer can access the web site by going to
http://www.support.tivoli.com/.

17.7 Error Solution Tables

The following section provides a quick reference for troubleshooting Output
Manager/Destiny. Each process is listed in a separate table and includes the
following information:

 • Problem

 • Symptom

 • Error Messages

 • Solution

The tables are listed in alphabetical order and include the following
processes:

 • Composer Configuration
 • Conductor Configuration
 • Dbase
 • Destination Status
 • Email
 • LQM
 • Mapper
 • Netwatcher
 • NQM
 • NT Server
 • Pager
 • Print
 • Spoolman
 • Trashman

Table 25. Destiny Composer Configuration Issues

Problem Symptom Error
Messages

Solution

The Composer
Configuration window
keeps popping up OR
displays “Connection to
UED failed.”

The Composer
Configuration window
keeps popping up OR
displays “Connection to
UED failed.”

Connection to
UED failed

Check spelling of the
Network Name. Be sure that
it is a valid UED server name.
Tivoli Output Manager 559

The Composer
Configuration window
keeps popping up without
errors.

The Composer
Configuration window
keeps popping up without
errors.

None Make sure Netman is
running. If not, go to Control
Panel: Services and start up
Destiny Netman on 32222
or reboot PC.

An error message is
displayed. The server
could not be started on
the default domain
because information
about the domain could
not be obtained from
UED after starting up
Composer.

This indicates the default
Domain Name entered in
the Composer
Configuration window
was incorrect or invalid.

Server could
not be started
on the default
domain because
information
about the
domain could
not be obtained
from UED.

Check the default Domain
Name entered in the
Composer Configuration
window.

Problem Symptom Error
Messages

Solution
560 Tivoli Enterprise Internals and Problem Determination

Table 26. Destiny Conductor Configuration Issues

Problem Symptom Error
Messages

Solution

Cannot log in to
Conductor or
Composer.

You receive an INVALID
USER ACCOUNT,
PLEASE RE-ENTER
message when trying to
log in to Composer or
Conductor.

INVALID USER
ACCOUNT, PLEASE
RE-ENTER

Check that the user name and
password are correct. Other
things to check:
1) If this is a new install, make
sure a Composer Push All
has been done.
2) Use Composer to make
sure the user is created and
has the proper password
assigned.

The Conductor
Configuration window
keeps popping up.

The Conductor
Configuration window
keeps popping up.

None Check the default Node
Name. It may be wrong,
misspelled, non-existent, or
the connection to the node is
not working. Also, check the
node address—it may be
wrong.

Conductor won’t start
up.

Conductor won’t start up. None Make sure that
C:\UNISONHOME\unison.INI
file exists.
Tivoli Output Manager 561

Table 27. Destiny Dbase Issues

Table 28. Destiny Destination Status Issues

Problem Symptom Error
Messages

Solution

You need to
recover the
Destiny
Databases.

Your Destiny
Databases have
become corrupted,
and you have
cleaned one or
more of them.

None Destiny has three databases: UED, SCD, and
NEWS. If the NEWS database gets corrupted,
then this database is the easiest to recover.
However, when you recover this database,
you usually lose history records. Configuration
information for NEWS can be easily recovered
from the other two databases by doing a
Push. If you have backups of these
databases, then you can easily recover them.
Again, you could lose some history, but you
will get your databases back. Backups can be
done with SQL, a third party backup software,
or by using our DBDATA utility. If you lose
your UED and/or SCD databases, and you
don’t have a backup, then the only way to
recover them is to manually re-configure your
Destiny environment. If your NEWS database
was unaffected, then you can resume normal
operations. However, you won’t be able to
make configuration changes to your Destiny
domain until you recover the UED and/or the
SCD databases.

Problem Symptom Error
Messages

Solution

The Destination
status remains in
an ERROR state
after starting
Spoolman.

The Destination
status remains in an
ERROR state after
starting Spoolman.

None This condition is generally a result of a prior
configuration problem. Stop the destination
and then restart it. This usually corrects the
problem unless the incorrect configuration
issue still exists.
562 Tivoli Enterprise Internals and Problem Determination

Table 29. Destiny E-mail Issues

Table 30. Destiny LQM Issues

Problem Symptom Error Messages Solution

An error
message is
received when
attempting to
send a job to an
Email
Destination.

The error “-errno
23002
-errmsg Unable to
open output locale” on
email could be due to:
a. You do not have an
email address defined
to the user.
b. You specified, under
your Email
Destination
Properties, an SMTP
Server Name which
does not conform.

-errno 23002
-errmsg Unable to
open output locale

a. Define an email address to the
user.
b. You must specify, under your
Email Destination Properties, an
SMTP Server Name which conforms
to the following:
dave.utuk.unison.com Produces
error message (Not defined in Hosts
file).
dave.utuk.unison.com Produces
error message (Mapped to IP addr in
Hosts file).
dav.utuk.unison.com Works
(Mapped to IP addr in Hosts file).
da.utuk.unison.com Works (Mapped
to IP addr in Hosts file).
hal.unison.com Works (Not defined
in Hosts file).
194.200.159.2 Works (IP addr of our
SMTP server).
Email Server Works (Mapped to IP
addr in Hosts file).
It would appear that we only allow for
three characters to be in that fourth
field.

Problem Symptom Error Messages Solution

Destiny does
not print a
document.
—OR—
The document is
printed to a
different
destination than
expected.

The Unknown log
shows that a Filter
was matched that
is different than
the one you
expected.

LQMWEBQ:10:03/INFO: This is not a
forwarding queue [3002.27]
LQMWEBQ:10:03/INFO: Got destination
KerrysWeb [3002.30]
KWDIRWAT:10:03/INFO: Record inserted for
file boot.ini [3007.3]
MAPPER:10:03/INFO: Document boot.ini
owned by Everyone from watcher KWDIRWAT
MAPPER:10:03/matched filter KerrysFilter
[3006.69]
MAPPER:10:03/INFO: Document boot.ini
owned by Everyone from watcher KWDIRWAT
MAPPER:10:03/- using handle KerrysHandle
[3006.72]

From Composer,
check your filters and
make sure that they
are set up correctly.
Watcher
names are
case-sensitive. They
must be entered into
the Filter Properties
just as they appear in
the Watcher
Properties.
Tivoli Output Manager 563

Destiny does
not print
anything.

Destiny does not
print anything and
appears to be in a
hard loop. Stdlist
displays “The
system cannot
find the Locale
specified.” This
indicates the
System Name
under
Destination
Properties is
incorrect or
invalid.

LQMLJ5SI:09:27/INFO: Received message
from device manager: %ER -jobid 0
LQMLJ5SI:09:27/-errno 23001 -errmsg The
system cannot find the Locale
LQMLJ5SI:09:27/specified. [3002.20]
LQMLJ5SI:09:27/INFO: DM_ERROR received:
%ER -jobid 0 -errno 23001 -errmsg
LQMLJ5SI:09:27/The system cannot find the
Locale specified. [3002.31]
LQMLJ5SI:09:27/INFO: Sending command to
device manager: %AK -jobid 0
LQMLJ5SI:09:27/[3002.19]
LQMLJ5SI:09:27/* ************
LQMLJ5SI:09:27/*
C:\spoolmate\develop\Lqm\lqm.c:3907:
DB_ERROR: No Data
LQMLJ5SI:09:27/* Found [3001.1]
LQMLJ5SI:09:27/* ************
LQMLJ5SI:09:27/INFO: Received message
from device manager: %EX [3002.20]
LQMLJ5SI:09:27/INFO: Received message
from device manager: %EX [3002.20]
LQMLJ5SI:09:27/INFO: Received message
from device manager: %RY -major 1
LQMLJ5SI:09:27/-minor 0 [3002.20]
LQMLJ5SI:09:27/INFO: DM_READY received
[3002.38]
LQMLJ5SI:09:27/INFO: Sending command to
device manager: %NF -jobid 319 -name
LQMLJ5SI:09:27/"Test Page" -control
"C:\Destiny\spool\HP_LaserJet_5Si\111019
97092637.ctl" -handle
LQMLJ5SI:09:27/"LJ5si" -data
LQMLJ5SI:09:27/"C:\Destiny\spool\HP_Lase
rJet_5Si\11101997092637.DAT" -banner
LQMLJ5SI:09:27/"C:\Destiny\banners\fyifa
x.emf
LQMLJ5SI:09:27/INFO: Device Manager for
LJ5si terminated successfully
LQMLJ5SI:09:27/[3001.52]
LQMLJ5SI:09:27/INFO: Setting status of
destination ID 10 to r [3002.21]

If this is for a printer,
then the System
Name should exactly
match the NT Printer
Name. If this is for a
fax device, then the
System Name should
be a valid COM port. If
this is for an email
device, then the
System Name should
be the proper mail
server name. If this is
for a Web device, then
the System Name
should be the proper
path to the index.htm
file:
C:\UNISONHOME\De
mo\Web\
index.htm. NOTE:
This is a bug in
Version B4.

An error in
Unknown log.

An error in
Unknown log.

LQMDEMOWEB:08:51/* ***********
LQMDEMOWEB:08:51/*
C:\spoolmate\develop\Lqm\lqm.c:3436:
DB_ERROR: No Data
LQMDEMOWEB:08:51/* Found [3001.1]
LQMDEMOWEB:08:51/* ***********

This error is not
catastrophic.
However, it indicates a
queue has been
defined but has not
been assigned a
destination.

Problem Symptom Error Messages Solution
564 Tivoli Enterprise Internals and Problem Determination

Table 31. Destiny Mapper Issues

Problem Symptom Error Messages Solution

Destiny does
not print a
document.

An error in
Unknown log.

MAPPER:09:30/* [Microsoft][ODBC SQL Server
Driver][SQL Server]Attempt to
MAPPER:09:30/* insert the value NULL into
column ’owner_name’, table
MAPPER:09:30/* ’NEWS.dbo.tbl_messages’;
column does not allow nulls. INSERT
MAPPER:09:30/* fails. for in table

This error can be caused
by incorrect configuration
of a Watcher or by having
an apostrophe in any of
the fields of a Destiny
object.

Destiny does
not print
anything.

Destiny does
not print
anything.
There are
errors in the
Unknown log.

MAPPER:13:51/INFO: Document Microsoft Word
- Document3 owned by ldm from
MAPPER:13:51/watcher HP_LaserJet_5Si
matched filter 5si-0 [3006.69]
MAPPER:13:51/INFO: Document Microsoft Word
- Document3 owned by ldm from
[3006.72]51/watcher HP_LaserJet_5Si - using
handle 5si
MAPPER:13:51/* *************
MAPPER:13:51/*
C:\spoolmate\develop\Mapper\mapper.c:1218:
INFO: No matching
MAPPER:13:51/* Calendar found in MAPPER
CALENDAR table for Mapper ID 2
MAPPER:13:51/* [3006.42]
MAPPER:13:51/* *************
MAPPER:13:51/* *************
MAPPER:13:51/*
C:\spoolmate\develop\Mapper\mapper.c:992:
ERROR: No Data
MAPPER:13:51/* Found for Handle 5si in
table MAPPERS [3006.31]
MAPPER:13:51/* *************
MAPPER:13:51/C:\spoolmate\develop\Mapper\ma
pper.c:522: INFO: Active SEL
MAPPER:13:51/record updated with ERROR
state for SEL ID 19 [3006.53]

A calendar error indicates
when a date is not found
in the calendar. This is not
catastrophic. However,
the document will not be
output by Destiny when it
can’t find a matching
calendar date.

An error in
Unknown log.

An error in
Unknown log.

MAPPER:14:15/WARNING: No filter matched for
SEL with filename Kathleen
MAPPER:14:15/Gesford, 05:32 PM 9/14 ,
username ldm and devicename
MAPPER:14:15/HP_LaserJet_5Si [3006.30]
MAPPER:14:15/* *************
MAPPER:14:15/*
C:\spoolmate\develop\Mapper\mapper.c:1891:
ERROR: No Data
MAPPER:14:15/* Found for QueueName unknown
in table QUEUES [3006.33]
MAPPER:14:15/* *************

Generally, this error
message indicates
insufficient configuration
for a Queue.
Appropriate mappers and
filters may not have been
set up for the Queue.
—OR—
There is no destination
assigned to the Queue.
Tivoli Output Manager 565

The spool file
doesn’t print.

Filtering of the
spool file maps
to a user.

MAPPER:14:01/INFO: Document Document owned
by nflowers from watcher HPLJ2
MAPPER:14:01/matched filter email [3006.69]
MAPPER:14:01/INFO: Document Document owned
by nflowers from watcher HPLJ2 -
MAPPER:14:01/using handle email [3006.72]
MAPPER:14:01/* **************
MAPPER:14:01/* mapper.c:2165: ERROR:
Invalid Queue specified [3006.20]
MAPPER:14:01/* **************
MAPPER:14:01/* **************
MAPPER:14:01/* mapper.c:3608: ERROR: Cannot
create JOE [3006.25]
MAPPER:14:01/* **************
MAPPER:14:01/mapper.c:627: INFO: Active SEL
record updated with ERROR state
MAPPER:14:01/for SEL ID 57 [3006.53]

The user doesn’t have a
Queue defined in their
profile.
The default Queue can
be defined
in the user’s profile or in
the Group assigned to
the user.

The spool file
doesn’t print.

The spool file
is filtered
through a
mapper that
has a calendar
that isn’t every
day.

MAPPER:21:35/INFO: Document test - Notepad
owned by nflowers from watcher
MAPPER:21:35/HPLJ2 matched filter test
[3006.69]
MAPPER:21:35/INFO: Document test - Notepad
owned by nflowers from watcher
MAPPER:21:35/HPLJ2 - using handle
hplj2handle [3006.72]
MAPPER:21:35/* *************
MAPPER:21:35/* mapper.c:3947:ERROR: Invalid
expiration date for calendar
MAPPER:21:35/* nicole [3006.80]
MAPPER:21:35/* *************
MAPPER:21:35/* mapper.c:1355: INFO: No
matching Calendar found in MAPPER
MAPPER:21:35/* CALENDAR table for Mapper ID
2 [3006.42]
MAPPER:21:35/* *************
MAPPER:21:35/* mapper.c:1129: ERROR: No
Data Found for Handle hplj2handle in
MAPPER:21:35/* table MAPPERS [3006.31]
MAPPER:21:35/* *************
MAPPER:21:35/mapper.c:627: INFO: Active SEL
record updated with ERROR state
MAPPER:21:35/for SEL ID 85 [3006.53]

The date on which the
spool file is printing isn’t
allowed. Change the
expiration date on the
calendar.
—OR—
Choose another mapper
to route through.

Problem Symptom Error Messages Solution
566 Tivoli Enterprise Internals and Problem Determination

Table 32. Destiny Netwatcher Issues

Problem Symptom Error Messages Solution

Push fails to
update the
NEWS
database.

Push fails to
update the
NEWS
database.
There are
IMPORT
errors in the
Unknown
log.

NETWATCHER:13:57/INFO: WATCHER_STARTED sent to caller
[3010.19]
NETWATCHER:13:57/INFO: Waiting for message from caller
[3010.23]
NETWATCHER:13:57/INFO: Receiving DB_PUSH message
[3010.27]
NETWATCHER:13:57/INFO: Waiting for import to terminate
[3010.18]
NETWATCHER:13:57/INFO: Waiting for import to terminate
[3010.18]
IMPORT:13:57/* **************
IMPORT:13:57/*
C:\spoolmate\develop\Import\filetodb.c:468: ERROR:
IMPORT:13:57/* [Microsoft][ODBC SQL Server Driver][SQL
Server]Line 1:
IMPORT:13:57/* Incorrect syntax near ’s’. [3020.9]
IMPORT:13:57/* **************
IMPORT:13:57/* **************
IMPORT:13:57/*
C:\spoolmate\develop\Import\import.c:227: ERROR:
Error while
IMPORT:13:57/* importing tbl_nodes table [3020.3]
IMPORT:13:57/* **************
IMPORT:13:57/* **************
IMPORT:13:57/*
C:\spoolmate\develop\Import\import.c:126: ERROR:
ImportData()
IMPORT:13:57/* failed in main() function [3020.7]
IMPORT:13:57/* **************
NETWATCHER:13:57/* ****************
NETWATCHER:13:57/* D:\spoolmate\develop
NETWATCHER:13:57/* etwat
NETWATCHER:13:57/* etWat.c:849: ERROR: DbImport
terminated with FAILURE.
NETWATCHER:13:57/* [3010.9]
NETWATCHER:13:57/* ****************
NETWATCHER:13:57/INFO: Waiting for message from
caller [3010.23]
NETWATCHER:13:57/* ****************

This error causes
Push to not
update
configuration
information in the
NEWS database.
The error is the
result of creating a
node with a
description
containing an
apostrophe.
Remove the
apostrophe, and
the error will be
eliminated.

Table 33. Destiny NQM Issues

Problem Symptom Error Messages Solution

Spoolman
will not start
up.

Spoolman
will not start
up.

NQM:08:47/* ******************
NQM:08:47/* C:\spoolmate\develop
NQM:08:47/* qm
NQM:08:47/* qm.c:926: DB_ERROR: No Data Found [3001.1]
NQM:08:47/* ******************
NQM:08:47/* ******************
NQM:08:47/* C:\spoolmate\develop
NQM:08:47/* qm
NQM:08:47/* qm.c:111: ERROR: Can not read own Nodes
record [3003.5]
NQM:08:47/* ******************
NQM:08:47/* ******************
NQM:08:47/* C:\spoolmate\develop
NQM:08:47/* qm
NQM:08:47/* qm.c:112: ERROR: Terminating
NQM:08:47/* ******************

Generally, these
error messages are
a result of an
incorrect or invalid
Domain Name in
the
C:\UNISONHOME\
unison.INI file. The
result is Spoolman
will not start up.
Tivoli Output Manager 567

Table 34. Destiny Pager Issues

Problem Symptom Error Messages Solution

The pager does
not answer, even
though you can
hear it ringing on
your modem.

You send a page
out, and while
listening to the
modem, all you
hear is a ring and
no answer.

Below is what you will see in the
Pager.DBG file if a comma is inserted in
the LocalOutSideLine definition:
Pager.DBG (stdlist file found in stdlist
directory):
COM1: - Dialing 9,,-873-8719
COM1: IN:ATDT9,,-873-8719
NO CARRIER
Timeout waiting for CONNECTion.
COM1: IN T/O:
COM1: IN T/O:
COM port successfully closed
Returning with error - Timeout waiting for
CONNECTion.
Initializing Port
Size of PORT structure: 6188
Set modem using AT~
COM1: IN:AT
OK

Check the
dm-pager.INI file.
The definition for
LocalOutSideLine
should have just a
number 9. No comma
should follow the
number 9. If there is a
comma, remove it.

Table 35. Destiny Print Issues

Problem Symptom Error
Messages

Solution

Destiny does
not print a
document.

You tried to print
a document, but
it never printed.
Stdlist shows
nothing.

None It is most likely that Spoolman is not running. Using
Conductor, start up Spoolman.

Destiny does
not print a
document.

You tried to print
a document, but
it never printed.
Stdlist shows
the document
got mapped, but
that’s all.

None Check for the following:
a) Status of Destination. If stopped, start it.
b) Status of Queue. If down, start it.
c) Status of Watcher. If down, start it.
d) Check order of Filters. View Stdlist to see which
Filter the document was mapped to. Correct as
needed. This may involve correcting the mapper
configuration and/or the filter configuration.
e) Check the file size. If destinations are configured
based on file size, then the windows file size may not
agree with what Destiny thinks the file size is. If this
is the case, then change the file size configuration to
the appropriate values using Composer. Do a Push
ALL to get your document to print.
568 Tivoli Enterprise Internals and Problem Determination

Table 36. Destiny Spoolman Issues

Problem Symptom Error Messages Solution

Destiny
does not
print a
document.

An error in
Unknown
log.

Unison SpoolMate 1.0 (C) Unison Software. Inc.
Conductor version: 10
Unison SpoolMate 1.0 (C) Unison Software. Inc.
Spoolman version: 7
SPOOLMAN:09:30/INFO: Got watcher KerrysWatcher
[3001.45]
SPOOLMAN:09:30/INFO: Got queue KerrysQueue
[3001.57]
SPOOLMAN:09:30/INFO: Starting watcher
KerrysWatcher [3001.25]
SPOOLMAN:09:30/INFO: Starting mapper process
[3001.59]

 GetCommandPersistFlag() 0
 GetCommandHelpFlag() 0
%ER -jobid 0 -errno 23001 -errmsg The system
cannot find the Locale specified.
%EX
SPOOLMAN:09:30/INFO: Starting NQM process
[3001.60]
SPOOLMAN:09:30/INFO: Starting LQM for KerrysQueue
[3001.32]
SPOOLMAN:09:30/INFO: Starting TrashMan process
[3001.62]
SPOOLMAN:09:30/* ***************
SPOOLMAN:09:30/* INFO: Watcher KerrysWatcher
terminated [3001.46]
SPOOLMAN:09:30/* ***************

A destination was
configured that is a shared
printer on another server.
The Destiny Output Server
must be the last spooler
before the printer. You
cannot set up an output
server with a destination that
is a shared printer on
another server.
Tivoli Output Manager 569

Destiny
does not
print a
document.

An error in
Unknown
log.

Unison SpoolMate 1.0 (C) Unison Software. Inc.
Conductor version: 10
Unison SpoolMate 1.0 (C) Unison Software. Inc.
Spoolman version: 7
SPOOLMAN:09:30/INFO: Got watcher KerrysWatcher
[3001.45]
SPOOLMAN:09:30/INFO: Got queue KerrysQueue
[3001.57]
SPOOLMAN:09:30/INFO: Starting watcher
KerrysWatcher [3001.25]
SPOOLMAN:09:30/INFO: Starting mapper process
[3001.59]

 GetCommandPersistFlag() 0
 GetCommandHelpFlag() 0
%ER -jobid 0 -errno 23001 -errmsg The system
cannot find the Locale specified.
%EX
SPOOLMAN:09:30/INFO: Starting NQM process
[3001.60]
SPOOLMAN:09:30/INFO: Starting LQM for KerrysQueue
[3001.32]
SPOOLMAN:09:30/INFO: Starting TrashMan process
[3001.62]
SPOOLMAN:09:30/* ******************
SPOOLMAN:09:30/* INFO: Watcher KerrysWatcher
terminated [3001.46]
SPOOLMAN:09:30/* ******************
Unison SpoolMate 1.0 (C) Unison Software. Inc.
LQM version: 9
LQM:09:30/INFO: My queue name is KerrysQueue
[3002.13]
Unison SpoolMate 1.0 (C) Unison Software. Inc.
Trashman version: 7
TRASHMAN:09:30/D:\spoolmate\develop\trashman\tras
hman.c:1057: INFO: Trashman
TRASHMAN:09:30/Process Started.. [3009.54]
Unison SpoolMate 1.0 (C) Unison Software. Inc.
Mapper version: 13
MAPPER:09:30/D:\spoolmate\develop\mapper\mapper.c
:4309: INFO: Mapper Process
MAPPER:09:30/Started.. [3006.54]
Unison SpoolMate 1.0 (C) Unison Software. Inc.
NQM version: 6
NQM:09:30/INFO: Updating old assigned records to
not assigned [3003.10]
LQMKERRYSQUEUE:09:30/INFO: This is not a
forwarding queue [3002.27]
LQMKERRYSQUEUE:09:30/INFO: Got destination
Kerrys5si [3002.30]
LQMKERRYSQUEUE:09:30/INFO: STOP_PROCESS received
from SpoolMan [3030.4]
LQMKERRYSQUEUE:09:30/* ****************
LQMKERRYSQUEUE:09:30/* INFO: Terminating normally
[3002.15]
LQMKERRYSQUEUE:09:30/* ****************
MAPPER:09:30/D:\spoolmate\develop\mapper\mapper.c
:2324: INFO: JOE created
MAPPER:09:30/for SEL ID 11 [3006.50]
MAPPER:09:30/* *******************
MAPPER:09:30/*

A Watcher was configured
incorrectly. In this case,
KerrysWatcher was
configured with the
dm-splnt.exe as its
executable file. Upon
starting Spoolman, the
Watcher is found and a start
is attempted. Since the
dm-splnt.exe is an invalid
field for the Watcher; errno
23001 is logged. As a
secondary symptom, the
following error is logged:
MAPPER:09:30/*

[Microsoft][ODBC SQL Server

Driver][SQL Server]Attempt

toMAPPER:09:30/* insert the

value NULL into column

’owner_name’, table

MAPPER:09:30/*

’NEWS.dbo.tbl_messages’;

column does not allow nulls.

INSERT MAPPER:09:30/* fails.

for in table
This error is described as a
separate problem.

Table 36. Destiny Spoolman Issues

Problem Symptom Error Messages Solution
570 Tivoli Enterprise Internals and Problem Determination

D:\spoolmate\develop\mapper\mapper.c:1648: ERROR:
MAPPER:09:30/* [Microsoft][ODBC SQL Server
Driver][SQL Server]Attempt to
MAPPER:09:30/* insert the value NULL into column
’owner_name’, table
MAPPER:09:30/* ’NEWS.dbo.tbl_messages’; column
does not allow nulls. INSERT
MAPPER:09:30/* fails. for in table
MAPPER:09:30/* *******************
SPOOLMAN:09:30/* *******************
SPOOLMAN:09:30/* INFO: Mapper terminated [3001.48]
SPOOLMAN:09:30/* *******************
SPOOLMAN:09:30/INFO: Sending STOP_PROCESS to LQM
for KerrysQueue [3001.37]
SPOOLMAN:09:30/INFO: Sending STOP_PROCESS to Nqm
[3001.64]
SPOOLMAN:09:30/INFO: Sending STOP_PROCESS to
TrashMan [3001.65]
SPOOLMAN:09:30/INFO: Waiting for termination of
Nqm [3001.70]

NQM:09:30/INFO: STOP_PROCESS received from
SpoolMan [3030.4]
NQM:09:30/INFO: Stopping all NQMChildren [3003.9]
NQM:09:30/* *******************
NQM:09:30/* C:\spoolmate\develop
NQM:09:30/* qm
NQM:09:30/* qm.c:288: ERROR: Terminating
NQM:09:30/* *******************
TRASHMAN:09:30/* *******************
TRASHMAN:09:30/*
D:\spoolmate\develop\trashman\trashman.c:937:
ERROR: Stop
TRASHMAN:09:30/* Message issued by parent process
[3009.10]
TRASHMAN:09:30/* *******************
TRASHMAN:09:30/* *******************
TRASHMAN:09:30/*
D:\spoolmate\develop\trashman\trashman.c:972:
ERROR:
TRASHMAN:09:30/* Exiting Trashman Process ...
[3009.1]
TRASHMAN:09:30/* *******************
SPOOLMAN:09:30/* *******************
SPOOLMAN:09:30/*
C:\spoolmate\develop\Spoolman\spoolman.c:217:
ERROR:
SPOOLMAN:09:30/* Terminating
SPOOLMAN:09:30/* *******************

An error in
Unknown
log.

An error in
Unknown
log.

SPOOLMAN:16:07/+ +++++++++++++++++++
SPOOLMAN:16:07/+
C:\spoolmate\develop\Spoolman\spoolman.c:1833:
ERROR:
SPOOLMAN:16:07/+ CreateProcess() failed for
C:\Destiny\LJ4m6w -n LJ4west
SPOOLMAN:16:07/+ [3001.6]
SPOOLMAN:16:07/+ +++++++++++++++++++

The error “CreateProcess
Failed” indicates an invalid
or incorrect Watcher
definition.

Table 36. Destiny Spoolman Issues

Problem Symptom Error Messages Solution
Tivoli Output Manager 571

An error in
Unknown
log.

An error in
Unknown
log.

SPOOLMAN:08:02/* ****************
SPOOLMAN:08:02/*
C:\spoolmate\develop\Spoolman\spoolman.c:133:
ERROR:
SPOOLMAN:08:02/* OpenDatabase failed for , user -
[Microsoft][ODBC Driver
SPOOLMAN:08:02/* Manager] Data source name not
found and no default driver
SPOOLMAN:08:02/* specified [3001.14]
SPOOLMAN:08:02/* ****************
SPOOLMAN:08:02/* ****************
SPOOLMAN:08:02/*
C:\spoolmate\develop\Spoolman\spoolman.c:134:
ERROR:
SPOOLMAN:08:02/* Terminating
SPOOLMAN:08:02/* ****************

This error indicates there is
a problem with the
C:\UNISONHOME\
Spoolmate.INI file. This
usually occurs after
attempting to start a node
from Conductor.

Destiny
does not
print a
document.

This only
happens
at certain
times of
the day.

SPOOLMAN:17:30/WARNING: Sending STOP_PROCESS to
LQM for LJ5si as queue
SPOOLMAN:17:30/period is over [3001.44]
SPOOLMAN:17:30/INFO: Waiting for termination of
LQM for LJ5si [3001.68]
LQMLJ5SI:17:30/INFO: STOP_PROCESS received from
SpoolMan [3030.4]
LQMLJ5SI:17:30/* ****************
LQMLJ5SI:17:30/* INFO: Terminating normally
[3002.15]
LQMLJ5SI:17:30/* ****************

The solution here is to:
1) Reconfigure the Queue to
operate at a different set of
hours.
—OR—
2) Wait for the Queue time to
be valid.
—OR—
3) Cut and Paste the
document that is not printing
into another Queue that
does not have a configured
time restriction.

Table 36. Destiny Spoolman Issues

Problem Symptom Error Messages Solution
572 Tivoli Enterprise Internals and Problem Determination

Destiny
does not
print a
document.

A
document
does not
print. You
get a
Windows
dialog box
indicating
there is a
problem
with the
printer.

LQMLJ5SI:10:55/INFO: Received message from device
manager: %AK -jobid 14
LQMLJ5SI:10:55/[3002.20]
LQMLJ5SI:10:55/INFO: DM_ACKNOWLEDGE received
[3002.37]
LQMLJ5SI:10:55/INFO: Received message from device
manager: %OF -jobid 14
LQMLJ5SI:10:55/-pageno 0 [3002.20]
LQMLJ5SI:10:55/INFO: DM_OUTPUT_FILE received
[3002.36]
LQMLJ5SI:11:08/INFO: Received message from device
manager: %ER -jobid 14
LQMLJ5SI:11:08/-errno 13014 -errmsg The printer
reported an error for this
LQMLJ5SI:11:08/job [3002.20]
LQMLJ5SI:11:09/INFO: DM_ERROR received: %ER -jobid
14 -errno 13014 -errmsg
LQMLJ5SI:11:09/The printer reported an error for
this job [3002.31]
LQMLJ5SI:11:09/INFO: Sending command to device
manager: %AK -jobid 14
LQMLJ5SI:11:09/[3002.19]
LQMLJ5SI:11:09/INFO: Received message from device
manager: %EX [3002.20]
LQMLJ5SI:11:09/INFO: Device Manager for LJ5si
terminated successfully
LQMLJ5SI:11:09/[3001.52]
LQMLJ5SI:11:09/INFO: Setting status of destination
ID 8 to r [3002.21]

The solution here is to:
1) Correct the hardware
problem.
—OR—
2) Cancel printing of the
document by pressing the
Cancel button in the NT
dialog box.

Table 37. Destiny Trashman Issues

Problem Symptom Error Messages Solution

An error in
Unknown
log.

An error in
Unknown
log.

