
SG24-2032-01

International Technical Support Organization

http://www.redbooks.ibm.com

High Availability Scenarios for Tivoli Software

Vasfi Gucer, Bart Jacob, Nitin Pimplodkar, David Spurway
Jeff Mitzel, David Shiels

High Availability Scenarios for Tivoli Software

May 1999

SG24-2032-01

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (May 1999)

This edition applies to Version 3.6 of the Tivoli Enterprise Software for use in multiple operating
environments.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept.OSJB Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 103.

Take Note!

Contents

Chapter 1. Introduction . 1
1.1 Tivoli Overview. 2
1.2 High Availability Concepts . 5

1.2.1 Levels of Availability . 5
1.2.2 Single Point of Failure in a Cluster . 6
1.2.3 High Availability Terminology . 7

1.3 Summary . 9

Chapter 2. Failover Scenarios . 11
2.1 Operating Environments . 11
2.2 Tivoli Configurations. 11

2.2.1 Scenarios Not Covered. 14
2.3 High Availability Products and Configurations 15
2.4 Summary . 16

Chapter 3. Tivoli Failover Considerations . 17
3.1 High Availability Considerations for Tivoli Framework. 17

3.1.1 Files and File Systems . 17
3.1.2 Placing Files on Local or Shared Disk . 19
3.1.3 /etc/Tivoli . 21
3.1.4 Hostname Resolution . 22
3.1.5 Interconnected TMRs . 23

3.2 TEC Considerations . 23
3.3 Managed Node Considerations . 25

3.3.1 Distributed Monitoring Scenario . 25
3.4 Mutual Takeover Environments . 26
3.5 Endpoint Considerations . 27
3.6 Summary . 27

Chapter 4. High Availability Cluster Multi-Processing (HACMP) 4.3.0 29
4.1 HACMP and AIX Configuration . 29

4.1.1 Hardware Configuration . 29
4.1.2 Diagram of the Hardware Configuration 29
4.1.3 File System Mount Points . 30

4.2 Idle Standby of a Managed Node . 30
4.2.1 File System and Disk Configuration . 31
4.2.2 Installation Process . 31
4.2.3 The WLOCALHOST Variable . 32
4.2.4 Application Server . 33

4.3 Mutual Takeover of Managed Nodes . 34
4.3.1 File System and Disk Configuration . 34
© Copyright IBM Corp. 1999 iii

4.3.2 Installation Process . 35
4.3.3 The set_force_bind Variable . 37
4.3.4 Application Server . 39

4.4 TMR Servers in Either Idle Standby or Mutual Takeover 40
4.4.1 File System and Disk Configuration . 40
4.4.2 Variable Considerations with the TMR Server. 41
4.4.3 TMR Server Summary . 42

4.5 Tivoli Enterprise Console in an Idle Standby HACMP Cluster 42
4.5.1 File System and Disk Configuration . 42
4.5.2 Installation Process . 43
4.5.3 Some Diagnostic Utilities . 52
4.5.4 Modifications to the Control Scripts . 52
4.5.5 TEC Server Summary. 53

4.6 TMR Server and Managed Node Mutual Takeover 54
4.6.1 Installation Process . 54
4.6.2 Summary . 57

4.7 TEC Server and TMR Server Mutual Takeover. 57
4.7.1 File Systems. 58
4.7.2 Installation Process . 59
4.7.3 Summary . 60

4.8 Endpoints . 60
4.8.1 Endpoint Manager . 60
4.8.2 Endpoint Gateways . 60
4.8.3 File System and Disk Configuration . 61
4.8.4 Endpoint Installation . 61
4.8.5 HACMP Configuration . 61
4.8.6 Distributed Monitoring Scenario on Endpoints 62
4.8.7 Endpoint Summary . 64

4.9 Summary . 64

Chapter 5. Solstice HA . 65
5.1 Solstice HA Overview . 65

5.1.1 Solstice HA Data services . 66
5.1.2 Solstice HA Restrictions . 66

5.2 Our Lab Environment . 67
5.3 Failover Scenarios . 69

5.3.1 TMR Server - Hot Standby Configuration 69
5.3.2 Managed Node - Idle Standby . 75
5.3.3 Managed Node - Mutual Takeover . 75

5.4 Solstice HA/Tivoli Considerations . 79
5.5 Summary . 80
iv High Availability Scenarios for Tivoli Software

Chapter 6. Microsoft Cluster . 81
6.1 What Is a Microsoft Cluster? . 81

6.1.1 What Is Microsoft Cluster Server (MSCS)? 81
6.1.2 How Does MSCS Provide High Availability? 81
6.1.3 Concepts and Terminology . 82
6.1.4 Tivoli in an MSCS Environment . 84

6.2 Summary . 88

Appendix A. A Possible Future for Tivoli HA Implementations 89
A.1 Background. 89
A.2 Problems. 90
A.3 Solutions . 90
A.4 Effects . 91

A.4.1 oserv ID Generation . 91
A.4.2 Setup Scripts Directory . 91
A.4.3 Instances File (Unix only) . 92
A.4.4 Registry Keys (NT only) . 92

A.5 Procedures . 93
A.5.1 Fresh Install . 93

A.6 Summary. 94

Appendix B. Sample Script to Copy Tasks to Shared Filesystem 97

Appendix C. Determining the Status of the oserv Process. 99

Appendix D. Special Notices . 103

Appendix E. Related Publications . 105
E.1 International Technical Support Organization Publications 105
E.2 Redbooks on CD-ROMs . 105
E.3 Other Publications. 105
 v

vi High Availability Scenarios for Tivoli Software

Figures

1. TMR Server Failover - Transparent to Managed Systems 12
2. TMR Managed Node Failover - Transparent to TMR Server. 13
3. TMR Endpoint - Transparent to TMR Server and Gateway. 13
4. Tivoli Enterprise Console - Transparent to TMR Server 14
5. TEC Process Dependencies . 24
6. HACMP Hardware Configuration . 30
7. Installation Options for Managed Node Black . 36
8. Environment for TEC Hot Standby Scenario . 44
9. TEC Installation Managed Node Black . 45
10. Install Options Parameters. 46
11. DM Profile for Monitoring Framemaker.exe Program 49
12. Changing BufEvtPath Variable . 50
13. Changing Installdir Variable . 51
14. Installation Options for Managed Node Brown . 56
15. TEC and TMR Server Mutual Takeover Configuration 58
16. DM Profile to Monitor snmpd Daemon Up Status 63
17. Pop-up Notification after Failover. 64
18. Ultra Enterprise Cluster HA Hardware Configuration. 68
19. MSCS Environment . 85
© Copyright IBM Corp. 1999 vii

viii High Availability Scenarios for Tivoli Software

Tables

1. File Systems for Idle Standby of a Managed Node 31
2. File Systems for Managed Node Black . 35
3. File Systems for Managed Node Brown . 35
4. File Systems for Idle Standby of a TMR Server. 40
5. File Systems for First TMR Server Black . 41
6. File Systems for Second TMR Server Brown . 41
7. File Systems for Idle Standby of a TEC Server . 42
8. File System Structure for TMR Server on Black . 54
9. File System Structure for the Managed Node on Brown 54
10. File System Structure for TEC Server on Black . 58
11. File System Structure for TMR Server on Brown. 58
12. File Systems for Endpoint on System Brown. 61
© Copyright IBM Corp. 1999 ix

x High Availability Scenarios for Tivoli Software

Preface

This redbook is a follow up to the previous redbook Implementing TME 10 in
High Availability Environments (SG24-2032-00) that was written in December
1997 and fulfilled an important requirement in helping customers and Tivoli
professionals in implementing Tivoli in high availability environments.

Since that time, the Tivoli product has been considerably changed from a
two-tiered architecture to a three-tiered one. Also, function was added to the
Tivoli framework to ease the implementation of Tivoli in HA environments.

This redbook covers new material, such as mutual takeover scenarios
(TEC-TMR Server, Managed Node-Managed Node, Managed Node-TMR
Server), and Tivoli Endpoint HA implementations as well as Microsoft Cluster
Server scenarios in addition to HACMP and SUN Solstice examples.

We assume that the reader has a thorough understanding of high availability
concepts and knowledge of at least one HA product. We also assume that the
reader is familiar with the Tivoli framework and applications.

After reading this redbook, you should be well prepared to develop a detailed
plan for implementing Tivoli in HA environments.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization’s Austin Center.

Vasfi Gucer is an Advisory I/T Specialist at the International Technical
Support Organization, Austin Center. He has worked at IBM Turkey for 10
years. He has been with the ITSO for 3 months. His areas of expertise
include systems management and networking of distributed platforms.

Bart Jacob is a Consulting Software Engineer at the International Technical
Support Organization, Austin Center. He writes extensively and teaches IBM
classes worldwide on topics related to Tivoli. He has been with the ITSO
since 1989 and has experience in systems management, distributed object
frameworks, object-oriented application development and communications.

Nitin Pimplodkar is working at IBM India as a Technical Manager. He is
supporting AIX, HACMP, and Tivoli implementations at IBM India.
© Copyright IBM Corp. 1999 xi

David Spurway is working at IBM UK as an RS/6000 Pre-Sales Technical
Support Specialist. He has 2 years of experience in HACMP implementation
and extensive UNIX skills.

Jeff Mitzel is working as a Professional Services Specialist at IBM/Austin and
has been working at IBM since 1992. He has experience in both High
Availability development and services at IBM before joining Tivoli PS as a
deployment specialist.

David Shiels is working as an Account Engineer in the Phoenix area
reporting to the Tivoli Irvine office. He vast experience in implementing Tivoli
in NT and UNIX environments.

Thanks to the following people for their invaluable contributions to this
project:

Mark Adams
Tivoli Systems

Justine Patterson
Tivoli Systems

Mike Hahn
Tivoli Systems

Jeff Mills
Tivoli Systems

Thomas Knueppel
IBM Germany

Adam Majcherzyk
IBM Belgium

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 113
to the fax number shown on the form.

 • Use the online evaluation form found at :http://www.redbooks.ibm.com
xii High Availability Scenarios for Tivoli Software

 • Send us a note at the following address:

redbook@us.ibm.com
 xiii

xiv High Availability Scenarios for Tivoli Software

Chapter 1. Introduction

Systems management is becoming an ever more important factor in the
successful implementation of client/server environments. Users, and the
companies they work for, depend on the availability of critical systems and
applications. Systems management products, such as Tivoli, provide the
facilities to manage the deployment and availability of client/server
applications.

What happens when hardware or software errors occur that affect the
availability of Tivoli applications? If one or more components of the Tivoli
environment are not available, then you have temporarily lost the capability to
manage the critical systems and applications in your network. Therefore,
Tivoli should also be considered as an application whose availability is
critical.

To help ensure the availability of specific systems and applications, there are
many vendors that offer product solutions generally known as high availability
(HA) products. HA products are designed to monitor critical systems and/or
applications and restart those applications (possibly on a different physical
system) in case of failure.

Hardware vendors, such as IBM, Sun, and HP, offer HA solutions specific to
their hardware and operating environments. Also, Microsoft has an HA
solution for its Window NT environment. In addition, other vendors, such as
the Qualix Group, provide software-based solutions that run on different
vendor’s hardware and support a variety of operating systems.

Though each HA product has its own unique features and benefits, they all
provide the same basic function. This redbook is not intended to differentiate
among the various HA products but to simply indicate how Tivoli can be
installed and configured to allow it to be managed by HA products.
Specifically, the HA products that we tested were IBM’s HACMP, Microsoft’s
Cluster Server, and Sun’s Solstice. Though we were not able to test in an HP
environment, we are confident that these same concepts and implementation
techniques will work in an HP ServiceGuard environment.

By implementing Tivoli in an HA environment, you can more consistently
ensure the capability to manage the resources in your network.
© Copyright IBM Corp. 1999 1

1.1 Tivoli Overview

Tivoli is the brand name given to a set of systems management products
developed by Tivoli Systems and their partners. The Tivoli product family is
based on an underlying framework (Tivoli Framework) that provides a set of
common services used by the various Tivoli applications. The Tivoli
Framework is an object-oriented environment in which operations are carried
out through interfaces defined for various objects. The Tivoli Framework is
based on the Object Management Group’s Common Object Request Broker
Architecture (CORBA), which is a commonly accepted industry standard for
distributed object-based applications. From a high level view, the Tivoli
Framework can be described as containing the following sets of services:

 • Operating system interfaces/encapsulation
 • Distributed object framework
 • Distributed database
 • Basic management functions
 • Installation routines
 • Command interface
 • Graphical user interface (Tivoli Desktop)

The Tivoli Management Applications run on top of the Tivoli Framework and
utilize the framework services. The applications provide systems
management functions, such as:

 • Inventory management
 • Software distribution
 • Distributed monitoring
 • User and Security management
 • Event processing
 • and others

The Tivoli family of products are supported in a variety of operating
environments such as

 • Unix
 • Windows NT
 • Windows 98, 95, 3.x
 • Netware 3, 4
 • OS/2
 • AS/400
 • OS/390

In a Tivoli environment, systems are organized by regions called Tivoli
Management Regions (TMRs). Each TMR consists of a single TMR server
2 High Availability Scenarios for Tivoli Software

that provides overall control of the distributed management database. The
Tivoli database is a proprietary database that is spread across systems that
make up a Tivoli Management Region. Communications between the TMR
server and managed systems is handled through a process on each system
called the oserv daemon. This daemon is an implementation of a
CORBA-compliant object request broker. The oserv-oserv communications
facility allows for the invocation of methods on objects representing managed
resources.

Tivoli uses a TCP/IP-based protocol for its oserv-oserv communications.
However, the protocol is hidden from users and application developers who
simply reference specific objects in their method invocation requests, and the
oserv daemon utilizes the services of the framework to locate objects and
invoke methods on them.

Prior to the V3.6 release of Tivoli, the Tivoli Framework had a two-tiered
architecture where there were two kinds of managed systems: managed
nodes and PC managed nodes. A managed node is a client that runs the full
Tivoli framework code including the client portion of the distributed database;
whereas, PC managed node runs an agent that communicates with the PC
managed node object on a managed node. Since managed nodes have a
complete implementation of the framework, they can run all the Tivoli
applications, but they require a considerable amount of system resources. On
the other hand, PC managed nodes have less resource requirements, but
they can only run a subset of Tivoli applications.

With Tivoli V3.6, Tivoli introduced a three-tiered architecture which
completely overcomes the limitations of previous managed node and PC
managed node concepts. The new architecture provides for lightweight
clients that provide full function as a managed system.Three new object types
serve as the backbone of this architecture:

 • Endpoints
 • Endpoint Gateways
 • Endpoint Managers

Endpoints are typically installed on systems that are considered managed
only systems. That is, like most end-user workstations, these systems will be
managed, but they will not be involved in the management of other nodes.
Endpoints run a small daemon called the TMA (Tivoli Management Agent)
that is responsible for executing methods at the request of a managing
system. When a TMA is installed, a minimal number of files are installed on
the managed system. When an application invokes a method to be executed
on the endpoint, the method is automatically downloaded to the endpoint and
Introduction 3

executed by the TMA. Methods that are downloaded to the endpoint are
cached at the endpoint. As long as that method stays in the cache, it need not
be downloaded again upon a second invocation of the same method.

The Endpoint Gateway is a component that runs on a full managed node
enabling the managed node to operate as a gateway between a cluster of
endpoints and the rest of the TMR. Each TMR can have multiple endpoint
gateways. Currently, one TMR server can support about 200 endpoint
gateways. By using gateways, the performance and scalability of the Tivoli
environment is greatly enhanced since gateways perform much of the
function that was handled by the TMR server previously.

The Endpoint Manager controls and stores the association between endpoint
gateways and endpoints. The endpoint manager component resides in the
TMR server. The endpoint manager plays a role in enforcing site-specific
policies. For example, policies may be put in place that specify which
endpoint gateway will be assigned to new endpoints joining the network.

We refer the reader to the product documentation referenced in the
bibliography for more detailed information on the Tivoli Framework.

It is most important to understand that, if the TMR server experiences a
failure, then continued management of the systems within the TMR is
severely limited until the TMR server has recovered. Therefore, the TMR
server is a prime candidate to become a resource managed by an HA
product.

The TMR server is not the only Tivoli component that should be considered a
candidate to be an HA resource. Application servers that have been
traditionally included as HA resources are also prime candidates as Tivoli
managed nodes or endpoints. Therefore, it is important when an application
server fails and is restarted on another node in the HA cluster, that the Tivoli
managed node or endpoint function also fails over. By doing this, the Tivoli
administrators will still see the application server as a single entity
independent of which node in the HA cluster it is currently running on.

One of the core Tivoli applications is the Tivoli Enterprise Console (TEC).
This application is the cornerstone of Tivoli’s applications for managing the
availability of critical resources. It provides a single collection point for events
generated by a variety of systems. The TEC server can reside on a TMR
server but is usually installed on a managed node separate from the TMR
server. TEC requires access to a Relational Database Management System
(RDBMS) and has its own daemons that are used to process the events and
carry out automated actions. The TEC server is key to automating the
4 High Availability Scenarios for Tivoli Software

management of your environment and, therefore, is also a candidate to be an
HA resource.

We discuss the HA implementation of TMR servers, managed nodes,
endpoints, and TEC servers as HA resources in this redbook.

1.2 High Availability Concepts

There are several HA products available in the marketplace. Though each
has its own unique benefits, they all work on the same basic concepts. This
section discusses HA concepts and provides definitions of terminology that
will be used throughout the rest of this redbook. We can start with the
definition of availability itself. Though it seems obvious, it is useful if we all
start with the same definition in mind. Availability is simply the proportion of
time that a system can be used for its intended purpose. An acceptable level
of availability is different for every system in every environment, and in
general, is dependent upon the cost associated with the system or application
being unavailable for a period of time.

For example, an airline reservation system that is unavailable during peek
business hours may cost the airline millions of dollars in revenue. Cost is
associated with ensuring that a critical system has acceptable availability.
High availability systems usually consist of redundant hardware and
specialized software that may set dormant until a failure on the primary
system occurs. It is up to the individual business to determine how much they
are willing to spend to ensure an acceptable level of availability.

1.2.1 Levels of Availability
Most HA specialists discuss availability in terms of four levels with the higher
levels encompassing each of the lower levels. However, it may be that not
every availability feature at a lower level is implemented by a higher level
implementation. This is because other capabilities of the higher level replace
the requirement for the features at the lower level. For example, a system
doesn’t need redundant power supplies if the application can be taken over to
another system with an acceptable downtime of the application. For a more
detailed discussion of HA concepts, please see your HA product
documentation.

 • One system with reliable hardware and software

 • Recovery procedure in place in case of failure

 • Planned system outages for maintenance

 • Unplanned system outages
Introduction 5

1. Improved Availability

 • Hardware redundancy, such as disk mirroring or RAID 5,
uninterruptable power supply (UPS) and so on

 • Critical hardware backup on hand (power supply, cooler, fan, and so
on)

 • Data journaling and check summing

 • Hot pluggable devices (disk, adapters, and so on)

 • Faster recovery

2. High Availability

 • Eliminate single point of failures

 • At least two systems (high availability cluster) with cluster software

 • Transfer of service to another machine

 • Minimal recovery time for unplanned outage

3. Continuous Availability

 • 100 percent availability to the end-user

 • Redundancy in all components

 • Provide ability to perform all error recovery and change processes
online

If it’s not already clear, this redbook is addressing the third level (High
Availability) in relationship to Tivoli.

1.2.2 Single Point of Failure in a Cluster
In an HA environment, one of the key techniques is to eliminate single points
of failure. This means that if one part of your system fails, the system can
continue to run, or recover in an acceptable period of time, with minimal
impact to the end-users. Only in a case where a second error occurs before
the first is fixed should a more prolonged outage occur.

These components that are typically considered single points of failure
include:

 • Individual processors or nodes in a cluster

 • Disks

 • Adapters, controllers, and cables used to connect the nodes to the disk

 • Network adapters attached to each node
6 High Availability Scenarios for Tivoli Software

 • Network backbones over which the users are connected to the cluster

 • Asynchronous adapters

 • Application programs

Most HA products provide for monitoring of these resources and dynamically
utilizing redundant hardware in the case of a failure.

1.2.3 High Availability Terminology
The following list contains common terms and definitions used when
describing most HA products and environments. Each operating environment
and HA product uses slightly different terminology for the same concepts.
This list is intended to be a general representation of the concepts and is
defined in such a way that you should be able to map these terms to those
used in the environment for which you are most familiar. These terms are
used throughout this redbook when discussing HA solutions in each of the
environments we cover. The definitions mostly describe cluster resources or
cluster configuration concepts:

cluster A cluster is a group of machines (nodes) with
applications that are managed and controlled
by HA software. The systems in a cluster
typically provide redundancy for one another.

node A node is a machine in a cluster.

resource Resources are applications, services, or
components running on the cluster. A
resource is the smallest configurable
component in a cluster. Examples of
resources include applications, disks, files
systems, or TCP/IP addresses.

resource group To run successfully, some resources are
dependent on other resources. Dependent
resources are grouped together in a resource
group.

hostname The hostname of a machine is the name of a
machine. To find out a hostname in a Unix
environment, you use the command uname -n.
In some Unix environments, you may also
have the hostname command, which returns the
hostname of the machine. Normally, a
hostname is bound to an IP label of a network
Introduction 7

adapter providing the base IP address for this
machine.

