

International Technical Support Organization

AIX Application Development and
How To Migrate and Enhance
Your Legacy Applications

May 1995

GG24-4177-00

IBM International Technical Support Organization

AIX Application Development and
How To Migrate and Enhance
Your Legacy Applications

May 1995

GG24-4177-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Special Notices” on
page xvii.

First Edition (May 1995)

This edition applies to Version 1.1.1 and 1.2.0 of AIXwindows Interface Composer/6000, 5756-027, Version 2.1.0 of Configuration
Management Version Control/6000, 5765-207, Version 1.1.0 of DATABASE 2/6000, 5765-172, Version 3.1.3 of Micro Focus COBOL,
Version 6.0.36.3.2 of ORACLE Relational Database Management System, Version 1.2.2 of Software Development Environment
Workbench/6000, 5696-037, and Version 1.2.0 of Software Development Environment Integrator/6000, 5696-137 for use with the AIX
Operating System 3.2.4.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

An ITSO Technical Bulletin Evaluation Form for readers' feedback appears facing Chapter 1. If the form has been removed,
comments may be addressed to:

IBM Corporation, International Technical Support Center
Dept. 471, Building Building 070B
5600 Cottle Road
San Jose, California 95193-0001

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Abstract

This document describes the downsizing of a DATABASE 2 business application
from an IBM mainframe running MVS to the RISC System/6000 and AIX/6000. The
project included a minimal effort migration of the COBOL application and its
database to AIX, replacement of its ISPF panels with a graphical user interface
using AIXwindows Interface Composer/6000 (AIC/6000), maintenance and testing
of both AIX and MVS versions of the application on AIX, and reimplementation of
the application in C++ on AIX. Software baselines for all AIX and MVS versions of
the application were controlled on AIX. The purpose of the project was to evaluate
and exercise the several application development products available for the AIX
platform in the context of a realistic application development effort. These products
were SDE WorkBench/6000, SDE Integrator/6000 and several AIX application
development products which are integrated with SDE WorkBench/6000 including:
AIXwindows Interface Composer/6000 (AIC/6000), Configuration Management
Version Control/6000 (CMVC/6000), XL C, XL C++, Micro Focus COBOL and Micro
Focus COBOL Toolbox for AIX. This volume focuses on the programming issues
involved in the migration and modernization of the application, and on the use and
tailoring of the AIX products supporting the edit, compile, and debug activities.

AD AX (266 pages)

 Copyright IBM Corp. 1995 iii

iv How to Migrate and Enhance Your Legacy Applications

 Contents

Abstract . iii

Special Notices . xvii

Preface . xxi
How This Book Is Organized . xxii

Prerequisite Publications . xxiii
Related Product Publications . xxv
International Technical Support Organization Publications xxv
Acknowledgments . xxvi

Part 1. AIX Application Development . 1

Chapter 1. Why AIX Application Development Products? 3
1.1 Who Is Migrating to Open Systems and UNIX? 3

1.1.1 Downsizers: Mainframe Developers . 3
1.1.2 Upsizers: Desktop Developers . 3

1.2 Why Are They Migrating to AIX? . 4
1.2.1 Superior Price Performance . 4
1.2.2 AIX and Open Systems Software . 5
1.2.3 DATABASE 2/6000 and Mainframe Affinity 5
1.2.4 MS-DOS Affinity . 6
1.2.5 AIX Application Development Products 6

1.3 What Should Open Systems Application Development Products Provide? . 6
1.3.1 The Application Development Framework 6
1.3.2 Application Development Tools for Edit, Compile, and Debug 7
1.3.3 Application Development Tools for Software Engineering 7
1.3.4 Full Life Cycle Support . 8
1.3.5 Cross-Platform Support and Commonality 8
1.3.6 ISO 9000 and Application Development 8
1.3.7 Software Engineering Institute Capability Maturity Model 9
1.3.8 Open Systems Standards and Application Development Products . . . 9
1.3.9 AIX Application Development Products 10

Chapter 2. Introducing AIX Application Development Products and
DB2/6000 . 11

2.1 POWERbench/6000 Product Family . 11
2.2 Software Development Environment WorkBench/6000 11

2.2.1 Broadcast Message Server . 12
2.2.2 Tool Manager and Execution Manager 12
2.2.3 Development Manager . 12
2.2.4 Distributed Computing Support . 12

2.3 SDE WorkBench/6000 Bundled Tools . 13
2.3.1 Program Builder . 13
2.3.2 Program Editor . 13
2.3.3 Other Editors . 14
2.3.4 Program Debugger . 14
2.3.5 Static Analyzer . 14
2.3.6 File Transfer Program . 14

 Copyright IBM Corp. 1995 v

2.3.7 Mail Tool . 14
2.3.8 Message Monitor . 14

2.4 Integrated Optional Program Products . 14
2.4.1 AIXwindows Interface Composer/6000 14
2.4.2 Micro Focus COBOL and Micro Focus COBOL Toolbox 15
2.4.3 Configuration Management Version Control 16

2.5 SDE Integrator/6000 . 18
2.6 DB2/6000 and Related Products . 18

2.6.1 DB2/6000 Server . 18
2.6.2 DB2 Client Support/6000 . 18
2.6.3 DB2 Client Application Enabler/6000 19
2.6.4 DB2 Software Developers Kit/6000 . 19
2.6.5 Distributed Database Connection Services/6000 19
2.6.6 DB2 Configurations . 19
2.6.7 DB2 Products for Hewlett-Packard and Sun 20

Part 2. Our Project . 21

Chapter 3. The Legacy Application . 23
3.1 What the Application Does . 23
3.2 Programs . 23
3.3 Database Design . 24
3.4 The User Interface . 26

Chapter 4. Defining the Project and Setting Its Goals 29
4.1 Getting to Know the AIX Application Development Products 29

4.1.1 Mixing Multiple Vendors' UNIX Target and Development Platforms in a
Common Environment . 29

4.1.2 Distributed Application Development Environment 30
4.1.3 Multiple Programming Languages . 31
4.1.4 Choosing the Developers . 31
4.1.5 Software Configuration Management Requirements 31
4.1.6 Team Programming . 31
4.1.7 Degrees and Methods of Tool Integration 31

4.2 Downsizing and Modernizing an MVS Application 32
4.2.1 Defining a Downsizing and Modernizing Strategy 32
4.2.2 Examining the Feasibility of the Project 33

Chapter 5. Our Application Development Environment 39
5.1 Fundamental Guidelines . 39
5.2 Hardware and Network Topology . 39

5.2.1 Display and X Server Requirements 41
5.2.2 Memory and Disk Requirements . 41

5.3 Software Topology . 42
5.3.1 AIX and LPP Versions, Releases and Levels 43
5.3.2 X Windows Services . 44
5.3.3 Network Software . 45
5.3.4 CMVC Server and Clients . 45
5.3.5 DB2/6000 Server and Clients . 45
5.3.6 Compiler Compute Servers . 45
5.3.7 AIC Compute Servers . 45
5.3.8 SDE WorkBench/6000 . 46

5.4 File System Topology . 46

vi How to Migrate and Enhance Your Legacy Applications

5.4.1 NFS Mounts for Distributed Data with SDE WorkBench/6000 46
5.4.2 NFS Mounts for Distributed Execution with SDE WorkBench/6000 . . 47
5.4.3 NFS Mounts for Single System Image 49
5.4.4 NFS Mounts for AIC 1.2 . 50
5.4.5 Common Development File Tree . 51

Chapter 6. Migrating the Legacy Application to AIX 61
6.1 Using SDE WorkBench/6000 and Integrated Tools to Develop the GUI . . 61

6.1.1 Remote Access to SDE WorkBench/6000 and Integrated Tools . . . 61
6.1.2 Tool Manager . 63
6.1.3 Using Development Manager to Manage Files and Directories 64

6.2 Design and Implementation of Our User Interface 68
6.2.1 Selecting Directory Organization and Naming Conventions 69
6.2.2 Design of the Windows Using AIC . 76
6.2.3 Implementing the Callbacks . 80

6.3 Design and Implementation of the COBOL Code 89
6.3.1 Design Decisions . 89
6.3.2 Implementation . 91
6.3.3 Edit, Compile, and Debug . 100
6.3.4 Test Tools . 113

6.4 Migration of the Database . 117
6.4.1 Creating the Database . 118
6.4.2 Extracting and Moving the Old Data 118
6.4.3 Creating Tables and Importing the Data 120

6.5 Integration and Test . 122
6.5.1 Application Program Interface Conventions 122
6.5.2 Implementing the Calls to COBOL in the Callbacks 123
6.5.3 Link and Test . 129

Chapter 7. Improving the Application's GUI 133
7.1 Using SDE WorkBench/6000 and Integrated Tools to Improve the GUI . 133

7.1.1 Multiple Tools in a Single Tool Class on Separate Hosts 133
7.1.2 Remote Execution of AIC 1.2 . 134

7.2 Redesigning our User Interface . 136
7.2.1 Graphical User Interfaces . 136
7.2.2 Window Contents and Application Flow 136

7.3 User Interface Implementation . 139
7.3.1 Conventions and Files . 139
7.3.2 Design and Implementation of the Windows Using AIC 1.2 140

Chapter 8. Object-Orientation of Our Legacy Application 145
8.1 Using SDE WorkBench/6000 and Integrated Tools for Object-Oriented

Development . 145
8.2 Object-Oriented Technology and Graphical User Interfaces 145

8.2.1 Classes and Objects—the Basic Building Blocks 146
8.2.2 Evolution of User Interfaces . 146
8.2.3 GUIs Demonstrate Object-Oriented Principles 148
8.2.4 Object-Oriented Application Development and GUIs 148
8.2.5 Continuing the Evolution of Object-Oriented Technology 149

8.3 Our Object-Oriented Design Effort . 150
8.3.1 Our Base and Derived Classes (Class Hierarchy) 151
8.3.2 Other Relationships between Objects 153
8.3.3 Component Classes . 154
8.3.4 Object Behavior and Interactions in Our Application Design 155

 Contents vii

8.4 Our DB2/6000 Object-Oriented Interface 155
8.4.1 DB2/6000 C++ Classes . 156
8.4.2 Class dbserver . 156
8.4.3 Class dbstmt . 160
8.4.4 Class dberror . 164

8.5 Implementation Consideration and Organization 167
8.5.1 Conventions and Files . 167

8.6 Implementation of the GUI Using AIC 1.2 169
8.6.1 Preparing AIC for C++ Code Generation 169
8.6.2 Copying the OOGUI Interfaces from the Improved GUI Interfaces . 170
8.6.3 Modifying the Callbacks . 172
8.6.4 Generating C++ GUI and Building the Executable GUI 174
8.6.5 Saving the New AIC Interfaces . 174

8.7 Implementation of C++ Application Code 174
8.7.1 Class CustomerApp . 174
8.7.2 CustomerGUI . 178
8.7.3 Customer . 183

8.8 Integration and Test . 185
8.8.1 Defining a Useful Test Scenario . 185
8.8.2 Linking the Classes Together—Our Auxiliary Source Code Module 187
8.8.3 Integrating Our C++ Code with the Callbacks 188
8.8.4 Modifying the Callback Code . 188
8.8.5 Modifying the Main Program . 190
8.8.6 Modifying the Makefile File . 194
8.8.7 Generating Code and Test . 195
8.8.8 Overriding Callbacks in Application Classes 196

Part 3. Customizing and Tailoring AIX AD Products 199

Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and
DB2/6000 . 201

9.1 DB2/6000 Installation, Initialization, and Shutdown 201
9.2 Tailoring SDE WorkBench/6000 for COBOL Programmers 202

9.2.1 Creating a Separate Micro Focus COBOL Menu Item 202
9.2.2 Integrating Softanim Tool . 204
9.2.3 Creating the Softanim Item . 204
9.2.4 Tailoring Program Editor . 206

9.3 Tailoring SDE WorkBench/6000 for C++ Programmers 207
9.3.1 Customization of Program Editor . 207
9.3.2 Customization of Development Manager 208
9.3.3 Customization of Program Builder . 209

9.4 Tailoring SDE WorkBench/6000 for AIC Programmers 212
9.4.1 Modify the Tools List of Tool Manager 212
9.4.2 Modify Extension-Based File-Typing of Development Manager . . . 214
9.4.3 Modify the Action Pull-Down of Development Manager 216
9.4.4 Modify the Default Action of Development Manager 219
9.4.5 Modify the Invocation of Other Tools from AIC 220
9.4.6 Integration Restrictions and Their Circumventions 220

9.5 Tailoring AIC . 221

Chapter 10. Integrating User-Developed Utilities into SDE
WorkBench/6000 . 223

10.1 Concepts . 223

viii How to Migrate and Enhance Your Legacy Applications

10.1.1 Why Encapsulate a Tool? . 223
10.1.2 Steps of an Encapsulation . 224

10.2 Encapsulation Approaches . 224
10.2.1 Events a Tool May React to . 224
10.2.2 Encapsulations with No Code Modifications 225
10.2.3 Encapsulations with Code Modifications 225

10.3 Integrated Utility Example . 226
10.3.1 The Original Counting Tool . 226
10.3.2 Design of the New Tool . 226
10.3.3 Implementation of the New Tool . 227
10.3.4 Integration of the New Tool with SDE WorkBench/6000 230

Appendix A. Third-Party SDE Integrated AD Tools 233

Appendix B. Sample Panel Test Program 235

Appendix C. Panel Definitions . 241

Appendix D. Sample Data Extraction Program 253

Glossary . 261

List of Abbreviations . 263

Index . 265

 Contents ix

x How to Migrate and Enhance Your Legacy Applications

 Figures

1. Multiplatform DB2 Configuration Options 20
2. The Database Table Relationships . 25
3. Relationships between ISPF Panels . 26
4. Main ISPF Panel Definitions . 27
5. The Main Panel as It Appears on a 3270 Terminal 28
6. Modularization of a Well-Structured Program 36
7. Evolution of the COBOL Code . 37
8. Our Network Topology . 40
9. Distribution of Software Services across the Network 42

10. NFS Mounts to Support Distributed Data with SDE WorkBench/6000 . . 47
11. NFS Mounts to Support Distributed Execution with SDE WorkBench/6000 48
12. NFS Mounts to Support a Single System Image 50
13. File Systems Cross-Mounted on Our Hosts 51
14. ProjectA Prototype Development File Tree 53
15. PortedGUI Directory . 55
16. ImprovedGUI Directory . 56
17. OOGUI Directory . 57
18. ProductA Production Release File Trees 59
19. Using the xhost Command to Authorize Remote System Access 62
20. PATH Setting in User's .profile File . 62
21. Executing SDE WorkBench/6000 for Remote Display of its Output 62
22. Setting DISPLAY Variable in .profile File 62
23. Invoking SDE WorkBench/6000 on a Remote Host through rexec 63
24. WorkBench Tool Manager Window Lists Status of Running Tools 63
25. WorkBench Development Manager Window with Pull-Down Menu Active 65
26. WorkBench Development Manager Window with Dialog Box 66
27. Format for Entering a Data Context Value 67
28. WorkBench Development Manager Window with Context Pop-Ups . . . 67
29. WorkBench Development Manager Window Context vs. Directory 68
30. Directories for the User Interface Files of the Ported GUI 70
31. Source Files for the AddressChange Window 74
32. Tool Manager Start Dialog Box . 77
33. Changing the Interface Declaration Using the Widget Property Editor . . 78
34. Saving the OnlineUpdate Interface File . 79
35. The Interfaces of the Ported GUI . 79
36. The Online Update Window . 80
37. The WorkBench Program Editor - Message Window and Edit a File