TRASHMAN:10:28/* ***************
TRASHMAN:10:28/*
D:\spoolmate\develop\trashman\trashman.c:112: ERROR:
Cannot
TRASHMAN:10:28/* compress the file specified [3009.33]
TRASHMAN:10:28/* ***************
TRASHMAN:10:28/NO MSG:
D:\spoolmate\develop\trashman\trashman.c,375,78,,
TRASHMAN:10:28/catgets failed 0 [3009.62]

This error results
from not being able
to find the directory
to archive to.

Table 36. Destiny Spoolman Issues

Problem Symptom Error Messages Solution
Tivoli Output Manager 573

574 Tivoli Enterprise Internals and Problem Determination

Chapter 18. Remote Control

Tivoli Remote Control is used to take control of any Intel-based system in the
Tivoli environment from another Intel-based machine in the Tivoli
environment. The Remote Control components are:

 • Tivoli Remote Control Server

 • Tivoli Remote Control Target

 • Tivoli Remote Control Controller

Together, these components add Remote Control capabilities to support most
configurations. Installing a component on a machine in the Tivoli environment
assigns one or more specific roles to that machine. Tivoli Remote Control
operates with the following roles:

Target A machine that can be controlled from a Controller.

Controller A machine that has the capabilities to take control of targets.

Gateway A relay-station used to control the TCP/IP flow and optionally do
protocol conversion between TCP/IP and SPX/IPX protocols.
Note that this is distinct from the gateway that manages TMA
endpoints.

Server The system that controls the Remote Control environment.

The minimum usable configuration involves at least one server, one
controller, and one target.

The mechanism used to ensure that the user at the controller is authorized to
take control over the target is implemented using the Tivoli Framework. The
same applies to the initialization of sessions between the controller and
target. This implies, that some sort of Framework stub - TMA, Tivoli PC
Agent, or Tivoli Framework - has to be present on all nodes in the Remote
Control environment.

From a controller, the user can issue remote commands on a target, much
like the TCP/IP rexec service, or activate a remote control session. To do the
latter, the user at the controller uses the Tivoli Desktop to select the target for
the session, parameters to control the session initialization, and to ask the
Remote Control server to initialize the session.

Refer to the Tivoli Remote Control User’s Guide for a further description.
© Copyright IBM Corp. 1998, 1999 575

18.1 Tivoli Remote Control Installation

To implement Tivoli Remote Control in the Tivoli environment, at least one
Remote Control server, one Remote Control controller, and one Remote
Control target has to be installed.

The Remote Control server must be installed on the TMR server, and if TMA
endpoints are to be supported, on any gateway in the Tivoli Framework.

All components except the Remote Control Server can be installed on any
type of Tivoli endpoint as long as they are based on the Intel platform. Table
38 shows the supported platforms for each component:

Table 38. Remote Control - 3.6 Supported Platforms

In Table 38, Windows refers to all supported versions of Microsoft Windows
3.1x, Windows 95 and 98, as well as Windows NT. Consult the Tivoli Remote
Control User’s Guide and Release Notes for further details on hardware and
software requirements for each platform.

The installation process of Remote Control components varies slightly
between the different types of endpoints:

Managed Nodes Installation on TMR servers, managed nodes, and PC
managed nodes is similar to that of most other Tivoli
applications. One or more Remote Control
components can be installed using one of the three
standard ways of installation - SIS, Tivoli GUI, or the
winstall command.

Server Controller Target

Managed Node UNIX ✓ N/A N/A

Windows ✓ ✓ ✓

OS/2 N/A ✓ ✓

PC Managed Node UNIX N/A N/A N/A

Windows N/A ✓ ✓

OS/2 N/A ✓ ✓

TMA Endpoint UNIX N/A N/A N/A

Windows N/A ✓ ✓

OS/2 N/A ✓ ✓
576 Tivoli Enterprise Internals and Problem Determination

TMA Endpoints The Remote Control components have to be installed
locally. From the product CD, the SETUP.EXE program is
used on windows endpoints. For OS/2, the installation
is initiated using INSTALL.EXE on the CD.

Before installing Remote Control components, the Tivoli Remote Control
User’s Guide, as well as the Remote Control Release Notes, should be
consulted.

18.1.1 Patches
At the time of writing, a patch for Tivoli Remote Control was available to
correct various errors for Remote Control on Windows 95 and Windows 98.
This can be obtained from the Tivoli Support ftp-site at:

ftp://ftp.tivoli.com/support/patches/patches_3.6/3.6-RCL-0001/

Contact your Tivoli representative if you have problems obtaining this patch
or if you need more information about it.

18.2 Preparing to Use Remote Control

Upon installation, a few actions have to be completed to set up Remote
Control to be used in the Tivoli environment. These are:

1. Authorize administrators.
2. Create one or more RemoteControl objects.
3. Set default policies.

18.2.1 Authorizing Administrators
Installing the Remote Control server adds four new Tivoli administrator roles,
some of which have to be assigned to the Tivoli administrators that will be
using Remote Control. The four roles are:

remote_control Enables the administrator to monitor the actions, to
control the mouse actions, and to enter keyboard data on
a remote workstation.

remote_monitor Enables the administrator to monitor the actions only on a
remote workstation.

remote_probe Enables the administrator to run commands on a target
from the command line interface.

remote_reboot Enables the administrator to restart a remote workstation.
Remote Control 577

When planning the authorization schema for Remote Control in the TMR,
remember that specific roles can be assigned to administrators on a
TMR-wide basis or for specific policy regions. With Remote Control, more
administrators are typically added, requiring access only to a few Remote
Control objects, each covering a subset of workstations in the organization.

18.2.2 Creating the RemoteControl Object
In each policy region, in which a RemoteControl object will be created, the
object type RemoteControl has to be added to the list of managed resources
for that region.

Having done so, the RemoteControl object can be created. This will be used
by the administrators, that have been assigned a remote control role, to
control session settings and initialize a session with an endpoint.

Creating the RemoteControl object can only be done through GUI using the
dialog shown in Figure 226:

Figure 226. Remote Control Creation Dialog

The managed node specified when creating the RemoteControl object will be
the node that controls all session initializations through the specific

Administrators will only be allowed to take control over endpoints that are
defined in the policy region(s) for which the administrator has been
assigned one or more Remote Control roles unless the administrator has
been granted TMR wide Remote Control roles.

Note
578 Tivoli Enterprise Internals and Problem Determination

RemoteControl object. In order to fulfill this task, the Remote Control Server
has to be installed on the specified managed node.

18.2.3 Setting Default Policies
During installation of the Remote Control Server component on the TMR
server, a Remote Control default policy object - RemoteControl_PDO - is
built. This holds the default policies for all RemoteControl objects within the
TMR. No validation policies are available for the RemoteControl object;
hence, the default policies are the only way to control the way the session
control parameters are manipulated by the authorized Remote Control
administrators, and this will be on a TMR-wide basis.

The fact that the default policy applies to all RemoteControl objects within a
policy region, or in the whole TMR, if no special policy objects have been
created, means that implementation of each individual policy has to be
considered and planned carefully. Remember that the endpoints available to
each administrator, if the administrators are not granted TMR-wide
authorizations, are those defined in the same policy regions as the
RemoteControl object used to initialize the session.

To provide different customization to various Remote Control objects, they
should be placed in different policy regions. For each region, a new Remote
Control default policy object can be created and attached to the policy region.

To create a new default policy object, the following command can be used:

wcrtpol -d RemoteControl <new_default_RemoteControl_policy_object_name>
RemoteControl_PDO

The new Remote Control default policy object inherits all the policies of the
Tivoli-provided Remote Control policy object (RemoteControl_PDC).

The new default policy object will have to be assigned to the RemoteControl
objects of the policy region(s) where it will be used. In the policy region
window, select Properties - Managed Resource Policies... and specify the
new default policy for the region, as shown in Figure 227 on page 580:
Remote Control 579

Figure 227. Setting New Remote Control Default Policy for a Policy Region

The new default policy object can now be tailored to the specific needs for
each policy in the object.

The following default policies can be applied to Remote Control default policy
objects:

rc_def_alt_t Determines whether the remote target user is able to press
the <Alt+t> keys to change the session state.

Remember that the base default policy object, RemoteControl_PDO, acts as
the model from which the new default policy objects are created. This
means that only policies that should be different from the standard policies
should be implemented in the new default policy object(s).

In order to make changes to default policies for the entire TMR, the
selected policy can be changed in the base default policy object,
RemoteControl_PDO. If you change the base default policy object, you need to
be sure that future product upgrades do not overwrite it.

TMR Default Policy Defaults
580 Tivoli Enterprise Internals and Problem Determination

rc_def_command Determines whether the default action that appears on the
Remote Control dialog is to control, monitor, or reboot the
target.

rc_def_define Determines whether the user can filter the client list by
using the rc_def_targets policy method.

rc_def_targets Allows the user to define a list of clients.

rc_def_filter_mode Determines whether to display managed nodes, NetWare
clients, PC managed nodes, TMAs, or all of the above.

rc_def_polfilter_mode
Determines whether to display the client list for a specific
region.

rc_def_grace_time
Determines how many seconds to wait for the user to
respond before beginning a remote control session.

rc_def_timeout_op
Determines whether to begin a remote session if the user
does not respond within the grace period.

rc_def_gw Determines whether to use the gateway between the
controller and the target.

rc_def_ports Determines the port numbers that the target and the
controller use to communicate.

rc_def_backgrnd Determines whether to disable the desktop background of
the target workstation when the session starts.

rc_def_color Determines whether to limit to 16 colors the target screen
displayed on the controller.

rc_def_comp Determines whether to compress the data transmitted to
the controller.

rc_def_rate Determines the amount of time between the refreshes of
the screen displayed on the controller.

Refer to Tivoli Remote Control User’s Guide for details on each individual
policy and which values are valid.

The policies are used to control the behavior of the panels used by users at
Remote Control controller workstations when initiating a remote control
session. The appearance of the panel depends on the value returned by the
rc_def_define policy. This can take two values: DefinableTableList or
FilteredList. Figure 228 on page 582 shows the panel, and related policies,
Remote Control 581

for a rc_def_define value of FilteredList, and Figure 229 on page 583 shows
the same information for a value of DefinableTargetList.

Figure 228. Remote Control FilteredList Endpoint Selection Policies

rc_def_polfilter_mode rc_def_filter_mode
582 Tivoli Enterprise Internals and Problem Determination

Figure 229. Remote Control DefinableTargetList Endpoint Selection Policies

Having selected the endpoint that is to be the target of the Remote Control
session being setup, the session control panel is displayed. In this, the
parameters controlling the session are specified. By means of default policy
objects, default values can be provided for any field, and this can optionally
be locked to prevent the user from modifying it.

rc_def_filter_mode

rc_def_targets
Remote Control 583

Figure 230. Default Policies for Controlling the Remote Control Session

To apply any changes to any default Remote Control policy, in any default
policy object, use the wgetpolm and wputpolm commands:

1. Export the current policy to a file:

wgetpolm RemoteControl <default_policy_object> <policy> > file

2. Modify the file using an editor.

3. Add the modified file to the custom default policy object:

wputpolm RemoteControl <default_policy_object> <policy> < <file>

Refer to Tivoli Framework Command Reference for details on using the
wgetpolm and wputpolm commands.

18.2.4 Defining Gateways for Remote Control
For each default policy object, the value of the rc_def_gw and rc_def_ports
controls the use of gateways. Only one gateway can be assigned to each
default policy region object. Note that the Remote Control gateway
component is not in any way related to the Tivoli Framework gateway. Both
the Tivoli gateway and the Remote Control gateway can be present at the
same managed node, but there is no relationship between the two.

If the rc_def_gw is specified, the label of the managed node should be used as
a Remote Control gateway. Also, specified here are the port used for
incoming requests from controllers, the maximum number of simultaneous
sessions allowed, the tcp/ip port number to use for communication with
targets, and the IPX-port to be used to communicate with targets using the
IPX protocol.

rc_def_rate

rc_def_command rc_def_grace_time

rc_def_timeout_op

rc_def_backgrnd

rc_def_color

rc_def_comp

rc_def_alt_t
584 Tivoli Enterprise Internals and Problem Determination

Figure 231 shows an example of a rc_deg_gw:

Figure 231. Using rc_def_gw Policy to Define a Remote Control Gateway

When the gateway is configured, the target usage of protocols has to be set
up. This is obtained through the rc_def_ports policy. In this policy, the
following parameters are controlled:

TIP Port number for target-to-gateway tcp/ip communication

CIP Port number for controller-gateway tcp/ip communication

TXP Port number for target-to-gateway spx/ipx communication

CXP Port number for controller-gateway spx/ipx communication

An example of this is shown in Figure 232 on page 586.

Both the IP-port and the IPX-port have to be specified - even if one of the
protocols is not used to communicate to targets. A value of 0 will let the
system allocate the port number and should be applied when either of the
protocols is not used.

Note

#!/bin/sh
#
Default policy method for Remote Control Gateway
#
This method checks if you want to activate the Gateway or NOT.
#
Possible modes are:
YES ManagedNode-label GatewayPort MaxSesions IP:IP-Port XP:IPX-PORT
(i.e. YES MyMNode 3400 24 IP:2500 XP:0)
NO
#

--- default -- echo "NO"

#
#
use gateway ’itso2’ port 9488 for TCP/IP
#
echo "YES itso2 9488 32 IP:8487 XP:0
#
#
exit 0
Remote Control 585

Figure 232. Using rc_def_ports Policy to Define Remote Control Gateway Ports

Like the rc_def_gw policy, the rc_def_ports requires all four parameters to be
specified. Use a value of 0 for the protocols not used. This applies system
defaults.

18.3 Taking Control of a Target

To take control over a target, the controller requests the session using the
Tivoli infrastructure. On the managed node hosting the RemoteControl object
(the Server in Figure 233), the start_target method is used to activate the
remote control program on the target. If the target starts successfully, and the
user did not reject the session, the managed node then activates the
start_controller method on the method caller to let the controller executable
start. From then on, the session between the controller and the target runs
entirely on the TCP/IP protocol with no involvement from the Tivoli
environment. This is shown in Figure 233 on page 587:

#!/bin/sh
#
Default policy method for Remote Control
#
This method allows to set the Target-Ip-Port/Target-ipX-Port
used from the tgt application to listen for the connection,
default value is 0 that means (TIP:2501, TXP:0x8771)
and the Controller-Ip-Port/Controller-ipX-Port used
from the Cntrl application to initiate the connection,
default value is 0 # that means a port assigned by the system
will be used.
#
Possible modes are:
TIP:target-ip-port CIP:Controller-Ip-Port
TXP:target-ipx-port CXP:Controller-ipX-Port

#

-- default -- echo "TIP:0 CIP:0 TXP:0 CXP:0"
#
#
echo "TIP:9433 CIP:9432 TXP:0 TXP:0 CXP:0"

exit 0
586 Tivoli Enterprise Internals and Problem Determination

Figure 233. Remote Control Session Initialization without RC Gateway

When involving a gateway, having modified the rc_def_gw policy, the picture
is slightly changed, as shown in Figure 234:

Figure 234. Remote Control Session Initialization with RC Gateway

Whenever the controller uses the RemoteControl object to initiate the
session, the managed node owning the RemoteControl object will make sure
that the Remote Control gateway is active. This managed node looks up
information for the gateway and issues the start_gateway method. When this
runs successfully, the process of selecting a target can continue as before.

Having selected a target for the Remote Control session, the controller
method sends a request to the gateway (using the port specified on
rc_def_gw and rc_def_ports policies), and the gateway issues the
start_target to prepare the target end of the session. The start_controller

Controller Target

start_target

start_controller

Server

Controller target

Server

start_gateway

start_targetstart_controller

Gateway
Remote Control 587

method is now used to activate the Controller end, and the session is
established.

18.3.1 Remote Control Trace
To find out what is really happening behind the scenes of Remote Control, a
number of facilities are available.

As for any other Tivoli applications, the oserv command gives a first indication
of any problems. To further investigate problems, Tivoli Remote Control
allows the generation of a unique trace file for each session. This option is
available only for Windows NT, Windows 95/98, and OS/2 controllers and
targets.

On Windows NT and Windows 95/98 platforms, tracing is controlled using a
registry key. The registry paths are:

Target:
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Remote Control Target\trace length

Controller:
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Remote Control Controller\trace

length

Setting the value to 0 disables tracing. Any other value will enable tracing,
dumping the first number of bytes - specified in trace length - from each
communication buffer to the trace file. The trace file is named RCxxxxx.TRC,
where xxxxx indicates the process ID of the current session.

Refer to the Tivoli Remote User’s Guide for details on setting up the trace on
OS/2 Controllers and Targets.

The Tivoli Remote Control User’s Guide 3.6 states that on Windows NT
and Windows 95 the trace files (RCxxxxx.TRC) will be stored in the
location specified by the value of the register-key:
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Remote Control Controller\RCpath

or
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Remote Control Target\RCpath

For Remote Control 3.6 on Windows NT, this is false. No matter what value
is specified for the RCpath, the trace files are stored in the directory
%windir%\system32.

Documentation Correction
588 Tivoli Enterprise Internals and Problem Determination

Besides the trace files, Tivoli Remote Control offers the option of logging the
start and stop of sessions. This option is available only for Windows NT and
Windows 95/98, and like the tracing options, it is controlled by settings in the
local registry of the individual machine. The paths are:

Target:
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Remote Control Target\logging

Controller:
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Remote Control Controller\logging

18.4 Troubleshooting Remote Control

Troubleshooting the Remote Control environment involves the usual
Framework troubleshooting procedures - looking in the output from odstat
and/or wtrace. In addition, on Windows NT and Windows 95/98, information
can be gathered from the eventlog and the trace files. Tracing is also an
option on OS/2.

18.4.1 Framework Troubleshooting
From the TMR server, or the Remote Control gateway, the odstat output will
contain information with respect to starting and stopping the various
components. Look for the following methods:

 • start_gateway

 • start_target

 • start_controller

 • close_gateway

There are no references to the stop of controller-target sessions.

18.4.2 Windows Eventlog
If logging is enabled, the eventlog on controllers will show an event for all
session starts and stops. The information is stored locally and includes the
type of event (start/stop) and the tcp/ip address of the target, as shown in
Figure 235 on page 590.
Remote Control 589

Figure 235. Remote Control Controller Event

18.4.3 Trace Files
As stated in “Remote Control Trace” on page 588, the trace files for Remote
Control 3.6 on Windows NT are stored in %windir%\system32 and not, as stated
in the documentation, a location controlled by the RCPath registry key.

The information in the trace files is intended for internal usage, and is not
documented. In order to interpret the information, a deep knowledge of the
protocol used by Remote Control to send/receive data is needed.

For practical purposes, the trace file will be of use to determine when and
how much data is passing between the controller and the target.

An example of a trace file from a Controller is shown in Figure 236 on page
591:
590 Tivoli Enterprise Internals and Problem Determination

Figure 236. Extract from a Remote Control Trace File

Open succeeded. --> rc = 0000000000

Send starting. --> rc = 0000000000

Send succeeded. --> rc = 0000000000
buffer lenght = 11
 dumping = 11
0B 00 00 41 67 6F 50 61 6F 6C 6F

Send starting. --> rc = 0000000000

Send succeeded. --> rc = 0000000000
buffer lenght = 26
 dumping = 26
1A 00 00 12 00 01 02 00 02 01 6F 02 00 45 51 4E
4B 42 45 4E 55 2E 44 41 54 00

First Receive. --> rc = 0000000002
buffer lenght = 2
 dumping = 2
0C 03

Receive succeeded. --> rc = 0000000000
buffer lenght = 780
 dumping = 200
0C 03 00 12 00 24 00 00 04 00 03 03 00 01 00 00
00 00 00 80 02 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 FF FF FF 00 00
80 00 00 00 80 80 00 80 00 00 00 80 00 80 00 80
80 00 00 80 80 80 00 C0 C0 C0 00 00 00 FF 00 00
FF 00 00 00 FF FF 00 FF 00 00 00 FF 00 FF 00 FF
FF 00 00 FF FF FF 00 0A AA AA AA 3B 00 43 00 C8
05 0F 00 00 10 49 00 B8 00 14 00 B8 00 14 00 43
00 3A 00 5C 00 57 00 49 00 4E 00 4E 00 54 00 5C
00 73 00 79 00 73 00 74 00 65 00 6D 00 33 00 32
00 3B 00 43 00 3A 00 5C 00 57 00 49 00 4E 00 5C
00 3F 00 3F 00 5C 00 43 00 3A 00 5C 00 57 00 49
00 4E 00 4E 00 54 00 5C

First Receive. --> rc = 0000000002
buffer lenght = 2
 dumping = 2
10 00

Receive succeeded. --> rc = 0000000000
buffer lenght = 16
 dumping = 16
10 00 00 12 00 02 14 00 05 73 00 02 00 03 03 00
Remote Control 591

592 Tivoli Enterprise Internals and Problem Determination

Part 3. Additional Information
© Copyright IBM Corp. 1998, 1999 593

594 Tivoli Enterprise Internals and Problem Determination

Appendix A. Tivoli’s Use of Windows NT

This appendix comes from a White Paper produced in Tivoli’s support
organization. It contains a technical discussion of Tivoli Enterprise running on
Microsoft’s Workstation and Server release of NT Version 3.5.1 and 4.0.

This re-emphasizes many of the tips, techniques, and other information
presented throughout the rest of this publication and adds more detail
specific to the Windows NT platform.

A.1 Introduction

The information in this appendix is organized as follows:

 • Tivoli Authentication Package (TAP)

 • Tivoli Enterprise and NT User/System Accounts

 • Security concerns

 • Installation and uninstall of Tivoli Enterprise

 • Environmental Issues (DLL conflict, WINS, Name Resolution)

 • Tivoli Commands Specific to NT

 • Microsoft and Third Party utilities

 • Issues

 • PcAgent

 • A list of methods that utilize the $root_user idmap

A.1.1 Intended Audience

This is a technical document intended for those responsible for planning,
implementing, and supporting Tivoli Enterprise in an environment with NT
Workstations and Servers.

A.1.2 Scope

This appendix was written to cover Version 3.1.x, 3.2, and 3.6 of Tivoli
Enterprise. This will address both the Tivoli Management Framework (TMF)
and the Tivoli Management Agent (TMA). Although the PC agent does not
utilize TAP, section A.10, “PC Agent Overview” on page 637 will address its
implementation on NT.

This appendix focuses only on the basic services provided by TMF/TMA. As
these basic services are responsible for the spawning of processes and
© Copyright IBM Corp. 1998, 1999 595

enforcing of security, this will provide a good foundation in how Tivoli
applications interact with Microsoft Windows NT. Refer to the application
chapters in this redbook for more information specific to those applications
working with Windows NT.

A.1.3 Conventions

This document will address both the classic Tivoli Management Framework
as well as the new Tivoli Management Agent. The following abbreviations will
have the following meanings:

TMF Tivoli Management Framework (based on the oserv service)

TMA Tivoli Management Agent (based on the lcfd service)

This document is available in PDF form at http://www.support.tivoli.com.

A.1.4 Other Resources

For a good review of NT’s security model, refer to Mark Russinovich’s articles
in the May and June Windows NT Magazine (http://www.winntmag.com). See
also Microsoft documents Q96005, Q102716, Q122422 from TechNet as well
as Chapter 6 of the NT Resource Kit 4.0 for additional information on security
and Microsoft NT.

A.1.5 Acknowledgments

This document could not have been written without the help of Conrad
Johnson, Tivoli development. Other valuable contributions from Viki Stevens,
Rob Tulloh, Sean Allen, Ian Willoughby, Simon Allen, Mark Adams, Bowman
Hall, Gary Hamilton, Shane Frensley, Brian Graham, Sean Larkin, Angelo
DeRise, Jerry Saulman (Tivoli), and the many people that contributed on the
tme10 listserv, including Jamie Carl, Pete Meechan, Gene Martin, Paul
Claridge and John Chapin.

Prior to the General Availability release of v3.6, the TMA endpoint was
referred to as LCFD. If one issues the command net start, you will see
Tivoli Lightweight Client (which is the service name). However, using other
commands or viewing certain registry keys will show lcfd (which is the
process name). Because this is a technical document, and the purpose is
to provide a clear picture of the implementation, lcfd will be used to
describe the process running on the NT. Otherwise, TMA will be used to
describe the general implementation of Tivoli’s Endpoint technology.

Terminology Note
596 Tivoli Enterprise Internals and Problem Determination

A.2 Tivoli Authentication Package

One of the fundamental difference between the UNIX and NT implementation
of Tivoli Enterprise is the Tivoli Authentication Package (TAP). This section
will explore the purpose and implementation of TAP.

A.2.1 Why TAP Is Needed

A requirement of the Tivoli Object Request Broker (OSERV) and Tivoli
Management Agent (LCFD) is that it be able to run methods in the context of
a given user associated with the method. That is, the resources accessible to
the method are those accessible to the given user. Such methods are known
as setuid methods. The Tivoli Authentication Package (TAP) is installed and
loaded by the Local Security Authentication (LSA) subsystem of NT allowing
setuid methods to work on NT.

A.2.2 Understanding TAP

NT supports impersonation, which is the ability to spawn a process as a user
other than the parent process. Like the implementation of NT’s file services,
Tivoli utilizes these services to implement TMF and TMA. Tivoli
Authentication Package is the cornerstone of this impersonation.

Impersonation could be enabled using two WIN32 API calls available:
LsaLoginUser() and CreateProcessAsUser(). The LsaLoginUser() function
creates a logon token for a given user obtained by accessing the Microsoft
Authentication Package (msv1_0). Two parameters required are the user and
the clear text logon password of the given user.

This would be an issue, as the Tivoli oserv/lcfd does not store passwords with
methods, and any password changes for users would need to be updated to
allow the oserv/lcfd to impersonate. Furthermore, transmitting passwords
securely would also be a concern.

Microsoft also provides impersonation by allowing users to install their own
authentication package that can create logon tokens that can then be passed
to the CreateProcessAsUser() function. This is the method that Tivoli uses. The
oserv/lcfd calls the Tivoli Authentication Package to obtain a logon token.
Because the Tivoli Authentication Package trusts that the oserv/lcfd has
already authenticated the calling method (a basic feature of Tivoli), it will pass
a logon token that is suitable to the CreateProcessAsUser() function. This
eliminates the need for passwords, which can be changed and not impact the
Tivoli processes.
Tivoli’s Use of Windows NT 597

%SYSTEMROOT%\system32\TivoliAP.dll is TAP’s implementation that provides
this authentication. It is registered with NT’s LSA (Local Security
Authentication) under the registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\AuthenticationPackages

When LSASS.EXE (LSA Service) starts, it will load TivoliAP.dll. This is the
reason the reboot is necessary after an installation.

A.2.3 How TAP Works

The oserv/lcfd service runs as NT AUTHORITY\SYSTEM. This is a special
group account that has privileges for the local machine and authenticates to
the local Security Accounts Manager (SAM). It is not possible to change the
user that the oserv/lcfd runs as. Below is an example of how Tivoli interacts
with NT to initiate a setuid method:

1. A request is made from a (Tivoli) client to initiate a method.

2. The method’s user is identified.

3. The oserv/lcfd service passes the user name and domain (if any), and that
it wants to use the Tivoli Authentication Package to the Local Security
Authority (LSA)

4. The LSA forwards this information to TAP.

5. If there was no domain name initially passed to LSA from the oserv/lcfd,
TAP calls first the local SAM database to retrieve the account SID and
global group SIDs. If the account is not found, it proceeds to the domain
SAM.

6. If the user passed was qualified as a domain account (DOMAIN\user),
TAP will proceed directly to the domain controller.

7. The account SID and global group SIDs are returned to TAP. At this point,
there is still no token generated.

8. Before passing the SID back to LSA, if the account is not tmersrvd or the
local Administrator, TAP makes sure the account is a normal account that
is not disabled, expired, or locked out. The account’s password must not
be expired. If these checks fail, TAP tells LSA not to create a logon token
for the account.

9. TAP passes the collection of SIDs to LSA. LSA checks the local LSA
policy database for any user rights associated with the user.

10.LSA places all this collected information into a structure that is called the
token or access token. LSA passes this token back to the oserv/lcfd
process.
598 Tivoli Enterprise Internals and Problem Determination

11.The oserv/lcfd process calls CreateProcessAsUser() and passes the token
along with the executable that it will start.

This method of impersonation allows processes access to the local resource
of that NT running the oserv/lcfd service. Although the token structure may
contain domain SIDs, it is suitable only to access local resources as the user
rights incorporated in the token structure were from the local LSA policy
database. Tokens generated from TAP on a Primary/Backup Domain
Controller will also be limited to local resources on that domain controller.

A.2.4 Understanding the Tivoli Remote Access Account

The purpose of the Tivoli Remote Access Account (TRAA) is to control
access to remote NT resources, like Netshares, through the oserv/lcfd.
Although the installation and the documentation refer to the TRAA account
being used to remotely share binaries, the TRAA account has much
farther-reaching consequences.

When a program runs in NT, a logon token is associated with that program.
Logon tokens are created when a user logs in, or are created when the
LogonUser() function is called, or are created by authentication packages,
such as TAP. Logon tokens contain a user account name used to access local
resources and zero or more credentials used to access remote resources.

When an NT program accesses a local resource, it uses the user account
referenced in the program’s logon token to determine if it can access the local
resource. When an NT program accesses a remote resource, such as a
Netshare, the LAN Manager authenticates that the logon token associated
with the requesting program has the correct set of credentials that allows it to
access that remote resource. A credential contains an account name and that
account’s encrypted password. A user logging in, or a call to the
LsaLoginUser() function, creates a logon token that initially has one credential.
This one credential contains the user and password for the account used to
created the logon token. Additional credentials may be added to a logon
token. When you specify an account and password to connect to a remote
disk drive, a credential containing that account name and password are
added to your logon token.

Logon tokens created by TAP do not have any credentials that contain the
user and password for the account used to create the logon token because
the password is not used to create the token. Instead, if a TRAA has been
specified using the –r option of wsettap.exe (TMF) or wlcftap.exe (TMA), TAP
creates a logon token and adds to that token the credentials of the TRAA.
Therefore, a program with a logon token created by TAP accesses local
Tivoli’s Use of Windows NT 599

resources accessible to the user specified to TAP when the token was
created (the setuid user) and will access remote resources using the TRAA (if
any).

The –r option of the wsettap.exe /wlcftap.exe command is used to set and
change the TRAA. The account information is stored in the registry key:

HKEY_LOCAL_MACHINE\Security\Policy\SecretsTivoli Remote Access Account Credential\

By default, HKEY_LOCAL_MACHINE\Security is unreadable. The TRAA does not
have any impact on the local ManagedNode/Endpoint and does not need to
be set in order for the standard Tivoli Enterprise functions.

If design requirements of the Tivoli Management Region require that some
application will need access to a remote resource, the TRAA account will only
need the necessary access to these remote resources. An example of using
the TRAA account would be a FilePackage’s after-script that copies the install
log to a remote share. The TRAA account could be set to DOMAIN\tmeuser,
and the share would allow write access to this share by the DOMAIN\tmeuser
account. Another example would be Tasks created to start a particular service
remotely using the sc.exe or netsvc command (part of the NT Resource Kit) if
a TEC event arrived saying that the service was down. One design of the task
could be to run the task locally on the machine as a local or domain NT
administrator. Another solution would be to set the TRAA account on one of
the TMF/TMA nodes to a domain level administrator and execute the task on
this node.

