
Did You Say CMVC?

Document Number GG24-4178-00

September 1994

International Technical Support Organization
San Jose Center

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

First Edition (September 1994)

This edition applies to Version 2, Release 1, Modification Level 0, of IBM Configuration Management and Version
Control/6000, Program Number 5765-207, for use with the AIX Operating System 3.2

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 471 Building 70B
5600 Cottle Road
San Jose, California 95193-0001

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes the use of the IBM Configuration Management and
Version Control (CMVC) product in the scope of the downsizing of a DATABASE
2 business application from an IBM mainframe running MVS to the RISC
System/6000 and AIX/6000.

The book gives you a general view of the CMVC features and an understanding
of how CMVC can be used to improve quality and increase productivity.

This document was written for customers and system engineers who need to
know how to set up, configure, customize, and use IBM CMVC for UNIX in the
scope of a given application development.

AD AX (245 pages)

 Copyright IBM Corp. 1994 iii

iv CMVC Live

Contents

Abstract . i i i

Special Notices . xv

Preface . xvii
How to Use This Document . xvii
Related Publications . xix
International Technical Support Organization Publications xx
Acknowledgments . xx

Chapter 1. Software Configuration Management and Change Management
Overview . 1

1.1 Objectives . 2
1.2 Benefits . 2
1.3 Development Efforts Requiring SCM and Change Management 3

1.3.1 Large Application Development Efforts 3
1.3.2 Medium-Sized Application Development Efforts 4
1.3.3 Small Application Development Efforts 4
1.3.4 Relationships among SCM, Change Management and Other

Development Effort Processes . 5
1.3.5 Interaction with Project Management 6
1.3.6 Interaction with Quality Assurance . 6
1.3.7 SCM History and Statistics . 7

1.4 Automated Support for SCM and Change Management 8
1.4.1 Configuration Management Version Control 8

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to
CMVC . 11

2.1 Project Short Description . 11
2.1.1 CASE Environment . 12
2.1.2 Hardware and Software Environments 12
2.1.3 Roles and Responsibilities . 14

2.2 Project Story . 14
2.2.1 Prologue . 15
2.2.2 Project Manager Asks about Setting up the SCM Environment 15
2.2.3 Project Manager Asks about Implementing Quality Metrics 19
2.2.4 Project Manager Asks about Implementing Project Practices 22
2.2.5 Project Manager Asks about Starting Up CMVC Client 23
2.2.6 Project Manager Asks about Project Organization in CMVC 24
2.2.7 Project Manager Asks about Reporting 27
2.2.8 Developer Asks about Components and a Release for the Original

MVS Baseline . 30
2.2.9 Developer Asks about Bringing MVS Source Files under CMVC

Control . 32
2.2.10 Builder Asks about Building Application on MVS 34
2.2.11 Testing the Application . 35
2.2.12 Concluding the Migration . 36
2.2.13 Project Manager Asks about Sharing Files with AIX Release 36
2.2.14 Project Manager Asks about Audit Log of CMVC Commands 37
2.2.15 Epilogue . 38

 Copyright IBM Corp. 1994 v

Chapter 3. Overview of the Application Development Project 41
3.1 The Legacy Application . 41
3.2 What the Application Does . 41
3.3 Programs . 41
3.4 Description of Our Application Development Environment 42

3.4.1 Fundamental Guidelines . 42
3.4.2 Hardware and Network Topology . 43
3.4.3 Software Topology . 45
3.4.4 File System Topology . 49

Chapter 4. Planning for CMVC . 65
4.1 Why Plan? . 65
4.2 Pre-Installation Planning for CMVC . 66

4.2.1 Planning Network License Requirements 66
4.2.2 Planning CMVC Client and Server Hosts 67
4.2.3 CMVC Families . 68

4.3 CMVC User IDs and Host Lists . 68
4.3.1 What to Consider in Planning CMVC Users and Host Lists 69
4.3.2 Our CMVC User IDs and Host Lists . 70

4.4 CMVC Family Component Hierarchy . 72
4.4.1 What to Consider in Planning a Component Hierarchy 73
4.4.2 Our Component Hierarchy . 75

4.5 Planning Component Ownership, Access Lists, and Notification Lists . . 79
4.5.1 What to Consider in Planning Component Ownership, Access Lists,

and Notification Lists . 80
4.5.2 Our Component Ownership, Access Lists, and Notification Lists . . . 81

4.6 Planning for Files . 85
4.6.1 What to Consider in Planning for Files 85
4.6.2 Our Use of Files . 88

4.7 Defects and Features . 89
4.7.1 What to Consider When Planning Defects and Features 89
4.7.2 Our Use of Defects and Features . 92

4.8 Releases, Levels, and Tracks . 97
4.8.1 What to Consider in Planning Releases, Levels, and Tracks 97
4.8.2 Our Releases, Levels, and Tracks . 99

Chapter 5. Using CMVC . 103
5.1 First Things First . 103

5.1.1 Background Reading . 103
5.1.2 Becoming Familiar with the CMVC Client GUI 103
5.1.3 Becoming Familiar with the CMVC Command-Line Interface 108

5.2 Project Manager Asks about Setting up the SCM Environment 109
5.2.1 Creating a CMVC Family . 109
5.2.2 Modifying Choices Lists, Authority, Interest, and Processes 109

5.3 Project Manager Asks about Implementing Quality Metrics and Project
Practices . 110

5.3.1 Configuring Fields . 110
5.3.2 Configuring User Exits . 110

5.4 Project Manager Asks about Starting Up CMVC Client 111
5.4.1 Starting CMVC Client GUI . 111
5.4.2 Creating CMVC User IDs and Host Lists 112

5.5 Project Manager Asks about Project Organization in CMVC 115
5.5.1 Creating and Manipulating Components 115
5.5.2 Creating a Release with the Test Environment 119
5.5.3 Setting Access and Notification Lists 121

vi CMVC Live

5.5.4 Opening a Defect to Accompany Files in the Initial Release 125
5.6 Project Manager Asks about Reporting . 128
5.7 Developer Asks about Components and a Release for the Original MVS

Baseline . 129
5.8 Developer Asks about Bringing MVS Source Files under CMVC Control 129

5.8.1 Accepting the Defect . 129
5.8.2 Creating a Track for the Defect and the Release 133
5.8.3 Creating the Files . 136
5.8.4 Integrating the Track by Completing Fix Records 140

5.9 Builder Asks about Building Application on MVS 143
5.9.1 Creating a Level for the Release . 143
5.9.2 Creating a Level Member . 145
5.9.3 Committing the Level . 148
5.9.4 Completing the Level . 150
5.9.5 Extracting the Level or the Release 151

5.10 Tester Tests the Application . 154
5.11 Project Manager Ends the Migration . 155
5.12 Project Manager Asks about Sharing Files with AIX Release 157

Chapter 6. Installing CMVC and Supporting Databases 161
6.1 ORACLE Installation, Initialization, and Shut Down 161

6.1.1 ORACLE and Asynchronous I/O . 161
6.1.2 ORACLE User ID, Group, and File System 161
6.1.3 Starting ORACLE . 162
6.1.4 Stopping ORACLE . 162
6.1.5 ORACLE SID and CMVC Family Relationship 163

6.2 NetLS Installation and Initialization . 163
6.2.1 License Serving Concepts . 163
6.2.2 NetLS Password and CMVC Installation 164

6.3 CMVC Installation and Initialization . 164

Appendix A. Implementation of ISO 9001 Using CMVC 167
A.1 ISO 9000 . 167
A.2 CMVC and ISO 9001 . 168

A.2.1 Document Control . 168
A.2.2 Version Control in ISO 9001 . 169
A.2.3 Internal Quality Audits . 172

A.3 Conclusion . 173
A.4 Brief Description of ISO 9000-3 . 173

A.4.1 Configuration Management . 173
A.4.2 Design Control . 174
A.4.3 Document Control . 174

A.5 References . 174

Appendix B. Monitoring and Enhancing the Quality of Software with CMVC 175
B.1 Introduction . 175
B.2 Software Quality . 175

B.2.1 Process Maturity Levels . 176
B.2.2 Software Reliability . 177

B.3 CMVC and Quality Control . 177
B.4 Conclusions . 180
B.5 References . 180
B.6 Discussion on Certain Reliability Models 180
B.7 Classification and Definition of Test Phases 181

Contents vii

Appendix C. User Exit Samples and Suggestions 183
C.1 User Exit to Insert a Header and CMVC Keywords 183
C.2 User Exit to Generate Defect or Feature Number 185
C.3 User Exits Suggestions . 190

Appendix D. Hints and Tips for Using CMVC 193
D.1 Maintaining CMVC family . 193

D.1.1 Aging Defects and Features . 193
D.1.2 Cleaning Family Audit Log and User Log 194
D.1.3 Managing Obsolete Levels . 194
D.1.4 Backing Up a Family Data . 198
D.1.5 How to Terminate a CMVC Transaction 200

D.2 File Modifications with Track and Level Subprocesses Turned On . . . 200
D.2.1 Modifying File Base Name and Path Name 200
D.2.2 Deleting a File . 202

D.3 How to Reuse a Track in Integrate Status with Level Subprocess On . 203
D.4 Common and Shared File . 204

Appendix E. CMVC and SDE WorkBench/6000 207
E.1 Development Manager Pull-Down Menus for CMVC 207
E.2 Significance of Context Mappings . 208
E.3 Implications of Host Scoping for CMVC . 209
E.4 CM Tool Messages . 210

Appendix F. Source File and Program Identification with CMVC Keywords 211

Appendix G. Appendix: Setting Up NetLS . 213

Appendix H. Tailoring CMVC Windows for Different Types of Users 217
H.1 Customization Example for Project Manager 217
H.2 Customization Example for Developer . 221
H.3 Customization Example for Builder . 225

Glossary . 233

List of Abbreviations . 239

Index . 241

viii CMVC Live

Figures

 1. Why SCM and Change Management Are Necessary 1
 2. Development Process Relationships . 7
 3. Project Environment . 13
 4. Initializing CMVC Server Access by Creating a Host Name Alias 17
 5. Initializing CMVC Server Access by Setting up a TCP/IP Port 17
 6. Creating an AIX Login Name for the Family 17
 7. Initializing CMVC Environment Variables in the Family AIX Login 17
 8. Creating Family File System and Database 18
 9. Starting up the CMVC Server . 18
10. Checking for CMVC Server Daemons . 18
11. An User Exit Program to Count the Lines of Code in a Source File . . . 21
12. Setting up CMVC Environment Variables 28
13. How to Get a User List with the Report Command 28
14. User List from Report -view users Command 28
15. How to Get a Component List with Report Command 28
16. Component List from Report -view compView Command 29
17. How to Get a Release List with Report Command 29
18. Release List from Report -releaseView Command 29
19. Shell Script to Get CMVC Lists . 30
20. Initial Component Hierarchy . 32
21. CMVC Client Environment Variables Set up 33
22. Commands to Bring a Group of Files under CMVC Control 33
23. CMVC Family Log File Example . 38
24. Level Change History . 40
25. Our Network Topology . 43
26. Distribution of Software Services across the Network 46
27. NFS Mounts to Support Distributed Data with WorkBench 51
28. NFS Mounts to Support Distributed Execution with SDE WorkBench/600 52
29. NFS Mounts to Support a Single System Image 54
30. File Systems Cross-Mounted on Our Hosts 55
31. ProjectA Prototype Development File Tree 57
32. PortedGUI Directory . 59
33. ImprovedGUI Directory . 60
34. OOGUI Directory . 61
35. ProductA Production Release File Trees 63
36. User List for Production Family . 71
37. Hosts List for Production Family . 71
38. Production Component Tree . 76
39. Development Component Tree . 79
40. List of Components and their Owners for prod Family 83
41. Notification Lists for prod Family . 84
42. Granted Access Lists for prod Family . 85
43. Component Processes Shipped with CMVC 91
44. Feature Information Window . 93
45. Defect Information Window (Top Half) . 94
46. Defect Information Window (Bottom Half) 95
47. Defect Answer Choice List Customization 97
48. List of Releases with Components, their Owners, and Processes . . . 102
49. CMVC - Tasks Window As It Is Shipped 106
50. New Tasks Added to the CMVC - Tasks Window 107
51. CMVC Command Example . 108

 Copyright IBM Corp. 1994 ix

52. CMVC Command Online Help Example 108
53. CMVC Simplified Command Example . 108
54. Setting Family Name and User ID When /etc/hosts and /etc/services

Files Have Not Been Updated for the Family 111
55. How to Set Family Name and User ID from CMVC Client GUI When

/etc/hosts and /etc/services Files Have Been Updated 112
56. Creating a CMVC User with the CMVC Client GUI 113
57. Creating a CMVC User with the User Command 113
58. Creating a Host List Entry with the CMVC Client GUI 114
59. Adding a Host List Entry with the Host Command 114
60. CMVC - Component Tree Window Horizontal Layout with Popup Menu 116
61. CMVC - Component Tree Window Vertical Layout with Node Menu . . 117
62. Creating a Component from the CMVC - Component Tree Window . . 119
63. Creating a Component with the Component Command 119
64. Creating a Release from the CMVC Client GUI 120
65. Creating a Release with the Release Command 121
66. Adding Access List and Notification List Entries through the CMVC

Client GUI . 122
67. Adding an Access List Entry with the CMVC Access Command 122
68. Using CMVC Report Command to List Actions for an Authority Group 123
69. Using the CMVC Report Command to List all CMVC Actions

Associated with Interest Group . 125
70. Using the CMVC Notify Command to Add a Notification List Entry . . . 125
71. Opening a Defect from the CMVC Client GUI 127
72. Defect and Component Relationship after a New Defect Is Opened . . 128
73. Output of the Defect Report Sample Shell Script 129
74. How to Display Open Defects from the CMVC Client GUI 131
75. Accepting a Defect from the CMVC Client GUI 132
76. CMVC Object Relationships after Defect Acceptance 133
77. How to Display Releases for a Specific Component from the CMVC

Client G . 134
78. Creating a Track from the CMVC Client GUI 135
79. Creating a Track with the Track Command 136
80. CMVC Object Relationships after Track Creation 136
81. Creating Files in a CMVC Family . 138
82. List of Created Files for a Release . 139
83. CMVC Object Relationships after File Creation 140
84. Completing Fix Records from the CMVC Client GUI 141
85. CMVC Object Relationships after Defect Fixing through Fix Records . 142
86. Track Change History . 143
87. Creating a Level from the CMVC Client GUI 144
88. CMVC Object Relationships after Level Creation 145
89. Creating a Level Member from the CMVC Client GUI 146
90. Creating a Level Member with the LevelMember Command 146
91. Fix Track as Level Member Information 147
92. CMVC Object Relationships after Level Member Creation 147
93. Committing a Level from the CMVC Client GUI 148
94. Committing a Level with the Level Command 148
95. CMVC Object Status after Level Commitment 149
96. /production/maps/MVS_Release_0/0 Level Map File 150
97. Completing a Level from the CMVC Client GUI 150
98. Completing a Level with the Level Command 151
99. CMVC Object Status after Level Completion 151
100. Level Extraction from the CMVC Client GUI 152
101. Release Extraction from the CMVC Client GUI 153

x CMVC Live

102. Extraction of Level and Release with CMVC Command 154
103. Accepting a Test Record from the CMVC Client GUI 154
104. Accepting a Test Record with the Test Command 155
105. CMVC Object Status after Test Record Acceptance 155
106. Verifying a Defect from the CMVC Client GUI 156
107. Accepting a Verification Record with the Verify Command 156
108. CMVC Object Status At the End of the Problem Tracking 157
109. Linking Two Releases . 158
110. Two Examples of Linking Releases with the Release Command 159
111. Forcing ORACLE to Start Up . 162
112. Entries Made to /etc/inittab File by NetLS Installation 164
113. Entries Added to the /etc/inittab File. 165
114. Commands to Shut Down CMVC for Our Families 165
115. Defect Status over the Time . 178
116. Predicting the Number of Latent Defects 179
117. Prod′s config/userExits file . 183
118. UE Shell Script to Insert a Header and CMVC Keywords 184
119. Routine to Generate a Unique Number per Invocation 187
120. CMVC User Exit to Modify the Defect Number 190
121. Creating a New Tables in CMVC Family Database 191
122. Creating crontab File for prod Family . 193
123. Shell Script for Aging Defects and Features of the prod Family 194
124. Shell Script Cleaning-up Log Files of the prod Family 194
125. Shell Script Asking for Obsolete Levels 195
126. Starting a Level Archive . 195
127. Archiving Level ,0, of MVS_Release_0 196
128. Created Files for Archive of the Level ,0, of MVS_Release_0 198
129. Shell Script Backing up a Family to a Tape 199
130. Shell Script Backing up a Family to a VM Mainframe 199
131. CMVC Activity Monitor Screen Example 200
132. Error Message Issued when Renaming a File 201
133. Example of Common and Shared Files 204
134. Example of File Change History . 205
135. CMVC Pull-down Menu on Development Manager Menu Bar 208
136. Result of the AIX what Command . 211
137. CMVC Keywords into a C Source File . 212
138. Customized CMVC - Tasks Window for Project Manager 218
139. Shell Script to Compute Some Statistics 219
140. Part of Project Manager′s .cmvcrc File 220
141. Customized CMVC - Tasks Window for a Developer 222
142. Part of a Developer′s .cmvcrc File . 222
143. Getting the Number of Accepted Defects 223
144. Getting the List of Affected Releases . 223
145. Shell Script to Create a Track: createTrack.sh 224
146. Customized CMVC - Tasks Window for Builder 226
147. Part of Builder′s .cmvcrc File . 226
148. Getting Fixed Defect Number . 227
149. Getting the Level Name . 227
150. Accepting a built Level . 228
151. Shell Script to Proceed a Level: createLevelPar.sh 229
152. Shell Script to Create a Level with A Track: createLevel.sh 231
153. Shell Script to Extract and Build a Level: buildLevel.sh 231
154. Shell Script to Commit and Complete a Level: completeLevel.sh . . . 232

Figures xi

xii CMVC Live

Tables

 1. Host Names and Associated Software Services 12
 2. Our Hosts and Hardware Configurations 44
 3. Software Configurations . 47
 4. Developer Workstation Assignments . 48
 5. CMVC ID and Host List Plan . 70
 6. Component Hierarchy Plan . 75
 7. Component Hierarchy Plan . 81
 8. Prototype Process Definition . 89
 9. prod Family Component Processes . 96
10. CMVC Client Environment Variables and Command Flags 109
11. Inherited Actions Restricted and Remaining 124

 Copyright IBM Corp. 1994 xiii

xiv CMVC Live

Special Notices

This publication is intended to help developers, project managers, system
administrators, and software configuration administrators set up, configure,
customize, and use IBM CMVC for their application developement. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by Configuration Management and
Version Control/6000. See the PUBLICATIONS section of the IBM Programming
Announcement for IBM Configuration Management and Version Control for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AIX AIX/6000
AIXwindows VS COBOL II
Common User Access CUA
DATABASE 2 DB2

 Copyright IBM Corp. 1994 xv

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

DB2/6000 IBM
MVS OS/2
Presentation Manager RISC System/6000
Xstation Manager

Yellow Pages British Telecommunications PLC
Hewlett-Packard Hewlett-Packard Company
HP Hewlett-Packard Company
HP-UX Hewlett-Packard Company
SoftBench Hewlett-Packard Company
Motif Open Software Foundation, Inc.
OSF Open Software Foundation, Inc.
OSF/Motif Open Software Foundation, Inc.
Sun Sun Microsystems Incorporated
SunOS Sun Microsystems Incorporated
Solaris Sun Microsystems Incorporated
NFS Sun Microsystems Incorporated
Network File System Sun Microsystems Incorporated
Micro Focus Micro Focus Limited
Micro Focus COBOL Micro Focus Limited
Toolbox Micro Focus Limited
UNIX X/Open Company Limited
X Window System Massachusetts Institute of Technology
MIT Massachusetts Institute of Technology
ORACLE Oracle Corporation, Inc
SYBASE Sybase, Inc.
INFORMIX Informix Software, Inc.
PVCS Version Manager INTERSOLV, Inc.
MS-DOS Microsoft Corporation
Microsoft Microsoft Corporation
Microsoft Windows Microsoft Corporation
NetLS Apollo Computer, Inc., a subsidiary of

Hewlett-Packard Co.
Network Licensing System Apollo Computer, Inc., a subsidiary of

Hewlett-Packard Co.
NCS Apollo Computer, Inc., a subsidiary of

Hewlett-Packard Co.
Network Computing System Apollo Computer, Inc., a subsidiary of

Hewlett-Packard Co.
Internet Internet, Inc.
ISO International Organization for

Standardization

xvi CMVC Live

Preface

This document is intended for developers, project managers, system
administrators, and the software configuration administrators who want to know
how to set up, configure, customize, and use IBM CMVC for their application
development. This book illustrates how a project applied CMVC to organize and
manage application data, report the problems, and track the changes over the
project time frame. It also shows how to enhance the productivity of
programmers familiar with UNIX, and the quality of the produced application.

This book is organized around a hypothetical story of a project, which explored
the downsizing of a legacy application from an IBM mainframe to an IBM RISC
System/6000. This volume uses this project as vehicle for explaining CMVC
concepts and showing the use of CMVC for UNIX. Additional topics not
specifically related to this project are included in the appendixes.

This book does not address the CMVC client products for OS/2, MS-DOS, and
Microsoft Windows.

How to Use This Document
This document provides information of value to readers with varying
perspectives and background in software development and configuration
management. We anticipate that some readers will benefit by focusing on
particular chapters, while skipping others. To help the reader make this choice,
we provide the following description of each chapter and its audience:

• Chapter 1, “Software Configuration Management and Change Management
Overview”

This chapter briefly describes the objectives and benefits associated with the
processes known as software configuration management and change
management. This chapter also introduces the main functions of IBM CMVC.

• Chapter 2, “Discovering CMVC: An New Application Project Is Introduced to
CMVC”

This chapter describes an application development project for which CMVC
provided configuration management support. The project involved moving
the application development environment for an MVS DATABASE 2 COBOL
application to AIX, and then modernizing and migrating the application itself
to AIX. This chapter illustrates how project personnel are introduced to
CMVC through a series of hypothetical dialogs which the project manager,
developer, builder, and tester have with their system administrator and
software configuration management administrator. This second chapter
should be read by all readers, because it provides the background necessary
to understand the remaining chapters.

• Chapter 3, “Overview of the Application Development Project”

This chapter describes the application under development and the
development environment established on AIX. It should be read by readers
who want detailed information about the original MVS application, its design,
and user interfaces. Readers who have a particular interest in learning how
to organize an AIX software development environment should read this
chapter. It details machine configurations, LPP versions, and file system

 Copyright IBM Corp. 1994 xvii

organization. It is not, however, necessary to read this chapter as a
prerequisite to reading the following chapters.

• Chapter 4, “Planning for CMVC”

This chapter examines how this project approached CMVC. It offers general
advice on setting up CMVC as well, based on other experiences with CMVC.
This chapter should be of interest to software configuration management
administrators and project managers. Reading this chapter is not a
prerequisite for understanding the following chapters, but it is closely related
to the material presented in Chapter 5, “Using CMVC.”

• Chapter 5, “Using CMVC”

This chapter illustrates typical user interactions with CMVC Clients. It shows
you how to use both the graphical and command-line user interfaces to
perform the actions described in Chapter 2, “Discovering CMVC: An New
Application Project Is Introduced to CMVC.” This chapter should be read by
anyone wanting to learn quickly how to use the CMVC Clients. This chapter
can be thought of as a short user′s guide describing the most common
CMVC commands.

• Chapter 6, “Installing CMVC and Supporting Databases”

This chapter describes how we installed and configured CMVC and CMVC
prerequisite program products. This chapter should be read by system
administrators.

The following appendices are narrowly focused, offering advice on a variety of
topics. Readers should identify those which are relevant to their specific
responsibilities and interest areas. Except for the first two, which are conceptual
in nature, these appendices contain detailed technical “how-to” information.

• Appendix A, “Implementation of ISO 9001 Using CMVC”

This appendix provides a brief introduction to the ISO 9000 and discusses
how CMVC can be utilized to implement some key ISO 9001 requirements.

• Appendix B, “Monitoring and Enhancing the Quality of Software with CMVC”

This appendix briefly outlines software quality and the fundamentals of
Software Reliability, and demonstrates how CMVC was used to provide data
that can be used to predict and improve the quality of software products
under development.

• Appendix C, “User Exit Samples and Suggestions”

This appendix describes two user exit programs used by our project. One
inserts a module header and SCCS keywords into C source files. The other
generates unique alphanumeric defect and feature numbers. It also gives
some suggestions of user exit programs, which could be associated with
certain CMVC actions.

• Appendix D, “Hints and Tips for Using CMVC”

This appendix gives some general tips and hints, such as the use of the
UNIX cron daemon in CMVC family maintenance, the shell script samples
shipped with CMVC, the CMVC client log file, and the CMVC family log file. It
also describes some procedures we ran to make some minor file
modifications for our project, such as file name change, file deletion, and
integrated track reuse.

xviii CMVC Live

• Appendix E, “CMVC and SDE WorkBench/6000”

This appendix discusses how to use CMVC with SDE WorkBench/6000.

• Appendix F, “Source File and Program Identification with CMVC Keywords”

This appendix describes some SCCS keywords supported by CMVC, and
shows how we used these keywords in our C source programs.

• Appendix G, “Appendix: Setting Up NetLS”

This appendix gives a procedure to rapidly configure NetLS in the scope of a
small network configuration.

• Appendix H, “Tailoring CMVC Windows for Different Types of Users”

This appendix shows some CMVC Tasks windows customized according to
the roles of the people on our project, such as project manager, developer,
and builder. It also describes how to use CMVC to calculate some statistics
or metrics and to automate the problem tracking and build processes.

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

CMVC Publications

• IBM CMVC Concepts, SC09-1633, introduces the fundamentals of the
configuration management, version control, change control, and problem
tracking features of CMVC. It also defines the concepts that are the
foundation of the CMVC actions and describes their interrelationships. (The
CMVC Version 1 equivalent document was Understanding IBM AIX
CMVC/6000 Concepts, SC09-1433.)

• IBM CMVC Server Administration and Installation, SC09-1631, contains
detailed information for planning, installing, customizing, operating, and
maintaining the CMVC Server.

• IBM CMVC Client Installation and Configuration, SC09-1596, contains the
detailed information you need to install and configure the CMVC clients.

• Using CMVC Clients for HP and Sun, SC09-1518, describes the differences
between these clients and the AIX CMVC clients, and tells how to install and
configure them. (These CMVC clients are not discussed in this Redbook.)

• IBM CMVC Client/2 Getting Started, SC09-1599, and IBM CMVC Client/2
Users Guide, SC09-1783, describe how to use the OS/2 client graphical user
interface for CMVC. (This client is not discussed in this Redbook.)

• IBM CMVC User′s Guide, SC09-1634, describes how to perform specific
CMVC actions with the CMVC graphical user interface or the
message-integrated CMVC client GUI. (The CMVC Version 1 equivalent
document was IBM AIX CMVC/6000 User′s Guide, SC09-1430.)

• IBM CMVC User′s Reference, SC09-1597, contains the reference lists, tables,
and state diagrams for CMVC, as well as a description of how
message-integrated CMVC uses the Broadcast Message Server to
communicate with the other integrated development tools.

• IBM CMVC Commands Reference, SC09-1635, describes the syntax and
usage of the CMVC commands as implemented in the command-line

Preface xix

interface. (The CMVC Version 1 equivalent document was IBM AIX
CMVC/6000 Commands Reference, SC09-1446.)

NetLS Publications

• NetLS Quick Start Guide, SC09-1661, provides the information needed to set
up the Network License System software, a prerequisite for working with
CMVC.

• Managing Software Products with the Network License System, SC09-1660,
provides the information needed to manage CMVC network license
information with the NetLS software.

• Managing NCS Software, SC09-1834, provides more detailed information on
setting up and managing software with NetLS.

ORACLE Publications

• ORACLE for IBM RISC System/6000 Installation and User′s Guide Version 6.0,
5687-60-0792

• ORACLE RDBMS Database Administrator′s Guide, Version 6.0,3601-v6.0 1090

• For information on databases, operating systems, and software development
environment used with CMVC, refer to your specific database, operating
systems, and software development documentation.

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070

How to Order Redbooks

IBM employees may order Redbooks and CD-ROMs using PUBORDER.
Customers in the USA may order by calling 1-800-879-2755 or by faxing
1-800-284-4721. Visa and Master Cards are accepted. Outside the USA,
customers should contact their IBM Services Specialist.

You may order individual books, CD-ROM collections, or customized sets,
called GBOFs, which relate to specific functions of interest to you.

Acknowledgments
The advisor for this project was:

Lorna R. Conas
International Technical Support Organization, San Jose Center

The authors of this document are:

Lorna R. Conas
IBM International Technical Support Organization, San Jose Center

xx CMVC Live

Eric Valade
IBM France

This publication is the result of a residency conducted at the International
Technical Support Organization, San Jose Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Sarah McNamara
IBM Programming Systems Toronto Laboratory

Kostas Gaitanos
IBM Programming Systems Toronto Laboratory

Preface xxi

xxii CMVC Live

Chapter 1. Software Configuration Management and Change
Management Overview

The elements produced during the development of an application are created
progressively, as new requirements are discovered and old ones are refined.
You can easily forget why and when an individual element was created. You can
have the latest application development tools, a highly skilled and well-managed
development organization, and be following a superior development
methodology, but still find that your “as-built” application does not work as it
was designed, coded, tested, or documented.

It is possible that the application, which worked so well in testing, cannot be
successfully re-created for delivery simply because some fixes to the code were
not integrated in the final build of the application. It is also likely that some
unauthorized fixes managed to find their way into the application, creating a
mismatch in interfaces, calls to nonexistent subroutines, or inappropriate access
to data, which no one can seem to explain. Problems of this sort represent
failures in software configuration management (SCM) and change management.

Having all the right parts does not ensure a successful outcome in software
development, as shown in Figure 1. It takes SCM to ensure that all the right
parts are put together in the right manner, and it takes change management to
ensure that any changes to those parts or their relationships are well thought
out and deliberately applied.

Figure 1. Why SCM and Change Management Are Necessary

In this chapter, we briefly describe the objectives and benefits associated with
the processes known as SCM and change management. We also discuss the
relationships among these processes, and other processes, such as project
management. We also look at the relationship among these processes and
software development methodologies.

 Copyright IBM Corp. 1994 1

1.1 Objectives
The main purpose of both SCM and change management is to ensure
consistency of the elements comprising the application, as well as between the
application and the documentation, which defines and supports it. The
documentation that defines an application includes:

• Requirements specifications
• Interface specifications
• Design data, engineering drawings, and design specifications.

The documentation that supports an application includes various end-user
manuals and separately cataloged help information.

Another very important function is to precisely identify an application′s
significant development “baselines.” These baselines are usually associated
with a major project milestone event. Typical baselines include:

• Requirements analysis and specification
• Approved design documentation
• Evaluation prototype (alpha release)
• First integration test release (beta release)
• First end-user release (first customer ship)
• Site-specific or platform-specific releases.

Identifying all the changes to a given baseline, and ensuring that they are
incorporated into the next, newly forming baseline in an orderly and controlled
manner is the core responsibility of change management. Change management
identifies and tracks problems as well as suggested enhancements to an
application. This ensures each change is carefully evaluated, and—if approved—
correctly implemented and incorporated into the application.

1.2 Benefits
SCM and change management are put into place to prevent or cure problems
that contribute to high development and maintenance costs, missed schedules,
and customer dissatisfaction. You reap many benefits when you can
successfully apply SCM and change management to software development
efforts.

The primary benefit of SCM ensures that you can define and identify all elements
comprising your application. It also ensures that you know exactly in which
manner they are generated, preprocessed, compiled, linked or otherwise
combined to form specific releases of your application and related
documentation. SCM ensures that you keep a historical record of these release
configurations along with the exact versions of all the components and the
application itself at each release. This means that you can re-create exactly any
previous release of your application, which exhibits a failing characteristic
reported by end users.

SCM ensures that you can generate different parallel releases of the same
application, because you know exactly which elements are unique to each
version and which are common. You have a complete history of every version of
every source or data file comprising your application, and you also have the
ability to have parallel versions of one file incorporated in multiple releases.
Release management, which is an element of SCM, ensures that you can

2 CMVC Live

upgrade your application by incorporating changes in a controlled and validated
sequence.

With effective change management, you can trace changes in the application
source code back to a specific enhancement in the functional requirements, to
an approved design change, or to a specific reported failure in the previous
version of the application. You can also prevent degradation of the application
between one release and another, by ensuring that untested or unauthorized
components are not inadvertently incorporated.

With change management, you also prevent confusion as to who is working on
which problems. Confusion of this sort causes inconsistent integration test
results and unnecessary rework. For example, it results from two programmers
beginning their work on different problems in the same modules, at the same
time. The first one finishes, replaces the modules in the test build, and
experiences successful results. The second programmer is now unknowingly
working with copies of modules that are now out of date. The second
programmer also experiences successful test results after replacing the modules
in the test build. Now, the first programmer′s changes have been lost, and
subsequent testing reveals that what used to work, now fails.

Change management provides you with the ability to report on the exact status
of development or maintenance tasks. If change management is implemented
well, it also records the type of data that can be used to evaluate the impact that
proposed changes may have on the software quality, schedules, or resource
requirements.

1.3 Development Efforts Requiring SCM and Change Management
Any application development effort worth doing, deserves some degree of SCM
and change management. This is usually self-evident in the case of large and
complex application development, but is not always clear to developers of
smaller and simpler applications. The size and complexity of the effort
determines in which phase SCM and change management are best introduced.
Larger projects, having a greater investment at risk, need to be tightly controlled
and monitored from the earliest requirements analysis and design phases.
Smaller efforts may not require change management or SCM until the
applications are complete and delivered for production use. The size of the
investment and relevant company or industry standards, also determine the
completeness and strictness of the procedures governing SCM and change
management. However, SCM and change management are critical to the
success of most development efforts, and cost-effective during the maintenance
phase of all of them.

1.3.1 Large Application Development Efforts
Consider a large software development effort, such as that of developing and
maintaining a major operating system. With a reasonable assortment of
application products and operating system code, a typical UNIX** software
system might take up 400 MB on disk when installed. It would support dozens of
types of hardware peripherals, contain hundreds of end-user commands, include
dozens of libraries and application programming interfaces (APIs), and provide a
handful of compilers. At some point in time, it probably has a half-dozen
releases in the field, and runs on at least three or four hardware architectures.
The company developing such an operating system, might employ hundreds of

Chapter 1. Software Configuration Management and Change Management Overview 3

developers, testers, writers, and Quality Assurance (QA) representatives to
handle this development effort.

Such a company cannot risk the loss of profit and sales caused by any confusion
in the generation, maintenance, or delivery of its operating system and related
software products. A large number of files with a complex development history
are required to support this operating system. These are organized in a number
of subsystems whose configurations need separate management and tracking.
Control over the source and documentation for this product should begin at
project conception and continue indefinitely. Communications among the
development team about the development status of various application elements
should be formalized, and to the greatest extent possible, automated. Project
management needs sophisticated methods of measuring and auditing the
development process. Quality Assurance has to be exercised over every step of
the development process. Clearly, this company could not begin to manage an
effort of this scope without very strict and widely-encompassing SCM and change
management procedures, policies, and significant automated tool support.

1.3.2 Medium-Sized Application Development Efforts
Now, consider a medium-sized business application development effort, which
involves maintaining an old COBOL application on a mainframe, downsizing it to
a UNIX platform and adding a GUI, and reimplementing it in C+ + . This project
requires four developers, a project manager, a writer, QA oversight, and
end-user testing support. The application itself is not complex or large, but it is
critical to the business. It handles customer, order, and payment information for
products shipped on a subscription basis. The importance of the application and
the facts that there will be at least three application baselines on two operating
systems, development activities involving three languages, and use of a “GUI
builder” tool, give the effort sufficient complexity, expense, and risk to warrant
the use of SCM and change management.

This project requires SCM because the developers need to identify and control
multiple versions of the source files and related documentation for multiple,
parallel releases of the application. This project also requires automated
mechanisms for tracking development status and notifying team members of the
transition of various development elements into new baselines. This project
requires change management, because technical issues related to building the
application appropriately for each platform, while maximizing common code
across the platforms, require careful evaluation of proposed changes to baseline
releases, design, or requirements documentation. Because the application is
critical to the business, it is necessary to ensure that requirements and design
decisions are implemented and verified.

1.3.3 Small Application Development Efforts
The value of SCM and change management to smaller SCM development efforts
is often underestimated. They are perceived to require a level of effort and
formality, which is excessive compared to the total lines of code or the number
of developers required to implement a small application. Developers also
incorrectly perceive SCM and change management as restraints on their
creativity or as impediments to their rapid progress. They fail to recognize how
much time and trouble these disciplines can save. But, an application, which is
so small that it does not require formal design or independent testing, still
requires SCM and change management during its maintenance phase. Because
end users come to depend on the availability and function of even small

4 CMVC Live

applications, the software maintenance is inevitabe, because of changes to
external interfaces, such as an operating system or utility subroutines, or to the
set of requirements met by the application. It is unlikely that the developer
responsible for implementing these changes will be the same developer who
originally engineered the application. Recording the facts of the build process,
identifying the source components, and design and requirements documentation,
and having a history of previous changes to the application, contributes to the
efficient implementation and test of these changes, no matter how small
application.

Often, a company has an assortment of small applications, which collectively
constitute a significant investment in a development effort. Over time, these
applications develop dependencies on each other, as one application is
developed to take advantage of preexisting applications. Using change
management to evaluate and monitor changes made to one application can
prevent a costly and unforeseen impact on others. Change management also
provides a convenient mechanism for collecting the data necessary to evaluate
which applications consume disproportionate maintenance resources.

1.3.4 Relationships among SCM, Change Management and Other Development
Effort Processes

The “as-built” baseline of an application is the final baseline in the development
phase. It consists of source code, data, and executable images, but not all
preliminary baselines consist of, or even include, these elements. Which type of
objects constitute an application baseline during this phase depends on the
choice of development methodology chosen for the project. The milestone
events and the types of baselines may vary, but the principles of SCM and
change management do not. If a project applies the traditional waterfall
methodology, the baselines might be:

• Functional, performance, and interface requirements
• “Build-to” system, subsystem, and component designs
• “As-built” test, integration, and delivery implementations.

In this case, the elements managed by SCM and change management might be
files containing:

• Various requirements specifications
• Various forms of design notation and data definitions
• Source and executable application code.

If a newer methodology is employed, such as the object-oriented methodology
described by Grady Booch in his Object-Oriented Analysis and Design With
Applications, Second Edition, the baselines might be:

• Conceptualization prototype
• Analysis description, which models the behavior of the application
• Architectural release and descriptions of tactical policies
• Successively refined executable releases.

The objects controlled by SCM and change management in this case might be
files containing:

• Object and class diagrams, finite state machine descriptions, and
documentation of nonbehavioral aspects of the design, such as portability,
reliability, security, and efficiency

Chapter 1. Software Configuration Management and Change Management Overview 5

• Class and object structure diagrams and an architectural release, which is a
high level source code release of the application in which the details of base
classes are not yet defined

• Source and executable application code.

SCM and change management procedures and mechanisms must be tailored to
meet the requirements of the chosen development methodology. Both of these
processes are complimentary to the goals of the development methodology and
related test and QA disciplines in that they help to achieve and maintain a high
degree of software quality and engineering process integrity.

1.3.5 Interaction with Project Management
SCM and change management provide feedback and controls to project
management. Change management mechanisms provide for the creation,
update, and status tracking of changes to the software by all members of a
project, including project management. Change management is particularly
helpful to project management in making technical decisions, which impact
workload distribution, schedules, or definition of the deliverables. Change
management creates the opportunity for project management to mandate these
factors be identified and evaluated before the decision is made on how or
whether to implement an enhancement. It also provides a means by which
project management can assign responsibility for the implementation of the
approved changes, as well as monitor the progress of these changes through
integration and testing into the approved baseline.

Through configuration identification and version history of individual files, SCM
helps project management to ensure that developers implement significant
technical decisions, as directed. It also provides an audit trail, which facilitates
evaluation of procedural flaws that allow incorporation of inadvertent errors into
a baselines, when these problems occur.

SCM identifies and relates requirements, design, implementation,
documentation, test data, and deliverables. Project management uses this
organization of the application itself, to identify and organize the team and effort
required to implement the application. Project management manages the effort,
establishes the schedules, and defines the milestone events at which various
baselines are evaluated and delivered.

SCM and change management are a formal means by which project
management exerts and organizes its control over the application development
effort.

1.3.6 Interaction with Quality Assurance
SCM and change management processes implement the specific policies and
practices adopted by an application development team. The QA organization
exists to inspect and verify that the team adheres to these policies, as well as to
any externally applied rules and regulations. Formally documenting and
automating SCM and change management procedures and practices significantly
enhances the job of the QA representative. A QA representative can easily
inspect actual practices, procedures, records, and related software libraries to
verify that the development team follows the documented practices and use the
approved automated tools.

SCM and change management also can be structured to help achieve the QA
goals:

6 CMVC Live

• Ensuring conformance to programming standards, such as inclusion of
module headers, adequacy of source code comments, and formation of
module names according to conventions

• Recording approval of QA representatives that design, code, or
documentation has met required criteria before entering the next baseline

• Ensuring related design updates, test results, software quality metrics data,
and/or end-user documentation are upgraded and submitted to the library
whenever related code changes are accepted.

1.3.7 SCM History and Statistics
If SCM and change management are implemented with a database that provides
generalized query capability, then risk, cost, quality metrics, and other data can
be captured and analyzed for project management uses also. Various statistics
related to project management, software quality SCM and change management
can be derived from a well-maintained SCM database. It is possible to extract
sufficient data from such a database to project cost, staffing, software sizing, and
development schedule data of similar projects under planning.

SCM and change management efforts together form a critical component in the
organization of an application development effort. Figure 2 shows how these
two processes relate to technical development, quality management, and project
management.

Figure 2. Development Process Relationships

Chapter 1. Software Configuration Management and Change Management Overview 7

1.4 Automated Support for SCM and Change Management
While procedures and practices to implement SCM and change management can
be manual, and in fact were for many years, they lend themselves particularly
well to automation. As application development became increasingly complex, it
became not only more convenient, but absolutely necessary to automate most of
the tasks and procedures supporting SCM and change management. When it
became possible for SCM and change management tools to take advantage of
relational database technology, data about the configuration objects and change
reports could be accumulated and accessed in a variety of ways beyond that
necessary merely for SCM and change management purposes if the SCM tools.

When IBM undertook to develop its own UNIX-based operating system, AIX, it
discovered it needed a UNIX-based industrial strength SCM and change
management system that could support thousands of users, hundreds of
Gigabytes of project data, and tens of thousands of report queries daily. IBM
needed a product which supported its development methodology, met its QA
requirements, and was compatible with its development environment. IBM
needed reliability, flexibility, and performance. No one SCM product at that time
included all the features, which IBM knew it required for AIX development. Many
provided version control or release management, but none integrated automated
change management with automated SCM

IBM, therefore, developed its own SCM and change management tool on AIX.
This tool, developed for internal use, was called Orbit. After Orbit had been
successfully used to bring out several releases of AIX, IBM realized that other
software engineering and business application developers could also benefit
from a tool with Orbit′s capabilities. So, they developed a commercial SCM and
change management tool from Orbit and named it Configuration Management
Version Control (CMVC).

1.4.1 Configuration Management Version Control
This section gives a brief overview of the features and functions of CMVC.

CMVC is a client-server application. CMVC products execute on the HP-UX**
from Hewlett-Packard** (HP**), on SunOS** and Solaris** from Sun** and on
AIX/6000. Client portions of these products interoperate with any server portion.
There are a command-line client, a stand-alone graphical client, and graphical
client, which can be integrated into the IBM Software Development Environment
(SDE) WorkBench/6000 or the HP SoftBench** environment. The CMVC server
accesses data stored on its host′s file system and data stored in a relational
database, managed by DATABASE 2/6000 (DB2/6000*), ORACLE**, INFORMIX**,
or SYBASE** products. CMVC provides a wide range of functions.

1.4.1.1 Configuration Management
CMVC provides mechanisms for identifying, monitoring, and managing changes
made to a software baseline. The baseline may contain any type of data,
including: documentation, design and specification data, and build and compile
control information, as well as the source code itself. Files managed may
contain text or binary data. CMVC supports files containing these types of data
by associating them with CMVC “components.” Components may be organized

8 CMVC Live

into a component hierarchy to reflect the application′s design, responsibilities in
the development organization, or other relevant schema. Components are
owned and manipulated by CMVC user IDs which are mapped to operating
system user IDs, on specific network hosts.

1.4.1.2 Version Control
Version control is provided by standard UNIX Source Code Control System
(SCCS), or by PVCS Version Manager**, a product available from INTERSOLV,
Inc. Version control ensures that any given version of a file from the present
back to its initial version can be identified and retrieved, and that the differences
between any two versions can be readily identified. Version control in CMVC
applies to both ASCII and binary data files.

1.4.1.3 File Change Control and History
CMVC ensures that an audit trail is maintained for every file by identifying for
any file change: when the change occurred, who was responsible, and why the
file was modified. If problem tracking is in place, CMVC ensures that all file
changes identify the authorizing defect or feature, and that no file changes are
allowed without such authorization.

1.4.1.4 Integrated Problem Tracking
Problem tracking, both for feature and defect changes is provided by CMVC.
Features and defects are associated with a CMVC component. In addition to
describing the enhancement proposed or problem encountered, they identify the
specific versions of all controlled files, which implement the feature or defect.
Problem tracking implements a configurable process. This means that defects
and feature processing can be omitted. If they are used, defect and feature
processing can go through a series of states, some of which are optional.
Defects and features can be opened, cancelled, returned, or implemented after
an optional design, size, and review subprocess is conducted. There is also an
optional verify subprocess to verify that the changes were satisfactorily
incorporated in a formal release.

1.4.1.5 Release Management
CMVC supports the concept of a “track,” which is a mechanism to relate an
individual defect or feature with the set of file changes that implement that defect
or feature in a given “release” or “level of a release” of an application. Use of
tracks is also a configurable process; tracks processing is optional, and if used,
has optional subprocesses for approval, fix, and test. If used, tracks go through
a series of states which include: approve, fix, integrate, commit, test, and
complete.

Releases and levels are CMVC mechanisms for defining interim baselines of the
application. CMVC records the exact version of every file comprising the
release, including build instructions, and can extract those files into build
directories. Release management is a configurable process which can include
or omit the track process, and if the track process is employed, an optional level
subprocess. A level is a group of changes that are incorporated into a release
in a sequential and carefully monitored manner. A level is first in a working
state, then tested in an integrated build committed when satisfactorily tested and
marked as complete when all changes identified for that level have been
successfully incorporated into the release.

Chapter 1. Software Configuration Management and Change Management Overview 9

1.4.1.6 Access Control
Components provide a mechanism by which CMVC controls access to files under
its control. Access of a variety of sorts can be defined for all files associated
with a given component. CMVC user IDs implicitly acquire some access
authority for components by virtue of owning them, and may inherit other access
authority from parent components. They can explicitly grant or deny access
authority over components which they own to other CMVC user IDs.

1.4.1.7 Automatic Notification
CMVC provides for automatic notification of CMVC actions affecting particular
components and their files to “interested” users. Notification is provided by
electronic mail, so a user does not have to start up CMVC to be aware of the
CMVC actions. A CMVC user ID′s “interest” in being notified of CMVC actions
can be specified in terms of specific CMVC actions and affected components.

1.4.1.8 Customization
CMVC allows additional fields to be added to the database records that
implement CMVC features, defects, files, and users. These new fields are
reflected by appropriate changes to CMVC windows, reports, and command-line
parameters.

CMVC also enables configuration of the processes that manage CMVC objects,
such as files, features, and releases. Configuring these processes determines
the various states through which these objects can pass.

CMVC allows you to define “user exits” that automatically execute a UNIX shell
command file, or user-written executable program whenever specific CMVC
commands are executed. You are allowed to select parameter data, related to
the CMVC action and object it is affecting, to be passed by the CMVC command
to your the shell command file or program. You can also determine if the user
exit is triggered before or after the CMVC command executes.

10 CMVC Live

Chapter 2. Discovering CMVC: An New Application Project Is
Introduced to CMVC

Suppose for a moment, CMVC is an integral tool in your application development
environment. Further, suppose you are on a development team which is about
to undertake a new application development project. Your team members would
need to learn how to use CMVC to support your development effort and assure
its quality. With the help of your system administrator, software configuration
manager, and your software Quality Assurance representative, your team
members would learn to map the real-life terms and concepts which they
already understand to the CMVC vocabulary, objects, and actions. This chapter
contains several hypothetical conversations, which would take place under these
circumstances. In this chapter, the reader is asked to take the perspectives of
different members of this application development team as they learn about
CMVC. Perspectives presented include project manager, software engineer,
build engineer, and test engineer.

2.1 Project Short Description
Put yourself in the shoes of a project manager who has just been given a project
involving maintenance of some existing code and development of new code to
meet clearly defined requirements. This section provides a brief description of
just such a project, which was undertaken with the help of CMVC during an ITSO
residency project. This project is typical of application development efforts in
many ways. It is small enough to discuss in a Redbook, yet large enough to
illustrate the use of an automated software configuration management (SCM)
product, such as CMVC.

The application you will work with is but one in the large legacy of COBOL
business applications on which your company depends on daily. This
application consists of both batch and interactive programs that support
customer ordering and billing for a series of collector′s items, which your
company sells. This application makes use of a relational database.

Your project will “downsize” this application from the proprietary operating
system and IBM mainframe on which it currently executes, to an open systems
operating system, AIX, executing on a smaller, less-expensive, LAN-attached
computer; the RISC System/6000. This project is feasible because the smaller
platform supports a modern development environment with many application
development tools, the same relational database product on which your
application depends, the same language (COBOL) in which your application is
implemented, and the object-oriented language (C+ +) in which you would like to
implement your future applications.

You have decided your downsizing will be divided into three stages:

 1. Migration of the application development environment from the mainframe to
AIX. The application development environment during this stage is AIX,
although the application will be compiled and executed on the mainframe.

 2. Downsizing the application. Both the application development and target
execution environments are AIX. First, you will perform a minimum effort
port of the COBOL code to AIX creating a graphical user interface (GUI)
which looks very much like the mainframe character-based user interface.

 Copyright IBM Corp. 1994 11

Nearly identical AIX and MVS versions of the COBOL application will be
maintained, executing in parallel, for a period of time while you evaluate the
success of the effort. Second, you will improve the GUI according to modern
standards.

 3. Object-Oriented (OO) reimplementation of the application. Both the
development and execution environments are AIX. In this phase you will
reuse the improved GUI design, but implement it as well as the COBOL code
in C+ + .

2.1.1 CASE Environment
Your project requires a different combination of application development tools
for each stage:

 1. Migrating the application development environment to AIX requires:

• IBM VS COBOL II* compiler to build the application onto the target
mainframe

• POWERbench COBOL to edit, compile, build, and debug the application
on AIX

• ISPF to generate the 3270 user interface on the MVS platform
• CMVC/6000 to manage data and control the changes on AIX.

 2. Downsizing the application requires:

• POWERbench C/C+ + to edit, compile, and debug the C code on AIX
• POWERbench COBOL and ToolBox to edit, compile, build, and debug the

COBOL code on AIX
• IBM AIC/6000 to generate C code of the OSF/Motif** graphical user

interface for AIX
• CMVC/6000 to manage data and control the changes on AIX.