Window . 81
38. The Include File for the Callbacks for the OnlineUpdate Window 82
39. Editing the OnlineUpdateCallbacks.c File Using Program Editor 83
40. Generating a Makefile File Using Program Builder 84
41. Compiling OnlineUpdateCallbacks.c . 85
42. Generating a Makefile File for Testing the Ported GUI 86
43. Using the Program Debugger . 88
44. Online Program Logic . 90
45. Main Loop . 91
46. Main Panel . 92
47. Declaration of Variables to Be Passed Between C and COBOL 92
48. Legacy Statements to Be Replaced by ENTRY Statements 93
49. Code Changes for Use of ENTRY Points 93

 Copyright IBM Corp. 1995 xi

50. Original ADDRESS-CHANGE SECTION of Legacy Application 94
51. Statements Deleted from Legacy Application 95
52. Resetting ERRMSG Variable Moved in Legacy Application 95
53. New Location for DB000 Label in Legacy Application 96
54. AIX Version of the Legacy Application . 97
55. Future Concepts Using Compiler Directives 100
56. Copying a File with the Development Manager 101
57. Development Manager Copy File Window 101
58. To Edit a File Using SDE WorkBench/6000 102
59. Development Manager Edit File Window 102
60. Editing the New Main Module . 103
61. The mkdb2rts Script . 104
62. Test Makefile File . 105
63. Micro Focus COBOL Version 3.1.3 Test Makefile File 106
64. Micro Focus COBOL Toolbox Main Window 107
65. Micro Focus COBOL Toolbox Compile Window 108
66. Micro Focus COBOL Toolbox Compiler Directives Window 109
67. Micro Focus COBOL Toolbox Compiler Message Window 110
68. Actions Pull-Down Menu for .int Files . 111
69. Showing Animator Window . 112
70. Using the Animation Mode . 113
71. C-to-COBOL Interface Test Program . 114
72. Testchg.mk Makefile File . 115
73. New Environment Initialization . 116
74. New Character-Based Main Panel . 116
75. Code Changes for the Use of Function Keys 117
76. Route Taken by DB2 Data from its MVS Host to AIX 119
77. File to Create Tables and Import data 120
78. The change.cbl File for the COBOL API Structure 123
79. The change.h File for the C API Structure 123
80. Creating a Defect to Add the Calls to COBOL 125
81. Checking Out the OnlineUpdateCallbacks.c Source File from CMVC . 126
82. The COBOL Environment Initialization Code in OnlineUpdateCallbacks.c 127
83. The COBOL Environment Termination Code in OnlineUpdateCallbacks.c 127
84. Calling the COBOL Function from the C Callback 128
85. Editing the Makfile File to Create the PortedGUI Program 130
86. Using Program Builder to Create an Executable File 131
87. Testing the Complete Application . 132
88. AIC 1.2 Started from SDE WorkBench/6000 134
89. Distribution of Various Tools among Multiple Hosts 135
90. The Primary Windows for the Improved GUI 137
91. The Secondary Windows for the Improved GUI 138
92. Editing the Header File for CustomerCallbacks.h 141
93. Editing the Callback Implementation for CustomerCallbacks.c 142
94. Compiling CustomerCallbacks.c on the Host yellow 143
95. The C++ Implementation Class Hierarchy 153
96. The Relationship between Customer and Payment Classes 154
97. dbserver.h, dbserver Class Declaration 157
98. dbserver.C, dbserver Class Implementation 158
99. dbstmt.h, dbstmt Class Declaration . 160
100. dbstmt.C, Selected Parts of dbstmt Class Implementation 162
101. dberror.h, dberror Class Declaration . 164
102. dberror.h, dberror Class Declaration . 166
103. The Subdirectories for the C++ Development Project 168

xii How to Migrate and Enhance Your Legacy Applications

104. AIC 1.2 with the OOGUI Project . 171
105. Editing Callbacks for the OOGUI Project 173
106. CustomerApp.h, CustomerApp Class Declaration 175
107. CustomerApp.C, CustomerApp Class Implementation 176
108. CustomerGUI.h, CustomerGUI Class Declaration 178
109. CustomerGUI.C, Selected Parts of CustomerGUI Class Implementation 180
110. Customer.h, Customer Class Declaration 184
111. Customer.C: Customer Class Implementation 184
112. Portion of aux.C. 187
113. The aux.h File . 188
114. Modification to the List of Include Files 189
115. The Interface from the Callback to the Application Code 190
116. Modified Xt Main Program With Declarations for C++ Variables 191
117. Modified Event Loop of Xt Main Program 193
118. Modifications to the Makefile File Used for Our C++ Application 195
119. Generating the Final C++ Application From AIC 196
120. The En_US Resource File . 202
121. The MDF.m Menu Description File . 203
122. Our New Development Manager . 203
123. The New Entries in the .softinit File . 204
124. The Resource File for the Softanim Item 205
125. The Menu Description File for the Softanim Item 205
126. The Softanim Item in the Actions Pull-Down Menu 205
127. The ibm_cobol File . 206
128. The Appearance of New softtypes . 207
129. Contents of the h.LXL File . 208
130. Lines Added to the /etc/environment File 208
131. Lines Added to the .softbenchrc File . 209
132. Modified Makefile Template for Program Builder 209
133. Line Added to .softbenchrc File . 212
134. Entry to Define AIC Rel. 1.2 as a New Tool to Tool Manager 213
135. Entry to Define AIC as a New Tool to Tool Manager 213
136. A Tool Manager Start Window with an Entry for the UIBUILD Tool Class 214
137. Entries to the softtypes File for Development Manager 215
138. Development Manager Recognizing AIC-Specific File Type Extensions 216
139. Entries to the En_US File Used for Menu Definition 217
140. Entries to the MDF.m File Used for Menu Definition (AIC 1.2) 217
141. Entries to the MDF.m File for AIC Releases Previous to 1.2 218
142. Actions Pull-Down for AIC-Specific File Type Extensions 219
143. Modify the Default Action for AIC-Specific File Type Extensions 219
144. Modify the Default Action (AIC Releases Previous to 1.2) 220
145. Enabling AIC to Use SDE WorkBench/6000 Tools 220
146. Modified AIC Resource File Previous to AIC 1.2 222
147. Modified AIC Resource File for AIC 1.2 222
148. User Interface of the New Tool . 227
149. The Implemented Source Code for the Encapsulation 228
150. Compile Command to Build the Encapsulation 230
151. Softinit Entry to Define the Class of the Encapsulated Tool 230
152. Modifying the Actions Menu Definition for the New Tool 230
153. Modifying the Labels of the Actions Pull-Down for the New Tool 230
154. Modified Actions Pull-Down for Encapsulated Tool 231
155. The Window after Invoking the Encapsulated Tool 231
156. ISPF Panel Test Program . 236
157. New Panel Definitions . 241

 Figures xiii

158. Program to Extract Data from MVS/DB2 253

xiv How to Migrate and Enhance Your Legacy Applications

 Tables

1. Our Hosts, Internet Addresses, and Hardware Configurations 40
2. Software Configurations . 43
3. Developer Workstation Assignments . 45
4. Evolution of Object-Oriented Systems 150
5. List of IBM Products in the SDE Environment 233
6. List of Vendor Products Integrated with SDE WorkBench/6000 233
7. List of Vendor Products Integrated with SDE WorkBench/6000 (Planned

or Announced) . 234

 Copyright IBM Corp. 1995 xv

xvi How to Migrate and Enhance Your Legacy Applications

 Special Notices

This publication is intended to help application developers understand various
application development products available from IBM and other companies on the
RISC System/6000 under AIX/6000. The information in this publication is not
intended as the specification of any programming interfaces provided by SDE
WorkBench/6000, SDE Integrator/6000, AIXwindows Composer/6000, XL C, XL
C++, Configuration Management Version Control/6000, DATABASE 2/6000, Micro
Focus COBOL, and Micro Focus COBOL Toolbox. Refer to the PUBLICATIONS
section of the IBM Programming Announcements for these products for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the implementation
of any of these techniques is a customer responsibility and depends on the
customer's ability to evaluate and integrate them with the customer's operational
environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United States
and/or other countries:

AIXwindows Interface Composer/6000 AIX
AIX/6000 AIXwindows
Configuration Management Version
Control/6000 (CMVC/6000)

COBOL/370

Common User Access CUA
DATABASE 2 DB2
DB2/2 DB2/6000

 Copyright IBM Corp. 1995 xvii

The following terms, which are denoted by a double asterisk (**) in this publication,
are trademarks of other companies:

Distributed Relational Database Architecture DRDA
IBM OS/2
OS/400 POWER Architecture
PowerPC POWERserver
POWERstation Presentation Manager
RISC System/6000 SAA
Scalable POWERparallel Systems SDE WorkBench/6000
SDE Integrator/6000 Systems Application Architecture
VS COBOL II SP1

AdaWorld Alsys
ANSI American National Standards Institute
AT&T American Telephone and Telegraph

Company
NetLS Apollo Computer, Inc., a subsidiary of

Hewlett-Packard Co.
Network Licensing System Apollo Computer, Inc., a subsidiary of

Hewlett-Packard Co.
NCS Apollo Computer, Inc., a subsidiary of

Hewlett-Packard Co.
Network Computing System Apollo Computer, Inc., a subsidiary of

Hewlett-Packard Co.
TRITON Tools Baan International B.V.
SEDIT BENAROYA
Yellow Pages British Telecommunications, PLC
SEDIT BENAROYA
Prolog by BIM BIM
Teamwork Cadre
Process WEAVER CAP Gemini Sogeti (CGS)
ProMod-PLUS CAP debis GEI
CaseWare/CM CaseWare
Software Backplane CRI (Atherton)
DECADE Delaware Computing
APPLIDUAL DUAL
ENFIN/3 Easel
FrameMaker Frame Technology
GNU Free Software Foundation
Hewlett-Packard Hewlett-Packard Company
HP Hewlett-Packard Company
HP-UX Hewlett-Packard Company
SoftBench Hewlett-Packard Company
INFORMIX Informix Software, Inc.
INFORMIX/4GL for ToolBus Informix
StP-ISE IDE
IEEE Institute of Electrical and Electronics

Engineers
POSIX Institute of Electrical and Electronics

Engineers
Intel Intel Corporation
Pentium Intel Corporation
Interleaf 5 Interleaf
ISO International Organization for

Standardization
Internet Internet, Inc.
PVCS CB and VM INTERSOLV
PVCS Version Manager INTERSOLV, Inc.

xviii How to Migrate and Enhance Your Legacy Applications

KeyOne LPS
X Window System Massachusetts Institute of Technology
MIT Massachusetts Institute of Technology
XRunner Mercury Interactive Corp., Israel
Micro Focus Dialog System Micro Focus
COBOL, COBOL with Toolbox Micro Focus
Micro Focus Micro Focus Limited
Micro Focus COBOL Micro Focus Limited
Micro Focus COBOL Toolbox Micro Focus Limited
Micro Focus Run Time Environment, RTE Micro Focus Limited
RTE, Run Time Environment Micro Focus Limited
Operating System Extensions Micro Focus Limited
Micro Focus Animator Micro Focus Limited
MS-DOS Microsoft Corporation
Microsoft Microsoft Corporation
Microsoft Windows Microsoft Corporation
Innovator MID
Motorola Motorola, Inc.
Open Interface Neuron Data
OBJECTORY Objective Systems (OS)
ORACLE Oracle Corporation, Inc
Motif Open Software Foundation, Inc.
OSF Open Software Foundation, Inc.
OSF/Motif Open Software Foundation, Inc.
OSF/DCE Open Software Foundation, Inc.
HyperWork PBS
SMARTsystem PROCASE
ROSE Rational
REFINE/FORTRAN Reasoning Systems
Objecteering Softeam
Software TestWorks (STW) Software Research
Sun Sun Microsystems Incorporated
SunOS Sun Microsystems Incorporated
SPARCstation Sun Microsystems Incorporated
SPARCserver Sun Microsystems Incorporated
Solaris Sun Microsystems Incorporated
NFS Sun Microsystems Incorporated
Network File System Sun Microsystems Incorporated
SYBASE Sybase, Inc.
Systemator Sysdeco
SDT TeleLOGIC
Emacs editors Unipress Software
ASE/ASA, AGE/GEODE, LOGISCOPE VERILOG
VADS Verdix
ViSTA VERITAS Software
View, Vutil Versant
VIEWS/VSF Virtual Software Factory
UIM/X Visual Edge Limited
I-CASE Westmount
Uniface WB UnifAce
UNIX X/Open Company Limited
X/Open X/Open Company Limited

 Special Notices xix

xx How to Migrate and Enhance Your Legacy Applications

 Preface

This book should be read by application developers, their managers, and software
configuration managers. It describes a project that downsized and modernized a
COBOL DATABASE 2 business application from MVS to AIX as a way of exploring
the use and advantages of several AIX application development products. By
supporting and automating many aspects of software development on the RISC
System/6000, these products enhance the productivity of UNIX programmers and
ease the transition to UNIX for mainframe application developers.

This book looks closely at IBM's SDE WorkBench/6000 and the set of integrated
developer tools that are bundled with SDE WorkBench/6000. It also examines the
use of optional integrated AIX application development tools, such as: IBM's
AIXwindows Interface Composer/6000; an OSF/Motif** compliant graphical user
interface “builder”; IBM's Configuration Management Version Control/6000; and
SDE Integrator/6000, a product enabling the integration of locally developed utilities
with SDE WorkBench/6000.

This book looks at several technical issues related to migrating a COBOL
application and its DB2 database from MVS to AIX. It shows how AIC is used to
generate GUI code, and how that code is linked with application code written in
COBOL, C, and C++. This book also looks at how a COBOL legacy application,
which accesses DB2, can rewritten in C++ for DB2/6000.

A companion volume, Did You Say, CMVC?, GG24-4178, tells how to plan for and
use CMVC for application development and also describes how CMVC was used to
support this specific project.

Though it is almost two years since the first lines of this book were written, it still
holds a lot of valuable information and points to interesting techniques of how to
migrate and reengineer legacy applications. We, the authors of this book, hope
you enjoy it and find it valuable in your efforts to capitalize and protect your
company's investments.

Leif Trulsson
ITSO - San Jose, California
May 1995.

- Better late than never -

 Copyright IBM Corp. 1995 xxi

How This Book Is Organized
Readers should focus on the sections that are most relevant to them and skip
those that are not. There are two themes to this book. The first is the use and
benefits of the application development products and the environment they create,
and the second theme is the migration and modernization of a COBOL DB2 legacy
application to AIX.

The reader should note that some chapters include details of the first theme
interleaved with details of the second. Thus, the reader who is primarily interested
in the programming issues for COBOL or C++ may want to skim lightly over the
details of how to use the various SDE WorkBench/6000 windows and menus.
Likewise, the reader who wants to get a feel for how developers with diverse
backgrounds, using unique development tools, and programming in different
languages worked in the same application development environment, may not want
to get bogged down in the details of how an ISPF character-based user interface is
approximated with a GUI.

The book is organized into chapters that help the reader identify specific areas of
particular interest. The three core chapters describing the sequence of
programming activities are organized into subsections focusing on design,
implementation, integration, and tool usage.

� Chapter 1, “Why AIX Application Development Products?”

This chapter looks at why open systems application development products are
needed in the 1990s and discusses the types and characteristics of those
products. It is for managers and can be skipped by any reader familiar with
these concepts.

� Chapter 2, “Introducing AIX Application Development Products and DB2/6000”

This chapter provides an overview of the AIX application development products
used on this project and describes DATABASE 2/6000 and its related products.
It can be skipped by any reader familiar with the names and purposes of the
products.