IP address This is the basic Internet address associated
with a network adapter.

IP label An IP label is the name associated with a
network interface of a network adapter.

logical IP address A logical IP address is another IP address for
a network interface of a network adapter.
Therefore, each interface has one IP address
and possibly one or more logical IP
addresses.

alias You can have more than one name associated
with an IP address. These names are aliases.
Aliases can be useful for differentiating the
name used for different functions. For
example, you may create an alias by prefixing
your IP label with www to represent Web server
function.

hardware address This is the address of a network adapter.
Every network adapter has a burned-in
hardware address. This address is universally
unique. Some network adapters support
configurable hardware addresses, which are
called logical hardware addresses.

mutual takeover Mutual takeover is a cluster configuration
where every member in the cluster may be
running its own set of applications during
normal operation but where every member
has the ability to take on the function of the
other members should a failure occur.

idle or hot standby An idle standby configuration is a cluster
configuration in which one node is running a
resource group, and the other node is idle.
The idle node stands by and is only put in
production if the other node fails. This is often
called hot standby mode.

concurrent access Concurrent access is a disk configuration
where more than one machine can directly
access the same physical disk at the same
8 High Availability Scenarios for Tivoli Software

time. For concurrent access, a lock manager
is needed to control the access to the disk.

mirrored disk solution A cluster with a mirrored disk solution uses
real-time mirroring of data between the
members of the cluster. The data is stored
locally on each member of the cluster. Every
node has its own exact copy of the data.

shared disk solution A cluster with a shared disk solution uses an
external disk to which every member of the
cluster is connected. Only one node has
ownership of the disk at a time. In case of
failure, the ownership is switched to another
node.

cascading resource groups A cascading resource group has a hierarchy
of nodes where a certain resource group
should run. If a higher priority node rejoins the
cluster, the resource group will be taken back
to this node automatically.

rotating resource groups A rotating resource group has no hierarchy of
nodes where a certain resource group should
run. If a node rejoins the cluster after a failure,
the resource group will not be taken back to
this node.

failover This is the process of moving one or more
resource groups to an alternate node in the
cluster when a failure occurs.

1.3 Summary

This chapter provided a short overview of Tivoli, the reasons why you may
want to implement Tivoli in an HA environment, and an overview of HA
concepts.

In the next chapter, we describe the specific environments we tested and
document in the remainder of this redbook.
Introduction 9

10 High Availability Scenarios for Tivoli Software

Chapter 2. Failover Scenarios

Before we start addressing the technical issues involved with implementing
Tivoli in HA environments, let’s first define the scope of our objectives. We
cannot address all HA products on all Tivoli supported platforms or take into
account all Tivoli applications.

This chapter discusses the specific scenarios and environments we address
throughout the rest of the redbook. We believe that the scenarios we have
chosen will have the most widespread applicability. You should be able to
extend the concepts and information provided here to environments and
scenarios not explicitly discussed.

2.1 Operating Environments

The specific environments we were able to test during the creation of this
redbook were IBM’s AIX V4.3.2, Sun’s Solaris V2.5.1, and Windows NT 4.0.
We are not aware of any factors that would prevent successful
implementations in other Unix environments, such as HP-UX.

2.2 Tivoli Configurations

When looking at the implementation of Tivoli in HA environments, the first
consideration is the Tivoli framework. A specific system can be installed as a
TMR server, managed node, or endpoint. In addition, the managed node may
take on additional roles, such as an endpoint gateway or TEC server.

The TMR server is a critical element of the TMR and, therefore, is an obvious
candidate to be implemented in an HA environment. Assuming that the
network itself is available, the availability of the TMR server ensures that
management operations can be carried out on active managed nodes.

Obviously, the primary motivation for increasing the availability of TMR
servers is to help ensure that you can manage critical systems in your
network. Managed systems will not only include end-user systems but will
also include application servers and other systems critical to the day-to-day
operations of your business.

These application servers are also potential candidates to be implemented as
HA nodes. However, if these nodes will also be managed by Tivoli
applications (for monitoring, software distribution, and so on), then they must
also be Tivoli managed nodes or endpoints. If the application server fails over
© Copyright IBM Corp. 1999 11

to another node in the HA cluster, then the Tivoli managed node or endpoint
function should also fail over. Though system administrators may need to be
alerted to the fact that a failover has occurred, they should not have to be
aware of which physical node the application server is currently running on to
perform other management functions. Therefore, the failover of a managed
node or endpoint should be mostly transparent to the Tivoli framework.

Based on the above discussion, it is clear that we need to demonstrate how
to fail over TMR servers, managed nodes, and endpoints.

Figure 1. TMR Server Failover - Transparent to Managed Systems

In the above figure, we show two physical systems that are both capable of
taking on the role of the TMR server. The actual system that is currently
running the TMR server should be hidden from the managed systems and
any interconnected TMRs.

Likewise, the following figure shows the failover of a managed node and how
it should be transparent to the TMR server

Gateway or Managed Node

Logical TMR Server

System
A

System
B

Endpoints

TMR
Connection
12 High Availability Scenarios for Tivoli Software

Figure 2. TMR Managed Node Failover - Transparent to TMR Server

Tivoli Management Agent endpoints, which were introduced by the Tivoli 3.6
release, also should be considered as a highly available resource since they
may be used to manage an application server. The following figure shows the
failover of an endpoint and how it should be transparent to the TMR server
and endpoint gateway.

Figure 3. TMR Endpoint - Transparent to TMR Server and Gateway

In addition, the Tivoli Enterprise Console (TEC) is a core Tivoli application
that is used to manage the availability of systems in a Tivoli environment. It

Logical Managed Node

System
Y

System
Z

TMR Server

PC S erver
320

L og ica l E nd po in t

S ystem
Y

S yste m
Z

G atew ay

TM R Se rve r

P C S er ver
320
Failover Scenarios 13

helps manage availability by providing the reception, consolidation, and
automated handling of events generated by a variety of systems and
applications throughout the network. Administrators use TEC to monitor the
overall status of the network and ensure that problems are resolved possibly
even before users become aware of them. Therefore, the TEC server is also
a critical system to consider implementing as a resource in an HA cluster as
in the following figure.

Figure 4. Tivoli Enterprise Console - Transparent to TMR Server

In summary, the four Tivoli configurations that we will specifically address are:

 • Tivoli TMR server

 • Tivoli managed node

 • Tivoli endpoint

 • Tivoli Enterprise Console server

In each of our scenarios, we are utilizing version 3.6 of the Tivoli framework
and applications.

2.2.1 Scenarios Not Covered
Though our scenarios covered TEC, and some of our testing included
ensuring that applications, such as Tivoli Distributed Monitoring, continued to
work after a failover, we did not do extensive testing of specific applications
or application scenarios. In fact, we basically ensured that the framework
could be restarted successfully by the HA product. We did not address the
restarting of transactions that may have been in progress when the failover

Logical Tivoli Enterprise Console

System
Y

System
Z

TMR Server

PC Server
320
14 High Availability Scenarios for Tivoli Software

occurred. For instance, if a failover occurs during a software distribution,
nothing we have done will allow the software distribution to pick up where it
left off and complete the distribution successfully.

We do see this as an important factor in implementing a true HA environment.
Complete transaction recovery and restart is an application issue. That is,
each Tivoli application must determine how it can take advantage of the
underlying transaction subsystem within the Tivoli framework to provide
recovery in failover conditions.

Until this is fully addressed by all of the applications, the best we can do at
this point is to ensure that Tivoli system administrators be made aware that a
failover has taken place. Procedures can be put in place to help
administrators understand the state of a transaction at the time of the failover
and what they can do to back out or restart the transaction. It would be quite
straightforward in the HA environments we tested to be able to generate a
TEC event in the case of a failover. The appropriate administrators could then
be notified to carry out the procedures to determine the status of any
management operations that were in progress at the time of the failure.

Also, we didn’t cover the gateway failover scenarios for the following reason:
The primary purpose of gateways are to manage endpoints on behalf of the
TMR server. If for any reason a gateway goes down, the endpoints
associated with that specific gateway can automatically switch to another
gateway that may well have a hostname and IP address different from the
original gateway. Endpoints can be configured for how long they should wait
when they lose contact with their gateway before looking for another gateway.
So, we can say, HA capability is already embedded into the gateway
architecture.

2.3 High Availability Products and Configurations

During the project that resulted in this redbook, we worked with three different
HA products:

 • IBM HACMP V4.3.0 on AIX

 • Sun Solstice HA 1.3 on Solaris

 • Microsoft Cluster Server on NT 4.0

As it turned out, the steps required to implement Tivoli in each of these
environments was similar. The key differences centered around how the IP
addresses through which connections were made was implemented. The
differences between the different implementations are detailed in later
Failover Scenarios 15

chapters. We have a high level of confidence that similar steps could be
taken in other HA environments with similar results.

With most HA products, including those we tested, there are various options
as to how the cluster is configured. Though there are several variations,
depending on the specific HA product, the two configuration types most often
discussed are idle or hot standby and mutual takeover. We described these
briefly in 1.2.3, “High Availability Terminology” on page 7.

Basically, a hot standby configuration assumes a second physical system
capable of taking over for the first. This second system is not utilized except
in the case of a failover. The mutual takeover configuration consists of two
systems, each with their own set of applications, that can take on the function
of the other in the case of a failure. In this configuration, typically the
applications on both systems will run in a degraded mode after the takeover,
since one system is doing the job previously done by two. Mutual takeover is
typically a less expensive choice in terms of hardware costs since it avoids
having a system installed that is only used when a failure occurs.

With the level of Tivoli that we are using, version 3.6, support is now provided
to run multiple oserv processes on a single system. This function is currently
supported only for Unix environments. This issue will be addressed for NT
environments in a future release of Tivoli. In Appendix A, you can find a brief
overview of the implementation details of this capability. For our project, we
have built clusters for both hot standby and mutual takeover configurations. A
highly requested configuration is one in which the TMR server and a
managed node are configured in a cluster for mutual takeover. Specifically, a
TMR server and TEC server configured in this way would be very desirable to
help ensure manageability of your environment.

2.4 Summary

The following chapters describe methods and techniques for implementing
Tivoli servers, managed nodes, endpoints, and TEC servers in various HA
environments. The specific HA products that we have used and document in
the following chapters are HACMP, Solstice, and Microsoft Cluster. Though
the only two Unix operating environments we tested were AIX and Solaris, we
have confidence that the information presented here will be applicable, or at
least, easily adapted to other environments, such as HP-UX.

In the next chapter, we describe the resources used by Tivoli that you must
be aware of to successfully implement Tivoli in an HA environment.
16 High Availability Scenarios for Tivoli Software

Chapter 3. Tivoli Failover Considerations

In this chapter, we describe the aspects of the Tivoli software that must be
considered when planning an implementation of Tivoli in an HA environment.
The information presented here is generally independent of the platform on
which you will be running Tivoli. In the cases, where information is unique to a
specific platform, it will be noted.

The HA product-specific configuration steps described in later chapters refer
to the information presented here.

3.1 High Availability Considerations for Tivoli Framework

The first topic we discuss is the Tivoli framework. Information pertaining to
TEC is discussed in a later section.

In the HA implementation of any application, you must understand what
resources and facilities are used by the application. For instance, the typical
information that must be gathered for any application before configuring the
HA product to support it includes:

 • Resources used by the application, such as files and network facilities

 • System configuration requirements

 • Information regarding how to start and stop the application as well as how
to test whether or not it is currently running

For the HA purist, the above list is incomplete but certainly gives us a good
place to start.

3.1.1 Files and File Systems
When you install a TMR server or managed node using the default settings,
files are created and/or modified in:

/usr/local/Tivoli This directory tree contains the binary files required
to run the Tivoli environment. In general, system- or
TMR-specific information is not stored in this
directory tree. Therefore, it is relatively static with
one exception described below.

/var/spool/Tivoli This directory tree contains the TMR database. It is
dynamically updated during the operation of Tivoli,
and its availability and consistency is critical to the
on-going operation of Tivoli. In an HA environment,
© Copyright IBM Corp. 1999 17

the file system containing this tree should be located
on a shared disk whose ownership can be taken
over by another node in the cluster when a failure
occurs. In this way, the node that has taken over for
a failing node has full access to the Tivoli database.

/etc/Tivoli When Tivoli is installed, several files customized for
the specific environment are placed in this directory.
For instance, the setup_env.sh file that sets all the
appropriate environment variables for proper Tivoli
operation is included in this directory. As we will
mention later, the Tivoli Enterprise Console also
places customized files within this directory tree by
default. The number and size of the files in this
directory are quite small and they are typically not
modified after they are created. Therefore, you can
easily duplicate this directory across nodes in your
cluster.

/usr/lib/X11/app-defaults Any required resource files used by the X-based
user interface for the Tivoli Desktop are stored in
this directory. Once Tivoli is installed on the first
node in a cluster, the files added by the Tivoli
installation can be copied to the same directory on
the other node(s) in the cluster.

/tmp Tivoli generates some log files in the /tmp directory.
These are typically created during installation, and,
in general, you need not worry about sharing or
duplicating the files in this directory for proper
operation of Tivoli.

/opt/Tivoli/lcf This directory resides in Unix endpoints. It contains
binaries and configuration information of the
endpoint in various subdirectories. It is possible to
install the whole directory structure on a shared disk
as we did in our scenario. For NT 4.0 endpoints, the
endpoint directory resides in the following path:
%SystemDrive%\Program Files\Tivoli\lcf

In addition to the directories listed above, some standard system files are
modified by the installation of Tivoli. When setting up your HA environment, it
is important to understand these modifications so that they can be replicated
while setting up alternate nodes in the cluster. The following files are modified
on an AIX system. Similar modifications are made in other operating
environments.
18 High Availability Scenarios for Tivoli Software

/etc/services A port for Tivoli’s udp and tcp communications is added to
this file. Below are the lines that are appended to the file.
#

Tivoli framework daemon

#

objcall 94/tcp # Tivoli daemon

objcall 94/udp # Tivoli daemon

/etc/rc.nfs The following commands for starting the oserv daemon are
added to the rc.nfs file. Normally, this file is called at system
start through the /etc/inittab file. During installation, an option
is presented related to whether the oserv daemon should be
automatically started when the system is rebooted. For an HA
environment, you do not want the oserv daemon started
through this process. Rather, it is imperative that the HA
product be responsible for starting the oserv daemon. If during
installation you chose to have the oserv daemon automatically
started on system restart, you should edit the rc.nfs file and
comment out the following lines:
#

Start the Tivoli daemon

if [-f /etc/Tivoli/oserv.rc]; then

/etc/Tivoli/oserv.rc start

echo "Tivoli daemon started."

fi

/etc/inetd.conf An entry for starting the Tivoli Environment is added. This
entry is activated through a call to the inetd superdaemon
and is used by the Tivoli remote start process.
Tivoli Framework daemon

objcall dgram udp wait root /etc/Tivoli/oserv.rc \

/etc/Tivoli/oserv.rc inetd

3.1.2 Placing Files on Local or Shared Disk
The convention in HA clusters is to place binaries relating to shared
applications on a local disk. This is commonly done by installing on one
system, deleting the data from the shared disk, then reinstalling on the other
node after making the shared disk available to the other system. This is
normally done for three reasons:

1. If a product is installed with the binaries on the shared disk, and the
product fails to stop cleanly, then orphan processes can be left attempting
to access the binaries. This can result in a failure when attempting to
unmount the file system containing these binary files. If this file system is
Tivoli Failover Considerations 19

required to be made available to the other system, this can cause a
failover to fail.

2. There can be an issue regarding licensing. If a product is licensed on a per
system basis, then placing the binaries on a shared disk and, thereby,
making them available to more than one system can violate the licensing
restrictions.

3. Maintenance can be made more difficult if the binaries are placed on a
shared disk. If you perform an upgrade on a system, then having a copy of
the older versions on the secondary system can be helpful if you need to
back out the changes quickly. Also, the system may keep a record of what
levels of software are installed on it. If the binaries are on a shared disk
and are upgraded on one system, the second system will have incorrect
information regarding system levels.

With Tivoli, the binaries themselves are static, but within this directory tree
are the binaries for Tivoli Tasks. These are downloaded from the TMR server
and need to be made available to the system running the service. To allow the
Task binaries to be made available on the shared disk and keep the normal
Tivoli binaries on local disk, the script in Appendix-B can be used. We,
however, made the decision to place the binaries onto the shared disk. We
did this mostly for simplicity but also for the following reasons:

1. The oserv process that is central to Tivoli opens the database and leaves
it open for the duration of its life. Therefore, the fact that the binaries may
be left in use should the process exit uncleanly is not important and the
database that is required for the oserv process to operate will have the
same problem. By placing the binaries on the shared disk, we have made
the issue no worse.

2. The installation process used by Tivoli does not limit or prevent you from
installing the Tivoli binaries and database files in the directory of your
choice. So, placing the binaries on shared disk to make them available to
both systems is not a problem.

Should an upgrade take place, then the Tivoli database itself would be
altered. Therefore, returning to use older binaries without backing out the
changes from the database could produce unpredictable results. Also, as
the install process is designed for open systems, no attempt is made to
update the system tables to reflect that the product has been installed.
Therefore, no records are kept that could become out of step through
placing the binaries on shared disk.

With our configuration, each system has its own copy of the binaries and data
in its own unique sub-directory structure. As failovers occur, the file systems
20 High Availability Scenarios for Tivoli Software

containing these directories can be moved to the standby system. By using
an appropriate naming convention for the directory structure, it is easy to
track what system has which service.

3.1.3 /etc/Tivoli
As we have discussed, we have made the decision to place a complete,
distinct image for each instance of the oserv on separate shared disks. This is
made possible by the flexibility of the Tivoli install process. Either through the
GUI frontend or through the command line, you can specify where you wish to
place the various binaries that are required and the database for the oserv
process. However, as part of a Unix install, Tivoli also creates a directory
called /etc/Tivoli. Although there is a variable called EtcTivoli that you can set
before commencing a server install to alter the location of these files, a
number of Tivoli processes require the files to remain in /etc/Tivoli as the
location is hard coded and not altered by the use of the EtcTivoli variable. For
the most part, the files in /etc/Tivoli are not customized for the particular
instance of oserv that is being installed and are only ever read from, not
written to.

You can handle this directory in one of two ways. Either the /etc/Tivoli
directory tree can be manually copied to the standby system after initial
installation, or the /etc/Tivoli mount point could be on a shared file system.

In a mutual takeover environment, the install of the second oserv on the
second system will create the /etc/Tivoli directory. Though you can copy
these files from one system to another in a variety of ways, the following
command will allow you to do this in a single step.

tar -cvpf - /etc/Tivoli | rsh <target host> ’(tar -xvpf -)’

As mentioned previously, for the most part, the files and links present in this
directory are not customized for a particular install of the oserv process and
are only read from. The exceptions to this are the following:

 • setup_env.sh

 • setup_env.csh

 • oserv.rc

 • The ./tec directory

 • The ./tecad directory

The setup_env files are used to configure the environment so that the user or
calling script can interact with a particular instance of the oserv process. The
oserv.rc file is used to start, stop, or restart a particular oserv instance. The
Tivoli Failover Considerations 21

./tec and ./tecad directories are used by the application called TEC and will
be discussed later.

As different setup_env and oserv.rc files are needed to interact with different
oserv processes, we copied these to the shared disk and then called them
directly with our start and stop scripts. It is necessary to leave behind a copy
of the files as they are used by Tivoli’s remote restart procedure.

3.1.4 Hostname Resolution
When Tivoli is installed, the oserv binds itself to the hostname of the system
on which it is being installed, and this information is stored within the
database. If the hostname of the system is changed later, the oserv daemon
will fail to start. This means that, if you move the TMR server to another
machine, you also have to move the hostname to this machine. Since Version
3.2 of the Tivoli framework, it is possible to set an environment variable called
WLOCALHOST to define a logical hostname to be used in place of the actual
hostname. When installing the TMR server, this variable should be set to the
name associated with the service interface (IP label) of the cluster before the
installation of Tivoli. The service interface must be up and running during
installation.