While TAP has no dependencies on password changes, the TMF/TMA nodes
will be impacted if the TRAA account’s password is changed. Because each
NT ManagedNode/Endpoint’s TRAA account is stored locally and keeps the
password, a change in the account would require that the
wsettap.exe/wlcftap.exe be run on each node to update the password for
TRAA. If the account or password has changed in the domain, yet the TRAA
account has not been updated, oserv/lcfd will not restart.

If the TRAA account is to be used in the environment, it is best that the
account and password remain static.

A.2.5 Order of Account Selection

The Tivoli Authentication Package will first attempt to resolve an unqualified
user account using the local SAM database, and then if unsuccessful, resolve
the name in the domain. An example of an unqualified account would be
where a user is specified as fred, instead of BEDROCK\fred. In this case, when
the task’s batch, script, or executable was invoked on the NT endpoint, TAP
600 Tivoli Enterprise Internals and Problem Determination

first tried to spawn the process as MACHINE\fred. If this account did not
exist, it then would attempt to resolve it in the domain. Especially, in complex
domains with various trusts, it is best to fully qualify the user ID.

A.2.6 wsettap.exe and wlcftap.exe

The commands wsettap/wlcftap manage the TMF/TMA node in 2 ways:

1. Enables and disables the Tivoli Authentication Package from the LSA list
of Authentication packages.

2. Enables and modifies the TRAA account.

It is often said that the TAP account has been modified using wsettap/wlcftap.
This is not technically correct. When the wsettap –r /wlcftap –r is issued, the
TRAA account is being modified. When wsettap –a|d /wlcftap –a|d is issued,
TAP is being enabled (or disabled).

A.3 Tivoli Accounts

This section will discuss the accounts created by the Tivoli installation
process, the differences that Tivoli Enterprise 3.6 introduces compared to
version 3.2 ‘SuperPatch’ and earlier, and how certain enterprise policies
affect TMF/TMA on NT.

A.3.1 Accounts Created

Tivoli introduces two accounts at installation time. The accounts are the user
tmersrvd and the group Tivoli_Admin_Privileges. These accounts are created
locally on the NT target’s Security Account Manager (SAM) database and are
configured the same for TMF/TMA. User Right changes can be viewed in the
UserManager under the Policies menu option. User rights can also be
granularly changed using the ntrights.exe application in the resource kit.

A.3.1.1 tmersrvd Account
The tmersrvd account is an unprivileged account. A password is randomly
generated at installation, and the account can be disabled without affecting
the framework. Many of the Tivoli methods will run in the context of tmersrvd.
The password can also be changed with no adverse effect on Tivoli.

The User Rights required for this account are:

 • Bypass Traverse Checking (SeChangeNotifyPrivilege)

The tmersrvd account does not get assigned to this User Right directly. A
new install of NT will assign the special group Everyone to Bypass
Tivoli’s Use of Windows NT 601

Traverse Checking. (In non-US versions of NT, this group will be referred
to as that local language equivalent.) This allows a user to traverse a
directory tree even if the user has no other rights to access that directory.
If security policies in the corporate enterprise disallow Bypass Traverse
Checking, the tmersrvd account needs to be added directly to this user
right.

 • Log on Locally (SeInteractiveLogonRight)

This is assigned to the tmersrvd account during installation of the
framework.

A.3.1.2 Tivoli_Admin_Privileges
This group is by default assigned to the built-in administrator. Unless the TMR
server is an NT, in which case, the account used to install the TMR server will
be assigned to this group.

It has three required advanced User Rights:

 • Act as Part of the Operating System (SE_TCB_NAME, SeTcbPrivilege).

The user can act as a trusted part of the operating system.

 • Increase Quotas (SE_INCREASE_QUOTA_NAME,
SeIncreaseQuotaPrivilege).

The user can increase object quotas. Each object has a quota assigned to
it.

 • Replace a process level token (SE_ASSIGNPRIMARYTOKEN_NAME,
SeAssignPrimaryTokenPrivilege).

 • The user can modify a process’ access token.

The Act as Part of the Operating System privilege is required when running
the wsettap/wlcftap command with no options specified because it
communicates with the LSA to retrieve the current configuration of TAP. Other
operations of the wsettap/wlcftap command communicate with the registry
and not with the LSA; so, they do not require a special privilege. (Any
invocation of the wsettap/wlcftap command must be from a member of the
Administrators group).

The privileges Increase Quota and Replace a Process Level Token assigned
to the Tivoli_Admin_Privileges group are the privileges required to start a
process as a different user. The run_task and sentry_engine methods, for
example, require these privileges. These methods run as the built-in
administrator (Version 3.2 or earlier) or $root_user (Version 3.6 and later).
602 Tivoli Enterprise Internals and Problem Determination

A.3.2 Accounts Used by Tivoli Enterprise

There are seven types of accounts that Tivoli Enterprise will use in the
environment: Initial installation of TMF/TMA, system, privileged, unprivileged,
idmap, TRAA, and any user-defined accounts.

A.3.2.1 Installation Account
The installation account is used at the time that the TMF/TMA files are being
installed. For TMF, this is when the initial framework is being installed through
the classic install or SIS. For TMA, this would be when the Endpoint software
is being installed through SIS or winstlcf.

This installation account can be a local account defined in the NT’s SAM
database or a domain account that is resolvable by this node. This account
has two requirements:

 • It must be in the Administrators group.

 • It must have the user right Logon Local.

Once the framework (TMF) or Lightweight Client (TMA) has been installed,
this installation account is not used. Therefore, the account can be revoked or
disabled.

For example, a company creates a domain administrator MASTER\tivinstall.
The MASTER domain is the top level domain, and there are several resource
domains that have a two-way trust relationship with MASTER. When

If you change the value of the $root_user idmap for the Windows NT
interpreter type (w32-ix86), you must ensure that the account is a member
of the Tivoli_Admin_Privileges group. If the account is not part of the
Tivoli_Admin_Privileges group, TMF/TMA nodes will receive tap_call_init
failed, error 38.

Note

The account used for installation of an NT TMR Server does have a special
role. When installation completes, the $root_user idmap will map that
Installation account to the w32-ix86 interp. Therefore, prior to removing
this account, set the $root_user idmap to another Administrator and map
the new login to the Tivoli Root Administrator (see also the command
wauthadmin). Also, be sure to include this new Administrator in the
Tivoli_Admin_Privileges group.

Note
Tivoli’s Use of Windows NT 603

TMF/TMA nodes are being installed, an NT Administrator in the MASTER
domain will enable the account and provide a password to the Tivoli
Administrator responsible for installation. This Tivoli Administrator logs into
the TMR as their normal account and specifies this user and password while
installing the nodes. After completing the installations, the NT Administrator
will disable MASTER\tivinstall until additional installations are required.

A.3.2.2 System Account
Tivoli Enterprise runs the oserv(TMF)/lcfd(TMA) service as NT
AUTHORITY\SYSTEM. In addition, TMF installations will also have the spider.exe
(HTML server) and possibly the gateway.exe (used to communicate to TMA
endpoints) processes also running as NT AUTHORITY\SYSTEM.

A.3.2.3 Privileged Account
Tivoli Enterprise uses the privileged account when a management function of
the Tivoli Enterprise needs access to privileged resources on the NT. Tivoli
Enterprise will request that a certain program be started as this privileged
account to access this resource.

See section A.3.5, “Privileged Account Tivoli Version Comparison” on page
610 for information on what account is used based on the version of Tivoli
Enterprise.

A.3.2.4 Unprivileged Account
The unprivileged account is the tmersrvd account. Tivoli Enterprise will
attempt to run as many executables as this user to minimize any possible
security compromises. If the tmersrvd account is not found on the local NT’s
SAM database, it will look to the domain for this account. This tmersrvd
account must exist in order for Tivoli to function properly.

As noted earlier, this account has no real access and can be disabled if
desired. Unlike other user accounts, the tmersrvd account can be disabled
(but not deleted) with no adverse effect on Tivoli.

The tmersrvd account should not be deleted from the node unless the account
exists in the domain. However, due to the load that would be placed on the
Primary Domain Controller (see section A.3.6, “Domain Controllers” on page
612), this is not a good alternative.

A.3.2.5 ID Map Account
Because Tivoli Enterprise spans a heterogeneous environment, the idmap
was introduced to provide a means of mapping a special ID (referred to as an
idmap) to an OS-specific user account. On NT, the idmap may contain a
604 Tivoli Enterprise Internals and Problem Determination

reference to w32-ix86, which is the definition within Tivoli to describe an NT
node.

The idmap $root_user is a pre-configured idmap that resolves to
Administrator on NT. This map is used for various processes on NT. (See
section A.3.5, “Privileged Account Tivoli Version Comparison” on page 610
and 7.1.5, “ID Mapping” on page 199 for more information on this map).
When the oserv/lcfd service is asked to resolve the method that is to run as
$root_user, it will look for the string Administrator.

Idmaps can be modified to reflect a naming convention with an enterprise
using the widmap command.

The root_group idmap for NT is not actually used when a process starts.
However, it is important that the root_group idmap has a group listed for NT
although it does not need to be a privileged group.

A.3.2.6 TRAA Account
As described in Section A.2.4, “Understanding the Tivoli Remote Access
Account” on page 599, the TRAA account is used when a Tivoli process must
access a remote resource. By default, no Tivoli process requires that the
TRAA account be defined.

When defining the TRAA account, it is important to identify the reason for this
account (such as to enable a task to run a domain command or having a
software distribution package after-script write a file to a remote share). With
these needs identified, create this domain account with the necessary rights.
Again, the TRAA account needs only access to the resource defined. If a
password change has occurred without updating the node(s) where the TRAA
is set, oserv/lcfd nodes will fail to restart.

An example would be a company that creates the domain account
MASTER\tivuser. MASTER\tivuser is granted write access to a Netshare called
\\SERVER\tivfiles. This file allows only the user MASTER\tivuser write access,
and the Administrators group would have full access.

The idmap $root_group or another group ID must exist for an administrator
beginning with NT 4.0. Under NT 3.51, this requirement had no impact if
the group ID was blank. Installations that upgrade from 3.51 to 4.0, which
previously had no group identifiers for their administrators, will suddenly
find themselves unable to log in to Tivoli except as the root administrator
who, by default, has the group ID $root_group.

Note
Tivoli’s Use of Windows NT 605

The MASTER\tivuser password is set to not expire, and only the Tivoli
Administrator responsible for installation knows the password. Because
MASTER\tivuser only has this limited set of rights, there is a low risk of this
account being compromised and attacking other resources.

A.3.2.7 User Defined Accounts
Tivoli Enterprise can be configured to use other user accounts as design
needs warrant. There are several areas that allow a Tivoli administrator to
define a certain action to run as a certain user. A task, for example, is created
to manage MSSQL, and the task is defined to run as a given MSSQL
Administrator.

Please refer to section A.3.6, “Domain Controllers” on page 612 for
information on the use of domain accounts.

A.3.3 Identifying Under Which User a Given Process Will Run

There will be times when it is necessary to identify what a process would be
running so as to identify possible permission or troubleshooting a failed
action. Below are several methods to identify the user a given method will run
as.

A.3.3.1 TMR, ManagedNode, or Gateway Using odstat and wtrace
This outlines how one identifies the user of a process that runs on a TMF
node. For this example, the Tivoli action was to do the following:

root#wrunquery -h freedom -f c:/tmp/test GetNode

Identify a method in an odstat and its associated method:

334 M hdoq 1-984 done 6 0 15:14:24
1721656771.4.7#TMF_ManagedNode::Managed_Node# write_to_file

Issue the command resolve OID method:

root#resolve 1721656771.4.7 write_to_file
1721656771.1.345

At this point, you have identified the behavior object where the method is
defined. Issue the command objcall BEHAVIOR OID om_stat methodname:

root#objcall $TMR.1.345 om_stat write_to_file
CATALOG=
SET_USER=*
SET_GROUP=*
EXPORT=TRUE
EXECUTE=FALSE
default
606 Tivoli Enterprise Internals and Problem Determination

At this point, you have identified who the method will run using the
SET_USER flag. In this case, it is ‘*’. Section A.3.4, “Options for the
SET_USER” on page 609 describes the flags for SET_USER.

Issue the command objcall BEHAVIOR OID om_get_definition methodname
default:

root#objcall $TMR.1.345 om_get_definition write_to_file default
STORAGE=/TAS/MANAGED_NODE/man_node_skel1
MODEL=queued-obj-daemon

At this point, the process man_node_skel1 has been identified as the
implementation of the write_to_file method.

Because the SET_USER has a ‘*’, we must identify who the user will be. To
do this, we identify the Tivoli Administrator that would start this process and
reference one of their logins:

root#objcall $TMR.0.0 get_principal_id root@opus.support.tivoli.com
$root_user
$root_group

At this point, we know that the method write_to_file will run as the root_user
idmap. The file was written to an NT machine, so we must resolve the
root_user idmap:

root#widmap resolve_entry root_user w32-ix86
Administrator

The process man_node_skel1 will run as the user Administrator.

A.3.3.2 TMA Endpoint
Identifying what user a process is to run as in an NT TMA node is not the
same as with TMF nodes. With the advent of caching methods on gateways,
it will be difficult to identify methods acting on the endpoints using odstat.
Below is an alternative means of identifying the method that is running
against the endpoint and then identifying the user and process.

This example will look at the distribution of a FilePackage to a TMA node.

Set the debug level to 6 of the gateway:

wgateway gatewayname set_debug_level 6

Restart the gateway:

wgateway gatewayname restart
Tivoli’s Use of Windows NT 607

Once the gateway is up, execute the action on an endpoint that is assigned to
that gateway:

wdistfp –a –d @FilePackage:StdConfig @Endpoint:binkley

Once completed, locate the %DBDIR%\gatelog ($DBDIR/gatelog on UNIX) on the
gateway. In the gatelog file, locate the methods that the endpoint was
verifying that it had already cached or needed or where an MDist flag is
referenced, such as below:

1998/11/24 11:53:40 +06: mdist: distribution ID = 27,method =
fps_install,size = 0

Note, on a busy gateway, this will be next to impossible as there could be
multiple actions occurring. It is recommended that this be done on a test
TMR. Once the method has been identified, locate the method in the Tivoli
Object Repository:

odbls -M fps_install -k $DBDIR
1721656771.1.330
method:

fps_install

Note: There is a possibility that a method may be overloaded, in which case,
odbls will return several possible instances. This is beyond the scope of this
document, but if there are duplicate methods listed from the above command,
the best thing to do is check all instances, and, hopefully, they return the
same value.

Now that the behavior object has been identified, execute the command:

objcall Behavior Object om_stat method
objcall $TMR.1.330 om_stat fps_install
SET_USER=$root_user

A.3.3.3 Identifying the User Using ADE *.ist Files
Another method of identifying a user is to install the ADE files that are part of
the Framework CD and match the method (from an odstat /wtrace) to the
appropriate *.ist file. This is useful for the basic framework methods. These
*.ist files do not exist for the applications at this time.

As an example, a Tivoli Administrator creates a Policy Region. The wtrace
reveals this information:

Object ID: 1721656771.1.195#SharedPolicyRegions::Engine#
Method: create_policy_region
Principal: CRITSIT-LAB\mhahn (36458574/0)
608 Tivoli Enterprise Internals and Problem Determination

Search the ist files for the method create_policy_region:

>grep –i create_policy_region *.ist
PolicyGUI.ist

Identify the user that the method will run as:

 TMF_imp_PolicyRegion::GUI::create_policy_region
 } = {"default", "/TAS/PRDO/Policy_GUI";};
 };

The options are noted in section A.3.4, “Options for the SET_USER” on page
609.

A.3.4 Options for the SET_USER

These are as follows:

 • Privileged: SET_USER=root

On NT, this will map to the built-in Administrator account (See section 3.5
for more information). It is important to stress that this built-in
Administrator account can be renamed and not affect any privileged
methods.

 • Unprivileged: SET_USER=

(If viewing *.ist files from ADE, this is referred to as default.)

On NT, this will map to the tmersrvd account.

 • Idmap: SET_USER=$value

The $ has a special meaning to the oserv/lcfd. This will refer to an idmap.
To view the idmap, use the command widmap. An example of this is:

SET_USER=$root_user
#widmap resolve_entry root_user w32-ix86
Administrator

Idmaps are managed on a TMR level and are designed to provide a
means of mapping certain accounts based on the OS.

When an idmap references an account name, like Administrator, TAP must
locate that name first in the local SAM database or in the domain SAM. If
an account Administrator is not found, the process will not start. This
behavior is different with SET_USER=root as root is mapped to a SID directly,
which will map to whatever the built-in Administrator account has been
renamed to.

 • User-defined: SET_USER=* or Tivoli applications that support setting a UID,
such as tasks and SentryProfiles
Tivoli’s Use of Windows NT 609

As Tivoli Enterprise is deployed, there are many areas in the products that
allow customization. Tasks and SentryProfiles are two of the areas that allow
Tivoli Administrators to define what user these customized programs will run
as.

A.3.5 Privileged Account Tivoli Version Comparison

This section is extremely important as there have been changes in the use of
the privileged accounts between Version 3.2 and earlier Version 3.6.

A.3.5.1 TMF/TMA when SET_USER=root
Prior to Version 3.6, the built-in administrator account was used for most
processes needing to run in the context of a privileged user. So SET_USER=root
maps to the local, built-in, NT Administrator. This is a special account
reserved by NT and has full rights to the system. This account is defined as
SID 500. Tivoli calls this special SID rather than the name Administrator.

This account can be renamed, and oserv/lcfd will run as the renamed account
since the SID is the same. This account can’t be demoted in privilege,
therefore, all Tivoli privileged processes will have access to the local
resources.

A.3.5.2 TMF/TMA when SET_USER=$root_user
Version 3.6 will run most privileged methods as the user name obtained using
the $root_user. This provides the Tivoli Administrator with the ability to define
the user for all Tivoli privileged processes. Several points need to be
understood, however, to provide a smooth roll-out of the Tivoli environment:

SET_USER=$root_user does not use SID500, so account name in $root_user
idmap must map correctly to a user account in local or domain SAM. Failure
to map an account name will cause tap_get_sid_logon_token failed error.

The account must be part of the NT Administrators and
Tivoli_Admin_Privileges group, and it must have the UserRight LogonLocally.

If the MACHINE\Administrator account is not renamed, there are no
modifications to the $root_user idmap necessary unless desired to run the
Tivoli Enterprise privileged programs as another local or domain account.

If the MACHINE\Administrator account is renamed, or the design of the TMR
dictates using a domain account for privileged accounts, then:

 • MACHINE\Administrator renaming must be consistent on all TMF/TMA
nodes, or a local Administrator account is created on all TMF/TMA nodes.
The account would not have to be called Administrator. Rather, it could be
610 Tivoli Enterprise Internals and Problem Determination

called anything and would need to be consistent on all TMF/TMA
endpoints and the root_user idmap would be updated to reflect the new
account name.

 • If a domain account is used, and there is a failure in communicating to the
primary domain controller, TMF/TMA could adversely be effected as the
account’s SID could not be obtained to place in the token structure. This
would cause the oserv/lcfd to not be able to spawn the requested process.

 • The current design of TAP will query the Primary Domain Controller to
authenticate domain accounts. It will bypass all local Backup Domain
Controllers. If using domain accounts for root_user, the PDC will be
queried for every invocation of a privileged Tivoli program.

A.11, “Version 3.6 Methods Using $root_user idmap” on page 638 outlines
some of the common methods and their respective executable that will run
using this idmap.

A.3.5.3 Example of v3.6 Using a Local SAM Account
Spinal Tap Incorporated has several NT domains. Each of these NT domains
are located in given geographical locations and are linked to the corporate
office through a 128 KB FrameRelay. In the corporate office, the master
domain has two-way trusts with each of the geography domains. Each
geography manages their domain separately, and there is no way to enforce
consistent naming conventions in all the domains. As well, the company does
not have any consistent naming convention for the built-in Administrator
account other than that it is a mandate to rename the account.

One solution is to use a domain account in the master domain for the
$root_user idmap. However, because of the slow links, using a domain
account could impact the performance and reliability of Tivoli Enterprise.
Instead, the company creates a new local account on each NT as NT is
installed and configured named Nigel. This account is then added to the
Administrators and Tivoli_Admin_Privileges group. The $root_user idmap is
then changed to reflect this name for w32-ix86.

In this case, because the account is local, all authentication for the privileged
account will occur in the local NT.

A.3.5.4 Example of v3.6 Using a Domain SAM Account
Acme Sprockets’ NT domain design consists of a Multiple Master Domain
with two-way trusts between the various master and resource domains. Each
domain is part of the campus Network and is centrally managed. The
corporate policy is to rename the built in Administrator account on each NT
workstation and server along with the domain SAMs.
Tivoli’s Use of Windows NT 611

Acme creates a domain account on the master domain called TivPriv. The
idmap is then set to the new user:

widmap rm_entry root_user w32-ix86 (Remove the Administrator reference)
widmap add_entry root_user w32-ix86 MASTER\\TivPriv

(Note the double \ . This is to escape the \)

In this case, for every process running as privileged, it will authenticate to the
MASTER domain SAM and get the SID value for TivPriv.

A.3.6 Domain Controllers

This section will discuss issues particular to Primary and Backup domain
controllers.

A.3.6.1 Authentication to Primary Domain Controller
As pointed out in section 3.5.2, TAP’s current design will request domain user
authentication from the Primary Domain Controller and bypass any local
Backup Domain Controllers. This potentially can flood the PDC with
authentication requests if a domain account is used for the $root_user idmap
or applications, such as Distributed Monitoring, that can execute large
number of processes in a short span of time.

Many NT environments use several NT domains to manage the environment.
One common design is the use of a Master domain and then resource
domains that are two-way trusted with the Master domain. If design
requirements demand the use of a domain account for Tivoli Enterprise and
the NT domains are configured similarly to the model described above, one
could create an account in each of the domains with the same name:

 • MASTER\TivAdmin

 • US\TivAdmin

 • EUROPE\TivAdmin

 • JAPAN\TivAdmin

The $root_user idmap would map w32-ix86 to TivAdmin. When a TMF/TMA
node runs a privileged process, TAP will see that the idmap references
TivAdmin. It will first look to the local SAM database. Not finding the account
there, TAP will then request from the node’s primary domain controller. So, a
node in the JAPAN domain will only authenticate to the JAPAN Primary
Domain Controller rather than the MASTER domain controller.

Using the same model, assume a given task must run as MASTER\TivAdmin
since this is part of the MSSQL login list. One would need to define
612 Tivoli Enterprise Internals and Problem Determination

specifically MASTER\TivAdmin in the UID field of the task or create a new
idmap that resolves to this account. Had MASTER not been part of the
specified account, the same node in the JAPAN domain would get the SID for
the JAPAN\TivAdmin rather than the MASTER\TivAdmin.

A.3.6.2 Account Creation on PDC/BDC
Another issue pertaining to primary and backup domain controllers will be the
creation of the Tivoli accounts at installation. It is recommended to install
TMF/TMA on the Primary Domain Controller first, then synchronize the
backup domain controllers to allow the newly created accounts to propagate.
If an installation is attempted first on a Backup Domain Controller, the
installation will fail because the accounts have not been updated on the
Primary Domain Controller. Either wait 15 minutes for the domain servers to
re-synchronize and attempt the installation again or force the
synchronization.

The Primary and Backup domain controllers are a special case regarding
account management. Their accounts are actually considered a domain
account. When Tivoli runs on either a PDC or BDC, the authentication will still
take place on the local SAM database with no impact to the network or other
domain controllers. Also, Tivoli will not force partial or full synchronization
within the domain.

A.4 Security

This section will address concerns regarding how Tivoli is configured for
security on TMF/TMA nodes.

A.4.1 Changes to NT Accounts Used by Tivoli Enterprise

Because of the TMF/TMA design based on the CreateProcessAsUser() system
call, any process spawned to access local resources will not be affected by
passwords. The exception is the TRAA account. Changing the password will
require resetting of the password for any TMF/TMA’s TRAA affected by the
change. One method of automating this change is to create a task that will
execute as the Administrator and issue the wsettap/wlcftap command with
the new account.

With the exception of the tmersrvd account, accounts that have been
disabled, expired, or locked out will fail when the oserv attempts to start a
process as this user. This is due to TAP checking the status of this account
prior to passing SID information back to LSA.
Tivoli’s Use of Windows NT 613

A.4.2 File System Issues

TMF requires that it be installed on an NTFS file system. During the
installation, Tivoli will check that the target drive is an NTFS drive. TRIP does
not require NTFS. It is installed on the C drive by way of the remote
installation with the designated CurrentNtRepeat

TMA does not require installation on an NTFS file system. However, due to
the insecure nature of the FAT file system, it is advisable to install the TMA
files on an NTFS file system.

A.4.3 Permissions on Installation Directories

This section discusses the permissions required on the Tivoli directories.

A.4.3.1 Base Tivoli/LCF Directory
The base directory for Tivoli Enterprise’s TMF/TMA install will be installed
with the following directory permissions:

Administrators Full Control

System Full Control

Creator Owner Full Control

Everyone Change

Server Operators Change

A.4.3.2 Tivoli DB Directory (TMF Only)
Prior the TMP 3.1.3, the group Everyone was denied access to the DB
Directory. This caused issues when processes running as non-admin users
attempted to access files in %DBDIR%\tmp. This is also an issue with TMP 3.2,
and is addressed with the Framework SuperPatch. Version 3.6 is not
effected.

A.4.3.3 %SYSTEMROOT%\system32
The tmersrvd account will require read access to %SYSTEMROOT%\system32. If
this directory is restricted to only Administrators, and the Everyone group is
not part of the access control list for %SYSTEMROOT%\system32, TMF/TMA will fail.

To correct this, add Bypass Traverse Checking to the tmersrvd account.
Bypass Traverse Checking is referred to differently on non-US versions of NT.
For example, the French equivalent is Outrepasser le contrôle de parcours.
614 Tivoli Enterprise Internals and Problem Determination

A.4.3.4 Registry Access
There is no Tivoli process by default that manipulates the NT Registry. The
commands wsettap and wlcftap will add or remove a value in LSA’s
AuthenticationPackage key (see section 2.2). The commands wsettap,
wlcftap, wmailhost, wlocalhost, and the Desktop For Windows will add and
modify Tivoli specific keys as well. However, applications like Software
Distribution and Distributed Monitoring can use other accounts to edit/view
the registry depending on modifications done by the Tivoli administrator when
configuring the profile.

A.4.3.5 Creating Tasks
If there are Tivoli Administrators with the correct roles to create a Task, that
user’s ID will be needed to read the source script/executable (see section
A.3.3, “Identifying Under Which User a Given Process Will Run” on page 606
to identify what that user ID will be).

A.4.4 Location of the oserv.exe

With TMF nodes, the oserv.exe process is in two locations; the %BINDIR%\bin
and %DBDIR% directories. The oserv.exe that is used is the one in %DBDIR%.

A.4.5 Changes in the NT Domain

If in the event the NT Domain naming convention changes, there are several
areas within Tivoli that could be effected:

 • TRAA account

 • idmaps using a qualified DOMAIN\user format

 • Administrator logins

 • Tasks

 • Distributed Monitoring

 • TEC Adapters using an account other than SYSTEM

A.5 Tivoli Enterprise Install and Removal

This section will discuss the specifics of an NT TMF/TMA installation and
uninstall. Section A.5.5, “Preparing an NT for a Tivoli Installation” on page
624 will provide information on how to prepare an NT in advance for a Tivoli
installation.
Tivoli’s Use of Windows NT 615

A.5.1 Installation of the Tivoli Remote Installation Package

The Tivoli TMF (and TMA through SIS) remote installation requires that the
target is running either rexec or rsh. As NT does not provide for either, Tivoli
introduced the Tivoli Remote Installation Package (TRIP) as part of the
installation sequence to remotely install an rexec process on the target NT.

When the Tivoli Administrator creating the TMF/TMA node selects Install, the
installation process takes these steps:

1. The TMR server looks up the CurrentNtRepeat machine, which is an NT
ManagedNode that already has TRIP installed (TRIP does not need to be
running on the CurrentNtRepeat to remotely install the rexec service).

2. Using the NT API OpenService(), the CurrentNtRepeat machine will check
to see whether TRIP is already running on the target node. If so, it will
proceed to the creation of the directories (section A.5.2, “Creation of a
Tivoli Managed Node” on page 617 in this document).

3. The CurrentNtRepeat node will attempt to map the \\NODE\c$ drive using
Server Message Block requests.

4. The CurrentNtRepeat will attempt the mapping of the drive as the Default
Access Account user specified in the Client Install window.

5. Once mapped, the CurrentNtRepeat node will copy the necessary files to
c:\Tivoli\TRIP. Once copied over, the service will be created with the
command trip -machine <target> that is executed from the
CurrentNtRepeat machine. At this point, the target NT is running rexec as
SYSTEM.

Knowing the domain that the CurrentNtRepeat machine is important when
creating new NT TMF/TMA. If the CurrentNtRepeat node is in a domain that
is not trusted by the target node’s domain, the installation will fail.

Conflicts on the target NT will occur if there is already an rexec package or if
another process has port 512. NT 3.51 SP5 introduced an enhanced spooler
process that would use port 512. In this scenario, the conflicting service will
need to be shutdown until after the installation is complete. In addition, other
software packages, such as XSM, use their own rexec process which you
should be aware of to look for reasons for failure to start service (Service
Specific Error 8.)

REXEC’s assigned port is 512. %SYSTEMROOT%\system32\drivers\etc\services
is an NT file that has among other services the entry for rexec (exec tcp512).
If this entry is modified to another port, the installation will fail as the
installation expects port 512.
616 Tivoli Enterprise Internals and Problem Determination

A.5.2 Creation of a Tivoli Managed Node

Once TRIP is installed, the installation at the TMR will next send a series of
scripts to the target to create the directories defined by the Tivoli
administrator. The main check done here is that the file system that the install
will be placed is NTFS and that there is enough disk space available. This
sequence is the same using the classic installation method or the new
Software Installation Service (SIS). With SIS, the Tivoli administrator is
prompted for the TRAA account along with the installation directories.

A.5.2.1 Creation of Tivoli-specific Accounts on Target Node
The last step for the pre-installation is the creation of the Tivoli-specific
accounts on the target NT. An executable ntconfig.exe is executed on the
target and will run as the user defined in the Default Access Account. It will be
responsible for creating the tmersrvd account as well as the
TIVOLI_ADMIN_PRIVILEGE group and assign the required user rights.

A.5.2.2 Setting the TRAA Account
If this is the classic installation method, the Tivoli administrator will be
prompted to enter the Tivoli Remote Access Account (TRAA) after selecting
Continue in the preliminary portion of the install. As noted above, this
account is used when a Tivoli framework process accesses a remote NT
object or if you install the binaries and libraries on a remote drive. By default,
no Framework processes will access remote objects, but if there is a
user-customized script, or if a task is executed on the NT, the TRAA account
will be necessary for the process to have access.

There are three options:

 • None

This provides no TRAA account. Beware that if this a reinstall of an NT
ManagedNode, and there was a TRAA account set prior, selecting NONE
will keep the old TRAA account intact.

 • Use Default

This will use the same account and password that was specified in the
Default Access Account. This is not an ideal choice as this will grant the
TRAA account the full rights that the Default Access Account has and is a
potential security risk.