� Chapter 3, “The Legacy Application”

This chapter describes the legacy application and discusses the strategy we
chose to employ in its migration. It is a prerequisite to understanding the next
four chapters.

� Chapter 4, “Defining the Project and Setting Its Goals”

This chapter describes the engineering goals, constraints, and decisions
governing the downsizing project itself. It should be of interest to both
managers and developers.

� Chapter 5, “Our Application Development Environment”

This chapter describes the hardware, software, and file system topologies
created to support and enable the AIX application development environment
and tool configuration used in this project. It can be of more interest to
someone with a system or network administration focus, and is a prerequisite to
understanding the distributed development aspects of the AIX application
development environment, which is discussed in the next three chapters.

� Chapter 6, “Migrating the Legacy Application to AIX”

xxii How to Migrate and Enhance Your Legacy Applications

This chapter describes the application's migration to AIX, generation of its
ISPF-like GUI, and changes made to the MVS COBOL code that enabled code
running on both platforms to share a common subset of the COBOL code. It
should be of interest to developers focusing on COBOL, DB2/6000, C, and GUI
issues.

� Chapter 7, “Improving the Application's GUI”

This chapter details the improvement of the GUI according to CUA guidelines.
It should be of particular interest to C and GUI programmers.

� Chapter 8, “Object-Orientation of Our Legacy Application”

This chapter describes the reimplementation of the legacy application and the
regeneration of the improved GUI in C++. It should be most useful to C++

developers.

� Chapter 10, “Integrating User-Developed Utilities into SDE WorkBench/6000”

This chapter describes integrating a user-developed utility with SDE
WorkBench/6000 using SDE Integrator/6000. Developers who are creating or
supporting the AIX application development environment should find this
chapter useful.

� Chapter 9, “Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000”

This chapter details the specific AIX application development environment
created for this project's use, including how products were installed, configured,
and tailored for the specific languages, purposes, and requirements of this
project. System administrators should find this chapter useful.

 Prerequisite Publications
The following publications would be needed to install, customize or utilize the
products described in this book:

AIX Interface Composer Publications

� Installing and Configuring AIXwindows Interface Composer, Version 1.2,
SC23-2570

� Getting Started with AIXwindows Interface Composer, SC23-2557

� AIXwindows Interface Composer Developer's Guide, Version 1.2, SC23-2558

� Extending and Customizing AIXwindows Interface Composer, SC23-2559

� User Interface Programming Concepts: AIXwindows Interface Composer,
Volume 2, SC23-2405

 CMVC Publications

� Configuration Management Version Control Server Administration and
Installation, Version 2 Release 2, SC09-1631

� Configuration Management Version Control Concepts, Version 2 Release 1,
SC09-1633

� Configuration Management Version Control User's Guide, Version 1 Release 2,
SC09-1634

 Preface xxiii

� Configuration Management Version Control Commands Reference, Version 2
Release 2, SC09-1635

� Configuration Management Version Control Client Installation and
Configuration, Version 2 Release 1, SC09-1596

� Configuration Management Version Control User's Reference, Version 2
Release 2, SC09-1597

C++ and Object-Oriented Analysis, Design, and Programming Publications

� IBM AIX XL C++ Compiler/6000 User's Guide, Version 1.1.1, SC09-1472

� Object-Oriented Analysis and Design with Applications, SR28-5338, by Grady
Booch, published by Benjamin/Cummings Publishing Company, Inc., Redwood
City, CA (available from IBM or at book stores),

� The C++ Programming Language, Second Edition, SR28-5340, by Bjarne
Stroustrup, published by Addison-Wesley Publishing Company, Reading, MA
(available from IBM or at bookstores),

� The Annotated C++ Reference Manual, SR28-5342, by Bjarne Stroustrup and
Margaret A. Ellis, published by Addison-Wesley Publishing Company, Reading,
MA (available from IBM or at bookstores),

� Object-Oriented Programming Using C++, SR28-5339, by Ira Pohl, published by
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA (available
from IBM and at bookstores),

� Object-Oriented Programming, by Peter Coad and Jill Nicola, published by PTR
Prentice Hall, Inc., Englewood Cliffs, NJ,

DATABASE 2/6000 Publications

� IBM DATABASE 2 AIX/6000 Call Level Interface Guide and Reference,
SC09-1626

� IBM DATABASE 2 AIX/6000 Information and Planning Guide, GC09-1569

NetLS and NCS Publications

� NetLS Quick Start Guide, SC09-1661

� Managing Software Products with the Network License System, SC09-1660

� Managing NCS Software, SC09-1834

SDE WorkBench/6000 and SDE Integrator/6000 Publications

� IBM AIX SDE WorkBench/6000 User's Guide and Reference, Version 1.2,
SC09-1453

� Installing IBM AIX SDE WorkBench/6000 and SDE Integrator/6000, GC09-1452

� IBM AIX SDE WorkBench/6000 Development Manager: Managing Files and
Directories, Version 1.2, SC09-1455

� IBM AIX SDE WorkBench/6000 Program Editor, Version 1.2, SC09-1456

� IBM AIX SDE WorkBench/6000 Static Analyzer, Version 1.2, SC09-1457

xxiv How to Migrate and Enhance Your Legacy Applications

� IBM AIX SDE WorkBench/6000 Program Debugger, Version 1.2, SC09-1458

� IBM AIX SDE WorkBench/6000 Program Builder: Managing Program
Construction, Version 1.2, SC09-1459

� IBM AIX SDE WorkBench/6000 General Tools, Version 1.2, SC09-1460

� IBM AIX SDE Integrator/6000 Portability Guide, Version 1.2, SC09-1461

� IBM AIX SDE Integrator/6000 Programmer's Guide, Version 1.2, SC09-1462

� IBM AIX SDE Integrator/6000 Programmer's Reference, Version 1.2,
SC09-1463

� IBM AIX SDE Integrator/6000 Distributing and Encapsulation, Version 1.2,
SC09-1464

Related Product Publications
The following publications should be valuable if the reader uses products detailed in
this document.

 ORACLE Publications

� ORACLE RDBMS Database Administrator's Guide, Version 6.0,3601-v6.0 1090

� ORACLE for IBM RISC System/6000 Installation and User's Guide Version 6.0,
5687-60-0792

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications, with a
brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070

To get a catalog of ITSO technical publications (known as “redbooks”), VNET
users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or
by faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their local IBM office.

Customers may order hardcopy ITSO books individually or in customized sets,
called GBOFs, which relate to specific functions of interest. IBM employees
and customers may also order ITSO books in online format on CD-ROM
collections, which contain redbooks on a variety of products.

 Preface xxv

 Acknowledgments
This document is the result of a residency project conducted at the International
Technical Support Organization, San Jose Center, during 1993.

The advisor for this project was:

Lorna R. Conas,
International Technical Support Organization,
San Jose Center, California, USA

The authors of this document are:

Richard Kortmann, Advisory Programmer, IBM Germany Development GmbH,
Hanover, Germany

Branko Peteh, AIX Development Support, IBM Bergen Environmental Center,
Bergen, Norway

Leif Trulsson, AIX Consultant Systems Engineer,
IBM Services South, Malmö, Sweden

Thanks to the following people for the invaluable advice and guidance provided in
the production of this document:

Kalman Bohus, Toronto Labs, Toronto, Canada

Joe DeCarlo, International Technical Support Organization,
San Jose Center, USA

Laura Nystrom, Editor
San Jose, USA

Marvin Harrison, Toronto Labs, Toronto, Canada

Sam Lahire, Toronto Labs, Toronto, Canada

Sarah McNamara, Toronto Labs, Toronto, Canada

Bob Minns, International Technical Support Organization,
Austin Center, USA

Shankar Sanyal, Toronto Labs, Toronto, Canada

Leigh Williamson, Austin, USA

Thanks to the following people whose provision of technical support and products
enabled the success of this project:

David Satterwhite, ORACLE Corp., Redwood Shores, CA

Robert Garnero, CASEbridge Corp., Sunnyvale, CA

Ken Ausich, CASEbridge Corp., Sunnyvale, CA

Steven Kornberg, Micro Focus Limited, Palo Alto, CA

xxvi How to Migrate and Enhance Your Legacy Applications

Part 1. AIX Application Development

 Copyright IBM Corp. 1995 1

2 How to Migrate and Enhance Your Legacy Applications

Chapter 1. Why AIX Application Development Products?

Increasingly, companies are looking to open systems platforms to help meet the
cost, schedule, and quality challenges they face in application development (AD).
For some, migrating to the IBM* RISC System/6000* as a first open systems
platform is a particularly attractive choice because of the Advanced Interactive
Executive (AIX*) operating system's affinity for the IBM proprietary systems on
which they currently execute and develop their applications. Using IBM and vendor
application development products to create an application development
environment can ease the transition to open systems and enhance programmer
productivity on those platforms if you know what qualities and functionality to look
for in those products.

1.1 Who Is Migrating to Open Systems and UNIX?
Open systems provide increased flexibility, lowered operating system and hardware
costs, and greater interconnectivity options than older proprietary environments
offer. Applications are migrating to open systems from a variety of platforms for
several reasons that are discussed in this section.

1.1.1 Downsizers: Mainframe Developers
Many application developers want to migrate their business applications from
proprietary operating systems and mainframe computers to workstation and
midrange computers running operating systems based on UNIX** because they are
much less expensive to purchase and maintain. These developers may also be
looking for greater flexibility in their vendor relationships or a wider set of hardware
and software options. They may want to bring applications and the databases that
support them closer to the end users by creating a distributed, network-based
computing environment. This migration from mainframes to open systems is often
referred to as downsizing.

Developers interested in downsizing usually do not want to downsize all of their
applications at once. Typically these developers want newly migrated applications
to interoperate, or coexist, with their mainframe applications for an indefinite period
of time as they explore the advantages and potential disadvantages of the new
computing environment they are creating. Often these developers have limited
in-house open systems experience and are looking to create a development
environment that is friendly to the UNIX novice.

1.1.2 Upsizers: Desktop Developers
Another group of developers is migrating to open systems from a different direction.
This group is faced with the requirement to upgrade their applications from
networked workstations running MS-DOS**, Microsoft Windows**, or OS/2*, onto
larger capacity mid-range computers or multiuser operating systems. These
developers outgrew their original platforms but want to continue to work them into
their new configurations. These developers are also building distributed
applications often characterized by client/server architectures and database
dependencies. Developers on these platforms probably worked with the C
programming language, and with desktop versions of software development tools,
utilities, and libraries that originated on UNIX. They make an easy transition to AIX.
Because they are used to graphical user interfaces (GUIs) and point-and-click

 Copyright IBM Corp. 1995 3

interaction with their tools, however, they may not be as quick to adapt to the
traditional command-line interface epitomized by the UNIX “shells.”

C++ is a widely used object-oriented language. Compilers, object-oriented
databases, and many of the development tools that exist for C++ are supported by
vendors on UNIX platforms. Many object-oriented downsizers are migrating to
UNIX-based open systems because of this. The variety of application development
products designed specifically for object-oriented development are still limited,
because this is emerging technology. However, these developers are not only
looking to create an application development environment that supports their newer
object-oriented development efforts. They also need support in their AD
environment and products for their continuing traditional programming projects.

1.2 Why Are They Migrating to AIX?
Several factors contribute to the business application developers' desire to migrate
their legacy applications to the RISC System/6000. It is appealing as an open
systems platform for developers needing to move either down the price scale or up
the performance and capacity scale. Since its introduction, the product family is
growing at both ends of the price performance range. High-end performance
doubles every 12 to 18 months while prices undercut the competition at each new
product announcement.

1.2.1 Superior Price Performance
IBM defines the acronym RISC as Reduced Instruction Set Computer. The original
RISC System/6000 computers were based on the Performance Optimized with
Enhanced RISC (POWER) Architecture* which is sometimes referred as “RIOS 1.”
This implementation was enhanced in 1993 when IBM announced computers based
on the second-generation POWER Architecture chip set, sometimes called “RIOS
2.” The RIOS 1 implementation of the POWER Architecture was super-scalar. It
used parallel floating-point, integer, and instruction dispatch units which, along with
zero-cycle branching and a multiply-add instruction, made it possible to have a
peak execution rate of five operations per clock cycle. By doubling the number of
floating-point and integer units in the chip complex, the RIOS 2 computers doubled
the number of floating-point and integer operations that could be performed in a
single clock cycle. Thus, RISC System/6000 computers built with the RIOS 2 chip
set have double the integer and floating point performance of comparable RIOS 1
models using approximately the same clock speed.

The PowerPC* is a somewhat simplified single chip implementation of the POWER
Architecture. It is manufactured by IBM and Motorola**. The PowerPC is the basis
of computer lines being produced by IBM, Apple, and several other companies.
This chip has two to three times greater price performance than traditional PC chip
architectures, such as the Intel** X86 family. There will be several PowerPC chips
targeted for laptop, desktop and multiprocessor uses; the 601 is just the first to be
announced. The 601's performance was equal to or better than Intel's Pentium** at
less than half the cost when first announced. Parallel shared-memory and
symmetrical multiprocessor (SMP) computers built on either the PowerPC or the
RIOS chip sets present the opportunity to increase this performance tremendously.
IBM and others are pursuing several initiatives along these lines.

The RISC System/6000 family of POWERservers* and POWERstations* price
performance range extends from stand-alone desktops and small local area

4 How to Migrate and Enhance Your Legacy Applications

network (LAN) servers. POWERserver models range from specialized single-user
scientific or technical workstations to rack-mounted,
thousands-of-transactions-per-second, multiuser commercial processors. The
PowerPC complements these models with high-volume, very low-end laptops and
desktops, while the Scalable POWERparallel Systems* (SP1* and SP2) offers a
scalable, parallel, general purpose supercomputer at the very high end. Every
price performance point on the range in between these two extremes is
represented in this binary compatible family, including the RISC/6000 X station.
The X station a cost-effective network-attached X server. The RISC System/6000
family includes high-availability configurations, high-capacity, high-performance
Network File System** (NFS**) data servers, and specialized niche products, such
as network routers and gateways. RISC System/6000 computers support high
speed connectivity options to IBM mainframes and the full variety of disk,
input/output, and communication devices typically associated with open systems
computers.

1.2.2 AIX and Open Systems Software
AIX is the ideal open systems platform from the portability point of view. AIX
implements not just one flavor of UNIX, but also the two original generic versions
(AT&T** and BSD), plus the emerging open systems standard interfaces such as
IEEE* POSIX** and OSF/AES**. IBM has made a public commitment that AIX will
continue to conform to every relevant industry standard that promotes the open
systems environment:

� AIX conforms to de facto industry standards, such as: TCP/IP, ATT SVID
Issue 2, and BSD 4.3.

� AIX conforms to de jure standards, such as POSIX 1003.1-2, ISO**/IEC 9945-1
and ISO/IEC 9945-2, and FIPS 1541-1.

� IBM markets AIX products that are based on specifications defined by open
systems industry consortia, such as the OSF/Motif** window manager and the
OSF/Distributed Computing Environment (OSF/DCE**).

IBM is active with standards promoting consortia and provides AIX technology to
such organizations as the Open Software Foundation (OSF**), X/Open**, and the
Common Open Software Environment (COSE) group. In the language arena, AIX
also supports standards strongly, having implemented the current existing and
proposed American National Standards Institute (ANSI**) standards in all the
compilers.

All major open systems software vendors support their products on AIX. IBM
remarkets and sells many best-of-breed open systems applications on AIX under its
own logos. All major UNIX relational database vendors support their products on
the RISC System/6000. IBM is offering its own AIX software solutions, such as
CMVC and DB2/6000 on AIX and on other vendors' open systems platforms.