 3. OO reimplementing the application in an object-oriented language requires:

• POWERbench C/C+ + to edit, compile, and debug the C+ + code on AIX
• IBM AIC/6000 to generate C+ + code of the OSF/Motif GUI for AIX
• CMVC/6000 to manage data and control the changes on AIX.

2.1.2 Hardware and Software Environments
Your project has four RISC System/6000s and one X station connected by a
Token Ring Local Area Network (LAN). The AIX machines communicate with
each other through the TCP/IP protocol. Also, a MVS mainframe is connected to
the LAN. To build the MVS application, all data is uploaded to the mainframe
using TCP/IP (ftp).

Table 1 shows the distribution of the software services in our network.

Table 1 (Page 1 of 2). Host Names and Associated Software Services

Host Names Software Services Assignments

bering • AIC
• POWERbench C/C+ +

• CMVC Server
• CMVC Client
• ORACLE RDBMS

Project management and
software configuration
management

12 CMVC Live

Figure 3 shows the entire application development environment with the
network, the machines, the software, and the various UNIX login names.

Table 1 (Page 2 of 2). Host Names and Associated Software Services

Host Names Software Services Assignments

bengal • POWERbench C/C+ +

• POWERbench COBOL
• CMVC Client
• DB2/6000

COBOL DB2 development

yel low • POWERbench C/C+ +

• CMVC Client
• AIC
• DB2/6000

C+ + development

sargasso none GUI development

zorin1 none Alternative workstat ion

Figure 3. Project Environment

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 13

2.1.3 Roles and Responsibilities
Your development team is composed of a few people. Each team member has
more than one role during the various development phases. Each time team
members change roles, their objectives and work processes are different.

The following gives a short description of the responsibilities for each role in
your team.

Role Responsibility

Project manager Controls and monitors the project according to a schedule
and a budget. The manager assembles the team and the
system and ensures that they have the resources
necessary to accomplish the project deliverables.

Developer Designs and implements the application, and performs the
unit test. Different developers have separate skill sets.
Your development team consists of developers with
specific skills in COBOL, DB2, C, C+ + , and OSF/Motif GUI.

Writer Writes documentation associated with the application such
as end-user manuals and installation manuals.

Builder Generates drivers and the final application by integrating
various parts of the application with each other.

Tester Verifies that the application implements the requirements
as they are specified.

In addition to your team, the company employs people in certain other roles
which cross project boundaries for economy, efficiency, and consistency. These
roles and a brief description of each are:

System administrator Has several responsibilities:

• Management of the network configuration, such as
Internet** address, route, and socket numbers

• Management of the UNIX groups and users
• Maintenance of UNIX data associated with CMVC, such

as file systems and databases.

SCM administrator Is in charge of data backup, archives, restoring, and
tailoring the SCM environment.

QA representative Verifies that the development methodology is correctly
applied and the procedures and practices of both company
and project are followed.

We provide a detailed description of the project, the application, and the
development environment in Chapter 3, “Overview of the Application
Development Project” on page 41, but this introduction provides sufficient
background to now begin our conversations about CMVC.

2.2 Project Story
Continue to imagine you are the project manager while you read this section. At
any given time, your SCM requirements vary according to your project status
and goals, and perhaps your company ′s policies. You need to know how CMVC
can help you.

14 CMVC Live

2.2.1 Prologue
Your system administrator and SCM administrator know CMVC very well. They
have already used CMVC for other projects and know UNIX very well. You and
your team members only know the CMVC concepts, but do not have any
experience using CMVC.

Your first SCM requirement is to migrate all the source files of the application
from MVS to CMVC on AIX. Your second requirement is to organize and control
the new development. You plan the implementation of those requirements by:

 1. Setting up an AIX environment for CMVC

 2. Customizing CMVC according to your company policies, procedures, and
practices

 3. Starting your CMVC client

 4. Using CMVC to organize project data based on various requirements

 5. Migrating files into CMVC

 6. Building the MVS version

 7. Testing the MVS version

 8. Freezing the MVS version

 9. Starting the AIX version.

The following sections describe each of the above activities through a dialog.

2.2.2 Project Manager Asks about Setting up the SCM Environment
You have a budget, a delivery schedule, and a team. Now, you need some help
to implement your SCM requirements for CMVC, so you (PM) contact your
system administrator (SA) to create a SCM environment and have the following
dialog:

PM: Hi. I am starting a project and I need to use CMVC.
Unfortunately, I do not know CMVC very well; my team doesn′ t know
it either.
The system administration service gave me your name.
Can you help me?

SA: I′ m sure I can.
Let′ s start with my CMVC setup check list.
How many users will use CMVC?

PM: Five people work on my project.
SA: Let me check and see if CMVC has five free network tokens.

Yes, that will be OK.
SA: Will you need to reuse any existing code that is under

CMVC control now?
If so, you want to use the CMVC “family” that owns that code.

PM: I do not need to reuse existing code that is in CMVC today.
SA: Do you plan to share your code at a

later time with other projects currently using CMVC?
If so, you want to use their CMVC family.

PM: No, I do not need to share code or data with any other project,
however I have to develop three different versions of the same
application.
Those versions will be sharing code and data among each other.

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 15

SA: Fine. We will create a new CMVC family for your project.
PM: My team and I do not know CMVC very well, I would like to be

able to play around with CMVC without polluting real project data.
SA: OK! Let′ s create two different families:

one family to manage your application and another
for CMVC training purposes.
Remember, that CMVC cannot share data among families.

PM: That′ s OK.
SA: I need a name for each family and

it must be less than eight characters long.
PM: Why not use prod for the first family,

and dev for the training family.
SA: Those names are fine, because

they are not already used as AIX login names
on the CMVC server machine.

SA: Are you using a relational database management system
(RDBMS) for your project? CMVC requires one.

PM: We will use DB2/6000 in our application,
but we have no database administration experience with it yet.
Will you administer the CMVC database for us?

SA: We are already managing an ORACLE
RDBMS for other CMVC users.
We could expand our existing ORACLE license and
support your project with ORACLE, but we
have no DB2/6000 skills at present.

PM: Could you migrate our CMVC data
from ORACLE to DB2/6000 later when we are
more skilled in DB2/6000 administration?

SA: Yes, the CMVC product provides programs to migrate CMVC data
from ORACLE, INFORMIX, or SYBASE to DB2/6000.

PM: In that case, let′ s start CMVC with ORACLE for now.
SA: Now, I need a CMVC user identifier (ID) for the SCM administrator.

I also need the host name and login name that your SCM administrator
usually uses.
This data will be used by CMVC to authorize access to
your project′ s families.

PM: The login name is lrconas on bering.
The CMVC “user ID” could also be lrconas.

SA: I will send you a note with the information
that will be used to set up and maintain your CMVC families, but
let′ s go over it quickly now while I fill it in:

• Your family names will be dev and prod
• Your CMVC users will need the following data to access your CMVC

families: TCP/IP port number 1221 for dev and
1222 for prod

• Your SCM administrator lrconas will
manage your CMVC data from bering as lrconas

• You will have two ORACLE databases on bering with these
system database identifiers (SIDs): DEV for dev
family and PROD for prod family

• One AIX login name will be created on bering for each family
with the password sw89ty for dev and tx5io9 for prod.

PM: That looks good! Thank you for your help.
SA: You are welcome.

16 CMVC Live

The following actions follow this conversation:

 1. To enable this new CMVC environment, the system administrator configures
TCP/IP to allow the CMVC server access from CMVC clients. Figure 4
shows changes made to the file /etc/hosts on the server host. (The changes
in this and other files are noted in bold typeface.) Figure 5 illustrates
changes made to the file /etc/services on the server host. The changes
were made using an editor, such as vi .

9.113.44.145 bering prod

Figure 4. Initializing CMVC Server Access by Creating a Host Name Alias

prod 1222/tcp # prod family for CMVC

Figure 5. Initializing CMVC Server Access by Setting up a TCP/IP Port

 2. The system administrator creates an AIX login name for the prod family, and
.profile file for prod from a profile template, which according to your
company practices is located in the /usr/lib/CMVC directory. Figure 6 shows
the AIX commands issued to create the AIX login name.

root@bering/>mkuser pgrp=system home=/production prod
root@bering/>passwd prod
prod′ s passwd:
root@bering/>su - prod
prod@bering/production>cp /usr/lib/CMVC/profile.oracle .profile

Figure 6. Creating an AIX Login Name for the Family

Figure 7 shows the .profile file template as it was tailored for prod. The
words in bold typeface highlight the changes made in the template file for
this particular user.

export CMVC_HOME=/usr/lpp/cmvc
export CMVC_VCBIN=/usr/bin
export CMVC_VCTYPE=sccs
export ORACLE_HOME=/oracle
export ORACLE_PASS=oracle
export ORACLE_DBA=system/manager
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin
CMVC_PATH=$CMVC_HOME/bin:$CMVC_HOME/samples:$CMVC_HOME/install

export PATH=$PATH:$CMVC_PATH:$ORACLE_HOME/bin:$HOME/bin
########### Change these variables for your family
export CMVC_FAMILY=prod
export CMVC_SUPERUSER=lrconas
export CLIENT_HOSTNAME=bering
export CLIENT_LOGIN=lrconas
export ORACLE_SID=PROD
##

Figure 7. Initializing CMVC Environment Variables in the Family AIX Login

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 17

 3. The system administrator creates the family file system and database. Your
company ′s development methodology dictates that all CMVC customization
files are located in the /usr/lib/CMVC directory. Figure 8 on page 18 shows
the CMVC server and AIX commands issued to create a family. These
commands are issued by the system administrator while logged in as the
family AIX login name in that login home directory, after starting up the
database PROD.

prod@bering/production>mkfamily -s
prod@bering/production>cp /usr/lpp/cmvc/install/*.ld .
prod@bering/production>cp /usr/lib/CMVC/config.ld .
prod@bering/production>cp -r /usr/lib/CMVC/configField .
prod@bering/production>mkdb -s

Figure 8. Creating Family File System and Database

 4. To verify that the creation of the prod family was successful, the system
administrator starts up one CMVC server daemon and one notification
daemon. Figure 9 shows the CMVC server commands issued to start up a
family.

prod@bering/production>cmvcd prod 2&
prod@bering/production>notifyd&

Figure 9. Starting up the CMVC Server

The system administrator checks to see if the CMVC server daemons are
running. Figure 10 shows the AIX and CMVC commands issued to see if the
CMVC server daemons are running.

prod@bering/production>ps -u prod|egrep ″cmvcd|notifyd″

 202 12378 - 0:00 cmvcd
 202 25441 - 0:00 cmvcd
 202 27494 - 0:00 cmvcd
 202 28127 - 0:00 cmvcd
 202 44392 - 0:00 notifyd

Figure 10. Checking for CMVC Server Daemons

 5. The project manager sees he has new electronic mail. After opening the
mail, the project manager reads a message from the system administrator:

18 CMVC Live

Note from Your System Administrator

The CMVC families prod and dev are operational.
SCM administrator identified by lrconas may take
control of those families.
The SCM administrator has been defined as CMVC superuser for
both prod,and dev families.
The SCM administrator can access families with the login name
lrconas from the bering host.
The families are located on bering as prod,
and dev login names with the passwords you requested.
The ORACLE databases are identified by SIDs PROD,
and DEV.
After logging in with the family login names, you can access the
ORACLE databases by using the following commands:
sqlplus prod/oracle
for prod family
sqlplus
dev/oracle for dev family
!!
However, it is advised that you let CMVC manage this data.
Any corruption of the database by use of non-CMVC commands
may result in serious CMVC error conditions!

2.2.3 Project Manager Asks about Implementing Quality Metrics
Continue to put yourself in the place of this project manager. You see you have
new electronic mail. You open your mail again, and read a message from your
QA representative:

Note from Your Quality Assurance Representative

Your project has been selected to participate in an
experiment, which computes various quality metrics.
Among other data, you will need to provide
the number of lines of code (LOC) developed on your project over time.
The LOC count should be recorded every time you
check in a new version of any file.
At any time, you should be able to retrieve the LOC number
for the most recent version of any file.

A LOC counter program called “locCounter” has been sent you with the
associated documentation.

For more information don′ t hesitate to contact me.

You think: “I am not a lucky manager, there 20 different projects in the company
and mine is selected.” But then, you think that maybe CMVC can help you with
this new requirement. To make sure CMVC capabilities can implement the QA
representative ′s requirement, you (PM) decide to contact your SCM
administrator (SCMA):

PM: I forwarded you a note which I received from our QA representative.
Do you think that we can do something with CMVC for the
prod family to implement the LOC counting?
Is it possible to record the LOC count every time we check in
a file?

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 19

SCMA: That′ s possible and not too difficult to do!
We could add new CMVC object attributes, for example LOC, by
adding a field into the CMVC database record template for the CMVC
“File” object.
The CMVC server command chfield allows us to customize certain
CMVC objects.

PM: Great! After having recorded the LOC count in
CMVC, could I make some queries to retrieve this data?

SCMA: Sure! For example, you could query CMVC to get all file names with
LOC counts greater than 1789.

PM: That′ s great! Maybe CMVC can do more?
The best solution would be that the counting and recording of the
LOC be done automatically.

SCMA: The LOC field could be updated when creating or
checking in files in CMVC.
We could create a user exit program
that would be executed automatically.
It would call the locCounter program and
then modify the LOC by using the CMVC client command File -modify.

PM: That′ s wonderful! How long will it take
to implement such a solution?

SCMA: I think, one full day to develop and test it.
PM: OK! Go ahead. Thanks.

Figure 11 on page 21 shows an example of a user exit program implemented as
a Korn shell script. This program is executed by the CMVC File command after
it has completed the process of either creating or checking in a CMVC file. This
program extracts the version of the file just created or checked in, uses the
locCounter1 program to determine a LOC on the extracted file, and updates the
locn field in this same file′s File record. The CMVC File command completes
execution after the user exit program has completed.

1 For IBM internal use only, there exists a LOC counting program named SLOCC. It is available on the AIXTOOLS tools disk.

20 CMVC Live

#!/bin/ksh
FILENAME=$1
RELEASENAME=$3
SCMA=lrconas
FAMILY=prod
HOMEDIR=/production
Test if a least two cmvcd daemons are running
I need two because I use a CMVC command in this UE program
Otherwise ===> dead lock
if [[$(ps -u $FAMILY|grep cmvcd|wc -l) -ge 4]]
then

Get the file type with the file suffix
FILETYPE=${FILENAME:##*.}
Extract a copy of the file to count LOC
File -extract $FILENAME \

-release $RELEASENAME \
-relative $HOMEDIR \
-become $SCMA \
-family $FAMILY

Counting the number of lines of code
LOC=$(locCounter $HOMEDIR $FILENAME $FILETYPE)
Remove temporary file
rm -f $HOMEDIR/$FILENAME
Test if error while counting LOC
if [[$LOC = ″error″]]
then

print ″The number of lines of code cannot be calculated:″
print ″ File type unknown ″
print ″The file has been stored into CMVC with a blank LOC value″
exit 1

else
updating the number of lines of code
File -modify $FILENAME \

-release $RELEASENAME \
-locn $LOC \
-become $SCMA \
-family $FAMILY

exit 0
fi

else
print ″The number of lines of code cannot be calculated:″
print ″ Not enough family daemons are running″
print ″The file has been stored into CMVC with a blank LOC value″
exit 1

fi

Figure 11. An User Exit Program to Count the Lines of Code in a Source File

Appendix B, “Monitoring and Enhancing the Quality of Software with CMVC” on
page 175 discusses how CMVC can be used to improve software quality and
monitor defect resolution by providing some metrics.

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 21

2.2.4 Project Manager Asks about Implementing Project Practices
As project manager, you would also like to implement two company standard
practices. The first requires that each source file have a module header with the
following project information:

• Copyright
• Product version
• Author
• File version
• Date of latest change.

The second requires that each problem report have a unique identifier. To be
sure that the identifier is unique among all families, you want to use an identifier
generator program you developed for another project.

The following dialog might occur between you (PM) and your SCM administrator
(SCMA) as you try to customize CMVC family to implement the two practices:

PM: For quality metrics, I have seen that it was possible to
customize CMVC actions.
Can a user exit program also be used to add a module
header to each source file to enforce our company standards?

SCMA: Yes, that is possible.
I have already implemented a similar function for other projects.
The user exit program is executed automatically
whenever you place a new file under CMVC control.

PM: I need the module header to contain these items:

• Copyright message with this year indicated
• Product version
• Author′ s name
• File name
• File version
• Date of latest check-in.

SCMA: No problem! I′ ll do it in such a way that the file version number
and check-in date are automatically updated when a file is
extracted to use in an application build, but not when the file
is checked out to so you can make changes to it.
Is that OK with you?

PM: Fine! What about problem identifier generation?
SCMA: CMVC automatically generates a numeric problem

identifier, such as 1, 2, and 3, for each opened problem report.
PM: I would prefer to have a alphanumeric identifier.

SCMA: OK. Send me your problem identifier generator
program, I′ ll call it from a user exit program that
is executed when you open a new problem report.

PM: Thanks a lot.

Appendix C, “User Exit Samples and Suggestions” on page 183 gives examples
of two user exit programs. One program inserts a module header into C code
source files, and the other generates a problem number automatically.

22 CMVC Live

2.2.5 Project Manager Asks about Starting Up CMVC Client
As project manager, you receive the following electronic note from the SCM
administrator.

Note from Your SCM Administrator

The customization of both families prod and dev is completed, and
the CMVC family daemons are running.

If you have too long of a response time, please contact me.
I can start up additional “cmvcd” daemons.

Also, please contact me to start up your project.

Now that your SCM environment is operational with the right customization
(company, project, and QA), you want to start using CMVC yourself. The
following conversation might occur between you (PM) and your SCM
administrator (SCMA):

PM: You asked me to contact you before I start up my project.
SCMA: Yes, I did.

I have to define your login name as CMVC family superuser ID.
This authorizes you to define your team members yourself.
I need the following pieces of information:

• Your CMVC user ID
• Your mail address
• Your login name and host name.

You should get the same information from each team member you want to
authorize to access your families.
Remember that each CMVC user ID must be unique within the family.

PM: Question! Is it possible to have more than one login name
on a host or to have more than one host names associated with a login
name?

SCMA: Yes, both cases are supported.
PM: Here is the information you asked me for:

• My CMVC user ID should be projA_lead
• My electronic mail address is aixcase4@bering
• My login name is aixcase4
• My host names are yellow, bering, and

bengal.

SCMA: I′ ll send you a note when it is done.

A few minutes later, you receive a notification through electronic mail from both
prod and dev families, stating:

Notification from CMVC

A CMVC user ID has been created for you
with the user ID projA_lead.

You also receive another note from the SCM administrator:

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 23

Note from Your SCM Administrator

By the way, copy the cmvcrc.manager file from the
/usr/lib/CMVC directory into your home directory as .cmvcrc.
That file gives you the CMVC Tasks window customized
according to your responsibilities.
You can change this customization.
Similar files are provided for members of your team performing the
roles of developer, builder, and tester.

When you start up the CMVC client GUI for the first time,
the Set Family dialog box will be displayed.
Fill in the Family field with either dev@bering@1221 or
prod@bering@1222, and fill in the User ID field with projA_lead.
These values will be stored for subsequent CMVC client GUI sessions.

If you use the command-line interface, it is more convenient
set default values for the family and user ID in Korn shell
variables than to type them as parameters on every command line.
Add the following to your .profile file:

export CMVC_FAMILY=prod@bering@1222
export CMVC_BECOME=projA_lead.

Please forward this note to your team members.
If you have any questions or problems don′ t hesitate to contact me.

You take the following actions:

 1. Forward the latest SCM administrator note to each team member.

 2. Get the data necessary to define each of them in CMVC.

 3. Login as aixcase4 on bering, copy the cmvcrc.manager file from the
/usr/lib/CMVC directory into the home directory as .cmvcrc, then start the
CMVC client GUI.

 4. Fill in the fields Family and User ID with prod@bering@1222 and projA_lead,
respectively, in the Set Family dialog box.

 5. Define the following team members in CMVC: MVStester, MVSbuilder,
manager, krt, and truls. Team member receive notification of the new CMVC
user IDs.

2.2.6 Project Manager Asks about Project Organization in CMVC
As project manager, you would like to organize project data according to your
project requirements. You know that the CMVC “component” and CMVC
“release” can help you to organize your data. But you do not know which
components or releases to create, nor do you know how many components and
releases your project will require. Fortunately, the SCM administrator is a
CMVC expert who can advise you about CMVC component and release usage.

The following dialog might occur between you (PM) and your SCM administrator
(SCMA) about how to organize data project with components and releases:

PM: I would like to organize my project data according to
the three phases of my project which are:

 1. Migrating the AD platform from MVS to AIX for a legacy application
called productA.

24 CMVC Live

 2. Downsizing the legacy application to AIX, developing a GUI for it
that mimicks its ISPF panels, and later modernizing the GUI.

 3. Reimplementing the future application by using object-oriented
technique.

SCMA: What do you know about CMVC components
and releases?

PM: I′ ve read the concept manual, but I don′ t know how to use
them for my project. Can you help me?

SCMA: From this brief description, I can highlight
some key words: “productA,”
“legacy,”
“MVS,”
“AIX,” and
“future.”
I can infer that the productA consists of a legacy and
future application.
Moreover, the legacy application is composed of MVS and
AIX implementations.
These relationships suggest a top-level component hierarchy.

PM: So, you suggest I create a component for
productA with two children components, legacy and future.
Then, I create two children components below legacy
named AIX and MVS.
Now, I “manage” the source files for these different implementations
in the separate components.
How else can this component structure help me to manage my project?

SCMA: I presume that you have different people responsible for the
MVS, AIX, and future object-oriented implementations of your application.
You can have these people own and control the specific
components associated with their separate responsibilities.

I also suppose you would like to communicate information to
different people according to their role in your project.
Each component has a separate “notification list” that ensures CMVC will
inform team members other than the component owner about the
actions performed on data managed through the component.

Each component also has an “access list” that lets
the component owner
grant authority to other project members to access or
manipulate the data managed by the component.

Both of the access list and notification lists are inherited by
components at lower ranks in the component hierarchy from the
components above. You can use combinations of these lists along
with ownership assignments
of subsidiary components to support the work groups on your project.

PM: So, it sounds like a developer who works on
both AIX and MVS source code, but is responsible
for neither can be given authority to check in and out
files managed by either component, or
the builder who owns none of these components, can be informed
automatically whenever a new file is created in any of them.
This seems very useful.

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 25

SCMA: About the CMVC releases... You could create one for each
pproduct version:

• MVS_Release_0 managed by the MVS component

• AIX_Release_1 managed by the AIX component

• OO_Version_1 managed by the future component.

PM: What is the advantage of associating each release with a different
component, instead of having them all managed by the productA
component?

SCMA: Each version can be governed by a different build process
and managed by different people.
Do you know which “processes” you want to prevail over
your components and releases?
They determine how problem tracking and release
integration are performed.

PM: I don′ t know.
What I′ d like to see is the ability to file problem reports or
change requests, and track their progress until they are resolved.
I′ d like to be sure that all proposed changes are either implemented
and integrated into the releases of the application, or rejected.
I′ d also like to be confident that the only changes getting into the
releases are required by an approved problem report or change request.
I also want to be able to incorporate changes into the release in an
orderly and manageable manner and record their success or failure
during testing.
What are your suggestions?

SCMA: I think your requirements would be fulfilled by selecting the
“maintenance process” for both components and releases.
This combination does not define the most elaborate development
process, but should offer sufficient controls for your needs.
Selecting the maintenance process on a component ensures that:

• Any one can “open” a defect or feature.
• The component owner can “accept” or “reject”

it.
• The defect or feature creator can “verify” that it

was resolved satisfactorily.
• The defect or feature will be “closed” when all is done.

Selecting the maintenance process on a release will ensure
that you can:

• Link changes to controlled files with the relevant defects or
features, and the releases in which these changes will be incorporated

• Enable component owners to approve file changes implementing fixes
which resolve defects or features before the files are incorporated
into a release

• Enable the orderly incorporation of “fixes” into a
release on a defect or feature basis.

This process also requires you to specify a tester name and
a test environment, such as a target platform to create a CMVC
“environment list” for each release.
Then, “test records” will be created to ensure that those
releases are tested for each appropriate environment.

26 CMVC Live

PM: But can I change my mind about these process selections later?
SCMA: You can change them under appropriate circumstances, and you can

also use different choices when creating new releases and components
later.

PM: Thanks.
I am now ready to populate my family with components and releases.

After creating your component hierarchy and your releases, you open a defect
on the MVS component to authorize bringing the MVS source files under CMVC
control. CMVC automatically sends a note to the MVS developer, who is the
owner of the MVS component, about the opening of that defect.

2.2.7 Project Manager Asks about Reporting
As project manager, you would like to generate a report identifying the decisions
you are implementing with CMVC. The following dialog might occur between
you (PM) and the SCM administrator (SCMA) on how to query CMVC to extract
data:

PM: I would like to generate a report containing these items:

• User list with CMVC user ID, name, and area
• Component list with name, owner′ s CMVC user ID, and associated

change process
• Release list with name, component name, associated problem tracking

process, and owner′ s CMVC user ID
• Host list with CMVC user ID, login name, and host name
• Access list with component name, member′ s

CMVC user ID, and granted authority
• Notification list with component name, member′ s

CMVC user ID, and interest
• Environment list with test environment, release name,

and tester′ s CMVC user ID.

SCMA: I am going to send you by mail, a set of shell scripts
that allow you to get this information.
These make use of the CMVC command-line interface command, Report.
This command makes SQL-like queries the ORACLE database in which
CMVC “meta-data” or data about CMVC objects such as users, files,
releases, components, defects, and features is stored.
If you would like to make other reports, you should look at
the views.db and tables.db files located in the
/usr/lpp/cmvc/install directory to learn about the CMVC
tables and views created in the ORACLE database.
Don′ t forget to initialize the
CMVC environment variables CMVC_FAMILY and CMVC_BECOME
used by the CMVC command, Report.

PM: Great! Thanks!

The following illustrations show the how this reporting requirement is
implemented:

 1. Figure 12 on page 28 shows how you set the required environment variables
before issuing the command shown in Figure 13 on page 28.

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 27

export CMVC_FAMILY=prod@bering@1222
export CMVC_BECOME=projA_lead

Figure 12. Setting up CMVC Environment Variables

 2. Figure 13 shows the CMVC Report command, which identifies your project
users and their CMVC IDs.

printf ″%-20.20s %-25s %s\n″ ″User ID″ ″Real Name″ ″Area″ ;\
Report -view users \
-where ″dropDate is null order by login″ -raw |
awk -F′ | ′ ′ { printf ″%-20.20s %-25s %s\n″ , $1,$2,$3}′ |
sed ″ /InheritedAccess/d″

Figure 13. How to Get a User List with the Report Command

 3. Figure 14 shows the list of users obtained by running the command shown in
Figure 13.

User Real Name Area

MVSbuilder Richard Kortmann MVS_Building
MVStester Leif Trulsson MVS_Testing
branko Branko Peteh Future-ProductA
krt Richard Kortmann AIX-ProductA
lrconas Lorna Conas SW_Config_Mgmt
manager Department Manager Production
projA_lead Project A Lead Engineer ProjectA
truls Leif Trulsson MVS-ProductA

Figure 14. User List f rom Report -view users Command

 4. Figure 15 shows the CMVC Report command, which identifies your
components, their owner ′s CMVC user ID, and the CMVC change process
governing them.

printf ″%-20.20s %-15s %s\n″ ″Component″ ″Owner″ ″Process″ ;\
Report -view compView \
-where ″userId like ′%′ order by name″ -raw |
awk -F′ | ′ ′ { printf ″%-20.20s %-15s %s\n″ , $1,$2,$9}′

Figure 15. How to Get a Component List with Report Command

 5. Figure 16 on page 29 shows the list of components obtained after having
executed the command shown in Figure 15.

28 CMVC Live

Component Owner Process

AIX krt maintenance
MVS truls maintenance
future projA_lead maintenance
legacy projA_lead maintenance
productA projA_lead maintenance

Figure 16. Component List f rom Report -view compView Command

 6. Figure 17 shows the CMVC Report command, which identifies the releases
managed by the components, the CMVC problem tracking process, and
CMVC user ID governing them.

print f ″%-20.20s %-15s %-15s %s\n″ \
″Release″ ″Component″ ″ Process″ ″Owner″ ;\
Report -view releaseView \
-where ″userId like ′%′ order by name″ -raw |
awk -F′ | ′ ′ { printf ″%-20.20s %-15s %-15s %s\n″ , $1,$2,$3,$4}′

Figure 17. How to Get a Release List with Report Command

 7. Figure 18 shows the list of releases with their main attributes. You get this
list by running the command shown in Figure 17.

Release Component Process Owner

AIX_Release_1 AIX maintenance krt
MVS_Release_0 MVS maintenance MVStester
OO_Version_1 future maintenance lrconas

Figure 18. Release List f rom Report -releaseView Command

 8. Figure 19 on page 30 shows a shell script with several CMVC Report
commands. This script generates a comprehensive report describing the:

• Host list
• Access list of each component
• Notification list of each component
• Environment list of each release.

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 29

#!/bin/ksh
family=$1
userID=$2
fileOut=$3
###Getting logins and hosts for each users
printf ″%-20.20s %-15s %s\n″ ″User ID″ ″Login″ ″Host″>$fileOut
Report -view HostView -raw -family $family -become $userID \
-where ″userId like ′%′ order by login″ |
awk -F′ | ′ ′ { printf ″%-20.20s %-15s %s\n″ ,$3,$1,$2}′>>$fileOut

###Getting work groups for each component
printf ″%-20.20s %-15s %s\n″ ″Component″ ″User ID″ ″Authority″>>$fileOut
Report -view AccessView -raw -family $family -become $userID \
-where ″compId like ′%′ order by compName″ |
awk -F′ | ′ ′ { printf ″%-20.20s %-15s %s\n″ ,$1,$2,$5}′>>$fileOut

###Getting distribution lists for each component
printf ″%-20.20s %-15s %s\n″ ″Component″ ″User ID″ ″Insterest″>>$fileOut
Report -view NotifyView -raw -family $family -become $userID \
-where ″compId like ′%′ order by compName″ |
awk -F′ | ′ ′ { printf ″%-20.20s %-15s %s\n″ ,$1,$2,$6}′>>$fileOut

###Getting test environments and associated testers
for each release
printf ″%-20.20s %-15s %s\n″ ″Environment″ ″Release″ ″Tester″>>$fileOut
Report -view EnvView -raw -family $family -become $userID \
-where ″userId like ′%′ order by releaseName″ |
awk -F′ | ′ ′ { printf ″%-20.20s %-15s %s\n″ ,$1,$2,$3}′>>$fileOut

Figure 19. Shell Script to Get CMVC Lists

 9. Appendix H, “Tai loring CMVC Windows for Different Types of Users” on
page 217, describes an example of a customization of the CMVC - Tasks
window for a project manager. It allows you to get this same information by
simply clicking twice on certain items presented in the Tasks List.

2.2.8 Developer Asks about Components and a Release for the Original MVS
Baseline

Take the MVS developer perspective on this project for a moment. As a result of
actions taken by others, you have received several notes from the family AIX
login name, prod, telling you:

 1. The CMVC user ID, truls, has been created for you.

 2. The MVS component has been created as a child of the legacy component,
by projA_lead. You are now the owner of this component.

 3. An access list member with general authority has been created and
associated with the productA component for the truls user by projA_lead.
This insures you will inherit general authority over all components created
for your project.

 4. The MVS_Release_0 release has been created and associated with the MVS
component by projA_lead. You are also the owner of this release.

 5. The CMVC prod_00001 “defect” has been opened by projA_lead on the MVS
component, for the MVS_Release_0 release with the abstract “MVS
Pre-Migration Baseline” and the following comment:

30 CMVC Live

Defect prod_00001 Comments

This first defect against MVS component will bring under CMVC
control the original MVS source code of the legacy application.

As owner of the MVS component, you are the owner of this defect.

The project manager informs you to bring the source files from MVS to AIX and
place them under control of CMVC and if you have problems, you may contact
your SCM administrator.

You know that to create a file in CMVC, you must reference a component and a
release. However, you have several types of files and you are hesitant about
putting them all together in just one component. The following dialog might
occur between you (DEV) and the SCM administrator (SCMA):

DEV: I work on the productA project and I have to bring
files under CMVC control. I am the owner of the MVS component
and the MVS_Release_0 release.

SCMA: Are your files presently under SCCS control? If so,
use the import procedure shipped with CMVC.

DEV: No, they are not! These are MVS files.
Anyway, I would like to classify the files according to the type
of data they contain, such as COBOL source code and ISPF panel
definitions.

SCMA: You could create a component for each file type.
You may create children components of the component MVS
because you are its owner.

DEV: OK. I′ ll create the following components to manage my files:

• COBOL
• JCL
• CLIST
• ISPF
• Assembler.

SCMA: By the way, for your project, you have to create your
components specifying the maintenance process.

DEV: Thanks!

As a result of this conversation, you:

 1. Login as aixcase2 on bering, and copy the cmvcrc.developer file from the
/usr/lib/CMVC directory into the home directory as .cmvcrc.

 2. Create a directory source/cobol in the home directory to store the files
coming from MVS, then, you download the files from MVS into the directory
source/cobol.

 3. Start the CMVC client GUI. The CMVC Tasks window opens, and a Set
Family dialog box is displayed. Fill in the two fields, Family and User ID, with
prod@bering@1222 and truls, respectively.

 4. Create the components COBOL, ISPF,CLIST, assembler, and JCL as children
of the MVS component with the maintenance process.

You are now ready to create the CMVC files in reference to these components
and the MVS_Release_0 release. Figure 20 on page 32 shows the component
hierarchy you would have created, thus far.

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 31

Figure 20. Initial Component Hierarchy

2.2.9 Developer Asks about Bringing MVS Source Files under CMVC Control
Continuing to look at this from the MVS developer′s perspective, you now want
to create the file, cobol/ibmbsel.cob. You try to create this file, managed by the
component COBOL and belonging to the release, MVS_Release_0, using the
CMVC client GUI. Unfortunately, the following error message comes up:

CMVC Error Message

0010-258 The requested action requires that you specify one or
more defects or features.
0010-263 File cobol/ibmbsel.cob associated with release

MVS_Release_0 cannot be created.

You do not understand this message, so you call the SCM administrator for help.
The following dialog might occur between you (MVS DEV) and the SCM
administrator (SCMA):

MVS DEV: I got an error message when I tried to create a file:
“The requested action requires that you specify one or more
defects or features..” What should I do?

SCMA: Did you receive a notification about the opening of any defects
or features?

32 CMVC Live

MVS DEV: Yes, I did!
The message said defect, prod_00001, was opened on my component, MVS.
The defect comments said I should bring the MVS files under CMVC control.
That was what I was trying to do when I got this error message.

SCMA: You need to create a “track” to identify this defect with the act of
creating a new file in the release.
To do so:

 1. Accept the defect.
 2. Create a track naming both this defect number and MVS_Release_0.
 3. Now create the file in the release.
 4. CMVC automatically creates a “fix” record for each component

affected by this track.
 5. Complete the fix records, and CMVC will notify the right people

based on the CMVC object ownership and the notification lists.

MVS DEV: Why do I have to do all those things?
SCMA: Because your project manager has chosen the maintenance

process for the release MVS_Release_0.
If your manager had chosen the no_track process,
you could create your file without using a track and fix records.

MVS DEV: By the way, do you have a procedure to create the files in
batch mode?

SCMA: Yes, I have. I′ ll send it to you. Before you execute this command,
you should initialize these CMVC environment variables with values,
such as these:
CMVC_FAMILY=family name
CMVC_BECOME=your CMVC user ID
CMVC_RELEASE=your release
CMVC_TOP=the file source directory.

MVS DEV: Thanks.

As a result of this conversation you:

 1. Accept the prod_00001 defect.

 2. Create a track for that defect in the MVS_Release_0 release.

 3. Initialize the CMVC environment variables, as shown in Figure 21.

export CMVC_FAMILY=prod@bering@1222
export CMVC_BECOME=truls
export CMVC_RELEASE=MVS_Release_0
export CMVC_TOP=/u/aixcase2

Figure 21. CMVC Client Environment Variables Set up

 4. Execute the SCM administrator ′s command for each type of file. Figure 22
shows the command to bring a group of files under CMVC control.

find ./source/cobol -type f -name ′ *.cob′ -exec \
File -feature prod_00001 -component COBOL -create {} \;

Figure 22. Commands to Br ing a Group of Files under CMVC Control

 5. Verify the success of the file creation using the CMVC client GUI. Display the
file list of each component by typing the component name in Component field

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 33

in the Open File List CMVC window. See if the LOC count has been filled in
for each file, and if the module header has been inserted at the beginning of
each file.

 6. Indicate to CMVC that you are done with the work associated with the
prod_00001 defect:

a. Click twice on the line List defects for which I have changed files in your
customized CMVC - Tasks window.

b. After the CMVC - Fix Records window is displayed, component by
component, highlight the fix records, and then select Complete... from the
Action menu. CMVC automatically sends a note to the originator of this
defect, indicating that it has been fixed.

Appendix H, “Tailoring CMVC Windows for Different Types of Users” on
page 217 describes an example of a customization of the CMVC - Tasks window
for a developer that facilitates fixing defects.

2.2.10 Builder Asks about Building Application on MVS
Now, imagine you are the MVS builder on your project. You have received
notes, from the family AIX login name, prod, telling you:

 1. An access list member with builder authority has been created and
associated with the MVS component for the MVSbuilder CMVC user ID.

 2. The prod_00001 defect has been fixed for the MVS_Release_0 release.

The following dialog might occur between you (BUILDER) and the SCM
administrator (SCMA) discussing how to build the MVS_Release_0 release:

BUILDER: I work on the productA project and I have to build
the MVS implementation of it.
I have the builder authority for the MVS component
that manages the MVS_Release_0 release.
I would like to make a baseline consisting of the MVS files I just
put under CMVC control with reference to the prod_00001 defect.
I want to be able to extract and rebuild this baseline at any time.

SCMA: Because the MVS_Release_0 process is maintenance,
you should create a CMVC “level” to integrate the defect prod_00001.
Then you will be able to extract that level
of the MVS_Release_0 release.
All the files created with reference to the prod_00001 defect,
will be automatically extracted from CMVC.

BUILDER: Does that mean the level allows me to freeze the release according
to a collection of changes?

SCMA: Correct.
BUILDER: Can I extract the level up to the MVS machine?

SCMA: I know that TCP/IP and Network File System** (NFS**)
both are supported on MVS.
You can extract the level onto any NFS file system, or you can use
ftp or hcon to upload the files onto the mainframe.

BUILDER: OK, thanks.

Based on this conversation, you:

 1. Login as aixcase2 to bengal, copy the cmvcrc.builder file from the
/usr/lib/CMVC directory into your home directory as .cmvcrc, and then start

34 CMVC Live

the CMVC client GUI. The CMVC - Tasks window opens and a Set Family
dialog box is displayed. Fill up the two fields, Family, and User ID
respectively, with prod@bering@1111 and MVSbuilder.

 2. Create the 0 level for the MVS_Release_0 release. Fill in the Type field with
production because this level will be shipped to your customers. CMVC
does not use the contents of the Type field to control any of its processing.
The meaning of this field, and the range of acceptable values, is up to your
SCM administrator to define. For example, the type field could help you to
identify those levels which you would like to archive. You would have a
default value of production given to all levels as they are created. When a
level is no longer current, if you change the value to obsolete, then you can
have automatic archival occur nightly on all levels with that type value.
Appendix D, “Hints and Tips for Using CMVC” on page 193 describes how to
manage your obsolete levels to free storage space on the CMVC server host.

 3. Integrate the track associated with the prod_00001 defect and the
MVS_Release_0 release into the 0 level. The track now becomes a CMVC
“level member” of the 0 level.

 4. Create the extraction target directory ProductA/MVS_Release_0 in the /ad file
system, which was created and exported by your system administrator. You
can now extract the 0 level to the /ad/ProductA/MVS_Release_0 directory
located on bengal.

 5. After checking that all the files of the original legacy application have been
extracted to the right target directory, upload the files of the MVS_Release_0
release from /ad/ProductA/MVS_Release_0 to the target MVS machine. Then
build the application on MVS.

 6. Check the execution of the build. If there were no compile nor link-edit
errors, you can freeze the 0 level. Click twice on the line Show all my levels
with the state integrate on your customized CMVC - Tasks window. The
CMVC - Levels window is displayed. You can now select the 0 level of the
MVS_Release_0 release. Select Commit... from the Action menu, then select
OK in the Commit Levels dialog box. Select Complete... from the Action
menu, and then select OK in the Complete Levels dialog box.

Now, the 0 level of the MVS_Release_0 release is a baseline; it can always be
re-created exactly as it is now.

Appendix H, “Tailoring CMVC Windows for Different Types of Users” on
page 217 describes an example of a customization of the CMVC - Tasks window
for a builder to automate the build process.

2.2.11 Testing the Application
Imagine you are now the MVS tester. You have received several notes, from the
family AIX login name prod, telling you:

• A notification list member with tester authority was created and associated
with the MVS component for the MVStester user.

• An environment list member, MVS_legacy, with the MVStester tester was
created and associated with the MVS_Release_0. This record identifies a
test environment in which you will test the application.

• The 0 level associated with the MVS_Release_0 release was committed and
completed by the MVSbuilder CMVC user ID. The level is now ready for test.

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 35

• A test record for the track identified by the MVS_Release_0 release and
prod_00003 defect has been created for the MVS_legacy environment which
is your responsibility.

On receipt of the last message, you:

 1. Login to the MVS mainframe and successfully execute the test cases for the
productA application.

 2. Login as aixcase2 on bengal, and copy the cmvcrc.tester file from the
/usr/lib/CMVC directory into the home directory as .cmvcrc. Start the CMVC
client GUI. The CMVC Tasks window and Set Family dialog box are
displayed. Fill in the two dialog box fields, Family, and User ID, respectively,
with prod@bering@1111 and MVStester.

 3. Click twice on the line Show all fixed defects I have to test in the customized
CMVC - Tasks window. When the CMVC - Test Records window is displayed,
highlight the test record and select Accept... from the Action menu.

2.2.12 Concluding the Migration
Imagine you are the project manager again. You receive a note from prod, the
family AIX login name, indicating that the MVS_Release_0 has been tested
successfully on the MVS mainframe. The project manager takes these final
actions:

 1. Login to the MVS mainframe to verify the behavior of the productA
application. The application looks good.

 2. Login as aixcase4 on bering, then start the CMVC client GUI. The CMVC
Tasks window is displayed.

 3. Click twice on the line Show all defects that I have to verify in the customized
CMVC - Tasks window. When the CMVC - Verification Records window is
displayed, highlight the verification record and select Accept... from the
Action menu. The prod_00001 defect is now closed.

2.2.13 Project Manager Asks about Sharing Files with AIX Release
The original MVS version of the application is now under CMVC control. You
would like to reuse all the existing files for the AIX implementation of the
application, which will be identified to CMVC as the AIX_Release_1 release.

The following dialog might occur between the you (PM) and the SCM
administrator (SCMA) concerning reuse of the files in the MVS_Release_0
release:

PM: I would like to reuse files from the MVS_Release_0
release in the AIX_Release_1 release.
Over time, I expect that I may need two different versions of some of the
files, and that I will probably add new files to the AIX release.
How can I do this?

SCMA: First, you should link the MVS_Release_0 files to the release
MVS_Release_0 by performing CMVC release link action.
After the linking, the files are “common” to both releases.
This means both releases are composed of the exact same version of
every file.
Later, you can create a new version of a file for only
the AIX_Release_1 release.

36 CMVC Live

You would check the file out, make changes to it, and when checking that
file in, you select Break common link in the Check In Files dialog box.
After the check-in, the MVS_Release_0 file version number will remain 1.1,
but the AIX_Release_1 release′ s file version will be 1.2.
In other words, CMVC created a new branch
in the file version tree for this one file.
In CMVC terminology, this file is now “shared”
between two releases.

PM: Should I create a defect to perform the release link action?
SCMA: Yes, you should, because the AIX_Release_1 also has the

maintenance component process.
PM: Thanks.

Different team members play a role in this process, so CMVC automatically
notifies them when their actions are required:

 1. You open a new defect on the AIX component, for the AIX_Release_1
release. The user exit program generates the defect identifier prod_00002.

 2. CMVC notifies the AIX developer, who is the owner of the component AIX,
about the opening of the prod_00002 defect. The AIX developer accepts the
prod_00002 defect.

 3. The AIX developer creates a track associated with that defect and the
AIX_Release_1 release.

 4. The AIX builder links the MVS_Release_0 release to the AIX_Release_1
release, specifying this track.

 5. You tell team members to start development activities on the AIX_Release_1
release. This results in new versions of some of the files because they are
updated only for this release.

2.2.14 Project Manager Asks about Audit Log of CMVC Commands
So far, you and other team members have performed a lot of CMVC actions. As
project manager, you realize it may be necessary to examine an audit log, which
documents all the CMVC actions executed for your family over a period of time.
Again, you (PM) call your SCM administrator (SCMA) to discuss an audit log:

PM: I′ d like to know who issued which CMVC commands, and when they did so.
SCMA: Click twice on the line “Show CMVC activity log file” in your

customized CMVC - Tasks window.
This action displays a CMVC - Information window, which
contains the contents of an audit log file called log,
located in the /production/audit directory.
It contains a record of all the CMVC actions taken against the
production family data.

Figure 23 on page 38 contains an example of the contents of this audit log file.
Each entry in this file identifies the following data items for a given CMVC action:

 1. Transaction type, such as FileCreate, DefectOpen, or CompCreate

 2. Transaction status, either SUCCESS, FAILURE, or UNAUTHORIZED

 3. Date and time

 4. CMVC user ID

 5. Login name at host name

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 37

 6. Additional information, such as whether a transaction was successful or
unsuccessful, and an error message, if one was issued.

UserCreate,SUCCESS,10/05/93,9:45:12,lrconas,lrconas,bering,projA_lead
HostCreate,SUCCESS,10/07/93,9:21:25,lrconas,lrconas,bering,projA_lead,bering,aixcase4
CompCreate,SUCCESS,10/07/93,10:23:27,projA_lead,aixcase4,bering,productA
AccessCreate,SUCCESS,10/07/93,11:02:45,projA_lead,aixcase4,bering,krt,legacy,releaselead
NotifyCreate,SUCCESS,10/07/93,11:31:36,projA_lead,aixcase4,bering,krt,MVS,low
ReleaseCreate,SUCCESS,10/07/93,12:53:52,projA_lead,aixcase4,bering,MVS_Release_0
EnvCreate,SUCCESS,10/07/93,12:16:17,projA_lead,aixcase4,bering,MVStester,MVS_Release_0,MVS_legacy
DefectOpen,SUCCESS,10/07/93,14:23:00,projA_lead,aixcase4,bering,1
DefectModify,SUCCESS,10/07/93,14:23:10,projA_lead,aixcase4,bering,1
CompCreate,SUCCESS,10/08/93,8:00:13,truls,aixcase2,bering,COBOL
DefectAccept,SUCCESS,10/08/93,9:13:56,truls,aixcase2,bering,prod_00001
TrackCreate,SUCCESS,10/08/93,11:00:12,truls,aixcase2,bering,prod_00001,MVS_Release_0
FixComplete,SUCCESS,10/09/93,9:47:45,truls,aixcase2,bering,prod_00001,MVS_Release_0,COBOL
LevelCreate,SUCCESS,10/09/93,13:34:15,MVSbuilder,aixcase2,bengal,0,MVS_Release_0
MemberCreate,SUCCESS,10/09/93,13:35:45,MVSbuilder,aixcase2,bengal,0,prod_00001,MVS_Release_0
LevelExtract,SUCCESS,10/09/93,13:55:23,MVSbuilder,aixcase2,bengal,0,MVS_Release_0
LevelCommit,SUCCESS,10/09/93,17:56:42,MVSbuilder,aixcase2,bengal,0,MVS_Release_0
LevelComplete,SUCCESS,10/09/93,17:58:13,MVSbuilder,aixcase2,bengal,0,MVS_Release_0
TestAccept,SUCCESS,10/16/93,10:34:56,MVStester,aixcase2,bengal,prod_00001,MVS_Release_0,MVS_legacy,MVStester
VerifyAccept,SUCCESS,10/17/93,18:45:48,projA_lead,aixcase4,bering,prod_00001,projA_lead
DefectOpen,SUCCESS,10/18/93,9:37:45,projA_lead,aixcase4,bering,2
DefectModify,SUCCESS,10/18/93,9:37:50,projA_lead,aixcase4,bering,2
DefectAccept,SUCCESS,10/19/93,13:56:32,krt,aixcase3,yellow,prod_00002
TrackCreate,SUCCESS,10/19/93,9:45:25,krt,aixcase3,yellow,prod_00002,AIX_Release_1
ReleaseLink,SUCCESS,10/20/93,16:17:34,AIXbuilder,aixcase3,bering,MVS_Release_0,AIX_Release_1

Figure 23. CMVC Family Log File Example

2.2.15 Epilogue
The project manager and team have taken a series of CMVC actions to set up a
CMVC family for this project and organize CMVC control over the application
development effort. CMVC notifications communicated these CMVC actions to
appropriate team members, in some cases reminding them that they should act
on the notification. These actions are summarized below:

 1. The SCM administrator created a CMVC user ID with superuser authority for
your project.

 2. The project manager organized the project by creating:

a. One CMVC user ID for each team member

b. A host list for each CMVC user ID

 c. Top-level components with access and notification lists

d. Releases with an environment list.

The project manager also opened the prod_00001 defect, attached to the
MVS component, to authorize controlling the MVS source code under CMVC.

 3. The MVS developer took the following steps to control the original MVS
source files:

a. Created children components for the MVS component with which to
control the various types of MVS source files

b. Accepted the prod_00001 defect

 c. Created a track, linking the MVS_Release_0 release with the prod_00001
defect

d. Created the new CMVC files under authority of this track

38 CMVC Live

e. Informed the rest of the team that the prod_00001 defect in the
MVS_Release_0 release was fixed.

 4. The MVS builder took the following steps to create the original MVS
baseline:

a. Created the 0 level for the MVS_Release_0 release with which to
integrate files associated with the prod_00001 defect

b. Extracted the 0 level of the MVS_Release_0 release to a build directory
for testing

 c. Committed the level after evaluating it

d. Completed the release.

 5. The MVS tester accepted the test of the MVS_Release_0 release for the
MVS_legacy environment.

 6. The project manager verified that the prod_00001 defect was resolved
satisfactorily.

 7. The project manager then opened the prod_00002 defect on the AIX
component to authorize the reuse of all files in the MVS_Release_0 release
in the AIX_Release_1 release.

 8. To accomplish this, the AIX developer did the following:

a. Accepted the prod_00002 defect

b. Created a track linking the AIX_Release_1 release and the prod_00002
defect.

 c. The AIX builder then linked all files in the MVS_Release_0 release to the
AIX_Release_1 release, referencing the prod_00002 defect.

As result of these actions, project data has been stored and managed by
CMVC in the prod family. The family data is stored in two places: the
database tables and the UNIX file system associated with the prod AIX login
name. CMVC recorded the following information in the database (the names
in parentheses represent the CMVC table names in the database):

• Members of the development team (Users)

• Network topology information (Hosts)

• Project and data organization information (Components, AccessTable,
and Notification)

• File path names, versions ID, and releases associated with (Files,
Versions, and Releases)

• Problem management and change control information (Defects, Tracks,
Levels, LevelMembers, Fix, and Verify).

