
SG24-2025-00

TME 10 Framework Version 3.2:
An Introduction to the Lightweight Client Framework

October 1997

SG24-2025-00

International Technical Support Organization

TME 10 Framework Version 3.2:
An Introduction to the Lightweight Client Framework

October 1997

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix A, “Special Notices” on page 153.

First Edition (October 1997)

This edition applies to Version 3, Release 2 of the TME 10 Framework.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . vii

Tables . ix

Preface . xi
The Team That Wrote This Redbook . xi
Comments Welcome . xii i

Chapter 1. Introduction . 1
1.1 TME 10 Overview . 2

1.1.1 Operating System Independence 2
1.1.2 Distributed Object Framework . 3
1.1.3 TME 10 Framework′s Distributed Database 6
1.1.4 Basic Management Functions . 7
1.1.5 Installation Routines . 8
1.1.6 Command Interface . 8
1.1.7 TME 10 Desktop (Graphical User Interface) 9

1.2 Tivoli Management Regions . 9
1.2.1 Interconnecting TMRs . 11

1.3 TME 10 Version 3.1 Limitations . 11
1.4 Summary . 12

Chapter 2. TME 10 Framework V3.2 - What ′s New? 13
2.1 Lightweight Client Framework . 13

2.1.1 LCF Basics . 13
2.1.2 How LCF Changes the TME 10 Topology 17
2.1.3 LCF and the TME 10 Desktop . 17
2.1.4 LCF and the Command Line Interface 18
2.1.5 LCF Summary . 19

2.2 RDBMS Interface Module - RIM . 20
2.2.1 Summary . 21

2.3 DynaText Document Viewer . 21
2.4 Web Interface . 22
2.5 Summary . 22

Chapter 3. Planning for TME 3.2 . 23
3.1 Prerequisites . 23

3.1.1 Operating Systems . 24
3.1.2 Hardware Requirements . 25
3.1.3 Server and Client Configuration 28

3.2 Network Requirements and Considerations 31

 Copyright IBM Corp. 1997 iii

3.2.1 Line Throughput . 31
3.2.2 DNS (Domain Name System) . 31
3.2.3 DHCP (Dynamic Host Configuration Protocol) 32
3.2.4 DDNS (Dynamic DNS) . 32

3.3 Tivoli Management Regions . 33
3.4 Endpoint Connection Process . 34

3.4.1 How an Endpoint Connects . 34
3.4.2 Sequence of an Endpoint Connection 35
3.4.3 Limiting Endpoint Broadcasting . 36

3.5 General LCF Planning Considerations 37
3.6 Summary . 39

Chapter 4. LCF Installation . 41
4.1 Endpoint Managers . 41

4.1.1 Creating an Endpoint Manager . 41
4.2 Endpoint Gateways . 43

4.2.1 Creating an Endpoint Gateway - Command Line Interface 44
4.2.2 Creating an Endpoint Gateway - GUI 44

4.3 Endpoints . 47
4.3.1 Default Endpoint Login Process . 49
4.3.2 Creating a Windows NT Endpoint Using InstallShield 49
4.3.3 Installing Windows NT Endpoints from Logon Scripts 53
4.3.4 Installing UNIX Endpoints with winstlcf 55

4.4 Endpoint Data Files . 55
4.5 Summary . 60

Chapter 5. Configuring the LCF Environment 61
5.1 Controlling an Endpoint Login . 61
5.2 Controlling an Endpoint Login Through Configuration Files 62
5.3 Controlling an Endpoint Login Through Policies 64

5.3.1 allow_install_policy . 64
5.3.2 select_gateway_policy . 66
5.3.3 after_install_policy . 68
5.3.4 login_policy . 70
5.3.5 Applying Endpoint Policies . 71

5.4 Summary . 73

Chapter 6. TME 10 Framework Web Interface 75
6.1 Accessing the TMR Server . 75

6.1.1 Starting and Stopping the HTTP Daemon 77
6.1.2 Accessing the TMR Server . 77
6.1.3 Security . 77
6.1.4 Accessing Managed Nodes . 77
6.1.5 Adding Your Own Information . 78

iv TME 10 Framework Version 3.2

6.1.6 Logs . 78
6.2 LCF Endpoint Web Server . 78

6.2.1 Accessing the LCF Daemon Status Page 79
6.2.2 Logfile Page . 81
6.2.3 Method Cache Page . 82
6.2.4 Usage Statistics Page . 82
6.2.5 Configuration Settings Page . 83
6.2.6 Trace Log Page . 84
6.2.7 Network Address Configuration Page 85

6.3 Summary . 87

Chapter 7. Migration from TME 3.1 to TME 3.2 89
7.1 Reasons for Migrating . 89
7.2 Migration Process Overview . 91
7.3 Migration Scenarios . 93

7.3.2 Add a Gateway to a Managed Node 104
7.4 Summary . 105

Chapter 8. Application Development Considerations 107
8.1 Application Design . 107

8.1.1 TME Methods . 107
8.1.2 Components of an LCF Application 112

8.2 The LCF programming Environment 114
8.3 Application Runtime Library . 115

8.3.1 Memory Management . 116
8.3.2 Distributed Exceptions . 117
8.3.3 Sequence Manipulations . 118
8.3.4 File System Input/Output . 119
8.3.5 Logging Functions . 119
8.3.6 ADR Marshalling Functions . 120

8.4 The Common Porting Layer Runtime Library 121
8.5 Summary . 124

Chapter 9. Useful Tips and Scripts . 125
9.1 Backup and Recovery . 125

9.1.1 Backup Process . 125
9.1.2 Common Backup Issues . 126
9.1.3 Run wchkdb Before Any Backup 128

9.2 Removing Managed Nodes . 128
9.3 Transfer TME 10 CD Images to Disk 129

9.3.1 Using file0.tar . 129
9.4 Troubleshooting Client Installation 130
9.5 Miscellaneous Scripts . 131

9.5.1 Finding out Who′s Running the TME 10 Desktop 131

Contents v

9.5.2 Deleting a Managed Node . 131
9.5.3 Backup the TMR . 132
9.5.4 Installing a Full TMR . 133

9.6 Summary . 149

Chapter 10. In Conclusion . 151

Appendix A. Special Notices . 153

Appendix B. Related Publications . 155
B.1 International Technical Support Organization Publications 155
B.2 Redbooks on CD-ROMs . 155
B.3 Other Publications . 155

How to Get ITSO Redbooks . 157
How IBM Employees Can Get ITSO Redbooks 157
How Customers Can Get ITSO Redbooks 158
IBM Redbook Order Form . 159

Index . 161

ITSO Redbook Evaluation . 163

vi TME 10 Framework Version 3.2

Figures

 1. Role of the ORB in a TME Environment 5
 2. TME′s Distributed Database . 7
 3. TME 3.1 Architecture . 10
 4. TMR Utilizing LCF . 16
 5. New Endpoint Manager Icon on TME Desktop 18
 6. Initial Endpoint Connection . 34
 7. TME 10 Desktop with Endpoint Manager 42
 8. Output of wls Showing Endpoint Manager 42
 9. Endpoint Manager Immediately After Installation 43
10. Gateway Installation . 45
11. Create Gateway Dialog . 46
12. Gateway List . 47
13. Initial Endpoint Installation Panel . 50
14. Endpoint Installation Parameters Panel 51
15. Endpoint Installation Status Panel . 52
16. Gateway List after Multiple Endpoints are Installed 53
17. LCFD.LOG File After Installation . 57
18. LAST.CFG File . 59
19. Sample lcfd.cfg File . 63
20. Default allow_install_policy Script . 72
21. Primary Web Page on a TMR Server 76
22. LCF Endpoint′s Home Page . 80
23. LCF Endpoint′s Logfile Page . 81
24. LCF Endpoint′s Method Cache Page 82
25. LCF Endpoint′s Usage Statistics Page 83
26. LCF Endpoint′s Configuration Settings Page 84
27. LCF Endpoint′s Trace Log Page . 85
28. LCF Endpoint′s Configuration Page 86
29. Two Interconnected TMRs without LCF 94
30. Single TMR with LCF . 95
31. Upgrade to 3.2 - Start from Desktop 97
32. Upgrade to 3.2 - Install Patch - Error Message 98
33. Upgrade to 3.2 - Install Patch . 99
34. Upgrade to 3.2 - Patch Install . 100
35. Upgrade to 3.2 - Patch Install (cont′d) 101
36. Upgrade to 3.2 - Patch Install (cont′d) 101
37. Upgrade to 3.2 - Patch Install (finished) 102
38. TME Desktop after Upgrading to 3.2 103

 Copyright IBM Corp. 1997 vii

viii TME 10 Framework Version 3.2

Tables

 1. TME 10 Framework Operating System Support 25
 2. Swap Space & Process Slots . 26
 3. Disk Space Requirement Matrix . 26
 4. LCF Release 3.2 . 93
 5. Memory Management Functions . 116
 6. Distributed Exceptions - Available Macros 117
 7. Distributed Exceptions - Available Variable Argument Exception

Functions . 118
 8. Sequence Manipulations - Available Sequences Macros 118
 9. File system input/output - Available Functions 119
10. Logging Functions - Available functions 120

 Copyright IBM Corp. 1997 ix

x TME 10 Framework Version 3.2

Preface

The TME 10 Framework implements a powerful architecture that enables
cross platform, network-wide management of your network computing
environment. Through a common set of interfaces, applications use this
framework to allow you to manage the variety of platforms in your
environment while providing operating system transparency.

This redbook documents the new features and capabilities introduced in
Version 3.2 of Tivoli′s TME 10 Framework. The most significant of these new
features is an extension to the TME 10 architecture known as the
Lightweight Client Framework (LCF). LCF brings the power of TME 10 to a
wider array of computing platforms, while drastically reducing the footprint
required on the managed system. In addition, the LCF architecture greatly
increases the scalability of TME 10, so that it can be used to manage
environments from workgroups to extremely large enterprise networks.

The majority of this redbook is dedicated to describing LCF, and how to plan
for, install and configure its components. We also discuss migration
considerations from previous versions of the TME 10 Framework. For those
of you who will be writing applications to take advantage of LCF, we also
include a chapter discussing application development considerations.

Although you won′ t be able to reap all of the benefits of LCF until
LCF-enabled applications become available (which will occur in the near
future), by reading this redbook you can become familiar with the LCF
architecture and the changes that its new scalability and client features will
allow you to implement in your managed environment. Read this book and
start planning for your TME 10 implementation today!

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization. Austin Center.

Bart Jacob is a Senior Software Engineer at the International Technical
Support Organization, Austin Center. He writes extensively and teaches
IBM classes worldwide on a variety of topics including Tivoli′s TME 10
products. Bart has been with the ITSO for eight years and has extensive
experience with systems management, object-oriented technologies, and
data communications.

Armand Adriano is an I.T. Specialist in IBM Canada. He belongs to the
Systems Management and Networking Services group of Western Canada

 Copyright IBM Corp. 1997 xi

and is responsible for providing Tivoli professional services to customers.
He has worked in IBM for seven years, six of that performing RS/6000 and
AIX technical support.

Francesco Fabrizi is an Advisory I.T. Specialist with IBM Italy. He has six
years of experience in the development and design of System Management
applications. He has worked at IBM for seven years, six of that spent in the
Rome Networking System Laboratory. His areas of expertise include Object
Oriented technology (designing/coding) on INTEL and Unix-based platforms.

Paul Gerhard Morlok is a Senior Associate System Engineer at the IBM
Boeblingen Programming Laboratory, Germany. He has eight years of
experience in System Management as a quality engineer. Within the OS/390
Performance Management Development group, he is responsible for
planning, designing, and implementing complex component and system test
scenarios. His major focus currently is on system management applications
integrating the OS/2, AIX and OS/390 platforms.

Renata Rossi is an I.T.Specialist System Engineer in Italy. She has eleven
years of experience in Technical Support Groups, with five on AIX
Communications Products, Systemview and Netview. Since the merger of
IBM and Tivoli, she has been working as a TME 10 Availability Specialist.

The authors would like to thank the entire the TME 10 Framework team at
Tivoli for their invaluable contributions and support for this project. Special
thanks goes to:

John Michael Adams
Ann Bishop
Sally Derrick
Jerry Frain
Zafrir Gan
Russell Hill
Mike McDaniels
Todd Praisner
Francis Sullivan
Rob Tulloh
Evan Watkins
Donna Wilkins

xii TME 10 Framework Version 3.2

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on
page 163 to the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Home Pages
at the following URLs:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com/redbooks

• Send us a note at the following address:

redbook@vnet.ibm.com

Preface xiii

xiv TME 10 Framework Version 3.2

Chapter 1. Introduction

Tivoli′s TME 10 Framework provides a set of common services and facilities
to enable powerful systems management applications. This framework
provides value to developers who take advantage of the services and
facilities that hide the complexity of the networked environment and allow
the developer to concentrate on developing solutions that apply across a
wide range of operating environments.

Likewise, the framework is valuable to those responsible for managing
complex environments by providing common user interface elements and
hiding differences in the operating environment of managed systems.

Tivoli′s framework is based on industry standards such as the Object
Management Group ′s (OMG) Common Object Request Broker Architecture
(CORBA) and has had wide acceptance with a large number of system
management application developers. Designing a framework such as the
TME 10 Framework requires meeting two (sometimes conflicting) criteria:
stability and extensibility.

Stability provides application developers with confidence that the
applications they develop will continue to run when new versions of the
framework become available. Extensibility provides customers with the
knowledge that the framework can evolve overtime to meet their changing
requirements.

Version 3.2 of the TME 10 Framework introduces major new extensions to
the framework ′s architecture. These new extensions include the Lightweight
Client Framework (LCF). This new version of the framework is a testament
to both the stability and extensibility of the TME 10 architecture. Version 3.2
of the TME 10 Framework can be installed and configured the same as
previous versions and current applications will continue to run. However, by
utilizing the LCF extensions to the framework architecture, applications can
evolve to meet scalability and footprint requirements not necessarily met by
previous versions of the framework.

This redbook describes the new features provided by Version 3.2 of the TME
10 Framework including LCF. If you are unfamiliar with the TME 10,
architecture this introductory chapter will introduce you to the key concepts
and components. In addition, it describes some of the limitations which are
now being lifted by the introduction of LCF. If you are familiar with previous
versions of the TME 10 Framework you may want to skip ahead to
Chapter 2, “TME 10 Framework V3.2 - What′s New?” on page 13.

 Copyright IBM Corp. 1997 1

1.1 TME 10 Overview

TME 10 is the brand given to a set of products that provide systems
management capabilities across multiple platforms.

TME is an acronym for Tivoli Management Environment. The Tivoli
Management Environment includes a structured framework, TME 10
Framework, that provides core services and capabilities for management
applications. TME 10 also includes a growing set of applications which take
advantage of the framework.

From a high level view, the TME 10 Framework can be described as
containing the following sets of services:

• Operating system interfaces/encapsulation
• Distributed object framework
• Distributed database
• Basic management functions
• Installation routines
• Command interface
• TME 10 Desktop (Graphical User Interface)

1.1.1 Operating System Independence
One of the goals of Tivoli is to provide management capabilities for systems,
independent of which operating system they may be running. The operating
system provides application programs with access to the hardware
associated with a system. This hardware includes memory, disk storage,
communication facilities, and so on. Though each operating system may
provide different interfaces to the hardware it supports, the basic tasks that
it carries out are common across all platforms. For instance, every
operating system that supports disk storage devices must provide interfaces
that an application can use to read and write data to those devices.

The TME 10 Framework encapsulates core operating system function in such
a way that management applications may use standard interfaces to obtain
information from and control the systems on which it operates. Currently,
the TME 10 Framework is fully supported on various operating systems such
as:

• Sun SunOS 4.1 and 4.2
• Sun Solaris 2.4 and 2.5
• HP HP-UX 9, 10.0, 10.1 and 10.2
• IBM AIX 3.2.5, 4.1 and 4.2
• Microsoft NT 3.51 and 4.0

2 TME 10 Framework Version 3.2

In addition, the TME 10 Framework has been ported to run in other
operating environments, including:

• Digital Unix 3.0, 3.2, and 4.0
• NCR SVR4.3 V2.02, 2.03 and 3.0
• Sequent V4.1.3, 4.2
• Solaris-ix86 V2.5 ad 2.51
• SGI-IRIX 5.3
• DGUX-88k 3.0 and 3.1
• Unixware 2.1.1
• Pyramid 1.1 and 5.4.2

The TME 10 Framework is an object-oriented environment in which
operations are carried out through interfaces defined for various objects.
The description just provided regarding the encapsulation of operating
system functions implies that Tivoli has defined various objects which
represent system resources. Management of these resources is
accomplished by accessing these objects and invoking requests (methods)
upon them.

Since the TME 10 Framework is, by definition, a framework to enable the
management of multiple systems in a networked environment, there must
be a way of invoking methods on objects that reside elsewhere in the
network and independent of the operating environment controlling the
resource. Architectures that provide such a capability have become
commonly referred to as Object Request Brokers (ORBs). The ORB
associated with the TME 10 Framework is discussed in the following section.

1.1.2 Distributed Object Framework
In any distributed management environment there must be a communication
mechanism that can be used between systems to handle the issuing of
requests and the receiving of data. TME 10, which is based on an
object-oriented design, uses the concept of an Object Request Broker (ORB)
as its underlying communication mechanism.

An ORB is a mechanism that allows methods to be invoked on objects
independent of their location. The best known and most widely
implemented ORB architecture is that defined by the Object Management
Group (OMG) and known as the Common Object Request Broker
Architecture (CORBA). The Tivoli Management Framework includes an
implementation of a CORBA compliant ORB.

1.1.2.1 A Short Digression on CORBA
We do not intend this section to be a detailed dissertation on OMG′s
CORBA, but it is important to understand the basic concepts involved. The

Chapter 1. Introduction 3

OMG and their Object Management Architecture, the umbrella under which
CORBA was developed, had its start in 1989 (coincidentally the same year
that Tivoli was founded). The OMG is a consortium of well over 500
Information Systems vendors who understand the importance of the merger
of object-oriented technologies and client-server computing. The members
of OMG also understand the importance of standards that allow systems
from various vendors to coexist and inter-operate.

CORBA is an industry standard designed to allow objects on various
systems to communicate and inter-operate with each other. The concepts
behind CORBA are really quite simple. At its core, CORBA allows
implementations to completely hide the communications mechanism from
the application developer. In addition, other aspects of CORBA provide
services such as:

• An Implementation Repository (providing a directory service) to allow
the current locations of objects to be dynamically determined and
hidden from the application programmer.

• An Interface Repository to allow interfaces of newly introduced object
types (or classes) to be queried dynamically so that existing applications
can call methods on instances of these classes.

• Object Adapters to provide ORB specific services related to ensuring a
method is invoked on the proper object using the appropriate interface.

• Interfaces to allow for the management of the ORB itself.

• Other facilities to handle security, transactions, persistence and so on.

For the CORBA purist, the above list will be considered incomplete, but be
aware that CORBA is committed to addressing all of the important issues
related to distributed objects. The CORBA architecture can be dissected in
a variety of ways, but it is most frequently described as being composed of
three levels of architecture:

• The ORB itself, which provides the communications infrastructure, as
well as the tools required to compile IDL into bindings and stubs that
allow applications to interface with the ORB in a standard way.

• A services level, providing support for transactions, persistence, security
and many other requisite services.

• Common facilities providing towers of function related to common
business application requirements such as a compound document
architecture.

4 TME 10 Framework Version 3.2

1.1.2.2 TME 10 Framework ′s ORB
After that short digression, the key point to be made is that the TME 10
Framework has, at its core, a CORBA compliant ORB that provides a
common communication infrastructure across all platforms on which the
TME 10 Framework operates. The operation of TME 10 applications consists
of invoking methods on TME 10 Framework and TME 10 Application objects,
that in turn communicate and pass data via the ORB.

The TME 10 Framework′s ORB provides efficient transport for both small
and large amounts of data. Therefore, the TME 10 Framework can be used
for sending events, which typically consist of relatively small amounts of
data (measured in kilobytes), or used for doing software distribution, which
typically requires the transfer of large amounts of data (measured in
megabytes).

Figure 1 shows how the ORB fits into a TME 10 environment.

Figure 1. Role of the ORB in a TME Environment

As can be seen in this figure, the ORB provides the communications
mechanism for the TME 10 environment. TME 10 applications consist of
objects communicating with other objects. There are many object classes
that are part of the TME 10 Framework. Instances of these classes provide
basic functions such as transferring files and executing commands on
remote systems. In addition, TME 10 applications may add their own object

Chapter 1. Introduction 5

classes to provide application-specific function. Either way, management
operations are initiated through method invocations on these objects.

1.1.3 TME 10 Framework ′s Distributed Database
The primary purpose of a systems management framework is to gather and
make available information about the resources that make up the distributed
environment. The TME 10 Framework uses objects and an ORB as
described above to gather the data as well as to provide interfaces for the
management applications to access the data. The data we are discussing
may represent information specific to a particular resource (for example,
CPU utilization), or information about the managed environment (such as a
list of all managed nodes). Some of this data may be relatively static in
nature, while others (such as current CPU utilization) are dynamic by
definition.

Access to all of the data associated with a managed environment is
controlled through a set of interfaces which represent a distributed
database. The underlying structure of this database and where it stores or
accesses specific data is hidden from the user and applications. By
providing an object-oriented interface to this distributed database and
utilizing the framework ′s ORB to invoke requests upon the database, the
framework will transparently access the required data independently of its
physical location.

In fact, the database is spread over all of the systems that make up a Tivoli
Management Region (TMR). TMRs are defined further in 1.2, “Tivoli
Management Regions” on page 9. In each TMR, there is one system
identified as the TMR Server and it provides the point of control for the
distributed database. Much of the information about the TMR as a whole is
stored on this system, but information about individual managed systems is
typically stored on the managed system itself. Requests for data are
typically handled first by accessing the TMR Server. If the data is controlled
by another object in another system, the requester is provided information
needed to locate and access that object and the request is completed by
communicating directly with the controlling object. Of course, all of this is
handled within the TME 10 Framework and the user and for the most part,
the application developer, are unaware of these various mechanisms.

As mentioned above, the distributed database is represented by a set of
interfaces or objects. Access to the information in this database is obtained
by invoking methods on these objects. Therefore, we can modify the figure
we previously showed to include the distributed database. The new figure is
shown in Figure 2 on page 7.

6 TME 10 Framework Version 3.2

Figure 2. TME′s Distributed Database

When methods are invoked to access the distributed database, the database
objects will access the local files or memory representing the database and,
if required, communicate to objects representing the databases on other
nodes to perform the requested operation. Again, all of this is transparent
to the user and programmer.

1.1.4 Basic Management Functions
The TME 10 Framework is just that, a framework. In general, it primarily
exists to provide enabling mechanisms for management applications. That
is, the framework performs all of the necessary object resolution,
communication and database access required so that the application
developer can concentrate on providing management function rather than
being bogged down with the details of cross-system communication and
services.

If we think in basic terms about the requirement of a management
framework, it must provide only a few core capabilities such as data transfer
and remote command execution. In practice, of course, it must also provide
security, transaction support and other services required of any robust
application environment. All of these capabilities are built into the objects
that make up the TME 10 Framework.

Chapter 1. Introduction 7

Applications simply build on these core facilities to provide capabilities such
as software distribution, distributed monitoring and so on. For instance, one
of the basic management functions provided by the TME 10 Framework is
remote task execution. This function allows an administrator to execute a
program on a remote system. The TME 10 Framework provides the facilities
to store the program, or a shell script that invokes the program, in the
distributed database and when the administrator requests it, to send the
task to the target system and have it invoked.

Some of the core management facilities that are provided with the TME 10
Framework include:

• Installation routines (described in the next section)

• Capabilities to define and invoke tasks/jobs

• Capabilities to schedule jobs

• Obtaining rudimentary information about managed nodes

• Administer the TME 10 environment by performing operations such as:

− Defining administrators and their roles

− Creating new policy regions (groups of resources conforming to the
same sets of rules or policies)

• Notification bulletin board to keep administrators aware of changes to
the management environment.

1.1.5 Installation Routines
For a distributed management environment to be successful, it must provide
a mechanism to allow both its framework components as well as
management applications to be easily installed and maintained across the
systems being managed. The TME 10 Framework provides this capability.
Once an initial system is installed, the framework provides simple
mechanisms to push the required framework components, as well as
management applications and maintenance out to other managed nodes.
This capability requires little or no interaction on the target system itself.

These installation routines use a core mechanism built into the framework
which is also utilized by the TME 10 Software Distribution application. TME
10 Software Distribution provides a more general purpose facility for
distributing any application or data files to managed nodes.

1.1.6 Command Interface
Once the TME 10 Framework is installed, there obviously must be interfaces
for system administrators to request various functions to be performed. The
TME 10 Framework provides both a graphical user interface (called the TME

8 TME 10 Framework Version 3.2

Desktop and described in the next section), as well as a command line
interface. The command line interface provides complete control of the
managed environment and can easily be used by shell scripts to perform
complex sequences of commands. When used in conjunction with
applications such as TME 10 Distributed Monitoring, shell scripts can
provide a high degree of automation by invoking various TME 10 Framework
commands in response to the occurrence of specific events within the
managed environment.

1.1.7 TME 10 Desktop (Graphical User Interface)
The graphical user interface is a view of the TME 10 managed environment
through the applied security filter for the current user. Desktops can be
defined for individual administrators such that only the resources for which
they have responsibility will be available to them. Information about each
administrator ′s desktop is stored in the TME 10 database and, therefore, an
administrator ′s desktop can follow him or her wherever he or she is
authorized to log into the TME 10 environment.

1.2 Tivoli Management Regions

Now that we have described the basic concepts behind the framework, we
need to describe how these various facilities are used to manage your
environment. A Tivoli Management Region (TMR) consists of one or more
systems running the TME 10 Framework. In each TMR there is exactly one
TMR Server. The TMR Server communicates with various managed systems
via the ORB as described in the previous section.

In previous versions of the TME 10 Framework, there were two types of
managed systems, Managed Nodes and PC Managed Nodes. It is important
to understand the differences between these types of nodes.

A representation of a simple TMR is shown in Figure 3 on page 10.

Chapter 1. Introduction 9

Figure 3. TME 3.1 Architecture

The TMR Server is responsible for maintaining the database and object
registry. Recall that the database is distributed and spread among the
various managed nodes in a TMR, but the TMR 10 Server provides the
overall coordination of the distributed database.

The Managed Node is a client that also runs the TME 10 Framework,
including the client portion of the distributed database managed by the TMR
Server. This database contains objects and name registries related to the
client and is linked to the server database via the Object Request Broker
(ORB). Managed Nodes run complete versions of the TME 10 Framework
and support any applications written to the standard TME 10 interfaces. In
fact, the primary difference between the TME 10 Server and a Managed
Node is that the server has overall control of the database. Otherwise, the
full TME 10 Framework is installed and is functional on a Managed Node.

The PC Managed Node is an object in a Managed Node that represents a PC
that is to be managed. The PC that is to be managed does not run the TME
10 Framework as described thus far. Instead, it contains and runs an agent
that communicates with the PC Managed Node object on a Managed Node.
The communication between the agent and the PC Managed Node object
uses either TCP/IP or Netware′s IPX protocol. Management applications
interact with the PC Managed Node object, which then communicates with
the agent running on the managed PC.

10 TME 10 Framework Version 3.2

The PC Managed Node concept allows large numbers of PCs to be managed
without requiring the full TME 10 Framework to be installed on each system.
However, because the agent and the PC Managed Node do not
communicate via the ORB mechanism, all of the functions that can be
performed by a PC Managed node are included in the agent module. This
set of functions is not extendable by the customer and provides support for
only a small subset of TME 10 management applications.

1.2.1 Interconnecting TMRs
Due to performance considerations mostly related to the distributed
database (a database on every Managed Node), a TMR is limited to
supporting a maximum of about 200 Managed Nodes in typical
environments. There can be many more PC Managed Nodes, but due to the
limited functions supported by PC Managed Nodes, this option is not always
acceptable. However, for most companies a limit of 200 systems that can be
fully managed is nowhere near adequate.

To allow for the management of many thousands of systems, the TME 10
Framework allows for the interconnection of TMRs. Each TMR still
maintains its own database distributed between the TMR Server and the
Managed Nodes that make up the TMR, but management applications can
perform their functions across TMR boundaries transparent to the
application. Once the TMRs are interconnected, the TMR Servers for each
TMR exchange information about the managed objects in each TMR and the
framework handles routing requests to the TMR Server in the appropriate
TMR. The owning TMR Server then passes the request (method invocation)
on to the managed object.

The design of a managed environment with regard to the number of TMRs,
the number of systems in each TMR and how the TMR boundaries are
defined (organizationally, geographically, and so on) is something that each
customer must decide for themselves. Though there may be good reasons
to create multiple TMRs in a single environment (such as for security
considerations), there are many cases where multiple TMRs have been
used simply due to the limited number of Managed Nodes that can be
supported by a single TMR Server.