 • Different

Define an account other than the Default Access Account.
Tivoli’s Use of Windows NT 617

A.5.2.3 Installation of the Framework Files
The framework files are installed by a process on the target node called
sapack. This process is rexec’d to the target and runs from the Tivoli database
directory. This process runs as the user defined in the Default Access
Account.

The Tivoli installation groups the files by their type, such as Binaries,
message catalogs and OS-independent files. During this installation, the
sapack will lay down the files directly from the incoming Network stream.
There is no staging done on any of the drives.

A.5.2.4 Creation of the Client Database
The creation of the client database is broken up into two portions. The first
deals with just starting the oserv on the target, and the second is the creation
of the various objects on the target’s database to make it a TMF node.

A.5.2.5 Starting the oserv for the First Time
The start of the oserv on the target is managed with the command
$BINDIR/TAS/INSTALL/install2.cfg, which:

 • Checks for any dispatchers on port 94

 • Determines the database directory

 • Creates the oserv service using the command:

oinstall -install <drive:\path>

 • Copies $BINDIR/bin/TivoliAP.dll to %SYSTEMROOT%/SYSTEM32/TivoliAP.dll

 • Checks to see if TAP is available (see section 5.5 on tips to preload TAP to
eliminate the initial reboot). If not, will start the oserv with a -u flag.

 • If the host name does not match the label that Tivoli assigns to the target,
it will add the name to the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Platform\wlocalhost

 • Starts the oserv and attempts to contact TMR server. It uses the following
switches:

i Initializes the client database

h TMR Server label

k Path to database directory

b Binary directory

l Library Directory

u Used for NT. Bypasses TAP for the initial install.
618 Tivoli Enterprise Internals and Problem Determination

At this point, the oserv service is running as SYSTEM. If the –u flag was used,
all other Tivoli processes will also run as SYSTEM.

Configuring the Client Database
Once the oserv service is running, the next step is to create the objects
locally to populate the database. These processes are started from the TMR
server using $BINDIR/TMF/BASESRVC/client.cfg and will start as the built-in
Administrator (v3.2 or earlier) or the $root_user idmap if the –u option is
passed to the lcfd/oserv. If this a reinstalled NT, and TAP is enabled, there will
be several processes running as tmersrvd.

A.5.3 Un-installing TMF

In the event that the TMF node installation failed, or a user needs to remove a
fully-populated TMF node, it is important to follow the steps below to clean up
all references to the TMF node.

A.5.3.1 Removing the Node From the Tivoli Database
First, before removing the node, identify the dispatcher number assigned to
the NT with the odadmin odlist command. Then, issue the command:

wrmnode Name of Node

This command will clean up all references in the database, which includes the
various subscriptions to Profile managers, ProfileManagers, and so on. If this
command is completed successfully, then issue the command:

wchknode -ncsxvu dispatcher (number noted above)

This will verify that all references of the removed node no longer exist in the
Tivoli Object Repository.

A.5.3.2 If the wrmnode Command Failed
If a failure in removing the TMF node occurred, there is a likelihood that all
references to the TMF node have not been completely removed. Issue the
following commands:

wrmnode Name of node -d dispatcher number

If this fails, then:

odadmin odlist objects dispatch number | wc -l

If the number of objects remaining are three or less, then issue the command:

odadmin odlist rm_od disp number
Tivoli’s Use of Windows NT 619

(If there were more than three objects, it still may be necessary to remove the
node with the odadmin odlist rm_od <disp> command although more than
seven objects is highly suspect of other problems, and it would be best to
contact your support provider.

Verification of a Removed Managed Node in the Tivoli Database
There are three important locations that a TMF node is referenced. If after
removing a TMF node, a Tivoli administrator could verify that the removed
ManagedNode does not exist in the three locations:

wls -l /Library/ManagedNode
wlookup -ar ManagedNode
odadmin odlist

(This does not take into account subscriptions to Profile Managers, and so
on.)

Removing Files From the NT
Once the Tivoli database has been cleaned up, the client oserv should be
stopped. If not, stop the process. Once the oserv is stopped, it is necessary
to clean up some registry entries made by Tivoli.

Remove the oserv from the service list. The key still exists, but the values are
nulled:

oinstall -remove

Remove the entry in LSA for the Tivoli authentication package:

wsettap -d

Remove trip as a service:

trip -remove

You can keep trip running (and not do this step) as this will eliminate one
step in the reinstall.

Issue the command wlocalhost. If it returns a host name, and this name is not
valid, reset the value to the host name that is applicable to this machine:

wlocalhost new name

or remove this key from the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Platform\localhost

Remove the files from the NT directory:

%SYSTEMROOT%\system32\drivers\etc\Tivoli
620 Tivoli Enterprise Internals and Problem Determination

Path to base directory of Tivoli\Tivoli (except if you are leaving TRIP you
would remove the other directories from inside the Tivoli\ directory structure,
leaving the Tivoli\trip directory.)

A.5.4 Installation of the Tivoli Management Agent

This section discusses the installation of the Tivoli Management Agent (TMA)
for NT. The two methods discussed are SIS and a command line style
installation similar to TRIP using winstlcf.

A.5.4.1 Installation of TMA Using SIS
The SIS installation is similar to the creation of a TMF node. It requires that
TRIP be installed on the endpoint. If TRIP does not exist, it will utilize the
CurrentNtRepeat method like the TMF installation does (see section A.5.1,
“Installation of the Tivoli Remote Installation Package” on page 616).

Interrogating the Target
With TRIP functioning, SIS will first push several executables into
c:\temp\deploy. The first is sis_sh.exe, which is a Borne Shell for NT. The
second is worldname.exe, which will identify the local language equivalent of
Everyone.

Next, it will identify whether the %SYSTEMROOT%\system32\kbdus.dll exists.

Finally, a remote execution of ping will check that the node is able to resolve
the TMR server’s host name.

Creation of Tivoli-Specific Accounts
The executable ntconfig.exe (found in the TRIP directory) will be executed,
creating the tmersrvd account and the Tivoli_Admin_Privileges group.

Seed File Created
Using an executable called sapack.exe, a file called w32-ix86_seed is sent to
c:\temp\deploy. This file is used for the initial start of the lcfd service.

lcfd Installed
Once the seed file is in place, the lcfd.exe is executed with the –I option
enabling it as a service. Once completed, it will place several files outside of
the base TMA directory:

%SYSTEMROOT%\system32\TivoliAP.dll

%SYSTEMROOT%\Tivoli\lcf\1\lcf_env.cmd

Finally, it will register the Tivoli Authentication Package with LSA using
wlcftap.exe -a.
Tivoli’s Use of Windows NT 621

lcfd Starts and Logs in to Gateway
Once TAP has been enabled, lcfd is started with the parameters passed to it
by the seed file as well as any user-defined parameters. TMA will attempt to
log into a gateway.

Once completed, the NT will need to be rebooted for TAP to be loaded by
LSA. If this was a previous installation of TMA or is a ManagedNode being
migrated to TMA, the NT will not need to be rebooted since TAP has already
been recognized by the LSA.

A.5.4.2 Installation Using winstlcf
winstlcf is a perl script that can be issued from the TMR server or any
gateway/TMF node. This method is similar to a TRIP install as it uses the
Server Message Block (SMB) protocol to install and enable TMA on NT
endpoints.

Sequence of Events
The command is issued similarly to this:

winstlcf -l 3656 -g 1.1.1.2+3646 -N binkley serene

Binkley is the system that copies the files to the target. It is called the proxy
node. This proxy node must already be defined as an endpoint. Serene is the
target NT.

The -g option is to identify a gateway. If -g is not used, the lcfd will broadcast
through the UDP to attempt to contact a gateway.

The steps for the installation are as follows:

1. Gateway that manages the proxy endpoint responsible for copying the
files is contacted.

2. Installing system contacts target node using the account passed to the
winstlcf script.

3. The drive is mapped to the proxy, and the Tivoli directories are created on
the target node. The executables are copied over to the lcf directories:

 • bin\w32-ix86\mrt\lcfd.exe

 • bin\w32-ix86\mrt\lcfep.exe

 • bin\w32-ix86\mrt\libcpl.dll

 • bin\w32-ix86\mrt\libdes.dll

 • bin\w32-ix86\mrt\libmrt.dll

 • bin\w32-ix86\mrt\msvcrt40.dll

4. Through the Server Message Block (SMB), the lcfd is installed as a
service and is started as the user used for the installation.
622 Tivoli Enterprise Internals and Problem Determination

5. At this point, the installing endpoint is complete and logs off.

6. Once the lcfd on the target is started, it will contact the gateway and the
login starts. Once checked in, the gateway downloads the following files:

 • bin/w32-ix86/endpoint/ NTLCFInst.exe

 • bin/w32-ix86/endpoint/wlcftap.exe

 • /bin/w32-ix86/endpoint/TivoliAP.dll

 • /bin/w32-ix86/endpoint/ntconfig.exe

 • /bin/w32-ix86/endpoint/libacct.dll

 • /bin/w32-ix86/endpoint/reboot.exe

7. The lcfd executes ntconfig.exe to create the accounts

8. lcfd executes wlcftap to enable TAP and set the TRAA account if
required. If TAP was previously installed, the TRAA account may still exist
from the previous installation.

9. Lcfd will reboot the system if it was instructed to

There is a limited amount of logging available using this command. If there
are failures, check lcfhost.err. This file is located in the present working
directory where winstlcf is issued from. If the lcfd process is not starting, set
the trace level to 3 on the TMA node. To do this, either manually start lcfd
with the option –d 3 , or change the log_threshold =3 in last.cfg .

A.5.4.3 Removing TMA
In the event that TMA needs to be removed, follow these steps to remove
TMA from the NT node:

Removing the Endpoint from the Tivoli Enterprise Database
First, remove the endpoint by issuing the command:

wdelep EndpointName

Removing the Files
Once the endpoint has been removed from the Tivoli database, issue the
following commands to remove the TMA files and modifications.

If TMA was installed from the CD (InstallShield), then from the %LCFROOT%
directory:

uninst.bat

If TMA was installed remotely, there will be no uninst.bat file. Follow these
steps to manually remove the TMA installation. Remove TAP from the LSA:

wlcftap –r
Tivoli’s Use of Windows NT 623

If TMA and TMF are installed on the same machine, do not remove TAP; this
will effect the TMF installation on the NT.

Remove lcfd from the services list

lcfd –r “lcfd”

Remove the icon from the TaskBar

lcfep –s

Finally, remove the files from the NT located in:

 • %SYSTEMROOT%\system32\drivers\etc\Tivoli

 • %SYSTEMROOT%\Tivoli\lcf

 • Directory to lcf base\lcf

A.5.5 Preparing an NT for a Tivoli Installation

If possible, there are several steps that can be taken during the creation of
the NT workstations/servers that will assist in the time to create a TMF node
and to not have to reboot the NT when it becomes a TMF/TMA node.

A.5.5.1 Loading TAP
The reason that a newly created TMF/TMA node must reboot is for the
TivoliAP.dll to be loaded by LSASS.exe (LSA subsystem). Once loaded, the
Tivoli Authentication Package is available to generate login tokens for the
oserv/lcfd service. If a gold build of NT is developed to provide a consistent
level of software to all NT server/workstations being deployed, it is possible to
have the TivoliAP.dll loaded and enabled as well. This will allow the NT to
become a TMF/TMA node later on, and not have to reboot after the
installation, since TAP is available already. To do this, copy the TivoliAP.dll
to %SYSTEMROOT%\system32 and issue wsettap -a (or, create a script that would
edit the registry directly). The command wsettap -a does not require an
oserv/lcfd; so, this could be done at the time the NT image is being installed.

A.5.5.2 Loading Tivoli Files Prior to Using SIS/Classic Install
In environments where slow links exist, creation of Managed Nodes can be
problematic due to line speed and time. To anticipate a creation of a Managed
Node, the NT node being shipped to the remote site can have the entire Tivoli
directory copied from an existing Managed Node. Once done, the Database
directory would be deleted. When the NT is to be created as a Managed
Node, and the directory paths have been specified to match the target’s
already-installed files, the only portion that the install needs to do is the
database portion. This can significantly decrease the time required for
installing the Managed Node.
624 Tivoli Enterprise Internals and Problem Determination

A.6 Environment Issues

There are several environmental concerns pertaining to NT that may effect
TMF/TMA.

A.6.1 DLL Conflicts

There are incompatibilities with different versions of MSVCRT40.DLL shipped
from Microsoft (which seems to vary from software package to software
package). Tivoli installs Version 4.0 of the DLL. If Tivoli processes start to fail
or processes, such as ntprocinfo.exe ,utilize 100 percent of the CPU, this
would suggest a version of MSVCRT40.DLL that is not backwards compatible
has been introduced into the %SYSTEMROOT%\system32 directory.

This is an issue only with the TMF nodes. TMA nodes have the
MSVCRT40.dll installed in the TMA directories and, thereby, eliminate
possible conflicts.

To correct this on NTs that see this issue, follow these steps:

Version 3.1.3 or 3.1.4, 3.2 SuperPatch, 3.6:

copy %BINDIR%\mslib\msvcrt40.dll %DBDIR%
copy %BINDIR%\mslib\msvcrt40.dll %BINDIR%\tools
copy %BINDIR%\mslib\msvcrt40.dll %BINDIR%\bin

Version 3.1.x (other than 3.1.3) and Version 3.2 Framework:

copy %BINDIR%\mslib\msvcrt40.dll %DBDIR%
copy %BINDIR%\mslib\msvcrt40.dll %BINDIR%\tools
copy %BINDIR%\mslib\msvcrt40.dll %BINDIR%\bin
cacls %DBDIR%\msvcrt40.dll /g everyone:r (Grants read rights to the file)

At this point, Tivoli processes will be insulated to the changed
MSVCRT40.DLL in the %SYSTEMROOT%\system32 (after a restart of the oserv).

Loading of DLLs works differently in Windows NT than previous versions of
Windows. NT loads a DLL separately for each process because each
application has its own address space in Windows NT; the address space is
shared in 16-bit Windows. (See Microsoft Development Network, or Article ID
Q100635).

The way the LoadLibrary() works in NT is as follows: When no path is
specified, the function searches for the file in the following sequence:

1. The directory from which the application loaded.

2. The current directory.
Tivoli’s Use of Windows NT 625

3. The 32-bit Windows system directory. Use the GetSystemDirectory
function to get the path of this directory. The name of this directory is
SYSTEM32.

4. The 16-bit Windows system directory.

5. There is no Win32 function that obtains the path of this directory, but it is
searched. The name of this directory is SYSTEM.

6. The Windows directory. Use the GetWindowsDirectory function to get
the path of this directory.

7. The directories that are listed in the PATH environment variable.

To confirm this behavior, use a tool, such as listdlls.exe, from
http://www.sysinternals.com. Processes like lsass will use the
%SYSTEMROOT%\system32\msvcrt40.dll, and Tivoli processes like oserv will use
%DBDIR%\msvcrt40.dll.

Another method is to use tlist <Process Name> and locate the version of the
DLL in question. Tivoli ships Version 4.0.0.5270.

A.6.2 How Shell and Perl Scripts Work on NT

Shell and Perl scripts within Tivoli start with the line #!/bin/sh or
#!/etc/Tivoli/bin/perl. Although these paths do not exist on NT, Tivoli
Enterprise will catch these references and direct them to the correct
executable.

On TMF, the oserv process will read the line and if it sees either sh or perl, it
will use the perl and sh found in %BINDIR%\tools (TMF). TMA will rely on the
dependencies when sh or perl are encountered (see section A.6.3).

Because Tivoli uses #!/bin/sh, it is important to not replace Tivoli’s version of
bash.exe and sh.exe. If Enterprise needs dictate another version of sh.exe,
place it in a separate location and adjust the NT PATH environment to include
that version. Tivoli’s implementation will use the Tivoli-supplied
bash.exe/sh.exe.

A.6.3 Dependencies and TMA

Because TMA endpoints do not contain the various tools included with TMF
(%BINDIR%\tools), it will be necessary to create dependencies to provide
support to scripts using commands not found with the standard NT/TMA
release.
626 Tivoli Enterprise Internals and Problem Determination

On TMA, the Framework 3.6 release notes describe how to create
dependencies. For example, the method run_task needs to have a
dependency on bash (sh) in order for tasks to execute a script using #!/bin/sh.
To set this up:

wdepset -c task-library-tools -a w32-ix86 bin/w32-ix86/tools/sh.exe +a +p %TOOLS%
wdepset -e @DependencyMgr:task-library-tools -a \

w32-ix86 bin/w32-ix86/tools/win32gnu.dll +a +p %TOOLS%
wchdep @Classes:TaskEndpoint @DependencyMgr:task-library-tools run_task
wgateway your_gateway dbcheck

You can issue the wdepset -e command for each tool you want to be
downloaded when a task is run, such as sed and awk, or for perl. You must
issue a wgateway dbcheck against all gateways whenever you update
dependencies so that the new method headers are cached.

If Enterprise requirements dictate that Tivoli products like tasks will use a set
of tools on the TMA nodes, it may be best to create a FilePackage that is then
distributed to each node after its initial creation. This may prove an easier
method of providing tools to the nodes rather than using dependencies.

A.6.4 Name Resolution/WINS

NT offers several means to resolve host names. Tivoli utilizes the standard
gethostbyname() and gethostbyaddr() system calls to resolve name and IP
address. When this is passed to NT, it will use not only DNS (if configured),
but WINS, hosts, and LMHOSTS. If a failure occurs, be sure that the NT is
properly configured for name resolution, such as Enable DNS for Windows
Resolution in the TCP/IP properties. One note about WINS: Although WINS is
a valid resolver, WINS database is not static by default and should not be
relied on as the primary resolver when the NT is a ManagedNode.

There are several reports of problems with using Fully Qualified Domain
Names. From a post on NTBUGTRAQ’s listserv (http://www.ntbugtraq.com)
reports that a 15 character FQDN will fail to resolve on NT due to NetBios
naming conflicts.

A.6.5 Sourcing the Tivoli Environment

If a user wishes to source the Tivoli environment, there are setup files located
on the node:

TMF %SYSTEMROOT%\system32\drivers\etc\Tivoli\setup_env.cmd

TMA %SYSTEMROOT%\Tivoli\lcf\1\lcf_env.cmd

If one would like to have a Command shell that sources the Tivoli
Environment when invoked, create a shortcut to the cmd.exe executable and
Tivoli’s Use of Windows NT 627

select Properties. Under Shortcut, append to cmd.exe /k <path to file> in
the Target Field. For example, a TMF file being sourced would use:

cmd /k %SYSTEMROOT%\system32\drivers\etc\Tivoli\setup_env.cmd

A.6.6 Tivoli Desktop for TMF

The Tivoli desktop is not installed with the NT TMF or TMA. To install the
Windows version of the desktop, initiate <CDROM>\PC\Desktop\Disk1\setup.exe.
This will install the Tivoli desktop application.

It is still possible to point an existing Windows Tivoli desktop at an NT
Managed Node even if the Desktop For Windows is not installed on that NT.
The Managed Node is capable of supporting remote desktops.

TMA nodes do not support remote desktops.

A.6.7 Performance Tuning for Tivoli

Although not important to TMA, there are several NT tuning parameters
useful to TMF nodes serving as repeaters, home hosts to PC managed
nodes, gateways, or to an NT TMR or TEC server.

ControlPanel>Network>Services>Server>Properties. This section allows
the tuning of system-wide caches. The ideal setting is Maximize Throughput
for Network Applications.

NT 4.0 - ControlPanel>System>Performance. Set the Performance Boost
to the low setting if possible.

NT 3.5 - ControlPanel>System>Tasking Set to Foreground and
Background are equally responsive.

A.6.8 Non-US Keyboard Issue

If an NT TMF/TMA install fails with the error:

Creating separate WindowStation and DeskTop. Create WindowStation failed.
The specified module could not be found.

GL Pipes are useful, but this will impact the performance of NT (It appears
to utilize all 100 percent of the CPU as seen using perfmon.

Screensaver Note
628 Tivoli Enterprise Internals and Problem Determination

This is due to the input locales. Copy kbdus.dll to %SYSTEMROOT%\system32. The
US keyboard or locale does not have to be selected in Windows
configuration; the DLL just needs to be present in the system32 directory.

A.6.9 Port Restriction Causes TIME_WAIT to Last 169 Seconds

Tivoli provides a means to restrict port usage to a given range (odadmin will
reveal whether port restrictions are in use). On NT, the restrictions will cause
closed TCP connections to persist 169 seconds in a TIME_WAIT state.

To minimize the delay, one can edit the NT’s TCP settings as follows:

1. Locate the key:

HKEY_LOCAL_MACHINE/System/CurrentControlSet/Services/Tcpip/Parameters

2. Click on Edit/Add Value.

3. You then enter the Value Name: TcpTimedWaitDelay.

4. Change the data type from its default REG_SZ to REG_DWORD.

5. When you click on OK, it will then ask you for Data:

60 (decimal) for 60 seconds

Then reboot. All TIMED_WAIT’ed ports will disappear in 60 seconds.

A.6.10 Tivoli Files Placed Under %SYSTEMROOT%

This section lists various files that are placed by Tivoli under the
%SYSTEMROOT% directory.

Table 39. Tivoli Files Placed in %SYSTEMROOT%

Component Files (size file name)

Tivoli Remote
Installation Package

None

Tivoli Management
Agent

%SYSTEMROOT%\system32
496,640 sis_sh.exe, 32,256 TivoliAP.dll, 7,168
worldname.exe

%SYSTEMROOT%\Tivoli\1\lcf
727 lcf_env.cmd, 1,782 lcf_env.sh (Sizes of files will vary)
Tivoli’s Use of Windows NT 629

Tivoli Management
Framework

%SYSTEMROOT%\system32
496,640 sis_sh.exe, 32,256 TivoliAP.dll, 7,168
worldname.exe

%SYSTEMROOT\system32\drivers\etc\Tivoli
857 setup_env.cmd, 1,120 setup_env.sh, 510 tll.conf\arg,
443 tll.conf\layout, 496 tll.conf\library, tll.conf\task
(Sizes of files will vary)

Remote Control Server None

Remote Control
Controller

%SYSTEMROOT%
46,080 RCSERV.EXE

%SYSTEMROOT%\system32
4,096 EQNMSG.DLL

Remote Control Target %SYSTEMROOT%
26,624 eqnhook.dll, 46,080 RCSERV.EXE

%SYSTEMROOT%\system32
1,457 Command Prompt.lnk Modified, 17,408 VDD.DLL,
7,168 VDDFIFO.DLL, 12,288 VDDHOOK.DLL

%SYSTEMROOT%\system32\drivers
21,024 keyex.sys, 20,288 mouex.sys, 8,288 tgrab.sys

Security Management None

User Administration None

Software Distribution None

Distributed Monitoring None

Enterprise Console None

Inventory None

Component Files (size file name)
630 Tivoli Enterprise Internals and Problem Determination

A.7 Tivoli Specific Commands and Terminology for NT

Below are a list of commands and concepts that are unique to the NT
environment:

Table 40. Tivoli-Specific Commands and Terminology for NT

Command/Entity Description

wrunui.exe (TMF
only)

Executable that allows a script, sentry monitor, or task to
execute graphic-based application on the NT console. (Such as
wrunui notepad)

bash.exe Bourne Again Shell. Provides full bourne shell facilities. This is
located in %BINDIR%\tools. There is also sh.exe, which is the
renamed bash executable.

wsettap.exe(TMF)
or
wlcftap.exe(TMA)

Has 2 roles:
Sets the TRAA account for access to remote access of NT
objects:
wsettap -r DOMAIN\fred sets TRAA to that domain account
wlcftap –r “” nulls TRAA account
Activates and disables the Tivoli Authentication Package
wsettap -d disables TAP
wlcftap -a activates TAP

smtp_client.exe
(TMF only)

Provides a mail client for NT. Useful for scripts that want to
initiate a mail message as a result of a script.
For example, smtp_client mhahn@support < c:\temp\file .
If smtp_client is issued with no email address, it will look for
the value in:
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Platform\mailhost .This
key can be set using wmailhost.exe .

TRAA (Tivoli
Remote Access
Account)

An account and password stored locally on NT that is used
when a Tivoli process accesses a remote object, or if the Tivoli
binaries and libraries are installed on a remote share. TRAA
account is not needed unless customer design dictates access
to these remote NT objects (like Netshares).

TRIP (Tivoli Remote
Installation
Package)

Provides rexec functionality for installation of ManagedNode or
TMA using SIS or the classic install method. Once installed,
provides remote start-up of the oserv (odadmin start <disp>)
and for remote interconnects of TMRs. TRIP can be disabled
after installation if remote start-up of oserv service is not
needed.

wlocalhost.exe
(TMF only)

Command sets the wlocalhost key and value in registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Platform\wlocalhost.

Key is used when NT is a failover machine or when the host
name differs from the Tivoli label of the ManagedNode.
Tivoli’s Use of Windows NT 631

A.8 Useful Microsoft and Third Party NT Commands

There are several utilities available that assist and enhance the Tivoli
environment.

A.8.1 Built-in NT Commands

ipconfig -all Provides Network information related to TCP/IP.

netstat Provides router and port information.

nbtstat Displays protocol statistics and current TCP/IP connections
using NBT (NetBIOS over TCP/IP).

perfmon Useful to obtain overall system resource usage.

A.8.2 Other Utilities

Two excellent resources are: Microsoft’s Resource Kit (NTResKit) and the
collection of shareware at http://www.sysinternal.com.

Some useful commands from the NTResKit:

tlist.exe process list.

telnetd.exe Telnet service.

sc.exe NT Service Controller.

netsvc.exe NT Service Controller.

Some useful commands from http://www.sysinternals.com:

wmailhost.exe
(TMF only)

Command to specify a SMTP server. TMF nodes use this
reference when the wsupport or smtp_client command is
used as well as applications like Distributed Monitoring. It
stores the SMTP server in:
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Platform\mailhost

When attempting to connect to SMTP server, will first try the
host referenced with wmailhost, then the local host, and then
the host that the given email address specifies (fred@bedrock)

ntprocinfo.exe Provides a list of processes running on the NT.
There are significant enhancements in the ntprocinfo
command for 3.2 SuperPatch, and 3.6. ntprocinfo.exe will
now correctly show the user that the process runs as, much like
nthandleex.exe.

Command/Entity Description
632 Tivoli Enterprise Internals and Problem Determination

listdll.exe Shows a list of processes and the DLLs each process has
loaded.

nthandleex.exe Shows the processes running, the user the process is running
as, and open handles.

ntregmon.exe Shows what processes are accessing the registry.

An excellent remote command line interface called XLNT is available from
Sunbelt Software. This allows you to have a completely command line based
interface into your NT systems with support for multiple simultaneous logins.
See http://www.ntsoftdist.com/axlnt.htm for more details.

A.9 General Issues

Below is a general list of Tivoli issues encountered on NT.

A.9.1 Issues with TAP

TAP issues typically fall into two areas: Initial start-up of the oserv and
spawning processes as invalid accounts. The command wsettap/wlcftap can
be issued regardless of the oserv’s state (up or down). To issue
wsettap/wlcftap, the caller must be a member of both the Administrators
group and the Tivoli_Admin_Privileges group. If a user gets the error Access
is denied, this is a result of the user not being part of the two groups.

A.9.1.1 Failure to Start oserv
Failures starting the oserv will generally receive error 1067. In all cases,
review the %DBDIR%\oservlog on the failing NT for a better explanation. Below
are several errors and the solution to restart the oserv:

 • Tivoli Authentication Package is not properly installed or loaded by LSA.
The error is:

!tap_init_failed A specified authentication package is unknown.
TAP is not known to the LSA subsystem.

TAP is not listed in the Authentication Package key, issue the command:

wsettap -a or wlcftap –a

Due to the recent release of TMA, this list currently has no real issues
specific to TMA. The original paper from which this appendix came will
continue to be updated to address 3.6 issues. Updates can be obtained
from http://www.support.tivoli.com .

Note
Tivoli’s Use of Windows NT 633

then reboot the machine.

 • Another Authentication Package is listed before the Tivoli Authentication
Package.

If this is the case, move TAP to the second position (After msv1_0) in:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\AuthenticationPackages

 • tap_call_init failed, Error 2221

The TRAA account no longer exists. Reset the TRAA account to a valid
account:

wsettap -r <DOMAIN>\<user>

or

wsettap -r “” (This will null the TRAA account)

 • tap_init_failed Error 38:

The privileged account is not part of the Tivoli_Admin_Privileges group.

 • !tap_call_init failed The user must change their password before they log
on the first time:

The TRAA account is being forced to reset password. Disable this feature.

 • tap_get_sid_logon_token failed: No mapping between account names and
security IDs was done.

The tmersrvd account has been removed.

 • tap_get_sid_logon_token failed: Logon failure: the user has not been
granted the requested logon type at this computer.

The tmersrvd account does not have Log on Locally as a UserRight

 • CreateWindowStation failed: Access is denied:

tmersrvd is denied access to the %SYSTEMROOT% directory. Verify that tmersrvd
has Bypass Traverse Checking on and that the account is not specifically
denied access.

A.9.1.2 Executing Processes Using Invalid Account
If the Tivoli Framework attempts to spawn a process as an invalid user, such
as invoking a task or a sentry monitor, the following errors can occur:

 • user_string_to_sid failed with code 77

Account used does not exist, or that the idmap does not have the correct
entry for the w32-ix86 interpreter (widmap). This is common with tasks
where the task is specified to run within the context of a given UID.

 • tap_make_sid_logon_token failed with code 77
634 Tivoli Enterprise Internals and Problem Determination

Either the account is not allowed to log on locally, in which case, you need
to add this User Right so that account in question, or the account is
disabled. Be sure account has Password Never Expired set, or the
account has User Must Change Password set. Disable this.

 • Logon failure: unknown user name or bad password:

Reset the account on the NT or Synchronize the domain.

 • Logon failure: the user has not been granted the requested logon type at
this computer:

Either the TRAA user is not allowed to access a share, or the TRAA user
is not able to access the computer from the Network. Check the share
permissions and/or the UserRights. This can also occur if a task’s UID
does not have the Logon Locally set.

 • LookUpAccount failed:

Account does not exist on local NT or in the domain

A.9.2 Start-Up of oserv

Examples of possible problems and their solutions are as follows:

 • @odinit: Unable to establish connection to ALI !oserv: odlist init

failed. IPC Shutdown (67).

There is already a connection from the NT to the TMR server that is
currently in a TIME_WAIT state. Issue netstat -a and verify the
TIME_WAIT state with the TMR server’s port 94.

This is a problem with TMP3.2 when port restrictions are in use. Apply
patch 3.2-TMP-0028.

 •!oserv: odlist init failed. requested resource not found (30)

This can cause three possible problems:

 • TAP has the TRAA account incorrectly set. Reset the TRAA account.

 • Name resolution for the NT is incorrect. The NT is unable to lookup its
IP address and host name correctly. Add a line to
%SYSTEMROOT%\system32\drivers\etc\hosts with the correct host name
and IP address for the NT.

 • If running Version 3.2 of the framework, apply patch 3.2-TMF-0028.

 • Bind failed winsock_comm.c No such File or directory:

The wlocalhost registry key is incorrectly set. Issue the command:

wlocalhost <correct name of NT>
Tivoli’s Use of Windows NT 635

 •Application <TMF_Sched, TNR_prog1, mannode_skel> failed to initialize

This is a DLL conflict with MSVCRT40.DLL. See A.6.1, “DLL Conflicts” on page
625.

