

RISC System/6000 Multimedia Environment:
An AIX Ultimedia Services/6000 Overview

Document Number GG24-4254-00

May 1994

International Technical Support Organization
Austin Center

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Special Notices” on
page xi.

First Edition (May 1994)

This edition applies to Version 1.0 of Ultimedia Services/6000 for use with the AIX operating system.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the form has been removed,
comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 948S, Building 821 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Abstract

This publication presents a comprehensive discussion of multimedia under AIX on
the IBM RISC System/6000. Multimedia support under AIX is provided by the
Ultimedia Services/6000 licensed program product, and in order to provide a
context in which the features and functions of this product can be understood,
information on multimedia concepts in general are explained initially. Ultimedia
Services/6000 utilizes an object oriented approach, and as such, an introduction to
object oriented programming is also included. Ultimedia Services/6000 current
features and functions as well as future directions are then covered.

This document is intended for AIX professionals, both as a general introduction to
multimedia, and to provide detailed information on the current product available for
AIX on the IBM RISC System/6000.

(94 pages)

 Copyright IBM Corp. 1994 iii

iv AIX Multimedia

 Contents

Abstract . iii

Special Notices . xi

Preface . xiii
How This Document is Organized . xiii
Related Publications . xiv
International Technical Support Organization Publications xiv
Acknowledgments . xiv

Chapter 1. Multimedia . 1
1.1.1 What is Multimedia? . 2

1.2 Multimedia Concepts . 5
1.2.1 What is a Media? . 5
1.2.2 Importance of the Media Concept . 6
1.2.3 Multimedia Standards . 7

1.3 Media - Multimedia's Building Blocks . 9
1.3.1 Text . 9
1.3.2 Audio . 9
1.3.3 Still Image . 9
1.3.4 Motion Video . 9
1.3.5 Interactive Links . 10

1.4 What Makes a Good Multimedia Environment? 10

Chapter 2. From Structured Programming to Language Independent
Object Model Programming . 13

2.1 Advantages of Object Oriented vs. Functional Programming 13
2.1.1 Limitation of Functional Programming 13
2.1.2 Object Oriented Programming: An Overview 16

2.2 Advantages of Language Independent Object Model Programming 22
2.2.1 Limitations of Object Oriented Programming 22
2.2.2 The Solution: SOMobjects, a CORBA Standard Language

Independent Object Model . 23
2.3 Conclusion: Making Reuse a Reality . 26

Chapter 3. Ultimedia Services/6000 . 29
3.1 Main Characteristics . 30
3.2 Functional Aspects: the Components . 33

3.2.1 Ultimedia Object's Library . 34
3.2.2 Tools Programs . 41
3.2.3 Demo Examples . 46

3.3 Programming Considerations . 48
3.3.1 Media Supported by AIX Ultimedia Services/6000 49
3.3.2 Limitations and Performance Considerations 50

3.4 AIX Ultimedia Services/6000 at a Glance 50

Chapter 4. Future Directions . 53
4.1 The Future for Ultimedia Services/6000 Objects Library 53
4.2 The Future for Ultimedia Services/6000 Multimedia Tools 54
4.3 Vendors Announcing Support for Ultimedia Services/6000 55

 Copyright IBM Corp. 1994 v

Appendix A. Multimedia Technologies . 57
A.1 Audio . 57

A.1.1 Analog Waveform Audio . 58
A.1.2 Digital Waveform Audio . 58
A.1.3 MIDI . 63

A.2 Still Image . 64
A.2.1 Raster Image . 64
A.2.2 Vector Image . 65

A.3 Motion Video . 70
A.3.1 Analog . 70
A.3.2 Digital . 72

Appendix B. System Object Model (SOM) - A Brief Overview 77
B.1 Basic Concepts of the System Object Model (SOM) 77
B.2 Organization of the SOMobject Package 79

B.2.1 SOM Compiler . 79
B.2.2 SOM Run-Time Library . 80
B.2.3 Frameworks Provided in the SOMobjects Toolkit 80

Appendix C. Programming Examples . 83
C.1 Example 1: File Type Detector Program . 83
C.2 Example: Movie Play Program . 84

Glossary . 87

List of Abbreviations . 91

Index . 93

vi AIX Multimedia

 Figures

1. The Human Machine Interface . 2
2. Media . 3
3. Multimedia Market . 5
4. Multi-Sensory Communication . 7
5. Multimedia Software Technology Trend . 13
6. Software Costs . 14
7. Limitation of Traditional Programming Techniques 15
8. Design process . 17
9. Encapsulation . 19

10. Inheritance . 20
11. Polymorphism . 21
12. SOM Compiler . 25
13. AIX Ultimedia Services/6000 Product . 29
14. AIX Ultimedia Services/6000: Technological Aspects 31
15. AIX Ultimedia Services/6000 Components 34
16. Object Library Components . 35
17. AIX Ultimedia Services/6000 Object Library 36
18. Media Handler Objects . 36
19. Video Decoder and Encoder Objects . 38
20. File Access Objects . 39
21. Configuration Objects . 40
22. Audio Filter Objects . 40
23. Movie Editor . 43
24. Audio Waveform Editor . 45
25. Main Screen of Ultimedia Services/6000 Demos 47
26. A typical Retail Shop Demo Screen . 48
27. AIX Ultimedia Services/6000 layer . 49
28. Audio Types . 57
29. Analog-To-Digital Conversion . 59
30. WAV Format Structure . 62
31. SND Format Structure . 63
32. Raster and Vector Representations . 65
33. GIF Format Structure . 67
34. TIFF Format Structure . 68
35. JPEG Format Structure . 69
36. Analog Motion Video Capture Diagram . 71
37. Example of Non-Interlaced and Interlaced Video 72
38. AVS Format Structure . 74
39. AVI Format Structure . 75

 Copyright IBM Corp. 1994 vii

viii AIX Multimedia

 Tables

1. Typical Multimedia Application Areas . 3
2. Major Multimedia File Formats for Still Images and Motion 8
3. Comparison of Some Major Common Object Oriented Languages 21
4. Multimedia Requirements Provided by Different Development Approaches 26
5. Audio Encoding . 37
6. Motion Video Codecs Characteristics . 39
7. Media Supported by AIX Ultimedia Services/6000 49
8. Ultimedia Services Requirements . 50
9. Vendors Announcing Support for Ultimedia Services/6000 55

10. Colors Available and Video Memory Required for Bits per Pixel 64
11. Main Characteristics of Vector and Raster Images 66

 Copyright IBM Corp. 1994 ix

x AIX Multimedia

 Special Notices

This publication is intended to introduce IBM marketing representatives, dealers,
system engineers and AIX customers to the multimedia environment available on
RS/6000 machines. The information in this publication is not intended as the
specification for any programming interfaces that are provided by programming
languages or application enablers covered in this document. See the
PUBLICATIONS section of the IBM Programming Announcement for AIX Ultimedia
Services/6000 for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, Ct USA 06904.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM (VENDOR)
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends
on the customer's ability to evaluate and integrate them into the customer's
operational environment. While each item may have been reviewed by IBM for
accuracy in a specific situation, there is no guarantee that the same or similar
results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative to
the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United States
and/or other countries:

 Copyright IBM Corp. 1994 xi

The following terms, which are denoted by a double asterisk (**) in this publication,
are trademarks of other companies:

AIX AIX/6000
AIXwindows IBM
Multimedia Presentation Manager/2 MVS/ESA
Operating System/2 OS/2
OS/400 POWERserver
POWERstation PS/2
RISC System/6000 RS/6000
SOMobjects Ultimedia
Ultimotion

Apple, System 7 Apple Computer, Inc.
APPLIX, Applixware Applix, Inc.
C++, C AT&T, Inc.
Communique Insoft, Inc.
DEC, Digital Digital Equipment Corporation
DVI Intel Corporation
Gain Momentum Sybase, Inc.
Frame Frame Technology
Hewlett-Packard, HP, HP/UX, DOMF Hewlett-Packard Company
ICONAUTHOR AimTech Corporation
Indeo Intel Corporation
Intel Intel Corporation
Interleaf Interleaf, Inc.
IPX Novell, Inc.
Lego Lego, Inc.
Mac, Macintosh Apple Corporation
MCI Microsoft Corporation
Microsoft, Microsoft Windows Microsoft Corporation
MMIO Microsoft Corporation
MPower Hewelet-Packard Company
Novell Novell, Inc.
Objective-C Stepstone, Inc.
OLE 2.0 Microsoft Corporation
OSF/Motif Open Software Foundation, Inc.
QuickTime Apple Corporation
Sybase Sybase, Inc.
Smalltalk-80 Xerox, Inc.
Sun Microsystems, SunSoft, SunOS Sun Microsystems, Inc.
Targa+ Truevision Corporation
UNIX Unix System Laboratories, Inc.
Video for Windows Microsoft Corporation
Window Multimedia Extension Microsoft Corporation
XMedia Digital Equipment Corporation
X-Windows Massachusetts Institute of Technology

xii AIX Multimedia

 Preface

Multimedia is rapidly evolving into an integral part of modern computing. It is one of
the fast growing areas of computer science, having moved from development labs
into everyday day life in just a few years. This was possible, because it added a
new dimension to user-friendliness, making it possible for people to communicate
more naturally through computers. Multimedia opens up a whole range of
possibilities in communications and is targeted at all audiences.

Multimedia has been developed mainly on the PC platform, and until now, the AIX
world did not support multimedia. Today, IBM offers a complete multimedia
solution for the AIX platform: the AIX Ultimedia Services/6000 product.

The goal of this book is to provide the reader with a basic understanding of what
multimedia is and to give a comprehensive, introductory overview of the AIX
Ultimedia Services/6000 environment provided on the AIX platform.

How This Document is Organized
The document is organized as follows:

� Chapter 1, “ Multimedia”

This chapter provides an overview on Multimedia.

� Chapter 2, “From Structured Programming to Language Independent Object
Model Programming”

This chapter provides a short overview of object oriented technology and
System Object Model. It gives an insight into which software technology is best
for multimedia applications development.

� Chapter 3, “Ultimedia Services/6000”

This chapter describes AIX Ultimedia Services/6000 and introduces some basic
concepts for programming with this product.

� Chapter 4, “Future Directions”

An overview on the future of multimedia platforms in an AIX environment.

� Appendix A, “Multimedia Technologies”

This appendix describes the most common computer representations of
multimedia data and their related file formats.

� Appendix B, “System Object Model (SOM) - A Brief Overview”

This appendix provides a brief description of System Object Model.

� Appendix C, “Programming Examples”

This appendix shows some AIX Ultimedia Services/6000 programming
examples.

 Copyright IBM Corp. 1994 xiii

 Related Publications
The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

� Microsoft Window Multimedia Programmers Workbook, ISBN 1-55615-390-2

� Microsoft Window Multimedia Programmers Reference, ISBN 1-55615-389-9

� Object Oriented programming: An Evolutionary Approach, ISBN 0-201-10393-1

� Multimedia Making It Work, ISBN 0-07-881869-9

� S/390 Multimedia Application for Manufacturing, G221-3535

� The Common Object Request Broker: Architecture and Specification, OMG
Document 91.12.1, rev 1.1

� SOMobjects Developer Toolkit, G221-3651

� AIX Ultimedia Services/6000 Guide and Reference, SC23-2528-00

International Technical Support Organization Publications
� IBM Personal System/2 Multimedia Fundamentals, GG24-3653-01

� Multimedia in a Network Environment, GG24-3947-00

� Object Technology in Application Development, GG24-4290-00

� Multimedia Presentation Techniques and Technology, GG24-3975-00

� IBM PS/2 Programming Multimedia under Windows 3.0: An Object-Oriented
Approach, GG24-3672-00

A complete list of International Technical Support Organization publications, with a
brief description of each, may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

 Acknowledgments
This publication is the result of a residency conducted at the International Technical
Support Organization, Austin Center.

The advisor for this project was:

Al Pate, International Technical Support Organization, Austin Center

The author of this document was:

Andrea Fabrizi, IBM Italy

Thanks to the following people who produced the AIX Multimedia Workshop, which
was the basis for this publication.

Nina Vogl (Workshop Advisor)

xiv AIX Multimedia

Andrea Fabrizi, IBM Italy

Jon Sober, IBM UK

Nick Higham, IBM UK

Paul Gunther, IBM Australia

Yoshio Takano, IBM Japan

Cyndy Sullivan, Technology Transfer Group, Austin

 Preface xv

xvi AIX Multimedia

 Chapter 1. Multimedia

In the past few years the incredible growth of hardware performance has allowed
the communication interface between computer and users to become more natural
for users. In the early 1980s, the only way to communicate with a computer was
the so-called command-line interface. Typing a command was the usual way to
indicate to a computer what it was to do. Image support was not standard on PCs.
It was present only if an application required it. In the mid 1980s, the computer
world began to change dramatically as graphical adapters became standard on
PCs. This started the icon-based interface era. The computer's screen became a
two dimensional metaphor for the physical desktop; icons (graphical representations
of a desktop's objects), windows (areas of the screen), and menus (lists of possible
actions) became the new ways to interact with computers.

Today, the human-computer interface is again undergoing tremendous change.
Multimedia, the ability to use several media to concurrently and interactively
communicate with machines has begun to change the human-computer interaction.
Multimedia increases the effectiveness of communications by combining the
interactivity of a computer with a natural user interface that includes many data
types (see Figure 4 on page 7). Multimedia is rapidly evolving into an integral part
of modern computing. It opens up a whole range of possibilities in communications
and is targeted at all end-users.

Multimedia is the natural evolution of the human-computer interface: interaction with
computers is closer to the human way of communication.

Multimedia handles several kinds of computer input data. It changes the
command-line and icon-based user interfaces to a new video user interface, which
is more interactive and more natural than the previous ones. Indeed multimedia
adds a new dimension to user-friendliness, making it possible for people to
communicate more naturally through machines.

 Interactivity

Interactivity is the ability to conversationally exchange information. This means
there is a dialog between human and computer, where the computer or the user
accepts inputs or responds to inputs. This kind of interaction allows information
to be accessed randomly.

Multimedia lets us communicate more naturally with computers by using more of
our natural senses: sight, hearing, touch. Person-to-computer dialog is more
spontaneous and more fun.

Organizations that today generate traditional information consisting of text, numbers
and graphics, now believe their applications will be more valuable with the addition
of multimedia content. Multimedia delivers information through the enterprise more
effectively and efficiently, thus maximizing the value of the information transmitted.

Multimedia support is becoming standard in many lines of PCs and workstations
today. This trend toward multimedia is a result of both the interactive capability of
computers and the incremental and qualitative capability to communicate using
sound, graphics, animation, video, as well as text and data.

 Copyright IBM Corp. 1994 1

1.1.1 What is Multimedia?
Multimedia is not a precise term and it is used to indicate many different things,
such as a:

 � Market

 � New technology

� New communication media

Multimedia is all these things.

Multimedia as a New Communication Media: Multimedia is a new
communication media which allows concepts to be illustrated with images or
full-motion video rather than merely presented in text and numeric forms. Their
significance can be explained with speech, and the desired emotions created with
music and sound effects. Multimedia provides an opportunity to experience, or
learn by doing, where understanding comes from an intuitive process, based
primarily on the engaging of the senses (see Figure 1).

Multimedia is a completely different way of conceptualizing information and
provides mechanisms to transfer this information.

One of its most important features is the easy user interaction, which increases the
attention, understanding, and retention of information. People retain more
information from an interactive multimedia presentation involving sight and sound
than from the passive activity of reading the written word. Short-term retention
increases significantly as more human senses are involved, especially if the
involvement is interactive. This interactive involvement allows computer-based
multimedia to became a powerful communication tool (see Figure 1 and Figure 4
on page 7).

Figure 1. The Human Machine Interface. Providing an interactive experience people retain
more information than from a passive activity.

Multimedia as a New Technology: Multimedia is a new technology. Computers,
inherently interactive, devices have now acquired enhanced audio and video
communications. In addition, traditional content (printed text, film, video, music)
and telecommunications are quickly becoming fully digital. As a result, the term
multimedia is sometimes used to define a class of computing, where multiple
information types, such as text, graphics, image, sound, animation and video (see
Figure 2 on page 3), are combined to improve the quality and efficiency of
communication. Each of these data types represents technologies with disparate
qualities, standards, and computing demands. They each have unique methods for
user interaction and control. The goal of multimedia technology is to combine
these data types in an effective manner where the value of multi-sensory
communication can be realized.

2 AIX Multimedia

Figure 2. Media. The most common media available on computers.

Multimedia as a New Market: Multimedia is a set of enabling technologies that
are evolving the two previously distinct devices, computer and television, into
technological equivalents. This evolution has created a new market. Any computer
or computer-based device now has the ability to access, interact, and play digital
information and entertainment.

This may profoundly change the ways we communicate and the use of traditional
media such as television, newspaper, fax, or phone. For example, a personal
workstation with network and database access and enhanced with multimedia
capability, becomes a versatile communication system, which allows one to
communicate information to others in the format and in the location they prefer. In
advertising, creative designers can use multimedia to enhance their ability to
create, edit and develop digital Video Clips. In manufacturing, a plant floor worker
can communicate from his or her station via videoconference with a development
engineer to show a defective part. Medical professionals can collaborate by sharing
diagnostic images using a multimedia distributed database. In education, the high
quality of multimedia communication makes traditional lectures and laboratories
more interesting and more fun.

Table 1 (Page 1 of 2). Typical Multimedia Application Areas

Market Area Description

Video Intensive
Creation

Multimedia capabilities allow enhanced automation of Video Clips editing
and development.

 Chapter 1. Multimedia 3

Table 1 (Page 2 of 2). Typical Multimedia Application Areas

Market Area Description

Video Information
Services

Multimedia allows users to digitize and store video and audio information in
databases. This information can be shared across networks and distributed
to distributors, producers and so forth. Applications such as virtual
museums are possible, where the artifacts and information displayed at the
museum are made available to computer users in a multimedia
presentation.

Kiosk Sales/Services Multimedia kiosks make services more accessible (24 hours and 7 days per
week) and more convenient (public places) to the public. Moreover, they
can add video demonstrations, competitive comparisons and interactivity.

Multimedia Factory
Floor

Automation of communication (for example videoconferencing or in-place
training) inside a factory allows dramatically improved factory floor
efficiency.

“Documedia”
Multimedia
Documentation

Integration of several media types (data, text, graphics, image, video, audio)
into documents allows improved document quality and effectiveness.

Training and
Education

Multimedia improves traditional lectures and education methods.