• Change process history (History)

• Electronic notes exchanged during problem resolution (Notes).

Figure 24 on page 40 shows the CMVC - Level Change History window for
the level 0 of the release MVS_Release_0.

Chapter 2. Discovering CMVC: An New Application Project Is Introduced to CMVC 39

Figure 24. Level Change History

The application source files, managed by SCCS, are stored on the file
system associated with the AIX family login name, prod. The prod family
audit log file (/production/audit/log) traces all CMVC transactions that were
performed.

40 CMVC Live

Chapter 3. Overview of the Application Development Project

In this chapter we describe the legacy application and the AIX software
development environment in more detail than that described in 2.1, “Project
Short Description” on page 11. The application design and user interfaces are
documented, as well as the network topology, configuration machines, versions
of operating systems, versions of LPPs, and the file system organization
implemented in the development environment.

3.1 The Legacy Application
The legacy application, which we selected to migrate from MVS to AIX, is a
typical older COBOL business application. It has some batch components and
an interactive component and maintains a database. It is not terribly complex or
very large, yet it presents a relevant vehicle for exploring downsizing issues. In
this chapter describe the following characteristics of this application:

• Programs
• Database design
• User interface.

3.2 What the Application Does
The legacy application is used by a company that deals with collectors items.
The customers are organized as club members and every month members get
an offer to buy a collectors item. For example, one offering could be a limited
series of a special porcelain plate or some specially designed commemorative
coin. This offer is sent out by mail to each member and if the club members
want the offered item, they either fill in a request form and send it back, or make
a telephone call to confirm their order.

The application maintains a database in which it records information about
customers, and the amounts and dates of payments received. Enrollments of
new members, address changes, and deletion of members are handled by the
application. Some of the input is received during phone conversations with
customers and is entered online; other input is processed from mail sent by
customers. Standard reports, based on queries of the database, are also
produced.

3.3 Programs
The application is written in VS COBOL II and runs on MVS under TSO,
accessing a DB2 database. The user interface is based on Interactive System
Panel Facility (ISPF). The application consists of:

• One interactive program
• Four batch programs
• Two assembler language modules
• Six ISPF panels.

The application consists of the following files:

 Copyright IBM Corp. 1994 41

IBMOUPD
The main module of the ONLINE UPDATE (interactive) program. This
module, along with the assembler language modules it calls, are
collectively referred to as the ONLINE UPDATE program. IBMOUPD
handles all tasks related to maintaining the customer database and is
started from a small Command List (CLIST) file. It:

Enrolls new customers
Makes address changes
Updates payments
Deletes customers.

IBMBUPD The batch update program. This program receives input from a file
created by a routine that scans the order confirmation forms sent to
the company. It is started from a Job Control Language (JCL) file.
This form reflects either:

An address change
A payment
A delete request.

IBMBUENR and IBMBUINS
They are two halves of one logical program, which was split into two
executable files because of performance considerations. The input is
a file that has been created by the same scanning routine. Programs
that execute a batch enrollment of new customers. They are started
from the same JCL as IBMBUPD.

IBMBSEL A program that produces a report according to specific criteria. It
started from a JCL file.

IBMCUST An assembler language module that ensures the parameter passed to
it (a customer number) is numeric. It is called by the IBMOUPD
program.

IBMDATE An assembler language module that ensures the parameter passed to
it is a valid date. It is called by the IBMOUPD program.

Because the ONLINE UPDATE program demonstrates a superset of the issues
we would encounter in migrating all the programs, we decided to concentrate on
migrating it as a proof-of-concept exercise. The user interface for the ONLINE
UPDATE program utilizes ISPF panels, which were designed for IBM 3720 color
terminals. They use various color schemes to display input and output fields in
different colors. Users initiate actions by pressing function keys.

3.4 Description of Our Application Development Environment
In this section we describe the specific hardware, software, and file system
topologies used for this project. We also describe why we distributed our users
and the various compute services across our computers.

3.4.1 Fundamental Guidelines
We chose a specific number of computers so our project could model a typical
distributed application development environment. In such an environment:

• Different makes, models, and brands of computers are acquired over time
and do not always support identical operating system releases, peripherals,
and software products.

42 CMVC Live

• Different application development tools are installed exclusively on a few
computers and made available to all users by remote execution. These
computers function as “compute resource servers.”

• Some software resources might be universally installed, such as X servers
or development environment framework products.

• The workstation consoles and network attached graphical displays, are
dedicated to specific users, but users may login at various computers on the
network at different times.

• Disk capacity is concentrated on a few hosts and made available to all hosts.
These hosts function as “file servers.”

3.4.2 Hardware and Network Topology
Our network topology, as illustrated in Figure 25, consisted of four IBM RISC
System/6000 computers, and a RISC System/6000 X station connected on a
Token Ring LAN. Table 2 on page 44 identifies the host names, Internet
addresses, and physical characteristics of these computers. We refer to these
RISC System/6000s by their host names in this book. The computers are named
after seas: yellow, bering, bengal, and sargasso. The X station was named
zorin1.

Figure 25. Our Network Topology

Chapter 3. Overview of the Application Development Project 43

Table 2. Our Hosts and Hardware Configurations

Host Name Make / Model Hardware Configuration

bering 7013 / 52H 2 GB disk, 32 MB
memory, 6091-19 display,
8 mm tape, 3.25 inch
floppy

bengal 7013 / 52H 2 GB disk, 32 MB
memory, 6091-19 display,
2.3 GB tape, 3.25 inch
floppy, 4/16 MB Token
Ring, Colorgraphics
Display Adapter

sargasso 7013 / 520 400 MB disk, 32 MB
Memory, 6091-19 Display,
3.25 inch Diskette Drive,
4/16 MB Token Ring,
Colorgraphics Display
Adapter

yellow 7013 / 340 2 GB disk, 32 MB
memory, 6091-19 display,
500 GB tape, 3.25 inch
floppy, 4/16 MB Token
Ring, Colorgraphics
Display Adapter

zorin1 7010 / 130 (X station) 6091-19 display, 4/16 MB
Token Ring

3.4.2.1 Displays and X Server Requirements
Each developer requires a high function terminal or X station because SDE
WorkBench/6000, which has an OSF/Motif GUI, requires a high resolution
(1024x768 or greater) monochrome or color bit-mapped display.

We could have used OS/2* workstations with a Presentation Manager* X Window
System** emulation program, such as PMX. We could also have used DOS
workstations with any of several third party X Window System products. There
would have been font and color issues that we did not have, but those
workstations could have served effectively in this topology.

3.4.2.2 Memory and Disk Requirements
We found suggestions for memory and fixed disk storage presented in each
product ′s installation manual. For example, Installing IBM AIX SDE
WorkBench/6000 and IBM AIX SDE Integrator/6000, indicates that SDE
WorkBench/6000 requires at least 16 Megabytes (MB) of RAM, but it also advises
that it works much better with 32MB. Configuration Management Version Control
Server Administration and Installation, Version 2 Release 1, states that the CMVC
server requires 16MB over and above that required for the database product.
The ORACLE for IBM RISC System/6000 Installation and User′s Guide indicates
that ORACLE requires 16MB. AIX and AIXwindows require at least 16MB.

The reader should note that these memory requirements are not necessarily
additive. Because AIX memory is backed by paging space on disk, AIX can
create the illusion of much greater virtual memory than is actually present in the
physical chips. We found that 32MB of memory performed adequately on all our
hosts. This included the host that supported multiple SDE WorkBench/6000
users, the CMVC server, and multiple CMVC clients.

44 CMVC Live

The amount of disk space required to serve as paging space for a Licensed
Program Product (LPP) is usually much larger than the disk space requirement
for installing the product. Recommendations for page space are additive, and
increasing paging space can significantly improve performance problems related
to memory constraints. For example, Installing IBM AIX SDE WorkBench/6000
and IBM AIX SDE Integrator/6000, advises that you need at least 16MB of free
paging space for the first user and 13MB more paging space for each additional
SDE WorkBench/6000 user on the host. ORACLE not only uses significant
pageable memory, but also pins memory thereby reducing the amount of
memory left over for other applications. AIXwindows also requires considerable
memory, and therefore paging space. Typically, we allocated 100MB of paging
space on these hosts.

Disk space for AIX journaled file systems and database managed disk partitions
can be significant for a development project, although it need not be available on
every host in the network. ORACLE reserves a large disk partition and manages
that space itself. On installation, ORACLE required 250MB of disk space for this
partition. CMVC, which was installed on this same host, stored all the versioning
data for the development source code and related files in AIX journaled file
system space. The disk space required for this can vary depending on the size
of the project and the number of separate files involved, and it can be significant.

3.4.3 Software Topology
Our software topology illustrated in Figure 26 on page 46, shows on which hosts
the various client and server portions of the tools and SDE WorkBench/6000 were
executed. It also shows which hosts acted as file servers. We decided how to
distribute software and data across the various hosts by balancing the following
goals:

• Clients should execute on the host at which the end user executes the X
server as much as possible, to minimize display update delay and network
traffic.

• Servers should execute on the host with appropriate memory and disk
resources.

• Software should execute where prerequisite and corequisite software is
available.

Chapter 3. Overview of the Application Development Project 45

Figure 26. Distribution of Software Services across the Network

3.4.3.1 AIX and LPP Versions, Releases and Levels
All hosts had AIX/6000 Version 3.2.3-extended installed, except for yellow, which
had AIX/6000 Version 3.2.4 installed. We needed one host at this operating
system service level because AIC Version 1.2 generates C or C+ + code that is
compatible only with X Windows Version 11 Release 5 (X11R5) and OSF/Motif 1.2.
AIX 3.2.4 is a prerequisite to AIXwindows 1.2 (IBM′s implementation of X11R5
and OSF/Motif 1.2).

Other hosts remained at the lower service levels because the versions of SDE
WorkBench/6000 and CMVC, which we intended to use, were not yet certified for
either the newer operating system or AIXwindows level. Furthermore, we
wanted to use AIC 1.1.1, so we could compare the differences between the two
versions of AIC in their degree of integration with SDE WorkBench/6000. AIC
1.1.1 generates C code that is compatible only with X Windows Version 11
Release 4 (X11R4) and OSF/Motif 1.1, which are compatible only with AIX 3.2.3.
IBM provides X11R4 compatibility libraries on later AIX releases. Applications
suitable for X11R4 environments can be run if the environment variable LIBPATH
is set up so the compatability libraries precede the X11R5 libraries. (This was
relevant to applications, such as SDE WorkBench/6000 and CMVC, which were
X11R4 compatible during the project).

The sargasso host was of an indeterminate AIX 3.2 level and had limited disk
space, so neither SDE WorkBench/6000 nor developer tools were installed on it.

46 CMVC Live

We only logged in, executed the X server, and remotely executed SDE
WorkBench/6000, CMVC, and the other AD tools on other hosts.

Some of the standard LPPs installed on each host were:

Application Development Toolkit (ADT), which included make , SCCS, dbx , and
other standard UNIX developer tools,

Basic Operating System Extensions (BOSext1,BOSext2), which included a variety
of basic services: C shell, mail handler, etc.

Network Services, which included TCP/IP device drivers and network interface
software services, such as NFS, Network Information Services (NIS),
Domain Name System (DNS), and Network Computing Services**
(NCS**).

Table 3 shows the software configurations installed on the various hosts.

Table 3. Software Configurations

Host Name AIX & LPPs AIXWindows AD Environment & Tools

bering AIX 3.2.3.e,
BOSext1,
BOSext2,
NetLS 2.1,
ADT, TCP/IP,
NFS, NCS,
Xstation Mgr.
1.3, XL C
1.2.1

X11R4,
OSF/Motif 1.1

SDE WorkBench/6000 1.2.2,
Oracle 6.0.36, CMVC 2.1 Server
& Client, AIC 1.1.1, SDE
Integrator/6000 1.2,

bengal AIX 3.2.3.e,
BOSext1,
BOSext2,
NetLS 2.1,
ADT, TCP/IP,
NFS, NCS,
Xstation Mgr
1.3, XL C
1.2.1

X11R4,
OSF/Motif 1.1

SDE WorkBench/6000 1.2.2,
CMVC 2.1 Client, Micro Focus
COBOL 3.1, DB2 CAE/6000 1.1,
DB2/6000 1.1

yel low AIX 3.2.4,
BOSext1,
BOSext2,
NetLS 2.1,
ADT, TCP/IP,
NFS, NCS,
Xstation Mgr
1.3, XL C+ +

1.1.

X11R5,
OSF/Motif 1.2

SDE WorkBench/6000 1.2.2,
CMVC 2.1 Client, AIC 1.2, DB2
CAE/6000 1.1, DB2/6000 1.1

sargasso AIX 3.2.3,
BOSext1,
BOSext2,
TCP/IP, NFS,
NCS

X11R4,
OSF/Motif 1.1

none

Chapter 3. Overview of the Application Development Project 47

3.4.3.2 X Windows Services
The terms client and server in the X Windows paradigm often confuse people.
The X client is an application that makes use of the input/output services
provided by an X server associated with a given display. The X client can
execute on one computer while the X server it accesses executes on another
computer, but both X server and X client can execute on the same computer. An
X client is often also the client portion of a separate distributed application. For
example, CMVC is a client-server application whose client and server portions
may execute on separate computers on the network. The CMVC client makes
use of the services provided by the CMVC server. It also uses the services
provided by an X server and, therefore is an X client application. A CMVC client
might be executing on one host, making input/output requests through an X
server that executes on a second host while accessing the CMVC server
executing on a third host. The X server always executes on the host where the
display is physically attached. An X station is a host that is capable of executing
only the X server; it is not a full function computer.

We assigned developers to hosts by matching the developers′ areas of
responsibility with the hosts on which the AD products supporting those
responsibilities were installed. Developers who could not sit at the console of
the host supporting the tools they needed, could sit at an X station or another
system console where they could execute at least the X server. They could then
remotely execute the tools they needed. Each developer also had occasion to
remotely execute some application development products. In subsequent
chapters we refer to specific users by their UNIX login names and to specific
hosts that are executing applications on their behalf, to illustrate the users ′
interaction with their tools and SDE WorkBench/6000. Table 4 identifies the
developers′ login names, areas of responsibility, and hosts where their displays
were attached.

Table 4. Developer Workstation Assignments

Host Name User ID Development Responsibilities

saragasso aixcase3 GUI Development.

bengal aixcase2 COBOL/DB2 Development

yel low aixcase1 C+ + Development

bering lrconas Project management, software
configuration management

zorin1 any user Alternative workstat ion

3.4.3.3 Network Software
DNS was also configured, but none of our hosts were configured as a name
server. We did not use Network Information System (NIS), formerly known as
Yellow Pages**; instead, we kept our /etc/passwd, /etc/security/passwd, and
/etc/groups files up-to-date manually.

3.4.3.4 CMVC Server and Clients
The host, bering, was configured as the CMVC server on the network. CMVC
client software was installed and configured on bengal, yellow, and bering.

48 CMVC Live

3.4.3.5 DATABASE 2/6000 Server and Clients
DB2/6000 Client and DB2/6000 Server were installed on bengal to support the
initial application migration to AIX. Access to DB2/6000 on bengal was through
the COBOL API. The DB2/6000 Client and DB2/6000 Server were installed on
yellow to support the object-oriented reimplementation of the application.
Access to DB2/6000 on yellow was through the DB2 CLI for C.

3.4.3.6 Compiler Compute Servers
Micro Focus COBOL** 3.1 and Micro Focus COBOL ToolBox** 3.1 were installed
exclusively on bengal. The XL C+ + compiler was installed exclusively on yellow
and the XL C compiler was installed on all hosts, but most C source code
compilation was executed on bering. This distribution of the compiler mimicked
what would be typical of a mixed-vendor environment where the compiler
capable of generating executable code for the HP platform would only be
installed on HP computers and the compiler capable of generating executable
code for Sun platforms would only be installed on the Sun computers. Even if
compilers were more widely distributed, it would not be uncommon to restrict
use of certain compilers to specific hosts in network load balancing strategies.

3.4.3.7 AIC Compute Servers
AIC version 1.1.1 was installed only on bering. AIX/6000 Version 3.2.3-extended
was the prerequisite operating system level for this AIC version. AIC Version 1.2
was installed exclusively on yellow because AIX/6000 Version 3.2.4 was a
prerequisite for that version. This would be fairly typical of a mixed environment
where operating systems would be upgraded gradually according to business
needs.

3.4.3.8 SDE WorkBench/6000
SDE WorkBench/6000 was only installed on bering, bengal, and yellow. The
developer using sargasso executed X11R4 from that host, but executed SDE
WorkBench/6000 and other tools remotely on bering or yellow. Developers on
each host had occasion to remotely execute various integrated development
tools on every host but sargasso. Typically, SDE WorkBench/6000 would be
installed on every host in the network that could support it.

3.4.4 File System Topology
The file systems on each host were arranged specifically to support our
application development environment and played a key role with SDE
WorkBench/6000 and CMVC. A common development file tree was established
to hold formal releases of the application and provide a working area for
application baselines under development. Several file systems were created
specifically for CMVC and ORACLE. File systems were mounted across the
network to provided the illusion of a network-wide “single system image” for our
developers. We ensured that each user had a “home directory” on only one
host, although the user might log in to any host in the network. (The home
directory is where the user ′s files will be placed by default, if no other location is
specified when the files are created.) Various other directories and file systems
that were used by the development tools on specific hosts were also made
accessible to users on all hosts across the network by means of NFS mounts.

Chapter 3. Overview of the Application Development Project 49

3.4.4.1 NFS Mounts for Distributed Data with SDE WorkBench/6000
SDE WorkBench/6000 supports the concept of distributed data through NFS and a
path naming convention. SDE WorkBench/6000 and network aware integrated
tools follow the convention of constructing a local path name beginning with
/nfs/ followed by a remote host name, followed by the remote file′s absolute
path name. When compilers, editors, and other tools are informed by SDE
WorkBench/6000, that they need to access a file on a remote host, they can
construct a local path name to access that file, if the proper NFS mounts are
made. The user identifies the remote host and the file path name by setting the
“data context” in SDE WorkBench/6000.

A common development file tree was created for this project. It was placed in a
separate file system mounted at /ad, on bering. It was remotely mounted from
there on every other host at the mount point /nfs/bering/ad. Using this mount
point ensured SDE WorkBench/6000, which was executing on remote hosts,
access to the /ad file system on bering. This way, we were sure that all
developers could work on common files from any host on which they executed
SDE WorkBench/6000.

Refer to Installing IBM AIX SDE WorkBench/6000 and IBM AIX SDE
Integrator/6000 for instructions on supporting distributed data. Figure 27 on
page 51 illustrates the NFS mounts used to support distributed data with SDE
WorkBench/6000 for this project.

50 CMVC Live

Figure 27. NFS Mounts to Support Distributed Data with WorkBench

3.4.4.2 NFS Mounts for Distributed Execution with WorkBench
SDE WorkBench/6000 defines the concept of “distributed execution” as what
happens when a locally executing SDE WorkBench/6000 is requested by a user
to start a tool′s execution on a remote host. If the remote system supports
distributed execution, it must export the /tmp directory to the local system. The
local host must then mount it following the distributed data path naming
convention for the mount point. For example, if a user on the bering host wants
to execute the C+ + compiler on yellow from SDE WorkBench/6000, the /tmp file
system from yellow must be mounted on bering at /nfs/yellow/tmp.

Refer to Installing IBM AIX SDE WorkBench/6000 and IBM AIX SDE
Integrator/6000 for instructions on supporting distributed execution. Figure 28 on
page 52 illustrates the NFS mounts we made to enable every host that
supported SDE WorkBench/6000 to initiate remote execution on any other host
that also supported SDE WorkBench/6000.

Chapter 3. Overview of the Application Development Project 51

Figure 28. NFS Mounts to Support Distributed Execution with SDE WorkBench/600

3.4.4.3 NFS Mounts for Single System Image
For every user able to log in to a host, that host records a specific home
directory. Typically, that directory is in a local file system named /home or /u/.
When a user can log in to multiple hosts in a network, the user can have
multiple home directories, one on each host. This can cause confusion because
the user can forget which home directory contains specific files or can
inadvertently create multiple versions of files when there should only be one.
Also, because many tools and utilities require users to tailor specific files
located in their home directory, it can be a lot of work maintaining identical
copies of those files on multiple hosts.

While there may be other ways to deal with this problem, the concept of a
“single system image” is quite popular as a solution. This ensures that no
matter where users are logged in, they have only one home directory located in
a file system on one host. To accomplish this, the /home file system from a
single host is mounted using NFS on all the other remote hosts in the network.
The mount point for the /home file system is not the same on the remote hosts
as it is on the local host. For example, it might be /mnt/hostX/u on one remote
system and /nfs/hostX/home on another remote host. So that the home directory

52 CMVC Live

is properly configured when users log in to remote hosts, they must record the
correct path name of their remotely mounted home directory in the /etc/passwd
file on each remote host. In the simplest scenario, all users on all hosts would
store their files on the /home file system of a single host. This can cause
unwarranted network traffic, if some users are likely to log in to one host
frequently, while others are likely to log in to another host most often. A more
complex scenario, therefore, is to have users establish their single home
directory on the host they use most often.

We created a single system image by following the SDE WorkBench/6000
convention for naming mount points of remote file systems. For the host at
which a each user normally logged in, the default home directory was set to
/home/username, and that is where the home directory would really be located.
On remote hosts, the default home directory was set to
/nfs/hostname/home/username. The local /home file system was then mounted on
all remote systems at that mount point.

For example, aixcase2 normally logged in at bengal and had a default home
directory of /home/aixcase2 on that host, but on bering or yellow had a default
home directory of /nfs/bengal/home/aixcase2. We mounted the /home file system
from bengal at /nfs/bengal/home on yellow and bering.

We also had a different situation to support, which was similar to having a
diskless workstation. Disk space on sargasso was so limited that we felt it could
not support the home directory for aixcase3, the user who normally logged in at
that host. To resolve this situation, we decided that aixcase3 should have a
home directory in the /home file system on bering. We mounted the /home file
system from bering on sargasso at /nfs/bering/home and set the default home
directory to that path for aixcase3 on sargasso. We mounted the /home file
system from bering on each of these hosts and set the default home directory
path identically on those hosts so aixcase3 could have a common home directory
yellow and bengal. The default home directory for aixcase3 on bering was set to
/home/aixcase3.

An illustration showing all the NFS mounts supporting all the users would be too
complex, so the NFS mounts supporting a single system image for only the users
aixcase2 and aixcase3, are illustrated in Figure 29 on page 54.

Chapter 3. Overview of the Application Development Project 53

Figure 29. NFS Mounts to Support a Single System Image

3.4.4.4 NFS Mounts for AIC 1.2
We found that AIC 1.2 had a restriction with respect to file path names when it
interacted with other SDE WorkBench/6000 tools and Execution Manager.
Although it was network aware, it was not network scoped, so it was unable to
interpret remote file path names or path names that began with the SDE
WorkBench/6000 convention, which is: /nfs/hostname.

The files of concern were all in the common file tree that was mounted at /ad
and in the home directory of aixcase3 on bering. To circumvent the problems
caused by this restriction, path names that did not begin with /nfs were created
on yellow, using the AIX link command.

54 CMVC Live

Specifically, a link was created on yellow from /home/aixcase3 to
/nfs/bering/home/aixcase3 so the user could refer to files on the remote system
by a path name that AIC 1.2 interpreted to point to a local file. Another SDE
WorkBench/6000 tool, such as the Program Editor, might have created that same
file using the local path name on /nfs/bering/home/aixcase3, but the user was
able to tell AIC 1.2 to look for it with the path /home/aixcase3.

In addition, a link was created on yellow from /ad to /nfs/bering/ad. This
enabled AIC 1.2 to find the files that other SDE WorkBench/6000 tools had
manipulated with their data context including bering as a host and /ad at the
start of the path name. AIC 1.2 could find these files if its current directory was
set to the corresponding local path name beginning /ad.

Figure 30 illustrates how the local file links masked the NFS mount implied by
the path names beginning with /nfs/hostname.

Figure 30. File Systems Cross-Mounted on Our Hosts

3.4.4.5 Common Development File Tree
As mentioned earlier, our common development file tree was placed in a file
system that was mounted directly at /ad on bering, but mounted indirectly (using
NFS) on every other host at /nfs/bering/ad.

The /ad directory contained a directory for each of two applications: ProductA
(the application being downsized), and ProductB (an imaginary second
application). These directories held file trees for the “production releases” of
these two applications. Each of these production release file trees contained the
source, compilation instructions, executables files, and all other files associated
with the release that it represented. The production releases were named
according to the target platform and numbered to identify their sequence. For
example, the production release file tree springing from the
/ad/ProductA/MVS_Release_0 directory contained the files comprising in the
original MVS release, before the migration. The production release file tree
springing from the /ad/ProductA/MVS_Release_1 directory contained a version of
this application modified to support common code between the MVS and AIX
releases. These production release file trees are illustrated in Figure 35 on
page 63 and discussed further in 3.4.4.7, “The ProductA Production Release
Directories” on page 61.

Chapter 3. Overview of the Application Development Project 55

The /ad directory contained other directories, which contained the prototype
development file trees for ProductA and ProductB. They were named
/ad/projectA_proto and /ad/projectB_proto. Below /ad/projectA_proto were
several layers of subdirectories that were organized according to source code
languages and the types of data contained in the various files.

When a source file was checked in the CMVC library, the relative path name
leading to that file in the prototype development file tree was also stored. When
a particular version of that file was later extracted from the library to the
production release file tree, CMVC used that same relative path name to place it
in that file tree. Therefore, there are similarities in the file tree organizations
below /ad/projectA_proto and the various release directories in /ad/ProductA.

3.4.4.6 ProjectA Prototype Development File Tree
The projectA_proto prototype development file tree is shown in Figure 31 on
page 57. It contained the following directories:

Directory Description

bin Contained executable files (binary data files) of the
application and any related test tools.

catalog Contained any message catalogs used by the application.
Message catalogs enable the separation of user message
texts from the application code and the retrieval at
execution time of message texts in the appropriate
language of the user executing the application.

db2 Contained all data, command scripts, and utilities related
to the DB2/6000 data base.

include Contained any C language include files (filename.h)
associated with the application′s C language source
modules.

resource Contained “X11 resource files” for the individual OSF/Motif
widgets that are generated by AIC for each AIC interface
file. All “language-dependent” widget resources, such as
label strings, dialog titles, and mnemonics can be set by
means of these resource files. This mechanism isolates
all text strings appearing in the GUI from the GUI code
itself and enables these test strings to be translated into
multiple languages with our recompiling the code.
Separate X11 resource files can be created containing the
translation of these text strings into each target language.
When our application executes, the X Windows System
identifies the correct X11 resource file to use according to
values in certain shell variables. These variables are set
by each user.

source Contained source code for the application in appropriate
subdirectories.

test Contained test code and data.

56 CMVC Live

Figure 31. ProjectA Prototype Development File Tree

The Source Directory: The source directory contained a subdirectory for each of
the three languages:

Chapter 3. Overview of the Application Development Project 57

Directory Description

c Contained source modules in the C language

C Contained source modules in the C+ + language

cobol Contained source modules in the COBOL language

The C Language Source Directory: This directory was named c because C
language file names end with the “.c” extension. It contained a directory for the
main routine of the application, two directories for the GUI source (PortedGUI
and ImprovedGUI), and a directory for utility subroutines. Figure 32 on page 59
illustrates the PortedGUI directory and Figure 33 on page 60 illustrates the
ImprovedGUI directory. The C language source directory contained the following
directories:

Directory Description

main Contained the main module that invoked the GUI code.

PortedGUI Contained the AIC interface and callback source modules
for the AIX_Release_1 GUI (as first migrated to AIX). It
also contained a subdirectory for each window of the GUI
and the source for the interface file and callback
subroutines.

ImprovedGUI Contained the AIC interface and callback source modules
for the AIX_Release_2 GUI (as made more CUA or
UNIX-like). It also contained a subdirectory for each
window of the GUI and the source for the interface file and
callback subroutines.

util Contained the utility subroutines that replaced the
assembler code.

58 CMVC Live

Figure 32. PortedGUI Directory

Chapter 3. Overview of the Application Development Project 59

Figure 33. ImprovedGUI Directory

The C+ + Source Directory: The C+ + directory was named C because C+ +

source code file names end with the “.C” extension. It contained source code
for the object-oriented implementation and two subdirectories; one for the user
interface and one for the application itself. Figure 34 on page 61 illustrates this
directory. The C+ + source language directory contained these following
directories:

Directory Description

OOGUI Contained the AIC source modules. There were no
callback source files, because the newer version of AIC
required the callbacks to be incorporated in the interface
file in order to generate correct C+ + source files. It also
contained a subdirectory for each window of the GUI. The
source code for these windows is stored in these
subdirectories.

app Contained the application C+ + source modules that
defined its classes and methods, and included C language
modules, which were necessary for access to the DB2 CLI
for C.

60 CMVC Live

Figure 34. OOGUI Directory

The COBOL Source Directory: The cobol directory contained the COBOL source
code and all other source code necessary for the MVS build. The MVS releases
were not actually built on AIX, so there seemed little added value in placing the
various files in subdirectories based on language or file type. Files placed here
included MVS COBOL source and copy code modules, ISPF panel definition
source modules, Job Control Language (JCL) scripts, Command List (CLIST)
files, and assembler language source modules.

Note that some of these subdirectory names recurred in the directories
containing the production releases, but not all appeared beneath any one
production release ′s directory. For example, the AIX and MVS releases might
have had directories containing COBOL source, but the MVS releases would not
have had directories containing C language source code. Likewise, the
object-oriented release did not require a subdirectory for either the C or COBOL
source code language modules. However, all releases had a directory for the
database, message catalogs, and binaries.

3.4.4.7 The ProductA Production Release Directories
As mentioned earlier, /ad/ProductA contained a directory for each production
release. Partial contents of this directory are shown in Figure 35 on page 63. It
contained the following directories:

Directory Description

MVS_Release_0 Contained all the files required to build the original MVS
application. /ad/ProductA/MVS_Release_0 contained a file
tree whose subdirectories were a subset of those
contained in /ad/projectA_proto. For example, it contained
a source directory and below that a cobol directory, which
contained the original COBOL source, assembler, CLIST,
and JCL files. However, it did not contain a c or C

Chapter 3. Overview of the Application Development Project 61

directory because no files were stored in the CMVC library
with those path names.

MVS_Release_1 Contained all the files required to build the revised MVS
application. /ad/ProductA/MVS_Release_1 contained a file
tree similar to that of MVS_Release_0.

AIX_Release_1 Contained all the files required to build the initial AIX
release; the minimal effort migration.
/ad/ProductA/AIX_Release_1 also contained a file tree
whose subdirectories were a subset of those contained in
/ad/projectA_proto. It contained directories for COBOL
and C, but not for C+ + . Furthermore, it didn′ t contain
ImprovedGUI below the c directory. Instead it contained
only the PortedGUI directory.

AIX_Release_2 Contained all the files required to build the AIX release
with the improved, or object-oriented, GUI.
/ad/ProductA/AIX_Release_2 also contained a file tree
whose subdirectories were a subset of those contained in
/ad/projectA_proto. It contained directories for COBOL
and C, but not for C+ + . Furthermore, it didn′ t contain
PortedGUI below the c directory; instead it contained only
the ImprovedGUI directory.

OO_Version_1 Contained all the files required to build the initial
object-oriented AIX release. (Admittedly, it was poorly
named). /ad/ProductA/OO_Version_1 contained a file tree
whose subdirectories were a subset of those contained in
/ad/projectA_proto. It contained a directory for C+ + , but
not for C or COBOL.

62 CMVC Live

Figure 35. ProductA Production Release File Trees

Chapter 3. Overview of the Application Development Project 63

64 CMVC Live

Chapter 4. Planning for CMVC

In this chapter we offer some general advice on planning to use CMVC, as well
as offer some examples of how to apply specific features or functions in CMVC.
We also show how a small application development project, described in
Chapter 3, “Overview of the Application Development Project” on page 41 and
alluded to in Chapter 2, “Discovering CMVC: An New Application Project Is
Introduced to CMVC” on page 11, planned for its use of CMVC.

4.1 Why Plan?
The most important thing to understand about CMVC is that you do not need to
understand all of it, before you begin using some of it. CMVC is broad in its
function, thorough in its implementation, and very flexible. CMVC provides many
mechanisms to help you accomplish your SCM goals, but it does not dictate
exactly how you should use them, nor does it require that you use them all if you
use only some of them. This is one of the distinguishing advantages of CMVC.
Because no two development efforts have exactly the same number of
requirements, the same degree of complexity, scope of effort, or the same
hardware and software resources, how they approach SCM with CMVC varies
significantly. Recognizing this, CMVC was designed to be set up, tailored, and
utilized according to the needs of the individual project. Therefore, it is wise to
plan in advance which features of CMVC you want to use initially, how you want
to apply them to your SCM problems, and which features you want to phase in
gradually.

The first step in this planning process is to go over the CMVC product
documentation carefully. These documents identify and define CMVC objects,
such as Files, Releases, and Users, and describe how CMVC users access and
manipulate them. In IBM CMVC Concepts, you find a description of CMVC
concepts, objects, processes, and interactions. Look in IBM CMVC User′s Guide
and IBM CMVC Commands Reference for details on how to use individual
commands and GUI windows. IBM CMVC User′s Reference provides a place to
look up lists of options, record structures, and field attributes.

However, what you will not find in these documents is the correct interpretation
of how to map CMVC objects to the real objects of your application development
effort. Nor will you find advice on which circumstances call for using or not using
a given CMVC object or function. This is because there is no single correct
application of CMVC; this will vary with your circumstances.

The second step in planning, therefore, is to compare your thoughts of how to
apply CMVC to someone else′s actual experience. Since not everyone can do
this, we have written this chapter. It provides a practical example of how to plan
for and apply CMVC objects, concepts, and processes to meet the needs of an
actual software development project. This chapter also suggests alternative
approaches to CMVC that were not used on this project, but are based on other
experiences with CMVC.

SCM is not a short term effort, nor does it exist in isolation. SCM responsibilities
for an application begin during its development and continue as long as it is in
use. The SCM effort on an individual application development project is also
part of a larger SCM effort in the development organization. Therefore, original

 Copyright IBM Corp. 1994 65

plans for CMVC are subject to revision as the needs of the project change and
as additional projects start up. Your use of CMVC will also evolve as you
become more familiar with its capabilities. Generally speaking, CMVC is
amenable to this fact of life. But, some decisions about CMVC that you make at
the beginning of a project, have a long term impact. This book helps you
distinguish between these and other decisions, which you can make tentatively
now and the plan to modify as time passes.

CMVC provides a command-line interface client, as well as a GUI client. Rather
than refer to specific command and parameter names, and equivalent GUI
window and menu items in this chapter, we refer to CMVC actions by a generic
name. For example, we refer to the FileCreate CMVC action, when we mean
either the File -create command, or the Create selection on the Actions pull-down
of the CMVC - Files window. You should refer to the manuals to identify the
actual correct spelling of the command and parameter, or window and menu
item names.

4.2 Pre-Installation Planning for CMVC
Before you install CMVC, you should:

• Plan your network license requirements and distribution of licenses over
your hosts

• Plan your distribution of CMVC client and server software across your hosts
• Identify and define the purposes served by your CMVC families.

4.2.1 Planning Network License Requirements
CMVC makes use of Network Licensing System** (NetLS**). For details on how
NetLS works and how CMVC makes use of the NetLS licensing mechanism refer
to 6.2, “NetLS Installation and Initialization” on page 163. There are some
decisions you must make regarding NetLS; they are primarily questions of
network and system administration. These include whether to have more than
one NetLS license server, and how to distribute license tokens for various
licensed programs among them. The primary decision you must make regarding
CMVC and NetLS, however, is how many CMVC license tokens your project will
require.

4.2.1.1 What to Consider in Planning Network License
Requirements
To plan your CMVC license token requirements, try to determine the maximum
number of users who will be using CMVC at any one time. Someone performing
SCM functions may need access all day long, while your developers may use
CMVC infrequently. Not all developers will use CMVC to the same degree; it
may depend upon their specialized role in your project. The project and team
leaders may use CMVC a few times daily, while testers and build integrators
may use it constantly.

Before a CMVC client issues a request to the server, it requests a license, or a
token. After getting it, that CMVC client holds it a minimum of fifteen minutes.
(This is CMVC′s default minimum expiration time). If, in the next fifteen minutes,
that client issues another request to the CMVC server, that token′s expiration
time is extended again by fifteen minutes. So, if you bring the CMVC client GUI
up, make and refresh queries, display new windows, and perform CMVC actions
every few minutes all day long, you will effectively use one token for most of that

66 CMVC Live

day. On the other hand, if you start up the CMVC client GUI, make a couple of
queries, and then leave the CMVC client GUI running, but make no more
requests, you relinquish that token fifteen minutes after your last CMVC action.
You can increase the expiration time, but you cannot reduce it.

4.2.1.2 Our Network License Requirements
On our project, we had a one-to-one ratio of team members and NetLS licenses
for CMVC, because our team members used CMVC frequently. In part, this was
because getting acquainted with CMVC required some time and interaction,
apart from the application development requirements. However, we found that
developers in general made frequent use of CMVC. We ran one NetLS license
server on the same machine as our CMVC server, and installed all our CMVC
licenses on that server.

4.2.2 Planning CMVC Client and Server Hosts
You must decide on which hosts you want to install CMVC. It is likely that you
will have one server and several clients spread about your network. You could,
of course, run the clients and server on the same host.

4.2.2.1 What to Consider in Distributing CMVC Client and Server
Software
It is a good idea to have the CMVC server execute on a host with plenty of
available disk space and memory, and have the clients execute on hosts at
which end users login. The CMVC server and the relational database
management software on which it depends, use a large amount of disk space for
the data they control. They also require a lot of memory, so be sure to allocate
sufficient paging space on the server, in addition to the disk space requirements
for the library data. IBM CMVC Server Administration and Installation states that
the CMVC server alone requires 16 Megabytes (MB) of internal memory, and 10
MB of disk. This does not include the disk or memory required for the relational
database management system.

Like any X Windows application, the CMVC client GUI can execute on one host
and display its output at the X server executing on some other host in your
network. If all your users accessed the CMVC client this way, it could place a
burden on your network and result in slower response time. In our project, we
displayed the CMVC client GUI both at direct-attached consoles on the hosts
where the CMVC client GUI executed, and at remote X servers and X stations.

It may be possible to implement multiple CMVC server hosts, which contain
parallel data or operate in some coordinated fashion to simulate that condition.
CMVC, however, provides no direct support for either coordinating the state of
multiple families, or multiple CMVC server databases. Such an arrangement
would involve some programming, use of the cron tables, and probably a
significant number of user exits, if it is possible. There was no requirement in
our project for such an arrangement, so we did not investigate this area.

4.2.2.2 Our Distribution of CMVC Clients and Server
For our project, we chose to place the server on bering, one of our RISC
System/6000 Model 52Hs, because it had 2 GB of disk, 32 MB of memory, and
AIX 3.2.3e. We placed our CMVC clients on all the other hosts, except sargasso,
which was a Model 520 with minimum hard disk. CMVC Version 2, Release 1,
worked well under both AIX 3.2.3e and under AIX 3.2.4, which became available
at the beginning of the project and was installed on yellow. One user, aixcase3,

Chapter 4. Planning for CMVC 67

always executed the CMVC client GUI from bering while displaying it at the X
server on sargasso.

4.2.3 CMVC Families
A family represents a complete collection of CMVC users, components, data, and
files that is self-contained and makes no reference to any other components,
files or data outside of itself. Data in a family is completely isolated from data in
all other families.

4.2.3.1 What to Consider in Choosing CMVC Families
You must determine how many families you will need to create before your team
can use CMVC. Generally speaking, an application development organization
will not have many families. There will usually be more reasons to include a
new development effort in an existing family, than to create a new family for it. If
your development effort is entirely separate, however, making separate family
for it is appropriate.

For example, your development organization may have several different
applications under development and maintenance, and you may want to make a
family for each one. If these different applications shared some source code,
like a utility subroutine library, then each family would have to maintain its own
copy of the source code for this library. But, if these applications were all kept
in one family, they could share, or reuse, this common software, while keeping
only one copy of the source code. Likewise, if the applications shared a
common set of data files, such as NLS error message catalogs, then being in the
same family would make the most sense.

New families can be created over time as your needs evolve. Elements of
family ′s data associated with a release can be archived, and removed from the
family. If this data is required later, it can be restored to a separate new family.
In addition, it is possible to migrate data from one family to another, if you want
to create a new family using data already controlled by CMVC in another family.

4.2.3.2 Our CMVC Families
For our project, we concluded that we wanted two families, one to support code
in production, and one to support code under prototype development. The two
families were named dev and prod. Our reason for this choice was that we did
not expect these two groups to share any files. Files might migrate in one
direction from the development realm into the production realm, but
development might continue on its own path after that and would not be using
production code. We also wanted a CMVC domain in which we could test CMVC
itself, and not threaten the integrity of the CMVC data supporting our real
project.

4.3 CMVC User IDs and Host Lists
CMVC users have a unique CMVC user ID, which is independent of the UNIX
login name.2 Since users frequently log in to various hosts from other hosts in a
distributed environment, CMVC allows the association of a single CMVC user

2 The term “UNIX login name” refers generically to a login name on any of the UNIX-based operating systems from HP
(HP-UX), Sun (SunOS or Solaris), or IBM (AIX), for which CMVC client software is available. Because our project used only
AIX hosts, we often use the specific term “AIX login name,” instead of the generic term. However, there are no significant

68 CMVC Live

with multiple login names at multiple hosts in a Host List. There is one list per
family. For example on our project, the CMVC user ID, truls, could access the
prod family while logged in as the aixcase2 AIX login name at the bengal host,
and yet be unable to access dev family data under the same circumstances.
CMVC permits a given UNIX login name and host name combination to be
associated with multiple CMVC IDs, and vice a versa. CMVC also allows you to
record an area of interest or responsibility associated with each user.

CMVC employs the concept of a privileged user named the “family superuser.”
The family super user can perform any CMVC action, and there are some CMVC
actions, which only the family superuser can authorize other users to perform.
The family superuser is established by default when the family is created, but
additional CMVC IDs can be given family superuser status.

4.3.1 What to Consider in Planning CMVC Users and Host Lists
CMVC is the one application development tool that most people in a
development organization will use, so generally speaking, everyone on the team
will need a CMVC user ID. You need to determine from which UNIX login
names, on which hosts, each team member will access CMVC. You need to
identify a single UNIX login name and host at which each team member wants to
receive electronic mail.

You also need to determine which data access and CMVC action authority each
team member requires. An important factor to consider is which users should
have primary responsibility for the project as a whole, for architectural elements
of the product, for software quality assurance, for software testing, for
documentation, end user evaluation, and of course, software design and
development. Identify developers with special duties that cross these areas of
responsibility, such as release managers and build integrators. Identify people
who should only be able to report problems (defects) and suggest improvements
(features). Determine who will perform the roles of SCM administrator, CMVC
family administrator, and software librarian. Do not forget managers; they will
want the kind of CMVC access that lets them monitor the pulse of the project,
but does not burden them with extraneous mail.

Since CMVC user IDs do not need to be identical with UNIX login names, decide
what naming scheme you want to use for them. If your development
organization is large, with clearly differentiated responsibilities, you may want to
use impersonal CMVC IDs, which denote a role in the project. This can save
time reassigning ownership of CMVC objects to new users when old users leave.
It is easier to modify the host list for the entire family, than to modify, for
example, the owner of each component, defect, or release. On the other hand, it
may be more difficult to infer the personal identity of the users associated with
the CMVC user IDs, if you choose this option. Choosing CMVC user IDs to
correspond exactly with the login names works well if all your users have the
same login names on most of their hosts. But it can be confusing if they each
have multiple names.

Create a list of one word labels that identify your users in terms of the roles they
play in your development effort. These labels can have nonspace separator
characters, but should not be very long, for example, “user_interface,”

differences in function, feature, or client-server interactions among the various CMVC client and server products available on
these UNIX-based platforms.

Chapter 4. Planning for CMVC 69

“software_QA,” or “product_management.” These will be the area of interest or
responsibility that CMVC associates with each user. Create a table with one row
for each proposed CMVC user ID. Write down this label, the associated host
name and UNIX login name, the role you expect the user to play, and the user′s
electronic mail address. Table 5 shows part of the table for our project.

Table 5. CMVC ID and Host List Plan

CMVC user ID Role Login@Host Mail

projA_lead Project A Lead
Engineer

aixcase4@bering,
aixcase4@bengal,
aixcase4@yel low

aixcase4@bering

krt AIX
Development

krt@bering, krt@yel low krt@bering

4.3.2 Our CMVC User IDs and Host Lists
We had a small number of individuals working on this project, but each played
several roles. We had three developers, each with a language speciality and a
clearly defined role in terms of programming. These members were not only the
programming staff, but also the designers, builders, and testers for their portions
of the application. We had one member who performed software configuration
management, project management, and software quality assurance.

These users normally logged in from a specific AIX host where they would check
their electronic mail, but they often logged in from other AIX hosts. We chose to
implement multiple CMVC IDs for these users, which reflected the different role
they played in the development effort. We also ensured that at least two UNIX
login names mapped to each CMVC superuser ID.

The family superuser ID was lrconas, which mapped to the login name by the
same name. Our developer ′s UNIX login names were aixcase1, aixcase2, and
aixcase3. Our CMVC IDs for these users, when performing the role of
developers were branko, truls, and krt, respectively. When these developers
performed other roles, they assumed one of these CMVC user IDs: OOtester,
MVStester, and AIXtester. The manager, projA_lead, and projB_lead CMVC user
IDs mapped to the aixcase4 UNIX login name.

Figure 36 on page 71 shows the results of a query of all CMVC IDs for the prod
family as displayed in the CMVC - Users window. This query identifies the
CMVC user ID, person, role, and electronic mail address.

70 CMVC Live

Figure 36. User List for Production Family

Figure 37 maps login names and host names with CMVC user IDs, by showing
the results of a query for all IDs in the CMVC - Host Lists window.

Figure 37. Hosts List for Production Family

Chapter 4. Planning for CMVC 71

Since the CMVC Users record can have configurable fields, potential
configurable fields should be examined at this time. We considered several
likely uses for additional fields, but decided that most of the information we
thought about storing in this record would be redundant with information found
elsewhere in non-CMVC departmental databases. For example, we could add
fields that would contain a CMVC user′s phone number, department, or
development team affiliation. This would seem, at first glance, to be useful
information, but because the CMVC database is not the authoritative source of
this data, it would become out of date quickly. Keeping it up-to-date would be a
time consuming.

If information about a CMVC user is not easily obtained from other databases,
then it is a good candidate for a configurable field. For example, consider a big
project involving developers from several subcontractor companies, where the
CMVC database is maintained by the prime contractor. The prime contractor
would not keep personnel records for the various subcontractors, and would
have no direct way of knowing to which company an individual developer who
filed or fixed a defect belonged. In this case, it would be helpful to add a
configurable field to the CMVC User record to hold the name of the
subcontracting company for which the CMVC user works. As contracting
personnel change over time, it may in fact be more important to know the
company affiliation, than an individual′s name.

We do not recommend creating new fields in the CMVC User record unless the
CMVC User record is the only repository of that data. We did not configure any
new fields in this record.

4.4 CMVC Family Component Hierarchy
The CMVC “component” is the basic management unit of organization in the
CMVC family. A component is used to organize data, to control access to it, and
record information about it. It also supports the automatic notification of users of
changes in the state of that data.

The components themselves are organized in a hierarchy. The top node is
called the root component, but its actual component name, and those of its
descendant components is yours to define. Each family contains one component
hierarchy. The structure can become quite complex as, the layering of children
components and, their children components becomes deeper and broader. Any
component whose parent is not the root component, can have multiple parent
components, as well.

Conceptually, a component is somewhat analogous to a UNIX directory
hierarchy. A component not only serves as a means of grouping and organizing
data, which is stored in files, but nonfile data that validates and directs CMVC
actions is also associated with the component. This meta-data is stored in the
tables controlled through the relational database product employed by CMVC. It
also defines the component hierarchy. CMVC records a history of all
modifications to this nonfile data, as well as a history of all changes to those
files grouped by the component. Automatic notification of CMVC actions is
defined per component, and these characteristics are inherited by descendent
components. Access (the right to perform CMVC actions associated with
authority groups) is defined per component, and is inherited by descendent
components. However, it can be specifically excluded from inheritance at a
given descendent component, as well.

72 CMVC Live

The files managed by a component can be binary or ASCII data, no matter what
their content represents or means. The obvious data files are source code files
and makefiles, but there are many other appropriate candidates. These include
application documentation (source or binary files), engineering drawings in
source or intermediate formats, and design and specification tool input or output
files. Files not related to the software itself, but to the organization developing
the software, are equally appropriate.

4.4.1 What to Consider in Planning a Component Hierarchy
Study the CMVC concepts associated with components. After gaining an
understanding about what components do in the context of CMVC, you need to
plan a component hierarchy to support your configuration management needs.
The following paragraphs outline some factors to consider when planning your
component hierarchy.

IBM CMVC Concepts indicates that the component hierarchy can be built to
reflect different organizing principles, or a mix of principles. One way to
organize a component hierarchy is to have it mirror the application development
organizational hierarchy, such as department, section, team, or unit of
development. Another hierarchy approach is to reflect the software architecture
of the applications under development, such as application, GUI subsystem,
communications subsystem, database, or subsystem.

Components can be added and additional parent-child relationships established
to overlay notification relationships. There are many possible component
hierarchies, which could be implemented for any given situation, but if the best
is not immediately discerned, it can be modified later. Components can be
reparented, deleted, and renamed, and all their properties can be modified after
creation, as well.

One factor to consider in arranging your component hierarchy is that all defects
and features must be recorded by component, and the owner of a component
becomes the default owner of its defects and features. While CMVC allows you
to reassign a defect to another component, and even to change the owner of the
defect or feature to another noncomponent owner, the more often you must do
this, the more complexity you introduce to the user′s interaction with CMVC.

If you organize your top components according to the major components of your
architecture, you might want to continue defining lower level components until
you have a component for each assigned unit of work. In most cases, team
members opening a defect will be able to correctly identify the component
whose owner is most likely to have to implement the correction. When in doubt,
the team member opens the defect at a higher level, but this does not happen
often. The higher level component owner may be the task leader for the team
members owning components below, and can reassign the defect appropriately.

While there is no magic ratio of number of files to a component, there are
advantages to breaking up the files into several components. For example, if
you have many source files managed by only few components (a flat component
hierarchy), you lose the ability to perform detailed analysis on the rate and
nature of defects based upon more granular subsets of your application. You
might want to be able to compare defect history for the user interface code with
that for the data management code and the device driver code. This can easily
be done by looking at defects on a component basis, if each of these
architectural elements are managed by a separate component.

Chapter 4. Planning for CMVC 73

You do not need to have the components reflect identically the directory tree you
implement to support your software build, and in some cases it advantageous
not to do so. For example, when you extract the files for a build, you want have
a separate directory for every window in the your GUI. You can then extract all
the AIC interface files, callback source files, and include files, which are relevant
to the particular window to that directory. This arrangement simplifies scanning
any one directory to verify that all relevant files are in place or have appropriate
dates. You do not need to create a component for each window, however,
matching this directory structure. You may be better served by creating a single
component for all the files associated with the entire user interface, especially if
one developer is responsible for the development and maintenance of the entire
user interface. You would have a single component managing all defects and
features related to the various panels, and a single person controlling access to
all the files.

