

International Technical Support Organization

Looking at CMVC from the Customer Perspective

May 1995

GG24-4345-00

IBM International Technical Support Organization

Looking at CMVC from the Customer Perspective

May 1995

GG24-4345-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Special Notices” on
page xv.

First Edition (May 1995)

This edition applies to Version 2 Release 1 and Release 2 of IBM Configuration Management Version Control/6000 (Program
5765-207), IBM Configuration Management Version Control for HP systems (Program 5765-202) and IBM Configuration Management
Version Control for Sun systems (Program 5622-063).

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the form has been removed,
comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 471 Building 070B
5600 Cottle Road
San Jose, California 95193-0001

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Abstract

This volume reports on a study of how CVMC is used at several IBM customer
sites and IBM Laboratory installations to solve the difficult and inevitable problems
associated with software configuration management in a team programming
environment. This book characterizes how these “customers,” both inside and
outside of IBM, used, configured, tailored and extended CMVC to meet their unique
and varied requirements. This book presumes some knowledge of both CMVC and
software configuration management principles. This book describes the
scale-ability, applicability, and adaptability of CMVC. It provides a customer
perspective on why different types and sizes of application development efforts
need CMVC and what benefits they derive from its use.

(130 pages)

 Copyright IBM Corp. 1995 iii

iv Looking at CMVC from the Customer Perspective

 Contents

Abstract . iii

Special Notices . xv

Preface . xvii
How This Document is Organized . xvii
Related Publications . xviii
International Technical Support Organization Publications xviii
Acknowledgments . xix

Chapter 1. Introduction to CMVC . 1
1.1 Evolution of CMVC . 1

1.1.1 Hybrid AIX and Mainframe CM Solution 1
1.1.2 Commercial Solutions Found Wanting 2
1.1.3 Write a Quick and Easy CM Tool . 2
1.1.4 Rewrite for Performance Improvements 2
1.1.5 Commercial Offerings Still Lacking . 2
1.1.6 Orbit . 3
1.1.7 Explosive Demand for Orbit within IBM 3
1.1.8 Release of CMVC/6000 Version 1 . 3
1.1.9 CMVC Version 1 Enhancements . 4
1.1.10 CMVC Version 2 . 4
1.1.11 Continued Spread of CMVC within IBM 4

1.2 Key CMVC Design Points . 4
1.2.1 Client/Server Architecture . 4
1.2.2 Use of Independent Relational Database and Version Control Systems 5
1.2.3 Integrated Problem Tracking and Release Management 6

1.3 Product Description and Prerequisites . 6
1.4 Identifying Configuration Items . 7

1.4.1 CMVC Family . 7
1.4.2 CMVC Component Hierarchy . 7
1.4.3 CMVC Files and Versions . 7
1.4.4 CMVC Releases . 8

1.5 Integrated Problem Tracking . 9
1.5.1 Defect and Feature Processing . 9
1.5.2 Track, Level, and Release Processing 9
1.5.3 Change Control . 9
1.5.4 Audit Trail . 10
1.5.5 Users and Host Lists . 10
1.5.6 Components Control Access to Files and Releases 10
1.5.7 Configurability . 10

Chapter 2. Looking at CMVC through Customers' Eyes 11
2.1 Data Gathering . 11

2.1.1 Customers Studied . 11
2.1.2 Interviews and Questionnaire . 11
2.1.3 Demonstration and Examination . 12
2.1.4 End User Support Strategies . 12
2.1.5 Computers and Networks . 12
2.1.6 Lessons Learned . 12

 Copyright IBM Corp. 1995 v

2.2 Organizing the Data . 12
2.3 Typical CMVC Customers . 13

2.3.1 Software Vendors . 13
2.3.2 Hardware Vendors . 14
2.3.3 Manufacturing Companies . 15
2.3.4 Services Providers . 15

2.4 Scalability of CMVC . 16
2.4.1 Very Large Scale Application . 16
2.4.2 Small Scale Application . 16

2.5 Limited Functional Use of CMVC . 17
2.5.1 Version and Release Management Only 17
2.5.2 Problem Tracking Only . 17

2.6 Standardizing on a Single CM Tool . 17
2.6.1 Development of Formal Standards . 18
2.6.2 Evolution of De Facto Standards . 18

2.7 Importance of ISO to CMVC Customers . 18
2.8 Platform Choices . 19

2.8.1 Locally Developed Clients . 19
2.8.2 Developing on and Targeted to Multiple Heterogeneous Platforms . . 19

2.9 Applicability of CMVC . 19
2.9.1 Data and Files . 20
2.9.2 Language and Technology . 20
2.9.3 Types of Software . 20

2.10 Customizing CMVC . 20
2.10.1 Configurable Fields . 21
2.10.2 Choices Lists . 21
2.10.3 User Exits . 22
2.10.4 Authority and Interest Groups . 22
2.10.5 Configurable Processes . 22

2.11 Extensions to CMVC . 23
2.11.1 Back-End Tools . 23
2.11.2 Front-End Tools . 23
2.11.3 Custom Clients . 24
2.11.4 Report Generation . 24

2.12 Common Reasons for Choosing CMVC 25
2.13 Benefits of Using CMVC . 25

Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of
Development . 27

3.1 Representative Customers . 27
3.1.1 SCS . 27
3.1.2 Continental . 28
3.1.3 BT Laboratories . 28

3.2 CMVC for Small-Scale Efforts . 29
3.2.1 Smaller Projects Need CM . 29
3.2.2 Preparing for the Maintenance Phase 29
3.2.3 Increasing Developer Productivity . 30

3.3 Choosing a New CM Tool . 30
3.3.1 CM Tool Selection Criteria . 30
3.3.2 Tool Support and Maintenance . 31
3.3.3 CM System Administration . 32

3.4 CMVC and the Application Development Process 32
3.4.1 New Development . 32
3.4.2 Maintenance . 33

vi Looking at CMVC from the Customer Perspective

3.4.3 CMVC Concept of Process . 33
3.4.4 Defect and Feature Tracking Options 33
3.4.5 Release Processing Options . 34

3.5 Management Reports . 35
3.6 CMVC Support for Heterogeneous Hardware and Operating Systems . . 36

3.6.1 Preexisting Platform-Specific Skills . 36
3.6.2 Common CM Skills across Platforms 36
3.6.3 Standard CM Policies and CM Procedures across Projects 36
3.6.4 Preexisting or Planned New Development and Target Platforms . . . 37
3.6.5 Centralized CM Control with Remote Access 37
3.6.6 Ensured Growth Path . 37
3.6.7 Integrated Defect Processing and Change Control 37

3.7 Rolling Out CMVC on New Projects . 37
3.7.1 Setting Standards, Conventions, and Policies 37
3.7.2 Limited CMVC Functionality at First . 38
3.7.3 Initial Education and Consulting . 38

3.8 CMVC, Role Specialization, and Project Organization 39
3.8.1 Development Role Specialization at Continental 39
3.8.2 CMVC User IDs and Project Roles . 40
3.8.3 Development Role Specialization at SCS 40
3.8.4 CMVC System and Family Administration 40
3.8.5 Access Authority Groups . 41

3.9 Applicability . 41
3.9.1 Variety of Programming Languages . 41
3.9.2 Application Documentation . 41

3.10 Component Hierarchy . 41
3.11 ISO 9000 Certification and CMVC . 42

Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 45
4.1 Representative Customers . 45

4.1.1 Similarities of CMVC Usage . 45
4.1.2 MCI (Colorado Springs) . 46
4.1.3 IBM Tucson . 47

4.2 CMVC in a Network of Clients and Servers 48
4.2.1 Clients on Several Platforms . 48
4.2.2 Code Developed for Multiple Platforms on Multiple Platforms 49
4.2.3 Networking and Remote Access . 51

4.3 Evolution to a Company Standard . 52
4.3.1 Home-grown Systems and Their Problems 52
4.3.2 Introducing CMVC into the Process . 53
4.3.3 Acceptance and Feedback . 54

4.4 Diversity of Data Controlled with CMVC . 55
4.4.1 Source Code . 56
4.4.2 Build Tools . 56
4.4.3 Test Cases and Test Tools . 57
4.4.4 Documentation . 57

4.5 ISO9000 and CMVC . 58
4.5.1 CMVC As Part of an ISO Certification Process 58
4.5.2 CMVC As a Repository for Process Documentation 58

4.6 Organizational Consideration . 59
4.6.1 Central Support for Rollout . 59
4.6.2 CMVC Administration . 59
4.6.3 User Support . 60
4.6.4 Tool Support . 60

 Contents vii

4.6.5 System Administration . 60
4.7 Extensions to CMVC . 60

4.7.1 Back-End Tools . 61
4.7.2 Front-End Tools . 62

4.8 Customizing CMVC . 66
4.8.1 User Exits . 66
4.8.2 Configurable Fields . 67
4.8.3 Choices . 67
4.8.4 Configurable Processes . 67

4.9 CMVC Used with Different Development Paradigms 67
4.9.1 Object-Oriented Analysis . 68
4.9.2 Verification of the OOA Model . 68
4.9.3 Use of CMVC Together with OOA . 68
4.9.4 Cleanroom and Parallel Development 69

4.10 Firmware development . 70
4.11 Data Base Considerations . 71

4.11.1 Choice of Database . 71
4.11.2 Backup and Restore . 71

4.12 Build Process Considerations . 73

Chapter 5. Use of CMVC on Very Large-Scale Basis 75
5.1 Representative Customer . 75

5.1.1 Evolution of CMVC . 75
5.1.2 Mission . 75

5.2 Usage Characteristics . 76
5.2.1 Mission Criticality . 76
5.2.2 Scale of Usage . 77
5.2.3 Networking . 79

5.3 Centralized, Formalized Support Structures and Tools and Specialized
End-User Roles . 81

5.3.1 Help Desk for End Users . 81
5.3.2 Tool Developers . 82
5.3.3 System Administrator . 82
5.3.4 CMVC Family Administrator . 83
5.3.5 Education . 83
5.3.6 Specialized End-User Roles . 83

5.4 Customizing CMVC . 86
5.4.1 Configurable Fields . 86
5.4.2 Overloading of Fields . 87
5.4.3 Choices . 89
5.4.4 User Exits . 89

5.5 Extensions to CMVC . 90
5.5.1 Back-end Tools . 90
5.5.2 Complex Reports . 93
5.5.3 Front-End Tools . 96

5.6 Project Management . 96
5.6.1 Monitor Project Status . 97
5.6.2 Ensure Project Adherence to Schedule 97
5.6.3 Calculate Software Quality Metrics . 97
5.6.4 Measure Productivity . 97
5.6.5 Adjust Resource Allocation and Planning 97

5.7 ISO 9000 . 98

Chapter 6. Conclusion . 99

viii Looking at CMVC from the Customer Perspective

Appendix A. Customer Profiles . 101

Appendix B. Software Configuration Management and Change
Management . 103

B.1 Why You Need Them . 104
B.2 The Goals . 104
B.3 The Formal Definition . 105
B.4 What They Do . 105
B.5 Who Needs Them . 106

B.5.1 Big Development Efforts . 106
B.5.2 Medium-Sized Development Efforts 106
B.5.3 Small Development Efforts . 107

B.6 Interaction with Development Methodologies 107
B.7 Interaction with Project Management . 108
B.8 Interaction with Quality Assurance . 108
B.9 Configuration Management History and Statistics 109
B.10 CMVC Automated Support . 110

B.10.1 Increase in User Productivity . 111

Appendix C. Implementation of ISO 9001 Using CMVC 113
C.1 ISO 9000 . 113
C.2 CMVC and ISO 9001 . 114

C.2.1 Document Control . 114
C.2.2 Version Control in ISO 9001 . 115
C.2.3 Internal Quality Audits . 118

C.3 Conclusion . 119
C.4 Brief Description of ISO 9000-3 . 119

C.4.1 Configuration Management . 119
C.4.2 Design Control . 120
C.4.3 Document Control . 120

C.5 References . 120

Glossary . 121

List of Abbreviations . 125

Index . 127

 Contents ix

x Looking at CMVC from the Customer Perspective

 Figures

1. Relationships among Components, Files, File Versions, and Releases in a
Single Family . 8

2. CMVC Roles at Continental . 40
3. Relationship between CMVC Component Hierarchy and Directory

Structure . 42
4. Sample Graph Showing Defects over Time (Monthly) 61
5. ZAPAR Interface between RETAIN and CMVC 63
6. BuildTool : A Tool Interfacing with CMVC 65
7. Crontab Entry for Backing Up the CMVC Server 72
8. Shell Script (dsave.sh) to Back Up the CMVC Server 72
9. Shell Script (cmvclog.clean) to Start to Clean the CMVC Log 73

10. Shell Script (cmvclog.clean) to Clean CMVC Log 73
11. LAN Configuration at IBM Austin . 80
12. Defect Process Flow Based on Priority Field 89
13. Distribution of CMVC Transactions over the Day at Austin 91
14. Command Syntax for Tool Used for Automated Code Review 93
15. Why Configuration Management and Change Management Are

Necessary . 103
16. Development Process Relationships . 109

 Copyright IBM Corp. 1995 xi

xii Looking at CMVC from the Customer Perspective

 Tables

1. Decision Matrix: Functional Criteria . 31
2. Decision Matrix: Nonfunctional Criteria . 31
3. CMVC Transaction Statistics: April 1994 78
4. Customer Profile Matrix . 102

 Copyright IBM Corp. 1995 xiii

xiv Looking at CMVC from the Customer Perspective

 Special Notices

This publication is intended to help new or potential CMVC customers to envision
how CMVC can be used to solve the difficult problems related to software
configuration management. The information in this publication is not intended as
the specification of any programming interfaces that are provided by Configuration
Management Version Control/6000, Configuration Management Version Control for
HP, or Configuration Management Version Control for Sun. See the
PUBLICATIONS section of the IBM Programming Announcement for CMVC for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the implementation
of any of these techniques is a customer responsibility and depends on the
customer's ability to evaluate and integrate them into the customer's operational
environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United States
and/or other countries:

The following terms, which are denoted by a double asterisk (**) in this publication,
are trademarks of other companies:

ADSTAR ADMS
AIC AIX
AIX/6000 AIXwindows
AS/400 CUA
DATABASE 2 DB2
DB2/6000 IBM
OS/2 OS/400
RETAIN RISC System/6000
SAA

 Copyright IBM Corp. 1995 xv

NetLS Apollo Computer, Inc., a subsidiary of
Hewlett-Packard Co.

Network Licensing System Apollo Computer, Inc., a subsidiary of
Hewlett-Packard Co.

NCS Apollo Computer, Inc., a subsidiary of
Hewlett-Packard Co.

Network Computing System Apollo Computer, Inc., a subsidiary of
Hewlett-Packard Co.

British Telecom British Telecommunications PLC
BT Laboratories British Telecommunications PLC
Continental Continental AG
General Tire Continental AG
Continental Tire Continental AG
Uniroyal Continental AG
Semperit Continental AG
VAX/VMS Digital Equipment Corp.
DEC Digital Equipment Corp.
DEC Ultrix Digital Equipment Corp.
Hewlett-Packard Hewlett-Packard Company
HP Hewlett-Packard Company
HP-UX Hewlett-Packard Company
SoftBench Hewlett-Packard Company
INFORMIX Informix Software, Inc.
PVCS Version Manager INTERSOLV, Inc.
Internet Internet, Inc.
POSIX Institute of Electrical and Electronics

Engineers
ISO International Organization for

Standardization
X Window System Massachusetts Institute of Technology
MIT Massachusetts Institute of Technology
MCI MCI Telecommunications Inc.
Micro Focus Micro Focus Limited
Micro Focus COBOL Micro Focus Limited
Toolbox Micro Focus Limited
MS-DOS Microsoft Corporation
Microsoft Microsoft Corporation
Microsoft Windows Microsoft Corporation
NetWare Novell, Inc.
Motif Open Software Foundation, Inc.
OSF Open Software Foundation, Inc.
OSF/Motif Open Software Foundation, Inc.
ORACLE Oracle Corporation, Inc
SCS SEIKO Communications Systems Inc.
SEIKO RECEPTOR SEIKO Communications Systems Inc.
Messagewatch SEIKO Communications Systems Inc.
SEIKO RECEPTOR Messagewatch SEIKO Communications Systems Inc.
Sun Sun Microsystems Incorporated
SunOS Sun Microsystems Incorporated
Solaris Sun Microsystems Incorporated
NFS Sun Microsystems Incorporated
Network File System Sun Microsystems Incorporated
SYBASE Sybase, Inc.
UNIX X/Open Company Limited

xvi Looking at CMVC from the Customer Perspective

 Preface

This book arises from a study of several IBM customer sites and IBM development
laboratories where CMVC is used to solve the difficult and inevitable problems
associated with software configuration management in a team programming
environment. This book characterizes how a few specific CMVC “customers,” both
inside and outside of IBM, used, configured, tailored and extended CMVC to meet
their unique and varied requirements.

This document will be valuable to potential CMVC customers who are evaluating
CMVC, and to current CMVC customers who are looking for new ideas on how to
get the most from CMVC. The examples in this volume show some of the many
ways CMVC can meet software configuration management requirements of
application development efforts. This study shows, from the experienced CMVC
customer perspective, how and why customers value CMVC as an essential tool in
their application development environment.

How This Document is Organized
The document is organized as follows:

� Chapter 1, “Introduction to CMVC”

This chapter gives a brief overview of CMVC and its evolution.

� Chapter 2, “Looking at CMVC through Customers' Eyes”

This chapter describes how the authors researched this book and summarizes
their findings.

� Chapter 3, “Use of CMVC on a Small Scale or in the Initial Phases of
Development”

This chapter characterizes the use of CMVC on small scale, and in the initial
phases of application development.

� Chapter 4, “Use of CMVC on Medium-Scale or Companywide Basis”

This chapter characterizes the use of CMVC on a medium-sized scale, which
includes its being introduced as a company standard, its use for multiple small
projects and its use on a medium-sized project.

� Chapter 5, “Use of CMVC on Very Large-Scale Basis”

This chapter describes how CMVC is used on a very large scale in a mission
critical role by a computer hardware and software vendor.

 � Chapter 6, “Conclusion”

This chapter summarizes how the customers use CMVC in various different
ways and for different purposes.

� Appendix A, “Customer Profiles”

This appendix provides a chart to summarize some key quantifiable
characteristics of CMVC use at the customer sites studied.

� Appendix B, “Software Configuration Management and Change Management”

 Copyright IBM Corp. 1995 xvii

This appendix introduces the terminology and concepts of software
configuration management. This material is provided as reference; it is
extracted from other IBM Redbooks and White papers.

� Appendix C, “Implementation of ISO 9001 Using CMVC”

This appendix describes how CMVC can support ISO 9000 Series
requirements. This material is provided as reference; it is extracted from other
IBM Redbooks and White papers.

 Related Publications
The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

� IBM CMVC Concepts, SC09-1633, introduces the fundamentals of the
configuration management, version control, change control, and problem
tracking features of CMVC. It also defines the concepts that are the foundation
of the CMVC actions and describes their interrelationships.

� IBM CMVC Server Administration and Installation, SC09-1631, contains
detailed information for planning, installing, customizing, operating, and
maintaining the CMVC Server.

� IBM CMVC Client Installation and Configuration, SC09-1596, contains the
detailed information you require to install and configure the CMVC clients.

� IBM CMVC User's Guide, SC09-1634, describes how to use the graphical user
interface.

� IBM CMVC User's Reference, SC09-1597, contains the reference lists, tables,
and state diagrams for CMVC, as well as a description of how
message-integrated CMVC uses the Broadcast Message Server (BMS), to fully
integrate with the other integrated development environment tools.

� IBM CMVC Commands Reference, SC09-1635, describes the syntax and
usage of the CMVC commands as implemented in the command-line interface.

� NetLS Quick Start Guide, SC09-1661, provides the information needed to set
up the Network License System (NetLS) software to work with CMVC.

� Managing Software Products with the Network License System, SC09-1660,
provides the information needed to manage the use of NetLS software with
CMVC.

International Technical Support Organization Publications
� Did You Say, CMVC?, GG24-4178

� AIX Application Development: Migrating an MVS DB2 COBOL Application to
AIX Using WorkBench, AIC, CMVC, etc. , GG24-4177

A complete list of International Technical Support Organization publications, with a
brief description of each, may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

To get listings of redbooks online, VNET users may type:

xviii Looking at CMVC from the Customer Perspective

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order Redbooks

IBM employees may order Redbooks and CD-ROMs using PUBORDER.
Customers in the USA may order by calling 1-800-879-2755 or by faxing
1-800-284-4721. Visa and Master Cards are accepted. Outside the USA,
customers should contact their IBM branch office.

You may order individual books, CD-ROM collections, or customized sets,
called GBOFs, which relate to specific functions of interest to you.

 Acknowledgments
The advisor for this project was:

Lorna Conas,
International Technical Support Organization, San Jose Center

The book was completed and published by:

Leif Trulsson,
International Technical Support Organization, San Jose Center

The authors of this document are:

Dr. Silvana Contin,
IBM Deutschland Informationssysteme GmbH, Stuttgart, Germany

Richard Kortmann,
IBM Deutschland Entwicklung GmbH, Hannover, Germany

Maggie Cuttler, Editor
International Technical Support Organization, San Jose Center

This publication is the result of a residency conducted at the International Technical
Support Organization, San Jose Center. Thanks to the following people that were
being interviewed during this residency or who contributed information in other
ways to this book:

Continental

� Rolf Terei, Hannover

British Telecom

� Chris Alves-Jackson, Martlesham
� Richard Cutler, Ipswich

MCI

� Craig Braze, Colorado Springs
� Melanie Havnaer, Colorado Springs
� Cheryl Herrington, Colorado Springs
� Michael Smith, Colorado Springs
� Bob Wise, Colorado Springs

 Preface xix

IBM Austin

� Werner Hahn, Austin
� Jeri Lyn Hilsabeck, Austin
� Tom Howe, Austin
� Tom Krueger, Austin
� Dennis Lee, Austin
� Landy Ligon, Austin
� Dana Lloyd, Austin
� April Nicolay, Austin
� Bob Pietrasik, Austin
� Linda Pryer, Austin
� Marcia Proctor, Austin
� Tim Schuetze, Austin
� Conway Wharton, Austin

SCS

� Lyn Anderson, Portland
� Dick Moran, Portland
� Dennis O'Brian, Portland
� Dan Park, Portland
� Dave Ritchie, Portland
� Bruce Schroeder, Portland

IBM Tucson

� Mark Balstad, Tucson
� Chia-Hong (Kevin) Chen, Tucson
� Doug Forester, Tucson
� Brian Gross, Tucson
� Gregory Hill, Tucson
� Jonathan Kiser, Tucson
� Xinmin Ling, Tucson
� Colin Moss, Tucson
� Bill Raywinkle, Tucson
� Cheng-Chung Song, Tucson
� John VanderWerf, Tucson
� Andy Zaepfel, Tucson

xx Looking at CMVC from the Customer Perspective

Chapter 1. Introduction to CMVC

Software configuration management is the process of identifying, monitoring and
managing changes to software configuration items. Configuration Management
Version Control (CMVC) provides a full range of functions in support of software
configuration management.

This chapter provides:

� A brief look at the evolution of CMVC from an IBM internal project used in the
development of the AIX operating system

� A brief overview of the product
� An introduction to the main CMVC concepts and terminology.

1.1 Evolution of CMVC
This section describes how CMVC emerged from an internal development tool to
become an industrial-strength commercial product. The history of CMVC mirrors
what happens in many companies as the importance and complexity of their
software configuration management problems grow. Application development
organizations, finding their choice of commercial software configuration
management products inadequate, often attempt to build configuration (CM) tools
themselves. Homegrown CM tools, however, become mission critical very quickly.
Rarely are they designed and implemented with sufficient foresight to meet the
growing needs of the application development group. The resulting tool
maintenance efforts consume growing resources and distract the application
development organization from its primary development efforts.

1.1.1 Hybrid AIX and Mainframe CM Solution
IBM's RISC System Division AIX operating system developers originally developed
CMVC to enable them to maintain and concurrently develop versions of AIX-
related system and application software products.

In the early days of AIX development (1989), IBM developers used a configuration
management tool called OPATS hosted on an IBM mainframe to track program
defects and a combination of SCCS and shell programs on the IBM RT/PC
computer to do version control and release management and build automation.
This latter collection of tools was called PLIST.

OPATS was rich in function and could handle large amounts of data with good
performance because it was based on a mainframe database product. It suffered
the disadvantage, however, of not being integrated with the version control and
release management and build tools on the RT. Thus, while those tools were
ported to AIX, OPATS remained on the mainframe. This lack of protability
continued to present problems to the AIX development team.

 Copyright IBM Corp. 1995 1

1.1.2 Commercial Solutions Found Wanting
When the AIX developers looked for a UNIX-based commercial product to
automate software configuration management, they could not find a single product
that incorporated all of the qualities they sought. They needed an
industrial-strength product that was robust and reliable. They needed a product
that could deal with their initially large volume of data, large number of users, and
high rate of transactions, but they also needed a product that could continue to
scale up at the anticipated rates of growth. They needed a sophisticated
problem-tracking mechanism that could conform to and reflect their evolving
development process. They needed to control and manage the development of
software by large numbers of independent and geographically distant groups of
developers. They also wanted the CM tool to be UNIX-based, and if possible,
AIX-based.

1.1.3 Write a Quick and Easy CM Tool
Because the AIX developers did not find a suitable commercial CM tool, they
undertook to develop a tool themselves. The tool they developed, NEDS, was
neither sophisticated in its design nor efficient in its execution. It went through two
iterations before evolving into the precursor of CMVC Version 1. NEDS I was
written largely in Korn Shell scripts and used SCCS for version control over source
files. NEDS I stored configuration management data in large and unwieldy flat files.
The AIX developers continued to use OPATS for defect tracking.

1.1.4 Rewrite for Performance Improvements
The second iteration, NEDS II, was reimplemented in C for performance. It took
advantage of a commercial relational database management system (RDBMS)
product to replace the flat files in which configuration management data had been
stored. Performance benefits accrued from the use of the rapidly improving
relational database technology. This implementation still suffered the disadvantage
of not having defect tracking on a compatible platform, however. Over time, NEDS
II also became inadequate to meet the growing demands of AIX development.

1.1.5 Commercial Offerings Still Lacking
Before beginning their third iteration of NEDS, the AIX developers again looked at
the “make versus buy” decision. Willing to purchase a solution—even one that ran
on a competitor's UNIX platform, if necessary—they considered solutions for both
Sun and Apollo computers. These commercial solutions still lacked the integration
of problem tracking with version control and release management, and they did not
take advantage of an RDBMS.

The AIX developers were beginning to discover the benefits of access to
configuration management data through a standard SQL interface, and they
decided that giving up the RDBMS that made that possible would be a mistake.
They concluded that they would have to develop a new tool by capitalizing on the
experience they had acquired with NEDS I and II.

2 Looking at CMVC from the Customer Perspective

 1.1.6 Orbit
Orbit was the next-generation CM tool that the AIX developers built. Carefully
designed to meet both current and future needs, Orbit was, finally, a satisfactory
solution.

According to one of the original developers of Orbit, the secret of CMVC's success
is its adaptability and scalability. These characteristics were enabled by three key
design principles:

 � Client/server architecture
� Use of commercial RDBMS to store metadata and a commercial version control

system to store versions of file objects
� Integration of the problem tracking mechanism with version control and release

management to achieve full configuration management functionality in a single
tool.

1.1.7 Explosive Demand for Orbit within IBM
By word of mouth, news of Orbit spread within IBM. Demand for copies grew
within the company. Maintaining, distributing, and supporting Orbit and educating
end users about the product became an unplanned responsibility of the AIX
development team. The AIX developers, therefore, gave Orbit to IBM's Software
Solutions Division in 1991 so they could evaluate it as a potential commercial
product. The internal demand for this tool was driven by lack of comparable
commercial products and by Orbit's particular success at meeting the requirements
of team programming in a LAN workstation environment.

1.1.8 Release of CMVC/6000 Version 1
Orbit was turned over to IBM's Software Solutions Division in 1991. This division
released a Licensed Program Product in 1992 called Configuration Management
Version Control/6000 (CMVC) Version 1. This product was available only for the
AIX operating system on the RISC System/6000.

PVCS was offered in addition to SCCS as the underlying version control
mechanism. ORACLE RDBMS was supported initially. CMVC was integrated into
IBM's Software Developer's Workbench/6000 and became a member of the AIX
Application Development family of products. In addition to the command line
interface, a GUI was introduced. Another feature was that customers could choose
to use CMVC in either binding or nonbinding control fashion. Binding control
imposed a rigid process on problem tracking and release management; nonbinding
control imposed fewer restrictions and was appropriate in the early stages of
development effort.

The AIX developers at IBM Austin, meanwhile, continued to use Orbit for about one
year. Then they migrated to CMVC Version 1, although they continued to support
the older Orbit user interfaces. They also continued to support front-end tools that
they had written for Orbit, but they modified them to access the new CMVC Version
1 server.

 Chapter 1. Introduction to CMVC 3

1.1.9 CMVC Version 1 Enhancements
CMVC Version 1 was enhanced several times. Both the client and server portions
of CMVC were later ported to Hewlett-Packard and Sun computers for use with
their UNIX-based operating systems. Clients and servers on all platforms could
interact with each other. Support for SYBASE and INFORMIX RDBMS products
emerged, although not every RDBMS product was supported on all platforms.

1.1.10 CMVC Version 2
In Version 2 the CMVC GUI was enhanced with graphical representations of the
component hierarchy, file history, and release/level history. Additional CMVC
clients were later developed for PC workstations (OS/2 Version 2.1 and Microsoft
Windows). Version 2 saw several server-end improvements, including expansion of
configurable fields and enabling of many more user exits. CMVC Version 2
introduced the notion of configurable process definition for components and
releases, replacing the older concepts of binding and nonbinding control. CMVC
also added support for the DB2/6000 RDBMS.

1.1.11 Continued Spread of CMVC within IBM
CMVC popularity continued to grow within other divisions of IBM. Application
developers in these divisions also developed local custom clients on VM, DOS, and
OS/2 Version 1 and even built a client using AIX's own System Management
Interface Tool (SMIT). (SMIT is both a general-purpose user interface development
tool and a specialized system management feature. SMIT can be used to develop
special-purpose menu-based command generators for both GUI and ASCII
terminals.) These clients were not absorbed into the formal product but helped
advance the use of CMVC within the various IBM development laboratories.

1.2 Key CMVC Design Points
CMVC is the embodiment of lessons learned by a large software vendor wrestling
with the development of a tool to meet serious software configuration management
challenges. The three key design decisions made for Orbit, carried through in
CMVC, are largely responsible for CMVC's ability to scale and adapt to a wide
variety of requirements. The full benefits of these design characteristics, although
not all envisioned by the original architects, have made CMVC particularly valuable
to its customers.

 1.2.1 Client/Server Architecture
The AIX developers worked primarily on a large and complex network of
independent RISC System/6000 desktop workstations, network-attached graphical
terminals (Xstations), and large-capacity RISC System/6000 servers that supported
both direct-attached graphical (HFT) and ASCII terminals. In this development
environment, the decision to develop a client/server architecture that relied on
TCP/IP and NFS, both standard features of AIX, was an easy choice. This
decision, it turned out, was to have unexpected additional benefits for later CMVC
customers.

One obvious benefit of a client/server architecture is that you can independently
modify either client or server by adding new features, improving performance, or
increasing customer flexibility in prerequisite software products so long as you keep
the client/server interface unchanged. It also makes it easier to develop new

4 Looking at CMVC from the Customer Perspective

clients and/or user interfaces that use existing clients. For instance, the CMVC
graphical user interface (GUI) was developed as a new client that conformed to the
same client/server interface to which the original command-line-oriented client had
been built.

This design also makes it easy to add network licensing to CMVC. By modifying
the CMVC server to obtain network license tokens on behalf of any client
requesting its services, the only serious change required in the client is to enable it
to recognize the error conditions that the server might report if network tokens were
not available to service a CMVC client request.

The choice to develop a UNIX-based product, in itself, ensures that CMVC can be
easily ported to a wide variety OEM hardware. Such hardware need only offer
either a native UNIX implementation or POSIX and TCP/IP and NFS interfaces in a
non-UNIX operating system. This fact, coupled with the client/server architecture,
ensures that the servers and clients can be implemented on various operating
systems and hardware platforms and interoperate with each other.

Thus the CMVC developers were able to meet the requirements of IBM customers
for HP, Sun, DOS, OS/2 2.1 and Windows CMVC clients, as well as for HP and
Sun and AIX CMVC servers.

1.2.2 Use of Independent Relational Database and Version Control
Systems

A significant CMVC design decision was to make use of RDBMSs that support
standard SQL interfaces for query and update. Configuration management requires
the storage and management of considerable data about who does what to the
controlled software for which purposes. This data goes beyond merely keeping
track of all historical versions of files to identifying which specific versions of all
relevant files constitute specific releases of the larger software products or
applications. This data also allows CMVC to model the development processes by
enabling it to record state and status data and the relationships between the
development objects. It is sometimes called metadata or data about the data (that
is, about the controlled software).

This metadata lends itself to storage and manipulation within relational tables. The
decision to remove responsibility for handling this data from CMVC and place it
under control of a commercial RDBMS left CMVC developers free to concentrate
on the issues directly related to automation of software configuration management.
This decision also made it possible to host CMVC on top of a choice of RDBMS
products. Now if one RDBMS failed to scale as needed, another could be slipped
in its place to achieve the performance or capacity required.

Again, this decision had the additional benefit of allowing CMVC customers to make
an initial choice of RDBMS based on such factors as preexisting licenses or system
administration familiarity with one RDBMS or another. The number of RDBMSs on
various platforms supported by CMVC has grown, and includes even IBM's own
DB2/6000 at this time. As new RDBMS support has been introduced, CMVC has
also been released with utilities to help customers migrate from one database
product to another.

Choosing to use RDBMSs proved itself a very sound design decision, from another
point of view too. As the demands placed upon CMVC at IBM Austin grew, the
ability of commercial RDBMS products to handle ever larger amounts of data, on

 Chapter 1. Introduction to CMVC 5

ever larger UNIX-based computers at ever faster speeds of access, coincidentally
evolved. This meant that CMVC did not require redesign to meet the demand for
increased capacity and performance.

CMVC also supports a choice of version control mechanisms, another product
feature that provides customers with flexibility. Users can use SCCS, the native
UNIX version control system that is bundled with most UNIX-based operating
systems. CMVC Version 2 also provides an ability to version binary objects.
Customers can also choose to use Intersolv's PVCS to implement file version
control. (PVCS, a commercial product that some customers may prefer, can
version ASCII or binary files.)