Corporate
Communications

Corporate communications greatly benefit from multimedia. Electronic mail,
information sharing and training applications are examples.

There are many strategic applications (see Figure 3 on page 5 and Table 1 on
page 3) across all industries in which multimedia can improve competitiveness
through increased efficiency, effectiveness and quality of communication.

In conclusion, multimedia can be considered as the integration of the human
senses into a computer environment for the purpose of improving communication
between the computer and its user and, even more important, between users.

4 AIX Multimedia

Figure 3. Multimedia Market. This picture shows some of the most important business areas where multimedia is
used.

 1.2 Multimedia Concepts
This section explains the main concepts of multimedia though a description of its
main components and technologies. Multimedia is described in several steps, each
introducing one main concept.

1.2.1 What is a Media?
In a computer science context, and throughout this book, media is used either as
the singular or plural and means channel of communication: a way to transmit a
particular information type, such as an image or text.

The human brain has evolved a set of powerful natural processors or senses to
recognize these channels. Of the five senses:

 � Sight

 � Hearing

 � Touch

 � Smell

 � Taste

the first three are used the most. More than 90% of information is transmitted
using just sight, sound and touch.

During communication, each sense can simultaneously process different media.

Sight is the image processor which absorbs and processes visual information. It
involves the following media:

 Chapter 1. Multimedia 5

� Still Image and Graphics, which allow the viewer to inspect details and
understand their relationship to the complete image.

� Full Motion Image and Animation, which allow the perception of movement.
Motion is perceived as a series of still images, each one slightly different from
the previous, displayed in succession so fast that the illusion of movement is
created.

� Text, which provides data-oriented information to enlighten the viewer.

Hearing is the audio processor, which receives and processes audio information
over a large range of frequencies. It involves audio media such as voice and music.

Touch is the pressure processor, which receives and processes tactile information,
such as the tactile feedback from our fingers. Touch is used as a communication
media primarily by the visually and hearing impaired.

In the computer science world, the word media also means: “a kind of information
that can be transmitted from a source (computer or human being) to a destination
(computer or human being)”.

Any type of information that can be transmitted is a media.

1.2.2 Importance of the Media Concept
The concept of media is related to one of the most important problems of computer
science: improving communication between users and computers.

 Communication

The word communication indicates a process by which information is
exchanged between two or more entities through a common system of symbols,
signs and behavior. (Webster's Dictionary)

Studies on human exchange of information have shown that increasing the number
of media used during communication greatly increases the information retained. In
fact, the increase in information retained by the destination grows more
exponential than linear as more than one media is used. Figure 4 on page 7
shows communication where information is exchanged using several media is more
efficient than communication using only one media.

Multimedia, or increasing the number of media involved in a communication,
expands the communication capability between humans and computers. It allows a
user to interact with their computer at a more meaningful level through
multi-sensory communication (see Figure 4 on page 7).

6 AIX Multimedia

Figure 4. Multi-Sensory Communication. The figure shows an information retention increase with the number of
media involved in communication and the resulting increased interaction level.

 1.2.3 Multimedia Standards
The growth of multimedia can be accelerated greatly through unifying standards
and integrated management of different media data types among heterogeneous
platforms. Multimedia systems should be able to exchange data between different
multivendor platforms. Standards are one of the critical success factors in the
widespread acceptance and growth of multimedia applications and products.

Widely accepted multimedia data formats are a fundamental key for applications to
work on different software platforms. Multimedia applications able to play only a
few multimedia formats can run only on specific platforms, and will become
obsolete as technology evolves. Only the unified standard file formats and
document coding can protect customer investments and accelerate the growth of
multimedia.

Multimedia standards are in early development and much work still must be carried
out. This section will provide an overview of the major standards-related activities.
For more information, read: Multimedia in a Network Environment and IBM
Personal System/2 Multimedia Fundamentals.

 ISO

The principal standards organization is the International Standards Organization
(ISO). This organization has several committees, subcommittees, and working
groups that deal with multimedia standards.
In addition to the ISO, the Consultative Committee on international Telegraph
and Telephone (CCITT) and other associations are also working to define new
standards and recommendations.

Multimedia-related standards can be grouped into four major areas:

1. Data File Format Standards

 Chapter 1. Multimedia 7

This area includes all Data Format Standards able to describe a single media
type when it is captured, recorded or played. Table 2 on page 8 shows the
most important and most common file formats.

Video.

2. Multimedia Language Technology

A model is required to describe and represent the relations among multimedia
objects. There are two main types of relationship between multimedia objects:

� Spatial, the positional-relationship. For example, the spatial distance
between two objects on the screen.

� Temporal, the time-relationship between objects (for example, if two objects
are displayed simultaneously or with an interval of 5 milliseconds.)

The ISO jointly with the CCITT has formed a committee to address the
development of a common base for multimedia and hypermedia applications.
This committee is called Multimedia and Hypermedia Experts Groups (MHEG).
The goals of this standard are:

� Support for the real-time exchange of multimedia information
� Synchronization of multimedia object interaction
� Provision of a final form representation of multimedia and hypermedia

information

 3. Network

Today's local area network (LAN) and wide area network (WAN) are poorly
suited for transporting multimedia data objects and data streams. New
technologies are being explored to support real-time traffic with minimal delay
over networks.

There are three major standards efforts in this area:

� Investigate 10Base-T (Ethernet) isochronous communication enhancement
to support high data rates over unshielded twisted-pair copper cable.

Table 2. Major Multimedia File Formats for Still Images and Motion

Area Standard

Still Image � JPEG # (Joint Photograph Experts Group)
� JBIG # (Joint Bi-level Image experts Group)

 � GIF
 � TIFF
 � Targa+

Motion Video � MPEG # (Motion Photograph Experts Group)
� DVI (Digital Video Interactive)

 � QuickTime
 � Ultimotion
� Video for Windows

 � Indeo
 � px64 #

Audio � MIDI # (Musical Instruments Digital Interface)
 � Wave
 � SND

Storage � CD-ROM (Compact Disk - Read Only Memory)
� CD-ROM/XA (CD-ROM eXtended Architecture)
� CD-I (Compact Disk Interactive)
� CD-DA (Compact Disk Digital Audio)

Note: The # indicates file formats supported by ISO or by other organizations working on
standards.

8 AIX Multimedia

� Investigate priority scheduling and bandwidth reservation for multimedia
frame transmission over token-ring.

� Support emerging standards such as Asynchronous Transport Mode (ATM).

 4. System Services

Multimedia extensions to basic operating system function are required to to
accommodate new data types and their unique features. Moreover, actual
databases are needed to accommodate multimedia data.

1.3 Media - Multimedia's Building Blocks
This section addresses the information types handled by a computer. The principle
goal of multimedia is the efficient management of these data types to optimize the
value of multi-sensory communication. The technical details about how these media
are represented and implemented on a computer are discussed in Appendix A,
“Multimedia Technologies” on page 57.

 1.3.1 Text
The most common way to transmit information is to write it! Text is a sequence of
elements (characters, symbols, words, phrases, paragraph, sentences, tables and
so forth) intended to convey a meaning. The interpretation is essentially based
upon the reader's knowledge of some natural or artificial languages. This media is
fundamental to computer systems and provides a basic building block for
multimedia systems.

 1.3.2 Audio
Sound and Audio are very useful in a multimedia system as a means to transmit
parallel information: while watching a movie or reading text, our understanding of
information presented can be reinforced using audio. By seeing and listening at the
same time we receive similar information simultaneously. Moreover sound and
music can be used to transmit particular sensations and feelings.

 1.3.3 Still Image
Images are a fundamental part of multimedia systems. Still images are a wonderful
way to illustrate information or concepts: A picture is worth a 1000 words. An
image of a view, a histogram or a pie chart are more impressive than text or a
table. Images allow much information to be transmitted in a short time (see
Figure 4 on page 7).

 1.3.4 Motion Video
Television has shown the huge potential of video as an information channel.
Sometimes a concept cannot be explained easily using speech, text, still images or
all these media together. In those cases, an animation or a video sequence may be
a more effective way to illustrate a situation.

 Chapter 1. Multimedia 9

 1.3.5 Interactive Links
As shown before, multimedia requires strong interactive techniques. A fundamental
feature of a multimedia system is the ability to follow the information. For example,
if we are reading text and we find an unknown concept, it would be very useful to
provide a mechanism to ask for an explanation on that unknown concept.
Moreover, if we were watching a video or listening to an audio file, it would be
useful to have a button to control the playback of these media. Interactive links,
together with the multimedia information they connect, are called hypermedia. The
ability to press screen hot areas (for example, buttons, highlighted text, and so
forth) to access more information or to cause a program response, are other
fundamental aspects of a multimedia system.

1.4 What Makes a Good Multimedia Environment?
For a complete understanding of multimedia, there is one last important question:
how must multimedia be integrated into the actual corporate and customer
environments.

Organizations produce a lot of traditional information consisting of text, numbers
and graphics. They store and retrieve this information through the use of
databases, and share this information through the use of electronic mail, fax and
telephone communications. These same organizations expect to work in the same
way using multimedia information. They need a new application environment so
multimedia data can be handled in the same way as the traditional information.

A primary goal of Multimedia System Services must be to provide an infrastructure
for building a multimedia computing platform that supports interactive multimedia
applications dealing with synchronized, time-based media in a heterogeneous
distributed environment. (IMA Multimedia System Services 1.0)

This problem is not simple. Construction of large-scale, heterogeneous, multimedia,
distributed systems introduces technical problems not found in conventional
systems. For example, the additional, non-structured complexity of multimedia
environments makes data encapsulation and abstraction mechanisms very
important. There is a heavy emphasis on interfaces and objects. Many software
experts agree that modelling a distributed system as a collection of interacting
objects is appropriate for integrating distributed multimedia information and
resources. Today, many people argue that object-oriented distributed computing is
the natural step forward from the client-server systems of today.

Objects form a natural model for a multimedia system. They are a realistic
representation of real world things both from the user's and the programmers point
of view. For example, in the real world a user watches a movie by putting the
video into a video tape player and pressing the play key. In the application world he
does the same: he puts the movie's object into the videotape's object and presses
the play button. From a programmer's point of view, it is the same: all resources
(multimedia adapters, displays, and so forth) are treated as a commonly accessible
collection of objects. The object's model hides the complexity of the resources and
the device drivers from the programmer.

Object modelling is important but it is only a part of the solution. Indeed,
object-oriented modelling allows flexibility, code reuse and expandability, but there
is a hitch! The object oriented languages world is fragmented into many factions,

10 AIX Multimedia

each writing code in their specialized programming languages. Each of these
factions claim to follow the one right path to object-oriented programming and this
has produced many incompatible object libraries. A major problem is the fact that
most object oriented programming languages are not compatible with other object
oriented languages. The solution to this problem is not to look for a universal
object oriented language, but rather to find a way to enable objects written in
different languages to work together within a single computer or within a network of
computers.

Networking presents the other problem which must be solved. If multimedia is to
reach its fullest potential, it must move beyond the limits of stand-alone technology.
This requires new communications and transmission technologies to guarantee an
exact delivery of real-time multimedia continuous data streams. But this is not
enough; multimedia objects will have to be accessed remotely in a distributed
heterogeneous environment. Applications must be able to access objects in other
processes, even on different machines. The object's implementation as well as the
object's location must be hidden from the clients. The client will access objects as if
they are local.

In summary, the main requirements that a multimedia environment must satisfy are:

Open This is the ability to interoperate between a wide range of different
systems while maintaining consistency across all. An important objective
of an open system is to make a network of heterogeneous systems
appear as a single system to users. This means all resources and
services that users can access, local and remote, appear as local to
such a system, despite differences in hardware, operating systems,
networks, programming languages and databases.

Flexible This is the ability to create and modify software easily. A flexible routine
is a routine that can be changed without requiring old programs which
use it to be changed.

Expandable This is the ability to easily extend the functionality of existing
applications. The necessity to extend the functionality of applications in
one of the major problems in the computer industry.

Reusable This is the ability to use code written for an application in another
application without modifications. The main goal of reusable code is to
allow creation of applications by assembling independent objects. These
objects are a kind of Lego** that programmers can arrange in any way
they choose. Reusable code reduces development cost and time and
allows creation of more uniform applications.

Heterogeneous This is the ability to communicate transparently between different
hardware and software.

High Capability The code must be highly specialized to guarantee high
performance.

Distributed This is the ability to work transparently across networks. Today's
computers need to share CPU time as well as printers, external devices
and information. The main goal of a distributed system is to share all
computer resources (information, CPU and so forth) to all users on the
the network.

Each of these points is essential in order for multimedia to reach its fullest potential.

 Chapter 1. Multimedia 11

In summary, we can say that the goals of a multimedia distributed environment are
two: open computing and the integration of multimedia extensions into
strategic platforms .

Open and Heterogeneous

Open System . A system whose characteristics comply with standards made
available throughout the industry and therefore can be connected to other
systems complying with the same standards.

Heterogeneous System . A system in which computers have dissimilar
architecture, but still are able to communicate.

Multimedia Platforms Available

Multimedia support is becoming standard in many lines of PCs and workstations
today. The main ones are:

 � PCs:

MacIntosh** system 7 with QuickTime

Microsoft Windows** 3.1 Multi Media (Microsoft Windows 3.1 Multi
Media is not really a multimedia platform, because it is not a real
multitasking system, which is a fundamental requirement for data
synchronization and presentation.)

OS/2* 2.0 and more with MultiMedia Presentation Manager/2*

 � UNIX** Workstations:

 Digital**: XMedia**

 HP**: MPower**

SUN**: Gain Momentum** (Actually, Gain Momentum Authoring System
and its related software is also available on the following platforms:

 – SUN
 – RS/6000*
 – HP

IBM*: AIX* Ultimedia Services/6000*

12 AIX Multimedia

Chapter 2. From Structured Programming to Language
Independent Object Model Programming

Before discussing multimedia on the AIX platform, let's take a closer look at
different software development technologies to understand which technology is best
for developing multimedia applications.

This chapter examines why the development software technology has moved from
a Traditional Functional Approach to Object Oriented (OO) Technologies and is
now evolving towards Language Independent Object Model Approaches. It also
discusses why these new programming technologies are so important for the
development of multimedia applications.

Figure 5. Multimedia Software Technology Trend. The software technology used to develop multimedia applications
has moved from Functional Approaches (for example, MCI) to an Object Oriented Approach and now is moving from
an OO Approach to a Language Independent Object Model Programming Approach (for example, the AIX Ultimedia
Services/6000).

2.1 Advantages of Object Oriented vs. Functional Programming
The advantages of an object oriented programming approach versus a functional
programming approach can best be understood by comparing the capabilities and
limitations of both to application development technology requirements.

2.1.1 Limitation of Functional Programming
Today, the quantity and importance of information, especially multimedia data, are
growing exponentially. The speed and performance of the computer hardware has
easily kept pace. Application development technology required for creating
software has evolved much more slowly. This has created a huge drag on
business.

 Copyright IBM Corp. 1994 13

Figure 6. Software Costs. Software is playing a larger percentage in project costs.

There is no one specific answer to why software development has not kept pace. A
look at what is required in an application program reveals some clues. Applications
must accurately model the environment they describe. Application development
requires creating an exact computer representation of the real world entities and
transactions (business, department store, bank transactions, and so forth).
Essentially, application programmers have to translate all real-world objects into
computer objects. This requires programming languages that permit:

Information Hiding - Data must be accessible only through few and well-specified
functions.

Data Abstraction - The ability to create new types of computer data. (For example,
the complex number type, or the window type.)

Easy Software Enhancement - The software must be easy to enhance and
modify.

Software Reuse - The ability to create new software simply by adding new
features to the old ones is essential.

Easy project complexity management - The efforts to manage a project must not
increase more than linearly with the dimension of the code.

Interoperability - The programs must be able to work and to exchange data with
other programs.

A succession of approaches (for example, modular programming, structured
programming, computer-aided software engineering (CASE), fourth-generation
languages) have been proposed as the solutions to these requirements. Ultimately
each has proved to have a serious down side: excessive programmer or computer
resources needed, limitations on program size, difficulty (or impossibility) of
modification (see Figure 7 on page 15), while time and costs to develop software
continue to grow, as shown in Figure 6. The amount of code required increases as
programs attempt to model more complex projects. Application cost can be
expected to increase proportionally as complexity increases. The ability for humans
to manage complexity becomes a factor as applications become more complex.
Moreover, the maintenance costs of a project grow with the dimensions of the
code.

14 AIX Multimedia

Multimedia applications emphasize and amplify these problems in two ways.

� The high-level of interaction required by multimedia applications and the
non-structured nature of user's actions dramatically increase the complexity of
projects.

� The high abstraction level of the objects involved in typical multimedia
applications (for example, the motion video editor object) makes computer
representation and environment modeling more difficult and complex.

Figure 7. Limitation of Traditional Programming Techniques. The figure (a) shows what happens when programs
attempt to manage more complex projects: the size of code increases exponentially with the project complexity. The
figure (b) shows typical non-linear productivity response to increasing the number of programmers applied to a project.
This decreased performance is due in part to the communication overhead incurred with more and more
programmers.

Object Oriented (OO) Technology represents a fundamental change in the concept
of software development. With the OO paradigm, the engineering and
manufacturing techniques which enables hardware to grow in performance while
declining in price are applied to programming. Object Oriented Technology
provides software objects which are segments of code combining data and
procedures. These objects will become standard, off-the-shelf parts. Programmers
can then incorporate these objects in a system as easily as engineers incorporate
an off-the-shelf semiconductor chip into a circuit board design. A hardware engineer
would never consider designing a circuit board from scratch, rather he will select
from a library of prebuilt components with well-defined interfaces and link these
together. With OO Technology, creating an application becomes a bottom-up
assembly of existing units.

The main goals of Object Oriented Technology are:

� Maintenance and development cost reduction

� Increased software quality

� Ease of software reuse

 Chapter 2. From Structured Programming to Language Independent Object Model Programming 15

2.1.2 Object Oriented Programming: An Overview
Object Oriented Programming (OOP) is an important new programming technology
that offers expanded opportunities for software reuse and extendibility. Object
Oriented Programming shifts the emphasis of software development away from
functional decomposition and toward the recognition of units, called objects, that
encapsulate both code and data. As a result, programs become easier to maintain
and enhance. Objects with the same behavior and common features, can be
grouped into hierarchical categories, called classes. As a result, new objects can
be built by reusing others. The traditional approach to application development has
been called a water fall process. The steps to create an application are:

 � Requirements
 � Analyze
 � Design
 � Implement
 � Test

All these steps are sequential, with limited feed back possibilities between steps.
The creation process is not interactive and changes and/or enhancements are
difficult to manage. The Object Oriented Approach allows a true interactive design
process (called a whirlpool or spiral process). This approach allows program
development within a section; the application is built by simply adding new features
and objects. Object Oriented programs are typically more impervious to the ripple
effects of subsequent design changes than their non-object-oriented counterparts
(see Figure 8 on page 17). This, in turn, leads to improved programmer
productivity.