1.2.3 DATABASE 2/6000 and Mainframe Affinity
Whether downsizing or upgrading, developers leaving proprietary platforms face the
special challenge of how to facilitate the maximum reuse of existing software,
design, or key application programming interfaces (APIs) during their migration to
the open systems platform. Salvaging as much as possible of the existing
application is advisable not only because of development cost savings but also
because of the expense of retraining technical and end user staff. IBM's RISC
System/6000 is an attractive target platform for open systems migration with the

 Chapter 1. Why AIX Application Development Products? 5

appearance of many products and APIs on it that were formerly available only on
IBM mainframes.

The recent availability of DATABASE 2/6000 (DB2/6000*), for instance, supports
the migration of DATABASE 2* (DB2*) applications to the RISC System/6000 from
IBM operating systems, such as MVS, VSE, OS/400*, and OS/2. DB2/6000
enables the existing DB2 database design and code to remain largely intact as the
application is migrated to AIX. Because of AIX's strong support for IBM's Systems
Network Architecture (SNA), it offers several options for distribution and connectivity
of applications with IBM proprietary platforms as well.

 1.2.4 MS-DOS Affinity
Developers moving from desktop environments may want some MS-DOS affinity on
their UNIX platform. MS-DOS simulators that execute programmers' favorite
MS-DOS applications on the AIX workstation are available. There are also
products that enable X Window System** and ASCII access to AIX from remote
MS-DOS and Microsoft Windows workstations on the LAN. In addition, there are
UNIX versions of many popular MS-DOS and Microsoft Windows applications. AIX
communications software, such as Portable Netware/6000, enables AIX to
participate on PC LANs.

1.2.5 AIX Application Development Products
Another reason many developers are choosing AIX as their first open systems
platform is the array of application development (AD) products available for AIX.
These AIX AD products ensure that AIX is a fine development platform for
applications targeted to run on IBM proprietary platforms. AIX is also an excellent
development platform for applications targeted to run on multiple open systems
platforms. Many of these AIX AD products interoperate with appropriate
counterpart products executing on other UNIX platforms. Developers can install a
wide variety of language- and technology-specific tools on AIX. With AIX AD
products, developers can create a consistent, integrated, cross-UNIX open systems
application development environment.

1.3 What Should Open Systems Application Development Products
Provide?

Open systems offer many advantages to the business application developer, but
they also introduce complexity and diversity into the application development
environment. To meet the needs of application developers, open systems AD
products must improve programmer productivity, automate repetitive procedures,
enforce consistency in processes associated with software development, and
improve the quality of the software produced.

1.3.1 The Application Development Framework
The most fundamental requirement is to provide a development environment or an
AD framework that enables programmers to become rapidly productive with
minimum formal training. A framework provides a consistent environment for both
programmers and the AD tools they use, and facilitates the movement of
engineering data between the tools that generate and manipulate this data.

The AD framework can provide a significant advantage if it presents a consistent
user interface for the various tools it contains. Users spend more time productively

6 How to Migrate and Enhance Your Legacy Applications

using their tools if the conventions used to enter and display data are well-known
and predictable. GUIs that use point-and-click window-based mechanics are
particularly well-suited for rapid mastery by the novice. Because there is always a
range of skills and experience in the technical staff employed on any application
development effort, the user interface must have mechanisms appropriate for both
the casual or novice user and for the experienced or specialized user.

An AD framework should be rich in fundamental tools yet permit the integration of
additional tools procured from a wide variety of sources to meet the unique needs
of any given development effort. Just as the user interface to tools should be
consistent, the tools should have a consistent interface with each other indirectly,
through the framework. This framework should provide uniform mechanisms to
start, stop, and control execution of all tools.

The AD environment must be immediately usable with a minimal site-specific
configuration, yet be sophisticated enough enable development organizations to
tailor it on a network, system, or individual user basis. This configurability should
support a wide range of software engineering process models and practices. The
framework should present essentially the same model to users and AD tools
whether it is installed stand-alone on a single machine or distributed across several
systems in a network.

1.3.2 Application Development Tools for Edit, Compile, and Debug
An AD environment must provide a complete set of tools to fully support the edit,
compile, and debug cycle. It must provide for a number of high performance
compilers, as well as other tools, such as a link editor and loader. This
environment must also support the exercise of the code in its various states,
providing tools such as:

 � Debuggers
 � Interpreters
 � Static analyzers
 � Graphical browsers.

The AD environment must support development in several languages equally well,
because the programmer who works in COBOL today will be working with C or C++

tomorrow, and will work with several other programming languages, such as
database fourth-generation languages (4GLs), along the way. As an application
development organization migrates and modernizes its applications, it supports
development in several languages simultaneously. The development tools must
therefore support multiple languages, recognizing that the programmer's needs vary
with the language. Editors should, therefore, be optimized for use with specific
languages, as well as for general-purpose editing. However, all programmers
ought to be able to use the same AD tools and environment for fundamental
programming tasks, regardless of their language focus.

1.3.3 Application Development Tools for Software Engineering
The AD environment must support the integration of tools that automate the
discipline and science of engineering software. Such tools are critical for software
development on a large scale or for the development of mission-critical or
commercial software on any scale. The AD environment should support tools to
facilitate:

 � Requirements analysis

 Chapter 1. Why AIX Application Development Products? 7

� System and software design
 � Rapid prototyping
 � Code translation
 � Code generation
� Formal test and verification
� Reverse engineering and reengineering.

1.3.4 Full Life Cycle Support
No AD environment would be sufficient without tools that support the full life cycle
of application development. These tools are typically used by all members of the
development team: technical staff, support staff, and even project management.
The AD environment must support integration of tools for:

 � Configuration management
 � Version control
 � Requirements traceability
� Documentation generation and publication support

 � Process management
 � Project management.

1.3.5 Cross-Platform Support and Commonality
Tools in the AD environment must provide the same benefits across platforms, to
support development activities on multiple open systems platforms. The tools must
also support development of code that runs under multiple operating systems on
hardware platforms from a number of vendors. Another aspect of this requirement
is that these tools must be accessible to some extent from workstations that are not
UNIX-based or are lower-cost alternatives to a full-function UNIX desktop computer.
Of more importance is that the developers' interaction with their tools be consistent
across platforms.

1.3.6 ISO 9000 and Application Development
No application development organization in the 1990s can afford to ignore the
importance of software quality as a factor in software development and
maintenance cost management. Companies of all sizes and their customers are
increasingly focused on the quality management guidelines that are presented in
the International Standard Organization (ISO) 9000 Series of Quality Standards.
ISO 9000 certification is a business necessity in Europe, and will become equally
necessary in North America and the Asia Pacific region in the near future.

IS0 9001, ISO 9002, and ISO 9003 are of particular importance to companies in the
business of providing software or services. ISO 9001 provides a comprehensive
set of requirements for a software quality system where a contractual agreement
between two parties must demonstrate the supplier's capability to design and
supply a product or service. Recognizing the peculiarities of the software industry,
ISO 9000-3 provides guidelines for the application of ISO 9001 to the development,
distribution, and maintenance of software.

Several of the guidelines set forth in ISO 9000-3 can be met by the appropriate
application of automated configuration management tools and many elements of
ISO 9001 depend on configuration management mechanisms. The ISO 9001
topics, which depend to some degree or wholly on configuration management
include:

8 How to Migrate and Enhance Your Legacy Applications

 � Document control
 � Design control
� Product identification and traceability
� Inspection and test status
� Control of nonconforming product
� Internal quality audits.

While many companies that perform application development may not market
software products, they face the same issues as companies that do. Business
application developers can benefit equally from applying the ISO 9000-3 principles
to their application development process; therefore, an AD environment should
provide automated configuration management, and the better its mechanisms are
integrated with all processes the more likely they are to be successfully applied.

1.3.7 Software Engineering Institute Capability Maturity Model
The Software Engineering Institute (SEI) also addresses the problem of software
quality through the process by which the software is developed and the degree to
which that process is overtly managed by the organization. SEI defines a
classification of software engineering process maturity levels that are used to
characterize a software development organization. Organizations can be formally
assessed or perform a self-assessment to find which level they have achieved.
The higher the level an organization achieves, the more likely it is to produce a
better quality of software. In addition, it can expect to achieve greater software
development and maintenance cost efficiencies. These levels are defined as:

 � Initial
 � Repeatable
 � Defined
 � Managed
 � Optimized.

SEI ratings are increasingly important to providers of software to United States
Government customers but are designed to be relevant to any organization that
develops and maintains software. Business application developers should find that
they can also benefit from increasing their process management from one maturity
level to the next.

As an organization attempts to bring itself up to each new level of process maturity,
it should find automated software configuration management and change control
mechanisms to be invaluable. Business application developers should ensure that
automated software configuration management and change control mechanisms
can be thoroughly integrated into any AD environment they choose to implement.

1.3.8 Open Systems Standards and Application Development Products
When an organization considers an AD environment and its tools, it should also
consider the relationship between those products and any relevant industry,
government, or de facto standards. While some AD solutions are entirely
self-contained, they can also be proprietary and may not conform to open systems.
An AD environment and its tools should be solidly grounded in standards and
should facilitate development of standards-conforming applications.

One very relevant AD standard is the Reference Model for frameworks that the
National Institute of Science and Technology (NIST) and the European Computer
Manufacturers Association (ECMA) have published. This model defines the

 Chapter 1. Why AIX Application Development Products? 9

services and tools that a Software Engineering Environment (SEE) framework
should provide. The reference model defines the relationships between these tools
in terms of three types of tool integration:

Visual The user interface

Control The mechanism by which tools agree to work cooperatively

Data How tools agree to exchange data among themselves.

When choosing a framework product, developers should find one that implements
the ECMA SEE framework Reference Model.

An AD environment should not only implement a standards-based model, but
should be crafted of parts and pieces that are themselves standards-based.
Compilers and code generators should implement either ANSI or ISO language
standards, or both. GUIs should be built on standard protocols, such as X, and
conform to style guidelines, such as OSF/Motif. Communications should use de
facto industry standard technologies, such as: TCP/IP, Network Computing
System** (NCS**) and NFS.

Finally, if the applications are to be easily ported from one open systems platform
to another, they should use only library and system calls that are specified in
portable operating system standards, such as the POSIX 1003 Series or the
OSF/Application Environment Specification (OSF/AES). They should also confine
themselves to the use of other APIs, such as Structured Query Language (SQL),
which are widely implemented or formally standardized.

1.3.9 AIX Application Development Products
The above requirements are met by the AIX AD products described in Chapter 2,
“Introducing AIX Application Development Products and DB2/6000” on page 11.
The use of these products in the context of a real project is described in
subsequent chapters.

10 How to Migrate and Enhance Your Legacy Applications

Chapter 2. Introducing AIX Application Development
Products and DB2/6000

This chapter identifies and describes the AIX application development products
used in the migration and modernization effort. Because DB2/6000 was used, it is
described here, too.

2.1 POWERbench/6000 Product Family
IBM offers its AIX application development products collectively in the
POWERbench family of products. Each POWERbench product provides a
comprehensive programming environment on AIX that supports the construction,
test, and maintenance phases of software development. POWERbench products
are available for C, C++, FORTRAN, and COBOL development.

The POWERbench products combine SDE WorkBench/6000 with one of the AIX
compilers and other appropriate development tools. The POWERbench products
come with a single installation process, a single point of contact for defect support
and a simplified ordering process. The AIX compilers that are described in this
book (or their follow-on products) are components of the POWERbench products.
POWERbench products announced at the time of publication of this volume are:

 � C++ POWERbench
 � FORTRAN POWERbench
 � COBOL POWERbench.

The AIX application development tools are also offered separately.

2.2 Software Development Environment WorkBench/6000
The IBM AIX Software Development Environment (SDE) WorkBench/6000 is a
task-oriented application development environment that provides three key
characteristics:

� A common graphical user interface (GUI) for development tools
� A common mechanism for controlling application development tools
� A tool-to-tool communication and coordination by means of a common

message service and tool class-based communication protocol.

The SDE WorkBench/6000 is based on the SoftBench** integration framework
technology, which IBM licenses from Hewlett-Packard** (HP**). The core
components of the SDE Workbench/6000 are:

� Broadcast Message Server (BMS)

� Tool Manager (TM)

� Execution Manager (EM)

� Development Manager (DM).

 Copyright IBM Corp. 1995 11

2.2.1 Broadcast Message Server
The core of SDE WorkBench/6000 is Broadcast Message Server (BMS), which
enables tool-to-tool communication and tool control through Tool Manager. Each
tool sends out predefined messages in common formats to indicate what it has
done and what it requires of other tools.

2.2.2 Tool Manager and Execution Manager
Tool Manager provides the developer with a uniform mechanism for starting,
stopping, viewing, and controlling the execution of integrated development tools.
Execution Manager fields messages on BMS and automatically starts up the tools
for the developer if they are not already running. Tool Manager enables the
developer to save the state of tools at any time and restores them automatically on
the next invocation.

 2.2.3 Development Manager
Development Manager provides the developer with an object-oriented, graphical
directory and file management tool. Development Manager provides a view of all,
or a subset, of a directory's contents. It enables the definition of file and directory
classes based on file name patterns and provides a mechanism for triggering a
default action when members of any class are selected. It also enables pull-down
menus to be associated with the selection of members of each defined class.
Development Manager, by means of its pull-down menus, provides access to
menus tailored for any of these user-selectable version control products:

� AIX's Source Code Control System (SCCS)
� AT&T's Revision Control System (RCS)
� IBM's Configuration Management Version Control/6000 (CMVC).

2.2.4 Distributed Computing Support
SDE WorkBench/6000 provides a significant advantage for the developer working in
a heterogeneous network environment. SDE WorkBench/6000 incorporates
support for:

Distributed Execution All integrated tools run in an execution context that
includes the execution host and tool scope. Execution
Manager and Tool Manager employ the concept of tool
scope to determine where and whether to start a tool.
Tools have network, host, directory, or file scope
depending on how the tool is designed. SDE
WorkBench/6000 employs a spcd (SubProcess
Control daemon) on remote hosts, including hosts
running SoftBench. The SubProcess Control daemon
performs remote execution and maintains tool-to-BMS
communications.

Distributed Data All integrated tools operate in a data context. On
invocation they are supplied with the name of a host, a
directory path name, and a file name (or set of file
names) as input parameters. These specify the input
data the tool is to operate against. SDE
WorkBench/6000 tools that are able to deal with remote
data know to look for that data in NFS file systems

12 How to Migrate and Enhance Your Legacy Applications

mounted at an algorithmically-determined file system
location.

Distributed Display All integrated tools run as an X Windows client
application. SDE WorkBench/6000 attaches to the
user's X server and ensures that all integrated tools
controlled by it appear on the appropriate screen,
regardless of the execution or data context host.

2.3 SDE WorkBench/6000 Bundled Tools
SDE WorkBench/6000 comes bundled with several integrated application
development tools that support the compile, edit, and debug cycle, as well as
developer-to-developer communications. In addition, SDE WorkBench/6000
supports integrated access to a variety of IBM AIX and vendor compilers, including
XL C, XL C++, XL FORTRAN, and Micro Focus COBOL**.

Some of the tools are:

 � Program Builder

 � Program Editor

 � Program Debugger

 � Static Analyzer

� File Transfer Program

 � Mail Tool

 � Message Monitor.

 2.3.1 Program Builder
Program Builder employs the AIX make utility to compile and link programs. It
automatically invokes Program Editor when build errors occur, indicating which lines
should be displayed. Program Builder provides the developer with local control
over remote compiler and link execution, and provides a mechanism for
automatically generating makefile files.