1.3 TME 10 Version 3.1 Limitations

The architecture described above has some limitations in its current
implementation. From a managed system standpoint, there are two options:

• Managed Nodes

• PC Managed Nodes

Chapter 1. Introduction 11

Managed Nodes have a complete implementation of the framework
installed. This has benefits, but it also has associated costs. Specifically,
the memory and disk space requirements for a managed node can exceed
the requirements that you would sometimes like to impose on end-user
systems. That is, for systems that will only be managed and never
participate in managing resources within the network, you would like to
minimize the resources (disk, memory) needed to enable the management
of the system.

PC Managed Nodes provide a partial solution. The resource requirements
for PC′s that will be managed via PC Managed Nodes are much smaller
than for a full Managed Node. However, since the mechanisms used to
communicate with PC agents from PC Managed Nodes are not consistent
with the rest of the framework and have limited function, PC′s represented
by PC Managed Nodes can not be managed by all Tivoli applications.

Therefore, the requirement is to provide TME 10 Framework support for a
wide range of typical end-user systems that can take advantage of CORBA
and the framework facilities, but does not require the resources demanded
by today′s Managed Nodes.

Extending the current framework to address these requirements resulted in
the Lightweight Client Framework (LCF). LCF, which is the most significant
of the many new features introduced by Version 3.2 of the TME 10
Framework, is the primary subject of this redbook.

LCF provides a solution that is an extension to the current architecture.
With this extension, partial solutions such as the PC Managed Node will no
longer be required. Like PC Managed Nodes, LCF requires only a small
footprint on the managed system. Unlike PC Managed Nodes, LCF allows
applications to use the power of the TME 10 architecture on all managed
systems including lightweight clients. But we are getting ahead of
ourselves. LCF will be described in the chapters that follow.

1.4 Summary

In this chapter we have provided a very brief description of the classic TME
10 Framework and outlined the requirements that led to extending the
current architecture to include the Lightweight Client Framework. In the
next chapter we provide an overview of the new features of Version 3.2 of
the TME 10 Framework, including LCF.

12 TME 10 Framework Version 3.2

Chapter 2. TME 10 Framework V3.2 - What ′s New?

This chapter introduces the new features provided by Version 3.2 of the TME
10 Framework. These include:

• Lightweight Client Framework (LCF)
• Changes to the TME 10 Graphical User Interface (GUI)
• New commands for the TME 10 Command Interface
• RDBMS Interface Module (RIM)
• DynaText Enabling
• Web Interface

2.1 Lightweight Client Framework

The most significant new feature of Version 3.2 of the TME 10 Framework is
the Lightweight Client Framework (LCF). LCF is an extension to the classic
TME 10 Framework that increases scalability of TMRs while reducing the
hardware and software requirements on managed systems.

2.1.1 LCF Basics
LCF introduces three new object types that represent system roles in a
TMR:

• Endpoint

• Endpoint Gateway

• Endpoint Manager

Though each of the above logically represents a different system′s role in
the TME 10 environment, it should be noted that a single physical system
can contain more than one of the above object types.

2.1.1.1 Endpoints
Endpoints are typically installed on systems that are considered ′managed
only′ systems. That is, like most end-user workstations, these systems will
be managed, but they will not be involved in the management of other
nodes. More specifically, you will not typically be running the TME 10
Desktop or running TME 10 commands from an LCF Endpoint to manage
other resources in the network.

The Endpoint function resides in the node to be managed. It runs as a small
daemon, or background task. This daemon is called the spawner and is
also often referred to by the name of its executable module, lcfd. This
daemon is responsible for executing methods at the request of a managing

 Copyright IBM Corp. 1997 13

system. Its only connection to and knowledge of the rest of the TME world
is through an Endpoint Gateway.

When an LCF Endpoint is installed, a minimal number of files are installed
on the managed system. Functionally, the only thing installed is the
spawner itself. When an application invokes a method to be executed on
the managed system (Endpoint), the method is automatically downloaded to
the Endpoint and executed by the spawner. Methods that are downloaded
to an Endpoint are cached at the Endpoint. As long as that method stays in
the cache, it need not be downloaded again upon a second invocation of the
same method. The cache on the Endpoint is a disk cache, and therefore is
persistent across IPLs of the managed system.

2.1.1.2 Endpoint Gateways
An Endpoint Gateway is software that runs on a full managed node, enabling
the Managed Node to operate as a gateway between a cluster of Endpoints
and the rest of the TMR. Each TMR can have multiple Endpoint Gateways.
The number will depend on factors such as the available system resources,
the number of Endpoints, network topology and so on. Currently one TMR
Server can handle up to 200 Endpoint Gateways. One Endpoint Gateway
can handle a thousand or more Endpoints.

The Endpoint Gateway performs the following functions:

• Listens for Endpoint login requests.

The Endpoint Gateway maintains (with help from the Endpoint Manager)
a list of the Endpoints that it is responsible for. As Endpoints come
online, they will either attempt to login to a specific Endpoint Gateway or
broadcast a message searching for an Endpoint Gateway. Endpoint
Gateways will receive these transmissions, and if responsible for the
given Endpoint, will proceed with the login process. If the Endpoint is
not in the Endpoint Gateway′s list, the Endpoint Gateway will forward the
request to the Endpoint Manager so that an Endpoint Gateway can be
assigned to the Endpoint. The Endpoint Gateway ′s list of Endpoints for
which it is responsible is stored and maintained by the Endpoint
Manager described in section 2.1.1.3, “Endpoint Managers” on page 15.

• Listens for ′downcall ′ method requests from other nodes that are
targeted for one of the Endpoints it is responsible for, and acts as a
gateway for method invocations.

All operations to or from an Endpoint pass through an Endpoint
Gateway. For downcalls, the Gateway is transparent. When it receives
a method invocation targeted for an Endpoint for which it is a Gateway,
it will pass the method invocation (along with the method and any

14 TME 10 Framework Version 3.2

dependencies, if necessary) on to the Endpoint. It will then wait for any
method results and pass them back to the original caller.

• Listens for Endpoint ′upcall′ requests.

If an Endpoint needs to invoke an operation on another system, it must
invoke a method on its own Endpoint Gateway. The Endpoint Gateway
portion of the appropriate application will supply the method. This
method will then take advantage of the full function of the Managed
Node on which it resides to resolve the location of the target object and
invoke the appropriate method(s) upon it.

• MDist Repeater activities.

Endpoint Gateways are automatically defined as MDist Repeaters for all
of the Endpoints they serve. (See below for a description of MDist
Repeaters). This gives you the benefit of an intelligent distribution
mechanism with little or no administrative overhead.

MDist Repeaters: Please see the TME 10 Framework Planning and
Installation Guide for detailed information on MDist Repeaters. Briefly, they
provide a fan out facility for the distribution of files and data in a TME 10
environment. Therefore, if the same file is being distributed to a set of LCF
Endpoints using the same Endpoint Gateway, the file need only be sent once
to the Endpoint Gateway and the Endpoint Gateway will then handle
distributing the file to the individual Endpoints.

This can be a valuable feature in many environments. For example,
Endpoint Gateways may be installed in various branch offices that are
connected to a main site via a relatively slow link, The distributed data may
only need to pass once along the slower link, and can then be distributed to
the individual nodes on the local network at higher speeds.

2.1.1.3 Endpoint Managers
The Endpoint Manager stores the association between Endpoint Gateways
and Endpoints. Specifically, it performs the following functions:

• The Endpoint Manager maintains an Endpoint list, which keeps track of
every Endpoint in a TMR. This list tracks which Endpoint Gateway each
Endpoints is associated with. Based on site-specific settings, the
Endpoint Manager reassigns Endpoints if an Endpoint Gateway is
unavailable and dynamically adds new Endpoints as they appear on the
network. The Endpoint list contains the information necessary to
uniquely identify and manage Endpoints. This includes:

− The name of the Endpoint: a ″user friendly″ name for easy use in the
Tivoli Name Registry

Chapter 2. TME 10 Framework V3.2 - What′s New? 15

− The Endpoint′s interpreter type: a string denoting the platform and
operating system of the Endpoint (for example, OS/2 or NT)

− A unique object dispatcher identifier (odnum): the system identifier
for the Endpoint

− The name of the Endpoint Gateway responsible for communications
with the Endpoint.

• The Endpoint Manager plays a role in enforcing site-specific system
policies. For example, policies may be put in place that specify which
Endpoint Gateway will be assigned to new Endpoints joining the
network. These policies could base their decisions on a variety of
information about the Endpoint, which is included in the Endpoint′s
broadcast message when looking for a new Endpoint Gateway.

Additional information on these policies and the connection process for
Endpoints is presented in 3.4, “Endpoint Connection Process” on page 34.

2.1.1.4 LCF Structure Summary
The following picture represents the new LCF structure within a TMR.

Figure 4. TMR Util izing LCF

In the LCF environment, the TMR Server takes on the role of the Endpoint
Manager. There will be some number of Endpoint Gateways, which
currently must reside on traditional Managed Nodes. The number of
Endpoint Gateways will be determined by a number of factors, but will

16 TME 10 Framework Version 3.2

typically be much less than the number of full Managed Nodes in a pre-LCF
environment.

The majority of the systems in a typical TMR will be LCF Endpoints. One
Endpoint Gateway will be able to manage a thousand or more Endpoints.

2.1.2 How LCF Changes the TME 10 Topology
Although we did not express this explicitly, the traditional TME 10
Framework provided a two-tier structure. That is, there were Servers and
Managed Nodes (which may have also included PC Managed Nodes). One
might consider PCs running PC Agents to be a third tier, but the framework
architecture really stopped at the PC Managed Node object in the Managed
Node. The PC Managed Node then communicated to the PC agent through
a proprietary mechanism outside of the framework architecture.

LCF provides a true three-tier topology. In its current implementation,
Endpoint Managers must reside on TMR Servers and Endpoint Gateways
must reside on Managed Nodes. LCF Endpoints will make up the vast
majority of systems in a TMR. These systems will have minimal footprint
requirements.

The role of the Endpoint Gateway in the LCF architecture allows it to off-load
much of the function that was previously required to be executed on a TMR
Server. Though the limitation of a TMR Server to only manage a maximum
of about 200 Managed Nodes still exists, the introduction of the LCF
Endpoint Gateway and Endpoint allows an Endpoint Gateway to support
thousands of Endpoints. The fact that the LCF architecture allows Endpoint
Gateways to off-load some of the processing from TMR 10 Servers, implies
that a single TMR can now contain many thousand Endpoints. Unlike the PC
Managed Nodes that allowed many thousand systems to participate in a
TMR in previous versions of the TME 10 Framework, LCF Endpoints are full
participants and will therefore be fully supported by all LCF-enabled
applications.

2.1.3 LCF and the TME 10 Desktop
In general, during day-to-day activity, the existence of LCF is mostly hidden
from the administrator. That is, TME 10 applications will fully support LCF
Endpoints, and you will use Endpoints as subscribers to profile-based
applications just as you used Managed Nodes in previous versions of the
TME 10 Framework.

However, there are some additions and changes to the TME 10 Desktop that
the administrator will notice. For instance, a new icon is added to the TME
10 Desktop to represent the Endpoint Manager. You can create, edit and

Chapter 2. TME 10 Framework V3.2 - What′s New? 17

delete Endpoint Gateways from this icon. You may use this Endpoint
Manager resource to view a list of all Endpoint Gateways and the Endpoints
managed by each Endpoint Gateway.

Figure 5. New Endpoint Manager Icon on TME Desktop

In addition, in the traditional TME 10 environment, Managed Nodes were
displayed as such in the various policy regions. Due to the expected large
number of Endpoints, and the screen area required to display potentially
thousands of icons representing Endpoints, Endpoints are not displayed by
default in the policy regions. However, they will be displayed as subscribers
for any profiles to which they are subscribed.

2.1.4 LCF and the Command Line Interface
Version 3.2 of the TME 10 Framework includes new commands specifically
related to LCF. This section summarizes these new commands. Please
refer to the TME 10 Framework Reference Manual and TME 10 Framework
Release Notes for detailed information about these commands.

winstlcf Installs an endpoint on a Unix workstation. For other
platforms, such as Windows NT, alternate methods are
used to install an Endpoint. For more information on
installing LCF Endpoints, please see Chapter 4, “LCF
Installation” on page 41.

wsetpm Enables/disables a profile manager to operate in dataless
mode. Since LCF Endpoints do not include a TME 10
database, profile information is not stored on the managed
system the way it is for full Managed Nodes. Profile
managers must be enabled for dataless operation to allow
LCF Endpoints to subscribe to the profiles.

18 TME 10 Framework Version 3.2

lcfd Starts the spawner daemon on an Endpoint and installs or
removes the daemon as a service on Windows NT.

lcfd.sh Starts the Endpoint daemon (lcfd) on Unix endpoints.

wcrtgate Creates an Endpoint Gateway

wdelgate Deletes an Endpoint Gateway

wdelep Deletes an Endpoint from the TME 10 database.

wgateway Starts, stops and lists the properties of an Endpoint
Gateway. This command is also used to synchronize the
Endpoint Gateway method cache with that on the TMR
Server.

wep Performs actions on the Endpoint List maintained by the
Endpoint Manager. This command can list or alter
information related to Endpoints.

wadminep Performs a variety of administrative actions LCF Endpoints.
In general, once Endpoints are installed, there is little that
needs to be done to administer the LCF daemon.
However, this command will be useful when first installing
and testing LCF.

wgeteppol Lists the body and the constant values of an Endpoint
policy method. Use this command to extract a current
policy method, which you might modify and then replace
with the wputeppol command.

wputeppol Replaces the body of an Endpoint policy method.

We will be showing examples of using most of these commands throughout
the rest of this redbook.

2.1.5 LCF Summary
LCF adds a whole new dimension to the TME 10 Framework. It greatly
enhances a TMR′s scalability while drastically reducing the resource
requirements placed on managed systems.

TME 10 applications will start taking advantage of LCF to provide robust
function, while reducing the costs associated with maintaining the modules
that will run on managed systems.

LCF will continue to be enhanced over time and one can certainly foresee
LCF Endpoints being implemented on virtually all platforms in the not too
distant future. This will lead to the capability of TME 10 applications to truly
manage anything, anywhere!

Chapter 2. TME 10 Framework V3.2 - What′s New? 19

2.2 RDBMS Interface Module - RIM

The RDBMS Interface Module (RIM) provides a generic architectural module
within the TME 10 Framework for Tivoli applications using commercial
relational database management systems (RDBMS).

RIM was introduced in V3.1 of the TME 10 Framework. However, in V3.2 it
supports additional RDBMSs. RIM is shipped as part of the framework,
although the framework itself does not utilize relational databases. Several
TME 10 applications, such as TME 10 Inventory and Enterprise Console do
require a relational database. Rather than ship RIM with the individual
applications, it makes sense to ship this component with the framework so
that any current or future applications that require a relational database can
be ensured that the RIM interface is available.

RIM is a TEIDL (Tivoli Extended Interface Definition Language) interface that
acts as an API for application developers using relational databases.
Therefore, applications can be written independently of the relational
database that may be installed in a particular environment.

The RDBMS systems currently supported by RIM are:

• Sybase 10.x
• Sybase 11.x
• Oracle 7.x
• DB2/6000
• Micosoft SQL 6.5

Support for additional database products may be added in the future.

The components that make up RIM include:

• RDBMS Vendor Independence Layer - A standard set of SQL interfaces
that enables Tivoli applications to be open and RDBMS vendor
independent.

• Data Model Independence - RIM provides a mechanism to bridge the
′ impedance mismatch ′ between application data types and relational
tables, which have contradictory design goals. Application data types
need to be suitable for holding data needed for a variety of application
specific requirements, where as relational tables are designed to be
normalized for optimal storage, efficient queries and serving possibly
multiple applications.

• Extensible API - RIM provides an extensible API to application
developers for flexibility at the level that database access is desired;
individual rows and columns level, or at a more abstract level.

20 TME 10 Framework Version 3.2

• Aggregate Types - RIM supports application specific data aggregates
which reflect the ′ task-at-hand′ approach, where you have all data
elements contained in a single composite unit, without worrying about
how the elements map into individual rows and columns in database
tables.

• Minimal Remote Object Calls - RIM is modeled as a database access
architecture that does not require excessive remote object calls.
Limiting the number of remote calls to RIM objects provides improved
application performance.

• Scalable Database Architecture - RIM presents enterprise databases as
logical units to Tivoli applications. The physical location of the
installations will not affect the applications, nor will the applications put
any constraints on the physical database installations.

• Transaction Model Support - RIM supports TME transactions by allowing
concurrent connections with conditional rollbacks.

2.2.1 Summary
RIM has been enhanced in V3.2 to support for additional databases. By
implementing RIM, all TME 10 applications can utilize a single interface to
relational databases, while allowing the customer to choose which RDBMS
to install.

With RIM solidly in place, it is likely that we will see additional applications
and maybe even some framework functions take advantage of relational
databases. This can only enhance the capability to not only manage an
environment, but to use information gathered through management
applications to the benefit of the enterprise.

2.3 DynaText Document Viewer

With V3.2 of the TME 10 Framework, an online book browser called DynaText
is provided. The DynaText browser is separately installable, but provides a
powerful facility for viewing, searching and annotating the TME 10
documentation.

The DynaText browser is described in the TME 10 Framework Release Notes
for the TME 10 Framework. The TME 10 Framework ships with online
versions of the TME 10 Framework documentation as well as online books to
assist you in using the features of the DynaText Browser.

New versions of the TME10 applications will include DynaText browsable
documentation.

Chapter 2. TME 10 Framework V3.2 - What′s New? 21

2.4 Web Interface

Version 3.2 of the TME 10 Framework includes integrated HTTP daemons
that allow administrators to perform management functions through Web
browsers. These daemons are automatically installed on TME 10 Servers,
Managed Nodes and LCF Endpoints.

The HTTP daemon that executes on the TMR Server provides no default
management capabilit ies. However, TME 10 applications can (and will) take
advantage of this daemon to allow administrators to perform application
specific function via their web browser.

The HTTP daemon that is part of the LCF daemon, allows administrators to
query information specific to an LCF Endpoint. The use of the web interface
to interact with LCF Endpoints is described in Chapter 6, “TME 10
Framework Web Interface” on page 75.

2.5 Summary

This chapter has provided an overview of the new major features of Version
3.2 of the TME 10 Framework. The rest of this redbook primarily addresses
the Lightweight Client Framework, and how to plan, install, use and migrate
to it.

22 TME 10 Framework Version 3.2

Chapter 3. Planning for TME 3.2

This chapter discusses issues related to planning for a TME 10 Framework
installation. The topics address the traditional TME 10 Framework as well
as LCF. We discuss:

• Hardware, software, and configuration requirements for Endpoint
Managers, Endpoint Gateways, and Endpoints

• Network-related considerations

• Endpoint login process

• Other LCF-related considerations

3.1 Prerequisites

The TME 10 Framework software enables you to install and create several
management objects that allow you to manage the resources in your
network. You can install any or all of these objects depending on your
organizational needs. Only the TMR Server must be installed. The following
is a list of the management objects representing system roles provided by
the TME 10 Framework:

• TMR Server - The TME 10 Server component includes the libraries,
binaries, data files and graphical user interfaces needed to install and
manage your TME 10 environment. Note that on UNIX platforms, the
TME 10 Desktop GUI is installed with the TME 10 Framework, and on
Windows NT the GUI must be installed separately.

• Endpoint Manager - The Endpoint Manager runs on the TMR Server. The
Endpoint Manager maintains information related to known Endpoints and
Endpoint Gateways. The Endpoint Manager is automatically installed on
TME Servers.

• Managed Node - Managed Nodes run the same software that runs on a
TMR Server. The primary difference is that the database it maintains
only contains information about the objects controlled by that system. In
addition, it does not include the Endpoint Manager function which is
installed with the TMR Server.

System resource requirements are less than the TME Server because
the database will only contain objects local to the Managed Node. The
TME 10 Desktop GUI is automatically installed with the Managed Node
on all UNIX-based systems. On Windows NT, the TME 10 Desktop is
installed as a separate option. A Managed Node does not require the
TME 10 Desktop if administrators will not perform TME 10 Desktop
functions from that Managed Node. Note that TME 10 commands can be

 Copyright IBM Corp. 1997 23

issued from the node, allowing an administrator to perform most
management functions from the Managed Node.

• Endpoint Gateway - The Endpoint Gateway provides the conduit through
which management applications communicate with LCF Endpoints and
Endpoints communicate with the rest of the systems in the TME 10
environment. A single Endpoint Gateway can support communications
with thousands of Endpoints. In V3.2 of the TME 10 Framework, Endpoint
Gateways must be installed on Managed Nodes.

• Endpoint - Endpoints are managed systems taking advantage of the
Lightweight Client Framework. The TME 10 environment on these
systems requires minimal resources, while providing the capability for
these nodes to take full advantage of TME 10 applications written for
LCF. The TME 10 Desktop is not installed with the Endpoint module.
Since the Windows NT Desktop is not dependent on the TME 10
Framework being installed, it could be separately installed on NT
Endpoints. In general, Endpoints should be systems not involved in the
management of other systems.

• PC Managed Node - PC Managed Nodes are created on a proxy
Managed Node, which provides communication between the PC and the
TMR. However, the communication between the agent running on the
PC and the PC Managed Node does not utilize the TME ORB. Instead, it
is via a separate and proprietary communication mechanism that
utilizes TCP/IP or IPX between the PC Managed Node and the limited
function agent running on the PC.

Determining which systems in your network are best suited to provide these
services requires that you consider a number of factors, such as:

• Required management capabilit ies

• Operating system

• Hardware requirements

• Server and client configuration

• Network topology and communications

3.1.1 Operating Systems
The following table identifies the operating systems on which TMR Servers
and Clients can be installed. This table is intended as a quick reference, but
the information within it might be changed frequently. Refer to TME 10
Framework Release Notes for the latest list of supported operating
environments.

24 TME 10 Framework Version 3.2

Table 1. TME 10 Framework Operating System Support

Operating System TMR
Server

Managed
Node

Endpoints PC
Managed
Nodes and
PC Agent

HP9000/700 HP-UX
9.01/9.05 Motif 1.2

Yes Yes Yes -

HP9000/800+PA RISC 1.1
HP-UX 9.0 Motif 1.2

Yes Yes Yes -

HP9000/700 or 800+PA
RISC 1.1 HP-UX 10.01 or
HP-UX 10.10 Motif 1.2

Yes Yes Yes -

IBM RS/6000 & Power PC
AIX 3.2.5, 4.1.2 through
4.1.5 or 4.2 Motif 1.2

Yes Yes Yes -

Intel 486 or Pentium
Windows NT 3.51 + SP1
or higher or Windows NT
4.0

Yes Yes Yes Yes

Sun SPARC Solaris 2.3
through 2.5.1

Yes Yes Yes -

Sun SPARC SunOS 4.1.2 or
4.1.3

Yes Yes Yes -

OS/2 2.1, 3.0 and 4.0 - - Yes -

OS/2 2.1, 3.0 with TCP/IP
2.0

- - - Yes

Novel Netware 3.11, 4.1
and 4.11

- - Yes Yes

Windows 95 - - Yes Yes

Windows 3.1 and 3.11 with
WINSOCK

- - Yes Yes

3.1.2 Hardware Requirements
The following sections summarize the resource requirements for the various
TME 10 resource types.

3.1.2.1 TME Server Hardware Requirements
The type of system used as a TMR Server has significant impact on overall
TME 10 performance. Note that only integer operations are used by the TME
10 Framework and applications. The TMR Server should provide good
networking performance and should not be running a large number of
non-TME 10 applications.

You should ensure that a TMR Server has enough swap space. Normally,
this is two to three times the amount of system RAM. Also, you should

Chapter 3. Planning for TME 3.2 25

ensure that there are enough process slots available. The following table
summarizes how you might check these resources in selected
environments.

Increasing the amount of RAM in the TMR Server often improves
performance. Determining the type and size of a system to use for the TMR
Server depends on many factors, including the number of managed
systems, and the mix of management applications and functions to be used.
If you plan to have only tens of Managed Nodes, an entry level machine is
acceptable, otherwise a higher class machine is recommended.

Table 2. Swap Space & Process Slots

Operating
System

Swap Space Process Slots

AIX /usr/bin/sar -v /usr/bin/sar -v

HP-UX /etc/swapinfo /usr/bin/sam

SunOS /etc/pstat -T /etc/pstat -T

SVR4 /usr/bin/sar -r /usr/bin/sar -v

Windows NT Control Panel - > System applet,
select the Performance panel
press the Change button

N/A

Table 3 (Page 1 of 2). Disk Space Requirement Matrix.

System TMR
Server
(RAM/
Swap)

Managed
Node
(RAM/
Swap)

Endpoints
(RAM/
Swap)

PC
Managed
Nodes
(RAM/
Swap)

PC
Agent
(RAM/
Swap)

Data General AViiON
Series 530

64/128 48/96 - - -

HP9000/735 64/128 48/96 - - -

IBM RS/6000 64/128 48/96 - - -

Intel 486 or Pentium
UnixWare 2.0

48/96 32/64 - - -

Motorola 88000 Series 64/128 48/96 - - -

NCR 3400/3500 Series 64/128 48/96 - - -

SPARC 10/SPARC 20
SunOS 4.1.x

48/96 48/96 - - -

SPARC 10/SPARC 20
Solaris 2.3-2.5.1

64/128 48/96 - - -

Intel 486 or Pentium
Windows NT 3.51 or
4.0

48/128 32/64 16/- 16/- 16/-

26 TME 10 Framework Version 3.2

Table 3 (Page 2 of 2). Disk Space Requirement Matrix.

System TMR
Server
(RAM/
Swap)

Managed
Node
(RAM/
Swap)

Endpoints
(RAM/
Swap)

PC
Managed
Nodes
(RAM/
Swap)

PC
Agent
(RAM/
Swap)

NetWare - - 8/- 8/- 8/-

OS/2 - - 8/- 8/- 8/-

Windows 3.x - - 2/- 2/- 2/-

Windows 95 - - 8/- 8/- 8/-

3.1.2.2 TME 10 Managed Node
A managed node running the TME 10 Desktop should be a moderately
powerful machine capable of running large win32-based or Motif
applications. Of course, it depends upon the number of windows open at
one time. TME 10 imposes no significant RAM or swap space requirements
on a Managed Node except when actual operations are been performed. If
you decide not to run the TME 10 Desktop from a Managed Node, you may
reduce the RAM and swap space requirements depending on the model and
the number of applications running.

Generally, the database requires a minimum of 10-15MB of disk space. See
the TME 10 Framework Release Notes for more information.

3.1.2.3 TME 10 Endpoint Gateway
An Endpoint Gateway is software that runs on a full Managed Node,
enabling the Managed Node to operate as a gateway between a cluster of
Endpoints and the rest of the TME. The minimum hardware requirements
are similar to a TME 10 Managed Node. Since Endpoint methods will be
stored on the Endpoint Gateway (so they may be downloaded to the
Endpoints cache as required, there will be some amount of additional disk
space required. How much space is required will depend on the application
mix in use. Depending on the number of Endpoints some additional memory
may also be desired. Though designed to use resources efficiently, the
exact requirements placed on an Endpoint Gateway will only be determined
once applications are in place.

However, if the Managed Node will be performing as a Gateway for a large
number of Endpoints, you should consider dedicating the system to its
Endpoint Gateway function. This is not only for performance reasons, which
would depend heavily on the kind of management operations you are
performing, but also for reliability reasons. You would not want to lose an
Endpoint Gateway because another application has rendered the system
inoperable.

Chapter 3. Planning for TME 3.2 27

3.1.2.4 TME 10 Endpoint
An Endpoint requires only a small executable (the spawner daemon) to be
initially installed and running. It maintains a cache of TME 10 methods that
are downloaded and run on the Endpoint as needed. The default maximum
size of this LRU method cache is 20.5MB. Most methods on the Endpoint
will not put any significant resource requirements on the Endpoint system.
However, since most Endpoint methods are application specific, you should
refer to the documentation for the management applications you will be
using for any specific prerequisites.

3.1.2.5 TME 10 PC Managed Nodes
The basic requirement is that it be a TME 10 supported system and that it
has sufficient disk space. Creating the database object on a Managed Node
has negligible impact on the disk space requirement of the Managed Node.

3.1.3 Server and Client Configuration
This section describes the configuration requirements to support Endpoint
Managers and Endpoint Gateways on various platforms.

3.1.3.1 Endpoint Managers
The TME 10 Framework can be installed on a wide range of UNIX servers
and Windows NT machines. The CD image contains the binaries and
libraries for all supported platforms.