16 AIX Multimedia

Figure 8. Design process. The figure shows the traditional “waterfall” approach to application development and the
more interactive spiral process which is characteristic of Object Oriented Techniques.

2.1.2.1 Concepts and Terminology
The Basic Idea: Object Oriented Programming involves two basic concepts:

 � Encapsulation

 � Inheritance

Encapsulation means keeping data and functionality in one package (the object).
Data is completely hidden to the rest of world and can be modified only by using
the object's functionality (the methods). Encapsulation allows the creation of a
software wall around data, as shown in Figure 9 on page 19. It is not known how
an object works, but only what it does. This ensures data operations are only
performed on appropriate legal data values. It is possible to modify data
descriptions concurrently with last minute design changes without recoding major
sections of the application. This is possible because the objects are independent
software.

Inheritance is a code-sharing mechanism. It allows reuse of the behavior of a class
in the definition of new classes. Subclasses of a class inherit the data structure and
the functionality of their parent classes (called superclasses). Reuse is the key to

 Chapter 2. From Structured Programming to Language Independent Object Model Programming 17

dramatically improved software productivity. Coding time is reduced and software
quality improves as tried and trusted objects are reused.

A better description of Object Oriented Technology can be provided through its
main components: Classes, Objects, Messages, Encapsulation, Inheritance, and
Polymorphism.

Classes: Classes are a set of things that share common characteristics. For
example, the biological sciences have used classification to categorize plants and
animals. The plant and animal categories begin with very general descriptions.
These general categories are then further described to create more specialized
categories (for example, the mammals category). In this way, classes are often
organized in a hierarchy of other classes. Classes are used to create objects.

Objects: Objects are produced from classes. They are the instances of classes.
An object is a grouping of data and operations (called methods) on that data. The
data determines the state of the object, while the methods determine the behavior
of the object. An example of an object can be given using C programming
language. In C, an object can be represented using the formal C type struct. In
this case the object has both data and methods, but the data is not hidden.

Messages: A message is used to invoke an object's method. A general message
contains:

 � Object's name
� The requested method
� Any parameters required

Messages are the only way to invoke methods. For example, the movie object is a
highly specialized software unit that can play, record and edit motion video files.
When the movie object plays a movie, it simply sends the OPEN_FILE <file_name>
message to the file_handler object (the file_handler objects is a highly specialized
software unit that can open, close and save files) which opens the file and returns
the file identifier to the movie object.

Encapsulation: Object Oriented Programming revolves around the concept of
encapsulation. Encapsulation hides the implementation detail of the data from
other objects. Access to internal data is allowed, but only by using the programming
interface provided by the object. As a consequence, the internal structure of an
object may change with no impact to other objects.

18 AIX Multimedia

Figure 9. Encapsulation. Encapsulation means to bundle code and data

Inheritance: Inheritance is the ability to define new classes in terms of other
classes. This means that a class acquires characteristics from one or more parent
classes. The advantages of this mechanism are:

� Common code is implemented once
� Common data is described once

The biological sciences are again useful in explaining the concept of inheritance.
Animal classification is organized based on common characteristics (mammals, as
an example, are described by the way in which their young are fed). All animals in
the same class have common characteristics. To say a human being, a dog or a
whale are mammals means that these animals feed their young in a common way.
The location of the class within the hierarchy determines how a class is specialized.
A deep position in the class hierarchy means high specialization, while a high
position means low specialization. Inheritance makes it possible to define new
software in the same way a new concept is introduced to a newcomer: by
comparing it with something that is already known. New classes can be created by
specialization (the new class is similar to the old one, but it has new features) or by
generalization (this class merges the features of old classes).

The two inheritance mechanisms are:

� Linear Inheritance or Inheritance by Specialization. In this case, the child
classes are made by adding new methods to the parent class. Child classes
are more specialized than the parent class.

� Multiple Inheritance or Inheritance by Generalization. In this case, the child
class is produced by merging the parent class methods. The new class is a
generalization of the parent classes (see Figure 10 on page 20).

Inheritance permits reusabilty of software.

 Chapter 2. From Structured Programming to Language Independent Object Model Programming 19

Figure 10. Inheritance.

Polymorphism: Polymorphism is the ability to hide different implementations
behind a common interface: different objects can understand the same message,
but they perform different actions. An example of polymorphism could be the
arithmetic message of addition on several objects whose data is different (for
example, integer, floating point, complex, character and so forth). The exact
implementation of addition at the machine level is different on each data type,
however the high level message addition is understood by each object (see
Figure 11 on page 21).

These key concepts of Object Oriented Technology provide significant benefits for
both end-users and developers. For example:

� Consistent user interface across many applications is possible by sharing
common objects.

� Directly mapping real-world objects to programming objects results in simplified
programming as extra layers of translation between programmers and users is
eliminated.

� Identification of common parts between and within applications facilitates
modelling and code reuse.

20 AIX Multimedia

Figure 11. Polymorphism. Polymorphism is the ability to hide different implementations
behind a common interface

2.1.2.2 Comparison of Some Object Oriented Languages

Table 3 (Page 1 of 2). Comparison of Some Major Common Object Oriented Languages

C C++ Objective C Smaltalk-80 Ada

Class/Object no defined defined defined no

Data Typing yes
can be overridden

by “cast” operator

strong yes everything is an

object
strong

Object
Binding

compile time either either Run-Time compile time

Run-Time none required yes n/a An entire OO

environment with

tools is included.

Automatic garbage

collection is done

for you

yes

Inheritance no yes yes yes no

Multiple
Inheritance

no yes yes yes no

Polymorphism
(operator

overloading)

no yes no n/a yes

Encapsulation no native
support

yes yes yes yes

 Chapter 2. From Structured Programming to Language Independent Object Model Programming 21

Table 3 (Page 2 of 2). Comparison of Some Major Common Object Oriented Languages

C C++ Objective C Smaltalk-80 Ada

Message
Passing

no yes yes yes no

Comment Not an OOPL.

Only included for

comparison

C++ programmers

migrating from C

do not necessarily

see the OO benefits

Available on

NeXTStep

environment.

Large consumption

of machine

resource (memory

and CPU)

A third generation

languages with some

OO features

2.2 Advantages of Language Independent Object Model Programming
Despite its promise, penetration of object-oriented technology in major commercial
software products has progressed slowly. This is particularly true of products that
offer only a binary programming interface to their internal object classes (that is,
products that do not allow access to source code).

2.2.1 Limitations of Object Oriented Programming
The first obstacle that developers must confront is the choice of an object- oriented
programming language.

So-called pure object-oriented languages (such as Smalltalk**) presume a
complete run-time environment (sometimes known as a virtual machine),
because their semantics represent a major departure from traditional,
procedure-oriented system architectures. So long as the developer works within
this environment, everything works smoothly and consistently. When the need
arises to interact with foreign environments, however (for example, to make an
external procedure call), the pure-object paradigm ends, and objects must be
reduced to data structures for external manipulation. Unfortunately, data
structures do not retain the advantages that objects offer with regard to
encapsulation and code reuse.

Hybrid languages like C++**, on the other hand, require less run-time support,
but sometimes result in tight bindings between programs that implement objects
(called class libraries) and their clients (the programs that use them). That is,
implementation detail is often unavoidably compiled into the client programs.
Tight binding between class libraries and their clients means that client
programs often must be recompiled whenever simple changes are made to the
library. Furthermore, no binary standard exists for C++ objects, so the C++
class libraries produced by one C++ compiler cannot, in general, be used by
C++ programs built with a different C++ compiler.

The second obstacle object-oriented software developers must confront is the fact
that different object-oriented languages and toolkits embrace incompatible models
of what objects are and how they work. Software developed using a particular
language or toolkit is naturally limited in scope. Classes implemented in one
language cannot be readily used from another. A C++ programmer, for example,
cannot easily use classes developed in Smalltalk, or a Smalltalk programmer
cannot make effective use of C++ classes. Object Oriented languages and toolkit
boundaries become, in effect, barriers to interoperability.

Ironically, no such barrier exists for ordinary procedure libraries. Software
developers routinely construct procedure libraries that can be shared across a

22 AIX Multimedia

variety of languages, by adhering to standard linkage conventions. Object- Oriented
class libraries are inherently different in that no binary standards or conventions
exist to derive a new class from an existing one, or even to invoke a method in a
standard way. Procedure libraries also enjoy the benefit of implementations which
can be freely changed without requiring client programs to be recompiled, unlike
the situation for C++ class libraries.

 These are serious obstacles for developers who need to provide binary class
libraries. In an era of open systems and heterogeneous networking, a
single-language solution is frequently not broad enough. Certainly, mandating a
specific compiler from a specific vendor in order to use a class library might be
grounds not to include the class library with an operating system or other
general-purpose product.

The solution to these problems is a “Standardized Object System Model,” which is
used to describe the object's interfaces. This description model makes object
languages neutral. It preserves key object-oriented characteristics without requiring
that the user of a class and the implementer of that class use the same language.

The Object Management Group (OMG) has defined a Standardized Object System
Model called Common Object Request Broker Architecture (CORBA).

IBM's implementation of this standard is The System Object Model objects
(SOMobjects*).

 Note

SOMobjects is not the only Standardized Object System Model, but it is the only
one which is fully CORBA compliant. Other Standardized Object System
Models are:

 � Microsoft's OLE**
� Taligent's Object Oriented Operating System

 � HP's DOMF**

2.2.2 The Solution: SOMobjects, a CORBA Standard Language
Independent Object Model

The System Object Model (SOM) is a new object-oriented programming technology
for building, packaging, and manipulating binary class libraries, which indeed fulfills
the promise of object oriented technology. The advantages of SOM are:

� Class implementors describe the interface for a class of objects (names of the
methods supported, return types, parameter types, and others) in a standard
language called the Interface Definition Language, or IDL.

� Methods may be implemented in a preferred programming language (which
may be either an object-oriented programming language or a procedural
language such as C*).

This means that programmers can begin using SOM quickly, and also extends the
advantages of OOP to programmers who do not use object-oriented programming
languages.

 Chapter 2. From Structured Programming to Language Independent Object Model Programming 23

A principal benefit of using SOM is that SOM accommodates changes in
implementation details and even in certain facets of a class's interface, without
breaking the binary interface to a class library and without requiring recompilation of
client programs. As a rule of thumb, if changes to a SOM class do not require
source-code changes in client programs, then those client programs will not need to
be recompiled. This is not true of many object-oriented languages, and it is one of
the chief benefits of using SOM. For instance, SOM classes can undergo the
following structural changes yet retain full backward, binary compatibility:

� Adding new methods

� Changing the size of an object by adding or deleting instance variables

� Inserting new parent (base) classes above a class in the inheritance hierarchy

� Relocating methods upward in the class hierarchy

In short, implementers can make the typical kinds of changes to an implementation
and its interfaces that evolving software systems experience over time.

SOM is language neutral unlike the object models found in formal object-oriented
programming languages. It preserves the key OOP characteristics of encapsulation,
inheritance, and polymorphism, without requiring that the of a SOM user class and
the implementer of a SOM class use the same programming language.

SOM is said to be language-neutral for four reasons:

1. All SOM interactions consist of standard procedure calls. On systems that have
a standard linkage convention for system calls, SOM interactions conform to
those conventions. Most programming languages that can make external
procedure calls can use SOM.

2. The form of the SOM Application Programming Interface, or API (the way that
programmers invoke methods, create objects, and so on) can vary widely from
language to language as a benefit of the SOM bindings. Bindings are a set of
macros and procedure calls that make implementing and using SOM classes
more convenient by tailoring the interface to a particular programming
language.

3. SOM supports several mechanisms for method resolution that can be readily
mapped into the semantics of a wide range of object-oriented programming
languages. Thus, SOM class libraries can be shared across object-oriented
languages that have differing object models. A SOM object can potentially be
accessed with three different forms of method resolution:

� Offset resolution: roughly equivalent to the C++ virtual function concept.
Offset resolution implies a static scheme for typing objects, with
polymorphism based strictly on class derivation. It offers the best
performance characteristics for SOM method resolution. Methods
accessible through offset resolution are called static methods, because they
are considered a fixed aspect of an object's interface.

� Name-lookup resolution: similar to that employed by Objective-C** and
Smalltalk. Name resolution supports untyped (sometimes called dynamically
typed) access to objects, with polymorphism based on the actual protocols
that objects honor. Name resolution offers the opportunity to write code to
manipulate objects with little or no awareness of the type or shape of the
object when the code is compiled.

24 AIX Multimedia

� Dispatch-function resolution: a unique feature of SOM that permits method
resolution based on arbitrary rules known only in the domain of the
receiving object. Languages that require special entry or exit sequences or
local objects that represent distributed object domains are good candidates
for using dispatch-function resolution. This technique offers the highest
degree of encapsulation for the implementation of an object, with some cost
in performance.

4. SOM conforms fully with the Object Management Group's (OMG) Common
Object Request Broker Architecture (CORBA) standards. In particular,

� Interfaces to SOM classes are described in CORBA's Interface Definition
Language, IDL, and the entire SOMobjects Toolkit supports all
CORBA-defined data types.

� The SOM bindings for the C language are compatible with the C bindings
prescribed by CORBA.

� All information about the interface to a SOM class is available at run time
through a CORBA-defined Interface Repository.

Figure 12. SOM Compiler. How SOM translates IDL file to required output.

SOM is not intended to replace existing object-oriented languages. Rather, it is
intended to complement them so that application programs written in different
programming languages can share common SOM class libraries. For example,
SOM can be used with C++ to:

� Provide upwardly compatible class libraries. When a new version of a SOM
class is released, client code needn't be recompiled, so long as no changes to
the client's source code are required.

� Allow other language users (and other C++ compiler users) to use SOM
classes implemented in C++.

� Allow C++ programs to use SOM classes implemented using other languages.

 Chapter 2. From Structured Programming to Language Independent Object Model Programming 25

� Allow other language users to implement SOM classes derived from SOM
classes implemented in C++.

� Allow C++ programmers to implement SOM classes derived from SOM classes
implemented using other languages.

� Allow encapsulation (implementation hiding) so SOM class libraries can be
shared without exposing private instance variables and methods.

� Allow dynamic (run-time) method resolution in addition to static (compile-time)
method resolution (on SOM objects).

� Allow information about classes to be obtained and updated at run time. (C++
classes are compile-time structures that have no properties at run time.)

The user of a SOM class and the implementer of a SOM class need not use the
same programming language, and neither is required to use an object-oriented
language. The independence of client language and implementation language also
extends to subclassing: a SOM class can be derived from other SOM classes, and
the subclass may or may not be implemented in the same language as the parent
class(es). Moreover, SOM's run-time environment allows applications to access
information about classes dynamically (at run time).

2.3 Conclusion: Making Reuse a Reality
Creating interchangeable, reusable software components is very much a reality
today: developers can choose from a variety of object oriented programming
languages, design and analysis aids, and visual programming tools. They can also
find OO enablers and frameworks built into the latest releases of some operating
systems (for example IBM Operating System/2* Versions 2.0 and 2.1). What were
not available, until now, are some key pieces needed to complete a system that
works as smoothly and openly as the hardware development process.

With SOM objects tools, the programmers can supply these missing pieces by
breaking objects free from ties to a specific programming language (see Table 4).
On a single machine, the System Object Model provides an object-structured
protocol that allows applications to access and use objects and object definitions,
regardless of what programming language created them, with no need to recompile
the application. SOM's language-neutral character allows robust software objects
to be easily used and reused wherever they're needed. It also enables a greater
degree of openness than ever before in the development and use of object oriented
programming (OOP) facilities across multiple operating platforms.

Table 4 (Page 1 of 2). Multimedia Requirements Provided by Different Development
Approaches

Structured
Approach

Object
Oriented

Independent
Object
Model

Complexity Management no yes yes

Open partial no yes

Reuse partial yes Yes

Data Abstraction limited yes yes

26 AIX Multimedia

SOMobjects incorporates Distributed SOM (DSOM) technology that provides a base
for OOP development and use over entire networks. With the IBM SOMobjects
Developer Toolkit, programmers can start taking advantage of SOM and DSOM
immediately. SOMobjects complies with industrywide standards of the Object
Management Group's (OMG) Common Object Request Broker Architecture
(CORBA). It provides an extensive set of facilities for putting the power and speed
of OO technology to work.

Table 4 (Page 2 of 2). Multimedia Requirements Provided by Different Development
Approaches

Structured
Approach

Object
Oriented

Independent
Object
Model

Flexibility no yes yes

Portability yes no yes

Heterogeneity yes no yes

Distribution no no partial

Expandability limited yes yes

 Chapter 2. From Structured Programming to Language Independent Object Model Programming 27

28 AIX Multimedia

 Chapter 3. Ultimedia Services/6000

The continued growth of multimedia within the business environment is promoting
demand of application program support with improved capabilities to meet the
expectations of the current customer market. The AIX Ultimedia Services/6000 is
IBM's response to this customer's demand.

AIX Ultimedia Services/6000 are installable extensions to the base AIX Operating
System that support the use of audio and video data on RISC System/6000*.

Ultimedia Services/6000 is an integral part of the IBM desktop computing solution
for technical and commercial AIX/6000* environments. It provides ease of use in
accessing various multimedia types and developing multimedia applications,
thereby enhancing customer productivity and communications.

It provides the ability to enhance interfaces and applications with the use of audio
and video facilities. It enables customers to use standard multimedia types to
provide a more effective communication media. Customers may quickly enhance
current application programs or develop new applications in a true multimedia
environment.

It provides enhanced facilities for working with various media types on RISC
System/6000s and offers a robust Application Programming Interface (API), new
Graphical User Interface (GUI) and other tools to support audio and video. Sample
code, video clips and audio clips are provided for user convenience and to illustrate
usage of multimedia in a business environment.

Figure 13. AIX Ultimedia Services/6000 Product

An Application Programming Interface and a Graphic User Interface enable basic
video and audio services on the RISC System/6000 platform. Also included are

 Copyright IBM Corp. 1994 29

System Object Module (SOM) objects that demonstrate media presentation and
translation capability. These encourage multimedia application programmers to
promote the development, enablement, or migration of multimedia applications to
the AIX platform and facilitate media compatibility across applications.