Another factor in forming the hierarchy, is controlling access to data managed by
the components. One approach is to institute a pattern of parallel
mini-hierarchies. If you have a project, which has program source and
documentation related to those programs, you might maintain the documentation
files in one mini-hierarchy, and the source files in another. Both of these
descend from a common component representing the project. This organization
allows one person, namely the owner of the top-most component in the
documentation mini-hierarchy, to have access to all the documentation
components. Another person, the owner of the top-most component in the
parallel mini-hierarchy, has access to all the program components. The
relationship between files for a given document and program element can be
made clear by the position of the component in the hierarchy, and by naming
conventions.

Component naming conventions can be valuable if thought out in advance and
adhered to strictly. They can make generating CMVC reports easier, by allowing
users to subset all possible report data by selecting the appropriate components
based on some common element of their names. This can be especially helpful
where several components, which have common purposes, are distributed
randomly about the component hierarchy. For example, components for
end-user documentation might be descended from various components
managing other components for test data, source code, or specifications. For
example, if all their component names have “doc” as the first three letters, it will
be easy to distinguish them from components managing other data, no matter
where they appear in the hierarchy. In addition, naming conventions can
influence how reports sort and order data.

We suggest you make a sketch of the hierarchy, and create a table or matrix in
which you make notes about each component as you do your planning. Having
identified the components in your hierarchy, add to each component′s line a list
of the types of files you want to control with the component and if possible the
pathnames in your directory build tree which will be associated with these files.
Table 6 on page 75 shows a part of the table for our project.

You may not know all of the components you will need to create at first. Keep in
mind, that component owners can create children components as they need
them, and the hierarchy can grow arbitrarily wide or deep, as the project
progresses.

74 CMVC Live

Table 6. Component Hierarchy Plan

Component Description Path names

legacy Contains components for the legacy application on
each platform (produchp1.).

not
applicable

MVS Contains components for MVS source code
(productA).

not
applicable

COBOL COBOL sources (*.cbl, *.cob, *.cpy) source/cobol

ISPF ISPF panel files (*.pnl) source/cobol

4.4.2 Our Component Hierarchy
We determined that we needed two families. The prod family supported
software, which was in production use, and the dev family supported
development of emerging applications and our reimplementation of the legacy
application with object-oriented technology. The root components of the two
component hierarchies belonging to these families were named production and
development, accordingly.

4.4.2.1 Our Production Component Hierarchy
We chose to organize our component hierarchy at the top levels to reflect how
we were organized to perform our work, and at the lower levels to reflect the
execution platforms and language technologies employed. We created a
hierarchy of components, which would support the work of an application
development organization that had two major application products in the field,
and others under development. Figure 38 on page 76 illustrates the component
hierarchy we created to support our prod family. This figure shows the contents
of the CMVC - Component Tree window when we selected the horizontal layout.

Chapter 4. Planning for CMVC 75

Figure 38. Production Component Tree

The production component contained a component for the current software
application, productA, and a component for a hypothetical second software
application, productB. Because this level represents the application
development organization, the production component also contains a component
named ISO. We intended to use this component to support our organization′s
efforts at achieving conformance series of quality standards promulgated by the
International Organization for Standardization (ISO**), known as ISO 9000.
Appendix A, “Implementation of ISO 9001 Using CMVC” on page 167 discusses
how CMVC can be utilized to meet some ISO 9000 requirements.

Beneath productA, we created the legacy component for the original MVS
application and its rehosting to AIX. We also created the future component for
the object-oriented reimplementation of our application. Since both
implementations would share a common DB2/6000 database, we created the
database component at this same level. This would contain the SQL for the

76 CMVC Live

scripts required to build and install the DB2/6000 database, data for sample data
used to create test environments, and uti l i ty for the source code to utility
programs that extracted the data from MVS in a form suitable for inclusion in the
DB2/6000 database. There was documentation, which was common to all
implementations of the productA application. The external interface and
high-level requirements, for example, would not change from one platform to the
next. For files related to this documentation, we created the doc-productA
component.

Beneath the legacy component we created a component for each platform on
which the application would execute, namely MVS and AIX.

Below the AIX and MVS components, we created components for each type of
source code we expected to develop. “Type of source code” did not mean only
compilable programming languages. While C source might be processed by the
XL C compiler, some source code modules, such as Korn shell or JCL scripts,
would be not be compiled at all. These modules would be interpreted when they
were executed. Other source code modules, such as user interface definitions,
were input to AIC, a tool, which in turn, would generate compilable source code.
Components would contain all versions of the source code modules, regardless
of which releases of the application any one version supported. We decided we
would have a hierarchy of makefiles, each focusing on processing the modules
of a given source code type. So, we decided to store makefiles in the separate
language components.

Below the MVS component, we created components named assembler, ISPF,
COBOL, JCL, CLIST, and ISPF_drivers. The ISPF_drivers were C language
programs, which worked with an internal tool to emulate the mainframe ISPF
function under AIX. We also created the doc-MVS component, which contained
design and end-user documentation unique to this platform.

Under the AIX component, we created components to contain the source code
for that platform. The AIC_X11R4 component was created to contain the
interface and callback source code files from which AIC version 1.1 would
generate X11R4 compatible C language source code. We did not intend to
archive the C language source code, which is generated by AIC, as it is only an
intermediate product in the process of generating the GUI. The ksh_legacy
component was created for the routines that supported installation of the
application on the AIX platform. Since we anticipated some commonality in the
COBOL source between the MVS and AIX implementations, we created an
AIX_COBOL component to hold only the COBOL source that was unique to the
AIX releases. All common COBOL, plus any source that was unique to the MVS
releases, would remain in the COBOL component, which was under the MVS
component. Lastly, we created a C component to contain any utility routines, not
associated with the callbacks, which replaced assembler routines called in the
original MVS implementation.

We followed a similar pattern in creating the component structure below the
future component. We created a descendent component representing each
platform on which the application would execute. During our project, the
application would only be implemented under AIX, but we created the hierarchy
to reflect the possibility of implementation on other platforms, as well. The
IBM-AIX component served our present needs, and the OEM-UNIX component
represented future possibilities. We anticipated that a common set of design

Chapter 4. Planning for CMVC 77

documents might support the object-oriented implementation on multiple
platforms, so we created a doc_future component to hold them.

Below the IBM_AIX component, we created components for each language
technology. The AIC_X11R5 component would contain the interface and callback
source code files that AIC version 1.2 would use to generate the C+ + language
source code for the GUI. Again, we would not archive the intermediate C+ +

source files generated by AIC. The C+ + component would contain the
application source code which was not generated by AIC, but instead was
written by hand. The ksh_future_AIX component would hold any utilities created
to support installation of the object-oriented application on AIX.

The OEM-UNIX component would only contain one component,
sh_future_OEM-UNIX, to hold any platform-unique shell programs necessary for
installation under that operating system. We envisioned that the source code for
the application and its GUI would port transparently to all OEM UNIX platforms
from AIX, or use conditional compilations and/or makefile macros to support any
platform peculiarities. We could wait until we knew more before creating
additional components for files unique to each platform.

CMVC does not allow any two components to have the same name, so we chose
naming conventions for our components, which we hoped would eliminate
confusion. Notice that we used both the hyphen and underscore in these names.
In hind-sight we see that using only one of these characters would have made
typing in the names less difficult. In addition, we failed to use a naming
convention that embedded the hierarchy relationships.

Notice that the component hierarchy does not map to the build tree hierarchy,
illustrated in Figure 35 on page 63. When our files were placed under CMVC
control, however, we specified build tree path names, such as source/cobol and
source/c/PortedGUI/AddressChange. This ensured that when files were extracted
to a directory, they were placed in subdirectories based on these path names.
For example, if the target directory for a ReleaseExtract CMVC action was
specified as /ad/productA/MVS_Release_0, the cobol source files would be placed
in /ad/productA/MVS_Release_0/source/cobol and the files for a specific GUI
window might be placed in
/ad/productA/MVS_Release_0/source/c/PortedGUI/AddressChange.

4.4.2.2 Our Development Component Hierarchy
We set up our development component hierarchy similarly to our production
component hierarchy. Because it was primarily an area for testing and getting
to know CMVC, it was not as complex. Figure 39 on page 79 illustrates this
smaller component hierarchy.

78 CMVC Live

Figure 39. Development Component Tree

4.5 Planning Component Ownership, Access Lists, and Notification Lists
Component ownership is a very important use of CMVC IDs because the owner
of a component has implicit authority to perform a wide variety of CMVC actions
on that component, the children components, and their files. The default owner
of the component is the user who creates it. Ownership may be given to any
user by the current owner of a component. No one but the current owner of a
component, or the family superuser, can change component ownership.

The component owner can grant explicit authority to other users to perform
actions (associated with authority groups) over files controlled by that
component. Once authority is granted to another user, that user inherits the
same authority over all its descendent components, unless that authority is
restricted expressly at a given component. The component owners can remove
granted access or restrict any other user′s inherited access, provided the
component owners have that authority themselves.

A similar relationship exists between component ownership and automatic
notification of CMVC actions. A component owner defines the notification list for

Chapter 4. Planning for CMVC 79

a component by placing users in an interest group for that component. These
users automatically obtain membership in the same interest group for all
descendent components. When a CMVC action occurs, notification is sent
automatically through electronic mail to all affected users and owners of affected
CMVC entities, such as components and release. It is also sent to users whose
names are in the interest list for the affected components, if those lists pertain to
the CMVC action.

4.5.1 What to Consider in Planning Component Ownership, Access Lists, and
Notification Lists

You must determine the owner for every component in your initial family
hierarchy. You need to determine which additional users will require access to
these components and, if necessary, modify or create authority groups needed to
implement this access. You must also decide if notification lists will be required,
and whether the predefined authority groups support your needs.

First, determine the owner for every component. It is best if component
ownership reflects the level of responsibility a person has for the files contained
in that component. If a single person has overall responsibility for a
development effort and several people have been delegated specific
responsibility for parts of that effort, it makes sense to have these individuals
own the lower level components. The owner of the parent component should be
the person with overall responsibility for the project. Determine if a specific
CMVC action is implicitly given to a component owner, or must be explicitly
granted by means of an access list on that component. Consider the
implications of inherited notification and inherited access authority derived from
the ownership of a component. See the list of authority and notification for
CMVC actions presented in IBM CMVC User′s Reference.

Then, determine which other users will require access authority to each
component. Study the component hierarchy for the implications of assigning
individual users to specific access authority groups for specific components at
high levels of the component hierarchy. This authority will be inherited at lower
levels; consider the appropriateness of this, and modify your plan accordingly.
Identify exceptional cases where you might want to restrict this inheritance.
Consider actions you might want to restrict to a very few individuals, and map
these to the predefined access authority groups. Consider which notifications
you may want to broadcast to the widest number of CMVC users, and which you
may want to restrict.

With this data, look at the predefined CMVC access authority groups and the
CMVC actions they map to, as well as the predefined notification groups. Try to
group your users into these categories. If there are cases where you need a
class of users whose requirements are not met, define new access authority or
notification groups to meet those needs. Be sure you understand which
authority is basic to any user, which is implicit to a user who owns or creates
CMVC objects, such as components, defects and releases, and which must be
explicitly granted.

If you own a component, you can grant a particular access authority to another
CMVC user ID that extends to all the files that are managed by the component,
but you cannot grant the access authority on a file-by-file basis. Also, that other
CMVC user ID inherits the same access authority for all descendent components,
regardless of who owns them. It is, therefore, generally better to grant explicit
access authority at the lowest applicable level in your component hierarchy.

80 CMVC Live

You must go through a similar evaluation regarding automatic notification to
CMVC users of CMVC actions. Refer to IBM CMVC User′s Reference for a list of
users automatically notified when specific CMVC actions occur, and for a list of
predefined notification interest groups. If a user is not going to be notified
automatically, then you must enter the user′s name in a defined interest group in
the notification list of the relevant component. While you do not want users
receiving more notification mail than is relevant to them, there may be certain
actions about which you want all members of the development effort to be
notified. In this case, it is easier to place all users in this interest group in the
notification list of a component at a high level in your hierarchy. Our experience
is that you should not cause too many CMVC notifications to be received at the
beginning of your project. As the team members become used to receiving
them and learns to react appropriately to them, they will request additional
notifications if they are needed.

Over time, as you add components at lower levels, your original access and
notification lists for the original components at the higher levels may require
revision. You may find that you want to move some interest groups to lower
level components, and create new interest groups, as well.

Add a column for proposed CMVC owners, to your matrix of components. Also
add also columns for access authorization, access restriction, and notification
lists. Table 7 shows part of the table for our project.

Table 7. Component Hierarchy Plan

Component Description Interest/User Authority/User Access
Restriction

legacy Contains components for
the legacy application on
each platform (productA).

not applicable not applicable not applicable

MVS Contains components for
MVS source code
(productA).

low /branko
low /truls
low /projA_lead
tester /MVStester

bui lder /MVSbuilder
bui lder /krt

not applicable

COBOL COBOL sources (*.cbl,
*.cob, *.cpy)

not applicable not applicable not applicable

ISPF ISPF panel files (*.pnl) not applicable not applicable not applicable

4.5.2 Our Component Ownership, Access Lists, and Notification Lists
The original owner of all our components was the CMVC user ID we created for
our team member who had SCM responsibilities, lrconas. Ownership of the root
component, production, was changed to the projA_lead CMVC user ID. This
belonged to our project leader, who delegated authority to create and delete
components to another person in the department, but continued owning this
component to ensure receipt of mail about these activities when they occur. The
projA_lead was also made owner of the ISO component. This component was
used to manage data related to ISO compliance efforts, and to manage defects
representing any deficiencies found during an ISO audit of the department. This
component was also used to record deficiencies or features created to ensure
changes in the documented procedures for the department.

The productB component was given to the projB_lead CMVC ID, which would be
assigned at a later date. The ownership of the remaining high level components,

Chapter 4. Planning for CMVC 81

productA, future,legacy, database, and doc-productA was given to the projA_lead
CMVC user ID.

We chose to make the truls CMVC user ID, which belonged to our developer with
COBOL expertise, the owner of the MVS component and its descendent
components. We also gave ownership of the SQL and data components
(descending from the database component) to truls. We chose to make the krt
CMVC user ID, which belonged to our developer with AIC expertise, the owner of
the AIX component and all its descendent components. We gave ownership of
the IBM-AIX, OEM-UNIX, and doc_future components, and their descendent
components, to the branko CMVC user ID, which belonged to our developer with
C+ + expertise. Figure 40 on page 83 shows the list of components and their
owners for the prod family.

82 CMVC Live

Figure 40. List of Components and their Owners for prod Family

The owners of the top-level components were not burdened by many automatic
notifications, as their components were fairly stable. The owners of the
lower-level components, where files, defects or features, and releases were
being actively manipulated, saw considerably more automatic notification mail.
Because all users would want to know about major events, such as release
creation, we added the users who were not owners of release managing

Chapter 4. Planning for CMVC 83

components to the low interest group for those components. We placed the
COBOL expert in the developer interest group for the AIX_COBOL component.
Figure 41 on page 84 shows which CMVC users were placed in interest groups
for components in the prod family.

Figure 41. Notification Lists for prod Family

Figure 42 on page 85 shows how we mapped our users to access authority
groups for specific components to accommodate these situations.

84 CMVC Live

Figure 42. Granted Access Lists for prod Family

4.6 Planning for Files
Dealing with files is straight forward. File versioning and file actions are well
documented. The main points to consider at the planning stage are path and file
naming conventions, and potential uses for configurable fields.

4.6.1 What to Consider in Planning for Files
Planning the file and directory naming conventions is an important first
consideration in planning for CMVC files. Understanding the features CMVC
offers with respect to files, and the relationships between files and releases, is
also important in planning for files. Finally, even though you can configure new
fields in the CMVC File record at any time, the many uses for configurable fields
should be considered early in your project.

4.6.1.1 Planning File and Path Naming Conventions, and Build
Directory Structure
Plan the file and path naming conventions you intend to use, and the build
directory structure (file tree) you want to use when building your application.
CMVC records a relative path name which is prepended to the file name when a
version of the file is extracted from CMVC. This relative path name is then
prepended with an absolute path name generated from either your present

Chapter 4. Planning for CMVC 85

working directory or a specified directory when you perform a CMVC action,
such as FileExtract or FileCheckOut.

Another reason you want to plan out the build directory structure is to segment
the files involved in the development effort, so your team members need only
deal with files relevant to the work they are doing. You may want testers to
have only test cases and related data files in the directory hierarchy they can
manipulate. You may not want your writers storing their files in the same
directory as the application code. Remember that the hierarchy of directories in
which your files are placed when you use them, does not have to map directly or
even indirectly to the component hierarchy you create to manage them in CMVC.

The combination of relative path name and file name identifies a unique file to
CMVC. CMVC commands use the flags -relative and -top , or the CMVC
environment variable CMVC_TOP, to convert absolute path names to the relative
path names known to CMVC. Use of these bears close examination as it may
not be all that intuitive to the novice CMVC user.

Combining the relative path name and base file name to create a unique file
name means that you can have multiple files with the same base file name
managed by a single CMVC family. As long as the files are associated with
different relative path names, they are different files to CMVC. This requires that
you plan under what circumstances you will allow multiple files to have the same
name, and plan a directory hierarchy to support this.

One reason you might have multiple files with the same name is to support an
application across multiple platforms. There may be modules that are named
identically and perform the same role on each platform, but contain radically
different, platform-specific source code. These modules are linked selectively
with the bulk of the common code to create platform-specific executables.

There are also instances where a file′s base name determines how it is used,
but not what specific data it contains. For example, the UNIX Makefile files are
usually named identically, but distributed across the build directory hierarchy,
which usually models the application architecture. The Makefile file in each
subdirectory contains entirely unique build instructions that are pertinent only to
the source code extracted to that subdirectory.

4.6.1.2 Planning Relationships between Files and Releases
Do not confuse multiple files that have the same name with multiple concurrent
versions of the same file. This is referred to as a single file being “shared” by
multiple releases. A shared file is one file that has parallel branches of version
history.

To illustrate this concept, assume you are naming the versions of a file with two
digits, incrementing the second digit with each new version, such as 1.1, 1.2, and
1.3. This file, which has only one “most recent” version, is associated with a
single release. Now, assume that for another release, you want to have a
version of the file, which was identical to version 1.2, but with some changes that
were not in version 1.3. To do this, you would start a parallel branch of version
history, naming the new version: 1.2.1.1. If you continue to make changes to
each branch, you might soon find the most recent version on the main branch is
named 1.5, while the most recent version on the other branch is named 1.2.1.3.
Now you have two most recent versions of this single file. Each is associated

86 CMVC Live

with a different release. When planning your application releases, you will want
to consider how to best use this feature.

There is another variation of the relationship between a file and a release. You
may want the same version of a single file to be defined in multiple releases.
This is referred to as a file that is “common” to multiple releases. Common files
are the most efficient way to reuse source code, but when you identify a file as
common, you need to evaluate whether the component which manages it is still
appropriate. It may be useful to have a separate component to manage files that
are common to multiple releases. This is particularly important if the file is
common to releases of different applications. Appendix D, “Hints and Tips for
Using CMVC” on page 193 gives some examples of shared and common files.

Such relationships may not be immediately evident at the beginning of a
development effort. But, where development is spring-boarding from previous
work, as was the case with our project, many such relationships can be
identified and planned for in advance.

4.6.1.3 Planning Configurable Fields for the File Record
The File record is configurable, so you should consider early on if there are
additional characteristics of a file in your environment that need to be recorded
and manipulated. There are several circumstances that dictate the use of
configurable fields for files.

One circumstance is where you need to query and report based upon various
classification criteria that are not readily discernible from the file name or path
name conventions or component relationships. Various candidates for a
configurable field of this type may be found in data you want to record in a
module header.

For example, you may need to record the fact that certain software files were
contributed from sources outside your company. These files might contain “free
ware,” “share ware,” or code developed by subcontractors, yet are managed
by the same component. Since you cannot distinguish the origin of the source
code files by the name of the managing component, you need a configurable
field in the File record in which you can record it.

Or, you might want to identify the source code language contained in the files.
You cannot distinguish between a C+ + and a C language include file, by file
naming convention, because both types of file names end in “.h.” You can
create a configurable field in the File record, store an indication of the source
language there, and easily query it in reports.

You may also be need to identify files according to an arbitrary classification of
the data they contain. For example, you may have files containing
documentation source which represent different types of documents, such as
design notation, end-user documentation, or requirements specifications.

Another circumstance is where you want to record additional state or status
information about files that is independent of the file versioning information, but
related to your process model. For example, you may want configurable fields in
the File record in which to note the dates when it passed unit design review, unit
code review, or software QA review. Alternatively, you may want to record the
fact that a version of the file had entered a significant baseline. This fact can be
easily retrieved, if it is recorded automatically in the File record at the time the
file is linked to the CMVC release that represents that baseline.

Chapter 4. Planning for CMVC 87

Finally, you may want to do automated processing of all files, and need to record
some data related to that processing, on a file-by-file basis. Rather than create
a separate database with this information, you could create a new field in the
File record and store it there. One possibility is that you want to do some
software quality analysis on the current version of all files in a given release,
and record the quality metric in the File record.

4.6.2 Our Use of Files
We had a lot of existing code to start with for this project. We also had a clearly
articulated plan of development for our initial migration and the
object-reorientation of the application. We wanted to experiment with
configurable fields, so we made a point of creating one for the File record and
exploring its use in conjunction with a user exit.

4.6.2.1 Our File and Path Naming Conventions, and Build Directory
Structure
We knew we wanted our three developers working fairly independently, so we
structured the directories to support a division of the files according to the
division of labor, the languages and tools, and the releases we anticipated. Our
component hierarchy classified files by target platform, source language, and
division of responsibilities, but the two were not identical. Our decisions and
their rationales area are described in detail in 3.4.4, “File System Topology” on
page 49.

4.6.2.2 Our Relationships between Files and Releases
When planning our releases, we maximized reuse of source code, so we
identified several examples of both common and shared files. The releases for
the AIX and MVS platforms had common and shared files managed by the
COBOL component. The AIX releases had shared and common files managed
by the AIX_X11R4 component, also.

4.6.2.3 Our Configurable Fields for the File Record
We created a LOC field to store the number of lines of code in the program
source files. We referred to IBM CMVC Server Administration and Installation for
instructions on implementing configurable fields. To ensure that the LOC count
was up-to-date, we created user exits, which would calculate and record the
count whenever a file was created or updated. Our use of this new field and the
related user exit are described in 2.2.3, “Project Manager Asks about
Implementing Quality Metrics” on page 19.

In addition, when you consider a configurable field for the File record field,
remember that you may have multiple parallel versions of the file in use, and
that one field may not be enough to accommodate them all. If the field defines a
type of data that is likely to be the same for all versions, such as source code
language, one field is acceptable. For our project, a single LOC count field is
useful only if there is a single current version of this file in all releases. If we
had multiple current versions, we would need a release-specific field, and our
user exit would need to determine what field to update when it executed.
Clearly, the number of configurable fields defined for the File record would
evolve as new releases were defined.

88 CMVC Live

4.7 Defects and Features
Defect and feature processing is critical, not only because it enables you to
maintain the quality of the application you develop, but also because the reports
generated from this data can provide insight into many other management
issues concerning budgets, schedules, and productivity. The most important
things to decide early about defect and feature processing, is how to map the
CMVC model to your actual problem tracking process. It is also good to plan on
the possible addition of configurable fields to the Defect and Feature record
before you start generating them. You should also plan any modification to the
choices lists for Defect or Feature record fields, such as Prefix, Priority, and
Severity. You can also automate the defect and feature number generation.

We experimented with the process model, making it evolve over time. We wrote
a user exit to generate and record our defect and feature numbers. However,
our project made a very simple use of Defect or Feature processing. We do not
show a use of new configurable fields, or the many possibilities of report
generation in this book.

4.7.1 What to Consider When Planning Defects and Features
In many cases, you have a preexisting means of recording, reporting, and
processing reports of defects in your applications or requests for improvements
and new features in them. While the CMVC process model is flexible and
configurable, it takes some studying to determine the best way to mirror an
existing process with it. If you do not have an existing process, the main
decision is how rigorous a process you do need. The case for configurable
fields in the Defect and Feature record follows similar reasoning. If you are
currently using some form of manual or automated problem tracking mechanism,
you should study it to see if configurable fields are required. If you do not yet
have problem tracking, you may not have any reason for additional, configurable
fields in these records.

4.7.1.1 Planning Configurable Component Process Labels
Defect and feature processing is governed by the component associated with the
defect or feature. When the component is created, a choice of predefined
processes is made. This initial choice can be changed later, as long as there
are no active defects or features at that time.

You have flexibility in choosing the name you use for a component process. A
component process is essentially a label for a unique combination of Boolean
values in a matrix, in which Defect and Feature form the rows, and the two
subprocesses, Design-Size-Review (DSR) and Verify form the columns.
Therefore, the prototype process represents a “NO” in every intersection of this
matrix (no DSR for Feature, no DSR for Defect, no Verify for Feature, no DSR for
Defect), as shown in Table 8.

If the labels supplied with CMVC for the processes you choose to use are not
meaningful in your environment, you can create redundant labels, which are

Table 8. Prototype Process Definit ion

Used For DSR Subprocess Verify Subprocess

Defects NO NO

Features NO NO

Chapter 4. Planning for CMVC 89

more meaningful. For example, you might create a design process that is
identical to the prototype process. IBM CMVC Server Administration and
Installation contains instructions on changing the component process labels.

4.7.1.2 Planning Configurable Component Process Selection
You can have one group of components governed by one process and another
group governed by a different process. You can also configure your process
differently over time, to reflect different phases in your development effort. A
sample scheme for evolving component processes that uses only the process
labels shipped with CMVC, is shown below:

• During your requirements gathering phase, you create a component
mini-hierarchy that contains requirements documentation. Because you do
not want any defect or feature processing against the files in these
components, you create the components in this mini-hierarchy with the
prototype process.

• After the requirements are defined, you begin designing your application.
You want to exert control over changes to the requirements data, but not
over the rapidly evolving design data. You change the component process
for the requirements components to default process and you create a new
component mini-hierarchy that contains design documentation. Each of the
design components has the prototype process.

• Once you begin coding, you change the design components ′ process to
default and you create the code component mini-hierarchy using the
prototype process for all these components.

• After all the code files managed by a given component pass unit test, you
change that component ′s process to default.

• Ninety days before your deadline for delivering, you change all the
requirements, design, and code components to the preship process, to
ensure that all new features or defects against any component are reviewed
for impact on your delivery schedule.

However, it can be important that you ensure that component processes are
used uniformly across, a project or a department. A grand scheme is only
valuable if it is rigorously enforced. Ensuring that component processes are
defined as you plan them to be, may require automation in the form of user
exits.

Figure 43 on page 91 shows the list of predefined processes shipped with
CMVC. The left column lists the process names and the right column shows the
associated subprocesses. This list is displayed if you select On Process... from
the Help pull-down of any CMVC window.

90 CMVC Live

Figure 43. Component Processes Shipped with CMVC

You will probably want to update your list of planned components with an
annotation about the process definition for each component. You may need
multiple columns, if the process changes over time.

4.7.1.3 Planning Defect and Feature Number Generation
Defect and feature numbers are treated by CMVC as a single set, that is, no
defect or feature can have the same number as any other defect or feature in a
family. They need not actually be a number, because they are treated as a
string. You may not find CMVC′s default numbering scheme appropriate for your
needs. For example, you may find that you need to use defect or feature
numbers generated by another problem tracking system. You may want to
automate the selection of the number, so you can embed other information in it.
You may need to intermix numbers originating from several sources, but validate
user-supplied numbers against certain criteria. Some mechanism for ensuring
unique and meaningful defect and feature numbers needs to be implemented
prior to allowing users access to CMVC.

4.7.1.4 Planning Configurable Fields and Choices Lists
If you have a preexisting problem tracking process, you probably have the
equivalent of a Defect and Feature record on paper or in a computerized record.
You will need to map the types of data you currently record to the fields in the
Defect and Feature record. You will also want to map the range of values you
accept in any specific field to the choices list associated with it. You may find
that an existing field serves your purpose, by simply changing the choices list.
IBM CMVC Server Administration and Installation contains instructions changing
the choices lists. You may also find you need to create additional fields.
Defects and Feature records share the same record template in CMVC, but the
user interface requires fewer input fields for a feature than a defect.

Chapter 4. Planning for CMVC 91

You may find that a static mapping fields or choices is not sufficient. Not only
can the set of fields you need evolve, but you may find it useful to modify the
choices list for a specific field as your project enters different phases of the
development life cycle. For example, you may find that a set of six Priority
values will work in the early development phase, but as you near a delivery
deadline, you must convert these to one of just two values, indicating that the
problem must either be solved before the deadline, or deferred to another
release. After you pass the deadline, you may need to convert these values
again when you create new tracks for them in another release. This is a good
time to plan tools to automate this type of transition, too.

4.7.1.5 Planning Changes to Access Authority for Defect or Feature
Processing
CMVC recognizes and provides for various checks and balances in the
development process, however, they may not meet all of your needs. This is
something to consider when planning to use CMVC.

For example, in some projects, only a software configuration manager, Software
QA representative, or software librarian, as representatives of a Software
Change Review Board (SCRB) may be authorized to move a defect or feature
through the DSR states. An access authority group defined for only those CMVC
actions, is not shipped with CMVC. However, the defect owner has implicit
authority to perform these actions. You might want to change this by defining a
new authority group and calling it software_librarian. You could then explicitly
deny authority for these actions to the component owner, and explicitly grant it
to the librarian, for all components that use the DSR subprocess.

4.7.2 Our Use of Defects and Features
Whether we should have used a feature or defect to initialize our baselines, or to
address the changes we made in the code to migrate it to AIX, may be a
philosophical question. We chose to use defects for the most part, when we
established new product baselines or made changes to existing files. When we
created new function, such as when we introduced the first GUI, we chose to use
a feature. Our basis for these decisions was arbitrary, but in your circumstance
this decision may be more serious.

Figure 44 on page 93 shows the details of a feature opened to authorize work
that modernized the GUI of our ported application.

92 CMVC Live

Figure 44. Feature Information Window

Figure 45 on page 94 and Figure 46 on page 95 show the contents of a defect
opened to bring our AIC callbacks and interface files under CMVC control for our
initial AIX release. The Defect record is long, so this defect is in two figures.
The position of the scroll bar on the right side of the window shows the relative
position of data. This defect contains some information that resulted from our
decisions on the component process selection, the defect number generation,
and the choices field of the defect acceptance field (labeled “answer”in this
window). These decisions are described in the remainder of this section.

Chapter 4. Planning for CMVC 93

Figure 45. Defect Information Window (Top Half)

94 CMVC Live

Figure 46. Defect Information Window (Bottom Half)

4.7.2.1 Our Configurable Process Selections
Our project was not large and it did not have formal baselines and complicated
issues to manage. We chose a simple combination of configurable component
process selections across all our components.

We decided that the maintenance process was adequate initially for all
components. This process required verification of both features and defects, but
it did not require the DSR subprocess. In the case of the components containing
COBOL, where we had a working application, and wanted to track carefully
changes made to it for the migration. We chose this process for the components
containing newly developed code also, so we might gain experience with defects
and features, even though we did not need such a rigorous control over that
code.

We moved components to the preship process after a baseline had been tested
and evaluated, because we wanted to force the developers to slow down long
enough to consider the impact of any new changes they introduced into the
application baseline. We left unchanged components, which contained no files,
or which represented documentation that would not be updated with each of the
software releases.

Chapter 4. Planning for CMVC 95

Table 9 on page 96 shows a list of all the components in the prod family with
the component process definitions as they began, and as they changed after the
baselines were established and evaluated.

Table 9. prod Family Component Processes

Component Original Process Final Process

MVS maintenance maintenance

SQL maintenance preship

data maintenance maintenance

assembler maintenance preship

ISPF maintenance preship

COBOL maintenance preship

JCL maintenance preship

CLIST maintenance preship

doc-MVS maintenance maintenance

ISPF_driver maintenance preship

AIX maintenance maintenance

C maintenance preship

AIC_X11R4 maintenance preship

AIX_COBOL maintenance preship

ksh_legacy maintenance preship

doc-AIX maintenance maintenance

IBM-AIX maintenance preship

OEM-UNIX maintenance preship

AIC_X11R5 maintenance preship

ksh_future maintenance preship

doc_future maintenance maintenance

C+ + maintenance preship

productA maintenance maintenance

legacy maintenance maintenance

future maintenance maintenance

database maintenance maintenance

doc-productA maintenance maintenance

ISO maintenance maintenance

productB maintenance maintenance

production not applicable not applicable

4.7.2.2 Our Defect and Feature Number Generation
We automated the generation of defect and feature numbers, primarily as an
experiment in using user exits. We chose to use a single sequence of numbers
for both defects and features, and to embed the family name in the numbers.
Our defect or feature numbers took the form of dev_0005, for the dev family, and
prod_00012 for the prod family. We also could have created two sequences of
numbers, one for features and one for defects.

96 CMVC Live

Refer to C.2, “User Exit to Generate Defect or Feature Number” on page 185 for
a detailed discussion of this.

4.7.2.3 Our Configurable Fields and Choices Lists
We did not like all the choices lists shipped for defect acceptance, priority or
prefix. However, we only took time to modify the defect acceptance choices. We
added a choice labelled “newbaseline,” which indicated that the defect and
changes related to it were for the purpose of establishing a new baseline.
Figure 47 shows the complete list of choices after this modification.

Figure 47. Defect Answer Choice List Customization

4.8 Releases, Levels, and Tracks
There are clear and precise rules relating to CMVC releases, levels, and tracks,
and their relationships to components, files, defects, and features. There are
many ways to make use of these CMVC objects in the context of software
configuration management, but not all of them will be obvious to every CMVC
user, and many will seem contradictory.

4.8.1 What to Consider in Planning Releases, Levels, and Tracks
A CMVC “release” is a means of grouping versions of files in the family. A
CMVC release can be used to identify the exact version of all the files that
comprise an application at a significant point in time. It can be used to establish
an application configuration baseline. A release can also be used to represent a
horizontal subset of an application, such as an end-to-end build of a functional
thread (a test driver). It can be used to identify a vertical subset of an
application, such as the user interface or batch processing subsystem. It also
can be created to identify the set of the end-user documentation, which
corresponds to a release of the code. A release can be used to represent one of
several customer-specific or platform-specific builds of a complete application at
one level of function.

In part, this flexibility is due to the fact that CMVC recognizes no relationship
between any two releases, nor imposes any restrictions on what names you give
releases, so long as they are unique. You can, however, indicate to your users

Chapter 4. Planning for CMVC 97

that releases are sequential, parallel, or related in some other way by how you
name them.

A CMVC “level” identifies a set of “tracks,” which are being incorporated into a
release. It can be used to divide and organize sets of file additions and
changes, so they can be incrementally extracted from CMVC to be integrated
and tested. This subsetting can be horizontal or vertical across the application,
or merely subsetted by sequential arrival, such as a weekly compendium of fixed
defects. However, a level can be used to identify a platform-specific build,
because multiple levels can contain a given set of tracks. Levels can be named
as you wish, and CMVC imposes no relationships between levels of a given
release.

A track is CMVC′s method of indicating that the set of file changes or additions
implementing a given defect or feature are to be integrated into a specific
release. There is relatively little ambiguity about how a track is used, but use of
tracks is optional and varies with the chosen release process.

When a release is created, a release process is chosen for it. A release process
is a name for a predefined combination of release subprocesses. These
subprocesses govern how a track (representing a single defect and feature in a
single release) is integrated into the application. The release subprocesses are
likely to be used when:

Subprocess Reason to Use

track You need to trace changes in the release to specific
features or defects.

approval You need rigid control over what changes enter the
release and want to ensure that one or more persons
authorize it.

fix You want to ensure that the component owner of the
affected files reviews the changes pertaining to a track
(and therefore, a defect or feature).

level You want to create updates for a release according to
groups of defects or features.

test You want to ensure that a release is tested in several
environments, such as versions of the operating system, or
separate platforms, or by independent testers.

Deciding if and how to use these subprocesses is a task of early planning, if you
can readily identify some of the releases you will use. The process governing a
release, like a component process, can be modified after the release has been
created, adding to the options you have in using releases. You might decide
that you require only track during early integration and test of a release. But as
you near the deadline to ship, you might decide to place extra scrutiny on which
changes entered the release, and change the process to include approval. The
release may grow to an unmanageable size and force you to include fix, level,
and test so more people are involved in verifying the correctness of the changes.

CMVC ships a list of predefined release processes, but the CMVC family
administrator may modify these or create new release process definitions. The
definition represents a combination decisions to include or exclude each of these
subprocesses. Like component processes, new definitions may be created,

98 CMVC Live

which are redundant with preexisting labels. See IBM CMVC User′s Reference
for a list of the shipped CMVC release processes.

Files and releases have in common the fact that each is managed by a
component that determines notification interest and access authority. A release
is managed by a component, but can include files from any component in the
family. Again, there is room for creativity in choosing the components to
manage your releases. You may choose to create high level components whose
job is just to manage releases. You may choose to attach a release to any
component owned by the CMVC user who will be responsible for that release.
You may choose to associate the release with a component that represents the
application architectural subdivision.

A release has an owner, who is independent of the owner of the component,
which manages the release. But, a component owner, in fact, does not have
implicit authority to create any release. Explicit authority to create and modify
releases must be granted by the family superuser. Once granted, the user can
create releases managed by that component or by a descendent component. A
release owner shares certain access authority over the files contained in the
release ′s managing component, and inherits this authority over all descendent
components. The release owner does not have the same access authority over
files belonging to components,which are not descendents of its managing
component unless explicit authority is granted to the release owner.

Generally, you will want the release to be managed by a component beneath
which descend many of the components that will someday contain these files. If
you intend to define files in components that do not descend from the release ′s
managing component, plan to explicitly grant releaselead or equivalent authority
access, to the release owner over these components (or some set of
components beneath which they all descend). You may have to weigh the
decision between making a convenient single explicit grant of access authority at
some high level, versus the more tedious multiple grants at the lower levels, if
not all descendent components are relevant to the release. You may need to
deny access authority at specific lower level components. Update your
component hierarchy planning matrix accordingly.

4.8.2 Our Releases, Levels, and Tracks
Our application development effort required the definition of several CMVC
releases, each of which was constructed by integrating several CMVC levels.
These releases were named:

• MVS_Release_0
• MVS_Release_1
• AIX_Release_1
• AIX_Release_2
• OO_Version_1.

The maintenance process involved track subprocess, which we felt was essential
to maintaining control over the application baseline. It also included the fix, level
and test subprocesses. We felt it important to identify every file change that
joined a release in terms of the managing component; therefore, we included the
fix subprocess. We also felt that levels would make it easier for the developers
to work independently and integrate portions of the baseline separately. For
example, in the AIX_Release_1 release, it made sense to integrate the main
module and the GUI in one level and test them calling stub programs. We did

Chapter 4. Planning for CMVC 99

not choose the approval subprocess, as we did not intend have a separate
review board. Design decisions were made as a team, but deciding which tracks
went into which levels was handled by the single developer responsible for each
separate release.

The MVS_Release_0 release consisted of the source that produced the currently
running MVS application. This release included files added to the assembler,
ISPF, COBOL, JCL, and CLIST components, which comprised the actual
application, and files from ISPF_driver, which supported AIX testing of this MVS
code. These components all descended from the MVS component, which itself
descended from the legacy component. All of these components were owned by
user truls, and it was an easy decision to have the MVS component manage this
release, and give ownership of the release to the truls CMVC user ID.

We opened a defect to authorize the file changes, and created a track to
associate the file changes authorized by this defect with the MVS_Release_0
release. We created this release to use the maintenance release process. Files
were placed in this release using the FileCreate CMVC action, referencing the
track. The original files were taken from the projectA_proto portion of the
common development tree. For build testing of the release, we extracted these
files from CMVC to the /ad/productA/MVS_Release_0 directory and, then uploaded
them for compilation and execution under MVS. Refer to Figure 38 on page 76
for a review of the prod family component hierarchy.

As we explored the issues in using AIX as a maintenance platform for MVS
targeted code, as well as the issues of making AIX the application ′s new target
platform, we proposed that for a period of time, we would want to execute
functionally identical versions the application on both platforms. While there
would be many differences in the user interfaces of these two versions, the code
COBOL application logic would remain the same in both. The strategy we
proposed involved using as much common (truly identical) COBOL code in the
two platforms′ versions as possible. This required some minor restructuring of
the COBOL compilation units on the MVS platform, to isolate the common code
in modules which could be copied at compilation time into the COBOL source
code of either the AIX or MVS version. The MVS_Release_1 release was created
to contain these changes in the MVS COBOL source code.

The MVS_Release_1 release contained only files descended from the MVS
component. The MVS_Release_1 release was owned by the same CMVC user ID
that owned MVS_Release_0, and it used the same release process. Files were
initialized in this release by means of the ReleaseLink CMVC command, creating
this release essentially from the current version of all files in the MVS_Release_0
release. We opened defects to accommodate changes to the COBOL source
code that is described in the preceding paragraph. We created tracks to
associate these defects with the file changes we wanted in this release. We
broke the common link between the two releases on those files that would have
different versions in each release. The original source of the new versions came
from the portion of the common development tree descending from
projectA_proto. We extracted the new versions of the files in this release to the
/ad/productA/MVS_Release_1 directory, and then uploaded for compilation and
execution under MVS.

The AIX_Release_1 release established the initial AIX baseline. This release
contained files controlled by components descended from the AIX component
(AIC, AIX_COBOL, C, and ksh) as well as some files from the COBOL component

100 CMVC Live

descended from the MVS component. This release was initially owned by the krt
CMVC user ID that also owned the AIX component, and its release process was
defined at the start, as maintenance.

We created defects and tracks for the initialization of the COBOL, AIC, and main
routine source modules. The first files we integrated into the release were the
AIC interface and callback source modules, which had been tested
independently of the COBOL source modules. We created a level to integrate
the AIC code in the release, first. Then, we brought the files under CMVC
control using a defect and track. We linked additional files this release from the
MVS_Release_0 release, through the FileLink CMVC action, citing the same
defect and track. This required that we update several callback source files,
referencing yet another defect and track. We then extracted the release to the
/ad/productA/AIX_Release_1 directory for integration and final testing. When
testing was completed, we closed all defects. Then we changed the component
process for all related components to preship. The release process was
changed to preship also, to ensure that no features or defects entered this
baseline without careful evaluation. We also changed the owner of this release
to the AIXtester CMVC user ID. We intended to freeze this release after it was
tested and proceed with a new AIX release.

We created the AIX_Release_2 release to define the AIX baseline after some
improvements were made to the GUI. These improvements made the GUI more
object-oriented. This was done with the transition to an object-oriented
implementation in mind. The new release was owned by the AIXtester CMVC
user ID and used the maintenance process. It included all the files defined for
AIX_Release_1. We created it by linking it to the AIX_Release_0. We opened
defects to accommodate the changes in the AIC interface files. We checked out,
modified, and checked in these files to resolve the problems cited in the defects.
We created tracks so we could integrate these file changes into levels of the
release. Then we extracted the files to /ad/AIX_Release_2 and tested. Once all
the levels of the release tested successfully, we upgraded its process to preship.

We created the OO_Version_1 release, by extracting the AIC files from the
AIX_Release_2 release to new development directories that were not those
defined by the path name CMVC associated with these files. This illustrates
another way in which files might migrate from one release to another. We did
not check these files back in as new or parallel versions of existing files, but
created them as entirely new CMVC files, by associating them with these new
directories (path names) in development directory. We managed these new files
by the same component as the previous ones, because they were the same type
of source code files.

We took this approach, because it was less work to modify the Improved GUI
source files to create the object-oriented GUI than it would have been to create
all new files. When we were done, however, these files had changed so much
that it would not have made sense to treat them as simply a newer, parallel
version of the old files. For example, the interface files were modified so that
the callbacks were placed inside the interface, instead remaining as separate
compilation modules.

AIC generated the C+ + source files for the object-oriented GUI from these AIC
interface files. We created the brand new C+ + modules in this directory too. We
created the new CMVC files using the FileCreate CMVC action. This release was
owned by OOtester, and used the maintenance release process. We extracted

Chapter 4. Planning for CMVC 101

the files of this release to /ad/OO_Version_1 where the release was tested. Again,
when this release was successfully tested, we upgraded its process to preship.

Figure 48 shows which releases we established and which component and user
owned them during the early part of the project.

Figure 48. List of Releases with Components, their Owners, and Processes

We found that this scheme of release ownership and component ownership
forced us to place explicit builder access authority for the integrators at the
components that were not descended from components that they personally
owned. This was true also, when we granted releaselead authority to AIXtester
and MVStester. Level actions were covered by these authority groups, and were
not inferred automatically with releaselead authority, nor with component
ownership.

102 CMVC Live

Chapter 5. Using CMVC

In this chapter we show you how to use the CMVC graphical and command-line
client interfaces to accomplish the software configuration management goals
described in Chapter 2, “Discovering CMVC: An New Application Project Is
Introduced to CMVC” on page 11 and Chapter 4, “Planning for CMVC” on
page 65. This chapter gives relevant sequences of CMVC commands and GUI
interactions that tailor the CMVC server and create your CMVC objects, such as
users, hosts, components, rele and files, for this specific project. This chapter
also discusses the relationships and interactions among these CMVC objects.

5.1 First Things First
The sections that follow offer some general advice to the new CMVC end user on
getting started with CMVC.

5.1.1 Background Reading
The first thing you should do before you start using CMVC, as with planning, is to
consult the CMVC product manuals. You will find that the complete details of all
of the CMVC windows and commands are documented in the IBM CMVC User′s
Reference and IBM CMVC Commands Reference. These documents define each
command or GUI window separately. They identify the prerequisites to the
CMVC actions associated with the command or window, the possible command
parameters and options, or menus and menu options, and expected results.
Each command or action is discussed in isolation, however. These documents
do not provide scenarios involving the correct sequences of commands (or GUI
actions) that achieve typical SCM goals in a practical context.

IBM CMVC Concepts provides a comprehensive look at what you want to
accomplish with CMVC, and how CMVC concepts, objects, and actions enable
you to do this. This document provides invaluable insight by diagramming the
relationships among the defect and feature states, track and level states, and
subprocesses and track states. This document, however, gives no specific
details about which CMVC actions involving specific windows or commands
should be performed first, second, third, and so forth.

IBM CMVC Server Administration and Installation describes many of the things
you need to plan and execute when installing and beginning to use CMVC. It
goes into great detail and addresses many system administration issues that we
did not investigate at all during this project.

5.1.2 Becoming Familiar with the CMVC Client GUI
Before trying to accomplish anything in CMVC, we recommend that the new user
spend some time becoming familiar with the GUI. “Part 1. Using the CMVC
Graphical User Interface” in the IBM CMVC User′s Guide does a good job of
introducing the window hierarchy, the parts of windows, the common windows
and other graphical elements that recur throughout the GUI. The sections that
follow describe our experience in using the stand-alone GUI and from tools that
are integrated with SDE WorkBench/6000.

 Copyright IBM Corp. 1994 103

5.1.2.1 CMVC Window Queries
One thing to be constantly aware of is that the information shown in the GUI
windows depends at all times on the contents and timing of the last query issued
for that window. A query is issued and the window contents are updated, under
the following circumstances:

• The default query is issued when you initially request the window to be
drawn.

• The last query issued is reissued if you cause the window to be refreshed
explicitly by selecting Refresh Now on the View pull-down).

• The last query is issued if you have toggled Auto Refresh on—Auto Refresh
on the View pull-down in the current window—and subsequently perform an
action in the window that causes the current display to become out of date.

• A new query is issued if you select Open List... from the File pull-down,
specify query parameters, and select OK .

• A query for the window is issued because of a selection you made in another
window on the Show pull-down; for example, Tracks on the Show pull-down
of the CMVC - Releases window causes an update in the CMVC - Tracks
window showing all tracks related to the release highlighted in the CMVC -
Releases window.

• The default query is issued if the window comes up as a result of selecting a
CMVC - Tasks window action item.

While the window is being displayed it will not be updated by actions you take in
other windows that modify the database or by database changes caused by
other users since the last query was issued. Another thing to remember is that
deiconifying a window does not cause it to be refreshed either. Refresh Now or
Auto Refresh must be selected from the View pull-down in each window to
update the contents of the window. Taking these actions in one window does not
have influence over other current or future windows.

In an environment where many users are frequently using CMVC, you should
refresh your screen frequently if you depend on the accuracy of its contents. If
no objects are listed, or if those objects you had hoped to see are not present, it
does not necessarily mean that they do not exist. It may mean only that the
query may not be designed as you expect it to be. It may also mean that there
is no default query being issued at all. If you just performed an action that
should have updated the window contents, it may simply mean that you have not
toggled the Auto Refresh on for that window, or that you did not perform the
action in this window.

We recommend that if you are a new user, you should explicitly set a default
query in every window, which will initially match any and all possible objects
that could be listed in that particular window. As you become more familiar with
CMVC and its GUI, and as the project database grows, you will arrive intuitively
at better default queries. For instance, initially select all defects, sorted by date
as the default query in the CMVC - Defects window. Later, you will find that a
query on all open defects on components owned by you is more useful, if you
are a developer. In many environments, the component owner will be the
developer responsible for fixing defects in the code managed by that component.
If you are a casual end user, but not a developer, you may prefer a default query
for all defects you originated.

104 CMVC Live

To set the most recently issued query as the new default query for a window,
select Current Query in the File pull-down, and then Save As Default . This
updates the .cmvcrc file in your home directory.

To perform a query in a CMVC window follow these general directions. To issue
a new query in a window, select Open List... on the File pull-down. In the
resulting dialog box, you see an input field for each field in the record which is
displayed in the window. The combination and labels on the fields displayed
change from window to window, because each CMVC window is a means of
viewing records in a particular table. The dialog box is labelled Open XXXX List
where “XXXX” represents the name of the CMVC window from which you
selected Open List . The button on the left offers a selection of SQL operators,
such as in, not in, or like. Making a choice of SQL operator and then filling in
the input field next to a given label ensures that the records retrieved meet
certain criteria.

For example, assume you are looking at the Open Component List dialog box. If,
next to the field labeled Components, you select the SQL operator like and you
enter the value AIX% in the input field, you are indicating you want all records
with a value in the component field, which begins with the string “AIX.” The
character “%” is used in SQL queries, like the “*” is used in UNIX commands, to
match a pattern of 0 or more arbitrary characters.

The button on the right, Sort , offers a choice of how to sort the resulting records
with respect to the fields in the records. You can indicate you want sorting done
first, on one field, second, on another, and third, on yet another. To do this,
select Sort next to a field. Then select First from the menu that pops up. Select
Sort next to another field, and select Second from the pop-up menu associated
with that input field. If necessary, select Sort next to a third field, and then select
Third from the pop-up menu there.

To continue our example, you might indicate first that you want records sorted
by the value in the component owner and then all records with an identical
component owner value sorted by the contents of the component name field.
Having made your selections and filled in the data fields on this dialog box,
select OK to execute the query. The dialog box closes, and the resulting list of
records is displayed in the original window.