A.9.3 Using TRAA with Tasks

Possible errors include:

 •Access is denied executing task

The TRAA account does not have permissions to access a remote share.

 • User sees a phantom mapped drive.

If a task is run on an NT, and the script maps a drive using the net use
DRIVE command, and the script does not delete the map, a user will see the
drive mapped and will be unable to delete the mapped drive.

Although mapping and deleting the map for a task is acceptable, the other
alternative that will alleviate p599

roblems with the ghost drive to an existing drive letter is to use the
\\MACHINE\share format.

A.9.4 General Framework

Possible errors include:

 • Unhandled exception error in oservlog, oserv goes down

This is often encountered when an NT is a home host for
PcManagedNodes, and an inventory scan was initiated. Setting
max_conn to 20 resolves the issue. The problem is that the number of
active method threads approaches 200. At this point, the oserv is unable
to maintain this high number of processes.

The fix is in the 3.2 SuperPatch and Version 3.6.

 • Error in oservlog regarding hurl

This problem can occur if the NT serves as a TMR server and a Network
intensive task or a wchkdb -ux was invoked. Increase the number of
rpc_max_threads to 20 more than the total number of your
ManagedNodes (wlookup -ar ManagedNode).
636 Tivoli Enterprise Internals and Problem Determination

A.10 PC Agent Overview

This section will discuss the PC agent implementation on NT. It is important to
stress that the PC agent does not use TAP and has no functional equivalent to
TRAA.

A.10.1 PC Agent Design

The PC agent was introduced in Version 1.0 of Tivoli Management
Environment (precursor to Tivoli Enterprise). This product allowed limited
management of PC-class systems, including Windows 3.1/95, OS2, and
Windows NT. Software Distribution, Inventory, Remote Control, UserAdmin,
and Tasks were applications that were written to communicate to the PC
agent and execute actions on these endpoints.

A.10.2 PC Agent Running as a Console Application

The PC agent on NT can be installed as either a service or as a Console
Application. When the PC agent is installed as a console application, it is
started up with the SID of the user that logged in and assumes all credentials
as the user. If the user logged in with a domain account, or has mapped a
remote share with a domain account, the PC agent will have that user’s rights
on the local and remote resources.

If that user logs out, the PcAgent will be stopped and no communication will
exist between the PcAgent and Tivoli Enterprise.

A.10.3 PC Agent Running as Service

In many environments, the PC agent is usually installed as a NT Service, as
this provides consistent communication between the PCManagedNode and
the TMR since the PC agent is never shutdown when users log out. The PC
agent runs as NT AUTHORITY\SYSTEM. This account provides privileged rights to
the local system. However, if the PC agent attempts to access a remote
share, the agent will fail, as the NT AUTHORITY\SYSTEM account has no privileges
to remote resources.

A.10.4 PC Agent Running as a User-Defined Account

One way to get around the inability of the PC agent to access remote
resources is to install the PC agent as a service and set it to run as another
user. The user would need to be a domain Administrator in order for the PC
agent to properly access these remote shares. Furthermore, the defined
user’s password could not change, as NT statically stores the password in
the local NT registry. Therefore, once set in the Services Control Panel, if that
Tivoli’s Use of Windows NT 637

user account’s password changed, the PC agent would not be able to start
again until it was modified in the NT service control panel.

A.11 Version 3.6 Methods Using $root_user idmap

This section lists the TMF/TMA methods that use the $root_user idmap for
Version 3.6. This list was compiled with the following applications: Inventory,
Security Management, Distributed Monitoring, Software Distribution, User
Administration, Remote Control, Adapter Configuration Facility, and
Enterprise Console.

Table 41. Methods That Use the $root_user ID Map

CLASS METHOD USER ACTION EXECUTABLE relative to
%BINDIR%/%LCF_BINDIR%

Adapter Configuration Facility

ACPEP

acpEp Edit adapter files /TME/ACP/acpep

acpEpRmFiles Removes adapter files /TME/ACP/acpep

install_gateway Installs upcall collector on
Gateway/TME/ACP/acpep_inst
all

install_logfile Installs logfile adapter /TME/ACP/acpep_install

install_nt Installs the NT Event Adapter TME/ACP/acpep_install

install_snmp Installs the SNMP Adapter /TME/ACP/acpep_install

TMA nodes

Endpoint

admin Admin related methods /endpoint/admin

write_html HTML management /endpoint/msg_bind

Inventory Profiles on TMR Server

InventoryProfile

_get_validation_e
nabled

Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

abort_lock_acquis
ition

Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths
638 Tivoli Enterprise Internals and Problem Determination

copy_all_actions Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

copy_records Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

disable_validatio
n

Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

edit_acl_check Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

enable_validation Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

get_default_polic
ies

Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

get_validation_po
licies

Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

initializ Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

ip_push Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

ip_sched_push Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

move_records Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

populate Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

push Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

remove Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

set_default_polic
ies

Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

set_excluded_dirs Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

set_included_dirs Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

CLASS METHOD USER ACTION EXECUTABLE relative to
%BINDIR%/%LCF_BINDIR%
Tivoli’s Use of Windows NT 639

set_validation_po
licies

Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

validate Creation/push of profile /TME/INVENTORY/INV_PROF/i
nv_prof_meths

Inventory Endpoint

InventoryProfileE
ndpoint

ip_discover Scan /TME/INVENTORY/INV_ENDPT/
inv_endpt_meths

ip_reset_last_mif
_file

MIF /TME/INVENTORY/INV_ENDPT/
inv_endpt_meths

Inventory Scan from ManagedNode Serving as NWMS Host

InventoryProfileN
WMSEndpoint

ip_discover Scan /TME/INVENTORY/INV_ENDPT/
inv_nwms_endpt_meths

ip_reset_last_mif
_file

MIF /TME/INVENTORY/INV_ENDPT/
inv_nwms_endpt_meths

Inventory Scan from ManagedNode Serving as PCMN Homehost

InventoryProfileP
CEndpoint

ip_discover Scan /TME/INVENTORY/INV_ENDPT/
inv_pc_endpt_meths

ip_reset_last_mif
_file

MIF /TME/INVENTORY/INV_ENDPT/
inv_pc_endpt_meths

Endpoint

InventoryUserLink

lcf_create_dir /generic/TME/INVENTORY/US
ERLINK/lcf_create_dir

lcf_send_file /generic/TME/INVENTORY/US
ERLINK/lcf_send_file

lcf_view_run_dir /generic/TME/INVENTORY/US
ERLINK/lcf_view_run_dir

CLASS METHOD USER ACTION EXECUTABLE relative to
%BINDIR%/%LCF_BINDIR%
640 Tivoli Enterprise Internals and Problem Determination

Installation of Endpoint Using winstlcf. Methods Running from Proxy Endpoint

LCF-NtLcfInstall

configure Setup lcf.dat/lcf_env.cmd files /endpoint/NtLcfInst

inspect Initial inspection /endpoint/NtLcfInst

install Copy of endpoint code /endpoint/NtLcfInst

reboot Reboot system /endpoint/NtLcfInst

Modification of Distributed Monitoring Endpoint Engine

SentryEndpoint

boot_engine Start engine /TME/SENTRY/dogEndpoint

engineUpdate Update monitors on engine /TME/SENTRY/dogEndpoint

Creation/Modification/push/execution of Distributed Monitoring Engine
(All methods for class SentryEngine will use idmap, so run_engine is only one listed as this is representative of all
other methods)

SentryEngine

run_engine SentryEngine running /TME/SENTRY/sentry_engine

Software Distribution

TMF_FP

fp_dist Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fp_operation Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fpblock_dist Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fpblock_target_pr
eview

Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fps_cancel Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fps_fpblock Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fps_install Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

CLASS METHOD USER ACTION EXECUTABLE relative to
%BINDIR%/%LCF_BINDIR%
Tivoli’s Use of Windows NT 641

fps_list Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fps_size Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fps_uninstall Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

fps_want_list Distribution modification/action /TAS/MANAGED_NODE/fp_endp
oint

Task Execution on TMA/TMF Nodes

TaskEndpoint

batch_run_task Execute task /TAS/TASK_LIBRARY/task_en
dpoint

run_task Execute task /TAS/TASK_LIBRARY/task_en
dpoint

Task Management

TaskRepository

change_task /TAS/TASK_LIBRARY/reposit
ory_skel1

create_job /TAS/TASK_LIBRARY/reposit
ory_skel1

create_task /TAS/TASK_LIBRARY/reposit
ory_skel1

delete_task /TAS/TASK_LIBRARY/reposit
ory_skel1

disconnect /TAS/TASK_LIBRARY/reposit
ory_skel1

dump_tasks /TAS/TASK_LIBRARY/reposit
ory_skel1

export_task /TAS/TASK_LIBRARY/reposit
ory_skel1

import_task /TAS/TASK_LIBRARY/reposit
ory_skel1

CLASS METHOD USER ACTION EXECUTABLE relative to
%BINDIR%/%LCF_BINDIR%
642 Tivoli Enterprise Internals and Problem Determination

lookup_task /TAS/TASK_LIBRARY/reposit
ory_skel1

update_resources /TAS/TASK_LIBRARY/reposit
ory_skel1

UserProfiles

UserManagement

UserProfile_synch
ronize

Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

UserProfile_verif
y

Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

change_password Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

um_discover Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

um_discover_ext Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

um_gen_strlist Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

um_runcmd Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

um_set_login Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

um_update Manage UserProfiles /TME/USERMANAGEMENT/umbo_
skel1

CLASS METHOD USER ACTION EXECUTABLE relative to
%BINDIR%/%LCF_BINDIR%
Tivoli’s Use of Windows NT 643

644 Tivoli Enterprise Internals and Problem Determination

Appendix B. RDBMS Management

For some time, a UK company called DBMX provided TME 10/Plus modules
to manage database applications. Since the merger of DBMX with Tivoli in
1997, the company’s line of products has grown and strengthened, and at the
time of writing, were known collectively as Enterprise Server Management
(ESM) Database Management. There are four different databases supported
by TME 10 modules, and for each module, there are selectively-installable
management components:

Table 42. Supported Databases and Components for ESM

The ESM product names are:

 • TME 10 Module for Sybase

 • TME 10 Module for Oracle

 • TME 10 Module for MS SQL

 • TME 10 Module for Informix

Databases Framework User
Administration

Distributed
Monitoring

Oracle Yes Yes Yes

Sybase Yes No Yes

Microsoft SQL Yes No Yes

Informix Yes No Yes

This chapter has NOT been updated from the previous edition of this book.
The ESM Database Management Modules are now called Tivoli
Management Module for Oracle (and Sybase, DB2, and so on).

This appendix is included as much of the information still applies to the
current products.

Note

The names for files, commands, and directory locations have slightly
changed since the pre-merger versions. In this chapter, we are referring to
the new TME 10 product versions only.

Note
© Copyright IBM Corp. 1998, 1999 645

In this chapter, we use Oracle 7 as the database for all the examples. Much of
what is stated also applies to the other database products.

As with any interaction with database products, the installation and
configuration of the ESM products is likely to require the assistance of the
Database Administrator (DBA) if one is designated.

B.1 Installation

Each component that is going to be used has to be installed on the TMR
server and on all clients where you want to manage a database. The client
where the database resides has to be a managed node. The installation
process is documented in each product’s Framework guide, for example, the
ESM Sybase SQL Server Framework Guide. This section contains an outline
of the installation process in order to highlight important details.

After the installation of the code, there will not be a new icon on the desktop.
The new objects will be created after the registration to the database. To do
this, it is recommended to create a new policy region for the database
management.

To work with the database, the administrator needs the proper roles. There
are some new TMR administrator roles for these products, such as
sybase_dba, which should be given to the database administrator.

Without having these TMR roles applied to the database administrator, you
will not be able to register the database.

Also, the database management policy region needs to have special
managed resources assigned to get access to the database, such as
OracleDatabase. To activate Sentry profiles, the managed resources
ProfileManager and SentryProfile must be set as well.

To work with the database, a database object needs to be created by
registering the database with the TMR server. The installation added the
objects to the Create menu for a policy region, as shown in Figure 237:
646 Tivoli Enterprise Internals and Problem Determination

Figure 237. Create ESM Database Object

The menu items in figure 237 will appear only when the proper managed
resources are given to the Database Management Policy Region. Clicking,
for example, the Oracle Database menu item opens a dialog box similar to
the one shown in Figure 238:

Figure 238. Registering Dialog for Oracle Database

Figure 238 is an example dialog for the Oracle database registration. There
are five fields, and all of them are mandatory and important. More information
on Oracle can be found in Appendix C, “RDBMS Install Examples” on page
679.

 • ORACLE_SID
RDBMS Management 647

This is an Oracle environment variable and can be set uniquely by the
database administrator. You can find it in several files:

 • /home/oracle.profile

 • $ORACLE_HOME/network/admin/tnsname.ora

 • $ORACLE_HOME/network/listener.ora

This applies for UNIX and NT.

 • ORACLE_HOME

This is also an Oracle environment variable, set by the database
administrator, and you can find this in /home/oracle.profile.

Look for the tnslsnr* file and go back one step in the directory path, which
will give you the ORACLE_HOME directory.

 • Host Name

This is the IP-hostname of the machine hosting the Oracle server.

 • Owner

On UNIX systems the Owner usually defaults to oracle because this is the
Oracle user ID. On Windows NT systems, you should leave this field
unchanged.

 • Owner Group

On UNIX systems, the group usually defaults to dba, because this is
recommended by the Oracle installation guide. It is the group given to the
Oracle user when the user is being generated. On Windows NT systems,
Oracle does not use the group concept and the Oracle internal user
password should go in here. The internal users are sys, sysadmin ,or admin.
Problems typically show up at registration time. If you type in the right
parameters and problems still occur, refer to Section B.6.4, “ESM
Database Registration” on page 664.

At this point you can create a profile manager inside the Database
Management Region. You can have four different types of profiles:

 • Resource profile

 • Role profile

 • User profile

 • Sentry profile

Each has its own icon representation in a profile manager.
648 Tivoli Enterprise Internals and Problem Determination

The resource, role, and user profile types come with the ESM product, and
the Sentry profiles created use the TME 10 Distributed Monitoring Sentry
profile. When you first look at the resource, role, and user profiles, there is
nothing useful in there, but you can populate them by double-clicking the
profile and choosing Populate... from the Profile pull-down menu. To get all
the information already defined, the Validation Policies have to be disabled by
double clicking the profile and choosing Edit from the pull-down menu and
then disable the Validation Policies.

After this has been done, you can choose the Populate... menu item to get all
information including Oracle administrator information. After that, it is
recommended that you turn back the Validation Policies to enabled to avoid
overwriting any required administrator information.

To implement some useful TME 10 Distributed Monitoring monitors, we used
a script file, which allows the creation of some Sentry profiles in a given
profile manager.
RDBMS Management 649

Figure 239. Script to Create ESM Sentry Profiles, Page 1

 #!/bin/sh
 #
Script to create sample monitoring profiles
 #
sample_monitors.sh
 # Provided by DBMX for demonstration use only
- Does not perform any error checking
 # Creates five profiles with sample monitors. Requires the Profile Manager
as an argument.
 #
 # When this script has completed, set the User and Group ID for the profiles, and
distribute to Database and Instance endpoints as appropriate
if [$# -ne 1]
 then
 echo "Format is: sample_monitors.sh ProfileManager"
 exit 1
 fi
 PRFMAN=$1
 # Create the profiles
 wcrtprf @ProfileManager:$PRFMAN SentryProfile Database_Alarms
 wcrtprf @ProfileManager:$PRFMAN SentryProfile Database_Warnings
 wcrtprf @ProfileManager:$PRFMAN SentryProfile Oracle_Caches
 wcrtprf @ProfileManager:$PRFMAN SentryProfile Instance_Warnings
 wcrtprf @ProfileManager:$PRFMAN SentryProfile Capacity_Planning
 #Add the monitors for profile Database_Alarms
waddmon OracleDatabase archivespacerl -a no -t "30 minutes" \
 -c critical -R "<" 3 -n "Oracle Sentry" \
 -c severe -R "<" 5 -n "Oracle Sentry" \
 -c warning -R "<" 10 -n "Oracle Sentry" \
 Database_Alarms
 waddmon OracleDatabase nettwolistener -a no -a "" -t "5 minutes" \
 -c critical -R "==" "down" -n "Oracle Sentry" \
 Database_Alarms
 waddmon OracleInstance rdbmsstate -t "5 minutes" \
 -c critical -R "==" "failed" -n "Oracle Sentry" \
 Database_Alarms
 # Add the monitors for profile Database_Warnings
 waddmon OracleDatabase alerts -a no -t "10 minutes" \
 -c critical -R "==" 1 -n "Oracle Sentry" \
 -c severe -R "==" 2 -n "Oracle Sentry" \
 -c warning -R ">" 2 -n "Oracle Sentry" \
 Database_Warnings
 waddmon OracleDatabase backgrounddumpspace -a no -t "30 minutes" \
 -c critical -R ">" 95 -n "Oracle Sentry" \
 -c severe -R ">" 90 -n "Oracle Sentry" \
 -c warning -R ">" 85 -n "Oracle Sentry" \
 Database_Warnings
waddmon OracleDatabase freespacedef -a no -a no -t "1 hour" \
 -c critical -R "<" 0 -n "Oracle Sentry" \
 Database_Warnings
650 Tivoli Enterprise Internals and Problem Determination

Figure 240. Script to Create ESM Profiles, Page 2

waddmon OracleDatabase freespacefragmentation -a no -t "1 day" \
 -c critical -R "<" 10 -n "Oracle Sentry" \
 -c severe -R "<" 20 -n "Oracle Sentry" \
 -c warning -R "<" 30 -n "Oracle Sentry" \
 Database_Warnings
waddmon OracleDatabase freetablespace -a no -a no -t "1 hour" \
 -c critical -R "<" 5 -n "Oracle Sentry" \
 -c severe -R "<" 10 -n "Oracle Sentry" \
 -c warning -R "<" 20 -n "Oracle Sentry" \
 Database_Warnings
 waddmon OracleDatabase maximumextents -a no -a no -t "1 days" \
 -c critical -R "<" 1 -n "Oracle Sentry" \
 -c severe -R "<" 3 -n "Oracle Sentry" \
 -c warning -R "<" 5 -n "Oracle Sentry" \
 Database_Warnings
 waddmon OracleDatabase rowsindual -a no -t "1 hour" \
 -c critical -R "!=" 1 -n "Oracle Sentry" \
 Database_Warnings
 # Add the monitors for profile Oracle_Caches
 waddmon OracleInstance bufcachehitratioi -a no -t "15 minutes" \
 -c critical -R "<" 70 -n "Oracle Sentry" \

-c severe -R "<" 80 -n "Oracle Sentry" \
 -c warning -R "<" 90 -n "Oracle Sentry" \
 Oracle_Caches
 waddmon OracleInstance dictcachehitratioi -a no -t "15 minutes" \
 -c critical -R "<" 70 -n "Oracle Sentry" \
 -c severe -R "<" 80 -n "Oracle Sentry" \
 -c warning -R "<" 90 -n "Oracle Sentry" \
 Oracle_Caches
 waddmon OracleInstance libcachehitratioi -a no -t "15 minutes" \
 -c critical -R "<" 90 -n "Oracle Sentry" \
 -c severe -R "<" 92 -n "Oracle Sentry" \
 -c warning -R "<" 95 -n "Oracle Sentry" \
 Oracle_Caches
 # Add the monitors for profile Instance_Warnings
 waddmon OracleInstance continuedrowratio -a no -t "2 hours" \
 -c critical -R ">" 1 -n "Oracle Sentry" \
 -c severe -R ">" 0.5 -n "Oracle Sentry" \
 -c warning -R ">" 0 -n "Oracle Sentry" \
 Instance_Warnings
 waddmon OracleInstance enqueuetimeouts -a no -t "2 hours" \
 -c critical -R "- >=" 3 -n "Oracle Sentry" \
 -c severe -R "- >=" 2 -n "Oracle Sentry" \
 -c warning -R "- >=" 1 -n "Oracle Sentry" \
 Instance_Warnings
waddmon OracleInstance freelistwaits -a no -t "2 hours" \
 -c critical -R ">" 2 -n "Oracle Sentry" \
 -c severe -R ">" 1 -n "Oracle Sentry" \
 -c warning -R ">" 0.5 -n "Oracle Sentry" \
 Instance_Warnings
-c critical -R ">" 2 -n "Oracle Sentry" \
 -c severe -R ">" 1 -n "Oracle Sentry" \
 -c warning -R ">" 0.5 -n "Oracle Sentry" \
 Instance_Warnings
 waddmon OracleInstance readsysstatd -a no -t "2 hours" \
 -c critical -R "- >=" 5 -n "Oracle Sentry" \
 -c severe -R "- >=" 3 -n "Oracle Sentry" \
 -c warning -R "- >=" 1 -n "Oracle Sentry" \
 Instance_Warnings
waddmon OracleInstance processratio -a no -t "2 hours" \
 -c critical -R ">" 95 -n "Oracle Sentry" \
 -c severe -R ">" 90 -n "Oracle Sentry" \
 -c warning -R ">" 85 -n "Oracle Sentry" \
 Instance_Warnings
waddmon OracleInstance redologwaits -a no -t "10 minutes" \
 -c critical -R "- >=" 5 -n "Oracle Sentry" \
 -c severe -R "- >=" 3 -n "Oracle Sentry" \
 -c warning -R "- >=" 1 -n "Oracle Sentry" \
 Instance_Warnings
RDBMS Management 651

Figure 241. Script to Create ESM Profiles, Page 3

The above script will generate the following profiles:

 • Capacity_Planning

 • Database_Alarms

 • Database_Warnings

 • Instance_Warnings

 • Oracle_Caches

Figure 242 shows an example of what is added in the SentryProfiles by
running the above script file:

 waddmon OracleInstance rollbackwaits -a no -t "1 hour" \
 -c critical -R ">" 5 -n "Oracle Sentry" \
 -c severe -R ">" 3 -n "Oracle Sentry" \
 -c warning -R ">" 2 -n "Oracle Sentry" \
 Instance_Warnings
Add the monitors for profile Capacity_Planning
 # Note that these monitors store information in the ESM$MONITOR table
 waddmon OracleInstance bufcachehitratio -a yes -t "1 hour" \
 -c always -n "Oracle Sentry" \
 Capacity_Planning
 waddmon OracleInstance callrate -a yes -t "1 hour" \
 -c always -n "Oracle Sentry" \
 Capacity_Planning
 waddmon OracleInstance dictcachehitratio -a yes -t "1 hour" \
 -c always -n "Oracle Sentry" \
 Capacity_Planning
 waddmon OracleInstance libcachehitratio -a yes -t "1 hour" \
 -c always -n "Oracle Sentry" \
 Capacity_Planning
 waddmon OracleInstance physicalreads -a yes -t "1 hour" \
 -c always -n "Oracle Sentry" \
 Capacity_Planning
 waddmon OracleInstance physicalwrites -a yes -t "1 hour" \
 -c always -n "Oracle Sentry" \
 Capacity_Planning
 waddmon OracleInstance sortoverflowratio -a yes -t "1 hour" \
 -c always -n "Oracle Sentry" \
 Capacity_Planning
 exit
652 Tivoli Enterprise Internals and Problem Determination

Figure 242. ESM Capacity_Planning Monitors

The script file to generate these monitors applies to UNIX and NT TMR
servers. On NT, you have to run the script file in the bash environment. The
previous examples should help you to create similar monitors for the other
database modules.

B.2 Directories for ESM Database Management Files

The following is a list of extra files provided that you may need to use along
with their locations. The files listed below might be necessary for problem
determination purposes, executing from the command line, or for adding
something to an existing rule base. They are all contained within $BINDIR/bin:

 • M7MSSQLServerSentry.pl

 • M7OracleSentry1.pl

 • M7OracleSentry2.pl

 • M7OracleSentry3.pl

 • M7OracleSentry4.pl

 • M7OracleSentry5.pl

 • M7SQLEnginev70

 • M7SQLEnginev71

 • M7SQLEnginev72

 • M7SQLEnginev73

 • M7SybaseSentry1.pl

 • M7SybaseSentry2.pl

 • M7SybaseSentry3.pl

 • M7SybaseSentry4.pl

 • mcsl
RDBMS Management 653

 • mextract

 • sregmonsvr

 • sregsvr

 • ostartup

 • oshutdown

B.3 Adding ESM Tasks

ESM for Oracle provides the following task-related files:

 • /usr/local/Tivoli/bin/generic/OracleFrameworkTasks

OracleFrameworkTasks.tlf

 • /usr/local/Tivoli/bin/generic/OracleSentryTasks

OracleSentryTasks.tlf

The second line in the file OracleFrameworkTasks.tlf has the distribution mode
for the tasks:

Distribute = "ALI";

This means that when the task library is loaded using the wtll command, the
task executables are not copied to each managed node.

To run a task as a response to a monitor, the distribution mode needs to be
LOCAL; so, this file will need editing, and the task library will need to be
reloaded.There are no such tasks for the other databases. These are the
Task File Libraries, which are necessary to create the task library on the
desktop within a given policy region. In the current release, the task libraries
are not generated during installation but by running the following commands:

wtll -p Database-Management -P cat OracleFrameworkTasks.tlf

wtll -p Database-Management -P cat OracleSentryTasks.tlf

The -p (lower-case) parameter indicates the policy region where the task
libraries are going to be created, and the -P (upper-case) defines a
preprocessor that needs to be run before creating the libraries. Both
parameters are mandatory; otherwise, you will get a failure.

If you specify the label for the policy region incorrectly you will get an error:
654 Tivoli Enterprise Internals and Problem Determination

Figure 243. Possible Error Message when Creating ESM Task Library

The same error message occurs when missing one of the mandatory
parameters, which can be misleading.

Refer to Section 7.4, “Task Library” on page 238 for more information about
task libraries and adding tasks.

B.3.1 ChangeOracleHome Task

This task changes the ORACLE_HOME value stored on the Database
Endpoint Object. It does not effect the location of the physical database; it
changes where ESM expects that location to be. As such, this task should
only be used to effectively notify the ESM subsystem that the
ORACLE_HOME location has been successfully changed for the target
database. This should only be run once the database has been moved. The
task updates the object with the following idlcall:

idlcall $EndpointOid _set_Home "$NewOracleHome"

To check the value of the attribute, you can do the following:

idlcall $EndpointOid _get_Home

Where $EndPointOid is the OID of the managed node containing the database.
The task also updates the VersionNumber attribute if the Oracle software has
been upgraded.

B.3.2 DiscoverOracleDB Task

This task attempts to auto-discover and register Oracle databases on the
target managed node. For all UNIX implementations, the oratab file is
scanned. To allow for possible connection failures and down databases
during registration, the process is NOT deemed as a recoverable transaction.
This means that if one database registration fails, the discovery process
reports the failure and continues trying to register other databases.

The files it reads on UNIX are /var/opt/oracle/oratab and /etc/oratab. Which
one is used depends on the UNIX type; so, it looks at both to make sure it
finds the entries.

Syntax errors:
tll error in Management, line 1: Cannot run preprocessor "cpp"
Improper task library statement (missing "TaskLibrary" keyword; saw Cannot instead)
RDBMS Management 655

For each database it finds, oregdb is used to register the database.

B.4 TME 10 Enterprise Console Operations

ESM provides a number of collections of files that help integrate the product
with Distributed Monitoring and TEC as follows:

 • /usr/local/Tivoli/bin/generic/OracleSentry:

ESMSentry.baroc
M7OracleDatabase.baroc
M7OracleDatabase.col
M7OracleDatabaseDefaults.sh
M7OracleDatabaseDefaultsDrop.sh
M7OracleInstance.baroc
M7OracleInstance.col
M7OracleInstanceDefaults.sh
M7OracleInstanceDefaultsDrop.sh

 • /usr/local/Tivoli/bin/generic/MSSQLSentry:

ESMSentry.baroc
M7DropMSSQLDatabaseDefaults.sh
M7DropMSSQLServerDefaults.sh
M7MSSQLDatabaseDefaults.sh
M7Profile pull down menu.MSSQLDatabaseSentry.baroc
M7MSSQLDatabaseSentry.col
M7MSSQLServerDefaults.sh
M7MSSQLServerSentry.baroc
M7MSSQLServerSentry.col

 • /usr/local/Tivoli/bin/generic/SybaseSentry:

ESMSentry.baroc
M7SybaseDatabase.baroc
M7SybaseDatabase.col
M7SybaseDatabaseDefaults.sh
M7SybaseDatabaseDefaultsDrop.sh
M7SybaseServer.baroc
M7SybaseServer.col
M7SybaseServerDefaults.sh
M7SybaseServerDefaultsDrop.sh
SetErrorCategory.sh

This task is not supported on Windows NT, as the user would have to
supply an internal password for each database.

Note
656 Tivoli Enterprise Internals and Problem Determination

To get database management events into TEC, a new rule base is necessary
with the imported Distributed Monitoring and ESM .baroc files as illustrated in
figure:

Figure 244. Import of Oracle and Sybase .baroc Files into a New Rule Base

The new .baroc files should be added at the end of the existing .baroc files of
the actual rule base. You have to have the right sequence when adding these
.baroc files. For the database management the following hierarchy applies:
RDBMS Management 657

Figure 245. TEC .baroc File Hierarchy for Database Management

B.5 ESM Frequently Asked Questions

The following sections relate some of the more important questions and
answers about ESM database management.

B.5.1 Oracle Framework

Q:Can I register a database that isn’t running?

A: No, but this is planned to be an option in a future release of ESM
Framework.

Q:Do I have to register all my databases through the GUI?

A: No, you can use the DiscoverOracleDB task to register databases on
target Managed Node. This does not currently work on Windows NT, as
the Oracle INTERNAL account requires a password that ESM cannot
discover.

Q: Can I register a database in an interconnected TMR?

A: Yes, as long as the database and policy region are in the same TMR.

Q: What happens if I upgrade Oracle, and ORACLE_HOME changes?

A: Run the ChangeOracleHome task to change the ORACLE_HOME
attribute stored on the Oracle7 object.

Q: Can I add a datafile or rollback segment to more than one database
at a time?

A: No, all of the actions in the Framework software apply to an individual
endpoint. You could write a task to apply the actions to multiple
databases.

Sentry.baroc

ESMSentry.baroc

M7Oracle7Database.baroc
M7Oracle7Instance.baroc
M7SybaseServer.baroc
M7SybaseDatabase.baroc
M7MSSQLServer.baroc
M7MSSQLDatabase.baroc
658 Tivoli Enterprise Internals and Problem Determination

Q: When editing a parameter, does ESM save the old version of the
parameter file?

A: Yes, the init<sid>.ora file is saved as init<sid>.ora.old. A comment is
added to the init<sid>.ora file to stay what the ID value of the parameter
was and when the file was changed.

Q: Are there any plans to have a SQL*Net listener endpoint?

A: This may be provided in a future release of ESM.

B.5.2 Oracle7 Distributed Monitoring

Q: What are the most-likely causes of a monitor failing to run?

A: The two most common causes of problems are: The user ID and group ID
have not been set for the profile. The administrator does not have the
oracle_monitor role.

Q: Why do I need to set user-ID and group-ID to get a monitor to run?

A: Because ESM methods run under the control of a particular administrator.

Q: Why is the oracle_dba role needed to run a monitor?

A: This is needed because StoreHistory and the Chained Rows monitors use
the ExecuteSQL method, which requires the oracle_dba role.

Q: If I have a mix of UNIX and NT machines, how can I set the user and
group ID for a profile and distribute to both machine types?