During installation, whether using the GUI or the command line interface, you
will need to specify the name of the server to be the same as that specified by
the WLOCALHOST environment variable. Otherwise, the oserv will bind to
the actual hostname (the name returned by the hostname command.) If this
occurs, you will not be able to move the Tivoli node to an alternate system,
giving the following error:

1999/02/23 11:11:18 +06: $Database mismatch (from
brown.itsc.austin.ibm.com/9.3.187.134)
1999/02/23 11:11:18 +06:
!/Tivoli_tmr/usr/local/Tivoli/bin/aix4-r1/bin/oserv: odlist init failed.
internal resource corrupted. (54)

If you receive this error, then you can resolve the situation by setting the
WLOCALHOST variable to that which the server expects. This can be done
by editing the /etc/Tivoli/setup_env.sh and /etc/Tivoli/oserv.rc files. Rather
than setting the WLOCALHOST environment variable, it is also possible to
get the same effect by creating a file called /etc/wlocalhost. This file should
simply contain a single line identifying the desired hostname.

In a mutual takeover environment, however, multiple oserv processes may be
running on a single system. Each instance of the oserv may require its own
particular value for WLOCALHOST. In this situation, you would not wish to
22 High Availability Scenarios for Tivoli Software

use the /etc/wlocalhost file as this variable would then be system wide.
Setting the WLOCALHOST variable only effects the shell in which you are
running and processes started from that shell.

3.1.5 Interconnected TMRs
Interconnected TMRs do not actually add any additional considerations to an
HA environment. Information about the other TMRs to which it has been
connected is stored in the TMR database. When the TMR server is restarted,
it will attempt to reconnect to any other TMR servers to which it had
previously been connected.

Since all of this occurs after the oserv daemon has successfully restarted,
there is nothing that should prevent this from occurring. We tested both
one-way and two-way interconnections in each of our HA environments with
great success.

In the case where a TMR server has failed over abruptly, you may want to
execute the following two commands that check the consistency of the TMR
database and update the resources between TMRs, respectively:

wlsconn -u <region-number of connect TMR>
wchkdb -ux

Whether you automate the execution of these commands or simply execute
them as part of your standard procedures after a failover has occurred is up
to you.

3.2 TEC Considerations

In this section, we look at the considerations for implementing a TEC server
in an HA environment. While the oserv daemon can be installed and run in a
relatively standard Unix environment, the TEC server has several additional
dependencies that make its HA implementation a bit more complex.

We assume the reader has a thorough understanding of TEC, and we will not
discuss the various TEC components and structure in detail.

The following figure represents the dependencies for the various TEC
components. (Please note that portmapper is not a dependency on an NT
TEC server.)
Tivoli Failover Considerations 23

Figure 5. TEC Process Dependencies

The TEC master process is the core of the TEC server. It has a dependency
on the portmapper daemon, the Tivoli framework itself (either TMR server or
managed node), and a relational database. It actually uses the Relational
Database Interface Module (RIM) that is part of the framework. However, the
framework has no dependency on the database. The dependency is created
when applications, such as TEC, are installed and started.

RIM allows you to use the relational database of your choice. Currently, the
databases supported by RIM include Oracle, Sybase, Informix and DB2/6000,
although at the time of the writing of this book, DB2/6000 was only supported
by the inventory application, not TEC.

The database can be installed locally or can be accessed remotely.
Therefore, to implement TEC in an HA environment, the database component
(the database itself or its distributed client) must also be included as an HA
resource. We do not discuss in detail the HA implementation of the database
products in this redbook. Refer to your database or HA product

TEC
Master

Reception
Engine

Rules
Engine

TEC
Task

TEC
Dispatcher

DatabasePortmapper
TME 10

Framework RIM

Operating
System

TCP/IP
24 High Availability Scenarios for Tivoli Software

documentation for information on how this can be implemented. You may
want to refer to the redbook titled Bullet-Proofing Your Oracle Database with
HACMP: A Guide to Implementing AIX Databases with HACMP, SG24-4788.

Aside from the TEC master process, there are four other processes
associated with TEC that you need to be aware of. These include the
reception engine, the rules engine, the dispatcher, and a TEC task process.

The main process we need to be concerned with is the TEC master process.
If we can get this to failover and restart on another node, the other four
processes should start with no additional dependencies.

The implementation details of the TEC server are explained in the next
chapter.

3.3 Managed Node Considerations

There are only a few considerations related to managed nodes, over and
above those described earlier in this chapter applying to TMR servers. When
you install a managed node, the service interface should be up, and the
shared filesystem should be mounted. If possible, install and configure the
HA product first and bring the resource group online. After installing, you will
have to synchronize the same files and file systems as we have already
described.

You don’t have to worry about tasks on managed nodes since the tasks are
stored only on the TMR server. If you execute a task on a managed node, the
task is copied from the TMR server to the managed node’s /tmp directory and
executed from there. Of course, if a task is in the process of being executed
at the time of a failover, it may end prematurely and will not be restarted
automatically on the alternate node.

3.3.1 Distributed Monitoring Scenario
The Tivoli Distributed Monitoring application allows you to distribute monitors
to managed nodes that are periodically executed and report back to the
server when thresholds are reached. The monitors and information about
them are distributed as profiles to managed nodes and stored in the Tivoli
database on the managed node.

When a managed node that has the monitoring engine installed on it is
restarted, its monitoring engine is automatically restarted and will read the
information it requires from the database to execute the appropriate monitors.
Since all of the information required to do this is in the database on the
Tivoli Failover Considerations 25

managed node, we should not expect any problems in having monitors restart
after a failover.

The only steps that must be taken to ensure this happens is to synchronize
the /etc/Tivoli directories after the installation of the distributed monitoring
engine on the managed node.

In our environments, we did go through the exercise of defining and
distributing monitors and verifying that they restarted after a failover on the
managed nodes. Also, we tested the distributed monitoring scenario on
endpoints after the mutual failover in section 4.8.7.

In the following section, we describe a possible technique for running multiple
oservs on a single system. This would allow for a more complete mutual
takeover environment.

3.4 Mutual Takeover Environments

In the past, mutual takeover environments for Tivoli were not possible. This
was because the oserv process listens on a given port, which is by default 94.
Should a second oserv process attempt to start and operate against the same
port number, then you would get the following error:

1999/02/24 11:27:04 +06: Tivoli Framework (tmpbuild) #1 Tue Jul 21 11:04:01
CDT 1998
Copyright Tivoli Systems, 1997. All Rights Reserved.
TMR 1669180253. ORB 2. TMR server brown.itsc.austin.ibm.com:94. Port 94.
pid 10312
1999/02/24 11:27:46 +06: ^port 94: In use. Waiting...
1999/02/24 11:28:06 +06: ^port 94: In use. Waiting...
1999/02/24 11:28:26 +06: ^port 94: In use. Waiting...

The process listing would show both the oserv processes, but eventually the
second oserv would timeout and would fail.

With Tivoli Version 3.6, a new variable was added, set_force_bind. By
default, this variable is set to false. In this state, an attempt to start a second
oserv would still fail. To set the variable, the following Tivoli command must
be issued after the environment has been set up through the use of
setup_env.sh:

odadmin set_force_bind TRUE {od number}

This command should be run against all the oservs that may be required to
run on the same system in the future. After the command has been run, you
need to restart the oserv process for the change to take effect. Once the
26 High Availability Scenarios for Tivoli Software

oserv has had set_force_bind set to true, then it only binds to the IP address
that matches the WLOCALHOST variable. As each instance of the oserv
process will be binding to a different IP address, then you can start multiple
oserv processes on the same system. You need to use separate setup_env
files and individual oserv.rc files for each instance of the oserv being started.
Once started, running the corresponding setup_env.sh will allow you to
interact with the oserv process.

It is also possible to set the value of the set_force_bind variable at install for
managed nodes. It is not possible to pre-configure the TMR server at install
time, but then it is a simple matter to set the variable after installation is
complete. For some platforms, it is necessary to install the oserv process with
this variable set, but we shall discuss these issues in later sections. You can
not use the GUI-based install to perform this action; it is only possible from
the command line with the following command:

wclient -c {cdrom directory} {path variables} @ForceBind@=1

3.5 Endpoint Considerations

Implementing an endpoint as a highly available resource shouldn’t be a more
challenging task than a managed node. As we have mentioned before,
endpoints place their configuration and binary files under the /opt/Tivoli/lcf
directory for Unix endpoints and to %SystemDrive%\Program Files\Tivoli\lcf
directory on NT 4.0 endpoints by default. It is possible to put this directory on
the shared disk.

One point of consideration is: Each time an endpoint is installed, regardless
of whether installation is successful or not, it also creates a new subdirectory
of /etc/Tivoli/lcf. This subdirectory begins with a number that matches the
number of install attempts to this system. For example, the first install will
create /etc/Tivoli/lcf/1, the second attempt will create /etc/Tivoli/lcf/2, and so
on. To overcome this situation, you should delete an endpoint from the
endpoint manager before attempting a new installation. If /etc/Tivoli is on a
local disk, you need to copy these files to a shared disk for an HA
implementation.

3.6 Summary

This chapter discussed all of the major considerations we found in
implementing Tivoli in an HA environment. We specifically addressed the
TMR server, managed node, and endpoint, as well as TEC server. In the next
three chapters, we walk you through our actual implementation steps using
Tivoli Failover Considerations 27

HACMP, Solstice, and NT. Each of these chapters refers back to, and
assumes knowledge of, the material covered in this chapter.
28 High Availability Scenarios for Tivoli Software

Chapter 4. High Availability Cluster Multi-Processing (HACMP) 4.3.0

HACMP for AIX Version 4.3.0 is a control application that can link up to 32
RS/6000 servers or SP nodes into a single highly available cluster. Clustering
servers or nodes can enable parallel access to their data, which can help
provide the redundancy and fault resilience required for business-critical
applications.

HACMP clusters can be configured in several modes for different types of
processing requirements. The concurrent access mode suits environments
where all of the processors must work on the same workload and share the
same data at the same time. In the mutual takeover mode, the processors
share the workload and back each other up. Idle standby allows one node to
back up any of the other nodes in the cluster.

4.1 HACMP and AIX Configuration

The specific hardware and software configuration we used in our environment
are described in the following sections. We assume the reader is familiar with
HACMP concepts.

4.1.1 Hardware Configuration
Our lab environment for using HACMP consists of the following:

1. One RS/6000 Model 520 with AIX4.3.2.0, with a hostname of black.

2. One RS/6000 Model 530 with AIX4.3.2.0, with a hostname of brown.

3. Two token-ring adapters on each system.

4. One serial connection between the two RS/6000s.

5. One 7137 RAID array with five, 1 GB disks, that are connected to both
systems with SCSI Fast/Wide, single-ended connectors.

4.1.2 Diagram of the Hardware Configuration
We connected the given hardware in the following manner:
© Copyright IBM Corp. 1999 29

Figure 6. HACMP Hardware Configuration

4.1.3 File System Mount Points
In all of the following examples, we have used a format by which the file
systems used by an application are identified by the file system name in the
following manner:

 • For TMR server, mount from /Tivoli_tmr.

 • For managed node, mount from /Tivoli_mn.

 • For TEC server, mount from /Tivoli_tec.

In the examples where a mutual takeover of like applications was used, then
we distinguished the file systems by adding numbers, that is, /Tivoli_mn1 and
/Tivoli_mn2.

4.2 Idle Standby of a Managed Node

In this section, we will describe how to build a managed node into a hot
standby configuration using RS/6000s and HACMP. We will discuss the
installation of the managed node black from a stand alone server. The
managed node will be configured to run on the system black unless there is a
failure. At this point, the managed node function will be restarted on the

Brown

tty0tty0

scsi0 scsi0

rs232

brownvg blackvg

Black

Brown
brown_boot brown_standby black_standbyBlack

black_boot

rootvg rootvg
30 High Availability Scenarios for Tivoli Software

system brown. This will allow the managed node black to be seen by users
and the TMR server alike with minimum down time. The switch over that has
occurred between systems will be transparent to the TMR server and the end
users.

4.2.1 File System and Disk Configuration
As can be seen from Figure 1, we created a volume group for each system.
With this idle standby cluster, only the single volume group was required. We
built the following file systems in the volume group blackvg.

Table 1. File Systems for Idle Standby of a Managed Node

4.2.2 Installation Process
To install a managed node in our cluster, we did the following:

1. We created the following start script:

#!/bin/ksh
. /Tivoli_mn/etc/Tivoli/setup_env.sh
/Tivoli_mn/etc/Tivoli/oserv.rc start

and the following stop script:

#!/bin/ksh
. /Tivoli_mn/etc/Tivoli/setup_env.sh
/Tivoli_mn/etc/Tivoli/oserv.rc stop

and placed these in the /usr/local directory in rootvg on both systems. We
used chmod 755 {filename} to make the scripts executable.

2. We created a resource group called blackres in HACMP containing the
four file systems and the service IP address of black. We configured the
node relationship such that the resource would normally reside on the
system black but would cascade to brown in the event of a failure. As this
is a cascading resource, when black reintegrates into the cluster, the
resource will be taken over again by black.

3. We then synchronized the changes to all the nodes and started HACMP
on both nodes.

Mount Point Size (in 512 byte blocks)

/Tivoli_mn/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_mn/usr/local/Tivoli 204800

/Tivoli_mn/var/spool/Tivoli 65536

/Tivoli_mn/etc/Tivoli 8192
High Availability Cluster Multi-Processing (HACMP) 4.3.0 31

HACMP mounted all the necessary file systems and made the service IP
address available. Next, we started the install of the managed node from
the TMR server.

4. Once this had completed, we copied the files that had been placed in
/etc/Tivoli into /Tivoli_mn/etc/Tivoli.

5. We had to update the /etc/services file on the system brown with the
following:

objcall94/tcp
objcall94/udp

as the install process had done this for us on black. The oserv process
uses the port number 94 (94 being the default value) for communication
between the managed node and the TMR server. If this change is not
made on both systems, then the oserv process will fail to start as the port
it needs would not be available.

4.2.3 The WLOCALHOST Variable
Provided that the TMR server had the WLOCALHOST variable set, then the
setup_env.sh and oserv.rc files for the managed node will have the
WLOCALHOST variable set by the install process; so, no further changes are
necessary to these files. However, if the TMR server that was used to install
the managed node did not have the WLOCALHOST variable set, then the
following changes will be necessary:

1. In the setup_env.sh file, change the following:

LIBPATH="${LIBDIR}:/usr/lib${LIBPATH:+:$LIBPATH}"
export LIBPATH
set +e; unset WLOCALHOST

The name of the managed node should match the service IP label. For
example, in our environment, we have matched the name of the managed
node to the service IP label on the system black.

It is also advised that it should be fully qualified with the domain name, that
is, black.itsc.austin.ibm.com. If a nameserver is in use, then you should be
able to perform address resolution of both the IP address and IP label.

It is not necessary for the name of the managed node to match the system
hostname, as the WLOCALHOST variable removes this requirement. In
our environment, the system hostname is the same as the service IP label,
but this is purely for simplicity.

Note
32 High Availability Scenarios for Tivoli Software

to the following:

LIBPATH="${LIBDIR}:/usr/lib${LIBPATH:+:$LIBPATH}"
export LIBPATH
set +e; unset WLOCALHOST
WLOCALHOST=black
export WLOCALHOST

where black is the hostname of the system on which the managed node
normally runs.

2. If you are running with a csh environment, then you will need to make the
same change in the setup_env.csh file.

3. In the oserv.rc file, change the following:

LIBPATH="${LIBDIR}:/usr/lib${LIBPATH:+:$LIBPATH}"
export LIBPATH
set +e; unset WLOCALHOST

to the following:

LIBPATH="${LIBDIR}:/usr/lib${LIBPATH:+:$LIBPATH}"
export LIBPATH
set +e; unset WLOCALHOST
WLOCALHOST=black
export WLOCALHOST

4.2.4 Application Server
In order for HACMP to control the starting and stopping of the managed node,
we need to configure our start and stop scripts into an application server
within HACMP. This application server should then be added to the resource
group. To make these two changes take effect, we will need to stop HACMP,
on both nodes before we synchronize. At this time, HACMP will not issue any
commands to stop the oserv process. Therefore, before stopping HACMP
you should issue the following to stop the oserv process:

. /etc/Tivoli/setup_env.sh
/etc/Tivoli/oserv.rc stop

Now that the oserv process has been stopped, HACMP will be able to stop
cleanly. We therefore stopped HACMP on both nodes in the normal graceful
manner. After the stop had completed, we synchronized and verified the
resources, using the following SMIT fastpath:

smitty clsyncnode.dialog
High Availability Cluster Multi-Processing (HACMP) 4.3.0 33

Once the synchronization process had completed successfully, then we were
able to restart HACMP on both systems. The oserv process started on black.
We were able to see this by running the following commands:

ps -ef | grep oserv
 root 14268 1 0 Feb 26 - 29:29
/Tivoli_tmr/usr/local/Tivoli/bin/aix4-r1/bin/oserv -p 94 -k
/Tivoli_tmr/var/spool/Tivoli/black.db
root 23848 19948 3 12:19:32 pts/3 0:00 grep oserv
. /etc/Tivoli/setup_env.sh
odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1669180253 1 ct- 94 9.3.187.136
black.itsc.austin.ibm.com,brown
 2 ct- 94 9.3.187.138 pooh.itsc.austin.ibm.com

Once these steps had been completed, we were able to failover from black
and the oserv process started on brown. After the failover had completed, the
TMR server was able to communicate with the managed node known to it as
black.

4.3 Mutual Takeover of Managed Nodes

In this section, we shall deal with building two managed nodes into a mutual
takeover environment from a stand alone TMR server. These managed nodes
will be known as black and brown. Under normal conditions, each will run on
its own system. Should either suffer a failure, then the remaining system will
run both managed nodes. As before, this takeover of resources will be
transparent to the TMR server and end users. Minimal down time will be
seen. When both managed nodes are operating on a single system, this will
result in two independent instances of the oserv process running on the same
system. Much of the process has already been covered in Chapter 4.2, “Idle
Standby of a Managed Node” on page 30.

4.3.1 File System and Disk Configuration
As can be seen from Figure 6 on page 30, we created a volume group for
each system. In the same manner as was done for the idle standby
34 High Availability Scenarios for Tivoli Software

configuration, each system needs to have its own file systems built on the
appropriate volume group with the following sizes:

Table 2. File Systems for Managed Node Black

Table 3. File Systems for Managed Node Brown

4.3.2 Installation Process
Just as before, to install the managed nodes in our cluster, we did the
following:

1. We created the appropriate start scripts, which point to the appropriate
setup_env and oserv.rc files. These were placed in the /usr/local directory
in rootvg on both systems.

2. We created two resource groups in HACMP each containing the four
appropriate file systems and service IP addresses. These were called
blackres and brownres. We configured the node relationship such that the
resource group blackres normally runs on the system black but would
failover to the system brown and the reverse for the other resource group,
brownres.

3. We synchronized the changes to all the nodes and started HACMP on
both nodes.

HACMP mounted all the necessary file systems and made the service IP
addresses available.

4. We installed the managed node black specifying the appropriate paths so
that all files are placed into the shared disk. The install options can be
seen in the following figure:

Mount Point Size (in 512 byte blocks)

/Tivoli_mn1/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_mn1/usr/local/Tivoli 204800

/Tivoli_mn1/var/spool/Tivoli 65536

/Tivoli_mn1/etc/Tivoli 8192

Mount Point Size (in 512 byte blocks)

/Tivoli_mn2/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_mn2/usr/local/Tivoli 204800

/Tivoli_mn2/var/spool/Tivoli 65536

/Tivoli_mn2/etc/Tivoli 8192
High Availability Cluster Multi-Processing (HACMP) 4.3.0 35

:

Figure 7. Installation Options for Managed Node Black

5. We repeated the process and installed the managed node brown again
giving the appropriate path values such that all files are placed into the
shared volume group, brownvg. It is important not to check the box called
Arrange for start of the Tivoli daemon at system (re)boot time.

6. Once this had completed, we copied the files that had been placed in
/etc/Tivoli on each system to the appropriate location on a shared disk with
the following commands

On black: cp - p /etc/Tivoli/* /Tivoli_mn1/etc/Tivoli/

On brown: cp - p /etc/Tivoli/* /Tivoli_mn2/etc/Tivoli/
36 High Availability Scenarios for Tivoli Software

7. We set the appropriate value for the WLOCALHOST variable in the
setup_env.sh and oserv.rc files for each managed node.