5.1.2.2 Tasks Window Tailoring
We recommend that you put some of these default queries on the CMVC - Tasks
window as new tasks if you do not have standardized CMVC - Tasks window
tailoring for different types of users. We recommend a way to use the .cmvcrc
file to standardize CMVC - Tasks window tailoring in Appendix H, “Tailoring
CMVC Windows for Different Types of Users” on page 217. You may want to
revise the CMVC - Tasks window as you become more familiar with CMVC.

The tasks defined in the CMVC - Tasks window, as it is shipped, do not all work
immediately.

Figure 49 on page 106 shows the CMVC - Tasks window as it is shipped. These
tasks provide a template query, which you may need to modify, before it will
work. To view the template query, execute the task and wait for a window to be
displayed. In that window, select Open List... from the Actions pull-down. In the
Open List dialog box that is displayed, select Command Box . Select the last
query shown in the scrollable history pane to display that query in the text entry

Chapter 5. Using CMVC 105

area. Edit it, replacing the generic words with a legitimate value. For example,
replace “yourRelease” or “yourComponent,” with a valid release or component
name in your family, then select OK .

To add a new query to the CMVC - Tasks window, make that query in the
appropriate window. Select Current Query in the File pull-down, and select Add
to Task List... . You will be asked for the descriptive text, which should be placed
in the CMVC - Tasks window to trigger this query.

Figure 49. CMVC - Tasks Window As It Is Shipped

Figure 50 on page 107 shows new actions added to the CMVC - Tasks window
that correspond to the suggested default queries for a new user on this project.
You can put non-CMVC actions into this window. Notice that we have added the
action of listing the files and directories in the home directory (ls). Some CMVC
- Tasks window customizations are described in more detail in Appendix H,
“Tailoring CMVC Windows for Different Types of Users” on page 217.

106 CMVC Live

Figure 50. New Tasks Added to the CMVC - Tasks Window

5.1.2.3 CMVC and SDE WorkBench/6000
There are several things to know about to ensure a productive use of CMVC
from tools integrated with SDE WorkBench/6000. Unfortunately, they are not
documented in one place but are spread out over several chapters in several
CMVC manuals. To save you time struggling with cross references, we
recommend that you check for chapters relating to SDE WorkBench/6000 in the
following documents:

• IBM CMVC Client Installation and Configuration
• IBM CMVC User′s Reference
• IBM CMVC User′s Guide.

Refer to Appendix E, “CMVC and SDE WorkBench/6000” on page 207. for details
on how to use the integrated CMVC client GUI from various tools integrated with
SDE WorkBench/6000.

Chapter 5. Using CMVC 107

5.1.3 Becoming Familiar with the CMVC Command-Line Interface
Before trying to accomplish anything in CMVC, we recommend that if you are a
new user, you spend some time becoming familiar with the command-line
interface described in the IBM CMVC Commands Reference. The sections that
follow describe our experience in using the command-line interface.

5.1.3.1 CMVC Commands
For each CMVC object, except for the family, CMVC provides one command, for
example: User , Component , File , or Host . Each CMVC action and each object
attribute corresponds to a command flag. For example, if you want to create the
file ibmbsel.cob managed by the component COBOL, and used by the
MVS_Release_0 release, you should issue the command shown in Figure 51.

File -create ibmbsel.cob -component COBOL -release MVS_Release_0 \
-description ″report production″

Figure 51. CMVC Command Example

When you need to know the exact command syntax enter only the command
name without any flags or parameters. Figure 52 shows the result when the
User command was issued without flags or parameters.

Usage: User -create -login Name -address Name -family Name
[-name Text] [-area Name] [+super] [-become Name] [-verbose]

User -configInfo -family Name [-become Name] [-raw]

User -delete Name ... -family Name [-become Name] [-verbose]

User -modify Name ... -family Name { -login Name -name Text
-address Name -area Name [+super | -super] } [-become Name]
[-verbose]

User -recreate Name ... -family Name [-become Name] [-verbose]

User -view Name ... -family Name [-long] [-become Name] [-verbose]

Figure 52. CMVC Command Online Help Example

You do not need to enter the full flag word; however, you must enter enough of
the beginning of the word so that the command can discern your flag from other
legitimate flags. For example, the command shown in Figure 51 could be
simplified as shown in Figure 53.

File -cr ibmbsel.cob -co COBOL -rele MVS_Release_0 \
-des ″report production″

Figure 53. CMVC Simplif ied Command Example

108 CMVC Live

5.1.3.2 CMVC Client Environment Variables
When using the command-line interface, you can omit certain parameters if you
have set up the corresponding CMVC environment variables. Table 10 shows the
relationships among the environment variables and the command flags.

Table 10. CMVC Client Environment Variables and Command Flags

Parameter Variable Command Flag

Family name CMVC_FAMILY -family

CMVC user ID CMVC_BECOME -become

The name of the component
managing data on which you work
most of time

CMVC_COMPONENT -component

The name of the release on which
you work

CMVC_RELEASE -release

The directory from which CMVC can
search the files

CMVC_TOP -top

5.2 Project Manager Asks about Setting up the SCM Environment
Let us now return to our project as it was described in 2.2.2, “Project Manager
Asks about Setting up the SCM Environment” on page 15 where the system
administrator created an SCM environment with CMVC. The actions performed
by the system administrator are described in the sections that follow.

5.2.1 Creating a CMVC Family
The system administrator creates CMVC families and their related databases
using the mkfamily and mkdb CMVC server commands, which are documented
in IBM CMVC Server Administration and Installation. These commands are
CMVC server commands; they must be executed on the CMVC server ′s host.
They cannot be executed through the GUI. You must already have the RDBMS,
NetLS, and CMVC Server installed before you can create CMVC families. Refer
to Chapter 6, “Installing CMVC and Supporting Databases” on page 161 for
additional information about installing Oracle, NetLS, and initializing CMVC.

5.2.2 Modifying Choices Lists, Authority, Interest, and Processes
Before running the mkdb CMVC server command, you can modify the choices
lists, define new authority or notification groups, and define new component or
release processes that are different from the defaults shipped with CMVC. The
specific mechanism for doing so is described in detail in IBM CMVC Server
Administration and Installation. If you do not make any modifications during
initial configuration but need to later, you should use the chcfg , chcomproc , or
chrelproc CMVC server commands. As specified in the manual, you may need
to stop and restart the CMVC server daemons to perform these changes.

In our project, the company′s development methodology dictated the use of
CMVC default authority and notification groups, as well as the default component
and release processes. It also required modifying the choices list for reasons to
accept a defect.

To do this, we edited the config.ld file to add a value to the answerAccept
configuration type. The file changes consisted of adding the value

Chapter 5. Using CMVC 109

“new_baseline” and the corresponding descriptive text: “This defect/feature
initializes a new baseline for a release.” After that, we executed the chcfg
command. We then copied the customized config.ld to our company′s
development methodology directory, /usr/lib/CMVC, to be used as a template.

5.3 Project Manager Asks about Implementing Quality Metrics and Project
Practices

Sections 2.2.3, “Project Manager Asks about Implementing Quality Metrics” on
page 19 and 2.2.4, “Project Manager Asks about Implementing Project
Practices” on page 22 show how CMVC was configured and customized during
our project to implement company policies and project practices. The CMVC
server commands used by the SCM administrator on our project are described
in the sections that follow.

5.3.1 Configuring Fields
You can customize your family by implementing configurable fields for the Users,
Files, Defect, or Feature records. In section 2.2.3, “Project Manager Asks about
Implementing Quality Metrics” on page 19, the QA representative asked about
implementing quality metrics computed from the number of lines of code (LOC)
in your project. The project manager decided to configure the File record to
have an LOC field. It is best to make this modification before the family is
created (before running mkdb) by importing the configurable field from an
existing family. To do this, you copy the files found in the configField
subdirectory of the home directory belonging to an existing family to the same
subdirectory in the home directory of your new family and then run the mkdb
CMVC server command without using the -d flag. You can also change it later
using the chfield -object File or chfield -object File -source CMVC server
commands as documented in IBM CMVC Server Administration and Installation.

5.3.2 Configuring User Exits
If you are setting up a family, it is a good time to configure any user exits. You
do not need to do this before the family and database are created, but it is better
that you do it before your users access CMVC.

In section 2.2.3, “Project Manager Asks about Implementing Quality Metrics” on
page 19, the SCM administrator added a new field to the File record to contain
the LOC count and created a user exit program that computes the LOC count
and fills in the field. The SCM administrator then ensured that this user exit
program would be called each time a CMVC file is created or checked in to
CMVC.

In section 2.2.4, “Project Manager Asks about Implementing Project Practices”
on page 22, the project manager decided that the defect and feature numbers
should be automatically generated and inserted in newly created defect and
Feature records. The project manager also decided that a specific module
header should be added to each new C source file when the CMVC file was
created. The SCM administrator created two user exit programs to do this.
Appendix C, “User Exit Samples and Suggestions” on page 183 shows the
codes for both programs.

110 CMVC Live

5.4 Project Manager Asks about Starting Up CMVC Client
In section 2.2.5, “Project Manager Asks about Starting Up CMVC Client” on
page 23, the project manager started the CMVC client GUI for the first time and
defined for this family the CMVC user IDs that each of the team members would
use.

5.4.1 Starting CMVC Client GUI
To use the CMVC client GUI, you need to know:

• Family name: prod
• Server host name: bering (optional)
• TCP/IP port number: 1222 (optional)
• Your CMVC user ID.

You can ignore the server host name, if the family name aliases the host server
name in the /etc/hosts file on your host. Likewise, the TCP/IP port number is
not necessary input, if it has been added to the /etc/services file on your host.

The first time you start the CMVC client GUI the Set Family dialog box is
displayed. You should fill in the Family and User ID fields. CMVC will fill in the
User ID field with your UNIX login name by default, but you can override this
entry. When you select OK this dialog box closes. You can change your entry in
both Family and User ID fields by selecting Set Family... or Set User ID... from
the Options pull-down of any CMVC window at any time. Figure 54 shows how
to fill in fields of the Set Family dialog box if neither the /etc/services file nor the
/etc/hosts file on your host has been updated for your CMVC family.

Figure 54. Setting Family Name and User ID When /etc/hosts and /etc/services Files Have
Not Been Updated for the Family

Figure 55 on page 112 shows how to fill in the Set Family dialog box fields if
both the /etc/services file and /etc/hosts file have been updated for your CMVC
family.

Chapter 5. Using CMVC 111

Figure 55. How to Set Family Name and User ID from CMVC Client GUI When /etc/hosts
and /etc/services Files Have Been Updated

5.4.2 Creating CMVC User IDs and Host Lists
The CMVC family superuser ID, as mentioned in section 5.2.1, “Creating a CMVC
Family” on page 109, is created automatically while running the mkdb CMVC
server command. This command also adds a host list entry for the superuser
and sets values for the CLIENT_HOSTNAME and CLIENT_LOGIN environment
variables in the .profile file for the family′s UNIX login name. All other CMVC
user IDs must be created subsequently. For our project, the CMVC superuser ID
was lrconas and it was associated with the lrconas AIX login name and the
bering host.

Only the CMVC family superuser can create or delete other CMVC user IDs, by
default. However, the family superuser can grant superuser authority to another
CMVC user ID. In our project the SCM administrator gave the project manager,
projA_lead, superuser authority for this purpose.

To create new CMVC user IDs, display the CMVC - Users window. Select
Create... from the Actions pull-down and fill in the User ID (CMVC user ID), the
User′s mail address, the User′s full name, and the User′s area. You can also
give a new user superuser privileges for your family, by selecting the Grant
superuser privilege push button. Then, select OK if you are creating only one
CMVC user ID, or Apply if you are creating more than one CMVC user ID and
want this window to remain displayed. Figure 56 on page 113 shows the Create
User dialog box and the CMVC - Users window.

112 CMVC Live

Figure 56. Creating a CMVC User with the CMVC Client GUI

You can also use the User command to create new CMVC user IDs. Figure 57
shows the CMVC command to create the same CMVC user created in Figure 56.
This command requires that you already have set up the CMVC_FAMILY and
CMVC_BECOME environment variables to prod and projA_lead, respectively.

User -create -login truls -address aixcase2@bering \
-name ″Leif Trulsson″ -area MVS-ProductA

Figure 57. Creating a CMVC User with the User Command

Immediately after creating the CMVC user IDs, create a Host List entry for each.
If CMVC cannot find a valid Host List entry, the CMVC user ID is not allowed to
access the CMVC family. The family superuser must create a CMVC user ID ′s
first Host List entry. A CMVC user ID can create or delete additional Host List
entries for itself only. The family superuser can create or delete any Host List
entry for any CMVC user ID.

You can create Host List entries in two different ways with the CMVC client GUI:

• Highlight a User ID in the CMVC - Users window and then select Add Host...
from the Actions pull-down
or

Chapter 5. Using CMVC 113

• Select Add... from the Actions pull-down on the CMVC - Hosts window.

Figure 58 shows the Add Host dialog box and the CMVC - Users window.

Figure 58. Creating a Host List Entry with the CMVC Client GUI

You can also use the CMVC Host command to create a Host List entry as shown
in Figure 59. The Login and Host fields shown in Figure 58 are concatenated to
a single attribute in the Host command. That is, the -create attribute shown in
Figure 59 takes a compound value composed of the host name separated from
the login name by the “@” character. The User ID field from the Add Host
dialog box corresponds to the -login attribute.

Host -create aixcase2@bengal -login truls

Figure 59. Adding a Host List Entry with the Host Command

You can create several Host List entries for each of your CMVC user IDs,
because the users might be expected to execute the CMVC client GUI from a
number of hosts and login name combinations.

114 CMVC Live

5.5 Project Manager Asks about Project Organization in CMVC
In section 2.2.6, “Project Manager Asks about Project Organization in CMVC” on
page 24, the project manager learned how to organize CMVC family data to
support the project′s requirements using releases, components and the
component hierarchy. The following sections that follow describe the CMVC
actions involved, which included:

 1. Building a CMVC component hierarchy

 2. Creating CMVC releases

 3. Entering access list and notification list entries for certain components

 4. Opening a defect to authorize bringing the existing application source code
files under CMVC control and creating a release to represent that existing
application baseline on MVS.

5.5.1 Creating and Manipulating Components
After creating CMVC user IDs and Host List entries, you should create your
component hierarchy. The easiest way to work with components is to display
the CMVC - Component Tree window.

You display this window by selecting Component from the Windows menu. The
Windows menu can be popped up by pressing the right mouse button while the
graphical cursor is in any CMVC window. The Windows pull-down on the CMVC
- Tasks window also produces this menu. Further, if you are using SDE
WorkBench/6000, you can display this menu using the Windows pull-down in the
WorkBench - Development Manager window.

The CMVC - Component Tree window shows you your component hierarchy in a
graphical manner, illustrating the hierarchical relationships in either a horizontal
or vertical layout. This window is useful for browsing the component hierarchy
and for manipulating components and their relationships. Using the graphical
cursor, the left mouse button, and the pull-down menus, you can create, delete,
unparent, and reparent components to manipulate the component hierarchy.

You can also modify how much of the component hierarchy is displayed in the
CMVC - Component Tree window by pressing the right mouse button. This
mouse button behaves differently depending on object the graphical cursor is
“pointing at,” or appears to be hovering over, when the button is pressed. When
the cursor is over a figure representing a component (a “node” in the hierarchy),
the right mouse button causes the Node menu to be displayed. The Node menu
allows you to expand or suppress various levels of the hierarchy. A new user
may want to have all levels of the hierarchy visible, but an experienced user
may be more comfortable hiding subnodes. When the cursor is not over a
component, but in the background space, the Popup Menu is displayed by
pressing the right mouse button. The Popup Menu gives convenient access to
several common CMVC actions and enables you to display the Windows pop-up
menu.

Figure 60 on page 116 illustrates the horizontal layout of the CMVC - Component
Tree window and the Popup Menu. The CMVC - Component Tree window is
showing part of the component hierarchy for the production family.

Chapter 5. Using CMVC 115

Figure 60. CMVC - Component Tree Window Horizontal Layout with Popup Menu

To change the layout from vertical to horizontal, or vice versa, select Layout
from the View pull-down on the CMVC - Component Tree window. Figure 61 on
page 117 illustrates the CMVC - Component Tree window′s vertical layout and
the Node pop-up menu. This figure shows the same portion of the production
family component hierarchy as is shown in Figure 60.

116 CMVC Live

Figure 61. CMVC - Component Tree Window Vertical Layout with Node Menu

From the CMVC - Component Tree window you can display the CMVC -
Components window, which lists the full record for all component records. You
can also display this window by selecting List... from the View pull-down menu of
the CMVC - Component Tree window. This window uses a table format and
shows many details that are not shown in the CMVC - Component Tree window.
This window works like other CMVC windows because you issue queries to
determine which records are displayed. One or more components highlighted in
this window can later be “imported” to fill the Component field in other CMVC
window dialog boxes using the Import button. This window is like the CMVC -
Component Tree window in that you can create and delete components and
manipulate component relationships with it. However, it is a difficult mechanism
for showing the hierarchical relationships among the components.

You should fully plan your component names because every component created
and later deleted is remembered by CMVC forever, and its name becomes
unusable for a later component. However, do not panic if you change your mind,
or make an error. Components can be deleted, if they currently manage no files,
and all of their properties can be changed, including their names.

You can create all of the initial components, assigning component ownership to
specific CMVC user IDs. The owners of these components can later create
additional lower-level (child) components as needed. Note that you do not need
a defect or feature to justify the creation or deletion of a component.

Chapter 5. Using CMVC 117

When the CMVC - Component Tree window is first invoked, it shows you a
topmost-level component for the family, named root. This was created for you
by CMVC when your family was created. As a first step, you can rename this
component to match your family name. To rename this component, highlight the
root component with a single click of the left mouse button and select Name...
from the Modify pull-down. This displays a dialog box. Fill in the new name and
select OK . In our project we changed the root component name to “production.”

Because the default query shipped with CMVC for the CMVC - Component Tree
window looks for a component whose name is “root,” you must also change the
default query for this window. To do so, we selected Initial Component... from
the File pull-down and entered production in the resulting dialog box.

With your root component highlighted, create new components parented by it.
Select Create... from the Actions pull-down. The new component is displayed
descending from (parented by) the production component. Continue creating
your component hierarchy using the Delete... , Recreate... , Link , Unlink , and
Reparent selections from the Actions pull-down.

If you find you must move a component so it descends from a different
component (Reparent), or link it to another component so it has multiple parent
components (Link), you highlight the child component and select the relevant
menu item. A dotted line then extends from the currently highlighted component
to the cursor. Place the cursor over the target component and press the left
mouse button to complete the move or link. While it is not important in which
order the sibling components appear on this diagram, you will notice that they
are displayed in the same order in which they are created, and they cannot be
rearranged afterward.

When creating a component, a dialog box is displayed. You must enter the
component name, the component process from a list of predefined choices, the
owner, and a brief description of the component. If you are going to assign
ownership at this time, you should first display the CMVC - Users window and
highlight the correct CMVC user ID. This enables you to use Import to bring this
user name in without having to type it. Import is useful in this particular dialog
box, if you intend to create several components all owned by the same user.

You can find Import on many dialog boxes. It appears next to one or more input
fields representing CMVC objects. Using Import saves time and precludes
typing errors. Learning how to make use of Import in the various windows takes
some time, but it is useful once you have mastered it. We will attempt to guide
you in selecting windows in an order that makes the use of Import practical.
However, at times it may seem like less trouble to type in the value rather than
create the conditions to use Import . Figure 62 on page 119 shows the screen
captured while creating a component.

118 CMVC Live

Figure 62. Creating a Component from the CMVC - Component Tree Window

You can also use the command-line interface to create a set of components.
Figure 63 shows the CMVC Component command.

Component -create MVS -parent legacy -owner truls \
-process maintenance \
-description ″MVS version of the application″

Figure 63. Creating a Component with the Component Command

5.5.2 Creating a Release with the Test Environment
Using a CMVC user ID with superuser privilege, create the releases that are
managed through the components. When you create a release, you assign its
ownership to the CMVC user ID that is responsible for managing the release.

To create the release, display the CMVC - Users window and initiate a query to
find the record for the user who will own the new release. Highlight that CMVC
user ID and display the CMVC - Component List window. Issue a query to
display the component that should manage this release. Highlight this

Chapter 5. Using CMVC 119

component and then display the CMVC - Releases window. Select Create... from
the Actions pull-down of this new window. Use Import to fill in the Component
and Owner fields. Select the release process you want from the list displayed
when you select Choices... . Now, enter the release name, description, and other
fields, if appropriate. The Approver, Environment, and Tester fields may not be
necessary depending on the process you are selecting for the release. Since we
chose the maintenance process, we had to enter both Environment and Tester
fields. Select OK to create the release. The release owner is automatically
notified by mail that a release has been created.

If you do not know which subprocesses are included in a particular release
process that is listed in the Choice List window, select On Process... from the
Help pull-down. Figure 64 shows the various dialog boxes to create a release, as
well as the CMVC - Help window, which shows the subprocesses included in the
maintenance release process.

Figure 64. Creating a Release from the CMVC Client GUI

You can also use the CMVC command-line interface to create a release.
Figure 65 on page 121 shows the CMVC Release command.

120 CMVC Live

Release -create MVS_Release_0 -owner MVStester \
-process maintenance -component MVS \
-description ″Original MVS \
application before migration effort began″

Figure 65. Creating a Release with the Release Command

5.5.3 Setting Access and Notification Lists
Once you have organized a framework to control your data (according to your
requirements) through components and releases, you want to control access to
this data based on CMVC user ID and have various people informed
automatically about actions performed during the development effort. To do this,
you create an access list and a notification list for certain components.

A component owner can implicitly perform many actions on objects, such as
files, that are managed by that component. For example, a component owner
has implicit authority to check in, check out, or rename a file. The IBM CMVC
User′s Reference lists how implicit authority to perform CMVC actions is derived.

Authority to perform other CMVC actions can be granted explicitly by associating
a CMVC user ID with an authority group for a particular component in that
component ′s access list.

To place a user in an access list for a component, display the CMVC - Users
window and issue a query to display the users you intend to put in the list. Now
display the CMVC - Component Tree window and highlight the component whose
access list you want to modify. Next, select Access List... from the Action
pull-down and wait for the Add Access dialog box to be displayed. Enter the
fields in the dialog box by selecting Import to bring in the preselected CMVC
user IDs. Now, select Choices... to display the list of the valid authority groups.
Select the desired group(s) and then select OK in the Choices List dialog box.
To create the entry in the access list, select OK in the Add Access dialog box.
There are other paths to this same dialog box; using the CMVC - Component
Tree window offers just one.

Figure 66 on page 122 shows the CMVC client GUI windows and dialog boxes
displayed when creating both an access list entry and a notification list entry.

Chapter 5. Using CMVC 121

Figure 66. Adding Access List and Notification List Entries through the CMVC Client GUI

You can also use the CMVC command-line interface to add entries to the access
list. Figure 67 shows the CMVC Access command.

Access -create -component MVS -login MVSbuilder -authority builder

Figure 67. Adding an Access List Entry with the CMVC Access Command

The authority group defines a set of actions to be authorized. You refer to the
group name, instead of naming each authorized action individually. You can

122 CMVC Live

refer to the combination of actions defined by the authority group releaselead as
releaselead authority.

You can retrieve the list of actions associated with a given authority group
through the CMVC client GUI. To list the actions of an authority group, select
Authority Actions from the Show pull-down in the CMVC - Access Lists window
and then enter the authority group name. You can also use the command-line
interface to interact with Action Lists. Figure 68 shows the CMVC Report
command.

Report -view authority -where ”name=′ builder′ ”

Figure 68. Using CMVC Report Command to List Actions for an Authority Group

The authority of a user that is explicitly granted at a component is inherited
downward recursively through the component hierarchy. At descendent
components, additional authority can be granted to the same user. For example,
on our project we explicitly granted the krt CMVC user ID the general authority
for the component productA. This user ID then inherited that authority over its
descendent components, including the MVS component. The krt CMVC user ID
was also explicitly granted the builder authority for the component MVS.
Therefore, this user had all the authority defined for both authority groups at the
component MVS.

You must study the implications of granted authority and its inheritance so you
can minimize the effort you spend manipulating access lists. For example, you
might only have to grant authority to check in and check out files to a given user
at one high level component, if all the files that user needs to access are
managed by descendent from that one component. Once granted at the high
component, the authority is inherited by that user over all of the descendent
components.

You probably want to grant general authority to all project team members at a
fairly high component, so they can view defects, features, files, and other CMVC
objects in your family. The developer authority group grants authority to perform
all of the CMVC actions you would want a developer to do. Therefore, you may
also want to grant developer authority to all your programmers at a fairly high
component, so they can work on a wide variety of files in your application.

You can restrict the explicitly granted authority of a user to any given component
where the user inherits this authority from an ancestor component. This
restriction of authority prevails only at the one component; the inheritance of the
granted authority prevails over descendent components. Restriction is also
handled by means of authority groups, only now they represent sets of actions
not authorized for the user on objects managed by this component.

You should also study the subtle interactions that occur when inherited authority
interacts with explicitly restricted authority. Take the example of a user who
implicitly inherits only general and developer authority for a component in your
hierarchy. There is no other explicitly granted authority at this component for
this user. If the component owner decides to restrict that user ID ′s authority to
perform developer actions, all actions belonging to this one authority group are
now restricted for the user ID, unless they are defined in another authority group
for which this user ID is authorized at this component. There are some actions,
which are authorized by general authority and by developer group. These

Chapter 5. Using CMVC 123

remain enabled for this user ID, but those actions that are defined only for the
developer authority are now disallowed for this user ID. For example, this user
ID can still view a file, but can no longer check out (and therefore, check in) a
file managed by this component. Table 11 shows the actions authorized by
these two authority groups as they are shipped with CMVC. It also shows which
actions are effectively restricted in this case.

Some authority derives implicitly because of an action taken by a CMVC user,
especially if that action resulted in a new CMVC object, such as a defect, file, or
release, being created. Authority to perform actions on that object may derive
from the ownership of the new object, while authority to create the object and
perform other actions on it may have derived from an inherited authority. Do not
jump to conclusions about how an authority is derived, and what these
authorities imply. Merely owning a release, for example, does not give a user
all of the authority associated with the releaselead authority group for the
component that manages that release. If one user created a release and
allowed it to be owned by another user, that second user does not thereby gain
sufficient authority to create a second release managed by that component.
Likewise, you might be the owner of a defect by virtue of owning the managing
component, but that does not give you authority to cancel it. That authority
derives from the action of creating the defect.

A notification list works similarly to an authority list, in that they are both
associated with a component. Notification is like authority in that a user inherits
membership in interest groups at lower level components from higher level
components. Likewise, notification of a given CMVC action depends on implicit
and explicit factors. An implicit factor might be that a CMVC user is affected by
the action. For instance, when a family superuser changes ownership of a
release, the new owner of the release will be notified. Notification might also
result because a CMVC user ID was explicitly added to the notification list for the
component that manages the CMVC object created or affected by the CMVC

Table 11. Inherited Actions Restricted and Remaining

Developer Authority
Restricted

General Authority
Inherited

Restricted Developer
Action

CompView CompView

DefectView DefectView

FeatureView FeatureView

FileAdd FileAdd

FileCheckOut FileCheckOut

FileExtract FileExtract

FileRename FileRename

FileView FileView

LevelView LevelView

NotifyCreate NotifyCreate

ReleaseExtract ReleaseExtract

ReleaseView ReleaseView

TrackView TrackView

UserView UserView

124 CMVC Live

action. This is also referred to as “subscribing” to an interest group for a
component.

In our example project, the project manager might decide to be informed
whenever a new file is brought under control of a particular component. This
would require his placing his CMVC user ID on the notification list for that
component, referencing the appropriate interest group.

Notification is also like authority, in that new interest groups can be defined.
IBM CMVC User′s Reference lists how implicit notification is determined and
which interest group definitions are shipped with CMVC.

Manipulating interest groups and notification lists is similar to manipulating
authority groups and access lists. To place a CMVC user ID in a notification list
for a component, display the CMVC - Users window and issue a query to display
the users you intend to put in the list. Next, display the CMVC - Component Tree
window and highlight the component for which you want to modify the
notification list. Then, select Notification List... from the Action pull-down and
wait for the Add Notification dialog box to be displayed. Fill in the fields in the
dialog box by selecting Import to bring in the preselected user IDs. Select
Choices... to display the list of the valid interest groups. Highlight the group(s)
then select OK in the Choices List dialog box. Finally, select OK in the Add
Interest dialog box.

Figure 66 on page 122 shows the CMVC client GUI windows and dialog boxes
when creating both an access list entry and a notification list entry.

To display the set of actions defined by an interest group, select Interest Actions
from the Show pull-down in the CMVC - Notification Lists window, then enter the
Interest Group field.

You can also use the CMVC command-line interface to view the set of actions
defined by an interest group. Figure 69 shows the CMVC Report command used
for this purpose.

Report -view interest -where ” name=′ tester′ ”

Figure 69. Using the CMVC Report Command to List al l CMVC Actions Associated with
Interest Group

And, you can use the CMVC command-line interface to interact with notification
lists. Figure 70 shows the Notify command.

Notify -create -component MVS -login MVStester -interest tester

Figure 70. Using the CMVC Notify Command to Add a Notification List Entry

5.5.4 Opening a Defect to Accompany Files in the Initial Release
To authorize bringing the MVS source files under CMVC control with reference to
the first release of our product, our project manager opened a defect on the
MVS component. Typically, a defect is used to report a problem and a feature to
make an enhancement. Creating files to initialize a baseline (release), does not

Chapter 5. Using CMVC 125

fit neatly into either of these categories. But, our project required that we use
one or the other to authorize creating new CMVC files, so we used a defect.

Any CMVC user may open a defect or feature on any CMVC component without
special authority. You can open a defect or feature using pull-down menus in
the CMVC - Defects window and the CMVC - Components window. You can also
open a defect or feature using the CMVC - Component Tree window. To use the
CMVC - Component Tree window, highlight the component that will manage the
defect or feature and select Open Defect... from the Actions pull-down to display
the Open Defect dialog box. Enter one or more names in the Release field and
the Remarks field. If you have lengthy remarks, you can use the editor by
selecting Edit... . The Abstract, Level, Environment, and Reference fields are
optional. You cannot ignore the Prefix or Severity fields. To choose a prefix or a
severity, select Choices... next to the field whose list of the valid input values you
would like to display. This will cause a Choices List dialog box to be displayed.

Your SCM administrator can set up default values for any fields by changing the
family ′s config.ld file and executing the command chcfg . Figure 71 on page 127
shows the defect report form used by our project. This form can be customized
by your SCM administrator with the command chfield -object Defect . Refer to
IBM CMVC Server Administration and Installation for more information on these
two CMVC server commands.

To open the first defect for our project, we displayed the CMVC - Component
Tree window and expanded the component hierarchy to display the MVS
component. We opened the defect against that component. We entered
MVS_Release_0 in the Release field. We did not enter date in most of the
optional fields, because these fields are more meaningful for defects dealing
with real problems, than for baseline initialization. We selected d for the Prefix
field and 4 for the Severity field. We did not enter a defect number because we
arranged to have the number automatically generated by a user exit program.
Refer to 5.3.2, “Configuring User Exits” on page 110 for more about that.

126 CMVC Live

Figure 71. Opening a Defect f rom the CMVC Client GUI

You can also use the CMVC command-line interface to create a defect. We do
not show an example of the CMVC Defect command. Having numerous
parameters, it is not convenient to use. However, you can use it from batch
programs to automatically open a defect under certain circumstances, such as
when automated testing of your application fails.

A problem you have with the automated generation of the defect number is that
CMVC displays a wrong defect number in the CMVC - Information window at
completion of the defect opening operation. For example, our project ′s first
defect was named prod_00001 by the user exit program, but the CMVC -
Information window displayed the following message: “A new defect was opened
successfully. The new defect number is 1..”

Figure 72 on page 128 is the first in a series of illustrations with which we hope
to show the relationships among certain CMVC actions and the CMVC objects
affected or created by them. This figure shows the relationship between the first
defect you opened and its managing component. The box representing this
defect also indicates the “state” of this CMVC object immediately after the defect
creation. States of CMVC objects are like the teeth in the gears of CMVC. As
states of objects change, particular CMVC actions become possible or
impossible. The states that defects, features, levels, tracks, and releases pass
through are described in IBM CMVC Concepts.

Chapter 5. Using CMVC 127

Figure 72. Defect and Component Relationship after a New Defect Is Opened

5.6 Project Manager Asks about Reporting
In section 2.2.7, “Project Manager Asks about Reporting” on page 27, the project
manager wanted to generate some reports about our SCM environment. One
way to do this with CMVC is to build a query by selecting Open List... from the
File pull-down from the appropriate CMVC window. Refer to section 5.1.2.1,
“CMVC Window Queries” on page 104 for more information on building a query.
The contents of the CMVC window can then be printed by selecting Print... from
the File pull-down.

You can also generate reports with the CMVC command-line interface. The
CMVC Report command is particularly useful in shell scripts, which can be run
on a regular basis or on demand. You can also add execution of these to the
task list displayed in the CMVC - Tasks window.

The CMVC client provides sample shell scripts that extract data from CMVC and
format them. IBM CMVC User′s Reference lists and describes those shell scripts
located in the /usr/lpp/cmvc/samples directory. You can adapt those programs to
meet your needs. Figure 73 on page 129 shows a part of the output of the
defectReport shell script used to generate a global defect report showing tracks,
test records, approval records, and fix records.

128 CMVC Live

Detailed Defect Report
pre name compName state origin owner sev age abstract
--- --------------- --------------- -------- -------- -------- --- --- ---
 d prod_00007 AIC_X11R4 working lrconas krt 4 157 Renaming COBOLGUI-COBOL integration changes

< Track: state = integrate release = AIX_Release_1 >

 d prod_00009 AIX working lrconas krt 4 157 COBOL changes to include COBOL copy code.
< Track: state = fix release = AIX_Release_1 >

d prod_00010 COBOL working krt truls 4 156 Removing original COBOL files
d prod_00011 MVS working truls truls 4 156 MVS_Release_1 baseline COBOL, CLIST, assembler, ISPF

< Track: state = fix release = MVS_Release_1 >

< Fix: state = active component = assembler release = MVS_Release_1 >
< Fix: state = active component = ISPF release = MVS_Release_1 >
< Fix: state = active component = COBOL release = MVS_Release_1 >
< Fix: state = active component = JCL release = MVS_Release_1 >
< Fix: state = active component = CLIST release = MVS_Release_1 >

d prod_00012 COBOL verify krt truls 4 0 File name correction for AIX_Release_1
d prod_00014 COBOL working truls truls 4 156 Parallel changes related to AIX_Release_1

< Track: state = fix release = MVS_Release_1 >

Figure 73. Output of the Defect Report Sample Shell Script

5.7 Developer Asks about Components and a Release for the Original MVS
Baseline

The MVS developer needed to bring the original MVS source files under CMVC
control in 2.2.8, “Developer Asks about Components and a Release for the
Original MVS Baseline” on page 30. The MVS developer was owner of the MVS
component and therefore was able to create child components below it
representing the types of source code in the MVS application. This action
ensured that the project could track defects against the various types of source
code separately. The CMVC actions taken by the MVS developer in creating a
mini-hierarchy of components are no different from those described in 5.5.1,
“Creating and Manipulating Components” on page 115.

5.8 Developer Asks about Bringing MVS Source Files under CMVC Control
In section 2.2.9, “Developer Asks about Bringing MVS Source Files under CMVC
Control” on page 32, the MVS developer created CMVC files to bring the MVS
source files under CMVC control, referencing the prod_00001 defect. To do this,
the developer accepted the defect, created a track associated with both the
prod_00001 defect and the MVS_Release_0 release, and then created the CMVC
files. The sections that follow describe these actions.

5.8.1 Accepting the Defect
Most CMVC actions affecting defects and features are taken by the owner of the
component managing the defect or feature. Defect or feature ownership can be
reassigned to another CMVC user ID by the owner of the component, although
the component continues to manage the defect or feature. The defect or feature
owner can do two things with a new defect: accept it or return it to the originator.
A defect that duplicates another open defect, for example, might be returned. If
so, the originator would cancel it.

Our MVS developer accepted the project′s first defect. Because the MVS
component process was maintenance, which does not include the design-

Chapter 5. Using CMVC 129

size-review subprocess, this action changed the defect′s state from open to
working.

To identify any defects or features needing your acceptance, highlight the
component in the CMVC - Component Tree window, move the graphical cursor
so that it is no longer over a component figure, and press the right mouse button
to display the Popup Menu. Select Show , which displays a cascading menu.
Select Defects from that menu to display another cascading menu. Select
Open... from this last menu and release the right mouse button. The CMVC -
Defects window is displayed showing all of the defects in the open state.

When our MVS developer followed these steps, there was only one open defect,
prod_00001. Figure 74 on page 131 shows the Popup Menu and the cascading
menus necessary to query the open defects of the MVS component.

130 CMVC Live

Figure 74. How to Display Open Defects from the CMVC Client GUI

To accept a defect from the CMVC - Defects window, highlight the defect record
and select Accept... from the Actions pull-down. In the Accept Defects dialog
box, enter the remarks. To choose a reason for accepting for the Answer field,
select Choices... , and the list of available values is displayed. To accept the
defect, select OK in the Accept Defects dialog box.

On our project, we had created a new choice for the list of reasons for accepting.
This choice indicated that we were initializing a new release with the defect.
Our MVS developer, therefore, selected newbaseline in the Choices List dialog
box, when it was presented. Figure 75 on page 132 shows how the MVS
developer accepted the prod_0001 defect, using the CMVC client GUI.

Chapter 5. Using CMVC 131

Figure 75. Accepting a Defect f rom the CMVC Client GUI

When a defect moves from open to working, CMVC automatically creates a
verification record for the accepted defect, if the component process includes the
verify subprocess. The verify subprocess ensures that the defect originator has
the opportunity to rule on the acceptability of the resolution of the defect. The
state of the verification record, initially, is notReady. The defect originator
cannot verify that the defect has been satisfactorily resolved and close the defect
while the verification record is in this state. Figure 76 on page 133 shows the
relationships among component, defect, and verification records and their states
at this point in time.

132 CMVC Live

Figure 76. CMVC Object Relationships after Defect Acceptance

You can also use the CMVC command-line interface to accept a defect. We do
not show an example of the Defect command, because it is not as convenient to
use as the GUI window. One difficulty with this command is that it cannot
prompt you for the choices lists. It is also awkward to enter remarks because
you do not have access to an editor for lengthy remarks.

5.8.2 Creating a Track for the Defect and the Release
Changing the defect state to working enables the component owner to create a
track in reference to the defect, if the release process associated with the defect
includes the track subprocess.

In our project, the MVS developer created a track that associated the prod_00001
defect with the MVS_release_0 release. This track enables the source files to be
created under authority of the defect and integrated in the release so they can
be tested in a build.

To create a track, display the CMVC - Releases window by highlighting the MVS
component in the CMVC - Component Tree window. Move the graphical cursor
so it is not over a component figure, and press the right mouse button to display
the CMVC Popup Menu. Select Show , and then on the cascading menu, select
Releases... . Figure 77 on page 134 shows this CMVC Popup Menu and its
cascading menu, with Releases... already selected.

Chapter 5. Using CMVC 133

Figure 77. How to Display Releases for a Specific Component from the CMVC Client G

This selection displays the CMVC - Releases window showing all of the releases
managed by the selected component. Highlight the release(s) for which you
want to make a track. Next, highlight the defect in the CMVC - Defects window
that was previously opened to accept this defect. Then select Create Tracks...
from the Actions pull-down of the CMVC - Defects window. The Create Tracks
dialog box comes up. Select Import to fill in the Releases field with the release
names highlighted in the other window. The Target field can be used to express
a date or level at which this track is targeted to be integrated. Typically, there is
no need to enter the User field, because it will default to the defect owner, which
at this initial stage in your project is acceptable. Select OK .

In our project, the MVS developer joined the MVS_Release_0 release highlighted
in the releases window with the prod_0001 defect highlighted in the defect
window to create the project ′s first track. The Target field had little value for our
project, but we filled it in with an arbitrary value.

Figure 78 on page 135 shows how the MVS developer created a track for the
prod_00001 defect and the MVS_release_0 release, using the CMVC client GUI.

134 CMVC Live

Figure 78. Creating a Track from the CMVC Client GUI

The state of the newly created track depends on which subprocesses are
included in the release process. If the approval subprocess is included, for
example, the state is now approve. If the fix subprocess is included, but the
approval subprocess is not included, the the state is fix. If neither is included,
the state is integrate.

Creating the track moves the state of the defect to the “working” state. If the
release process includes the test subprocess, CMVC also automatically creates
a test record indicating that, after the track is integrated with the release, it must
be tested in a specific test environment. The test record is in the notReady state
initially.

Our MVS_Release_0 release process was maintenance, so the track went to the
fix state, and a test record was created indicating that the MVStester CMVC user
ID was responsible for testing the release in the MVS_legacy environment. Thus
the newly established baseline would be tested on MVS to ensure that no errors
occurred in the migration of source code from MVS to AIX.

You can also use the CMVC command-line interface to create and manipulate
tracks. Figure 79 on page 136 shows the CMVC Track command. Specify the

Chapter 5. Using CMVC 135

release by setting the CMVC_RELEASE environment variable prior to execution
of the CMVC Track command.

Track -create -defect prod_00001

Figure 79. Creating a Track with the Track Command

Figure 80 shows the relationships among the various CMVC objects involved in
problem tracking at this point in time.

Figure 80. CMVC Object Relationships after Track Creation

The CMVC - Tracks window has a Corequisite pull-down menu. You can group
tracks by creating corequisite links between them. This link will force you to add
the grouped tracks as level members in the same levels.

Although we did not use this feature in our project, it is a valuable feature
because sometimes a defect or feature will involve many changes to portions of
your application source code files, which are associated with multiple distantly
related components. You want multiple defects or features associated with the
separate components, recognizing that different team members are responsible
for the code changes. But, you also want to test the changes together at one
time.

5.8.3 Creating the Files
After the track is created, you want to bring your initial source code files under
CMVC control by creating CMVC files. Before you can do this, place the files in
a directory path that includes the relative path name you want CMVC to
associate with these files. (If you are using SDE WorkBench/6000 at this time,
you also want to create context mappings for these directories. See E.2,
“Significance of Context Mappings” on page 208 for more about context
mappings.)

In our project, the MVS developer downloaded the files from the mainframe to
the host, placing them in a directory path that terminated in source/cobol.

To create CMVC files, start in the CMVC - Component Tree window and highlight
the component that will manage the new CMVC files. Display the Windows
pop-up menu and select Files to display the CMVC - Files window. To specify
the directory in which these files are presently stored, select Set Directory... from
the Option pull-down. Enter an absolute path name in the Directory field and

136 CMVC Live

select Create... from the Actions pull-down. The Create Files dialog box is
displayed.

Display the CMVC - Defects window and highlight the defect associated with the
track that will integrate these files into the release. Display the CMVC -
Releases window, and highlight the release associated with the track. In this
case, you can only identify a single release. Now, enter values in the fields of
the Create Files dialog box by selecting Import . You could enter these fields by
keying them in, if you do not care to import them. List all of the files located in
the source directory by selecting Choices... . Toggle the Text or Binary push
button to indicate the type of data in the files. Select OK . CMVC checks the
existence of a track for the specified defect and release. If the checking is
negative, a error message is displayed.

In our project, the MVS developer placed the MVS source files in
/home/aixcase2/source/cobol. The relative path name associated with our CMVC
files was source/cobol. Figure 81 on page 138 shows how the MVS developer
brought the COBOL files under CMVC control, using the CMVC client GUI.

Chapter 5. Using CMVC 137

Figure 81. Creating Files in a CMVC Family

You can also use the CMVC command-line interface to create files with the
CMVC. Figure 22 on page 33shows the File command. The CMVC
command-line interface is more convenient if you need to create a lot of files at
once. But, if you are developing new code, you will probably use the CMVC
client GUI more often.

If you are using SDE WorkBench/6000, you may notice, in the Development
Manager window, that the UNIX file permissions change to read-only after each
file is placed under CMVC control. To check on the success of your file creation,
display the CMVC - Releases window, apply a query to list this release, and
highlight the record for this release. Then select Files... from the Show

138 CMVC Live

pull-down to display the CMVC - Files window, which shows all of the files
created.

Figure 82 shows the file list of our first release, MVS_Release_0. This screen
capture shows only four columns of data. To the right of the column showing the
“current version” of each file, is another column showing the “committed
version.” Our figure does not show that column, because at this point in time it
is empty. The current version of a file is the highest version checked in to
CMVC, but until that version is successfully integrated into a release or level, it
is not committed. During integration testing, errors may be detected and
another version checked in again. The files are to be committed when the level
that in which they are integrated is committed.

Figure 82. List of Created Files for a Release

Because our project created files in reference to the components COBOL, JCL,
assembler, ISPF, and CLIST using a process that includes the fix subprocess,
CMVC automatically created a fix record for each of those components. You can

Chapter 5. Using CMVC 139

also create fix records yourself before fixing the defect, to force changes on files
managed by certain components. In this case, the initial state of the fix records
is notReady. Figure 83 on page 140 shows the relationships among the various
CMVC objects involved in the problem tracking at this point in time.

Figure 83. CMVC Object Relationships after File Creation

5.8.4 Integrating the Track by Completing Fix Records
To inform CMVC and the rest of the development team that you have fixed the
prod_00001 defect in the MVS_Release_0 release, you have to move the track
state from fix to integrate by completing all of the associated fix records.

To move the track to the integrate state, you must display a list of the fix records
associated with this track. Highlight the track in the CMVC - Tracks window and
then Select Fix Records... from the Show pull-down to display the CMVC - Fix
Records window showing the right fix records.

To complete the fix records highlight all of them. Press the left mouse button
while the mouse is pointing to the first record, and without releasing the left
mouse button, bring the mouse down the list, highlighting each subsequent fix
record until the last one is highlighted, then release the left mouse button.
Select Complete... from the Action pull-down and select Yes in the Complete Fix
Records dialog box to confirm the fix completion.

Figure 84 on page 141 shows the CMVC - Fix Records window with all of the fix
records associated with the prod_00001 defect

140 CMVC Live

Figure 84. Completing Fix Records from the CMVC Client GUI

The track connects the file, defect, and release. The fix record relates the
defect, release, and component. Figure 85 on page 142 shows the relationships
among the various CMVC objects at this point in time. The track has moved to
the integrate state, and the fix record has moved to the complete state. A track
with the integrate state can no longer be used for creating or changing a file.
However, the track state could be moved back from integrate to fix and then
could be reused. Refer to Appendix D, “Hints and Tips for Using CMVC” on
page 193 for a description of the procedure to reuse an integrated track.

Chapter 5. Using CMVC 141

Figure 85. CMVC Object Relationships after Defect Fixing through Fix Records

You can list the files created in reference to the track by selecting the track in
the CMVC - Tracks window. Then select Change History... from the Show
pull-down to display the resulting query in the CMVC - Change History window.
Figure 86 on page 143 shows all of the CMVC files created for our project under
authority of the prod_0001 defect and integrated into the MVS_Release_0 release
by the CMVC FileCreate action. This display also shows which version of each
file was integrated, and the relative path name associated with the file name.

142 CMVC Live

Figure 86. Track Change History

5.9 Builder Asks about Building Application on MVS
In 2.2.10, “Builder Asks about Building Application on MVS” on page 34 our MVS
builder received advice on how to establish a baseline by creating the 0 level.
The MVS builder integrated the files created under authority of the track
associated with the prod_00001 defect and the MVS_Release_0 release by
making that track a level member of this level. This was necessary because the
release process included the level subprocess.

5.9.1 Creating a Level for the Release
To create the level, first open the CMVC - Releases window to highlight the
release for which you intend to create this level. Next, open the CMVC - Levels
window and select Create... from the Actions pull-down. When the Levels dialog
box is displayed, enter 0 in the Levels field and enter the Release field by
selecting Import . To choose a value for the Type field, select Choices... to
display the list of the valid level types and select one. Complete the action by
selecting OK in the Create Levels dialog box. The level is created but it has no
level members yet, which means no tracks are associated with the level yet. It
is in the working state; you can still delete it.

Figure 87 on page 144 shows how the MVS builder created the 0 level in the
MVS_Release_0 release, using the CMVC client GUI. Since this represented the
current production release of the MVS application, the MVS builder chose the
production level type value.

Chapter 5. Using CMVC 143

Figure 87. Creating a Level from the CMVC Client GUI

You can also use the CMVC command-line to create a level. We do not illustrate
the Level command for this case, because, like the File command, it is less
convenient to use than the GUI window. For example, it cannot prompt you to
choose an appropriate type value.

Figure 88 on page 145 shows the relationships among the various CMVC objects
after creating the level.

144 CMVC Live

Figure 88. CMVC Object Relationships after Level Creation

5.9.2 Creating a Level Member
To create a level member, you identify one or more tracks associated with the
same release that defines the level. This action links all of the files changed in
reference to the defects associated with the tracks.

To create a level member, open the CMVC - Tracks window and highlight the
track associated with the defect and release that you want to integrate and test.
Display the CMVC - Levels window and highlight the level of which you are
making a member. Now, select Add Level Members... from the Actions
pull-down. When the Add Level Member dialog box opens, select Import to fill
in the Tracks and Level fields. Complete the action by selecting OK .

Our MVS builder created a level member referencing the track associated with
the prod_0001 defect and the 0 level of the MVS_Release_ release. Figure 89 on
page 146 shows how the MVS builder added a track representing the prod_00001
defect as a level member in the MVS_Release_0 release, using the CMVC client
GUI.

Chapter 5. Using CMVC 145

Figure 89. Creating a Level Member from the CMVC Client GUI

You can also use the CMVC command-line interface to create level members.
Figure 90 shows the LevelMember -create command to add a level member.

LevelMember -create -level 0 -defect prod_00001 -release MVS_Release_0

Figure 90. Creating a Level Member with the LevelMember Command

Only tracks in the integrate state should be defined as level members, but you
can add tracks in the fix state, which indicates that a change is pending. Adding
a track in the fix state results in the message shown in Figure 91 on page 147.

146 CMVC Live

Figure 91. Fix Track as Level Member Information

Once we had created the level member to incorporate our track, all CMVC
objects related to the migration of the MVS application from MVS to AIC were
created. From then on, the actions we performed could only change the state of
these objects, not create new objects. Figure 92 shows the relationships among
the various CMVC objects now. Notice the new state of the level is integrate. A
level with this state can only be partially extracted by the developer who has
CMVC authority to perform unit tests. (Partially means only the files changed in
reference to defects or features defined as level members of that level.) Refer to
5.9.5, “Extracting the Level or the Release” on page 151 for more about full and
delta or partial CMVC ReleaseExtract actions.

Figure 92. CMVC Object Relationships after Level Member Creation

Chapter 5. Using CMVC 147

If you want to change a file in reference to the track integrated in the 0 level, you
can still do it but it is not very obvious. Refer to Appendix D, “Hints and Tips for
Using CMVC” on page 193for a description of the procedure.

5.9.3 Committing the Level
Be careful before committing a level! Remember the following facts:

• The level state cannot be moved back from the commit state to the integrate
state.

• You cannot add or remove a level member.
• A committed level cannot be deleted.
• The tracks defined as level members can no longer be used to make file

changes. You have to create new tracks.
• The current version of files becomes the committed version.