A: You cannot do this. Different profiles have to be created for UNIX and NT
subscribers.

Q: Is there a TEC Adapter for ESM?

A: No, ESM uses the TME 10 Distributed Monitoring mechanism to forward
events to the TEC.

Q: Should I reload ESM baroc files when I upgrade?

A: Yes, as there may be changes to the classes or new monitors may be
added.

Q: How does SQL*Net V1 TCPI/IP listener monitor work?

A: By running the command tcpctl stat and parsing the output to see that
the listener is running. A timeout is set on the command to see if the
listener has hung.

Q: How does the SQL*Net V2 listener monitor work?
RDBMS Management 659

A: By running the command lsnrctl stat and parsing the output to see that
the listener is running. A timeout is set on the command to see if the
listener has hung.

Q: Should I distribute the listener monitors to each endpoint?

A: You can, but you only need to distribute these monitors to a single
endpoint.

Q: How can I turn off monitors when the database is shut down?

A: Use the DisableMonitor task in the ESM OracleSentryTasks task library.

Q: Can I distribute a profile containing instance monitors to a database
endpoint, and conversely?

A: Yes, but you shouldn’t, and the ability to do this may be removed in a
future release.

Q: Why do I get an exception when running chained rows monitors?

A: Probably because the utlchain.sql script has not been run as SYS. This
creates a table called CHAINED_ROWS that stores the output from the ANALYZE
TABLE LIST CHAINED ROWS command.

Q: Does the ESM$MONITOR table have to be owned by the user DBMX?

A: Yes, as ESM runs the command:

INSERT INTO DBMX.ESM$MONITOR VALUES(...);

Q: Why does my Run Program response to a monitor not work?

A: When using the Run Program response, there are a number of attributes of
the file to be run that may cause things not to work as desired. When
specifying a file to run, provide the full path name to the file. What you
select for the path name will depend on which type of managed node to
which you will be distributing the profile. Another consideration is the
permission of the file. On a UNIX system, this can be checked through
standard CLI commands, while on Windows NT, you can use the File
Manager or other CLI interfaces. The permission you choose for the file
will depend on who is going to be running the response, that is, the
user-ID/group-ID of the profile, which is set through the Edit menu in the
Sentry GUI.

Q: Why is the Profile_OID incorrect in the history table?

A: Probably because the Sentry 3.0.1 patch has not been installed. In
previous releases, the Profile_OID environment variable did not exist, and
ESM inserted a dummy value into the table.

Q: Can you advise on setting up monitoring profiles?
660 Tivoli Enterprise Internals and Problem Determination

A: It is difficult to give general advice since every DBA has their own
monitors and SQL scripts that they want to run. The default thresholds
and monitoring schedule for each ESM monitor should be adequate for
most situations. If ESM does not have a monitor that a customer wants, it
is possible to create a monitor using the Freeform SQL monitors.

Q: Can I add my own list of alerts to the Alerts monitor?

A: Not with this release. In a feature release of ESM, you will be able to
specify which alerts you want included and excluded from the list of alerts
that ESM checks.

Q: How does the free space fragmentation work?

A: The information below is taken from the Oracle DBA Handbook. To judge
whether a table space could benefit from a free space rebuild, it is
necessary to establish a baseline on an arbitrary scoring system. Since
free space fragmentation is made up of several components (number of
extents, size of largest extent), the scoring index considers both. The
weight used is arbitrary and is chosen to reflect the potential for the
database to acquire a large extent. Thus, the number of extents is given
little importance. The critical factor is the size of the largest extent as a
percentage of the total free space. This is referred to as the Free Space
Fragmentation Index (FSFI), and is calculated as follows:

Figure 246. Equation to Calculate the Free Space Fragmentation Index

The largest possible FSFI is 100. As the number of extents increases, the
FSFI rating drops rapidly. You should rarely encounter free space
availability problems in table spaces that had adequate free space
available and FSFI ratings over 30.

Q: How does RDBMS state monitor know if a database has crashed or
has been shutdown by a database administrator?

A: By looking at the end of the alert log for a shutdown message. If Oracle is
shutdown by a database administrator, a message will be written to the
alert log, but if a database crashes, no message will be written.

Q: Do any of the monitors modify a database?

A: If the StoreHistory option is set to Yes for a monitor, a row will be written
DBMX.ESM$MONITOR every time the monitor fires. The Chained rows (cluster)

FSFI = 100 * sqrt (----------------------) * --largest extent
sum all extents (number of extents) to the power of 1/4

1

RDBMS Management 661

and Chained rows (table) monitors run the ANALYZE command and will
update the SYS.CHAINED_ROWS table.

B.5.3 Oracle User Management

Q: How does ESM populate the Set Tablespace dialog ?

A: This is initially populated with SYSTEM, and the following four table
spaces exist if a database is created by Oracle on a UNIX system when
the Oracle software is installed: RBS, TEMP, TOOLS and USER. When a
ESM User Profile is populated, all the table spaces in the endpoint
database are added to the tablespaces list. A user can manually add table
spaces on the list through the Set Tablespace dialog.

Q: Is the Tablespace pick list available on a global basis or a per-profile
basis?

A: On a per-profile basis.

Q: Can I set policy to stop showing invalid subscribers to ESM User
Administration Profiles in the Subscribers dialog?

A: Yes, using the following steps:

1. wcrtpol -d ProfileManager Subs

2. wgetpolm -d ProfileManager Subs pm_def_subscribers > subs.tst

3. vi subs.tst

Now change:

wgetallinst -l ProfileEndpoint

To the following:
wgetallinst -l OracleDatabase

4. wputpolm -d ProfileManager Subs pm_def_subscribers < sub.tst

5. Set Default Managed Resource Policy for ProfileManager to Subs

B.6 Troubleshooting the ESM Framework

This section contains information on dealing with problems that can arise with
the ESM Framework feature. Refer to Chapter 3, “The Tivoli Core Installation
Process” on page 59 for general advice regarding the installation of products.
662 Tivoli Enterprise Internals and Problem Determination

B.6.1 Troubleshooting ESM TMR Server Installs

Check the output files and error logs listed in table 43:

Table 43. Output Files and Error Logs for ESM Oracle Server Installation on UNIX

On NT, the files will be in the directory indicated by the system variable TMP,
which by default is %DBDIR%\tmp.

B.6.2 Reinstalling Failed Server Installations

If the product is only partially installed, you may need to remove the marker
files before reinstalling the product. The following list shows the marker files
on UNIX and NT:

 • In the /usr/local/Tivoli/bin/aix4-r1/.installed directory on UNIX or in
the tivoli\bin\w32-ix86\.installed directory on NT:

 • OracleFramework_BIN

 • OracleSentry_BIN

 • OracleUser_BIN

 • In the /usr/local/Tivoli/lib/aix4-r1/.installed directory on UNIX or in
the tivoli\lib\w32-ix86\.installed directory on NT:

 • OracleFramework_LIB

 • OracleUser_LIB

 • In the /usr/local/Tivoli/bin/generic/.installed directory on UNIX in the
tivoli\bin\generic\.installed directory on NT:

 • OracleFramework_GBIN

 • OracleSentry_GBIN

 • In the /var/spooll/Tivoli/db/nodename.db/.installed directory on UNIX or
in the tivoli\db\nodename.db\.installed directory on NT:

 • OracleFramework_ALIDB

 • OracleUser_ALIDB

Files (UNIX) Location

/tmp/tivoli.sinstall server

/var/spool/Tivoli/nodename.db/oservlog server

/tmp/install.cfg.error and
/tmp/install.cfg.output

server
RDBMS Management 663

 • In the /usr/local/Tivoli/man/aix4-r1/.installed directory on UNIX (no
entry on NT):

 • OracleFramework_MAN

 • OracleSentry_MAN

 • OracleUser_MAN

 • In the /usr/local/Tivoli/msg_cat/.installed directory on UNIX or in the
tivoli\msg_cat\.installed directory on NT:

 • OracleFramework_CAT

 • OracleUser_CAT

B.6.3 Troubleshooting ESM Managed Node Installs

Check the following output files and error logs, as shown in Table 44:

Table 44. Output Files and Error Logs for ESM Oracle Client Installation on UNIX

On NT the files will be in the directory indicated by the system variable TMP,
which, by default, is %DBDIR%\tmp.

B.6.4 ESM Database Registration

This is more likely to encounter problems than anything else. Check that the
Oracle database is up and running before trying to register the database and
that the administrator has the oracle_dba and senior roles. OracleDatabase
must be a managed resource in the policy region used for database
management. Check that the information in the dialog is correct, that is, no
spaces or control characters.

NIS (Yellow Pages) can mess up user name and group, particularly in IBMs
AIX. You may need to create an entry in the /etc/group file for the dba group
on the local machine.

For Windows NT, enter the database internal user-id password in the group
field.

Files (UNIX) Location

/tmp/tivoli.cinstall Server

/var/spool/Tivoli/nodename.db/oservlog Server and client

/tmp/install2.cfg.error and /tmp/install2.cfg.output Client

/tmp/client.cfg.error and /tmp/client.cfg.output Client
664 Tivoli Enterprise Internals and Problem Determination

Use oregdb to do a command line registration. The following shows the usage
and an example of how to do so:

oregdb Hostname ORACLE_SID ORACLEHOME Owner OwnerGROUP Policy_Region

In our environment this would be:

oregdb rh0255f D1 /oracle/home/app/oracle/product/7.3.2 oracle
dba Database-Management

The registration process connects to the database to ensure it is running, and
this can be where problems are indicated.

B.6.4.1 Registration over an Interconnected TMR
The database and policy region must be in the same TMR; otherwise,
registration will fail.

If you have two TMRs, the local one (called local, for example) and a remote
one (called remote, for example), the remote TMR will have a policy region,
called remote-region that contains databases that have been registered on
the remote TMR.

Suppose we make a two-way inter-TMR link initiated from our local TMR.

You may wish to verify updates have taken place or ensure they have by
manually running the update process. Go on to each TMR and do an update
of all resources from the GUI (or wupdate -r All on the command line) on both
the local and remote TMRs. Then you have to update the resources to which
your local administrator has access, as described in the following list:

1. Select TMR Connections -> Top Level Policy Regions from your local
desktop menu to display the Top Level Policy Regions window. One of the
region is the remote-region.

2. Double-click on the Administrator icon in your local-region dialog to open
your local Administrators dialog.

3. Drag and drop the remote-region icon in the Top Level Policy Regions
dialog over and onto the local administrators icon in the local
Administrators dialog. Be careful to drop it on to your local
Administrators icon because the remote Administrators icon will also be
visible.

After a few seconds, the remote-region policy region icon will appear in
your local desktop dialog.

Therefore, from your local desktop, you will have both local-region and
remote-region policy regions accessible through the icons. However, you
RDBMS Management 665

cannot copy or drag and drop the database icons from one region to the
other.

A profile manager created in the local policy region will be able to subscribe
to databases from both local-region and remote-region

B.6.5 Removing a Database Object

Don’t just delete the object in the GUI, you must unsubscribe first. Make sure
you don’t leave monitors running. Check this with the wlseng command.

You may need to do this if registration fails. It may fail after it has created an
object in CCMS. Find the OID and use idlcall to remove the objects. This
needs to be done for the database object and the instance object:

wlookup -ar OracleDatabase
wlookup -ar OracleInstance
idlcall OID remove

You should be familiar with Chapter 2, “Tivoli Object Database Architecture”
on page 9 before manipulating objects with IDL calls and be sure to take note
of any warnings given in that chapter.

B.6.6 ESM Roles

This section summarizes the TMR roles provided by ESM:

 • oracle_dba

Can do anything to Oracle Databases.

 • oracle_admin

Distribute monitoring profiles and run TME 10 Distributed Monitoring
monitors.

 • oracle_operator and oracle_user

These are currently equivalent. They can perform all read-only operations
but no updates. Can call SelectSQL on Instance but not Database.

 • oracle_monitor

Very restricted.

 • Can call SelectSQL on instance but not database.

 • Can call StartSentryChannel for omonsql based monitoring.

 • Can call _set_state on database to flip the icons.
666 Tivoli Enterprise Internals and Problem Determination

B.6.7 ESM Notice Group

At least one administrator should be assigned the notice group Oracle
Database Management, but don’t rely on this alone. You will need to review
what other notice groups the administrator should have assigned based on
the use of tasks, monitors, and so on.

B.6.8 Database Operations

There are two commands provided by ESM located in /$BINDIR/bin, which
might be helpful doing database operations:

 • ostartup

 • oshutdown

ostartup This command enables you to start a database from the command
line. This could be used as a Run Program response to the
RDBMS state monitor if a database crashes.

Figure 247. ESM Command Line Database Startup

oshutdown This command enables you to start a database from the
command line. This could be used as a Run Program response
to other RDBMS monitors to initiate an automated shutdown of
the database if needed.

ostartup
usage: ostartup [-p] [-r] [-f] [-n | -m | -o] [-I] database-name
 -p = parallel
 -r = restricted
 -f = force (abort)
 -n = nomount
 -m = mount
 -o = open (default)
 -I = to specify that database-name refers to an OracleInstance

ostartup Command Syntax
RDBMS Management 667

Figure 248. ESM Command Line Database Shutdown

B.6.9 Symbolic Links

Note that Oracle does not support ORACLE_HOME as a symbolic link, and
this is the same with ESM. You may get strange error messages starting up a
database from within ESM if ORACLE_HOME is a symbolic link. The
message will indicate that another instance already has the database
mounted.

B.6.10 Background Daemons

Table 45 gives an overview of the daemons used by ESM:

Table 45. ESM Distributed Monitoring Background Daemons

B.7 Troubleshooting ESM Distributed Monitoring

This section contains information on dealing with problems that can arise with
the ESM Distributed Monitoring usage.

Daemon Object Type Description

M7SQLEngineRun M7SQLEngine Establishes and maintains a connection
to the Oracle database. Executes SQL
and returns results.

M7DatabaseRunBase Oracle7Database Provides all non-GUI database
functionality.

M7DatabaseRunGUI Oracle7Database Provides GUI for database objects.

M7InstanceRunBase Oracle7Instance Provides all non-GUI profile operations
for Oracle instances.

M7InstanceRunGUI Oracle7Instance Provides GUI for instance objects.

M7InstanceRunSQL Oracle7Instance Controls the M7SQLEngine daemons
for connection to the database.

oshutdown
usage: oshutdown [-n | -i | -a] [-I] database-name
 -n = normal
 -i = immediate (default)
 -a = abort
 -I = to specify that database-name refers to an OracleInstance

oshutdown Command Syntax
668 Tivoli Enterprise Internals and Problem Determination

B.7.1 ESM Distributed Monitoring Installation

If the product is only partially installed, you may need to remove the ESM
marker files before reinstalling the product. For more information about the
marker file locations refer to Section B.6.1, “Troubleshooting ESM TMR
Server Installs” on page 663.

If the names of any monitors have changed, drop and re-create the profiles.

B.7.2 ESM Distributed Monitoring Notice Groups

Oracle Sentry can be used as the output from a monitor.

SentryStatus shows errors with monitors. Ensure that at least one
administrator has this notice group subscribed.

Figure 249 is an example of an entry posted to the Oracle Sentry notice group
in the case where Store History is chosen, but the table doesn’t exist:

Figure 249. Output Example for Oracle Sentry Notice Group

To see the monitor defaults in command line, issue the wlsmon command.

B.7.3 User and Group ID with Insufficient Access

This is a common problem with Distributed Monitoring. Profiles are created
with a UID and GID of nobody. This must be changed to a valid UID and GID
with appropriate access.

The Set User/Group ID controls the user/group ID under which the monitor
probe runs. The idea is that the processes that manage monitoring only allow
probes to be executed (with their inherent overhead) for people who are
authorized to do so.

Monitoring information:
 Sentry Capacity_Planning/Sort Overflow Ratio on host v722@toby
Mon Apr 07 13:58:00 1997
 Status: >>> E.EXEC <<<
 Sort Overflow Ratio (yes) (omonsql Returned Error : {
USER_EXCEPTION ExSqlError {
"Exception:UserException:SysAdminException::ExException:ExM7
SqlException:ExSqlError" "M7ExceptionCat" 1 "%5$t{%c} (%3$d):
SQL Error : ‘%7$s’) Exit code 29
 (Previous: Current: Effective:)
RDBMS Management 669

Figure 250. Panel to Set UID and GID in Profiles

Sentry only carries out authorization on a profile the first time it is pushed to
that node or when the Sentry engine starts up. Therefore, if you change the
user ID in the profile after you have already pushed it, you must stop the
Sentry engine before re-pushing the profile with the new user ID.

The ability to change the Set User/Group ID requires the Tivoli admin role. This
makes it possible to pre-configure the profile from an administrator desktop
and have it used and pushed by someone without that role.

A good way to do this (one of many) is to create a designated OS user
account on the target machine(s), such as esm_monitor, and treat it like the
nobody account as far as the OS is concerned. Then create a TME 10
administrator desktop with at least resources, policy regions, and so on, but
include the oracle_monitor role and then add the unqualified esm_monitor
login (that is, not esm_monitor@host) to its login list.

B.7.4 Removing Monitors

Unsubscribe - Remove all profile copies or the monitors keep running.

Clear out the monitors using the wclreng command.
670 Tivoli Enterprise Internals and Problem Determination

B.7.5 Required Roles

The oracle_monitor role or user role is needed to run monitors. Oracle_admin
is needed to distribute a monitoring profile and to run a monitor.

B.7.6 Database and Instance Collection

Push profiles out of this collection to the database subscriber only. This is not
enforced in the current release. Don’t push profiles to a managed node
subscriber. If you do, you will get an EXEC error with ORACLE_SID not
defined. Software will be changed in future to prevent this. The same rule
applies to profiles that are part of the instance collection. Push these profiles
to a instance subscriber only.

B.7.7 Monitoring Tasks

This section summarizes the tasks provided.

 • CreateHistoryTable

This task creates the DBMX user and the ESM$MONITOR table used by
ESM for storing historical monitoring results, thereafter, used by
ESMChart. The task works as follows:

 • If the user DBMX and the table ESM$MONITOR exist, exit.
 • If the user DBMX doesn’t exist, create the user using the parameters

supplied on the GUI.
 • Create user DBMX identified by &passworddefault tablespace

&dtsnametemporary tablespace &ttsname.
 • If the table ESM$MONITOR doesn’t exist, create it.
 • Create table dbmx.ESM$MONITOR (monitor_id number, profile_oid

varchar2(20), monitor_date date default SYSDATE, monitor_value
number, monitor_title varchar2(100)).

 • If CONNECT privilege is granted to the user, grant connect and
resource to dbmx or grant resource to dbmx.

 • PurgeHistoryTable

This task clears the ESM$MONITOR table, used by ESM for storing historical
monitoring results, thereafter, used by ESMChart.

 • If all records are to be purged, the task drops and re-creates the table.
 • Drop table dbmx.esm$monitor.
 • Create table dbmx.ESM$MONITOR (monitor_id number, profile_oid

varchar2(20), monitor_date date default SYSDATE, monitor_value
number, monitor_title varchar2(100)).

 • Otherwise, delete all records prior to the date given on the GUI.
 • Delete from dbmx.esm$monitor where monitor_date < &date.
RDBMS Management 671

 • CurrentRunningSQL

This task shows the currently-running SQL for a specified user or for all
users. The SQL used to display the SQL for all users is:

select v$session.username, v$sqltext.piece, v$sqltext.sql_text
from sys.v$session v$session, sys.v$sqltext v$sqltext where
v$sqltext.address = v$session.sql_addressand v$sqltext.hash_value
= v$session.sql_hash_valueorder by v$session.username,
v$sqltext.piece;

 • DisableMonitoring:

This task disables all the currently-running monitors on the target
database(s) and optionally shuts down the database(s).

It uses wdisprb to disable the monitors, then calls oshutdown to shutdown
the database in the requested mode.

 • EnableMonitoring:

This task enables all the currently-running monitors on the target
database(s) and optionally starts up the database(s).

It uses ostartup to start the database, then calls wenlbprb to enable the
monitors.

B.7.8 Further Problem Determination at the Endpoint

The following a suggested sequence of steps to try. Refer also to Chapter 12,
“Distributed Monitoring” on page 387.

 • Check what's in the Sentry engine. This will cause an error if the engine
isn’t running. Use wlseng to run the engine.

 • Check the user and group ID of the Sentry profile.

 • TME Administrator needs oracle_monitor role.

 • OS user specified in Set User & Group ID needs to be in an Edit Logins list
for a TME Administrator that has the oracle_monitor role.

 • Check the SentryStatus notice group; it has the execution status and any
problems with response actions will generate a message here.

B.8 Troubleshooting ESM Oracle User Managment.

This section deals with the management of users.
672 Tivoli Enterprise Internals and Problem Determination

B.8.1 Installation of ESM User Management

If the product is only partially installed, you may need to remove the marker
files before reinstalling the product. For more information about the marker
file locations for ESM refer to B.6.1, “Troubleshooting ESM TMR Server
Installs” on page 663.

B.8.2 User Management Notice Groups

At least one administrator should be assigned the notice group Oracle User
Management. This will receive a notice for each error condition, such as a
distribute failing.

B.8.3 User Management Roles

You will need a combination of Tivoli roles and ESM roles to use User
Management. The roles required depend on the type of distribution. The
following tables will show the dependencies:

Table 46. Roles Required for Distributing to Next Level of Subscribers

Table 47. Roles Required for Distributing to All Levels of Subscribers

Table 48. Roles Required for Distributing from the Endpoint

B.8.4 Overview of Passwords in OracleUser Profiles

User management store the user password. It is held in two different formats
depending on where the information comes from:

 • If an administrator types in the password, it is held as a Tivoli encrypted
string.

Activity Context Required Roles

Distribute one or more profiles from a
profile manager.

Profile Manager admin

Activity Context Required Roles

Distribute one or more profiles from a
profile manager.

Profile Manager admin

Edit and distribute an endpoint profile. Endpoint admin

Update the database. Endpoint oracle_dba

Activity Context Required Roles

Edit and distribute an endpoint profile. Endpoint admin

Update the database. Endpoint oracle_dba
RDBMS Management 673

 • If the password is populated from a database endpoint, it is held as an
Oracle encrypted string.

Figure 251. Oracle Database User Profile

In an ESM OracleUser profile, there are two flags associated with each user
password:

 • The first flag determines if the password is Tivoli-encrypted or
Oracle-encrypted. This flag is not visible on the GUI as it is controlled
internally.

 • The second flag determines if the Oracle user (the actual person, not the
user account) sets their own password. This is visible on the GUI, as the
User Controls Password option.
674 Tivoli Enterprise Internals and Problem Determination

Figure 252. Edit TEC Oracle Database User

During a populate, all user controlled flags are set to Yes so that pushing out
a currently-populated user will not change the password.

If the administrator wants to change a password, they must set the user
controlled flag to No (or deselect it on the GUI) and then push the profile out.

B.8.5 Deleting Database User Records

If a user profile has been distributed, and a user record is deleted from the
profile and pushed, it will de deleted at the endpoint, meaning that the user
record will be removed from the Oracle7 database. If the profile has not been
distributed, the record can be removed from the profile and pushed, and the
user will not be deleted from the endpoint.

If the password is user controlled, then no matter what the password is in
the profile, it will not be changed during a push. If the password is not user
controlled, then it will be changed during every push regardless of how it is
stored (according to flag 1).

Note
RDBMS Management 675

B.8.6 Background Daemons

Table 49 summarizes the daemons in use for ESM User Management:

Table 49. ESM User Profile Background Daemons

Daemon Object Type Description

M7UserDomainAgentRunBase M7UserDomainAgent Lists names and
details of users, roles,
and resources.
Provides
synchronization
facility.

M7UserDomainAgentRunPush M7UserDomainAgent Changes and rolls
back users, roles and
resources pushed.

M7DatabaseResourceRunBase Oracle7ResourceProfile Provides all non-GUI
profile operations for
resource profiles.

M7DatabaseResourceRunGUI Oracle7ResourceProfile Provides all GUI
profile operations for
resource profiles.

M7DatabaseResourceRunIterator Oracle7ResourceProfile Caches CCMS data
for performance.

M7DatabaseRoleRunBase Oracle7RoleProfile Provides all non-GUI
profile operations for
role profiles.

M7DatabaseRoleRunGUI Oracle7RoleProfile Provides all GUI
profile operations for
role profiles.

M7DatabaseRoleRunIterator Oracle7RoleProfile Caches CCMS data
for performance.

M7DatabaseUserRunBase Oracle7UserProfile Provides all non-GUI
profile operations for
user profiles.

M7DatabaseUserRunGUI Oracle7UserProfile Provides all GUI
profile operations for
user profiles.

M7DatabaseUserRunIterator Oracle7UserProfile Caches CCMS data
for performance.
676 Tivoli Enterprise Internals and Problem Determination

B.9 Removing ESM Database Management Software

At the present time, there is no un-install program and no easy way to remove
ESM Database Management Software. The binaries go into the Tivoli
$BINDIR (%BINDIR%) directories. Always backup the Tivoli database before
installing ESM Database Management software, then if the installation
corrupts the database, or you decide to manually un-install the software, you
have a backup that can be restored.

Refer to Section B.6.2, “Reinstalling Failed Server Installations” on page 663
for information regarding marker files that need removing if you intend to
reinstall the products.
RDBMS Management 677

678 Tivoli Enterprise Internals and Problem Determination

Appendix C. RDBMS Install Examples

This appendix has been included as an example of installing an RDBMS for
use with Tivoli. See also Chapter 9, “RDBMS Interface Module (RIM)” on
page 313.

C.1 Installing an Oracle RDBMS

This appendix details the process for installing Oracle for use with TEC. The
installation was performed on AIX, but this appendix includes a great deal of
information applicable to all UNIX platforms and the use of Oracle for other
TME 10 RIM applications. If a Database Administrator (DBA) exists for the
database products, they should be involved in setting up this environment.
Very often, who is installing TEC may also have to become the DBA.

C.1.1 Installing Oracle on UNIX 7.3.2.1

Perform the following steps.

1. Check for free disk space. A total of 550 MB is needed. 200 MB are only
temporary.

2. Create dba and oper UNIX user groups. The only important thing is the
group name itself; all the other parameters can be default using SMIT.

3. Create an Oracle software owner login. The name of the user must be
oracle and the UID number should be greater than three and the group
this user belongs to must be dba. Make the home directory /home/oracle
and the login shell /bin/ksh.

4. Make a separate file system for the code and the temporary files. This
makes it easier to identify the oracle things and to wipe out the temporary

This appendix has NOT been updated from the previous edition of this
book. We have included it as much of the information still applies to more
current databases.

For any installation, you will need the assistance of the Database
Administrator.

An excellent source for RDBMS installation and setup documentation is the
TME10 Inventory 3.2: New Features and Database Support redbook,
SG24-2135.

Note
© Copyright IBM Corp. 1998, 1999 679

files after the installation, which frees up a lot disk space. In our case, we
called them:

 • /oracle/home

 • /oracle/temp

5. Now, the permissions for the two new file systems have to be granted by
entering:

chown oracle.dba /oracle/home
chown oracle.dba /oracle/temp
chmod 755 /home/oracle
chmod 755 /home/temp

6. Create a local bin directory and change the permission by entering:

mkdir /usr/lbin
chmod 777 /usr/lbin

7. The next step is to set the variable for the Oracle owners environment.
Therefore, you must login as oracle (or type su - oracle) and run the
following commands:

umask 022
vi .profile

8. Enter the following variables in /profile with your site-specific values:

 • ORACLE_HOME=/home/oracle

 • export ORACLE_HOME

 • ORACLE_SID=D1

 • export ORACLE_SID

 • ORACLE_TERM=lft

 • export ORACLE_TERM

 • PATH=$ORACLE_HOME/bin:/usr/lbin:/usr/local/bin:$PATH

 • export PATH

9. Add the SQL *Net V2 listener by adding the following line to the
/etc/services file: listener 1521/tcp #oracle

10.Login as oracle.

11.su root.

12.Create a directory for the CDROM, for example, /cdrom.

13.Grant permission to this directory by typing chmod 777 /cdrom.

14.Grant permission for the temporary directory by typing chmod 777
/oracle/temp.

15.Mount the CDROM by issuing mount -rv cdrfs /dev/cd0 /cdrom.

16.Type exit to get to the Oracle user again.
680 Tivoli Enterprise Internals and Problem Determination

17.Change to directory /cdrom/orainst and type./start.sh to run the startup
script.

18.Running the rootpre.sh script:

su root
cd /oracle/temp/orainst
./rootpre.sh
exit

19.Reboot.

20.Login as oracle again and mount the Oracle cd.

21.Run the installer by entering: /oracle/temp/orainst/orainst. The installer
posts a lot of dialog panels, and it takes some time to answer them. The
first question without a dialog asks if you have run the rootpre.sh. If the
procedure in this book has been followed, it’s already done, that means
the answer is yes.

Next, are the Installer dialog panels:

22.First is the Welcome panel. Select OK and hit Enter.

23.Installation Activity Choice? --> Select Install/Upgrade and OK.

24.Installation Options? --> Select Install New Product.

25.Mount Point panel? --> In our case, the mount point is /oracle/home.

26.Next prompt is for complete ORACLE_HOME location. It should be
/oracle/home/app/oracle/product/7.3.2. If it is correct, enter OK.

27.Create DB Objects? --> Select Yes.

28.After this, there may be a few information prompts. Just answer OK to
these screens.

29.OPS Install? --> Select No.

30.Question for successfully completion of running rootpre.sh? --> Answer:
Yes.

31.Install Products on all nodes? --> No.

32.Install Source? --> Install from staging area (/oracle/temp).

33.OEACLE_SID?--> In our case, it is D1.

34.National Language Support --> We have chosen American/English.

35.Relinking Executable? --> No.
RDBMS Install Examples 681

36.Location of Post-Installation File? --> In our case, it is
/oracle/home/app/oracle/product/7.3.2/orainst/root.sh. Confirm with OK
if it is correct.

37.Online Help Documentation? It is your choice, we said No because we
wanted to save disk space. There are a few pages about documentation,
and for all of them we did the same.

38.Software Asset Manager: We have chosen the following list:

 • SQL*NET (V2) 2.3.2.1.0
 • SQL*Plus 3.3.2.0.0
 • TCP/IP Protocol Adapter (V2)

39.The next prompt is for the official host name. In our case, rh0255f.

40.TCP service port. Earlier in the install, we have decided to use port #1521,
that means 1521 goes in here.

41.The next few panels are password prompts. This is all your choice.

42.The next panels will ask for group names that will be assigned to Oracle
users, enter dba in all cases.

43.The next important panel is to choose the storage type for the database.
We have decided to use a file system-based DB instead of having raw
repositories.

44.When you are asked if you want to spread database objects over three
mount points, answer NO, because one mount point is good enough. In our
case, it is /oracle/home.

45.The next few panels require individual input.

46.SQL*Net Listener automatically started? --> Yes.

47.Database Domain Name: In our case, D1_Domain.

48.The following panels ask for confirmation of default settings. The answer
is YES to all of them.

49.The next questions are about having SQL help and demo facilities
installed and can be answered with NO.

50.When you get the finish message, the installer can be exited.

51.At this point, the installation is not finished because it is necessary to run
the Web-based installation facility to finish up the installation.

52.Start a Web browser and enter http://IP-Name of the data base
server:defined service port/ows-abin/boot, which will skip the registration
procedure.