4.3.3 The set_force_bind Variable
In previous versions of Tivoli, the oserv process would bind to its given port
number but would listen on all IP addresses. This could be seen by running
netstat -n | grep 94 where 94 is the port number in use. This would return
the following:

tcp4 0 0 *.94 *.* LISTEN
udp4 0 0 *.94 *.*

Should a second oserv process attempt to start using the same port number,
then it would return the following error before timing out and failing:

1999/02/24 11:27:04 +06: Tivoli Framework (tmpbuild) #1 Tue Jul 21 11:04:01
CDT 1998
Copyright Tivoli Systems, 1997. All Rights Reserved.
TMR 1669180253. ORB 2. TMR server brown.itsc.austin.ibm.com:94. Port 94.
pid 10312
1999/02/24 11:27:46 +06: ^port 94: In use. Waiting...
1999/02/24 11:28:06 +06: ^port 94: In use. Waiting...
1999/02/24 11:28:26 +06: ^port 94: In use. Waiting...

or the following error:

1999/03/02 15:26:27 +06:
!/Tivoli_tec/usr/local/Tivoli/bin/aix4-r1/bin/oserv: odlist init failed.
requested resource not found. (30)

It appears that the first time the condition is encountered, you receive the first
error. On subsequent attempts to start the second oserv process, you receive
the second error. In any event, you will not be able to start two oserv
processes that are bound to the same port if they do not bind to a specific IP
address.

With Tivoli Version 3.6, there has been a new variable added that forces the
oserv process to bind to the IP address that has been assigned to it. This
variable is the set_force_bind variable. The default value for this variable is
set to FALSE. It is, therefore, necessary to change the value of this variable
to TRUE using the following command on all systems requiring the change:

odadmin set_force_bind TRUE {od number}

The od number can be obtained by running the following on any system in the
TMR region:

odadmin odlist
High Availability Cluster Multi-Processing (HACMP) 4.3.0 37

Region Disp Flags Port IPaddr Hostname(s)
1669180253 1 ct- 94 9.3.187.134
brown.itsc.austin.ibm.com,brown
 2 ct- 94 9.3.187.136 black.itsc.austin.ibm.com
 3 ct- 94 9.3.187.138 pooh.itsc.austin.ibm.com

where the value in the Disp column is the od number that is required.

Once the value has been set for the appropriate instances of the oserv
process, then they will need to be stopped and restarted in order for the
change to take effect.

It is also worth noting that it is possible to set the value of set_force_bind for
all instances. This does not, however, change the default state of the variable
for new installs. All new installs will still have the value set to FALSE. You can
check the state of the variable by running the following:

odadmin
Region = 1669180253
Dispatcher = 1
Interpreter type = aix4-r1
Database directory = /Tivoli_tmr/var/spool/Tivoli/brown.db
Install directory = /Tivoli_tmr/usr/local/Tivoli/bin
Inter-dispatcher encryption level = simple
Kerberos in use = FALSE
Remote client login allowed = TRUE
Install library path = /Tivoli_tmr/usr/local/Tivoli/lib/aix4-r1:/usr/lib:
Force socket bind to a single address = TRUE
Perform local hostname lookup for IOM connections = FALSE
Tivoli Framework (tmpbuild) #1 Tue Jul 21 11:04:01 CDT 1998
Copyright Tivoli Systems, 1997. All Rights Reserved.

Port range = (not restricted)
State flags in use = TRUE
State checking in use = TRUE
State checking every 180 seconds
Dynamic IP addressing allowed = FALSE

Once the oserv process has been restarted with the new value of TRUE, then
the output of the command netstat -n looks like the following:

netstat -n | grep 94
tcp4 0 0 9.3.187.136.34150 9.3.187.138.94
ESTABLISHED
tcp4 0 0 9.3.187.134.94 9.3.187.136.34147
ESTABLISHED
38 High Availability Scenarios for Tivoli Software

tcp4 0 0 9.3.187.136.34147 9.3.187.134.94
ESTABLISHED
tcp4 0 0 9.3.187.136.94 *.* LISTEN
tcp4 0 0 9.3.187.134.94 9.3.187.138.3239
ESTABLISHED
tcp4 0 0 9.3.187.134.94 *.* LISTEN

which shows two oserv processes bound to different IP addresses using the
same port number of 94.

4.3.4 Application Server
In order for HACMP to control the starting and stopping of the managed node,
we need to configure our start and stop scripts into an application server
within HACMP. This application server should then be added to the resource
group. To make these two changes take effect, we will need to stop HACMP
on both nodes before we synchronize. At this time, HACMP will not issue any
commands to stop the oserv process. Therefore, before stopping HACMP,
you should issue the following to stop the oserv process:

. /etc/Tivoli/setup_env.sh
/etc/Tivoli/oserv.rc stop

Now that the oserv process has been stopped, HACMP will be able to stop
cleanly. We, therefore, stopped HACMP on both nodes in the normal graceful
manner. After the stop had completed, we synchronized and verified the
resources using the following SMIT fastpath:

smitty clsyncnode.dialog

Once the synchronization process had completed successfully, we then were
able to restart HACMP on both systems. The oserv process started on black.
We were able to see this by running the following commands:

ps -ef | grep oserv
 root 14268 1 0 Feb 26 - 29:29
/Tivoli_tmr/usr/local/Tivoli/bin/aix4-r1/bin/oserv -p 94 -k
/Tivoli_tmr/var/spool/Tivoli/black.db
root 23848 19948 3 12:19:32 pts/3 0:00 grep oserv
. /etc/Tivoli/setup_env.sh
odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1669180253 1 ct- 94 9.3.187.136
black.itsc.austin.ibm.com,brown

2 ct- 94 9.3.187.138
pooh.itsc.austin.ibm.com
High Availability Cluster Multi-Processing (HACMP) 4.3.0 39

Once these steps had been completed, we were able to failover from ’black’
and the oserv process started on ’brown’. After the failover had completed,
the TMR server was able to communicate with the managed node known to it
as ’black’.

4.4 TMR Servers in Either Idle Standby or Mutual Takeover

The TMR server is little more than a specialized version of the managed
node. Both use the oserv process and use the same structure for file
placement. As a result, all that has been said up until now for building
managed nodes into HACMP Clusters can be directly applied to the TMR
server.

4.4.1 File System and Disk Configuration
As can be seen from Figure 6 on page 30, we created a volume group for
each system. For the idle standby cluster, only the single volume group was
required. We built the following file systems in the volume group blackvg.

Table 4. File Systems for Idle Standby of a TMR Server

Mount Point Size (in 512 byte blocks)

/Tivoli_tmr/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_tmr/usr/local/Tivoli 204800

/Tivoli_tmr/var/spool/Tivoli 65536

/Tivoli_tmr/etc/Tivoli 8192

Maybe we should explain here why you might need more than one TMR
server in a your Tivoli environment. The answer is in the fact that one TMR
server can manage up to 200 managed nodes. Gateways should also be
counted as managed nodes since a gateway is actually resides on a
managed node. So, if you need more than 200 managed nodes or
gateways in your environment, you should think of deploying more than
one TMR server. Tivoli provides a for TMR interconnection that allows you
to manage resources that belong to different TMRs from a single console.

Note
40 High Availability Scenarios for Tivoli Software

For the mutual takeover environment, both volume groups were used, and the
following file systems were created:

Table 5. File Systems for First TMR Server Black

Table 6. File Systems for Second TMR Server Brown

4.4.2 Variable Considerations with the TMR Server
It is worth noting that you can set the WLOCALHOST variable before running
the install process for the TMR server with the following command:

WLOCALHOST=black.itsc.austin.ibm.com
export WLOCALHOST

The TMR server install process will proceed to pick up this variable and add it
to the setup_env and oserv.rc files in /etc/Tivoli. If you do not set the
WLOCALHOST variable before running the install process, then you can
manually alter the files to include the correct value.

Whichever method you choose for setting the value of WLOCALHOST, it is
necessary to set this parameter to avoid the oserv process from binding to
the system hostname. Failover will not be possible if the system hostname is
used instead of WLOCALHOST because the standby system will have a
different hostname.

One other point of note is that there is a documented variable called EtcTivoli,
which makes it possible to have the install process for the TMR server to
write the files that are normally placed into /etc/Tivoli to a different location.
However, despite the fact that moving /etc/Tivoli would be useful, we would
advise that you do not use this variable and leave the location of these file to

Mount Point Size (in 512 byte blocks)

/Tivoli_tmr1/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_tmr1/usr/local/Tivoli 204800

/Tivoli_tmr1/var/spool/Tivoli 65536

/Tivoli_tmr1/etc/Tivoli 8192

Mount Point Size (in 512 byte blocks)

/Tivoli_tmr2/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_tmr2/usr/local/Tivoli 204800

/Tivoli_tmr2/var/spool/Tivoli 65536

/Tivoli_tmr2/etc/Tivoli 8192
High Availability Cluster Multi-Processing (HACMP) 4.3.0 41

the default location. This is because the use of the EtcTivoli variable does not
alter the paths by which other Tivoli products, such as TEC, will attempt to
access the files in /etc/Tivoli. This could cause the operation of these
products to fail.

4.4.3 TMR Server Summary
Once the relevant file systems have been created as described and the
WLOCALHOST variable set, the TMR server can be installed from CDROM
onto the system or systems. In all other aspects, the processes for integrating
the TMR server into an HACMP cluster is the same as that described for the
managed node in Chapter 4.2, “Idle Standby of a Managed Node” on page 30
or 4.3, “Mutual Takeover of Managed Nodes” on page 34.

4.5 Tivoli Enterprise Console in an Idle Standby HACMP Cluster

We have taken the view that the failover of the relational database on which
TEC depends has already been covered in other specialized redbooks.
Therefore, we have configured our cluster such that the Oracle database that
we used is running on a stand-alone server outside of our cluster. The RIM
host that enables TEC to interact with the database is also resident on the
same stand-alone system that contains the database. We feel that splitting up
the location of the TEC server and its database has the dual effect of making
the HACMP implementation simpler and also results in a faster failover.

4.5.1 File System and Disk Configuration
Once the complications of the database and the RIM host have been
removed, TEC is again very similar to the managed node. Additional software
is installed on the shared disk, but the same file system structure is used as
for the managed node, as shown below:

Table 7. File Systems for Idle Standby of a TEC Server

Mount Point Size (in 512 byte blocks)

/Tivoli_tec/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_tec/usr/local/Tivoli 204800

/Tivoli_tec/var/spool/Tivoli 65536

/Tivoli_tec/etc/Tivoli 8192
42 High Availability Scenarios for Tivoli Software

4.5.2 Installation Process
In the following sections, we describe the steps we used for installing TEC
into the HACMP cluster.

4.5.2.1 Database Installation and Configuration
In our test environment, we happened to use the Oracle database product on
NT in conjunction with TEC. In this section, we briefly describe the steps we
used to start and stop the Oracle process. If you will be using another
database product, you will need to provide similar scripts.

Installing Oracle Database
We installed Oracle 7.3 on an NT Managed node called pooh. The following
services were installed from the Oracle CDROM \NT_X86\INSTALL directory
to the C:\ORANT directory:

- Oracle Documentation

- Oracle SQL Plus Product

- Oracle7 Server

- Oracle7 Client

Since we created the RIM Object on the database server we didn’t need to
install Oracle7 Client on another managed node. If you create the RIM Object
in a node other than server, you should also install and configure the
database client on that host.

Starting and Stopping the Oracle Database
All of the commands shown below must be executed by the Oracle user.
There are two portions of the Oracle environment we must deal with. One is

The RIM support for Oracle for Windows NT is linked against
orant71.dll,which is the DLL supplied with Oracle 7.1. The name of this
library was changed in Oracle 7.2 and Oracle 7.3, and oracle71.dll doesn’t
get installed with Oracle 7.2 or Oracle 7.3. However, orant71.dll is available
on the Oracle 7.2 and Oracle 7.3 installation media.

From the Oracle 7.3 media, you can copy the ORANT71.DLL,
CORENT23.DLL and MSVCRT10.DLL from the NT_X86\V7\RSF2
directory to the $ORACLE_HOME\bin directory.

Important
High Availability Cluster Multi-Processing (HACMP) 4.3.0 43

the listener, which enables you to connect to the database from a client
program. The other part is the database itself. The programs depend on the
ORACLE_HOME and the ORACLE_SID environment variables. Therefore,
you must ensure they are set properly before any of these commands are
executed. In our scenario they were C:\ORANT and ORCL, respectively.

For the listener component:

Start Script:
lsnrctl start <listenername>

Stop Script:
lsntctl stop <listenername>

For the database component:

Start Script:
dbstart

Stop Script:
dbshut

4.5.2.2 TEC Installation and Configuration
In our environment, we installed the TEC server and one TEC console on
black. Also, we installed one logfile adapter on black and one NT event
adapter on pooh. Our configuration is shown in the following figure:

Figure 8. Environment for TEC Hot Standby Scenario

NT Event Adapter
NT4.0
pooh
Managed Node

AIX 4.2
brown
Standby Node

AIX 4.2
black
TEC Server
TEC Console
Logfile Adapter

SCSI
Disk

HACMP Environment

AIX 4.2
koala
TMR Server
44 High Availability Scenarios for Tivoli Software

We should perform the following steps:

1. Install the TEC server component from the desktop to managed node black
as follows:

Figure 9. TEC Installation Managed Node Black

The install option screen has the following parameters:
High Availability Cluster Multi-Processing (HACMP) 4.3.0 45

Figure 10. Install Options Parameters

2.Create the TEC Tables for Oracle.

Since the scripts necessary to create the TEC database schema are residing
on the TEC server black, we use ftp to copy all files under the
$BINDIR/Tivoli/tec/sql directory of the TEC server black to a directory
(C:\TMP in our case) on the NT managed node pooh, which is used as the
database server and RIM host. Under the bash environment on the NT
managed node pooh, run the following script:

$bash>cr_tec_db.sh

We use the Oracle default Admin user sys and default password
change_on_install when we are prompted. At that point, the tables should be
created successfully.

3.Install the TEC console to black from the desktop.
46 High Availability Scenarios for Tivoli Software

4. Create the TEC console on black with the following command:

wcrtconsole -h @ManagedNode:black @Root_brown-region

5.Add all roles for EventServer and TEC36Region resources to the root
administrator in order for the Administrator to run and customize the TEC
application.

6. Delete the default RIM object and re-create the RIM on the pooh managed
node.

wdel @RIM:tec
wcrtrim -v Oracle -h pooh -d orcl -u tec -H c:\orant -s tec tec

Instead, you can also use the wsetrim command to change the default RIM
parameters. The reason for this step is that when you install the TEC server,
Tivoli automatically creates a RIM object on the same server that TEC is
installed on using the parameters given in the TEC install Options panel. If
you intend to create a RIM object on a node other than the TEC server (which
is the recommended method by Tivoli for performance reasons), you should
change the default RIM object created.

7.Set the password for tec user to tectec:

wsetrimpw tec tectec

This is the default password that TEC uses.

8. View the RIM configuration from the output of the wgetrim tec command as
follows to ensure the parameters are set correctly.

wgetrim tec
RIM Host: pooh
RDBMS User: tec
RDBMS Vendor: Oracle
Database ID: orcl
Database Home: c:orant
Server ID: tec
Instance Home:

9. Start the TEC server by issuing the command:

wstartesrv

10.Verify the TEC server installation.

We use the command wpostemsg to send a dummy event to the console to see
whether it arrives successfully. For example:
High Availability Cluster Multi-Processing (HACMP) 4.3.0 47

wpostemsg -m "Test_Event" TEC_Notice black

We also checked the five TEC server processes with the ps -ef | grep tec_
command, the result of which is shown below:

ps -ef | grep tec_

root 5210 23368 0 11:31:46 0:01 tec_server
root 25288 5210 0 11:58:48 - 0:02 tec_task -config
/usr/local/Tivoli/bin/aix4-r1/Tivoli/TEC/.tec_config
root 6449 19066 3 15:10:50 pts/0 0:00 grep tec_
root 4998 5210 0 11:31:48 - 0:06 tec_reception -config
/usr/local/Tivoli/bin/aix4-r1/Tivoli/TEC/.tec_config
root 23748 5210 0 11:31:48 - 0:05 tec_rule -config
/usr/local/Tivoli/bin/aix4-r1/Tivoli/TEC/.tec_config
root 11172 5210 0 11:31:48 - 0:11 tec_dispatch -config
/usr/local/Tivoli/bin/aix4-r1/Tivoli/TEC/.tec_config

11. For further testing, we create a simple distributed monitor profile as
follows:

If you issue the ps -ef | grep tec_ command and see only the tec_server
process running. This does not mean that TEC is running successfully. All
five processes should be running successfully before concluding an
error-free TEC server installation.

 Important Important
48 High Availability Scenarios for Tivoli Software

Figure 11. DM Profile for Monitoring Framemaker.exe Program

This simple monitor checks the occurrence of the framemaker.exe program
on pooh, and if it doesn’t find any instance, sends a minor event to the TEC
server. After distributing the profile to pooh, we killed the framemaker.exe
program from the Windows Task Manager to see that we receive the TEC
event successfully.

12.In order to test the logfile adapter, we install the Adapter Configuration
Facility to black, pooh, and the TMR server koala from the desktop.

13. Install a logfile adapter to black, creating an ACP profile called MyACP for
the log adapter and distributing the profile to black. There are two important
parameters in the profile related to our environment:
High Availability Cluster Multi-Processing (HACMP) 4.3.0 49

BufEvtPath: This parameter specifies the path that the log adapter caches its
events in case communication between the TEC server and the adapter is
broken. The default path is /etc/Tivoli/tec. Since we want it to reside on the
shared disk, we changed the default path as follows:

Figure 12. Changing BufEvtPath Variable

If the adapter is already installed, it is also possible to change this entry from
the adapter configuration file tecad_logfile.conf directly.

Install dir: This is the installation directory of the logfile adapter configuration
file. The default directory is /etc/Tivoli/tecad/etc. Since we want to put it on
the shared disk, we change the default value as follows:
50 High Availability Scenarios for Tivoli Software

Figure 13. Changing Installdir Variable

14. Install an NTEvent adapter to pooh using ACP again, but this time with
the default parameters.

15. Verify that both of our adapters are running correctly and sending events
to the TEC server.

16. Now we are ready to fail over. After the failover, oserv automatically starts
the tec-master daemon since this option was set when we installed the TEC
server on Figure 8 page 18. The Tec-master daemon starts the rest of the
four TEC processes. We repeat steps 10, 11, and 15 to verify the failover.

In our scenario, the TEC binaries were installed in the
/Tivoli_tec/usr/local/Tivoli directory on the shared disk; so, we didn’t have to
synchronize TEC binaries across the cluster. The default rule base resides in
$BINDIR/TME/TEC/default-rb. But, this is also part of the binary tree of the
Tivoli environment that we installed on the shared disk. So, we didn’t have to
synchronize this directory either.
High Availability Cluster Multi-Processing (HACMP) 4.3.0 51

4.5.3 Some Diagnostic Utilities
There are several diagnostic utilities that can help you in case of a problem.
Most of the TEC problems occur due to database problems or invalid RIM
objects. To check if you have a connection to the RDBMS, you can use the
wtdbstat command. The output of this command should look like this:

wtdbstat
The RDBMS database server is running.

Also, you can test if you have a valid RIM connection or not with the wrimtest
command. The command syntax is: wrimtest [-l RIM-object-label]

For example, if you run wrimtest -l tec, and if you receive a "Opening Regular
Session ... Session Opened" message, you can be sure that your RIM
connectivity has no problem.

There is also a wrimtrace command that you may find useful. The command
syntax is:wrimtrace RIM-object-label [INFORMATION|ERROR|TRACE_OFF]

This command writes the contents of the IOM packets passed between the
RIM object and client program and RDBMS errors to a file located in
/tmp/rim_db_log by default

You can use the product documentation TME 10 Framework Reference
Manual for more information about RIM related commands.

The status of the TEC server can be found by using the wstatesrv command.
The command syntax is wstatesrv [-S server].

If the TEC server is running, you can also check if there are error files in the
/tmp directory. The names of these files are:

 • /tmp/tec_master
 • /tmp/tec_reception
 • /tmp/tec_rule
 • /tmp/tec_task
 • /tmp/tec_dispatch

The product documentation, TME 10 Enterprise Console Reference Manual,
can be useful for other debugging commands.

4.5.4 Modifications to the Control Scripts
When the oserv process of the managed node is started, it also starts the
tec-master daemon that starts the rest of the four TEC processes. There is,
therefore, no need to alter the start scripts for HACMP.
52 High Availability Scenarios for Tivoli Software

However, stopping the oserv process does not necessarily stop all the TEC
processes as well. Therefore, it is recommended to stop the TEC server
before stopping the oserv. This is done using the following command:

$BINDIR/bin/wstopesvr

where $BINDIR is the variable set within the setup_env scripts that give the
location of all Tivoli binaries.

4.5.5 TEC Server Summary
The processes for integrating the TEC server into an HACMP cluster is the
same as that described for the managed node in “Idle Standby of a Managed
Node” on page 30. Care should be given to the configuration of log files.

Normally, the database that we used on NT should also be considered as a
single point of failure in this scenario, but we assumed that it was
implemented as a highly available database resource. How to do this can be
found in various database related sources including redbooks, such as
Bullet-Proofing Your Oracle Database with HACMP: A Guide to Implementing
AIX Databases with HACMP, SG24-4788.