The TME 10 Framework can be installed on UNIX machines running AIX
3.2.5, AIX 4.x, HP UX 9 and 10, Sun Solaris, and Sun OS, to name a few. It
can also be installed on Windows NT 3.51 and 4.0.

For the framework, you′ ll require a minimum of 50 MB for the server
database and at least 100 MB for binaries, libraries, man pages, and
message catalogs. The total disk space requirement will depend on the
TME 10 applications you will install and the size of your TME 10
environment.

Refer to the TME 10 Framework Release Notes and the application
documentation for more detailed information on these requirements.

To install TME 10 Servers or Managed Nodes on UNIX and NT systems, you
will need the root ID and password (for UNIX) and the Administrator ID and
password (for NT).

During installation, the tmeservd id is added to the target system for some
platforms (for example, HP-UX and NT). It is normally handled properly by
the installation process, but if a user alters the tmeservd ID after the
installation, this could result in unpredictable errors.

28 TME 10 Framework Version 3.2

On other UNIX-based systems, the nobody ID must be configured.

To verify that the tmeservd and nobody IDs are properly configured on UNIX,
verify that /etc/passwd contains information as shown here:

HP-UX tmersrvd:*:59999:59999: Reserved for TMR:/:/bin/false
AIX nobody:*:4294967294:4294967294::/:
Solaris nobody:*:60001:60001::/:
SunOS nobody:*:65534:65534::/:
OSF/1 nobody:*:65534:65534::/:

 Read This!

For SunOS clients, ensure that the default shell for root is /bin/sh. By
default, SunOS has csh as the start-up shell. During install, TME 10
sends remote Bourne shell commands to the clients. If the default shell
is csh, then these commands will fail.

3.1.3.2 Endpoint Gateways
When installing Managed Nodes on UNIX and NT:

• Ensure that you have the proper TME authorization, that is, you have at
least install_client and senior authority.

• It is essential for TME 10 Managed Nodes and Servers to be able to
resolve each other′s hostnames and IP addresses. All clients must be
able to talk to the TME 10 Server as well as to other Managed Nodes via
their hostnames and they must be able to map an IP address to the
proper hostname. Using commands such as ping and nslookup you
should verify that name resolution (resolving a name to an IP address)
and reverse name resolution (resolving an IP addess to a name) is
working properly within your environment.

For example, if a TMR Server is named dino and the Managed Node is
called fred , you might issue the following commands on the TMR Server
(dino):

nslookup fred
Server: itsorusi.itsc.austin.ibm.com
Address: 9.3.1.74

Name: fred.itsc.austin.ibm.com
Address: 9.3.1.47

ping fred
PING fred.itsc.austin.ibm.com: (9.3.1.47): 56 data bytes
64 bytes from 9.3.1.47: icmp_seq=0 ttl=255 time=1 ms

Chapter 3. Planning for TME 3.2 29

64 bytes from 9.3.1.47: icmp_seq=1 ttl=255 time=1 ms
64 bytes from 9.3.1.47: icmp_seq=2 ttl=255 time=1 ms

Likewise, on the Managed Node (fred), the following commands would
be issued:

C:\> nslookup dino
Server: itsorusi.itsc.austin.ibm.com
Address: 9.3.1.74

Name: dino.itsc.austin.ibm.com
Address: 9.3.2.34

C:\>ping dino
PING dino.itsc.austin.ibm.com: (9.3.2.34): 56 data bytes
64 bytes from 9.3.2.34: icmp_seq=0 ttl=255 time=1 ms
64 bytes from 9.3.2.34: icmp_seq=1 ttl=255 time=1 ms
64 bytes from 9.3.2.34: icmp_seq=2 ttl=255 time=1 ms

Windows NT Client Considerations

• Ensure that you have Administrator access on the target node.

• The tmersrvd user account and the Tivoli_Admin_Priveleges group
account are automatically created during the installation process. If for
whatever reason, this account needs to be created (or recreated)
manually, the account must have Log On Locally privilege and its
password must never expire.

• The Tivoli Remote Execution Service (TRIP) must be running on the
target NT machine. TRIP provides a Remote Execution service for
remote operations on Windows NT clients (basically equivalent to the
REXEC service on UNIX). This service is used when installing an NT
Managed Node.

To verify that TRIP is running, open the Control Panel, click on Services,
and look for Tivoli Remote Execution Service, and ensure that it is
started. You can also test this remotely by attempting to use the rexec
command to execute a command on the target system.

TRIP must be installed manually on at least one NT system within your
TMR. The install process uses the NT InstallShield mechanism.
However, once it has been installed on one NT system, other NT
systems within the NT domain may have it automatically installed
transparently. This automatic installation is driven by the TME 10
installation process. Please refer to the TME 10 Framework User′s
Guide for more details on installing TRIP.

30 TME 10 Framework Version 3.2

• To support the odadmin start command, TRIP monitors port 512. TRIP
cannot operate if another exec service is running on port 512. You must
shutdown any other exec services that are running on this port.

• The keyboard on the NT target machine should be set to US/English. If
you are using a non-US/English keyboard, you can solve the problem by
putting the KBDUS.DLL file in WINNT\system32. This file is the dynamic link
library enabling the US/English keyboard.

3.2 Network Requirements and Considerations

Some of the key considerations related to network capabilities and
configuration are described in the following sections.

3.2.1 Line Throughput
The minimal requirement is for a bidirectional, interactive TCP/IP line. In
general if you have NFS ability between two points on your network, you
should have no problem running TME 10 CLI commands and performing
operations across slow lines. The installation of TME 10 clients across lines
slower than 14.4KB is not supported. If you wish to install TME 10 clients
that are accessible through slow lines, you should create a local TMR and
perform the installation locally.

3.2.2 DNS (Domain Name System)
Although the network interfaces on a host and, therefore, the host itself are
known by IP addresses, humans work best using the name of a host. In the
TCP/IP world the Domain Name System (DNS) is a distributed database that
provides the mapping between IP addresses and hostnames.

Any application can call a standard library function to look up the IP address
(or addresses) corresponding to a given host name. Similarly, a function is
provided to do the reverse lookup - given an IP address, look up the
corresponding hostname.

From a Tivoli Management Environment perspective, methods access the
DNS through a resolver. On UNIX hosts the resolver is accessed primarily
through two library functions, gethostbyname and gethostbyaddr. Both of
these interfaces are used by the TME 10 Framework.

An application must convert a host name to an IP address before it can ask
TCP to open a connection or send a datagram using UDP. The TCP/IP
protocols within the kernel know nothing about the DNS.

Chapter 3. Planning for TME 3.2 31

We will mention several times that correct name resolution and reverse
(address to name) resolution is critical to the proper operation of the TME 10
Framework.

Of course, DNS is not the only mechanism that can be used to resolve
names and addresses. You can also use NIS as well as local etc/hosts
files.

3.2.3 DHCP (Dynamic Host Configuration Protocol)
TME 10 provides support for networks that utilize dynamic IP addressing.
This support is provided for the following managed resources:

• Windows NT Managed Nodes

• Windows 3.x, Windows 95 or Windows NT running a PC Agent

• All LCF Endpoint clients

DHCP support for Windows NT Managed Nodes requires that your TMR
Server be running Windows NT. UNIX TMR Servers do not provide the
support required for DHCP Managed Node clients. Other name resolution
services such as DNS or NIS do not normally communicate with DHCP.
When a TME 10 Managed Node connects with the TMR Server, the Managed
Node passes its current IP address to the Server. If the IP address is
different from the previous one for the Managed Node, the server updates
its address mappings. The TMR Server can resolve IP address changes
caused by DHCP as well as those caused by moving a machine to a new
subnet. To enable IP address resolution on a TMR Server, you must use the
following command:

oadamin allow_dynamic_ipaddr TRUE

The synchronization of a PC agent′s IP address with that maintained by the
PC Managed Node is handled by DHCP service, which is separately
installed on the TMR Server. It receives the IP address and PC Managed
Node names from the PC agent, then relays that information to the PC
Managed Node.

3.2.4 DDNS (Dynamic DNS)
The dynamic domain name system is needed in correlation with DHCP.
Because the IP address of an Endpoint may vary if you use Dynamic Host
Configuration Protocol (DHCP), you must be certain that the DNS host name
and IP resolution tables will be updated correctly. DDNS keeps track of the
used IP addresses and the corresponding host names.

In AIX the DDNS update is handled by using special parameters in the DHCP
configuration file (/etc/dhcpsd.cnf). The parameter updateDNS specifies a

32 TME 10 Framework Version 3.2

program that will be called every time DHCP assigns a new IP address. It
has to update the DNS database and refresh the DNS daemon to enable the
change. For example,

/usr/sbin/dhcpaction <hostname><domainname><ipaddr><leasetime>REC NIM

3.3 Tivoli Management Regions

To manage thousands of resources that are geographically dispersed, the
TME 10 Framework enables you to logically partition your managed
resources into a series of loosely coupled Tivoli Management Regions
(TMRs). Each TMR has its own server and therefore controls its own TME
database. When TMRs are interconnected, the associated TMR Servers
exchange lists representing the managed objects within their respective
TMRs. This allows management applications to see references to objects in
both TMRs and invoke operations on them.

If a management application invokes a method on an object in another TMR,
the local TMR Server will pass the method request to the TMR Server
responsible for the managed object. The TMR Server in the target TMR will
then handle passing the method invocation request onto the target object.

Several TMRs can be connected together to coordinate activities across the
network, enabling large-scale systems management and offering the ability
for remote site management and operation. This capability was
all-important in previous versions of the TME 10 Framework. With the
introduction of LCF, the number of managed systems supported by a single
TMR has dramatically increased. Therefore, this particular reason for
supporting multiple interconnected TMRs may not apply in as many
environments as it did previously.

However, there are still valid reasons for creating multiple TMRs and
interconnecting them. Some of these reasons include organization structure,
network topology, security requirements and so on.

Two TMRs can be connected through a:

• One-way connection - Only one of the TMRs has visibility to the
managed objects in the other.

This scheme may be useful when a central site is responsible for
administering several remote sites, but none of the remote sites have
any need to manage resources at the central site. This scheme does not
preclude having local administrators for the remote TMR. However, it
does provide the capability for the central site to provide some level of
management, if necessary, or to perform specific management functions
that may be more global in scope. For example, the central site may be

Chapter 3. Planning for TME 3.2 33

responsible for the distribution of a new version of a corporate wide
application.

• Two-way connection - This is the more typical connection type, as was
described in the introductory paragraph above. Administrators and
applications in each TMR have visibility and the ability (within policy) to
manage resources in the other.

3.4 Endpoint Connection Process

The default mechanism that Endpoints use during their initial login phase is
a broadcast sequence for finding a valid Endpoint Gateway. This broadcast
is limited to the subnet of the Endpoint and if unsuccessful, will be repeated
every five minutes by default. (The wait between broadcasts and the
number of re-broadcasts can be configured.) Therefore, it is not very
obtrusive to the network.

The following information on the login sequence for Endpoints will help you
to understand where and how to configure initial Endpoint connections.
Further details are presented in Chapter 5, “Configuring the LCF
Environment” on page 61.

3.4.1 How an Endpoint Connects
By default, when the spawner (lcfd daemon) is installed, there is no
configuration provided. When it is started for the first time, it must locate a
gateway to which it can attach. To get connected to an Endpoint Gateway,
the Endpoint initiates the sequence shown in following picture

Figure 6. Initial Endpoint Connection

34 TME 10 Framework Version 3.2

The numbered steps are as follows:

 1. The Endpoint broadcasts on TCP port 9494, asking to be connected. By
default, all of the Endpoint Gateways listen on this port, so that any
active Endpoint Gateway in the same IP network will receive the
broadcast request.

 2. The Endpoint Gateways do not directly accept the Endpoint request, but
instead forward it to the Endpoint Manager (which is also the TMR
Server).

 3. The Endpoint Manager registers the new Endpoint in the TME 10
database and assigns it to an Endpoint Gateway. A number of policy
methods are provided to allow you to control how an Endpoint Gateway
is chosen and execute any other automatic functions. For example, you
may want to subscribe the new resource to profile managers, or alert an
administrator that it has been connected.

 4. The chosen Endpoint Gateway responds to the Endpoint connection
request. The Gateway and Endpoint perform an initial handshake to
establish their identities and generate encryption keys for authentication
purposes.

3.4.2 Sequence of an Endpoint Connection
This section presents a slightly more detailed description of the Endpoint
connection.

 1. Endpoint starts the spawner (lcfd) looking for an Endpoint Gateway:

• Broadcasts everywhere 255.255.255.255

• Sends a UDP frame

• Asks for socket port 9494 (by default)

 2. An Endpoint Gateway on the same subnet:

• Listens on port 9494 and receive the Endpoint′s broadcast.

• If the Endpoint is not already in its Endpoint list, forwards the
broadcast frame to the Endpoint Manager.

 3. The Endpoint Manager performs the following:

• Checks if the Endpoint is a known node in TMR

• Checks the Endpoint′s characteristics against the following policies:

− allow_install_policy - Controls which Endpoints are allowed to
log into the TMR.

− select_gateway_policy - Returns a list of Endpoint Gateways that
may be used by this Endpoint to the Endpoint Manager. The

Chapter 3. Planning for TME 3.2 35

Endpoint Manager will walk this list until it finds an active
Endpoint Gateway That gateway will be notified that it should
contact the Endpoint and complete the login process.

− after_install_policy - Performs a series of actions for the
Endpoint after its first successful login. For instance, it may
subscribe the Endpoint to a set of Profile Managers. This policy
script is executed locally on Endpoint Manager

− login_policy - A script that performs a series of actions for the
Endpoint after every login. This policy script will be executed on
the Endpoint Gateway. The Endpoint Manager takes care of
distributing this policy script to the Endpoint Gateway as soon as
it is identified.

Please refer to section 5.3, “Controlling an Endpoint Login Through
Policies” on page 64 for more details.

• Updates the Endpoint Gateway List

• Notifies the Endpoint Gateway that a new Endpoint has been
assigned to it.

 4. Endpoint Gateway sends back to the calling Endpoint a UDP frame,
notifying it of its own IP address.

 5. Now the Endpoint can complete the login procedure:

• The spawner writes the successful connection to the file last.cfg.
This file will be overwritten each and every time the Endpoint
successfully connects (logs in) to an Endpoint Gateway.

• Writes additional login data to a binary file lcf.dat.

• Listens for method calls on its socket port.

 6. Endpoint Gateway executes the login_policy and starts listening for
upcalls or downcalls from or to this Endpoint.

More details on the lcf.dat and last.cfg file are presented in Chapter 5,
“Configuring the LCF Environment” on page 61.

3.4.3 Limiting Endpoint Broadcasting
As previously mentioned, Endpoint broadcasting does not adversely affect
the network. The broadcast message is small, limited to a single subnet
and will only occur every five minutes by default, until the login is successful
or the maximum number of attempts (a configuration option) has been
reached.

However, you can restrict the Endpoint broadcasting by creating a
configuration file or passing parameters to the spawner using the -D

36 TME 10 Framework Version 3.2

lcs.login_interfaces option of the lcfd command. This parameter allows
you to specify a list of Endpoint Gateways that the Endpoint may use to login
to the TMR. It will attempt to contact the Endpoint Gateways in this list
directly, before performing a broadcast.

Gateways in the lcs.login_interfaces list are specified using the following
format:

<gw_addr>+<gw_port>:<gw_addr>+<gw_port>

As an example, the following parameter could be specified:

-D lcs.login_interfaces=9.3.16.192+9494:9.3.16.255+9494

In the above example, we declare that the Endpoint′s login Endpoint
Gateway has an IP address of 9.3.16.192 and, in case the gateway does not
respond after a specified time_out, lcfd will send a subnet_directed
broadcast to 9.3.16.255 (all hosts on subnet 9.3.16.0).

Ensure you specify the correct network mask that will work in conjunction
with the network mask used by your system.

Future versions of LCF may provide additional options for controlling
broadcasts while still enabling dynamic discovery of appropriate gateways.

If broadcasting must be used, you can control which Endpoints might be
assigned to a particular Endpoint Gateway through policies. For details and
examples of implementing Endpoint′s policies see 5.3, “Controlling an
Endpoint Login Through Policies” on page 64.

3.5 General LCF Planning Considerations

At the time this redbook was written, LCF enabled applications were not
available so we can not include specific recommendations based on actual
experiences. Rather, we summarize in this section some of the general
considerations that exist when planning an implementation of TME 10
utilizing LCF.

When the LCF enabled applications become generally available, (probably
by the time you read this redbook), it is likely that the vast majority of
systems in your network will be candidates for LCF Endpoints. Low-cost
PCs or UNIX workstations are effective as Endpoints in an LCF environment
because each is connected to a Managed Node, which runs a server-class
framework capable of managing multiple simultaneous connections.
Endpoints, with less computing power, can off-load some of their work to the
Managed Node (Endpoint Gateway), which continues to perform the same

Chapter 3. Planning for TME 3.2 37

roles that it does currently, such as running the TME desktop, functioning as
an Mdist Repeater, and acting as an ADE development seat, as well as
providing the LCF Gateway functions.

This pairing of Endpoints and Managed Nodes enables the enterprise to
scale to thousands of Endpoints for each Managed Node and ensures that
the Endpoints are still fully able to be managed by the TME 10 applications.

In terms of scalability, LCF is an order of magnitude better than the existing
server-class framework. There are two pieces to the increased scalability:

• The larger numbers of nodes each TMR can accommodate

• The computing load each can handle

In a Lightweight Client Framework environment, each TMR Server supports
up to 200 Managed Nodes, but each Endpoint Gateway can support a far
larger number of Endpoints. This dramatically increases the number of
Managed Nodes in a TMR.

Planning the architecture of such an environment becomes one of the key
points for a successful implementation.

In determining the number of Endpoints for an enterprise, it′s important to
consider the quality of service desired. As the number of Endpoints and the
number of operations for each Endpoint increase,s the quality of
performance will naturally decline. But, with the addition of an Endpoint
Gateway, you can support a larger number of Endpoints without a
performance decrease. It is important to determine the right balance
between the number of Endpoint Gateways and Endpoints.

But numbers are only part of the equation in determining the quality of
service. Another factor is your organization′s model of network
management. If, for example, your organization distributes software from a
central site to, say, 5,000 machines connected to a single Endpoint Gateway,
the distribution will proceed slowly, but will complete successfully. On the
other hand, if 5,000 Endpoints connected to a single Endpoint Gateway each
try to initiate a software pull, the quality of service will be unacceptable. In
addition to considering the number and ratio of Endpoints and Endpoint
Gateways, consider the system management applications your organization
will use.

In summary, LCF Endpoints over-load the Endpoint Gateway delegating the
storing and managing of Tivoli objects. After the login phase the necessary
data is transferred to the Endpoint. As more applications are installed and

38 TME 10 Framework Version 3.2

used, more data and methods will be downloaded to the Endpoints from
their Endpoint Gateway.

Organizing and distributing Endpoint Gateways and Endpoints by

• Physical location
• Type of applications running on Endpoints.
• Amount of upcalls/downcalls

will be a necessary step in planning the proper number and location of
Endpoint Gateways to support your Endpoints.

3.6 Summary

This chapter has provided an overview of information related to planning for
a successful installation of one or more TMRs. More detailed information is
presented in the TME 10 Framework Planning and Installation Guide. With
the introduction of LCF, planning the mixture of Endpoints and Endpoint
Gateways will be critical. Unfortunately, we can not provide much specific
guidance in this area until the LCF-enabled applications become available.

The next chapter addresses the installation of TME 3.2-based systems. The
primary differences introduced in the installation of the TME 10 Framework
V3.2 relates to LCF. Therefore, that is the area we concentrate on when
describing the installation processes.

Chapter 3. Planning for TME 3.2 39

40 TME 10 Framework Version 3.2

Chapter 4. LCF Installation

This chapter describes the installation of LCF Endpoint Managers, Endpoint
Gateways and Endpoints. In V3.2 of the TME 10 Framework, Endpoint
Managers must reside on TMR Servers, Endpoint Gateways must reside on
full Managed Nodes and Endpoints can reside on any of the supported
platform types with no other TME 10 prerequisites.

We provide examples of installing the various components through
command line interfaces as well as the GUI interfaces that are available.
For a more detailed description of the CLI and GUI commands, refer to the
TME 10 Framework Planning and Installation Guide and TME 10 Framework
Reference Manual.

4.1 Endpoint Managers

With the introduction of the Lightweight Client Framework technology, the
TMR Server takes on a new role of Endpoint Manager. Though you can
install a TMR based on Version 3.2 of the TME 10 Framework without
utilizing LCF, the Endpoint Manager is installed when you install a TMR
Server. The Endpoint Manager is required to create Endpoint Gateways
which in turn are required to manage LCF Endpoints. Therefore, as with any
TMR, the first thing we must do is install the TMR Server and Endpoint
Gateway.

4.1.1 Creating an Endpoint Manager
As just mentioned, an Endpoint Manager is created when a TMR Server is
installed. We will not review the details of installing a TMR Server. This is
well documented in the product documentation, specifically the TME 10
Framework Planning and Installation Guide. As a brief summary, the
installation is accomplished through the wserver command on UNIX systems
and through the setup.exe InstallShield program on Windows NT. On UNIX,
you have the option of specifying all required information on the command
line, or utilizing a GUI to prompt you through the options.

Note also, that the wserver command installs both the TME Server and the
TME 10 Desktop. On NT systems, the TMR Server and TME 10 Desktop are
installed via separate procedures.

Either way you install, once the installation is complete, the Endpoint
Manager will available. In Figure 7 on page 42, we show the TME Desktop
after a new installation. If you are familiar with previous versions of the

 Copyright IBM Corp. 1997 41

TME 10 Framework, you will notice only one significant difference; the
Endpoint Manager icon.

Figure 7. TME 10 Desktop with Endpoint Manager

From the command line interface, you can verify the Endpoint Manager
exists through the wls command. An example of this command is shown in
Figure 8

wls
Notices
Administrators
panda-region
EndpointManager
Scheduler

Figure 8. Output of wls Showing Endpoint Manager

42 TME 10 Framework Version 3.2

If using the TME 10 Desktop, we might try opening the Endpoint Manager.
Figure 9 on page 43 shows the window that is displayed. At this point it is
not very interesting since no Gateways or Endpoints exist.

In the next section, we discuss the creation of Endpoint Gateways.

Figure 9. Endpoint Manager Immediately After Installation

4.2 Endpoint Gateways

Endpoint Gateways, as the name implies, provide the communication
channel between an LCF Endpoint and the rest of the TMR. Aside from
providing the communications conduit, the Endpoint Gateway is key in the
scalability of TMRs, as it also off loads much of the function previously
performed by TMR Servers.

In Version 3.2 of the TME 10 Framework, Endpoint Gateways must reside on
TME 10 Managed Nodes. Therefore, the first step in creating an Endpoint
Gateway is to create a Managed Node. Managed Nodes are created using
the same procedure as in the pre-LCF environment.

Unlike, Endpoint Managers that are automatically created on any TMR
Server that is installed, Endpoint Gateways must be explicitly created on a
Managed Node after the Managed Node is created. We do not take you
through the specifics of creating/installing a Managed Node. Refer to the
TME 10 Framework Planning and Installation Guide for details.

Chapter 4. LCF Installation 43

Once a Managed Node is created via the TME 10 Desktop or command line
interfaces, we can choose to install an Endpoint Gateway on that system.
Don′ t forget that the TME Server is also a Managed Node. Therefore, the
Endpoint Gateway can also be installed on the TMR Server.

4.2.1 Creating an Endpoint Gateway - Command Line Interface
The following steps may be taken to install an Endpoint Gateway via the
command line interface.

 1. Run the Tivoli setup environment script.

. /etc/Tivoli/setup_env.sh

 2. Backup the object database. By default, the backup is stored in
$DBDIR/../backups

wbkupdb

 3. Install a Gateway.

The command below creates an Endpoint Gateway called GW-goban on
managed node goban. The -h parameter specifies the managed node
and -n specifies the gateway name. By default, the Endpoint Gateway
will communicate with Endpoints on port 9494. However, as we have
done, you can use the -p portnumber parameter to use a different port.
For more information on the wcrtgate command, refer to the TME 10
Framework Reference Manual.

wcrtgate -h goban -n GW-goban -p 9495

 4. Verify the new gateway is installed using the wgateway command as
shown below:

wgateway GW-goban describe
Object : 1352741012.3.21#TMF_Gateway::Gateway#
Hostname : goban.austin.ibm.com
Port : 9495
Timeout : 300

 5. Backup the object database. By default, the backup is stored in
$DBDIR/../backups

wbkupdb

4.2.2 Creating an Endpoint Gateway - GUI
The following steps can be used to create an Endpoint Gateway via the TME
10 Desktop.

 1. Create a backup of the object database. Select Desktop->Backup .
Select all the available nodes and click on Start Backup . Click on Close

44 TME 10 Framework Version 3.2

when the backup is finished. By default, the backup is stored in
$DBDIR/../backups.

 2. From the Endpoint Manager pop-up menu, select Create Gateway... .

Figure 10. Gateway Installation

 3. The Create Gateway dialog screen appears. The information to be fil led
into this dialog is the same as can be specified via the command line.
Select Create and Close when finished. Note that we have chosen to
use port 9495 for communication with our Endpoint Gateway rather than
the default port of 9494. The reason for this was purely to provide an
example of doing so. However, in a test environment, using an alternate
port is helpful as you may have multiple test Endpoint Gateway ′s, and
would like to easily limit which Endpoints connect to each without having
to create Endpoint policy scripts. See section 5.3, “Controlling an
Endpoint Login Through Policies” on page 64.

Chapter 4. LCF Installation 45

Figure 11. Create Gateway Dialog

 4. Verify the gateway is successfully created. From the Tivoli Desktop,
double click on Endpoint Manager, and you should see a panel similar
to Figure 12 on page 47. In this figure you can see a list of currently
defined Endpoint Gateways. You can select each Endpoint Gateway and
use the View button to see a list of Endpoint associated with that
Endpoint Gateway.

46 TME 10 Framework Version 3.2

Figure 12. Gateway List

 5. Create a backup of the object database. Select Desktop->Backup .
Select all the available nodes and click on Start Backup . Click on Close
when the backup is finished. By default, the backup is stored in
$DBDIR/../backups.

4.3 Endpoints

Generally speaking, LCF Endpoints are machines not extensively used in
your daily operations of managing a network. In other words, LCF Endpoints
are typically end-user systems or even application servers that you want to
manage while requiring a minimal footprint of TME 10 code.

Indeed, the LCF Endpoint binaries require just a few hundred kilobytes of
disk space on the managed system. In addition to the Endpoint binaries, the
LCF Endpoint will create a disk cache whose size is configurable, but
defaults to 20.5 MB. This disk cache is used to store any methods that will
be executed on the Endpoint by management applications.

The following platforms are supported as LCF Endpoints:

• AIX 3.2.5, 4.1, 4.2

• HP-UX 9.0, 9.1, 9.3, 9.5, 10.0, 10.1, and 10.2

• NetWare (server only) 3.12 and 4.1

Chapter 4. LCF Installation 47

• OS/2 Warp 3.0 (requires FixPack 27), Warp 4.0, and Warp Server 4.0
(also requires FixPack 27)

• Solaris 2.3, 2.4, and 2.5

• Sun/OS 4.1.2 and 4.1.3

• Windows NT 3.51 (with SP1) or 4.0 (includes SP1 and SP2). No support
for multi-user variations of Windows NT.

• Windows 95

• Windows 3.x

For more details, refer to the TME 10 Framework Release Notes.

The installation procedure differs between the different platform types. For
UNIX-based systems, the winstlcf command is used. For other systems,
installation is through a platform specific install command, such as
setup.exe(InstallShield) on Windows. However, even on windows, a
GUI-based install is not required. Command line parameters can be used to
specify all required information. The mass installation of a large number of
LCF Endpoints could be accomplished via login scripts, TME Software
Distribution File Packages (for nodes that are currently a Managed Node or
PC Managed Node) or through other such automated processes.

In this section, we describe the use of the InstallShield and login script
options.

We will focus on UNIX and NT Endpoints only. For OS/2 and Netware
Endpoint installations, the process is similar. Please refer to the TME 10
Framework Planning and Installation Guide for details.

• InstallShield is for PCs running Windows NT, Windows 3.x, Windows 95.
The images come with the TME 3.2 Framework CD and are bundled by
interpreter type in \pc\lcf. For Windows NT, Windows 3.1, Windows 95,
and Netware, you can go to the appropriate subdirectory in \pc\lcf and
run setup.exe. For OS/2, run install.exe from the \PC\LCF\OS2\CDROM
directories. Diskette images are also available for installation from
diskette. For installation of multiple Endpoints, you can remotely
mount/share the CD to the targeted Endpoints and run the install
program.

• For NT, Windows95, and Windows 3.x systems, a logon script can also
be used to install the Endpoints. The logon script is activated when the
user logs on to a server. An example is shown later.