AIX Ultimedia Services/6000 has been designed to support industry standard audio
and video formats from PC and workstation environments. They promote the
sharing of audio and video information while protecting investment in existing
hardware, software and multimedia content. It uses the existing IBM M-Audio
Capture and Playback Adapter (M-ACPA) for CD quality sound support. Movies
are played using advanced decompression and playback routines that rely on the
power of the RISC System/6000 instead of requiring specialized hardware. This
scalability of service allows multimedia performance to follow the trend of processor
speeds. The goal is to provide basic services so the user has a choice and is not
forced to use a PC to meet basic multimedia needs.

 Note

UNIX workstations have a significant advantage as video support is moving to
software playback instead of using specialized hardware. The available
processing power can support and manage more complex video editing and
playback scenarios such as multiple audio/video streams or higher resolution
images. Generally, UNIX network services provide greater capability for
networked multimedia solutions. The PC areas currently have more options
and applications including access to a wide range of multimedia titles not yet
available on the workstation.

 3.1 Main Characteristics
Ultimedia Services/6000 provides an object-oriented, easy-to-use set of libraries
which greatly eases creation of multimedia applications. This Object-Oriented
interface to multimedia devices and libraries greatly reduces programming time. A
facility for editing audio and video clips is provided. Sample applications are
available for demonstrations and technique analysis. This allows the developer to
study and emulate existing modules when creating new applications.

AIX Ultimedia Services/6000, one of the most advanced multimedia computer
environments, was created through the fusion of four different technologies:

� Multimedia - the ability to manage different types of data.

� Object-Oriented - the ability to write reusable and easily extendable software.

� Media Control Interface** (MCI) and Multi Media Input Output** (MMIO) -
the PC standard to control device drivers and file Input/Output, respectively.

Media Control Interface (MCI)

MCI is a high-level standard command control interface to multimedia
devices and resource files. It provides applications with device-independent
capabilities for controlling audio and visual peripherals. It has been
developed jointly by IBM and Microsoft**.

� SOM and DSOM, which makes all heterogeneous, CORBA compliant,
object-oriented software available.

30 AIX Multimedia

Figure 14. AIX Ultimedia Services/6000: Technological Aspects

The capabilities of all these technologies are required to guarantee a good
multimedia environment as described in section 1.4, “What Makes a Good
Multimedia Environment?” on page 10.

3.1.1.1 Ultimedia Services/6000 is Open and Heterogeneous
AIX Ultimedia Services/6000 supports industry standard data types and interchange
formats. An an increasing number of customers require adherence to industry
standard object-oriented program models to establish and maintain products.

The application programming environment, provided by this product, allows
applications to use current and upcoming hardware offerings without recompiling
the application. This programming environment contains an expandable set of
objects created with IBM's System Object Model. This guarantees complete
interoperability and portability with all CORBA standard objects. Applications
written in C and C++ are able to use these objects and Ultimedia Services/6000's
objects are able to use other CORBA compliant library objects.

File interoperability across platforms is achieved by supporting popular file formats
and media compression algorithms used in PC and workstation arenas.

3.1.1.2 Ultimedia Services/6000 is Flexible

Objects are the natural way to implement flexibility in a software system because
they communicate with each other using only messages addressed to well-defined
interfaces. Developers are only required to specify the functionality of their
programs: that is the messages exchanged by the objects. Ultimedia
Services/6000 object library allows code to be written using the plug and play
approach. Multimedia objects, provided by the Ultimedia Services/6000, can be
used to easily add audio and video capability within the framework of existing
applications.

The object-oriented library encourages use of object-oriented software engineering
programming such as data abstraction, encapsulation and sub-classing, but it does

 Chapter 3. Ultimedia Services/6000 31

not require them. Developers can also use Ultimedia Services/6000 as they would
use a normal library, to create traditional structured applications.

3.1.1.3 Ultimedia Services/6000 is Extendable

The Ultimedia Services/6000 object-oriented approach allows code to be easily
extended. The inheritance mechanism allows Ultimedia Services/6000 objects to be
used to produce new objects. Using this library, a developer has to write only the
code needed to differentiate new classes from the old ones. With Ultimedia
Services/6000 all CORBA compliant class libraries can be used, modified and
extended.

Ultimedia Services/6000 was written using SOM technology; therefore, it is possible
to use the OO inheritance mechanism to extend classes of objects provided by the
product. It is also possible to use and extend any other CORBA compliant binary
class libraries.

3.1.1.4 Ultimedia Services/6000 is Reusable

Reuse is the key to dramatically improved software productivity. Coding time is
reduced and software quality is improved through the reuse of tried and trusted
objects. A significant benefit of the object-oriented approach used for the AIX
Ultimedia Services classes is the increased potential for reusable code. The
independent nature of these objects enables them to be coupled together in various
ways. Applications that manipulate multimedia data can be easily created and
assembled. This reduces the time and effort to produce new applications or to
enhance old ones.

Common functionality in different applications can be realized by using common
shared objects. This leads to a more consistent user interface across the system as
a whole.

Identification of common parts between and within applications greatly facilitates
modelling and code reuse.

3.1.1.5 Ultimedia Services/6000 Allows High Specialization
Objects can be specialized more easily than functions, because backward
compatibility is much easier with objects than with functions. For example,
programs written to use an object could continue to use the original features
without change. Any new programs could take advantage of new features.
Obtaining the same result with a function is more complex.

The object-oriented approach used to create the Ultimedia Services/6000 library,
allows software to be created using a plug and play approach; the same approach
used in the assembly of PC hardware. This allows production of highly specialized
software components. In fact, the application production chain can be broken into
two parts: programmers who develop new applications (by assembly of objects)
and programmers who create and improve objects. Developers can become highly
specialized on well defined areas of software engineering as their hardware
colleagues are. The Ultimedia Services/6000 objects are reusable,
highly-specialized, continuously improved units of code. Moreover, the use of SOM
allows them to be CORBA compliant.

32 AIX Multimedia

3.1.1.6 Ultimedia Services/6000 Is Not Yet Distributed

This release of AIX Ultimedia Services/6000 (1.1) is SOM compliant, but it is not
DSOM compliant. It does not allow transparent access to objects across networks.
In this release, object distribution is provided only through the X-Window** System.
Support is provided to distribute still images and motion video (without audio), but
not to distribute audio.

 Distribution

Two steps are required to create an integrated, distributed multimedia
information system:

 � Interconnectivity
 � Interoperability

Interconnectivity means that two or more applications running on the same
machine or on different machines can exchange messages (this means they
can communicate), but they cannot cooperate. For example, in the client-server
model, clients send requests for services and the server sends back the
requested services. There is communication, because client and server
exchange information, but there is not cooperation, because the server works
without using any client resources.

Interoperability means that two or more applications can interact to execute
tasks jointly. Clients can request services involving resources that reside
anywhere across networks. In this way, objects can request services from other
objects and work together, independent of object and resource location.

The next release of this product is expected to be DSOM compliant, so Ultimedia
Services/6000 objects would be shareable across networks. This will allow true
interoperability between networked computers.

3.2 Functional Aspects: the Components
Ultimedia Services/6000 is organized in three different parts:

1. The Ultimedia Services/6000 binary class library , developed using SOM
technology, allows the creation of object oriented, event-driven multimedia
applications.

2. The Ultimedia Services/6000 audio player/editor/recorder application suite
and a motion video player/editor , an extensive library of audio samples,
audio/video samples and application demonstrations are provided to stimulate
customer acceptance and promote multimedia development on the RISC
System/6000.

3. Sample desktop applications , which demonstrate the usage of multimedia
functions in an interactive environment. Samples are interactive from the
mouse/keyboard interface and employ animations and sound in synchronous
format. Four samples are included which demonstrate the usage of multimedia
in banking, assembly, real estate and public information.

 Chapter 3. Ultimedia Services/6000 33

Figure 15. AIX Ultimedia Services/6000 Components

Ultimedia Services/6000 also includes some sample programs which show how
some objects are made and how they work. Audio and video samples are also
included.

3.2.1 Ultimedia Object's Library
AIX Ultimedia Services/6000 features programming support for various services
including:

� Software video compression and decompression (CODEC) algorithms

� Audio and Video editors/player

� Support of numerous popular multimedia file formats

 � Audio recording

These services are provided through the use of the following classes of objects
(see Figure 16 on page 35):

� Media Handler Objects

� Video Decoder and Encoder (CODEC) Objects

� File Access Objects

 � Configuration Objects

� Audio Filter Objects

34 AIX Multimedia

Figure 16. Object Library Components

These objects can be divided in two groups as shown in Figure 17 on page 36.
Some objects are used to handle media, and others are used to translate media to
and from its basic presentation form.

� The first group of objects called media handler objects are used to play the
media within an application. These objects, offering presentation capability,
share concepts with the Media Control Interface (MCI) found on Microsoft
Window Multimedia Extension** and on Multimedia Presentation Manager/2
(MMPM). They play audio, video or synchronized audio and video using
methods much like the MCI messages.

� The second group of objects is actually composed of two kinds of objects:

– Media Conversion Objects (video codec and filter objects)
– File Access Objects (configuration and file access objects)

The media conversion objects include only video decoders and encoders and
audio filters. There are no objects to perform audio encoding and decoding or
for video format translation. Audio encoding and decoding is performed directly
by hardware (this is a accomplished by loading microcode on an audio card).
Instead of a movie filter, some sample programs are provided, but no real
object class. This group of objects offering media translation capability share
concepts with the Multimedia Input Output (MMIO) library also found on PC
products. They offer support to more sophisticated applications by providing
them with shared system services for reading and interpreting standard formats
and for compression and decompression of most of these same file formats.

Figure 17 on page 36 shows how Ultimedia Services/6000 Object Library is
logically organized.

 Chapter 3. Ultimedia Services/6000 35

Figure 17. AIX Ultimedia Services/6000 Object Library. The picture shows the objects included in Ultimedia
Services/6000. They can be organized into two levels: high level objects (presentation level) and low level objects
(device and file management)

3.2.1.1 Media Handler Objects
Ultimedia Services/6000 media handler objects provide a means of controlling
audio and video data much like audio and video home entertainment systems: a
movie can be loaded into a movie player, played, and then paused when an
interesting sequence occurs. The complexity of moving the information through the
system is hidden by the media handler object, which uses other processes to
control the data flow and handle device-specific dependencies.

Figure 18. Media Handler Objects

The media handler objects are an audio player/recorder and a movie player.

� The audio player/recorder object can be used to play and record audio in the
PCM, ADPCM, A-LAW and µ-LAW audio standard. For these types of audio
standards, the following variety of file formats can be used:

36 AIX Multimedia

 – WAVE (.wav)
 – RIFF (.au)
 – SND (.snd)
 – RAW (.raw)

(The first three file formats contain attributes within the file, which describe how
the audio sample was encoded.) The encoding characteristics of WAVE and
SND formats are shown in the following table.

Table 5. Audio Encoding

File Format Data Format Sample Rates Bits per Sample

WAVE PCM 8000, 11025, 22050, 44100 8 or 16

A-LAW 8000, 11025, 22050, 44100(mono
only)

8

µ-LAW 8000, 11025, 22050, 44100(mono
only)

8

SND PCM 8000, 11025, 22050, 44100 8 or 16

A-LAW 8000, 11025, 22050, 44100(mono
only)

8

µ-LAW 8000, 11025, 22050, 44100(mono
only)

8

The .raw format does not contain this type of information. For more details on
multimedia file formats see Appendix A, “Multimedia Technologies” on
page 57).

� The movie player object can be used to play synchronized audio and video
from a file. The movie player works with the AIXwindows* system, using an
AIXwindows window to display the video frames. The playback of video frames
does not need special hardware adapters. An audio adapter is required only if
the video also contains sound. It is capable of playing movies recorded in the
following formats:

– Motion Joint Photograph Experts Group (M-JPEG)
 – Ultimotion Matinee

These are two kind of Resource Interchange File Format (RIFF) file formats.
This type of format allows one video track and several audio tracks to be
interleaved into the file. These files are indicated by a .AVI extension. For more
information on these file formats see Appendix A, “Multimedia Technologies”
on page 57.

 Chapter 3. Ultimedia Services/6000 37

 Synchronization

During normal playback, synchronization between real-time media such as
audio and video, occurs as the information streams physically proceed through
the player. Time is measured in samples of audio or frames of video, or in
milliseconds.

Because these measurements of progress are tightly related, any sample of
audio or video can be thought of as having a time stamp associated that
represents the length of time to be played. If the playback of the media is
altered, such as speeding up the play, the time stamp association would not be
consistent with real time, but would still be useful as a reference specifying a
consistent position in the media.

3.2.1.2 Video Decoder and Encoder Objects
Ultimedia Services/6000 provides video compression and decompression through
the encoder class and decoder class respectively. To use one of these classes, an
application first initializes the object and then calls the object's methods to perform
the needed actions.

Figure 19. Video Decoder and Encoder Objects

Ultimedia Services/6000 supports three video CODECS:

� Motion Joint Photographs Experts Group (M-JPEG)

 � Ultimotion Matinee

 � RTV 2.0

Ultimedia Services/6000 provides both encoder and decoder for the first two; while
only the decoder is provided for the RTV 2.0 format.

These codecs are intended for continuous-tone input; for example digitized
photographs and motion video. For more information on these formats see
Appendix A, “Multimedia Technologies” on page 57.

38 AIX Multimedia

Table 6. Motion Video Codecs Characteristics

Algorithm Advantages

M-JPEG � Arbitrary frame size
� Higher visual quality

 � Non-proprietary algorithm
� Compression in software

Ultimotion Matinee � Presentation-quality video
� Faster decoding in software
� Fully compatible with PS/2 motion video
� Compression in software

RTV 2.0 � Presentation-quality video
� Fully compatible with PS/2 motion video

3.2.1.3 File Access Objects
File Access Objects allows access to fields and chunks of information in files kept
in standard formats.

Figure 20. File Access Objects

These objects are useful for applications which need to read, change, or write file
formats. Ultimedia Services/6000 provides the following objects:

� RIFF File Access (UMSRiffReadWrite). This object provides methods to
access, read, write and parse files written in the RIFF format (for more details
on RIFF formats, see Appendix A, “Multimedia Technologies” on page 57).

� AVI File Access (UMSAVIReadWrite). This object provides methods to
locate, read, write the data and the header in the AVI format (for more details
on AVI formats, see Appendix A, “Multimedia Technologies” on page 57).

� AVS File Access (UMSAVSReadWrite). This object provides methods to
locate, read, write the data and the header in the AVS format (for more details
on AVS formats, see Appendix A, “Multimedia Technologies” on page 57).

� Filetype Detector (UMSFiletypeDetector). This object is used to detect the
type of a given media file.

 Chapter 3. Ultimedia Services/6000 39

 3.2.1.4 Configuration Objects
Ultimedia Services/6000 configuration objects are used to allow the filetype detector
object to recognize the set of possible file types and to allow applications to request
an audio device.

Figure 21. Configuration Objects

There are two configuration objects:

� UMSConfig Object - used generally by the Filetype Detector Object to detect
the input file types.

� UMSAddConfig Object - used to add new device-driver aliases to an
application. It can also be used to add new file types or to add alternate
devices to use when one is busy.

3.2.1.5 Audio Filter Objects
Ultimedia Services/6000 audio filter objects allow the changing of both the audio
format of a file (for example from PCM to µ-LAW) and the bit sampling.

Figure 22. Audio Filter Objects

The Audio Filter Objects provided are:

� UMSFilter Object - A parent class defining the methods for the whole family of
filters. It exists only for inheritance.

40 AIX Multimedia

� UMSADPCMtoPCM16 Object - Converts file format from ADPCM to PCM at
16-bit.

� UMSPCM16toADPCM Object - Converts file format from PCM at 16-bit to
ADPCM.

� UMSALAWtoPCM16 Object - Converts file format from A-LAW to PCM at
16-bit.

� UMSPCM16toALAW Object - Converts file format from PCM at 16-bit to
A-LAW.

� UMSMULAWtoPCM16 Object. Converts files format from µ-LAW to PCM at
16-bit.

� UMSPCM16toMULAW Object - Converts file format from PCM at 16-bit to
µ-LAW.

� UMSPCM8toPCM16 Object - Converts file format from PCM at 8-bit to PCM at
16-bit.

� UMSPCM16toPCM8 Object - Converts file format from PCM at 16-bit to PCM
at 8-bit.

� UMSByteOrder Object - Changes the byte order of 16-bit PCM.

� UMSChainFilter Object - Allows creation of audio filter object pipes where the
output of the first object is passed as input to the second, and so forth.

� UMSSamplingRate Object - Changes sampling rate of PCM at 16-bit.

These objects provide the capability to:

� Convert various audio formats to 16-bit pulse code modulation (PCM)

� Convert 16-bit PCM into other audio formats

� Modify the sampling rate of 16-bit PCM

� Convert the byte order of 16-bit PCM

� Chain several of these objects together

 3.2.2 Tools Programs
AIX Ultimedia Services also provides two fully Common User Access (CUA)
compliant and icon-based multimedia tools:

� An audio player/editor/recorder, which can play audio from a variety of sources,
file formats, and compression types.

� An audio/video movie player/editor, which is able to present movie files
compressed in Ultimotion and Motion JPEG formats. All 8 and 24-bit IBM color
graphics adapters are supported.

These two players provide an easy way for the novice user to explore multimedia
data types. Easy-to-use tools provide simple cut/copy/paste commands for video
and audio editing. End-users can easily edit and merge current audio and movie
files to update old material or create new deliverables.

Simple audio and audio/video samples are provided for demonstration purposes.

 Chapter 3. Ultimedia Services/6000 41

These tools are an example of the use of the Ultimedia services/6000 object library.
These tools can run from any AIX window or desktop and use the AIX Ultimedia
Services/6000 objects to perform multimedia play or record operations.

3.2.2.1 Movie Player/Editor Program
The Ultimedia Services/6000 Movie Editor plays and provides editing capability for
audio/video interleaved (AVI) files with Ultimotion Matinee and M-JPEG video
compression.

The Movie Editor shown in (Figure 23 on page 43), shows the main window that is
displayed each time the Movie Editor is started. From this panel the user can
perform every movie operation allowed in a natural way.

The Movie Editor is organized as follows:

� In the center of the panel, there is the display window (320x240 pixel) where
the movie is displayed.

� Buttons on the bottom of the panel allow the movie to be played, stopped,
paused, scanned and played step-by-step (both in forward and in backward
mode).