Although we were able to build two TEC servers into a mutual takeover
cluster using the same process as described for the managed nodes, we do
not see this as a likely customer requirement. We have, therefore, only
documented the idle standby cluster.

During our tests, we found that, in some occasions, a single execution of
the wstopesvr command was not sufficient to stop all the TEC processes. In
some cases, we ran the command three times before the TEC processes
were stopped successfully. As a result, our modified stop script actually
looked like the following:

!/bin/ksh
. /Tivoli_tec/etc/Tivoli/setup_env.sh
$BINDIR/bin/wstopesvr
$BINDIR/bin/wstopesvr
$BINDIR/bin/wstopesvr
/Tivoli_tec/etc/Tivoli/oserv.rc stop

Note
High Availability Cluster Multi-Processing (HACMP) 4.3.0 53

4.6 TMR Server and Managed Node Mutual Takeover

This section will cover mutual takeover of a TMR server and managed node.
In our cluster, one system has a TMR server running, and on the other, a
managed node is configured.

In the event of either failing, the other node will take over the function of the
failed node. We configured the TMR server on node black and managed node
on brown. The file system structure is as follows.

Table 8. File System Structure for TMR Server on Black

Table 9. File System Structure for the Managed Node on Brown

4.6.1 Installation Process
The installation process is similar to installing the TMR server and managed
node in a hot-standby scenario on individual systems.

As discussed earlier, we need to set the WLOCALHOST variable to prevent
the oserv from binding to the host name. This is required to allow multiple
oservs to run on a single system during failure.This was done by running the
following command:

WLOCALHOST=black.itsc.austin.ibm.com
export WLOCALHOST

Now, the TMR server was installed on the service address of the system
black with the file systems shown as above.

Mount Point Size (in 512 byte blocks)

/Tivoli_tmr/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_tmr/usr/local/Tivoli 204800

/Tivoli_tmr/var/spool/Tivoli 65536

/Tivoli_tmr/etc/Tivoli 8192

Mount Point Size (in 512 byte blocks)

/Tivoli_mn/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_mn/usr/local/Tivoli 204800

/Tivoli_mn/var/spool/Tivoli 65536

/Tivoli_mn/etc/Tivoli 8192
54 High Availability Scenarios for Tivoli Software

After the successful installation, we confirmed the TMR server was running
by the following command:

. /etc/Tivoli/setup_env.sh
odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1669180253 1 ct- 94 9.3.187.136
black.itsc.austin.ibm.com,brown

Now, we are ready to install the managed node on system brown. As
described earlier, we set the WLOCALHOST variable before the installation.
We installed managed node from the newly created TMR server using the
GUI interface. We installed to the service IP address of the system brown as
seen in the following figure.
High Availability Cluster Multi-Processing (HACMP) 4.3.0 55

Figure 14. Installation Options for Managed Node Brown

Now that the TMR server and managed node are up, we run the odadmin
odlist command with the following output:

odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1669180253 1 ct- 94 9.3.187.134
brown.itsc.austin.ibm.com,brown
 2 ct- 94 9.3.187.136
black.itsc.austin.ibm.com

Since in a failed condition there will be two oservs running on one system, it
is necessary to set the set_force_bind variable. This is done by running the
following command:
56 High Availability Scenarios for Tivoli Software

odadmin set_force_bind TRUE {od number}

We need to stop and start the oserv so that the changes are effective. After
the oserv is restarted, the output of the odadmin command is:

odadmin
Region = 1669180253
Dispatcher = 1
Interpreter type = aix4-r1
Database directory = /Tivoli_tmr/var/spool/Tivoli/brown.db
Install directory = /Tivoli_tmr/usr/local/Tivoli/bin
Inter-dispatcher encryption level = simple
Kerberos in use = FALSE
Remote client login allowed = TRUE
Install library path = /Tivoli_tmr/usr/local/Tivoli/lib/aix4-r1:/usr/lib:
Force socket bind to a single address = TRUE
Perform local hostname lookup for IOM connections = FALSE
Tivoli Framework (tmpbuild) #1 Tue Jul 21 11:04:01 CDT 1998
Copyright Tivoli Systems, 1997. All Rights Reserved.
Port range = (not restricted)
State flags in use = TRUE
State checking in use = TRUE
State checking every 180 seconds
Dynamic IP addressing allowed = FALSE

Now, if either of the systems fail, the second system takes over the function of
the first one.

4.6.2 Summary
This mutual takeover is similar to earlier mutual takeovers with one exception.
We need to keep in mind that, when starting both systems, the TMR server
should be started first and then the managed node. In the case where the
managed node is started first, it will fail to start and will need to be manually
started once the TMR server is up and running.

4.7 TEC Server and TMR Server Mutual Takeover

In this case, we have a TEC server running on one system and a TMR server
running on the other system.The following figure shows our configuration.
High Availability Cluster Multi-Processing (HACMP) 4.3.0 57

Figure 15. TEC and TMR Server Mutual Takeover Configuration

As in the earlier case, we will configure the database server outside of this
cluster on a stand alone system.The RIM host that enables TEC to interact
with the database is also resident on this same stand alone system that
contains the database. This helps with both a faster implementation and
faster failover.

4.7.1 File Systems
The TEC server scenario is similar to a managed node. As with the case of
managed nodes, we have the following file systems.

Table 10. File System Structure for TEC Server on Black

Table 11. File System Structure for TMR Server on Brown

Mount Point Size (in 512 byte blocks)

/Tivoli_tec/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_tec/usr/local/Tivoli 204800

/Tivoli_tec/var/spool/Tivoli 65536

/Tivoli_tec/etc/Tivoli 8192

Mount Point Size (in 512 byte blocks)

/Tivoli_tmr/usr/lib/X11/app-defaults/Tivoli 8192

/Tivoli_tmr/usr/local/Tivoli 204800

NT Event Adapter
NT4.0
pooh
Managed Node

AIX 4.2
brown
TMR Server

AIX 4.2
black
TEC Server
TEC Console
Logfile Adapter

SCSI
Disk

HACMP Environment
58 High Availability Scenarios for Tivoli Software

4.7.2 Installation Process
The installation process is described in the following sections.

4.7.2.1 TMR Server and Managed Node Installation
The installation procedure is similar to the earlier mutual takeover scenario.
We first install the TMR server on the system brown. Once the TMR server is
up and running, we install the manage node on the system black. After
installing the managed node, TEC should be installed on black.

As with the earlier cases, we need to set the variable WLOCALHOST before
the installation. Also, once installation is complete, and the oservs are
running on both systems, we need to set the set_force_bind parameter to
TRUE.

4.7.2.2 TEC Installation
TEC installation was exactly the same as in section 4.5.2.2, "TEC Installation
and Configuration" on page 46. So, we won’t repeat this procedure here.

The rest of the scenario is very similar to section 4.6, “TMR Server and
Managed Node Mutual Takeover” on page 54. Once the TMR server and
managed node are started on the same server, the tec-master process is
started by the oserv process of the managed node, which, in turn, starts the
rest of the four TEC processes.

In this scenario, we also tested the installation of logfile adapters on both
black and brown using different Install dir and BufEvtPath directories as such:
/tivoli_tmr/etc/Tivoli/tec for brown and /tivoli_tmr/etc/Tivoli/tec for black. We
have been able to perform a successful mutual takeover, but we noticed that
we received duplicate logfile events. This would be expected since although
the configuration files of the two log file adapters were in different directories,
they were both pointing to one single file: /usr/adm/su.log. So, if there is a
need for using logfiles on both TMR server and TEC server in a mutual
takeover scenario, a possible solution is to stop one logfile adapter just
before the failover and restart it again on the failed system when the failed
system comes back online.

/Tivoli_tmr/var/spool/Tivoli 65536

/Tivoli_tmr/etc/Tivoli 8192

Mount Point Size (in 512 byte blocks)
High Availability Cluster Multi-Processing (HACMP) 4.3.0 59

4.7.3 Summary
As in the previous cases, care should be taken that the TMR server should be
started first followed by the managed node on which the TEC processes
depend.

Logfile adapters can add complexity to the environment but again we have
the option of installing both the cache and configuration files on the shared
disk.

4.8 Endpoints

An endpoint is a workstation running the Tivoli Management Agent. With the
3.6 version, Tivoli introduced a three-tiered architecture that included the
TMR server, gateway, and endpoint where endpoints can dynamically
subscribe to gateways that manage the endpoints on behalf of the TMR
server. In this way, much of the burden on the TMR server is distributed to the
gateways, and scalability of the overall management environment is greatly
increased. Also, the cost of management decreases dramatically since
endpoints require very small resources in terms of both memory and disk
space, and once they are installed, they have the ability to update themselves
automatically from the server or gateway in terms of new patches or new
releases, which greatly reduces maintenance.

4.8.1 Endpoint Manager
An endpoint manager establishes and maintains the relationship between an
endpoint and a gateway. An icon representing the endpoint manager is
automatically created on the Tivoli desktop when you install a TMR server.

A primary role of the endpoint manager is to assign an endpoint to a gateway
when the endpoint first logs in. If an endpoint’s assigned gateway stops
responding to the endpoint, the endpoint manager is involved again to assign
a new gateway to the endpoint.

4.8.2 Endpoint Gateways
Gateways assume some of the functions of a TMR server. Gateways perform
all communications with the assigned endpoints without requiring additional
information from the TMR server. A gateway must be created on a managed
node.
60 High Availability Scenarios for Tivoli Software

4.8.3 File System and Disk Configuration
Two file systems were created on each system’s shared disk as shown in the
following table.

Table 12. File Systems for Endpoint on System Brown

4.8.4 Endpoint Installation
Endpoints can not be installed from the Tivoli Desktop. Only gateways can be
configured through the Tivoli Desktop.

There are two ways to install endpoints remotely:

1. Using Software Installation Services

2. From the command line using winstlcf

The syntax of winstlcf command is:

winstlcf -g {gateway ip address} -d {destination directory} -i {end point
ip address}

For example, in our case, it would be:

winstlcf -g 9.3.187.139 -d /Tivoli_ep/opt/Tivoli/lcf -i
brown.itsc.austin.ibm.com.

This will install the required files in the destination directory and /etc/Tivoli. As
mentioned earlier, we need to copy the files from /etc/Tivoli to the shared
disk.

4.8.5 HACMP Configuration
To be able to have the endpoint started and stopped by HACMP, we need to
build the following start and stop scripts. These scripts will be configured into
an application server.

The LCF Start script is:

#!/bin/ksh
. /Tivoli_ep/etc/Tivoli/lcf/1/lcf_env.sh
$LCF_DATDIR/lcfd.sh start

The LCF Stop script is:

Mount Point Size (in 512 byte blocks)

/Tivoli_ep/opt/Tivoli/lcf 16384

/Tivoli_ep/etc/Tivoli/lcf 8192
High Availability Cluster Multi-Processing (HACMP) 4.3.0 61

#!/bin/ksh
. /Tivoli_ep/etc/Tivoli/lcf/1/lcf_env.sh
$LCF_DATDIR/lcfd.sh stop

Once the application server has been configured, a resource group including
the application server, the service IP address, and the two file systems,
needs to be created. In order to synchronize this new information to all nodes
in the cluster, HACMP should be stopped on all nodes. Once the
synchronization process has completed successfully, then HACMP can be
restarted, and this will bring online the necessary file systems and IP address
followed by starting the endpoint service. This can be verified by running the
following:

ps -ef | grep lcf
root 17836 1 0 09:53:51 - 0:02 /Tivoli_ep/opt/Tivoli/lcf/bin/ai
x4-r1/mrt/lcfd

4.8.6 Distributed Monitoring Scenario on Endpoints
In this scenario, we tested a monitor to run on the endpoints and verified that
the monitor continued to run without a problem. We created a monitor to test
the status of the cron daemon on the brown and black endpoints as follows.
62 High Availability Scenarios for Tivoli Software

Figure 16. DM Profile to Monitor snmpd Daemon Up Status

After distributing the profile to brown and black, we killed the snmpd daemon
on both systems and verified that we received two notifications one from
brown and one from black. After the brown endpoint failed over onto black,
we verified that we received the pop-up window from brown as well as black
as follows:
High Availability Cluster Multi-Processing (HACMP) 4.3.0 63

Figure 17. Pop-up Notification after Failover

This is an expected result because of the following: The configuration file
lcfd.dat file created by the lcfd daemon contains the two important pieces of
information regarding endpoint login. One is the assigned gateway, and the
other is the login interfaces information. The assigned gateway is the
endpoint gateway that the endpoint has last logged into, and the login
interfaces lists are the list of the alternate gateways where the endpoint will
attempt to perform the endpoint login when the assigned gateway is not
available. This file is carried to the failover node as part of the lcf installation
tree; so, we can expect that the endpoint can successfully login to its last
gateway. Once the login process completed, it can download the required
monitor information from its gateway.

4.8.7 Endpoint Summary
In this section, we verified that the endpoint mutual, or idle takeover is not
very different from the previous scenarios. We tested a distributed monitoring
scenario to verify our failover was successful.

4.9 Summary

In this chapter, we described the HACMP specific considerations for
implementing Tivoli TMR servers, managed nodes, endpoints, and TEC
servers in HA environments. That, along with the information presented in
Chapter 3, should provide you with the information you need to implement
Tivoli in both hot standby and mutual takeover HA scenarios using HACMP.
64 High Availability Scenarios for Tivoli Software

Chapter 5. Solstice HA

Sun Microsystem’s Solstice High Availability (Solstice HA) is the software that
runs on Sun’s Ultra Enterprise Cluster HA servers. The combination of
hardware and software provides high availability support and automatic data
services takeover. The specific configuration we tested consisted of two Sun
servers running Solaris 2.5.1 (= SunOS 5.5.1), Solstice HA 1.3, and Solstice
DiskSuite 4.1.

5.1 Solstice HA Overview

Solstice HA provides two possible configurations for the cluster: Symmetric
and asymmetric. In a symmetric configuration, both machines are active and
provide data services assuming a mutual takeover in the event of failure. In
an asymmetric configuration, there is only one host running data services,
and the second host is a hot standby.

The takeover in the Solstice HA is a rotating takeover—that is, the server that
has given away its resources won’t automatically take them back when it
becomes active again in the cluster.

The core concept in Solstice HA is that of a data service, which is equivalent
to a resource group in HACMP. The Solstice HA will associate within its data
service the following elements:

 • A logical hostname that is an IP label linked to an IP address and that will
be used as a name of the application server (for example TMR server or
managed node). Because this is not the hostname as reported by the
hostname command, it can create problems with applications that are
based on the actual hostname of the machine. In Solstice HA terminology,
this last name is called the physical hostname.

 • Disksets (similar to volume groups in AIX) are a group of disks that can
move as a unit between HA servers. The Solstice HA cluster can have one
or two disksets. Only one server can master a diskset at any point in time.
That is, there is no concurrent access.

 • The application-specific HA scripts (start, stop, abort, and so forth).

The Solstice configurations cover the following types of failures:

 • Operating system failure (panic or crash)

 • Data service application failure
© Copyright IBM Corp. 1999 65

 • Server hardware failure

 • Network interface failure

 • Disk media failure

5.1.1 Solstice HA Data services
The Solstice HA product provides the procedures to install, configure, and
administer some specific data services provided with the product. These
services include the following:

 • HA-NFS

 • HA-DBMS for Oracle 7

 • HA-DBMS for Sybase

 • HA-DBMS for Informix

 • HA Internet Pro

Any other product that will operate in the Solstice HA environment should be
set up using the Solstice data services API that is used for registration,
activation, providing the stop/start scripts, and so on. We include examples of
Tivoli’s module implementation in this chapter.

5.1.2 Solstice HA Restrictions
According to the Solstice HA documentation, the following is a list of current
restrictions you may need to be aware of.

 • HA cluster servers should not be configured as mail servers because
sendmail is not supported in the Solstice HA environment. The mail
directories should not reside on the servers either.

 • There should be no applications that access the HA-NFS file system
locally on the cluster.

 • The servers cannot be used as routers.

 • The current Solstice configuration is limited to two servers.

The external disk failure is tolerated by using a mandatory mirroring
option and possibly by a hot spare drive. However, in the case of a root
disk failure, an automatic takeover might not occur at all. To avoid this
situation, the mirroring of the internal root disk should also be
implemented.

 Important
66 High Availability Scenarios for Tivoli Software

 • The systems cannot provide the NIS or NIS+ services.

 • The Solstice HA cluster does not support Secure NFS or the use of
Kerberos with NFS.

 • The network time protocol (NTP) is not supported on the cluster.

 • Because Solstice HA cluster requires mirroring, the RAID 5 feature in the
Solstice DiskSuite product is not supported.

 • File system quotas are not supported.

 • The HA administrative file system cannot be grown using the DiskSuite
growfs command.

 • All NFS client mounts must be hard mounts.

 • No concurrent access of the disksets is allowed.

 • For the two servers in a Solstice HA cluster, the hardware configurations
must be identical regarding the following points:

 • Number and size of local disks

 • Number and types of connections to external disks

 • Number and types of network connections

 • Number and location of SBus cards

5.2 Our Lab Environment

The following figure represents the specific hardware configuration we used
in our lab environment.
Solstice HA 67

.

Figure 18. Ultra Enterprise Cluster HA Hardware Configuration

This configuration is the minimum required configuration and could be further
expanded by adding more multi-host disk units and more public network
interfaces.

The admin workstation (sunha3) is the only machine with a physical console;
so, both servers will be accessed through this console as an X server.

The system software installed on the cluster is the following:

 • Solstice HA 1.3

 • Solstice DiskSuite 4.1

Private Networks

Multihost disk expansion units

Public Network

Additional Public Networks (optional)

Terminal Concentrator

(disksets)

Admin
Workstation

sunha2 69.1.11.6
Phys. host id :

on hme0

Logical host id :
sunha2-L 69.1.11.10

sunha2.priv1 on hme1
204.152.64

sunha2.priv2 on hme2

sunha1.priv1 on hme1

sunha1.priv2 on hme2
204.152.65

sunha3 69.1.11.5
Phys. host id :
sunha1 69.1.11.7
on hme0

Logical host id :
sunha1-L 69.1.11.9

ULTRASPARC
200 Mhz
128 MB RAM
4.2 GB disk

ULTRASPARC
200 Mhz
128 MB RAM
4.2 GB disk

SPARCstation-5
32 MB RAM

3 x 2.1 GB 3 x 2.1 GB

2 x SCSI ext.2 x SCSI ext.
68 High Availability Scenarios for Tivoli Software

 • Solaris 2.5.1

5.3 Failover Scenarios

In the following sections, we describe the specific scenarios we tested in the
Solstice HA environment and provide specific information regarding their
implementations.

5.3.1 TMR Server - Hot Standby Configuration
In this scenario, the machine sunha1 will be the TMR server, the host sunha2
will be a standby server, and we will use the admin workstation, sunha3, as
both a managed node and as another TMR server interconnected with the
primary TMR server.

The configuration for sunha1 is:

 • Logical hostname (TMR server name) - sunha1-L.

 • Physical hostname - sunha1.

 • The data service will be called TMR_1.

 • One diskset, sunha1-L (4 x 2.1 GB with mirroring), mounted under
/sunha1-L/1:

 • Host table (/etc/inet/hosts):

127.0.0.1localhost
69.1.11.5sunha3
69.1.11.6sunha2
69.1.11.7sunha1 loghost
69.1.11.8annex
69.1.11.9sunha1-L
69.1.11.10sunha2-L
204.152.64.1sunha1-priv1
204.152.64.2sunha2-priv1
204.152.65.1sunha1-priv2
204.152.65.2sunha2-priv2

 • Routing and network interfaces:

Destination Gateway Flags Ref Use Interface

localhost localhost UH 0 43 lo0

File system kbytes used avail capacity Mounted on
/dev/md/sunha1-L/dsk/d10 3818266 532203 2904243 16% /sunha1-L/1
Solstice HA 69

69.1.11.0 sunha1 U 5 385 hme0
69.1.11.0 sunha1-L U 5 0 hme0:1
204.152.65.0 sunha1-priv2 U 2 231 hme1
204.152.64.0 sunha1-priv1 U 2 231 hme2
224.0.0.0 sunha1 U 5 0 hme0
default 69.1.11.240 UG 0 31

 • The installation option for the automatic starting of the Tivoli daemon
should be disabled.

 • The installation of the Tivoli framework has been done using the default
paths for the binaries and database altered as shown below with /usr and
/var replaced by a path pointing to the diskset owned by sunha1-L:

/usr/local --> /sunha1-L/1/usr/local/Tivoli
/var/spool --> /sunha1-L/1/var/spool/Tivoli

During installation, we used the sunha1-L.region for the region name and
sunha1-L for the TMR server name.