53.At this Web page, you have to do three things:
682 Tivoli Enterprise Internals and Problem Determination

1. Configure an Oracle Web Agent service called OWA_DBA

2. Configure an Oracle Web Listener

3. Configure a default Oracle Web Agent service called
OWA_DEFAULT_SERVICE

After all this is finished, the Oracle installation is complete and you will see a
success panel like that shown in Figure 253:

Figure 253. Web-Based Oracle Installation

To be able to connect with TEC to the Oracle database, an Oracle service
must exist, and, therefore, the Oracle listener has to be started with this
service. On Windows NT, the service and the related files can be created
through a GUI. But on UNIX, everything has to be done manually, and for the
tnsnames.ora file, there is no example provided with the Oracle product. The
following screens will show examples for the necessary files called
tnsnames.ora and listener.ora:
RDBMS Install Examples 683

Figure 254. Listener.ora File for Oracle

Figure 255. Tnsnames.ora File for Oracle

These two files are very sensitive. We received one file as an example with
comments in it. The error we got when we tried to connect the TEC to the
database running the cr_tec_db.sh script is:

MGR-02073: an error occurred while connecting to a database
ORA-06401: NETCMN: invalid driver designator

This screen.shows an example for a listener.ora file
LISTENER=
 (ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=rh0255f)
 (PORT=1523)
)
)

STARTUP_WAIT_TIME_LISTENER = 0
CONNECT_TIMEOUT_LISTENER = 10

SID_LIST_LISTENER=
 (SID_LIST=
 (SID_DESC=
 (SID_NAME=D1)
 (ORACLE_HOME=/oracle/home/app/oracle/product/7.3.2)
)
)

TRACE_LEVEL_LISTENER = OFF
USE_CKPFILE_LISTENER = true

This screen.shows an example for a tnsnames.ora file
D1 =
 (DESCRIPTION =
 (ADDRESS_LIST =
(ADDRESS =
(PROTOCOL = TCP)

(Host = rh0255f)
(Port = 1523)

)
)
 (CONNECT_DATA =
 (SID = D1)
)
)
684 Tivoli Enterprise Internals and Problem Determination

Whenever there is an error like the one above, it is possible to get more
information about it using the oerr command provided by Oracle. The syntax
for this example is oerr ORA 06401. This is available in UNIX only. But in this
case, it still doesn’t tell you that the cause of the error is the comments in the
tnsnames.ora file.

To avoid problems like this, you can verify the Oracle installation prior to the
attempt to connect TEC to Oracle. See the next section “Oracle Installation
Verification” on page 685.

C.1.2 Oracle Installation Verification

The Oracle Server Manager is one vehicle to verify that Oracle is working
properly. To use this, root users on UNIX should invoke it from
$ORACLE_HOME/bin by issuing the svrmgrm command, which is shown in Figure
256. When the Server Manager GUI pops up, you must enter an Oracle
internal user ID and a proper password. By default, you can use sys as User
ID and password sys as well. The service name is the name that has been
defined in the tnsnames.ora file, and this is the name that will be used by the
RIM module when TEC is attempting to connect to the Oracle database.

In Windows NT, there is something similar called the Instance Manager.
Selecting Start -> Programs -> Oracle Enterprise Manager -> Instance
Manager from the NT GUI will present the same picture.

Figure 256. Oracle Server Manager GUI

If everything is OK, then you will get some information about the instance you
have queried. If you get an error message here, the RIM module won’t be
able to connect to the database.
RDBMS Install Examples 685

As an Oracle user, change to directory $ORACLE_HOME/bin and run the
tnsping service-name command where the service name is the name of your
database service. In our case, it is D1. This command checks if your database
and the listener are up and running. If your listener or your database is not
running, you get a response such as is shown in Figure 257 and Figure 258:

Figure 257. Tnsping Output for Oracle on AIX

Figure 258. Tnsping Output for Oracle on NT

When everything is OK, you will get something, such as OK (290 msec),
instead of the line TNS-12541: TNS:no listener.

If something is wrong, it is possible to verify if the database itself is not
running or only the listener is in bad shape.

Another check is to use the Listener Control Program offered by Oracle. As
an Oracle user, change to directory $ORACLE_HOME/bin and issue the
command lsnrctl, which puts you into the listener control program. There,
you can run commands to start and stop the listener and show the listener
status. The help command shows the syntax for each of these commands.
The output for a perfectly running listener looks like the following in Figure
259:

This is the output for a Oracle listener ping on AIX
oracle@rh0255f:product/7.3.2/bin$ tnsping D1

TNS Ping Utility for IBM/AIX RISC System/6000: Version 2.3.2.1.0 - Production on
18-NOV-97 11:12:06

Copyright (c) Oracle Corporation 1995. All rights reserved.

Attempting to contact (ADDRESS=(PROTOCOL=TCP)(Host=rh0255f)(Port=1523))
TNS-12541: TNS:no listener

This is the output for Oracle listener ping on NT
F:\ORANT\BIN>tnsping orcl
TNS Ping Utility for 32-bit Windows: Version 2.3.2.1.0 - Production on
18-NOV-9 17:10:27

Copyright , 1996(c) Oracle Corporation 1995. All rights reserved.

Attempting to contact (ADDRESS=(COMMUNITY=tcp.world)(PROTOCOL=TCP)
(Host=tp760do)(Port=1521))
TNS-12541: TNS:no listener
686 Tivoli Enterprise Internals and Problem Determination

Figure 259. Status Command of Oracle Listener Control Facility

The commands and the outputs are similar for UNIX and Windows NT.

To start the database on UNIX, login as a Oracle user and change to directory
$ORACLE_HOME/bin and run the command dbstart. On NT, start the Oracle
services.

You can also verify if the database is running or not by issuing the command
wtdbstat from the RIM host or from the TMR Server.

This is output for a Oracle listener status on NT.
LSNRCTL> status
Connecting to (ADDRESS=(PROTOCOL=IPC)(KEY=oracle.world))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for 32-bit Windows: Ver 2.3.2.1.4-Production
Start Date 18-NOV-97 17:38:49
Uptime 0 days 0 hr. 21 min. 49 sec
Trace Level admin
Security ON
SNMP OFF
Listener Parameter File F:\ORANT\network\admin\listener.ora
Listener Log File F:\ORANT\network\log\listener.log
Listener Trace File F:\ORANT\network\trace\listener.trc
Services Summary...
ORCL has 1 service handler(s)
The command completed successfully
RDBMS Install Examples 687

688 Tivoli Enterprise Internals and Problem Determination

Appendix D. Special Notices

This publication is intended to help technical users of Tivoli Enterprise
products to understand more about the Tivoli Management Framework and
applications. The information in this publication is not intended as the
specification of any programming interfaces that are provided by the Tivoli
Enterprise application suite. See the PUBLICATIONS section of the IBM
Programming Announcement for the Tivoli Framework and applications for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBMs product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
© Copyright IBM Corp. 1998, 1999 689

them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java, HotJava, and Sun Solaris are trademarks of Sun Microsystems,
Incorporated.

Microsoft, Windows, Windows NT Performance Monitor, Windows NT, and
the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by
IBM Corporation under license.

AS OS/390
AS/400 OS/400
AIX RISC System/6000
IBM SPI
OS/2 400
690 Tivoli Enterprise Internals and Problem Determination

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.
Special Notices 691

692 Tivoli Enterprise Internals and Problem Determination

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 697.

 • The OS/390 Security Server Meets Tivoli, SG24-5339

 • Introducing TME 10 Security Management, SG24-2021

 • Tivoli Security Management Design Guide, SG24-5101

 • Mass Installation Using SIS, SG24-5109

 • Using Databases with Tivoli Application and RIM, SG24-5112

 • New Features in Tivoli Software Distribution 3.6, SG24-2045

 • A First Look at TME 10 Distributed Monitoring 3.5, SG24-2112

 • TME 10 Inventory 3.2: New Features and Database Support, SG24-2135

 • Getting Started with Tivoli User Administration, SG24-2015

 • Tivoli User Administration Design Guide, SG24-5108

 • All About Tivoli Management Agents, SG24-5134

E.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177

Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039

Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040

RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
© Copyright IBM Corp. 1998, 1999 693

E.3 Other Publications

These publications are also relevant as further information sources:

The following Tivoli publications mentioned in this redbook are Product
Documentation, which can only be obtained by purchasing the associated
Tivoli product:

 • Tivoli User Administration NIS Management Guide

 • Tivoli User Administration User and Group Management Guide

 • Tivoli Framework Planning and Installation Guide

 • Tivoli Framework Reference Manual

 • Tivoli Software Installation Service User’s Guide

 • Tivoli Framework User’s Guide

 • Tivoli Advanced Development Environment Manuals

 • Tivoli Framework Planning and Installation Guide, Version 3.2

 • Tivoli Framework Reference Guide

 • Tivoli Enterprise Console Adapters Guide

 • Tivoli Console User’s Guide

 • Tivoli Inventory User’s Guide

 • Tivoli Inventory Release Notes

 • Tivoli Distributed Monitoring User’s Guide

 • Tivoli Software Distribution Autopads User’s Guide

 • Tivoli Software Distribution User’s Guide

 • Tivoli ADE- Application Development for the Lightweight Client
Framework, 3.6

 • Tivoli Framework Planning and Installation Guide

 • Tivoli Software Distribution Reference Manual

 • Tivoli Security Management User’s Guide

 • Tivoli Security Management 3.6.1

RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

CD-ROM Title Subscription
Number

Collection Kit
Number
694 Tivoli Enterprise Internals and Problem Determination

 • Tivoli Security Management Reference Manual for TACF

The following Microsoft publications mentioned in this redbook are Microsoft
Knowledge Base documents and can be found at the following Web site:
www.microsoft.com

 • Q96005

 • Q102716

 • Q122422-From TechNet

The following Microsoft publications mentioned in this redbook are Product
Documentation, which can only be obtained by purchasing the associated
Microsoft product:

 • NT Resources Kit 4.0

The following Sybase publications mentioned in this redbook are Product
Documentation, which can only be obtained by purchasing the associated
Sybase product:

 • EMS Sybase SQL Server Framework Guide

The following Oracle publications mentioned in this redbook are Product
Documentation, which can only be obtained by purchasing the associated
Oracle product:

 • Oracle DBA Handbook
Related Publications 695

696 Tivoli Enterprise Internals and Problem Determination

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook. residency, and workshop announcements at http://inews.ibm.com/.

IBM Intranet for Employees
© Copyright IBM Corp. 1998, 1999 697

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
698 Tivoli Enterprise Internals and Problem Determination

List of Abbreviations

ACC AutoPack Control
Center

ACF Adapter Configuration
Facility

ACL Access Control List

ADE Advanced
Development
Environment

AEF Application Extension
Facility

ALI Authentication,
Location and
Inheritance

ANSI American National
Standards Institute

API Application
Programming Interface

AS/400 Application S/400

BARC Before, After, Remove
& Configuration (script)

BDC Backup Domain
Controller

BDT Bulk Data Transfer

BO Behavior Object

BOA Basic Object Adapter

CCMS Configuration and
Change Management
System

CLI Command Line
Interface

CORBA Common Object
Request Broker
Architecture

DBA Database Administrator

DBDIR DataBase Directory

DFW Desktop for Windows
© Copyright IBM Corp. 1998, 1999
DHCP Dynamic Host
Configuration Protocol

DII Dynamic Invocation
Interface

DLL Dynamically Linked
Library

DM Domain Manager

DMTF Desktop Management
Task Force

DO Display Object

DPO Default Policy Object

DRM Default Routing
Manager

ESM Enterprise Server
Management

FAT File Allocation Table

FQHN Fully Qualified Host
Name

FSFI Free Space
Fragmentation Index

GCOS GE Computer
Operating System Field

GEM Global Enterprise
Manager

GRE Generic Routing
Encapsulation

GUI Graphical User
Interface

IANA Internet Assigned
Number Authority

IBM International Business
Machines Corporation

IDL Interface Definition
Language

IOM Inter-Object Messaging

IPC Inter-Process
Communication
 699

IPX/SPX Internet Packet
Exchange/Sequenced
Packet Exchange

ITSO International Technical
Support Organization

LCF Lightweight Client
Framework

LDAP Lightweight Directory
Access Protocol

LSA Local Security
Authentication

LQM Local Queue Manager

MCSL Monitoring Capabilities
Subscription Language

MDist Multiplexed Distribution

MIF Management
Information File

NAT Network Address
Translation

NIS Network Information
Service

NLS National Language
Support

NQM Network Queue
Manager

NTFS NT File System

OID Object ID

OMG Object Management
Group

OOB Out of Band

ORB Object Request Broker

PAT Port Address
Translation

PD/PSI Problem
Determination/Problem
Source Isolation

PDC Primary Domain
Controller

PO Prototype Object

RACF Resource Access
Control Facility

RCS Revision Control
System

RDBMS Relational DataBase
Management
System/Server

RIM RDBMS Interface
Module

RPC Remote Procedure Call

SAM Security Account
Manager

SCD Spoolmate
Configuration Database

SeOS Security Operating
System

SMB Server Message Block

SIS Software Installation
Service

TACF Tivoli Access Control
Facility

TAP Tivoli Authentication
Package

TCP/IP Transmission Control
Protocol/Internet
Protocol

TEC Tivoli Enterprise
Console

TEIDL Tivoli-Extended IDL

TLI Transport Layer
Interface

TLL Task Library Language

TMA Tivoli Management
Agent

TMF Tivoli Management
Framework

TME Tivoli Management
Environment
700 Tivoli Enterprise Internals and Problem Determination

TMR Tivoli Management
Region or TME 10
Management Region

TNR Tivoli Name Registry

TNWR TME 10 NetWare
Repeater

TRAA Tivoli Remote Access
Account

TRIP Used to Refer to the
Tivoli Remote
Execution Service

UED Unison Enterprise
Database

UID User Identifier

VPO Validation Policy Object

VPN Virtual Private Network

WINS Windows Internet
Naming Service

XBO Extended Behavior
Object
 701

702 Tivoli Enterprise Internals and Problem Determination

Index

Symbols
.sntcfg directory 410

Numerics
1ST files 381
2ND files 381

A
abbreviations 699
ACF

See Adapter Configuration Facility
acronyms 699
Adapter Configuration Facility 516
adapter.conf 527
ADE

See Tivoli Advanced Development Environ-
ment

administrator 187
actions in remote TMRs 236
creating 190
group name 192
home collection 34
ID mapping 199
login name 193
remove or delete from Tivoli 203
roles 206
subscribing to Tivoli notice groups 209
Tivoli name 192
Tivoli Remote Control 577
Tivoli roles 206
UNAUTHORIZED 208
user login name 192

Administrator object 134
AS/400

and Software Installation Service 99
asynchronous monitors 398
attribute

behavior 36
class_objid 37
label 37

authorization roles 187
Tivoli Inventory 443
Tivoli Remote Control 577
Tivoli Security Management 490

AutoPack
© Copyright IBM Corp. 1998, 1999
.2nd files 381

.CHG files 382

.DEF files 382, 383

.ERR files 383

.PAK files 383

.REP files 382, 383
adding Windows registry hives 381
Agent 378
AUTOEXEC.1ST 381
AUTOPACK.INI 380
autopack.log 386
CONFIG.1ST 381
considerations 376
Control Center (ACC) 377
default policies 385
DESKTOP.1ST 381
distributing profiles 384
error logging 386
FILESYST.1ST 381
INIFILES.1ST 381
installing 376
OS upgrades/installs 380
pre-scan 380
PROGRAMS.1ST 381
REGISTRY.1ST 381
STARTMENU.1ST 381
validation policies 385
wsyschg.exe 384
wsysupd.bat 384

B
backup

backupdb.log 120
backups directory 120
default directory 125
object 127
Tivoli object database 113

BARC script 348
baroc 525
Base Object 44
bash.exe 98
Basic Object Adaptor 11
BDT

See Bulk Data Transfer
Behavior Object 41
BK1 files 453
BK2 files 453
703

BO
See Behavior Object

BOA
See Basic Object Adaptor

Bulk Data Transfer 259, 271
Tivoli Software Distribution and 347

C
CD-ROM

contents 73, 79
install image 77

CFG files 79
CHG files 382
clear_dm.sh 429
client.cfg 68
client.cfg.error 78
client.cfg.output 78
CLOSEDIR.lck 90
collections 25, 222

administrator 34
Common Object Request Broker Architecture 11
compress 122
connecting TMRs 218
CORBA

See Common Object Request Broker Archi-
tecture

CreateWindowStation failed 634
CurrentNtRepeat 64, 614, 616
custom monitors 397

D
DB2 320
DBMX 645

See ESM Database Management
debug level

gateway 180, 413
Tivoli Management Agent 182

DEF files 382, 383
default policy 188

AutoPack 385
NIS maps 475
task library 240, 248
Tivoli Remote Control 579
Tivoli User Administration 463

Default Policy Object 41
default rule base 533
dependency set 372
Desktop 25, 133

DHCP 273
firewalls and 296
Netware 278
See UserLink

DII
See Dynamic Invocation Interface

disconnecting TMRs 230
disk_dir 345
disk_hiwat 345
disk_max 345
Dispatcher Unavailable 262, 358
Display Object 41
distinguished objects 22
dkey 347
dm36.log 417
DO

See Display Object
downcall 48
DPO

See Default Policy Object
Dynamic Invocation Interface 13

E
Endpoint 7

key (TMA) 148
Environment 63

DB2HOME 320
Distributed Monitoring dm_env 420
DSQUERY 319
EtcTivoli 63
INSTHOME 320
LCF_DATDIR 371, 391
o_dispatch 63
ORACLE_HOME 319
ORACLE_SID 319
RIM_DB_LOG 329
SYBASE 319
Tivoli Distributed Monitoring 400
TZ 427
USRLNKD_STAGING_PATH 275, 284
wlocalhost 63

ephemeral ports 292
epmgrlog 131, 171, 178
ERR files 383, 386
error

e= and s= 75
in oservlog 175
system 136
704 Tivoli Enterprise Internals and Problem Determination

Tivoli Enterprise Console 517
Tivoli Output Manager 559
Tivoli Software Distribution 357
using AutoPack 386

ESM Database Management
adding tasks 654
daemons 668, 676
Frequently Asked Questions 658
installing 646
Interconnected TMRs 665
notice group 667
notice groups 669
oshutdown 667
ostartup 667
removing 677
Script to Create ESM Sentry Profiles 650
supported databases 645
Tivoli Enterprise Console 656
TMR roles 646, 666

EtcTivoli 63
event console 511
events 513
Extended Behavior Object 41, 55

F
fake NIS domains 477
file package 342, 350

default and validation policies 352
properties 350

file_versions 123, 471
Firewalls 273, 287, 293
fp_push 362
freopen failed 118

G
gatelog 131, 178
gateway 172, 289

log 368
synchronize 373
Tivoli Remote Control 584

gateway method 48
getpwname failed 253
gwdb.bdb 172
gwdb.log 131, 171

H
Hdaemon Exit 175

hexadecimal IP address 176
High level TCP timeout 262
HMAC error 161, 357

I
ID mapping 199, 603

methods using root_user 638
root_group 200, 605
root_user 200, 603

idlattr 37, 56, 132, 183, 471, 533
idlcall 56, 125, 132, 183, 666
image_report 73, 100
imdb.bdb 22
IND files 79

Software Installation Services and 92
init.tecad_logfile 528
install repository 83

directories 91
share type 87

install.cfg.error 77
install.cfg.output 77
install2.cfg 67
install2.cfg.error 78
install2.cfg.output 78
Installation

AutoPack 376
ESM Database Management 646
key 79
NFS mount considerations 62
re-install Framework tips 63
RIM 314
Software Installation Service 85
Tivoli applications on Windows NT 615
Tivoli Distributed Monitoring 390
Tivoli Enterprise Console 513
Tivoli Framework 59
Tivoli Inventory 436
Tivoli Remote Control 576
Tivoli Software Distribution 339
UserLink/DHCP service 276

installation repository
select target machine 93

Instance Management 27
Interconnected TMRs 216

across NAT device 304
disconnecting 230
managing TMR 237
remote connection 218
 705

resource exchange 27, 221
resource exchange flags 228
secure connection 219
Tivoli User Administration resources 481
troubleshooting 231

inter-object message 19, 259, 271, 289
across NAT device 300
time-outs 126
Tivoli Software Distribution usage 347

Inventory
gateway 435

IOM
See inter-object message

ipc_accept failed 177
ipc_create_remote failed 357
ipconfig 632
IR

See install repository
ir.lck 89
ir.loc 111
irview 53, 57, 132, 185
IST file 608

J
job 239

create 242
internals 246
run 245

K
kbdus.dll 98, 629

L
launch_sis 107
LCF 7
LCF_DATDIR 371
lcfd 621
lcfd.log 181
LDAP

See Lightweight Directory Access Protocol
Library object 28
license key 63
Lightweight Directory Access Protocol 462
listener.ora 684
LMHOSTS 627
Local Queue Manager 540
Local Security Authentication 597

log files 77
Tivoli Enterprise Console 516
Tivoli Software Distribution 352

logfile adapter configuration file 528
logging level

gateway 180, 413
Tivoli Management Agent 181

logging levels
Tivoli Distributed Monitoring 417

login name 193
logls 172
lookaside database 495, 501
lost-n-found 355
LQM

See Local Queue Manager
LSA

See Local Security Authentication
LST files 79
lstagt.bat 366

M
maintenance mode 116
malformed ASCII exception 126
Managed Node 8
managed resources 25, 189

Tivoli Remote Control 578
max_conn 345
MCSL

 See Monitoring Capabilities Subscription Lan-
guage

Mdist 259
mem_max 345
method

common errors 55
finding all for a class type 53
finding all for an object 53
finding parameters for 53
finding the executable 52
SET_GROUP 56
SET_USER 56
type flags 135
types of 52
use of root_user ID map 638

method cache 47
method fork failed errors 253
methods

_get_client_files 119, 125
_get_default_host 125
706 Tivoli Enterprise Internals and Problem Determination

_get_final_timeout 362
_get_label 40, 134
_get_locations 72
_get_server_files 119, 125
avail_space 53
change_password 480
contents 36, 43
create_policy_region 608
default_push 341
dogendpoint 391
find_members 147
fp_dist 341, 362
fp_endpoint 341, 343
fp_push 341
fp_push_with_size 341
fps_install 341
get_principal_id 607
getattr 37
inv_endpt_meth 452
ip_discover 450
ip_push 450
is_validation_enabled 152
lookup 153
mp_examine 415
o_get_principal 17
obj_route 260, 342, 362
om_get_acl 56
om_get_definition 53, 607
om_stat 53, 55, 56, 606
push 341
ra_examine 415
resolve 43, 44, 53
RIM_iom_session 327
rpt 341, 342, 363
run_task 602
run-task 246
security_discover 500
security_update 500
sentry_engine 602
snapshot 119
start_controller 586
start_gateway 587
start_target 586
tmr_examine 415
tst_route 265
um_discover 480
um_discover_ext 480
um_gen_strlist 480
um_runcmd 480

um_set_login 480
um_update 480
UserProfile_synchronize 480
UserProfile_verify 480
xterm 42, 43

MIF file 433
miniprod.sav 90
minitmr.sav 90
monitor scheduling 423
Monitoring Capabilities Subscription Language
397
monitoring collection 387

Tivoli Access Control Facility (TACF) 505
MS SQL 320
MSVCRT40.DLL 625
multiplexed distribution

See Mdist

N
name conflicts 32
NAT

See Network Address Translation
nbtstat 632
NET

HELPMSG 136
LOCALGROUP 76
START OSERV 138
START TRIP 76
STOP TRIP 76
USER 76

net_load 345
netstat 78, 632
Network Address Translation 297
Network Information Service 474
Network Queue Manager 540
NIS

See Network Information Service
nobody ID 143
notice.bdb 123
notice.log 131, 171
notices 209

re-reading 210
restoring the database 210
SentryStatus 416
Tivoli Security Management 489
Tivoli User Administration 474

NQM
SeeNetwork Queue Manager 540
 707

NTFS 61
convert FAT to 61

O
o_dispatch 63
obj_route 260
objcall 35, 56, 132, 182, 183

contents 36, 183
getattr 37
om_get_definition 607
om_stat 606

object 31
time-stamps 226

object dispatcher 16, 17
database backup 113
ID number 34
See also oserv

object ID 34
0.0.0 44
for a TMA 40
plus and minus signs 48

Object Management Group 11
Object Paths 33
Object Request Broker 11, 288
objects

backup 114
BackupClient 125
base 44
Behavior 36, 41
Default Policy 41
Display 41
Extended Behavior 41
fileioRef 471
Library 28
MonitoringCapabilityCollection 392
NameRegistry 24
Policy Region 30
prototype 41
RemoteControl 578
validation policy 41

odadmin 6, 131, 138
allow_dynamic_ipaddr 274
db_sync 172
environ 6, 120, 329
get_platform_license 63
help 138
odlist 6, 69, 176

objects 69

rm_od 69
region 218, 231, 234, 308
set_install_pw 79
set_port_range 19, 290
shutdown 113
trace 6

errors 140
objcalls 141
services 141

odb.bdb 21
odb.log 131, 171
odlist init failed 635
odstat 6, 131, 132, 134, 144, 327, 360

fps_install during distribution 354
Inventory scan 451
SentryProfile distribution 414
Tivoli Inventory example 458

odtrace.log 131, 140, 171
OID

See object ID
OMG

See Object Management Group
OnePassword 462
Operation Timeout Exceeded 262
Oracle 319
ORANT71.DLL 314
ORB

See Object Request Broker
oregdb 665
oserv 618

communications 288
port 94 and o_dispatch 63
See also Object Dispatcher

oservlog 77, 131, 175
sample output 65

P
PAK files 383
passwd 484
PC Agent 8, 277, 637

tracing 360
PC Managed Node 8

create 276
pc_mannode_skel1 363
pc_name.err 285
pc_name.ip 285
perfmon 632
Persistent storage failure 121
708 Tivoli Enterprise Internals and Problem Determination

PKT files 79
PO

See Prototype Object
policies 25
policy region 30, 188
portmapper 521
ports (TCP/IP) 290
process lock 21
product.sav 90, 91
profile

GroupProfile 465
UserProfile 465

progs_timeout 349
Prototype Object 41
pulldist.pl 284

Q
queries 330

R
RDBMS Interface Module

See RIM
region number 34
registered names 32
re-install

Framework tips 63
TME 10 clients 68

remove
client from a TMR 68
oserv 68
PC Agent 69
TMA endpoint 70

REP files 382, 383
repeater 259, 260, 342

default 260
disk_dir 261
disk_hiwat 262
disk_max 261
disk_time 262
distribution methods 342
examples 265
manager 260
max_conn 261
mem_max 261
net_load 262
net_spacing 262
stat_intv 262

Repeater Manager timeout 346, 349

rescue 121, 122
resolve 184
resource exchange 27

across firewalls 288
flags 228

resource objects 23
Response File

byNode 95
byProduct 95
export 94
IND 94

restore
items not restored 123
notices database 210
Tivoli object database 121

rexec 292, 616
RIM 313

API 316
database tables 314
install options 319, 320
installing 314
RDBMS_Interface Translation Layer 317
Tivoli appllications using 313
Tivoli Enterprise Console 512
Vendor Adaptor Layer 317

rlogin 78
root 187
root_group ID map 200
root_user 603
root_user ID map 200
route

for software distribution 344
rpcinfo 514, 521

S
sapack 80, 81, 618
schedule of monitors 424
Scheduler 133, 255

common errors 257
scripts 626
seagent 493
sebuildla 502
secons 495, 499
security_admin role 489
security_auditor role 489
security_operator role 489
selang 495, 497, 502
selogrd 493
 709

SentryEngine 408
SentryProfile 388
SeOS 492
seos.ini 497
seosd 493
seosd.trace 498
seoswd 493
sepass 495
serevu 493, 504
sesu 495
set_port_range 272
SET_USER 607, 609
sewhoami 502
signatures 440
SIS

See Software Installation Service
SIS Installation

Disk space probe 99
sis.ini 103
sisclean.log 106
sisgui 88, 107
sisguisub.sh 107
snapshot

shell script 119
Software Installation Service 59, 83

install 85
locks 89
log files 105
response file 83
response ile 94
synchronize with TMR 104

stat_intv 345, 349
state

of object threads 135
subregion 30
Sybase 319
synchronize gateway 373

T
TACF SeeTivoli Access Control Facility (TACF)
tail 499, 530
TAP

SeeTivoli Authentication Package
tap_call_init failed 634
tap_get_sid_logon_token failed 634
tap_init_failed 633
tap_make_sid_logon_token failed 634
task 239

allow root to run 250
create 241
ESM Database Management 654
executables distribution 246
execution privileges 242
internals 246
run 245
Tivoli Security Management 491

task library 239, 240
commands 249
common errors 253
create 241
default and validation policies 240

tec_dispatch process 508
tec_reception process 507
tec_rule process 508
tec_server process 507
tec_task process 508
tecad_logfile.err 529
TECNTAdapter 527
TECSNMPAdapter 527
TEIDL 16
thread ID

of object threads 135
thread type flags 134
timezone

monitors firing and 426
tivhscan.bat 453
tivinstall 603
Tivoli Access Control Facility (TACF) 492

commands 496
initialization file (seos.ini) 497
trace 498

Tivoli Authentication Package 597
Tivoli Destiny

SeeTivoli Output Manager
Tivoli Distributed Monitoring

environment variables 400
indicator collections 393
install 390
proxies 400
response action types 428
severity levels 393
user-defined monitors 397
when a monitor will next run 425

Tivoli Enterprise Console
default rule base 533
error logs 517
install options 515
710 Tivoli Enterprise Internals and Problem Determination

Tivoli Inventory
database support 431
install considerations 435
installing 436
overview 431
PC scanning program 442
profile 432
query 456
query libraries 439
RDBMS setup scripts 438
roles 443
scan output files 453
setup query scripts 439
software signatures 440

Tivoli Management Agent
dm36.log 417
login across NAT device 302
tracing and logs 366
using w commands 370

Tivoli Name Registry 22, 216
TMR resource exchange 221

Tivoli Output Manager
Composer 543
Composer file 545
Condserv log 545
Conductor 543
Conductor file 545
DestDirnt 541
Destiny Direct Client 544
DirWatch 541
DISP 542
Fileaid 549
GUI 543
Logman 541
LQM 540
Mapper 540
Netman 540
Netman file 545
NetWat 541
Netwat file 545
NQM 540
Output Server 545
processes 539
SLP Client 544
Spoolman 540
SQLView 541
tools 541
Trashman 541
Unknown log 545

Tivoli Remote Access Account 64, 66, 599
Tivoli Remote Control

roles 577
trace 588
Windows 98 support 577

Tivoli Remote Execution Service
See Tivoli Remote Installation Package

Tivoli Remote Installation Package 62, 616
Tivoli Security Management

roles (authorization) 489
Tivoli Software Distribution

error messages 357
log files 352, 356
time-outs 348

Tivoli User Administration
all levels distribution 468
default policy 463
exact copy distribution 468
methods 480
next level distribution 467
NIS notice-level attribute 476
preserve modifications distribution 468
profile_oneshots attribute 473
TMA endpoint support 462
validation policy 464

tivoli.cinstall 78, 105
tivoli.log 364, 386
tivoli.sinstall 77
Tivoli_Admin_Privileges group 601
tivoli_syb_admin.sql 314
tivsscan.mif 440

location 443
tivsw.bat 453
TLI

See transport layer interface
TMA Endpoint 7
tmcmd 174, 175
TME 10 xxx
TME 10 Advanced Development Environment 13
TMEAGENT.CFG 278, 279