1.2.3 Integrated Problem Tracking and Release Management
The inclusion of problem tracking with version control and release management is
key to enabling full-function configuration management. Configuration management
includes not only keeping versions of individual files and recording exact
configurations of larger software entities such as releases but also the ability to
trace the origin and approval history of all changes entering evolving software
baselines.

The integration of problem tracking with release management and version control
allows CMVC to force the discipline of a process model on the development effort.
Initially, CMVC offered two model choices, a fairly sophisticated model, known as
binding control, and a simple model, known as nonbinding control. CMVC Version
2 introduced a much more flexible model process, the configurable process. CMVC
customers can customize CMVC to mimic and automate their existing configuration
management process or create a process that had not previously existed.

1.3 Product Description and Prerequisites
CMVC is a client/server-based Licensed Program Product from IBM. CMVC
products, both client and server, are available for HP, Sun, and AIX-based
operating systems. CMVC client-only products are also available for Microsoft
Windows and OS/2 operating systems. Client products will interoperate with any
server product across a LAN using TCP/IP and Network File System (NFS).

CMVC UNIX-based clients offer a command line user interface, a stand-alone GUI,
and a message-integrated GUI for use with IBM SDE WorkBench/6000 or the HP
SoftBench products. The command line and graphical user interfaces are
approximately equivalent in function, but each has particular advantages in different
situations. The command line interface is used with the HP-UX, SunOS, Solaris, or
AIX shells; it can be used from any ASCII terminal. The GUIs support OSF/Motif
environments and therefore require that their output be displayed at Xstation or
high function terminals.

CMVC requires one of the following products:

� SCCS, which comes with the AIX Application Development Toolkit

� Intersolv PVCS Version Manager.

CMVC also requires installation of one of the following RDBMSs:

 � Oracle
 � INFORMIX

6 Looking at CMVC from the Customer Perspective

 � Sybase
 � DB2/6000.

1.4 Identifying Configuration Items
A software configuration item is a composite object that can be decomposed into
smaller composite objects. These smaller composite objects may themselves be
decomposed into smaller objects recursively. Ultimately these objects decompose
into atomic programming objects with which specific files containing source, binary
data, executable, documentation, build instructions, and/or other data are
associated. Therefore, a configuration item must be identified both as the
aggregate whole and in terms of the smaller elements that comprise it.

CMVC supports the identification of configuration items, their internal composition,
and the subordinate elements comprising them by allowing users to define and
manipulate CMVC objects such as the CMVC family, component hierarchy, files,
and releases. These concepts and their interrelationships are key to understanding
how CMVC supports software configuration management.

The reader is presumed to be fairly familiar with configuration management
concepts and terminology and reasons for doing software configuration
management. If the reader is not, we provide a brief introduction to that topic in
Appendix B, “Software Configuration Management and Change Management” on
page 103.

 1.4.1 CMVC Family
A CMVC family is a logical organization of related development data. The data in
one family cannot be shared with the data in another family. Within each family,
data is organized into groups called components.

1.4.2 CMVC Component Hierarchy
Components are arranged in a hierarchical structure with a single top component
called root. Components are the focal point for information retrieval, access
control, notification control, problem reporting, and data organization within CMVC.
In the component hierarchy, any component may contain, that is, logically group,
either subordinate components, or data files, although typically, files are associated
only with end-node components in the hierarchy. Component hierarchies are fairly
flexible, allowing for one child component to have multiple parents, and one parent
to have multiple child components.

1.4.3 CMVC Files and Versions
A CMVC file is controlled and managed by one component. A CMVC file is
uniquely identified by a path name, which consists of a UNIX directory path prefix
and a base file name. Thus, there can be two unique CMVC files that have a
different path prefix but the same base file name, because together the prefix and
base parts would define a unique value.

Files may contain either binary or ASCII data. The purpose or contents of CMVC
files is irrelevant to CMVC. These files are stored in a special file system,
manipulated by the version control system, and accessible only indirectly through
CMVC.

 Chapter 1. Introduction to CMVC 7

 1.4.4 CMVC Releases
All files that make up a single version of a configuration item, are identified with a
CMVC release. A single release may group files managed by a single component,
or it can group files managed by an arbitrary number and selection of components.

A CMVC file cannot be created without reference to a release. If one release
needs to contain a file already existing in another release, CMVC creates a link
from the two releases to the current version of that file. Now, both releases are
said to share the same file. Because each is using the same version of that file, it
is called a common file.

During development, the contents of a CMVC file associated with a given release
may change many times. Whenever a new version of this file is recorded the
developer can choose to keep the current version linked into all releases in which it
is common. Or, the developer can choose to break the link, leaving each release
sharing a separate version of the file.

Figure 1 shows the relationships among a component hierarchy, releases, files,
and versions of files in a single family. Note that releases, like files, are managed
by a component.

Figure 1. Relationships among Components, Files, File Versions, and Releases in a Single
Family

8 Looking at CMVC from the Customer Perspective

1.5 Integrated Problem Tracking
CMVC supports monitoring and managing changes to software configuration items
by integrating problem tracking with version control and release management
functions.

1.5.1 Defect and Feature Processing
CMVC provides problem tracking for both feature and defect changes. Users
submit requests for new features and reports of defects to CMVC. Defects and
features must be associated with a particular CMVC component.

As you might expect, defects and features can be open, accepted, or rejected.
Once accepted, defects and features are processed through various phases until
they reach resolution and are closed. They may pass through design, size, and
review states. Before closing, a defect or feature can be worked backward through
these steps, under appropriate circumstances. On closing a defect, the original
submitter can be requested to verify that the defect has been resolved or the
feature has been implemented satisfactorily.

1.5.2 Track, Level, and Release Processing
CMVC supports the integration of problem tracking with release management by
allowing the association of particular defects and features with particular releases.
The CMVC track relates a set of file changes integrated into a release with the
defect or feature that authorizes them.

CMVC also supports release management with the CMVC level. A level allows the
easy management of a large release by breaking it into subsets according to
functional, sequential, or other principles. Each level is defined by a set of tracks
that are to be integrated into the release incrementally. All specific versions of the
specific files associated with the tracks for a level are extracted into UNIX directory
space so they can be integrated in a series of separate steps called level members.
The required versions of all files implementing a release can be extracted according
to several criteria, including by level.

Tracks and levels are processed in a configurable manner such that their status
can be easily monitored as they progress through several phases. Tracks can go
through optional approval, fix, level (integration), and test processing. Tracks and
levels can be worked backward through the process under appropriate
circumstances.

 1.5.3 Change Control
Multiple sequential versions of a file can be controlled by CMVC. To ensure orderly
changes in files, files are checked out before changes are made, and they are
checked in afterwards. Once a file has been checked out, it cannot be checked out
again by any user until the original user checks it back in. Check in and out can be
associated with a given track (and therefore with a particular release, and defect or
feature).

Any recorded version of a file can be extracted for reference purposes. The
version specified can be either the current version, the version current at a given
date, or the version associated with a particular version ID.

 Chapter 1. Introduction to CMVC 9

 1.5.4 Audit Trail
CMVC ensures that an audit trail is maintained that explains, for every CMVC file,
who modified the file, when it was changed, and why. CMVC provides traceability
forward from the defect or feature to all releases in which it is resolved, and
backward from the specific version of, or set of changes in a given file to the defect
or feature that is related to the file.

1.5.5 Users and Host Lists
CMVC assigns all valid users a CMVC user ID. Through a host list the CMVC user
ID is associated with a UNIX login ID and UNIX host. User IDs are recorded on a
family basis. CMVC records and uses user data in association with many actions.
Users, for example, own and manipulate all components, releases, defects, and
other CMVC objects.

1.5.6 Components Control Access to Files and Releases
CMVC provides a mechanism to control user access to development data
associated with components. All such access is through CMVC actions. All CMVC
actions are grouped into subsets defined as authority groups A user can be
assigned to one of more authority groups in a single component's authority list.
Users implicitly acquire some access, can receive access explicitly, or receive
access implicitly by inheritance from ancestor components access lists. Users can
explicitly grant, or deny, access authority to users over components which they
own.

CMVC provides for automatic notification of interested users of actions it takes
against components, files, releases, and other CMVC objects. Notification is
provided by electronic mail, so notification does not depend on a user invoking
CMVC on a regular basis. Interest is configurable by component and type of
action. Interest is defined by a user's membership in an interest group.

 1.5.7 Configurability
CMVC provides configurability in the fields of records supporting features, defects,
files, and users. CMVC also provides configurability in the processes that it
enforces as objects (files, features, releases) move through the various states that
it recognizes and controls. Finally, CMVC provides configurability in its actions,
allowing the CMVC end user to program user exits, which will automatically execute
under prescribed conditions in association with CMVC actions.

The reader who wants a more complete and detailed description of CMVC
concepts, terminology, and functions is advised to study Understanding IBM AIX
Configuration Management Version Control/6000 Concepts.

10 Looking at CMVC from the Customer Perspective

Chapter 2. Looking at CMVC through Customers' Eyes

In this chapter we describe how we researched this book and give a brief history of
CMVC and its salient qualities. The chapter also summarizes the results of our
research. The examples cited in this chapter are described in detail in Chapters 3,
4, and 5.

 2.1 Data Gathering
We identified a small group of CMVC customers who were willing to help with our
research and were representative in various ways of the larger set of CMVC
customers. We visited several CMVC customer sites and exchanged telephone
calls and electronic correspondence with other CMVC customers.

 2.1.1 Customers Studied
We visited these external IBM CMVC customer locations:

� Intelligent Services Platform Division, MCI Telecommunications Corporation
(MCI) in Colorado Springs, Colorado—A major U.S. and international long
distance telephone service company

� SEIKO Communications Systems Inc. (SCS) in Portland Oregon—Provider of
a radio paging service and pager receiver integrated into an electronic watch

� Continental AG (Continental) in Hannover, Germany–A large company owning
several international tire and rubber manufacturing companies

� BT Development and Procurement, BT Laboratories, British
Telecommunications PLC (British Telecom), Martlesham Heath and Ipswich,
England–The largest provider of telecommunications services and telephone
equipment in the United Kingdom.

We also visited two IBM divisions:

� The RISC System/6000 Division Development Laboratory (IBM Austin) in
Austin, Texas—Developer of the AIX/6000 operating system, other software
products for both AIX and OS/2, and the RISC System/6000 family of
computers

� The Storage Systems Division's Development Laboratory (IBM Tucson) in
Tucson, Arizona—Producer of workstation software and hard disk drives, disk
controller subsystems, and tape storage products.

2.1.2 Interviews and Questionnaire
The authors interviewed managers, software configuration managers, developers,
system administrators, and other technical end users at the customer sites in an
attempt to get many perspectives on CMVC.

Interviews were guided by a questionnaire we developed which asked a series of
questions to determine how and why customers used CMVC, and what they
particularly valued about it. Different questions were asked of people playing
different roles in the customer organization. Questions asked concern previous
experiences with home-grown or other commercial CM tools, how CMVC is used
presently, and which benefits are gained by its use in this manner.

We also talked with the developers of CMVC about its history, design, and
implementation.

 Copyright IBM Corp. 1995 11

2.1.3 Demonstration and Examination
We watched demonstrations of locally developed front-end and back-end tools built
around CMVC. We examined sophisticated management reports and graphical
charts built by such tools that extracted and manipulated data from CMVC. We
saw custom CMVC clients that had been developed for unsupported platforms. We
watched how developers and end users interacted with CMVC and other
development tools at their workstation. We examined customer use of CMVC
server-end tailoring mechanisms, by studying the use of customer-developed user
exits, configurable fields, configurable processes, and specialized input field choices
lists.

2.1.4 End User Support Strategies
We looked over presentations used by CMVC customers to introduce CMVC within
their organizations. These presentations, used to gain acceptance and approval of
CMVC, stated how customers intended to use CMVC and which benefits they
expected. We examined CMVC end-user documentation and education materials
that customers had developed to assist new CMVC users install CMVC clients and
begin using CMVC. We visited CMVC help-desk staff and inquired about ongoing
end-user support procedures.

2.1.5 Computers and Networks
We toured computer laboratory facilities, examined network and remote access
schemes, and noted the numbers and varieties of hardware and software platforms
serving as CMVC clients and servers.

 2.1.6 Lessons Learned
We solicited advice on how to successfully implement software configuration
management using CMVC on projects of different sizes. We also asked for hints
on how to implement CM with CMVC across multiple sites and a companywide
standard. We listened as customers explained how their use of CMVC evolved as
they became more familiar with its strengths and features.

2.2 Organizing the Data
Returning from these interviews, we organized and consolidated our notes. We
concluded that discussing our findings on a customer-by-customer basis was not
very informative. Instead, we decided to look at CMVC from the point of view of
the degree to which customers use it and the size of the project or number of
projects that customers manage with CMVC.

We divided customer use of CMVC into three broad groups for the purposes of this
discussion:

� Very large-scale installations (IBM Austin, IBM Tucson)

� Medium-sized single projects or companywide standardization on CMVC for
use on all projects (IBM Tucson, MCI)

� Small-scale or initial project use of CMVC (BT Laboratories, SCS, Continental).

We organized our findings by looking for both unique uses and common themes
among customers who fall within each category.

12 Looking at CMVC from the Customer Perspective

2.3 Typical CMVC Customers
CMVC appeals to a broad variety of companies, a mixed group of businesses
engaged in developing computer software for a variety of purposes. The
companies are in a variety of industries and geographies. Many are part of large,
or even multinational, entities. But, the decision to purchase and use CMVC is
often made by a small company, or a single project or department within a larger
entity. Occasionally the driving force behind the decision has division-level or
corporatewide responsibility.

The amount of software or number of applications these companies develop covers
a broad range, as do the importance and role of the software or applications in their
business.

Thus, there is no typical CMVC customer profile. The customers whom visited are
representative in many ways of the variety of businesses that are CMVC
customers. One way of segmenting CMVC customers might be in terms of the
type of business a company conducts, and the relationship between how a
company makes money and the software it develops. Looked at in this way, a
given customer may fall into several categories. In this section we group CMVC
customers in this manner, pointing out some general characteristics of each
category and describing how these impact CM tool requirements.

 2.3.1 Software Vendors
For most CMVC customers, developing software is a means to another business
end. For software vendors, however, software is their main product, contributing
directly to the company' profitability. It is not surprising, therefore, that a tool
providing automated software configuration management would be a mission critical
necessity, not a convenience or nicety.

Software vendors use an automated CM tool to help them maintain a consistently
high quality in their software. Such a tool can provide them with the management
information necessary to manage and allocate their development resources to
ensure the timely delivery of new software products and the efficient and ongoing
maintenance of older software products. Software vendors also need to manage a
significant amount of online and hard copy documentation in conjunction with
software product releases.

Software vendors frequently use a variety of languages and development tools and
target multiple, often nonhomogeneous platforms for the execution of their products.
Software vendors sometimes require that new tools be integrated into the existing
development environment and coexist with other tools. They require that the new
tools lend themselves to being “programmed” to further this integration.

Software vendors frequently start small and grow rapidly, often in unexpected
directions. Employing primarily computer programmers, they often attempt to build
their own solutions to software configuration management problems when, as small
companies, their requirements are fairly simple and their resources are thin. If they
first look for a commercial tool to automate CM, they often conclude that they have
neither the budget nor the requirement for a comprehensive product.

As the software vendors grow, so grows their dependence on their CM tools. If
they have taken on the development and maintenance of their critical CM tool, they
soon discover that it takes on a life of its own quite apart from the development

 Chapter 2. Looking at CMVC through Customers' Eyes 13

efforts it is supporting. The maintenance effort often consumes increasing
resources, while the tool itself becomes more fragile and less reliable.

Requirements for development tools that are to be built locally are rarely analyzed
thoroughly, and the tools themselves are not designed for generalized use. Often
these tools live on from one project to the next, taking on new features, functions,
and project-specific characteristics. Moreover, tools built for internal consumption
are rarely implemented with the rigorous software engineering methodology used
for the product software.

The further along this path a software vendor goes, the more difficulty it finds in
replacing its home-grown CM tool with a commercial product. The more adapted
its CM tool becomes to its unique development environment and process, the more
convinced a software vendor becomes that its CM requirements are unique.
Ironically, a vendor often concludes that the same full-function product that was too
complex originally now fails to provide as much function as its custom solution
provides. The available commercial products may seem too restrictive or inflexible
to implement the unique processes that the vendor has evolved.

IBM Austin is in many ways representative of the software vendor industry,
because it develops and maintains operating system, networking, and workstation
application software for AIX and OS/2, as well as the RISC System/6000 family of
computers, peripherals, and Xstations. Some of its products target other vendor's
UNIX platforms as well.

IBM Tucson is also representative in that it develops and maintains a stand-alone
software product called ADSTAR Distributed Storage Management (ADSM). This
product provides backup, restore, archive, and retrieve functions across a wide
variety of heterogeneous computer platforms.

 2.3.2 Hardware Vendors
The software that hardware vendors develop forms a significant and growing
component of their main products. Most of it is microcode, embedded within their
hardware. Automated tools developed by hardware vendors may be critical in
automating various aspects of their engineering and manufacturing processes.

The fact that software configurations should be controlled and managed, at least as
rigorously as hardware configuration data, is self-evident to hardware vendors.
Written in various languages, including assembly languages, hardware vendor
software is often either cross-compiled on a development workstation or
downloaded for assembly on target microprocessors.

Hardware vendors may want to dovetail configuration management practices in
their hardware and software development processes. At a minimum, they will need
to coordinate schedules between hardware and software development efforts. To
control software problem reporting and tracking, deliverable media archive or
engineering documentation, and release management, a hardware vendor is likely
to start out using CM tools designed for hardware development and maintenance.
As the software component grows and becomes more complex, the two CM worlds
diverge, and it becomes obvious that tools with greater affinity to the development
platforms and tools tailored for the software development process are necessary.

IBM Austin and IBM Tucson are both representative of hardware vendors. Both
develop and maintain hardware, peripherals, and/or subsystems with significant

14 Looking at CMVC from the Customer Perspective

software content that they control with CMVC. SCS also represents this type of
customer. Microcode developed in this Portland subsidiary is embedded within
microchip components of watches that the parent company manufactures in the
Orient.

 2.3.3 Manufacturing Companies
Companies whose main business is manufacturing are also heavily dependent on
software that they develop themselves. Originally, these companies may only have
developed business applications for information management. They now find
themselves increasingly dependent on software critical to both their manufacturing
and product engineering processes.

Typical manufacturing companies will have heritage applications and computing
facilities that predate the open systems explosion of recent years. As a result,
these companies often target their applications for execution on proprietary
mainframe and midrange hosts, but they also are doing more and more software
development on PC desktop computers networked together with the hosts.

Manufacturing companies have not been ignoring the open systems revolution,
however. They also find themselves using UNIX workstations as development
platforms and even targeting a few applications for multiple vendor UNIX platforms.
They are not as likely as a software vendor to have a wide variety of vendors,
UNIX or otherwise, in their development shops, though.

These companies are less likely to have developed their own CM tools and are less
heavily invested in development tools or methodologies than software and
hardware vendors. They may have been using CM tools on their proprietary hosts,
but not to the maximum extent they might. Problem tracking, for instance, may not
be as fully institutionalized as version control. However, if they have significant
exposure to the hardware design and manufacturing automation revolution of recent
years, they may be more readily convinced of the productivity gains to be had from
tools that enhance the development environment for the programmer and
coordinate the efforts of the programming team.

As they move to UNIX-based computers and rely increasingly on PC-based
application development environments, manufacturing companies are seriously
evaluating 4GLs and other modern tools to support and automate software
development on the LAN-based platforms. These companies recognize that their
heritage software will continue to coexist with their newer workstation-based
applications, but that their host-based CM tools will not suffice. They are, therefore,
looking to LAN-based CM tools to service both large and small, proprietary and
open, platforms.

Continental is representative of a manufacturing company. It has a staff of 400
maintaining and developing business, manufacturing, and engineering applications
relevant to the design, chemistry, and manufacture of automotive tires.

 2.3.4 Services Providers
Many companies that are neither computer hardware nor software vendors find
themselves developing a lot of software these days. These service providers
develop and maintain large and numerous application programs that are critical to
providing the services that are their primary products. To these companies,

 Chapter 2. Looking at CMVC through Customers' Eyes 15

software engineering plays its role in the context of engineering large and complex
systems that have significant hardware, software, and human components.

These service providers, also develop both business and utility software for internal
consumption. Because company workers become dependent on such software, its
reliability and maintainability are critical to business success. These companies are
likely to invest in tools to support their software engineering methodology and
technology, including CM tools. These companies are likely to be using C, C++, as
well as 4GL products.

Service providers typically develop a large percentage of their software for
UNIX-based workstation and server-sized computer platforms available from a
variety of hardware vendors. They may use PC-class workstations as development
platforms, too. Some may still have applications executing on proprietary midrange
computers also. These companies may want to control and manage all of their
software with a single CM tool. They generally look to open systems vendors for
solutions that are compatible with that environment and execute on a variety of
hardware platforms, including non-UNIX desktops.

MCI and BT Laboratories are representative of service providers. Businesses such
as telecommunications companies may sell hardware, or even software, but their
mainline business is the provision of telephone and telecommunications services.
SCS also fits into this category. Although the paging hardware (built into watches)
is a product, the network of transmitters, receivers, and switches that they also
develop provides the backbone of its radio-based services.

2.4 Scalability of CMVC
We found that CMVC scales tremendously, in terms of the volume of files, volume
of metadata, numbers of users, numbers of families, components, tracks, releases,
and other CMVC objects.

2.4.1 Very Large Scale Application
On the high end is IBM Austin, where CMVC supports more than 3000 users. The
vast majority of these users work on one very large project, developing and
maintaining multiple production releases of a single operating system's source
code. IBM Austin, has one family containing 1800 components that manages their
access to over 600,000 files. The users at this installation access CMVC around
the clock, literally from around the world, and have done so with virtually no
downtime attributable to CMVC since its inception. Seven large-capacity server
computers in Austin support hundreds of LAN-attached PCs, Xstations, and RISC
System/6000 workstations as well as numerous remote locations connected by
WAN and dial-up mechanisms.

2.4.2 Small Scale Application
On the low end, CMVC is successfully used at SCS to support just 15 users
working on a single project. Here, only 20 users are working on two projects
whose data is contained within a single CMVC family. Thirty components are used
to manage about 3000 files. Here, also, the hardware support is much smaller.
One RISC System/6000 serves as a server, and it and one other RISC
System/6000 workstation, support all users on a combination of Xstations and PCs.

16 Looking at CMVC from the Customer Perspective

2.5 Limited Functional Use of CMVC
Our study showed that CMVC is sometimes used in a limited manner, as, for
example, where CMVC must integrate with and augment existing CM tools, or
where CMVC is being introduced to a new project, but full configuration
management functionality is not yet required. The two scenarios we encountered
most often were use of:

� Version and release control only
� Problem tracking only.

2.5.1 Version and Release Management Only
When a company is just introducing CMVC, or at the early stages in software
development, it may prefer to use only the version and release control mechanisms
in CMVC. Continental, for instance, is not using problem tracking yet on its three
projects, because none of them has gone into production use.

At IBM Tucson, however, a VM-based tool has long been used to track problems,
and not all problems that arise will necessarily be solved by changes to software
under CMVC control. Some projects therefore keep problem tracking on the
mainframe and use CMVC primarily to manage the software.

2.5.2 Problem Tracking Only
Although a customer may not purchase CMVC to use it only for problem tracking,
once it is in house, specific cases where only this feature is required can appear.
IBM Austin, for instance, had an established practice of using INTERLEAF for
version control of individual document source files, before CMVC was developed. It
did not abandon use of INTERLEAF for version control when CMVC became
available, but it did begin to use CMVC for problem tracking.

One reason was that IBM Austin needed to integrate control of product code and
documentation whenever a new release was about to be put into production. To
achieve this it creates components representing the completed release-level
documents. Using a problem report in conjunction with the new software release, it
integrates the binary images, of both the printable documents and the online
information libraries, with the software build for the formal release. It brings these
document images under control of CMVC managed by the documentation
components.

IBM Austin also needs a mechanism by which defects reported by users can be
assigned either to documentation or code or both, or reassigned to documentation
or code, for resolution. To do this, IBM Austin needs components representing the
documentation in the same family as those components by which the source code
is controlled. These defects are registered against the same documentation
components used to manage the binary images.

2.6 Standardizing on a Single CM Tool
CMVC customer experience indicated that CMVC lends itself to becoming the
companywide standard CM tool, whether by executive fiat emanating from the top
of an organization, or democratic consensus, whereby individual projects
increasingly choose to use CMVC because of its strong internal reputation.

 Chapter 2. Looking at CMVC through Customers' Eyes 17

2.6.1 Development of Formal Standards
Continental selected CMVC after a long and thorough trade study of alternative
competing solutions. Use of CMVC is being implemented in a very rigorous,
carefully planned, incremental manner across the company's several development
sites. Continental developed specific standards defining how CMVC is to be used
and manuals focused on specific end-user roles and prepared and formally
presented an introduction to CMVC concepts and plans to various internal
audiences.

2.6.2 Evolution of De Facto Standards
At IBM Tucson, and to some extent IBM Austin, the favorable reputation of CMVC
among AIX developers spread at the grass-roots level causing demand for CMVC
by various development organizations. Informal end-user support was initially
provided by a bulletin board service staffed at the original CMVC development lab.
Demand for end-user training led to the development of several end-user CMVC
training courses. The experiences of previous projects and the common training
received by new CMVC users became the basis of the development of informal de
facto standards on how to use of CMVC.

Formal internal recognition of the benefits of CMVC led to the declaration of CMVC
as the CM tool of choice for all new development projects at IBM Tucson. An
organization whose responsibility includes developing and maintaining automated
tools in support of hardware and software engineering now has the responsibility to
support rollout of CMVC on new development efforts.

2.7 Importance of ISO to CMVC Customers
A very interesting finding is that obtaining ISO certification is a very important goal
to most CMVC customers studied. ISO certification is critical to CMVC customers
who are in the business of selling computer hardware and software on a worldwide
basis. IBM Austin, IBM Tucson, and IBM Toronto each sought and acquired ISO
certification. Such certification is also essential to companies selling services, if
they sell to international markets. Therefore CMVC customers such as MCI and BT
Laboratories also sought ISO certification. One customer even admitted to losing
contract bids because it lacked ISO certification and noted ruefully that its
competitors already possessed it.

All CMVC customers studied perceive CMVC as supportive of their efforts in this
area to one degree or another. Many are currently exploring additional ways that
CMVC can aid in their attainment or retention of ISO certification. Two main
themes were observed repeatedly:

� By automating CM procedures, CMVC contributes to the establishment of a
well-defined, orderly, and repeatable development process, which itself
implements various aspects of the ISO specification.

� Some customers use CMVC to control the very procedures documents that
define the development process. These same customers use CMVC problem
tracking to identify and resolve deficiencies in those procedures and control
changes to the documents that define them.

Those customers who focused on ISO certification observed that use of CMVC
generally improves their management of the software development process. BT
Laboratories, for instance, believed it was no coincidence that it failed an internal

18 Looking at CMVC from the Customer Perspective

audit before implementing CMVC and passed it afterward. IBM Toronto began to
use CMVC when it sought ISO certification to manage, record, and track changes
in its procedure manuals. It also uses CMVC to manage and track deficiencies
identified during internal and formal ISO audits; IBM Austin set up a separate family
primarily for this purpose.

 2.8 Platform Choices
The number of operating system and hardware platforms supported by CMVC
clients and servers has grown since its initial offering. This evolution has been in
specific response to customer needs.

2.8.1 Locally Developed Clients
Customers requiring a specific platform-dependent client are generally happy to
serve as beta test sites for these new clients. MCI, for instance, provided early
customer evaluation of the CMVC Version 2.1 GUI client and the OS/2 CMVC
client. Continental volunteered to help with the customer evaluation phase of the
CMVC client for Microsoft Windows. Generally, at the time of this study, customer
needs were met by the support currently available on Sun, HP, Windows, OS/2,
and AIX.

Some customers, notably IBM Austin and IBM Tucson, have additional
requirements and sufficient resources to justify their own implementation of
additional clients, although IBM Toronto does not perceive sufficient market
demand for such clients as part of the CMVC product.

2.8.2 Developing on and Targeted to Multiple Heterogeneous
Platforms

A significant finding is that CMVC is considered appropriate not only for controlling
software developed on and targeted to UNIX platforms but also for other
heterogeneous hardware and operating system platforms. In fact, CMVC
customers choose CMVC/6000 on a RISC System/6000 as a CM solution even in
environments where AIX was not used for production at all, and where AIX
development played a very minor role.

Customers use CMVC to control software targeted for IBM's VM, MVS, and OS/2,
as well as for Microsoft's DOS and Windows. CMVC customers control code
destined to run on DEC's VAX/VMS, Sun's SunOS and Solaris, Hewlett-Packard's
HP-UX, and many other platforms. IBM Tucson uses CMVC to control source for
ADSM clients that run under 13 different operating systems on seven different
hardware platforms. SCS and IBM Tucson also target multiple microprocessor
environments that might have no commercial operating system.

2.9 Applicability of CMVC
CMVC customers find CMVC appropriate for controlling a wide variety of data,
including but not limited to source code. CMVC customers use CMVC to support
development efforts using a wide variety of language technologies. CMVC is used
to support all types of software, as well.

 Chapter 2. Looking at CMVC through Customers' Eyes 19

2.9.1 Data and Files
All customers use CMVC to control source code and operating system command
language scripts. Additionally, they use CMVC control product documentation,
departmental procedures, design specifications, charts and drawings, test cases
and results, and various binary file formats, such as electronic publishing internal
format document files, online product information images, and application
executables. Automated build instructions and make files are also candidates for
CMVC control.

In addition to controlling source code IBM Austin uses CMVC to control the
InfoExplorer information libraries that contain the online versions of AIX and related
product manuals and the COBOL object code that it receives from software
vendors. MCI and IBM Austin control publication formatted files produced by
INTERLEAF. IBM Tucson information developers control BookMaster source under
CMVC.

2.9.2 Language and Technology
CMVC is an appropriate tool for controlling any source code language, from
assembler to 4GL, to interpretive languages. It is useful for controlling intermediate
formats from which code generators produce source code as well.

Typical uses include:

� IBM Austin and IBM Tucson use CMVC to control C source code
 and assembler.

� BT Laboratories uses CMVC to control C++ and C.
� Continental uses CMVC to control files written in APT (a 4GL for Sybase) and

C.

IBM Tucson also uses CMVC to control files generated by CADRE TeamWork from
which SmallTalk code is later generated. Command language scripts in languages
such as REXX, C shell, and Korn shell are managed under CMVC at all customer
sites.

2.9.3 Types of Software
Configuration management is critical, whether the application is a product in the
hands of paying customers or merely used within the company by its own people to
do their work. Whether the application serves business purposes such as providing
management with business data, storing a bill of materials or managing inventory,
the application requires configuration management. Tools developed to enhance
productivity in software engineering, support design modeling, or perform chemical
analysis require careful control if business processes depend on them. The
customer sites studied use CMVC to control operating system, application,
embedded or distributed, software in all categories.

 2.10 Customizing CMVC
CMVC is shipped with quite a lot of customization already done for the customer.
The CMVC customer experience documented in this book shows generally that the
smaller the project, or the newer the customer is to CMVC, the more appropriate
this default customization is. CMVC's potential for further customer-specific
customization is, however, also widely realized.

20 Looking at CMVC from the Customer Perspective

Larger projects by their nature are more complicated and make good use of the
customization features of CMVC. The IBM Austin experience bears this out. Sites
where multiple projects use CMVC find a greater variety of requirements and
therefore have greater likelihood to need further customization. IBM Tucson typifies
this customer situation. Sites that have used CMVC for long periods of time evolve
new requirements, which they solve using CMVC's configurable features. MCI
shows this clearly.

The most significant ways in which the customers studied enhanced CMVC are:

 � Configurable fields
 � Choices lists
 � User exits
� Authority and interest groups

 � Configurable processes.

 2.10.1 Configurable Fields
Configurable fields are customer-defined fields added to the fixed record structure
for certain CMVC object types. Command-line and graphical user interfaces and
reports are automatically adjusted to accommodate these additional fields.
Configurable fields provide a mechanism for the customer to store and retrieve data
relevant to defects, features, users, and files within the database, as if it were
CMVC metadata. Configurable fields are in use or planned at all customer sites
studied.

A customer using CMVC in a simple and straightforward manner may discover the
need for few, if any, configurable fields. For example, Continental has none, and
SCS has only one. A customer using CMVC on a larger scale or for multiple
projects soon discovers many potential uses for configurable fields. MCI uses a
combination of configurable fields and user exits to ensure that file names are
formed properly when files are extracted to NFS file systems and mounted from
non-UNIX operating system hosts.

IBM Austin still uses CMVC Version 1, which does not offer configurable fields, but
has many instances where one is necessary. Instead, they use extension of
choices lists for a fixed field as a way of overloading a single field to combine the
data that otherwise would be stored in multiple fields.

 2.10.2 Choices Lists
A choices list is the fixed set of values that can be applied to a given field in a
CMVC object type. CMVC allows customers to modify the list of choices
associated with several fields in several records. A field containing defect priority,
for instance, would have one of several values, but the exact range of values and
choice of words to express them will vary greatly from customer to customer, or
even between two projects at the same site. Some customers modify choices lists
for a single field over time, as the project moves through its development phases.
Others modify the list with a set of values that is valid for all time.

The simpler the customer's use of CMVC, the smaller the reliance on choices lists
customization. Continental does not use choices list, whereas SCS uses them for
only one CMVC object type. IBM Austin uses choices list heavily. It modifies the
choices lists for certain fields in a defect, when the operating system release nears
a release date. It also makes a pass through all open defects, replacing the old
values with values from the new list.

 Chapter 2. Looking at CMVC through Customers' Eyes 21

 2.10.3 User Exits
User exits are a particularly valuable type of customization. User exits allow the
customer to extend CMVC functions, causing additional actions to be taken before
or after the CMVC command executes at the server. User exits are shell or
executable programs. They have access to the metadata of the record being
manipulated, as well as the parameter data being passed to the CMVC command.

A customer who uses CMVC in a very simple manner, again, does not need to
create user exits. Continental uses none; SCS has but one planned. Numerous
and various uses, however, are found with most customers. The more complex the
configuration management situation, the more likely the customer is to implement
user exits. Medium-sized customer sites, such as BT Laboratories and MCI, have
defined a few user exits. IBM Austin needs many more user exits than it can
implement because it had not upgraded to CMVC Version 2 at the time of writing.