To commit the level, highlight that level in the CMVC - Levels window and then
select Commit... from the Actions pull-down. When the Commit Levels dialog box
is displayed, select OK . After level commitment, the current version of files
becomes the committed version. Figure 93 shows how the MVS builder
committed the 0 level of the MVS_Release_0 release, using the CMVC client GUI.

Figure 93. Committing a Level from the CMVC Client GUI

You can also use the CMVC command-line interface to commit a level.
Figure 94 shows the Level -commit command. Specify the release by setting the
CMVC_RELEASE environment variable prior to execution of the CMVC Level
-commit command.

Level -commit 0

Figure 94. Committing a Level with the Level Command

Figure 95 on page 149 shows the relationships among the various CMVC objects
at this point in time. You can see that both the track and level states have
moved from integrate to commit.

148 CMVC Live

Figure 95. CMVC Object Status after Level Commitment

When a level is committed, CMVC creates a level map file in the maps directory,
located in the family home directory. The name of the level map file is
composed of the release and level name. The name of our map file is
MVS_Release_0/0. This map file contains a list of the names of the changed files,
their versions, and the type of changes, such as create, delta, or rename. This
file could be used as a definitive listing of the configuration of your application at
a production release. Figure 96 on page 150 shows the level map file created
for the 0 level of the MVS_Release_0 release. You can see four different fields:

• The file name
• The file version identifier in the database table files
• The file identifier in the database table files
• The change type: create, l ink, rename, noDelta, delete, and delta.

Chapter 5. Using CMVC 149

source/cobol/ibmdate.asm 56 57 create
source/cobol/ibmcust.asm 59 60 create
source/cobol/ibmou004.pan 62 63 create
source/cobol/ibmou003.pan 71 72 create
source/cobol/ibmou002.pan 74 75 create
source/cobol/ibmou001.pan 77 78 create
source/cobol/ibmou006.pan 80 81 create
source/cobol/ibmou005.pan 83 84 create
source/cobol/ibmbupda.jcl 86 87 create
source/cobol/ibmbsv3.jcl 89 90 create
source/cobol/ibmbsv3.cob 92 93 create
source/cobol/ibmbupda.cob 95 96 create
source/cobol/ibmbuins.cob 98 99 create
source/cobol/ibmbuenr.cob 101 102 create
source/cobol/ibmoupd1.cob 107 108 create
source/cobol/ibmoupd1.cls 113 114 create

Figure 96. /production/maps/MVS_Release_0/0 Level Map File

5.9.4 Completing the Level
What is the difference between a committed and complete level? These are
identical, if the process selected for the release does not include the test
subprocess. If the test subprocess is defined for this release, the test records
move to the ready state only after completion of the committed level.

To complete a level, display the CMVC - Levels window, highlight the 0 level,
and then select Complete... from the Actions pull-down. When the Complete
Levels dialog box comes up, select OK . Figure 97 shows how the MVS builder
committed the 0 level of the MVS_Release_0 release, using the CMVC client GUI.

Figure 97. Completing a Level from the CMVC Client GUI

You can also use the CMVC command-line interface to complete a level.
Figure 98 on page 151 shows the Level -complete command. Specify the
release by setting the CMVC_RELEASE environment variable prior to execution
of the CMVC Level -complete command.

150 CMVC Live

Level -complete 0

Figure 98. Completing a Level with the Level Command

In Figure 99, you can see that the track state has moved from commit to test, the
level state from commit to complete, and the test record is now in the ready
state.

Figure 99. CMVC Object Status after Level Complet ion

5.9.5 Extracting the Level or the Release
The level extraction depends on the progress of the problem tracking (level
state), but the release extraction can be executed at any time. When extracting
a release, you can choose which versions of all the files should be extracted by
selecting Current version or Committed version in the Extract Releases dialog
box. You can also specify a date after which you want to extract the updated
files. You can perform a delta or full extraction of a committed or complete level,
but you can only partially extract an integrated level (delta extraction).

Full extraction means that all changed files belonging to the level, as well as the
other files belonging to the release, are extracted. An integrated level can be
assimilated by an existing production release of your application. A committed
or complete level is a complete, new production release of your application.
When a level or release is extracted, CMVC builds the file system according to
the path names of the extracted files in the target directory.

Chapter 5. Using CMVC 151

To extract the level, display the CMVC - Levels window, highlight the 0 level, and
then select Extract... from the Actions pull-down. When the Extract Levels dialog
box is displayed, enter the fields according to your build target environment, and
then select OK . The extraction target directory should be NFS-exported on the
specified host. Select Expand keywords to transform the SCCS keywords
contained in your source files into CMVC information such as file name, version,
component, release, or level when the extract occurs. Refer to Appendix F,
“Source File and Program Identification with CMVC Keywords” on page 211 for
more information about the CMVC keywords. Figure 100 shows how the MVS
builder did a full level extract of the MVS_Release_0 release, using the CMVC
client GUI. The files in which SCCS keywords were expanded were extracted to
the product file tree, which is exported from its physical host, bering, to the
developer ′s workstation host, bengal.

Figure 100. Level Extraction from the CMVC Client GUI

To extract a release, display the CMVC - Releases window, highlight the release,
and then select Extract... from the Actions pull-down. When the Extract Releases
dialog box is displayed, enter the fields according to your build target
environment, and then select OK . The extraction target directory should be
NFS-exported on the specified host. Figure 101 on page 153 shows how the
MVS builder extracted the current version of all files in the MVS_Release_0

152 CMVC Live

release, using the CMVC client GUI. The files were extracted, with SCCS
keywords expanded, to the product file tree, which is exported from its physical
host, bering, to the developer′s workstation host, bengal.

Figure 101. Release Extraction from the CMVC Client GUI

You can also use the CMVC command-line interface to extract releases and
levels. Figure 102 on page 154 shows the CMVC Release and Level commands.
These commands are not as convenient to use, but they can be inserted in a
shell script to automate the production release builds of your application by
team members who are not as skilled with CMVC as your build engineers. In
the examples shown, the syntax of the CMVC Release command extracts the
current version of the MVS_Release_0 release, and the CMVC Level command
extracts the full 0 level of that release.

Chapter 5. Using CMVC 153

Release -extract MVS_Release_0 -node bengal \
-root ′ / ad/ProductA/MVS_Release_0′ -uid 366 -gui 1

Level -extract 0 -release MVS_Release_0 -node bengal \
-full -root ′ / ad/ProductA/MVS_Release_0′ -uid 366 -gui 1

Figure 102. Extraction of Level and Release with CMVC Command

In our project, when the release or level extract successfully completed we
uploaded the files from the /ad/ProductA/MVS_Release_0/source/cobol directory
located on the AIX host bengal to the MVS mainframe on which we built our
legacy version of the application.

5.10 Tester Tests the Application
In section 2.2.11, “Testing the Application” on page 35, the MVS tester was
responsible for testing the MVS_Release_0 release of the productA product on
the MVS mainframe. Therefore, this team member had to log in to the
mainframe, test the application there, and accept or reject the test record
associated with the prod_00001 defect and the MVS_Release_0 release.

To accept a test record, display the CMVC - Test Records window, press both
the Ctrl and O keys to display the Open List dialog box to enter a query that
results in the relevant test record being displayed. Select the test record, and
then select Accept... from the Actions pull-down. When the Accept Test Records
dialog box is displayed, select Yes .

Figure 103 shows how the MVS tester accepted the test record for the
MVS_legacy environment, which was associated with the prod_00001 defect and
the MVS_Release_0 release, using the CMVC client GUI.

Figure 103. Accepting a Test Record from the CMVC Client GUI

154 CMVC Live

You can also use the CMVC command-line interface to accept a test record.
Figure 104 on page 155 shows the Test command. Specify the release by
setting the CMVC_RELEASE environment variable prior to execution of the CMVC
Test -accept command.

Test -accept -defect prod_00001 -environment MVS_legacy

Figure 104. Accepting a Test Record with the Test Command

Figure 105 shows the relationships among the various CMVC objects at this
point in time. You can see that:

• The track state has moved from test to complete.
• The test record is now in accept state.
• The verification record state is now ready.
• The defect has changed from working to verify.

Figure 105. CMVC Object Status after Test Record Acceptance

5.11 Project Manager Ends the Migration
In the section 2.2.12, “Concluding the Migration” on page 36, the project
manager, who was the defect originator, verified that the migration had been
successful, by logging in to the mainframe and exercising the application. The
project manager was then willing to close the prod_0001 defect. Because the
MVS component process includes the verify subprocess, the project manager did
this by accepting a verification record.

Chapter 5. Using CMVC 155

To verify a defect or feature, display the CMVC - Verification Records window.
Press both the Ctrl and O keys to display the Open List dialog box. Enter a
query that results in the appropriate verification records. When the correct
verification record is displayed in the CMVC - Verification Records window,
highlight it, and then select Accept from the Actions pull-down. When the Accept
Verification Records dialog box appears, select Yes . Figure 106 shows how the
project manager verified that the prod_00001 defect was resolved, using the
CMVC client GUI.

Figure 106. Verifying a Defect f rom the CMVC Client GUI

You can also use the CMVC command-line interface to accept a verification
record. Figure 107 shows the Verify command.

Verify -accept -defect prod_00001

Figure 107. Accepting a Verification Record with the Verify Command

Figure 108 on page 157 shows the relationships among the various CMVC
objects and the final states of each of them at the end of the problem tracking.
You can see that the defect state has moved from verify to closed and the
verification record is now in accept state.

156 CMVC Live

Figure 108. CMVC Object Status At the End of the Problem Tracking

Now, you have initialized the application baseline. You are ready to start
collecting real defects and features and do controlled modifications to this
baseline.

5.12 Project Manager Asks about Sharing Files with AIX Release
In section 2.2.12, “Concluding the Migration” on page 36, the manager asked
about reusing the MVS source code in the AIX development.

You have two ways to reuse files or share files between releases. One way is to
link the releases together by executing the CMVC ReleaseLink action. This is the
best way, if you want to share all the files. The other way is to select the files
you want to share, and then perform the CMVC FileLink action. To select the
files, use the CMVC query capability from the Open File List dialog box and
select all of the displayed files, and then execute the CMVC FileLink action. Or,
if you know the file list, you can write a simple shell script using the File
command.

Our project manager decided to link the MVS_Release_0 release to the new
AIX_Release_1 release, because the team would reuse some of the files. This
was not the right choice, because the team had to delete several irrelevant files
from the new baseline (files related on the 3270 user interface). This problem is
described and solved in D.2.2, “Deleting a File” on page 202.

Only the CMVC ReleaseLink action is described in this section. The project
manager created the new release, AIX_Release_1, with the maintenance process,

Chapter 5. Using CMVC 157

and then opened the prod_00002 defect. The AIX developer accepted it, so its
state was working, and then created a track for it associated with the
AIX_Release_1 release, whose current state was fix.

To link one release to another, display the CMVC - Releases and press both the
Ctrl and O keys to display the Open List dialog box. Enter the Release field,
then press the Return key. When the correct release is displayed in the CMVC -
Releases window, highlight it, and then select Link... from the Actions pull-down.
When the Link Releases dialog box is displayed, enter the New release field. If
you have the CMVC - Defects window already displayed, highlight the
appropriate defect(s) or feature(s) and select Import on the CMVC - Releases
window. If not, enter the Defects/Features field by keying the values in. Select
Committed version , and then select OK . Notice that you have the choice
between Current version , Committed version , and Change after date to identify
which versions of the files should be linked. This choice enables you to create a
new baseline reflecting the state of the files at any point in the past. Figure 109
shows how the AIX builder linked two releases to initialize the AIX_Release_1
release, using the CVMC client GUI.

Figure 109. Linking Two Releases

You can link several releases to one release. To do that from the CMVC -
Releases window, you should display the source releases, then select them by
pressing the left mouse button without releasing it and dragging down the mouse
pointer. After highlighting all source releases, select Link... from the Actions
pull-down.

You can also use the CMVC command-line interface to link the releases.
Figure 110 on page 159 shows two examples of the Release command. In the
first example, the command links the MVS_Release_0 release to the
MVS_Release_1 release, referencing the prod_00001 defect. The second

158 CMVC Live

example, shows the command linking three hypothetical releases to a fourth
release, where problem tracking (defects and features) is not in use.

Release -link MVS_Release_0 to AIX_Release_1 \
-defect prod_00001 -committed

Release -link rel1 rel2 rel3 to targetRel

Figure 110. Two Examples of Linking Releases with the Release Command

Chapter 5. Using CMVC 159

160 CMVC Live

Chapter 6. Installing CMVC and Supporting Databases

In this chapter we describe installation of the CMVC server, which requires
previous installation of NetLS and ORACLE. Using the installation manuals for
each product, we installed ORACLE first, NetLS second, and CMVC third.

6.1 ORACLE Installation, Initialization, and Shut Down
The ORACLE for IBM RISC System/6000 Installation and User′s Guide Version 6.0
provides a detailed checklist of considerations and actions to take in order to
install ORACLE. The process involves running a shell script named oracle.install
once, while logged in as root, and again while logged in as oracle.

6.1.1 ORACLE and Asynchronous I/O
One topic not covered in our ORACLE Version 6 documentation was the topic of
asynchronous I/O. Asynchronous I/O is a feature of AIX 3.2 whose use was
incorporated into later releases of ORACLE Version 6, and most releases of
ORACLE Version 7. ORACLE advised us that the documentation for releases
later than ORACLE Version 6.0.36.3.2 addresses this issue in Release Bulletins
that accompany the distribution medium. It is also more formally discussed in
″Key to Oracle on AIX 3.2″ in Oracle 7 for IBM on the RISC System/6000
Installation and Configuration Guide. Asynchronous I/O is implemented as a
pseudo device driver (kernel extension) in AIX 3.2. Use of asynchronous I/O
by-products, such as database engines, improves performance with high user
volumes.

Before installing ORACLE, you should verify that asynchronous I/O is configured
and will also be configured on the next system reboot. If this is not the case,
you will get unresolved external references and a load failure when the ORACLE
program itself is loaded during the installation. Asynchronous I/O may already
be configured on your host but not configured to survive a system boot. If this is
the case, you will experience a trouble-free installation, but don′ t be surprised at
the next system startup, when asynchronous I/O is no longer configured.

To configure asynchronous I/O, select Configure Defined Asynchronous I/O from
the Asynchronous I/O menu in SMIT (fast path smit aio), or execute mkdev -l
aio0 . You must also explicitly set the field labeled “STATE to be configured at
system restart,” on the SMIT Change/Show Characteristics of Asynchronous I/O
screen, to available , or execute the chdev -l aio0 command.

6.1.2 ORACLE User ID, Group, and File System
For ORACLE we created the oracle UNIX login name, the /oracle file system, and
the dba and oracle UNIX login groups. We placed the root and oracle UNIX login
names in the dba UNIX login group. The oracle UNIX login name and dba login
group own the files in the /oracle file system.

 Copyright IBM Corp. 1994 161

6.1.3 Starting ORACLE
To support initialization of ORACLE on a system startup, ORACLE advises you to
modify the /etc/inittab file, by adding the following line:

When the ORACLE server is properly initialized there will be a set of background
processes running for each database instance. The names of these processes
include the unique SID for the database instance. Where XXX below is replaced
by the SID, these processes are named:

• ora_XXX_dbwr
• ora_XXX_lgwr
• ora_XXX_smon
• ora_XXX_pmon .

oracle:2:wait:/bin/su oracle -c /oracle/bin/dbstart

6.1.4 Stopping ORACLE
ORACLE also advised against editing the /etc/shutdown file to call their dbshut
command automatically whenever root brings the system down. We called
Oracle to determine the reasoning behind this advice and were told that the
dbshut command might fail to complete under certain, not too unusual,
circumstances. One such circumstance might be that CMVC has not yet been
shut down. If this happened, the entire system shutdown would likewise hang.
Instead ORACLE recommends that you log in as the oracle user and execute the
dbshut command interactively. This one command will shut down all ORACLE
databases listed in the /etc/oratab file that have a “Y” in the third field.
Following this procedure, if you encounter troubles bringing ORACLE down, you
can resolve them before continuing to bring AIX down.

Another interesting fact, which we discovered the first time we shut down
ORACLE, is that although the root UNIX login name is a member of the dba UNIX
login group and therefore should be able to execute ORACLE commands, such
as dbshut , it will not necessarily have all the environment variables set up as the
oracle UNIX login name has. We later ran dbshut as root, and found that
ORACLE refused to start up, indicating that it could not start because it was
already running. This anomalous situation occurred because a path name for a
file did not resolve properly, when dbshut ran in the root environment, and the
file was not removed, as it should have been. The existence of this file, one
defining the database′s system global area (SGA), causes ORACLE to assume it
is already running.

Since a system can go down in a less than orderly manner, you might still
occasionally find that ORACLE refuses to start on a system startup. If this
happens, ORACLE suggests you execute the command shown in Figure 111.

su - oracle -c ″sqldba command=startup force open ″

Figure 111. Forcing ORACLE to Start Up

This command starts up any database instance defined in the /etc/oratab file
that has a “Y” in the third field. This command should not only remove the
lingering SGA file but also ensure that ORACLE database recovery procedures
are executed.

162 CMVC Live

ORACLE will not shut down if CMVC daemons are currently executing.
Therefore, you want to bring CMVC down first, then ORACLE, and finally NetLS.

6.1.5 ORACLE SID and CMVC Family Relationship
The CMVC documentation describes very little about the database products, on
the assumption that they are best documented by their vendor. The ORACLE
documentation, naturally says nothing at all about CMVC. This left it to us to try
to map the conceptual elements of one paradigm to the other. When we decided
to create our second CMVC family, it was unclear what the relationship was
between a CMVC family and an ORACLE database. The CMVC documentation
does indicate that to create your second and subsequent families, you should
follow all the steps used to created the first family. When you run the mkfamily
command, you must use a new family name.

CMVC technical advisors tell us that we should be able to use the same SID to
create multiple CMVC families, but we did not know this at the time. So we ran
the oracle.install script again and created a unique ORACLE database instance
for each CMVC family. To minimize our confusion, we named the SIDs
identically to the family, which they would represent (this being allowable
because our family names are short enough). However, to be consistent with
what appeared to be an ORACLE convention, we spelled the names in
uppercase letters. This approach worked well for us, but there may be
implications of which we are unaware in using a unique SID for each family.

6.2 NetLS Installation and Initialization
CMVC Version 2 is one of the first IBM AIX products to come out enabled for
NetLS license control. In time many IBM LPPs and OPPs will make use of this
licensing mechanism. Since this is a fairly new concept, we discuss this topic in
the sections that follow.

6.2.1 License Serving Concepts
NetLS enables you to buy a license based on the maximum number of
concurrent users you want to support at the server at any one time. You can
install a NetLS license server on some host in the network and advise it of the
number of concurrent licenses authorized for a given LPP on a specific host in
the network. The LPP can be invoked from any host on the network. It requests
a NetLS token (equivalent to one licensed user), which it can keep for a
predefined period of time. When the time expires, the license server can
distribute the token again to the next requester. If no tokens are available, the
LPP can wait for one to become free or to return immediately; it depends on how
the LPP is programmed to interact with the license server. The CMVC clients
return a message indicating that a token was unavailable; they do not wait for a
token. If a token is available the CMVC clients connect to the CMVC server. An
LPP can be written to allow the client portion to execute without having a token
unless or until it needs access to the server. You can also indicate that you
need the token for a longer of time than the predefined minimum period for
which the token is valid.

Chapter 6. Installing CMVC and Supporting Databases 163

6.2.2 NetLS Password and CMVC Installation
You must obtain host identification data, by running the ls_targetid on the hosts
that are designated NetLS license servers. On AIX, this data looks very much
like the output of the uname command. You give this information to IBM, and
you receive in return a vendor ID, product ID, and two passwords. The vendor
password is used with the vendor ID to register the vendor in the NetLS
database. The product password encodes information, such as the product,
number of licenses, their type, and duration. These IDs and passwords are used
to register the licences with the NetLS server software after the LPP is installed,
but before you can use it. Additional licenses can be purchased and easily
identified to NetLS by means of updated passwords.

Each password returned to you by IBM encodes the number of concurrent
licenses you have purchased that can be issued from a particular host for a
particular LPP. You may want to have more than one NetLS license server. If
so, you will have to decide how many of the total number of licenses you have
purchased will be installed on each NetLS license server, before contacting IBM
to obtain your passwords.

NetLS requires the NCS daemons to be running. These daemons are llbd , the
Local Location Broker, and glbd , the Global Location Broker. The NetLS daemon
is netlsd . To ensure that NetLS-dependent clients and servers can operate on a
system startup, entries are made for you in the /etc/inittab file by the
installation procedures to start up the NetLS daemons and to execute the
/etc/rc.ncs script. The /etc/rc.ncs script starts up the llbd and glbd daemons.
We found that if we asked for three instances of the NetLS server to run, three
identical sets of entries were made in the /etc/inittab file. We suspect that one
entry would be sufficient. This entry is shown in Figure 112.

rcncs:2:wait:sh /etc/rc.ncs > /dev/console 2>&1
netlsd:2:wait:sh /etc/rc.netls >/dev/console 2>&1

Figure 112. Entries Made to /etc/inittab File by NetLS Installation

NetLS, and the daemons associated with it, must be brought down when
someone logged in as the root login name, deliberately shuts down the AIX
system.

Refer to Appendix G, “Appendix: Setting Up NetLS” on page 213 for the
procedure to install NetLS in a simple environment.

6.3 CMVC Installation and Initialization
The sections that follow describe actions taken while installing and initializing
the CMVC server. For each CMVC family, we created a user named the same as
the family itself. The families were named dev and prod. Likewise, we created a
file system for each family, but since the file system named /dev already existed,
we named them /development and /production. All files in those file systems are
owned by the family UNIX login name and the system UNIX login group. We
identified another AIX login name with which to create the CMVC families.
CMVC creates an initial CMVC user ID and identifies it with the AIX login name
that executes the commands to create a CMVC family. This CMVC user is the
default CMVC superuser for that family. We chose lrconas as the AIX login name
for this purpose and named the CMVC user identically.

164 CMVC Live

We also modified the /etc/inittab file to support initialization of CMVC on a
system startup. To start up CMVC, we required one entry to start up the server
daemons, and another to start up the notification daemon. These entries are
shown in Figure 113 on page 165.

cmvc1:2:wait:/bin/su - dev -c ″ /usr/lpp/cmvc/bin/cmvcd dev 3″
cmvc2:2:wait:/bin/su - dev -c ″ /usr/lpp/cmvc/bin/notifyd″
cmvc3:2:wait:/bin/su - prod -c ″ /usr/lpp/cmvc/bin/cmvcd prod 3″
cmvc4:2:wait:/bin/su - prod -c ″ /usr/lpp/cmvc/bin/notifyd″

Figure 113. Entries Added to the /etc/inittab File.

Since we could not shut down ORACLE automatically, by means of the
/etc/shutdown command (shell script command), we could not shut down CMVC
that way either, for the latter must precede the former. To shut down CMVC, we
had to issue the commands shown in Figure 114. Each command had to be
issued while we were logged in as the appropriate CMVC family UNIX login
name.

/usr/lpp/cmvc/samples/stopCMVC dev
/usr/lpp/cmvc/samples/stopCMVC prod

Figure 114. Commands to Shut Down CMVC for Our Families

Chapter 6. Installing CMVC and Supporting Databases 165

166 CMVC Live

Appendix A. Implementation of ISO 9001 Using CMVC

This appendix provides a brief introduction to ISO 9000 and describes how the
IBM CMVC tool can be utilized to meet some key ISO 9001 elements.

The software engineering industry is the fastest growing industry in the last half
of the century. Throughout the industry, software development organizations are
struggling with the challenges of reducing costs, increasing productivity and
improving quality. Towards these efforts, quality management of software is
essential. One way to establish a quality management system is to provide
guidance for software quality assurance. Such guidance is found in the
International Standard Organization (ISO) 9000 series of quality standards: ISO
9001, ISO 9002, ISO 9003.

ISO 9000 compliance is of key importance to organizations if they are to survive
the fierce competition of the 1990s and beyond. With the introduction of ISO
9000, the software engineering industry has experienced a shift towards
implementing techniques and processes aimed at developing processes that are
well defined and repeatable. Adoption of these proven techniques and
processes allows an organization to improve the overall process of:

• Creating world class software

• Maintaining a dynamic, responsive, and innovative environment

• Attaining a high return on investment through the pursuit of total customer
satisfaction.

Software tools can assist in improving an organization ′s management system
and meeting ISO 9000 compliance. The IBM Configuration Management Version
Control tool is an effective tool that simplifies the organization and management
of diverse tasks involved in software development so that you can improve your
entire product development process and it can be used to comply to some key
elements of ISO 9001.3

A.1 ISO 9000
To facilitate the standardization of the many aspects of quality, the International
Organization for Standardization (ISO) has developed a set of international
standards for quality systems which are known as the ISO 9000 Series of Quality
Standards. These standards apply to all organizations producing a product or
service and are being accepted world-wide. An indication of their acceptance
and significance in the software engineering industry, in particular, is reflected in
Hubner′s words, “To obtain an ISO 9000 certification has become a business
necessity in Europe” [1]. It is only a matter of time before ISO 9000 certification
becomes a business necessity in North America and the Orient.

Three key ISO 9000 standards are:

• ISO 9001, Quality systems - Model for quality assurance in
design/development production, installation and servicing.

3 IBM software development Labs in Toronto and Austin use IBM CMVC to manage and control the software development
process and implement certain elements of the ISO 9001 standard.

 Copyright IBM Corp. 1994 167

• ISO 9002, Quality systems - Model for quality assurance in production and
installation.

• ISO 9003, Quality systems - Model for quality assurance in final inspection
and test.

ISO 9001 provides the most comprehensive requirements for a software quality
system where a contractual agreement between two parties must demonstrate
the supplier′s ability to design and supply a product or service.

Recognizing the peculiarities of the software industry, ISO 9000-3, a guideline for
the application of ISO 9001 to the development, distribution and maintenance of
software, has been released. Configuration management is a key element in
this ISO 9000-3 guideline for software.

A.2 CMVC and ISO 9001
Configuration management provides a mechanism for identifying, controlling and
tracking the versions of each software item. In many cases, multiple versions of
software items are in use and must be maintained and controlled. Configuration
management itself is not an element of the ISO 9001 standard (only an element
of ISO 9000-3 guidelines); however, the following elements of ISO 9001 depend
on configuration management:

• Document Control

• Design Control

• Product Identification and Traceability

• Inspection and Test Status

• Control of Nonconforming Product

• Internal Quality Audits.

Only certain aspects of Document Control, Design Control, Control of
Nonconforming Product and Internal Quality Audits are addressed by
Configuration Management. Product Identification and Traceability and
Inspection and Test Status are fully addressed by it.

The remaining sections describe these ISO 9001 elements and highlight how
CMVC can support them.

A.2.1 Document Control
Document Control covers:

• The determination of those documents that should be subject to document
control procedures

• The approval and issuance of document control procedures

• The change procedures including withdrawal and, as appropriate, release.
[3]

The aspects of Document Control that can be successfully addressed by CMVC
are:

• Documents must be accessible to a group of people with predetermined
interest and authority.

168 CMVC Live

• The changes to the content of a document under document control have to
be reviewed by a prespecified group of reviewers and the final version of the
document has to be approved by them.

• All the users of the document have to be notified of the changes to it.

• Once the new document is finalized and becomes the most recent working
document, provisions must be taken to prevent users from using a back-level
version of the same document.

Files and documents pertaining to a particular project reside in one more CMVC
components (where each CMVC component is dedicated to a specific
department and/or all documents related to a particular project).

An access list and a notification list is associated with each CMVC component.
The type of access each user has to the documents stored in CMVC depends on
the user′s role in the development team. The type of notification each user has
depends on the interest or need to be informed of changes to documents in the
CMVC environment. Access authority and notification subscription is assigned to
a user by the component owner or by someone who has the authority to grant
other users access and notification to a specific component. When a document
is updated, the owner of the managing component where the document resides
and all users who have subscribed to being informed of document updates
receive mail notifying them of the update.

When the CMVC approval process is activated, approval must be given for
proposed changes before work can begin on the implementation of a change.
Approvers specified for each release need to review the information recorded in
the defect or feature and evaluate the proposed changes to the release in
relation to other project considerations. A CMVC approval record is created for
each approver. Each approver indicates his or her evaluation of the changes
and can optionally append comments to the defect or feature to explain the
rationale for his or her decision. File changes for that defect or feature in that
release cannot be checked in to the CMVC server until all approvers accept the
proposed changes. [4]

A.2.2 Version Control in ISO 9001
Certain aspects of Design Control, Product Identification and Traceability,
Inspection and Test Status, and Control of Nonconforming Product deal with the
issue of version control. Activities are versioning documents and source
modules that compose a product; identifying the various versions of the
documents and source modules and the reasons why changes were made from
one version to the next; inspecting and testing the content of each version and
recording the status of this outcome; and finally, controlling nonconforming
products and identifying the version of documents and source modules that
reflect the nonconformance.

Version control, by definition, is the storage of multiple versions of a single file
along with information about each version. [4] CMVC provides for version
control and enhances this basic function with an extra layer of traceability so
that each version is cross-referenced to a reported defect or a suggested
enhancement.

The following sections highlight the specific sections of each of the ISO 9001
elements that emphasize the need for version control mechanisms in an
organization.

Appendix A. Implementation of ISO 9001 Using CMVC 169

A.2.2.1 Design Control
The ISO 9001 element of Design Control states that “the supplier shall establish
and maintain procedures to control and verify the design of the product in order
to ensure that the specified requirements are met.” One of the items that define
this element of Design Control is the Control of the Design Changes, which is
designed as:

“The supplier shall establish and maintain procedures for the
identification, documentation and appropriate review and approval
of all changes and modifications.” [2]

CMVC can be used to control and verify the design of a product in a number of
ways. First, the design specification documents themselves can be stored in
CMVC. Modifications to the content of the design specifications can be
controlled from both an access and an update perspective. Development teams
can make use of the problem-tracking feature of CMVC to track and control the
changes to design specifications and to ensure that all changes have been well
documented, justified, and reviewed for appropriateness and applicability.
CMVC′s design, size and review process for reported defects and suggested
features provides for the identification, documentation and appropriate review of
all changes and modifications. CMVC′s tracking process allows development
teams to cross reference changes to design documents or source modules to the
reported defects and features. It also provides an additional layer of control to
those teams seeking an approval checkpoint prior to versioning the documents
and a review of the changes after making the modifications but prior to
committing them.

When source modules for a product are managed by CMVC, development teams
can ensure that the changes made to the product are consistent with its design
by using the integrated problem tracking and change control feature of CMVC.
Attributes of reported defects and features can be used to cross-reference
design documents with the proposed source module changes to the product.
CMVC′s ability to track required changes in all project deliverables ensures that
appropriate updates are made to design documents, source modules, test cases
and end-user documentation for each reported defect and suggested
enhancement of the product.

When the time comes to release a product, development teams can benefit from
CMVC′s ability to maintain multiple versions or variants of a product.
Enhancements for the next release can be incorporated into design documents
and source modules without disrupting the integrity of the products that have
been distributed.

A.2.2.2 Product Identification and Traceability
The ISO 9001 element applicable to version control for Product Identification and
Traceability states:

“here appropriate the supplier shall establish and maintain
procedures for identifying the product from applicable drawings,
specifications or other documents, during all stages of production,
delivery and installation. Where and to the extent that,
traceability is a specified requirement, individual product or
batches shall have a unique identification. This identification
shall be recorded.”[2]

170 CMVC Live

When CMVC is used as the configuration management and version control tool
for software development activities, several levels of identification and
traceability are available.

Each version of a document or source module is identified by a version number.
The combination of this version number, as well as the document or source
module name (CMVC file name), and the product name that the document or
source module is associated with (CMVC release name), uniquely identify a file
in CMVC.

As previously discussed, changes to documents and source modules can be
cross-referenced to CMVC defects and features. Users can then query the
history of changes and identify the content of each version of a document or
source module and the reason why it has changed over time. Alternatively,
users can query the details of the defects and features to determine the
document or source modules that were changed as a result of fixing a reported
problem or implementing a suggested feature.

CMVC records the time and date of the changes to documents or source
modules as well as the user who makes each change. This information provides
additional traceability and can be queried at any time.

A.2.2.3 Inspection and Test Status
The ISO 9001 element applicable to version control for Inspection and Test
Status states:

“...The identification of inspection and test status shall be
maintained, as necessary, throughout production and installation
of the product to ensure that only product that has passed the
required inspections and tests is dispatched, used or installed.
Records shall identify the inspection authority responsible for
the release of conforming product.”[2]

The CMVC problem tracking mechanism allows development teams to establish
two types of testing procedures. When development teams use the tracking
mechanism, they can define test environments and testers for each release of a
product. As defects are fixed and features are implemented, CMVC activates
test records for each of the test environments and testers indicating when the
changes made to documents and source modules have been committed in the
product. Testers are notified when their test records are ready to be marked.
By marking a test record with an accept, reject, or abstain status, a tester relays
information to the development team as to the status of the change. When test
records are rejected, additional defects or features can be opened to track the
nonconformances, and attributes in both the original and the new defects or
features can be used to cross-reference problems of a similar nature.

Another type of testing occurs at the end of the CMVC defect or feature lifecycle.
Once applicable documents or source modules have been changed and
committed into the various products, the originator of the defect or feature has
the opportunity to verify that the resolution of the problem or the implementation
of the suggestion has been accomplished to his or her satisfaction. Originators
record their satisfaction of the outcome on verification records.

The status of test and verification records, the owner of test and verification
records, and the timestamp of when each record was last updated is maintained

Appendix A. Implementation of ISO 9001 Using CMVC 171

in CMVC. The reporting mechanism allows users to query the status of these
records at any time.

A.2.2.4 Control of Nonconforming Product
The ISO 9001 element applicable to version control for the Control of
Nonconforming Product states:

“....Control shall provide for identification, documentation,
evaluation, segregation (when practical), disposition of
nonconforming product and for notification to the functions
concerned.” [2]

Nonconformances with respect to products managed by CMVC are identified by
opening a CMVC defect or a CMVC feature. Once the nonconformances are
identified, the development teams can evaluate the validity of the
nonconformance, and can return the defect or feature as invalid, as a
documented deviation, or as a nonconformance that has already been addressed
by another defect or feature report. Alternatively, the development team can
decide to accept responsibility for the nonconformance and schedule its
resolution in the appropriate product releases. In either case, all users who
have subscribed to defect and feature reports and state changes will be kept
informed.

When nonconformances are received for products that have been released to
customers, development teams can resolve the nonconformance and reissue a
product update. Development teams can make use of the attributes associated
with product levels to describe the status of the package. For instance, a
product level may be shipped and then subsequently replaced with a newer
version that includes fixes for nonconformances.

A.2.3 Internal Quality Audits
“.....The audits and follow-up actions shall be carried out in
accordance with documented procedures. The results of the audits
shall be documented and brought to the attention of the personnel having
responsibility in the area audited. The management personnel
responsible for the area shall take timely corrective action
on the deficiencies found by the audit.” [2]

An example of how IBM addressed this element using CMVC, is the internal
audits to check the level of compliance of the various departments in the IBM
PRGS Toronto Lab. Internal audits were conducted and nonconformances were
issued and monitored until a satisfactory corrective action plan was put in place
and successfully implemented.

In a specific area, a component dedicated to ISO 9001 was created and an owner
was assigned to it. Traditionally, the owner of this component is the ISO focal
point for the area. Each department in the area had its own component where
all the documents and processes were stored.

The internal audit group would open defects (Nonconformances) against the area
component. The component owner would then route the nonconformances to
the corresponding department component. The departments are responsible for
creating their own corrective action plan. Each corrective action was appended
to the nonconformance in CMVC, and all the interested parties were notified that
remarks were appended to the specific nonconformance.

172 CMVC Live

The remarks added to each of the nonconformances that described the
corrective action were retrieved via CMVC and then forwarded to the internal
audit group for review. This group created the actual corrective action plan for
each department and hence for the area as a whole.

A.3 Conclusion
To make software quality a reality and to comply to the ISO 9001 standard,
CMVC can successfully be used for:

• Design Control
• Document Control
• Product Identification and Traceability
• Inspection and Test Status
• Control of Nonconforming Product
• Internal Quality Audits.

A.4 Brief Description of ISO 9000-3
This section describes the five elements listed in the section A.2, “CMVC and
ISO 9001” on page 168, as well as the 9000-3 element on Configuration
Management.

A.4.1 Configuration Management
Configuration Management should:

• Uniquely identify the versions of each software item

• Identify the versions of each software item that together constitute a specific
version of a complete product

• Identify the build status of software products in development or the status of
those software products delivered and installed

• Control simultaneous updating of a given software item by more than one
person

• Provide coordination for the updating of multiple products in one or more
locations as required

• Identify and track all actions and changes resulting from a change request,
from initiation through to release.

A.4.1.1 Configuration Identification and Traceability
To establish and maintain procedures for identifying software items during all
phases, starting from specification through development, replication and
delivery, each individual software item should have a unique identification.

There should be provisions to uniquely identify the following items for each
version of the software:

• The functional and technical specifications

• All development tools which affect the functional and technical specifications

• All interfaces to other software and/or hardware items

• All documents and computer files related to the software item.

Appendix A. Implementation of ISO 9001 Using CMVC 173

The identification of a software item should be handled in such a way that the
relationship between the item and the contract requirements can be
demonstrated.

For released products, there should be procedures to facilitate traceability of the
software item or product.

A.4.1.2 Change Control
Procedures should be in place to identify, review and authorize any changes to
the software items under the control of configuration management. All changes
to software items should be carried out in accordance with these procedures.

Before a change is accepted, its validity should be confirmed and the effects on
other items should be identified and examined.

Methods to notify those concerned of the changes and to show the traceability
between changes and modified parts of software items should be provided.

A.4.1.3 Configuration Status Report
The supplier should establish and maintain procedures to record, manage and
report on the status of software items, of change requests and of the
implementation of approved changes.

A.4.2 Design Control
The supplier should establish and maintain procedures to control and verify the
design of the product in order to ensure that the specified requirements are met.

A.4.3 Document Control
Procedures should be established and maintained to control all documents that
relate to the contents of this part of ISO 9000. They cover:

 1. The determination of those documents that should be subject to the
document control procedures.

 2. The approval and issuance of document control procedures.

All documents should be reviewed and approved by authorized personnel
prior to issue. Procedures should exist to ensure that the pertinent issues of
appropriate documents are available at appropriate locations where
operations essential to the effective functioning of the quality system are
performed. Obsolete documents should be promptly removed from
appropriate points of issue or use.

Where use is made of computer files, special attention should be paid to
appropriate approval, access, distribution and archiving procedures.

 3. The change procedures including withdrawal and, as appropriate, release.

A.5 References
 1. Hubner, A. ISO 9000 Implementation in Germany , LOGON , Volume 4, Number

4, September 1992 (IBM Internal Use)

 2. International Standard: ISO 9001, Reference Number ISO 9001:1987(E)

 3. International Standard: ISO 9000-3, Reference Number ISO 9000-3:1991(E)

 4. IBM CMVC Concepts, SC09-1633-00, IBM Corporation, 1993.

174 CMVC Live

Appendix B. Monitoring and Enhancing the Quality of Software with
CMVC

Assessing the quality of a software product is a task that all software
organizations eventually struggle with. This appendix briefly outlines software
quality and the fundamentals of Software Reliability, and demonstrates how the
IBM Configuration Management Version Control tool has been used, not only for
managing the software development process, but also for providing data that can
be used to predict and improve the quality of the software products under
development.

B.1 Introduction
The software engineering industry is the fastest growing industry in the last half
of this century. Throughout the industry, software-development organizations
are struggling with challenges such as reducing costs, increasing productivity
and improving quality. Without the appropriate focus on quality, the costs of
software testing and maintenance will increase. The productivity of the whole
software development team will be lower than it could have been if quality was
built into, rather than tested into, the product.

While the manufacturing sector has achieved significant improvements in
hardware reliability and has reduced manufacturing costs by using mathematical
and statistical techniques, there is still no complete scientific and quantitative
method of assessing software quality. Neither software testing nor proving can
guarantee complete confidence in the correctness of a program. What is needed
is a metric to reflect the level of program correctness, something that can be
used to plan and control the additional resources needed to enhance software
quality. Software Reliability is a good example of a quantifiable metric
commonly used for assessing software technologies.

B.2 Software Quality
Intensive and well-planned testing will undoubtedly reveal a high percentage of
the errors in a software product. Chances are, however, that some errors will
go unnoticed.

Software companies have recently shifted their focus toward implementing
methods for improving software quality. Despite all of the attention, there is still
no unique definition of software quality. Software quality takes on different
meanings depending on the individual perspective. For some, software quality is
a product that meets specifications. For others, software quality is the absence
of defects in the software product or the adherence to the ISO 9000 quality
standards. Dunn [5] suggests that software quality is a set of attributes in the
software product such as reliability, usability and usefulness, maintainability and
salability.

Market Driven Quality (MDQ), with an emphasis on customer focus, six sigma
(6σ)4 focus on defect levels, and Malcolm Baldrige awards are common

 Copyright IBM Corp. 1994 175

elements among corporate strategies designed to achieve the objective of high
quality products.

To help standardize the many aspects of quality, the International Organization
for Standardization has published a set of quality assurance standards called
ISO 9000. ISO 9000 consists of a 20-requirement quality system ranging from
management responsibility to statistical techniques. An indication of its
importance in the software engineering industry is reflected in Hubner′s
declaration: ″To obtain an ISO 9000 certification has become a business
necessity in Europe″ [2]. It is only a matter of time before ISO 9000 certification
becomes a business necessity in North America and the Orient.

The IBM definition of software quality is an enriched version of Dunn′s definition.
IBM uses the CUPRIMDS acronym to describe a set of attributes (capability,
usability, performance, reliability, installability, maintainability, documentation
and serviceability) that conforms to its definition of software quality.

In IBM, the quality effort has been directed toward MDQ and 6 σ defect levels. At
the IBM Programming Systems (PRGS) Toronto Lab, the strategy is to use the 6σ
defect count as a criterion for deciding whether a product should be released to
the market. Software configuration management systems are being used to help
monitor the progress towards this goal.

B.2.1 Process Maturity Levels
An organization can be classified into a particular level of process maturity
depending on the characteristics that it displays during the development cycle of
a product. There are five levels of process maturity [3]:

 1. Initial : Until the process is under statistical control, orderly progress in
process improvement is not possible. While there are many degrees of
statistical control, the first step is to achieve rudimentary predictability of
schedules and costs.

A large number of organizations have no formalized procedures for cost
estimates, project plans or change control. While some organizations have
formal procedures for planning and tracking their work, most have no
mechanism to ensure that the procedures are used. These organizations
portray the initial level of process maturity.

Having configuration management and change control mechanisms in place
makes it easier and more affordable for an organization to achieve the
second level (repeatable) of process maturity.

 2. Repeatable : The organization has achieved a stable process with a
repeatable level of statistical control. It does not have rigorous project
management of commitment, costs, schedules and changes.

 3. Defined : The organization has defined a process as a basis for consistent
implementation and better understanding and everyone in the organization is
following the process.

4 Sigma (σ) is the mathematical notation for the standard deviation. In terms of software, 6σ translates into a defect count of
approximately three to four defects per million lines of code or a quality level of 99.9999998%. The typical software product
produced by the average software organization in the United States has three to four defects per thousand lines of code; a
quality level of 99.98% or 4σ.

176 CMVC Live

 4. Managed : The organization has initiated comprehensive process
measurements and analysis. The most significant quality improvements
begin.

 5. Optimized : The organization now has a foundation for continuing
improvement and optimization of the process.

B.2.2 Software Reliability
The underlying concepts of quality control are closely related to a series of
mathematical and statistical models. These models are used to monitor and
predict the quality of software products. By carefully collecting data on failures
as they occur and subsequently deducing the type of model that describes these
failures, the project manager can estimate, with a reasonable degree of
accuracy, the number of defects, or possible failures, remaining in the software
product. Having access to this kind of information helps the decision maker
decide whether a product is ready for release to the market.

Many mathematical and statistical models predict the quality of software; among
them are: Markov Models, Nonhomogeneous Poisson Process Models (NHPP)
[6], Static Models, and, Bayesian Analysis and Modelling. (A discussion of these
models can be found in the section B.6, “Discussion on Certain Reliability
Models” on page 180).

An important aspect of Software Reliability is acquiring actual and valid data.
Identification of data sources and the selection of a data-collection mechanism is
not a trivial task. Data is traditionally defined as ″the number of failures of the
software product under test or usage as they occur over time″. Failure, in this
case, is defined as any unexpected behavior of the software product. However,
this definition excludes changes made because of suggestions aimed at
improving functionality or any other type of enhancement to the software
product. A failure is also classified according to a severity level. It may be a
fatal defect causing the software application to fail (crash), or it may be a mere
inconsistency in the way a particular aspect of the application ″looks″.
Distinguishing the various categories in the data is important to the overall
quality assessment of the software product.

B.3 CMVC and Quality Control
The IBM PRGS Toronto Lab uses CMVC to manage and control its
software-development process and monitor the resolution progress of identified
defects for several UNIX-based software products under development. The
development teams in the Application Development Technology Center of the
Lab are supported by a quality focus group whose role is to monitor the
progress and defect statistics of the various development teams and identify the
Software Reliability model that best fits the data.

CMVC helps the quality focus group do just that. It tracks reported problems and
retains information about the life cycle of each in a relational SQL database
residing on the CMVC server.

Appendix B. Monitoring and Enhancing the Quality of Software with CMVC 177

During the development life cycle of a product5, testers, developers and general
users report defects as they encounter them. Each defect is opened against a
specific CMVC component, a component that represents the source of the
problem. All interested parties are notified of the newly reported defect as soon
as it enters the system. Interested parties are made aware of changes related
to the product, and they can express their views on the reported problem. The
owner of the component automatically becomes the owner of the newly created
defect and is responsible for analyzing the validity of the reported problem. If
the defect is valid, it is accepted for resolution and becomes part of the defect
statistic. If it is not a valid defect, it is returned to its originator.

The quality focus group retrieved the status of defects and features from CMVC
at regular intervals. Data regarding the number of defects in the open and
closed states was collected on a regular basis and was input into a Lotus 1-2-3**
spreadsheet. Graphs of the data were generated for weekly management
meetings. The graphs formed the basis of discussion on each development
project from both a quality and a schedule perspective.

An example of a graph depicting the information collected is shown in
Figure 115. The information provided through the graph addresses the following:

 1. The number of valid defects in the open state versus time (where time is
measured in weeks).

 2. The cumulative number of defects in the closed state versus time (where
time is measured in weeks).

Figure 115. Defect Status over the Time

The difference between the first and the second curves, as they propagate over
time, describes whether the arrival rate of valid defects is greater than or less
than the rate at which the defects are being fixed. This information keeps
managers informed about the current status of the projects, but does not allow

5 The various phases of the development cycle are described in the section B.7, “Classification and Definition of Test Phases”
on page 181.

178 CMVC Live

them to predict the long run trend of the data (and hence the long run status of
the projects).

For predictions, the same data was input into the mathematical models that are
described in the section B.6, “Discussion on Certain Reliability Models” on
page 180. The quality focus group could predict fairly accurately the behavior of
the system over time. Therefore, they could determine when the products would
have n-many latent defects as shown in Figure 116. If n was an acceptable
figure, based on the 6σ criterion, then the time corresponding to n was the
earliest time possible for releasing the product.

Figure 116. Predicting the Number of Latent Defects

As defects were opened during the development cycle, the quality focus group
was able to identify, using CMVC′s reporting capability, the error prone modules
and files. Eventually, a program was written to extract this information from
CMVC during the evening, in a process transparent to the developers. The
identification of high defect-density modules allowed the project teams to decide
whether to redesign or partition the modules into more manageable and
cohesive units.

Usability is another area of quality where CMVC is instrumental. Design
enhancements are reported from users and the usability team throughout the
development cycle. Each design change is reported by opening a feature. The
feature owner is responsible for analyzing the design change and estimating the
amount of work needed to implement it. The decision whether a design change
should be implemented is made based on the technical feasibility and the
implementation time required. With CMVC, the feature owner can defer a
feature to a future release or return it to the originator as not being technically
feasible. In general, CMVC tracks all reported design changes and retains
information about their life cycle in the SQL database residing on the CMVC
server.

Appendix B. Monitoring and Enhancing the Quality of Software with CMVC 179

B.4 Conclusions
Product quality is of key importance to organizations if they are to survive the
fierce competition of the 1990s and beyond. The software engineering industry
has recently experienced a clear shift toward putting techniques and processes
in place to improve the quality of software products.

To make that quality goal a reality, CMVC:

• Tracks reported problems (defects), retrieving the necessary information and
subsequently using it for both status reports and predictive models.

• Controls the evolution of the product, as well as the changes to files.

• Facilitates the tracking of design changes (features) to enhance the usability
and performance of a product.

B.5 References
 1. IBM AIX CMVC/6000 Concepts., SC09-1433-00, IBM Corporation.

 2. Hubner, A. ISO 9000 Implementation in Germany, LOGON, Volume 4, Number
4, September 1992 (IBM Internal Use)

 3. Humphrey, W.S. Managing the Software Process. SEI Series in Software
Engineering, Addison-Wesley, August 1990.

 4. Yourdon, E. Decline and Fall of the American Programmer. Yourdon
Press/Prentice Hall, 1992.

 5. Dunn, R. ″SQA: A Management Respective.″ American Programmer,
November 1990.

 6. Goel, A.L. ″Software Reliability Models: Assumptions, Limitations, and
Applicability″. IEEE Transactions on Software Engineering. Vol. SE-11 No.12,
December 1985.

 7. Xie, M. Software Reliability Modell ing. World Scientific Publishing, 1991.

 8. Feiler, P.H. ″Configuration Management Models in Commercial
Environments.″ Technical report CMU/SEI-91-TR-7, Software Engineering
Institute, Carnegie Mellon University, 1991.

B.6 Discussion on Certain Reliability Models
A Markov process is a stochastic process {X(t), t>0} whose future development
depends only on the present state of the process. In other words, the future
behavior of the process does not depend on the past history of the process. The
Jelinski-Moranda model is one of the earliest, based on Markov process,
reliability models. The assumptions governing this type of model are:

• The number of initial software faults is an unknown but fixed constant.
• A detected fault is removed immediately, and no new fault is introduced.
• The times between failures are independent, exponentially distributed

random quantities.
• All remaining software faults contribute the same amount to the software

failure intensity. [7]

Nonhomogeneous Poisson Process Models (NHPP) have been used extensively
and with success in studying hardware-reliability problems. They are

180 CMVC Live

particularly useful when used to describe failure processes possessing certain
characteristics, such as deterioration (or growth) trends. The application of
NHPP models to software engineering is easily implemented. The cumulative
number of software failures up to time t, N(t), can be described by a NHPP.
Actually, N(t) follows a Poisson distribution with parameter m(t). The probability
that N(t) is a given integer n is expressed by:

P { N (t) = n } = ([m(t)]n / n!) e(-m(t)), n = 0, 1, 2,...

where m(t) is the mean value function and describes the expected cumulative
number of failures in [0,t), and (t) is the instantaneous failure rate. The
underlying assumptions of the NHPP are:

• N(0) = 0
• {N(t), t≥ 0} has independent increments
• P{N(t+h) -N (t)=1 } = λ(t) + o(h)
• P{N(t+h)-N(t)≥ 2 } = o(h)
• o(h) →0 as h →0.