 • The stop and start scripts for the TMR server have been placed in the
/etc/Tivoli directory. This directory will be copied to sunha2 as shown in
the next step. These scripts could reside in a different location but must be
accessible by both servers during the takeover.

Script stop_TMR_1:

#! /bin/ksh
#
#stop local oserv daemon
#
/etc/Tivoli/oserv.rc stop
#
test the RC and print the message
#
if test $? -eq 0
then
echo "Tivoli daemon stopped"

fi

script start_TMR_1:

#! /bin/ksh
#
initialize the environment
#
. /etc/Tivoli/setup_env.sh
#
start oserv dispatcher
70 High Availability Scenarios for Tivoli Software

/etc/Tivoli/oserv.rc start
#
set the DISPLAY and start Tivoli GUI
export DISPLAY=sunha3:0
Tivoli

 • The /etc/Tivoli directory on both servers in the cluster should now be
synchronized (copied from sunha1 to sunha2). We have used the
following commands to copy the files and to establish the links:

On sunha1:

tar -cvpf - /etc/Tivoli | rsh sunha2 tar -xvpf -

On sunha2 from /etc/Tivoli:

ln -s /sunha1-L/1/local/Tivoli/bin/solaris2/contrib/bin bin
ln -s /sunha1-L/1/local/Tivoli/bin/solaris2/contrib/lib lib

5.3.1.1 Configuration of Solstice HA
1. The first step is to register the data service using the Solstice hareg

command. The syntax for hareg is:

hareg -r service_name -m START=start_script, STOP=stop_script

In our specific environment, we issued the command:

hareg -r TMR_1 -m \ START=/etc/Tivoli/start_TMR_1,STOP=/etc/Tivoli/stop_TMR_1

2. The next step is the activation of the data service, which results in the
execution of the start script:

hareg -y TMR_1

To check whether a data service is active or not, Solstice provides the
following command (returns 1 for active and 0 for inactive):

haget -f service_is_on -s TMR_1

3. Another useful command to check the overall state of the cluster and data
services is hastat, which should generate output similar to that shown
below (truncated):
Solstice HA 71

There are two disksets defined in this configuration: Sunha1-L and
sunha2-L. However, only sunha1-L is used in this scenario.

 • Takeover

At this point in time, we’ve got two servers, sunha1 and sunha2,
owning their disksets, sunha1-L and sunha2-L. Sunha1 is running the
data service TMR_1.

In the case of a failure of sunha1, its diskset, sunha1-L, logical
hostname, sunha1-L, and IP address will be switched over by Solstice
HA to the sunha2 host. The data service, TMR_1, will be automatically
restarted on sunha2 using the appropriate start script.

We can simulate such a failure by the following Solstice HA
commands:

hactl -g -s TMR_1 -l sunha1-L

It effectively performs the takeover, but at the same time forces the
server sunha1 to reboot. The haswitch command is much more
practical. The syntax is:

haswitch phys_destination_host logical_host

and in our specific environment:

haswitch sunha2 sunha1-L

During this phase of the takeover, both cluster servers produce the
following sequence of events:

Oct 27 14:12:29 sunha2 hadf: NOTICE:fdl_checknameservice: fdl_checknameservice
succeeded

Configuration State: Stable
sunha2-L - Owned by sunha2
sunha1-L - Owned by sunha1

sunha2 - 10:10am up 5 day(s), 23:49, 1 user,load average:0.00,0.02,0.04
sunha1 - 10:10am up 1 day(s), 17:52, 1 user,load average:0.00,0.01,0.02

Local metadevices: sunha2 - (none); sunha1 - (none)
Local metadb replicas: sunha2 - Ok; sunha1 - Ok
Diskset sunha2-L

metadevice status: Ok
mediator status: Ok
replica status: Ok

Diskset sunha1-L
metadevice status: Ok
mediator status: Ok
replica status: Ok

Private nets: Ok
Public nets: sunha2 - Ok; sunha1 - Ok
72 High Availability Scenarios for Tivoli Software

Oct 27 14:12:31 sunha2 hadf:NOTICE:switchoversub: last phase of haswitch command,
switchover file will contain: sunha1-L sunha2
Oct 27 14:12:33 sunha2 hadf:NOTICE:switchoversub: haswitch about to
reconfig:switchover file contains: sunha1-L sunha2
Oct 27 14:12:33 sunha2 hadf: NOTICE: starting "return" transition switchover
started - reconfiguration in progress...
Oct 27 14:12:33 sunha2 hadf: NOTICE: finished "return" transition
Oct 27 14:12:33 sunha2 ID[SUNWcluster.clustd.reconfig.1000]:hadf cluster
reconfiguring on node 0(sunha1)
Oct 27 14:12:34 sunha2 hadf: NOTICE: starting "step1" transition
Oct 27 14:12:35 sunha2 hadf:NOTICE: cltrans_hadf_init:HA_MEMBERSHIP is BOTH
Oct 27 14:12:40 sunha2 hadf: NOTICE: cltrans_hadf_init:
Computed HA_METASETSERVE = sunha1-L
Oct 27 14:12:40 sunha2 hadf: NOTICE: cltrans_hadf_init: Computed
HA_NO_METASETSERVE = sunha2-L
Oct 27 14:12:40 sunha2 hadf: NOTICE: cltrans_hadf_init: Computed
HA_SIBLING_METASETSERVE = sunha2-L
Oct 27 14:12:40 sunha2 hadf: NOTICE: cltrans_hadf_init:
Computed HA_MAINT_DISKSET =
Oct 27 14:12:40 sunha2 hadf: NOTICE: cltrans_hadf_init: The registered Data
Services are:TMR_1
Oct 27 14:12:40 sunha2 hadf:NOTICE:cltrans_hadf_init:The registered Data
Services that are on are: TMR_1
Oct 27 14:12:41 sunha2 hadf: NOTICE: finished "step1" transition
Oct 27 14:12:41 sunha2 hadf: NOTICE: starting "step2" transition
Oct 27 14:12:41 sunha2 hadf: NOTICE: finished "step2" transition
Oct 27 14:12:41 sunha2 hadf: NOTICE: starting "step3" transition
Oct 27 14:12:42 sunha2 hadf: NOTICE: finished "step3" transition
Oct 27 14:12:42 sunha2 hadf: NOTICE: starting "step4" transition
Oct 27 14:12:43 sunha2 hadf: NOTICE: callmethod: Calling STOP method of data
service TMR_1
/etc/Tivoli/stop_TMR_1
Oct 27 14:12:44 sunha2 hadf:NOTICE:callmethod:Call to STOP method of data
service TMR_1 returned, exit code was 0
Oct 27 14:12:44 sunha2 hadf: NOTICE: finished "step4" transition
Oct 27 14:12:45 sunha2 hadf: NOTICE: starting "step5" transition
Oct 27 14:12:45 sunha2 hadf: NOTICE: finished "step5" transition
Oct 27 14:12:46 sunha2 hadf: NOTICE: starting "step6" transition
Oct 27 14:12:53 sunha2 hadf: NOTICE: finished "step6" transition
Oct 27 14:12:53 sunha2 hadf: NOTICE: starting "step7" transition
Oct 27 14:12:54 sunha2 hadf: NOTICE: finished "step7" transition
Oct 27 14:12:55 sunha2 hadf: NOTICE: starting "step8" transition
Oct 27 14:12:55 sunha2 hadf: NOTICE: callmethod: Calling START method of data
service
TMR_1 /etc/Tivoli/start_TMR_1
TME 10 Framework (tmpbuild) #1 Wed Aug 27 16:00:05 CDT 1997
Copyright Tivoli Systems, 1997. All Rights Reserved.
TMR 1710867091. ORB 1. TMR server local:94. Port 94.
9535
Tivoli daemon oserv started
Region = 1710867091
Dispatcher = 1
Interpreter type = solaris2
Database directory = /sunha1-L/1/spool/Tivoli/sunha1-L.db
Install directory =/sunha1-L/1/local/Tivoli/bin Inter-dispatcher encryption
level=simple
Kerberos in use = FALSE
Remote client login allowed = TRUE
Install library path =
/sunha1-L/1/local/Tivoli/lib/solaris2:/usr/openwin/lib:/sunha1-L/1/
local/Tivoli/
install/iblib/solaris2:/usr/openwin/lib:/usr/lib:/usr/ucblib:/sunha1-L/local/
Tivoli/lib/solaris2:/usr/openwin/lib:/usr/lib:/usr/ucblib
Solstice HA 73

TME 10 Framework (tmpbuild) #1 Wed Aug 27 16:00:05 Copyright Tivoli Systems, 1997.
All Rights Reserved.
Port range = (not restricted)
State flags in use = TRUE
State checking in use = TRUE
State checking every 180 seconds
Dynamic IP addressing allowed = FALSE
Tivoli oserv object dispatcher up and running
Oct 27 14:12:59 sunha2 hadf: NOTICE: callmethod: Call to START method of data
service
Tivoli returned, exit code was 0
Oct 27 14:12:59 sunha2 hadf: NOTICE: starting "step9" transition
Oct 27 14:13:03 sunha2 hadf: NOTICE: cltrans_ipaddrs_up: sunha1-L now being
served by this machine
Oct 27 14:13:04 sunha2 hadf:NOTICE:cltrans_ipaddrs_up:sunha2-L now being serve
by sunha2
Oct 27 14:13:04 sunha2 hadf: NOTICE: finished "step9" transition
Oct 27 14:13:04 sunha2 hadf: NOTICE: starting "step10" transition
Oct 27 14:13:04 sunha2 hadf: NOTICE: finished "step10" transition
Oct 27 14:13:04 sunha2 hadf: NOTICE: starting "step11" transition
Oct 27 14:13:06 sunha2 hadf: NOTICE: finished "step11" transition
Oct 27 14:13:06 sunha2 hadf: NOTICE: starting "step12" transition
Oct 27 14:13:07 sunha2 hadf: NOTICE: finished "step12" transition

After the takeover has been completed, the configuration of the sunha2 node
is changed in the following way:

 • The diskset sunha1-L is now mastered and mounted on sunha2:

/sunha2-L/1/ (/dev/md/sunha2-L/dsk/d49): 3674164 blocks 949772
files
/sunha1-L/1 (/dev/md/sunha1-L/dsk/d10):7482454 blocks 1901010 files

 • The logical hostname, sunha1-L, and its IP address has been moved to
the interface hm0:2:

Routing Table:

Destination Gateway Flags Ref Use Interface
--
127.0.0.1 127.0.0.1 UH 0 173 lo0
69.1.11.0 69.1.11.6 U 5 1363 hme0
69.1.11.0 69.1.11.10 U 5 0 hme0:1
69.1.11.0 69.1.11.9 U 5 0 hme0:2 <-----
204.152.65.0 204.152.65.2 U 2 545 hme1
204.152.64.0 204.152.64.2 U 2 545 hme2
224.0.0.0 69.1.11.6 U 5 0 hme0
default 69.1.11.240 UG 0 591

 • The hardware address has not been taken over, but the ARP entry
relative to sunha1-L has been adapted to point to the right adapter:

ARP table on the sunha2:

Net to Media Table
Device IP Address Mask Flags Phys Addr
--
hme0 sunha1 255.255.255.255 08:00:20:7e:1f:40
74 High Availability Scenarios for Tivoli Software

hme0 sunha3 255.255.255.255 08:00:20:75:c5:17
hme1 sunha1-priv2 255.255.255.255 08:00:20:7e:1f:40
hme2 sunha1-priv1 255.255.255.255 08:00:20:7e:1f:40
hme2 sunha2-priv1 255.255.255.255 SP 08:00:20:89:d4:11
hme1 sunha2-priv2 255.255.255.255 SP 08:00:20:89:d4:11
hme0 sunha2-L 255.255.255.255 SP 08:00:20:89:d4:11
hme0 sunha1-L 255.255.255.255 SP 08:00:20:89:d4:11
hme0 sunha2 255.255.255.255 SP 08:00:20:89:d4:11
hme2 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00
hme1 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00
hme0 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00

5.3.2 Managed Node - Idle Standby
This can be treated in exactly the same way as the TMR server Idle Standby.

5.3.3 Managed Node - Mutual Takeover
For idle standby configurations, there is very little difference (from the Tivoli
point of view) between the Sun Solstice environment and the IBM HACMP
environments. However, when it comes to mutual takeover scenarios, the
method by which Solstice makes the logical hostname IP address available
adds some differences to the installation and configuration process.

At installation time of a managed node, the install process will attempt to start
the oserv process to initialize the Tivoli database. Despite the fact that the
logical IP address was specified as the installation target, when the new
oserv process attempts to contact the TMR server for the first time, it will use
the physical IP address. This occurs because the logical IP address is only an
alias that is added to the physical IP address. The TMR server will initialize
the database with this physical IP address instead of the correct logical IP
address. This can be seen by running the following command:

odadmin odlist
Region Disp Flags Port IPaddr Hostname(s)
1669180253 1 ct- 94 69.1.11.5
sunha3.austin.lab.Tivoli.com,sunh3
 2 ct- 94 69.1.11.7
sunha1.austin.lab.Tivoli.com,sunha1

For an idle standby configuration where only a single instance of the oserv
process will ever be running on any given system, this does not present
anything more than a documentation problem. However, when it becomes
necessary to use the set_force_bind variable because you will be running in a
mutual takeover environment. This mismatch of IP addresses does cause a
problem.
Solstice HA 75

If you change the value of the set_force_bind variable from its default of
FALSE to TRUE and then attempt to restart the oserv process to have the
change take effect, then the restart of the oserv will fail with the following
error:

1999/02/23 11:12:30 +06:
!/Tivoli_tmr/usr/local/Tivoli/bin/aix4-r1/bin/oserv: odlist init failed.
internal resource corrupted. (54)

Any subsequent attempt to start the oserv process will fail with the same
error. Unfortunately, you need to have the oserv process running in order to
change the value of the set_force_bind variable. The mismatch between the
name that is expected for the managed node within the database and that
which is recorded in the odlist resulted in us having to reinstall the managed
node.

There are two possible solutions to this problem. The first is to set the value
of set_force_bind at install time. This has the effect of binding the oserv
process to the logical IP address the first time it attempts to contact the
server. This means that the odlist output matches the name of the managed
node, and there is no mismatch to cause a problem. This is only currently
possible from the command line as there is no option in the GUI install to set
the value of this variable. The following command will set the set_force_bind
variable to TRUE at install time:

wclient {path variables} @ForceBind@=1 {managed node name}

So, to give the full example of the command, we used:

wclient -c /cdrom/cdrom0 BIN=/sunha1-L/1/usr/local/Tivoli/bin
LIB=/sunha1-L/1/usr/local/Tivoli/lib MAN=/sunha1-L/1/usr/local/Tivoli/man
CAT=/sunha1-L/1/usr/local/Tivoli/msg-cat
DB=/sunha1-L/1/var/spool/Tivoli/db @ForceBind@=1
sunha1-L.austin.lab.Tivoli.com

If the managed node has already been installed, then it is necessary to
change the odlist information before attempting to change the
set_force_bind variable. This is done with the following steps:

1. We need to have IP address and hostname of the logical machine, which,
in our case, is sunha1-L.

odadmin odlist change_ip 1 69.1.11.9 TRUE

This command will change the IP address of the dispatcher to sunha1-L.

2. We associate an additional hostname to the object dispatcher, which is the
logical IP address.
76 High Availability Scenarios for Tivoli Software

odadmin odlist add_hostname_alias 1 69.1.11.9 sunha1-L

3. We now delete the old host name associated with the object dispatcher.

odadmin odlist delete_hostname_alias 1 69.1.11.9 sunha1

Once these steps have been completed, the output of odadmin odlist should
match the logical IP address and label. Once this is the case, you can change
the value of the set_force_bind variable to TRUE. The stop and restart of the
oserv will now be successful.

The name of the clients to be used should be sunha1-L and sunha2-L,
respectively, and installation paths should be modified as follows:

On sunha1:

/usr/local --> /sunha1-L/1/usr/local/Tivoli
/var/spool --> /sunha1-L/1/var/spool/Tivoli

On sunha2:

/usr/local --> /sunha2-L/1/usr/local/Tivoli
/var/spool --> /sunha2-L/1/var/spool/Tivoli

Next, we define the new data services for managed nodes on the cluster,
MN_1 on sunha1-L and MN_2 on sunha2-L.

The registration commands we issued were:

hareg -r MN_1 STAR_NET=/etc/Tivoli/start_MN_1,STOP=/etc/Tivoli/stop_MN_1

hareg -r MN_2 STAR_NET=/etc/Tivoli/start_MN_2,STOP=/etc/Tivoli/stop_MN_2

To activate the data services, invoke the following hareg commands:

hareg -y MN_1
hareg -y MN_2

In this example, we will use the Solstice registration procedure using a
START_NET method and not just START, as in the TMR server data
service.

The difference is due to the calling sequence during the different phases of
the takeover. The START method calls the start scripts just after the host
performed the takeover of the diskset and mounted its file systems. The
START_NET method, in addition to that, waits until the logical network
addresses are up. For more details, see the product documentation,
Solstice HA 1.3 Programmer’s Guide.

Note
Solstice HA 77

The start and stop scripts are shown below:

stop_MN_1:

#! /bin/ksh
#
stop local oserv daemon
#
/etc/Tivoli/oserv.rc stop
#
test the RC and print the message
#
if test $? -eq 0
then
echo "Tivoli daemon stopped"
fi

script start_MN_1:

#! /bin/ksh
#
initialize the environment
#
. /etc/Tivoli/setup_env.sh
#
start oserv dispatcher
/etc/Tivoli/oserv.rc start
#

After the takeover of sunha1-L by sunha2, the sunha2 configuration is shown
below:

 • ARP table on sunha2:

Net to Media Table
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
hme0 sunha1 255.255.255.255 08:00:20:7e:1f:40
hme0 sunha3 255.255.255.255 08:00:20:75:c5:17
hme1 sunha1-priv2 255.255.255.255 08:00:20:7e:1f:40
hme2 sunha1-priv1 255.255.255.255 08:00:20:7e:1f:40
hme2 sunha2-priv1 255.255.255.255 SP 08:00:20:89:d4:11
hme1 sunha2-priv2 255.255.255.255 SP 08:00:20:89:d4:11
hme0 sunha2-L 255.255.255.255 SP 08:00:20:89:d4:11
hme0 sunha1-L 255.255.255.255 SP 08:00:20:89:d4:11
hme0 sunha2 255.255.255.255 SP 08:00:20:89:d4:11
hme2 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00
hme1 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00
78 High Availability Scenarios for Tivoli Software

hme0 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00

 • oserv dispatchers running on the sunha2:

root 4529 1 0 17:24:32 ? 0:03 oserv -p 94 -k /sunha2-L/1/local/Tivoli/sunha2-L.db
root 15411 1 0 09:34:23 ? 0:00 oserv -p 94 -k /sunha1-L/1/spool/Tivoli/sunha1-L.db

 • odadmin odlist on sunha3 will produce the following output:

Region Disp Flags Port IPaddr Hostname(s)
1185035979 1 ct- 94 69.1.11.5 sunha3.austin.lab.Tivoli.com,sunha3

2 ct- 94 69.1.11.9 sunha1-L.austin.lab.Tivoli.com
3 ct- 69.1.11.10 sunha2-L.austin.lab.Tivoli.com

In addition to executing the odadmin shown above to verify that the oservs are
running, we have performed the following functions to further test that our
Tivoli managed nodes are indeed functioning properly.

 • wping command from sunha3

 • Stopping and starting the managed nodes dispatchers. The oserv
daemons could be stopped either locally by using appropriate stop_MN
script or from the TMR server using odadmin shutdown command. To restart
them, we have to use the local start_MN script.

 • Checking the properties of the managed nodes from the server will always
show the same output for both nodes.

5.4 Solstice HA/Tivoli Considerations

Some considerations that we identified during our testing are listed below:

 • No function or script based on the hostname command should be
implemented in this environment. This would be misleading and point to
the physical name of the machine that is not used to identify a TMR server
or managed node. Instead, always use the logical hostname, which will be
given by a local variable, WLOCALHOST.

 • During a real takeover, a reboot of a server as well as running any of the
following Solstice HA commands:

 •hareg -y|n Data_Service

 •hactl

 •hastop

 •hastart

 •haswitch

will require a cluster reconfiguration. That is, not only the requested data
service, but all data services running on the cluster will be stopped and
Solstice HA 79

restarted. Therefore, a single application cannot be failed over during
testing. Be careful when adding a Tivoli service or any other service to an
existing Solstice HA environment because testing the failover will cause
other running applications on that node to also failover.

 • A Solstice HA data service behaves like a rotating resource group—that
is, a server which has, for any reason, released its data service won’t get it
automatically back when the server becomes active again.