2.10.4 Authority and Interest Groups
CMVC defines the set of users authorized to perform CMVC actions and the set of
users to be notified by electronic mail whenever CMVC actions occur. CMVC
customers can define additional authority and interest groups and associate
individual CMVC users with these groups. Examples of this customization are
rarely found, indicating that the groups defined by CMVC are sufficient for most
customers. Customers are not always sure how to use these features in a
sophisticated way, and smaller customers tend to maximize access and notification.
SCS, for instance, put all team members in the same authority and interest groups
and used group definitions shipped with CMVC.

 2.10.5 Configurable Processes
CMVC Version 1 offered essentially two choices in process: binding and
non-binding control. CMVC Version 2 enables configurable processes.
Configurable processes pertain to two areas of CMVC:

� A component process choice indicates which combination of design-size-review
(DSR) and verify subprocesses are to be applied to defects and features
associated with that component.

� A release process choice indicates whether CMVC track subprocessing will
occur on that release, and which combination of level, approval, test, and fix
subprocesses is required for the tracks.

CMVC is shipped with a predefined set of release and component process choices.
Generally, customers are content with the process choices offered, but CMVC
allows customers to define new labels for a given choice or to define a new choice
that represents a unique combination of subprocesses not predefined. These
choices are used when components or releases are created, but processes can be
changed after the fact under certain conditions.

Generally, customers experiment with more rich subprocess combinations only after
they are experienced with CMVC. A few combinations of subprocesses therefore
are popular with most CMVC customers. Most prefer to use the DSR subprocess
only with CMVC features. Use of the verification subprocess is not appropriate in
environments where the person who files the defect is likely to be the same person
who fixes it.

22 Looking at CMVC from the Customer Perspective

MCI and IBM Tucson, like most customers, use track processing, but often in a
limited manner. MCI, for example, does not use the verification subprocess and
uses the test subprocess only in limited cases. Continental does not use problem
tracking at all and therefore does not use component subprocesses. At IBM
Tucson, where many independent projects are using CMVC, the choice of
subprocess varies greatly between projects. At IBM Austin, where CMVC Version
2 is not yet in widespread use, binding control is the norm.

2.11 Extensions to CMVC
CMVC extensions developed and maintained by CMVC customers were found at
customer sites where CMVC was used on more intricate projects, or in a more
complex development environment. Extensions include what we would
characterize as:

 � Back-end tools

 � Front-end tools

 � CMVC clients

 � Report generation.

As a customer becomes heavily dependent on CMVC, or as the sheer volume of
configuration management data grows, the customer needs more sophisticated
ways to enter, extract, and evaluate CMVC data. At the same time, the customer
can justify additional programming tasks to make that data available to a wider
audience than just the development team.

 2.11.1 Back-End Tools
A common type of extension is the automation of local and remote build
processing. CMVC does not provide explicit mechanisms to support build
automation. Build processing is often linked to the CMVC release and level extract
commands, however. Every customer site visited had created some type of build
automation and linked it to CMVC.

After build automation, we found that a customer is most likely to extend CMVC
with a tool to extract and manipulate metadata from CMVC. This metadata is
retrieved by using CMVC report commands. It is then massaged, formatted,
evaluated, and turned into report or graphical format. Most customers gather
information, which they use to track and plan the development schedule. They
focus particularly on problem tracking and release management data. This
tendency is more pronounced at the larger CMVC installations. IBM Austin
provided the most intricate examples, followed closely by IBM Tucson.

 2.11.2 Front-End Tools
A less common type of extension to CMVC is a tool that automatically inputs data
to CMVC. This type of tool is developed where CMVC must coexist with other CM
tools.

The need for a front-end extension to CMVC is more pronounced at large CMVC
installations, such as IBM Austin and IBM Tucson. One such example can be
found in a VM-based customer support program. When a customer problem is

 Chapter 2. Looking at CMVC through Customers' Eyes 23

determined to be a defect in AIX, the VM-based customer support program
automatically opens a CMVC defect. A similar tool is found at IBM Tucson.

 2.11.3 Custom Clients
In environments where CMVC does not support a client for a specific platform, but
the customer is heavily dependent on that platform, customer-developed clients are
found. Nonproprietary vendor platforms support convenient remote access to a
workstation or server on the LAN on which a CMVC client is installed. IBM Austin
and IBM Tucson, because of their predictable dependence on OS/2 and VM/CMS,
abound with extensions of this sort.

Custom clients are also a response to the need for a very limited and well-defined
user interaction with CMVC. When a customer has a large staff interacting with
CMVC and very clearly differentiated end-user roles, the requirement for custom
clients, or mini-applications that act like a CMVC client, arise.

One tool of this sort is used at IBM Tucson by personnel who deal with product
defects originating at IBM customers. This tool executes on VM, where it
manipulates the VM-based RETAIN database. If a problem relates to software, this
tool issues the CMVC commands to create and manipulate CMVC defects on
behalf of the user.

Another tool of this sort is found at IBM Tucson. It is an AIX-based, locally
developed comprehensive edit-compile-debug tool. It provides access to all CMVC
functions that programmers need.

One other front-end extension is the modification of a commercial development
environment product to allow end-user access to CMVC indirectly. This is very
convenient to the user who primarily uses one tool or development environment.
This solution is most likely to appeal to a company that is not in the habit of custom
coding its own support tools.

The WorkBench/6000 Development Manager menus can be modified to perform
CMVC check-in, check-out, release, or file extract actions, for example. Some
developers at Continental use WorkBench, and at BT Laboratories they use HP's
SoftBench on one project.

 2.11.4 Report Generation
CMVC customers become more dependent on reports generated by CMVC and
from CMVC metadata as time goes by and they become more familiar with CMVC
capabilities. Report generation has been raised to a fine art at IBM Austin, which
has had the longest exposure to CMVC. Standard reports generated by CMVC
suffice for needs at Continental and SCS presently. Use of these reports clusters
around two purposes:

� Managing development schedules and resources
� Collecting and reviewing software quality metrics.

The latter purpose is fairly rare, although all customers are very interested in
exploiting it.

24 Looking at CMVC from the Customer Perspective

2.12 Common Reasons for Choosing CMVC
The customers visited—large, medium, and small —cite several CMVC qualities
that they value highly, whether they barely use them yet or already stretch them to
their maximum. These qualities are:

� Reliance on open systems standards
� Flexibility, tailorability, extendibility
� Comprehensive process model

 � Scalability
� Availability of appropriate CMVC client and server platforms
� Methodology and language technology independence
� File format and file content independence
� Granularity (independent usability of distinct functions)
� Enablement of specialized add-on tools and extensions
� Ability to integrate into existing development environments.

Another quality appreciated by these customers is the fact that there is choice in
the underlying relational database and version control products used by CMVC.

2.13 Benefits of Using CMVC
The benefits of using CMVC are best expressed in the words of the CMVC
customers interviewed during this study. When asked what are the most important
benefits of using CMVC, a BT Laboratories manager replied “CMVC provides
traceability in the development process. It gives us a better feeling that we have
put the right pieces together.” An MCI manager responded that “Our software
process is more predictable and overall we have a better process.”

When asked what has changed since they began using CMVC, an MCI manager
replied, “Our developers are more quality oriented.... They have a more rigorous
development approach... [and] we have experienced fewer slippages during
testing.” Asked how CMVC was accepted, the same MCI manager responded,
“Managers and the metrics people loved it immediately.”

Although none of the customers has done a systematic cost-benefit analysis of
using CMVC versus using no automated CM support, each discounts the possibility
of doing without CMVC in the future. At Continental, we were told that “CMVC is
an absolute necessity!” At MCI, CMVC is an “absolute necessity for mission critical
operations!...CMVC definitely increases product quality...[CMVC] produces a more
predictable level of quality of software... [and] we need to revisit Software less
often!” A BT Laboratories manager considers CMVC both “flexible and
comprehensive...offering the granularity you need as the project evolves.”

 Chapter 2. Looking at CMVC through Customers' Eyes 25

26 Looking at CMVC from the Customer Perspective

Chapter 3. Use of CMVC on a Small Scale or in the Initial
Phases of Development

This chapter looks at the characteristics of CMVC usage by customers who are
using CMVC to support a small-scale development effort, or the initial phases of a
larger development effort, or the first of many development and maintenance efforts
that will transition to CMVC. This chapter examines which issues are most
significant to this group of CMVC customers. CMVC customers who want to
evaluate CMVC by using it first on a small project will experience issues similar to
those discussed in this chapter.

 3.1 Representative Customers
For this study we visited three representative customer sites. The companies do
not have a lot in common, in terms of the types of business they are in and the role
software plays in their business. Although none of these companies is a software
vendor, their application development activity is integral to engineering or
developing the products and services that form the basis of their businesses.
These companies are briefly described below.

 3.1.1 SCS
SEIKO** Communications Systems, Inc., sometimes known as SCS, was formed by
SEIKO EPSON Corporation and HATTORI SEIKO Corporation, Japanese
manufacturer of precision timepieces and other consumer electronics. SCS is
located in Beaverton, a suburb of Portland, Oregon. The company employs about
20 people who develop software. Another 40 people provide administrative,
marketing, network operations, and business support for its products and services.
SCS was formerly an independent company known as AT0.

SCS's main products are the SEIKO RECEPTOR** Messagewatch** and the
SEIKO RECEPTOR Message Delivery System. The electronic Messagewatch
incorporates a radio pager receiver that accepts messages from the message
delivery system. The message delivery system consists of a central message
routing subsystem and multiple widely placed transmission subsystems. At the
time we met with SCS, the SEIKO RECEPTOR Messagewatch and paging service
was available in both Portland, Oregon, and Seatlle, Washington; a demonstration
service was installed in Paris, France. SCS expressed plans to expand the
subscription service starting in the summer of 1994 with service in the region of Los
Angeles, California.

The development project that uses CMVC is a 20-person effort in the preproduction
phase of development. This includes the rehosting of the MDS onto IBM RISC
System/6000s and PS/2s. In addition, other software under development executes
in embedded microprocessors within the wristwatches. The software development
environment consists of an IBM RISC System/6000 Model 580 acting as the CMVC
and file server with two desktop models in the 3XX series hosting CMVC clients.
These and other graphical desktops connected through a LAN allow access to the
CMVC GUI client.

As might be expected, SCS emphasizes CMVC usage for source code and release
control during the development phase. However, it anticipates that its CM

 Copyright IBM Corp. 1995 27

requirements will grow during the maintenance phase, when it will need to track
which hardware and software components have been installed at which service
sites in which geographic locations.

 3.1.2 Continental
Continental is a large holding company owning about 50 medium and smaller
companies in the rubber and tire manufacturing industry. The larger companies
owned by Continental are Continental Tire and Uniroyal tire companies in Germany,
Semperit in Austria, and General Tire in the United States. Continental's most
important products are tires; it is the second largest manufacturer in Europe and
the fourth largest in the world. From its headquarters in Hannover, Germany,
Continental manages several manufacturing sites.

Application development at Continental is split across four different locations
employing a total of about 400 people. Presently Continental does not use CMVC
for the bulk of this development effort. It plans to make CMVC a company
standard CM tool, extending CMVC support to a large percentage of its in-house
development over time. Initially, Continental chose to use CMVC on development
efforts that use the IBM RISC System/6000 as a development platform. Its plan is
to use CMVC next on projects that use other UNIX-based development platforms.

The current efforts using CMVC on RISC System/6000s are developing applications
targeted to execute under DEC** VAX/VMS** and Microsoft DOS on non-IBM
hardware platforms. Each development group involves about 5 people.

The main CMVC emphasis for Continental is to enable proper management of the
entire application development process. At present these projects are in the early
stages of the development. But, when the applications are installed in the
production environment, maintenance issues will be of great importance. CMVC's
unique capability to integrate change management, configuration management, and
problem tracking on heterogeneous platforms is of great value to this customer.

 3.1.3 BT Laboratories
British Telecom is the biggest provider of telecommunications services in the United
Kingdom. It has several development sites in England. The sites that we studied
are the BT Laboratories at Martlesham Heath and Ipswich. CMVC has been in use
for some time at BT Laboratories. After the first project successfully used CMVC,
news of it spread by word of mouth, and other development projects at BT
Laboratories began to use CMVC.

Groups at one site are currently developing speech applications in a heterogeneous
environment. The development environment there consists of 15 Hewlett-Packard**
and 2 Sun** workstations with CMVC clients integrated in SoftBench**, and the
CMVC client and server executing on a RISC System/6000. The target platform is
a Sun workstation.

At the other site, one group is currently porting an automatic test system for private
circuits, originally written for SUN workstations, to IBM RISC System/6000
workstations. Once this application is completed, it will be installed at different sites
and maintained using CMVC.

28 Looking at CMVC from the Customer Perspective

At these two BT Laboratories locations, CMVC is helping to manage a very large
amount of rapidly changing source code under development by several major
software projects. Each development effort involves about 15 developers.

The functionality of CMVC helps with release and change management but
throughout the Laboratories, the main emphasis is on maintaining greater software
quality. From BT Laboratories point of view, the availability of CMVC on different
UNIX platforms makes CMVC well-suited to support large scale open system
development.

3.2 CMVC for Small-Scale Efforts
The most immediate question that comes to mind when one sees a small-scale
development effort using an industrial-strength, full-featured CM product like CMVC
is, Why did the customer choose to make the investment?

The experience of the three customers studied indicates three common reasons:

� Small projects face many of the same CM challenges that larger efforts face.
The fact that fewer people are programming does not imply that they will
produce software applications that are any less complex or significant to the
company.

� At the early stages of development these companies also are taking care to
plan for growth in the size of the application and changes in the nature of their
CM requirements.

� Automated CM is also seen as a productivity tool, which might be of even more
impact to a small project than to a large project. Customers in this category
typically do not use all of CMVC's capabilities immediately, and they usually do
not implement CM as rigorously as they expect to later. CMVC meets the
immediate needs of these customers and positions them for their projects'
future.

3.2.1 Smaller Projects Need CM
Configuration and change management systems are put in place on small projects
to solve and prevent the very same problems encountered on large efforts. These
customers implement CMVC to enable them to:

� Control the source code changes and maintain development history
� Ensure re-creatability of previous versions during later test or maintenance

activities
� Prevent the building of unreliable or incomplete application versions due to

errors in component lists or incompatible combinations of software components
� Eliminate confusion on the exact requirements of maintenance tasks
� Track the status of maintenance and development activities.

3.2.2 Preparing for the Maintenance Phase
While these customers' applications are not yet in the maintenance phase of their
lifetime, they are very conscious of the demands that this phase will introduce.
Confident of the successes of their applications, these companies anticipate the
requirements for integrated problem tracking with release management and version
control once they have multiple production baselines to support. They want their
developers and system administrators to be comfortable with their CM tools before
those needs are evident. They want their configuration managers, build or release,

 Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of Development 29

and test engineers to have had time to understand how to utilize their automated
CM tools in a sophisticated manner before they reach this stage in their
development effort.

They also seem to recognize unanimously the importance of a smooth software
maintenance process to ensuring customer satisfaction with their products and
services.

In short, these customers, while working on small-scale efforts, are not amateurs in
the application development world. They do not translate “small” to “simple,” and
they recognize that certain strategies necessary for success in software
development fit projects of all sizes.

3.2.3 Increasing Developer Productivity
Not surprisingly, small projects have fewer people to devote to manual and clerical
activities often associated with software configuration management. If 1 person in
10 or 15 needs to spend a significant amount of time performing CM tasks, instead
of developing the new application, that significantly impacts average individual
productivity. The same is true if one tester spends a day unraveling a configuration
management error induced by sloppy book-keeping procedures. Perhaps because
of its association with a Japanese company that views employment as a lifetime
commitment with significant overhead, SCS voiced a firm conviction that investing
in tools that increase programmer productivity is preferable to increasing the team
size to achieve the same purpose.

3.3 Choosing a New CM Tool
Each of these customers had previous experience with either commercial or
home-grown CM tools. In some cases, they were already using an unsatisfactory
CM tool or product at the time they chose CMVC. The chief disadvantages of their
previous CM solutions were primarily:

� Severe performance problems
 � Functional limitations
� Lack of vendor support or excessive cost of internal support.

These customers took the time to analyze their CM requirements carefully. They
also surveyed the available vendor products for software configuration
management. They sought the best product available to match their current and
anticipated requirements. Each of these customers independently concluded that
CMVC is a solid commercial product offering good performance, unique
functionality, and reliable support.

3.3.1 CM Tool Selection Criteria
In their search for a commercial CM tool, these companies created a list of decision
criteria against which to measure potential CM solutions. Table 1 and Table 2
summarize the decision criteria that Continental used during its evaluation of CM
tools. The weighting factors included in these tables are valid numbers for
Continental, but they would vary from organization to organization.

30 Looking at CMVC from the Customer Perspective

All of these customers pointed out to us that CMVC is unique for integrating
configuration management and change control with problem and feature tracking.
They observed that CMVC is available on the range of UNIX platforms that they
typically use and supports appropriate PC-based clients.

Table 1. Decision Matrix: Functional Criteria

Functional Criteria Relative Importance
(1=low, 10=high)

Version control 10

Release management 10

Change management 7

Product design 6

Configuration build 8

Role management 5

Report facility 5

Table 2. Decision Matrix: Nonfunctional Criteria

Nonfunctional Criteria Description Relative
Importance
(1..10)

Price/performance ratio Price (including primary and secondary
costs) relative to performance

7

Technology, strategy,
portability

Level of possible integration into present
and future development activities; support
for customization; availability on multiple
platforms

7

Support, hotline, education Support and assistance during
introduction phase and during operation

8

Reference Customer base 7

User interface, online help Ease of use of the product 6

Setup, administration Effort required for the introduction and
administration

7

3.3.2 Tool Support and Maintenance
It is not surprising that availability of vendor support and maintenance is included in
the list of criteria as an important factor in the selection of a new CM product. This
results from customer experiences with both vendor and locally developed CM
tools.

Before installing CMVC, BT Laboratories had used a home-grown tool that had
become functionally inadequate. Because it was difficult to maintain,
enhancements and corrective tasks had become very rare, causing a significant
drop in end-user satisfaction and productivity. Moving to CMVC offered sound
functionality coupled with robustness.

SCS used a vendor product that over time failed to keep up with its needs in
several ways. First, usage outgrew its performance capabilities. Gradually, SCS's
requirements grew beyond the product's functional capabilities. Finally, the vendor

 Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of Development 31

withdrew support for the product. Attempting to maintain and administer the
product consumed increasing developer resources until it became clear that
investment in a new CM tool was inevitable. After installing CMVC, SCS found that
its CM tool administration and related system management support dropped from
four people to one.

3.3.3 CM System Administration
All these customer sites report their system administrator is able to automate many
of the standard administrative tasks directly related to CM. CMVC's command line
interface is well-suited for use with shell scripts, cron jobs, etc.

CMVC is built upon a commercial relational data base product. Customers can
choose the RDBMS with which they are most familiar to take advantage of the
skills and procedures they already have in place for system administration tasks
such as backups, restore, etc. Being able to leverage existing skills is very
important to small projects which have fewer people to devote to CM.

3.4 CMVC and the Application Development Process
Having chosen CMVC as a new CM tool, these customers next explored how best
to integrate CMVC into their software development process. Most small-scale
users studied find CMVC flexible enough to fit into their current development
process without creating unnecessary overhead. CMVC flexibility also offers these
customers the possibility to grow and change the CMVC process to accommodate
their future development process, no matter how complex it might become.

 3.4.1 New Development
Small development groups tend to have efficient and simple organizations. Their
software development process is likewise simple during the initial phases of the
project. It is typically divided into three phases:

Phase Activities
Programming The application and its components are created.

Deliverables include analysis and design documents,
code, and user documentation. A preliminary test of
individual components, called unit test, is performed
during this phase.

Integration test The correct interaction of all system components is
tested against requirements. Code modifications
necessary to correct deficiencies continue until
successful test completion.

Release The tested system is released to the customer. The
delivered system is identified with a unique version
identifier. From now on, it is vital to be able to
determine all components simply by referring to this
version identifier. Further modifications to the code are
suspended.

32 Looking at CMVC from the Customer Perspective

 3.4.2 Maintenance
The above scheme is applicable when the software for a certain project is written
for the first time. As soon as the code is released for use in production,
maintenance activities, such as solving any problems pointed out by the users,
begin.

Additionally, development begins for a new version of the application. New
versions are usually required to implement enhancements to the product
functionality or to port the whole application to additional hardware platforms.

At this time the initial project of low-medium complexity has become a number of
common projects to be simultaneously supported from the same development
group. This change will be reflected in changes to the software development
process and configuration management requirements. The code must be managed
with respect to two main issues:

� The need to share code for reuse between successive versions of the
application

� The need to control and manage the integration of modifications to the code in
these several versions.

3.4.3 CMVC Concept of Process
CMVC allows the customer to decide which CMVC functionality is required during
the current project phase and simply add more CMVC functionality as demands
change. This is accomplished by a mechanism CMVC refers to as configurable
process. The CMVC process is defined when creating CMVC components and
CMVC releases. CMVC component or release processes can be changed at a
later date.

CMVC provides a basic process scenario for defect and feature tracking, as well as
for version control and release management. Customers can tailor their
implementation of this by defining their own process as a combination of
subprocess options offered by CMVC. They choose their process definition from a
list of choices provided by CMVC or create new choices of their own. Typically,
small-scale users of CMVC will find the predefined choices suitable, as they have
fairly generic labels and cover most combinations.

By manipulating process selections for their CMVC components, small-scale CMVC
users can determine whether or not, and how, defects and features will be
processed. By manipulating process selections for CMVC releases, customers can
determine whether defects will be tied to version control and to what degree
release and build management will be managed.

3.4.4 Defect and Feature Tracking Options
Version control can be done without problem tracking in CMVC, but if problem
tracking is desired, version control will be tightly linked to defects or features
identified by CMVC users. Likewise, defect tracking can proceed without release
management support, or it can be integrated by means of CMVC tracks. Most
small-scale CMVC customers believe that version control over development data
files is an immediate requirement as soon as the project begins. There is great
variation in their sense of when to begin and how to perform problem tracking,
however.

 Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of Development 33

Some small-scale projects have defects from the very first day, whereas others
introduce them much later. If postponed, defect tracking might begin at one of
these milestone events:

� Beginning of the first formal testing (unit test)
� Beginning of integration test
� After the production version has been installed.

There is also variation in when customers choose to begin using feature tracking,
and how they process features. Some save feature tracking for the maintenance
phase, eschewing features during earlier phases. Some will never use the DSR
subprocess for defects but always use it for features.

Finally, these customers make use of different process selections to govern
components that manage different types of development data. Design material,
end-user documentation, and code, for instance, may not all require the same
processing with CMVC.

Continental uses problem tracking only after an application goes into production
and to manage the software changes arising from maintenance activities. Thus
newly created components related to a particular application will not have any
defect subprocesses selected. At some later time, these component process
selections will be changed.

BT Laboratories uses problem tracking from the earliest stage of the development
process but only uses CMVC defect processing for significant defects. The
company mixes CMVC problem tracking with a preexisting manual defect process
to track all proposed defects. A person, designated as the Change Manager,
reviews the proposed defects and decides to enter them as CMVC defects if their
resolution is likely to take more than 10 days to complete. Insignificant defects are
presumably given a fix or no-fix judgment and not tracked further. If entered into
CMVC, the defect will be managed under both the DSR and verify subprocesses.
This choice is designed to keep a close eye on how unplanned development
activities (for when is a defect planned?) impact the delivery schedule.

SCS uses a predefined component process selection, prototype, for components
managing documentation files. The hardware testers use CMVC purely for the
problem reporting system because the hardware development, done at another
location, is not under CMVC control. SCS uses the more stringent predefined
process selection, development, for components managing source code. Its
intention is to move to the predefined process, maintenance, after the formal testing
completes and its application moves into its production environment.

3.4.5 Release Processing Options
If defect and/or feature processing are in place, release processing can be
implemented in several ways. Release processing is defined by the customer as a
specific combination of release subprocesses. As with defect processing, CMVC
provides a set of choices of predefined combinations of these subprocesses. Most
small-scale users of CMVC find that these predefined release process combinations
meet their needs; however, CMVC users can define their own combinations.

As with defect processing, release processing requirements usually evolve over
time on a small project. Initially, these customers will not use the track subprocess,
but as the development effort reaches the integration phase, most CMVC

34 Looking at CMVC from the Customer Perspective

customers will begin to use it. Once the track subprocess is selected, most
small-scale projects will use it in a fairly simple manner, utilizing fewer than the full
complement of release subprocesses offered.

Some groups at BT Laboratories, for instance, does not use the track subprocess
until the development baseline reaches a significant size and stable state. At that
time, it begins to use only level and fix subprocesses.

SCS has defined its own process combination, which consists of the track, release,
fix, and level subprocesses. SCS anticipates that as its development effort
proceeds and its familiarity with CMVC deepens, it will find the configurable process
to be a valuable feature in CMVC which they can better exploit.

 3.5 Management Reports
By providing project management information through the customized report facility,
CMVC becomes a valuable tool for the project manager who needs to monitor the
pulse of the project. The report function of CMVC allows users to gain access to
file and configuration change history, software metrics related to defects, project
status data, and many more types of information. This information can be
formatted or further processed in many forms in conjunction with simple
programming or familiar UNIX utilities such as shell , awk , sed , and PERL.

CMVC inherits its powerful reporting capabilities from the underlying relational
database. CMVC provides not only SQL style query capability but also predefines
tables and views to use with CMVC report commands. Ad hoc reports are
accessible from the GUI, where the user is prompted with fields appropriate for
each record and allowed to select ordering of the results by these fields. The
command line report utility, however, provides additional flexibility in combining
CMVC reports with other UNIX commands for additional manipulation of the data.

Most small-scale projects do not use the reporting facility to near its capacity, but
all appreciate its potential. One reason for this is simply the size of the projects
and the limited ways in which the customers use CMVC at first do not make for
complicated reports. For instance, on a 20 person project, how many different
managers need frame queries specifically to extract information on open defects in
components owned by only their developers for which there are tracks in a
particular release? Likewise, if there are only 15 open defects and only one
release, there is not likely to be a need for a report on only those defects opened
by a particular user in a particular release, ordered by the phase found field. A
simple scanning of the report on all defects will identify the desired data when the
data is small in volume.

All of the small-scale CMVC customers report frequent use of the GUI for ad hoc
report generation, however. And, they report that this usage goes up dramatically,
as their projects reach critical development events such as completion of integration
testing. Finally, these CMVC customers devote as much attention to their decisions
on modifications to make to choices lists and potential configurable fields as
customers who use CMVC on a larger scale, because they anticipate the later need
for historical data accumulated in CMVC's repository.

 Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of Development 35

3.6 CMVC Support for Heterogeneous Hardware and Operating
Systems

CMVC is available on the best selling UNIX platforms (HP, Sun, and IBM RISC
System/6000) and for IBM's OS/2 and Microsoft's Windows on PCs. Small-scale
projects appreciate CMVC's support of these heterogeneous platforms and
operating systems and its taking advantage of common open system standards
such as TCP/IP and NFS.

Flexibility is highly valued in a small-scale project where few people often perform
multiple roles on the project, and where platform choices may be driven by a limited
budget or factors beyond their control. There are several reasons why flexibility in
hardware and operating system is significant to this type of CMVC customer.
Reasons cited during this study include the fact that CMVC provides them with the
ability to leverage their:

� Preexisting platform-specific skills

� Common CM skills across platforms

� Standard CM policies and CM procedures across projects

� Preexisting or planned new development and target platforms

� Centralized configuration management control with remote access

� Ensured growth path

� Integrated defect processing and change control

3.6.1 Preexisting Platform-Specific Skills
Availability of CMVC on divergent platforms ensures that small-scale CMVC
projects can leave users on the platforms they are most familiar with, or on which
their other tools are currently hosted, and still give them CMVC access through
local CMVC clients, or remote client execution and NFS-mounted file systems.

3.6.2 Common CM Skills across Platforms
Although there are some fundamental differences in system administration or GUI
standards and conventions between one hardware platform to the next or between
one operating system to the next, CMVC skills transfer readily among them. This
provides these CMVC customers with the flexibility to transition users from lower
performance development platforms to better ones as the price-performance ratios
change and new equipment is purchased with minimal penalty in transferring their
CMVC skills.

3.6.3 Standard CM Policies and CM Procedures across Projects
One of the most common requirements for a configuration management system is
availability on different hardware platforms to ensure that current and future projects
can take advantage of a single CM tool. At Continental a tool to be adopted as a
company standard should fit in the current as well as in the future hardware
configuration.

36 Looking at CMVC from the Customer Perspective

3.6.4 Preexisting or Planned New Development and Target Platforms
The requirement for CMVC to fit in with preexisting development or target
environments is particularly important to a customer like BT Laboratories. Its
development and target platforms include the same UNIX platforms supported by
CMVC today, and the company can install a single CMVC server that can be
accessed from the different UNIX clients across its LAN.

In some cases, BT Laboratories ports applications from old UNIX platforms to new
platforms, needing to maintain releases appropriate for both. It also needs to know
that should it need to port to additional UNIX platforms, CMVC will support them.

3.6.5 Centralized CM Control with Remote Access
By implementing a client/server model CMVC is well suited for centralized control of
multiple, often remotely located small development projects. At BT Laboratories
and SCS the development and test teams consist of about 20 people operating on
one LAN. Because the applications are built to run at different sites, defects may
need to be registered remotely.

3.6.6 Ensured Growth Path
The customers visited believe that CMVC is capable of growing as their projects
grow. CMVC is able to support both small, tight workgroups now, and large
multisite organizations working on common projects later. At BT Laboratories and
SCS the development and test teams believe that the maintenance activities
coupled with further development activities will expand their CMVC configuration.

3.6.7 Integrated Defect Processing and Change Control
By providing functions like configuration management, change management, and
problem tracking integrated in one system, CMVC offers the capability to perform
all of these tasks in a single development environment. SCS and the other
customers discovered that this functionality was unique on the market when they
conducted their marketing trade studies.

3.7 Rolling Out CMVC on New Projects
Customers who use CMVC for small-scale projects introduce CMVC gradually into
their organization. Typically, they bring one project at a time to CMVC and, after
having worked out any difficulties with that project, go on to the next. Depending
on the business characteristics of the individual companies and the phase in their
development efforts, they take advantage of the CMVC functionality in different
ways.

3.7.1 Setting Standards, Conventions, and Policies
Introducing a new tool of any kind in an existing development environment always
involves a little bit of planning. No customer wants to face turbulence of any kind
that could interfere with team productivity or risk any kind of acceptance problems.
With respect to CMVC, it simply means getting the functionality you need with a
tool that fits into your development process without creating unnecessary overhead.

With this goal in mind, Continental put some resources into planning the usage of
CMVC tailored to its needs. This included mapping the company standards, such

 Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of Development 37

as naming conventions and the software development process, into CMVC
component structure and user roles.

3.7.2 Limited CMVC Functionality at First
Continental decided to use only the configuration management and change control
functionality for the first development cycle and then introduce problem and feature
tracking for the combined maintenance and successive development phases.

SCS adopted a different approach. It made the choice to use a system with
integrated configuration management and problem tracking functions and started
immediately using full CMVC functionality (although it does not use all possible
subprocesses). Specifically, SCS chose to bypass DSR subprocessing of defects
and the approver subprocess to keep it as simple as possible. The microcode
developers use CMVC to track hardware problems at first, but they plan to use
CMVC for version control at a later stage.

3.7.3 Initial Education and Consulting
Other aspects closely related to introducing a new tool are product installation and
customization and user education. In all of the small organizations we visited the
person responsible for CMVC administration is the person in charge of system,
database, and family administration. The initial setup of CMVC was done working
with an IBM person with a sound background in CMVC concepts. This preparatory
work has been reflected in the overall CMVC acceptance because the developer
smoothly interacts with a well-defined environment.

This approach has been followed for the subsequent user education. A subset of
the original CMVC documentation has been used to prepare presentation material
targeted to the different CMVC roles. At BT Laboratories and SCS the user training
is mostly done on the job, whereas the written and online documentation is used for
reference.

At Continental a well-detailed set of user manuals provided by the software
engineering group substitutes for the original documentation for the day to day work
with CMVC. Each manual is targeted to cover all of the tasks related to a specific
CMVC user role. The valid user roles at Continental are described in the next
section. This collection of manuals:

� Offers an overview of the different activities related to predefined user tasks
and their mutual interactions

� Defines the development environment for each CMVC role
� Stresses the importance of following predefined naming conventions for login

and path names
� Explains in detail each one of the single steps the developer may go through

during his or her work with CMVC in a straightforward question-and-answer
format

� Includes the screen captures related to each single step, starting with the
customized CMVC Task window.

38 Looking at CMVC from the Customer Perspective

3.8 CMVC, Role Specialization, and Project Organization
CMVC allows definition of specialized end-user roles. Each role is defined
according to the CMVC actions it can perform. Access control within CMVC is
based on user roles and extends well beyond the concept of read-write-execution
permission provided by other CM systems.

3.8.1 Development Role Specialization at Continental
At Continental the software engineering department is the organization responsible
for defining and refining the companywide standards for the software development
projects. The goal of this effort is to improve the quality, the development process,
and the maintainability of the software. To achieve this goal, it is extremely
important that the development team operates in well-defined roles where the
different tools are configured to fit the needs of the roles.

Continental has defined three roles within a project (see Figure 2):

Software developer The developer works within a determined development
and/or maintenance environment in the phase
programming. Within this environment he or she works
in the context of a module, that is, the developer
creates and modifies individual components of a
module where a module represents a group of
programs to implement a certain function. A private
work area, called the module area, is provided for the
developer. He or she owns all privileges in his or her
module area and has read access in the release area.

Software manager The software manager works within a determined
development and/or maintenance environment in the
phase integration test. The software manager is
responsible for the preparation and accomplishment of
the integration test. He or she rejects defective
components to the responsible software developer back
into the phase programming. The software manager
performs CMVC administrative tasks such as creation
of modules (that is, CMVC components), assignment of
modules to software developers, creation of CMVC
releases and levels, CMVC user administration, and
administration of the directory structures for the
integration test and for the released version of the
product. He or she owns all privileges in the integration
test area and has read access for the release area.

Build engineer The build engineer works within a determined
development and/or maintenance environment in the
phase release. The build engineer is responsible for
the release build. His or her work area is called the
release area. Before delivery he or she assigns a
unique version number to the system according to the
company naming standard. He or she owns all
privileges in the release area.

 Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of Development 39

3.8.2 CMVC User IDs and Project Roles
According to this organization an AIX login is assigned to a CMVC user to make
sure that all of the system variables are set accordingly. CMVC users use different
AIX logins when performing their different roles and dealing with their different
points of view on the project data through CMVC.

Figure 2. CMVC Roles at Continental

3.8.3 Development Role Specialization at SCS
A completely different approach has been put in place at SCS. Each team member
has been defined as a CMVC user with Developer+ and Component Lead authority,
an approach SCS believes is best suited for a small group of experienced people.

The approach BT Laboratories has chosen to address the CMVC roles is
somewhat inbetween, making use of more differentiated profiles.

3.8.4 CMVC System and Family Administration
One common feature at the different customer sites is the use of one person
serving as system and family administrator. This person provides the following
support to the development team:

 � Installs CMVC
� Gives assistance to a new project that is rolling out CMVC
� Defines and accomplishes a backup strategy

40 Looking at CMVC from the Customer Perspective

� Enhances the system with ongoing customization, such as user exits,
predefined reports, and customized task windows

� Supervises the results of the build process, as at BT Laboratories and SCS.

3.8.5 Access Authority Groups
CMVC lets you choose these roles in the default configuration files, known as
access authority groups. The names and their associated subset of CMVC actions
are meant to be used as guidelines to configure your own system, and each
customer has taken the opportunity to do that as shown above.

 3.9 Applicability
Customers use CMVC mainly to support software development efforts.
Nevertheless they recognize that CMVC is also appropriate for controlling a wide
variety of data, including but not limited to source code.

3.9.1 Variety of Programming Languages
At all customer sites CMVC is tightly integrated in the development environment for
storing and controlling source code and operating system command language
scripts. CMVC is appropriate for controlling any source code language, from
assembler to 4GL to interpretative languages. The C language is common to every
UNIX development. Depending on the type of application, other programming
languages are still better suited for writing special functions.

For example, Continental uses APT, a 4GL language for the Sybase RDBMS, and
at BT Laboratories some code is written in C++. At SCS the microcode for the
watches is written in a 4-bit assembler.

 3.9.2 Application Documentation
Documentation and design documentation are not yet commonly stored in CMVC,
with the exception of BT Laboratories, where the design documents are stored
together with the code for a certain code release. These documents are not
subject to any changes, at this stage. Logically, they belong to a certain version of
the product, and in this way they can be retrieved together with the code. This
approach is then useful for auditing and quality control purposes, because one
system keeps track of the link between the design specifications and the software
that is supposed to meet them.

In the case of Continental the documentation is written on PCs using word
processing programs under DOS Windows. The availability of the CMVC client for
this platform will be a strong incentive to put the documentation as well as the code
under CMVC control.

 3.10 Component Hierarchy
The gradual introduction of CMVC is reflected in the component structure of the
CMVC component hierarchy (see Figure 3). It initially maps the existing directory
structure for the code, so that no restructuring of the code organization is to be
seen as mandatory in the first place. Nevertheless, CMVC can manage complex
code organization such as multiple releases and levels, so the growth of the project

 Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of Development 41

will lead to transforming flat structures into more complex interrelated graphs. The
following examples show the initial project setup at Continental.

Figure 3. Relationship between CMVC Component Hierarchy and Directory Structure

3.11 ISO 9000 Certification and CMVC
Throughout all industries, software development organizations are focused on
improving quality. This concern is common and highly sensitive to all of the
customers participating in this study, even those whose application development
projects were fairly small-scale. The ISO 9001 certification also has become a
related critical business issue for those industries that want to provide services
based on software either directly to the market or as subcontractors for bigger
projects. This is particularly true for Europe, but the necessity of ISO 9000
certification is increasingly becoming an issue for companies operating in North
America and the Asia Pacific region also. BT Laboratories and SCS expressed this
sentiment.

Many customers see CMVC as the tool for implementing a quality management
system for the tasks involved in software development and helping them meet their
goals in complying with some key elements of ISO 900.

BT Laboratories well-defined manual process raised some concerns during a first
audit for ISO certification. In response, the company introduced CMVC in such a
way that it mapped directly to its manual process. In doing so, it gained an overall
traceability of its processes and subsequently passed the audit for ISO certification.
The company believed that CMVC enabled it to introduce automation that

42 Looking at CMVC from the Customer Perspective

supported its existing development process and therefore contributed significantly to
achieving its important goal of ISO 9001 certification.

 Chapter 3. Use of CMVC on a Small Scale or in the Initial Phases of Development 43

44 Looking at CMVC from the Customer Perspective

Chapter 4. Use of CMVC on Medium-Scale or Companywide
Basis

This chapter shows the usage of CMVC from the perspective of medium-scale
locations and company installations. These companies use CMVC in a
sophisticated way, put different kinds of data under CMVC control, rather than just
source code, use CMVC on different development and for different target platforms,
and use CMVC as an integrated tool in a network environment. They have
developed several tools around CMVC which they use to extract data from other
tools and products into CMVC and get data out of CMVC for further processing by
other tools such as report or graph generators. The chapter explains the impact of
this sophisticated environment on the overall administration and describes the
solutions for introducing CMVC into a company's development processes. This
chapter also demonstrates how CMVC is used together with other software
engineering paradigms like object-oriented analysis (OOA) in contrast to the
traditional waterfall model.

 4.1 Representative Customers
We visited two sites that are representative of a medium-scale CMVC location:

� The development site of the Intelligent Services Platform division of MCI in
Colorado Springs, Colorado, USA.

� The development location of the Storage Systems Division of IBM Tucson, IBM
Tucson, Arizona, USA

These two locations have common characteristics with respect to their size and
CMVC usage.

4.1.1 Similarities of CMVC Usage
Both locations have used CMVC since 1992 and since then have put multiple
families and projects under CMVC control. As of the time of writing this book,
about 10 families are active in both locations, and the files under CMVC control
number in the tens of thousands. Appendix A, “Customer Profiles” on page 101
summarizes the most important characteristics for these CMVC development
locations.

The two sites have come across similar challenges with respect to using CMVC in
a heterogeneous network of clients and servers, and they both use CMVC to
develop software for different operating system platforms. Both locations had
similar experiences as their user community grew over time. In response, both have
set up separate departments for administration and end-user support. As the
number of projects increases and the number of users crosses a threshold of
several hundred, CMVC becomes mission critical to the entire success of the
development location. Both sites therefore have incorporated CMVC as an integral
part of their development processes and approaches.

The characteristics of these locations are rather different from the installations as
described in Chapter 3, “Use of CMVC on a Small Scale or in the Initial Phases of
Development” on page 27. Once a site reaches the size of these installations,
additional requirements from the users and additional administration effort come up
almost immediately. To support that number of users and the size of these

 Copyright IBM Corp. 1995 45

installations, there have to be dedicated support people that maintain, customize,
and administer the CMVC installation. In addition, this support staff is dealing with
issues that arise when you integrate CMVC into a development process that is
already in place.

Later sections of this chapter describe how this integration is done and the impact
of the integration on the overall development approach.

However, different projects tend to choose different paths within a defined
development process. Some even decide to chose different tools or processes and
want to integrate a configuration management tool such as CMVC with these
modified approaches. Both sites show that different projects within one location
may use different processes and integrated tools, but that CMVC is flexible enough
to be used in these different environments. Thus there is no standard development
process in these locations, but the different groups and projects define their own
customized development approach to meet their different requirements, and CMVC
is used in different ways to meet the requirements in the different projects.

It is important to understand that CMVC is not based on a predefined development
process, but that it can be used within certain limits with various development
paradigms.

4.1.2 MCI (Colorado Springs)
MCI is the second largest telecommunications company in the world and offers
various kinds of telecommunication services to its customers. The networking
center installation of MCI is located in Dallas, Texas, and multiple data centers
throughout the USA offer the support for the different geographic regions. The site
of MCI represents a customer that uses CMVC to develop software which is an
integral part of the company business.

The development site that was visited is in Colorado Springs, Colorado, where the
Intelligent Services Platform Organization develops software for telecommunication
services. A second development site of MCI is located in Cedar Rapids, Iowa, and
the software development focuses on application areas such as video reservation
systems, fraud detection, or other similar telecommunication systems. The group
that was visited is organized into about 50 different projects with a total of about
350 developers.

This group had worked with other home-grown configuration management products
before but ran into problems as there was no integrated problem tracking with the
associated code control. The maintenance of different home-grown configuration
management tools became unacceptable, and the introduction of new hardware
and software platforms did not go along with proper support from these tools. It
was therefore decided to replace this variety of configuration tools with CMVC
within a transition period of a few years.

Since the introduction of CMVC in 1992 with the first sample project, CMVC has
become the widely accepted standard configuration management tool within MCI,
and almost half of the development projects are already using CMVC. The first
installation was done with CMVC Version 1.1, in the meantime MCI migrated first to
Version 2.1 and is now operating at Version 2.2. By the end of next year CMVC
will be used by all the projects, and the Colorado Springs development site will be
a pure CMVC shop.

46 Looking at CMVC from the Customer Perspective

In parallel, based on the positive experiences from Colorado Springs, the MCI site
at Cedar Rapids is also introducing CMVC. Whereas Colorado Springs is using
ORACLE as the underlying database, the site in Cedar Rapids is using IBM's
DATABASE2/6000 (DB2/6000) to store CMVC's control information. MCI uses IBM
RISC System/6000 Models 990 and 590 as CMVC servers, and many of the
developers access CMVC through clients operating on various platforms such as
HP, SUN, DOS/Windows, or OS/2. As of the time of writing five families are
administered in the Colorado Springs site with about 160 active user accounts.

The development tool environment consists of CMVC along with SDE Workbench,
along with INTERLEAF for documentation purposes and compilers for C and C++.
In addition, some projects use AIX Interface Composer (AIC) Version 1.2 and
CADRE TeamWork for analysis and design. Other sections in this chapter describe
the unique features of the MCI site, as they are typical for a medium-size CMVC
installation.

 4.1.3 IBM Tucson
IBM IBM Tucson represents both a hardware vendor as well as a software
development site. In fact these functions are more or less independent of one
another, so it is not surprising to see different approaches as far as the use of
CMVC is concerned.

 4.1.3.1 Programming Center
The software development organization is called the Programming Center, and its
main purpose is to develop program products for the worldwide market. The most
important product developed here is ADSM (ADSTAR Distributed Storage
Management), which is a backup and archival software running on multiple server
platforms such as MVS, VM, AIX and OS/2. In addition, several ADSM client
platforms are supported, such as PC/DOS, Microsoft Windows, SCO UNIX, HP/UX,
NetWare, DEC ULTRIX, OS/2, AIX, and Macintosh platforms.

The Programming Center uses CMVC to control all code for all of the platforms
mentioned above. A two-person central support is in charge of the CMVC
administration and support issues. This is necessary, as ADSM is developed not
only in Tucson. Rather, there are development locations in Mainz (Germany), Haifa
(Israel), and San Jose (California, USA), which are connected to the Tucson LAN
through an IBM internal wide area network using different network connections. For
example, Mainz is connected right now through an intermediate SNA line to Great
Britain, and from there through a direct TCP/IP line to the USA.

The CMVC server in Tucson is a RISC System/6000 Model 560 running CMVC
Version 2.2. It uses INFORMIX as the underlying database system and PVCS from
Intersolv as the version control system. PVCS was chosen, because it was already
in use for library management stand-alone, so the licences and the skills were
ready for immediate use.

The developers and testers access CMVC through clients running on AIX and
OS/2; in addition they use an IBM internal CMVC client that executes on VM. The
installation is based on a single CMVC family, which, due to the size of the ADSM
project, encompasses quite a few files. Right now CMVC controls more than
15,000 active files, which are worked on by more than 300 active users. These
CMVC user communities are spread worldwide, and the number of transactions
reaches a limit of more than 4,000 per day.

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 47

4.1.3.2 Tape Drive and DASD Development
In addition to the Programming Center, other organizations in Tucson use CMVC,
and these are centered around the development of tape and disk drives and their
control units. These organizations need to develop hardware as well as software
and microcode, and, as with the Programming Center, their CMVC installation is
quite large and geographically distributed.

The development effort for DASD controllers is done in cooperation with a
development site in San Jose, California, and the CMVC server is run there. This
project uses CMVC Version 1.1.2, and the Tucson site accesses the CMVC server
in San Jose through its local CMVC clients, which mostly execute on AIX and OS/2
and are connected with San Jose through a TCP/IP wide area network. The
CMVC server in San Jose is also used to share code with other control unit
development projects in Tucson. IBM Tucson also runs several local development
projects, which use a local server running CMVC Version 2.2 as the configuration
management tool.

IBM Tucson uses SCCS as the version control tool underneath CMVC, and the
development processes and approaches differ among the various projects. Some
have come up with a new development paradigm and use OOA methods along with
the CADRE TeamWork product.

To support the groups for the tape drive and DASD development, there are seven
families in the CMVC server, which is a RISC System/6000 Model 550 using Oracle
as the database management system. This server controls more than 10,000 files,
and it is accessed by more than 100 users. This results in a daily workload for this
server of about 5000 CMVC transactions.

4.2 CMVC in a Network of Clients and Servers
When the development environment becomes heterogeneous and multiple target
platforms have to be supported, the maintenance of common source code becomes
even more important. CMVC supports this network scenario by offering multiple
clients in various operating environments which still access the central CMVC
repository on the AIX server. Both MCI and IBM Tucson develop on a
heterogeneous set of operating systems, and they both use a variety of CMVC
clients during their development activities. In addition, the developed code is
targeted for multiple target platforms, whereas the source is still maintained on one
environment, namely AIX. The sections that follow show the usage of CMVC in
this network environment.

4.2.1 Clients on Several Platforms
The hardware used by the CMVC server and the hardware used by the various
end-user groups can differ from one another. The platform from where CMVC is
used may be a question of convenience, and a user may use CMVC from the
operating system with which he or she is most familiar. In fact, the platform of
choice is selected on the basis of different criteria, and examples of these selection
criteria are explained in the following list:

� A code developer wants to access CMVC from his or her development
environment, and this can be either the target platform for the final software or
(in case of open systems) a compatible platform.

48 Looking at CMVC from the Customer Perspective

For example, the ADSM development group at IBM Tucson uses clients
running on local AIX systems, which access the CMVC AIX server. Developers
at MCI use the DOS/Windows client of CMVC when they work on projects
operating in the DOS/Windows environment. MCI developers use the CMVC
clients running on SUN and HP when working on projects that operate in these
environments.

Sometimes a client is not yet available on the development platform, such as
VAX/VMS or other UNIX platforms. MCI mostly uses high-end PCs as the
workstation hardware of choice and runs TCP/IP and X11 emulation under
OS/2. Thus it can use the PC as an X-Station to run any other X-clients from a
connected AIX or UNIX machine. However, rather than running CMVC as an
X-client across the TCP/IP network it is much better to use the local OS/2 client
of CMVC. It is not surprising then, that MCI views the arrival of the DOS and
OS/2 clients as extremely important for the company use of CMVC.

� A documentation developer wants to access the client on the same platform
that is used for developing the documentation.

For example, the information development organization at IBM Tucson, which
develops the publication material for ADSM, uses the IBM BookMaster product
running on the VM operating system. It uses CMVC as the problem tracking
system and has a specific component within CMVC that it uses to report CMVC
defects. It is only natural that this group uses a CMVC client running on VM to
access CMVC (the VM client is available as an IBM Internal Use Only tool).
Likewise, MCI uses Interleaf for documentation purposes in some projects, and
therefore uses the clients on AIX, which is the Interleaf platform.

� A tester needs to access CMVC from the environment he or she is using for
running the tests. For example, if particular test tools are used in a specific
environment (for instance, running recorded test cases during a regression test
phase), CMVC needs to be available from the corresponding test environment.
This is particularly useful in the OS/2 and DOS/Windows environments. Also,
testers might want to use CMVC in the software environment with which they
are already familiar, rather than having to learn a new operating system with a
new user interface.

For example, the ADSM test groups are used to work with host-based
operating systems such as VM. They use the CMVC client on VM for problem
tracking and reporting, even to report defects that they encounter during the
test phase of the ADSM products on AIX.

� A manager uses CMVC from the platform he or she is using during most of the
day. In the case of IBM, most internal utilities and communication are based
on VM/CMS, so managers are most familiar with that operating system.

� An administrator uses CMVC mostly from AIX, and sometimes even from the
command line rather than the GUI.

4.2.2 Code Developed for Multiple Platforms on Multiple Platforms
One of the nice features of CMVC is the support for multiple target platforms from
one CMVC server platform. Many development shops face the problems that the
software they write runs on multiple operating system platforms. This can imply
that one product runs on multiple platforms or that several projects each operate in
a different environment, and they all use CMVC as the central library product. This
includes not only those platforms that are derivatives of UNIX (like AIX, HP-UX,

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 49

SunOS) but also proprietary operating systems such as DOS, OS/2, VM, MVS, and
Macintosh.

A good example is the MCI development site in Colorado Springs, which develops
software mostly for its AIX and VAX/VMS systems, but also for OS/2, Stratus/VOS,
SunOS, HP-UX, PC/DOS, Windows/NT, and others.

The ADSM development group at IBM Tucson has to support all of the client and
server environments that are supported by ADSM. Currently these are PC/DOS,
AIX, OS/2, HP-UX, Novell NetWare, SCO 386 UNIX, SCO Open Desktop, SunOS,
Solaris, DEC ULTRIX, Macintosh, and DOS/Windows for clients, and MVS, VM,
AIX and OS/2 for servers. The list shows that not only are multiple operating
systems supported but also different systems from software vendors such as IBM,
Hewlett-Packard, Bull, SUN, Apple, Novell, and SCO. All of the ADSM code for all
of these environments is controlled by a CMVC server running under AIX.

Within CMVC, the components are structured according to a kernel/shell paradigm,
which implies that platform dependent code is put into different CMVC components
than the code which is common across platforms. When extracting a release for a
specific target platform, all files belonging to code maintained in common CMVC
components go along with the code that is stored in CMVC components specific for
that platform. Also all files required for the build on that platform are extracted onto
the target platform.

The extraction across the network is done using a TCP/IP connection. IBM Tucson
either uses an extract across NFS-mounted file systems or extracts to a local file
system on the CMVC server and then uses FTP to transfer the files over to the
target system where the build procedures are run. The files required for the build
procedures depend on the corresponding target operating system. For example, to
support VM, a set of REXX EXECs are stored under CMVC. The build procedures
are then executed on the corresponding target system to build the system.

MCI discovered a performance issue due to a problem in the underlying TCP/IP
software when it tried to extract to a remote file system that was NFS-mounted on
another machine. The time needed to do this remote extract was pretty slow, so it
decided to do a local extract instead and then use a copy command to copy the
files to the target system. By doing so MCI can drastically reduce the cycle time
required for the build.

MCI also had to solve an interesting problem for a non-IBM platform (Stratus),
which allows a different syntax for file names than the syntax used on AIX. This
requires that the file names between the Stratus and the IBM platform be mapped
before they are exchanged and that special characters in file name, such as the
dollar character, which are valid for the Stratus/VOS operating system, but invalid
for AIX, be eliminated. MCI implemented an elegant way of doing this by providing
a user exit, which is called for check-in, check-out, and release extract operations.
This user exit maps characters that are invalid for AIX (such as the dollar
character) to other valid special characters (such as an underscore character).
Also, a configurable field is used to store information inside CMVC about the target
directory to which a file is going to be extracted. A configurable field is set up in
the user table of CMVC for all users working on the Stratus project. Whenever a
file is extracted to the Stratus platform, this field is checked, and, if it is not empty,
the file is extracted to that target directory.

50 Looking at CMVC from the Customer Perspective

4.2.3 Networking and Remote Access
When the development group reaches a certain size, as is the case with MCI and
IBM Tucson, the development effort is no longer a question of a local area network.
Instead, the development groups are connected through wide area networks with
other development locations, which also need to have online and fast access to the
development environment in the corresponding remote locations. Those who need
to use CMVC interactively have to have an immediate response from the system,
and the access across the network must be nearly as fast as the access within a
local LAN or between LANs connected through a high speed bridge.

When introducing a central repository for source code maintenance into a company,
concerns may arise about the ability to have high performance access to a central
data base across networks. This is not only an issue for very large scale CMVC
installations such as described in Chapter 5, “Use of CMVC on Very Large-Scale
Basis” on page 75. Even CMVC installations in medium-scale environments, such
as the MCI development location and the IBM Tucson site, are being confronted
with these questions.

For example, MCI in Colorado Springs is mainly a local area network with its big
CMVC server. However, the various customer service centers distributed all over
the United States need to have immediate access to the defect tracking functions of
the CMVC system. Also, the second MCI development location in Cedar Rapids,
Iowa, is connected to MCI in Colorado Springs through a wide area network link.
Although the two sites are operating mostly independently of one another,
sometimes the need arises to have a cross system access for administration
purposes. MCI has reported no performance issues with its network environment.

An even more widely distributed use of CMVC in a network environment is found at
the IBM Tucson location. As explained in 4.1.3, “IBM Tucson” on page 47 two
different CMVC user groups can be found in Tucson:

1. The Programming Center develops ADSM and operates with a CMVC server
system in Tucson. Various other development groups located in San Jose
(California, USA), Endicott (New York, USA), Mainz (Germany), and Haifa
(Israel) operate with this server in Tucson.

2. The DASD and Tape Drive Development group in Tucson works with a similar
group located in San Jose and accesses the CMVC server located in San
Jose.

The CMVC end users are connected in a local LAN, which has proper TCP/IP links
through an IBM internal network to the other U.S. locations. The TCP/IP
connection to Germany is more complicated, as the network connection is just
enabled to Great Britain, and the connection between Germany and Great Britain is
through a 64K SNA connection.

Whereas the connection within the United States is almost instantaneous, the
remote connection to Germany is too slow to be of practical use especially when
extracting files and a lot of data has to be moved. Instead, Mainz does a local
extract to a local directory on the server and then uses FTP to transfer the file to
Germany. When direct access is required, the remote locations take advantage of
the command line interface, which also allows shell scripts to be built when the
same operation has to be applied against a couple of files at once.

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 51

4.3 Evolution to a Company Standard
Software development organizations that have been in this business for some time
do not start with CMVC from day one. On the contrary, many companies and
organizations have started without a specific tool in place for configuration
management and version control, because it was not considered important and
required at the very beginning. However, at some point in time the management
problems became apparent, and tools and procedures had to be put in place to
solve them. This section describes the evolution of the introduction of CMVC into
the development process at MCI and IBM Tucson and shows the rationale and
benefits behind that evolution. It is a typical scenario that many other companies
have gone through along the path to configuration management.

4.3.1 Home-grown Systems and Their Problems
Before MCI used CMVC in Colorado Springs, it used various home-grown
configuration management systems. However, as the development activities
became larger, several problems became apparent that MCI could not solve with
the systems in place.

MCI became involved in working with multiple hardware and software platforms.
However, there was no way of providing an integrated development approach
across multiple platforms, because the development groups on each platform could
not access code or report problems directly for projects working on other platforms.
The lack of cross-platform support in the CM tool was the cause for the following
problems:

� As each project used its own way of problem tracking, there was no standard
across projects. Each time developers joined a new project they had to learn
new procedures, tools, and processes in order to work effectively. This
additional learning effort was expensive and ineffective.

� The systems in place did not allow change control. They were based on native
UNIX tools such as SCCS, but there was no integrated approach to connect
problem tracking and code changes. It was impossible to reflect code
modifications back to particular problems.

� As the different projects used different home-made tools and procedures,
additional effort had to be spent to develop and maintain those private tools.
The maintenance of these tools became a problem, as the developers of these
tools were also part of other development teams.

A developer summarizes his experiences with the home-grown CM tools that were
in place as “...just awful....”

The Programming Center at IBM Tucson used to work with host based CM tools
before CMVC was introduced. When they faced the requirement of having to
develop software for the workstation operating systems, they soon realized that it
was not a good idea to keep the central code repository on the host system. The
multiple set of client and server platforms supported by CMVC was the key factor
for them to select CMVC as the CM tool for all platforms including the host
operating systems like VM and MVS

52 Looking at CMVC from the Customer Perspective

4.3.2 Introducing CMVC into the Process
In 1992 MCI decided to try CMVC in a sample project. From its experience in the
past it saw a need for a standard CM tool that provided integrated problem tracking
and version control across multiple platforms. It chose to use CMVC for one of its
most critical projects at that time. The sample project was already a year behind
schedule. It was well suited for a configuration management product such as
CMVC because the project was being worked on in different development locations.
The number of 500 open defects at the time CMVC was introduced illustrates the
critical situation of that project.

MCI bought CMVC along with Oracle as the underlying database. It first put that
sample project under CMVC control, and shortly afterwards the Intelligent Services
Platform Organization made the strategic decision to use CMVC for all projects. It
extracted the current level of the files from its existing CM libraries and loaded them
into CMVC as a new baseline.

New projects started to use CMVC, and by chance CMVC was used on the
non-AIX platforms (like HP-UX, SunOS, Solaris, VAX/VMS) first. At the time of
writing that organization has at least one project on every platform under CMVC
control, and by the end of 1995 it “...will be a total CMVC shop.”

To solve the additional support required by increasing the numbers of CMVC users,
a separate department was put in place to provide development services such as
LAN support, system test coordination, project management, budget planning, and
configuration management. At the time of writing this group is working on a system
methodology description for development activities in the low-end and mid-range
system area. CMVC will be part of that methodology, and it will be the
configuration management and version control product of that entire division within
the next year.

To help new projects getting started with CMVC, the CM group has developed
specific education material for new users. The CM department also helps new
projects to define the CMVC administrative setup, supervises, and gives
recommendations in case of usage questions. The CM group advises on such
matters as the component structure of the release that the project is working on.
The CM group helps to define a hierarchy that best fits the requirements of the
projects

CMVC is also being used as part of the management instruments. Another group
has been put in place to gather metrics data from CMVC and use it to get reports
and charts about the status of the various projects. At the time of writing, the data
is pulled out of CMVC and fed into a database system running on PC/DOS, where
existing presentation procedures centered around PC tools could be reused.
Eventually similar reports and graphs can be produced directly from CMVC as
explained in 4.7.1, “Back-End Tools” on page 61.

What is important to realize is that CMVC is not just used as a tool within the
development effort. It has evolved to become part of the company's entire
development approach including such areas as design, test, and management. As
an example, MCI also uses CMVC for nonsoftware development and stores course
material for education as well as process descriptions.

The Programming Center at IBM Tucson develops the ADSM product, which in
1992 also began to address distribution aspects and was being developed on

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 53

workstation and PC platforms. At that time, the host-based development used a
host-based CM library with limited capabilities. For example, remote platforms were
not supported properly, and there were no clients available in the workstation
environments.

The Programming Center started to look at PVCS from Intersolv and used that
product for a while. However, it soon discovered that the lack of integrated
problem tracking was a major deficiency compared to its requirements. It did an
analysis and decided to migrate to CMVC as its CM tool for all environments, but in
order to keep the history data of PVCS, which it had been using for almost a year,
it decided to use PVCS as the underlying version control system. The access to
the files, however, is only done through CMVC, so PVCS became almost invisible
to the end users.

Since then, the development process has been well integrated with the functional
capabilities of CMVC. As explained in 4.2.3, “Networking and Remote Access” on
page 51 several other development locations use the CMVC server in Tucson from
all over the world, and they have to use CMVC as part of their development
process as well. The test groups use canned reports to get information about the
test status and progress, and even groups that do not control their source code
with CMVC use it for problem tracking such as the Information Development group,
which writes the official product publication.

Two dedicated support people are working in the Programming Center for CMVC
family administration and end-user support. They developed a play component
within CMVC to be used to try out CMVC, and they also provide additional
educational and presentation material to potential new end users.

Also, the tape and DASD drive developers at IBM Tucson earlier used other IBM
internal CM tools. They also used a lot of reporting and graph-viewing facilities on
their VM systems. A key factor for a successful introduction of CMVC into the
process was the requirement to have a similar functionality and to provide similar
output data as the tools that were used before provided.

Therefore, a specific support group was put in place that had to provide support for
family and system administration. The group also had to provide the proper tools
for test, development, and management and consultant advice for the various user
groups. This consulting included help during the initial setup for the component
hierarchy, authorization setup, and CMVC customization, such as for variable fields,
choices, or user exits. The CM group also has developed education material that is
used during classes.

4.3.3 Acceptance and Feedback
Whenever a new tool is introduced into an existing process there are acceptance
problems at the beginnings. Developers sometimes tend to complain that using a
tool for CM would cost them a lot of time, and the additional cost would not pay off
compared to what is gained by the CM tool.

Although this seems to be obvious at first glance, it is not true because effort has to
be spent in any case for configuration management even if it is done manually
without a supporting tool. Almost all development shops not using an orderly CM
tool have faced severe problems when they had to reconstruct and reproduce code
releases.

54 Looking at CMVC from the Customer Perspective

SCS and MCI reported software failures of the software they had developed without
a CM tool, and the costs of that failure would be immense. If the software that has
to be maintained is part of the company's integral business, it is absolutely required
that at any time any source code in production can be accessed, fixed, and
maintained immediately. Developers, who have experienced this on their own, no
longer doubt the requirement of using a CM product. They answer the question,
“Does this extra effort pay off?” with a definite “Absolutely!”

CMVC does not only help during the development and build cycles of pure
development. It is also a very important and useful tool for getting exact and
up-to-date status information. Management is looking into the following data:

� How many defects are currently open?
� What is the evolution of defects over time?
� What is the distribution of defects regarding severity?
� What is the mean time between defects?

At MCI the answers to these questions are usually presented in graphical form, and
the source data for these plots are gathered from CMVC. “Managers and metrics
people love it immediately,” is one good example of the acceptance from these
groups.

To get good feedback from other CMVC users such as testers or developers MCI
chose to gradually introduce CMVC. At the beginning of the project, CMVC was
used without binding control to have minimum impact on the development process.
At later stages of the project, when independent test groups require a higher
degree of configuration management, binding control is turned on and integrated
problem tracking is used.

At IBM Tucson a key requirement for CMVC acceptance was to provide output
charts and reports similar to those produced by the tools that were used so far.
This problem is addressed by having report generation routines and graph plotting
utilities that gather the data from CMVC using the CMVC Report command and
then feeding the data into whatever output processing tool is used. See Figure 4
on page 61 for an example of an output analysis.

Another item that improved acceptance from the end users was CMVC's capability
to offer a command-line interface. This allowed an interface to CMVC to be
developed from within another front end that is used as an interface to software
developers. By doing so, the most common CMVC actions are made available
from another graphical user interface. See 4.7.2, “Front-End Tools” on page 62 for
details.

4.4 Diversity of Data Controlled with CMVC
When using a product like CMVC in a software development environment the first
type of data one may consider to put under library control is source code. In fact,
all of the sites that we visited use CMVC to control source code. However, other
types of data can be stored under CMVC control to take advantage of either the
configuration management functions or version control features of CMVC.

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 55

 4.4.1 Source Code
Source code controlled from a CMVC server on AIX means C source code at the
first glance. This is mostly true, however, only on AIX or similar UNIX derivatives.
Other programming languages such as shell scripts are controlled by IBM Tucson's
DASD development groups. They also store Assembler code using CMVC, and
MCI stores C++ code using CMVC.

The tool support group at IBM Tucson has developed a simulator tool that allows
animation of the design of models built using the CADRE TeamWork OOA product.
This simulator is written in SmallTalk, and the code for this simulator is also
maintained using CMVC.

To separate the code that is maintained for development support from the code that
is developed to be shipped to customers later on, IBM Tucson chose to use a
different family and put the internal tool code into that family.

Source code does not only include program code. For example, other source code
may be an AIX message source file that needs to be processed with the gencat
command in order to be accessible at run time from another program. Another
example of source code may be a series of X11 resource specifications, which
during build need to be combined with one X11 resource file that is used for the
application that is to be built.

 4.4.2 Build Tools
Most of the sites that we visited also use CMVC to store those source files that are
related to the build process. These build tools are specific for the different target
platforms on which they run. For example, in the case of AIX or other UNIX
platforms, the build files stored and maintained with CMVC are make files. In the
case of other operating systems the build tools consist of programs that
theoretically can be written in any language.

For example, the Programming Center at IBM Tucson uses REXX EXECs to
compile, link, and build the ADSM product deliverable for the VM operating system.
This REXX source code is controlled by the CMVC server on AIX, and it is
extracted during a release extraction like any other piece of code that is required
for that release. Once the extraction is finished, the build EXEC is started on the
VM target platform.

A similar approach is taken for the other target platforms such as MVS or OS/2.
Here, the build programs would consist of CLISTs (MVS) or command files written
in REXX (OS/2).

The build programs mostly deal with compile and link commands, but, depending
on the application and its complexity, other build steps may be required. For
instance the build procedure also has to build the proper X11 resource file for a
Motif application, and message catalog files if the application uses the message
handling facilities of AIX.

56 Looking at CMVC from the Customer Perspective

4.4.3 Test Cases and Test Tools
Test cases and test tools are treated in a similar way as source code and build
procedures. Although it may not appear required at first glance, there are a couple
of reasons why the test cases and tools are also maintained using CMVC:

� Test cases are associated with a certain functionality of the code, and this
functionality is controlled using the version control features of CMVC.

� Test tools may be used for automatic execution of tests and are also bound to
a specific level of code.

It is then only consequent to use CMVC to maintain the test environment using
CMVC.

Some projects choose not to store their test tools and test cases using CMVC. This
may be the case if there are no test tools at all, or the test environment is totally
separated from the CMVC server. However, even then the problem reporting and
defect tracking functions of CMVC can be used to report program bugs against the
components.

One project at IBM Tucson decided not to report the defects immediately against a
component used to control source files. Rather than that, it defined a dummy
component that is purely used for problem tracking purposes. The component
owner is the test leader and test coordinator, who is a filter of all of the reported
problems from the test group. This person decides whether each defect is valid to
be passed on to the development groups or is an invalid or duplicate defect. He or
she also decides on the severity of the defect and can modify the description or
add more information that further helps the developers to fix the problem. Thus the
workload of the development groups is reduced. The test leader also has a better
knowledge about which source component is the correct one to which to route the
defect.

A similar approach (dummy component) is used if the defects are reported against
files that are not under CMVC control. Although this may sound strange at first,
almost all of the sites visited used the CMVC problem tracking features for files
which were not under CMVC version control. For example, some hardware
development groups at IBM Tucson have a dummy component for hardware
development. They do not use CMVC during the versioning of hardware design, as
the engineering process of the hardware is somehow different from the software
development process. However, they also use the CMVC problem tracking
features.