• For UNIX, winstlcf is the best way to install LCF. A file containing a list
of targets can be passed to winstlcf if multiple Endpoints are to be

48 TME 10 Framework Version 3.2

installed. It requires a UNIX shell or exec service, a Bourne-compatible
shell, and a fair number of standard UNIX utilities such as grep on the
target system.

4.3.1 Default Endpoint Login Process
When you install LCF on a PC, the LCF daemon is automatically started
which (by default) sends a broadcast to your network in search of an
Endpoint Gateway. An overview of this process is described in section 3.4,
“Endpoint Connection Process” on page 34. In Chapter 5, “Configuring the
LCF Environment” on page 61, we look at the files created on the Endpoint
and discuss this connection process in more detail.

As described in 5.3, “Controlling an Endpoint Login Through Policies” on
page 64, you should set polices first before you add Endpoints. If you add
Endpoints without any policy in your Endpoint Manager , the Endpoints will
be assigned to Endpoint Gateways in a somewhat random fashion, and this
may not lead to the most desirable configuration.

4.3.2 Creating a Windows NT Endpoint Using InstallShield
This section walks through the process of installing an LCF Endpoint on NT
using the InstallShield GUI.

After starting the setup program from the PC/LCF/WINNT directory on the CD
the following screens are displayed. We have left a few intermediary
screens out since they do not warrant any special discussion.

Chapter 4. LCF Installation 49

Figure 13. Initial Endpoint Installation Panel

Figure 13 shows the primary panel displayed when starting the installation
of the LCF Endpoint on a Windows NT system. Note that the physical disk
requirements for this platform is 299 KB.

The next panel (shown in Figure 14 on page 51) allows you to specify a
specific Gateway address/port that this Endpoint should use by default. You
can also specify the port that will be used on the Endpoint system for
communication with the Endpoint Gateway. The Other field can be used to
specify other parameters that are accepted on the command line when not
using the GUI.

50 TME 10 Framework Version 3.2

Figure 14. Endpoint Installation Parameters Panel

Once this information has been entered, the Endpoint will be installed. The
default target directory is C:\TIVLI\LCF, however, it can be changed through
a panel we have not shown here. Once the installation is complete, the LCF
daemon is started and the panel shown in Figure 15 on page 52 is
displayed to show you the status of the connection process. If everything
goes as expected, you will see a message stating that the Gateway login
succeeded .

Chapter 4. LCF Installation 51

Figure 15. Endpoint Installation Status Panel

Once you have successfully installed one or more Endpoints, we can view
the Endpoint list for this Endpoint Gateway by using the Endpoint Manager
and selecting the Endpoint Gateway. An example of the Endpoint List is
shown in Figure 16 on page 53.

52 TME 10 Framework Version 3.2

Figure 16. Gateway List after Mult iple Endpoints are Installed

4.3.3 Installing Windows NT Endpoints from Logon Scripts
Endpoints can be automatically installed on Windows 3.x, Windows 95, and
Windows NT machines using logon scripts. When a user logs on to his or
her PC, the logon script checks for the Tivoli Lightweight Client service and,
if necessary, launches the Endpoint installation process.

The following is an example of a logon script that will install an Endpoint.
Comments are included to assist you in understanding its logic and to assist
you in modifying the script for your environment.

@echo off
REM Sample LCF logon script for Windows NT. Call this script from the
REM user′ s normal logon script.
REM
REM Using logon scripts:
REM 1) Change the SERVER and INSTALLDIR settings to point to the lcf-image
REM directory on the network.
REM 2) On the NT Domain Server, copy this script to the scripts directory.
REM By default, this directory is in
REM C:\WINNT\system32\Repl\Import\Scripts. This script can also be
REM replicated automatically from Primary Domain Controllers, but you
REM can read about that fun stuff yourself.
REM 3) Run the User Manager program, select a user and then select
REM ″profile″ . Enter the name of this script in the ″Logon Scripts″
REM area.
REM 4) Whenever that user logs in to this domain, this installation script
REM run on their machine.
REM
REM You can also run this script as a stand-alone.

Chapter 4. LCF Installation 53

REM Script settings - Modify these to your environment
set MAPDRIVE=v
set SERVER=\\itscfs00\tivoli
set SERVER_USER=ausres06
set INSTALLDIR=\TME32\PC\LCF
set DESTDIR=c:\tivoli\lcf
set LOGDEST=c:\lcfinst.log
set ISHIELDOPTS=-s

REM Inform user of log file.
echo Log file is stored in %LOGDEST%.

REM Optional introduction to user
echo Installing TME 10 Endpoint > %LOGDEST%

REM Figure out which interp
ver | find ″Windows 95″ > nul
if errorlevel 1 goto checkNT
set INTERP=win95
goto install

:checkNT
ver | find ″Windows NT″ > nul
if errorlevel 1 goto assume3x
set INTERP=winnt
goto install

:assume3x
INTERP=win3x

:install
REM Check for previous installation
net start | find ″Tivoli Lightweight Client″ > nul
if errorlevel 1 goto next1
if errorlevel 0 goto prevInst

:next1
REM if exist %DESTDIR%\bin\%INTERP%\nul goto prevInst

:doit
echo OS Detected as: %INTERP%. >> %LOGDEST%

REM Map drive to get installshield files.
net use %MAPDRIVE%: /DELETE > nul
net use %MAPDRIVE%: %SERVER% /USER:%SERVER_USER% > nul

REM Execute installshield setup
start %MAPDRIVE%:%INSTALLDIR%\%INTERP%\setup.exe %ISHIELDOPTS%
echo Successfully installed for %USERNAME% >> %LOGDEST%
goto end

:prevInst
echo Script detects that LCF is already installed >> %LOGDEST%

:end

54 TME 10 Framework Version 3.2

4.3.4 Installing UNIX Endpoints with winstlcf
A TME administrator can install Endpoints on UNIX clients from the
command line using the winstlcf command. This command is available as
soon as you install TME 10 Framework 3.2 on your TMR.

You can install as many Endpoints as necessary by either specifying
machine names after the script or by using a text file as input to the
winstlcf command.

For example, if you wish to install the UNIX machine betty as an Endpoint,
simply execute:

winstlcf betty

You can also install multiple UNIX machines by creating a list file. For
example, assume the text file endpoints.txt contains a list (one system per
line) of all target Endpoints. The command:

winstlcf -f endpoints.txt -P

will install the LCF Endpoint modules on each system in the list.

The -f argument specifies an input file and the the -P argument enables you
to enter a global password for use on all of the machines being installed.

For a detailed explanation of the winstlcf commmand and for additional
examples, refer to TME 10 Framework Reference Manual.

4.4 Endpoint Data Files

The Endpoint installation creates a set of files in the LCF install directory. By
default, the LCF install directory on a PC is c:\tivoli\lcf. On UNIX, the
default installation directory is /usr/locoal/Tivoli/lcf.

The configuration and log files are placed in a directory named as follows:
./dat/<date-timestamp>.random_number.

The following data files are automatically created:

• lcfd.log - A text file that contains the login activities and
upcall/downcall methods of the Endpoint.

• last.cfg - A text file that contains the Endpoint and Gateway login
configuration, like port used and number of login re-tries.

• lcf.dat - A binary file that contains Gateway login information like
hostname and IP address of the last Gateway to which the Endpoint
logged in. The information contained in this file can not be modified by

Chapter 4. LCF Installation 55

the user. Certain information can be overridden by the use of command
line arguments when starting the LCF daemon. However, in general,
once this file is created (that is, the Endpoint has successfully logged
into a Endpoint Gateway), the Endpoint should be managed via the
framework mechanisms and policies, rather than by an end user adding
parameters to its initialization.

• lcf.id - Contains additional Gateway login information.

We will focus our discussion on LCFD.LOG and LAST.CFG.

4.4.1.1 LCFD.LOG
The following figure shows the LCFD.LOG after a successful installation and
login of an LCF Endpoint. We specified the -d 2 parameter, which specifies
a more verbose level of messages in the log file.

56 TME 10 Framework Version 3.2

Oct 05 04:21:43 1 lcfd lcfd 2.1 (w32-ix86)
Oct 05 04:21:43 1 lcfd run_dir: ′ C:\Tivoli\lcf\dat\08221500.467\′
Oct 05 04:21:43 1 lcfd logging to ′ C:\Tivoli\lcf\dat\08221500.467\\lcfd.log′ at level 2
Oct 05 04:21:43 1 lcfd cache: ′ C:\Tivoli\lcf\dat\08221500.467\\cache′
Oct 05 04:21:43 1 lcfd cache limit: ′20480000′
Oct 05 04:21:43 1 lcfd cache size at initialization: ′ 0 ′
Oct 05 04:21:43 Q lcfd lcf_run
Oct 05 04:21:43 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\08221500.467\\last.cfg
Oct 05 04:21:43 1 lcfd node_login: listener addr ′0.0.0.0+9494′
Oct 05 04:21:43 2 lcfd No known gateways.
Oct 05 04:21:43 2 lcfd Trying other login listeners...
Oct 05 04:21:43 1 lcfd Doing initial login broadcast...
Oct 05 04:21:43 Q lcfd send_login_dgram: interval=300 attempts=6
Oct 05 04:21:43 Q lcfd net_usend of 288 bytes to 255.255.255.255+9494. Bcast=1
Oct 05 04:21:43 Q lcfd send_login_dgram: waiting for reply. attempt 1 of 6
Oct 05 04:21:43 Q lcfd net_accept, handle=0x421f50
Oct 05 04:21:44 Q lcfd New connection from 9.3.1.47+4369
Oct 05 04:21:45 Q lcfd Entering net_recv, receive a message
Oct 05 04:21:45 Q lcfd Leaving net_recv with buffer of 384 bytes, session 0
Oct 05 04:21:45 Q lcfd recv: len=′384′ (code=′ 14 ′ , session=′ 0 ′)
Oct 05 04:21:45 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\08221500.467\\last.cfg
Oct 05 04:21:45 Q lcfd gobantp is dispatcher 3 in region 1375598768
Oct 05 04:21:45 1 lcfd Logging into new gateway...
Oct 05 04:21:45 Q lcfd login_to_gw
Oct 05 04:21:45 Q lcfd login_gw -> 9.3.1.47+9494
Oct 05 04:21:45 2 lcfd Connecting to ′9.3.1.47+9494′
Oct 05 04:21:45 Q lcfd net_send of 384 bytes, session 3
Oct 05 04:21:45 Q lcfd net_accept, handle=0x421f50
Oct 05 04:21:45 Q lcfd New connection from 9.3.1.47+4370
Oct 05 04:21:45 Q lcfd Entering net_recv, receive a message
Oct 05 04:21:45 Q lcfd Leaving net_recv with buffer of 456 bytes, session 3
Oct 05 04:21:45 Q lcfd recv: len=′456′ (code=′ 14 ′ , session=′ 3 ′)
Oct 05 04:21:45 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\08221500.467\\last.cfg
Oct 05 04:21:45 Q lcfd gobantp is dispatcher 3 in region 1375598768
Oct 05 04:21:45 1 lcfd write login file ′ lcf.dat′ complete
Oct 05 04:21:46 1 lcfd final pid: 260
Oct 05 04:21:46 1 lcfd Login to gateway complete.
Oct 05 04:21:46 1 lcfd Ready. Waiting for requests (0.0.0.0+9494).
Oct 05 04:21:46 2 lcfd Run timeout set: 120.
Oct 05 04:21:46 Q lcfd Entering Listener
Oct 05 04:21:46 Q lcfd net_wait_for_connection, handle=0x421f50

Figure 17. LCFD.LOG File After Installation

Chapter 4. LCF Installation 57

When the LCF daemon installs and starts, it creates the working directory
and creates the log file.

Oct 05 04:21:43 1 lcfd lcfd 2.1 (w32-ix86)
Oct 05 04:21:43 1 lcfd run_dir: ′ C:\Tivoli\lcf\dat\08221500.467\′
Oct 05 04:21:43 1 lcfd logging to ′ C:\Tivoli\lcf\dat\08221500.467\\lcfd.log′ at level 2

It then creates a cache directory where the Endpoint will process methods
from the Gateway.

Oct 05 04:21:43 1 lcfd cache: ′ C:\Tivoli\lcf\dat\08221500.467\\cache′
Oct 05 04:21:43 1 lcfd cache limit: ′20480000′
Oct 05 04:21:43 1 lcfd cache size at initialization: ′ 0 ′

The LCF daemon starts to run and checks if there is an existing
configuration file (last.cfg). Being a new install, it immediately creates an
initial last.cfg file.

Oct 05 04:21:43 Q lcfd lcf_run
Oct 05 04:21:43 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\08221500.467\\last.cfg

Now, here is where the network broadcast occurs. It sends a login packet
within its subnet in search for an Endpoint Gateway listening at port 9494
(255.255.255.255+9494). By default, it makes 6 attempts at an interval of 5
minutes.

Oct 05 04:21:43 2 lcfd No known gateways.
Oct 05 04:21:43 2 lcfd Trying other login listeners...
Oct 05 04:21:43 1 lcfd Doing initial login broadcast...
Oct 05 04:21:43 Q lcfd send_login_dgram: interval=300 attempts=6
Oct 05 04:21:43 Q lcfd net_usend of 288 bytes to 255.255.255.255+9494. Bcast=1
Oct 05 04:21:43 Q lcfd send_login_dgram: waiting for reply. attempt 1 of 6
Oct 05 04:21:43 Q lcfd net_accept, handle=0x421f50

We receive a connection from the Endpoint Gateway (9.3.1.47). The
information about our newly assigned Endpoint Gateway is written to
last.cfg and we receive information about our assigned dispatcher number
and region identifier.

Oct 05 04:21:44 Q lcfd New connection from 9.3.1.47+4369
Oct 05 04:21:45 Q lcfd Entering net_recv, receive a message
Oct 05 04:21:45 Q lcfd Leaving net_recv with buffer of 384 bytes, session 0
Oct 05 04:21:45 Q lcfd recv: len=′384′ (code=′ 14 ′ , session=′ 0 ′)
Oct 05 04:21:45 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\08221500.467\\last.cfg
Oct 05 04:21:45 Q lcfd gobantp is dispatcher 3 in region 1375598768

Information is written to lcf.dat, our login is completed and the Endpoint
starts listening for any downcalls that may arrive.

Oct 05 04:21:45 1 lcfd write login file ′ lcf.dat′ complete
Oct 05 04:21:46 1 lcfd final pid: 260
Oct 05 04:21:46 1 lcfd Login to gateway complete.
Oct 05 04:21:46 1 lcfd Ready. Waiting for requests (0.0.0.0+9494).
Oct 05 04:21:46 2 lcfd Run timeout set: 120.
Oct 05 04:21:46 Q lcfd Entering Listener
Oct 05 04:21:46 Q lcfd net_wait_for_connection, handle=0x421f50

58 TME 10 Framework Version 3.2

As operations are performed on the Endpoint (that is, downcalls arrive), this
log will contain information about those calls.

After the first login, subsequent logins will have even simpler entries in the
log, since the Endpoint will not have to broadcast to find an Endpoint
Gateway.

4.4.1.2 LAST.CFG
Let′s look at the file last.cfg. This file contains configuration information
from the last successful login to a Endpoint Gateway. This information will
normally be used on subsequent logins to avoid the broadcast mechanism
for locating an Endpoint Gateway. Although. as we will see in the next
chapter, a different file (lcfd.cfg) using the same format, can define static
configuration data that does not change with each successful login. If
lcfd.cfg. exists, it will be used in place of last.cfg. Additional information,
including login credentials are stored in the binary file, LCF.DAT.

lcfd_port=9494
gateway_port=9494
log_threshold=2
start_timeout=120
run_timeout=120
lcfd_version=2.1
logfile=C:\Tivoli\lcf\dat\08221500.467\\lcfd.log
config_path=C:\Tivoli\lcf\dat\08221500.467\\last.cfg
run_dir=C:\Tivoli\lcf\dat\08221500.467\
load_dir=C:\Tivoli\lcf\bin\w32-ix86\mrt\
lib_dir=.
cache_loc=C:\Tivoli\lcf\dat\08221500.467\\cache
cache_index=Index.v14
cache_limit=20480000
log_queue_size=1024
log_size=1024000
udp_interval=300
udp_attempts=6

Figure 18. LAST.CFG File

Most of these values entries are self evident. The most important values
here are:

• lcfd_port - The port used by the Endpoint to communicate with the
Endpoint Gateway

• gateway_port - The listening port of the Endpoint Gateway

• udp_interval - Login retry intervals in seconds

• udp_attempts - Number of login retries

Chapter 4. LCF Installation 59

In Chapter 5, “Configuring the LCF Environment” on page 61, we′ ll talk
about using this file as a model for lcfd.cfg for providing a customized
configuration file for your Endpoints.

4.5 Summary

In this chapter we have described the installation procedure for LCF
Endpoint Managers, Endpoint Gateways and Endpoints. In addition, we
briefly reviewed the log file and configuration file that are created during an
Endpoint′s first successful login to an Endpoint Gateway.

In the next chapter, we will continue talking about the configuration of the
LCF environment to help manage the association between Endpoints and
Endpoint Gateways.

60 TME 10 Framework Version 3.2

Chapter 5. Configuring the LCF Environment

In the classic TME environment (TMR Servers, Managed Nodes and PC
Managed Nodes), the installation process implicitly determined the TMR to
which a managed system belonged and their was no requirement to
explicitly configure managed nodes to communicate with their TMR server.

In an LCF environment, Endpoints must be configured (manually or through
self-configuration) to communicate with an appropriate Endpoint Gateway.
To allow for both flexibility as well as availability, the association between
an Endpoint and a Gateway can be dynamically determined and may change
if a particular Gateway is not available.

This chapter describes how you, as an administrator, can control the
configuration of your LCF environment to control the associations between
Endpoints and Gateways. There are two primary methods that can be used;
Endpoint configuration files and policies.

5.1 Controlling an Endpoint Login

By default, a newly installed Endpoint, issues a broadcast message looking
for an Endpoint Gateway it can use to connect to a TMR. Gateways that
receive this broadcast, pass this login request to the Endpoint Manager who
chooses a Gateway. That Gateway is then notified, and the Gateway then
contacts the Endpoint to initiate the actual login. By default, the TMR Server
chooses the first Endpoint Gateway that has reported the broadcast login
request from an Endpoint.

In an environment with multiple Gateways or multiple TMRs, it is highly
desirable to provide controls that limit which Endpoint Gateways may be
chosen for a new Endpoint.

There are currently two ways of controlling how an Endpoint becomes
associated with an Endpoint Gateway.

 1. Endpoint Configuration Files - When the Endpoint is started, it first looks
for the existence of various configuration files. If these files exist, it will
use information within these files that identify a specific Endpoint
Gateway. The Endpoint will then try to login to this Endpoint Gateway
without issuing a broadcast message. If the Endpoint Gateway specified
in the configuration files does not respond, then the Endpoint will resort
to the broadcast mechanism searching for a different Endpoint Gateway.

 2. Endpoint Policies - Policies (implemented through policy scripts) can be
put in place to control how the Endpoint Manager and Endpoint

 Copyright IBM Corp. 1997 61

Gateways handle login requests from Endpoints. Implementing proper
Endpoint policies can be very effective in large networks with many
Endpoints, as it can help avoid the requirement to distribute
configuration files to newly installed Endpoints.

5.2 Controlling an Endpoint Login Through Configuration Files

In section 4.4, “Endpoint Data Files” on page 55 we described the various
files that are created on an Endpoint after a successful login to a TMR.
These files are reviewed below:

• lcf.dat - A binary file containing information related to the Endpoint
Gateway assigned to the Endpoint. The information contained in this file
can not be modified by the user. Certain information can be overridden
by the use of command line arguments when starting the LCF daemon.
However, in general, once this file is created (that is, the Endpoint has
successfully logged into an Endpoint Gateway), the Endpoint should be
managed via the framework mechanisms and policies, rather than by an
end user adding parameters to its initialization.

• last.cfg - Contains the configuration information used the last time the
Endpoint was started. This file is automatically created upon installation
and modified each time the Endpoint logs in.

• lcfd.log - Contains Endpoint messages like log-in activities.

• lcf.id - Contains additional Gateway login information.

An additional file that can be used to affect the configuration of your
environment, but not created for you, is lcfd.cfg.

This file has the identical format and content as last.cfg. However, it is not
modified after each login, so it does not necessarily contain information
related to the last successful login. Therefore it can be used to define static
configuration data that is not modified after each successful login. For
instance, if we were to modify last.cfg to specify a preferred Endpoint
Gateway, and that Endpoint Gateway was temporarily unavailable, then the
Endpoint would broadcast for a new Endpoint Gateway and if successful, the
file would be modified to point to the new Endpoint Gateway. The next time
the Endpoint was restarted, it would then attempt to attach to the last
Endpoint Gateway it successfully used.

The LCF daemon will use information stored in lcf.dat if this file exists,
otherwise it will use lcfd.cfg if it exists, and finally will use last.cfg.
However, as already mentioned, LCF Endpoints are not designed with the
intention of end users modifying their operation. They are designed to

62 TME 10 Framework Version 3.2

locate an Endpoint Gateway during their initialization and from that point on
they should be controlled through the framework and policies.

If you have a particular need to control an Endpoint′s configuration in a
more manual way, then you can erase lcf.dat and create a file called
lcfd.cfg as shown in Figure 19.

However, you need to be aware that Endpoint specific information is stored
in lcf.dat, and by erasing it, a new Endpoint object is created within the
TMR the next time the Endpoint connects. Therefore, the old Endpoint
object will need to be removed to avoid confusion on the part of the
administrators.

It should also be noted, that even if you specify a specific Endpoint Gateway
by supplying the lcs.login_interfaces parameter, this does not guarantee
that the specified system will be your Endpoint Gateway. Rather, the
Endpoint will attempt to contact it to start the login process and the policies
of the Endpoint Manager will determine the ultimate Endpoint Gateway for
the Endpoint.

lcfd_port=1027
gateway_port=9494
bcast_addr=255
log_threshold=2
start_timeout=120
run_timeout=120
lcfd_version=2.1
logfile=C:\Tivoli\lcf\dat\06191422.307\\lcfd.log
config_path=C:\Tivoli\lcf\dat\06191422.307\\last.cfg
run_dir=C:\Tivoli\lcf\dat\06191422.307
load_dir=C:\Tivoli\lcf\bin\w32-ix86\mrt\
lib_dir=C:\Tivoli\lcf\bin\w32-ix86\mrt\
cache_loc=C:\Tivoli\lcf\dat\06191422.307\\cache
cache_index=Index.v13
cache_limit=20480000
log_queue_size=1024
log_size=1024000
udp_interval=300
udp_attempts=6
#lcs.login_interfaces=<gw_addr><gw_port>
lcs.login_interfaces=9.3.1.235+9494
#lcs.machine_name=<my_Endpoint_name>
lcs.machine_name=bambam

Figure 19. Sample lcfd.cfg File

Chapter 5. Configuring the LCF Environment 63

The last four lines of this configuration file are added to force the Endpoint
to attempt to log in to an Endpoint Gateway with IP address 9.3.1.235 and
communicate on port number 9494. The Endpoint machine name is also
specified. The rest of the information is the same as would be contained in
a last.cfg file.

For information describing each of the entries and its usage, please refer to
the documentation for the lcfd command in TME 10 Framework Reference
Manual.

5.3 Controlling an Endpoint Login Through Policies

There are four types of policies that can be put in place for controlling
Endpoint logins to a TMR. Three of these policies are implemented on the
Endpoint Manager and one on the Endpoint Gateway.

The Endpoint Manager policies are called:

• allow_install_policy

• select_gateway_policy

• after_install_policy

These policies run in the order listed above. The Endpoint Gateway
implements a policy called login_policy .

Information on each of these policies is presented in the following sections.

5.3.1 allow_install_policy
The allow_install_policy script is executed whenever an Endpoint′s login
request packet is received at the Endpoint Manager. This packet is
broadcast by the Endpoint, received by the Endpoint Gateway, and then
communicated to the Endpoint Manager via oserv-oserv communications.
When the Endpoint Manager receives this information, the
allow_install_policy script is executed to determine whether or not this
Endpoint should be allowed to login to this TMR. By default, all login
requests are granted.

This policy is very useful in an environment with multiple TMRs. For
instance, you could create a text file containing the names of Endpoints
allowed in a particular TMR and use this list as an input to the policy. An
example of such a policy is shown below.

64 TME 10 Framework Version 3.2

5.3.1.1 Example
In our scenario, we have two TMRs on the same subnet - Flintstones and
Simpsons. There are four Endpoints that are about to login and without any
active policy, the Endpoint Manager in each TMR will receive the login
request and assign the Endpoint to one of its Endpoint Gateways. So which
TMR does each Endpoint actually belong to?

The first TMR to call back to the Endpoint will initially claim the Endpoint for
its own. The Endpoint will then complete its login and the proper encryption
keys will be set to allow the first TMR access to the Endpoint. However, in
the current implementation (which may change before you read this), when
the second TMR responds, the Endpoint (and its encryption key) will be
reset. Therefore, only the second TMR will be able to manage this Endpoint.
As hinted above, work is being done to resolve this in a cleaner fashion.
The proper way of handling this today, and maybe even after the
implementation changes, is to control this through policies on the Endpoint
Manager.

To control the Endpoint login, you can use the script below to enable some
filtering before an Endpoint is accepted as a member of the TMR. This
script compares the name of the Endpoint system (passed as a parameter)
to entries in a list of host names included in a file called eplist.txt. If the
Endpoint name matches an entry in the list, the script exits with a value of 0.
Otherwise it exits with a value of 1.

So for the Flintstones TMR, the allowed Endpoints might be pebbles and
bambam. While on the Simpsons TMR, the allowed Endpoints might be homer
and lisa. The eplist.txt used for the Flintstones TMR server might look
like the following:

[root@panda]/var/spool/Tivoli/policy/lcf> cat eplist.txt
bambam
pebbles

The allow_install_policy script that enforces our policy is:

#!/bin/sh

#
The following are the command line arguments passed to this script
from the Endpoint Manager.
#
$1 - The label of the Endpoint machine
$2 - The object id of the Endpoint machine
$3 - The architecture type of the Endpoint machine
$4 - The object id of the gateway that the Endpoint logged into

Chapter 5. Configuring the LCF Environment 65

$5 - The ip address of the Endpoint logging in.
#

Allow only the endpoints found in eplist.txt

. /etc/Tivoli/setup_env.sh

while read x
do
if [$1 = $x]; then

exit 0
fi
done < $DBDIR/../policy/lcf/eplist.txt

exit 1

5.3.2 select_gateway_policy
The select_gateway_policy is run after the allow_install_policy . It runs on
the Endpoint Manager each time it receives a login request packet from an
Endpoint. It determines the Endpoint Gateway to which an Endpoint can log
in. The login packet is sent either on initial login or on subsequent logins
when the Endpoint has lost contact with its assigned Endpoint Gateway.

If multiple Endpoint Gateways meet the criteria specified in the script,
select_gateway_policy can return a list of possible Endpoint Gateways. The
Endpoint Manager attempts to contact the first Endpoint Gateway on the list.
If the Endpoint Manager fails to contact the Endpoint Gateway, it continues
in order through the list until it successfully contacts an Endpoint Gateway.
The first Endpoint Gateway contacted is the Endpoint Gateway to which the
Endpoint is assigned. If the script fails, the Endpoint Manager′s default
selection criteria is used. The failure of the script does not stop the login
process.

5.3.2.1 Example
The following is a C program that could be used to implement the
select_gateway_policy . This example is extracted from the TME 10
Framework Reference Manual. It generates a list of all Endpoint Gateways
on the same subnet as the Endpoint. The Endpoint Manager will attempt to
contact each Endpoint Gateway returned until successful and assign the
Endpoint to it.

If the policy fails, or if no Endpoint Gateways meet the criteria, then the
Endpoint Manager uses its default selection, which is to use the first
Endpoint Gateway to report the Endpoint′s login request.

66 TME 10 Framework Version 3.2

#include <tivoli/defines.h>
#include <tivoli/ExException.h>
#include <tivoli/tas_init.h>
#include <tivoli/dir.h>
#include <tivoli/TNR.h>
#include <tivoli/t_man_node.h>
#include <tivoli/sequence.h>
#include <gateway/t_Gateway.h>
#include <stdio.h>
int main (int argc, char **argv)
{

type_repository *t[1];
TMF_TNR_ObjectInfoList gws, mns;
TMF_ManagedNode_net_drop_list_t ifs;
Environment ev = {0};
char *ep_label, *ep_oid, *ep_interp, *gateway, *ep_ip;
int i, j, if_ctr;
Object mn_oid;
char *mn, *mn_ip;
t[0] = type_repository_null;

/* necessary to be a useful TME client */
tmf_init(t);
tmf_client_init();
tas_init();

/* get all the cli args */
ep_label = argv[1];
ep_oid = argv[2];
ep_interp = argv[3];
gateway = argv[4];
ep_ip = argv[5];
Try {

/* we just want the subnet of the endpoint */
i = strlen(ep_ip);
while(ep_ip[i] != ′ . ′)
i--;
ep_ip[i] = ′ \0′ ;

/* get all the gateways and search for the one
that is on the same subnet that the endpoint
is on.