 2.3.2 Program Editor
Program Editor provides a multiwindow language-sensitive editor based on the
OS/2 Live Parsing Editor (LPEX). Program Editor is a highly tailorable,
programmable editor that is sensitive to the syntax of C, C++, COBOL, and
FORTRAN source code files. It can be made sensitive to the syntax of other
languages also. Program Editor can display keywords, special symbols, and other
syntactical elements of a file in unique fonts and colors and can detect certain
classes of syntax errors.

Program Editor enables simultaneous editing of multiple views of multiple files
found on multiple hosts in the network. Tailorable pull-down menus, programmable
key combinations, and definable commands (macros) enable the user to perform
many tasks. These include: position character, mark and unmark text, copy, delete,
and search for text. The user can also issue noneditor commands from Program
Editor, interfacing with both the operating system and BMS.

 Chapter 2. Introducing AIX Application Development Products and DB2/6000 13

 2.3.3 Other Editors
SDE WorkBench/6000 also provides integration support for GNU** Emacs 5.5 or
AIX's vi . Integration support of the vi and GNU Emacs 5.5 editors includes a GUI
and BMS control integration; so both editors can send and respond to BMS
messages.

 2.3.4 Program Debugger
Program Debugger provides a sophisticated graphical user interface to the AIX dbx
debugger. It provides for continuous display of source code and variables,
debugging of processes already running, multiprocess debugging, and full source
and machine-instruction level debugging for X LC, X LC++, XL FORTRAN, and
COBOL.

 2.3.5 Static Analyzer
Static Analyzer helps the developer understand static characteristics of the
application. This includes ready identification of all variables, functions,
declarations of and references to an identifier, and all source and include files. Like
other bundled tools, Static Analyzer receives and responds to BMS messages.
Static Analyzer also provides pull-down menu support for automatic invocation of
other integrated tools that might operate on the same files.

2.3.6 File Transfer Program
File Transfer Program provides a BMS integration of the TCP/IP ftp command. Its
GUI simplifies use of ftp which sends and receives files across the network.

 2.3.7 Mail Tool
Mail Tool provides a BMS integration of AIX's mailx program. This tool enables a
user to send and receive mail. It also can be programmed to trigger the automatic
sending of predefined mail messages to specific users when it detects particular
BMS messages.

 2.3.8 Message Monitor
The user can send, view, and log BMS messages using Message Monitor.

2.4 Integrated Optional Program Products
IBM provides a variety of Optional Program Products (OPPs) that are integrated
with SDE WorkBench/6000. These include application development tools and
cross-life cycle development support tools. This section describes the OPPs we
used during this project.

2.4.1 AIXwindows Interface Composer/6000
AIXwindows Interface Composer/6000 (AIC) is a software development product that
helps the developer design and create OSF/Motif GUIs for applications. The
developer manipulates user interface components such as: windows, menus, text
fields, scrolled areas, and push buttons to design the GUI, using a drag-and-drop
editor to choose from any of the OSF/Motif widgets. In addition, the resources and
behavior of the widgets can be edited and modified at design time, and the effect of
these modifications can be seen immediately on the screen.

14 How to Migrate and Enhance Your Legacy Applications

AIC contains a built-in interpreter so developers can create the code link from the
user interface to their application logic without having to leave AIC. They can
access their own compiled functions and an optional library of AIC convenience
functions in the C interpreter.

AIC 1.1.1 generates C code that is compatible with X Version 11 Release 4
(X11R4), while AIC 1.2 generates C or C++ code that is compatible with X Version
11 Release 5 (X11R5). Both releases of AIC generate a customizable main
program and a makefile file. In addition, AIC 1.2 accepts User Interface Language
(UIL) as input and generates UIL as output, making it useful for preexisting GUIs
implemented in UIL. The generated code does not depend on any AIC run-time
library; so the code can be run on systems that do not have AIC installed.

Starting with AIC 1.2 provides a control integration with SDE WorkBench/6000.
This means AIC automatically invokes Program Editor to edit, Program Builder to
run makefile files, and CMVC to perform library functions. The generated code
does not introduce additional software layers; so the performance, structure, and
readability of the code is comparable to self-written programs.

AIC/6000 is IBM's implementation of the UIM/X** product from Visual Edge Limited
of Canada. AIC 1.1.1 performs the same functions as UIM/X 2.0, but also
implements several X11R5 features that are required to support the level of
internationalization achieved with AIX 3.2. AIC 1.2 performs the same functions as
UIM/X 2.5. Both releases of AIC differ from UIM/X in that they enable dynamic
loading of object code into the interpreter, through a pull-down menu. UIM/X
requires the use to exit AIC and relink the UIM/X executable image statically.

2.4.2 Micro Focus COBOL and Micro Focus COBOL Toolbox
Micro Focus COBOL provides a system for developing and running programs
written in COBOL. It supports COBOL as defined in ANSI X3.23-1985, as well as
other dialects, including:

� IBM OS/VS COBOL
� IBM VS COBOL II

 � COBOL/370*
� IBM SAA* COBOL

 � X/Open COBOL.

This means that Micro Focus COBOL can be used for both new program
development and COBOL programs running in other environments.

2.4.2.1 Micro Focus COBOL
With Micro Focus COBOL, you can easily migrate COBOL applications from many
other systems and dialects, including MS-DOS, OS/2, Microsoft Windows, and IBM
mainframe COBOL. The system is made up of several parts, most importantly:

� The cob command that invokes all stages of compiling and linking a COBOL
application. This includes COBOL programs, C routines, assembler routines,
and system libraries.

� The compiler that determines if programs are valid COBOL programs. It
produces intermediate code suitable for execution or debugging.

� The Micro Focus Animator** that enables the programmer to test and debug
COBOL source code while the interpreter steps through it

 Chapter 2. Introducing AIX Application Development Products and DB2/6000 15

� The Native Code Generator that is used by the cob command to produce
optimized object code from intermediate code

� The cobrun command that dynamically loads and runs the intermediate code

� The Micro Focus Run Time Environment** (RTE**) that is a run-time support
library.

Micro Focus COBOL provides facilities to write programs, making full use of:

 � Screen displays
� Custom file handlers

 � Mixed-language programming.

2.4.2.2 Micro Focus COBOL Toolbox
Micro Focus COBOL Toolbox** includes everything that is in Micro Focus COBOL.
It also provides an integrated environment for handling source code and running
object code. The most important components of the Micro Focus COBOL Toolbox
are:

� The Micro Focus COBOL Toolbox Development Environment, which provides a
set of menus that invokes other components of the Micro Focus COBOL
Toolbox. The AIX link editor is invoked using function keys.

� The Micro Focus COBOL Editor, which invokes the Compiler and Animator

� The Micro Focus Compiler, which generates intermediate files

� The Micro Focus Animator, which interprets intermediate files for test and
debug

� The Micro Focus Generator, which produces optimized object code

� The Micro Focus RTE, which enables the Animator to interpret intermediate
files.

2.4.3 Configuration Management Version Control
CMVC has a client-server architecture. CMVC products that run on UNIX-based
operating systems are available from IBM, HP, Sun Microsystems (Sun**), including
both SunOS** and Solaris**. Any CMVC Client interoperates with any CMVC
server in the same version. There are:

� A command line client
� A stand-alone GUI client
� A GUI client that is integrated with SDE WorkBench/6000.

The CMVC server controls source code and other product data in its host's file
system, but stores other meta-data in a relational database. Meta-data is data
about the files being controlled, and data representing CMVC objects. The CMVC
server works with any of these Relational Database Management System (RDBMS)
products: DB2/6000, ORACLE**, INFORMIX**, and SYBASE**.

CMVC provides the range of functions described in this section.

16 How to Migrate and Enhance Your Legacy Applications

 2.4.3.1 Configuration Management
Software configuration management is the process of identifying, monitoring, and
managing changes made to a software baseline. The baseline can include
documentation, design and specification data, build and compile control information,
and the source code itself. CMVC supports files containing these types of data by
associating them with CMVC components.

 2.4.3.2 Version Control
Version control is provided by means of either SCCS, a product supplied with AIX
or SDE WorkBench/6000 or both, or PVCS Version Manager 5.1**, a product from
INTERSOLV Inc. Version control ensures that any given version of a file from the
current version back to its initial version can be identified and retrieved. Version
control applies to both ASCII and binary data files for any of the products.

2.4.3.3 Integrated Problem Tracking
Problem tracking is provided for feature and defect changes. Features and defects
are associated with a CMVC component and identify specific versions of all
controlled files that implement the feature or defect.

 2.4.3.4 Change Control
An audit trail is maintained by identifying a version of a file, who modified the file,
and why it was modified, and by relating it to a defect or feature, if appropriate.

 2.4.3.5 Release Management
Release management is implemented by identifying a release with a given
component and identifying the version of every file comprising that release. Files in
a release are extracted into specific build directories that are associated with the
files.

 2.4.3.6 Access Control
Access to files can be controlled by CMVC. A variety of access authorities are
defined for all files associated with a given component. Users acquire some
access authorities implicitly for components they own and inherit some authorities
over components because they have those authorities for parent components.
Users also can explicitly grant or deny access authorities for components that they
own.

 2.4.3.7 Automatic Notification
Appropriate users are automatically notified of CMVC actions taken against
components and their files. Notification is provided by electronic mail so it can be
received without logging in to CMVC. A user's interest in notification is configurable
by component and type of action.

 2.4.3.8 Configurability
The new configurable fields can be added to records supporting features, defects,
files, and users. CMVC also provides configurability in the processes that it
enforces as CMVC files, features, and releases move through the various states
that CMVC recognizes and controls.

 Chapter 2. Introducing AIX Application Development Products and DB2/6000 17

 2.5 SDE Integrator/6000
SDE Integrator/6000 integrates application development tools with the SDE
WorkBench/6000. SDE Integrator/6000 enables programming a GUI for a tool that
is consistent with SDE WorkBench/6000. It also enables programming a tool to
communicate with other tools through BMS and to be controlled through Tool
Manager and Execution Manager. If source code is available the tool can be
integrated by writing a C, C++ or Encapsulation Description Language (EDL)
program and linking it with the tool's object code.

If source code is not available, a wrapper program is written to trap the tool's
standard in, standard out, and standard error messages. The wrapper program
also produces a GUI for the tool, communicates for the tool sending and receiving
BMS messages, and enables tool control through Execution Manager and Tool
Manager.

The SDE Integrator/6000 is compatible with HP SoftBench Encapsulator so that
tool encapsulations in the HP environment are compatible with the SDE
WorkBench/6000 environment.

2.6 DB2/6000 and Related Products
IBM sells a family of DB2 products for its various operating systems. These DB2
products can communicate among themselves by means of SNA or TCP/IP
communications mechanisms. The database server on a given platform can
interact directly with clients on the same platform, or with clients on remote
platforms connected by a network. The database server can also interact indirectly
with remote clients on a distant network through a request server, which connects
to both the database server and the remote client's network.

 2.6.1 DB2/6000 Server
DB2/6000 Server is the DB2 server for the RISC System/6000. It enables you to
store, retrieve, and update your data on the RISC System/6000. Additional AIX
DB2 products described in the paragraphs that follow provide for interoperability
and distributed development capabilities. In some cases, the function provided in
one of these DB2 products is also included in the database server product.

2.6.2 DB2 Client Support/6000
DB2 Client Support/6000 enables the DB2/6000 Server to be accessed by a
number of client applications running remotely on MS-DOS, Microsoft Windows,
OS/2, and AIX workstations using TCP/IP communications protocol. If these clients
require SNA Advanced Program-to-Program Communication (APPC) protocol
access, the AIX database server requires SNA Services/6000 and the SNA support
feature of the DB2 Client Support/6000 to be installed, as well. SNA access for
clients is supported only on OS/2 and AIX. DB2 Client Support/6000 is not
necessary if the client applications are running on the same host as DB2/6000.

18 How to Migrate and Enhance Your Legacy Applications

2.6.3 DB2 Client Application Enabler/6000
The remote systems on which client code runs require that a Client Application
Enabler product be installed on them. DB2 Client Application Enabling/6000 (DB2
CAE/6000), for instance, enables the client code running on one RISC
System/6000 to connect to the database server installed on another RISC
System/6000. There are also Client Application Enabler/DOS (DB2 CAE/DOS) for
installation on Microsoft DOS or Windows hosts and Client Applicaton Enabler/2
(DB2 CAE/2) for installation on OS/2.

2.6.4 DB2 Software Developers Kit/6000
DB2 Software Developers Kit/6000 (DB2 SDK/6000) can be installed on RISC
System/6000s that do not also have DB2/6000 Server installed. This enables
development on these remote platforms of database applications that are targeted
to run on the DB2/6000 Server host.

DB2 SDK/6000 includes a precompiler for C and FORTRAN. It also supports an
embedded SQL COBOL API through appropriate Micro Focus products. This API
and the precompilers support both dynamic and static SQL statements. DB2
SDK/6000 also provides a DB2 Call Level Interface (DB2 CLI) for C that eliminates
the need for precompilation of embedded SQL statements. The DB2 CLI for C can
be used from C++ applications directly or from the other XL languages by means of
interlanguage calls to these C language routines.

The functions of DB2 SDK/6000 are bundled with DB2/6000 Server, to enable
development of database applications on the DB2/6000 Server host.

2.6.5 Distributed Database Connection Services/6000
Distributed Database Connection Services/6000 (DDCS/6000) enables the
DB2/6000 server to access any Distributed Relational Database Architecture*
(DRDA*) database directly. DRDA implements database SQL across a variety of
different operating systems, including DB2 on MVS, SQL/DS on VM and VSE,
DB2/2* on OS/2, and OS/400 on AS/400 systems. This includes the read, write,
and modify capability. While DRDA/6000 was not used in this project, it would
have enabled the migrated application to be run on a RISC System/6000 while the
database and server remained on MVS. DDCS/6000 also provides a gateway
service for AIX, OS/2, MS-DOS, or Windows client applications that need to access
an MVS DB2 server. In this case, the DB2/6000 Server need not also be installed
on the RISC System/6000 host; the host needs only DDCS/6000.

 2.6.6 DB2 Configurations
A variety of combinations of servers, clients, and requesters running on different
hardware platforms is supported by this family of products. A complex
configuration, such as that illustrated in Figure 1 on page 20, might include all of
the DB2 products mentioned above, in addition to having DB2 on the MVS
mainframe host.

 Chapter 2. Introducing AIX Application Development Products and DB2/6000 19

Figure 1. Multiplatform DB2 Configuration Options

In this figure, DB2/6000 Server is installed on the AIX host shown at the top of the
LAN diagram. DB2/6000 Server can service client applications running on the
same AIX host on which it is installed. If DB2 Client Support/6000 is also installed
on this AIX host, DB2/6000 Server can service client applications running on the
LAN-attached workstations. However, those hosts must also have CAE/DOS,
CAE/2, or CAE/6000 installed on them. A client application running on any of the
LAN hosts shown in Figure 1 has DRDA access to the MVS DB2 server through
DDCS/6000, which is installed on the DB2/6000 Server host. This DB2/6000
Server host acts as a requester to the MVS DB2 host, passing the DRDA
commands and resulting data back and forth between the remote clients and the
MVS DB2 Server. Database client applications running on the MVS host cannot
access DB2/6000 Server, nor can MVS DB2 act as a requester to DB2/6000. To
develop database client applications on the LAN-attached workstations, DB2
SDK/6000, DB2 SDK/DOS, or DB2 SDK/2 must be installed on them.
Development is supported on the DB2/6000 server host, however, without installing
DB2 SDK/6000.