AlwaysUpdate 279
AutoUpdateIP 279
DefaultServer 279
LinkStatus 280
UpdateIPAtBootup 279
UpdateIPDate 280
UpdateIPInterval 280
UpdateIPStamp 280
UpdateIPTries 279
 711

tmersrvd 76, 601, 604
tmesec 488
TMPDIR 120
tmr.sav 90
TMRSync.sh 93, 104
tmstat 132, 172, 185
TNR

See Tivoli Name Registry
tnsnames.ora 684
TRAA

See Tivoli Remote Access Account
trace

oserv 140
oserv trace file size 140
TACF 498
Tivoli Remote Control 588
TME 10 Enterprise Console rule base 535

transaction 19, 174
transport layer interface 17
TRIP

See Tivoli Remote Installation Package
trip -debug 76
Troubleshooting

administrators 204
AutoPack 385
ESM Database Management Framework 662
ESM Database Management monitoring 668
ESM Database Management user mgnt. 672
install process 74
interconnected TMRs 231
object database 52
RIM 322
scheduler 257
tasks and jobs 250
Tivoli Distributed Monitoring 410
Tivoli Enterprise Console 517
Tivoli Enterprise Console installation 516
Tivoli Inventory 457
Tivoli Output Manager 542

push operation 546
Unknown log 549

Tivoli Remote Control 589
Tivoli Security Management 498
Tivoli Software Distribution 352
Tivoli User Administration 480
TMR connections 230
UserLink 285

tst_route 265

U
UDP 289
uname 63
uncompress 122
unknown error log 545
upcall 50
user login name 192
user_string_to_sid failed 634
user-defined monitors 397
UserLink 273

.ver and .err files 284
browser 282
installing 276
retrieving software packages 282
See also DHCP
usrlnkd daemon 274, 281

usrlnk16.ini 281
usrlnk32.ini 281
UxImport 490

V
validation policy 188

AutoPack 385
ESM Database Management 649
NIS maps 476
task library 240, 248

allow root to run tasks 250
Tivoli User Administration 464

Validation Policy Object 41
versioning 471
Virtual Private Network 294
VPN

See Virtual Private Network
VPO

See Validation Policy Object

W
w commands

using on a TMA endpoint 370
waddchan 398
waddcust 397
waddmon 505
wallocid 466
wasync 399
wauthadmin 205
wbkupdb 118, 120, 121, 125
wcd 33
wchdep 372
712 Tivoli Enterprise Internals and Problem Determination

wchkdb 69, 114, 232, 355
wchknode 115, 619
wci 472
wclient 59
wclreng 420
wco 472
wcomprules 536
wcpcdrom 77
wcrtadmin 191
wcrtdomain 478
wcrtjob 244, 249
wcrtpcmngnode 21
wcrtprf 478
wcrtprfmgr 478
wcrtrim 318, 324
wcrtsec 496
wcrttask 242, 249
wcrttlib 241, 249
wcrtusr 478
wdel 25

deleting a RIM object 324
wdelep 71, 623
wdeljob 249
wdelprb 420
wdelsched 255
wdeltask 249
wdelusrcat 465
wdepset 371, 627
wdir 365
wdisconn 230
wdistfp 284, 341, 356
wdistrib 478

over_opts 470
wdisttask 247, 249, 409
wdskspc 371
wdumpsnt 420
Web site, Tivoli Support 6
wedsched 255
wenblsched 255
wep 160
wexpnotif 209
wexprtfp 350, 353
wfilesig 440
wgateway 181, 350, 373, 413, 531, 607
wgetadmin 204
wgetfile 364
wgetfpattr 353
wgetjob 249
wgetpolm 249, 584

wgetrim 322, 515
inventory 454
tec 515, 517

wgetsched 255, 256
wgetsub 411
wgettask 249
wident 472
widmap 200, 201

list_maps 201
Windows NT

Administrator 187
Administrator and ID mapping 203
DHCP 274, 275
Domain Controllers 612
Installation account 603
Local Security Authentication 597
MSVCRT40.DLL conflicts 625
NET HELPMSG 136
NET LOCALGROUP 76
NET START OSERV 138
NET START TRIP 76
NET STOP TRIP 76
NET USER 76
netsvc 600
object database backup path 118
Services Dialog 76
Tivoli accounts 601
Tivoli files in %SYSTEMROOT% 629
Tivoli Remote Access Account 599

winstall 59
winstlcf 59, 622
wlcftap 599, 601, 621
wln 204, 522
wloadsnt 420
wlocalhost 63
wlookup 23, 31, 42, 56, 223

Administrator 137, 204
EnterpriseClient 532
InterRegion 220
ManagedNode 36, 125, 218, 362
OracleDatabase 666
OracleInstance 666
PatchInfo 72
PolicyRegion 218
ProductInfo 71
ProfileManager 31, 137
RIM 322, 454
TaskLibrary 218
TMRBackup 125
 713

wls 26, 29, 32, 33, 57, 223
/Administrators 26
/Library 29
/Library/BackupClient 114, 119, 127
/Library/ManagedNode 29
/Library/ProfileManager 31
/lost-n-found 355
/Regions 27

wlsconn 218, 227, 231
wlscurrb 537
wlseg 517, 524
wlseng 420

output sections description 423
wlsids 479
wlsinst 72
wlsmaps 478
wlsmon 420, 669
wlsnams 479
wlsnotif 209, 211
wlspol 248
wlspolm 248
wlsrb 537
wlsrbclass 525
wlssrc 517, 525
wlstlib 249
wmv 32, 33
wmvfpobj 355
wpasswd 484
wpatch 60
wpopusrs 467
wpreinst.sh 80
wputfile 365
wputpolm 249, 584
wpwd 34
wrcs 472
wrcsdiff 472
wrcsmerge 472
wregister 89, 110
wreloadeng.sh 429
wrimtest 325
wrimtrace 316, 330
wrlog 472
wrm 25, 204
wrmnode 69, 619
wrpt 262, 344
wruninvquery 223, 225
wrunjob 249
wrunprb 420, 425
wruntask 245, 250

wschedjob 255
wserver 59
wsetadmin 204
wsetdefpol 482
wseterr 371
wsetesvrcfg 537
wsetfpopts 349
wsetjob 250
wsetmon 420
wsetrim 315, 318, 322, 455, 515, 517
wsetrimpw 319
wsettap 66, 599, 601
wsettask 250
wsis 94
wsndnotif 209, 211
wstartesvr 517
wstartsched 255
wstartul 285
wstatesvr 517, 520
wstopesvr 517
wsub 478
wswdistrim 23
wtailnotif 209, 482
wtaskabort 250
wtdbclear 517, 521
wtdbspace 520, 521
wtdbstat 517
wtdumper 517, 526
wtdumprl 509, 517
wtll 250, 252

ESM Database Management 654
export file 252

wtrace 6, 131, 140, 146, 149
wuninst.log 105
wupdate 22, 27, 221, 227, 231
wvalidate 464
wviewmn 455
wviewpcmn 455
wxterm 42, 250

X
XBO

See Extended Behavior Object
714 Tivoli Enterprise Internals and Problem Determination

© Copyright IBM Corp. 1998, 1999 715

ITSO Redbook Evaluation

Tivoli Enterprise Internals and Problem Determination
SG24-2034-01

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-2034-01

T
ivoli E

nterprise Internals and P
roblem

 D
eterm

ination
S

G
24-2034-01

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Tivoli Management Product Names
	Comments Welcome

	Chapter 1. Overview
	1.1 Generic Problem Determination Outline
	1.2 Sources of Additional Information
	1.3 When Is an Endpoint not an Endpoint?

	Chapter 2. Tivoli Object Database Architecture
	2.1 The Tivoli Enterprise Management Challenge
	2.2 Tivoli Enterprise Architecture Overview
	2.2.1 About CORBA 1.1
	2.2.2 Tivoli Enterprise CORBA Implementation
	2.2.3 Tivoli Enterprise Heterogeneity and Interoperability
	2.2.4 Management Services

	2.3 Tivoli Object Architecture Implementation
	2.3.1 Tivoli Object Request Broker
	2.3.2 Tivoli Authorization Principals
	2.3.3 Communication between Objects
	2.3.4 Transactions
	2.3.5 Persistent Storage - The Tivoli Object Database
	2.3.6 Instance Management

	2.4 Tivoli Objects
	2.4.1 Object References
	2.4.2 Object IDs
	2.4.3 Endpoint Objects
	2.4.4 Object Relationship
	2.4.5 The Tivoli Base Object
	2.4.6 TMA Endpoints
	2.4.7 Database Profile Managers
	2.4.8 Gateway Methods

	2.5 Troubleshooting Tips Using the Object Database
	2.5.1 Finding the Method Executable
	2.5.2 If the Method is Unknown
	2.5.3 Method Errors

	2.6 Object Tools Summary

	Chapter 3. The Tivoli Core Installation Process
	3.1 Installation Overview
	3.2 General Pre-Install Checks, Hints, and Tips
	3.2.1 UNIX
	3.2.2 Windows NT
	3.2.3 NFS Mounts
	3.2.4 Environment Files and Variables
	3.2.5 Automatic Startup versus Remote Startup
	3.2.6 Deciding When a Reinstall is Best

	3.3 Tivoli Server Installation
	3.3.1 Server Install: Behind the Scenes

	3.4 Tivoli Client Installation
	3.4.1 Client Install: Behind the Scenes
	3.4.2 Reinstalling Clients
	3.4.3 Uninstalling a PC Agent
	3.4.4 Uninstalling a TMA Endpoint

	3.5 Finding Out What’s Installed
	3.6 General Troubleshooting Tips for Installation Problems
	3.6.1 Common Errors
	3.6.2 Windows NT Specifics

	3.7 Additional Troubleshooting for a TMR Server Installation
	3.7.1 Common Server Install Problems

	3.8 Additional Troubleshooting for a Client Installation
	3.8.1 Common Client Install Problems

	3.9 Installation CD-ROM Contents
	3.9.1 CD-ROM Installation Tools

	Chapter 4. Tivoli Software Installation Service
	4.1 SIS Component Overview
	4.1.1 SIS Considerations

	4.2 Installation of SIS
	4.2.1 Installation Procedure

	4.3 Using SIS
	4.3.1 Starting the SIS Graphical User Interface
	4.3.2 Building the Install Repository
	4.3.3 Select Target for Install
	4.3.4 SIS Response Files
	4.3.5 Using SIS to Install Tivoli Products
	4.3.6 Tuning SIS
	4.3.7 Synchronize SIS with TMR

	4.4 Troubleshooting SIS
	4.4.1 SIS Log Files
	4.4.2 Troubleshooting SIS Desktop Launches
	4.4.3 Troubleshooting SIS Startup
	4.4.4 Troubleshooting SIS Locks
	4.4.5 Troubleshooting SIS Usage
	4.4.6 Important SIS Files and Executables

	Chapter 5. Tivoli Object Database Backup
	5.1 The Tivoli Backup Process
	5.2 The Backup Process
	5.2.1 Before Starting Tivoli Backups
	5.2.2 Backup Roles and Access Rights
	5.2.3 Running Backup from the Tivoli Desktop
	5.2.4 Running Backup from the Command Line
	5.2.5 Backup Process Behind the Scenes
	5.2.6 Temporary Backup File Considerations

	5.3 The Restore Process
	5.3.1 Restore Roles and Access Rights
	5.3.2 Restore Example

	5.4 Rescue Operation
	5.5 Items Not Restored from a Backup
	5.6 Troubleshooting Backup and Restore Operations
	5.6.1 Restore with -r and - r -R Options
	5.6.2 Changing the Default Backup Directory
	5.6.3 Database Cannot Be Backed Up
	5.6.4 Malformed ASCII Exception
	5.6.5 IOM Route Time-Outs
	5.6.6 Identifying Managed Nodes
	5.6.7 Implications of Using an Old Backup

	Chapter 6. Commands and Logs for Troubleshooting
	6.1 The odstat Command
	6.1.1 Structure of the odstat Output
	6.1.2 odstat Options

	6.2 The odadmin Command
	6.2.1 Default odadmin Information
	6.2.2 Configuring the TMR Server

	6.3 The wtrace Command
	6.3.1 Trace Usage Overview
	6.3.2 Using a Trace to Investigate a Method
	6.3.3 Troubleshooting a Failure with odstat and wtrace
	6.3.4 Another Example of Analyzing wtrace and odstat
	6.3.5 Troubleshooting Using Only wtrace
	6.3.6 HMAC Encrypted Data Error
	6.3.7 Damaged Database odstat and wtrace Example

	6.4 Log Files in the Database Directory
	6.4.1 Transaction Log Files and tmstat
	6.4.2 The oservlog File
	6.4.3 The epmgrlog File
	6.4.4 The gatelog File

	6.5 Endpoint lcfd.log File
	6.6 Other Commands
	6.6.1 The objcall Command
	6.6.2 The idlcall Command
	6.6.3 The idlattr Command
	6.6.4 The resolve Command
	6.6.5 The irview Command
	6.6.6 The tmstat Command

	Chapter 7. Tivoli Framework Core Services
	7.1 Tivoli Administrators
	7.1.1 Authorization Roles
	7.1.2 Policy Regions
	7.1.3 Creating Administrators
	7.1.4 Using a Single Tivoli Administrator for Multiple Users
	7.1.5 ID Mapping
	7.1.6 Removing and Deleting Administrators
	7.1.7 Administrator Commands
	7.1.8 Administrator Roles
	7.1.9 Interregion Administration
	7.1.10 Summary of Hints for Defining Administrators
	7.1.11 Hints for Troubleshooting Administrators

	7.2 Notices
	7.2.1 Subscribing Tivoli Administrators to Notice Groups
	7.2.2 Notice Commands
	7.2.3 Restoring the Notices Database
	7.2.4 Re-Reading Old Notices
	7.2.5 wsndnotif - Adding a Notice from the Command Line
	7.2.6 Troubleshooting Notice Groups

	7.3 Interconnected TMRs
	7.3.1 The Tivoli Name Registry
	7.3.2 Connecting TMRs
	7.3.3 Updating Resources
	7.3.4 Resource Visibility
	7.3.5 Interregion Updates and Object Time Stamps
	7.3.6 Resource Flags
	7.3.7 Scheduling Updates
	7.3.8 Disconnecting TMRs
	7.3.9 Troubleshooting TMR Connections
	7.3.10 Troubleshooting Interconnected TMRs

	7.4 Task Library
	7.4.1 Tivoli Tasks
	7.4.2 Tivoli Jobs
	7.4.3 Task Library Features
	7.4.4 Task Library Survival Guide
	7.4.5 Task and Job Internals
	7.4.6 Task Library Commands
	7.4.7 Troubleshooting Tasks and Jobs
	7.4.8 Task Library Common Errors

	7.5 Scheduler
	7.5.1 Scheduler Commands
	7.5.2 Tips for Working with the Scheduler
	7.5.3 Troubleshooting Common Scheduler Errors

	7.6 Multiplexed Distribution and Bulk Data Transfer
	7.6.1 Mdist
	7.6.2 Repeaters
	7.6.3 Bulk Data Transfer and Inter-Object Messaging

	7.7 UserLink and Dynamic Host Configuration Protocol (DHCP)
	7.7.1 Dynamic IP Addressing and Tivoli
	7.7.2 The UserLink/DHCP Service
	7.7.3 DHCP Support for Windows NT Managed Nodes
	7.7.4 DHCP Support for PC Managed Nodes
	7.7.5 Installing the UserLink/DHCP Service
	7.7.6 UserLink Daemon
	7.7.7 Retrieving Software Packages
	7.7.8 Installing the UserLink Browser
	7.7.9 Troubleshooting UserLink

	Chapter 8. Tivoli Enterprise and Firewalls
	8.1 Background
	8.2 Tivoli Communications
	8.2.1 Inter-ORB Communications
	8.2.2 Inter-TMR Communications
	8.2.3 Inter-Object Messaging (IOM)
	8.2.4 Endpoint and Gateway Communications
	8.2.5 Applications Not Using Framework Services

	8.3 Ports and Port Ranges
	8.4 Firewall Considerations
	8.4.1 Packet Filtering
	8.4.2 Machine Considerations - Upstream
	8.4.3 TMR Considerations - Upstream
	8.4.4 TCP Connection Source Filtering
	8.4.5 Network Address Translation (NAT)

	8.5 Case Study 1 - Hub to Remote Through Firewalls
	8.6 Case Study 2 - Dual TMR Setup with Firewalls

	Chapter 9. RDBMS Interface Module (RIM)
	9.1 Applications Using RIM
	9.1.1 Applications Moving to RIM

	9.2 Installing RIM
	9.2.1 Creating Application Database Tables

	9.3 Understanding RIM
	9.3.1 RIM Behind the Scenes
	9.3.2 RIM APIs
	9.3.3 RDBMS_Interface Translation Layer
	9.3.4 Vendor Adaptor Layer

	9.4 RIM on Framework 3.6
	9.4.1 Creating RIM 3.6 Objects
	9.4.2 Client Application Communication with RIM 3.6

	9.5 Troubleshooting RIM
	9.5.1 Finding the RIM Objects Defined in a TMR
	9.5.2 Displaying the Settings for a RIM Object
	9.5.3 Changing RIM Object Information
	9.5.4 Changing the RIM Host Machine Name
	9.5.5 Troubleshooting Example: Failure to Connect with RDBMS
	9.5.6 RIM Specifics

	9.6 Queries
	9.6.1 Queries with RIM 3.6
	9.6.2 Tivoli Roles Needed to Execute Queries

	9.7 Designing Your Tivoli Environment for RIM

	Chapter 10. Software Distribution
	10.1 Differences with Software Distribution Version 3.6
	10.2 Installation
	10.3 Tivoli Software Distribution Internals
	10.3.1 Tivoli Methods Used by Software Distribution
	10.3.2 The Distribution Processes

	10.4 Repeaters and Networks
	10.4.1 Initiating BDT/IOM

	10.5 Setting Timeout Values for a Distribution
	10.5.1 Configuration Script Timeout
	10.5.2 Repeater Manager Timeout
	10.5.3 High-Level TCP Timeout
	10.5.4 Gateway Session Timeout

	10.6 File Package Definition
	10.6.1 File Package Policies

	10.7 Troubleshooting Software Distribution
	10.7.1 Troubleshooting Checklist
	10.7.2 PC Managed Node Troubleshooting Specifics

	10.8 Software Distribution and Other Log Files
	10.8.1 Software Distribution Log
	10.8.2 Tivoli PC Agent Tracing and Other Log Files
	10.8.3 TMA Tracing and Other Log Files

	10.9 Using the PC Agent w Commands on a TMA Endpoint
	10.9.1 Removing the Dependency Set for Software Distribution

	Chapter 11. AutoPack
	11.1 Introduction
	11.1.1 PC Operating System Type Considerations

	11.2 Notes on Installing AutoPack
	11.3 AutoPack Control Center
	11.4 The AutoPack Agent
	11.5 AutoPack Properties and Operations
	11.6 Creating an AutoPack
	11.6.1 Pre-Scan
	11.6.2 Software Installation
	11.6.3 AutoPack Build
	11.6.4 AutoPack Properties

	11.7 Distributing AutoPack Profiles
	11.7.1 AutoPack Install of Software
	11.7.2 AutoPack Removal of Software

	11.8 AutoPack Policy
	11.8.1 Default Policy
	11.8.2 Validation Policy

	11.9 Troubleshooting AutoPack
	11.9.1 Common Problems
	11.9.2 Where to Find Error Information

	Chapter 12. Distributed Monitoring
	12.1 New Features in Distributed Monitoring Version 3.6
	12.2 Installation Considerations
	12.2.1 The Distributed Monitoring Application Install
	12.2.2 TMA Endpoint Distributed Monitoring Install
	12.2.3 Monitoring Collections

	12.3 Getting Started with Distributed Monitoring
	12.4 Defining Monitors
	12.5 Customizing Tivoli Distributed Monitoring
	12.5.1 User-Defined Monitors
	12.5.2 Asynchronous Monitors

	12.6 Tivoli Distributed Monitoring Proxies
	12.6.1 Distributed Monitoring Environment Variables
	12.6.2 Distributed Monitoring Proxies

	12.7 Distributing Monitors
	12.7.1 Local Profile Copies
	12.7.2 Distributing Distributed Monitoring Profiles
	12.7.3 Distributing Profiles Using the GUI
	12.7.4 Distributing Profiles Using the Command Line

	12.8 The Distributed Monitoring Sentry Engine
	12.9 Troubleshooting Distributed Monitoring
	12.9.1 Troubleshooting Distributed Monitoring Profile Distribution
	12.9.2 Troubleshooting Monitor Execution
	12.9.3 Monitoring Command Overview
	12.9.4 The wlseng Command

	12.10 Interpreting Sentry Engine Information
	12.10.1 Determining Monitor Timing
	12.10.2 Understanding Monitoring Probe Information
	12.10.3 Understanding Monitoring Response Information

	12.11 Distributed Monitoring Recovery Tools

	Chapter 13. Inventory
	13.1 Tivoli Inventory Overview
	13.1.1 Other Sources of Information

	13.2 Inventory Installation Considerations
	13.2.1 Inventory Scanning Space Requirements

	13.3 Inventory Installation
	13.3.1 Installing Inventory on the TMR Server
	13.3.2 Creating the Configuration Repository
	13.3.3 Installing Queries
	13.3.4 Adding Software Signatures
	13.3.5 Installing Inventory on Gateways
	13.3.6 Installing Managed Nodes
	13.3.7 Installing Inventory on PC Managed Nodes
	13.3.8 Installing Inventory on TMAs

	13.4 Configuring Inventory
	13.5 Customizing Inventory
	13.6 Distributing the Inventory Profile
	13.7 Inventory Scanning Process
	13.7.1 Scanning Programs

	13.8 Inventory’s Use of Methods
	13.8.1 UNIX Managed Node
	13.8.2 Windows NT Managed Node
	13.8.3 PC Managed Node
	13.8.4 TMA Endpoints

	13.9 Inventory Commands
	13.10 Querying the Inventory Database
	13.11 Troubleshooting Inventory
	13.11.1 The Endpoints
	13.11.2 The Managed Node
	13.11.3 The Gateway
	13.11.4 The RIM Host

	Chapter 14. User Administration
	14.1 Changes to User Administration with Release 3.6
	14.1.1 Endpoint Management
	14.1.2 Immediate Propagation of Passwords
	14.1.3 Interaction with Tivoli Security Management
	14.1.4 Technology Preview Program

	14.2 Profile Policy
	14.2.1 Default Policy
	14.2.2 Validation Policy

	14.3 Creating and Using User and Group Profiles
	14.3.1 Creating Profiles
	14.3.2 Populating Profiles
	14.3.3 Distributing Profiles

	14.4 Deleting a User Profile
	14.5 File Versions
	14.5.1 Extracting File Versions

	14.6 User Profile Passwords
	14.7 User Profile Home Directories
	14.7.1 Local Home Directory
	14.7.2 Remote Home Directory
	14.7.3 Problems with Creating Home Directories

	14.8 User Administration Notice Group
	14.9 NIS Domains
	14.9.1 NIS Default Policies
	14.9.2 NIS Validation Policies
	14.9.3 Creating Fake NIS Domains
	14.9.4 General Approach to User Administration Customization

	14.10 User Administration Data
	14.11 User Administration Methods
	14.12 Troubleshooting User Administration
	14.12.1 Code Level Consistency
	14.12.2 Populate Considerations
	14.12.3 Distribute Considerations
	14.12.4 Interregion Considerations
	14.12.5 Modifying Records
	14.12.6 Other Troubleshooting Hints and Tips

	14.13 The wpasswd Command

	Chapter 15. Security Management
	15.1 Tivoli Security Management Installation
	15.1.1 Security Notice Group

	15.2 TMR and Policy Region Roles
	15.3 Populating and Distributing Profiles
	15.3.1 Populating Records
	15.3.2 Security Profile
	15.3.3 Distribution Options

	15.4 Auditing
	15.5 Security Tasks
	15.6 Tivoli Access Control Facility
	15.6.1 TACF Architecture
	15.6.2 TACF Utilities
	15.6.3 TACF User Mapping
	15.6.4 Distributing and Populating with TACF
	15.6.5 TACF Command Line
	15.6.6 TACF Initialization File

	15.7 Tips and Troubleshooting
	15.7.1 TACF Trace
	15.7.2 Distribute and Populate Failures
	15.7.3 Access Problems
	15.7.4 System Policy Problems
	15.7.5 Miscellaneous Considerations

	15.8 Integrating with Tivoli Enterprise Console
	15.9 TACF Security Monitors
	15.10 Migrating SeOS Access Control to TACF

	Chapter 16. Enterprise Console
	16.1 TEC Central Event Server
	16.2 Distributed Event Console
	16.3 Central Event RDBMS Through RIM
	16.4 Distributed TEC Gateway
	16.5 Distributed Event Adapters
	16.5.1 How Event Adapters Send Events to the Event Server

	16.6 TEC Installation
	16.6.1 Pre-Installation Steps
	16.6.2 Install Enterprise Server
	16.6.3 Install Enterprise Console and TEC Adapters
	16.6.4 Troubleshooting Installation

	16.7 Troubleshooting TEC
	16.7.1 TEC Server Troubleshooting
	16.7.2 Event Console Troubleshooting
	16.7.3 Rule Base Errors

	Chapter 17. Tivoli Output Manager
	17.1 Expected Audience and Knowledge
	17.2 Output Manager/Destiny Overview
	17.2.1 Destiny Background Processes
	17.2.2 Destiny Tools

	17.3 Troubleshooting Destiny Problems
	17.3.1 GUI
	17.3.2 Destiny Direct Client (Windows NT/95)
	17.3.3 SLP Client (Windows NT/Unix)
	17.3.4 Destiny Output Server (Windows NT)

	17.4 Troubleshooting a Push Operation
	17.4.1 Successful Push Operation
	17.4.2 Failed Push Operation

	17.5 Unknown Log Problem Determination
	17.6 Frequently Asked Questions
	17.7 Error Solution Tables

	Chapter 18. Remote Control
	18.1 Tivoli Remote Control Installation
	18.1.1 Patches

	18.2 Preparing to Use Remote Control
	18.2.1 Authorizing Administrators
	18.2.2 Creating the RemoteControl Object
	18.2.3 Setting Default Policies
	18.2.4 Defining Gateways for Remote Control

	18.3 Taking Control of a Target
	18.3.1 Remote Control Trace

	18.4 Troubleshooting Remote Control
	18.4.1 Framework Troubleshooting
	18.4.2 Windows Eventlog
	18.4.3 Trace Files

	Appendix A. Tivoli’s Use of Windows NT
	A.1 Introduction
	A.1.1 Intended Audience
	A.1.2 Scope
	A.1.3 Conventions
	A.1.4 Other Resources
	A.1.5 Acknowledgments

	A.2 Tivoli Authentication Package
	A.2.1 Why TAP Is Needed
	A.2.2 Understanding TAP
	A.2.3 How TAP Works
	A.2.4 Understanding the Tivoli Remote Access Account
	A.2.5 Order of Account Selection
	A.2.6 wsettap.exe and wlcftap.exe

	A.3 Tivoli Accounts
	A.3.1 Accounts Created
	A.3.2 Accounts Used by Tivoli Enterprise
	A.3.3 Identifying Under Which User a Given Process Will Run
	A.3.4 Options for the SET_USER
	A.3.5 Privileged Account Tivoli Version Comparison
	A.3.6 Domain Controllers

	A.4 Security
	A.4.1 Changes to NT Accounts Used by Tivoli Enterprise
	A.4.2 File System Issues
	A.4.3 Permissions on Installation Directories
	A.4.4 Location of the oserv.exe
	A.4.5 Changes in the NT Domain

	A.5 Tivoli Enterprise Install and Removal
	A.5.1 Installation of the Tivoli Remote Installation Package
	A.5.2 Creation of a Tivoli Managed Node
	A.5.3 Un-installing TMF
	A.5.4 Installation of the Tivoli Management Agent
	A.5.5 Preparing an NT for a Tivoli Installation

	A.6 Environment Issues
	A.6.1 DLL Conflicts
	A.6.2 How Shell and Perl Scripts Work on NT
	A.6.3 Dependencies and TMA
	A.6.4 Name Resolution/WINS
	A.6.5 Sourcing the Tivoli Environment
	A.6.6 Tivoli Desktop for TMF
	A.6.7 Performance Tuning for Tivoli
	A.6.8 Non-US Keyboard Issue
	A.6.9 Port Restriction Causes TIME_WAIT to Last 169 Seconds
	A.6.10 Tivoli Files Placed Under %SYSTEMROOT%

	A.7 Tivoli Specific Commands and Terminology for NT
	A.8 Useful Microsoft and Third Party NT Commands
	A.8.1 Built-in NT Commands
	A.8.2 Other Utilities

	A.9 General Issues
	A.9.1 Issues with TAP
	A.9.2 Start-Up of oserv
	A.9.3 Using TRAA with Tasks
	A.9.4 General Framework

	A.10 PC Agent Overview
	A.10.1 PC Agent Design
	A.10.2 PC Agent Running as a Console Application
	A.10.3 PC Agent Running as Service
	A.10.4 PC Agent Running as a User-Defined Account

	A.11 Version 3.6 Methods Using $root_user idmap

	Appendix B. RDBMS Management
	B.1 Installation
	B.2 Directories for ESM Database Management Files
	B.3 Adding ESM Tasks
	B.3.1 ChangeOracleHome Task
	B.3.2 DiscoverOracleDB Task

	B.4 TME 10 Enterprise Console Operations
	B.5 ESM Frequently Asked Questions
	B.5.1 Oracle Framework
	B.5.2 Oracle7 Distributed Monitoring
	B.5.3 Oracle User Management

	B.6 Troubleshooting the ESM Framework
	B.6.1 Troubleshooting ESM TMR Server Installs
	B.6.2 Reinstalling Failed Server Installations
	B.6.3 Troubleshooting ESM Managed Node Installs
	B.6.4 ESM Database Registration
	B.6.5 Removing a Database Object
	B.6.6 ESM Roles
	B.6.7 ESM Notice Group
	B.6.8 Database Operations
	B.6.9 Symbolic Links
	B.6.10 Background Daemons

	B.7 Troubleshooting ESM Distributed Monitoring
	B.7.1 ESM Distributed Monitoring Installation
	B.7.2 ESM Distributed Monitoring Notice Groups
	B.7.3 User and Group ID with Insufficient Access
	B.7.4 Removing Monitors
	B.7.5 Required Roles
	B.7.6 Database and Instance Collection
	B.7.7 Monitoring Tasks
	B.7.8 Further Problem Determination at the Endpoint

	B.8 Troubleshooting ESM Oracle User Managment.
	B.8.1 Installation of ESM User Management
	B.8.2 User Management Notice Groups
	B.8.3 User Management Roles
	B.8.4 Overview of Passwords in OracleUser Profiles
	B.8.5 Deleting Database User Records
	B.8.6 Background Daemons

	B.9 Removing ESM Database Management Software

	Appendix C. RDBMS Install Examples
	C.1 Installing an Oracle RDBMS
	C.1.1 Installing Oracle on UNIX 7.3.2.1
	C.1.2 Oracle Installation Verification

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