*/
gws = dir_get_all_instances(″Gateway″) ;
for(i=0;i<gws._length;i++)
{

/* Find the ip address of the machine the
gateway is running on */

Try {
mn = t_TMF_Gateway_Gateway__get_proxy(

gws._buffer[i].object,
&ev, Trans_none);

mn_oid = dir_lookup_instance(
″ManagedNode″ , mn);

ifs =
t_TMF_ManagedNode_Managed_Node_list_ip_interfaces(
mn_oid, &ev, Trans_none);

for(if_ctr=0; if_ctr<ifs._length; if_ctr++)
{
/* need the interface that TME is using. */

Chapter 5. Configuring the LCF Environment 67

if(ifs._buffer[if_ctr].used_by_oserv == 1)
{

mn_ip = mg_strdup(
ifs._buffer[if_ctr].address);

break;
}

}
/* compare the subnet of the gateway with that

of the endpoint
*/
j = strlen(mn_ip);
while(mn_ip[j] != ′ . ′)

j--;
mn_ip[j] = ′ \0′ ;
if(!strcmp(ep_ip, mn_ip))

printf(″%s″ , gws._buffer[i].object);
mg_free(mn_ip);
mg_free(mn);
mg_free(mn_oid);
seq_free_buffer(&ifs);
} CatchAll() {

/* If we got here, the gateway is down
and is not viable anyways. */

}
EndTry;
}

seq_free_buffer(&gws);
} Catch(Exception, ex) {

fprintf(stderr, ″%s\n″ ,
tmf_ex_msg_bind(ex, NULL, 0));

exit(1);
}

EndTry;
exit(0);
}

Note that the list of Endpoints is simply printed to stdout via the printf()
function. The Endpoint Manager will receive this data and use it to find the
first active Endpoint Gateway and assign it the Endpoint to it.

5.3.3 after_install_policy
After the Endpoint has successfully logged in to the TMR for the first time,
you may want to run scripts or tasks to perform functions such as adding
the Endpoint as a subscriber to a profile manager. The after_install_policy
is where you put these tasks. This policy runs only after the initial login. It
does not run on subsequent logins.

Since this Endpoint already exists when this script runs, the failure of this
script does not stop the login process.

5.3.3.1 Example
The script below runs after a successful Endpoint login. It subscribes new
Endpoints of similar architecture types to specific profile managers. If the
policy region or profile manager does not exist, the policy creates them.

68 TME 10 Framework Version 3.2

Comments are included within this script to explain its various steps.

#!/bin/sh
#
The following are the command line arguments passed to this script
from the Endpoint Manager.
#
$1 - The label of the Endpoint machine
$2 - The object id of the Endpoint machine
$3 - The architecture type of the Endpoint machine
$4 - The object id of the gateway that the Endpoint logged into
$5 - The ip address of the Endpoint logging in.
#

LCF_POLICY_REGION=LCF_Endpoints
PROFILE_MANAGER=LCF-$3
EP=$1

check to see if our top-level policy region already
exists. If not, create it and put it on the administrator′ s
desktop.
#
Disable ″exit on error″ for this call since we will handle
the failure.

set +e
wlookup -r PolicyRegion $LCF_POLICY_REGION > /dev/null
ERR=$?
set -e
if [$ERR -ne 0]; then

ALI=objcall 0.0.0 get_security_objid
set objcall $ALI get_identity
ADMIN=″$1″
ADMIN_OID=″$2″
wcrtpr -m ProfileManager -a $ADMIN $LCF_POLICY_REGION
idlcall $ADMIN_OID refresh_collection

fi

Check to see if our interp specific profile manager already
exists. If not, create it and make it dataless so that we
subscribe the Endpoint to it.
#
Disable ″exit on error″ for this call since we will handle
the failure.

set +e
wlookup -r ProfileManager $PROFILE_MANAGER > /dev/null
ERR=$?

Chapter 5. Configuring the LCF Environment 69

set -e
if [$ERR -ne 0]; then

wcrtprfmgr $LCF_POLICY_REGION $PROFILE_MANAGER
wsetpm -d /Library/ProfileManager/$PROFILE_MANAGER

fi

Subscribe the Endpoint to the profile manager which
contains the Endpoints for that specific interp type.

wsub /Library/ProfileManager/$PROFILE_MANAGER \
@Endpoint:$EP

exit 0

5.3.4 login_policy
The login_policy script is executed each time an Endpoint logs in to its
assigned Endpoint Gateway. The policy is run by the Endpoint Gateway that
the Endpoint is logging in to.

If the login_policy runs successfully, the Endpoint is allowed to log in. If the
script fails, the login process is terminated.

Therefore, this policy can be used to both restrict access, by not allowing
the login to proceed, or to perform other functions at login time. For
example, you may wish to post a notice to a notice group when certain
Endpoints login to the TMR, as shown in the example below.

5.3.4.1 Example
The following example logs a notice to an LCF related notice group every
time an Endpoint logs in.

#!/bin/sh
#
The following are the command line arguments passed to this script
from the Gateway.
#
$1 - The label of the Endpoint machine
$2 - The architecture type of the Endpoint machine
$3 - The object id of the gateway that the Endpoint logged into
$4 - The IP address of the Endpoint logging in
#
LCF_NOTICE_GROUP=LCF_Endpoints
#
Send a notice to LCF Endpoint Notice Group every time this
Endpoint logs in.
#

70 TME 10 Framework Version 3.2

set +e
wlookup -r TMF_Notice $LCF_NOTICE_GROUP > /dev/null
ERR=$?
set -e

if [$ERR -ne 0]; then
NTFGM=wlookup -r Classes TMF_Notice
idlcall -T top $NTFGM \

TMF_Notice::NoticeManager::create_notice_group \
′ ″ ′ $LCF_NOTICE_GROUP′″ 72′

fi
GW=idlcall $3 _get_label
EPOID=wlookup -o -r Endpoint $1

wsndnotif $1 ($EPOID of inter type, $2, logged into gateway $GW ($3).
LCF_NOTICE

exit 0

5.3.5 Applying Endpoint Policies
The TME 10 Framework is installed with default Endpoint policy scripts.
These do not contain any logic, and simply return control back to the
Endpoint Manager or Endpoint Gateway.

To implement meaningful policies for your environment, you must replace
the default policies with your own scripts. Doing this, requires three basic
steps:

• Retrieve the current policy script using the wgeteppol command.

• Modify this script to add the appropriate logic.

• Replace the current policy script with the new script using the wputeppol
command.

These commands take a single parameter that specifies the policy whose
script you are retrieving or replacing. The script itself is routed to stdout for
the wgeteppol command or read from stdin for the wputeppol command.
Therefore you will normally use redirection operators as shown in our
example below.

For additional information on the wgetepol and wputeppol commands, refer to
the TME 10 Framework Reference.

Chapter 5. Configuring the LCF Environment 71

5.3.5.1 Example
Let′s assume that we want to put in place a customized allow_install_policy .
We can login to the TMR and issue the following command:

wgeteppol allow_install_policy > allow_install_policy.sh

The above command will create a file called allow_install_policy.sh with
the contents of the current policy script. In the case of a newly installed
TMR with the default policies still in place, the allow_install_policy.sh file
will contain the following:

#!/bin/sh

#
The following are the command line arguments passed to this script
from the Endpoint Manager.
#
$1 - The label of the endpoint machine
$2 - The object id of the endpoint machine
$3 - The architecture type of the endpoint machine
$4 - The object id of the gateway that the endpoint logged into
$5 - The ip address of the endpoint logging in.
#

exit 0

Figure 20. Default allow_install_policy Script

This file can then be edited to include logic such as that shown in section
5.3.1.1, “Example” on page 65.

After saving the modified shell script, execute the following command to
enable the policy for subsequent login attempts:

wputeppol allow_install_policy < allow_install_policy.sh

All policy scripts are stored in the TME 10 database. The Endpoint Manager
will ensure that all Endpoint Gateways receive the latest login_policy script.
Note that the same login_policy script applies to all Endpoint Gateways in
the TMR. If logic specific to the operating system running on a Endpoint
Gateway is required, then the login_policy script must have the logic within
it to to determine on which platform it is executing and act accordingly.

We should note that the wputeppol command is used in the same way
whether the policy being enabled is a shell script or a binary (compiled
executable). If using a compiled executable, you must ensure that it is

72 TME 10 Framework Version 3.2

compatible with the specific Endpoint Manager it will execute on. In the
case of the login_policy where the same policy executes on all Endpoint
Gateways the you can only implement this policy as a binary of all Endpoint
Gateways are running the same operating system.

5.4 Summary

Configuration of an LCF environment can be controlled by a combination of
configuration files and policy scripts. This chapter has provided examples of
both.

The configuration process is not terribly complex nor difficult. Proper
planning for the design and implementation of your TMR is critical to a
successful implementation. Once decisions related to the desired number
of Endpoint Gateways, the allocation of Endpoints across Endpoint
Gateways, and the communication parameters (such as ports and timeout
value) have been made, the proper configuration files and policy scripts can
be put in place to implement the desired TME 10 environment.

Chapter 5. Configuring the LCF Environment 73

74 TME 10 Framework Version 3.2

Chapter 6. TME 10 Framework Web Interface

As a precursor to future capabilities to perform management functions via a
World Wide Web browser, V3.2 of the TME 10 Framework provides
capabilities in this area.

TME Servers, Managed Nodes and LCF Endpoints now include built-in HTTP
daemons (web servers) that can be accessed from your favorite web
browser. (The daemons on Managed Nodes can not be accessed directly,
but only via the server acting as a proxy. More on this soon.) Both of these
web servers are designed so as not to interfere with other web servers you
might be running on the same system. To access the TME HTTP daemon,
you simply use a URL that consists of the system name (or IP address) and
TME 10′s port number. For TMR Servers, the port number defaults to 94 and
for LCF Endpoints, the default is 9494.

The HTTP daemon on the TMR Server is meant as a general purpose web
server for TME 10 applications. We will describe this in more detail in
section 6.1, “Accessing the TMR Server.”

The HTTP daemon on LCF Endpoints is not a general purpose server, but,
rather, provides specific information and configuration capabilities for the
LCF Endpoint. These services will be described in section 6.2, “LCF
Endpoint Web Server” on page 78.

6.1 Accessing the TMR Server

The web server function for the TMR Server is designed to be used by TME
10 applications. TME 10 applications will be able to use this service to
present a web-based interface for administrators. Currently, the framework
itself does not use this service to allow administrators to perform
framework-specific management functions.

Figure 21 on page 76 shows what you might see after installing the TMR
Server, and accessing it with your web browser.

 Copyright IBM Corp. 1997 75

Figure 21. Primary Web Page on a TMR Server

As applications that utilize this service are installed, a menu will be
presented that will allow an authorized administrator to perform
application-specific functions.

76 TME 10 Framework Version 3.2

6.1.1 Starting and Stopping the HTTP Daemon
There are two new commands that can be used to start and stop the HTTP
daemon on the server:

• wstarthttpd
• wstophttpd

6.1.2 Accessing the TMR Server
Once installed, the web server (HTTP daemon) uses an arbitrary and
unused port on the system. The oserv daemon will route any HTTP
requests arriving at the oserv′s port (default is 94) to the actual port in use
by the HTTP daemon. Therefore, the user does not need to know the actual
port used by the daemon. In fact, on subsequent initializations of the
server, the actual port used may change.

To access the TMR Server, you would use a URL such as

http://panda.itsc.austin.ibm.com:94 //for a TMR Server

6.1.3 Security
The HTTP daemon supports authentication realms to allow a secure level of
access to the TME 10 functions. The security is directory-based. The
authentication program determines whether a particular user can access the
contents of a directory. The mechanism uses a ′basic′ authentication
scheme using a base64-encoded username and password.

There are three new commands to allow the administrator to manage
authentication realms. These commands are:

• waddrealm // Used to add a new realm
• wdelrealm // Used to delete a realm
• wlsrealms // Used to list current realms

See the TME 10 Framework Reference Manual for detailed information on
these commands.

6.1.4 Accessing Managed Nodes
As previously mentioned, the HTTP daemon will not allow direct access to
Managed Nodes. You can access the daemon running on a TMR Server.
The Server will act as a proxy server for Tivoli HTTP daemons running on
Managed Nodes. Therefore, if an application requires a CGI program to
execute on a Managed Node, it will route requests to the appropriate
Managed Node, transparently to the user.

Chapter 6. TME 10 Framework Web Interface 77

6.1.5 Adding Your Own Information
Note: The facilities described here are primarily for use by application
developers wishing to take advantage of the web server function in the TME
10 Framework. Normally, these facilities would not be used by TME 10
administrators.

The files that will be served by the HTTP daemon are located in the
following directory:

/usr/local/Tivoli/bin/generic/HTTPd

If we consider the above directory to be HTML_DIR, then:

The default web page is $HTML_DIR/Default.html

Images are accessed from $HTML_DIR/images

Java classes are located in $HTML_DIR/classes., and

On-line HTML help files are located in $HTML_DIR/Help

You should not modify the Default.html file directly. Instead, there is a
command called wupddefhtml which will search for all registered instances of
a class called DefaultHTMLItems and add these items to the default page.

The HTTP daemon included with the TME 10 Framework supports HTTP V1.0
and CGI V1.1 protocols. The daemon will run CGI programs that have been
placed in $BINDIR/TAS/HTTPd/cgi-bin.

You can add your own files to the above directories and access them
explicitly or through items added to the default page.

6.1.6 Logs
There are two useful logs you can use to investigate problems that occur
accessing your web pages and CGI scripts. These logs are:

• $DBDIR/.HTTPd/httpserv.log - This log lists information about CGI
programs that have been executed.

• $DBDIR/.HTTPd/httptran.log - This log lists all incoming HTTP requests.

6.2 LCF Endpoint Web Server

Unlike the HTTP daemon that is available on Managed Nodes, the LCF
Endpoint′s web server provides very specific information and services to the
administrator. An administrator can use a web browser to query
information about the LCF Endpoint as well as use it to change its
configuration parameters. There are seven specific pages that display the
information and allow you to alter the Endpoint′s configuration parameters.

78 TME 10 Framework Version 3.2

In this section we show you these screens and explain those items that are
not self-evident.

6.2.1 Accessing the LCF Daemon Status Page
Much like we did to access the TMR Server′s page, we simply access the
LCF Endpoint′s first page by using the Endpoint′s network name and the port
it uses for communication with the Endpoint Gateway. Should you forget,
this port defaults to 9494.

Therefore, to access an LCF Endpoint known as gobantp we use our web
browser to access:

http://gobantp.itsc.austin.ibm.com:9494

Our web browser now displays the page shown in Figure 22 on page 80.

Chapter 6. TME 10 Framework Web Interface 79

Figure 22. LCF Endpoint′s Home Page

This top half of this page provides information regarding the LCF Endpoint,
including:

• Version - The version of the LCF Endpoint code (currently 2.1)

• Interp - The operating system on the LCF Endpoint

• Hostname - The Endpoint′s hostname

• Address - The address will always show 0.0.0.0+<port number>

• Gateway - The Endpoint Gateway′s address and port number

• Status - The current status of the Endpoint

• Last Restart - The date and time that this Endpoint was last started

80 TME 10 Framework Version 3.2

The bottom half of this screen provides links to several pages providing
additional information and configuration options. Each of these pages are
described in the following sections.

6.2.2 Logfile Page
This page simply displays the lcfd.log file that was described in section 4.4,
“Endpoint Data Files” on page 55.

Figure 23. LCF Endpoint′s Logfi le Page

Chapter 6. TME 10 Framework Web Interface 81

6.2.3 Method Cache Page
It is sometimes useful to be able see a listing of the methods that are
currently available in an Endpoint′s method cache. This page shown in
Figure 24 provides that capability.

Figure 24. LCF Endpoint′s Method Cache Page

In this case we have only a single method in our cache. This is the method
that was used to execute a TME 10 task on our LCF Endpoint.

6.2.4 Usage Statistics Page
This page, shown in Figure 25 on page 83, as its name implies, provides
statistics related to the number of downcalls that have been issued and the
hit and miss rate for our method cache.

82 TME 10 Framework Version 3.2

Figure 25. LCF Endpoint′s Usage Statistics Page

6.2.5 Configuration Settings Page
This page, shown in Figure 26 on page 84, simply displays the current
configuration settings for the Endpoint. The information presented is made
up of information contained in the last.cfg file and lcf.dat file.

Chapter 6. TME 10 Framework Web Interface 83

Figure 26. LCF Endpoint′s Configuration Settings Page

6.2.6 Trace Log Page
This page, shwon in Figure 27 on page 85, allows the administrator to view
a trace log of messages sent and received at the Endpoint.

84 TME 10 Framework Version 3.2

Figure 27. LCF Endpoint′s Trace Log Page

6.2.7 Network Address Configuration Page
This Network Address Configuration Page displays information about the
current Gateway settings, but more importantly, it allows you to change the
configuration of an Endpoint. In the dialog presented for additional
configuration options, you can specify any parameters supported by the -D
option on the lcfd command. See the TME 10 Framework Reference Manual
for details on this command.

Chapter 6. TME 10 Framework Web Interface 85

Figure 28. LCF Endpoint′s Configuration Page

For instance, you could use this page to alter the default Gateway for an
Endpoint. Once you have entered the configuration options and selected the
Apply button, you will be prompted for a user ID and password. By default,
the user ID is tivoli and the password is randomly generated. To obtain
the proper password, a TME 10 Administrator can issue the wep command as
follows:

wep gobantp get httpd

86 TME 10 Framework Version 3.2

For more information on the wep command, refer to the TME 10 Framework
Release Notes. In the initial release of the TME 10 Framework
documentation, this command is not documented in the TME 10 Framework
Reference Manual.

This will display the current user ID and password for the specified
Endpoint. The administrator may also change the current userid and
password by issuing the following command:

wep gobantp set http userid:password

To go back to changing the configuration via the web page, once the user ID
and password are properly entered, the configuration changes are applied
to the Endpoint and the Endpoint is restarted with the new configuration.

6.3 Summary

This chapter has introduced a powerful new interface to the TME 10
environment. For TMR Servers, the web server function will allow
applications to provide web-based interfaces to their application function.
These functions can be initiated through CGI scripts or Java applets.

For LCF Endpoints, the web server function allows administrators to query
information about the Endpoint and to alter the Endpoints configuration
dynamically.

Chapter 6. TME 10 Framework Web Interface 87

88 TME 10 Framework Version 3.2

Chapter 7. Migration from TME 3.1 to TME 3.2

This chapter provides an overview of the issues and solutions involved in
migrating to V3.2 of the TME 10 Framework from V3.1. At the writing of this
redbook, LCF enabled applications are not yet available, so our discussion
will, by necessity, be at a high level.

However, Tivoli is committed to providing tools and facilities that will assist
in the migration from the existing two-tier structure including PC Managed
Nodes to the three-tier architecture provided by LCF.

One of the major factors determining how easy or difficult a migration plan
will be rests on the concurrent availability of LCF enabled applications. If all
applications used in your particular environment become LCF-enabled, then
a migration plan can be put in place that will replace most of your current
Managed Nodes and PC Managed Nodes by LCF Endpoints. Tivoli is working
towards a concurrent release of LCF enabled TME 10 applications.

However, if you do have applications in your environment that do not have
an LCF-enabled release concurrent with other applications, your migration
plan may include the coexistence of both an LCF Endpoint and a Managed
Node or PC Managed Node on the same physical system to provide support
for the various applications.

7.1 Reasons for Migrating

Though we have discussed some of the benefits of LCF in previous
chapters, it is valuable to include a summary of the benefits in this chapter
to help clarify why you might consider migrating to LCF.

With the introduction of LCF technology, Tivoli is expanding their approach
to distributed systems management. Focusing on customer requirements
for a full function, lightweight client, Tivoli has addressed the following
items.

• Breaking the limit of 200 full-function clients per TMR . In previous
versions of the TME 10 Framework, the limit of 200 Managed Nodes per
TMR caused customers to implement the connection of multiple TMRs
solely for the purpose of supporting their large number of clients. There
were, and still are, other valid reasons for implementing multiple TMRs
in a single environment, but in cases where the number of clients was
the only motivation, LCF will allow for a reduction in the number of
TMRs. The LCF-enabled framework can support many thousand
Endpoints in a single TMR.

 Copyright IBM Corp. 1997 89

• Off-loading the TMR Server . In an LCF environment with few Managed
Nodes and many Endpoints, the load on the server will be reduced. For
instance, in a TME 3.1 environment with 150 Managed Nodes, one server
would have had to manage the TME database distributed over 150
nodes. In an LCF environment, you may have just a few Managed
Nodes acting as Gateways and the majority of the systems running as
LCF Endpoints. The TMR Server must manage the database distributed
over only a few nodes, and much of the processing formerly done by the
TMR Server is now off-loaded to the Gateway nodes.

• TME Software Maintenance . In a TME 3.1 environment, with many
Managed Nodes, new versions of software had to be explicitly installed
on all systems. The process of installing new levels of software on all
systems in a concurrent fashion could be difficult in environments with a
large number of clients. With LCF, new versions of applications only
need to be explicitly installed on Gateway systems. When methods are
invoked on Endpoints, the new versions of the methods are
automatically downloaded to the Endpoint′s cache.

This mechanism reduces the network overhead of down loading large
numbers of files (executables) to every Managed Node concurrently. In
addition, only those methods that are actually used are ever
downloaded to the Endpoint. Prior to LCF, the complete set of binaries
for the Managed Node piece of an application were sent to each
Managed Node.

• Improves Mass Installation Procedure . If you have a large network, the
installation of LCF Endpoints may make it easier to deploy the TME 10
environment. Using policies and configuration files as described in
Chapter 4, “LCF Installation” on page 41, Endpoints can be deployed
easily, without the overhead of installing a full Managed Node
environment.

In addition, the broadcast technique for finding an appropriate Gateway
makes the Endpoint largely immune to problems arising from relocation
or reconfiguration of the managed system.

• TME Database Consistency . Since the TMR Database will now be
distributed across fewer nodes, the process of backing up and
performing consistency checks on the TME 10 database will run faster
and will have fewer failure points, since it is more likely that all
Managed Nodes will be active and contactable.

Although the TME 10 Framework does not maintain a database on the
LCF Endpoint, individual applications could choose to write data to the
local disk. In this case, any such data would be backed up through
normal backup procedures for those individual workstations, not as part
of the wbkupdb command. However, if you wish to automate this

90 TME 10 Framework Version 3.2

process, it could be done through normal TME 10 Tasks/Jobs. You will
need to refer to the documentation for individual applications as to
whether or not they write application-specific data to an Endpoint′s disk.

• Support for New Platforms . The spawner daemon is small and quite
simple. This will make it easier to port the daemon to additional
platforms. As support for additional platforms rolls out, the desire to
manage these new platforms may drive the requirement to migrate to
an LCF-based environment.

• Eliminate problems associated with PC Managed Nodes . PC Managed
Nodes greatly improve the scalability and manageability of the current
TME 10 architecture, but there are still a number of issues that can arise
because of them:

− Maintenance - The PC Managed Node software contains application
Endpoint function. As changes are made to the applications, or new
function is provided on the desktop system, the PC Managed Node
code has to be upgraded. Although maintaining each node is a
trivial task, multiplying it by thousands of desktop systems creates
an unwanted administrative burden.

− Security - Security for a PC Managed Node is not as strong as for
platform nodes. All messages between Managed Nodes contain an
encrypted authentication header to prevent a hacker from
impersonating TME systems. PC Managed Nodes do not have this
feature.

− PC Managed Nodes have to be manually defined within policy
regions. As in the maintenance case, this is a trivial manual task for
a small number of nodes, but it becomes onerous for thousands of
nodes.

7.2 Migration Process Overview

Although there are several strategies that could be employed when planning
the migration to V3.2 of the TME 10 Framework, the following three steps will
make up the core of your plan.

 1. Framework Migration

LCF provides new and additional capabilities over those provided in
previous versions of the TME 10 Framework. However, you can install
V3.2 without initially taking advantage of LCF. In other words, you can
upgrade all of the systems in your environment to V3.2, while
maintaining your current two-tier architecture.

Upgrading to V3.2 uses the same procedure as installing a patch. In
fact, V3.2 includes a large number of fixes to problems reported on

Chapter 7. Migration from TME 3.1 to TME 3.2 91

earlier versions of the TME 10 Framework. You should see an
improvement in the performance and stability of the new Framework
when installed, even when maintaining your current TMR structure.

Of course, you will want to thoroughly test V3.2 in your own test
environment to ensure that all of your current applications continue to
run properly.

 2. Add New Endpoints

As LCF-enabled applications become available, you will want to start
adding new nodes as LCF Endpoints instead of Managed Nodes or PC
Managed Nodes. This will be the first step in moving towards the new
three-tier architecture.

During this phase, you may be defining new Profile Managers to support
your new LCF Endpoints. Initially, applications will likely provide
equivalent function for both traditional Managed Nodes and LCF
Endpoints. However, you will need to investigate this on an application
by application basis to determine whether unique profiles or profile
managers will be desired to support LCF Endpoints and Managed
Nodes.

At this stage of the migration, you will need to define some of Managed
Nodes as Endpoint Gateways. Determining which Managed Nodes are
appropriate candidates to perform the Gateway function depends on
environment specific criteria, such as hardware requirements, system
load, network configuration, and so on.

This phase will require a fair amount of planning and insight into the
future growth of management applications and activities. During this
phase you will also start adding LCF Endpoints to your existing Managed
Nodes and PC Managed Nodes. This will allow a single system to be
managed as either a Managed Node, PC Managed Node or LCF
Endpoint. This may be a critical step if not all applications in use in
your environment are LCF-enabled at the same time. (As stated before,
Tivoli′s goal is to have all core applications LCF-enabled concurrently.)

 3. Migrate Managed Nodes and Profile M anagers

In the final phases of migration, you will want to convert many of your
Managed Nodes and PC Managed Nodes to pure LCF Endpoints. During
this phase, the subscriber lists for Profile Managers will need to be
migrated such that Managed Nodes are unsubscribed, but their
replacement Endpoints are subscribed. This will also require changes
to the Profiles themselves to reflect the use of dataless mode.

When an LCF Endpoint subscribes to a profile, any associated data is
distributed to the Endpoint Gateway. The Endpoint Gateway will update

92 TME 10 Framework Version 3.2

its own database and will then manage the appropriate downcalls to the
Endpoints.

The easiest way of enabling a Profile Manager to support a dataless
Endpoint is to clone the ProfileManager object to a new dataless Profile
Manager. It is expected that when LCF applications are released,
migration facilities will be made available to migrate the information
contained in current Profile Managers to new dataless Profile Managers.

7.3 Migration Scenarios

The following table summarizes the most likely upgrade scenarios for
systems in current TMRs. For instance, current TMR Servers will become
both a TMR Server and an Endpoint Manager. It is also possible that you
will include Gateway Function on the TMR Server in some environments.
Note that in many environments, fewer TMR Servers will be required and
therefore, some TMR Servers will be ′downgraded ′ to the role of a Managed
Node (and possibly Endpoint Gateway) in another TMR. Since such a step
would require a complete reinstallation of the TME 10 Framework, we
consider this step the same as installing a new Managed Node and Endpoint
Gateway.

As an example of a migration scenario, Figure 29 on page 94 depicts two
interconnected TMRs that will be migrated to a single TMR as shown in
Figure 30 on page 95.

Table 4. LCF Release 3.2

TME V3.1 TME V3.2

SRV-EM MN GW EP PCMN

SRV X X

MN X X X

PCMN X X

Chapter 7. Migration from TME 3.1 to TME 3.2 93

Figure 29. Two Interconnected TMRs without LCF

TMR Server Fred will continue to be a TMR Server and take on the role of
Endpoint Gateway. TMR Server Rubble will no longer be needed as a TMR
Server, since Fred will now be able to support many more systems as
Endpoints.

94 TME 10 Framework Version 3.2

Figure 30. Single TMR with LCF

The configuration of our consolidated TMR will now have a single TMR
Server, two Endpoint Gateways (Wilma and Rubble) and five Endpoints.

The first step in the migration would be to upgrade Fred to V3.2 of the TME
10 Framework. This upgrade can be installed as a patch, through the normal
TME procedures. The procedure for upgrading a the TME 10 Framework will
be presented later in this chapter.

The upgrade procedure will automatically make Fred an Endpoint Manager.
The Managed Node Wilma could be upgraded at the same time. However,
upgrading Wilma to Version 3.2 does not automatically make that node an
Endpoint Gateway. That will require an additional step. However,
upgrading Fred and Wilma should allow our TME 10 environment to continue
running as it does today and prepare us to start migrating the other nodes.