2.6.7 DB2 Products for Hewlett-Packard and Sun
While they were not used on this project, the DB2 family of products includes
products available on other vendor's UNIX platforms that are functionally equivalent
to the DB2/6000 products. DB2 for HP-UX** DB2 for Solaris Operating
Environment are DB2 Server products available for HP and Sun platforms.
Distributed Database Connection Services, Client Application Enabling, Software
Developers Kit, and Client Support products are offered for each platform also.

20 How to Migrate and Enhance Your Legacy Applications

 Part 2. Our Project

 Copyright IBM Corp. 1995 21

22 How to Migrate and Enhance Your Legacy Applications

Chapter 3. The Legacy Application

The legacy application, which we selected to migrate from MVS to AIX, is a typical
older COBOL business application. It has some batch components and an
interactive component and maintains a database. It is not terribly complex or very
large, yet it presents a relevant vehicle for exploring downsizing issues. In this
chapter we describe the following characteristics of the application:

 � Programs
 � Database design
 � User interface.

3.1 What the Application Does
The legacy application is used by a company that deals with collectors' items. The
customers are organized as club members and every month members get an offer
to buy a collectors' item. For example, one offering could be a limited series of a
special porcelain plate or some specially designed commemorative coin. This offer
is sent out by mail to each member and if the club members want the offered item,
they either fill in a request form and send it back, or make a telephone call to
confirm their order.

The application maintains a database in which it records information about
customers, and the amounts and dates of payments received. Enrollments of new
members, address changes, and deletion of members are handled by the
application. Some of the input is received during phone conversations with
customers and is entered online; other input is processed from mail sent by
customers. Standard reports, based on queries of the database, are also
supported.

 3.2 Programs
The application is written in VS COBOL II* and runs on MVS under TSO, accessing
a DB2 database. The user interface is based on Interactive System Productivity
Facility (ISPF). The application consists of:

� One interactive program
� Four batch programs
� Two assembler language modules
� Six ISPF panels.

The application consists of the following files:

IBMOUPD The main module of the ONLINE UPDATE (interactive) program. This
module, along with the assembler language modules it calls, are
collectively referred to as the ONLINE UPDATE program. IBMOUPD
handles all tasks related to maintaining the customer database and is
started from a small CLIST (Command LIST) file. It:

Enrolls new customers

Makes address changes

 Updates payments

 Copyright IBM Corp. 1995 23

 Deletes customers.

IBMBUPD The batch update program. This program receives input from a file
created by a routine that scans the order confirmation forms sent to the
company. It is started from a JCL (job control language) file. This form
reflects one of or a combination of the following:

An address change

 A payment

A delete request.

IBMBUENR and

IBMBUINS They are two halves of one logical program, which was split into two
executable files because of performance considerations. The input is a
file that was created by the scanning routine mentioned earlier. These
two programs do a batch enrollment of new customers. They are
started from the same JCL as IBMBUPD.

IBMBSEL A batch program that produces a report according to given criteria. It is
started from a JCL file.

IBMCUST An assembler language module that ensures the parameter passed to it
(a customer number) is numeric. It is called by the IBMOUPD program.

IBMDATE An assembler language module that ensures the parameter passed to it
is a valid date. It is called by the IBMOUPD program.

When an older application is migrated, certain implementation details that are a
result of circumstances on the old platform may not be necessary on the new
platform. For instance, the two assembler language modules replaced functions
that could have been done by DB2. They were implemented for performance
considerations that may not exist in the new program environment.

Because the ONLINE UPDATE program demonstrates a superset of the issues we
would encounter in migrating all the programs, we decided to concentrate on
migrating it as a proof-of-concept exercise. The migration issues are discussed in
Chapter 4, “Defining the Project and Setting Its Goals” on page 29.

 3.3 Database Design
The original MVS application used DB2 Version 2.0 for MVS as the database
server. The database is organized into four tables:

 � CUST
 � NAME
 � PAYMENT
 � ZIP.

The tables have the following column definitions:

CUST CUSTNO NUMERIC(10) NOT NULL - (key column)
REFNO NUMERIC(10) NOT NULL
ACTDATE DECIMAL(6) NOT NULL WITH DEFAULT - (key column)
ADDRCHG DECIMAL(6) NOT NULL WITH DEFAULT

 PROFIT NUMERIC(7,2)
MAILID NUMERIC(2) NOT NULL

24 How to Migrate and Enhance Your Legacy Applications

SOURCECODE NUMERIC(3) NOT NULL
 COLLECTCODE SMALLINT
 DUNNCODE SMALLINT

NAME CUSTNO NUMERIC(10) NOT NULL - (key column)
FIRSTNAME CHARACTER(13) NOT NULL
LASTNAME CHARACTER(18) NOT NULL
STREET CHARACTER(26) NOT NULL
ZIPCODE INTEGER NOT NULL

PAYMENT REFNO NUMERIC(10) NOT NULL - (key column)
PAYDATE DECIMAL(6) NOT NULL
AMOUNT NUMERIC(7,2) NOT NULL

ZIP ZIPCODE INTEGER NOT NULL - (key column)
CITY CHARACTER(20) NOT NULL

Figure 2 shows the relationships between the tables. The NAME table contains
data relevant to customers. The PAYMENT table contains data relevant to
payments. The CUST table creates a correspondence between the NAME and
PAYMENT table records. The ZIP table creates a correspondence between the
customer's postal ZIP code and the city name. The CUSTOMER and ZIP tables
were created to remove redundancy from the database (that is, they were created
to effect normalization of the database to the third normal form.)

Figure 2. The Database Table Relationships

 Chapter 3. The Legacy Application 25

3.4 The User Interface
The user interface for the ONLINE UPDATE program utilizes ISPF panels. The
panels were designed for 3270 color terminals and they use various color schemes
to display input and output fields. Users initiate actions by pressing function keys.

The application consists of six panels. The relationships between the panels are
shown in Figure 3.

Figure 3. Relationships between ISPF Panels

Figure 4 on page 27 shows the main ISPF panel definitions.

26 How to Migrate and Enhance Your Legacy Applications

)ATTR DEFAULT(%+_)

/\ head menu for online updates \/

% TYPE(TEXT) INTENS(HIGH) COLOR(WHITE) SKIP(ON)

+ TYPE(TEXT) INTENS(LOW) COLOR(BLUE)

_ TYPE(INPUT) HILITE(REVERSE) CAPS(OFF) JUST(LEFT) COLOR(GREEN)

TYPE(TEXT) COLOR(GREEN) INTENS(LOW)

" TYPE(TEXT) COLOR(YELLOW) INTENS(HIGH)

O TYPE(TEXT) COLOR(GREEN) INTENS(HIGH)

; TYPE(TEXT) COLOR(RED) INTENS(LOW)

! TYPE(OUTPUT) COLOR(RED) INTENS(HIGH) CAPS(ON)

u TYPE(TEXT) COLOR(PINK) INTENS(HIGH)

? TYPE(TEXT) COLOR(TURQ) INTENS(HIGH)

)BODY

O Samlaren AB

 On-line update

%

%

%

%

%

%

% ð1 += Enrollment

% 23 += Address change

% 6ð += Payment

% 99 += Delete

% S += Search

%

%

%

% ACTION :_Z % ARGUMENT :_Z %

!ERRMSG

% PF3 = END

)INIT

 .ZVARS = '(ACT,ARG)'

 .CURSOR = ACT

)PROC

 VER (&ACT,NB,LIST,ð1,23,6ð,99,S,s)

 IF (&ACT = 'S')

 VER (&ARG,NB)

 IF (&ACT = 's')

 VER (&ARG,NB)

&ACT = TRANS(&ACT s,S)

 VPUT (ACT,ARG)

)END

Figure 4. Main ISPF Panel Definitions

On the terminal it looks like Figure 5 on page 28.

 Chapter 3. The Legacy Application 27

à ð

á ñ

Figure 5. The Main Panel as It Appears on a 3270 Terminal

28 How to Migrate and Enhance Your Legacy Applications

Chapter 4. Defining the Project and Setting Its Goals

Our primary goal in conducting this project was to familiarize the reader with AIX
application development products. We quickly realized that the best way to achieve
this goal was to illustrate the use of these tools to perform meaningful and typical
application development tasks. We decided to migrate and modernize an MVS
DB2 COBOL application to AIX as a sample development project. This led to the
formulation of a second goal, to explore and document issues related to downsizing
and modernizing legacy applications. This chapter describes the project and how
we defined its parameters to meet these two goals.

4.1 Getting to Know the AIX Application Development Products
The first purpose of the project was to use IBM's AIX AD products in a realistic
application development effort and see how they met the needs of the developers
using AIX as a development platform. To make the experience valuable to the
widest number of application developers, we defined a project that dealt with
several issues. We then chose products to build an AIX AD environment, which
would address those issues. The key issues were:

� Mixing multiple vendors' UNIX target and development platforms in a common
environment

� Distributed application development tools in a network workstation environment

� Multiple programming languages, language-specific tools, interlanguage
programming

� Developers with and without UNIX experience

� Software configuration management requirements

 � Team programming

� Degrees and methods of tool integration.

4.1.1 Mixing Multiple Vendors' UNIX Target and Development
Platforms in a Common Environment

Any company developing applications on UNIX might want to mix UNIX platforms
from multiple vendors in its development environment or to target applications to
execute on UNIX platforms from multiple vendors. Often the company is interested
in doing both. Companies choosing UNIX want the freedom to migrate their
applications to the most cost-effective platform easily, and to distribute client and
server portions of their applications across mixed platforms. The tools these
companies use to build applications must also interoperate in a standard network
environment with both client and server components being able to execute on any
combination of the major vendors' computers. With this in mind, we selected
certain AIX AD products because they are available not only on AIX for IBM's RISC
System/6000, but also on UNIX-based computer systems from HP and Sun.

At the time we conducted this project, cross-platform availability of the AD products
we selected was as follows:

� HP's SoftBench was available from HP for both Sun and HP platforms, and
was licensed to IBM, which sells it under the name SDE WorkBench/6000 for
the RISC System/6000.

 Copyright IBM Corp. 1995 29

� UIM/X was available on a variety of UNIX platforms including Sun and HP, and
was sold by IBM under the name AIC/6000 for the RISC System/6000.

� Micro Focus COBOL and Micro Focus COBOL ToolBox were available on Sun
Solaris/1, Solaris/2, and IBM RISC System/6000; Micro Focus COBOL was also
available on HP 9000, 600, and 800 series platforms. Both products could be
obtained from Micro Focus directly or from the platform vendors.

� CMVC for Sun was available from IBM—server for SPARCserver** 10 or any
binary compatible SPARCserver and client for any SPARCstation**, and CMVC
for HP was available from IBM—server for any HP 9000 Series 700 or 800
workstation and client for any HP 9000 Series 400, 700, or 800 workstation;
CMVC/6000 was available for the RISC System/6000—server on any model
320 or larger and client on any model.

� DB2 family of products was available from IBM for any RISC System/6000 with
AIX Version 3.2, for any HP 9000 Series 700 or 800 workstation supported by
HP-UX Version 9, and for any Sun processor supported by Solaris Version 2.3.

4.1.2 Distributed Application Development Environment
Companies looking at open systems development want to create a distributed
application development environment, which has the flexibility to grow and change
with their needs. A goal of this project was to set up a typical distributed open
systems development environment. Ours consisted of several RISC System/6000
compute and file servers with developer workstations being either direct-attached
high function terminals (HFTs) or RISC System/6000 X stations. Compute
resources, such as specific language compilers and debuggers, were allocated to
some hosts, while library services and database managers were located on other
hosts.

We did not create a multiple vendor development environment, however. We used
only RISC System/6000 equipment and AIX. Had we substituted other vendor
equipment for any workstation or server in our configuration, we could have
explored additional issues, such as:

� Remote and concurrent build management on heterogeneous platforms

� Advantages and disadvantages of platform-specific tools

� Installation and system administration on multiple platforms

� Use of non-UNIX desktop developer workstations such as OS/2 platforms
running Presentation Manager* X Windows (PMX) or MS-DOS platforms
running an X server implementation.

But on the whole, the configuration was designed to model the distribution of AD
resources, such as compiler compute servers or database servers that might be
found in a multiple vendor open systems development environment. The hardware
and software topologies are described in detail in Chapter 5, “Our Application
Development Environment” on page 39.

30 How to Migrate and Enhance Your Legacy Applications

4.1.3 Multiple Programming Languages
An important goal was to determine if the AIX AD environment supports the
traditional language of business application development, which is COBOL, as well
as it supports the native UNIX language, which is C. We also wanted to explore
how the environment supports the C++ programmer's needs. Another goal was to
document where the AIX AD products could be tailored for use with each language.
We also wanted to explore interlanguage calling issues, and testing and integrating
mixed-language applications.

4.1.4 Choosing the Developers
To examine how appropriate AIX AD products were for a typical IBM AD customer,
we chose the developers for this project to mimic the skills and developer
background we anticipated an IBM customer application development team might
have. Our developers had strong skills in their respective languages: C, COBOL,
and C++. One had knowledge of IBM mainframe systems and possessed
experience in application development for those environments. This team member
also possessed expertise with the legacy application and programming skills with
COBOL. Another of our developers had OS/2 experience, GUI software
development expertise, and programmed primarily in C. A third member was the
team's C++ expert and had extensive UNIX experience. However, none of our
team members had experience with the SDE WorkBench/6000 or the integrated
versions the AD products.

4.1.5 Software Configuration Management Requirements
While we wanted a relatively small scale development effort, we also wanted to
examine how the AIX AD environment supported realistic software configuration
management requirements. Therefore, we decided to control the multiple software
baselines for both MVS and AIX on our AIX development platform. We also
decided to use CMVC's change control functions. Because our focus is on the
developer, and not on the configuration manager, this book only mentions how
CMVC is accessed from SDE WorkBench/6000. It does not go into any depth on
how we used CMVC for software configuration management on this project. Refer
to the companion volume Did You Say, CMVC? for that perspective.

 4.1.6 Team Programming
We wanted to examine how well the AIX AD environment we created supported
typical developer interaction patterns. Developers customarily spend some time
together in cooperative efforts as a team. The rest of the time they work relatively
independently, but in parallel. The AD environment becomes the glue that holds
their work together and serves to help coordinate their efforts. We designed the
project so that the three developers worked in separate areas initially (COBOL
porting, GUI development, C++ implementation), but later worked together to
integrate and test their code.

4.1.7 Degrees and Methods of Tool Integration
No matter how rich the set of tools that are bundled with an AD framework product,
the framework must be flexible enough to allow the integration of additional tools.
For SDE WorkBench/6000, achieving visual integration means adding a GUI that
looks and acts like the GUIs presented by the bundled tools. Achieving control
integration means making it possible for the tool to send and receive BMS
messages and to respond to Tool Manager and Execution Manager controls.

 Chapter 4. Defining the Project and Setting Its Goals 31

Source code for tools is often unavailable. Therefore, it is necessary to have a
mechanism for wrapping a layer of software around an existing tool that implements
visual and control integration, but does not require recompiling or relinking the tool.
A framework product should also provide an integration API to use when source
code for a tool is available. One goal of this project was to explore these two
mechanisms provided by SDE Integrator/6000 for integrating new tools with SDE
WorkBench/6000.

At a minimum, control integration enables the user to start and stop a tool using
Tool Manager. A greater degree of integration would enable the tool to respond to
additional BMS messages appropriate for its tool class, to recognize its execution
and data contexts, and to trigger the start of other appropriate tools indirectly, and
to provide access to other integrated tools from pull-down menu options.
Development Manager can also be tailored for a new tool and made aware of the
types of file objects on which it operates. The combined effect of tight integration
of a tool with the framework should improve developer efficiency and productivity.
Therefore, a final goal of the project was to compare and contrast the impact on the
developers effectiveness of different degrees of tool integration with SDE
WorkBench/6000.