 4.4.4 Documentation
Documentation is another kind of data that is put under CMVC control.
Documentation material includes:

� Process documentation, which describes how the company, site, or
organization develops software. This description can be used to describe the
quality processes required for getting ISO 9000 certification.

� Product and tool documentation, which describes any aspect of the controlled
tool, project, or product. It covers administration, installation, user reference,
and other similar topics.

IBM Tucson stores various types of product and tool documentation under CMVC
control but not process documentation. MCI started using CMVC for process

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 57

documentation and wants to use CMVC to control the documentation about the
MCI development methodology.

4.5 ISO9000 and CMVC
The ISO 9000 series of quality standards define a guideline for software quality
assurance. Companies operating on a worldwide basis face the requirement of
being certified as ISO 9000 compliant, as this certification becomes a prerequisite
for a bid in many cases, especially in Europe.

CMVC can be used as a quality instrument during the development process to
cover aspects such as document control, design control, product identification and
traceability, inspection and test status, nonconformance and internal audits. It can
also be used to store and control the documentation of the development process
itself.

4.5.1 CMVC As Part of an ISO Certification Process
MCI is looking toward ISO with increasing interest due to the importance of ISO in
the European market. It uses and views CMVC as one of the tools to move toward
ISO certification.

IBM Tucson was certified in 1993, so it uses CMVC as part of its defined
development processes.

Both locations use CMVC for document control, although this use is not yet
consistent across all projects. They use CMVC partly for design control, but again
the use is not yet a standard because some of the design is done on another
platform using other techniques and tools (IBM Tucson), and sometimes the tools
that are used for software design have a versioning concept of their own (MCI).
However, both sites use the version control functions of CMVC during the software
development phase, and this meets the ISO requirements of product identification
and traceability as well as inspection and test status. In addition they use the
problem tracking functions of CMVC, which meets the requirement of control of
nonconforming product of ISO.

Results of internal quality audits are not yet reported against a CMVC component
to record identified shortcomings of development processes. Instead IBM Tucson
records these using another tool running on VM.

4.5.2 CMVC As a Repository for Process Documentation
None of the midrange sites visited uses CMVC to store the process documentation.
MCI is in the process of adapting a methodology document about host-based
development to the procedures and processes they use for workstation and PC
development but has not yet completed that. IBM Tucson uses an existing
VM-based repository for storing the process documentation. It did not use CMVC
because everyone on the site has access to a VM system, but not yet to AIX, and
immediate access to the quality documentation is one of the requirements of the
ISO norm.

58 Looking at CMVC from the Customer Perspective

 4.6 Organizational Consideration
Once the CMVC installation crosses a certain threshold a dedicated CM support is
usually put in place to help and assist the increasing number of users and projects.
This CM support is part of a general support group, which in addition can handle
project management, test or system administration (such as with MCI). CM support
can also cover tool development and support (such as with the Design and Test
group at IBM Tucson). The CMVC administration tasks are mostly closely related
to the general system administration, but sometimes they are also clearly
separated, as in the Programming Center at IBM Tucson.

4.6.1 Central Support for Rollout
When a new project starts to use CMVC, or new users join a project that is already
using CMVC, additional support is required to achieve a proper and smooth
transition. The CM staff at MCI has developed education material on its own,
which is particularly suited to the needs of MCI. This education material focuses on
the roles of the people within the development process of MCI and has copied and
modified the original material from the official IBM publication.

In addition, the CM staff has developed classes that address the situation of MCI in
particular. These classes show how MCI has customized CMVC (for example, the
modified task list) and explain how CMVC is used at the site during the
development process. Project-specific customizations such as certain user exits or
configurable fields are introduced during these classes, as well as topics that
address MCI-specific procedures to support non-AIX platforms.

When a new project is started the CM group also acts as a CMVC family
administrator. The release or family definitions and setup are discussed with the
project leader, and the family administrator helps with the initial setup for the family,
release, and component hierarchy. The family administrator also defines the users
and their access authorities to the files under CMVC control.

 4.6.2 CMVC Administration
In smaller development organizations the tasks of the CMVC administration are
almost always part of the to-do list of the overall system administrator. However,
larger shows with a higher degree of networking and a larger community may
decide to separate the tasks of system administration and CMVC administration. In
the case of the Programming Center at IBM Tucson this task split was also done
because the group members handling the CMVC administration were not yet deep
AIX system programming experts.

The day-to-day tasks of CMVC administration are:

� Define new families or releases
� Setup for new users
� Customize configurable fields, choices lists, and user exits
� Plan for backup.

A site just beginning to use CMVC usually just uses the canned CMVC
customization and may even take some optional processes out. So at the
beginning user support and initial setup are most important.

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 59

Over time, however, projects begin to discover the various ways in which CMVC
can be customized to the particular needs of the project, and more requests for
individual support arise.

 4.6.3 User Support
At medium-scale sites the CMVC administrator mostly provides end-user support.
Both MCI and IBM Tucson do not have a dedicated support person or help desk
just for CMVC questions, as is the case for very large CMVC sites (see Chapter 5,
“Use of CMVC on Very Large-Scale Basis” on page 75).

The administrator also supports the development groups with problems they may
have during their build process and provides answers to end-user questions about
how to use CMVC.

 4.6.4 Tool Support
CMVC's open architecture is based on the availability of a command line interface
and the underlying use of an RDBMS, which allows raw output data to be gathered.
Thus, a lot of back-end and front-end tools can be developed around CMVC, and
in medium-scale and large-scale sites this is often the case.

The use of the interfaces that CMVC provides usually requires a thorough
understanding of possible side effects. So the people working on tool development
need to have a deep knowledge of CMVC or at least work together closely with
someone who is quite familiar with CMVC's interfaces.

At the study locations representing medium-scale CMVC sites the CMVC
administrator is the focal point for tool development. See 4.7, “Extensions to
CMVC” for examples of CMVC customizations at MCI and IBM Tucson.

 4.6.5 System Administration
When a company or location decides to use CMVC, usually the system
administrator is the first person to take over tasks that are related to CMVC
administration. However, in some cases, these two roles are split, and the jobs are
assigned to different people.

This is the case if system administration functions are available from another
(central) support organization. Some tasks, however, address both the CMVC
administrator and the system administrator:

� Planning for backup and restore
� Migration to new version and release levels of CMVC
� Installation of PTFs.

4.7 Extensions to CMVC
This section describes the locally developed front-end and back-end tools that are
used to exchange data with CMVC. It also describes the impact of these tools on
the overall development process and the relation of these tools to the use of
CMVC.

60 Looking at CMVC from the Customer Perspective

 4.7.1 Back-End Tools
Back-end tools are procedures put in place to get data out of CMVC for further
processing. A development location could use the CMVC GUI to look at the
various reports, but typically the output data is processed further on to get more
appealing charts or graphs.

 4.7.1.1 Graph Plotting
All of the development locations that we visited during this project are trying to
generate graphical representation for management information from the data out of
CMVC. Some of the sites have developed very elegant and automated procedures
to do this and have spent a lot of effort in getting the requested graphs. Others
use the CMVC report functions to get the raw data and then manually reenter a
subset of the output data into a postprocessing tool of their choice.

IBM Tucson uses existing tools written for a database based on VM/AS (Virtual
Machine/Application System) to create the graphs. VM/AS is a project
management product available on the VM operating system. A background
procedure gets the data from CMVC and loads it into the database located on the
host for later use by VM/AS.

Figure 4 shows a sample chart that is produced in this way. It shows the evolution
of reported defects over time in a monthly analysis chart.

Figure 4. Sample Graph Showing Defects over Time (Monthly)

The graph shows the number of defects that are reported over time for a particular
project. It shows the total number, the number of the closed defects, and the

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 61

number of those defects that are still to be fixed. This product allows report data
and various graphical representations of the data to be produced.

Instead of using VM/AS, one could also use a PC spreadsheet program to illustrate
the data in a graphical way. IBM Tucson has an automated procedure to
automatically gather the data at night or on request from CMVC using calls to the
command line interface of CMVC. The raw result data is then fed into the proper
tool for the proper postprocessing.

MCI has not yet automated this step; it extracts the data using the CMVC report
facilities. Then the data is manually transferred to a PC spreadsheet program,
which shows a similar representation. The charts MCI produces show:

� The mean time between defects

� The test status with the number of cumulative, fixed, and closed defects

� The severity distribution of defect reports.

MCI is looking at ways to generate these charts automatically from the CMVC
database.

 4.7.1.2 Report Generation
Reports are another means of describing the status of a projects. Like charts and
graphs they often serve as the base for management decisions and therefore are
very important. Status estimations, risk assessments, and schedule outlooks are
the most important management activities during a project, and the data (and the
way the data is presented) is critical to most management decisions.

IBM Tucson had a report generation tool called PTS2 (Problem Tracking System 2)
that was in use by various projects and that evolved as a standard throughout the
organization. Therefore, when projects started to use the problem tracking
functions of CMVC the requirement was raised to produce similar reports from
CMVC as with PTS2 before.

To achieve this, the support group at IBM Tucson wrote an interface program that
would extract the problem tracking data from the defect and the track table out of
the CMVC database. The program then loads the data into the SQL/DS data on
VM, where the existing utilities can be used to produce various kind of reports.

The reports that can be produced are:

� Bingo tables to show defect severity, problem area, wait code, and others by
status

� Summary tables to show the number of open and closed defects.

The tool used to produce the reports is an interactive VM application, which also
allows the mountain charts or pie charts to be generated to get a graphical
representation of the same data.

 4.7.2 Front-End Tools
In addition to tools that gather data from CMVC and further pass it on to other tools
for postprocessing, there are tools that are used get data from other sources and
feed them into CMVC. This section shows several tools that are in use at the IBM
Tucson site. They run on various platforms and use the noninteractive
command-line interface of CMVC.

62 Looking at CMVC from the Customer Perspective

 4.7.2.1 ZAPAR
ZAPAR (Zaepfel APAR tool) is used to build a bridge between the Remote
Technical Assistance Information Network (RETAIN) system and CMVC.1 The IBM
technical support groups use RETAIN to report Problem Management Records
(PMRs) from customers to the development and maintenance organization. If a
PMR turns out to be a valid program error, the PMR becomes an Authorized
Program Analysis Report (APAR) and is treated as a defect against the
corresponding software product.

The Programming Center in Tucson maintains the ADSM product and uses CMVC
to control the ADSM source code. So whenever an APAR is received through
RETAIN, a corresponding defect must be opened in CMVC against the
corresponding release. This interface is automated through ZAPAR. Figure 5
explains the flow of data between RETAIN and CMVC.

Figure 5. ZAPAR Interface between RETAIN and CMVC

The RETAIN system is accessed from VM, and so is ZAPAR. In addition, a
ZAPAR version is available that runs on OS/2. The user interface of ZAPAR
consists of a couple of screens with a few options. The functions that are available
allow information to be obtained from RETAIN and automatically create a CMVC
defect with the same data. Likewise when the user closes a CMVC defect from
ZAPAR, the corresponding APAR is also closed in the RETAIN system. ZAPAR
also offers functions that are purely working on CMVC, for instance, the user can
modify the defect owner or the component to which the defect is assigned.

ZAPAR uses an IBM internal tool for its screen I/O, but the same functionality can
be implemented using systems like ISPF or even XEDIT screens. ZAPAR uses the
CMVC command line interface to get data from CMVC or to put data into it, and it
uses a similar interface to RETAIN.

1 Andy Zaepfel is the developer of ZAPAR

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 63

 4.7.2.2 BuildTool
Another example of a front-end tool interfacing with CMVC is also in use at IBM
Tucson. This tool (called BuildTool) is used to combine access to common
development functions like edit, compile, and touch with functions to access CMVC
like check in, check out, or extract. The name BuildTool is unfortunately
misleading, as the purpose of the tool is not only to provide functionality during the
build steps of a project or program. A more appropriate name to summarize the
functionality would be for, example, DevelopmentTool.

The BuildTool is an interactive Motif application written in Korn shell and perl, an
interpreter language that is available as public domain software. The size of the
source code for the entire tool is about 2000 lines of code.

The user interface was designed using EZWindows, an IBM internal use package
that offers rapid GUI prototyping functionality similar to AIX windows Interface
Composer (AIC).

When users click on a push button or one of the items in the pull-down menus,
they invoke proper callbacks. These callbacks then either call the corresponding
AIX commands, such as touch, or call CMVC through the CMVC command line
interfaces.

This additional front end interfaces with the command line interface of CMVC. It is
a good example of the flexibility of CMVC and its capabilities to be integrated in
another tool or process.

Figure 6 on page 65 shows the user interface of the BuildTool in use at IBM
Tucson.

64 Looking at CMVC from the Customer Perspective

Figure 6. BuildTool : A Tool Interfacing with CMVC

The BuildTool offers both common development functions, such as:

– Actions against files (for example, browse, edit, create, delete, diff)

– Build activities (for example, compile, touch, make)

and CMVC functions, such as:

– Activities against selected files (such as check out, check in, lock, extract)

– Activities to define the scope of other CMVC actions (such as set the
family, release, component)

4.7.2.3 Shared Working Space Manager
Another example of a tool that interfaces with CMVC is in use at the IBM Tucson
site: the Shared Working Space Manager (SWSM).

The SWSM is a collection of demon processes that update a set of files with the
most recent version from CMVC. A configuration file defines a shared working
space as a target directory structure, which is a directory structure shared by
multiple developers. The SWSM demons support the automated update of the
shared working space. This update can be triggered periodically, for instance,
through a crontab entry.

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 65

Thus with SWSM a set of files under CMVC control is shadowed to a target
directory, so developers who need to share code always have access to the most
recent code versions of their colleagues.

SWSM also can be used together with the BuildTool. The interface between the
BuildTool and SWSM is enabled by setting an environment variable in the user's
.profile file. Then whenever a user uses a function from the BuildTool that
modifies the files in CMVC (such as a Checkin, Delete, or Undo), the BuildTool
automatically informs the SWSM by a message exchanged through TCP/IP.

The SWSM demon then extracts the current version of the file and stores it in the
working directories that are specified in the customization environment of the
SWSM.

You can achieve function similar to that provided by the SWSM by using the
various CMVC user exits.

 4.8 Customizing CMVC
Development locations of a size such as MCI or IBM Tucson usually have
customization needs beyond the CMVC default customization. Areas of CMVC
customization are:

� User exits to perform specific follow-on processing for the corresponding CMVC
actions

� Configurable fields in the different tables to store and process additional data
� Customized choices to meet project-specific or companywide standards
� Configurable processes to tune the CMVC processes to the approach most

suitable for the project needs.

 4.8.1 User Exits
MCI has one user exit implemented in a production environment to solve an
interesting problem for a non-IBM platform (Stratus), which allows a different syntax
for file names than the one used on AIX. The file names must be mapped between
the Stratus and the IBM platform before they are exchanged. Special characters in
a file name, such as a dollar character, which is valid for the Stratus/VOS operating
system but invalid for AIX, need to be mapped to characters that are valid for AIX.
MCI implemented an elegant way of doing this by providing a user exit, which is
called for Checkin, Checkout, and Release Extract operations. For these CMVC
transactions the user exit maps invalid AIX characters (such as the dollar character)
to other valid special characters (such as an underscore).

MCI also thinks about invoking another user exit upon a File Checkin to produce a
'pretty printed' listing of the source files, which then can be centrally archived for
access from any other developer.

At the time of writing the Programming Center at IBM Tucson was not using user
exits. It plans to put one in place to provide an automatic extraction of files to a
common target directory after the file is checked in. This function is similar to that
currently provided by the SWSM (see 4.7.2.3, “Shared Working Space Manager” on
page 65).

Another user exit under consideration would automatically create tracks for multiple
releases, if a defect is created. Right now, this is a manual activity.

66 Looking at CMVC from the Customer Perspective

 4.8.2 Configurable Fields
MCI uses a configurable field to indicate a path name for a file. This path name is
used as a prefix pathname if the file is going to be extracted to a remote Stratus
platform.

At IBM Tucson there are not yet additional fields configured. However the following
additional fields for the defect table are under consideration:

Impact code Identifies what is the impact for the end user if this defect is
encountered. This field is used in a similar way as the
Severity field, but Severity is used to describe the impact for
the test rather than the end user.

Probability Identifies what the probability is to encounter this defect.

Phase injected In addition to the Phase found field, which specifies the
development phase where the defect is detected, this field
specifies the development phase where the defect is injected
into the product. The contents of the field is used for defect
prevention activities. For example, if a particular phase
shows up to inject many errors, then the development
process for that phase needs to be corrected.

 4.8.3 Choices
All the sites that were visited have adjusted the list of choices that are available for
specific fields. Some of the choices for a field are taken out, others are added.
The range of allowed values can be adjusted to match the particular development
process and the terminology that is used throughout that location.

 4.8.4 Configurable Processes
One of features of CMVC is the possibility to dynamically configure the CMVC
processes, and mid-range locations such as MCI and IBM Tucson use this feature
a lot. The introduction of a product such as CMVC can be made much smoother, if
for example binding control is turned off at the beginning of development. Later,
when a separate test group is joining the development process and configuration
management becomes more important, binding control is turned on and more of the
functionality of CMVC is being used.

At MCI for instance most projects do not use approval records, and test records are
used only for a small number of projects. Thus a more controlled process may be
introduced if the project complexity and its organization requires it, and CMVC is
flexible in handling this.

4.9 CMVC Used with Different Development Paradigms
This section describes the use of CMVC in development environments that choose
a different development paradigm from the standard waterfall development model
with procedural programming languages. Groups at IBM Tucson work with OOA
methods during their analysis and design phase, and they use CMVC in
combination with other tools such as Cadre TeamWork and a Smalltalk
development environment. They also make a first step toward cleanroom
development by following a hybrid development methodology.

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 67

 4.9.1 Object-Oriented Analysis
The DASD and tape drive development groups at IBM Tucson use OOA methods
to model the behavior of the software system to be built. The goal of the model is
to first get a clear understanding of the underlying problem, but furthermore tools
are put in place that allow the model to be simulated and thus errors to be detected
very early in the development phase. On completion of the OOA methodology, the
design will have fewer errors and be of better quality, and thus overall development
cycle time is reduced.

OOA according to the Shlaer-Mellor definition leads to the following:

� A data view, which is documented as an Entity/Relationship (E/R) data model

� A control view, showing the different states an object may have

� A processing view, which may be expressed by state transition diagrams.

As a result, OOA models the characteristics of the data along with the dynamic
behavior of the data objects, when a transition from one state to another occurs.

OOA does not specify a particular syntax for defining the state transitions.
However, any automated verification of an OOA model is based on a formal
grammar, so IBM Tucson has defined a syntax called Process Specification
Language (PSL). This syntax allows dynamic state transitions to be modeled using
a formal grammar.

4.9.2 Verification of the OOA Model
IBM Tucson has developed a simulator called the Tucson OOA Simulator
(TOOAS), which can be used for verifying the dynamic aspects of an OOA model.

IBM Tucson uses the Cadre TeamWork product as a front end to develop the OOA
model. Using TeamWork, developers model the dynamic behavior of the objects
with PSL.

Once that is done, the OOA models are extracted and the PSL behavior
specifications are compiled using a PSL compiler. The PSL compiler checks the
PSL specifications for syntax errors and semantic errors and then generates
Smalltalk code. The TOOAS then uses the Smalltalk code to interpret the model
behavior and offers a dynamic view of the OOA model. TOOAS allows developers
to observe the state transitions of the modeled objects to see whether they behave
correctly. The TOOAS user interface allows developers to change the state of
objects or send other external events to the model being simulated.

If errors are detected, the designer uses TeamWork again to modify the model and
then runs the extraction and PSL compilation again to simulate the corrected
model.

4.9.3 Use of CMVC Together with OOA
As explained in 4.9.2, “Verification of the OOA Model” the DASD and tape drive
development groups in IBM Tucson use Cadre TeamWork during their design
phase along with the PSL compiler and TOOAS. At some point the models need to
be implemented using programming languages such as C or C++. The different
projects at IBM Tucson choose different languages.

68 Looking at CMVC from the Customer Perspective

At this point of the development process so-called application objects are
developed, each consisting of a set of files that implement each object's behavior.
The application object code implements the attributes, states, and events for each
object.

One project uses another generator tool to ensure that the design of the object
always matches the application code. To do this, header files are automatically
generated from the extracted model. These header files, for example, define the
names of the states that an object can have, and these definitions are also used in
the manually implemented application object code. Thus whenever the application
object is changed, the corresponding model also needs to be changed and the
header files need to be regenerated.

The component structure set up in CMVC to develop the application object
corresponds to the E/R models and objects as design in Teamwork. For each
release in CMVC the associated model in TeamWork exists with a different name.
A naming convention is defined such that for a given release the corresponding
release of the TeamWork model can be retrieved.

Another project at IBM Tucson does not keep the OOA models up to date. Rather
it uses TeamWork during the design phase only and then moves to CMVC to
control the implemented application objects. If a defect is found that would require
a change to the OOA model, this is no longer reflected in TeamWork. The project
freezes the design documentation at a specific point of time in the development
process.

4.9.4 Cleanroom and Parallel Development
IBM Tucson also tries to follow the paradigm of cleanroom development. In theory
cleanroom development defines a development process where linear increments
are defined for a given project. Each increment can be viewed as a small
functional piece of the overall product. An increment is fully developed, tested, and
corrected before the next increment is begun.

The team using the principles of cleanroom development is developing the disk and
tape drives and does not follow the methodology completely. Instead the team
implements and tests several increments at the same time, which requires a much
more complex release structure within CMVC. The reason for this modified
approach (hybrid development process) is the schedule and availability of the
underlying hardware. In addition, the tests for the different increments have to
follow one another immediately, which forces the development group to work on
multiple increments simultaneously.

The parallel development of multiple increments is reflected in CMVC by having
multiple releases under development at the same time. A source file is under
development in multiple increments, typically three at the same time. When
development starts a new increment, a new release is created in CMVC, and all
files from the previous release are linked to the new release. The common links
are broken, and thus a new independent code level is created for the new
increment.

However, this decision has some impact on the way defects are implemented.
When a defect is reported during the test of an increment, tracks need to be
opened for each release that is currently under development for that file. As there
is no more common code across releases, a fix for an early increment must be

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 69

manually repeated for each follow-on increment that is also under development.
This makes a lot of additional work for the development teams, but it is the only
way to work on multiple increments at the same time.

It is obvious that in this parallel development effort CMVC plays a key role in
ensuring a correct configuration management and version control. As a team
leader at IBM Tucson stated “CMVC has held us together.”

 4.10 Firmware development
One group at IBM Tucson is developing system embedded software (microcode) for
the control units used for disk drives. This firmware development group also uses
CMVC for configuration management purposes.

During the design phase this group uses the Cadre TeamWork product to
document the design. As a result, the design is modeled in various ways, such as
E/R data models, data flow diagrams, and state transition diagrams.

The group starts with the actual coding phase at a certain point in the development
process and uses CMVC from that point on. It uses CMVC to maintain all code
that is developed and the GNU C++ compiler to compile the code.

The problem the group faces during the test is that the hardware onto which the
final compiled code is loaded cannot be used for the test because there are no test
tools that actually access the new hardware. So the group uses the C++ compiler
as a cross-compiler to generate code that matches the underlying hardware. A
linker links together all of the different object modules that are part of the firmware.
Then a simulator tool running on AIX loads the object modules and runs specific
test cases.

The simulator offers a command language interface so that more complicated test
cases can be run, and it also has an embedded debugging facility to ease problem
determination.

Once defects are found, they are reported against the corresponding component in
CMVC. The developers fix the defects as for any software development project,
and the corrected new level of code is extracted during the next release extract.
The group uses a utility to generate make files once the code that is to be built is
extracted, rather than storing and maintaining make files manually. This "make
make file" utility generates a new make file that reflects the dependencies of the
current (extracted) level of code. The make file is then run, the sources are
cross-compiled, and the object modules are then loaded into the simulator.

At a certain point in the development cycle the test would be run on the real
hardware. As before, the extract is run from CMVC, the make file is generated,
and the sources are cross-compiled. Instead of loading the object modules into the
simulator, they are written to floppy disks, which are loaded into the real hardware.
Then the hardware and firmware can be tested together in an integrated
environment.

70 Looking at CMVC from the Customer Perspective

4.11 Data Base Considerations
CMVC does not use a proprietary database; it uses a relational database to store
the control information. Various database systems can run underneath CMVC, and
different backup and archive strategies can be applied. This section discusses one
example of a backup strategy, as it is used by the Programming Center at IBM
Tucson, to demonstrate that backup can be completely automated.

4.11.1 Choice of Database
CMVC supports multiple RDBMSs from different vendors, such as Oracle,
INFORMIX, Sybase, and DB2/6000. There can be multiple reasons why to choose
a particular database system; for example, database system may already be in use
at the customer site for other production systems. Price/performance ratio is
another item to look at, and several sites that were interviewed during this red book
effort in fact found this more important than the fact of introducing another RDBMS.

However, there is a particular impact on the overall administration when a database
system is introduced. Regular tuning and backup procedures must be put into
place, and the time and effort required for initial setup and customization must not
be underestimated.

4.11.2 Backup and Restore
When CMVC is used in a production environment, a strategy for backup and
restore must be defined and set in place. There is no right or wrong strategy per
se, but the general goal is to archive data periodically so that in case of a severe
problem the loss of data is minimal (if at all).

A typical backup strategy for a CMVC installation on top of Oracle would consist of
the following steps:

� Kill each family's CMVC daemons.
� Shut down and start up the Oracle database to empty all buffers and clean up

memory.
� Export all database tables to a temporary hard disk file.
� Unmount all NFS-mounted directories so that the tar backups do not copy their

information.
� Use the tar command to create a backup of the file systems found in

/cmvc.families.
� Reactivate each family's cmvcd and notifyd daemons.

Below we show how the Programming Center at IBM Tucson uses ADSM to back
up CMVC data. It is interesting to see the various roles of clients and servers in
this backup strategy: ADSM is run as a client on the CMVC server system to
request the backup of that system, and an ADSM server on a connected host is
used to back up the data onto a VM system. The system center of that VM system
performs regular backups of that data, so that if a restore is required the data can
be reclaimed from VM back to the CMVC server machine.

The typical execution time for the regular backup job is less than 10 minutes, based
on the IBM Tucson site characteristics as described in 4.1.3, “IBM Tucson” on
page 47.

Figure 7 on page 72 shows the crontab entry that is used to perform the backup of
the CMVC installation at IBM Tucson. The crontab entry consists of a call to two

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 71

separate shell procedures. One shell script (dsave.sh) is used to bring down
CMVC, back up the datebase, and restart CMVC again. A second shell script
(cmvclog.sh) then cleans the CMVC log files.

 0 0 * * * /home/mmahoney/dsave.sh
 10 0 * * * /home/mmahoney/cmvclog.sh

Figure 7. Crontab Entry for Backing Up the CMVC Server

Figure 8 shows the shell script that is used to back up the CMVC server.

 #!/bin/sh
 echo stopping the CMVC daemons >>/tmp/cron.log
 /usr/lpp/cmvc/samples/stopCMVC df >>/tmp/cron.log
 #
 # to restore the database being exported enter:
 # /usr/informix/bin/dbimport -ansi -c -l -i /usr/informix/exportdf df@DFONLINE
 # while logged in as informix
 #
 cd /usr/informix
 rm -R /usr/informix/exportdf
 mkdir exportdf
 chown informix.informix exportdf
 echo exporting the database >>/tmp/cron.log
 su - informix "-c /usr/informix/bin/dbexport -o /usr/informix/exportdf
 df@DFONLINE 2>export.err"
 echo leaving exportdb >> /tmp/cron.log
 #
 # Using ADSM to backup filesystems - for system and CMVC data
 #
 DSM_CONFIG=/usr/lpp/adsm/bin/dsm.opt
 DSM_LOG=/tmp
 export DSM_CONFIG DSM_LOG
 echo ------------------------------->>/tmp/cron.log
 echo ADSM run at date >> /tmp/cron.log
 /usr/bin/dsmc incremental >> /tmp/cron.log 2>&1
 echo ===============================>>/tmp/cron.log
 #
 # Restart CMVC daemons
 #
 echo entering startcmvc shell >> /tmp/cron.log
 su - df "-c /usr/lpp/cmvc/bin/cmvcd df 9 &"
 echo starting the notify daemon >> /tmp/cron.log
 su - df "-c /usr/lpp/cmvc/bin/notifyd &"
 echo ending daily backup script for date >> /tmp/cron.log
 echo ===============================>>/tmp/cron.log
 #
 exit

Figure 8. Shell Script (dsave.sh) to Back Up the CMVC Server

Figure 9 on page 73 shows the shell script to call another shell script to clean the
CMVC log after the server has been backed up.

72 Looking at CMVC from the Customer Perspective

 #!/bin/ksh
 #
 su - df "-c /home/mmahoney/cmvclog.clean"
 exit

Figure 9. Shell Script (cmvclog.clean) to Start to Clean the CMVC Log

Figure 10 shows the actual shell script that is run to perform the log cleanup.

 #!/bin/ksh
 #
 #
 if -d $HOME/audit “
 then
 cd $HOME/audit

mv log.6.Z log.7.Z 2> /dev/null # slide the online.log files down
mv log.5.Z log.6.Z 2> /dev/null
mv log.4.Z log.5.Z 2> /dev/null
mv log.3.Z log.4.Z 2> /dev/null
mv log.2.Z log.3.Z 2> /dev/null
mv log.1.Z log.2.Z 2> /dev/null

 mv log.Z log.1.Z 2> /dev/null
compress log 2> /dev/null # compress the online.log file

output is online.log.Z
touch log 2> /dev/null # create new empty online.log
chmod 600 log 2> /dev/null # set access -rw-------

 fi
 exit

Figure 10. Shell Script (cmvclog.clean) to Clean CMVC Log

4.12 Build Process Considerations
At the same time that a development project is divided into pieces that are
assigned to different developers, some thoughts must be given to the build
procedures that build the entire application. The complexity of these build
procedures does not necessarily correlate with the size of a project, the size of a
site or location, or the number of individual source files.

For example, a huge project with dozens of developers may develop a lot of C
source files, but the final build would only consist of a global compile and one link
command. However, a much smaller application may require additional build steps:

� The team may be using a tool that requires a certain generation step before
actual source code is generated. For example, the Application Development
Lab in Hannover uses AIC to design the GUI. During the build steps source
code reflecting the AIC design must be generated using AIC code generation
utilities.

� The application may use AIX message handling routines, so the build
procedures have to generate message catalogs from message source files that
are used and accessed from the application at run time.

� The build for a remote platform may require some mapping to the target
platform. For example, MCI uses mapping for file names because the syntax for
a valid file name differs between AIX and Stratos/VOS.

 Chapter 4. Use of CMVC on Medium-Scale or Companywide Basis 73

� The build may also include some cross-compile if the target platform is different
from the development environment.

It is advisable to store all source code including build tool source together with the
application source code under CMVC. Once a CMVC release is extracted to a
target directory structure, the corresponding build programs and their associated
customization files (if any) are also extracted. Then the build procedures can be
run on the extracted sources. This approach ensures that the build procedures
always match the extracted sources. Errors during build can be reported against
the CMVC components that are used to store the build programs and procedures.

Most sites have a specific CMVC component that is used to contain all files related
to the build procedures. Sometimes it is even possible to generate the make files
automatically after the source files have been extracted. The DASD development
group at IBM Tucson uses this technique. After the source files are extracted to a
target directory, a make file is generated using a mkmf command. This command
scans all of the source files and automatically generates a makefile with a correct
dependency list of the corresponding include file structures.

Some development locations, such as the Software Development Lab in Hannover,
uses the SDE WorkBench as the development environment. The Hannover Lab
uses the Program Builder component of SDE to generate the initial make file and
then update dependencies if they have changed. The template for the make file,
which is used by the mkmf command, needs to be adjusted and customized if
specific rules or dependencies need to be taken into account. This is the case if
for instance message catalogs or X11 resource files need to be created during the
build process.

If the target platform is not AIX or UNIX, a tool that automatically generates the
build procedure may not be available. In such cases, the build procedure needs to
be stored like source code on the CMVC server, although the build procedure
would never be run there. For example, the Programming Center at IBM Tucson
uses REXX EXECs to compile, link, and build the ADSM product deliverable for the
VM operating system. This REXX source code is controlled by the CMVC server
on AIX, and it is extracted during a release extraction like any other piece of code
that is required for that release. Once the extraction is finished, the build EXEC is
started on the VM target platform.

74 Looking at CMVC from the Customer Perspective

Chapter 5. Use of CMVC on Very Large-Scale Basis

This chapter describes the use of CMVC at IBM Austin, a site representative of the
world's largest CMVC community user. IBM Austin uses CMVC to develop and
maintain the AIX operating system and other program products available for the
AIX and OS/2 operating systems. This chapter shows how CMVC is used on a
very large scale and has become an absolutely mission critical and integral part of
the overall development process. IBM Austin uses CMVC in a highly customized
way and has built multiple tools around CMVC that further process data gathered
from CMVC.

 5.1 Representative Customer
Moving from home-made CM tools to CMVC, IBM Austin demonstrates an
impressive use of the product, with staggering numbers as far as the scale is
concerned.

5.1.1 Evolution of CMVC
As described in 1.1, “Evolution of CMVC” on page 1 CMVC originated at IBM
Austin, where a lot of experience in the area of configuration management led to
the development of various tools, all of which were for internal use only. It soon
became apparent, however, that these tools were required not only to plug a
particular hole in the IBM Austin development process but also to solve a general
software development problem.

After CMVC and its predecessors were used at IBM internally for a couple of years,
the tool was also made available to customers and other IBM locations. IBM Austin
uses CMVC in a highly sophisticated way, and the sections that follow discuss
many of the unique features of its CMVC installation. IBM Austin uses CMVC to
control various kind of data such as design documentation, specification
documentation, source code, test case descriptions, test tools, build utilities, and
process documentation. It uses Oracle as the underlying database system and
plain SCCS as the version control tool.

 5.1.2 Mission
The main mission of the IBM Austin lab is to develop the AIX operating system with
all of the associated system software, including the Base Operating System (BOS)
kernal software products such as Distributed Computing Environment (DCE) or
similar software close to the operating system itself. In addition, the IBM Austin lab
develops OS/2 products such as DCE for OS/2, LAN Requester, the High
Performance File System (HPFS), and other software products in the area of
networking and distribution. Most of this development effort is done in cooperation
with the IBM lab in Boca Raton, Florida, which is in charge of developing the OS/2
operating system itself.