Once Wilma is upgraded it can become a Endpoint Gateway as described in
section 4.2, “Endpoint Gateways” on page 43.

The Rubble system is being migrated from a TMR Server to a Managed Node
in the other TMR. There is no explicit migration mechanism for this step.
Rubble must have its TME 10 software completely reinstalled. Of course,
while Rubble is having its software removed and installed, the three systems
in its TMR (Barney, Betty and BamBam) will not be manageable. One way

Chapter 7. Migration from TME 3.1 to TME 3.2 95

around this would be to install the LCF Endpoint software on those systems
and allow them to connect via Wilma.

The Endpoint software can be installed while those systems are still running
as Managed Nodes and as PC′s running the PC Agent code.

Likewise Dino and Pebbles can have their Endpoint code installed while still
performing their roles as a Managed Node and PC Agent.

Once Rubble is fully in place as a Endpoint Gateway, we can add Endpoint
Manager policy to Fred to ensure that the Endpoints connect via the proper
Endpoint Gateways.

Finally, once we have tested all of our Endpoint function and are satisfied
that the Managed Nodes (other than Wilma and Rubble) and PC Managed
Nodes are no longer required, we can remove the software from those
systems and run our pure LCF environment.

The above scenario is obviously a simple one and many planning details
are left out (such as application migration), but it provides the general steps
required for most migrations.

Since most of the steps involve installing brand new software which was
described in Chapter 4, “LCF Installation” on page 41, the only step we will
take you through is the upgrade procedure that would be used on Fred and
Wilma.

7.3.1.1 Upgrade Using the TME 10 Desktop
Version 3.2 of the TME 10 Framework is available as a full product CD as
well as an upgrade CD. The upgrade CD image should be used when
migrating to V3.2 from prior versions.

 1. From your TME 10 Desktop (see Figure 31 on page 97), select
Desktop->Install->Install Patch and follow the instructions.

96 TME 10 Framework Version 3.2

Figure 31. Upgrade to 3.2 - Start f rom Desktop

 2. You wil l not see the error message (Figure 32 on page 98) if the path
has already been selected in a previous action. In this case, continue
with Figure 33 on page 99.

Chapter 7. Migration from TME 3.1 to TME 3.2 97

Figure 32. Upgrade to 3.2 - Install Patch - Error Message

 3. Press OK .

 4. In the dialog titled Set Path to Tivoli Install Media , select the host and
directory on which the upgrade CD image is available.

 5. In the Install Patch dialog (see Figure 33 on page 99), within the Select
Patch to Install combo box, select TME 10 Framework Upgrade to
Version 3.2 .

 6. Move panda to the Clients to Install On box.

At this time, you can select all Managed Nodes which are to be
upgraded, as we did in this figure.

98 TME 10 Framework Version 3.2

Figure 33. Upgrade to 3.2 - Install Patch

 7. Continue with Install & Close

Chapter 7. Migration from TME 3.1 to TME 3.2 99

Figure 34. Upgrade to 3.2 - Patch Install

 8. You will now see a series of messages displayed in the message box of
the Install Patch panel (see Figure 35 on page 101 through Figure 37 on
page 102).

 9. Press Continue Install on the next panel (Figure 35 on page 101).

100 TME 10 Framework Version 3.2

Figure 35. Upgrade to 3.2 - Patch Install (cont ′d)

Figure 36. Upgrade to 3.2 - Patch Install (cont′d)

Chapter 7. Migration from TME 3.1 to TME 3.2 101

10. When Finished patch installation appears, select Close on next panel
(Figure 35).

Figure 37. Upgrade to 3.2 - Patch Install (finished)

11. When the installation has completed, you′ ll find the new Endpoint
Manager icon on your TME 10 Desktop (Figure 38 on page 103).

102 TME 10 Framework Version 3.2

Figure 38. TME Desktop after Upgrading to 3.2

Important Step!

After upgrading the TMR Server, you will need to perform the following
step before performing other functions.

Execute the $BINDIR/TAS/INSTALL/lcf_oserv_upgrade command.

This command will restart all of the upgraded oserv daemons within your
TMR. If these daemons are not restarted after installing the upgrade,
errors will occur.

7.3.1.2 Upgrade via Command Line or Script
The TME 10 wpatch command is used to install a patch on existing systems.
This command can be executed directly, but it is often embedded within a
script to ensure that all environment variables and parameters are set

Chapter 7. Migration from TME 3.1 to TME 3.2 103

correctly. By upgrading a TMR Server using this procedure, the Endpoint
Manager function will automatically be installed.

The following script can be used to upgrade the TMR Server to Version 3.2
of the TME 10 Framework. This script could easily be modified to upgrade
Managed Nodes within the TMR at the same time. Note that the SERVER
and PATCHDIR variables will need to be customized for the specific
environment.

#/bin/ksh!
clear
Variables Definition
SERVER=panda
PATCHDIR=/TME32/UPDATE
PATCHIND=TMP_32.IND
command line for upgrading
wpatch -c $PATCHDIR -i $PATCHIND -y $SERVER

$BINDIR/TAS/INSTALL/lcf_oserv_upgrade

See TME 10 Framework Reference Manual for details on the wpatch
command.

Remember to backup the TMR database before and after installing the
upgrade.

7.3.2 Add a Gateway to a Managed Node
Once Managed Nodes have been updated to V3.2 of the TME 10 Framework,
Endpoint Gateway objects can be created on them. Again, this can be done
via the TME 10 Desktop or through the command line interfaces.

Once the Managed Nodes (and Server) have been updated, the process is
no different than shown in section 4.2, “Endpoint Gateways” on page 43.

Below is another simple example of a script that could be called to create
an Endpoint Gateway.

#/bin/ksh!
#
clear
Variables Definition
GW1=traci
#command line to create a gateway

wcrtgate -h $GW1 -p 9595
echo done

Note that in this example, we have specified that port 9595 should be used
for the Endpoint Gateway′s port.

104 TME 10 Framework Version 3.2

7.4 Summary

This chapter has provided an overview of the various considerations
involved in putting together a migration plan from previous versions of the
TME 10 Framework to Version 3.2. Unfortunately, when this redbook was
written, the LCF enabled applications were not yet available, so that many of
the more intricate steps could not be tested and described. For instance,
the use of dataless profiles and the moving of Managed Nodes to Endpoints
using these profiles will likely be a process that may require a fair amount
of planning. On the other hand, Tivoli is working on providing migration
tools for their various applications that will handle the bulk of this for you.

Chapter 7. Migration from TME 3.1 to TME 3.2 105

106 TME 10 Framework Version 3.2

Chapter 8. Application Development Considerations

This chapter discusses information related to developing applications that
will support LCF Endpoints. It describes the programming environment,
discusses the special application library for use by LCF applications and
discusses the components an LCF-enabled application should have.

8.1 Application Design

As you have read in the previous chapters, the core features of LCF include:

• Three-tier structure - Endpoint Manager, Gateway and Endpoint.

• The nature of the Endpoints - small, dataless clients that have no client
database and that do not have the full TME10 Framework installed.

• The scalability possible within the LCF environment - one Gateway can
manage thousands of Endpoints.

An application must be designed and written with these features in mind.
The application development environment for LCF is very similar to that of
the full framework. However, there are some differences in how methods
are executed for Endpoints. These differences and their implications will be
described in the following sections.

8.1.1 TME Methods
The next two sections briefly describe how methods work in both the
traditional TME 10 Framework and in LCF.

8.1.1.1 Methods in the Full Framework Environment
In the full framework environment (TMR Servers and Managed Nodes) all
methods are executed in the some way. From any system within the TMR,
you can execute a method on any other system. The only thing you must
know is the object reference. That consists of the TMR Region Number, the
Dispatcher Number and the Object Number.

The calling program passes the object reference to the Managed Node. The
TMR Server is used to resolve it through the object dispatcher, locate the
methods for that object, retrieve the method header and invoke it.

The key point here is that any application on any Managed Node can invoke
a method on any other Managed Node.

 Copyright IBM Corp. 1997 107

8.1.1.2 Methods in the LCF Environment
Methods run differently in the LCF environment than in the full framework
environment. The differences are:

 1. An application running on an Endpoint can only invoke methods on
objects residing in its Gateway. Restricting method requests from an
Endpoint to its Gateway allows the Endpoint to be simpler and smaller,
since it does not need to resolve and locate remote objects. It does
require that an application that will require Endpoints to manipulate
remote objects to have an Endpoint Gateway component. The Endpoint
will then talk to this Endpoint Gateway component which will in turn take
advantage of the fact it it has full access to the TMR to invoke the
appropriate methods on the target object(s). This design enables a
higher degree of scalability than was possible in previous versions of
the TME 10 Framework.

 2. In the LCF, method calls differ according to whether they are upcalls
(methods invoked from an LCF Endpoint) or downcalls (methods
targeted for an object residing on an Endpoint).

 3. Endpoint methods use some of the tools and services of the TME10 ADE,
but they are implemented using a special application mini-runtime
library (libmrt) specific to LCF.

The above differences introduce some new terms, such as:

• LCF Object An object running on an Endpoint.

• Endpoint method A method that runs on an Endpoint. An Endpoint
method runs as the result of a downcall.

• Gateway method A method that runs on an Endpoint Gateway, usually
as the result of an upcall made by the Endpoint associated with the
Gateway.

• Downcall A method invocation from the Gateway ″down″ to an Endpoint.

• Upcall A method invocation from an Endpoint ″up″. to the Gateway.

8.1.1.3 LCF Object
An LCF object is an object running on an Endpoint. LCF object references
have the special form:

R.D.P+ where:

• R is the TMR number. Objects in TME V3.x have 10 digit region
numbers. Objects in Versions 2.x have six digit region numbers.

• D is the number of the object dispatcher or host number within the TMR.

108 TME 10 Framework Version 3.2

• P is the object number of the prototype object of the class for which the
method is defined.

• + indicates an LCF object reference.

This combination of the three numbers always makes the object reference
unique. On the Endpoint there is no need to create an instance of each
object as you do in the full framework. LCF objects do not have a unique
per-object state maintained for them by the object system. Thus, there is no
need to notify the object system when a new Endpoint object is created or
deleted.

To create a new object based on an existing prototype object, you generate
a reference to it in the above form and then invoke it. After that, the system
locates the appropriate shared state (defined by the prototype object) and
services the method request at the appropriate location. Because there is
no per-object data associated with an object and maintained by the
framework, applications have to assume responsibility for maintaining their
own persistent store outside the context of the LCF base services.

To find the class of an object you can issue the command:

objcall <R.D.P> getattr class_objid

The following example shows this command and its output:

[root@panda]/u> objcall 1648772799.1.343 getattr class_objid
d03648772799.1.18#TMF_SysAdmin::InstanceManager#
[root@panda]/u>

8.1.1.4 Endpoint Methods
An Endpoint method is a method that runs directly on an Endpoint. It is
implemented using the special application mini-runtime library, libmrt , which
provides a subset of the TME10 operations.

When an Endpoint method is invoked on an object on the Endpoint, the
Endpoint spawner daemon uses the method executable stored in its cache.
If the method is not in the cache or is not the most current version, the
Gateway will transfer the method ′s executable to the Endpoint before
invoking it. The Endpoint then adds the method to its cache for future use.
The Endpoint methods differ from full framework methods in these ways:

• Endpoint methods must be single threaded. There are no daemons or
multiple-entry points for Endpoint methods.

• There is no transaction support for Endpoints in the LCF environment.

• You must specify dependencies for Endpoint methods. An Endpoint
method may be implemented across several files. Besides the

Chapter 8. Application Development Considerations 109

executable containing the method, a method may require supporting
files, such as shared libraries, message catalogs or other files. These
supporting files are called dependencies and are defined as such in the
method ′s definition. The Gateway will ensure that all dependencies for
a method have been downloaded to the Endpoint before invoking a
method.

In the full framework, only the method body, the binary program or script
that contains the method entry point is stored in the method header. Any
supporting files that the method requires are assumed to be present. This
is true because all binaries, library, message catalogs and so on are
installed on every Managed Node and TMR server.

LCF Endpoints do not have any methods or supporting files present on them
when Endpoints are initially installed. Method bodies are identified in the
standard method header and are downloaded when needed. Because the
dependencies (the supporting files) must also be downloaded when missing,
the dependencies must be called out in the Endpoint method so they can be
present when needed.

8.1.1.5 Gateway Methods
A Gateway method runs on the Endpoint′s Gateway. It runs as the result of
an upcall request from an Endpoint or as the result of a request from
another Managed Node. Since the Endpoint can not communicate directly
with other nodes, it must initiate all actions by invoking an upcall on a
Gateway method. The Gateway method then takes advantage of the full
TME 10 Framework to resolve and locate the appropriate target object(s)
and invoke the proper methods.

8.1.1.6 Downcalls and Upcalls
A process called a downcall is when a method request originates on a
Managed Node and executes on an Endpoint. The Endpoint receives the
program name to execute and the arguments and runs the program. After
the Endpoint method completes, the Endpoint returns the result back
through the Gateway. If the requested Endpoint method does not already
exist on the Endpoint or if the method is on the Endpoint but out of date, the
method executable is downloaded to the Endpoint. If the method has
dependencies, they are also downloaded.

An upcall occurs when Endpoint applications initiate TME 10 operations
elsewhere within the local TMR. The Endpoint can only invoke methods on
the Managed Node associated with its Gateway, not on any arbitrary object
in the TMR. This design maintains scalability since upcalls are handled at
the Gateway without going to the TMR Server each time.

110 TME 10 Framework Version 3.2

The upcall consists of a class name, the name of the method to be run and
the arguments for the method. The Gateway then resolves the prototype
object for the class name and constructs the object call to invoke the
method. Not all Endpoint applications need to make upcalls. An application
that supports upcalls must provide both the Endpoint code and the Gateway
upcall method.

Upcall Architecture: If an LCF-enabled application will require an Endpoint
to make upcalls, then an instance of an upcall collector will be required. An
upcall collector is a daemon that implements all Gateway methods for an
application, and executes in the Gateway′s Managed Node. It is basically a
a store-and-forward router for application-specific upcalls. The upcall
collector collects upcall data, optionally batches them together and forwards
the data to an application Mid-Level Manager (MLM). The application MLM
then processes the data and, depending on the application, possibly
forwards it to a Top-Level Manager (TLM on the Server) for the application,
or invokes methods on other objects directly. Since the Gateway resides on
a full function Managed Node, the mid-level manager has full access to the
framework services.

The upcall collector is implemented by an abstract class object. An abstract
class provides a base class from which you can derive other classes. It can
be used for inheritance purposes. Abstract classes frequently describe the
characteristics of the other classes and instantiable classes describe the
characteristics of individual objects. There is exactly one abstract object for
each class on each object dispatcher. Because the upcall collector is
implemented by an abstract object, it has no persistent store. There is no
client database installation for an LCF application and so there are no client
database updates or any related issues concerning maintaining the
consistency of the database.

The upcall collector component is defined as follows:

• The upcall collector has its own IDL interface.

• Upcall collectors will never be instantiated, so they are defined to be
abstract implementations. That is, the TEIDL keyword abstract appears
in the implementation header in the .imp file.

• Dependencies for upcall collector methods are specified using the
wdepset and wchdep commands.

For Endpoint methods that will be making upcalls, there are two ways of
handling authorization:

Chapter 8. Application Development Considerations 111

• Short-lived methods that need to perform only one upcall can use
per-upcall authorization. In this case, the upcall and principal login are
combined into a single step to authorize a single upcall.

• Longer-running Endpoint methods that require multiple upcalls use a
principal login. The principal login returns credentials that may be used
to authenticate subsequent upcalls. The Gateway authenticates the user
name and password, then returns a ″sealed certificate″. The application
should store the certificate on disk or another persistent store where it
may be used by others.

8.1.2 Components of an LCF Application
When designing your LCF application, keep in mind that there is no TME 10
database on Endpoints. Therefore, objects on Endpoints do not have a
persistent state.

Endpoint applications that need to perform TME operations must be written
with both a client (Endpoint) and a server component. Depending on the
application, you may also need to write an optional Gateway component. A
list of the possible components is:

• Client component (Required) - Includes methods that run on the
Endpoint.

• Upcall collector (Optional) - Required if your application makes upcalls.

• Mid-Level Manager (Optional) - Required if the Upcall Collector is
present.

• Top-Level Manager (Optional) - Related to the Mid-Level Manager and
may be used to keep configuration state information for all Endpoints for
example.

• Gateway component (Optional) - Present only if the application makes
upcalls.

• Server component (Required) - Runs on the TMR server.

In the following sections we present three scenarios to illustrate the
Endpoint, Gateway and Server components of an LCF-enabled application.

8.1.2.1 Downcall Example
To illustrate a downcall example, consider a scenario related to an
implementation of the TME 10 Software Distribution push interface. In this
case the application developer writes two modules:

• Server module, which distributes files to the Endpoint.

112 TME 10 Framework Version 3.2

• Endpoint module, which receives, unpackages and installs the files sent
from the server.

The flow of this application includes:

 1. The Server initiates a file package distribution to an Endpoint.

 2. The file package is distributed through the Gateway. There is no
application specific code required at the Gateway. The Gateway will
receive such methods, verify that the Endpoint cache contains the
required method and its dependencies, and then invoke the method on
the Endpoint itself.

 3. The Endpoint method unpackages and installs the file package.

8.1.2.2 Upcall Example
To illustrate an upcall example, consider the scenario related to an
implementation of the TME 10 Software Distribution pull interface. In this
case the application developer writes three modules:

• Endpoint module initiates a file or package pull and unpackages and
installs the files.

• Gateway module handles the pull request from the Endpoint and using
the full function TME library, initiates a request that is sent on to the
server.

• Server module receives the request and distributes the file packages to
the Endpoint.

The application flow is as follows:

 1. The Endpoint initiates a file package distribution. This request is sent to
the Gateway as a method call on the Gateway module.

 2. The Gateway module interprets this request and calls the appropriate
methods on the application server.

 3. The server receives and responds to this request and distributes the file
packages to the client, as in the pull scenario above.

 4. The Gateway interprets the method call, ensures that the appropriate
receiver methods are in place on the Endpoint, and then invokes those
methods.

 5. The Endpoint unpackages and installs the file package.

8.1.2.3 Upcall Collector Example
To illustrate an example involving an Upcall Collector, we could envision an
inventory application designed to collect inventory information from a

Chapter 8. Application Development Considerations 113

machine each time it reboots. As part of this, an initialization method has
been run on each Endpoint to run the inventory program on boot.

This application requires four modules:

• Endpoint module, which queries the system and generates an inventory
report.

• Gateway module, which gathers the data from multiple Endpoints.

• Upcall Collector module, that collects information from various Endpoints
before forwarding the information on to the Gateway module.

• Server module, which processes the various inventory reports and adds
the information to a relational database.

Logically when a boot occurs, the following steps are taken:

 1. The Endpoint runs a program that generates a local inventory report

 2. The Endpoint program then invokes an ″inventory report″ method on the
Gateway and passes the inventory data as a parameter.

 3. The Upcall Collector waits until it has responses from some
predetermined number of Endpoints.

 4. The Gateway invokes a method on the TMR server to pass the collected
inventory reports to the server,

 5. The server component then processes the collected information and
updates a relational database.

8.2 The LCF programming Environment

Programmers use the Tivoli Extended IDL (TEIDL) compiler to produce
method stubs and skeletons. The stubs are used by TME methods to invoke
Endpoints methods. The skeletons are linked with Endpoints methods and
the LCF application runtime library to create executables.

LCF methods are described using four standard files with the following
extensions:

• .idl - These files contain the definition of the interface for one or more
classes of objects.

• .imp - These files contain information about the implementation of the
interfaces described in IDL files.

• .prog - These files specify execution characteristics for methods in a
class.

114 TME 10 Framework Version 3.2

• .ist - These files define how classes are installed in a TME 10
environment.

All of these files are used to build the methods on the server, the Gateway,
and the Endpoint. The only difference is that for the Server and Gateway
methods you use the standard Tivoli Extended IDL (TEIDL) compiler and for
Endpoint methods you use a special front end script (ltid) to run the TEIDL
compiler. The ltid processes the standard TEIDL compiler-generated code
to enable it to run on an Endpoint. At link time the following libraries are
used:

• libmrt - The application mini-runtime library for LCF Endpoints.

• libcpl - The common porting layer library.

• libdes - The DES library.

In addition, Endpoint methods must be linked to any other libraries needed
by the specific methods.

There are two ways to debug Endpoint methods in the LCF environment:

• Use the ADE debugging tools from the full framework, such as the wdebug
command. With this tool you can debug one method at a time.

• Use the -D option when starting lcfd. With this option you can stop each
Endpoint method when it starts and attach a debbuger. In this way you
can debug all methods on an Endpoint. For example, to debug you can
use the command:

lcfg -D debug_flags=1

When each method start, lcfd prints to the console the method name
and the process it starts. It then suspends the methods so you can
attach a debugger.

8.3 Application Runtime Library

The LCF application mini-runtime library (libmrt) contains functions you use
to implement Endpoint methods. This library provides the smallest subset of
library functions needed to implement an LCF method executable for an
Endpoint. Using this special application runtime library helps keep the
Endpoint portion of the application as small and simple as possible, while
still providing the capability to develop robust and complete applications.
libmrt contains subsets of the following sets of functions provided by the full
framework:

Memory management
Distributed exceptions

Chapter 8. Application Development Considerations 115

Sequence manipulations
File system input/output
Logging functions
ADR marshalling functions

In general, the functions in libmrt are part of the full framework and function
identically to the full framework functions (look for these functions in the
Tivoli Application Services Manual, Volumes 1 and 2).

The following sections summarize the functions available in the libmrt
l ibrary.

8.3.1 Memory Management
The library provides a subset of memory management functions that work
with either local or global memory:

Use local memory for temporary allocations that are automatically freed
when they go out of scope.

Use global memory for all allocations that must persist.

The following table summarizes the memory management functions
available for Endpoint methods.

Table 5 (Page 1 of 2). Memory Management Functions

Routine Name Description

mg_malloc Allocates a block of uninitialized global heap memory

mg_free Free global memory allocated by mg_malloc , mg_calloc or
mg_realloc

mg_calloc Allocates a block of global memory, initialized a zero

mg_realloc Reallocates global memory; changes the size of an
allocated block of memory

mg_strdup Copies a string into a new block of memory allocated with
mg_malloc

mg_cleanup Free all globally allocated memory (mg_*alloc) that has not
been deallocated

ml_create Creates a new local memory heap

ml_malloc Allocates uninitialized local memory

ml_free Frees local memory allocated with one of the ml_*alloc
functions

ml_calloc Allocates a local memory, initialized to zero

ml_realloc Reallocates local memory

116 TME 10 Framework Version 3.2

Table 5 (Page 2 of 2). Memory Management Functions

Routine Name Description

ml_to_mg Moves memory from local to global

ml_strdup Duplicates string using ml_malloc

ml_destroy Frees all memory in a local memory heap

ml_ex_malloc Allocates unitialized local memory, in a Try() frame

ml_ex_calloc Allocates local memory, initialized to zero, in a Try() frame

ml_ex_realloc Reallocates local memory, in a Try() frame

ml_ex_strdup Duplicates string using ml_ex_malloc , in a Try() frame

8.3.2 Distributed Exceptions
Exceptions are used to report fatal errors. You can use the standard
try/Catch frame macros or the variable argument exception functions to
handle exceptions.

The following table describes the macros you can use.

In some cases you might find it is easier to use the variable argument
(printf-style) exception functions rather than the Try/Catch macros.

The table below shows the variable argument exception functions you can
use.

Table 6. Distributed Exceptions - Available Macros

Macro Description

Try Starts a new Try/Catch frame

Catch Catches an exceptions of a given type

CatchAll Catches exceptions of any type

EndTry Ends a Try/Catch frame

Throw Throws an exception

ReThrow Rethrows a caught exception

ev_to_exception Converts an environment to an exception

exception_to_ev Converts an exception to an environment

Chapter 8. Application Development Considerations 117

Table 7. Distributed Exceptions - Available Variable Argument Exception
Functions

Routine Description

vaThrow Throws an error message

vaThrowDerived Throws a type of error message

vaMakeException Returns a pointer to the exception

vaAddMsg Appends a new message to an X/Open message

ThrowExErrorMsg Throws a message as an exception

8.3.3 Sequence Manipulations
The data types supported by IDL do not include variable length arrays.
Instead, you must use a data type called a sequence. A sequence consists
of a pointer to an array of a given data type and a count of the number of
elements in the array.

The LCF environment supports a limited subset of the functions available to
manipulate sequences, and their use is slightly different from that used in
the full framework. In the full framework, the sequence APIs are all
implemented as function calls in libtas . You must type cast all references of
user-defined sequences from the native data type to the sequence_t type. In
LCF, the sequence APIs are lightweight macros defined in seq.h . In LCF, it
is no longer necessary to cast from the user-defined type to the sequence_t
type. All LCF sequence macros allow you to use the sequence without
having to cast values to and from sequence_t . The following table shows
the supported sequence macros, where < t y p e > is a typed sequence_t .

Table 8 (Page 1 of 2). Sequence Manipulations - Available Sequences Macros

Macros Description

Seq_new(size_t size) Creates a sequence of elements of the size
specified in memory

Seq_zero(< type >
*seq)

Clears the sequence

Seq_len(< type> * seq) Returns the number of elements in the sequence
specified

Seq_get(< type> * seq,
int index)

Returns a pointer to the data item in the sequence
for the index specified

Seq_add(< type> * seq,
< type> i tem)

Adds a data item to the end of a sequence

Seq_remove(< type >
*seq, int index)

Removes a data item from a sequence

118 TME 10 Framework Version 3.2

Table 8 (Page 2 of 2). Sequence Manipulations - Available Sequences Macros

Macros Description

Seq_free_buffer(
< type > *seq)

Frees the memory allocated for the buffer portion of
the sequence specified

8.3.4 File System Input/Output
LCF supports a set of functions for file system input and output, which are
summarized in the following table.

Table 9. File system input/output - Available Functions

Function Description

open_ex Opens a file. Throws an exception on error.

read_ex Reads a file. Throws an exception on error.

write_ex Writes a file. Throws an exception on error.

close_ex Closes a file. Throws an exception on error.

makedir_ex Makes a directory. Throws an exception on error.

make_path Checks for and build every component of the path.

does_file_exist Returns true or false.

get_file_length_ex Returns the number of bytes in a file.

get_open_file_length_ex Returns (in bytes) the size of a file opened with
open_ex .

lseek_ex Moves around in a file opened with open_ex .

rename_file_ex Renames a file. Throws an exception on error.

copy_file_ex Copies source path to destination path and returns
the number of bytes copied. Throws an exception
on error.

ep_stream_read Reads a mdist stream.

8.3.5 Logging Functions
The logging utility provides functions that enable you to create multiple logs
to produce printf -style messages to a console and to a file. The logging
utility includes the following functions.

Chapter 8. Application Development Considerations 119

Table 10. Logging Functions - Available functions

Function Description

LogInit Creates a new log file. It also backs up the old log
file and allocates resources needed by the log
module.

LogDeinit Deallocates resources set by a call to LogInit .

LogMsg Uses the Tivoli National Language Support (NLS) to
format an internationalized message and then
output it to console and log file.

LogSetDefault Maintains a static (private) pointer to the default log
structure.

LogGetDefault Returns a pointer to the default log structure.

LogSetThreshold Sets the output threshold of the display level of the
requested log.

LogGetThreshold Returns the value of the display_threshold for that
log.

LogSetOutputStdout Sets the boolean to output messages to stdout.

LogGetOutputStdout Returns the values of the output_stdout for that log.

LogSetAppName Sets the identifier to be used in logging messages.

LogGetAppName Returns the value of the application name for the
requested log.

LogQ Is a wrapped function around LogMsg ; it implements
a circular queue in memory of the last n messages,
to be included in exceptions.

LogQueueAlloc Allocates the size of the buffer LogQ messages.

LogQueueDealloc Shuts down and deallocates memory used for LogQ
buffer.

LogQueueGetSize Queries the size of the buffer for LogQ messages.

LogQGetBuffer Returns a character array containing the circular
queue of LogQ messages.

LogData Formats and logs binary data.

8.3.6 ADR Marshalling Functions
The abstract data representation (ADR) functions are identical to the full
framework version with one exception: there is no interface repository on
LCF Endpoints. Because there is no dynamic type lookup, all types used
must be present at compile time. If you need IDL types on an Endpoint, they
must be compiled into the application′s module. The Interface Repository
(IR) is a service that provides persistent objects that represent the IDL
information in a form available at run-time. The IR may be used by the ORB

120 TME 10 Framework Version 3.2

to perform requests. Moreover, using the information in the IR, it is possible
for a program to encounter an object whose interface was not known when
the program was compiled, yet, it is able to determine what operations are
valid on the object and make an invocation on it. In addition to its role in
the functioning of the ORB, the IR is a common place to store additional
information associated with interfaces to ORB objects.