5.5 Summary

In this chapter, we described several scenarios that we were successfully
able to implement in our Solstice HA environment. The information in this
chapter should be used in conjunction with the information in Chapter 3 to
plan, design, and implement a Tivoli HA environment using Solstice HA.
80 High Availability Scenarios for Tivoli Software

Chapter 6. Microsoft Cluster

In this chapter, we will shall discuss the Microsoft Cluster and how Tivoli can
be implemented in an NT HA environment. Unfortunately, in the current
version of Tivoli (Version 3.6.1), there are limitations in the Tivoli
implementation that do not allow us to implement Tivoli in the same way as
we can in HA environments on Unix platforms. Specifically, the capability to
run multiple oservs on a single NT system is severely limited. Therefore,
mutual takeover scenarios are not practical at this time. The solutions we
describe here will not be as complete as in the previous chapters. However,
Tivoli does consider it important to enable their products for HA
environments, and you can expect to see these limitations lifted in upcoming
release.

This chapter also covers Microsoft Cluster server basics and clustering
architecture.

6.1 What Is a Microsoft Cluster?

A server cluster is a group of independent servers managed as a single
system for higher availability, easier manageability, and greater scalability.
The Microsoft Cluster Server (MSCS) was known in early releases as
Wolfpack.

6.1.1 What Is Microsoft Cluster Server (MSCS)?
MSCS is a built-in feature of Windows NT Server Enterprise Edition. It is
software that supports the connection of two servers into a cluster for higher
availability and easier manageability of data and applications. MSCS can
automatically detect and recover from server or application failures. It can be
used to move server workload to balance utilization and to provide for
planned maintenance without downtime.

The initial release of MSCS supports clusters with two servers. A future
version of MSCS is expected to support larger clusters.

6.1.2 How Does MSCS Provide High Availability?
MSCS uses software heartbeats to detect failed applications or servers. In
the event of a server failure, it employs a shared nothing clustering
architecture that automatically transfers ownership of resources (such as disk
drives and IP addresses) from a failed server to a surviving server. It then
restarts the failed server’s workload on the surviving server. All of this, from
© Copyright IBM Corp. 1999 81

detection to restart, typically takes under a minute. If an individual application
fails (but the server does not), MSCS will try to restart the application on the
same server. If that fails, it moves the application’s resources and restarts it
on the other server.

MSCS does not require any special software on client computers; so, the
user experience during failover depends on the nature of the client side of
their client-server application. Client reconnection is often transparent
because MSCS restarts the application using the same IP address.

If a client is using stateless connections, such as a browser connection, then
it would be unaware of a failover if it occurred between server requests. If a
failure occurs when a client is connected to the failed resources, then the
client will receive whatever standard notification is provided by the client side
of the application in use.

For a client side application that has statefull connections to the server, a new
logon is typically required following a server failure.

No manual intervention is required when a server comes back online
following a failure. When a server running Microsoft Cluster Server, say
server A, boots, it starts the MSCS service automatically. MSCS in turn
checks the interconnects to find the other server in its cluster, say server B. If
server A finds server B, then server A rejoins the cluster and server B
updates it with current cluster info. Server A can then initiate a failback,
moving back failed-over workload from server B to server A.

6.1.3 Concepts and Terminology
In this section, we cover some of the terminology used in conjunction with the
Microsoft Cluster server.

Shared Nothing:
Microsoft Cluster employs a shared nothing architecture in which each server
owns its own disk resources (that is, they share nothing at any point in time).
In the event of a server failure, a shared nothing cluster has software that can
transfer ownership of a disk from one server to another.

Cluster Services:
This is the collection of software on each node that manages all cluster
specific activity.

Resource:
It is the canonical item managed by the Cluster Service. A resource may
include physical hardware devices, such as disk drives and network cards, or
82 High Availability Scenarios for Tivoli Software

logical items, such as logical disk volumes, TCP/IP addresses, entire
applications, and databases.

Group:
A group is a collection of resources to be managed as a single unit. A group
contains all of the elements needed to run a specific application and for client
systems to connect to the service provided by the application. Groups allow
an administrator to combine resources into larger logical units and manage
them as a unit. Operations performed on a group affect all resources within
that group.

Failback:
Failback is the ability to automatically rebalance the workload in a cluster
when a failed server comes back online. This is a standard feature of MSCS.
For example, say server A has crashed, and its workload failed-over to server
B. When server A reboots, it finds server B and rejoins the cluster. It then
checks to see if any of the cluster group running on server B would prefer to
be running in server A. If so, it automatically moves those groups from server
B to server A. Failback properties include information such as which group
can failback, which server is preferred, and during what hours the time is right
for a failback. These properties can all be set from the cluster administration
console.

Quorum Disk:
A quorum disk is a disk spindle that MSCS uses to determine whether or not
another server is up or down.

When a cluster member is booted, it searches whether the cluster software is
already running in the network. In case it is running, the cluster member joins
the cluster. If it is not, the booting member establishes the cluster in the
network. A problem may occur if two cluster members are restarting at the
same time, thus, trying to form their own clusters. This potential problem is
solved by the Quorum Disk concept. This is a resource that can be owned by
one server at a time and for which servers negotiate for ownership. The
member who has the Quorum Disk creates the cluster. If the member that has
the Quorum Disk fails, the resource is reallocated to another member, which
in turn, creates the cluster. Negotiating for the quorum drive allows MSCS to
avoid split brain situations where both servers are active and think the other
server is down.

Load balancing:

Load Balancing is the ability to move work from a very busy server to a
less-busy server.
Microsoft Cluster 83

Virtual Server:
A virtual server is the logical equivalent of a file or application server. There is
no physical component in the MSCS that is a virtual server. A resource is
associated with a virtual server. At any point in time, different virtual servers
can be owned by different cluster members. The virtual server entity can also
be moved from one cluster member to another in the event of a system
failure.

6.1.4 Tivoli in an MSCS Environment
To set up an MSCS cluster, we need to have:

1. A common shared SCSI bus with proper termination at both ends. Also
the drive letters should be assign to all disk resources on the shared
SCSI bus and must have the same drive letter on both nodes before
installing MSCS.

2. The nodes of an MSCS cluster must be connected by one or more
physically independent networks.

The figure below shows two NT servers having a common SCSI storage.
84 High Availability Scenarios for Tivoli Software

Figure 19. MSCS Environment

We have an MSCS cluster with two nodes scooby and scrappy. A resource
group, Tivoli Group, is configured that contains drive E. Node scooby is the
owner of this group. So, when both the machines comes up, scooby will own
this group.

When Tivoli is installed on an NT machine, it copies the required files to the
designated drive. Also, it creates two NT accounts at installation time. The

Public Network

146.84.26.118 146.84.26.40

Velma
146.84.26.119

ScrappyScooby

Drive E

Oserv

The MSCS cluster does not support the use of IP addresses assigned from
a Dynamic Host Configuration Protocol (DHCP) server for the cluster
administration address (which is associated with the cluster name) or any
IP address resource. However you can use either static IP addresses, or IP
addresses permanently leased from a DHCP server, for the Windows NT
network configuration on each node.

Important
Microsoft Cluster 85

accounts are the user tmersrvd and the group Tivoli_Admin_Privileges.
These accounts are created locally on the machine. It also installs the Tivoli
Authentication Package(TAP), which allows set uid methods to work on NT.
Other than this, it places the following files under %SYSTEMROOT%.

1. %SYSTEMSROOT%\SYSTEM32

sis_sh.exe

TivoliAP.dll

worldname.exe

2. %SYSTEMroot\system32\drivers\etc\Tivoli

setup_env.sh

setup_env.cmd

tll.conf\arg

tll.conf\layout

tll.conf\library

tll.conf\task

In an HA environment, these files need to be present on the other machine
also. There are two ways of doing this.

 • We can copy all these files to their respective directories to the desired
location from the first node, or

 • Instead of copying the files from the first machine to the second machine,
we can make a dummy Tivoli Framework installation on the second
machine by installing the Tivoli Framework code using the shared disk for
the binaries and database and then deleting the binaries and database
that we had just installed, which will leave us only with the above
mentioned required files in the %SYSTEMSROOT%\SYSTEM32 and
%SYSTEMROOT\SYSTEM32\DRIVERS\ETC\TIVOLI directories.

After this, we may need to copy the HOSTS file manually from one machine
to other. This file is present in the %SYSTEM%\system32\drivers\etc.

In an NT clustering environment, resource groups move from one machine to
the other. The resource group has an IP address associated with it. This is
also called a virtual machine. In our case this virtual machine is velma. This
virtual machine has a physical disk drive, network name, and Tivoli object
dispatcher resources along with the IP address resource.

For these resources, we need to define dependencies in the following order.
86 High Availability Scenarios for Tivoli Software

Physical Disk Drive->IP Address->Network Name->Tivoli Object
Dispatcher.

Once we have defined this, the following steps should be carried out.

 • Tivoli service defined on the second machine.

This is done through the Cluster Administrator menu. We only need to
change the status of oserv to online. This will automatically start the
dependencies first and then the oserv daemon.

 • When we install Tivoli on the second machine, it is installed with IP
address 146.84.26.118 and machine name scooby.

We need to have the IP address and hostname of the virtual machine,
which, in our case, is velma.

odadmin odlist change_ip 1 146.84.26.119 TRUE

This command will change the IP address of the dispatcher to IP address
of velma.

 • Associate an additional hostname to the object dispatcher.

odadmin odlist add_hostname_alias 1 146.84.26.119 velma

 • Delete the old host name associated with the object dispatcher.

odadmin odlist delete_hostname_alias 1 146.84.26.119 scooby

 • Copy the database from old name to new name.

e:>copy \Tivoli\DB\scooby.db velma.db

 • Change the registery entry in the existing machine so that it will point to
the new database.

This can be done using REGEDIT. These entries are available under

HKEY_LOCAL_MACHINE-> SOFTWARE-> Tivoli PLATFORM->
OSERV94

 • Change the label on the managed node representing the TMR server by
executing the following command in the BASH environment.

 We could also use the documented way of changing the database
directory as mentioned in the product documentation, TME10 Framework
Planning and Installation Guide. But for our purposes, the above steps
mentioned were sufficient.

Note
Microsoft Cluster 87

MN=‘wlookup -r ManagedNode scooby‘
idlcall $MN _set_label ‘"velma"‘

 • Change the environment to reflect the database change. Environment
setup files define the DBDIR variable that specifies the path of the
Database.

These files are under \WINNT\SYSTEM32\DRIVERS\ETC\Tivoli

 • Finally, through the cluster administrator we check dependencies on both
machines and ensure that they are set in the following order: Physical
Disk Drive->IP Address->Network Name->Tivoli Object Dispatcher

 • Also add the following registry replication setting:

Software/Tivoli/platform/oserv94

Within cluster administrator properties, autostart for oserv should be
disabled.

Now we are ready to do a failover. A failover can be done either by switching
off the working machine or by moving the resource group to the other
machine. Normally it takes less than a minute to failover, after which, oserv
starts on the other machine.

6.2 Summary

In this section we tested a hot standby NT TMR server scenario using MSCS
Software that has some implementation differences as compared to the Unix
scenarios.
88 High Availability Scenarios for Tivoli Software

Appendix A. A Possible Future for Tivoli HA Implementations

It is likely that, in the near future, there will be some enhancements to the
Tivoli products that will ease the implementation of mutual takeover
environments on both Unix and NT Servers. Current official support for
multiple oservs on Unix machines will be enhanced to also cover NT servers.
The following sections explain the current plans for this implementation.

A.1 Background

Enabling the Tivoli framework to run on the Microsoft Cluster Server (MSCS)
is Tivoli’s next step in its support of high-availability (HA) environments.
Adding support for MSCS requires a redesign of the current generic HA
support as well as the addition of some MSCS-specific functionality. To assist
the end-user in consistently using Tivoli in an HA environment, great
measures have been taken to merge the differing characteristics of Unix and
Windows NT. File and directory structure rearrangement and new command
line interface tools are just two of the areas modified to achieve consistent
environments on both Unix and Windows NT.

The model that the Tivoli framework uses to support MSCS is that all possible
application resources are kept on a shared drive. Only one cluster member
can access the shared drive at a given time. As control moves from one node
to another, the control of the disk resource moves. Since the database files
and binaries are installed on this hard drive, they become available to the
machine that is taking over for a failed machine.

Changes in Tivoli’s generic HA support include modifying the installation and
communications code to enable multiple oservs on a machine. In most cases,
users will want to use MSCS to provide more reliable access to a particular
application or resource. For management of the machines themselves, the
user will have a framework installation on each node. Then, the user will have
their critical application set up to bounce between those physical nodes on a
virtual host. There will be another Tivoli framework installation that will follow

The materials presented here are tentative plans for changes in the Tivoli
code in order to simplify HA implementations. These plans may change
due to new customer requirements or other business reasons. We provide
this information on an as is basis and to provide you with some insight to
changes being considered by Tivoli.

Important
© Copyright IBM Corp. 1999 89

that application. This means that there will be multiple oservs on a machine,
all using the same port. This brings out several limitations of the product.

A.2 Problems

Currently, the oservs on a given machine can be distinguished using the port
number on which they listen. On NT, oserv services are named based upon
their listening port. For local communication between a client program and an
object dispatcher on the same machine the port number is used to select the
appropriate communications channel (a FileMapping on NT and a pipe on
Unix).

Since only one process can be listening on a given port at a time, this
ensures that each oserv could be uniquely identified by its port number. This
will no longer be the case. With the advent of support for clustering solutions
and multi-homed hosts, the listening port is not enough to distinguish one
oserv from another. The oserv must be able to listen on a given port and a
particular network interface. If only the port number is used, it is easy to see
that naming collisions will occur for oservs that are listening on the same port
but on different interfaces.

On both NT and Unix, a method for selecting one of many network interfaces
existed, but required you to choose a network interface for all oservs running
on the machine. Changes are system-wide. For HA support, this is not
sufficient. A requirement is that different oservs be able to listen on different
network interfaces simultaneously. When HA support was added for Unix
(set_force_bind parameter), this issue was addressed. However, NT still
contained no support for multiple oservs running on different interfaces.

With respect to MSCS specifically, there is a significant amount of machine
configuration done during installation that can not be maintained on the
shared drive. This brings about a problem when a machine in the cluster fails
and another machine tries to take over. Even though the new machine has
access to the database files, the libraries and the binaries the oserv will fail to
initialize due to the absence of the special user and group resources, values
that were written into the registry, the Tivoli Authentication Package, and
system DLLs.

A.3 Solutions

Our goal is to add support for multiple oservs running on multiple network
interfaces and multiple ports simultaneously and to make the support
consistent between NT and Unix. To that end, we plan to separate the notion
90 High Availability Scenarios for Tivoli Software

of oserv identification from the listening port of the oserv. Each oserv installed
on a machine will have an ID, which is simply a text string. This string is
completely arbitrary in that it is not parsed for parameters (as was previously
done on NT to find the port number) but is simply used as a unique key to
identify that oserv.

This ID will be used in a number of places. Instead of client programs
requiring a port number ($o_dispatch) that is used to find the local
communication channel, they will require an oserv ID ($OSERV) that is used for
the same purpose. The oserv will also use its own ID (taken from the service
name that is used to start it on NT and a new command line flag on Unix) to
look up its parameters, such as database directory, listening port, and
network interface, in the registry.

To overcome the problem of machine specific configuration data outside of
the shared drive, those data must be explicitly copied from a Tivoli installed
cluster member to the others before the failover occurs. To make this copying
easier on the user, a set of scripts will be provided that will automatically copy
the necessary configuration items to another cluster member. Therefore, the
user must install the Tivoli products that they would like to run on the cluster
onto one of the nodes and then run a script that will copy these resources to
the other cluster members.

A.4 Effects

A.4.1 oserv ID Generation

Currently, there is no notion of an ID on a Unix oserv, and the service name
was the analogous concept in the NT world. The service name is generated
using the port number. If there is no port number specified, the service name
is simply oserv, and if a port is specified, the name is oserv-port.

After the modifications, the ID of the first oserv on a machine will be oserv
unless otherwise specified. The next installation gets the ID oserv1 unless
otherwise specified. This is followed by oserv2, oserv3, and so on. This same
scheme will be used for both NT and Unix. The ID can be changed after the
installation of the oserv using the oregister-update command.

A.4.2 Setup Scripts Directory

The setup scripts directory currently used is always set to /etc/Tivoli during a
Unix installation and to %SystemRoot%\system32\drivers\etc\Tivoli-port on
NT. Either of these can be overridden by the EtcTivoli environment variable
during installation. Once again, there is an assumption that the port is enough
A Possible Future for Tivoli HA Implementations 91

to distinguish an oserv on NT and an assumption that there will be only one
oserv per machine on Unix.

The default directory will be changed on both platforms. On Unix, the default
location will be /etc/Tivoli/oserv_ID. On NT,
%SystemRoot%\system32\drivers\etc\Tivoli\oserv_ID will be the default
location. There will still be some files that reside in /etc/Tivoli on Unix,
namely the bin directory and other files that are used by Tivoli’s scripts.
There will also be the new instances file that contains all of the parameters
for all installed oservs, and the start and stop scripts that can start an oserv
without the environment set up.

These default directories will still be overridden during installation.

A.4.3 Instances File (Unix only)

The /etc/Tivoli/instances file will contain all of the information regarding
installed oservs on Unix. The parameters are used by the oserv if they are not
specified on the command line.

The instances file will consists of several lines following the format:

>D:DBDIR:ETCDIR:PORT:HOSTNAME

where ID is the oserv ID that corresponds to all of the parameters on this line,
DBDIR is the location of the database directory, ETCDIR is the location of the
setup scripts, PORT is the port number, and HOSTNAME is a host name
associated with the interface on which the oserv should listen.

Any of the values might be missing, in which case, the default values will be
used.

A.4.4 Registry Keys (NT only)

The registry contains all of the information regarding the parameters of the
oserv on NT. The database directory is always stored in the registry but under
the SOFTWARE key. It will be stored with the Service Manager’s data and the
rest of the parameters under the SYSTEM key. Each oserv that is installed
will have a service key associated with it. Under this key, a subkey named
Parameters will be created that contains all of the data contained in the
instances file on Unix. So, the Parameters key looks like:

(Default)"oserv"

dbdir"C:\Tivoli\db\jpatterson.db"
92 High Availability Scenarios for Tivoli Software

etcdir"C:\WINNT\system32\drivers\etc\Tivoli\oserv"

hostname"jpatterson"

port8101

As with the instances file on Unix, any of these values might be missing,
which would cause the defaults to be used except the DBDIR, which has no
default value.

A.5 Procedures

A.5.1 Fresh Install

During a fresh installation, several things will be done differently to support
the new multiple dispatcher scheme. First, the setup scripts will be placed in
a different directory by default. The previous default directory is /etc./Tivoli on
Unix (which made it too easy to overwrite another oserv’s setup scripts) and
%SystemRoot%\system32\drivers\etc\Tivoli-port on NT (which won’t be
sufficiently unique since two oservs can be installed on the same port but
using different interfaces). In the new scheme, a Tivoli directory will be
created in the etc directory (this is /etc on Unix and
%SystemRoot%\system32\drivers\etc on NT). Underneath this directory, the
installer will create a directory named after the ID of the oserv for each
framework installation. This will be the default location. The user will specify
any location that they want for the installation-specific setup files.

On Unix, some additional files will be created in the /etc/Tivoli directory. The
install script will create a file named instances that takes the place of the
registry on Unix. It will hold the parameters for each of the registered oservs.
Two scripts named start and stop that start or stop an oserv based on its ID
will be generated. Lastly, the tll.conf directory and bin and lib symbolic links
will be created for use by the framework PERL scripts. Since these files will
be generic to all oservs on the machine, they will be created by the first oserv
installed on that machine. If these files already exists when an oserv is
installed, it will leave them alone. The user will not be able to select another
directory in which to install these files.

The default setup_env scripts will set the $OSERV environment variable to
the ID of the target oserv instead of setting $o_dispatch (and
$WLOCALHOST on Unix). This will be the only information that client
programs will need to contact the correct oserv through the local
communications channel. The default oserv.rc script on Unix will be modified
A Possible Future for Tivoli HA Implementations 93

to pass an ID on the command line instead of specifying the port, host name,
and database directory on the command line.

In order to provide the scripts that create the setup and start scripts with
enough information to fill in all of the oserv parameters, there will be a new
advanced dialog during the install that gathers the new information (port, host
name, oserv ID, and setup script location). This information will be still be
specified through the environment variables ($o_dispatch, $WLOCALHOST,
and $OSERV, $EtcTivoli, respectively) before the setup is run, but this only
sets the default values in the advanced dialog. The user will still be given a
chance to override the environment variables.

If the user is installing into an MSCS environment, they must install the
desired Tivoli products as usual onto one of the nodes in the cluster. After
completing the installation onto that one node, they will run the
copy-cluster.sh script to replicate that configuration onto each other machine
in the cluster. Only after this is done, will the other machines be able to
successfully run the oserv.