� Four pulldown menu buttons on the top bar allow the user to perform editing
functions (typically merging parts of the edited file with other movie files).

� A volume scroll bar and the mute button on the left permit the audio volume to
be controlled.

A record button is also provided, but movie recording is not supported in this
release of the product.

42 AIX Multimedia

Figure 23. Movie Editor

 Chapter 3. Ultimedia Services/6000 43

3.2.2.2 Audio Player/Editor/Recorder Program
The Ultimedia Services/6000 Audio Waveform Editor plays, records, and provides
editing capability for audio file formats.

The Audio Editor displayed in (Figure 24 on page 45), shows the main panel that
is displayed each time the Audio Editor is started. From this panel every audio
operation allowed can be performed in a natural way.

The Audio Editor panel is organized in the following way:

� In the center of the panel, there are two areas where the audio file waveform is
displayed. It displays the full file waveform and current waveform of the played
segment. The segment of the waveform can be enlarged or reduced using the
vertical detail buttons.

� On the bottom, there are six buttons: play, stop, pause, begin, end and record,
respectively, which allow the usual audio operation.

� The four pulldown menu buttons on the top allow the editing operations (cut,
past and merge).

� A volume scroll bar and the mute button on the left permit audio volume to be
controlled.

This tool provides simple, but complete audio support to create, edit or play voice,
music and sound.

44 AIX Multimedia

Figure 24. Audio Waveform Editor

 Chapter 3. Ultimedia Services/6000 45

 3.2.3 Demo Examples
Four demo examples are provided with AIX Ultimedia Services/6000 showing how
business applications can be improved dramatically using a multimedia
environment.

The four business areas are:

 � Banking Industry

 � Realty Market

 � Retail Business

 � Employee Training

This suite of four applications was conceived and developed by Sybase** Inc.,
using Gain Momentum software and AIX Ultimedia Services/6000.

 Note

Gain Momentum software provides an object oriented application development
environment for delivering open client-server business solutions.

This is a typical example of software enhancing using Ultimedia Services/6000
Each demo is organized in three parts:

1. The first part shows common problem areas in this type of business.

2. The second part shows the proposed solutions for the problems:

The bank's customers are provided with a list of interactive services
available (nearest ATM services, and so forth).

Realty market customers and employees are provided with a virtual visit to
a house. The user can see every part of the house, general area, and
neighborhood by simply pressing buttons on the multimedia workstation.

The retail sport shopper is provided with an interactive catalog and
database of sport products.

Factory workers are provided with an interactive assembly course.
Employees can use this interactive course to improve or to check on their
skills.

3. The third part shows the hardware solution proposed.

Figure 25 on page 47 and Figure 26 on page 48 show the first screen of the
Ultimedia Services/6000 demos and a typical screen from the retail demo,
respectively.

46 AIX Multimedia

Figure 25. Main Screen of Ultimedia Services/6000 Demos. From this screen it is possible to access the four demos
available. Each demo is represented by a button, which can be pressed to start the selected demo

 Chapter 3. Ultimedia Services/6000 47

Figure 26. A typical Retail Shop Demo Screen. There are several panels describing: the customer information (top
panel on the left), a selection panel used to help the customer to select the product (long panel on bottom), a list of
sails available (this panel, which appears on the left, is activated by pressing the “sails” button on the previous panel),
and a detailed panel describing the selected sail (panel on the right).

 3.3 Programming Considerations
It is necessary to understand both the internal objects provided for processing
multimedia information and the external mechanisms for obtaining and representing
the information itself in order to use all of the services available with AIX Ultimedia
Services/6000.

Access to information means providing methods for storing audio and visual data in
a form that can be processed by the system; for example the M-ACPA card on the
RISC System/6000. Having the hardware devices to allow connection of the
external data feeds is not sufficient however. It also necessary to have software to
drive the hardware adapters and interpret the information. Ultimedia Services/6000
objects make the task of handling devices drivers and interpreting audio and video
data easy.

The multimedia representation scheme, that is, how multimedia data is handled by
computers, is explained in Appendix A, “Multimedia Technologies” on page 57.
This shows, in detail, which technologies (both hardware and software) are involved
in multimedia and how multimedia information is converted into computer data.

48 AIX Multimedia

This section explains how the Ultimedia Services/6000 objects can be used to
interact with multimedia data and create multimedia applications. Figure 27 on
page 49 shows that Ultimedia Services/6000 objects are logically positioned as a
high-level programming interface between the application and
AIXwindows-OSF/Motif**. As the graphic depicts, the Ultimedia Services/6000
objects form an extension to the AIXwindows environment that is able to handle
audio and video data.

Figure 27. AIX Ultimedia Services/6000 layer. The Ultimedia Services/6000 objects library,
fully integrated with AIXwindows and OSF/Motif, provides a set of objects to access and use
multimedia files and devices.

There are various types of multimedia information that developers may want to
access. Some of these (audio and video) as we saw in previous sections can be
managed by Ultimedia Services/6000, but multimedia data also includes things
such as text, graphics and still images, which Ultimedia Services/6000 objects are
not currently able to manage. In order to incorporate this kind of information into a
multimedia application, it is necessary to use an alternative mechanism such as the
AIXwindows widget set, coupled with Ultimedia Services/6000 objects. With these
two mechanisms, an application is able to use all the major multimedia information
streams now available on computers.

3.3.1 Media Supported by AIX Ultimedia Services/6000
AIX Ultimedia Services/6000 does not provide objects to manage all major
multimedia media. Robust support is provided for motion video and audio, but, no
support is provided for text, graphics or still images, However, programmers can
use the support provided by AIXwindows and OSF/Motif for these media as
indicated in the following table.

Table 7 (Page 1 of 2). Media Supported by AIX Ultimedia Services/6000

Ultimedia Services AIXwindows and
OSF/Motif

Motion Video yes no

Audio yes no

 Chapter 3. Ultimedia Services/6000 49

 Notes

AIXwindow and OSF/Motif provide support only for pixmaps, but many free
UNIX tools are available to support or to convert other still image file formats.

The only way to provide animation is to record it as motion video, for example
using the M-JPEG format.

Table 7 (Page 2 of 2). Media Supported by AIX Ultimedia Services/6000

Ultimedia Services AIXwindows and
OSF/Motif

Text no yes

Still Image no partial

Animation partial no

Graphics no yes

3.3.2 Limitations and Performance Considerations
Performance will be affected by the type/performance of individual storage devices,
as well as the customer-specified parameters for file and data storage management
and archival/retrieval functions. Performance will also be affected by factors such
as processor speed, memory configuration, available fixed disk storage and the
application environment. For more information on performance considerations see:
AIX Ultimedia Services/6000 Version 1.1.0.

3.4 AIX Ultimedia Services/6000 at a Glance

Table 8 (Page 1 of 2). Ultimedia Services Requirements

Hardware Required 200, 300 or 500 Series POWERstations and POWERservers configured
with a minimum of:

� One supported display, display adapter keyboard, and mouse

� M-Audio Capture and Playback Adapter (for audio).

Memory � Minimum: 16MB

� Recommended: 32 MB

Fixed Disk Storage � Minimum 10MB for Ultimedia Services/6000 Code

� Minimum 50MB for Ultimedia Services/6000 demo and sample clips

� Additional fixed disk required for user-created audio and video files

Operating System AIX Version 3.2.4 or later

Other Software � AIXwindow/6000 Version 1.2.4 or later

 � OSF/Motif 1.2

50 AIX Multimedia

Table 8 (Page 2 of 2). Ultimedia Services Requirements

Hardware Supported Ultimedia Services/6000 is designed to support:

� IBM 8 and 24-bit graphics adapters

 � CD-ROM

 � M-ACPA card

 Chapter 3. Ultimedia Services/6000 51

52 AIX Multimedia

 Chapter 4. Future Directions

The future user's requirements can be divided into two main categories:

 � Developer's needs

 � End-User's needs

For the first category, the problem is to have a multimedia programming interface
which is flexible, expandable and distributed (see 1.4, “What Makes a Good
Multimedia Environment?” on page 10). Todays standard interface technology is
not extendable. The interface developer must design all of the flexibility that users
might eventually need in advance. This could possibly be realized for traditional
applications, but in multimedia applications the user's requirements cannot be fully
projected. Creating a new multimedia programming interface means to provide
some functionality, from which developers can easily obtain new functionality.
Moreover, these new interfaces must be accessible by a variety of different
programming languages. Finally, these interfaces must provide transparent
distribution of data, resources and CPU between networked computers.

The end-user's requirements are multimedia and distribution. They need to
manage multimedia data like they handle traditional data. Single-user multimedia
applications are not the wave of the future. These applications manage the new
types of data, but the information can not be distributed or shared throughout the
corporation. Customers need distributed multimedia business applications which
are able to share new types of data (audio, video, animation and so forth), able to
work on different platforms, and which allow videoconferencing and fully interactive
real-time collaboration between networked end-users.

AIX Ultimedia Services/6000 responds to these requirements by offering multimedia
programming interfaces along with true objects which can be subclassed and are
accessible from a variety of languages. It provides a set of multimedia tools which
can be used to create new multimedia information or to reorganize existing
information. Ultimedia Services/6000 satisfies a large part of, but not all, customer
and developer requirements for a good multimedia programming environment. The
addition of the support provided by AIXwindows and OSF/Motif fulfills most of the
current requirements.

4.1 The Future for Ultimedia Services/6000 Objects Library
The AIX Ultimedia Services/6000 Object Library will improve over time by
increasing the multimedia capabilities and increasing distribution and
heterogeneous features.

Ultimedia Services/6000 has significant advantages from being developed using
SOM technology. Its SOM features allows Ultimedia Services/6000 to become a
heterogeneous and distributed bus, able to link a variety of software developed on
different operating systems. Ultimedia Services/6000 will benefit from SOM
improvements. Every improvement to the SOM software (for example, support for
a new operating system or for the binding of a new language) will extend Ultimedia
Services/6000 capabilities.

 Copyright IBM Corp. 1994 53

SOM is fully CORBA compliant and it is quickly becoming a cross-platform for
CORBA implementations. SOM provides support for NetBIOS, IPX** and TCP/IP,
and it also has added C++ language bindings, cross-process and cross-system
support. SOM currently provides support only for OS/2 and AIX, but it will provide
support for Windows, Apple System 7**, HP/UX**, MVS/ESA*, and OS/400*, and
plans are being discussed for Novell** and SunSoft**. IBM wants to port SOM into
OpenDoc. This would offer an alternative to OLE 2.0 that is open, standards-based,
multi-platform, and technically superior. Ultimedia Services/6000 will be able to
work on several different operating systems, to link code written in a growing
variety of programming languages and to transparently distribute objects between
networked computers. This means improved flexibility, distribution and
heterogeneous features.

Ultimedia Services/6000 is organized into five object classes (see 3.2.1, “Ultimedia
Object's Library” on page 34), which support the following multimedia operations:

� Software video compression and decompression

� Audio and Video playback

 � Audio recording

� Translation between Audio file formats

� Adding virtual device drivers or new file types

There is no support for video recording, and this is the main deficiency of Ultimedia
Services/6000 Version 1.1.

The next release of Ultimedia Services/6000 will address this deficiency. It will
provide support for video capture and for video file format translation by adding new
classes and new features to the current classes. New state-of-the-art features
(scaling, quality improvements, and others) will also be added to current CODEC
algorithms to bring them more in line with PC CODEC capability.

4.2 The Future for Ultimedia Services/6000 Multimedia Tools
The next release of the Ultimedia Services/6000 tools will include full integration
into the new AIX Common Desktop Environment (CDE) for AIX/6000.

The intent is to fully integrate multimedia data into the new AIX desktop. Both
multimedia and traditional data will be managed in the same way. All standard
operations available on icons representing traditional data (text, executable
programs and so forth) will also be supported for new multimedia data (audio and
video). For example, a double-click on a particular icon on a current traditional
desktop indicates that the user wants to perform the default action on that icon. On
an icon representing a text file, a double click indicates the user wants to edit that
file. The same action on an icon representing a executable program indicates that
the user wants to execute the program. Integrating multimedia data into CDE
means that these types of behavior will also be possible for multimedia icons. A
double-click on an audio icon or on a movie icon will run the audio or the movie
player respectively. From the end-user point of view, all data icons will have similar
predictable behavior.

This is a big step toward the homogenization of data handling. Customers want to
use their data (both traditional and multimedia) in a simple and predictable way. A
multimedia desktop is a step toward uniformity of computer information.

54 AIX Multimedia

Other enhancements will provide a video capture feature which will be included in
the video/audio tool. It will then be possible to record motion video directly from the
RISC System/6000.

There are also plans to extend the Ultimedia Services/6000 tools to provide a
framework for videoconferencing and for workgroup collaboration (for example, a
clipboard shared in real time by users, or the ability to work on the same
document).

4.3 Vendors Announcing Support for Ultimedia Services/6000
Several vendors in the UNIX area have announced intentions or plans to develop
their applications with AIX Ultimedia Services/6000. The following table summarizes
the action taken by some vendors:

Table 9. Vendors Announcing Support for Ultimedia Services/6000

Aim Tech Signed a development agreement to provide a RISC System/6000 version of
ICONAUTHOR, a multimedia authoring package.

Applix Inc. Has announced their intent to use AIX Ultimedia Services/6000 to support audio
and video in its ApplixWare desktop application.

Frame
Technology

Inserted calls to Ultimedia Services/6000 within its Frame environment.

Insoft Inc. Has signed a development agreement with IBM to provide a RISC System/6000
version of Communique, a teleconferencing package that supports collaboration
in the UNIX environment.

Interleaf Inc. Used AIX Ultimedia Servics/6000 in it's application.

Sybase Inc. Gain Momentum has a multimedia demonstration developed with AIX Ultimedia
Services/6000.

 Chapter 4. Future Directions 55

56 AIX Multimedia

 Appendix A. Multimedia Technologies

This appendix shows how different multimedia information types are handled by a
computer and how media is converted into computer data. This is not a trivial
problem, because all of this information is represented by different technologies
with disparate qualities, standards, computer devices, and unique methods for user
interaction. One of the main goals of multimedia is the management of these data
types in an efficient way to optimize the value of multi-sensory communication.

 A.1 Audio
The human ear recognizes audio signals as continuous variation of air pressure on
the ear's membrane. This variation can be represented in a two dimensional space,
where the x-axis represents time and the y-axis represents the instantaneous
pressure value. The curve in this space is called a wave or audio wave or
waveform, and the instantaneous value of this curve is called the Amplitude of the
wave. For this reason the word audio is used in relation to any acoustic,
mechanical, or electrical frequencies corresponding to normal audible sound waves,
which are of frequencies ranging from 15 to 20,000 Hz (Webster's Dictionary).

Audio can be in one of the following forms:

 � Analog Waveform

 � Digital Waveform

 � MIDI

The hierarchical diagram of this representation is given in Figure 28.

Figure 28. Audio Types

 Copyright IBM Corp. 1994 57

A.1.1 Analog Waveform Audio
Sound can be seen as a continuous variation of a quantity with time and its analog
waveform is the continuous magnitude of that signal. This means that the
magnitude of the signal itself represents the loudness, and the magnitude variation
the frequency. This is the way analog devices such as a cassette recorder record
sound: as an electric signal, where electric voltage replaces the sound loudness
and voltage variation is the frequency.

Analog audio is subject to noise, error, distortion and the limited life of the storage
devices. However, it is widely used and it is available from many devices such as
compact disc (CD) players, digital audio tape (DAT) players, cassette players, or
open reel players. The signal generated by these devices can be routed directly to
an audio amplifier and speakers, without any conversion or processing.

Computers are not able to manage analog signals (they manage only digital data):
therefore, these signal must be converted into computer-form data.

Computers can store and generate sound in two different formats:

� Waveform Audio File

� MIDI Audio File

A.1.2 Digital Waveform Audio
A digital representation of a sound can be obtained from an analog waveform
through a process called Analog-To-Digital Conversion (ADC). This process is
organized into two main sub-processes:

� Sampling, where the analog signal's amplitude is periodically measured

� Quantization, where the analog signal's amplitude measurements are converted
into digital data (see Figure 29 on page 59)

This process is also called Pulse Code Modulation (PCM).

At the end of these sub-processes, the analog waveform is transformed into
numerical data which represents the value of the waveform's amplitude at specific
instants. In this way, the digital data values represent the volume of the sound
wave (for example, a large numerical value indicates a loud sound, while a big
change between two adjacent numerical values indicates a high frequency).

58 AIX Multimedia

Figure 29. Analog-To-Digital Conversion. The picture shows the three phases of analog-to-digital conversion. The
top picture shows the original analog signal. The middle picture shows the sampling operation: periodically the value
of the analog signal is recorded. The lower picture shows the quantization phase: each value is rounded to the
nearest integer. The shadow areas are so-called “quantization errors.”

The accuracy of the conversion depends on two main factors:

Sampling Rate , which indicates how often the analog audio signal is sampled.
It determines the upper frequency response.

Sample Size , which indicates how many bits are used in the quantization
process.

The minimum value for the sampling rate is given by the Nyquist theorem which
says that if an analog signal has an upper frequency equal to W, then the minimum
sampling rate must be equal to 2W. Sampling rates smaller than this value produce
noise called Aliasing Distortion.

More bits per sample means a more accurate signal representation, less
information loss, or lower quantization error. High frequency content of an analog
signal requires a high sampling rate.

Digital data has the advantage of being more easily reproduced and duplicated
without any loss or signal distortions. Digital storage devices have longer life times
than analog ones; however, digital audio requires heavy processing and large
storage overheads.

 Appendix A. Multimedia Technologies 59

A.1.2.1 Audio Compression Techniques and Formats
PCM has large storage requirements. For example, one minute of high-fidelity
music requires about 10MB (16-bits per sample x 2 channels of stereo music x
44,100 samples per second).

To reduce the storage requirement, many compression techniques have been
developed.

A compression technique is a digital process that allows data to be stored or
transmitted using less than the normal number of bits, eliminating or reducing gaps,
redundancies and unnecessary data.

Compression techniques are divided into two classes:

� Lossless - where information is compressed without loss of information.

� With loss - where some information is lost during the compression process.
This technique is used when detail is less important than minimizing the volume
of data requiring storage.

Compression techniques allow increased throughput and reduced storage
requirements, but they require intensive use of CPU or dedicated hardware. Data
compression requires processing both for the compression during input (when the
signal is recorded) and then for the decompression during output (when the signal
is restored for reproduction). These techniques imply intensive use of the
computer's CPU or they require a special hardware adapter card.