Static Models are quite useful where time is not an important variable. A static
model is used for estimating the number of software faults, assuming that faults
are not removed immediately after detection. Xie [7] presented a collection of
static models and described the underlying assumptions of each model.

Bayesian Analysis and Modeling . techniques are used to deal with certain
problems that are common to Markov and NHPP models, for example, parameter
estimation. Even the use of least square estimation, which is a straightforward
process, does not give adequate results all the time [7]. A classic example of a
Bayesian model and the most widely used in the existing literature is the
Littlewood-Verall model. It assumes that times between failures are
exponentially distributed with a parameter that is treated as a random variable,
which is assumed to have a Gamma prior distribution. The choice of Gamma
distribution is mainly due to its flexibility. It assumes that the successive times
between failures are independent, exponentially distributed random variables
with density function:

f(t i |λ i) = λ i exp{-λ i t i}, i=1,2,....n;

where λ i is an unknown parameter whose uncertainty is due to the randomness
of the testing and the random location of the software faults.

B.7 Classification and Definition of Test Phases
The test phase of development consists of :

• unit test
• functional verification test
• product verification test (including stress test)
• customer environment test
• regression test

Each phase has its own objectives and strategies.

The purpose of unit test is to ensure that, after coding a particular segment, it
works as designed. Also, after the integration of various code segments, unit
testing is necessary to confirm that the resulting code still performs as planned.
In our environment, unit testing is conducted by the same developers who write
the code. Defects found during this phase are not usually reported. Instead,
developers correct the defects prior to checking in the new modules.

Appendix B. Monitoring and Enhancing the Quality of Software with CMVC 181

The objective of a functional verification test is to ensure that a group of modules
function as designed and that the design meets the specification. Any defects
found during this phase are reported.

Product verification test focuses on installability, usability, stress standard
compliance, configuration test, and performance of the software product.

The objective of a customer environment test is to ensure that the software
product functions, as specified, in a customer-like environment composed of
various software products and hardware configurations.

Regression test ensures that any changes made to the software product, as a
result of defects found in any of the test phases, do not impact its functionality.

182 CMVC Live

Appendix C. User Exit Samples and Suggestions

This appendix describes the two user exit programs used by our project. The
first one inserts a module header into the C source files, and the second one
generates the defect and feature numbers. It also gives some suggestions of
user exit programs which could be associated with certain CMVC actions.
Figure 117 shows how the /production/config/userExits file has been modified
to enable the user exit programs.

call insertHeader.ksh after CMVC checking
FileAdd 1 insertHeader.ksh

call problemNumber.ksh after CMVC Defect and Feature opening
DefectOpen 2 problemNumber.ksh Defect
FeatureOpen 2 problemNumber.ksh Feature

Figure 117. Prod′s config/userExits fi le

The user exit programs were integrated into CMVC by copying them into the
/production/bin directory, so that CMVC could access and call the routine when
necessary.

The last section of this chapter gives you some suggestions about how to use UE
to adpat CMVC to your development methodology.

C.1 User Exit to Insert a Header and CMVC Keywords
Almost every development shop has a certain module header for source files
that includes preliminary information, such as company copyright, file author,
and function interface. Figure 118 on page 184 shows a shell script invoked
when bringing a new file under CMVC control. This shell script inserts a module
header at the top of file according to the type of the file. It also adds CMVC
keywords enabling future identification of the executable file with the SCCS what
command. CMVC keywords are expanded when a file, release, or level is
extracted.

This user exit program illustrates a problem we had when we tried to get the
UNIX login name from the parameter list. This parameter follows the Remark
field. Each word of the remark text is considered as a parameter, which means
that the number of parameters is not constant. When you want to get a
parameter located after the Remark field, you have to calculate the position from
the end of the parameter list as shown in Figure 118 on page 184 (�1�).

Note: If you do not fill in the Remark field, CMVC uses “Initial version” text.

 Copyright IBM Corp. 1994 183

#!/bin/ksh
##
FUNCTIONS
##
addHeader()
{

test if the header should be added in this type of file
case $1 in
c | C | h) RC=0;;

*) RC=1;;
esac

}
Header_c_h()
{

print ″
(C) COPYRIGHT International Business Machines Corp. $(date +%Y)
All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADF Schedule Contract with IBM Corp.
#---+
|
USAGE: |
WHERE: |
|
|
#---+
″
}
Header_c()
{

print ′ / **′
Header_c_h
Get The real name of the person requesting the addFile

Report -view users -where ″login=′ $USERID′ ″ -stanza \
-family $FAMILY -become $ADMIN |
grep name | sed ″s/name/Author′ s name/″

print ′ **/′
##%Z% expanded to @(#). String used by the UNIX command ″what″
##%I% expanded to version identifier
##%W% expanded to file name, component name, release name,
level name if exists
##%D% expanded to date of the latest check-in
##%T% expanded to time of the latest check-in
print ′ static char CMVC_ID[]=″%Z% %I% %W% %D% %T%″ ′

}
Header_C()
{

Header_c
}
Header_h()
{

print ′ / **′
header_c_h
print ′ **/′
print ′#define CMVC_ID ″%Z% %I% %W% %D% %T%″ ′

}

Figure 118 (Part 1 of 2). UE Shell Script to Insert a Header and CMVC Keywords

184 CMVC Live

##
MAIN PROGRAM
##
FAMILY=prod
ADMIN=lrconas
set -A PAR $*
FILENAME=${PAR[0]}
TMPFILE=${PAR[1]}
get the CMVC ID
#position of CMVC ID = number of parameters minus 2
let I=${#PAR[*]}-2 �1�
USERID=${PAR[$I]}
Test if a least two cmvcd daemons are running
I need two because I use a CMVC command in this UE program
Otherwise ===> dead lock
if [[$(ps -u $FAMILY|grep cmvcd|wc -l) -lt 4]]
then

print ″The header cannot be inserted″
print ″ Not enough family daemons are running″
print ″The CMVC default number has been used″
exit 1

fi

get the file suffix
FILETYPE=${FILENAME##*.}
Test if the header should be added
if [[$(addHeader $FILETYPE) -eq 0]]
then

call the function associated with the file type
Header_$FILETYPE > $TMPFILE.$$
cat $TMPFILE >> $TMPFILE.$$
mv $TMPFILE.$$ $TMPFILE
rm -f $TMPFILE.$$

fi
exit 0

Figure 118 (Part 2 of 2). UE Shell Script to Insert a Header and CMVC Keywords

C.2 User Exit to Generate Defect or Feature Number
This section shows how a user exit in CMVC is used to customize the process of
generating defect and feature numbers. In particular we show how the number
that is assigned to a new defect or feature is generated by a user-written
routine. The user exit from CMVC would call this user-written function to change
the defect or feature number as generated by CMVC itself after the defect or
feature was created.

Almost every development shop has a certain scheme to be used for assigning
feature and defect numbers. This scheme can even be part of the development
contract, so certain enhancements (features) have to be mapped to specific
feature numbers. So a common requirement is to have the numbers being
assigned to a new feature or defect generated automatically from the system
and have the numbers generated according to a customizable algorithm. CMVC
has defined the user exit, getNumber, to be called after a new defect or feature
was added to CMVC. In our project, we used this user exit to modify the number

Appendix C. User Exit Samples and Suggestions 185

as it was generated by CMVC and have the new number calculated from a
routine we had written ourselves. Although CMVC recommends not to call a
CMVC database function (in this case to change a defect number in the user
exit) from inside a user exit, this was no problem in our case as the database
modification would not cause any deadlock or loop problems.

The routine used to generate the new defect number was rather simple, as we
had anticipated. The routine returned a string for each invocation, that was
composed of a prefix identical to the family name followed by a unique number
as a suffix which was incremented for each call. Both prefix and suffix were
separated by an underscore character. The routine used a file called DATAFILE to
store the last unique number for the family. To ensure that the access to that
DATAFILE is sequential, a lock file called LOCKFILE is used to check whether or not
the file can be accessed or not. As the numbers had to be unique for each
family, we stored the DATAFILE and LOCKFILE in the CMVC family directory.

Figure 119 on page 187 shows the code for the number generation routine. The
routine checks whether the lock file currently exists (�1�), and whether the wait
cycle is implemented (�4�) if it does. If it is not locked, the number is read from
the DATAFILE (�2�), and incremented for each call. The routine then concatenates
the family name and the generated number (�3�).

186 CMVC Live

#include <stdio.h>
/* This program generates a number incremented by one for each call */
/* It is invoked with two parameters:
/* getNumber dataFileLocation prefix */
/* 1- a string (char *), directory where DATAFILE and LOCKFILE */
/* files will be created
/* 2- a string (char *), which is added in front of the number */
/* */
/* And print a number such as prefix_00001 */
/* It returns a code 0 if the generation is successful */
/* otherwise a code 1 */

int num(char *familyHome, char *prefix, char **result)
{
/* This function generates a number incremented by one for each call */
/* It is invoked with three parameters: */
/* 1- a string (char *), directory where DATAFILE and LOCKFILE */
/* files will be created
/* 2- a string (char *), which is added in front of the number */
/* 3- an address to the result string (char **) */
/* The number part of the result string is 5 characters. */

/* For example: */

/* char *familyHome=″ /production″ ; */
/* char *prefix=″prod″ ; */
/* char *next_number_as_string; */
/* int return_code; */
/* return_code = num(familyHome, prefix, &next_number_as_string) */
/* printf(″Number as string is %s\n″ , next_number_as_string); */
/* free(next_number_as_string); */
/* return_code = num(familyHome,prefix, &next_number_as_string) */
/* printf(″Number as string is %s\n″ , next_number_as_string); */
/* free(next_number_as_string); */
/* would print: */
/* prod_00001 */
/* prod_00002 */
/* The function would use the /production/prod.DATAFILE */
/* and /production/prod.LOCKFILE */
/* files, so the caller must have write access to these directories */

/* The caller must free the memory being allocated to the address */
/* pointed to by the second call parameter. */

/* Return values are: */
/* 0: correct value generated */
/* 1: an error occurred, and a dummy string is returned */

/***/
/* Variable Declaration */
/***/
FILE *Lockfile, *Datafile;
int maxtry=3, i, number, position, error=1, okay=0;
char *Lockfilename, *Datafilename;
char *command;

Figure 119 (Part 1 of 3). Routine to Generate a Unique Number per Invocation

Appendix C. User Exit Samples and Suggestions 187

/***/
/* Variable Initialization */
/***/

result=malloc(strlen(prefix)+5+1); / e.g. prefix_00001 */
strcpy(*result, prefix);
strcat(*result,″00000″);

Lockfilename = malloc(strlen(familyHome)+1+strlen(prefix)+strlen(″ .LOCKFILE″)+1);
strcpy(Lockfilename,familyHome);
strcat(Lockfilename,″ / ″) ;
strcat(Lockfilename,prefix);
strcat(Lockfilename,″ .LOCKFILE″) ;

Datafilename = malloc(strlen(familyHome)+1+strlen(prefix)+strlen(″ .DATAFILE″)+1);
strcpy(Datafilename,familyHome);
strcat(Datafilename,″ / ″) ;
strcat(Datafilename,prefix);
strcat(Datafilename,″ .DATAFILE″) ;

command = malloc(strlen(Lockfilename)+strlen(″touch ″)+1);
strcpy(command, ″touch ″) ;
strcat(command, Lockfilename);

/***/
/* Number Generation */
/***/

for (i=1; i<maxtry; i++) {
if ((Lockfile = fopen(Lockfilename, ″r″))==NULL) { �1�
/* no lockfile was found. Create one and proceed */
system(command);
if ((Datafile = fopen(Datafilename, ″r+″))== NULL) {
/* Could not open the data file for update. Try to create it */
if ((Datafile = fopen(Datafilename, ″w″))== NULL) {
/* could not open the data file */
strcpy(command, ″rm ″) ;
strcat(command, Lockfilename);
system(command);
free(command);
free(Lockfilename);
free(Datafilename);
return(error); /* dummy number */

} else
{
/* created a new DATAFILE */
number = 0;

}
} else
{
/* could open an existing data file */
fgetpos(Datafile, &position);
fscanf(Datafile, ″%d″, &number); �2�
fsetpos(Datafile, position);

}

Figure 119 (Part 2 of 3). Routine to Generate a Unique Number per Invocation

188 CMVC Live

fprintf(Datafile, ″%d″, ++number);
fclose(Datafile);
strcpy(command, ″rm ″) ;
strcat(command, Lockfilename);
system(command);
sprintf(*result+strlen(prefix), ″%d″ , number); �3�
free(Lockfilename);
free(Datafilename);
free(command);
return(okay);

} else {
fclose(Lockfile); �4�
/* lockfile exists. Wait for one second and retry */
sleep(1);

}
}
/* maxtry is reached. Return the dummy number */
free(Lockfilename);
free(Datafilename);
free(command);
return(error);

}
/***/
/* Main Program */
/***/
main (argc,argv)
int argc;
char *argv[];
{
char *numb;
int rc;
/* get number problem */
rc=num (argv[1],argv[2],&numb);
/* test if generation successful
if (rc == 0)
{

printf(″%s″ ,numb);
return 0;

}
else

return 1;
}

Figure 119 (Part 3 of 3). Routine to Generate a Unique Number per Invocation

The routine shown in Figure 119 on page 187 is invoked from the user exit,
problemNumber.ksh, shown in Figure 120 on page 190.

Here also we have a similar problem in determining the position of the
defect/feature number (�1�).

The user exit program calls the number generation routine to calculate a new
unique number (�2�) and then calls the CMVC Defect or Feature command to
modify the number for the new defect (�3�).

Appendix C. User Exit Samples and Suggestions 189

#!/bin/ksh
FAMILY=prod
ADMIN=lrconas
PREFIX=$FAMILY
set -A PAR $*
PROBLEMTYPE=${PAR[0]}
##get the problem number
#position of defect/feature number = number of parameters minus 3
let I=${#PAR[*]}-3 �1�
PROBLEMNUMBER=${PAR[$I]}
Test if a least two cmvcd daemons are running
I need two because I use a CMVC command in this UE program
Otherwise ===> dead lock
if [[$(ps -u $FAMILY|grep cmvcd|wc -l) -lt 4]]
then

print ″The number of the $PROBLEMTYPE cannot be generated:″
print ″ Not enough family daemons are running″
print ″The CMVC default number has been used″
exit 1

fi

##generate the problem number
FAMILYHOME=$(lsuser -c -a home $FAMILY)
NAME=$(getNumber ${FAMILYHOME##*:} $PREFIX) �2�
if [[$? -eq 0]]
then

$PROBLEMTYPE -modify $PROBLEMNUMBER \ �3�
-name $NAME \
-family $FAMILY \
-become $ADMIN

exit 0
else

ERROR=$?
print ″The number of the $PROBLEMTYPE cannot be generated:″
print ″ number generator returns $ERROR code″
print ″The CMVC default number has been used″
exit 1

fi

Figure 120. CMVC User Exit to Modify the Defect Number

C.3 User Exits Suggestions
This section suggests some user exit programs for the most used CMVC actions.
Many other user exits may be required by your software development process,
company policies, and project practices.

Examples of user exit programs associated with extracting a level or a release
include:

• Upload to a mainframe of a level after extraction with removing level files on
the target UNIX directory.

• Update subroutine UNIX library if the release represents a file created with
the UNIX ar command.

• Automate the build process.

190 CMVC Live

Some ideas associated with the problem tracking process include:

• Start up a quality inspection process when the state of a defect or a feature
moves to review state.

• Create a clone defect or feature if a test or verification record is rejected.

• Supply quality database and tools with defect and feature attributes to
calculate some metrics.

These are some suggestions for user exit programs linked to both CMVC
FileCheckin and FileCreate actions:

• Unlock a checked-out file if no differences are detected between the working
version and the current version. This avoids creating a large number of file
versions and thus saves disk space.

• Update the common working source directory with all new source files.

• First compile a source file, and, if the new compilation is successful, accept
the check-in and incorporate the object file into a UNIX subroutine library
(using the UNIX ar command). If compilation errors are detected, the
check-in action is aborted.

• Run some tools to analyze if the programming rules have been respected.
For example insure that no “goto” instructions are used or check number of
nested IF statements.

• Compute the number of lines of code which have been developped.

• Compress the binary files to save disk space. In this case, you should
uncompress those files when you check out or extract them.

You also can create new tables in the family database and update these tables
through user exit programs. For example, you could calculate the number of
defects in each state for each component by creating a table with a column for
each state and a column for the component name as shown in Figure 121.

create table defectMetrics
(
open number,
design number,
review number,
size number,
working number,
verify number,
close number,
return number,
cancel number,
total number,
component char(63)
);

Figure 121. Creating a New Tables in CMVC Family Database

This table should be updated by user exit programs, written in SQL, associated
with each defect action or periodically started by a shell script executed by the
UNIX cron daemon. In this example, at any time, you can get the number of
opened defect for a given component by using a simple SQL query:

Appendix C. User Exit Samples and Suggestions 191

DANGER

Be careful when using user exits! Too many user exit programs
slowdown CMVC response time!

select open from defectMetrics where component= ′MVS ′;

192 CMVC Live

Appendix D. Hints and Tips for Using CMVC

This appendix gives some procedures we used for maintenance activities
involved in administering our CMVC family. It also describes solutions to solve
some problems we had when we made some minor file modifications.

D.1 Maintaining CMVC family
We used the UNIX cron daemon to run the following activities at specified
intervals on the CMVC server host:

• Cleaning up the audit log file

• Aging the defects/features

• Getting the name of the obsolete levels

• Backing up the family data.

To notify the cron daemon of the maintenance activities, we logged in with the
prodUNIX login name. Then we issued the crontab -e command. This command
creates the /usr/spool/cron/contabs/prod file, if does not exist, otherwise it
places an editable copy of the existing one in your current directory. Then we
edited it with the editor vi . We entered the lines shown in Figure 122. The first
line starts the program age.sh at 11:30 every night of each work weekday. The
second line starts the program cleanLog.sh at 11:30 every Sunday night. The
third line starts the program levelClean.sh at 9:00 the first day of each month.
The fourth line starts the program backup2Tape.sh at 11:45 every night of each
work weekday. The last line starts the program backup2VM.sh at 11:45 every
Sunday night.

30 23 * * 1-5 $HOME/bin/age.sh > /dev/null 2>&1
30 23 * * 0 $HOME/bin/cleanLog.sh > /dev/null 2>&1
00 9 1 * * $HOME/bin/levelClean.sh > /dev/null 2>&1
45 23 * * 1-5 $HOME/bin/backup2Tape.sh > /dev/null 2>&1
45 23 * * 0 $HOME/bin/backUp2VM.sh > /dev/null 2>&1

Figure 122. Creating crontab File for prod Family

A description of each shell script is given in the following sections.

D.1.1 Aging Defects and Features
The age.sh shell script, shown in Figure 123 on page 194, updates the age of
defects and features with the state set to either open, design, size, review, or
working.

The syntax of the CMVC age command depends on the database used by the
server, which might be ORACLE, INFORMIX, SYBASE, or DB2/6000. The path
name where sqlplus is located must be set in the PATH environment variable,
because the CMVC server age command uses it.

The first statement (�1�) enables you to export the environment variables
initialized in the .profile file of the prod account, which are required to run the
commands used by this shell script. Using this statement you can use this shell
script for any family without modifications.

 Copyright IBM Corp. 1994 193

#!/bin/ksh
. $HOME/.profile �1�

age $CMVC_FAMILY $ORACLE_PASS > /dev/null 2>&1
#age $CMVC_FAMILY $DB2_PASS > /dev/null 2>&1 ## for DB2/6000
#age $CMVC_FAMILY $SYBASE_PASS > /dev/null 2>&1 ## for SYBASE
#age $CMVC_FAMILY > /dev/null 2>&1 ## for INFORMIX

Figure 123. Shell Script for Aging Defects and Features of the prod Family

D.1.2 Cleaning Family Audit Log and User Log
The cleanLog.sh shell script, shown in Figure 124, keeps the family audit log from
growing too large. When the log becomes too large, this shell script sends a
note to each CMVC user defined in the family prod asking them to remove their
CMVC user log file. Keep in mind that for each action executed from the GUI,
the corresponding command is logged in a file located in the directory from
which the end user started the CMVC client.

#!/bin/ksh
. $HOME/.profile

cmvclog.cleanu

mail $(Report -view users -raw -whe ″ login like ′%′″ \
-fam $CMVC_FAMILY -beco $CMVC_SUPERUSER | cut -f4 -d′ | ′) <<!
Don′ t forget to remove your CMVC log file
if you don′ t need it
Thanks
!

Figure 124. Shell Script Cleaning-up Log Files of the prod Family

D.1.3 Managing Obsolete Levels
CMVC enables the system administrator to reclaim the file system and database
space by archiving obsolete or completed levels, or releases. Archived data can
be restored if required but not in the same family. Before archiving a level or
release, you should review the prerequisites described in IBM CMVC Server
Administration and Installation.

D.1.3.1 Getting List of Potential Obsolete Levels
The levelClean.sh shell script, shown in Figure 125 on page 195, sends a note to
the owners of obsolete committed levels, that are not in a production (�2�). and
which are one or more months old and. This note asks them if the SCM
administrator might archive the obsolete levels to free storage for the creation of
new levels. The date for obsolescence is calculated as any level committed one
or more months ago (�1�).

The Report command uses an SQL statement to determine whom the note
should be sent to (�3�).

194 CMVC Live

#!/bin/ksh
. $HOME/.profile

let MONTH=$(date +%m)-1 �1�
let YEAR=$(date +%y)
let DAY=$(date +%d)
test if January
if [[$MONTH -eq ′ 0 ′]]
then

let YEAR=YEAR-1
let MONTH=12

fi
test if February
if [[$MONTH -eq ′2′ && $DAY -gt ′27 ′]]
then

let DAY=27
fi
DATE=$(printf %2.2d″/″%2.2d″/″%2.2d $YEAR $MONTH $DAY)

mail $(Report -view users -raw -whe ″ id in \ �2�
(select userId from levelView where commitDate < ′ $DATE′ \ �3�
and type not in (′ production′)) ″ \
-fam $CMVC_FAMILY -beco $CMVC_SUPERUSER | cut -f4 -d′ | ′) <<!
You are owner of a committed or completed level one or more months old.
If your levels are obsolete,
send me a note listing the obsolete level names.
Thanks
!

Figure 125. Shell Script Asking for Obsolete Levels

Because the CMVC Report command is used in the levelClean.sh script shell,
the CMVC client must be installed on the server host, and there must be a host
list entry for the family superuser CMVC ID at that host.

D.1.3.2 Archiving Obsolete Levels
When you have the list of the levels that you can archive, log in with the prod
UNIX name. Figure 126 illustrates the different commands you execute to start a
level or release archive. First you stop the server daemons and restart them in
maintenance mode (flag -m), and then you execute the cmvcarchive command.
The number of daemons shown is arbitrary; there is no relationship between that
number and the archive procedure. Your procedure must stop all of your CMVC
daemons.

prod@bering:/production>stopCMVC prod
prod@bering:/production>cmvcd -m prod 3
prod@bering:/production>cmvcarchive

Figure 126. Starting a Level Archive

Figure 127 on page 196 illustrates the dialog during the archive of the 0 level of
the MVS_Release_0 release.

Appendix D. Hints and Tips for Using CMVC 195

Select one of the following options:
1. Check archive prerequisites and estimate the storage required

to perform an archive.
2. Perform an archive.
3. Exit.

Enter selection: 2

Select one of the following archive options:
1. Archive levels of a release up to, and including, a specified level.
2. Archive one or more releases.
3. Exit.

Enter selection: 1

Enter the level name: 0

Enter the release names (eg. rel_1.1 rel_1.2): MVS_Release_0

Do you want the archive objects removed from the CMVC family?
1. No. Do not remove the archived objects from the CMVC family.
2. Yes. Remove the archived objects from the CMVC family.

Enter selection: 2

You have selected to remove the archived objects from the CMVC family.
Please confirm your decision by selecting one of the following options:

1. No. Do not remove the archived objects from the CMVC family.
2. Yes. Remove the archived objects from the CMVC family.

Enter selection: 2

Do you want the archive objects stored:
1. In a local file system?

2. On media in an external device (eg. tape device)?
Enter selection: 2

Enter the full name of the raw device (eg. /dev/rmt1 or /dev/rfd0): /dev/rmt0

The cmvcarchive program requires a working directory when archiving
to a device. Select one of the following options:

1. Use the CMVC family′ s home directory as the working directory.
2. User another local file system as the working directory.

Enter selection: 1

Figure 127 (Part 1 of 2). Archiving Level ,0, of MVS_Release_0

196 CMVC Live

Connecting to the database.
Checking that all archive prerequisites have been satisfied.
Working complete.

Archive prerequisites have been verified.
Generating the database populate file.
Processing CMVC Releases and their associated objects.
Working complete.
Processing CMVC Levels and their associated objects.
Working complete.
Processing CMVC Tracks and their associated objects.
Working complete.
Processing CMVC Files.
Working complete.
Processing CMVC Paths.
Working complete.
Processing CMVC Versions.
Working complete.
Processing CMVC Components.
Working complete.
Processing CMVC Users and their associated objects.
Working complete.

Database populate file has been created successfully.
Generating the database export file for the notes and versions tables.

Database export file has been created successfully.
Determining which level maps are to be archived.
Working complete.

Determining the CMVC family′ s configuration files that are to be archived.
Working complete.

Determining which version control files are to be archived.
Working complete.

Copying all CMVC archive data to /dev/rfd0 using the cpio program.
483 blocks were copied.

The cpio program is now complete and the cmvcarchive program
is ready to remove the archived objects from the CMVC environment.

Before continuing, inspect the results of the cpio program and
select one of the following operations:

1. Continue.
2. Quit.

Enter selection: 1
Removing the archived objects.
Removing CMVC Files and Versions...this may take some time.
Removing CMVC Levels and their associated objects.
Removing CMVC Tracks and their associated objects.
Removing CMVC Defects and their associated objects.

Committing the database transactions.
Disconnecting from the database.
Archive complete.

Figure 127 (Part 2 of 2). Archiving Level ,0, of MVS_Release_0

To inspect the results of the archive process, you can use the cpio command.

cpio -itv < /dev/rmt0

Appendix D. Hints and Tips for Using CMVC 197

The output of the cpio command is shown in Figure 128 on page 198. You can
see the level map file (�1�) and the arbitrary names of the SCCS files created by
CMVC for the files belonging to the level (�2� to �3�). CMVC translates your
“file” names into these SCCS file names automatically; CMVC end users never
use these names.

100644 prod 35 Apr 12 13:59:33 1994 CMVCarchive.users
100755 prod 62284 Apr 12 13:59:36 1994 CMVCarchive.dbData
100755 prod 12288 Apr 12 13:59:41 1994 CMVCarchive.export
100644 prod 626 Jul 31 11:58:27 1993 maps/MVS_Release_0/0 �1�
100644 prod 5076 Jul 29 15:16:34 1993 config.ld
100644 prod 10082 Jul 15 17:20:29 1993 authority.ld
100644 prod 4904 Jul 15 17:20:29 1993 interest.ld
100644 prod 303 Jul 15 17:20:29 1993 cfgcomproc.ld
100644 prod 604 Jul 15 17:20:29 1993 cfgrelproc.ld
100444 prod 355 Jul 31 11:00:28 1993 vc/0/0/0/0/s.22 �2�
100444 prod 66452 Jul 31 10:58:52 1993 vc/0/0/0/0/s.20
100444 prod 6581 Jul 31 10:54:46 1993 vc/0/0/0/0/s.18
100444 prod 12481 Jul 31 10:54:17 1993 vc/0/0/0/0/s.17
100444 prod 21293 Jul 31 10:53:49 1993 vc/0/0/0/0/s.16
100444 prod 22524 Jul 31 10:53:03 1993 vc/0/0/0/0/s.15
100444 prod 1767 Jul 31 10:49:01 1993 vc/0/0/0/0/s.14
100444 prod 4197 Jul 31 10:48:31 1993 vc/0/0/0/0/s.13
100444 prod 2035 Jul 31 10:47:14 1993 vc/0/0/0/0/s.12
100444 prod 1153 Jul 31 10:46:35 1993 vc/0/0/0/0/s.11
100444 prod 1268 Jul 31 10:44:42 1993 vc/0/0/0/0/s.10
100444 prod 1490 Jul 31 10:44:09 1993 vc/0/0/0/0/s.09
100444 prod 1333 Jul 31 10:43:33 1993 vc/0/0/0/0/s.08
100444 prod 1957 Jul 31 10:41:17 1993 vc/0/0/0/0/s.05
100444 prod 804 Jul 31 10:25:51 1993 vc/0/0/0/0/s.04
100444 prod 1316 Jul 31 10:21:59 1993 vc/0/0/0/0/s.03 �3�
100644 prod 72 Apr 12 13:59:42 1994 CMVCarchive.VCcleanup
100644 prod 1819 Apr 12 14:00:01 1994 CMVCarchive.info
100755 prod 512 Apr 12 14:00:01 1994 CMVCarchive.CPIOlist
483 blocks were copied.

Figure 128. Created Files for Archive of the Level ,0, of MVS_Release_0

D.1.4 Backing Up a Family Data
The backup2Tape.sh shell script shown in Figure 129 on page 199 backs up prod
family data onto a tape.

Before backing up data, you have to start the CMVC server in maintenance
mode to keep consistency between data located in the /production file system,
and data stored in the database (�1�). The maintenance mode enables you
allows to access data in read-only mode. The backup is performed using the
UNIX tar command (�2�). Other UNIX commands, such as cpio or rdump , could
be used o backup data onto a remote machines′s device. Where the tar
command will find the database files depends on the type of database CMVC is
using Refer to IBM CMVC Server Administration and Installation for more
detailed information. Once the backup is completed, the CMVC server is started
in normal mode (�3�).

198 CMVC Live

#!/bin/ksh
. $HOME/.profile

stopCMVC $CMVC_FAMILY �1�
cmvcd -m $CMVC_FAMILY 3
print ″CMVC Family $CMVC_FAMILY Backup: ″ $(date) >> $HOME/backup.trk
cd /
tar -cvf /dev/rmt0 ./$HOME ./$ORACLE_HOME/dbs/*$ORACLE_SID.* �2�
stopCMVC $CMVC_FAMILY �3�
cmvcd $CMVC_FAMILY 3
notifyd

Figure 129. Shell Script Backing up a Family to a Tape

The previous backup is a daily procedure archiving data onto a tape. The
backup presented in Figure 130 is a weekly procedure that uploads family data
onto a VM mainframe. The statements related to CMVC server daemons of this
shell script are the same as the tape backup shell script. The backup is also
performed by using the UNIX tar command (�1�) but the output of the command
is compressed with the UNIX compress command before it is stored in the file
system. The compressed files are uploaded to the mainframe by using ftp
command (�2�). If the host name of the mainframe is sjsvm28, the login name on
the mainframe is archive, and the password of that login name is rtyw67sa, add
the following line in the .netrc file of the prod family:

This is necessary for ftp to work in batch mode.

Once unloaded the compressed files are deleted on the file system (�3�).

machine sjsvm28 login archive password rtyw67sa

#!/bin/ksh
. $HOME/.profile

stopCMVC $CMVC_FAMILY
cmvcd -m $CMVC_FAMILY 3
print ″CMVC Family $CMVC_FAMILY Backup: ″ $(date) >> $HOME/backup.trk
cd /
tar -cvf - ./$HOME | compress > $HOME/cmvc$CMVC_FAMILY.tarzbin �1�
tar -cvf - ./$ORACLE_HOME/dbs/*$ORACLE_SID.* | compress \
> $HOME/orac$CMVC_FAMILY.tarzbin
stopCMVC $CMVC_FAMILY
cmvcd $CMVC_FAMILY 3
notifyd
ftp sjsvm28 > /dev/null 2>&1 <<! �2�
prompt
bin
mput $HOME/cmvc$CMVC_FAMILY.tarzbin
mput $HOME/orac$CMVC_FAMILY.tarzbin
!
rm $HOME/cmvc$CMVC_FAMILY.tarzbin $HOME/orac$CMVC_FAMILY.tarzbin �3�

Figure 130. Shell Script Backing up a Family to a VM Mainframe

Appendix D. Hints and Tips for Using CMVC 199

D.1.5 How to Terminate a CMVC Transaction
When you are developing user exit programs you may cause a deadlock
condition at the server For example, if you have started only one CMVC daemon
and you use a CMVC client command in your user exit program: a second
CMVC command client will not be able to execute, and the first one will “hung.”
Infact, each CMVC client command requires a CMVC daemon to access the
CMVC server. While a user exit is executing, one CMVC daemon is in use
already. Another example is when you extract a level or a release and the
network goes down. The CMVC client command will not be able to recover and it
will hung.

The CMVC server provides you with a real-time program called monitor that
permits the CMVC family administrator to monitor the activity of the CMVC
server daemons. This program could be used to tune the CMVC server. To
invoke the CMVC activity monitor, you must be logged in with the familyName
name on the CMVC server. Then you can issue the monitor 2 command, where
2 is the time in seconds between successive screen refreshes. An example of
the CMVC activity monitor screen with three daemons running, one of which is
running the command, is shown in Figure 131. You can see that the 01 daemon
runs the UNIX process 28823 for the CMVC action, ReleaseExtract.

3 of 3 cmvcd daemons running. Shared mem size is 1088.
Press any key to quit.
Total hits = 8

01,28823,00003,04/11/94,08:39:25,ReleaseExtract,truls,aixcase2,bering,MVS_Release_0
02,26730,00003,

03,35488,00002,

Figure 131. CMVC Activity Monitor Screen Example

To terminate the UNIX process 28823 shown in Figure 131, you log in as prod,
and issue the following command:

prod@bering:/production>kill 28823

D.2 File Modifications with Track and Level Subprocesses Turned On
When the track and level subprocesses are selected for a release, you can
change the meta-data associated with files; however, it is not easy. easily as
you want. The following sections gives you some procedures we discovered,
and then applied to make minor changes on files.

D.2.1 Modifying File Base Name and Path Name
If you enter a file name incorrectly, or discover as a result of the development
process that a better tree design is required, you might want to rename the file.
When you try, you may get the error message shown in Figure 132 on page 201.

200 CMVC Live

Figure 132. Error Message Issued when Renaming a File

That message could appeared if the release to which the file is attached, has a
process that includes the track subprocess and the file has already been
changed in reference to a track, which has not been committed yet. If you want
to change the name to correct a mistake, and you do not want control this file
name change, the easiest and fastest to do it is:

 1. Wait for all the tracks and levels associated with the release to reach the
complete state

 2. Modify the current process release to no_track

 3. Modify the name of the file

 4. Modify again the process release from no_track to the original process.

If you want to keep track of this change, you have two solutions. The first
solution consists of postponing the change, and then performing the following
actions (preferably by a superuser, if you want to go faster):

 1. Wait for all the tracks and levels associated with the release to reach the
complete state

 2. Modify the current process of the release to track_level if it is not already
selected. Now, you have either approval, fix, or test subprocesses prevailing

Appendix D. Hints and Tips for Using CMVC 201

 3. Modify the current process of the component managing the file to
emergency_fix if it is not already selected. In this case, you have neither the
DesignSizeReview, nor verify subprocesses involved

 4. Open a new defect on this component and accept it

 5. Create a track for the defect and the release

 6. Modify the name of the file in reference to the track

 7. Create a new level for the release

 8. Add the track as the level member of the new level

 9. Commit and complete the level

10. Return the original process definitions of the component and the release to
their original values.

The second solution could take longer longer than the first one depending on the
component and release processes already in place:

 1. Open a new defect

 2. Perform actions related on the component process until the defect state has
reached working

 3. Create a track for the defect and the release

 4. If the approval subprocess is selected, accept the approval records

 5. Modify the name of the file in reference to the track

 6. If the fix subprocess is used, complete the fix record

 7. Create a new level for the release

 8. Add the track as the level member of the level

 9. Commit and complete the level

10. If the test subprocess is selected, accept the test records

11. If the verify subprocess is used, accept the verification record.

To rename a file that occurs in more than one release, apply either solution, but
create one track and one level for each release for which you want that the
name of the common file changed. Then enter the releases in the Common
releases field in the Modify File Path Name dialog box, and select Rename only
in the specified releases .

D.2.2 Deleting a File
When you try to delete a file, you have the same options described in the section
D.2.1, “Modifying File Base Name and Path Name” on page 200. Whichever
solution you apply, instead of selecting Path Name... from the Modify menu, you
select Delete... from the Action menu.

Only the following pre-defined access authority groups can delete a file:

• deve loper+

• w r i t e r +

• builder

• releaselead

• componentlead

202 CMVC Live

• projectlead.

If the CMVC Files window is displayed when you delete files, the deleted files
continue to be listed in the CMVC Files window after a refresh, but the Deleted
column is filled in for each file. To display the list of nondeleted files, execute a
query from the Open File List dialog box with the SQL operator, is null , for the
Delete date field.

A deleted file can be recreated, but you also have to follow the procedure
described in the section D.2.1, “Modifying File Base Name and Path Name” on
page 200. Instead of selecting Path Name... from the Modify menu, select
Recreate... from the Action menu.

If you want to remove a file from CMVC permanently, you should destroy it after
having deleted it. Destroyed files are no longer displayed in the CMVC File
window. You can reuse the path name of a destroyed file for another file that
you want to bring under CMVC control.

D.3 How to Reuse a Track in Integrate Status with Level Subprocess On
If you want to change a file belonging to a release for which a track associated
with a defect involving that file is in the integrate state, you get an error
message telling that the track is in integrate and can no longer be used. To
reuse a track, you can apply the solution described in the following paragraphs.

The prerequisites to reusing a track are: the track state is integrate and the state
of all levels of which the track is a member, is integrate.

After applying the following procedure, the track can be specified:

 1. Remove the level members associated with the track. In the CMVC - Tracks
windows, highlight the track, and then select Level Members... from the Show
menu. In the CMVC - Level Members window, select all the level members,
and then select Remove... from Actions menu

 2. Move the track state from integrate to fix

 3. Activate the fix record, if it exists, and attached it to the component
managing the files you are going to change. In the CMVC - Fix Records
window, select Open List... from the File menu. Fill:

• The Defects/Features field with the defect or feature to which the track is
linked

• The Releases field with the name of the releases for which the track has
been created

• The Components field with the list of components managing the files to
be changed.

Select OK to display the list of the fix records. Highlight all the relevant fix
records, then select Activate... from Actions menu, and select OK in the
Activate Fix Records dialog box.

Appendix D. Hints and Tips for Using CMVC 203

D.4 Common and Shared File
A CMVC file is identified by a file name, a release name, and a version identifier.
Each file version can be attached to different releases and managed by different
components. A file with multiple in multiple is called a shared file. A file with
only one version shared by a set of releases is called common file. A file can be
common to a set of releases and shared among other releases.

Figure 133 shows a list of common and shared files. You can see that a file can
be managed by two different components if it is shared by two different releases.
Each component manages a different line of development in the version history.
From this this list, you can extract the following information:

• The file, cobol/ibmbuenr.cob, is a shared file of both the MVS_Release_0 and
MVS_Release_1 releases because the committed versions are different. This
means that the Break common link (flag -force for the command-line
interface) was used cobol/ibmbuenr.cob of MVS_Release_1 was checked in.
Then the version 1.3 of cobol/ibmbuenr.cob of MVS_Release_1 was linked to
cobol/ibmbuenr.cob of MVS_Release_0. Originally cobol/ibmbuenr.cob was a
common file of both MVS_Release_0 and MVS_Release_1.

• The file, cobol/ibmbuins.cob, is a common file of both MVS_Release_0 and
MVS_Release_1. This means that cobol/ibmbuins.cob of MVS_Release_1 was
checked out, and then MVS_Release_0 was specified in the Common
releases field (flag -common for the command-line interface). The track
associated with MVS_Release_0 was committed because the current and
committed versions of MVS_Release_0 are the same.

• The file, cobol/ibmbupd.cob, is a shared file of both MVS_Release_0 and
MVS_Release_1. The path name is common but the content of each instance
is different.

Figure 133. Example of Common and Shared Files

Figure 134 on page 205 shows the change history of the file
source/cobol/ibmbsel.cob of the MVS_Release_0 release. This file has been
changed three times, and each change has been integrated in a level.

204 CMVC Live

Figure 134. Example of File Change History

Appendix D. Hints and Tips for Using CMVC 205

206 CMVC Live

Appendix E. CMVC and SDE WorkBench/6000

This appendix addresses several topics that we feel deserve your special
attention, although this appendix does not by any means address all there is to
say about using CMVC from SDE WorkBench/6000. Become familiar with the
pull-down menus provided in the Development Manager, especially the Set
Context Mapping... selection on the CMVC pull-down. Study the question of
execution host assignment for the CM class tool and make your users aware of
the choices you have made for them in this area. If you think you are
experiencing anomalous behavior, use the Broadcast Message Server (BMS)
Monitor tool to observe what messages are being sent by Development
Manager, or other integrated tools, to instances of the CM class tool, and to
identify which responses are being returned by the CM class tool.

E.1 Development Manager Pull-Down Menus for CMVC
There are two pull-down menus related to CMVC in the Development Manager
window ′s menu bar. The CMVC menu provides actions taken with respect to
specific files; the Windows menu allows access to the CMVC windows.
Figure 135 on page 208 shows the CMVC pull-down menu.

 Copyright IBM Corp. 1994 207

Figure 135. CMVC Pull-down Menu on Development Manager Menu Bar

These menus are described in great detail in IBM CMVC User′s Guide . We
recommend a careful study them.

E.2 Significance of Context Mappings
In SDE WorkBench/6000 “context mapping” associates the Development
Manager data context directory with a particular CMVC component and release
tuple. Several of these can be created; they are saved by CMVC in the .cmvcrc
file in your home directory when you stop executing the CMVC GUI client. If a
context mapping record has a path name, which overlaps the current
Development Manager context directory, that matching part of the path name is
stripped away from the path names of any selected files before they are passed

208 CMVC Live

off as parameters to a CMVC command that is issued from the Development
Manager CMVC pull-down menu, if that command involves the same component
and release tuple associated with that context mapping. The purpose of this
arrangement is so that end users can work in directory hierarchies that mimic
the path names associated with files under CMVC control, and have the
Development Manager prefill CMVC window fields (which require path and file
names) with the correct path names. It is very important to master this concept
and use context mappings, because CMVC can get confused if you add these
path names by hand where they should be prefilled. Context mapping is
described in more detail than we provide here in “The CM Class Messages” of
“Using the Message-Integrated CMVC GUI” of IBM CMVC User′s Reference

It is not recommended that users edit the .cmvcrc file. If you want to clear a
single mapping default, clear the component and release fields from the Context
Mapping dialog box when it is being prompted. However, if you want to delete
some mappings, leaving others, or simply verify the mappings that you have
defined, edit this file.

E.3 Implications of Host Scoping for CMVC
CMVC is not designed to be “network aware” in that it does not know it can
concatenate the path name /nfs/hostname (using the data context′s host name,
parameter passed to it by Execution Manager) to the data context ′s path name
parameter, to find a file on a remote host. The CMVC client merely compares
the host parameter passed to it against, the host on which it is executing, and if
they do not match, CMVC issues an error message.

We infer that CMVC designers made this design decision, because CMVC is a
host scoped tool. But we do not think that being host scoped necessarily implies
a tool is not network aware. Other tools, such as the Build Tool, which is
network scoped, and the Development Manager, which is directory scoped, are
network aware, and can locate remote data, assuming the proper file systems
are exported and mounted. Host scoping simply means that only one instance of
the tool can be invoked automatically by the Execution Manager per host.

If you have multiple CMVC clients installed on your network, and want to have
CMVC access data on them, you must configure the CM class tool through your
personal .softinit file or the system-wide /usr/softbench/config/softinit file to
execute on whatever host is identified by the data context parameter passed to
it. The value %Host% goes in the execution host field. When this is the case, then
the Execution Manager starts up an instance of the CM tool on the remote host,
if it recognizes a remote host in the data context being passed to CMVC. The
CMVC client, executing remotely, binds to the local X server and display its
results where they belong. CMVC starts up multiple instances of the CM tool
under these circumstances, if different data hosts are indicated by subsequent
user requests for CMVC actions.

If you have CMVC client only installed on the host where Execution Manager is
running, then you must configure the CM class tool to execute only on the local
host. To do this, place the value %Local% in the execution host field of the CM
tool entry in the .softinit file or cause your system-wide softinit file to be
updated this way. This forces Execution Manager to assume that only one
instance of the CM tool should be started up, and to always start it on the same
host it on which Execution Manager is executing.

Appendix E. CMVC and SDE WorkBench/6000 209

When the execution host is set to %Local%, Execution Manager ignores the host
portion of the data context. However The CMVC client does pay attention to the
host portion. If you have asked it to deal with data on a remote host, it will balk.
This can happen if you set the Development Manager to a path beginning with
/nfs/hostname/....

If you really only have the CMVC client installed on the host on which your users
execute Execution Manager, and you want to access remote files made available
to your CMVC client machine through NFS, do not access them by setting the
Development Manager context to a path name that begins with /nfs/hostname, or
by explicitly naming remote data host. Development Manager is network aware,
and infers from this path name that the data context is in fact on a remote host,
and sets up the data context parameters accordingly. CMVC will then refuse
your request (If CMVC were network aware, it could look to see if the data
context were available at the default NFS path and access it there, but this is not
the case as of CMVC Version 2, Release 1). Instead you should set up a link
(whose path name does not include /nfs/hostname) to a directory mounted in this
default NFS path, and set your Development Manager data context to this
directory. Under these circumstances, the Development Manager is unaware
that the data is remote and passes data context to CMVC as a local path name.
Execution Manager then starts up a local CMVC instance.

The default execution host setting for CMVC is %Local%. This is briefly mentioned
in “Broadcast Message Server” of IBM CMVC User′s Reference. CMVC
installation procedures appear to place a file, named softcmvcinit, in the
/usr/softbench/config/softinitsrc/class-defaults file, but may not actually
execute the /usr/softbench/etc/merge-init file, which merges all tool vendor
contributions into /usr/softbench/config/softinit file, which is the system-wide
configuration file. This is the recommended approach to tailoring your
system-wide softinit settings. See “Customizing Tool Initiation” in Installing
IBM AIX SDE WorkBench/6000 and IBM AIX SDE Integrator/6000 for details on
this file. You may be confused if you are not familiar with this process. Follow
the directions given in “Installing the CMVC Clients” of IBM CMVC Client
Installation and Configuration, which explicitly advise the system administrator to
edit the /usr/softbench/config/softinit file directly.

E.4 CM Tool Messages
The SDE WorkBench/6000 integrated CMVC client may be activated through BMS
messages by various tools that request files be checked in or out, releases be
created or extracted, and context mapping be changed. It responds to the
general tool messages sent by Execution Manager to start, stop. This message
traffic can and should be observed if you, or your users, experience problems, or
situations they do not understand, resulting from tool interaction. Refer “The
Message Interface” in Configuration Management Version Control User′s
Reference, Version 2 Release 1 if you need to determine which messages CMVC
will respond to and what the parameters to the messages represents. Many
problems may be caused by a misunderstanding on the part of the new SDE
WorkBench/6000 user about the data and execution contexts involved with the
tools being exercise in a distributed environment. Analysis of the message
traffic readily identifies what data is being passed to what tool, and what precise
action is being requested.

210 CMVC Live

Appendix F. Source File and Program Identification with CMVC
Keywords

This appendix introduces SCCS keywords and explains how CMVC interacts with
them. Have you already tried the following AIX command?

If you run this command, you should get a result similar to what is shown in
Figure 136. This figure shows the list of source files compiled and linked
together to produce the AIX chown command with the following information for
each source file:

 1. The CMVC identifier

 2. The version identifier

 3. The component managing the file: bos and cmdque

 4. The AIX release to which the file is linked: bos

 5. The level in which the version file has been integrated: 9219320b and
9238320

 6. The date and time of the latest source file check-in.

what /usr/bin/chown

11 1.20 com/cmd/que/qadm/chque.c, bos, bos320 4/30/91 08:28:55
61 1.44 com/cmd/que/libque/common.c, cmdque, bos320, 9219320b 3/9/92 14:12:44
66 1.36 com/cmd/que/libque/qdjdf.c, cmdque, bos320, 9238320 8/25/92 16:08:58
64 1.16 com/cmd/que/libque/jobnum.c, bos, bos320 6/3/91 12:03:52
70 1.10 com/cmd/que/libque/tcp.c, bos, bos320 6/3/91 12:02:10
20 1.21 com/cmd/que/qadm/qccom.c, bos,bos320 8/19/91 14:16:11

Figure 136. Result of the AIX what Command

If you would like to do the same for your project′s executables then read the
remainder of this appendix.

The following list describes the keywords we have used for our project. Refer to
IBM CMVC User′s Reference for a complete list of all SCCS keywords supported
by CMVC.

Keywords Meanings

% M % Numeric name of the file that CMVC server defined

% D % Date of the latest check-in. Format date is Year/Month/Day.

% H % Date of the latest check-in. Format date is Month/Day/Year.

% T % Time of the latest check-in. Format time is Hours:Minutes:Seconds.

% W % File path name, component name, release name, level name. The
level name appears only if file version is integrated in a level.

% Z % The 4-characters string @(#) recognized by the what command as
the beginning and the end of a “what ” string in the binary file.

To insert CMVC keywords into a program source file, you should declare a
variable with the string or character array type and initialize it with the keywords
you have chosen. Figure 137 on page 212 shows the variable declarations

 Copyright IBM Corp. 1994 211

inserted in our C source file. The C keyword, static, allows us to use the same
variable identifier, CMVC_ID, for any C source file (sort of local variable).

static char CMVC_ID[]=″%Z% %M% %I% %W% %D% %T%″

Figure 137. CMVC Keywords into a C Source File

In our project, the CMVC keywords were automatically inserted in the C source
file by a user exit program when the file was created in CMVC. That user exit
program is described in Appendix C, “User Exit Samples and Suggestions” on
page 183.

Whenever a source file is extracted from CMVC, these keywords are replaced by
the current values they represent. However, when a source file is checked out
the keyword expansion is suppressed, so the keywords will still be in the version
that is checked in.

212 CMVC Live

Appendix G. Appendix: Setting Up NetLS

This appendix gives a short and easy procedure for setting up NetLS.

G.1.1.1 NetLS Set Up Procedure
After NetLS has been installed on the selected NetLS license servers, it should
be configurated on each server as follows:

 1. Get the target ID. The target ID of the NetLS license server is mandatory to
obtain a password. To get it issue the command:

The result of that command should look like the following:

NetLS Target ID

274634

LLA ID

9712C91

Note the NetLS Target ID, is 274634 in our example

Note: Repeat the previous step for each NetLS server before going onto the
next step

 2. Obtain the passwords from IBM. Send to IBM, the NetLS Target IDs and the
number of licences you want for each NetLS server. IBM returns a password
for each server

 3. Initialize the NetLS server. You should login as root before performing the
following actions.

a. Create a shell script to initialize the server by executing the command:

b. Answer N to the question asking “Do you want to use existing
database?”

 c. Select 2 (“using default ce l l ”)
d. Answer Y to the question asking “Do you want to start llbd and glbd at

system startup time?.”
e. Initialize the server with the shell script created previously, by executing

the following command

The /etc/inittab file is updated to start the NetLS daemons (llbd , gldb ,
and netlsd) when the server boots up.

f. The netlsd does not come up so you have to start it manually by entering
the command:

/usr/lib/netls/bin/ls_targetid

/usr/lib/netls/conf/netls_config

/usr/lib/netls/conf/netls_first_time

/usr/lib/netls/ark/bin/netlsd

 Copyright IBM Corp. 1994 213

 4. Register the information obtained from IBM into NetLS. You should login as
root before performing these actions.

a. Enter the vendor password by executing the following command:

b. Enter the product password by executing the following command:

Check carefully the passwords before pressing on the Enter key.