In total more than 2,000 IBM employees work at the IBM Austin site. This number
includes the personnel for the hardware and firmware development groups and the
corresponding production plants. In addition to the groups onsite, numerous IBM
locations all over the world actively cooperate with IBM Austin during development,
including groups in Europe and Japan for the National Language Support (NLS) of
the program product. Also, vendors and other software contributors in the United

 Copyright IBM Corp. 1995 75

States for instance, the Open Software Foundation (OSF), also work closely
together on the same software project. See 5.2.2, “Scale of Usage” on page 77
and 5.2.3, “Networking” on page 79 for more details.

IBM Austin also uses CMVC for problem tracking for the RISC System/6000
hardware and for problem tracking and release management of the IBM publication
and documentation that goes along with AIX. The application software
development groups developing application program products such as DCE also
use CMVC during their development process. In addition to the AIX groups,
several OS/2 development projects also use CMVC for various purposes.

IBM Austin is representative of a very large scale user of CMVC. This one lab is
both a system software and an application software lab, a hardware vendor, and a
nonsoftware development shop. The consequences for the site would be
disastrous if CMVC did not working properly around the clock from both a
performance and a functional point of view.

 5.2 Usage Characteristics
Over the last years CMVC has evolved to become an integral and mission critical
part of IBM Austin's development process The size and numbers of users, files,
and other data stored under CMVC control along with the networking environment
are huge and impressive. They show that CMVC is used by a site at the very high
end of the usage scale.

 5.2.1 Mission Criticality
In many aspects IBM Austin has incorporated CMVC into its entire development
and maintenance cycle. At first, home-grown CM tools were used to aid the
development groups in developing the first version of AIX. Over time, these
home-grown systems were developed further to meet the requirement of the
development processes, and other groups, such as hardware developers and the
OS/2 development projects turned to what later became CMVC.

The AIX development groups use CMVC to control all of the AIX operating system
code that is out in the field for all versions, releases, and modification levels that
are in maintenance. Accurate configuration management is an absolute
mission-critical requirement for reacting in case of defects found by external
customers. None of the code out in the field can be reproduced without the help of
CMVC, and the CMVC database is the only repository to keep track of the ongoing
development and maintenance activities.

Future releases and versions are also being developed starting using CMVC. No
other CM tool or backup system is maintained in parallel to CMVC, so the entire
product development is based on this product. In total the development groups
using CMVC including external vendors and other IBM internal development
locations in other cities and countries sums up to several thousands. This huge
number of people working concurrently with CMVC puts a top priority emphasis on
the support and administration of CMVC.

A failure of the CMVC repository caused by a hardware failure, a problem in the
network environment, or in CMVC itself would imply an enormous loss of
productivity for almost the entire site. Such a failure of CMVC would cost several

76 Looking at CMVC from the Customer Perspective

million dollars per day, not counting the indirect costs incurred for other dependent
locations, organizations, or customers.

The primary goal of the entire CMVC setup, support, and administration therefore is
to ensure 100% availability around the clock. Automated procedures and tools
have to be put in place to further support users, administer them, postprocess data
out of CMVC, and customize CMVC to the needs of the various development
groups.

5.2.2 Scale of Usage
IBM Austin is at the very high end of the CMVC usage scale. This is true for
almost all characteristics of the environment.

5.2.2.1 Hardware and Software Environment
To split the work load among the different development groups and to split the
various administration and configuration tasks, at IBM Austin the CMVC production
installation for the various projects is separated into eight production servers.
These servers are high-end RISC System/6000 machines like the RISC
System/6000 models 980 and 950, and they are equipped with a main memory of
about 256MB to 768MB. These servers run nothing else but CMVC.

As the environment is used around the clock, there is almost no time to upgrade to
a new CMVC release or version online. Extensive preparation is required, and four
other test machines are used to test modified CMVC code levels.

The total DASD capacity of the seven CMVC servers at the time of writing is close
to 100GB of disk storage, and about 7,000 active users access these seven
servers. The largest family is the one used to control the development and
maintenance of AIX itself; there are more than 3,000 active users for that family.
The server has about 1GB of data stored in the Oracle database, and about 15GB
in the vctree. The Oracle table space is spread out over multiple RISC
System/6000 drives to optimize disk access time.

The users accessing these CMVC servers are distributed all over the world and
access the CMVC repository through local or wide area networks. See
:figrefrefid=anetfa1 for an overview of the network topology.

5.2.2.2 Structure of CMVC Repository
Eight servers access about 30 families. The biggest servers still run at CMVC
version 1.1, but the upgrade to version 2.2 will be done soon. Some other servers
are already at that level, and whenever a new family is set up on a new server, that
server will be configured to run CMVC 2.2.

The largest server maintaining the AIX operating system code controls more than
500,000 files, which are organized in about 1800 components. More than 3,000
active users work with this one family on this one single server.

The 1800 components are used for both configuration management and problem
tracking. Some components are used only for problem tracking and release
management, for example, those that represent the AIX system publication and
documentation. This component controls about 150 IBM AIX books with about
20,000 associated files.

 Chapter 5. Use of CMVC on Very Large-Scale Basis 77

Once the development process reaches the function verification test phase, new
build levels are built out of CMVC every 7 to 10 days. The compile, link, and
extract jobs are run at night during low system load. In addition, service builds
occur on a daily basis.

5.2.2.3 Statistics on CMVC Usage
Automated jobs collect data about CMVC usage at the site by looking at the CMVC
audit log files. These statistics are then used to determine when batch jobs are
started such as build procedures or other long-running transactions that produce
output for reports, graphs or other postprocessing tools. Information about the
system load and the characteristics of CMVC usage is required to fine-tune the
system load. Long-running procedures that involve CMVC commands are therefore
usually put into shell scripts, which are started through crontab entries.

Also, another set of crontab jobs monitors the CMVC installation and checks for
potential problems such as a shortage of disk storage space. Automatic electronic
mail is sent to both the system and the family administrators if critical situations are
likely to be reached, so that proper corrective action (such as installing new disk
drives, increasing the size of the file systems) can be taken before the error
situation is actually encountered. IBM Austin wants to further automate this
warning mechanism to automatically send an online paging message to the system
administration staff.

The automated system that monitors CMVC usage showed a total average of more
than 1.5 million CMVC transactions per day against the big CMVC family in April
1994. This family is used to maintain and develop the AIX operating system. This
means that the server processes about 70,000 transactions per hour, and 20
CMVC transactions per second around the clock.

Table 3 shows which CMVC commands were used most during April 1994.

The command processed by far the most is the Report command. This underlines
the importance of CMVC in the overall development process at IBM Austin from a
management perspective. In fact, CMVC has become the primary instrument and
tool to gather all kinds of process control data that is required for status
assessments and schedule outlooks.

Table 3. CMVC Transaction Statistics: April 1994

CMVC Command Frequency Probability

Report 1,379,438 55.3 %

FileExtract 417,420 16.7 %

DefectView 258,531 10.4 %

TrackView 80,223 3.2 %

FileView 79,730 3.2 %

FileCheckin 25,807 1.0 %

UserView 24,926 1.0 %

FileCheckout 24,423 1.0 %

Others 8.2 %

78 Looking at CMVC from the Customer Perspective

 5.2.3 Networking
Figure 11 on page 80 shows the various LANs at the IBM Austin site and the
different bridges to other networks or dial-up lines. The seven large CMVC servers
are in two different token-ring networks to have different physical access paths in
case one of the rings encounters a hardware problem. The two rings are called the
Primary CMVC Ring and Secondary CMVC Ring. Vendors and other non-IBM sites
access the CMVC servers through another token-ring network called the Isolated
Vendor Ring, which also allows remote dial-in connections through modems and
connections through leased lines.

IBM developers from Austin are connected through several other token-ring
networks running at either 4MB/sec or 16MB/sec.

In addition, the CMVC ring is connected to the host site network through PS/2
model 80 bridges.

The host site network also links together other IBM locations throughout the world.
Thus remote development locations both inside the United States (such as Boca
Raton, Kingston, Endicott, San Jose) and in other countries in Europe or Asia have
direct access to the CMVC rings.

Another AIX machine acts as a mailer machine that creates raw data outputs for
several families. It also generates a daily user's report for many users for many
families. In addition, it acts as an NFS server for many of the off-site vendors.
This machine exists in two domains:

� The IBM in-house network

� The vendor network.

By using NFS files like test cases or tar images can be passed between both
domains and thus between IBM and the vendors. Although the vendors could use
it to extract to, they usually extract directly to their own networks.

 Chapter 5. Use of CMVC on Very Large-Scale Basis 79

Figure 11. LAN Configuration at IBM Austin

 5.2.3.1 Remote Resources
Users are literally spread around the world and access the server from other CMVC
clients located in countries such as Israel, Great Britain, Japan, France, Korea,
Australia, Egypt, Canada, Italy, Switzerland, and Germany. The overall
performance of access to the CMVC server across continent boundaries is directly
related to the performance of the underlying network. The TCP/IP topology allows
a response time of about 400 msec when the ping command is sent from Europe
to IBM Austin.

Many other development groups are located in the United States and access the
servers through the IBM internal network from cities such as San Jose, Kingston,
Boca Raton, Rochester, Dallas, Roanoke, Endicott, Gaithersburg, Hawthorne,
Austin, Palo Alto, Raleigh, Kingston, and Tucson. Other users access the CMVC
servers through dial-in lines such as software vendors and non-IBM organizations
such as OSF.

IBM sites or vendors that have an adequate network access use local CMVC
clients to connect to the CMVC servers in Austin. Sites with slow connections (for
example, when using slow dial-in lines or wide area networks between continents)

80 Looking at CMVC from the Customer Perspective

use the command line interface of CMVC to get the data to and from their working
space on their local machines.

 5.2.3.2 Backup Concept
To ensure the maximum degree of availability a thorough concept for backup and
archiving is set in place. Incremental backups of the CMVC data are saved daily,
and full backups are taken during low system load time during the weekends. The
time required for a daily backup is less than 40 minutes for the biggest server and
family, and a full backup takes up to four hours of elapsed time. As the servers are
running CMVC and nothing else, the backup only addresses the CMVC data and
the associated SCCS files. No system backup is taken.

 5.2.3.3 Dedicated Servers
Seven CMVC servers are used online in the production environment. In order for
these servers to run pure CMVC, any other task related to support CMVC is put on
other machines. Any customization done to the CMVC installations is tried and
tested on test machines that run a clone of the production environment. If the test
passes, the internet addresses of the original and the clone machines are toggled,
and the new machine running the new customized version becomes the production
server. A similar concept is also used for a regular database reorganization. There
is no way to reorganize the database in a dedicated mode, as the servers need to
be up and running around the clock. Periodically the entire contents of the
database are extracted and reloaded onto a clone system. Once the clone is up
again, the server addresses and clone addresses are toggled, and the roles
change. IBM Austin experiences a performance improvement between 10% and
15% each time the database is reorganized.

Another dedicated machine is used to gather data from CMVC at night to be used
for management reports and similar charts. This server would run shell scripts to
get CMVC reports and process the data further on to produce the proper listings,
charts, or reports.

5.3 Centralized, Formalized Support Structures and Tools and
Specialized End-User Roles

An organization such as IBM Austin has put in place a very special organization to
support the various requirements of the CMVC end users. This was done to reflect
the very specific skills needed and the amount of support that has to be provided to
the users.

5.3.1 Help Desk for End Users
The total number of users on the different servers and families at the IBM Austin
site is certainly impressive and requires well-organized support. CMVC is used
almost round the clock from worldwide locations. All types of questions are bound
to arise as for every heavily used application.

IBM Austin has put some effort into providing a help desk to assist users in their
day-to-day operations. The help desk deals with all problems the user may
encounter with the system, from problems directly related to CMVC screens or
processes, to access permission, to network-related issues.

Developers at IBM Austin wrote an online application with a GUI to collect the
questions asked by phone and classify them into different areas. If the answer is

 Chapter 5. Use of CMVC on Very Large-Scale Basis 81

known, the user gets immediate help. If not, the question is passed to the area
specialist for resolution. In addition, the user has access to a sort of information
database containing the most frequently asked questions together with the solution
to the most common problems. This database is used for reference and
maintained by the help desk staff. With this background, about half of all questions
can be answered directly by the help desk staff, leaving the support specialist time
to solve more complex or new problems.

 5.3.2 Tool Developers
Because of the extensive usage of CMVC, a separate support group has been
established to deal with the CMVC extensions. The activities are requested by the
development groups and discussed in periodic meetings between the two
organizations. This development support group makes the following available for
end users:

� User exits to increase the CMVC functionality for the specific IBM Austin code
development process

� Canned queries for getting management data out of the CMVC database
� Shell script to be executed as batch jobs for repetitive tasks instead of going

through the CMVC GUI
� Utilities to extract data into the management database, which is a collection of

CMVC raw data to be used for more sophisticated reports
� Graphical front end to select the data from the management database and

organize it into tables or graphs.

Some of these additions were first built on top of Orbit and have become part of
CMVC. See 5.5, “Extensions to CMVC” on page 90 for a description of the
back-end and front-end extensions that have been written to interface with CMVC.

 5.3.3 System Administrator
Because of the network topology at IBM Austin, the tasks of the system
administrator are very demanding.

The servers are purely CMVC servers, so the backup strategy is centered on the
CMVC data only, with no need for full system backup. To optimize backup times,
they do an incremental backup every night, which takes about 40 minutes, and a
4-hour full backup during the weekends. A full automatic backup strategy making
use of ADSM is under study.

Because system availability should be very high, they monitor the system log to
prevent any hardware failures that could impact development. Because the
topology is dymanic, it installs new clients whenever necessary, allowing the
network to grow further.

The performance of the CMVC system is highly critical, so they periodically
reorganizes the database, which improves performance by about 10% to 20%. For
the same reason they try to optimize each batch job according to the data available
from the CMVC audit log, which keeps track of each transaction.

One of the key tasks in 1994 was the migration of CMVC Version 1 families to
CMVC Version 2. The system administrator along with the family administrator
worked on migrating eight families to the current CMVC Version 2.2. Currently
(December 1994) more than five families are to be migrated the first quarter of
1995. The transition must be of minimal impact to development due to advance

82 Looking at CMVC from the Customer Perspective

planning and communication via notes to the developers. All migrated families
were created with default settings with the option of adding user exits and some
optional new enhancements on an as-needed basis.

5.3.4 CMVC Family Administrator
The task of a CMVC family administrator begins with the user support. Because of
the extremely high number of users, support tools have been implemented to help
assign userids and administer them. These online tools are directly invoked by the
user. The typical tasks of a family administrator are:

 � Project rollout

Set up the component structure together with the project team, user
authorization, and user education

� Ongoing user support

Answer the usability questions that may arise, keeping up with new CMVC
versions

 � Customization

set up the choice list, notification lists, host lists introducing the CMVC
extensions, back-end and front-end tools into a specific project environment

 � Technical support

Provide documentation for accessing CMVC client code and guidelines on
technical issues related to the CMVC configuration.

 5.3.5 Education
The end user education on CMVC-specific issues is extremely important for a
smoothly running development environment. Many materials are available for a
new development team member who wants to become familiar with CMVC.

The education material is available in the form of presentations or a short
introduction to the CMVC concepts. Additional training material and classes have
been prepared and targeted to the specific kind of interaction the user is supposed
to have with CMVC. This is defined by the specialized user roles in use at IBM
Austin.

5.3.6 Specialized End-User Roles
Specialized roles include coustomer support, team leader, development manager,
project manager, planner, build and release manager, software developer, tester,
and information developer.

Each of these roles is accomplished not just by one or two individuals but by large
groups of people. This aspect points out how CMVC helps to satisfy the
sophisticated requirement for effective project communication through its automatic
notification mechanism. The process implemented at IBM Austin under CMVC V1
is equivalent to the configurable process offered in CMVC V2. The
subprocess-related activities using approval, fix, and test records foster additional
communication among team members.

Each user role presents a specific form of interaction with CMVC, and not everyone
is bound to have deep knowledge of how all of CMVC works to complete a specific
task.

 Chapter 5. Use of CMVC on Very Large-Scale Basis 83

 5.3.6.1 Customer Support
The customer support group is responsible for getting the defects from the
customer installations and forwarding them for resolution to the development group.

The customer support group uses a system called RETAIN to input defects, but it
wrote a CMVC utility that transfers this information and opens a CMVC defect on
the affected components and tracks for all releases in use.

Development must ensure that the defects discovered in one release are corrected
for all releases actually supported at the customer sites as well as for all releases
under development. It reviews the tracks opened by the CMVC utility and takes the
appropriate action for all supported and future releases

Customer support does not need to know anything about CMVC because
everything is done automatically.

 5.3.6.2 Team Leader
The team leader has to master every aspect of CMVC because he or she will go
through all CMVC steps, from configuring the CMVC component hierarchy for a
new project, to setting up userids and their access authority, to defining releases
and levels, to following the process of a defect or feature from open to close and
monitoring the status of the tracks.

5.3.6.3 Development Manager, Project Manager, and Planner
The development manager, project manager, and planner use the information in the
CMVC database primarily to infer the status of the project and make projections for
future development.

What these groups need to know is the granularity of data and the range and
semantic of the single fields they can get out of CMVC. Thye will use this data as
input for their status reports, quality projections, and resource estimations.

See 5.6, “Project Management” on page 96 for details about how project managers
use CMVC.

5.3.6.4 Build and Release Manager
Build managers should have a detailed knowledge of the status of the defects and
the organization of the files containing the code into releases, levels, and tracks.
They can extract the right pieces of code from CMVC to build a module to be
passed to the tester. They also open defects against the component that caused
build to fail.

 5.3.6.5 Software Developer
The software developer uses CMVC primarily as a version control and problem
tracking system for the group of files on which he or she is working.

A deep knowledge of CMVC concepts (processes, component hierarchy, releases,
levels and tracks, problem status and overall project organization) is required to
perform this job. Additionally detailed knowledge of CMVC customization,
extensions, and front- and back-end tools is required to take advantage of the
whole development environment.

84 Looking at CMVC from the Customer Perspective

 5.3.6.6 Tester
The tester basically interacts with the problem tracking function of CMVC. During
the test defects are discovered and the fixes proposed by the software developer
are verified. Testers create defects against the code as well as against product
documentation.

Testers are familiar with CMVC concepts like releases, levels, tracks, processes,
and problem status. The tester's task is highly dependent on interproject
communication with the developers, for example, for clarification of the results of
the test compared with the specification of a certain command or function.

 5.3.6.7 Information Developer
The information design and development department uses CMVC:

� As a repository of InfoExplorer library images just prior to shipment as part of
the AIX code installation image.

� As a mechanism for recording and tracking problems in the online and
hardcopy documentation for AIX.

The data is organized into the same family as the AIX code because:

� The defects opened against a document may need to be reassigned to a code
component upon evaluation, or vice versa.

� A defect in code may be discovered by information development people and
code developers may discover a defect in the documentation.

� Some defects may affect both documentation and code and need to reference
each other.

The information development process consists of the following steps:

1. Documentation is written using Interleaf on a RISC System/6000. The Interleaf
native format is stored in Interleaf version control. At present there are about
20,000 files. CMVC is not used for documentation version control because this
function is provided within Interleaf in an integrated and easy-to-use way.

2. The documents are converted into PostScript files and sent to the printer.
There are about 40,000 pages in 150 volumes.

3. The documents are then translated into InfoExplorer files by InfoCrafter.
InfoExplorer images are stored in CMVC components that represent the Info
Libraries (.rom and .key).

Defects for these components are only for errors in images, not for the content of
the documentation itself. Each document defect is entered as hypertext link on a
certain defect number. All components are at the same level, as supporting
skeleton for problem tracking only.

The documentation components are stored in a hierarchy with one component for
each book title. Sometimes you may have multiple volumes for a title. There are
about 150 components and there are no files associated with these components.
Defects are opened against common document sources for both hard and softcopy.
There are different ways to ensure that defects related to document and code get
linked:

� Create two defects, each referencing the other through a reference field . If
one defect is closed and the other is still open, there is no automatic way to
carry forward the reference.

 Chapter 5. Use of CMVC on Very Large-Scale Basis 85

� Create only one defect, but a track in each release (that is, one for
documentation and one for code release). The limitation is that you cannot
close the defect without the other track being committed.

� Add additional configurable fields for cross-reference to enable the recording of
related defects.

Defects can be opened by everyone and are reassigned from the top level to the
correct component as needed. The defects against documentation are processed
as follows:

1. A defect is accepted or rejected on the authority of document owner.
2. The defect is reviewed by the "must fix" board unless it is challenged
3. A priority similar to code is used.
4. The information developer gets UNIX mail whenever a defect is opened against

a component owned by him or her
5. Developers move the defect to Fix status only when an interim release of the

InfoExplorer library is built
6. No version control information is lifted from Interleaf to be recorded into the

defect
7. The defect opener verifies the defect based on its appearance in the interim

InfoExplorer library, doing a search by defect number.
8. About 5% of total defects are opened against documentation components.

Information developers use either the GUI or VM client for open, accept, fix, and
reject defects. They use shells for user-specific queries.

For documentation they proceed as follows:

� No PTFs are generated for InfoExplorer; the complete new images are shipped.
� Books are occasionally reissued between releases with a new suffix number

(for example, XXXX-XXXX-01, 02).
� A complete book is delivered, no substitution of single pages
� The schedule for publication is not identical to the schedule for code, that is,

the books do not have not to be ready as early as the code.

 5.4 Customizing CMVC
The sophisticated use of CMVC at IBM Austin becomes obvious when one looks at
the different points where CMVC allows customization. This section shows the
various customizations applied to CMVC in order to fine-tune CMVC to the
development process that is being used.

 5.4.1 Configurable Fields
IBM Austin uses several CMVC families, some of which are still running with CMVC
version 1.1, others already at version 2.2. The plan is to migrate to the new
version within the next few months. The problem with the back-level version of
CMVC is that several features of CMVC, such as the possibility of adding additional
configurable fields to the CMVC database, are very important for a sophisticated
use but are not available.

Therefore, if CMVC cannot be upgraded to version 2.2 because the schedule does
not allow it, the lack of configurable fields must be solved by overloading existing
fields with a specific syntax and an associated semantic (see 5.4.2, “Overloading of
Fields” on page 87).

86 Looking at CMVC from the Customer Perspective

This is not a nice implementation, but it was the only way IBM Austin could still stay
at version 1.1, but already tune CMVC to its process requirements. If the
corresponding family is moved to CMVC version 2.2, a configurable field could be
used to indicate the same information.

Other planned fields are:

� A field to store the lines-of-code count for source files in the File table

� A field in the defect table to indicate that the defect also affects the publication

5.4.2 Overloading of Fields
Some of the families at the IBM Austin site are still using CMVC version 1.1 and
cannot use configurable fields. Instead, these projects have defined a convention
to use the predefined fields in a specific way to associate certain semantics with it.
The allowed values of the different fields thus become highly customized to the
process of the projects that are using the fields.

5.4.2.1 A Field Triggers Other Automated Procedures
The note field of a defect is used at the IBM Austin site in a specific and unusual
way. It is used to indicate that the defect does not apply to a particular release of
the code under development. This information is used by a batch routine, which
would create tracks for reach release for each defect unless the note field indicates
that the defect does not apply for a particular release. This batch routine is run at
night or during times of low system load and inspects all defects.

The information is added to the note field after the developer answering the defect
has checked that a code change is not required for fixing the defect for the new
release. Thus when the batch routine runs the next time, it would not create a
track for the release again, because the note field indicates that development has
already determined that the code for this release does not require any modification
in order to fix the defect.

5.4.2.2 One CMVC Field Stores Multiple Logical Fields
The note field of a defect is also used to decide whether or not a defect should be
deferred or implemented in a particular driver. The developer recommends what
should happen with the defect, but a so-called MustFix board actually decides
whether or not a defect is going to be deferred. To prepare for the board's
decision, specific information is put into the note field according to a template. This
information is provided by the tester and the developer. The logical fields that are
put into the note field are:

� Contact person and phone number
� Symptom the customer or tester experiences
� Impact to the customer or tester
� Impact to the entire system
� Pervasiveness of the problem
� Injecting defect or feature if known, and its release

 � Known workarounds
� Proposed solution and alternatives
� Size and risk of implementing the fix
� Build complexity (amount of files that need to be changed and files that need to

be rebuilt)
 � Code reviewer.

 Chapter 5. Use of CMVC on Very Large-Scale Basis 87

Once these fields are filled in, the MustFix board decides on each defect during a
periodic board meeting.

5.4.2.3 Allowed Values for a Field Differ over Time
The use of the priority field of a defect is also a good example of how the contents
of a CMVC field is used throughout the development process over time for project
management purposes.

In the development process used at IBM Austin two specific checkpoints (MustFix
and StopShip) affect the use of the priority field.

When a project reaches the MustFix stage, the decision about whether or not a
particular defect is to be deferred will be taken during formalized reviews from the
MustFix board. This review board basically decides whether defects become
Deferred or Approved, once they are accepted by development to be valid defects.
The MustFix board uses the information in the note field of the defect (see 5.4.2.2,
“One CMVC Field Stores Multiple Logical Fields” on page 87) to decide which
defect is deferred and which is not.

Some time later in the development process, the project leaves the MustFix stage
and enters StopShip stage. At this point, the deadline of the project is close, and
only minor changes to the code are allowed unless the problem is of great
importance and must be fixed under all circumstances even if this implies resetting
the schedule. All defects that show Approved in the priority field are inspected
again. The approved defects are basically divided into three categories:

� Deferred defects, which are moved to the next release

� StopShip defects, which must be implemented in the current release even if
this implies a change of the schedule

� DevServed defects, which are implemented and shipped to customers as PTFs
rather than becoming part of the official product tape.

Figure 12 on page 89 shows the evolution of the contents of the priority field over
time and the modifications made at the various project checkpoints.

The closer the project comes to the schedule deadline, the more important it
becomes for management to be able to estimate the remaining effort precisely.
CMVC is one of the tools to provide that information. The reports used for the
review board decisions (see 5.5.2, “Complex Reports” on page 93) are run daily to
ensure that management decisions are based on up-to-date data.

88 Looking at CMVC from the Customer Perspective

Figure 12. Defect Process Flow Based on Priority Field

 5.4.3 Choices
The different families in active use at IBM Austin have different configuration tables
associated with them. This maps to different lists of choices for some fields on the
GUI. For example, the list of choices when accepting a defect consists of 10
different alternatives when CMVC is installed. One family set up at IBM Austin
redefines this list of choices to match the specific needs of the development
process and the needs of the project and has defined a total of 16 alternatives. A
second family actually reduced the default list and offers only six alternatives.

Each development group thus uses choices that match the different project
requirements, the different terminologies, and the specific processes it uses.

 5.4.4 User Exits
The user exits listed below are in use at the IBM Austin site. Some of the families
are still using CMVC version 1.1, so the ways of taking advantage of the user exit
capabilities of CMVC are limited.

� When a user does a Verify -reject or a Test -reject, he or she triggers a user
exit that automatically opens a new defect and copies the old data and text
from the original defect. These scripts automatically open a new defect for the
user using the information contained in the one that tested bad. These two
routines are about 85 lines of shell code.

 Chapter 5. Use of CMVC on Very Large-Scale Basis 89

The advantage of this user exit is that all information from the existing defect is
automatically copied to the new one; the user does not have to manually retype
the information.

� When a user issues a File -create and File -checkin command, he or she
triggers another user exit. This user exit also is a small shell script of
approximately 40 lines of code. It calls another program to verify that the
source file to be checked in or to be created contains valid prologs. The
purpose of this user exit is to enforce some development standards. The user
exit does not prevent the file from being created or checked in if the prolog is
invalid. However, if the prolog is invalid, the user exit automatically opens a
defect for this noncompliance.

� Another user exit is currently being developed. This exit will be invoked
whenever a file is created or checked in, and it will count the number of source
lines in the source file. The line count will be stored in the CMVC versions
record, which has fields reserved for this information.

The line of code count can be used to gather productivity statistics such as
error rates per line of code and fixing rates. This kind of information is useful
for follow-on projects, which can base their assumptions for productivity,
maintenance effort for fixing and test, and schedule estimations on real-life data
from previous releases or projects

5.5 Extensions to CMVC
IBM Austin has developed quite a few extensions to CMVC that interact with CMVC
as front-end or back-end tools. These interface programs are used to further
process the data that is stored and maintained by CMVC, and this information is
used in appropriate places in the IBM Austin development process.

 5.5.1 Back-end Tools
IBM Austin uses various back-end tools and procedures to interface with CMVC.
These tools are used for different purposes and operate on different families, some
of which run with CMVC version 1.1.

 5.5.1.1 Transaction Analysis
CMVC logs all activities and transactions in an audit log for each family. This log
contains information about each successful and each unsuccessful transaction and
therefore provides a history of the CMVC family. For each transaction information
such as the component or file name is recorded against which the transaction was
performed.

IBM Austin has implemented analysis programs that are run periodically every day,
week, and month. These programs group the history data from the audit log and
generate report tables as well as graphical representations of the data. See
Table 3 on page 78 for an example of such a transaction summary. See
Figure 13 on page 91 shows the distribution of CMVC transactions over the
different hours of day.

90 Looking at CMVC from the Customer Perspective

Figure 13. Distribution of CMVC Transactions over the Day at Austin

The transaction summary is used for at least two purposes:

� Those commands and reports that are issued most are selected for further
investigation. Duplicate reports are identified and run from a central support
organization rather than from each group individually, so system load can be
reduced. Also, the central support group takes over the charge of maintaining
and enhancing these central report tools. This is an important point, as nearly
60% of all CMVC transactions are calls to the Report command.

� The transaction summary data is also used to tune system load over time.
Graphical representations of the transaction history show the number of
transactions during the day, and thus periods of low CMVC usage are
identified. Time consuming CMVC batch jobs such as build procedures or
lengthy report generating procedures are started to run at times of low system
load to minimize the impact on interactive CMVC users during the day.

 Chapter 5. Use of CMVC on Very Large-Scale Basis 91

5.5.1.2 Automatic Limit Checking
A key requirement of the CMVC operation at IBM Austin is an availability of 100%.
It is therefore of utmost importance to recognize potential system administration
problems such as shortage of external disk space and shortage of file systems long
before those problems cause the failure of CMVC commands. The problems must
be detected before they even occur.

To detect problems early, the system administration group has set up a couple of
automatic batch jobs as crontab entries to perform early warning functions for the
following critical situations:

� Check for shortage of disk space

� Check for shortage of disk storage

� Check whether the CMVC environment including all database demons can be
started correctly again after a backup job

A planned enhancement for this early warning system is to automatically notify the
beeper of the system administrator by sending a paging message. Right now,
these automated jobs send e-mail to the system administration staff.

 5.5.1.3 Track Creation
The problem that IBM Austin faces results from the fact that previous releases of
AIX, such as AIX 3.2.5, are in the maintenance phase whereas new versions or
releases are concurrently under development.

When a defect is reported against releases under development, the same defect
may also apply to the same source code files in later releases that are still under
development. CMVC uses tracks to follow up on the resolution of defects in
multiple releases at the same time, so the development group needs to make sure
that tracks are created for each release where the same defect may need to be
fixed.

This is done by a nightly batch job, which is triggered through a crontab entry. The
batch job looks at all of the defects and creates tracks for each release where the
defect may occur. The source files for the multiple releases may no longer be
common, so the developers need to look at all code levels that are in maintenance
or development to decide whether the defect is also valid for the particular release.

If the defect does not apply to that release (for instance, because the new code for
a release under development may have caused a rewrite of the code), the
corresponding track has to be closed. In addition, the same batch job must not
recreate the track for that release again the next night.

To do this, a note added to the comment field of the defect indicates that the defect
does not affect a certain release. The nightly batch job looks at the comment field
to decide whether or not to create tracks for the various releases.

5.5.1.4 Automated Code Review
The AIX development groups perform code inspections as part of their regular
development process and use a tool to support in this effort during the test phases.

The tool is used when a defect has been reported by testers and the responsible
developer has accepted the defect. The corresponding tracks are created and end
up in fix state, until the developer is done with the code modifications.

92 Looking at CMVC from the Customer Perspective

Once code modification has been completed, a code inspection cycle takes place.
The code is checked into CMVC while the track is still in fix state. The developer
contacts the reviewer by phone, e-mail, or by knocking on heaven's door. The
reviewer to perform the code inspection then invokes the tool along with the defect
number. The tool then gets the original source file and the one including the
modifications from CMVC and performs a diff command. An editor then shows
the code differences, so that the reviewer is presented with the changes that the
developer has made.

Figure 14 shows the syntax for the invocation of the code review tool.

Usage: review [-ifl] [-p diffprog] [-r release] [-w dir] defect/feature

review [-h | -?]

 flags:

-i: interactive mode; review each file only if requested

-f: review a CMVC feature rather than a defect

-l: show long version of CMVC defect or feature

-r: only show tracks for specified release

-w: working directory, default is /tmp

-p: program to use for diff rather than "sdiff -w 16ð -l"

(if args to diff program, put in quotes as in "diff -e")

-h: see -?

-?: see -h

Figure 14. Command Syntax for Tool Used for Automated Code Review

The tool shows the changes made by the defect or feature based on the tracks
dropped in CMVC and asks for approval of these changes from the reviewer. Upon
approval, an approval note is added to the CMVC defect or feature and mail is sent
to developer.

This process could be further automated by automatically creating a tool to send a
request for review after the developer has checked in the source file again. Some
people have already set up their own mailer scripts for this. The developer moves
the track to integrate state only after approval. Once the code is in integrate, it can
be picked up for a build.

By introducing this automated code review, the development group estimates that
about 10% to 20% of bad code fixes are found and avoided before the code
actually goes to the test groups. This number strongly underlines the importance
and preference of defect prevention rather than defect testing.

 5.5.2 Complex Reports
The transaction analysis reports show that the CMVC Report command is by far
the most important command (see Table 3 on page 78). In fact, the data
generated from the CMVC database is the most important instrument for gaining
management insight into the status of the projects and getting information about
trends, the effort for the current work load, and the potential effort in the near
future.

A very sophisticated and automated processing of these reports is therefore put in
place, and the procedure for getting the data from CMVC, generating reports, and
creating graphical charts of the reports is basically fully automated. The huge size
of the underlying database (the largest family controls more than 600,000 files)
results in a lengthy run time of these reporting procedures, so these are schedules
to run at times of lowest system load.

 Chapter 5. Use of CMVC on Very Large-Scale Basis 93

The most complex CMVC family is used for development and maintenance of the
AIX operating system. First, programs gather CMVC data using the CMVC Report
command, then postprocessing programs work with the extracted data and load the
data into a management database (MDB). Some other small tables in that MDB
describe dependencies that are not contained in CMVC such as the IBM Austin
organization setup of areas, groups, and departments as well as information about
which developer is working in which department. Several reports as explained
below focus on departmental or similar grouping criteria and that data is not
covered by CMVC.