The most common methods are: truncation, interpolation and prediction (for
example, Adaptive Differential Pulse Code Modulation or ADPCM) and logarithmic
compression of a signal's dynamic range (A-LAW and µ-LAW). Each of these
techniques produces a different type of audio format.

The Resource Interchange File Format (RIFF)

The Resource Interchange File Format (RIFF) is a standard file format used for
storing multimedia information. The format allows video, audio, text and other
multimedia elements to be stored in a common format and accessed
simultaneously. The RIFF format constitutes a base format or syntax upon
which more specific file formats can be defined (for example the .WAV and .AVI
formats, discussed later, are based on the RIFF formats). For this reason, RIFF
is not really a file format, since it does not represent a specific kind of
information, but is rather a standard container for multiple information formats.

A RIFF file consists essentially of chunks, each of which may consist of sub
chunks. Navigation through the file is accomplished by moving from chunk to
chunk, or by descending (or ascending) to (from) a sub-chunk.

Every chunk consists of a header containing a four byte identifier for the chunk,
followed by the four bytes containing the size of the data portion of the chunk.

Due to the flexibility of this approach, applications need not recognize all chunks
in a file; they can simply ignore the chunks they cannot understand. The RIFF
format places few constraints on information contained with it, merely providing
a flexible framework for the storage of large elements of information.

60 AIX Multimedia

The most common audio formats are:

 � .WAV

 � .SND

 Appendix A. Multimedia Technologies 61

The WAV format: WAV audio files are stored in the RIFF format. The RIFF
chunk has its type field set to the value WAVE. This chunk may have up to three
sub-chunks as follows:

� Fmt: contains information on the audio attributes

� List: contains information regarding the audio data in the file

� Data: contains the data stream

Figure 30 shows the WAV format structure.

Figure 30. WAV Format Structure

62 AIX Multimedia

The SND format: The SND format, commonly referred to as the NeXt/SUN SND
format, consists of a simple header structure followed by the audio data. The
header contains all information necessary to play the data contained in the audio
section of the file.

Figure 31 shows the SND format structure.

Figure 31. SND Format Structure

Other audio formats: Other audio formats are:

� .AU file format. This format is quite similar to the .SND format.

� .RAW file format. This format is raw audio data that may or not may contain
audio attributes describing the format of the information.

 A.1.3 MIDI
MIDI (Musical Interface Digital Interface) is the data protocol of electronic music
and is a digital encoding of musical performance information (for example, notes,
volume, and so forth).

MIDI does not directly relate to the original sound wave, as does the analog or
digital sound representation. It is rather a description of musical events, for example
which piano key is pressed and when, or for how many milliseconds the key
remains pressed, and so forth. So MIDI defines a specific note; it does not
represent the actual sound of that note. MIDI represents music using far less
storage and allows greater editing flexibility, but does require a music synthesizer to
generate music and is very limited in speech reproduction.

 Appendix A. Multimedia Technologies 63

MIDI augments the use of waveform audio in multimedia. Waveform audio is
normally used to reproduce speech and many non-musical sounds, but requires a
lot of memory to faithfully reproduce music.

 A.2 Still Image
Everything in the world emits electrical energy called radiation. The parts of this
electrical spectrum with frequencies corresponding to the frequencies detectable by
the human eye are called visible light. An image is the mapping of all visible light
emitted by the object onto the eye's retina. If we scan the eye's retina, it appears
as a two dimensional array of points. The color of a point can be represented by
two different values:

Luminance, which is the magnitude of the light signal emitted by the picture
element.

Chrominance, which is the difference between a color and a reference white of
the same luminous intensity.

If frequency values for any image points do not change with time, the image is
called a still image, otherwise it is called a moving image or motion video.

This array can be reproduced, for example, on a TV display using an analog signal.
The analog signal contains information to move a beam of electrons across the TV
screen. The electron beam causes phosphorus dots on the screen to glow in
response to the video signal's amplitude. A computer screen responds to the
content of digital display memory within the computer to control the electron beam.

The analog video signals related to an image must be converted into
computer-form data, in a similar fashion to the audio signal previously described, in
order to be used by computers. Computers can store and draw images in two
different ways:

 � Raster Image

 � Vector Image

 A.2.1 Raster Image
This is the simplest way to obtain a digital representation of an image. The image is
described as a matrix describing the individual dots, that are the smallest elements
of resolution on a computer screen, other display, or printer device. Each of these
elements are referred to as a pixel or pel. Every pixel can be represented in
computer memory using 1, 2, 4, 8 or more bits. The bits used for each pixel
indicate the color quality of the image. For example, suppose we have only one bit
per pixel available to store color information. There are not many ways to interpret
these pixel values. The only information available is whether this pixel is turned on
or off. The result is a monochrome picture. But let's assume we have 4 bits per
pixel available. In this case, for each pixel 24 combinations are possible. So, we
can have 16 different shades of grey or 16 different colors.

Table 10 (Page 1 of 2). Colors Available and Video Memory Required for Bits per
Pixel

Bits Per Pixel Number of Colors MB (MByte) (*)

1 2 0.164

64 AIX Multimedia

Raster representation is used for photo-realistic images and in presentation
graphics where artistic consideration and the need to deal with photographic
information is important. However, it requires a large amount of storage space.

Table 10 (Page 2 of 2). Colors Available and Video Memory Required for Bits per
Pixel

Bits Per Pixel Number of Colors MB (MByte) (*)

4 16 0.655

8 256 1.311

24 16M 3.932

Note: (*) These values are calculated for a 1280x1024 pixel screen.

 A.2.2 Vector Image
An image can also be drawn, that is, it can be generated by drawing instructions.
For example, a line can be represented by its initial and final points. The CPU is
then responsible for converting the description of the graphic into pixel data that
can be displayed. This process of converting a geometric image to pixel data is
known as rasterization, which gets its name from the fact that a raster display is
used to display the information.

Figure 32. Raster and Vector Representations. The left picture shows a raster representation of a cross; while the
right one shows the vector representation.

Vector images are almost always used in CAD/CAM applications, where precise
scaling and element relationships are important. The main advantages of these
images is that they do not require large amounts of storage and precise scaling and
transformations are possible. However, they do require a lot of CPU processing
when being rasterized for display.

 Appendix A. Multimedia Technologies 65

Table 11. Main Characteristics of Vector and Raster Images

Vector Raster

� High-Precision output to both
raster hardware (display and
printer) and vector (plotter).

� Precision scaling and
transforming of objects.

� Easy definition of what an
element/object is for (cut and
paste outline, rotating and so
forth).

 � Rapid display.

� Input from raster and analog
devices (scanner, video
cameras).

� “Paint” functions including
complex shading.

A.2.2.1 Image Compression Techniques and Formats
The previous section shows how an image can be represented using digital data.
This representation is not unique as there are many different ways which can be
used to memorize pixel information. For example, every value associated with a
pixel can be an index in a color list (called a palette) or they can be the three RGB
color components. Generally, this and other information is contained in the file
header of the image file. The features of this header differentiate images type files,
which are called image formats

The file header is not the only characteristic which differentiates image files. Images
require a lot of storage space to be recorded and a lot of computer and network
bandwidth to be transmitted. This has resulted in many different image
compression techniques. Each has the goal of reproducing good images with less
storage requirements than the original number of bits. Each tries to reach this aim
through reduction or elimination of image redundancies. Most digital raster images
contain a high degree of redundancy, which means the same data is transmitted
more than once. The most common redundancies in still raster images are:

� Redundancy between single pixels. For example, when a single color spans
more than a single pixel location in any area of the image.

� Redundancy between lines. For example, when a scene contains
predominantly vertically oriented object there is a possibility that two or more
adjacent lines will contain identical data.

These types of redundancies are called spatial redundancies.

The image compression techniques range from simple methods of truncation,
interpolation and prediction (similar to audio ones) to more advanced code
transformation and statistical coding.

The most common still image formats are:

 � .GIF

 � .TIF

 � JPEG

66 AIX Multimedia

The GIF File Format: The GIF image format is used to store a single image. A
GIF file is organized into a series of headers and colormap information, followed by
the image data itself.

� GIF file header - Contains the GIF identifier, used for both version and file
type checking, as well as image width and height information, and whether a
colormap is included.

� Colormap information - Immediately follows the header and contains a series
of RGB values which constitute the colormap information (the palette).

� Image Information - Immediately after the colormap, it contains futher
information describing the image.

Figure 33 shows the GIF format structure.

Figure 33. GIF Format Structure

 Appendix A. Multimedia Technologies 67

The Tagged Image File Format (TIFF): There is not just one TIFF format! There
is a whole family of different TIFF file formats, each one slightly different from the
other. The main difference between these formats are the different TIFF tags used.

The TIFF format, used to store still RGB images, has a representation mechanism
widely different from the GIF one. The image can be stored either as RGB values,
as indexes into a colormap, or a number of other pixel representation schemes.
Moreover, all the information describing the image is stored as tagged values.
These tags specify a value and a type describing the information that follows.

Figure 34 shows the TIFF format structure.

Figure 34. TIFF Format Structure

68 AIX Multimedia

The Joint Photograph Experts Group (JPEG) File Format: The Joint
Photograph Experts Group file format is a standard file format and at the same time
a compression format. It allows image data to be stored without significant image
degradation. The JPEG format allows image information to be stored in a scalable
way. This means that when the image is shown it is possible to define the quality of
the image itself.

JPEG images are compressed using the following three steps:

� Encoding . The source image data is fed one 8 by 8 pixel block at a time into
an encoder which transforms them using a Discrete Cosine Transformation
(DCT). This step does not alter the data, but converts it to a form more easily
processed by the successive stages.

� Quantization . Each 8 by 8 block is rounded to the nearest integer by the
quantization process.

� Entropy coding . Each DCT coefficient is encoded using the Huffman Statistical
Method.

Figure 35 shows the JPEG format structure.

Figure 35. JPEG Format Structure

 Appendix A. Multimedia Technologies 69

 A.3 Motion Video
Motion Video is a collection of still images, slightly different from each other,
displayed in rapid sequence to provide the illusion of continuous motion on the
screen. To feel the picture is moving the images have to be presented at at least
15 frames per second for video without audio and 24 frames per second for movies
with sound. Motion video can be in two forms: Analog and Digital.

 A.3.1 Analog
A variety of video cameras can be used for video acquisition or capture.
Acquisition (or capture) is the ability to transform a light signal into an electrical
signal, which can be stored in magnetic or optical format.

Any analog device captures an image by scanning it from top to bottom and left to
right, and splitting the light at each scanned point into it's three color components
(red, green and blue). After this, each color component is converted into an analog
electric signal.

After the image is seen by the camera sensors, it must be coded into electrical
signals. There are several ways to code an analog video signal. The most common
are:

� Composite: The lowest quality of acceptable video coding is called composite
video. The color image is produced by taking only one light signal and
multiplexing it to produce the three color signals: red, green and blue. With this
system, all picture information is carried by a single signal, with a separate
audio signal. The resolution provided by this type of coding is normally in the
region of 200 lines per frame.

� Y/C or S-Video: The next highest quality signal coding is Y/C or S-Video. In
this case, the information regarding the black and white and color levels is still
present in separate components. The black and white component is called Y
(Luminance or Brightness) and the color component is called C (Chroma or
Color Intensity). It provides a resolution in the region of 400 lines per frame.

� RGB: The highest quality analog signal is called RGB. In this coding, the
image information is split into three separate color channels (red, green and
blue). Each of these channels has a detector, which converts the light to
signals. These three signals must be synchronized to obtain the image. There
are two synchronization techniques:

– RGB w/Sync: the synchronization signal is separated from the color signal.

– RGB: the synchronization signal is carried by the green signal.

Because the original RGB signals are not mixed, the picture quality is higher
than Composite and Y/C coding. This kind of coding provides a quality signal
better than 400 lines per frame.

70 AIX Multimedia

Figure 36. Analog Motion Video Capture Diagram

After capture, the video must be stored or transmitted. There are several standard
formats for storing video information. The most common (BETA, VHS, S-VHS, Hi8,
VIDEO8) use some form of cassette, which is not compatible between systems.
The differences between these formats are not in the signal, but in the way they
are separated or in the cassette's size or speed. The most common way to
transmit video is Television Broadcasting.

TV Distribution Standards in use worldwide

The different TV distribution standards in use worldwide are:

� PAL (Phase Alternation Line format) is a European standard and it uses a
TV scan rate of 25 frames (50 half-frames) per second and a line count per
frame of 625. It is used mainly in Europe, Australia and South America.

� SECAM (Sèquentiel Couleurs Ávec Mèmoire) is a French standard and is
very similar to PAL, but with different internal video and audio frequencies.
It is used mainly in France and Eastern Europe.

� NTSC (National Television Standard Committee) is the USA standard and it
uses a TV scan rate of 30 frames (60 half-frames) per second and a line
count per frame of 575. It is used mainly in USA, Japan and Canada.

Because the images are displayed from top to bottom and from left to right, when
the monitor displays the upper part of a new picture, the down part still contains the
previous picture. To avoid this effect (called flickering) in the video transmission a
display method called interlacing is used. Each picture or frame is divided into two
complete sets of lines (odd and even). The monitor displays first the odd lines and

 Appendix A. Multimedia Technologies 71

then the even ones (see Figure 37 on page 72). Obviously the transmission data
rate is doubled. A NTSC video scans the screen 60 times per second constituting
1/2 of a complete video frame, while a PAL video scans 50 times per second.

Figure 37. Example of Non-Interlaced and Interlaced Video. In a non-interlaced display (left
picture), the video is refreshed by drawing all lines sequentially. In an interlaced display (right
picture), the odd lines are displayed first (solid arrows) and then the even lines (dashed
lines).

 A.3.2 Digital
A digital representation of a motion video can be produced by digitizing successive
frames from a video camera, by animation software that generates movement from
still images, or by allowing the user to generate an animation sequence from
scratch. At the end of these processes, a video is transformed into digital data.

A great deal of storage is required for storing motion video. For example, to store
a picture of 640x480 pixel and 24 bits colors, 922KB is required. That means that
one second of motion video (at 30 frames per second) requires about 27.6MB and
one minute requires about 1.66GB! These values are huge not only from a storage
point of view, but also from computer throughput.

A.3.2.1 Motion Video Compression Techniques and Formats

Motion video is a collection of still images displayed rapidly; therefore, motion video
file compression has all of the same requirements as image compression. In
addition, there are new problems due to the time-based nature of a movie (for
example, fast display, short response time, and so forth).

The need for fast access to data requires higher file compression to reduce the
storage requirements and to increase the access speed, response time and display
time. Video compression is a crucial element in a fully capable multimedia system.

Video files also have redundancies. In addition to the spatial redundancies found in
still images, video files have another type of redundancy:

� Redundancy between frames. For example, when a scene is stationary or
slightly moving, adjacent frames in time are similar or even identical.

These types of redundancies are called temporal redundancies.

72 AIX Multimedia

Compression techniques for motion video act in two ways: compression on spatial
redundancy (called intraframe compression) and on temporal ones (called
interframe compression). Interframe compression notes the difference between
consecutive frames in the sequence and discards redundant information.

Motion video compression also covers another kind of compression: An audio track
is usually associated with the movie. In this case the audio track must be
compressed and it must be synchronized with the movie sequence.

A video compressor (sometimes called a CODEC) generally introduces some
distortion into the reconstructed output.This occurs because every video CODEC
tries to obtain the best tradeoff between good visual quality of the decompressed
output (more computation) and a frame rate that is high enough to make the
motion appear smooth (less computation).

IBM deals primarily with the following Motion Video Formats:

 � AVS

 � AVI

 � MJPEG

 � MPEG

 Appendix A. Multimedia Technologies 73

The AVS Format: The AVS file format is mainly used in association with the
ActionMedia II card.

The AVS multimedia file format allows multiple information streams to be contained
within a single file structure. Figure 38 shows the AVS format structure.

Figure 38. AVS Format Structure

74 AIX Multimedia

The AVI Format: The AVI format is the one currently used by the multimedia
movie player.

The AVI multimedia file format is based on the Resource Interchange File Format
(RIFF). Figure 39 shows the AVI format structure.

Figure 39. AVI Format Structure

The MJPEG and MPEG formats: Motion JPEG (MJPEG) utilizes the JPEG
compression techniques to encode individual frames which are then stored in an
AVI file format. A Motion JPEG file has a lower effective bit rate than other
mechanisms.

MPEG is a standardization effort by the Motion Picture Expert Groups to establish
an international digital video compression standard for moving pictures. MPEG can
achieve three times more compression than MJPEG.

 Appendix A. Multimedia Technologies 75

76 AIX Multimedia

Appendix B. System Object Model (SOM) - A Brief Overview

This chapter describes the most important features of the IBM System Object
Model (SOM).

B.1 Basic Concepts of the System Object Model (SOM)
The System Object Model (SOM), provided by the SOMobjects Developer Toolkit,
is a set of libraries, utilities, and conventions used to create binary class libraries
that can be used by application programs written in various object- oriented
programming languages, such as C++ and Smalltalk, or in traditional procedural
languages, such as C and COBOL. The following paragraphs introduce some of the
basic terminology used when creating classes in SOM:

� In SOM, an object is a run-time entity with a specific set of methods and
instance variables. The methods are used by a client programmer to make the
object exhibit behavior (that is, to do something), and the instance variables are
used by the object to store its state.

An object's implementation is determined by the procedures that execute its
methods, and by the type and layout of its instance variables. The procedures
and instance variables that implement an object are usually encapsulated
(hidden from the caller), so a program can use the object's methods without
knowing anything about how those methods are implemented. Instead, a user
is given access to the object's methods through its interface (a description of
the methods in terms of the data elements required as input and the type of
value each method returns).

An interface through which an object may be manipulated is represented by an
object type. That is, by declaring a type for an object variable, a programmer
specifies the interface that is intended to be used to access that object. SOM
IDL (the SOM Interface Definition Language) is used to define object interfaces.
The interface names used in these IDL definitions are also the type names
used by programmers when typing SOM object variables.

� In SOM, as in most approaches to object-oriented programming, a class
defines the implementation of objects. That is, the implementation of any SOM
object (as well as its interface) is defined by some specific SOM class. A class
definition begins with an IDL specification of the interface to its objects, and the
name of this interface is used as the class name as well. Each object of a
given class may also be called an instance of the class, or an instantiation of
the class.

� SOM classes can take advantage of multiple inheritance, which means that a
new class is jointly derived from two or more parent classes. In this case, the
derived class inherits methods from all of its parents (and all of its ancestors),
giving it greatly expanded capabilities. In the event that different parents have
methods of the same name that execute differently, SOM provides ways for
avoiding conflicts.