The following data types are built in to libmrt :

• any
• boolean
• char
• double
• float
• long
• octet
• short
• string
• ulong
• ushort

All the other data types must be written as CORBA IDL type definitions.
Complex types are created with struct, array and sequence keywords. To
register defined types you can use the function:

void adr_type_init(type_repository **types);

8.4 The Common Porting Layer Runtime Library

The Common Porting Layer library (libcpl) provides functions that either
exist on some but not all platforms or that exist but behave differently on a
particular platform. The libcpl includes the following functions:

• Binary tree search functions - These routines are for manipulating binary
search trees. All comparisons are done with a user-supplied routine.
This routine is called with two arguments: pointers to the elements
being compared. It returns an integer less than, equal to, or greater
than zero, according to whether the first argument is to be
considered less than, equal to or greater than the second argument.
The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values being
compared. These functions are:

 1. tsearch(...) is used to build and access the tree. If there is a datum
in the tree equal to the value pointed to by the argument , a
pointer to this found datum is returned. Otherwise, the argument is

Chapter 8. Application Development Considerations 121

inserted, and a pointer to it returned. Only pointers are copied, so
the calling routine must store the data.

 2. tfind(...) will search for a datum in the tree, returning a pointer to it
if found. However, if it is not found, tfind(...) will return a NULL
pointer.

 3. tdelete(...) deletes a node from a binary search tree. tdelete(...)
returns a pointer to the parent of the deleted node, or a NULL
pointer if the node is not found.

 4. twalk(...) traverses a binary search tree. Any node in a tree may be
used as the root for a walk below that node.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. Similarly,
although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

• cpl_correct_path - This function corrects the path by replacing slashes
with the appropriate path delimiter for the particular operating system.

• Directory entry functions - These functions enable the caller to use these
APIs for all platforms without having to be concerned with platform
specific implementation details. The functions are:

 1. cpl_opendir(...)

 2. cpl_rewinddir(...)

 3. cpl_closedir(...)

 4. cpl_telldir(...)

 5. cpl_seekdir(...)

• get() functions - These are a variety of UNIX system calls that are not
provided on other platforms. A brief description of these functions
follows.

 1. cpl_getcwd - Returns the current working directory of the call ing
process.

 2. cpl_getenv and cpl_putenv - Gets and puts environment variables.

 3. cpl_getopt - Extracts the command line switches and their
arguments from the command line.

 4. cpl_getpass - Queries user for a password (string) from the standard
input. The characters entered by the user are not echoed.

 5. cpl_gettimeofday - Returns the time zone.

 6. cpl_gethostname - Returns the hostname of the system.

122 TME 10 Framework Version 3.2

• ltoa converts a long integer from a binary representation to a string
representation.

• stat Macros. The stat function is often accompanied by a series of
macros that provide a simple interface to obtain useful information
about files. The MSVC runtime does not provide an implementation for
these macros so they are defined in the Common layer. The following
macros are defined:

 1. S_ISDIR(...) - Is the file a directory?

 2. S_ISCHR(...) - Is the file a character special device?

 3. S_ISFIFO(...) - Is the file a FIFO?

 4. S_ISREG(...) - Is the file a regular file?

• printf, fclose, fopen, getc - Because these functions may not exist on the
Windows and Netware platforms, the Common layer furnished wrappers
for these. They are:

 1. cpl_printf

 2. cpl_fclose

 3. cpl_fopen

 4. cpl_getc

• Temporary file functions - Not all platforms provide sufficient function in
the area of creating and manipulating temporary files. These APIs work
around problems in the native version of these functions (for example, in
the MSVC compiler has some limitations on the temporary directories).
These APIs are:

 1. tmpfile() - The tmpfile function creates a temporary file and returns a
pointer to that stream (like ANSI/C function).

 2. tmpnam(...) - The tmpnam function generates a temporary fi lename
that can be used to open a temporary file without overwriting an
existing file (like ANSI/C function).

 3. tmpdir(...) - It is an additional function, it enables the application to
query for the location of the system temporary directory on a
specific platform.

• Thread yield functions - This function, cpl_THREADyield , yields a
timeslice for Windows, Windows 95 or Netware platforms.

• Miscellaneous functions - There are other scattered functions that are
also included in the Common Porting Layer.

Chapter 8. Application Development Considerations 123

8.5 Summary

This chapter has provided an overview of the application development
model that must be employed in an LCF environment. In addition, we have
shown most of the functions that are included in the mini-runtime library
(libmrt) that is available to applications running on an LCF Endpoint.

124 TME 10 Framework Version 3.2

Chapter 9. Useful Tips and Scripts

This chapter discusses some general hints and tips about working with TME
10 Framework V3.2. It also provides examples of some useful scripts that
you may want to customize and use in your environment. The information
and sample scripts shown include various tips and shortcuts we found while
creating this redbook.

9.1 Backup and Recovery

In this section we include some general information about backing up and
recovering your TME 10 database. The TME 10 database is critical to the
proper operation of your TME 10 environment and applications and so it is
important that you put procedures in place to ensure that backups are
created with appropriate frequency.

9.1.1 Backup Process
This section describes the process that the TME 10 Framework uses to
backup its database.

At install time, a backup object is created for each Managed Node. You can
see the references to these objects using the following command:

#wls -o /Library/BackupClient
200200.1.342#TMF_Backup::Client# panda
200200.2.13#TMF_Backup::Client# fred
200200.3.13#TMF_Backup::Client# traci

When a backup is initiated, the following steps are taken:

 1. The backup file is created and opened.

 2. The backup objects for each of the clients are contacted (one by one)
and directed to begin a backup.

 3. Each managed node synchronizes its database to write any outstanding
transactions.

 4. Clients tar and compress the necessary files in their database directory
using a snapshot method.

 5. Data is then transferred back to the Server using the standard TME
communications mechanisms.

 6. The TMR Server backs up its own database, and then combines its own
backup and each of the client′s backups into a single file.

 Copyright IBM Corp. 1997 125

When you issue a backup, the Server compares its data with the clients′
data, and clients are only requested to make their own backups if the
Server considers it necessary.

 7. Notices regarding the backup are logged and sent to a notice group.

By default, the file containing the backup is stored in $DBDIR/../backups. The
file name format is

DB_<Date>-<Time>

It is suggested that you rename this file to add some description at the end
of the file so that the proper level of the database can be restored when
needing to recover or back off changes that have been made.

For example:

mv DB_Oct21-1200 DB_Oct_21-1200.Bedrock.b4.Sentry.installation

For more detailed information about the wbkupdb command, refer to TME 10
Framework Reference Manual.

If you issue an odstat -c during a backup process, you will see that
backups are serial. In other words, the Server makes calls on a node by
node basis. To perform a complete TMR database backup with a large
number of Managed Nodes can take quite some time, depending on the
sizes of the various databases. One of the benefits of LCF is that it will
reduce the number of Managed Nodes (by replacing Managed Nodes with
Endpoints). Therefore, the backup process will only be serialized across a
few systems, rather than on each system (full Managed Node) in the TMR,
resulting in much less elapsed time for a TMR backup.

9.1.2 Common Backup Issues
Some of the common backup related items that frequently raise questions
from new administrators include:

• Notices are not restored if you perform a normal TME10 backup.

Typically, one would not want to restore the notice set back to a
previous level (losing any notices that had arrived since the backup was
taken). Therefore, notices will not be restored back to the state they
were in at backup time.

• There are two options that can be used during restore. The use of
these options sometimes causes confusion.

− -r option causes the oserv to be restarted after the restore. Thus, the
restored database is immediately made the active database.

126 TME 10 Framework Version 3.2

− -r -R copies the backup files to a directory without restarting the
oserv. Therefore, the oserv continues to run with the current
database. The next time the oserv is restarted, it will utilize the
restored database.

• The default directory does not get changed if the database directory
changes. Use the following commands to look up or change the default
backup directory:

BO=wlookup TMRBackup
idcall $BO _get_default_device
″ /usr/Tivoli/overlook/202/db/backups/DB_%t″
idcall $BO _set_default_device ′ ″ / usr/Tivoli/backups/DB_%t″ ′

• Cause of errors when backing up the database. This is often caused by
a partial installation that was not recognized as having not completed
successfully. To identify this particular case, use the following
commands:

wlookup -ar ManagedNode -n <managed_node_name>

A fully installed managed node looks like:

TaskExecute 1081780928.6.9#TMF_ManagedNode::TaskExecute#
BackupClient 1081780928.6.13#TMF_Backup::Client#
imp_TMF_UI::DesktopList 1081780928.6.15#TMF_UI::DesktopList#
imp_TMF_UI::Extd_DesktopList 1081780928.6.28#TMF_UI::Extd_DesktopList#

If you are missing any of these entries there is a possibility that the
client was not fully installed and will need to be removed and
re-installed.

• Cause of database busy message.

If you get an error message indicating a busy database, this typically
comes from a snapshot and indicates that the database is being updated
too frequently to be able to tar the data before it changes. This is
caused by the oserv process on the machine being too busy to capture
a clean snapshot of the database. For example, a client with Sentry
monitors scheduled for very short intervals might give such message.

• If alternate IP addresses are used between the Server and Client you
might get a cannot map IP message. This error is in the Servers′
oservlog. Generally, we can say that arp and rarp must show the
correct information. Routing paths should be checked as well, or you
may get an IOM time-out error.

• Cause of directory permission errors. When backups are performed, the
system creates the backup file with the permission of the administrator
running the backup. Errors can occur during backup because the
administrator does not have the correct permissions. Several ways of
bypassing this inconvenience include creating a task that runs as root
that performs the wbkupdb command.

Chapter 9. Useful Tips and Scripts 127

9.1.3 Run wchkdb Before Any Backup
The wchkdb command should be executed frequently to ensure the
consistency of the TMR′s database. However, you should always use this
command before performing a wbkupdb. Unfortunately, this command can
run quite slowly, depending on the number of Managed Nodes. Again, LCF
will help reduce the elapsed time required to perform a wchkdb command.

 A couple of tips for using wchkdb in a smart way:

 1. wchkdb -o <output to a file>

This lists the discrepancies found into the output file without attempting
to fix them.

 2. wchkdb -u -f <same file as before>

This will pass the list of discrepancies to the master daemon that will
call only the involved methods for correcting them.

You might also investigate using the wchknode command. This will check a
subset of the database for a particular node and will run quicker than
wchkdb.

9.2 Removing Managed Nodes

To remove a Managed Node from your TMR, follow these steps:

 1. Login to the TMR Server as root.

 2. Create a backup of the object database.

 3. Delete the Managed Node from the name registry by using the GUI, or
the wrmnode command.

Later in this chapter, we also provide a script mn_rm.ksh that automates
this process. It is described in 9.5.2, “Deleting a Managed Node” on
page 131.

 4. Run wchkdb -u.

For Windows NT only:

 5. Login to the local machine and setup the Tivoli environment.

\winnt\system32\drivers\etc\Tivoli\setup_env.cmd

 6. Remove the oserv from the service manager. The oinstall -remove
command removes the Tivoli object dispatcher entry from the Services
panel. It also removes the registry entry
HKEY_LOCAL_MACHINE\SOFTWARE\Tivoli\Platform\oserv-xx where xx is the
port number (usually 94)

128 TME 10 Framework Version 3.2

 7. Optionally, you can also remove TRIP. The trip -remove removes TRIP
from the Services panel and the registry entry
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Trip

For UNIX only:

 8. Login to the local machine and setup the Tivoli environment.

. /etc/Tivoli/setup_env.sh

 9. Verify if the oserv is stopped.

ps -ef | grep oserv

10. If the oserv is not yet stopped, run

. /etc/Tivoli/oserv.rc stop

11. Delete the Tivoli database and binaries manually. By default, the object
database is in \var\spool\Tivoli\xxx.db where xxx is the hostname of
the machine. The binaries are in \usr\local\Tivoli. The subdirectories
are bin, lib, man, and msg_cat.

12. Edit the files /etc/rc.nfs, /etc/services and inetd.conf to remove
references to Tivoli.

9.3 Transfer TME 10 CD Images to Disk

If you will be installing multiple TME 10 products on multiple systems, you
may want to copy the TME 10 Product CDs to a file server. Then any system
that requires access to the installation files can simply mount or otherwise
access the shared disk.

TME 10 provides a command called wcpcdrom to copy the CD-ROM image.
However, if the -c parameter is not used, the files are not copied. Rather,
symbolic links are created. If a copy is desired, ensure you use the -c
parameter.

On some platforms (such as AIX), the wcpcdrom command copies the files to
the target disk with lower case names. This is due to the CD-ROM device
drivers that are used. However, the installation process expects files to be
in upper case, so you will need to rename the files on your newly copied
image to their upper case counterparts.

9.3.1 Using file0.tar
The file file0.tar is created when you use the procedure in section 9.3,
“Transfer TME 10 CD Images to Disk” when creating an install image of the
TME 10 Framework on your hard disk. This file takes the place of running
WPREINST.SH every time you need to re-install the Server. Simply untar the
file in a temporary install directory and run the wserver command.

Chapter 9. Useful Tips and Scripts 129

mkdir /usr/local/Tivoli/install
cd /usr/local/Tivoli/install
cp /inst.images/TME_3.1.C/file0.tar .
tar -xvf file0.tar

Run the wserver command to re-install the TMR Server.

./wserver -c /inst.images/TME_3.1.C

9.4 Troubleshooting Client Installation

Below are some of the more common problems you may run into when
installing a Managed Node, as well as the solutions to them.

 1. If you are using a non-English keyboard, you may run into the following
error messages:

$database mismatch (from triton.tivoli.com/146.84.26.6)
$migrating ALI
$changing encryption type from none to simple
TME 10 Framework () date time copyright etc
TMR 1724398290 ORB 1 TMR server local:94 port 94
Hmm.. looks like you′ re running NT 4.0 Service pck 1
I won′ t create a console
creating seperate windowstation and desktop
creatingwindowstation failed:the specified module not found
Hmm....(these messages then repeat indefinitely)
..

This is a known problem with the CreateWindowStation() call. To fix
this:

a. Open the Control Panel.

b. Select the keyboard icon.

 c. Select Input Locales.

d. Add English(United States).

e. You do not need to set this as the default locale; it just needs to be
in the list.

Note: You need to re-boot the machine to have the change take effect.

 2. When specifying the user ID for an NT system to be installed as a
Managed Node, ensure you specify Administrator with a capital A.
Otherwise, the installation will not succeed.

 3. Tivoli setup requests a path name. For NT targets, this cannot include
long names. Setup will fail immediately without warning.

130 TME 10 Framework Version 3.2

9.5 Miscellaneous Scripts

The rest of this chapter consists of a series of scripts that we have found
helpful in our environment. These are not officially supported and you
should thoroughly understand their content before using them in your own
environment.

9.5.1 Finding out Who ′s Running the TME 10 Desktop
The script below displays the current Administrators using Tivoli. The name
of the script is whoson.

#!/bin/sh -e
This is unsupported software.
Author: Steve Cochran (stevec@tivoli.com)

ADL=wlookup -r ActiveDesktopList adl

Get the list of current entries in the ActiveDesktopList
ENTRIES=idlcall $ADL _get_entries
N_ENTRIES=idlarg 1 $ENTRIES

echo ″Host Administrator″
echo ″---″

the ′ first′ entry is the number of entries in the list
increment our counters by 1
i=2;
N_ENTRIES=expr $N_ENTRIES + 1

Go through the list and print out the host and the label of the administrator
associated with each entry.
while [expr $i -le $N_ENTRIES]; do

THIS=idlarg $i $ENTRIES

HOST=idlarg 1 $THIS | awk -F\″ ′{print $2}′
ADMIN=idlcall \idlarg 3 $THIS\ _get_label | awk -F\″ ′{print $2}′

echo ″$HOST $ADMIN″

i=expr $i + 1
done

exit 0

9.5.2 Deleting a Managed Node
This script, called mn_rm.ksh, allows you to cleanly remove a Managed Node
from the TME name registry and object database.

#!/bin/ksh
#
. /etc/Tivoli/setup_env.sh

IO=wlookup Installation
read MN?′ Enter Managed Node Name: ′

echo ″Deletion of $MN started on date″ >> /tmp/ManagedNode_Deletes
wrmnode -f $MN

Chapter 9. Useful Tips and Scripts 131

idlcall $IO remove_host_locations ′{1 ″′$MN′ ″ } ′
AppList=wlookup -ar ProductInfo | awk ′ {print $2}′
for i in $AppList
do

idlcall $i remove_host_locations ′{1 ″′$MN′ ″ } ′
done
PatchList=wlookup -ar PatchInfo | awk ′ {print $2}′
for i in $PatchList
do

idlcall $i remove_host_locations ′{1 ″′$MN′ ″ } ′
done
print ″Removed Managed Node: $MN″
echo ″$MN deleted on date″ >> /tmp/ManagedNode_Deletes

9.5.3 Backup the TMR
This script, called Backup_TMR.ksh, allows you to create a backup of the
available Managed Nodes in your TMR. It will skip the backup of
unavailable Managed Nodes.

This script can be very useful in scheduling your TMR backup, allowing you
to continue with the backup even if some of the Managed Nodes are
unavailable.

#!/bin/ksh
#

wlookup for all managed nodes, then wping them, and do a wbackup, but
only on the node which answered on the wping.
#
If you give it an argument, it will prepend it to the name of the backup file
#
Author: Yves Dorfsman, Jan 14th 1997
#

. /etc/Tivoli/setup_env.sh

OPERATION=$1
[[-n ″$OPERATION″]] && OPERATION=″${OPERATION}_″
ALL_NODES=″″
DATESTAMP=$(date ″+DB_%b%d-%H%M″)
BACKUPDIR=$DBDIR/../backups

Find out all the managed nodes, and wping them
for i in $(wlookup -ar ManagedNode |cut -f1)
do
wping $i
if (($? == 0)) ; then
ALL_NODES=″${ALL_NODES} $i″

fi
done

wbkupdb -d ${BACKUPDIR}/${OPERATION}${DATESTAMP} $ALL_NODES

exit $?

132 TME 10 Framework Version 3.2

9.5.4 Installing a Full TMR
The next several scripts were used in our test environment to install a full
TMR piece by piece. We first install the TMR Server, then Managed Nodes,
followed by PC Managed Nodes and finally a set of TME 10 applications.
These scripts are relatively lengthy, but you may find useful techniques
among them for installing TMRs in complex environments.

9.5.4.1 Installing the TME 10 Framework
If you are going to be installing TMR Servers on a variety of systems (such
as in a lab environment), where you may need to specify many options, a
script such as the following may be of use to you.

#!/bin/ksh
Name: inst_tmr
Creates the TMR Server
Author: Armand Adriano, IBM
#
Modified by: Fabrizi Francesco @FF1 6/6/97

@FF1 add Start
clear
. tmr_functions
{

while read lin; do
lin=${lin## }
lin=${lin%% }
if [[-n $lin]]; then

Key=echo $lin|cut -f1 -d:
Value=echo $lin|cut -f2 -d:
Value=${Value## }
case $Key in

BASEDIR)
MBASE=$Value;;

DBDIR)
MALIDB=$Value;;

SOURCEDIR)
MSOURCE_DIR=$Value;;

LOGDIR)
MLOGDIR=$Value;;

KEY)
MLK=$Value;;

*)
print ″>>> Keyword $Key skipped.″ ; ;

esac
else

echo ″Skip ″
fi

done

} < tme.cfg

MBASE=${MBASE:?″missing value!″}
MALIDB=${MALIDB:?″missing value!″}
MSOURCE_DIR=${MSOURCE_DIR:?″missing value!″}
MLK=${MLK:?″missing value!″}
MLOGDIR=${MLOGDIR:?″missing value!″}

Chapter 9. Useful Tips and Scripts 133

MLOGFILE=″$MLOGDIR/$0.log″

echo ″**************** Log File ****************″>$MLOGFILE
echo ″Configuration Parameters:″>>$MLOGFILE

T_INPUT=0 # Initial status
T_COMPLETE=0 # syntax is complete 1 it does not complete 0
T_COUNTER=0 # Variable counter
TQUESTION=″″
if [[$# = 0]] then

T_INPUT=2 # Intercative mode
else

while getopts ″ :r:yh″ opt; do
case $opt in

r)
T_INPUT=1
Regname=$OPTARG
let T_COUNTER=T_COUNTER+1;;

y)
T_INPUT=1
TQUESTION=″y″ ; ;

\?)
print ″\n*** ERROR *** Unknown option see inst_tmr -h for more \

help″ ; ;
h)

print ″\nTME10 Managed Node installation″
print ″ The syntax is″
print ″ ″
print ″ inst_tmr -r region [-y]″
print ″ inst_mnode ″
return 0;;

esac
done

fi

if [[$T_INPUT = 1 && $T_COUNTER = 1]] then
T_OK=1

elif [[$T_INPUT = 2]] then
T_OK=1

else
print ″\n*** ERROR *** Syntax Error see inst_tmr -h for more helps″
return 1

fi

if [[$T_INPUT = 2]] then
echo ′ TMR Installation′
echo ′ \nRegion Name: \c′ ; read Regname
echo ″Do you want install/reinstall the TMR Server really? \c″
read TQUESTION

fi

ExistDir $MSOURCE_DIR
if [[$? = 1]] then

return $?
fi

if [[$TQUESTION != ″Y″ && $TQUESTION != ″y″]] ; then
echo ″Do you want erase the TMF Server really? \c″
read TQUESTION

fi
@FF add Stop

134 TME 10 Framework Version 3.2

#-----START MODIFICATION HERE----------------------------
set up hard-coded variables
MIP=″″
INDF=″TMF″

set up floating variables
MHOST=uname -n
DATESTAMP=$(date ″+%m%d%H%M″)

#set up fixed variables
Temporary directory
MINSTALL_DIR=″$MBASE/install″
Binary Code Directory
MBIN=″$MBASE/bin″
Runtime library Directory
MLIB=″$MBASE/lib″
Manuals and ...
MMAN=″$MBASE/man″
Catalog directories
MCAT=″$MBASE/msg_cat″
... and logs file directory
MCINSTALL=″$MALIDB/cinstall″

Region Name (Input Field)
MRN=$Regname
Must the Framework will be started automatically? 1(Yes)| 0(No)
MAutoStart=1
Must the Tivoli Daemon will be started remotely? 1(Yes)| 0(No)
MSetPort=1
Must the product directories will be created automatically? 1(Yes) | 0(No)
MCreatePaths=1

#-----------END MODIFICATION HERE-----------------------

export DOGUI=1

rem_tmr -$TQUESTION

If the installation directory does not exist create it.
if [[! -d $MINSTALL_DIR]]

then
mkdir $MINSTALL_DIR

fi

cd $MINSTALL_DIR

Uncomment the tar command below if you used tar -chf after wcpcdrom
tar xf $MSOURCE_DIR/file0.tar
Otherwise, uncomment the WPREINST.SH command below if you used a script
to convert the files from lower case to upper case
$MSOURCE_DIR/WPREINST.SH

./wserver -y -c $MSOURCE_DIR BIN=$MBIN! LIB=$MLIB! ALIDB=$MALIDB! MAN=$MMAN! \
CAT=$MCAT! RN=$MRN IP=$MIP LK=$MLK AutoStart=$MAutoStart SetPort=$MSetPort \
CreatePaths=$MCreatePaths

Create if the Backup log directory does not exist
if [[! -d $MCINSTALL]]

then

Chapter 9. Useful Tips and Scripts 135

mkdir $MCINSTALL
fi
Copy the logs file into the backup directory
cp /tmp/tivoli.sinstall $MCINSTALL/$MHOST′ _sintstall_′ $INDF′ . ′ $DATESTAMP
return 0

9.5.4.2 Installing Managed Nodes
Similar to the previous script, this script will install multiple Managed Nodes
in a complex environment.

#!/bin/ksh
Name: inst_mnode
Creates and install TMR Managed Nodes
Authors:
ITSO LCF Team IBM Austin Tx
This scripts allows you to install one or more Managed Nodes
you can use it in several way.
You can use it interactively submitting the command inst_mnode or
use it throughout an input file containing all the client that must be
installed. The format of the files is:
#
First row contains this kind of information
<Administrator>:<TMR Name>:<Password>
Next lines contain
<Node Name>
#
Warnings:
You cannot put blank line between the data.
You must put each client for row.
All the client must have defined the same Administrator
and the same password.
#
To use this scripts you must define first of all a file called
tme.cfg containing some basic information.
The possible keys in this file are:
BASEDIR: <Tivoli Binary Dir location>
DBDIR: <DB Location>
SOURCEDIR: <Sorce file location>
LOGDIR: <Where put the log file>
KEY: <Key Number>
#
All the key are mandatory except the key KEY that is used only to
install the TMR Server.

clear
. tmr_functions
{

while read lin; do
lin=${lin## }
lin=${lin%% }
if [[-n $lin]]; then

Key=echo $lin|cut -f1 -d:
Value=echo $lin|cut -f2 -d:
Value=${Value## }
case $Key in

BASEDIR)
MBASE=$Value;;

DBDIR)

136 TME 10 Framework Version 3.2

MALIDB=$Value;;
SOURCEDIR)

MSOURCE_DIR=$Value;;
LOGDIR)

MLOGDIR=$Value;;
*)

print ″>>> Keyword $Key skipped.″ ; ;
esac

else
echo ″Skip ″

fi
done

} < tme.cfg

MBASE=${MBASE:?″missing value!″}
MALIDB=${MALIDB:?″missing value!″}
MSOURCE_DIR=${MSOURCE_DIR:?″missing value!″}
MLOGDIR=${MLOGDIR:?″missing value!″}

MLOGFILE=″$MLOGDIR/$0.log″

echo ″**************** Log File ****************″>$MLOGFILE
echo ″Configuration Parameters:″>>$MLOGFILE

T_INPUT=0 # Initial status
T_COMPLETE=0 # syntax is complete 1 it does not complete 0
T_COUNTER=0 # Variable counter
if [[$# = 0]] then

T_INPUT=3 # Intercative mode
else

while getopts ″ :r:n:f:hu:″ opt; do
case $opt in

f)
if [[$T_INPUT = 0]] then

T_INPUT=1 # Input from a file
FileName=$OPTARG

else
print ″\n*** ERROR *** Input mismatch see inst_mnode -h for \

more help″
return 1

fi;;
n)

T_INPUT=2 # Input from Command line
ClientName=$OPTARG
let T_COUNTER=T_COUNTER+1;;

r)
T_INPUT=2
Regname=$OPTARG
let T_COUNTER=T_COUNTER+1;;

u)
T_INPUT=2
User=$OPTARG
let T_COUNTER=T_COUNTER+1;;

\?)
print ″\n*** ERROR *** Unknown option see inst_mnode -h for more \

help″ ; ;
h)

print ″\nTME10 Managed Node installation″
print ″ The syntax is″
print ″ ″

Chapter 9. Useful Tips and Scripts 137

print ″ inst_mnode -f input_file - Input from a list″
print ″ inst_mnode -n name -r region -u user \

- Input from Command Line″
print ″ inst_mnode - Interactive″
return 0;;

esac
done

fi

if [[$T_INPUT = 1 && $T_COUNTER = 0]] then
T_OK=1

elif [[$T_INPUT = 2 && $T_COUNTER = 3]] then
T_OK=1

elif [[$T_INPUT = 3]] then
T_OK=1

else
print ″\n*** ERROR *** Syntax Error see inst_mnode -h for more helps″
return 1

fi

if [[$T_INPUT = 3]] then
echo ′ TMR Managed Node Installation′
echo ′ \nRegion Name: \c′ ; read Regname
echo ′ Managed Node Name: \c′ ; read ClientName
echo ′ \nInput User: \c′ ; read User

fi

ExistDir $MSOURCE_DIR
if [[$? = 1]] then

return $?
fi

Temporary directory
MINSTALL_DIR=″$MBASE/install″
Binary Code Directory
MBIN=″$MBASE/bin″
Runtime library Directory
MLIB=″$MBASE/lib″
Manuals and ...
MMAN=″$MBASE/man″
Catalog directories
MCAT=″$MBASE/msg_cat″
logs file directory
MCINSTALL=″$MALIDB/cinstall″

echo ″ Base Directory................$MBASE″ >> $MLOGFILE
echo ″ Installation Dir...........$MINSTALL_DIR″ >> $MLOGFILE
echo ″ Binary Dir.................$MBIN″ >> $MLOGFILE
echo ″ Library Dir$MLIB″ >> $MLOGFILE
echo ″ Documentation Dir..........$MMAN″ >> $MLOGFILE
echo ″ Catalog Dir$MCAT″ >> $MLOGFILE
echo ″ Database Directory............$MALIDB″ >> $MLOGFILE
echo ″ Tivoli Log Dir.............$MCINSTALL″ >> $MLOGFILE
echo ″ Source Directory..............$MSOURCE_DIR″ >> $MLOGFILE
echo ″ Log Directory$MSOURCE_DIR″ >> $MLOGFILE
echo ″ log File...................$MLOGFILE″ >> $MLOGFILE
echo ″ ″ >> $MLOGFILE
echo ″The parameters are:″ >> $MLOGFILE

if [[$T_INPUT = 1]] then
COUNTER=0

138 TME 10 Framework Version 3.2

ListClient=″″
{

while read lin; do
if [[$COUNTER = 0]] then

User=echo $lin|cut -f1 -d:
User=${User## }
User=${User%% }
Regname=echo $lin|cut -f2 -d:
Regname=${Regname## }
Regname=${Regname%% }
let COUNTER=COUNTER+1
echo ″ User................$User″ >> $MLOGFILE
echo ″ Region..............$Regname″ >> $MLOGFILE
echo ″ Clients to install:″ >> $MLOGFILE

else
tClient=echo $lin|cut -f1 -d:
tClient=${tClient## }
tClient=${tClient%% }
echo ″ $tClient″ >> $MLOGFILE
ListClient=″$ListClient $tClient″

fi
done

} < $FileName
ListClient=${ListClient## }
echo ″wclient -d -p $Regname -U $User -y -c $MSOURCE_DIR BIN=$MBIN! LIB=$MLIB! ALIDB=$MALIDB! \