Several utilities already have been written against this database, and these
programs are used for quality projections and further defect prevention analysis
(5.6, “Project Management” on page 96). The utilities are mostly written in perl and
other native AIX or UNIX programming languages.

The following reports are generated automatically:

� Deferred defects reports, which includes severities of the defects. This report is
grouped by department.

� Summary reports, which show defect statistics about arrivals, closes, and
changes since the last week. These reports also show the total number of
defects in the various states grouped by severity or development area.

� Master reports,which show more details about defects such as component,
severity, priority, release, owner area and the defect abstract. These reports
are generated for defects that:

– Must be fixed

– Are potential defects with severity 1 or 2

– Are potential defects with severity 3 or 4.

The purpose of the list of potential defects is to gain management insight into
the potential work load of the development groups.

� Blocking reports, which show those defects that block (prevent) parts of the test
to be continued. The reports identify the test area that cannot continue, such as
performance test and usability test for each blocking defect. An indicator of the
type of blocking of a defect is also added to all other reports that show a list of
defects.

� Master reports, which are grouped by groups, departments, and areas.

� Arrival and closure reports, which summarize the difference of accepted defects
that must be fixed between the day of the report and the previous day. The
same report is gathered for potential defects. From these reports, the
corresponding arrival rates are calculated and ordered by area.

� Test/verify/returned reports, which are used by the test groups rather than the
development groups. These reports describe those defects that are in test or
verify state, as well as those that are rejected because the fix did not solve the
original defect to the tester's satisfaction. A user exit automatically creates a
new defect with the same contents for the abstract, severity, and the like once
a fix for a defect is rejected.

The reports discussed above are generated from central staff personnel and mailed
in softcopy or hardcopy format to the various groups that are interested in them. In
addition, graphical representations of some of the reports are generated using

94 Looking at CMVC from the Customer Perspective

various tools, for example, to show the number of defects along with either their
severity or status over time (similar to those used at IBM Tucson as shown in
Figure 4 on page 61).

In addition, a set of front-end utilities is available to generate reports and analysis
graphs. These utilities are used for instance by the individual developer, who may
not be interested in the defects for the entire family or for certain areas, but just in
those where he or is the owner of the components that are supposed to be the
cause of the defects. Similar utilities exist for breaking down the master reports
into the different departments or components.

A second area at IBM Austin works with product development of OS/2 software.
For the OS/2 projects at IBM Austin, the following reports are generated using OS/2
REXX command files that issue commands against the command line interface of
the OS/2 client:

FMTRPT a batch procedure that provides a formatted report of defects for
given components. The report includes the values for prefix,
number, component, state, origin ID, owner ID, severity, age,
phase found, answer, and abstract.

LSTFILES returns a list of files in a given component

EXTFILES extracts all files for a given release and component

CNTPHASE counts the number of defects per phase found choice. Defects in
canceled state (except those with an answer code indicating future
resolution or limitation) are not included.

CNTVAL counts valid defects for given components

CNTINVAL counts the number of invalid defects for given components

CNTSEV12 counts the defects with a severity level of 1 or 2

PRTTIME provides an average count of the number of days it took for closed
defects to go from open to last reassign for defects with a
component equal to one of a given list of components.

TURNTIME provides an average count of the number of days that it took
defects to go from OPEN to CLOSE, if the PHASEFOUND is equal
to fvt and a component equal to one of a given list of components.

CNTACTIV provides a count of the active defects (not including canceled and
closed defects) for given components

CNTOPCL7 counts those defects that were opened, closed, or canceled in the
last seven days

CNTANSW counts the defects per answer code that are not in OPEN state for
given components

CNTSEVST counts defects per severity code and state code for given
components

CNTSTATE counts defects per phase found and per state for given component

 Chapter 5. Use of CMVC on Very Large-Scale Basis 95

 5.5.3 Front-End Tools
CMVC offers a GUI as well as a command line interface, which can be used to
develop other tools acting as front-end tools to CMVC. Among others, IBM Austin
developed the following two front-end tools to interface with CMVC:

CMVCCMD This is a batch procedure that takes a list of CMVC commands
from an ASCII flat file and executes them using the CMVC
command line interface. This tool is used for the OS/2 projects,
and it is implemented as an OS/2 REXX program. Errors that are
encountered from CMVC are written to an error log file and may
be checked later by the user.

The purpose of this tool is to gather repetitive CMVC commands
together rather than having to type them again and again. Also,
the tool allows CMVC commands to be submitted as batch jobs in
parallel to other OS/2 tasks.

RETAIN Interface This is a system very similar to ZAPAR at IBM Tucson (see
4.7.2.1, “ZAPAR” on page 63). It is used to create and process
CMVC defects against code for IBM program products that are out
in the field. The service organizations and field personnel report
these defects against another database application (RETAIN), and
the developers use the RETAIN-to-CMVC interface tool to feed the
CMVC database with information from RETAIN and vice versa.

Whereas the ZAPAR tool runs on VM, the RETAIN interface tool
IBM Austin uses runs on AIX. It uses an IBM internal emulator to
interface with RETAIN, which is running on VM, and uses the
command line interface of the CMVC clients on AIX.

 5.6 Project Management
Project management is another heavy task at the IBM Austin location. As with
other functions in the IBM Austin environment, collecting data for project
management has evolved during the last six years with respect to both the
granularity of the data extracted out of the RDBMS and its graphical representation.

An important aspect of software reliability is acquiring actual and valid data. In this
context, the data is the number of failures of the software product under test or
usage as they occur over time. This definition is met at the IBM Austin site
because it used CMVC from the very beginning of its operating system
development.

The data extracted is organized in reports with different detail refinements to be
used by team leaders on a single project group, by management on several
development groups, and by middle management on a group of departments. User
programs are available to break down the data by CMVC ID and by component.
The data representation is provided under different formats, such as tables and
two-dimensional graphs.

Because the development of an operating system is a very sensitive, high impact
activity, these reports are generated on a nightly basis and are immediately
available for review in the morning. Formal review meetings have been
established, and the very same reports are used for monthly measurement
meetings, which analyze the quality of the ongoing development, or for the program

96 Looking at CMVC from the Customer Perspective

assessment review, which is called during the last month of the development of a
certain release. Based on a subjective judgment of the quality management must
decide whether the product is ready to be shipped.

5.6.1 Monitor Project Status
Just to take into consideration the AIX operation system only, CMVC consists of
one family containing the code of at least 5 releases and includes all the the
components which are directly developed in IBM Austin and all the parts which are
been worked on by different vendors in locations spreaded all over the world. All
the parties use this CMVC family as common configuration management system
and even more important from this point of view as their problem tracking system.
Doing so they build a common database and share a common understanding of
this software life cycle. From the data stored into CMVC they can get all the
information to monitor the progress of the project with the accuracy and reliability
they need.

5.6.2 Ensure Project Adherence to Schedule
Some reports have been designed to get a measurement of how close the project
is to the reference project schedule. By collecting data on failures and by
classifying them in different types, the project manager can estimate, with a
reasonable degree of accuracy, the number of defects, or possible failures,
remaining in the software product. Having access to this kind of information helps
the decision maker decide whether a product is ready for release to the market. A
good example is the arrival and closure defects report, which shows the difference
between today and yesterday of the number of open and closed defects. Another
significant example is the so-called breaking defects report, which shows separately
the defects, belonging to the categories of build breaks defects, blocking test
defects, and blocking performance test defects.

5.6.3 Calculate Software Quality Metrics
It is possible to get data that represents most of the useful parameters for quality
metrics out of the huge CMVC database. This data refers to the releases that are
under current development as well as to those installed at customer sites. The
data can be used to feed mathematical models and correlated under different
criteria to get information with a better degree of reliability. For instance, IBM
Austin uses a parato analysis, which states that 80% of the defects are to be found
in 20% of the code. This helps identify the most critical components.

 5.6.4 Measure Productivity
Because the data can be broken down per department, it is possible to get a
qualitative as well as quantitative measurement of productivity. This leads to a
better knowledge of the development results and it is used for quality projections as
well as for quality measurement on current development.

5.6.5 Adjust Resource Allocation and Planning
Because the data is kept on different releases it is possible to correlate information.
Based on the problem reported by internal test groups on the development version
and by the customers on the versions currently in the field, they can identify the
critical components in the product. This identification is used to reshuffle resources
on the current development version to meet the target shipment date and to get
more accurate planning for the next version. Furthermore, the CMVC data is

 Chapter 5. Use of CMVC on Very Large-Scale Basis 97

correlated with independently gathered data, such as customer satisfaction ratings
for quality projection for upcoming releases. Based on the complexity of the code
and on its failure rate, it is possible to predict which components are likely to
absorb the most resources if major changes are expected in a certain area.

 5.7 ISO 9000
IBM Austin uses CMVC to achieve ISO 9000 compliance. A particular CMVC
family (the so-called Admin family) is used exclusively for ISO 9000 purposes. It
has more than 3000 userids and is still being controlled by a CMVC server running
CMVC version 1.1. Some departments store their department operating manuals
(DOMs) in the Admin family, but this is not yet done consistently because not
everybody in the IBM Austin lab has access to the CMVC server machine that
maintains the ADMIN family, so not everybody would have access to the DOM for
his or her department. This, however, is one of the requirements of the ISO
process, so some of the DOMs are stored online on VM.

Problems during the development process that are caused by faults of the process
itself are reported as defects in the ADMIN family. This allows one to differentiate
between a problem in the code and a problem caused by a fault in the process. A
sampling of defects against the development family is used for defect prevention
process (DPP) analysis. Developers look for the causes of the defects and put
information about the cause into the Note field of the defects (another example of
the overloading of the Note field as explained in 5.4.2.2, “One CMVC Field Stores
Multiple Logical Fields” on page 87). IBM Austin plans to introduce a new
configurable field, the DDP done (Y/N) field, and use this information to change the
process, control vendors, or manage developers. It also wants to cross-reference
to a defect in the Admin family from the cause, if the cause really addresses the
process.

98 Looking at CMVC from the Customer Perspective

 Chapter 6. Conclusion

Once a thoughtful look is taken at application development in a team programming
environment, the advantages of investing in a solid, generalized, and flexible
software configuration management tool is indisputable. The question is not
whether you need it, but which tool best supports your needs?

Experienced software developers can make intelligent guesses about the
usefulness of a sophisticated software configuration management tool by studying
sales brochures, examining product manuals, and observing demonstrations. They
can also evaluate a tool's applicability to their unique situation by investing the time
in an exploratory exercise of the tool in their environment. An intermediate step,
however, is the examination of the experiences of other organizations who have
already used the tool to accomplish real work. As this book shows, CMVC is
perceived by its users as an industrial strength, commercial CM solution that meets
and exceeds their expectations.

It is significant that the company that produced CMVC depends so absolutely on
CMVC in its many development laboratories. IBM has widely standardized on the
use of CMVC for application, scientific and engineering, and systems software
development targeted to a wide variety of computer platforms. This standardization
on CMVC has emerged within separate development organizations, in most IBM
divisions around the world, because each group independently evaluated the
benefits and advantages of CMVC.

CMVC customers apply CMVC to solve problems directly related to software
configuration management but have also discovered its usefulness to control and
manage documents, drawings, and many other deliverables. They are using
CMVC to control business application development, engineering and manufacturing
software, operating system, and software products. They use CMVC to manage
source code written in assembler, traditional 3GLs, 4GLs, and object-oriented
languages.

Customers find that CMVC helps to generate and enforce standardization at many
levels within a software development organization. Many customers use CMVC to
support their attainment and retention of ISO certification. Likewise, CMVC can be
used to help a company conform to computer program development and
management requirements such as those promulgated by industry bodies such as
the Software Engineering Institute (SEI) or by government agencies, such as the
U.S. Department of Defense or NATO.

CMVC users customize CMVC to meet their unique needs using the built-in
features it provides and extend CMVC with tools they develop themselves. They
integrate CMVC successfully with other automated tools in their environments,
molding it to the needs of their unique processes. Customers use CMVC as both a
stand-alone product and as a product integrated into other software development
environments, such as WorkBench/6000.

Perhaps most importantly, CMVC scales well—it handles linear, as well as lateral,
growth in the requirements of the development organizations.

 Copyright IBM Corp. 1995 99

100 Looking at CMVC from the Customer Perspective

 Appendix A. Customer Profiles

This appendix summarizes the profiles of the customers and the IBM locations we
visited during the project that produced this redbook. It presents an overview of the
environments in which CMVC is used and shows the characteristic features of each
site (see Table 4).

 Copyright IBM Corp. 1995 101

Introduction into
process

CMVC
Version/Release

 � Number of
components/files

� Number of families

 � Number of
projects/products

� Number of users

 � HW resources

Scale:

 � Networking

Extent of use within
company

Table 4. Customer Profile Matrix

1993

V 1.1

1 level hierarchy
per family

3

3

15

IBM 32H as
CMVC server,
32H as DB server,
320 as CMVC
clients

One LAN

Very small

Continental

1993

V 2.1 and V 2.2

4 level hierarchy
per family

1+2

6

30

HP and SUN;
SUN and IBM
RISC
System/6000
M360+M220/M250

One LAN

Very small

BT Laboratories

Mid 1993

V 2.2

30 comps, 3000
files, 4 level
hierarchy

1

2

20

IBM RISC
System/6000
M580 as server,
M340 as test,
XStations and
PCs

One LAN

Very small

SCS

1992

V 2.2

100 comp/family,
30-50 files/comp

5

20-30

350

IBM RISC
System/6000
M990 and M590
servers, several
clients on several
platforms

Multiple LANs and
WAN

Medium to large

MCI

1992

V 1.1.2 and V 2.2

800 comps, 30000
files

9

several 100

500

IBM RISC
System/6000
M560 and M550
servers,several
clients on several
platforms

Multiple LANs and
WAN

Medium to large

IBM Tucson

since the
pre-CMVC version
was available

V 1.1 and V 2.2

largest family:
1800 components,
600,000 files

30

several 1000

>3000

IBM RISC
System/6000
2*M930, 2*M570,
M950, M970,
2*M980 as
servers, clients
from AIX, OS/2,
and VM

Extreme use of
networking

Very large

IBM Austin

10
2

Lo
ok

in
g

at
 C

M
V

C
 f

ro
m

 t
he

 C
us

to
m

er
 P

er
sp

ec
tiv

e

Appendix B. Software Configuration Management and
Change Management

This appendix briefly describes the objectives of and advantages associated with
the processes known as configuration management and change management. It
also discusses the relationship between configuration management and change
management and the relationship between them and other processes such as
project management and software development methodologies.

The elements produced during the development of an application are created
progressively, as new requirements are discovered and old ones are refined. One
quickly loses track of the state of development of the application when individual
elements were introduced. You can have the latest CASE tools and a highly
skilled, well-managed development organization and be following a superior
development methodology but still find that your “as-built” application does not work
as it was designed, coded, tested, or documented.

It is possible that the application that worked so well in testing cannot be
successfully re-created for delivery simply because some fixes to the code were not
integrated in the final build of the application. It is also equally likely that some
unauthorized fixes did manage to find their way into the application, creating a
mismatch in interfaces, calls to nonexistent subroutines, or inappropriate access to
data that no one can seem to explain. Problems of this sort represent failures in
configuration management and change management.

As Figure 15 shows, simply having all of the right parts does not ensure a
successful outcome in software development. It takes configuration management
to ensure that the right parts are put together in the right manner, and change
management to ensure that any changes to those parts or their relationships are
well-thought out and deliberately applied.

Figure 15. Why Configuration Management and Change Management Are Necessary

 Copyright IBM Corp. 1995 103

B.1 Why You Need Them
Configuration management and change management are put into place to prevent
or cure problems that contribute to high development and maintenance costs,
missed schedules, and customer dissatisfactions such as these:

� Impossibility of re-creating an exact previous version that exhibits the failing
characteristic reported by end users

� Inability to trace changes in the application source code back to the specific
enhancement in the functional requirements, or to an approved design change,
or to a specific reported failure in the previous version of the application

� Unnecessary reworks, inconsistent integration test results, and general
confusion as to who is working on which problems

� Degradation of the application between one release and another because
untested components were inadvertently incorporated into the whole

� Incompatibility between two pieces of software sharing a single interface that
has changed in only one of them

� Impossibility of upgrading the application by incorporating a series of changes
in a controlled and validated sequence

� Inability to generate different parallel versions of the same application because
the parts that are unique to each version cannot be adequately identified

� Inability to report on the exact status of development or maintenance tasks
� Inability to identify exactly which developer is charged with implementing a

particular change to the application.

 B.2 The Goals
The main purpose of configuration management and change management is to
ensure consistency of the elements comprising the application, as well as
consistency between the application and the documentation that defines it and
supports it. Documentation that defines an application includes:

 � Requirements specifications
 � Interface specifications
� Design data, drawings, and specifications.

Documentation that supports an application includes various end-user manuals and
separately cataloged help information.

Another very important function is to identify precisely an application's significant
development “baselines.” These baselines are usually associated with a major
project milestone event. Typical baselines include:

� Requirements analysis and specification
� Approved design documentation
� Evaluation prototype (alpha release)
� First integration test release (beta release)
� First end-user release
� Site-specific or platform-specific release.

Identifying all changes to a given baseline and ensuring that they are incorporated
into the next newly forming baseline in an orderly and controlled manner are the
core responsibilities of change management. Change control identifies and tracks
problems and suggested enhancements to an application, thereby ensuring that

104 Looking at CMVC from the Customer Perspective

each is carefully evaluated, and—if approved— correctly implemented and
incorporated into the application.

B.3 The Formal Definition
The classic definition of configuration management is given by the U.S.
Department of Defense in its standard on software development, DOD-STD-2167A:

“Configuration management is the discipline of identifying the configuration of
software systems at discrete points in time for the purpose of controlling changes
and maintaining traceability of changes throughout the software system life cycle.”

Configuration management is often divided into subprocesses:

� Configuration element identification: establishes a precise nomenclature for all
configuration elements, such as files, subsystems, and systems and provides a
unique identifier for each of them

� Configuration control: manages the production of all elements of the application
and the integration of those elements into a complete configuration

� Change control: records and tracks all change requests through their ultimate
disposition

� Configuration audits: compares one baseline against its preceding baseline to
ensure consistency between the two.

B.4 What They Do
Changes to the application baselines occur continuously throughout the software
life cycle. Configuration management and change management provide
mechanisms to:

� Define and identify all elements of the application
� Define and identify how those elements are combined to build the complete

application
� Keep track of change requests and their status (approved, assigned,

implemented, tested, incorporated into the application)
� Maintain the traceability between all changes to the application and the change

requests whose approval authorized those changes
� Retrieve a given previously established baseline
� Retrieve all changes applied between one baseline and the next subsequent

baseline
� Allow gradual incorporation of sets of changes into the developing baseline,

and deincorporation of a set of changes that causes failure during integration
testing.

The processes associated with configuration management and change
management ensure orderly development of software and enable a development
history to be created. This history provides traceability and makes it possible to
perform audits. It also enables statistics to be produced in order to evaluate the
impact that an update may have on the software currently being developed or to be
developed.

 Appendix B. Software Configuration Management and Change Management 105

B.5 Who Needs Them
Any application development effort worth doing is worthy of configuration
management and change management. This is usually self-evident in the case of
big and medium-sized application development or software engineering efforts, but
it is not always clear from the start of smaller efforts. Whether the need is from the
first step of a project or better placed near the end of a project may depend on the
size and complexity of the effort and the application. How complete and strict the
procedures are that govern configuration management and change management
may be determined by the size of the investment, the risk/benefit ratio, and
company- or industry-imposed standards. But configuration management and
change management are critical to the success of any major development effort,
and they are cost-effective even during the maintenance phase of smaller efforts.

B.5.1 Big Development Efforts
Consider a large software development effort such as that of developing and
maintaining a major operating system. With a reasonable assortment of application
products and operating system code, a typical UNIX software system might take up
400MB on disk when installed. It would support dozens of types of hardware
peripherals, contain hundreds of end-user commands, include dozens of libraries
and APIs, and provide a handful of compilers. At any one time, it probably has a
half-dozen releases in the field and runs on at least three or four hardware
architectures. The company selling such an operating system might employ
hundreds of developers, testers, documenters, and quality assurance people to
handle this job.

Such a company could not risk the loss of profit and sales caused by any confusion
in the generation, maintenance, or delivery of its operating system and related
software products. Communications among so many people could not be managed
by word of mouth or random electronic communications. Project management
would need sophisticated methods of measuring and auditing the development
process. Quality assurance would have to be built in to every step of the
development process. Clearly this company could not begin to manage an effort of
this scope without very strict and widely encompassing configuration management
and change management procedures and policies and significant automated tool
support.

B.5.2 Medium-Sized Development Efforts
Now, consider a smaller business application development effort that handles
customer, order, and payment information for products shipped on customer
subscription. The application has COBOL, C, and C++ components, and some of
the source code is automatically generated by a 4GL type of tool. It executes in
parallel on two platforms, AIX and MVS, and will be implemented on AIX in two
phases. It has a client/server architecture and is built on a commercial relational
database. It has a nongraphical user interface on the MVS mainframe, and a GUI
on AIX. It consists of a few dozen source files for each version on each platform,
several build instruction files, some database instructions to create and populate
the tables, and some text source files for end-user documents. This project will
require only three or four developers to implement the AIX version and maintain the
MVS version during that effort. It will have a project manager, some quality
assurance oversight, and some end-user testing support.

106 Looking at CMVC from the Customer Perspective

This project will also require configuration management and change management.
The few people involved in this project will not be able to modify and maintain
multiple versions of the source files, readily identify the equivalent user interface
files for each platform, and ensure that common code for both platforms is
compatible with both compilers by keeping short-hand notes and sending each
other occasional electronic mail. They will not be able to use simple mechanisms
as separate directories and file naming conventions to ensure that use of common
code is maximized while platform-specific and release-specific code is fetched
properly during the product build process. In no time at all, this simple project will
get out of hand.

B.5.3 Small Development Efforts
It is often necessary to convince software developers to apply configuration
management and change management to smaller projects. The value of these
disciplines to smaller development efforts is often underestimated. This type of
management is perceived to require a level of effort and formality that is excessive
compared to the total lines of code or the number of developers required to
implement a small application. Developers also incorrectly associate configuration
management and change management with a restraint on their creativity or an
impediment to their rapid progress.

However, even an application that is so small that it does not require formal design
or independent testing still requires configuration management and change
management during its maintenance phase. Often, a company will have a whole
assortment of small applications that collectively constitute a significant investment
in development effort.

If even one end-user's ability to do his or her work comes to depend on the
availability and functionality of a small application, maintenance will be necessary
some day. As time passes, the environment in which an application executes will
change, some external interface will change, or the set of requirements met by the
application will change. In each case, program maintenance will be required to
solve problems resulting from these changes.

Application maintenance would be impossible if the application source and
instructions to rebuild it have not been tightly controlled since the application first
went into production use.

B.6 Interaction with Development Methodologies
Source code is only one expression of the application. That type of objects that
constitute a preliminary development baseline will depend on the development
methodology chosen by the project. The milestone events and the types of
baselines may vary, but the principles of configuration management and change
management will not.

If a project applies the traditional waterfall methodology, the baselines controlled
might be:

� Functional and interface requirements
� Build-to system, subsystem, and component designs
� As-built test, integration, and delivery implementations.

 Appendix B. Software Configuration Management and Change Management 107

In the waterfall case the objects managed by configuration management and
change management might be files containing:

� Various requirements specifications
� Various forms of design notation and data definitions
� Source and executable application code.

If a more recent methodology, such as the Grady Booch object-oriented
methodology is used, the baselines might be:

 � Conceptualization prototype
� Analysis description that models the behavior of the application
� Architectural release and descriptions of tactical policies
� Successively refined executable releases.

The objects controlled by configuration management and change management in
the object-oriented case might be files containing:

� Object and class diagrams, finite state machines, documented nonbehavioral
aspects of the design such as portability, reliability, security, and efficiency

� Class and object structure diagrams and an architectural release
� Source and executable application code.

Configuration management and change management procedures and mechanisms
must be tailored to meet the requirements of the development methodology.

B.7 Interaction with Project Management
Configuration management and change management provide input and assistance
to project management. For example, an upgrade to the application may imply a
change in the set of defined activities or milestones. The investigation performed
while evaluating the impact of a given change will alert project management of a
need to make changes in the development schedule or apply additional human
resources to the project.

Configuration management and change management mechanisms can be used to
ensure consistency across the application in such many ways as checking the
presence and content of module headers, recording approval of quality assurance
representatives, ensuring related design updates, test results, software quality
metrics data and that upgraded end-user documentation are submitted with related
code changes.

Change management mechanisms provide for input from various members of a
project including management itself. Change management provides a means by
which management can assign responsibility for the implementation of changes as
well as monitor their progress.

B.8 Interaction with Quality Assurance
Configuration management and change management implement the specific
policies and practices espoused and adopted by a development effort. Quality
assurance organizations exist to inspect and verify that the effort conforms to these
as well as to any externally applied rules and regulations. Quality assurance
oversight of the application development process is very much enhanced by formal
configuration management and change management procedures. These
procedures can be implemented in such a way as to ensure that software does not

108 Looking at CMVC from the Customer Perspective

enter a baseline unless it has been approved by quality assurance representatives
and is accompanied by the required supporting material, such as test plans and
test results. These representations can ensure that changes to a formal baseline
are always accompanied by identification of the corresponding problem report.
They can ensure that software conforms to project quality standards regarding such
topics as module headers, minimum number of lines of comments, and naming
conventions. Quality assurance representatives can easily inspect and approve
these procedures and the resulting data.

B.9 Configuration Management History and Statistics
If configuration management and change management are implemented in
connection with a database providing generalized query capability, risk, cost, quality
metrics, and other data can be captured and analyzed for project management
uses also. Various statistics related to project management, software quality
configuration management, and change management can be derived from a
well-maintained configuration management database. It is possible to extract
sufficient data from such a database to project cost, staffing, software sizing, and
development schedule data of similar projects under planning.

Figure 16 shows the relationships between configuration management, change
management, and the application development environment.

Figure 16. Development Process Relationships

 Appendix B. Software Configuration Management and Change Management 109

B.10 CMVC Automated Support
for Configuration Management and Change Management While procedures and
practices to implement configuration management and change control can be
manual, and in fact were for many years, these disciplines lend themselves
particularly well to automation. With the advent of relational database technology,
data about the configuration objects and change reports could be accumulated and
accessed in a variety of ways if coherently maintained by automated configuration
management and change management software. As application development
became increasingly complex, it became not only more convenient, but absolutely
necessary to automate most of the tasks and procedures supporting configuration
management and change management.

When IBM undertook to develop its own UNIX-based operating system, AIX, it
discovered it needed a RISC System/6000-based configuration management and
change management system of industrial strength. The AIX development effort
was on the same scale as the sample big development effort described earlier.
After looking over the marketplace, IBM decided to develop its own system. No
one product at that time included all of the features that IBM knew it required for
AIX development.

The original product developed for internal use was called Orbit. IBM soon realized
that if Orbit could support the AIX development effort, other software engineering
and business application developers could also benefit from it, so the decision was
made to bring Orbit out as the product known as CMVC/6000.

One benefit of using CMVC is that it helps to establish a software development
process within the organization. The process is defined and enforced by CMVC.

CMVC makes the enforcement of the process easy for the project leaders, because
they can rest assured that none of the required procedural steps is bypassed.
CMVC also makes the following of the process easy for the software developers
themselves, by automatically notifying each person that must take some action or
provide some input to the system. Mistakes and wasted time are therefore
eliminated when everyone that is part of the process knows exactly what to do and
when. Managers are kept informed of the state of the project, and of the changes
occurring with the product under development. The software developers are
informed when they have been assigned a task (for example, fixing a bug or
implementing a feature) and are automatically given the proper access to the
source files that need to be modified.

In addition, CMVC provides an audit trail of all changes to each of the files, as they
relate to each defect fixed or feature implemented. Such an audit trail makes it
easy to pinpoint the modules that have been the most error-prone or that were
modified most for features. Such modules can then be subjected to close scrutiny
to eliminate chances of defects being introduced into the product. Metrics relating
to defects and features are being kept within CVMC, and such metrics provide
valuable insight into the quality of the product.

110 Looking at CMVC from the Customer Perspective

B.10.1 Increase in User Productivity
The CMVC actions that a developer must take while fixing a defect or implementing
a feature are the steps that he or she normally takes; therefore no extra effort is
necessary when using CMVC. Having problem tracking functions integrated with
version control and change management will actually save time and effort. A
developer will not have to work with two or three separate systems to work with
and keep in sync. The information, data, and access to the source code is at his or
her fingertips, available through an easy-to-use, intuitive GUI.

Recognizing that today's software development organizations will develop software
for different platforms, CMVC provides a consistent user interface across all major
UNIX platforms: RISC System/6000, Sun SPARCstations and HP Apollo 9000
workstations, and OS/2 and DOS Windows. Therefore, a developer moving from
one workstation to another will see no difference in the way he or she uses CMVC.

To reduce the costs associated with maintaining the software product once it has
been released, CMVC allows users to extract and build exact duplicates of the
software that was shipped some time ago. Also, development work is allowed from
that level of the software onward, for example, if a bug is reported for version 1.1 of
a product and the current working version is 1.3, the bug can be fixed at both the
1.1 level and the 1.3 level simultaneously. The customer, in this case, will receive
a fix applicable to the version of the product that it is using (1.1 in this example).
To further reduce wasted time spent understanding older changes to the code,
CMVC provides the change history at both a low level (file-specific) and a high level
(conceptual, for example, a defect being fixed or a feature being implemented). A
developer will therefore be able to find out to which group of changes (defined as a
defect or a feature) an individual file change belongs.

Automatic Documentation Generation for Change: The automatic
documentation allows developers to add their own comments separate from the
source files being worked on. In addition, the entire workgroup is kept informed of
the changes made and the comments entered.

Through the integration of the problem tracking mechanism and the change
tracking mechanism, CMVC will automatically provide change-specific
documentation that answers the who, when, why, and what questions.

In addition, users can enter comments at any time to clarify the changes that are
being made. All comments entered by users during the defect-fix cycle and the
feature-implementation cycle are saved in the database and sent to all interested
members of the workgroup. The communication within the workgroup is therefore
enhanced.

Investment Protection in Hardware and Software: By supporting all major OS
platforms (UNIX, OS/2, DOS Windows), CMVC allows you to keep your current
investment in the heterogeneous hardware environment that your organization
currently owns.

A migration path is provided for source code currently under development using
UNIX SCCS.

The command-line-based CMVC interface to a graphical CMVC interface to
integrated CMVC operation through SDE WorkBench or SoftBench is made without

 Appendix B. Software Configuration Management and Change Management 111

any loss or modification of data. All three modes of access can be used
concurrently, depending on which setup each individual user has.

Scalability According to Your Organization: CMVC is suited for both small, tight
workgroups and large, multisite organizations working on common projects. There
is no practical limit to the number of users that CMVC can simultaneously support,
the real limits being imposed by hardware constraints. The client/server model of
CMVC is well suited for growth and expansion.

Customized Report Facility: The Report function of CMVC is one of the most
powerful in the industry, allowing users to gain access to any of the historical data,
metrics, project status in any form desired. CMVC inherits its powerful reporting
capabilities from the underlying relational database.

Reuse Facility of Software Parts: It is very easy to share source code when the
source code you want is managed by CMVC. One simply has to include the files
to be shared in the current release of the product. The shared modules will remain
shared (therefore will evolve the same way) for as long as you want. If you decide
to keep only part of them shared while modifying some for the private needs of
your project, CMVC allows you to do this with a minimum of wasted storage space.

CMVC for Everybody in Your Organization: CMVC allows the definition of user
roles. Each role is defined according to the actions it can take. For example, a
workgroup may decide to have seven roles defined: manager, project leader, team
leader, developer, tester, builder, and general user. Any one CMVC user must
assume at least one role but can also have multiple roles (typical in smaller
organizations). Also, a user can have different roles in different projects, or in
different parts of the same projects. Actually, there is no restriction on the roles
one person can have anywhere within the organization.

Access control is based on user roles and extends well beyond simple
read-write-execute permissions that other so-called CM systems have.

Many Other Functional Benefits

� Project complexity is reduced by the creation of manageable components.

� Design/defect management is integrated with configuration management and
with version control.

� Source changes are tracked and controlled across multiple releases,
components, and environments.

� Source repository is centralized while access is distributed, using a client/server
model.

112 Looking at CMVC from the Customer Perspective

Appendix C. Implementation of ISO 9001 Using CMVC

This appendix provides a brief introduction to the International Standard
Organization (ISO) 9000 and describes how the IBM CMVC tool can be utilized to
meet some key ISO 9001 elements.

The software engineering industry is the fastest growing industry in the last half of
the century. Throughout the industry, software development organizations are
struggling with the challenges of reducing costs, increasing productivity, and
improving quality. Toward these efforts, quality management of software is
essential. One way to establish a quality management system is to provide
guidance for software quality assurance. Such guidance is found in the ISO 9000
series of quality standards: ISO 9001, ISO 9002, ISO 9003.

ISO 9000 compliance is of key importance to organizations if they are to survive
the fierce competition of the 1990s and beyond. With the introduction of ISO 9000,
the software engineering industry has experienced a shift toward implementing
techniques and processes aimed at developing processes that are well defined and
repeatable. Adoption of these proven techniques and processes allows an
organization to improve the overall process of:

� Creating world class software

� Maintaining a dynamic, responsive, and innovative environment

� Attaining a high return on investment through the pursuit of total customer
satisfaction.

Software tools can assist in improving an organization's management system and
meeting ISO 9000 compliance. CMVC is an effective tool that simplifies the
organization and management of diverse tasks involved in software development so
that you can improve your entire product development process and it can be used
to comply to some key elements of ISO 9001.2

 C.1 ISO 9000
To facilitate the standardization of the many aspects of quality, the ISO has
developed a set of international standards for quality systems which are known as
the ISO 9000 Series of Quality Standards. These standards apply to all
organizations producing a product or service and are being accepted world-wide.
An indication of their acceptance and significance in the software engineering
industry, in particular, is reflected in Hübner's words, “To obtain an ISO 9000
certification has become a business necessity in Europe” [1]. It is only a matter of
time before ISO 9000 certification becomes a business necessity in North America
and the Orient.

Three key ISO 9000 standards are:

� ISO 9001, Quality systems - Model for quality assurance in design/development
production, installation and servicing.