In the SOM run time, classes are themselves objects. That is, classes have
their own methods and interfaces, and are themselves defined by other
classes. For this reason, a class is often called a class object. Likewise, the
terms class methods and class variables are used to distinguish between the
methods/ variables of a class object vs. those of its instances. (Note that the

 Copyright IBM Corp. 1994 77

type of an object is not the same as the type of its class, which as a class
object has its own type.)

A class that defines the implementation of class objects is called a metaclass.
Just as an instance of a class is an object, so an instance of a metaclass is a
class object. Moreover, just as an ordinary class defines methods that its
objects respond to, so a metaclass defines methods that a class object
responds to. For example, such methods might involve operations that execute
when a class (that is, a class object) is creating an instance of itself (an object).
Just as classes are derived from parent classes, so metaclasses can be
derived from parent metaclasses, in order to define new functionality for class
objects.

� The SOM system contains three primitive classes that are the basis for all
subsequent classes:

– SOMObject: the root ancestor class for all SOM classes

– SOMClass: the root ancestor class for all SOM metaclasses

– SOMClassMgr: the class of the SOMClassMgrObject, an object created
automatically during SOM initialization, to maintain a registry of existing
classes and to assist in dynamic class loading/unloading

SOMClass is defined as a subclass (or child) of SOMObject and inherits all
generic object methods; this is why instances of a metaclass are class objects
(rather than simply classes) in the SOM run time.

SOM classes are designed to be language neutral. That is, SOM classes can be
implemented in one programming language and used in programs of other
languages. To achieve language neutrality, the interface for a class of objects must
be defined separately from its implementation. That is, defining interface and
implementation requires two completely separate steps (plus an intervening
compile), as follows:

� An interface is the information that a program must know in order to use an
object of a particular class. This interface is described in an interface definition
(which is also the class definition), using a formal language whose syntax is
independent of the programming language used to implement the class's
methods. For SOM classes, this is the SOM Interface Definition Language
(SOM IDL). The interface is defined in a file known as the IDL source file (or,
using its extension, this is often called the .idl file).

� An interface definition is specified within the interface declaration (or interface
statement) of the .idl file, which includes:

1. The interface name (or class name) and the name of the class's parent(s)

2. The names of the class's attributes and the signatures of its new methods

Each method signature includes the method name, and the type and order of
its arguments, as well as the type of its return value (if any). Attributes are
instance variables for which set and get methods will automatically be defined,
for use by the application program. (By contrast, instance variables that are not
attributes are hidden from the user.)

78 AIX Multimedia

� Once the IDL source file is complete, the SOM Compiler is used to analyze the
.idl file and create the implementation template file, within which the class
implementation will be defined. Before issuing the SOM Compiler command,
SC, the class implementor can set an environment variable that determines
which emitters (output-generating programs) the SOM Compiler will call and,
consequently, which programming language and operating system the resulting
binding files will relate to. In addition to the implementation template file itself,
the binding files include two language-specific header files that will be included
in the implementation template file and in application program files. The header
files define many useful SOM macros, functions, and procedures that can be
invoked from the files that include the header files.

The implementation of a class is done by the class implementor in the
implementation template file (often called just the implementation file or the
template file). As produced by the SOM Compiler, the template file contains
stub procedures for each method of the class. These are incomplete method
procedures that the class implementor uses as a basis for implementing the
class by writing the corresponding code in the programming language of
choice.

In summary, the process of implementing a SOM class includes using the SOM IDL
syntax to create an IDL source file that specifies the interface to a class of objects,
that is, the methods and attributes that a program can use to manipulate an object
of that class. The SOM Compiler is then run to produce an implementation template
file and two binding (header) files that are specific to the designated programming
language and operating system. Finally, the class implementor writes
language-specific code in the template file to implement the method procedures.

At this point, the next step is to write the application (or client) program that uses
the objects and methods of the newly implemented class. (Observe, here, that a
programmer could write an application program using a class implemented entirely
by someone else.) If not done previously, the SOM compiler is run to generate
usage bindings for the new class, as appropriate for the language used by the
client program (which may be different from the language in which the class was
implemented). After the client program is finished, the programmer compiles and
links it using a language-specific compiler, and then executes the program. (Notice
again, the client program can invoke methods on objects of the SOM class without
knowing how those methods are implemented.)

B.2 Organization of the SOMobject Package
The SOMobjects Developer Toolkit contains the following packages:

 B.2.1 SOM Compiler
The SOMobjects Toolkit contains a tool, called the SOM Compiler, that helps
implementors build classes in which interface and implementation are decoupled.
The SOM Compiler reads the IDL definition of a class interface and generates:

� Implementation skeleton for the class

� Bindings for implementors

� Bindings for client programs

 Appendix B. System Object Model (SOM) - A Brief Overview 79

Bindings are language-specific macros and procedures that make implementing
and using SOM classes more convenient. These bindings offer a convenient
interface to SOM that is tailored to a particular programming language. For
instance, C programmers can invoke methods in the same way they make ordinary
procedure calls. The C++ bindings wrap SOM objects as C++ objects, so that
C++ programmers can invoke methods on SOM objects in the same way they
invoke methods on C++ objects. In addition, SOM objects receive full C++
typechecking, just as C++ objects do. Currently, the SOM Compiler can generate
both C and C++ language bindings for a class. The C and C++ bindings will work
with a variety of commercial products available from IBM and others. Vendors of
other programming languages may also offer SOM bindings. Check with your
language vendor about possible SOM support.

B.2.2 SOM Run-Time Library
In addition to the SOM Compiler, SOM includes a run-time library. This library
provides, among other things, a set of classes, methods, and procedures used to
create objects and invoke methods on them. The library allows any programming
language to use SOM classes (classes developed using SOM) if that language can:

� Call external procedures

� Store a pointer to a procedure and subsequently invoke that procedure

� Map IDL types onto the programming language's native types

Thus, the user of a SOM class and the implementor of a SOM class need not use
the same programming language, and neither is required to use an object-oriented
language. The independence of client language and implementation language also
extends to subclassing: a SOM class can be derived from other SOM classes, and
the subclass may or may not be implemented in the same language as the parent
class(es). Moreover, SOM's run-time environment allows applications to access
information about classes dynamically (at run time).

B.2.3 Frameworks Provided in the SOMobjects Toolkit
In addition to SOM itself (the SOM Compiler and the SOM run-time library), the
SOMobjects Developer Toolkit also provides a set of frameworks (class libraries)
that can be used in developing object-oriented applications. These include
Distributed SOM, the Interface Repository Framework, the Persistence Framework,
the Replication Framework, and the Emitter Framework, described below.

 B.2.3.1 Distributed SOM
Distributed SOM (or DSOM) allows application programs to access SOM objects
across address spaces. That is, application programs can access objects in other
processes, even on different machines. DSOM provides this transparent access to
remote objects through its Object Request Broker (ORB): the location and
implementation of the object are hidden from the client, and the client accesses the
object as it if were local. The current release of DSOM supports distribution of
objects among processes within a workstation, and across a local area network
consisting of OS/2 systems, AIX systems or a mix of both. Future releases may
support larger enterprise-wide networks.

80 AIX Multimedia

B.2.3.2 Interface Repository Framework
The Interface Repository is a database, optionally created and maintained by the
SOM Compiler, that holds all the information contained in the IDL description of a
class of objects. The Interface Repository Framework consists of the 11 classes
defined in the CORBA standard for accessing the Interface Repository. Thus, the
Interface Repository Framework provides run-time access to all information
contained in the IDL description of a class of objects. Type information is available
as TypeCodes: a CORBA-defined way of encoding the complete description of any
data type that can be constructed in IDL.

 B.2.3.3 Persistence Framework
The Persistence Framework is a collection of SOM classes that provide methods
for saving objects (either in a file or in a more specialized repository) and later
restoring them. This means that the state of an object can be preserved beyond the
termination of the process that creates it. This facility is useful for constructing
object-oriented databases, spreadsheets, and so forth. The Persistence Framework
includes the following features:

� Objects can be stored singly or in groups.

� Objects can be stored in default formats or in specially designed formats.

� Objects of arbitrary complexity can be saved and restored.

 B.2.3.4 Replication Framework
The Replication Framework is a collection of SOM classes that allows a replica
(copy) of an object to exist in multiple address spaces, while maintaining a
single-copy image. In other words, an object can be replicated in several different
processes, while logically it behaves as a single copy. Updates to any copy are
propagated immediately to all other copies. The Replication Framework handles
locking, synchronization, and update propagation, and guarantees mutual
consistency among the replicas. The Replication Framework includes these
important features:

� Good response times for both readers and writers

� Fault-tolerance against node failures and message loss

� Simple coding rules (that can be automated) for building replicated objects

� Graceful degradation under wide area networks

� Minimal overhead when replication is not activated

 B.2.3.5 Emitter Framework
The Emitter Framework is a collection of SOM classes that allows programmers to
write their own emitters. Emitter is a general term used to describe a back-end
output component of the SOM Compiler. Each emitter takes as input information
about an interface, generated by the SOM Compiler as it processes an IDL
specification, and produces output organized in a different format. SOM provides a
set of emitters that generate the binding files for C and C++ programming
languages (header files and implementation templates). In addition, users may wish
to write their own special-purpose emitters. For example, an implementor could
write an emitter to produce documentation files or binding files for programming
languages other than C and C++. The Emitter Framework is separately
documented in the SOMobjects Developer Toolkit: Emitter Framework Guide and
Reference.

 Appendix B. System Object Model (SOM) - A Brief Overview 81

B.2.3.6 Collection Classes Framework
The Collection Classes Framework provides a collection of classes which contains
the most common elements used in user interfaces, such as lists, sets, queues,
dictionaries and so forth. The programmers can inherit from and use these classes
in their applications with no need to recode or retest the functions.

B.2.3.7 Workstation and Workgroup Runtimes
The Workstation Runtimes enables the execution of SOM-based applications in a
single machine environment; while the Workgroup Runtimes enables the execution
of SOM-based applications across a multiple-node workgroup LAN distributed
environment. Both these runtimes work on AIX and OS/2 platforms.

82 AIX Multimedia

 Appendix C. Programming Examples

This appendix shows some programming examples for storing multimedia
information.

C.1 Example 1: File Type Detector Program
This example shows a demo program which is able to detect file types.

/\\\

 \

 \ COMPONENT_NAME: detector_examples

 \

 \ FUNCTIONS: main

 \

 \ ORIGINS: 27

 \

 \ (C) COPYRIGHT International Business Machines Corp. 1993

 \ All Rights Reserved

 \ Licensed Materials - Property of IBM

 \

 \ US Government Users Restricted Rights - Use, duplication or

 \ disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 \

 \\\/

#include <stdio.h>

#include <stdlib.h>

#include "UMSFiletypeDetector.h"

#include "SOMDetector.h"

/\\\/

/\ This program prints out the type of the file listed in command line \/

/\ Usage: detector_example <file1> ffl<file2> <file3>“ \/

/\\\/

main(int argc, char \\argv)

{

 UMSFiletypeDetector \ds;

 int i;

 Environment ev;

SOM_InitEnvironment(&ev); /\ Initialization of SOM environment \/

 ds=UMSFiletypeDetectorNew(); /\ Creation of new file detector object \/

/\ Go through each argument: parsing of input line \/

for (i=ð; i<argc; i++)

 {

 char \tmp=NULL;

printf("<%s>: \n", arg[i]); /\ print of filename \/

tmp=UMSFiletypeDetector_determine_file_type(ds, &ev, argv[i]);

 if (tmp)

printf("<%s>: \n", tmp); /\ print file type returned by detector \/

 else

printf("unknown file type\n);

 }

 Copyright IBM Corp. 1994 83

_somFree(ds); /\ Destruction of detector object \/

SOM_UninitEnvironment(&ev); /\ Deinitialitazion of SOM envirnment \/

 exit(ð);

}

This example shows how easy it is to work with the AIX Ultimedia Services/6000
Object Library. It is interesting to observe that it was not necessary to use object
oriented programming concepts, instead using the traditional procedural approach.
The AIX Ultimedia Services/6000 library encourages the use of object oriented
methodologies, but does not require them.

C.2 Example: Movie Play Program
This example shows a simple program for playing a JPEG file.

/\\\

 \

 \ COMPONENT_NAME: examples

 \

 \ FUNCTIONS: main

 \

 \ ORIGINS: 27

 \

 \ (C) COPYRIGHT International Business Machines Corp. 1993

 \ All Rights Reserved

 \ Licensed Materials - Property of IBM

 \

 \ US Government Users Restricted Rights - Use, duplication or

 \ disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 \

 \\\/

#include <stdio.h>

#include <sys/stat.h>

#include "UMSJPEGDecoder.h"

#include "UMSAudioPlayer.h"

main(int argc, char \argv[])

{

 char \infile;

 char \denfile; /\ input filename \/

 char \dendev; /\ input filename \/

char \outfile; /\ output filename \/

FILE \fip; /\ file pointer to input file \/

FILE \fop; /\ file pointer to output file \/

unsigned char \imagedata; /\ pointer to compressed image \/

unsigned char \decbuffer; /\ pointer to decompressed image \/

struct stat statb; /\ input file status \/

long width; /\ frame width \/

long height; /\ frame height \/

long size; /\ frame size \/

long format; /\ image format \/

long Nf; /\ component number \/

 char ch;

 int i,rc,volume;

 UMSAudioPlayer_EventData \denevent;

Environment \ev; /\ SOM environment variable \/

 UMSAudioPlayer audioobj; /\ pointer to audioplayer object \/

84 AIX Multimedia

/\\\

\ Parse the command line

\\\/

if (argc < 2)

 {

fprintf(stderr, "Usage: <inputfile> <m,l,h>volume \n");

 exit(ð);

 }

 if (!strcmp(argv[2],"m"))

volume = 75;

else if (!strcmp(argv[2],"h"))

 {

volume = 1ðð;

 }

 else

volume = 5ð;

fprintf(stderr,"volume is %d\n",volume);

infile = argv[1];

/\\\

\ Create the audio object

\\\/

 ev=somGetGlobalEnvironment();

 audioobj=UMSAudioPlayerNew();

if (audioobj == NULL)

 {

fprintf(stderr, "can't create audioplayer object\n");

 goto ErrorExit;

 }

/\\\

\ Open the input file

\\\/

rc = UMSAudioPlayer_load(audioobj,ev,infile,UMSAudioPlayer_LocalFile,NULL);

if (rc != UMSAudioPlayer_Success)

 {

fprintf(stderr, "error is %d\n", rc);

fprintf(stderr, "cannot open %s\n", infile);

 goto ErrorExit;

 }

fprintf(stderr, "opened the file OK\n");

/\\\

\ Open device

\\\/

rc = UMSAudioPlayer_open(audioobj,ev,"Audio.audio_editting.audio_editor");

if (rc != UMSAudioPlayer_Success)

 {

fprintf(stderr, "cannot open device /dev/acpað rc=%d\n",rc);

 goto ErrorExit;

 }

if (UMSAudioPlayer_Success != UMSAudioPlayer_set_volume(audioobj,ev,volume,ð))

fprintf(stderr, "cannot set volume \n");

rc = UMSAudioPlayer_play(audioobj,ev);

 Appendix C. Programming Examples 85

if (rc != UMSAudioPlayer_Success)

 {

fprintf(stderr, "cannot play %s\n", infile);

 goto ErrorExit;

 }

while (1) /\ Main Loop \/

 {

if (denevent->type == 1)

 {

 UMSAudioPlayer_close(audioobj,ev);

 exit(ð);

 }

 }

/\\

\ Error Routine \

\\\/

ErrorExit:

if (audioobj != NULL)

 _somFree(audioobj);

 return(ð);

}

This example shows a simple program for playing movie files. Note the size of the
code: 84 lines! The AIX Ultimedia Services/6000 object oriented approach provides
an easy and quick way to integrate multimedia into applications or to create new
ones. Developers do not need to create any AIX windows or the equivalent
because the Ultimedia Audio-Player object organizes and presents its data
automatically. Programmers can concentrate only on the core of their applications,
that is how the application uses objects, and not on the objects themselves.

86 AIX Multimedia

 Glossary

ACPA . The Audio Capture and Playback Adapter is a
card that allows the capture and playback of audio.
Incoming audio, via jacks, is converted in digital
information and stored on disk. Digital audio, stored on
disk, is converted by the card to analog audio, and
output to a line out connection or headphone socket.

Adapter . A printed circuit card that modifies the
system unit to allow it to operate in a particular way.
See also card.

ADPCM. In audio, adaptive differential pulse code
modulation (ADPCM) is a compression technique that
computes the difference between samples and
quantizies the difference in a way that changes
according to the input signal.

AIX. IBM's UNIX implementation is called Advanced
Interactive eXecutive which abbreviates to AIX.

A-law . A method of audio encoding that maps 13-bit
input samples to 8-bit numbers. The mapping is not
linear and increases the signal quality at low level at the
expense of distortion in the high-level signal. See also
µ-law.

Aliasing . The phenomenon of generating false (alias)
frequencies, along with the correct ones. This can occur
as a result of sampling a signal at discrete points.
Contrast with Antialiasing.

Analog Video . Video in which all information
representing images is in a continuous-scale electrical
signal for both amplitude and time.

Animation . A series of images, each one slightly
different from the previous, displayed in succession so
fast that they appear to be moving.

Antialiasing . The process of eliminating the aliasing
phenomenon. Contrast with Aliasing.

API. An Application Programming Interface is: (1) the
Interface through which an application program interacts
with an access method. (2) A functional interface
supplied by the operating system or by a separate
licensed program that allow an application program
written in a high-level language to use specific data or
functions of the operating system or the licensed
program.

Asynchronous . (1) Pertaining to two or more
processes that do not depend upon the occurrence of
specific events such as common timing signals. (2)
Without regular time relationship; unexpected or
unpredictable with respect to the execution of program
instructions. Contrast with synchronous.

Audio . Records information that can be heard when
played back.

Audio device alias . Used by audio player/recorder
and by movie player to access the device driver.

Audio filter object . In Ultimedia Services/6000, it is
an object used to convert various audio formats to other
audio formats.

AVI. The audio-video interleaved (AVI) file format is a
RIFF file specification that permits audio and video data
to be interleaved in a file.

AVS. The audio-video sub-system (AVS) is a file
format used by Intel's** Digital Video Interactive** (DVI)
system and IBM's ActionMedia* and ActionMedia II*
adapters.

Binding . Language-specific macros and procedures
that make implementing and using SOM classes more
convenient.