It will be the user’s responsibility to create the necessary resources on their
MSCS cluster before installing the Tivoli framework. At a minimum, the user
must have done the following before installing the framework:

 • Create an IP Address resource for the oserv to use (this IP address should
appear in the user's DNS, the host name will be needed during framework
installation)

 • Create a Computer Name resource that will follow the oserv so that files
can be shared from the machine that is running the oserv (this is optional)

 • Create a Shared Disk resource on which to install all of the Tivoli
framework files

After doing these things, the user is ready to run the Framework installation,
specifying whatever ID they choose and a host name that resolves to the
virtual IP address they have created. After installation, the user must create a
Generic Service resource that corresponds to the oserv (or whatever ID was
specified) service. They must also ensure that the dependencies are set
properly: The oserv service depends on the IP address and the shared disk.

A.6 Summary

This appendix has provided an overview of changes to the framework that are
being considered to make HA implementations much easier. Due to the
current implementation and naming schemes on NT, running multiple oserv
94 High Availability Scenarios for Tivoli Software

processes on a single NT system is not supported. With the changes outlined
above, multiple oservs will be supported in both NT and Unix environments.

Multiple oservs running on the same system are critical for two reasons. One
is for the support of a mutual takeover HA environment. The other is to allow
one oserv to manage the physical machine, while another oserv could be
used to manage logical resources, such as a critical application that may
move between systems in an HA cluster.
A Possible Future for Tivoli HA Implementations 95

96 High Availability Scenarios for Tivoli Software

Appendix B. Sample Script to Copy Tasks to Shared Filesystem

Following is the script written by Thomas Knueppel in the original Tivoli HA book
Implementing TME 10 in High Availability Environments (SG24-2032-00) in order to
move any created tasks from /usr/local/Tivoli/bin into the shared file system.
Be sure to take note that the $REGIONNUMBER shell variable will need to be
updated to the value shown by the odadmin command for your TMR.

#!/bin/ksh -x
create links for tasks for all interpreter-types
Version 1.0
Thomas Knueppel, IBM Germany
October 7th, 1998

. /etc/Tivoli/setup_env.sh
REGIONNUMBER=’1925476444 ’
BINPATH=’/usr/local/Tivoli/bin/’# Directory, for Tivoli binaries
TASPATH=’TAS/TASK_LIBRARY/bin/’# This is a static part of the path
to the Tivoli tasks
TARGETDIR=’/tivoli_tmr/usr/local/Tivoli/bin’ # Target directory on shared
disk
if test -d $TARGETDIR
then
 echo "$TARGETDIR already existed"
else
 echo "$TARGETDIR doesn’t exit, so I will create it"
 mkdir -p $TARGETDIR
fi

INTERPRETER[0]=’aix3-r2’
INTERPRETER[1]=’aix4-r1’
INTERPRETER[2]=’dgux5-r1’
INTERPRETER[3]=’dgux-ix86’
INTERPRETER[4]=’generic’
INTERPRETER[5]=’generic_unix’
INTERPRETER[6]=’hpux10’
INTERPRETER[7]=’hpux9’
INTERPRETER[8]=’mips-irix’
INTERPRETER[9]=’nextstep3-ix86’
INTERPRETER[10]=’nw3’
INTERPRETER[11]=’nw4’
INTERPRETER[12]=’os2’
INTERPRETER[13]=’os400-v3r1’
INTERPRETER[14]=’os400-v3r6’
INTERPRETER[15]=’osf-axp’
© Copyright IBM Corp. 1999 97

INTERPRETER[16]=’solaris2’
INTERPRETER[17]=’sunos4’
INTERPRETER[18]=’sys4-att’
INTERPRETER[19]=’sys4-m88k’
INTERPRETER[20]=’u6000_svr4mp’
INTERPRETER[21]=’uw2-ix86’
INTERPRETER[22]=’w32-ix86’
INTERPRETER[23]=’win3x’
INTERPRETER[24]=’win95’

for i in ${INTERPRETER[@]}
do
 if test -d $BINPATH/$i/$TASKPATH/$REGIONNUMBER
 then
 echo "$i Directory for tasks alreaday exists"
 echo "So I will move the files to the shared directory"
 mkdir -p $TARGETDIR/$i/$TASKPATH/$REGIONNUMBER
 mv $BINDPATH/$i/$TASKPATH/$REGIONNUMBER/* \
 $TARGETDIR/$i/$TASKPATH/$REGIONNUMBER
 rm -rf $BINPATH/$i/$TASKPATH/$REGIONNUMBER
 ln -s $TARGETDIR/$i/$TASKPATH/$REGIONNUMBER
 else
 echo "There is no Directory for the interpreter $i"
 echo "So I will create it and will link it to the shared directory"
 mkdir -p $BINPATH/$i/$TASKPATH
 mkdir -p $TARGETDIR/$i/$TASKPATH/$REGIONNUMBER
 ln -s $TARGETDIR/$i/$TASKPATH/$REGIONNUMBER \
 $BINPATH/$i/$TASKPATH/$REGIONNUMBER
 fi
done
98 High Availability Scenarios for Tivoli Software

Appendix C. Determining the Status of the oserv Process

Often in HA environments, one of the challenges is how to determine when
an application is no longer performing as expected and should be failed over.
It is easy being able to monitor the existence of a particular process, but the
existence of the process does not necessarily indicate that the application is
healthy. For instance, if an application becomes deadlocked, or otherwise
hangs, the process may still show as active.

This appendix provides some insight into what you might do to monitor the
status of the TMR server to recognize when you might want to force a
failover.

There is no absolute indication that the TMR server or overall TMR is not
performing normally. The basis of the TMR is the oserv. The oserv must be
running. It is a process that dynamically creates and deletes objects in its
database. As it performs these operations, it maintains a rollback log file,
$DBDIR/odb.log. If you examine the size of the $DBDIR/odb.log file, you
should see the file size increase and shrink. If the oserv is inactive for a
lengthy period of time, this file size should return to 0. The oserv will perform
a purge of its internal buffers that get written to this file after 10 minutes of
inactivity. The user can force this same operation by issuing the command:

odadmin db_sync

If, over time, you see the $DBDIR/odb.log file growing, then there is a
concern that a transaction has not completed. Steps should be taken to
resolve the problem.

Issuing the command odstat -c or odstat -cv will list the active methods with
their current states, times they were started, and the OID of the method’s
object. Some of these methods are quite static. They are started when the
TMR server is initialized. For example, there is a method for the scheduler,
endpoint manager, and gateway, just to name a few.

Other methods that persist for a long period of time are uiserver (the desktop)
and check_db. You may see these persist for hours, even days. They should
normally show a state of run.

The third class of methods are transient. They can last a few seconds, hours,
or even days. The state of these methods becomes a concern. If the method
is in any state other than run, one may need to determine if the oserv on the
managed node is running. If a simple wping hostname of that manage node
fails, then you may need to recycle the oserv on that managed node to
© Copyright IBM Corp. 1999 99

reestablish the connection with the TMR server and clear the hung methods.
(In some cases, you may actually need to recycle the oserv twice).

Understanding what started a method and what a method does helps
determine if the method is hung up and will not complete. A runaway method
that is not completing as it should, but continues to process (in a loop, for
instance), can slowly diminish available resources and eventually cause the
oserv to hang. The states most often seen for such methods are rwait, waiting
on a managed node, and ali, waiting for the TMR server to authenticate the
user of the method. The rwait message is caused by the managed node’s
oserv not responding. The ali message is caused by the TMR server being to
busy to process all of the requests.

If recycling the managed node does not cause the problem of the growing
$DBDIR/odb.log file to abate, then examine the output of odstat -c for other
methods that have not completed. Are they running on the TMR server? If
they are, examine the output of odstat -cv for the process ID (pid). If it is
feasible, you might try using a kill -15 (not -9), on the process. If the state of
the oserv does not start cleaning up, you may need to recycle the TMR
server.

Depending on the size of the $DBDIR/odb.log file, the startup may take some
time. The oserv replays, attempts to rollback, all non committed transactions.
Be somewhat patient. Examine the size of the $DBDIR/odb.log file before the
TMR server gets busy. Did the size go to 0? You may have to stop and start
the oserv again. Some transactions depend on others, and the order that they
were processed made it impossible to complete the first time the oserv tried
to perform a rollback on them.

Another indicator of TMR server health may be the command tmstat. The
output of this command is not easy to read. The volume of output from this
command depends greatly on how active the TMR is. If tmstat produces no
output, then there are no transactions and/or locks at the present time.

Transactions and/or locks can last from a few seconds to hours or even days
depending upon what processes are running. Perform a simple operation,
such as running a task on a managed node, and look at the output of tmstat.
You will see a section showing the transactions and a section showing the
locks. The transaction section will have an entry such as:
{2020203456:1,2020203456:5,20:3} Top-T running Yes No running running 1073

The value {2020203456:1,2020203456:5,20:3} is the transaction ID.
2020203456:1 is the resource host and its dispatcher number. 2020203456:5
is the resource locker that is managed node with dispatcher 5. (If the 10-digit
100 High Availability Scenarios for Tivoli Software

number does not match the 10-digit number of the resource host, then the
resource locker is on a different TMR.)

20:3 is the unique identifier number for this transaction. The Top-T specifies
that this is a top-level transaction. Finally, 1073 is the method thread
identifier.This can be seen in the output from odstat -c and can tell you what
method is running.

In the lock section of tmstat output, you can see the resource that is locked
and the transaction ID. You will have to look at the transaction section to go
back from there.

A few guidelines that will help prevent deadlock situations from occurring
include:

 • In a multiply connected TMR situation, do not run wchkdb on both TMRs at
the same time.

 • In a multiply connected TMR situation, do not run wchkdb on 1 TMR and
wupdate on the other at the same time.

 • In a multiply connected TMR situation, do not run wupdate on both TMRs
at the same time.

 • Always look for processes that may block other processes, then do no run
on them concurrently.
Determining the Status of the oserv Process 101

102 High Availability Scenarios for Tivoli Software

Appendix D. Special Notices

This publication is intended to help Tivoli and High Availability specialists to
plan for and implement Tivoli in HA environments. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by the various Tivoli products and High Availability products
we described. See the the specific product announcements for more
information about what publications are considered to be considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer’s ability to evaluate and integrate them into the
customer’s operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 1999 103

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list
of Intel trademarks see www.intel.com/dradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

AIX AS/400
DB2 IBM
OS/2 OS/390
RISC System/6000 RS/6000
S/390 SP
System/390
104 High Availability Scenarios for Tivoli Software

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 107.

 • An Introduction to Tivoli’s TME 10 , SG24-4948

 • Bullet-Proofing Your Oracle Database with HACMP: A Guide to
Implementing AIX Databases with HACMP, SG24-4788

E.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Order a
subscription and receive updates 2-4 times a year.

E.3 Other Publications

The following publications ship with the Tivoli software and contain important
and relavant information:

 • TME 10 Framework Planning and Installation Guide

 • TME 10 Framework User’s Guide

 • TME 10 Framework Reference Manual

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbook SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PostScript) SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 1999 105

 • TME 10 Enterprise Console User’s Guide

 • TME 10 Enterprise Console Reference Manual
106 High Availability Scenarios for Tivoli Software

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook. residency, and workshop announcements at http://inews.ibm.com/.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 107

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
108 High Availability Scenarios for Tivoli Software

Index

Symbols
./tec directory 21
./tecad directory 21
/etc/Tivoli 41, 71
/etc/Tivoli/lcf 27
/opt/Tivoli/lcf 27

A
AIX 11, 15, 16, 29
alias 8
application server 33, 39
applications 2
AS/400 2
availability levels 5

continuous availability 6
high availability 6
improved availability 6

B
bind 22, 37, 90
BufEvtPath 59

C
cascading resource groups 9
cluster 7
Cluster Services 82
Common Object Request Broker

see also CORBA 2
concurrent access mode 8, 29
configuration

Solstice HA 69, 71
considerations 17

endpoint 27
interconnected TMRs 23
managed nodes 25
Solstice HA 79
TEC 23
TMR servers 17

CORBA 3

D
data service 65, 69
DB2/6000 24
DHCP 85
© Copyright IBM Corp. 1999
diagnostic utilities 52
diskset 65, 69
DiskSuite 65
dispatcher 38, 77
Distributed Monitoring 14, 25, 62

E
endpoint 3, 11, 12, 60
endpoint gateway 3, 4

failover 15
endpoint installation 61
endpoint manager 3, 4, 60
endpoint start script 61
endpoint stop script 61
Enterprise Console

see also TEC 4, 13, 18
etc/Tivoli 18, 21
EtcTivoli 21, 41, 42

F
failback 83
failover 9
failover considerations 17
failover scenarios 11

Solstice 69
file system 17
file system mount points

Managed Node 30
TEC Server 30
TMR Server 30

filesystem 31, 34, 40, 42, 58
futures 89

G
gateway 3, 60
gateway failover 15
group 83

H
HACMP 15, 16, 29, 33
hardware address 8
hareg 71
hastat 71
haswitch 72
heartbeats 81
109

high availability concepts 5
hostname 7, 79
hostname resolution 22
hot standby 8, 16, 42, 65, 88
hot ttandby 69
HP 1
HP-UX 11, 16

I
IBM 1
idle standby 8, 16, 29, 40, 42, 65, 69, 88
inetd.conf 19
Informix 24
installation process 59
interconnected TMRs 23, 40
interface configuration

Solstice HA 69
Inventory application 24
IP address 8
IP label 8, 22

L
levels of availability 5
load balancing 83
logfile adapter 49
logical hostname 65, 69
logical IP address 8

M
managed node 4, 11, 12, 16, 24, 25
manager, endpoint 3, 4, 60
Microsoft Cluster Server 15

see also MSCS or Wolfpack 16, 81
mirrored disk solution 9
MSCS 1, 15, 89
mutual takeover 8, 16, 29, 34, 40, 54, 57, 75

N
network configuration

Solstice HA 69
network interfaces

Solstice HA 69
node 7

O
od number 38
OMG 2

Oracle 24, 42, 43
orant71.dll 43
OS/2 2
OS/390 2
oserv 3, 16, 19, 20, 26, 32, 56, 90
oserv ID Generation 91
oserv process 39
oserv.rc 21, 27, 33, 35

P
physical hostname 65, 69
physical IP address 75
portmapper 24

Q
quorum disk 83

R
RAID array 29
rc.nfs 19
RDBMS 4, 52
REGEDIT 87
registry keys 92
resource 7, 17, 82
resource group 7
RIM 24, 42, 47, 58
rotating resource groups 9
rotating takeover 65

S
scenarios 11
service IP address 32, 55
ServiceGuard 1
services 19
set_force_bind 26, 27, 37, 56, 75, 90
setup scripts 91
setup_env 18, 21, 27, 35, 53, 86
shared disk 18, 19
shared disk solution 9
Shared nothing 82
shared nothing 81
single point of failure 6
Solaris 11, 15, 16, 65
Solstice 1, 15, 16, 65
Solstice HA 65

configuration 69
Solstice HA considerations 79
110 High Availability Scenarios for Tivoli Software

Solstice HA restrictions 66
start script 31, 70

endpoint 61
Oracle 44

START_NET 77
starting the application 17
stateless connections 82
stop script 31, 70

endpoint 61
Oracle 44

stoppping the application 17
Sun 1
Sybase 24
synchronization 39
system configuration 17
system files 18

T
TAP 86
TEC 4, 11, 13, 14, 16, 23

adapters 51
BufEvtPath 50
console 44
database 42
EventServer 47
Install dir 50
processes 48
RIM 47
Server 42
TEC36Region 47
wcrtconsole 47
wsetrimpw 47
wstartesrv 47
wstopesvr 53

TEC installation 59
terminology 7
three-tiered architecture 3
Tivoli applications 2
Tivoli configurations 11
Tivoli Management Agent 60

see also TMA 3, 13
Tivoli Management Region 2, 11
TMA 3, 60
TMR 11

interconnection 23, 40
TMR database 17
TMR managed node failover 13, 14
TMR server 11, 12, 16, 24, 32, 42, 75

TMR server failover 12
transactions 15
two-tiered architecture 3

U
Ultra Enterprise Cluster 65
Unix 2, 11, 16, 89

V
virtual server 84

W
wclient 27
wgetrim 47
Windows NT 11, 81
WLOCALHOST 22, 23, 27, 32, 37, 41, 54, 79
wrimtest 52
wrimtrace 52
wtdbstat 52

X
X resources 18
 111

112 High Availability Scenarios for Tivoli Software

© Copyright IBM Corp. 1999 113

ITSO Redbook Evaluation

High Availability Scenarios for Tivoli Software
SG24-2032-01

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-2032-01

H
igh A

vailability Scenarios for T
ivoli Softw

are
S

G
24-2032-01

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1.1 Tivoli Overview
	1.2 High Availability Concepts
	1.2.1 Levels of Availability
	1.2.2 Single Point of Failure in a Cluster
	1.2.3 High Availability Terminology

	1.3 Summary

	Chapter 2. Failover Scenarios
	2.1 Operating Environments
	2.2 Tivoli Configurations
	2.2.1 Scenarios Not Covered

	2.3 High Availability Products and Configurations
	2.4 Summary

	Chapter 3. Tivoli Failover Considerations
	3.1 High Availability Considerations for Tivoli Framework
	3.1.1 Files and File Systems
	3.1.2 Placing Files on Local or Shared Disk
	3.1.3 /etc/Tivoli
	3.1.4 Hostname Resolution
	3.1.5 Interconnected TMRs

	3.2 TEC Considerations
	3.3 Managed Node Considerations
	3.3.1 Distributed Monitoring Scenario

	3.4 Mutual Takeover Environments
	3.5 Endpoint Considerations
	3.6 Summary

	Chapter 4. High Availability Cluster Multi-Processing (HACMP) 4.3.0
	4.1 HACMP and AIX Configuration
	4.1.1 Hardware Configuration
	4.1.2 Diagram of the Hardware Configuration
	4.1.3 File System Mount Points

	4.2 Idle Standby of a Managed Node
	4.2.1 File System and Disk Configuration
	4.2.2 Installation Process
	4.2.3 The WLOCALHOST Variable
	4.2.4 Application Server

	4.3 Mutual Takeover of Managed Nodes
	4.3.1 File System and Disk Configuration
	4.3.2 Installation Process
	4.3.3 The set_force_bind Variable
	4.3.4 Application Server

	4.4 TMR Servers in Either Idle Standby or Mutual Takeover
	4.4.1 File System and Disk Configuration
	4.4.2 Variable Considerations with the TMR Server
	4.4.3 TMR Server Summary

	4.5 Tivoli Enterprise Console in an Idle Standby HACMP Cluster
	4.5.1 File System and Disk Configuration
	4.5.2 Installation Process
	4.5.3 Some Diagnostic Utilities
	4.5.4 Modifications to the Control Scripts
	4.5.5 TEC Server Summary

	4.6 TMR Server and Managed Node Mutual Takeover
	4.6.1 Installation Process
	4.6.2 Summary

	4.7 TEC Server and TMR Server Mutual Takeover
	4.7.1 File Systems
	4.7.2 Installation Process
	4.7.3 Summary

	4.8 Endpoints
	4.8.1 Endpoint Manager
	4.8.2 Endpoint Gateways
	4.8.3 File System and Disk Configuration
	4.8.4 Endpoint Installation
	4.8.5 HACMP Configuration
	4.8.6 Distributed Monitoring Scenario on Endpoints
	4.8.7 Endpoint Summary

	4.9 Summary

	Chapter 5. Solstice HA
	5.1 Solstice HA Overview
	5.1.1 Solstice HA Data services
	5.1.2 Solstice HA Restrictions

	5.2 Our Lab Environment
	5.3 Failover Scenarios
	5.3.1 TMR Server - Hot Standby Configuration
	5.3.2 Managed Node - Idle Standby
	5.3.3 Managed Node - Mutual Takeover

	5.4 Solstice HA/Tivoli Considerations
	5.5 Summary

	Chapter 6. Microsoft Cluster
	6.1 What Is a Microsoft Cluster?
	6.1.1 What Is Microsoft Cluster Server (MSCS)?
	6.1.2 How Does MSCS Provide High Availability?
	6.1.3 Concepts and Terminology
	6.1.4 Tivoli in an MSCS Environment

	6.2 Summary

	Appendix A. A Possible Future for Tivoli HA Implementations
	A.1 Background
	A.2 Problems
	A.3 Solutions
	A.4 Effects
	A.4.1 oserv ID Generation
	A.4.2 Setup Scripts Directory
	A.4.3 Instances File (Unix only)
	A.4.4 Registry Keys (NT only)

	A.5 Procedures
	A.5.1 Fresh Install

	A.6 Summary

	Appendix B. Sample Script to Copy Tasks to Shared Filesystem
	Appendix C. Determining the Status of the oserv Process
	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	Index
	ITSO Redbook Evaluation