2 IBM software development Labs in Toronto and Austin use IBM CMVC to manage and control the software development process
and implement certain elements of the ISO 9001 standard.

 Copyright IBM Corp. 1995 113

� ISO 9002, Quality systems - Model for quality assurance in production and
installation.

� ISO 9003, Quality systems - Model for quality assurance in final inspection and
test.

ISO 9001 provides the most comprehensive requirements for a software quality
system where a contractual agreement between two parties must demonstrate the
supplier's ability to design and supply a product or service.

Recognizing the peculiarities of the software industry, ISO 9000-3, a guideline for
the application of ISO 9001 to the development, distribution and maintenance of
software, has been released. Configuration management is a key element in this
ISO 9000-3 guideline for software.

C.2 CMVC and ISO 9001
Configuration management provides a mechanism for identifying, controlling and
tracking the versions of each software item. In many cases, multiple versions of
software items are in use and must be maintained and controlled. Configuration
management itself is not an element of the ISO 9001 standard (only an element of
ISO 9000-3 guidelines); however, the following elements of ISO 9001 depend on
configuration management:

 � Document Control

 � Design Control

� Product Identification and Traceability

� Inspection and Test Status

� Control of Nonconforming Product

� Internal Quality Audits.

Only certain aspects of Document Control, Design Control, Control of
Nonconforming Product and Internal Quality Audits are addressed by Configuration
Management. Product Identification and Traceability and Inspection and Test
Status are fully addressed by it.

The remaining sections describe these ISO 9001 elements and highlight how
CMVC can support them.

 C.2.1 Document Control
Document Control covers:

� The determination of those documents that should be subject to document
control procedures

� The approval and issuance of document control procedures

� The change procedures including withdrawal and, as appropriate, release. [3]

The aspects of Document Control that can be successfully addressed by CMVC
are:

� Documents must be accessible to a group of people with predetermined
interest and authority.

114 Looking at CMVC from the Customer Perspective

� The changes to the content of a document under document control have to be
reviewed by a prespecified group of reviewers and the final version of the
document has to be approved by them.

� All the users of the document have to be notified of the changes to it.

� Once the new document is finalized and becomes the most recent working
document, provisions must be taken to prevent users from using a back-level
version of the same document.

Files and documents pertaining to a particular project reside in one more CMVC
components (where each CMVC component is dedicated to a specific department
and/or all documents related to a particular project).

An access list and a notification list is associated with each CMVC component.
The type of access each user has to the documents stored in CMVC depends on
the user's role in the development team. The type of notification each user has
depends on the interest or need to be informed of changes to documents in the
CMVC environment. Access authority and notification subscription is assigned to a
user by the component owner or by someone who has the authority to grant other
users access and notification to a specific component. When a document is
updated, the owner of the managing component where the document resides and
all users who have subscribed to being informed of document updates receive mail
notifying them of the update.

When the CMVC approval process is activated, approval must be given for
proposed changes before work can begin on the implementation of a change.
Approvers specified for each release need to review the information recorded in the
defect or feature and evaluate the proposed changes to the release in relation to
other project considerations. A CMVC approval record is created for each
approver. Each approver indicates his or her evaluation of the changes and can
optionally append comments to the defect or feature to explain the rationale for his
or her decision. File changes for that defect or feature in that release cannot be
checked in to the CMVC server until all approvers accept the proposed changes.
[4]

C.2.2 Version Control in ISO 9001
Certain aspects of Design Control, Product Identification and Traceability,
Inspection and Test Status, and Control of Nonconforming Product deal with the
issue of version control. Activities are versioning documents and source modules
that compose a product; identifying the various versions of the documents and
source modules and the reasons why changes were made from one version to the
next; inspecting and testing the content of each version and recording the status of
this outcome; and finally, controlling nonconforming products and identifying the
version of documents and source modules that reflect the nonconformance.

Version control, by definition, is the storage of multiple versions of a single file
along with information about each version. [4] CMVC provides for version control
and enhances this basic function with an extra layer of traceability so that each
version is cross-referenced to a reported defect or a suggested enhancement.

The following sections highlight the specific sections of each of the ISO 9001
elements that emphasize the need for version control mechanisms in an
organization.

 Appendix C. Implementation of ISO 9001 Using CMVC 115

 C.2.2.1 Design Control
The ISO 9001 element of Design Control states that “the supplier shall establish
and maintain procedures to control and verify the design of the product in order to
ensure that the specified requirements are met.” One of the items that define this
element of Design Control is the Control of the Design Changes, which is designed
as:

“The supplier shall establish and maintain procedures for the

identification, documentation and appropriate review and approval

of all changes and modifications.” [2]

CMVC can be used to control and verify the design of a product in a number of
ways. First, the design specification documents themselves can be stored in
CMVC. Modifications to the content of the design specifications can be controlled
from both an access and an update perspective. Development teams can make
use of the problem-tracking feature of CMVC to track and control the changes to
design specifications and to ensure that all changes have been well documented,
justified, and reviewed for appropriateness and applicability. CMVC's design, size
and review process for reported defects and suggested features provides for the
identification, documentation and appropriate review of all changes and
modifications. CMVC's tracking process allows development teams to cross
reference changes to design documents or source modules to the reported defects
and features. It also provides an additional layer of control to those teams seeking
an approval checkpoint prior to versioning the documents and a review of the
changes after making the modifications but prior to committing them.

When source modules for a product are managed by CMVC, development teams
can ensure that the changes made to the product are consistent with its design by
using the integrated problem tracking and change control feature of CMVC.
Attributes of reported defects and features can be used to cross-reference design
documents with the proposed source module changes to the product. CMVC's
ability to track required changes in all project deliverables ensures that appropriate
updates are made to design documents, source modules, test cases and end-user
documentation for each reported defect and suggested enhancement of the
product.

When the time comes to release a product, development teams can benefit from
CMVC's ability to maintain multiple versions or variants of a product.
Enhancements for the next release can be incorporated into design documents and
source modules without disrupting the integrity of the products that have been
distributed.

C.2.2.2 Product Identification and Traceability
The ISO 9001 element applicable to version control for Product Identification and
Traceability states:

“here appropriate the supplier shall establish and maintain

procedures for identifying the product from applicable drawings,

specifications or other documents, during all stages of production,

delivery and installation. Where and to the extent that,

traceability is a specified requirement, individual product or

batches shall have a unique identification. This identification

shall be recorded.”[2]

116 Looking at CMVC from the Customer Perspective

When CMVC is used as the configuration management and version control tool for
software development activities, several levels of identification and traceability are
available.

Each version of a document or source module is identified by a version number.
The combination of this version number, as well as the document or source module
name (CMVC file name), and the product name that the document or source
module is associated with (CMVC release name), uniquely identify a file in CMVC.

As previously discussed, changes to documents and source modules can be
cross-referenced to CMVC defects and features. Users can then query the history
of changes and identify the content of each version of a document or source
module and the reason why it has changed over time. Alternatively, users can
query the details of the defects and features to determine the document or source
modules that were changed as a result of fixing a reported problem or
implementing a suggested feature.

CMVC records the time and date of the changes to documents or source modules
as well as the user who makes each change. This information provides additional
traceability and can be queried at any time.

C.2.2.3 Inspection and Test Status
The ISO 9001 element applicable to version control for Inspection and Test Status
states:

“...The identification of inspection and test status shall be

maintained, as necessary, throughout production and installation

of the product to ensure that only product that has passed the

required inspections and tests is dispatched, used or installed.

Records shall identify the inspection authority responsible for

the release of conforming product.”[2]

The CMVC problem tracking mechanism allows development teams to establish
two types of testing procedures. When development teams use the tracking
mechanism, they can define test environments and testers for each release of a
product. As defects are fixed and features are implemented, CMVC activates test
records for each of the test environments and testers indicating when the changes
made to documents and source modules have been committed in the product.
Testers are notified when their test records are ready to be marked. By marking a
test record with an accept, reject, or abstain status, a tester relays information to
the development team as to the status of the change. When test records are
rejected, additional defects or features can be opened to track the
nonconformances, and attributes in both the original and the new defects or
features can be used to cross-reference problems of a similar nature.

Another type of testing occurs at the end of the CMVC defect or feature lifecycle.
Once applicable documents or source modules have been changed and committed
into the various products, the originator of the defect or feature has the opportunity
to verify that the resolution of the problem or the implementation of the suggestion
has been accomplished to his or her satisfaction. Originators record their
satisfaction of the outcome on verification records.

The status of test and verification records, the owner of test and verification
records, and the timestamp of when each record was last updated is maintained in

 Appendix C. Implementation of ISO 9001 Using CMVC 117

CMVC. The reporting mechanism allows users to query the status of these records
at any time.

C.2.2.4 Control of Nonconforming Product
The ISO 9001 element applicable to version control for the Control of
Nonconforming Product states:

“....Control shall provide for identification, documentation,

evaluation, segregation (when practical), disposition of

nonconforming product and for notification to the functions

 concerned.” [2]

Nonconformances with respect to products managed by CMVC are identified by
opening a CMVC defect or a CMVC feature. Once the nonconformances are
identified, the development teams can evaluate the validity of the nonconformance,
and can return the defect or feature as invalid, as a documented deviation, or as a
nonconformance that has already been addressed by another defect or feature
report. Alternatively, the development team can decide to accept responsibility for
the nonconformance and schedule its resolution in the appropriate product
releases. In either case, all users who have subscribed to defect and feature
reports and state changes will be kept informed.

When nonconformances are received for products that have been released to
customers, development teams can resolve the nonconformance and reissue a
product update. Development teams can make use of the attributes associated
with product levels to describe the status of the package. For instance, a product
level may be shipped and then subsequently replaced with a newer version that
includes fixes for nonconformances.

C.2.3 Internal Quality Audits
“.....The audits and follow-up actions shall be carried out in

accordance with documented procedures. The results of the audits

shall be documented and brought to the attention of the personnel having

responsibility in the area audited. The management personnel

responsible for the area shall take timely corrective action

on the deficiencies found by the audit.” [2]

An example of how IBM addressed this element using CMVC, is the internal audits
to check the level of compliance of the various departments in the IBM PRGS
Toronto Lab. Internal audits were conducted and nonconformances were issued
and monitored until a satisfactory corrective action plan was put in place and
successfully implemented.

In a specific area, a component dedicated to ISO 9001 was created and an owner
was assigned to it. Traditionally, the owner of this component is the ISO focal point
for the area. Each department in the area had its own component where all the
documents and processes were stored.

The internal audit group would open defects (Nonconformances) against the area
component. The component owner would then route the nonconformances to the
corresponding department component. The departments are responsible for
creating their own corrective action plan. Each corrective action was appended to
the nonconformance in CMVC, and all the interested parties were notified that
remarks were appended to the specific nonconformance.

118 Looking at CMVC from the Customer Perspective

The remarks added to each of the nonconformances that described the corrective
action were retrieved via CMVC and then forwarded to the internal audit group for
review. This group created the actual corrective action plan for each department
and hence for the area as a whole.

 C.3 Conclusion
To make software quality a reality and to comply to the ISO 9001 standard, CMVC
can successfully be used for:

 � Design Control
 � Document Control
� Product Identification and Traceability
� Inspection and Test Status
� Control of Nonconforming Product
� Internal Quality Audits.

C.4 Brief Description of ISO 9000-3
This section describes the elements listed in the section C.2, “CMVC and ISO
9001” on page 114, as well as the 9000-3 element on Configuration Management.

 C.4.1 Configuration Management
Configuration Management should:

� Uniquely identify the versions of each software item

� Identify the versions of each software item that together constitute a specific
version of a complete product

� Identify the build status of software products in development or the status of
those software products delivered and installed

� Control simultaneous updating of a given software item by more than one
person

� Provide coordination for the updating of multiple products in one or more
locations as required

� Identify and track all actions and changes resulting from a change request,
from initiation through to release.

C.4.1.1 Configuration Identification and Traceability
To establish and maintain procedures for identifying software items during all
phases, starting from specification through development, replication and delivery,
each individual software item should have a unique identification.

There should be provisions to uniquely identify the following items for each version
of the software:

� The functional and technical specifications

� All development tools which affect the functional and technical specifications

� All interfaces to other software and/or hardware items

� All documents and computer files related to the software item.

 Appendix C. Implementation of ISO 9001 Using CMVC 119

The identification of a software item should be handled in such a way that the
relationship between the item and the contract requirements can be demonstrated.

For released products, there should be procedures to facilitate traceability of the
software item or product.

 C.4.1.2 Change Control
Procedures should be in place to identify, review and authorize any changes to the
software items under the control of configuration management. All changes to
software items should be carried out in accordance with these procedures.

Before a change is accepted, its validity should be confirmed and the effects on
other items should be identified and examined.

Methods to notify those concerned of the changes and to show the traceability
between changes and modified parts of software items should be provided.

C.4.1.3 Configuration Status Report
The supplier should establish and maintain procedures to record, manage and
report on the status of software items, of change requests and of the
implementation of approved changes.

 C.4.2 Design Control
The supplier should establish and maintain procedures to control and verify the
design of the product in order to ensure that the specified requirements are met.

 C.4.3 Document Control
Procedures should be established and maintained to control all documents that
relate to the contents of this part of ISO 9000. They cover:

1. The determination of those documents that should be subject to the document
control procedures.

2. The approval and issuance of document control procedures.

All documents should be reviewed and approved by authorized personnel prior
to issue. Procedures should exist to ensure that the pertinent issues of
appropriate documents are available at appropriate locations where operations
essential to the effective functioning of the quality system are performed.
Obsolete documents should be promptly removed from appropriate points of
issue or use.

Where use is made of computer files, special attention should be paid to
appropriate approval, access, distribution and archiving procedures.

3. The change procedures including withdrawal and, as appropriate, release.

 C.5 References
1. Hübner, Achim ISO 9000 Implementation in Germany , LOGON, Volume 4,

Number 4, September 1992 (IBM Internal Use)

2. International Standard: ISO 9001, Reference Number ISO 9001:1987(E)

3. International Standard: ISO 9000-3, Reference Number ISO 9000-3:1991(E)

4. IBM CMVC Concepts, SC09-1633-00, IBM Corporation, 1993.

120 Looking at CMVC from the Customer Perspective

 Glossary

absolute path name . A directory or a file expressed
as a sequence of directories followed by a file name
beginning from the root directory.

access list . A CMVC object that controls access to
development data. A list of user ID-authority group
pairs attached to a component, designating users and
the corresponding authority access they are being
granted for all objects managed by this component or
any of its descendants. It also contains the user
ID-authority group pairs designating users who are
restricted from performing actions at a specific
component.

action . A task performed by the CMVC server and
requested by a CMVC client. A CMVC action
corresponds to issuing one CMVC command.

approver . A user who approves changes within a
specific release.

approver list . A list of user IDs attached to a release,
representing the users who must approve file changes
required to resolve a defect or implement a feature in
that release.

ASCII. The standard coded character set using 7-bit
characters (8th bit for parity) used widely on non-IBM
mainframe computers.

authority . The right to access development objects
and perform CMVC commands. See also access list,
base authority, explicit authority, implicit authority,
restricted authority, and superuser privilege.

base authority . The set of actions granted to a user
whenever a user ID is created within a CMVC family.

base file name . The name assigned to the file outside
the CMVC server environment, excluding any directory
names.

batch program . A batch program reads its input from
a file or device and writes its output to a file or device
without the interaction of a user.

change control . The process of limiting and auditing
changes to files through the mechanism of checking
files in and out of a central, controlled storage location.
Change control for an individual release can be
integrated with problem tracking by specifying a process
for that release that includes the track subprocess.

check in . The return of a CMVC file to version control.

check out . The retrieval of a revision of a CMVC file
from version control.

child component . All components in each CMVC
family, with the exception of the root component, must
be created in reference to an existing component. The
existing component is referred to as the parent
component, while the new component becomes known
as the child component. A parent component can have
more than one child component. See also component.

client . A workstation that requests services from
another workstation.

command . A request to perform an operation or run a
program from the command line interface. In CMVC, a
command consists of the command name, one action
flag, and zero or more attribute flags.

common file . A file that is contained in two or more
releases and the same version of the file is the current
version for those releases.

component . A CMVC object that simplifies project
management, organizes project data into structured
groups, and controls configuration management
properties. Component owners can control access to
development data (see access list) and configure
notification about CMVC actions (see notification list).
Components exist in a parent-child hierarchy, with
descendant components inheriting access and
notification information from ancestor components.

configuration management . The process of
identifying, managing, and controlling software modules
as they change over time.

context . A description of a data file or directory in the
form host dir file. That is the host machine, working
directory, and file.

database . A systematized collection of data that can
be accessed and operated upon by a data processing
system for a specific purpose.

defect . A CMVC object used to formally report a
problem. The user who opens a defect is the defect
originator.

delete . Deleting a development object, such as a file
or a user ID, within CMVC. Certain objects can be
deleted only if certain criteria are met. Most objects
that are deleted can be re-created.

destroy . The only CMVC development object that can
be destroyed in CMVC is a file. Destroying a file
removes the file record from the database on the CMVC
server. Though a destroyed file cannot be re-created, it
will appear as part of an extracted level.

 Copyright IBM Corp. 1995 121

EBCDIC. A coded character set of 256 8-bit characters
used on IBM and other mainframes.

end user . See user.

environment . A user-defined testing domain for a
particular release. Also used as a defect field, in which
case it is the environment where the problem occurred.

environment list . A CMVC object used to specify
environments in which a release should be tested. A
list of environment-user ID pairs attached to a release,
representing the user responsible for testing each
environment. Only one tester can be identified per
environment.

explicit authority . The ability to perform an action
against a CMVC object because you have been granted
the authority to perform that action.

extract . A CMVC action you can perform on a file,
level, or release. A file extraction results in the
specified file being copied to the client workstation.
Level extraction and release extraction result in copying
the files associated with the level or release to a
designated workstation.

family . A logical organization of related development
data. A single CMVC server can support multiple
families. The data in one family cannot be accessed
from another family.

family administrator . A user who is responsible for all
non-system-related tasks for one or more CMVC
families such as planning, configuring, and maintaining
the CMVC environment and managing user access to
those families.

feature . A CMVC object used to formally request a
functional addition or enhancement. The user who
opens a feature is the feature originator.

file . A collection of data that is stored by the CMVC
server and retrieved by a path name. Any text or binary
file used in a development project can be created as a
CMVC file. For example, source code, executable
programs, documentation, or test cases.

fix record . A status record that is associated with a
track and is used to monitor the phases of change
within each component that is affected by a defect or
feature for a specific release.

function key . A key appearing at, above, or beside
the normal character keys on a keyboard which can be
programmed to perform particular functions in particular
program contexts.

home directory . The directory users access when
they log in.

host . Host node, host computer, or host system.

host list . A list associated with each CMVC user ID
which indicates the client hosts that can access the
CMVC server and act on behalf of the CMVC user.
The list is used by the CMVC server to authenticate the
identity of a CMVC client upon receipt of a CMVC
command. Each entry consists of a login, a CMVC
user ID, and a host name.

implicit authority . The ability to perform an action
against a CMVC object without being granted explicit
authority. This authority is implicitly granted due to
object ownership. Contrast with explicit authority and
base authority.

inheritance . The passing of configuration
management properties from parent component to child
component. The configuration management properties
that are inherited are access and notification.
Inheritance within a component hierarchy is cumulative.

Korn shell . The default UNIX shell executed on AIX.
It is virtually identical to the proposed POSIX standard
shell.

level . A collection of tracks which represent a set of
changed files within a release.

level member . A track that has been added to a level.

lock . Prevent editing access to a file stored within the
CMVC development environment so that only one user
can make changes to a given file at one time.

login . Operating system user identification.

make . The make command assists you in maintaining
a set of programs, usually pertaining to a particular
software project. It does this by building up-to-date
versions of programs.

makefile . This description file tells the make command
how to build the target file, which files are involved, and
what their relationships are to the other files in the
procedure.

NEDS. A configuration management tool developed
and used internally within IBM, which was used as the
base for developing CMVC.

Network File System (NFS) . A program that allows
you to share files with other computers in one or more
networks over a variety of machine types and operating
systems.

NFS. Network File System

notification list . A CMVC object allowing component
owners to configure notification. A list of user
ID-interest group pairs attached to a component,

122 Looking at CMVC from the Customer Perspective

designating users and the corresponding notification
interest they are being granted for all objects managed
by this component or any of its descendants.

online program . A user provides input interactively to
an online program and views its output on a display,
panel, or window.

OPATS. A configuration management tool developed
and used internally within IBM, which was used as the
base for developing CMVC.

Open Systems . Operating systems which are
available on many different vendors' computers, across
which programs may be easily ported. UNIX and DOS,
two operating systems which are available on a great
many vendor platforms, are both considered open
systems by many people. Typically, an open system
supports de facto industry and de jure formal standard
interfaces, subsystems, languages, and utilities.

originator . The user who opens a defect or feature
and is responsible for verifying the outcome of the
defect or feature on a verification record. This
responsibility can be reassigned.

owner . The user who is responsible for a CMVC
object within a CMVC family, either because they
created the object or because they were assigned
ownership of that object

parent component . See child component and
component.

path name . The name of the file under CMVC control.
A path name can be a set of directory names and a
base name or just a base name. It must be unique
within the release that groups the files.

PLIST. A set of tools that were used internally within
IBM in conjunction with OPATS.

Orbit . A predecessor tool of CMVC that was used
internally within IBM

problem tracking . The process of tracking all reported
defects through to resolution and proposed features
through to implementation.

profile . A file containing customized settings for a
system or user.

process . A combination of CMVC subprocesses,
configured by the family administrator, that controls the
general movement of CMVC objects (defects, features,
tracks and levels) from state to state within a
component or release. See also subprocess and state.

query . A structure request for information from a
database, for example, a search for all defects that are
in the open state. See also search.

relative path name . The name of a directory or a file
expressed as a sequence of directories followed by a
file name, beginning from the current directory.

release . A CMVC object defined by a user to group all
files that must be built, tested, and distributed as a
single entity.

restricted authority . The restriction of a user's ability
to perform certain actions at a specific component.

root component . The initial component that is created
when a CMVC family is configured. All components in
a CMVC family are descendants of the root component.
Only the root component has no parent component.

SCCS. See Source Code Control System

search . The scanning of one or more data elements of
a set in a database to find elements that have certain
properties.

server . A workstation that performs a service for
another workstation. A file that is shared between two
or more releases. See also common file.

SEI. Software Engineering Institute

shell . Generic name for UNIX command-line
interpreter. UNIX shells are also noncompiled
procedural programming languages with which end
users and system administrators can build utility
programs.

Software Engineering Institute . Carnegie-Mellon
University 's Software Engineering Institute is a
research and development center funded by the United
States federal government. Carnegie-Mellon University
developed an assessment vehicle that was accepted by
the U.S Department of Defense. This assessment
allows improvements in the software development
processes will help achieve quality, productivity, and
cycle-time reduction goals.

Source Code Control System (SCCS) . SCCS is a
complete system of commands that allows specified
users to control and track changes made to an SCCS
file. SCCS files allow several versions of the same file
to exist simultaneously, which can be helpful when
developing a project requiring many versions of large
files. The SCCS commands support multibyte character
set (MBCS) characters.

state . Tracks, levels, features, and defects move
through various states during their life cycles. The state
of an object determines the actions that can be
performed on it. See also process and subprocess.

subprocess . CMVC subprocesses govern the state
changes for CMVC objects. The design, size, review

 Glossary 123

(DSR) and verify subprocesses are configured for
component processes. The track, approve, fix, level,
and test subprocesses are configured for release
processes. See also process and state.

superuser privilege . A user who is granted superuser
privilege. Superuser privilege allows a user to perform
any action available in the CMVC family.

system administrator . A user who is responsible for
all system-related tasks involving the CMVC server,
such as, installing, maintaining, and backing up the
CMVC server and the relational database being used by
the CMVC server.

TCP. Transmission control protocol.

Transmission control protocol . A communication
protocol following the U.S. Department of Defense
standards for internetworking protocol.

tester . A user responsible for testing the resolution of
a defect or the implementation of a feature for a specific
level of a release and recording the results on a test
record.

track . A CMVC object created to monitor the progress
of changes within a release to resolve a specific defect
or implement a specific feature.

user . A person with an active user ID and access to
one or more CMVC families.

user exit (UE) . A user exit allows CMVC to call a
user-defined program during the processing of CMVC
transactions. User exits provide a means by which
users can specify additional actions that should be
performed before completing or proceeding with a
CMVC action.

UE. User exit

verification record . A status record which must be
marked by the originator of a defect or a feature before
the defect or feature can move to the closed state. This
allows the originator to verify the resolution or
implementation of the defect or feature they opened.

version control . The storage of multiple versions of a
single file along with information about each version.

view . An alternative and temporary representation of
data from one or more tables.

working file . The currently checked-out version of a
CMVC file.

124 Looking at CMVC from the Customer Perspective

List of Abbreviations

3GL Third Generation Language

4GL Fourth Generation Language

AIC AIXwindows Interface
Composer

AIX Advanced Interactive eXecutive

ADSM ADSTAR Distributed Storage
Management

ANSI American National Standards
Institute

APAR Authorized Program Analysis
Report

API Application Programming
Interface

ASCII American National Standard
Code for Information
Interchange

BOM Bill of Material

BOS Base Operating System

CASE Computer Aided Software
Engineering

CBS Compound Base System

CM Configuration Management

CMS Conversational Monitor System

CMVC Configuration Management and
Version Control

CUA Common User Access

DB2 DATABASE 2

DCE Distributed Computing
Environment

DEC Digital Equipment Corporation

DoD Department of Defense

DOS Disk Operating System

EBCDIC Extended Binary Coded
Decimal Interchange Code

E/R Entity/Relationship

FTP File Transfer Protocol

GB Gigabyte

GUI Graphical User Interface

HP Hewlett-Packard Company

IBM International Business
Machines Corporation

IBM Austin IBM Development Laboratory
at Austin, TX

IBM Toronto IBM Development Laboratory
at Toronto, Ontario, Canada

IBM Tucson IBM Development Laboratory
at Tucson, AZ

IP Internet Protocol

ISO International Standards
Organization

ITSC International Technical Support
Center

ITSO International Technical Support
Organization

LAN Local Area Network

LPP Licensed Program Product

MB Megabyte

MCI Microwave Communications
Incorporated

MVS Multiple Virtual Storage

NEDS Native Environment
Development System

NFS Network File System

NLS National Language Support

OOA Object Oriented Analysis

OEM Original Equipment
Manufacturer

OFS Open Software Foundation

OPATS Online Problem management
And Tracking System

OS Operating system

OSF Open Software Foundation

OS/2 Operating System/2

PC Personal Computer

PMR Problem Management Record

POSIX Portable Operating System
Specifications

PPS Production Planning System

PSL Process Specification
Language

PTF Program Temporary Fix

PVCS Polytron Version Control
System

 Copyright IBM Corp. 1995 125

RDBMS Relational Data Base
Management System

RETAIN Remote Technical Assistance
Information Network

REXX Restructured Extended
Executor Language

RISC Reduced Instruction Set
Computer

SCCS Software Change Control
System

SCM Software Configuration
Management

SEI Software Engineering Institute

SCS SEIKO Communications
Systems Inc..

SMIT System Management Interface
Tool

SMP Symmetrical multiprocessor

SNA Systems Network Architecture

SQL Structured Query Language

SWSM Shared Working Space
Manager

TBS Tire Base System

TCP/IP Transmission Control
Protocol/Internet Protocol

TOOAS Tucson Object Oriented
Analysis Simulator

UK United Kingdom

USA United States of America

VM Virtual Machine

VM/AS Virtual Machine/Application
System

VM/CMS Virtual Machine/Conversational
Monitor System

WAN Wide Area Network

ZAPAR Zaepfel APAR Tool

126 Looking at CMVC from the Customer Perspective

 Index

A
acceptance 54
administrator 40
ADSM 14, 47, 50, 51, 53, 63, 71
AIC 47, 73
AIX 2, 75
APAR 63
arrival report 94
assembler 56
audits 58
authority groups 21, 22
availability 77

B
back-end tools 23, 61, 90

code review 92
limit checking 92
report generation 93
track creation 92
transaction analysis 90

backup 71, 81, 82
backup strategy 71
batch execution 96
benefits 25
binding control 22
blocking reports 94
BOS 75
bridges 79
British Telecom 18, 28
BT Laboratories 11, 16, 20, 22, 25, 43
build

build tools 56
engineer 39
manager 84
process 73
support 64—65
tool 64—65

C
CADRE TeamWork 20, 47, 48, 56, 68
change control 120
change management 103, 105
choices 21, 66, 67, 89
cleanroom 69
client/server 4, 37, 48
closure reports 94
CMVC 1, 3

access authority group 41
access authority groups 10
access control 10

CMVC (continued)
administration 59
audit trail 10
automatic 10
benefits 25
change control 9
component hierarchy 7, 41
components 7
configurability 10
configuration management 7
defects 9
design points 4
evolution 1
extensions 60
family 7
features 9
file versions 7
files 7
history 1
host lists 10
integrated problem tracking 9
interest groups 10
levels 9
limited functional use 17
traceability 10
tracks 9
user ID 10, 40
users 10

code inspection 93
configurable fields 21, 66, 67, 86
configurable processes 21, 22
configuration item 7
configuration management 103, 105
Configuration Management Version Control (CMVC)

See CMVC
Continental 11, 15, 18, 19, 20, 21, 22, 23, 25, 28—43
control of nonconforming product 114, 118
conventions 37
criticality 76
crontab 92
cross-compiler 70
customer categories

hardware vendor 14
manufacturing company 15
services provider 15
software vendor 13

customer profile 13, 27, 101
customer support 84
customization 20, 66, 86

 Copyright IBM Corp. 1995 127

D
DASD development 48, 51
data base reorganization 82
database 71
database reorganization 81
DB2/6000 5, 7, 71
decision criteria 30
defect

prevention 94, 98
tracking 33

demon 71
demon process 65
design control 114, 116
development methodologies 107
development process 32
diversity of data 55
document control 114
documentation 41, 57, 85, 86

developer 49
generation 111

domain 79

E
education 38
end user roles 83
end user support 12, 60, 81, 83
entity/relationship model 68
evolution 75
extensions to CMVC 23
EZWindows 64

F
family administration 83
feature tracking 33
firmware 70
fraud detection 46
front-end tools 23, 62, 96

G
graph plotting 61
growth path 37
GUI 4, 6, 86

H
Hannover 73
hardware environment 77
help desk 60, 81
Hewlett-Packard 4
history 1
home-grown systems 52
HP 6, 19, 36

HP-UX 50
hybrid development process 69

I
IBM Austin 11, 14, 75—98
IBM Tucson 11, 14, 45—74
InfoExplorer 85
information Developer 85
INFORMIX 4, 6, 7, 71
inspection and test status 114, 117
integrated problem tracking 6, 37
interest groups 21, 22
INTERLEAF 17, 20, 49, 85
internal quality audits 114, 118
interviews 11
introduction 53
investment protection 111
ISO 18, 42, 99

certification 42, 58, 99, 113
ISO 9000 42, 57, 58, 98
ISO 9001 42, 113
ISO 9002 113
ISO 9003 113

L
lines of code 90

M
maintenance 31, 33
maintenance phase 29
management instruments 53
management reports 35, 61, 81, 93
MCI 11, 16, 19, 20, 21, 22, 23, 25, 45—74
metrics 35, 55, 97
microcode 70
Motif 64
MustFix status 87
MVS 56

N
NEDS 2
networking 51
NFS 5, 6, 36, 50, 79
NLS 75

O
OOA 48, 56, 67, 68
OPATS 1, 2
ORACLE 3, 7, 53, 71
Orbit 3
organizational considerations 59

128 Looking at CMVC from the Customer Perspective

OS/2 36, 48, 50, 56, 63, 75
OSF 76
overloading 87

P
paging hardware 16
parallel development 70
performance 82
platform 19, 36, 37, 49
PLIST 1
PMR 63
prerequisites 6
problem tracking 17
process 33

configuration 67
customization 66
documentation 58

product identification 114, 116
production server 77
productivity 30, 97, 111
programming languages 41
project 32

management 96, 108
manager 49, 84
phases 32
setup 42
status 97
structure 77

prolog validation 90
PSL 68
PTS2 62
PVCS 3, 6, 54

Q
quality assurance 58
questionnaire 11

R
RDBMS 2, 4, 5, 32, 60, 71, 96
release

management 6
manager 84
processing 34

remote access 51, 80
report generation 24, 62
resource allocation 97
restore 71
RETAIN 24, 63, 84, 96
reuse of code 112
REXX 56, 74
role specialization 39, 40
rollout support 59

S
scalability 16, 112
scale 77
SCCS 2, 3, 6, 52, 81
schedule adherence 97
SCS 11, 15, 16, 19, 21, 22, 27—43
SDE 6, 74
selection criteria 30
severity 62
Shared Working Space Manager 65
Shlaer-Mellor 68
shutdown 71
skill 36
small projects 29
small-scale usage 27, 29
smalltalk 56, 67, 68
software

categories 20
developer 39, 48, 84
failure 55
manager 39
quality metrics 97
reliability 96

Solaris 19
source code 56
source files 19
specialization 39
standard 37, 52
standardization 17, 99
statistics 78
Sun 4, 6, 19, 36
SunOS 19, 50
SYBASE 4, 7, 20, 71
system administration 32, 49, 54, 60, 82, 92

T
tape drive development 51
TCP/IP 6, 36, 48, 50, 80
team leader 84
test cases 57
test tools 57
tester 49, 85
TOOAS 68
tool developer 82
tool support 60
transaction 78

U
UNIX 6
usage 76
user 21
user exits 22, 66, 82, 89

 Index 129

user manuals 38
utilities 35

V
VAX/VMS 19, 50
version control 115
video reservation system 46

W
Windows/NT, 50

Z
ZAPAR 63, 96

130 Looking at CMVC from the Customer Perspective

ITSC Technical Bulletin Evaluation
RED000

International Technical Support Organization
Looking at CMVC from the Customer Perspective
May 1995

Publication No. GG24-4345-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

� Mail it to the address on the back (postage paid in U.S. only)
� Give it to an IBM marketing representative for mailing
� Fax it to: Your International Access Code + 1 914 432 8246

Name Address

Company or Organization

Phone No.

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spelling
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) Are you an employee of IBM or its subsidiaries? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSC Technical Bulletin Evaluation RED000
GG24-4345-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 471, Building 070B
5600 COTTLE ROAD
SAN JOSE CA
USA 95193-0001

Fold and Tape Please do not staple Fold and Tape

GG24-4345-00

IBM

Printed in U.S.A.

GG24-4345-ðð