Capture . An operation where analog data such as
video or audio signals are converted from analog to
digital representation and stored in a computer.

Card . (1) An electronic circuit board that is plugged
into a slot in a system unit. See also Adapter.

CD-ROM. The Compact Disk-Read Only Memory
(CD-ROM) is an adaptation of the compact disk digital
audio device (CD-DA or CD) for use with general digital
data.

Chrominance . The difference between a color
component and a reference white of the same luminous
intensity.

Chunk . A basic building block of a RIFF file.

Class . A group of objects that share a common
definition and that therefore share common properties,
operation and behavior.

Codec . Abbreviation for (en)coder/decoder. A
compressor-decompressor pair.

CORBA . The common object request broker
architecture (CORBA) is a standard that provides the
mechanism by which object make requests and receive
responses. It provides interoperability between
applications on different machines in heterogeneous
distributed environments and seamlessly interconnects
multiple object systems.

 Copyright IBM Corp. 1994 87

Compression . A process of transforming a block of
data into a smaller block of data from which the former
can be reconstructed. Contrast with decompression.

Compressor . An algorithm or software or hardware
entity that does compression. Contrast with
decompressor.

Decode . (1) To convert data by reversing the effect of
some previous encoding. (2) To interpret code. See
also encode.

Decoder . In multimedia, a synonym for decompressor.
Contrast with encoder.

Decompression . A process of expanding a
compressed data block into its original uncompressed
form. Contrast with compression.

Decompressor . An algorithm or software or hardware
entity that does decompression. Contrast with
compressor.

Device driver . A program that enables a computer to
communicate with a specific peripheral device; for
example, a printer, a videodisk player, or an added
card.

Digital . A method of signal representation with a set of
discrete numeric values.

Digital Video . Video in which all the information
representing images is in computer form.

Digitize . To convert analog signals to digital format.

Encapsulation . A method for representing abstract
data, where data values are hidden, but operations are
permitted on these values by functions called
“methods.”

Encode . to convert data by the use of a code in such
manner that reconversion to the original data is
possible. See also compression. Contrast with decode.

Encoder . In multimedia, a synonym for compressor.
Contrast with decoder.

File type . The kind of files from different operating
systems or file formats that are supported.

Frame . An image that corresponds to a scene at a
particular instant.

GUI. The graphical user interface (GUI) is a visual
metaphor that uses icons representing desktop objects
that a user can manipulate with a positioning device.

Hypertext . This is the ability to access information by
interaction with explicit links to cross-reference related
objects in a natural manner.

Hypermedia . A method of presenting information in
discrete units, or nodes, that are connected by links.
The information may be presented using a variety of
media such as text, graphics, audio, video, animation,
image or executable documentation.

Hz. A Hertz (Hz) is a unit of frequency equal to one
cycle per second.

Icon . A pictorial representation of a desktop object
such as a text file or an executable program. It can be
manipulated using a pointing device.

Information . In information processing, knowledge
concerning such things as facts, concepts, objects,
events, ideas, and processes that within a certain
context has a particular meaning.

Inheritance . The passing of class resources or
attributes from a parent to a child class.

JPEG. (1) The joint photograph experts group is a
group that are working to establish standards for
compression of digitalized continuous-tone still images.
(2) The standard under development of this group.

Lossness . In compression, refers to a codec that
introduces no distortion into a signal.

Lossy . In compression, refers to a codec that
introduces distortion into a signal.

Luminance . The amount of light, measured in lumens,
that is emitted by a source.

Media . Material or technical means of artistic
communication using form such as film, art, voice,
computer programming, and so forth.

Media handler object . Object useful to software that
need to play (or record) audio to (from) an audio device,
or play a movie into an X window.

Method . A combination of procedure and name, such
that many different procedures can be associated with
the same name (polymorphism).

MHEG. (1) The Multimedia and Hypermedia
Information Coding Experts Group is a group that is
working to establish standards for multimedia and
hypermedia information coding. (2) The standard under
development by this group.

MIDI. The Musical Instrument Data Interface is a serial
standard data bus for interfacing digital musical
instruments.

Mu-law . See µ-law.

88 AIX Multimedia

Multimedia . The integrated treatment of more than
two kind of different data. The term is also used as an
adjective; for example multimedia network, multimedia
application. In this case it means the possibility of
handling different kinds of data.

Multitasking . A mode of operation that provides for
concurrent performance, or interleaved execution of two
or more tasks.

MJPEG. (1) The Motion Joint Photograph Experts
Group is a group that are working to establish
standards for JPEG compression of digitalized
continuous-tone sequences of still images. (2) The
standard under development by this group. (3) A
compression algorithm used to record sequences of still
images played as a movie. See also JPEG

NetBIOS . Networking Basic Input/Output System. An
operating system interface for application programs
used on IBM personal computers that are attached to
the IBM Token-Ring* network.

Noise . Random undesirable picture or sound
interference.

Object . A software abstraction consisting of data and
routines that operate on the data.

OMG. The object management group (OMG) is an
industry consortium founded to advance the use of
object technology in distributed, heterogeneous
environments. It includes IBM, SUN, Hewlett-Packard,
and more than 200 other software vendors.

OOP. Object-oriented programming (OOP) is a method
of structuring programs as hierarchically organized
classes describing the data and the operations of
objects that may interact with other objects.

Open . This defines the ability to interoperate across a
wide range of different systems, maintaining
consistency across networks.

PCM. In audio, refers to simple quantization of
samples in an audio signal with no further processing.
See also ADPCM and quantization.

Pixel . An abbreviation for picture element.

Pixmap . An abbreviation for pixel map, which is a
3-dimensional array of bits or a 2-dimensional array of
numbers representing an image.

Quantization . The subdivision of the range of values
of a variable into a finite number of non-overlapping, but
not necessarily equal, subranges or intervals, each of
which is represented by assigned values within the
subrange.

Raster . A predetermined pattern of lines that provides
uniform coverage of a display space.

Real-time . The processing of information that returns a
result so rapidly that the interaction appears to be
instantaneous.

Resolution . A measure of the sharpness of an image,
expressed as the number of lines and columns on the
display screen or the number of pixels per unit of area.

RGB. (1) The primary colors of light (red, green and
blue), which are mixed to produce a video image. (2) In
video, RGB refers to a system in which the three
primary colors are kept isolated and delivered from the
source to the display device over separate wires.

RIFF. The resource interchange file format (RIFF) is a
standard file format used for storing multimedia files.

RISC System/6000 . IBM's UNIX workstation
implementing a Reduced Instruction Set Cycle computer
system (RISC) is called RISC System/6000. The UNIX
version on this computer is called AIX.

RTV. In DVI technology, this is a lower-quality video
compression process. It allows real-time video
compression.

S-Video . Super video is a video signal with separated
chrominance (C) and luminance (Y) components.

Sample rate . The rate at which the samples occur.

Sampling . The conversion of an analog signal, varying
continuously in time, into a sequence of numbers (or
samples) that represent the signal values at discrete
moments in time.

Signal . Information transmitted as an electric impulse.

SOM. The system object model (SOM) is IBM's
implementation of CORBA. An object-oriented
programming technology for building, packaging, and
manipulating binary class libraries. See also CORBA.

Sound . The pressure variations in the air that are
detected by our ears to create the sense of hearing.

Still Image . This is the digital representation of an
image.

Synchronous . (1) Pertaining to two or more
processes that depend upon the occurrence of specific
events such as common timing signals. (2) Occurring
with a regular or predictable time relationship. Contrast
with asynchronous.

Text . Text is a sequence of elements (characters,
symbols, words, sentences, phrases, tables, paragraphs
and so forth) intended to convey a meaning, whose

 Glossary 89

understanding is essentially based upon the reader's
knowledge of some natural or artificial language.

Track . in multimedia file format, a stream of one type
of information; for example, video frames or mono or
stereo audio.

Ultimedia . IBM's family of multimedia products and
services which deliver the ultimate in multimedia
solution and support. Ultimedia goes beyond text and
graphics to include high-quality images, full motion
video, animation, high-fidelity music, and touch-based
interaction.

Video codec object . Conversion object that
implements video compression and decompression.

X-window . (1) An X-window or window is a
rectangular zone of a display screen in an X-windowing
environment where a user may activate a computer
process and perhaps produce graphics while
simultaneously working with other similar processes. (2)
X-windows is a device-independent graphics standard
for controlling windows (X-windows) within a distributed
environment. It provides programmers with a software
toolkit to implement window systems and display
2-dimensional graphics.

µ-law . A method of audio encoding that maps 14-bit
input samples to 8-bit numbers. The mapping is not
linear and increases the signal quality at low level at the
expense of distortion in the high-level signal. See also
a-law.

90 AIX Multimedia

List of Abbreviations

ADPCM Adaptive Differential Pulse
Code Modulation

AIX Advanced Interactive eXecutive

API Application Programming
Interface

AVI Audio-Video Interleaved

AVS Audio-Video Sub-system

CD Compact Disc

CD-ROM Compact Disc-Read Only
Memory

CODEC Coder-Decoder or
Compression-Decompression

CORBA Common Object Request
Broker Architecture

DAT Digital Audio Tape

DVI Digital Video Interactive

DLL Dynamic Link Libraries

DSOM Distributed System Object
Model

GUI Graphical User Interface

IBM International Business
Machines Corporation

IDL Interface Descriptor Language

IMA International Multimedia
Association

ISO International Standards
Organization

ITSO International Technical Support
Organization

JPEG Joint Photograph Experts
Group

MCI Multimedia Control Interface

MHEG Multimedia and Hypermedia
information coding Expert
Group

MMIO MultiMedia Input Output

MMPM/2 MultiMedia Presentation
Manager/2

MPEG Motion Photograph Experts
Group

NTSC National Television System
Committee

OMG Object Management Group

OOP Object Oriented Programming

OS/2 IBM Operating System/2

PAL Phase Alternation Line format

PCM Pulse Code Modulation

PLV Production Level Video

RIFF Resource Interchange File
Format

RISC Reduced Instruction Set Cycle
Computer

RS/6000 RISC System/6000

RTV Real Time Video

SECAM Sèquentiel Couleurs Àvec
Mèmoire

SOM System Object Model

TIFF Tagged Image File Format

YUV Intensity (Y from Yellow) with
color vectors (U and V)

 Copyright IBM Corp. 1994 91

92 AIX Multimedia

 Index

A
A-LAW 36, 60, 87
abbreviations 91
ACPA 30, 48, 87
acquisition 70
acronyms 91
adapter 87
ADC 58
ADPCM 36, 60, 87
Aim Tech 55
AIX 54, 87
aliasing 87
animation 2, 87
antialiasing 87
API 24, 29, 87
apple system 7 54
Applix 55
ApplixWare 55
as media 9, 54, 87
asynchronous 87
audio 54

analog 58
as media 2, 49
definition 57
digital 58
introduction 57
MIDI 8, 63
types 57

audio device alias 87
audio filter objects 34, 40, 87
AVI 37, 38, 39, 73, 75, 87
AVS 8, 39, 73, 74, 87

B
binding 87

C
C 22, 23, 77, 81
C&plus+ 77
C++ 22, 24, 25, 31, 54, 80, 81
capture 87
card 87
CCITT 8
CD 30, 58
CD-DA 8
CD-I 8
CD-ROM 8, 87
CD-ROM/XA 8
CDE 54

chrominance 64, 87
chunk 87
class 16, 19, 24

definition 18
hierarchy 19
libraries 22
library 33
methods 18
objects 18

COBOL 77
codec 73, 87
communication 2, 6, 57
Communique 55
composite 70
compression 38
compression techniques 60
compressor 88
configuration objects 34, 40
CORBA 23, 25, 27, 32, 54, 81, 87
CUA 41

D
DAT 58
data abstraction 14, 26
decoder 88
decompression 38
decompressor 88
definition 87
device drivers 88
devices driver 48
distribution 11, 27, 33
DSOM 27, 30, 80, 82

E
encapsulation 18, 88
encoder 88
encoding 69
entropy coding 69

F
file access objects 34, 35, 39
file format

AVI 73, 75
AVS 8, 38, 73, 74, 87
GIF 8, 66, 67
JBIG 8
JPEG 8, 66, 69, 88
MIDI 8, 63, 88
MJPEG 37, 38, 73, 75, 89
MPEG 8, 73, 75

 Copyright IBM Corp. 1994 93

file format (continued)
mu-law 88
PCM 89
RIFF 37, 60, 75, 89
RTV 89
SND 8, 37, 61, 63
TIFF 8, 66, 68
ultimotion 8, 37
WAV 8, 37, 61, 62

filetype detector 39
flickering 71
Frame 55
Frame Technology 55
functional programming

design process 16
limits 13—15

G
Gain Momentum 12, 55
GIF 8, 66, 67
glossary 87
graphics 2, 49
GUI 29, 88

H
heterogeneous 27, 31
heterogeneous system 11, 12
hot areas 10
HP/UX 54
hypermedia 10, 88
hypertext 88

I
icon 88
ICONAUTHOR 55
IDL 23, 25, 77
Indeo 8
information hiding 14
inheritance 88

definition 19
introduction 17
linear 19
multiple 19

Insoft 55
interactive links 10
interactivity 1
interconnectivity 33
interlacing 71
Interleaf 55
interoperability 14, 33
IPX 54
ISO 8

J
JBIG 8
JPEG 8, 66, 69, 88

L
luminance 64, 88

M
media

audio 9
communication 6
definition 5, 6, 88
interactive links 10
introduction 5
motion video 9
sight 5
sound 6
still image 9
text 9
touch 6

media control interface 30, 35
media conversion objects 35
media handler objects 34, 35, 36, 88
message 18
methods 17, 18, 24, 88
MHEG 8, 88
MIDI 8, 63, 88
MJPEG 37, 38, 41, 73, 75, 89
MMPM 35
motion video

analog 70, 87
as media 2, 6
definition 64
description 70—72
digital 72, 88
file format 8, 72, 75

MPEG 8, 73, 75
MPower 12
mu-law 88
multi media input output 30, 35
multimedia

communication 1, 6
concepts 5—12
distribution 10—12
goals 2, 9, 10
history 1
interactivity 1
introduction 2, 89
languages 8
market 3
media 2, 9
platforms 12
problems 10—12, 15, 26, 53
standards 7

94 AIX Multimedia

multimedia (continued)
technology 2, 57
trend 13

multitasking 12, 89
MVS 54

N
NetBIOS 54, 89
noise 89
NTSC 71
Nyquist theorem 59

O
object 16, 18, 89
object oriented

advantages 10, 20
concepts 17—22, 89
design process 16
goals 15
introduction 16—17
languages 21
limits 22—23, 26
technology 15
terminology 17—22

objective-C 24
OLE 2.0 54
OMG 23, 25, 89
open 11, 26, 31, 89
open system 11, 12
ORB 80
OS/2 12, 54
OS/400 54

P
PAL 71
PCM 36, 58, 60, 89
pel 64
pixel 64, 65, 72, 89
pixmap 89
polymorphism 20
px64 8

Q
quantization 58, 59, 69, 89
QuickTime 8, 12

R
raster 64, 65, 89
rasterization 65
real-time 89
redundancy

spatial 66, 72

redundancy (continued)
temporal 72

resolution 89
reuse 11, 14, 20, 26, 32
RGB 66, 70, 89
RIFF 37, 39, 60, 89
RTV 38, 73, 74

S
S-video 70, 89
sample 89
sampling 58, 59
sampling ratio 59
SECAM 71
sight 5
smalltalk 22, 24, 77
smell 5
SND 8, 37, 61, 63
SOM

advantages 23, 26—27
Classes 24, 77
Collection Class Framework 82
Compiler 79
components 24—26, 79—82
Description 77—79
Distributed SOM 80
Emitter Framework 81
Frameworks 80—82
IDL 78—79
Interface Repository Framework 81
introduction 23—24
object oriented 24
Objects 77
Persistence Framework 81
Replication Framework 81
Run-time library 80
Workgroup Runtime 82
Workstation Runtime 82

sound 5
standards 7
still image 2, 6, 8, 9, 49, 50, 64, 70, 72, 89
Sybase 55
synchronization 8, 37
system 7 12

T
taste 5
TCP/IP 54
television 3, 9, 64, 71
text 2, 6, 9, 49, 54, 89
µ-law 36, 60, 90
TIFF 8, 66, 68
touch 5

 Index 95

track 90
TV 3, 9, 64, 71

U
Ultimedia Services/6000

AIXwindow 49
Audio filter Objects 40
audio player/recorder 34, 36, 41, 44
characteristics 30—33
class library 54
classes library 33, 34—41, 53
components 33
Configuration objects 40
demo programs 33, 46—48
distribution 33
expendable 32
file access objects 39
flexible 31
heterogeneous 31
introduction 29—30
limits 50
media 49
media handler objects 36
open 31
reusable 32
summary 50
tools 33, 41—45, 54, 55
video codecs objects 38
video player 34, 36, 37, 41, 42

ultimotion 8, 37, 38, 39, 73, 75
UMSAddConfig Object 40
UMSADPCMtoPCM16 Object 41
UMSALAWtoPCM16 Object 41
UMSAVIReadWrite Objects 39
UMSAVSReadWrite Objects 39
UMSByteOrder Object 41
UMSChainFilter Object 41
UMSConfig Object 40
UMSFiletypeDetector Objects 39
UMSFilter Object 40
UMSMULAWtoPCM16 Object 41
UMSPCM16toADPCM Object 41
UMSPCM16toALAW Object 41
UMSPCM16toMULAW Object 41
UMSPCM16toPCM8 Object 41
UMSPCM8toPCM16 Object 41
UMSRiffReadWrite Objects 39

V
vector 64, 65
video

as media 49
compression 34, 54, 73
decompression 34, 54

video codecs objects 34, 38, 90
virtual function 24

W
WAV 8, 37, 61, 62
Windows 12, 54

X
XMedia 12

Y
Y/C 70

96 AIX Multimedia

ITSO Technical Bulletin Evaluation
RED000

RISC System/6000 Multimedia Environment:
An AIX Ultimedia Services/6000 Overview

Publication No. GG24-4254-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

� Mail it to the address on the back (postage paid in U.S. only)
� Give it to an IBM marketing representative for mailing
� Fax it to: Your International Access Code + 1 914 432 8246
� Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spelling
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4254-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department JN9B, Building 045
Internal Zip 2834
11400 BURNET ROAD
AUSTIN TX
USA 78758-3493

Fold and Tape Please do not staple Fold and Tape

GG24-4254-00

IBM

Printed in U.S.A.

GG24-4254-ðð