4.2 Downsizing and Modernizing an MVS Application
Refining our goals and defining the development effort required us to look at the
topics of downsizing and object-orientation from several perspectives. We defined
a specific plan of action to cover many issues and examined the feasibility of its
success.

4.2.1 Defining a Downsizing and Modernizing Strategy
We knew that not every company desiring to downsize would have the same
needs, follow the same timetables, or use the same approaches. We analyzed
various migration strategies and defined the goals for our project, hoping to touch
on the most representative issues. The project plan included the following steps:

� Identification of a representative subset of the application for migration
� Minimal effort migration of the application and database
� Exploration of the issues involved in creating and running parallel MVS and AIX

versions with a common base of COBOL source
� Replacment of the 3270-based user interface with a C language GUI having an

appearance similar to the 3270-based user interface
� Improvement of the C language GUI to make it object-oriented and consistent

with modern standards
� Replacement of the COBOL source code with a C++ implementation integrated

with a C++ implementation of the improved GUI.

4.2.1.1 Proof of the Concept
The fundamental principle we assumed all companies would apply was that of a
clearly planned series of activities and verification of the success of one step before
proceeding to the next. Most companies would probably do a feasibility study to
identify and evaluate issues associated with their applications. They would
probably choose an appropriate subset of a typical application and migrate it as
proof of the concept. We incorporated this principle into the planning of our effort.
We identified the IBMUPD program as our sample to migrate.

32 How to Migrate and Enhance Your Legacy Applications

4.2.1.2 Database Migration Options
We assumed that some companies would use AIX only as a development platform
for their MVS-targeted applications. Others would probably move only their client
applications to AIX, leaving the database server on MVS. Finally, some would
migrate both the application and its database server to AIX.

By using DB2/6000, we were assured of support for these various options. Since
we had limited time, we migrated both our application and its database server to
AIX. We also explored the option of modifying the MVS version of COBOL to
produce a common subset of COBOL to use in both AIX and MVS versions of the
application. This would facilitate running both versions of the application in parallel
against a common database server and assist in validating the migrated version
against the original. It also gave us insight into software maintenance on AIX for
applications targeted for execution on MVS.

4.2.1.3 User Interface Options
Some companies would modernize their applications by putting a GUI on them,
while others would maintain their traditional IBM 3270 character-based user
interface and execute it by means of emulation software. There also might be
companies that would implement a user interface free of software dependencies on
the old environment but that would still be very similar to the MVS user interface.
This would have significant savings in terms of end user training costs. It also
might be interim strategy to prevent the incremental deployment of the newer end
user workstations and/or displays from becoming a source of friction or confusion in
the end user community. Our project explored all these options.

 4.2.1.4 Object-Orientation Options
Finally, we gave thought to the companies that would reimplement their existing
applications in object-oriented technologies. We determined that they would be
equally inclined to approach this in stages. At first they might simply give the
applications an object-oriented user interface. Later they might implement
significant portions of the application in C++, integrating it with their object-oriented
GUI.

Adopting object-oriented technologies does not imply that you must abandon your
investment in relational database technology. However, most database vendors
provide only non-object-oriented APIs with their database products. Therefore
these companies also need an object-oriented programming API to provide their
applications with access to the database. This API provides an intermediate
interface compatible with the new source code and the old database API.

4.2.2 Examining the Feasibility of the Project
In examining the feasibility of migrating and modernizing our application to AIX, we
posed the following questions:

Code In what language is the application written and is that
supported on the target platform?

Data How is the data stored? Is it in a relational database,
hierarchical database, flat files, or some other type of files? Is
there vendor software or built-in support for this type of data
storage and retrieval on the new host? How can data be
extracted, physically relocated, and imported into the new

 Chapter 4. Defining the Project and Setting Its Goals 33

database? How can the database tables and table
relationships be recreated?

User Interface Can the user interface be ported or emulated on the new host?
If the user interface is replaced, what are our options on the
new host? Should the user interface remain character-based
or be made graphical?

Program Structure Is the application well structured? Can it be easily modularized
so changes necessitated by migrating to the new host can be
localized in separate modules? Is the user interface separated
from the application logic? Does the application have a
client/server architecture?

API Dependencies Does the application depend on APIs other than the database
API? Are these APIs also supported on the new host? Does it
have operating system dependencies? Does the new operating
system provide equivalent function?

4.2.2.1 COBOL Code Issues
Our goal was to rewrite as little as possible of the COBOL code, performing a
minimal effort migration. There were two reasons for this. The first was to show
how a minimal effort migration could be done. The second was to show how two
versions of the application might be developed, one for MVS and one for AIX,
which would share a substantial portion of common COBOL code. This meant that
language compatibility was essential.

Our application was written primarily in IBM VS COBOL II. By using Micro Focus
COBOL for AIX, we were assured of reaching this goal because the compiler
supports numerous dialects, including IBM VS COBOL II. This was the most
significant code issue to be resolved, but others remained.

Small portions of the application were written in assembler language. Because this
code would not migrate, it would have to be rewritten. Options were:

� Rewrite the modules in some other language.
� Rewrite the modules in COBOL by incorporating their function into the COBOL

modules calling them.
� Replace the modules with function provided by DB2.

This assembler language code had been written to replace existing DB2 function as
a performance enhancement on MVS. While this was not necessary on the RISC
System/6000, we decided to rewrite the assembler language modules in C. This
was better than modifying the COBOL code because we wanted to maximize the
common COBOL between the AIX and MVS versions of our application. We chose
C for portability. Because most UNIX systems are implemented in C, there would
be a C compiler on any UNIX platform we might use in a later migration.
Additionally, C is widespread on both small systems and mainframes.

Because we chose to implement the assembler language routines in C, we had to
deal with the interlanguage calling conventions of COBOL calling C. Because we
decided to implement the GUI in C, we had to deal with the interlanguage calling
conventions of C calling COBOL also. The COBOL documentation told us how to
call COBOL from C, but we could not find documentation describing how C calls
COBOL. We mastered these by experimentation.

34 How to Migrate and Enhance Your Legacy Applications

4.2.2.2 C++ Code Issues
AIX provides a C++ compiler based on the proposed ANSI standard for that
language. Compilers from many vendors conform to this proposed standard
already; so using this compiler ensured portability. The only interlanguage calling
that might arise would be C++ calls to C language subroutines, which is fully
supported by the C++ language.

 4.2.2.3 Data Issues
The goal of this project in resolving any data issues was to migrate the database to
AIX, automate any necessary data transformations, and create the exact same
database tables on AIX as on MVS. As mentioned earlier, we abandoned the idea
of examining database and application distribution issues. The HP and Sun DB2
products were announced, but not yet available, so we could not explore issues of
migrating data between UNIX systems.

The following data issues needed to be resolved:

� The database was located in Sweden and contained Swedish language data,
which included some special symbols. National Language Support (NLS)
issues, such as collation sequence, also had to be explored.

� The data was stored in EBCDIC on MVS and would be in ASCII on AIX. Some
mechanism had to be determined to extract the data, convert it, and insert it
into the AIX database.

� The new database tables to be created had to be identical to the old ones.
Any changes to the database design would imply significant changes to the
COBOL source code and make maintenance of common baselines impossible.

 4.2.2.4 User Interface
The MVS application user interface was based on ISPF. ISPF is an IBM 3270
terminal-based mechanism available on IBM mainframes that supports
character-oriented display and input screens and function keys. At the time of this
project, ISPF was not available on the RISC System/6000; so the user interface
had to be replaced or accommodated.

We examined five possibilities and implemented two GUIs, one for the COBOL
version and one for the C++ implementation. These possibilities were:

1. Emulating ISPF on AIX, using a utility available for IBM internal only use

2. Creating a character-oriented user interface using the Micro Focus Dialog
System, which is a Micro Focus COBOL Toolbox add-on product that separates
screen and keyboard input/output from the COBOL application program

3. Creating a character-based user interface in COBOL using ACCEPT and
DISPLAY statements

4. Replacing the ISPF panels with a GUI that closely mimics the ISPF panels

5. Replacing the ISPF panels with an object-oriented GUI that reflects Common
User Access* (CUA*) guidelines. CUA is a member specification in IBM's
Systems Application Architecture* (SAA).

We used AIC/6000 to generate C code for the ISPF-like and the CUA-based user
interfaces. We regenerated the CUA-based user interface in C++ for use with the
C++ implementation of the application.

 Chapter 4. Defining the Project and Setting Its Goals 35

4.2.2.5 COBOL Program Structure Issues
We had already decided on the goal of deriving an MVS and an AIX version of the
application that shared common COBOL code. We now needed to determine what
impact this goal had on the original MVS COBOL source code, which implemented
as a single large module, except for the ISPF panels which were broken apart into
separate modules. There was no other obviously MVS-only code or data
embedded in the main program module. The remainder of the application
appeared to be well structured and could be broken apart into separate modules,
some of which could be shared between the AIX and MVS implementations.
Figure 6 illustrates generically how a large, well structured application can be
broken apart into separate modules.

Figure 6. Modularization of a Well-Structured Program

We then examined options for maintaining the common COBOL code, and
determined that the COBOL mechanism of COPY code would serve our purposes.
We set the goal of creating a body of COBOL code, which during the compilation
process would bring in platform-specific modules in some cases, and
platform-common modules in others. Each version would also have some
non-COBOL modules that were unique to the platform linked with the resulting
COBOL object code.

On MVS, the original code was contained in a COBOL PROGRAM, and the user
interface was implemented by calls to ISPF. The program logic itself was modular,
having one section for each display panel that contained the code to process the
panel and the related database logic. On AIX, the COBOL code was more like a
subroutine library. The main body of code was a simple event-driven C program,
which generated GUI displays. OSF/Motif callbacks, triggered by the GUI process,
called the COBOL subroutines that implemented the database logic.

36 How to Migrate and Enhance Your Legacy Applications

Figure 7 on page 37 shows how we planned to transform the application from the
original MVS code structure, to the new MVS structure, and finally, to the AIX
structure.

Figure 7. Evolution of the COBOL Code. NOTE: The box sizes do not represent relative
code sizes.

 Chapter 4. Defining the Project and Setting Its Goals 37

4.2.2.6 C++ Program Structure Issues
We wanted to reuse the improved GUI design when we reimplemented the
application in C++. This was feasible because AIC 1.2 could generate either C or
C++ from the same design files. When AIC generates C++ it defines a C++ class for
each interface or window. We decided therefore to derive an application class
jointly from the GUI window class and from a newly written application class that
implemented the database logic. We also created component classes to
encapsulate the DB2/6000 CLI for C.

When planning this, however, there were many unknowns, for example:

� Would classes generated by AIC enable overriding of their methods to be
overridden in derived classes?

� Would classes generated by AIC use component classes that our application
classes could also manipulate?

� Would we need to create component classes to deal with the database?

During the project, we arrived at answers to these questions by experimentation
and examination of the AIC 1.2 generated code.

 4.2.2.7 API Dependencies
Our biggest API dependency was on the embedded SQL in the COBOL source
code. As we expected, Micro Focus COBOL provided full support for this API.
When we replaced the COBOL code with C++ code, we decided to replace the
SQL calls embedded in the COBOL source code with calls to the DB2 CLI for C,
because C subroutines are directly callable from C++ code.

38 How to Migrate and Enhance Your Legacy Applications

Chapter 5. Our Application Development Environment

A wide range of hardware, software, and file system configurations that can provide
the foundation for the application development environment and tools are described
in Chapter 4, “Defining the Project and Setting Its Goals” on page 29. In this
chapter we describe the specific hardware, software, and file system topologies we
created for our project. The sections that follow describe why we placed our users
at, and the various compute services on, the specific computers in our distributed
application development environment.

 5.1 Fundamental Guidelines
We chose a specific number of computers so our project could model a typical
distributed application development environment. In such an environment:

� Different makes, models, and brands of computers are acquired over time and
do not always support identical operating system releases, peripherals, and
software products.

� Different application development tools are installed exclusively on a few
computers and made available to all users by remote execution. These
computers function as compute resource servers.

� Some software resources might be universally installed, such as Xservers or
development environment framework products.

� The workstation consoles and network-attached graphical displays are
dedicated to specific users, but users can log in to various computers on the
network at different times.

� Disk capacity is concentrated on a few hosts and made available to all hosts.
These hosts function as file servers.

5.2 Hardware and Network Topology
Our network topology, as illustrated in Figure 8 on page 40, consisted of four IBM
RISC System/6000 computers and a RISC System/6000 X station connected on a
token-ring LAN. Table 1 on page 40 identifies the host names, IP (Internet**
Protocol) addresses, and physical characteristics of these computers. We refer to
these RISC System/6000s by their host names in this book. The computers are
named after seas: yellow, bering, bengal, and sargasso. The X station was named
zorin1.

 Copyright IBM Corp. 1995 39

Figure 8. Our Network Topology

Table 1 (Page 1 of 2). Our Hosts, Internet Addresses, and Hardware Configurations

Host Name / IP Address Make / Model Hardware Configuration

yellow / 9.113.44.208 7013 / 340 2 GB disk, 32 MB
memory, 6091-19 display,
500 GB tape, 3.25 inch
floppy, 4/16 MB Token
Ring, Colorgraphics
Display Adapter

zorin1 / 9.113.44.187 7010 / 130 (Xstation) 6091-19 display, 4/16 MB
Token Ring

bering / 9.113.44.145 7013 / 52H 2 GB disk, 32 MB
memory, 6091-19 display,
8 mm tape, 3.25 inch
floppy

bengal / 9.113.44.149 7013 / 52H 2 GB disk, 32 MB
memory, 6091-19 display,
2.3 GB tape, 3.25 inch
floppy, 4/16 MB Token
Ring, Colorgraphics
Display Adapter

40 How to Migrate and Enhance Your Legacy Applications

Table 1 (Page 2 of 2). Our Hosts, Internet Addresses, and Hardware Configurations

Host Name / IP Address Make / Model Hardware Configuration

sargasso / 9.113.44.228 7013 / 520 400 MB disk, 32 MB
memory, 6091-19 display,
3.25 inch diskette drive,
4/16 MB Token Ring,
Colorgraphics Display
Adapter

5.2.1 Display and X Server Requirements
Each developer requires a high function terminal or X station because SDE
WorkBench/6000, which has an OSF/Motif GUI, requires a high resolution
(1024x768 or greater) monochrome or color bit-mapped display.

We could have used OS/2 workstations with a Presentation Manager X Window
System emulation program, such as PMX. We could have also used MS-DOS
workstations with any of several third-party X Window System products. There
would have been font and color issues that we did not have, but those workstations
could have served effectively in this topology.

5.2.2 Memory and Disk Requirements
We found suggestions for memory and fixed disk storage presented in each
product's installation manual. For example, Installing IBM AIX SDE
WorkBench/6000 and IBM AIX SDE Integrator/6000 indicates that SDE
WorkBench/6000 requires at least 16 Megabytes (MB) of RAM, but it also advises
that it works much better with 32MB. Configuration Management Version Control
Server Administration and Installation, Version 2 Release 1, states that the CMVC
server requires 16MB over and above that required for the database product. The
ORACLE for IBM RISC System/6000 Installation and User's Guide Version 6.0
indicates that ORACLE requires 16MB. AIX and AIXwindows require at least
16MB.

The reader should note that these memory requirements are not necessarily
additive. Because AIX memory is backed by page space on disk, AIX can create
the illusion of much greater virtual memory than is actually present in the physical
chips. We found that 32MB of memory performed adequately on all our systems.
This included the system that supported multiple SDE WorkBench/6000 users, the
CMVC server, and multiple CMVC clients.