MAN=$MMAN! CAT=$MCAT! AutoStart=$MAutoStart SetPort=$MSetPort CreatePaths=$MCreatePaths \
$ListClient″ >> $MLOGFILE

echo ″Please Wait. The installation is running...″
wclient -d -p $Regname -U $User -y -c $MSOURCE_DIR BIN=$MBIN! LIB=$MLIB! ALIDB=$MALIDB! \

MAN=$MMAN! CAT=$MCAT! AutoStart=$MAutoStart SetPort=$MSetPort \
CreatePaths=$MCreatePaths $ListClient

rc=$?
else

echo ″ User................$User″ >> $MLOGFILE
echo ″ Region..............$Regname″ >> $MLOGFILE
echo ″ Client to install: $ClientName″ >> $MLOGFILE
echo ″wclient -d -p $Regname -U $User -y -c $MSOURCE_DIR BIN=$MBIN! LIB=$MLIB! ALIDB=$MALIDB! \

MAN=$MMAN! CAT=$MCAT! AutoStart=$MAutoStart SetPort=$MSetPort CreatePaths=$MCreatePaths \
$ClientName″ >> $MLOGFILE

echo ″Please Wait. The installation is running...″
wclient -d -p $Regname -U $User -y -c $MSOURCE_DIR BIN=$MBIN! LIB=$MLIB! ALIDB=$MALIDB! \

MAN=$MMAN! CAT=$MCAT! AutoStart=$MAutoStart SetPort=$MSetPort \
CreatePaths=$MCreatePaths $ClientName

rc=$?
fi

if [[$rc = 0]] then
echo ″Installation ended!″
echo ″Installation ended!″ >> $MLOGFILE

else
echo ″Client Installation has returned rc = $rc″
echo ″Client Installation has returned rc = $rc″ >> $MLOGFILE

fi
echo ″**************** Log File ****************″>>$MLOGFILE
return $rc

9.5.4.3 Installing PC Managed Nodes
Similar to the previous scripts, this script installs PC Managed Nodes.

Chapter 9. Useful Tips and Scripts 139

#!/bin/ksh
Name: inst_pcmnode
Creates a TMR PC Managed Node
Authors:
ITSO LCF Team IBM Austin Tx

This scripts allows you to register one or more PcManaged Nodes
you can use it in several way.
You can use it interactively submitting the command inst_pcmnode or
use it throughout an input file containing all the client that must be
installed. The format of the files is:
#
First row contains this kind of information
<Administrator>:<TMR Name>:<Password>
Only the second of the first three information is needed to register
the node the other two are kept for compatibility with the structure
of the file used to install the Manged Nodes.
Next lines contain
<Node Name>:<Node Type>
#
Warnings:
You cannot put blank line between the data.
You must put each client for row.
The <Node Type> could not be present. It means that the Node must
be on line. The possible values allowed for the <Node Type> are:
- dos
- netware
- nt
- windows
#
To use this scripts you must define first of all a file called
tme.cfg containing some basic information.
The possible keys in this file are:
BASEDIR: <Tivoli Binary Dir location>
DBDIR: <DB Location>
SOURCEDIR: <Sorce file location>
LOGDIR: <Where put the log file>
KEY: <Key Number>
#
In the PcManaged Node installation only the LOGDIR key is
mandatory. The other are mandatory to install the Framework and
to install the Managed Node.
#

clear
. tmr_functions
{

while read lin; do
lin=${lin## }
lin=${lin%% }
if [[-n $lin]]; then

Key=echo $lin|cut -f1 -d:
Value=echo $lin|cut -f2 -d:
Value=${Value## }
case $Key in

LOGDIR)
MLOGDIR=$Value;;

*)
print ″>>> Keyword $Key skipped.″ ; ;

esac
else

140 TME 10 Framework Version 3.2

echo ″Skip ″
fi

done

} < tme.cfg

MLOGDIR=${MLOGDIR:?″missing value!″}

MLOGFILE=″$MLOGDIR/$0.log″

echo ″**************** Log File ****************″>$MLOGFILE
echo ″Configuration Parameters:″>>$MLOGFILE

T_INPUT=0 # Initial status
T_COMPLETE=0 # syntax is complete 1 it does not complete 0
T_COUNTER=0 # Variable counter
if [[$# = 0]] then

T_INPUT=3 # Intercative mode
else

while getopts ″ :r:n:f:ht:″ opt; do
case $opt in

f)
if [[$T_INPUT = 0]] then

T_INPUT=1 # Input from a file
FileName=$OPTARG

else
print ″\n*** ERROR *** Input mismatch see inst_mnode -h for \

more help″
return 1

fi;;
n)

T_INPUT=2 # Input from Command line
ClientName=$OPTARG
let T_COUNTER=T_COUNTER+1;;

t)
T_INPUT=2
Type=$OPTARG
let T_COUNTER=T_COUNTER+1;;

r)
T_INPUT=2
Regname=$OPTARG
let T_COUNTER=T_COUNTER+1;;

\?)
print ″\n*** ERROR *** Unknown option >$opt< see inst_mnode -h for \

more help″ ; ;
h)

print ″\nTME10 Managed Node installation″
print ″ The syntax is″
print ″ ″
print ″ inst_mnode -f input_file - Input from a list″
print ″ inst_mnode -n name -t type -r region \

- Input from Command Line″
print ″ inst_mnode - Interactive″
print ″ ″
print ″ where type could be:″
print ″ dos″
print ″ netware″
print ″ nt″
print ″ windows″
return 0;;

esac

Chapter 9. Useful Tips and Scripts 141

done
fi

if [[$T_INPUT = 1 && $T_COUNTER = 0]] then
T_OK=1

elif [[$T_INPUT = 2 && $T_COUNTER = 3]] then
T_OK=1

elif [[$T_INPUT = 3]] then
T_OK=1

else
print ″\n*** ERROR *** Syntax Error see inst_pcmnode -h for more helps″
return 1

fi

if [[$T_INPUT = 3]] then
echo ′ TMR Managed Node Installation′
echo ′ \nRegion Name: \c′ ; read Regname
echo ′ PcManagedNode Name: \c′ ; read ClientName
echo ′ PcManagedNode Type: \c′ ; read Type

fi

if [[$T_INPUT = 1]] then
COUNTER=0
{

while read lin; do
if [[$COUNTER = 0]] then

User=echo $lin|cut -f1 -d:
User=${User## }
User=${User%% }
Regname=echo $lin|cut -f2 -d:
Regname=${Regname## }
Regname=${Regname%% }
let COUNTER=COUNTER+1
echo ″ Region..............$Regname″ >> $MLOGFILE
echo ″ Clients to install:″ >> $MLOGFILE
echo ″ Registering PcManaged Nodes...″

else
tClient=echo $lin|cut -f1 -d:
tType=echo $lin|cut -f2 -d:
tClient=${tClient## }
tType=${tType## }
tClient=${tClient%% }
tType=${tType%% }
if [[$tType = $tClient]]; then

tType=″″
fi
echo ″ $tClient/$tType″ >> $MLOGFILE
echo ″ $tClient/$tType ...\c″
if [[-n $tType]]; then

temp=″-p $tType″
else

temp=″ ″
fi
wcrtpcmngnode $temp $tClient $Regname >> $MLOGFILE 2>&1
rc=$?
if [[$rc = 0]] then

echo ″ registered″
else

echo ″ *** ERROR rc = $rc″
echo ″ *** ERROR rc = $rc″ >> $MLOGFILE

fi

142 TME 10 Framework Version 3.2

fi
done

} < $FileName
else

echo ″ Region..............$Regname″ >> $MLOGFILE
echo ″ Client to install/Type: $ClientName/$Type″ >> $MLOGFILE
echo ″ Registering PcManaged Node \c″
echo ″$ClientName/$Type...\c″
if [[-n $Type]]; then

temp=″-p $Type″
else

temp=″ ″
fi
wcrtpcmngnode $temp $ClientName $Regname >> $MLOGFILE 2>&1
rc=$?
if [[$rc = 0]] then

echo ″ registered″
else

echo ″ *** ERROR rc = $rc″
echo ″ *** ERROR rc = $rc″ >> $MLOGFILE

fi
fi
echo ″Change ended!″
echo ″Change ended!″ >> $MLOGFILE
echo ″**************** Log File ****************″>>$MLOGFILE
return $rc

9.5.4.4 Personalizing the Environment
We used the following script to personalize the environment after having
installed the TMR.

#/bin/ksh!
Name: BuildEnv
Test Enironment Definition
IBM Corporation
authors:
Fabrizi Francesco - IBM Italy
Rossi Renata - IBM Italy
this script create the Test Environment for our LCF Laboratory,
add Policy Regions and Profile Managers
#
clear

Variables Definition
BaseTMR=Bedrock
ChildTMR1=COFFEE
ChildTMR2=LABs
ChildTMR3=TEA
ProfileMg1=NTGROUP
ProfileMg2=AIXPLATFORM
ProfileMg3=SENTRY
ProfileMg4=COURIER
ProfileMg5=SENTRYAIX

if [[-z $1]]; then
echo ″TME 10 Framework ver. 3.2
echo ″Test Environment Definition″
echo ″Syntax:″
echo ″\n BuildEnv <Administrator>″

Chapter 9. Useful Tips and Scripts 143

echo ″\n where:″
echo ″ <Administrator> is a specific Administrator′ s Desktop″
echo ″\n″

else
I create the main TMR ...
echo Creating Base TMR in the desktop $1...
wcrtpr -a $1 $BaseTMR
echo ... creating into $BaseTMR the first Sub-Tmr ...
wcrtpr -s @$BaseTMR $ChildTMR1
echo ... creating the second Sub-TMR and ...
wcrtpr -s @$BaseTMR $ChildTMR2
echo ... creating the third Sub-TMR.
wcrtpr -s @$BaseTMR $ChildTMR3
echo Adding the resource ProfileManager into TMRs
wsetpr ProfileManager @PolicyRegion:BaseTMR
wsetpr ProfileManager @PolicyRegion:ChildTMR1
wsetpr ProfileManager @PolicyRegion:ChildTMR2
wsetpr ProfileManager @PolicyRegion:ChildTMR3
echo Creating the ProfileManagers...
wcrtprfmgr @$BaseTMR $ProfileMg1
wcrtprfmgr @$BaseTMR $ProfileMg2
wcrtprfmgr @$BaseTMR $ProfileMg3
wcrtprfmgr @$ChildTMR3 $ProfileMg4
wcrtprfmgr @$ChildTMR2 $ProfileMg5
echo Refreshing the Desktop
wrefresh /Administrators/$1

fi

9.5.4.5 Installing Applications
After installing the TMR and customizing the environment, the next step is to
install a set of applications. This script automates this phase of installing
our environment.

#!/bin/ksh
Name: inst_prod
Installs products and patches on ManagedNodes.

Armand Adriano, IBM

#This script reads from standard input names of a file containing
#the list of product to install (prod_list_3.1.txt) and a filename of
#patches to install (patch_list_3.1.txt) and the nodes where to install on
#
#HOW TO USE THIS SCRIPT
#
#you have to modify the files *.txt in order to install any product you
#need: <prod_description>|<prod_directory>|<prod_name>
#i.e. TME 10 Software Distribution Release 3.1|SoftDist.3.1.RevA|COURIER
#
#<prod_description> is in documented in the *.IND file 1st line
#<prod_name> is the name of the *.IND file that you see in the product
#directory, each product may have more than one .IND file
#
#
#adding the INSTDIR variable for getting different products
#from different machines
#INSTDIR is the mount point of your cdrom or the directory
#where you copied the product images

144 TME 10 Framework Version 3.2

#
#You can change the INSTDIR variable
#INSTDIR=tivprods
INSTDIR=mnt

list_prod()
{
echo ′ \nProducts:\n ′
c=1
while [c -le $NUMPROD]
do

echo ${PRODNAME[c]}
c=expr $c + 1

done
}

list_patch()
{
echo ′ \nPatches:\n ′
c=1
while [c -le $NUMPATCH]
do

echo ${PATCH[c]}
c=expr $c + 1

done
}

Main Body

 . /etc/Tivoli/setup_env.sh
 cd $DBDIR/..;RT=pwd
 MCINSTALL=″$RT/cinstall″
mcinstall=″ /tmp/tivoli.cinstall″
DATESTAMP=$(date ″+%m%d%H%M″)
SOURCE=″ /home/scripts/RE″

clear
echo ′ Products and patches installation.\n\n′
echo ″Enter Product List File at $SOURCE :\c″; read PROD_LIST
echo ″Enter Patch List File at $SOURCE :\c″; read PATCH_LIST
echo ′ Enter target nodes (space-separated): \c′
read INPUT
NODE=″″
for i in $INPUT
do

wping $i
if [$? -eq 0]

 then NODE=″$NODE $i ″
 echo ″$i reached.″
 else
 echo ″$i not responding ...″
 fi
done

if (($? != 0)); then
echo ″Node $i not responding.″
echo ″Aborting....″
return 0

fi

Chapter 9. Useful Tips and Scripts 145

echo ″\nThe following will be installed on $NODE″
c=1
while read x
do

PRODNAME[c]=$(print ″$x″ | cut -f1 -d\|)
DIR[c]=$(print ″$x″ | cut -f2 -d\|)
INDF[c]=$(print ″$x″ | cut -f3 -d\|)
c=expr $c + 1

done < $SOURCE/$PROD_LIST

NUMPROD=expr $c - 1
list_prod

c=1
while read x
do

PATCH[c]=$(print ″$x″ | cut -f1 -d\|)
PATCHDIR[c]=$(print ″$x″ | cut -f2 -d\|)
PATCHINDF[c]=$(print ″$x″ | cut -f3 -d\|)
c=expr $c + 1

done < $SOURCE/$PATCH_LIST

NUMPATCH=expr $c - 1
list_patch

echo ′ \n\nPress Y to continue, any other key to abort. \c′ ; read RESP
if [$RESP != ′ Y′] ; then

echo ″\nBye...″
return 0

fi
echo ″\nHere we go ...″
c=1
while [c -le $NUMPROD]
do
rm $mcinstall

winstall -y -c /$INSTDIR/${DIR[c]} -i ${INDF[c]} $NODE
sleep 2
cp $mcinstall $MCINSTALL/$NODE′ _ ′ cinstall′ _ ′ ${INDF[c]}′ . ′ $DATESTAMP

c=expr $c + 1
done

c=1
while [c -le $NUMPATCH]
do

wpatch -y -c /$INSTDIR/${PATCHDIR[c]} -i ${PATCHINDF[c]} $NODE
mv $mcinstall $MCINSTALL/$NODE′ _ ′ cinstall′ _ ′ ${PATCHINDF[c]}′ . ′ $DATESTAMP

c=expr $c + 1
done

echo ′ Done.′
return 0

9.5.4.6 Populate the Profile Managers
This script was used to populate our profile managers based on operating
system.

146 TME 10 Framework Version 3.2

#/bin/ksh!
Name: pm_pop
#
1997/07/07 IBM Corporation
authors:
IBM ITSO Residents
#
Description:
Populates ProfileManagers with the ManagedNodes and
PcManagedNodes filtered the operating system
#
Parameters:
<ResuorceType> possible value ManagedNode or PcManagedNode″
#
clear

Variables Definition
MaxOS=5 # lenght of the operating system Arrary
#
The array OS links the operating system with a specific ProfileManager.
Differerent string could be represent the same Op.Sys. in the following
array ″Windows_NT″ and ″Windows NT″ means the some thing. The reason
for that is due to the fact that the output for the details about
the PcManagedNode and the ManagedNode are completely different
and the Op.Sys. representation is coded differently.
OS[0]=″AIX:AIXPLATFORM″
OS[1]=″Windows_NT:NTGROUP″
OS[2]=″Windows NT:NTGROUP″
OS[3]=″Windows 95:95GROUP″
OS[4]=″OS/2:OS2GROUP″

OSTot=″″
let x=0
while ((x < $MaxOS - 2))
do

OSTot=″$OSTot${OS[$x]},″
let x=x+1

done
OSTot=″$OSTot${OS[(($MaxOS - 1))]}″

if [[-z $1]]; then
echo ″TME 10 Framework ver. 3.2″
echo ″Populates the ProfileManagers″
echo ″Syntax:″
echo ″ pm_pop <Resource_type>″
echo ″ where:″
echo ″ <Resource_Type> could be:″
echo ″ ManagedNode″
echo ″ PcManagedNode″
echo ″\n″

else
echo ″Adding $1...″
wgetallinst $1 > t 2>&1 # ask for all the installed objects

that their type is $1
if [[$? = 0]]; then
{

while read lin; do # for each object ask for the details
echo ″ $lin...\c″
if [[$1 = ″ManagedNode″]] ; then

wmannode $lin > t1 2>&1 # details for the ManagedNode
elif [[$1 = ″PcManagedNode″]] ; then

Chapter 9. Useful Tips and Scripts 147

wpcmngnode $lin > t1 2>&1 # details for the PcManagedNode
else

echo ″*** ERROR - the resource type $1 cannot be managed″
exit

fi
if [[$? = 0]]; then

awk -f add2pfm.awk ″resource=$1″ ″node=$lin″ ″subs=$OSTot″ t1
else

echo ″*** ERROR - $1 $lin does not exist″
exit

fi
rm t1
echo ″added″

done
} < t
#refresh
else

echo ″*** ERROR - Resource Type Unknown″
exit

fi
fi
rm t

Actually, the populate profile manager procedure used an AWK script, which
is shown here:

#/bin/ksh!
NameL add2fpm.awk
#
1997/07/07 IBM Corporation
authors:
IBM ITSO Residents
#
Description:
Populates ProfileManagers with the ManagedNodes and
PcManagedNodes filtered the operating system
#
Parameters:
<ResuorceType> possible value ManagedNode or PcManagedNode″
#
clear

Variables Definition
MaxOS=5 # length of the operating system Arrary
#
The array OS links the operating system with a specific ProfileManager.
Differerent string could be represent the same Op.Sys. in the following
array ″Windows_NT″ and ″Windows NT″ means the some thing. The reason
for that is due to the fact that the output for the details about
the PcManagedNode and the ManagedNode are completely different
and the Op.Sys. representation is coded differently.
OS[0]=″AIX:AIXPLATFORM″
OS[1]=″Windows_NT:NTGROUP″
OS[2]=″Windows NT:NTGROUP″
OS[3]=″Windows 95:95GROUP″
OS[4]=″OS/2:OS2GROUP″

OSTot=″″
let x=0

148 TME 10 Framework Version 3.2

while ((x < $MaxOS - 2))
do

OSTot=″$OSTot${OS[$x]},″
let x=x+1

done
OSTot=″$OSTot${OS[(($MaxOS - 1))]}″

if [[-z $1]]; then
echo ″TME 10 Framework ver. 3.2″
echo ″Populates the ProfileManagers″
echo ″Syntax:″
echo ″ pm_pop <Resource_type>″
echo ″ where:″
echo ″ <Resource_Type> could be:″
echo ″ ManagedNode″
echo ″ PcManagedNode″
echo ″\n″

else
echo ″Adding $1...″
wgetallinst $1 > t 2>&1 # ask for all the installed objects

that their type is $1
if [[$? = 0]]; then
{

while read lin; do # for each object ask for the details
echo ″ $lin...\c″
if [[$1 = ″ManagedNode″]] ; then

wmannode $lin > t1 2>&1 # details for the ManagedNode
elif [[$1 = ″PcManagedNode″]] ; then

wpcmngnode $lin > t1 2>&1 # details for the PcManagedNode
else

echo ″*** ERROR - the resource type $1 cannot be managed″
exit

fi
if [[$? = 0]]; then

awk -f add2pfm.awk ″resource=$1″ ″node=$lin″ ″subs=$OSTot″ t1
else

echo ″*** ERROR - $1 $lin does not exist″
exit

fi
rm t1
echo ″added″

done
} < t
#refresh
else

echo ″*** ERROR - Resource Type Unknown″
exit

fi
fi
rm t

9.6 Summary

This chapter included a grab-bag of hints, tips and helpful shell scripts that
you may find useful when implementing a TME 10 environment.

Chapter 9. Useful Tips and Scripts 149

150 TME 10 Framework Version 3.2

Chapter 10. In Conclusion

We hope you have found the information presented here useful and that it
will help you plan for and successfully implement a TME 10 environment
based on Version 3.2 of the TME 10 Framework. Obviously, what drives TME
10 installations are applications. As we write this, projects are in progress
to create redbooks to address the LCF implementations of many of your
favorite applications.

Keep an eye on the following web sites for the latest information related to
LCF and upcoming redbooks related to Tivoli.

• http://www.tivoli.com

• http://www.redbooks.ibm.com/solutions/tivoli

Tivoli. The Power to Manage. Anything. Anywhere.

 Copyright IBM Corp. 1997 151

152 TME 10 Framework Version 3.2

Appendix A. Special Notices

This publication is intended to help customers and support personnel
understand the new Lightweigth Client Framework introduced in Version 3.2
of the TME 10 Framework. After reading this redbook, you should be in a
position to plan for and implement a TME 10 environment based on LCF.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by Tivoli′s TME 10 Framework.
See the PUBLICATIONS section of the IBM Programming Announcement for
TME 10 Framework Version 3.2 for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been

 Copyright IBM Corp. 1997 153

reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at
their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

AIX AS/400
BookManager DB2
IBM OS/2
OS/390 RS/6000
SP1 SP2
System/390

154 TME 10 Framework Version 3.2

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 157.

• Understanding Tivoli′s TME 3.0 and TME 10, SG24-4948

• TME 10 Cookbook for AIX, SG24-4867

• Setting Up a TME 3.0 NT Environment, SG24-4819

• A First Look at TME 10 Distributed Monitoring 3.5, SG24-2112

• Getting Started With TME 10 User Admininistration, SG24-2015

B.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

B.3 Other Publications

The following publications shipped with the Version 3.2 of the TME 10
Framework are also important sources of further information:

• TME 10 Framework Planning and Installation Guide

• TME 10 Framework User′s Guide

• TME 10 Framework Reference Manual

• TME 10 Framework Release Notes

 Copyright IBM Corp. 1997 155

156 TME 10 Framework Version 3.2

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Copyright IBM Corp. 1997 157

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

158 TME 10 Framework Version 3.2

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How to Get ITSO Redbooks 159

160 TME 10 Framework Version 3.2

Index

A
ADR marshalling functions 120
after_install_policy 36, 64, 68
allow_install_policy 35, 64
application development 107

B
backup 125
bibliography 155
Bourne shell 29
broadcast 34, 36, 49, 64, 90

C
client component 112
client considerations 30
command line interface 8, 18
commands

waddrealm 77
wadminep 19
wbkupdb 90, 126
wchdep 111
wcpcdrom 129
wcrtgate 19, 44
wdebug 115
wdelep 19
wdelgate 19
wdelrealm 77
wdepset 111
wep 19, 86
wgateway 19, 44
wgeteppol 19, 71
winstlcf 18, 48, 55
wlsrealms 77
wpatch 103
wpreinst.sh 129
wputeppol 19, 71
wserver 41
wsetpm 18
wstarthttpd 77
wstophttpd 77
wupddefhtml 78

common porting layer 121
configuration 28
configuration LCF 61
Configuration Settings Page 83
connection process 34
CORBA 1, 3
core management functions 8
csh 29

D
data transfer 5
data types 121
database 6, 20, 90, 125
DDNS 32
DefaultHTMLItems 78
Desktop 9, 17, 23, 27, 41, 44
DHCP 32
distributed exceptions 117
DNS 31
downcall 14, 108, 110, 112
DynaText 21

E
Endpoint 13, 24, 28, 47

connection process 34
Gateway 13, 14, 24, 27, 29

installation 43
installation 47
login 61
Manager 13, 15, 23

installation 41
policy 16, 19, 45, 49
web server 78

Endpoint method 108
Enterprise Console 20
etc/hosts file 32

F
f i le system input/output 119

 Copyright IBM Corp. 1997 161

fi le0.tar 129
framework

database 6, 90, 125

G
Gateway 27, 29
Gateway method 108
gethostbyaddr 31
gethostbyname 31

H
hardware requirements 25
HTTP daemon 22, 75

I
Implementation Repository 4
installation 8, 41
InstallShield 48
interconnection 11, 33
Interface Repository 4
Inventory 20
IPX 10, 24

K
keyboard 31

L
last.cfg 36, 59, 62
LCF 1, 12
LCF daemon 91
LCF Daemon Status Page 79
LCF object 108
LCF programming environment 114
lcf_oserv_upgrade 103
lcf.dat 62
lcf.dat file 36
lcf.id 62
lcfd daemon 13, 19, 28, 34, 37, 115
lcfd.cfg 62
lcfd.log 56, 62
lcs.login_interfaces 37

libcpl 115, 121
libdes 115
l ibmrt 115
Lightweight Client Framework

See LCF
limitations 11
limiting broadcasts 36
Logfile Page 81
logging functions 119
login_policy 36, 64, 70
logon script 53
lt id 115

M
maintenance 91
Managed Node 10, 23, 27, 29
MDist repeater 15
memory management 116
Method Cache Page 82
mid-level manager 112
migrat ion 89

N
name resolution 29
Netware 10
Network Address Configuration Page 85
network requirements 31
NIS 32
nobody ID 29
nslookup 29

O
Object adapters 4
Object Management Group

See OMG
odadmin 31
odstat 126
OMG 1, 3
one-way connection 33
operating system independence 2
operating systems 24
ORB 3, 35

162 TME 10 Framework Version 3.2

P
PC Managed Node 10, 24, 28
ping 29
planning 23
policy 35, 45, 49, 61, 64, 71, 90
policy regions 18
process slots 26
profi le 18, 35, 68, 92

R
RDBMS Interface Module 20
recovery 125
relational databases 20
removing Managed Nodes 128
resolver 31
reverse name resolution 29
RIM 20
runtime l ibrary 115

S
scalabil ity 38, 110
security 91
select_gateway_policy 35, 64, 66
sequence manipulations 118
spawner 13, 14, 19, 28, 34, 37, 91, 109, 115
subscriber 18, 68, 92
SunOS 29
supported operating systems 2
swap space 25

T
TEIDL 20, 114
throughput 31
tips 125
Tivoli Management Region

See TMR
Tivoli_Admin_Priveleges 30
TME 10 Desktop 9, 17, 23, 27, 41, 44
TME methods 107
tmersrvd 30
tmeservd 28
TMR 6, 9, 33

TMR interconnection 11
TMR Server 10, 23
top-level manager 112
topology 17
Trace Log Page 84
TRIP 30
two-way connection 34

U
upcall 15, 108, 110, 113
upcall collector 112
Usage Statistics Page 82

W
waddrealm 77
wadminep 19
wbkupdb 90, 126
wchdep 111
wcpcdrom 129
wcrtgate 19, 44
wdebug 115
wdelep 19
wdelgate 19
wdelrealm 77
wdepset 111
web interface 22, 75
wep 19, 86
wgateway 19, 44
wgeteppol 19, 71
winstlcf 18, 48, 55
wlsrealms 77
wpatch 103
wpreinst.sh 129
wputeppol 19, 71
wserver 41
wsetpm 18
wstarthttpd 77
wstophttpd 77
wupddefhtml 78

Index 163

164 TME 10 Framework Version 3.2

ITSO Redbook Evaluation

TME 10 Framework Version 3.2: An Introduction to the Lightweight Client Framework
SG24-2025-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redeval@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 165

IBML

Printed in U.S.A.

SG24-2025-00