 5. Check the NetLS set up

a. Check the registration in NetLS for both the vendor and product by using
the following command:

b. The result of that command should look like the following:

 c. Check if NetLS is operational with the following command issued from a
machine on which the CMVC client is installed:

The NetLS setup is OK if the following message comes up:

/usr/lib/netls/bin/ls_admin -a \
-v ″vendorName″ \
vendorID \
vendorPassword

/usr/lib/netls/bin/ls_admin -a \
-p ″vendorName″ \
productName \
productPassword \
version

/usr/lib/netls/bin/ls_admin -s \
-p vendorName productName

LS_ADMIN Version 2.0.1 (GR1.1.0) IBM-AIX
(c) Copyright 1991,1992,1993, Hewlett-Packard Company, All Rights Reserved
(c) Copyright 1991,1992,1993, Gradient Technologies Inc., All Rights Reserved

Server: ip:baffin.sanjose.ibm.com
socket address family ip
socket address 9.113.44.201
socket port 1056
target type IBM/AIX
target id 131137

Vendor: CASE
vendor id 5e1d4ffe2f74.02.09.15.11.06.00.00.00

Product: CMVC [2.1.0]
id 1234
Licenses:

expired: 5 Concurrent Access from 1994/02/08 to 1995/02/07, timestamp 760748567
multi-use rules: same user group node.

lpp/cmvc/bin/Report -testServer -family foo -become goo

0010-247 The host name, foo, for the CMVC server cannot be resolved.
Verify that the CMVC server′ s host name and address are included
in the CMVC client′ s ′ / etc/hosts′ file or the data files of the
name server. If the host name and address appear in either
of these files, the network or name server may be experiencing
a temporary problem.
If the problem persists, contact the family administrator.

214 CMVC Live

If the setup is not OK, you get the following message:

 6. Clean up the NetLS configuration on the NetLS server if you have problems.
The following procedure enables you to perform this cleanup.

DO NOT apply this procedure if NetLS is used by other products.

a. Stop the NetLS daemons by issuing the following commands:

b. Remove the /tmp/llbdbase.dat file, if it exists

 c. Remove the /etc/ncs/glb.e, /etc/ncs/glb.p, /etc/ncs/glb_log,
/etc/ncs/glb_obj.txt, and /etc/ncs/glb_site.txt files, if they exist

d. Remove the /usr/lib/netls/conf/cur_db, /usr/lib/netls/conf/lic_db,
/usr/lib/netls/conf/lic_db.bak, /usr/lib/netls/conf/cur_db.bak, and
/usr/lib/netls/conf/log_file files, if they exist

e. Repeat the setup procedure. If the NetLS configuration fails again, check
the target ID, and then contact IBM.

0010-877 Cannot connect to NetLS server.

To solve the problem, contact the CMVC family administrator.

root@server\>stopsrc -s llbd
root@server\>stopsrc -s glbd
root@server\>stopsrc -s netlsd

Appendix G. Appendix: Setting Up NetLS 215

216 CMVC Live

Appendix H. Tailoring CMVC Windows for Different Types of Users

This appendix describe some CMVC client customization based on the roles of
certain people, such as project manager, developer, and builder. These
customizations use CMVC reporting capabilities and additional programs to:

• Calculate some statistics and metrics

• Display set of data with certain properties

• Automated and simplify the problem tracking process.

CMVC implements some processes to manage change control and problem
tracking. Like all the processes, the CMVC processes are repeatable and they
can be automated by using the CMVC command-line interface from shell
programs.

CMVC stores project data in a relational database you can build queries to find a
set of elements that have certain properties. The results of the queries can be
used to calculate statistics and metrics.

H.1 Customization Example for Project Manager
A project manager is essentially interested by the project progress and
statistics. For example, the project progress can be monitored through the
states of defects, features, and levels, as well as the number of levels, files, and
locked files (checked out files). Figure 138 on page 218 illustrates a hypothetical
CMVC - Tasks window customized for a manager and Figure 140 on page 220
shows the .cmvcrc file associated with this window.

 Copyright IBM Corp. 1994 217

Figure 138. Customized CMVC - Tasks Window for Project Manager

The two first tasks listed in of the CMVC - Tasks window enables you to display
the defects you have to act on. The third one gives you all defects in the closed
state. The queries provide you with lists of files and levels for each release of
your product. The Show CMVC activity log file, (�1�) in Figure 140 on page 220,
shows you the log of all CMVC commands performed by any of your team
members. Figure 23 on page 38 shows a part of the prod family log file. Based
on the content of the log file, you can compute some statistics, such as:

• How many files created per month?

• How many defects opened per month?

• How many defects closed per month?

• How many defects you have opened per month?

• How many tests rejected on AIX_Release_1?

• How many unauthorized actions performed?

Figure 139 on page 219 gives a simple shell script used to compute the statistics
of the above list.

218 CMVC Live

#!/bin/ksh
set -A YEAR January February March April May June July August September October November December
set -A MONTHN 01 02 03 04 05 06 07 08 09 10 11 12
let I=0
for MONTH in ${YEAR[*]}
do

RANG=monthN[$i]
print ″***************** $MONTH ******************″
print -n ″Number of Defects Opened= ″
grep ″DefectOpen,SUCCESS,$RANG″ $HOME/log |wc -l
print -n ″Number of Files Created= ″
grep ″FileAdd,SUCCESS,$RANG″ $HOME/log |wc -l
print -n ″Number of Defects Closed= ″
grep ″DefectVerify,SUCCESS,$RANG″ $HOME/log |wc -l
print -n ″Number of Defects I Opened= ″
grep ″DefectOpen,SUCCESS,$RANG.*projA_lead,″ $HOME/log |wc -l
print -n ″Number of Tests Rejected on the AIX_Release_1= ″
grep ″TestReject,SUCCESS,$RANG.*AIX_Release_1″ $HOME/log |wc -l
print -n ″Number of Unauthorized Actions Performed=″
grep ″Transaction.*UNAUTHORIZED,$RANG″ $HOME/log |wc -l
let I=I+1

done

Figure 139. Shell Script to Compute Some Statistics

In Figure 140 on page 220, statis program �2� calculates metrics for which the
log file is not sufficient. This program use the CMVC Report command to extract
data from CMVC according to certain input parameters, formats extracted data,
and finally displays a graphical representation of the metrics, as shown in
Figure 138 on page 218. Our project manager needs only to click twice on the
specific line in the CMVC - Tasks window to obtain this information. This
program was unique to our project, but you can develop a similar programs and
trigger their execution easily from tailored CMVC - Task window entries.

Appendix H. Tailoring CMVC Windows for Different Types of Users 219

*family: prod@bering@1222
*userID: projA_lead
*directory: /home/aixcase4
*task1_description: Show all defects that I have to verify
*task1_query: userLogin in (′ projA_lead′) and state in (′ ready′)
*task1_window: verification
*task2_description: Defects in ′ open′ or ′ working′ state
*task2_query: ownerLogin in (′ projA_lead′) and (state in (′ open′) or state in (′ working′))
*task2_window: defect
*task3_description: Defects in ′ closed′ state
*task3_query: state in (′ closed′)
*task3_window: defect
*task4_description: __
*task4_query:
*task4_window: information
*task5_description: Files of the productA release AIX_Release_1
*task5_query: releaseName in (′ AIX_Release_1′)
*task5_window: file
*task6_description: Files of the productA release AIX_Release_1
*task6_query: releaseName in (′ AIX_Release_1′)
*task6_window: file
*task7_description: Files of the productA release OO_Version_1

*task7_query: releaseName in (′ OO_Version_1′)
*task7_window: file
*task8_description: Levels of the productA release AIX_Release_1
*task8_query: releaseName in (′ AIX_Release_1′)
*task8_window: level
*task9_description: Levels of the productA release AIX_Release_1
*task9_query: releaseName in (′ AIX_Release_1′)
*task9_window: level
*task10_description: Levels of the productA release OO_Version_1
*task10_query: releaseName in (′ OO_Version_1′)
*task10_window: level
*task11_description: __
*task11_query:
*task11_window: information
*task12_description: Show CMVC activity log file
*task12_query: rexec bering cat /production/audit/log > $HOME/log �1�
*task12_window: information
*task13_description:
*task13_query:
*task13_window:
*task14_description: *___________ Quality Metrics _________*
*task14_query:
*task14_window: information
*task15_description: | Defect Status |
*task15_query: statis defect status & �2�
*task15_window: information

Figure 140 (Part 1 of 2). Part of Project Manager ′s .cmvcrc File

220 CMVC Live

*task16_description: | Defects per Component |
*task16_query: statis defect component &
*task16_window: information
*task17_description: | Number of LOC per Component |
*task17_query: statis file loc component &
*task17_window: information
*task18_description: _______________________________________
*task18_query:
*task18_window: information

Figure 140 (Part 2 of 2). Part of Project Manager ′s .cmvcrc File

H.2 Customization Example for Developer
Most of time, as a developer, you are responsible for fixing defects or
implementating a feature by changing or creating files. Figure 141 on page 222
displays the CMVC - Tasks window customized for a developer and Figure 142
on page 222 shows the .cmvcrc file generated when customizing it. As you can
see, you can build queries by using SQL (�1�) if you know the CMVC tables and
views. The tables and views are described in the IBM CMVC User′s Reference.
You can also get the description by viewing the files, tables.db and views.db,
located in the /usr/lpp/cmvc/install directory on the server machine.

 Note:

Those file names are provided by the CMVC server for ORACLE. For
DB2/6000, the file names are, tables.db2 and views.db2. For INFORMIX, the
file names are, tables.ifx and views.ifx. For SYBASE, the file names, are
tables.syb and views.syb.

In Figure 142 on page 222, CMVC calls the createTrack.sh shell script, which
allows you to fix a defect without being familiar with the CMVC fix process (�2�).
Figure 145 on page 224 shows this shell script.

Appendix H. Tailoring CMVC Windows for Different Types of Users 221

Figure 141. Customized CMVC - Tasks Window for a Developer

*family: prod@bering@1222
*userID: truls
*directory: /home/aixcase2
*task1_description: List the defects I have to fix
*task1_query: state in (′ working′) and ownerLogin in (′ ted′) and id not in (select defectId from Tracks)
or id in (select defectId from Tracks where state in (′ fix′)) �1�
*task1_window: defect
*task2_description: Start fixing a defect
*task2_query: ksh createTrack.sh truls > log 2> ./error& �2�
*task2_window: information
*task3_description: List the defects I am fixing
*task3_query: userLogin in (′ truls′) and state in (′ fix′)
*task3_window: track
*task4_description: List defects for which I have changed files
*task4_query: state in (′ active′) and defectname in
(select name from defectview where ownerlogin=′ truls′)
*task4_window: fix
*task5_description: List the releases in change progress
*task5_query: name in (select releaseName from FixView where state in (′ active′))
*task5_window: release
*task6_description: List the releases with problem tracking on
*task6_query: relProcess not in (′ no_track′ , ′ prototype′)
*task6_window: release

Figure 142. Part of a Developer ′s .cmvcrc File

The createTrack.sh shell script, shown in Figure 145 on page 224, is called from
the CMVC - Tasks window when you click twice on Start Fixing a defect or when
you highlight this line and press the Return key.

In Figure 145 on page 224, you enter the defect number to be fixed from a dialog
box (�1�), and then select OK to confirm your choice. If you do not know which
defect you can select, select Help in the dialog box, and follow the instructions
displayed in the help dialog box (this step is shown in Figure 143 on page 223).
The program checks the existence, the state, and the ownership of the selected
defect (�2�). The program then checks to see if the defect defect state is working
using the Report on the view defectView. If the check fails, the program is
aborted (�3�).

222 CMVC Live

Figure 143. Getting the Number of Accepted Defects

In a second time (�4�) you enter one or more releases affected by the selected
defect, from a dialog box, and then select OK to confirm the list. If you do not
know which release, you can select Help in the dialog box and follow the
instructions displayed in the dialog box. This step is shown in Figure 144. The
program checks the process of each release of the list (�5�). The process must
not be prototype, nor no_track, because these two processes do not include the
track subprocess. This check uses the Report on the view releaseView. If the
check fails, the program is aborted.

Figure 144. Getting the List of Affected Releases

Finally, the program creates a track for each release (�6�).

Appendix H. Tailoring CMVC Windows for Different Types of Users 223

#!/bin/ksh
Function definition
getPar()
{

PAR=$(mgti -fn rom17 -prompt ″$1″ -helpMsg ″$2″ \
-helpTitle ″$3: Help″ -title ″$3″)

[[-z ″$PAR″]] && exit 2
}
displayInfo()
{

mfyi -fn rom17 -helpMsg ″$2″ -helpTitle ″$3: Help″ -title ″$3″ ″$1″
}
OWNER=$1

TITLE=″Starting up fixing a defect″
PROMPT=″Defect number you want to correct:″

HELP=″You can list the defects to be fixed by clicking twice
on the line \″List the defects I have to fix\″
in the CMVC-Tasks window″

get defect number
getPar ″$PROMPT″ ″$HELP″ ″$TITLE″ �1�

check defect status and ownership
info=$(Report -raw -view defectView \ �2�

-where ″name in (′ $PAR′) and state in (′ working′) \
and ownerLogin in (′ $OWNER′) ″)

test result of previous query
print $info | grep $PAR > /dev/null 2>&1
if [[$? -ge 1]]
then

INFO=″The defect $PAR has not existed
or not in working state″

displayInfo ″$INFO″ ″$HELP″ ″$TITLE″
exit 1 �3�

fi
DEFECT=$PAR

Figure 145 (Part 1 of 2). Shell Script to Create a Track: createTrack.sh

224 CMVC Live

PROMPT=″Enter the names of the affected releases″
HELP=″You can list the releases by clicking twice
on the line \″List the releases with problem tracking on\″
in the CMVC-Tasks window″
getPar ″$PROMPT″ ″$HELP″ ″$TITLE″ �4�
set -A RELEASES $PAR
CONTINU=FALSE
let I=0
check the release process
for RELEASE in ${RELEASES[*]} �5�
do

query for checking if track subprocess is turned on
info=$(Report -raw -view releaseView -where ″name in (′ $RELEASE′) \

and relProcess not in (′ no_track′ , ′ prototype′) ″)
print $info | grep $RELEASE > /dev/null 2>&1
if [[$? -ge 1]]
then

INFO=″The release $RELEASE has not existed
or has not the track subprocess is turned on″

displayInfo ″$INFO″ ″$HELP″ ″$TITLE″
else

CONTINU=TRUE
REL[$I]=$RELEASE
let I=I+1

fi
done
create a track for each release
if [[$CONTINU = ″TRUE″]]
then �6�

INFO=$(Track -create -defect $DEFECT -release ${REL[*]} -verbose)
HELP=″″
displayInfo ″$INFO″ ″$HELP″ ″$TITLE″

fi

Figure 145 (Part 2 of 2). Shell Script to Create a Track: createTrack.sh

H.3 Customization Example for Builder
Most of time, the build process is described by the Makefile file used by the AIX
make command. This file details a series of commands performing different
actions to build your application. The build process is not integrated in CMVC
but if you want to automate it, create a Makefile file for each release. This
allows you to manage your build process under CMVC control.

For the remote distributed build, if the target machines run TCP/IP and NFS, you
can use remote execution and share the target file systems through NFS. In this
case, make one or more Makefile files use remote execution of build commands.
Figure 146 on page 226 displays a CMVC - Tasks window customized for our
builder working on the release AIX_Release_1, and Figure 147 on page 226
shows the .cmvcrc file generated when customizing it.

Appendix H. Tailoring CMVC Windows for Different Types of Users 225

Figure 146. Customized CMVC - Tasks Window for Bui lder

*family: prod@bering@1222
*userID: MVSbuilder
*directory: /home/aixcase4
*task1_description: Show all my levels with the state integrate
*task1_query: userLogin in ′ MVSbuilder′ and state in ′ integrate′
*task1_window: level
*task2_description: List the integrable defects of AIX_Release_1
*task2_query: releaseName in (′ AIX_Release_1′) and state in (′ integrate′)
*task2_window: track
*task3_description: Create and build a AIX_Release_1 level integrating a fixed defect
*task3_query: ksh createLevelPar.sh AIX_Release_1 /ad/ProductA/AIX_Release_1 > log 2> error&
*task3_window: information
*task4_description: List the levels of AIX_Release_1
*task4_query: name like ′%′ and releaseName in (′ AIX_Release_1′)
*task4_window: level

Figure 147. Part of Bui lder ′s .cmvcrc File

The createLevelPar.sh shell script, shown in Figure 151 on page 229, is called
from the CMVC - Tasks window when you click twice on Create and build a
AIX_Release_1 level integrating a fixed defect or when you highlight this line and
press the Return key.

In Figure 151 on page 229, first you enter the defect number to be integrated
into a level from a dialog box (�1�), then select OK to confirm your choice. If you
do not know which defects you can select, select Help in the dialog box and
follow the instructions displayed in the dialog box. This step is shown in
Figure 148 on page 227. The program checks the existence and the state of the
track associated with the chosen defect and your default release, AIX_Release_1
(�2�). The track state must be integrate. This check uses the Report on the view
trackView. If the check fails, the program is aborted (�3�).

226 CMVC Live

Figure 148. Getting Fixed Defect Number

In a second time, you enter the name of the level you want to create to integrate
the fixed defect from a dialog box (�4�), and then select OK to confirm the level
name. If you do not know which level name you can enter, select Help in the
dialog box and follow the instructions displayed in the dialog box. This step is
shown in Figure 149. The program checks the nonexistence of level name
entered for the default release (�5�). This check uses the Report on the view
levelView. If the check fails, the program is aborted (�6�).

Figure 149. Getting the Level Name

Then, the program creates the level and adds the track as level member in
through another shell script named createLevel.sh (�7�), whose content is shown
in Figure 152 on page 231.

Then, the program extracts (delta extraction) the level by calling another shell
script named buildLevel.sh (�8�), described in Figure 153 on page 231.

Appendix H. Tailoring CMVC Windows for Different Types of Users 227

Finally, the program is waiting for the result of the level build (�9�). If you select
OK in the dialog box shown in Figure 150 on page 228, it means the build has
been successfully executed, the program automatically commits and completes
the level with the completeLevel.sh shell script shown in Figure 154 on page 232
(�10�).

Figure 150. Accepting a buil t Level

228 CMVC Live

#!/bin/ksh
getPar()
{

PAR=$(mgti -fn rom17 -prompt ″$1″ -helpMsg ″$2″ \
-helpTitle ″$3: Help″ -title ″$3″)

[[-z ″$PAR″]] && exit 2
}
displayInfo()
{

mfyi -fn rom17 -helpMsg ″$2″ -helpTitle ″$3: Help″ -title ″$3″ ″$1″
}
confirm()
{

myni -fn rom17 -helpMsg ″$2″ -helpTitle ″$3: Help″ -title ″$3″ ″$1″
}

RELEASE=$1
BUILDDIR=$2
MAKELOC=$BUILDDIR″ /″$3
TITLE=″Create and Build a Level″
PROMPT=″Enter the defect number to be integrated:″
HELP=″You can list the integrable defects by clicking twice
on the line \″List the integrable defects of AIX_Release_1\″
in the CMVC-Tasks window″
getPar ″$PROMPT″ ″$HELP″ ″$TITLE″ �1�
Check track existence and status
info=$(Report -raw -view trackView \ �2�

-where ″defectName in (′ $PAR′) \
and state in (′ integrate′) and releaseName in (′ $RELEASE′) ″)

echo $info | grep $PAR > /dev/null 2>&1
if [[$? -ge 1]]
then

INFO=″A track has not existed for the defect \″$PAR\″
and for the release $RELEASE or not in integrate state
or the defect has not existed″
displayInfo ″$INFO″ ″$HELP″ ″$TITLE″
exit 1 �3�

fi
DEFECT=$PAR

Figure 151 (Part 1 of 2). Shell Script to Proceed a Level: createLevelPar.sh

Appendix H. Tailoring CMVC Windows for Different Types of Users 229

TITLE=″Create and Build a Level″
PROMPT=″Enter the level name:″
HELP=″You can list the existing level by clicking twice
on the line \″List all the levels of AIX_Release_1\″
in the CMVC-Tasks window″
getPar ″$PROMPT″ ″$HELP″ ″$TITLE″ �4�
Check level existence
info=$(Report -raw -view levelView -where ″name in (′ $PAR′) \ �5�

and releaseName in (′ $RELEASE′) ″)

echo $info | grep $PAR > /dev/null 2>&1
if [[$? -ge 0]]
then

INFO=″The level is already existing
for the release $RELEASE″
displayInfo ″$INFO″ ″$HELP″ ″$TITLE″
exit 1 �6�

fi
LEVEL=$PAR
aixterm -title ″Creating a Level″ \ �7�
-e ksh createLevel.sh $DEFECT $LEVEL $RELEASE

aixterm -title ″Extracting and Building a Integrated Level″ \ �8�
-e ksh buildLevel.sh $LEVEL $RELEASE $BUILDDIR $MAKELOC

INFO=″If the build is OK, click on OK button
If the build is not correct, click on Cancel button″
HELP=″If the build is Ok, the level will be automatically
committed then completed
if the build is not correct the level stays in integrate state″
confirm ″$INFO″ ″$HELP″ ″$TITLE″
[[$? = 2]] && exit 2 �9�

aixterm -title ″Completing a Built Level″ \ �10�
-e ksh completeLevel.sh $LEVEL $RELEASE $BUILDDIR $MAKELOC &

Figure 151 (Part 2 of 2). Shell Script to Proceed a Level: createLevelPar.sh

The shell script illustrated in Figure 152 on page 231 is invoked from the
createLevelPar.sh program, described above. This shell script calls the CMVC
Level command to create a level with the default type of production (�1�), and the
levelMember command to add the created level in the selected track (�2�).

230 CMVC Live

#!/bin/ksh
DEFECT=$1
LEVEL=$2
RELEASE=$3

printf ″Creating the level $LEVEL for the release $RELEASE\n″
printf ″to integrate the defect $DEFECT\n″
Level -create $LEVEL -release $RELEASE -type production -verbose �1�

printf ″Integrating the defect $DEFECT into the level $LEVEL\n″
LevelMember -create -level $LEVEL -release $RELEASE \ �2�

-defect $DEFECT -verbose

print ″Press Enter to continue...″
read x

Figure 152. Shell Script to Create a Level with A Track: createLevel.sh

The shell script illustrated in Figure 153 is invoked if the build has been
successfully executed, by createLevelPar.sh program, described above. This
shell script uses the CMVC Level command to extract (�1�) (delta extraction
because the -full is not used) the integrated level. The make program (�2�),
automatically builds the extracted level in the build directory specified by the
variable MAKELOC.

#!/bin/ksh
LEVEL=$1
RELEASE=$2
BUILDDIR=$3
MAKELOC=$4
printf ″Extracting the level $LEVEL of the release $RELEASE\n″
Level -extract $LEVEL -full -release $RELEASE \ �1�

-node $(hostname) -root ″$BUILDDIR″ -uid $(id -u) -gid $(id -g) -verbose

printf ″Building the $LEVEL of the release $RELEASE\n″
cd $MAKELOC
make �2�
if [[$? = 0]]
then

prog=$(grep ″PROGRAM.*=″ Makefile)
${prog:##* }

fi
cd -
print ″Press Enter to continue...″
read x

Figure 153. Shell Script to Extract and Bui ld a Level: buildLevel.sh

The shell script illustrated in Figure 154 on page 232 is invoked if the build has
been successfully executed, by the createLevelPar.sh program, described above.
This shell script uses the CMVC Level command to commit and complete the
built level (�1�). The make program (�2�) automatically installs the result of the
build in the target directory, specified by the variable, INSTALLDIR.

Appendix H. Tailoring CMVC Windows for Different Types of Users 231

#!/bin/ksh
LEVEL=$1
RELEASE=$2
BUILDIR=$3
MAKELOC=$4

INSTALLDIR=$HOME/bin

printf ″The build is ok, the level $LEVEL will be committed then completed\n″

Level -commit $LEVEL -release $RELEASE -verbose �1�
Level -complete $LEVEL -release $RELEASE -verbose

install the executable in $HOME/bin
cd $MAKELOC
make DEST=$INSTALLDIR install all �2�
cd -
print
print
print ″Press Enter to continue...″
read x

Figure 154. Shell Script to Commit and Complete a Level: completeLevel.sh

232 CMVC Live

Glossary

Glossary terms are defined as they are used in this
manual. If you cannot find the term for which you are
looking, refer to IBM Dictionary of Computing

absolute path name . A directory or a file expressed
as a sequence of directories, followed by a file name
beginning from the root directory.

access list . A CMVC object that controls access to
development data. A list of user ID-authority group
pairs attached to a component, designating users and
the corresponding authority access they are being
granted for all objects managed by this component or
any of its descendants. It also contains the user
ID-authority group pairs designating users who are
restricted from performing actions at a specific
component.

action . A task performed by the CMVC server and
requested by a CMVC client. A CMVC action
corresponds to issuing one CMVC command.

AIC . See Advance interface composer.

Advance Interface Composer (AIC) . An AIX
application development tool in the category known
as “GUI builders.” It is used to design and implement
an OSF/Motif GUI for an application.

AIC interface . A top-level widget together with all of
its descendants.

AIC Interface File . An ASCII file consisting of a
header and a sequence of X Windows style resource
specifications that together describe an AIC Interface.
AIC generates an interface file when you save an
interface.

approver . A user who approves file changes
required to resolve a defect or implement a feature in
a release.

approver list . A list of CMVC user IDs attached to a
release, representing the users who must approve file
changes required to resolve a defect or implement a
feature in that release.

ASCII . The standard coded character set using 7-bit
characters (8th bit for parity) used widely on non-IBM
mainframe computers.

authority . The right to access development objects
and perform CMVC commands. See also access list,
base authority, explicit authority, implicit authority,
restricted authority, and superuser privilege.

base authority . The set of actions granted to a user
whenever a user ID is created in a CMVC family.

base file name . The name assigned to the file
outside of the CMVC server environment, excluding
any directory names.

batch program . A program that reads its input from
a file or device and writes its output to a file or
device without the interaction of a user.

BMS . See Broadcast Message Server

Broadcast Message Server (BMS) . A facility that
coordinates the SDE WorkBench/6000 or HP
SoftBench tools. Messages from tools are sent to the
Broadcast Message Server which routes messages to
other tools.

callback . C code that is associated with a widget or
gadget which is executed when a specified event
occurs. For example, a push button has an activate
callback, which is executed when it is selected.

change control . The process of limiting and auditing
changes to files through the mechanism of checking
files in and out of a central, controlled storage
location. Change control for an individual release can
be integrated with problem tracking by specifying a
process for that release that includes the track
subprocess.

check in . The return of a CMVC file to version
control.

check out . The retrieval of a revision of a CMVC file
from version control.

child component . All components in each CMVC
family, with the exception of the root component,
must be created in reference to an existing
component. The existing component is referred to as
the parent component, while the new component
becomes known as the child component. A parent
component can have more than one child component.
See also component.

client . A program that requests services from
another program. A client program may execute on
the same workstation as the server program, or on
another workstation connected to the server
workstation by means of a local area network (LAN).
Contrast with server.

CLIST . A file containing a sequence of commands
that serves as a mechanism on MVS for starting a
COBOL program.

CMVC . See Configuration Management Version
Control

 Copyright IBM Corp. 1994 233

CMVC client . The CMVC program that requests
services of a CMVC server. Sometimes this term is
used to refer to the workstation on which the CMVC
client program has been installed. CMVC client
programs can be installed on a variety of
workstations executing operating systems from
several vendors.

CMVC server . A CMVC program that manages file,
release, and configuration data and services requests
from CMVC clients. Sometimes the term is used to
refer to the workstation or computer on which the
CMVC server program is installed.

Configuration Management Version Control . An IBM
product that provides configuration management,
release management, problem tracking, change
control, and version control functions for application
development.

command . A request to perform an operation or run
a program from the command-line interface. In
CMVC, a command consists of the command name,
one action flag, and zero or more attribute flags.

common file . A CMVC file that is contained in two or
more releases and the same version of the file is the
current version for those releases. See also shared
fi le.

component . A CMVC object that simplifies project
management, organizes project data into structured
groups, and controls configuration management
properties. Component owners can control access to
development data (see access list) and configure
notification about CMVC actions (see notification list).
Components exist in a parent-child hierarchy, with
descendent components inheriting access and
notification information from ancestor components.

configuration management . The process of
identifying, managing, and controlling software
modules as they change over time.

context . A description of a data file or directory in
the form host dir file, representing host name,
directory path, and file name, which is used by SDE
WorkBench/6000 and integrated tools. See also tool
context and message context.

current directory . The default directory prepended to
any relative path name or file name by the UNIX shell
before using the file name or passing it on to any
other programs, such as commands. Also known as
the present working directory or pwd,

daemon . See daemon process.

daemon process . Daemon processes provide
services that must be available at all times to more
than one task or user. They are processes which run
as a background task on UNIX.

database . A systematized collection of data that can
be accessed and operated upon by a data processing
system for a specific purpose.

defect . A CMVC object used to formally report a
problem. The user who opens a defect is the defect
originator.

delete . A CMVC action that results in the database
record for a CMVC object, such as a file or user ID,
being marked so that it is unusable by CMVC
commands and queries. Most delected objects can be
re-created.

destroy . A CMVC action that removes the database
record for a CMVC object. The only CMVC object that
can be destroyed is a file. Destroying a fi le removes
the file record from the database on the CMVC
server. although a destroyed file cannot be
re-created, it will appear as part of an extracted level.

directory file list . A list of files and subdirectories of
the current working directory displayed in the main
window of SDE WorkBench/6000′s Development
Manager program.

downsize . Migrating a mainframe application to a
midrange or desktop computer. Sometimes also
referred to as rightsizing in marketing literature.

EBCDIC . A coded character set of 256 8-bit
characters used on IBM and other mainframes.

encapsulation . A program you write using, SDE
Integrator/6000, that makes an application
development tool appear, behave, and communicate
like other tools that are integrated with SDE
WorkBench/6000.

end user . A person using a computer program or an
application.

environment . In CMVC, a label representing a
user-defined testing domain for a particular release
which is entered in an environment list entry. Also
used as a field in the Defect record representing the
environment where the problem occurred.

environment list . A CMVC object, associated with a
track, which is a list of records containing two fields,
one specifying the environment and the other a
tester.

explicit authority . The ability of a particular CMVC
user ID to perform an action against a CMVC object
because that user ID was granted the authority to
perform that action.

extract . A CMVC action performed on a file, level, or
release that results in particular versions of the
named file, or files associated with the level or
release, being copied to a specified directory.

234 CMVC Live

family . In CMVC, a logical organization of related
development data. A single CMVC server can
support multiple families. The data in one family
cannot be accessed by CMVC IDs defined for another
family.

family administrator . A CMVC user ID who is
responsible for all non system-related tasks for one or
more CMVC families such as planning, configuring,
and maintaining the CMVC environment and
managing user access to those families.

feature . A CMVC object used to formally request a
functional addition or enhancement. The user who
opens a feature is the feature originator.

file . A collection of data that is stored by the CMVC
server and retrieved by a path name. Any text or
binary file used in a development project can be
created as a CMVC file. For example, source code,
executable programs, documentation, or test cases.
See also common fi le, shared file.

fix record . A status record that is associated with a
track and is used to monitor the phases of change in
each component that is affected by a defect or feature
for a specific release.

function key . A key appearing at above or beside the
normal character keys on a keyboard which can be
programmed to perform particular functions in
particular program contexts.

GUI. See graphical user interface.

graphical user interface (GUI) . The
OSF/Motif**-based CMVC graphical user interface
program.

home directory . The directory users access when
they log in.

host . Host node, host computer, or host system.

host list . A list associated with each CMVC user ID
which indicates the client hosts that can access the
CMVC server and act on behalf of the CMVC user.
The list is used by the CMVC server to authenticate
the identity of a CMVC client upon receipt of a CMVC
command. Each entry consists of a login name, a
CMVC user ID, and a host name.

implicit authority . The ability to perform an action
against a CMVC object without being granted explicit
authority. This authority is implicitly granted due to
object ownership. Contrast with explicit authority and
base authority.

inheritance . The passing of configuration
management properties from parent component to
child component. The configuration management
properties that are inherited are access and

notification. Inheritance in a component hierarchy is
cumulative.

Internet protocol (IP) . The protocol that provides the
interface from the higher level host-to-host protocols
to the local network protocols.

IP. Internet protocol

JCL . Job control language

job control language . On MVS, a command
interpreter/programming language which is used to
submit jobs (executable programs) to the operating
system.

Korn shell . The default UNIX shell executed on AIX.
It is virtually identical to the proposed POSIX standard
shell.

level . A collection of tracks, which represent a set of
changed files in a release.

level member . A track that has been added to a
level.

lock . Prevents editing access to a file stored in the
CMVC development environment so that only one
user can make changes to a given file at one time.

login . Operating system user identification.

make . The make command assists you in
maintaining a set of programs, usually pertaining to a
particular software project. It does this by building
up-to-date versions of programs.

makefile . This description file tells the make
command how to build the target file, which files are
involved, and what their relationships are to the other
files in the procedure.

map . The process of reassigning the meaning of an
object.

message context . The Broadcast Message Server
uses a context field to pass file name information
between the various SDE WorkBench/6000 or
Hewlett-Packard SoftBench tools. The context is
made up of the host, dir, and file.

message server . The facility that coordinates the
SDE WorkBench/6000 or HP SoftBench tools. It
receives messages from tools and routes them to
other tools.

NetLS . See Network License System.

Network File System (NFS) . A program that allows
you to share files with other computers in one or
more networks over a variety of machine types and
operating systems.

Glossary 235

Network Licensing System (NetLS) . A program that
controls the number of users who can simultaneously
access CMVC or other products.

NFS. See Network File System.

notification list . A CMVC object allowing component
owners to configure notification. A list of user
ID-interest group pairs attached to a component,
designating users and the corresponding notification
interest they are being granted for all objects
managed by this component or any of its
descendants.

online program . A user provides input interactively
to an online program and views its output on a
display, panel or window.

Open Systems . A common type of operating system
which is available on many different vendors ′
computers, across which programs may be easily
ported. The many different versions and variants of
UNIX which are available on many brands of
computers are considered open systems by most
people. Typically, an open system supports de facto
industry and de jure formal standard interfaces,
subsystems, languages, and utilities. Many vendors
offering non-UNIX operating systems that include
these standard interfaces and util it ies consider their
operating systems to be open systems also.

originator . The user who opens a defect or feature
and is responsible for verifying the outcome of the
defect or feature on a Verification record. This
responsibility can be reassigned.

OSF/Motif . A window manager X client application
resold by many UNIX vendors with their X Windows
Server product. This is a core part of the 2D Feature
of AIXwindows Environment/6000. There is also an
OSF/Motif Style Guide governing the “look and feel”
characteristics of OSF/Motif compliant GUIs.

owner . The user who is responsible for a CMVC
object in a CMVC family, either because they created
the object or was assigned ownership of that object

panel . In ISPF, a logical subset of data displayed in a
rectangular space on a character-based display
terminal. Analogous to a window on a graphical
display terminal. Sometimes also called a
input/output screen or display map.

parent component . See child component and
component.

path name . The name of the file under CMVC control.
A path name can be a set of directory names and a
base name or just a base name. It must be unique in
the release that groups the files.

problem tracking . The process of tracking all
reported defects through to resolution and proposed
features through to implementation.

profile . A file containing customized settings for a
system or user.

project . A project is a set of interfaces designed for
a single application.

process . A combination of CMVC subprocesses,
configured by the family administrator, that controls
the general movement of CMVC objects (defects,
features, tracks, and levels) from state to state in a
component or release. See also subprocess and
state.

query . A structure request for information from a
database, for example, a search for all defects that
are in the open state. See also search.

relative path name . The name of a directory or a file
expressed as a sequence of directories followed by a
file name, beginning with the current directory.

release . A CMVC object defined by a user to group
all files that must be built, tested, and distributed as a
single entity.

restricted authority . The restriction of a user′s ability
to perform certain actions at a specific component.

root component . The initial component that is
created when a CMVC family is configured. Al l
components in a CMVC family are descendants of the
root component. Only the root component has no
parent component.

SCCS. See Source code control system

scope . A parameter in the TOOL statement for each
SDE WorkBench or HP SoftBench tool. It defines the
fields in the message context used by the Execution
Manager to determine whether a particular tool can
service a particular request.

search . The scanning of one or more data elements
of a set in a database to find elements that have
certain properties.

server . A workstation that performs a service for
another workstation.

SEI. Software Engineering Institute

shared file . A file that is shared between two or
more releases. See also common f i le.

shell . Generic name for UNIX command-line
interpreter. UNIX shells are also noncompiled
procedural programming languages with which end
users and system administrators can build util ity
programs.

236 CMVC Live

Software Engineering Institute . Carnegie-Mellon
University ′s Software Engineering Institute is a
research and development center funded by the
United States federal government. Carnegie-Mellon
University developed an assessment vehicle that was
accepted by the U.S Department of Defense. This
assessment allows to improve the software
development processes will help achieve quality,
productivity, and cycle-time reduction goals.

Source Code Control System (SCCS) . The Source
Code Control System (SCCS) is a complete system of
commands that allows specified users to control and
track changes made to an SCCS file. SCCS files allow
several versions of the same file to exist
simultaneously, which can be helpful when developing
a project requiring many versions of large files. The
SCCS commands support Multibyte Character Set
(MBCS) characters.

state . Tracks, levels, features, and defects move
through various states during their life cycles. The
state of an object determines the actions that can be
performed on it. See also process and subprocess.

subprocess . CMVC subprocesses govern the state
changes for CMVC objects. The design, size, review
(DSR) and verify subprocesses are configured for
component processes. The track, approve, fix, level,
and test subprocesses are configured for release
processes. See also process and state.

superuser privilege . A user who is granted
superuser privilege. Superuser privilege allows a
user to perform any action available in the CMVC
family.

system administrator . A user who is responsible for
all system-related tasks involving the CMVC server,
such as, installing, maintaining, and backing up the
CMVC server and the relational database being used
by the CMVC server.

TCP. Transmission control protocol.

Transmission control protocol . A communication
protocol used in internet following the U.S.
Department of Defense standards for internetworking
protocol. See also Internet protocol.

tester . A user responsible for testing the resolution
of a defect or the implementation of a feature for a
specific level of a release and recording the results
on a test record.

tool . In SDE terminology a tool is an encapsulated
application.

tool context . The range of data for which a tool is
registered to receive requests and perform actions.

track . A CMVC object created to monitor the
progress of changes in a release to resolve a specific
defect or implement a specific feature.

user . A person with an active user ID and access to
one or more CMVC families.

User exit (UE) . A user exit allows CMVC to call a
user-defined program during the processing of CMVC
transactions. User exits provide a means by which a
user can specify additional actions that should be
performed before completing or proceeding with a
CMVC action.

UE. User exit

verification record . A status record which must be
marked by the originator of a defect or a feature
before the defect or feature can move to the closed
state. This allows the originator to verify the
resolution or implementation of the opened defect or
feature.

version control . The storage of multiple versions of a
single file along with information about each version.

view . An alternate and temporary representation of
data from one or more tables.

working file . The currently checked-out version of a
CMVC file.

X client . An application which makes calls to X
Windows library subroutines to request that an X
server program perform input/output at a graphical
display.

X server . The X Windows software which manages
the input/output resources of a graphical display
(monitor, keyboard, pointing devices).

X station . A network-attached device which executes
the X server software to control a display unit
(monitor, keyboard, pointing device). Some X stations
also support attachment of a printer, hard disk and
other I/O devices, but an X station is not a general
purpose computer. Using an X station, a user must
login to another computer on the network.

X Windows . A client-server graphical windowing
product from MIT** which forms the basis of the 2D
Feature of AIXwindows Environment/6000 along with
OSF/Motif.

Glossary 237

238 CMVC Live

List of Abbreviations

4GL Fourth Generation Language

ADT Application Development
Toolkit

AIC AIXwindows Interface
Composer

AIX Advanced Interactive
eXecutive

ANSI American National Standards
Institute

API Application Programming
Interface

APPC Advanced
Program-to-Program
Communications

ASCII American Nationsl Standard
Code for Information
Interchange

BMS Broadcast Message Server

CASE Computer Aided Software
Engineering

CLIST Command List

CMVC Configuration Management
and Version Control

CUA Common User Access

DB2 DATABASE 2

DNS Domain Name Service

EBCDIC Extended Binary Coded
Decimal Interchange Code

FTP File Transfer Protocol

GB Gigabyte

GUI Graphical User Interface

IBM International Business
Machines Corporation

IO Input/output

IP Internet Protocol

ISPF Interactive System Panel
Facility

ITSC International Technical
Support Center

ITSO International Technical
Support Organization

LAN Local Area Network

LPP Licensed Program Product

LPEX Live Parsing Editor (PC and
AIX version of LEXX)

MB Megabyte

MVS Multiple Virtual Storage

NCS Network Computing Service

NFS Network File System

NIS Network Information System

NLS National Language Support

OEM Original equipment
manufacturer

OSF Open Software Foundation

OODB Object Oriented Data Base

OS Operating system

POWER Performance Optimized With
Enhanced RISC

PVCS Program Version Control
System

QA Quality Assurance

RISC Reduced Instruction Set
Computer

SCCS Software Change Control
System

SCM Software Configuration
Management

SCRB Software Change Review
Board

SDE Software Development
Environment

SDRB Software Design Review
Board

SEE Software Engineering
Environment

SEI Software Engineering Institute

SMP Symmetrical mult iprocessor

SNA Systems Network
Architecture

SQL Structured Query Language

TCP/IP Transmission Control
Protocol/Internet Protocol

UIL User Interface Language

US United States

X11R4 X Windows Version 11
Release 4

X11R5 X Windows Version 11
Release 5

XL C XL C Compiler/6000

XL C+ + XL C+ + Compiler/6000

 Copyright IBM Corp. 1994 239

240 CMVC Live

Index

Special Characters
/etc/hosts fi le 17
/etc/inittab 162, 164, 165
/etc/oratab 162
/etc/rc.ncs 164
/etc/services fi le 17
/etc/shutdown 165
/home or /u/ 52
/nfs 54
/nfs/ 50
/oracle fi le system 161
/production/audit 37
/ tmp 51
/user/ lpp/cmvc/instal l 27
/usr/l ib/CMVC 31, 34, 36
/usr/lib/CMVC file 24
/usr/lib/CMVC. file 17
.cmvcrc 34, 36
.cmvcrc fi le 24
.cmvcrc. 31
.profile file 17

A
abbreviations 239
acronyms 239
AIC and X windows release compatibility 46
AIC restriction 54
AIX login name 68

B
baselines

as-built baseline 5
baseline documents 2
build-to baseline 5
development baselines 2
initialize baselines with defect or feature 92
object-oriented methodology 5
types of data 8
waterfal l methodology 5

builder 14

C
change management

applicabil i ty 3
automation 8
benefits 3
data capture and analysis 7
definit ion 2
project management 6
purpose 1
QA 6

change management (continued)
risk minimization 4
software maintenance 4

chfield 20
CLIENT_HOSTNAME 17
CLIENT_LOGIN 17
CMVC

accept a defect of feature 33
accept a defect or feature 26
access 10
access authority 72
access authority group 80, 92
access list 25, 34
area (user ID) 70
ASCII files 73
audit log 37
audit trail 9
authority groups 72
Binary fi les 73
break common link 37
build process 26
builder 34
builder authority 34
check in a file 56
Check In Files dialog box 37
check out a file 86
choices list, changing for same field over time 92
choices lists 91
close a defect or feature 26
CMVC - Verification Records 36
CMVC server 67
CMVC user ID 69
CMVC user IDs 10
CMVC Users record 72
command-line flags: -relative and -top 86
common fi les 36, 87
complete a fix record 33
component 24, 72
component hierarchy 31, 72, 73, 74
component managing defect and feature

processing 89
component naming conventions 74
component ownership 79, 80
component parent-child relationship 73
components 25, 31
components manage fi les 87
configurable fields 10, 72, 89
configurable process 9, 10
create a family 18
create a file 33
create a fix record 33
create database 18
create family fi le system 18
customization 18

 Copyright IBM Corp. 1994 241

CMVC (continued)
default process 90
defect acceptance reason or answer 93
defect and feature numbers (identifiers) 91
Defect and Feature record 89, 91
defect or feature ownership 73
defect or feature process model 89
defect or feature process model, changes

overt ime 90
defects 9
deny authority 92
description 8
Design-Size-Review subprocess 89
development tree structure 85
disk requirements 45, 67
environment l ist 26
error message 32
extract a file 56, 86
extract a level 34
family 15, 68
family fi le system 164
family initial CMVC user ID 164
family login name 17
family superuser 69, 164
family UNIX login name 164
features 9
file naming convention 85
File record 87
grant authority 79
history of 8
host list 69
implicit authority 92
interest group 81
interested list 10
level 9, 34
level commit 35
level complete 35
level member 35
licensing token 66
link a release to another release 36
maintenance process 26, 31, 33, 34, 37
memory requirements 44, 67
mini-hierarchies of components 74
mini-hierarchy 90
NetLS licensing 163
no_track process 33
notif ication 10, 30, 35, 36, 37, 38, 69, 72, 79, 81
notif ication daemon 18, 165
notification list 25
open a defect or feature 26
parallel development 86
path naming convention 85
preship process 90
problem tracking 9
prototype process 89
RDBMS 16
reject a defect or feature 26
relationship of component hierarchy to direct tree

structure 74

CMVC (continued)
relative path name (file path name) 56
relative path name for CMVC file 85
release 9, 24, 25
release management 9
Report 28
response time too long 23
restrict authority 79
root component 72
SCM Administrator 34
server daemon 18, 165
shared code 68
shared files 37, 86
starting CMVC client GUI 24, 31
test accept 36
test records 26
track 9, 33
types of data in CMVC files 73
unique cmvc file name 86
user exit program 10
user exit programs 20, 90
verify a defect or feature 26, 36
verify subprocess 89
version control 9

CMVC - Access List window 84
CMVC - Component Tree 78
CMVC - Component Tree window 75
CMVC - Components window 82
CMVC - Fix Records window 34
CMVC - Help window 90
CMVC - Host Lists window 71
CMVC - Information window 37, 92, 93
CMVC - Level Change History window 39
CMVC - Notification List window 84
CMVC - Tasks window 34, 35, 36, 37
CMVC - Test Records window 36
CMVC - Users window 70
CMVC_BECOME 24, 27, 33
CMVC_FAMILY 17, 24, 27, 33
CMVC_RELEASE 33
CMVC_SUPERUSER 17
CMVC_TOP 33, 86
cmvcd 18
cmvcrc.developer 31
cmvcrc.manager 24
cmvcrc.tester 36
COBOL 41
code reuse 15, 36, 87
Configuration Management Version Control

See CMVC
configuring asynchronous I/O 161

D
DATABASE 2/6000

CMVC RDBMS 8, 16
dbshut 162
dbstart 162

242 CMVC Live

developer 14, 30, 31, 32
development methodology 5, 18
directory structure

common development f i le tree 55
development f i le tree 56
production release file tree 61
production release file trees 55
prototype development f i le trees 56

downsize applications 11
downsizing 41

E
export 24

F
File -modify 20
ftp 34

G
glbd 164
glossary 233

H
hcon 34
Help pull-down menu 90
home directory 49, 52
HP 8

I
INFORMIX

CMVC RDBMS 8
ISO 76
ISPF 41, 42

K
Korn shell script 20

L
legacy COBOL applications 11
license tokens 66
Lines of code count

See LOC count
link 55
llbd 164
LOC count

LOC count field 88
LOC developed 19

locCounter 20
ls_targetid 164

M
Makefile fi le 86
manager 14
mkdb 18
mkfamily 18, 163
mkuser 17

N
NetLS

concurrent licenses 164
concurrent user licenses 163
expiration t ime 163
license server 163
password 164
product ID 164
token 163
vendor ID 164

NetLS license server 67
NetLS licensing mechanism 66
netlsd 164
Network License System

See NetLS
network license tokens 15
notifyd 18

O
object-oriented development

baselines 5
On Process menu selection of Help pull-down

menu 90
Open File List window 34
ora_XXX_dbwr 162
ora_XXX_lgwr 162
ora_XXX_pmon 162
ora_XXX_smon 162
ORACLE

asynchronous I/O 161
CMVC RDBMS 16
dba group 161
disk requirements 45
installation 161
memory requirements 45
oracle UNIX login name 161
SID 162, 163
system global area 162

ORACLE_SID 17
oracle.install 163
our sample project

access authority groups 84
AIC installed hosts 49
AIC service levels 46
AIX service levels 46
AIX window service levels 46
application development environment

description 42
application development tools 12

Index 243

our sample project (continued)
application development tools distribution 45
assignment of developers to hosts 48
brief description 11
CMVC client host 67
CMVC server host 67
CMVC user IDs and roles 70
common development f i le tree 55
common fi les 88
company standard 22
component hierarchy 75
component naming convention 78
component ownership 81
configurable fields 88
DB2 Client installation 49
DB2 Server installation 49
defect and feature numbers (identifier) 96
Design-Size-Review subprocess 95
disk requirements 44
extract a release 78
families 68
File record 88
hardware 43
maintenance process 95
memory requirements 44
Micro Focus COBOL installation 49
Micro Focus COBOL ToolBox installation 49
module header 22
network 43
NFS mounted file systems 49
NFS mounted filesystems 53, 55
notif ication 83
preship process 95
problem ID generator 22
production releases 55
project stages 24
prototype development f i le tree 56
relationship between hierarchy and development

tree structure 78
SDE WorkBench/6000 installed hosts 49
shared files 88
software development environment 12
stages 11
team members/roles 14
verify subprocess 95
X server distribution 48
X servers 44

P
passwd 17
project manager 15, 19, 23, 27, 36, 37
PVCS 9

Q
QA representative 14, 19
quality metrics 19

R
Report 27, 29

S
SCCS 9
SCM

applicabil i ty 3
audit trai l 6
automation 8
benefits 2
data capture and analysis 7
length of SCM effort 65
managing complexity 4
project management 6
purpose 1, 2
QA 6
risk minimization 4
software maintenance 4

SCM administrator 23, 27, 31, 32, 36, 37
SDE WorkBench/6000

data context in SDE WorkBench/6000 50
distributed data 50
distributed execution 51
integrated client GUI 8
network aware application development tools 50
network scope 54

single system image 49, 52
Software Configuration Management

See SCM
sqlplus 19
stopCMVC 165
su 17
Sun 8
SYBASE

CMVC RDBMS 8
system administrator 14, 15, 18

T
tables.db 27
TCP/IP 17
tester 14

U
uname 164
UNIX login name 68

V
views.db 27

W
wri ter 14

244 CMVC Live

X
X server 47, 67
X windows 48
XL C+ + 49

Index 245

ITSO Technical Bulletin Evaluation RED000

Did You Say CMVC?

Publication No. GG24-4178-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4178-00 IBML

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 471, Building 070B
5600 COTTLE ROAD
SAN JOSE CA
USA 95193-0001

Fold and Tape Please do not staple Fold and Tape

GG24-4178-00

IBML

Printed in U.S.A.

GG24-4178-00