The amount of disk space required to serve as page space for a Licensed Program
Product is usually much larger than the disk space requirement for installing the
product. Recommendations for page space are additive, and increasing page
space can significantly improve performance problems related to memory
constraints. For example, Installing IBM AIX SDE WorkBench/6000 and IBM AIX
SDE Integrator/6000 advises that you need at least 16MB of free page space for
the first user and 13MB more page space for each additional SDE
WorkBench/6000 user on the system. ORACLE not only uses significant pageable
memory, but also pins memory thereby reducing the amount of memory left over for
other applications. AIXwindows also requires considerable memory, and therefore
page space. Typically, we allocated 100MB of page space on these systems.

 Chapter 5. Our Application Development Environment 41

Disk space for AIX Journaled File Systems and database-managed disk partitions
can be significant for a development project, although it need not be available on
every system in the network. ORACLE reserves a large disk partition and
manages that space itself. On installation, ORACLE required 250MB of disk space
for this partition. CMVC, which was installed on this same system, stored all the
versioning data for the development source code and related files in AIX Journaled
File Systems space. The disk space required for this can vary depending on the
size of the project and the number of separate files involved, and it can be
significant.

 5.3 Software Topology
Our software topology illustrated in Figure 9 shows on which hosts the various
client and server portions of the tools and SDE WorkBench/6000 were run. It also
shows which hosts acted as file servers. We decided how to distribute software
and data across the various hosts by balancing the following goals:

� Clients should run on the host at which the end user runs the X server as much
as possible, to minimize display update delay and network traffic.

� Servers should run on the host with appropriate memory and disk resources.

� Software should run where prerequisite and corequisite software is available.

Figure 9. Distribution of Software Services across the Network

42 How to Migrate and Enhance Your Legacy Applications

5.3.1 AIX and LPP Versions, Releases and Levels
All hosts had AIX/6000* Version 3.2.3-extended installed, except for yellow, which
had AIX/6000 Version 3.2.4 installed. We needed one system at this operating
system service level because AIC Version 1.2 generates C or C++ code that is
compatible only with X Windows Version 11 Release 5 (X11R5) and OSF/Motif 1.2.
AIX 3.2.4 is a prerequisite to AIXwindows 1.2 (IBM's implementation of X11R5 and
OSF/Motif 1.2).

Other systems remained at the lower service levels because the versions of SDE
WorkBench/6000 and CMVC, which we intended to use, were not yet certified for
either the newer operating system or AIXwindows level. Furthermore, we wanted
to use AIC 1.1.1, so we could compare the differences between the two versions of
AIC in their degree of integration with SDE WorkBench/6000. AIC 1.1.1 generates
C code that is compatible only with X Windows Version 11 Release 4 (X11R4) and
OSF/Motif 1.1, which are compatible only with AIX 3.2.3. IBM provides X11R4
compatibility libraries on later AIX releases. Applications suitable for X11R4
environments can be run if the environment variable LIBPATH is set up so the
compatibility libraries precede the X11R5 libraries. (This was relevant to
applications such as SDE WorkBench/6000 and CMVC, which were X11R4
compatible during the project).

The sargasso host was of an indeterminate AIX 3.2 level and had limited disk
space, so neither SDE WorkBench/6000 nor developer tools were installed on it.
We only logged-in, run the X server, and remotely run SDE WorkBench/6000,
CMVC, and the other AD tools on other hosts.

Some of the standard Licensed Program Products (LPPs) installed on each system
were:

Application Development Toolkit (ADT), which included make , SCCS, dbx , and
other standard UNIX developer tools

Basic Operating System Extensions (BOSext1,BOSext2), which included a
variety of basic services such as C shell and mail handler

Network Services, which included TCP/IP device drivers and network interface
software services, such as Network File System (NFS), Network
Information Services (NIS), Domain Name Service (DNS), and Network
Computing Services (NCS).

Table 2 shows the software configurations installed on the various hosts.

Table 2 (Page 1 of 2). Software Configurations

Host Name AIX & LPPs AIXWindows AD Environment & Tools

bering AIX 3.2.3.e,
BOSext1,
BOSext2,
NetLS 2.1,
ADT, TCP/IP,
NFS, NCS,
Xstation Mgr.
1.3, X LC
1.2.1

X11R4,
OSF/Motif 1.1

SDE WorkBench/6000 1.2.2,
Oracle 6.0.36, CMVC 2.1 Server
& Client, AIC 1.1.1, SDE
Integrator/6000 1.2

 Chapter 5. Our Application Development Environment 43

Table 2 (Page 2 of 2). Software Configurations

Host Name AIX & LPPs AIXWindows AD Environment & Tools

bengal AIX 3.2.3.e,
BOSext1,
BOSext2,
NetLS 2.1,
ADT, TCP/IP,
NFS, NCS,
Xstation Mgr
1.3, XL C
1.2.1

X11R4,
OSF/Motif 1.1

SDE WorkBench/6000 1.2.2,
CMVC 2.1 Client, Micro Focus
COBOL 3.1, DB2 CAE/6000
DB2/6000

sargasso AIX 3.2.3,
BOSext1,
BOSext2,
TCP/IP, NFS,
NCS

X11R4,
OSF/Motif 1.1

none

yellow AIX 3.2.4,
BOSext1,
BOSext2,
NetLS 2.1,
ADT, TCP/IP,
NFS, NCS,
Xstation Mgr
1.3,XL C++

1.1.2

X11R5,
OSF/Motif 1.2

SDE WorkBench/6000 1.2.2,
CMVC 2.1 Client, AIC 1.2, DB2
CAE 1.1, DB2/6000

5.3.2 X Windows Services
The terms client and server in the X Windows paradigm often confuse people. The
X client is an application that makes use of the input/output services provided by an
X server associated with a given display. The X client can run on one computer
while the X server it accesses runs on another computer, but both X server and
client can run on the same computer. An X client is often also the client portion of
a separate distributed application. For example, CMVC is a client/server
application whose client and server portions may run on separate computers on the
network. The CMVC client makes use of the services provided by the CMVC
server. It also uses the services provided by an X server, and therefore is an X
client application. A CMVC client might be running on one host, making
input/output requests through an X server that runs on a second host while
accessing the CMVC server running on a third host. The X server always runs on
the host where the display is physically attached. An X station is a host that is
capable of running only the X server; it is not a full function computer.

We assigned developers to hosts by matching the developers' areas of
responsibility with the hosts on which the AD products supporting those
responsibilities were installed. Developers who could not sit at the console of the
host supporting the tools they needed, could sit at an X station or another system
console where they could run at least the X server. They could then remotely run
the tools they needed. Each developer also had occasion to remotely run some
AD products. In subsequent chapters we refer to specific users by their UNIX login
names and to specific hosts that are running applications on their behalf, to
illustrate the users' interaction with their tools and SDE WorkBench/6000. Table 3
on page 45 identifies the developers' login user IDs, areas of responsibility, and
hosts where their displays were attached.

44 How to Migrate and Enhance Your Legacy Applications

Table 3. Developer Workstation Assignments

Host Name User ID Development Responsibilities

bering lrconas Project management, software
configuration management

bengal aixcase2 COBOL DB2 development

saragasso aixcase3 GUI development.

yellow aixcase1 C++ development

zorin1 any user Alternative workstation

 5.3.3 Network Software
DNS was also configured, but none of our systems were configured as a name
server. We did not use Network Information System (NIS), formerly known as
Yellow Pages**; instead, we kept our /etc/passwd, /etc/security/passwd, and
/etc/groups files up-to-date manually.

5.3.4 CMVC Server and Clients
The host, bering, was configured as the CMVC server on the network. CMVC
client software was installed and configured on bengal, yellow, and bering.

5.3.5 DB2/6000 Server and Clients
DB2/6000 Client and DB2/6000 Server were installed on bengal to support the
initial application migration to AIX. Access to DB2/6000 on bengal was through the
COBOL API. The DB2/6000 Client and DB2/6000 Server were installed on yellow
to support the object-oriented reimplementation of the application. Access to
DB2/6000 on yellow was through the DB2 CLI for C.

5.3.6 Compiler Compute Servers
Micro Focus COBOL 3.1 and Micro Focus COBOL ToolBox 3.1 were installed
exclusively on bengal. The XL C++ compiler was installed exclusively on yellow and
the XL C compiler was installed on all systems, but most C source code
compilation was run on bering. This distribution of the compiler mimicked what
would be typical of a mixed-vendor environment where the compiler capable of
generating executable code for the HP platform would be installed only on HP
computers and the compiler capable of generating executable code for Sun
platforms would be installed only on the Sun computers. Even if compilers were
more widely distributed, it would not be uncommon to restrict use of certain
compilers to specific hosts in network load-balancing strategies.

5.3.7 AIC Compute Servers
AIC version 1.1.1 was installed only on bering. AIX/6000 Version 3.2.3-extended
was the prerequisite operating system level for this AIC version. AIC Version 1.2
was installed exclusively on yellow because AIX/6000 Version 3.2.4 was a
prerequisite for that version. This would be fairly typical of a mixed environment
where operating systems are upgraded gradually according to business needs.

 Chapter 5. Our Application Development Environment 45

 5.3.8 SDE WorkBench/6000
SDE WorkBench/6000 was installed only on bering, bengal, and yellow. The
developer using sargasso run X11R4 from that host, but run SDE WorkBench/6000
and other tools remotely on bering or yellow. Developers on each system had
occasion to remotely run various integrated development tools on every system but
sargasso. Typically, SDE WorkBench/6000 would be installed on every host in the
network that could support it.

5.4 File System Topology
The file systems on each host were arranged specifically to support our application
development environment and played a key role with SDE WorkBench/6000 and
CMVC. A common development file tree and subsidiary file trees were established
to provide a working area for application baselines under development and hold
formal releases of the application. Several file systems were created specifically for
CMVC and ORACLE. File systems were mounted across the network to provide
the illusion of a network-wide single system image for our developers. We ensured
that each user had a home directory on only one host, although the user might log
in to any host in the network. (The home directory is where the user's files are
placed by default, if no other location is specified when the files are created.)
Various other directories and file systems that were used by the development tools
on specific hosts were also made accessible to users on all hosts across the
network by means of NFS mounts.

5.4.1 NFS Mounts for Distributed Data with SDE WorkBench/6000
SDE WorkBench/6000 supports the concept of distributed data through NFS and a
path naming convention. SDE WorkBench/6000 and network aware integrated
tools follow the convention of constructing a local path name beginning with /nfs/
followed by a remote host name, followed by the remote file's absolute path name.
When compilers, editors, and other tools are informed by SDE WorkBench/6000
that they need to access a file on a remote host, they can construct a local path
name to access that file, if the proper NFS mounts are made. The user identifies
the remote host and the file path name by setting the data context in SDE
WorkBench/6000.

A common development file tree was created for this project. It was placed in a
separate file system mounted at /ad, on bering. It was remotely mounted from
there on every other host at the mount point /nfs/bering/ad. Using this mount
point ensured that SDE WorkBench/6000, which was executing on remote hosts,
could access the /ad file system on bering. This way, we were sure that all
developers could work on common files from any host on which they run SDE
WorkBench/6000.

Refer to Installing IBM AIX SDE WorkBench/6000 and IBM AIX SDE
Integrator/6000 for instructions on supporting distributed data. Figure 10 on
page 47 illustrates the NFS mounts used to support distributed data with SDE
WorkBench/6000 for this project.

46 How to Migrate and Enhance Your Legacy Applications

Figure 10. NFS Mounts to Support Distributed Data with SDE WorkBench/6000

5.4.2 NFS Mounts for Distributed Execution with SDE WorkBench/6000
SDE WorkBench/6000 defines the concept of distributed execution as what
happens when a locally executing SDE WorkBench/6000 is requested by a user to
start a tool's execution on a remote host. If the remote system supports distributed
execution, it must export the /tmp directory to the local system. The local host
must then mount it following the distributed data path naming convention for the
mount point. For example, if a user on the bering host wants to run the C++

compiler on yellow from SDE WorkBench/6000, the /tmp file system from yellow
must be mounted on bering at /nfs/yellow/tmp.

 Chapter 5. Our Application Development Environment 47

Refer to Installing IBM AIX SDE WorkBench/6000 and IBM AIX SDE
Integrator/6000 for instructions on supporting distributed execution. Figure 11 on
page 48 illustrates the NFS mounts we made to enable every host that supported
SDE WorkBench/6000 to initiate remote execution on any other host that also
supported SDE WorkBench/6000.

Figure 11. NFS Mounts to Support Distributed Execution with SDE WorkBench/6000

48 How to Migrate and Enhance Your Legacy Applications

5.4.3 NFS Mounts for Single System Image
For every user able to log in to a host, that host records a specific home directory.
Typically, that directory is in a local file system named /home or /u/. When a user
can log in to multiple hosts in a network, the user can have multiple home
directories, one on each host. This can cause confusion because the user can
forget which home directory contains specific files or can inadvertently create
multiple versions of files when there should be only one. Also, because many tools
and utilities require users to tailor specific files located in their home directory,
maintaining identical copies of those files on multiple hosts can be a lot of work.

While there may be other ways to deal with this problem, the concept of a single
system image is quite popular as a solution. This ensures that no matter where
users are logged in, they have only one home directory located in a file system on
one host. To accomplish this, the /home file system from a single host is mounted
using NFS on all the other remote hosts in the network. The mount point for the
/home file system is not the same on the remote hosts as it is on the local host.
For example, it might be /mnt/hostX/u on one remote system and
/nfs/hostX/home on another remote host. So that the home directory is properly
configured when users log in to remote hosts, they must record the correct path
name of their remotely mounted home directory in the /etc/passwd file on each
remote host. In the simplest scenario, all users on all hosts would store their files
on the /home file system of a single host. This can cause unwarranted network
traffic, if some users are likely to log in to one host frequently, while others are
likely to log in to another host most often. A more complex scenario, therefore, is
to have users establish their single home directory on the host they use most often.

We created a single system image by following the SDE WorkBench/6000
convention for naming mount points of remote file systems. For the host at which
each user normally logged in, the default home directory was set to
/home/username, and that is where the home directory was really located. On
remote hosts, the default home directory was set to /nfs/hostname/home/username.
The local /home file system was then mounted on all remote systems at that mount
point.

For example, aixcase2 normally logged in at bengal and had a default home
directory of /home/aixcase2 on that host, but on bering or yellow had a default
home directory of /nfs/bengal/home/aixcase2. We mounted the /home file system
from bengal at /nfs/bengal/home on yellow and bering.

We also had another situation to support, which was similar to having a diskless
workstation. Disk space on sargasso was so limited that we felt it could not
support the home directory for aixcase3, the user who normally logged in at that
host. To resolve this situation, we decided that aixcase3 should have a home
directory in the /home file system on bering. We mounted the /home file system
from bering on sargasso at /nfs/bering/home and set the default home directory to
that path for aixcase3 on sargasso. We mounted the /home file system from bering
on each of these hosts and set the default home directory path identically on those
hosts so aixcase3 could have a common home directory yellow and bengal, The
default home directory for aixcase3 on bering was set to /home/aixcase3.

An illustration showing all the NFS mounts supporting all the users would be too
complex, so the NFS mounts supporting a single system image for only the users
aixcase2 and aixcase3 are illustrated in Figure 12 on page 50.

 Chapter 5. Our Application Development Environment 49

Figure 12. NFS Mounts to Support a Single System Image

5.4.4 NFS Mounts for AIC 1.2
We found that AIC 1.2 had a restriction with respect to file path names when it
interacted with other SDE WorkBench/6000 tools and Execution Manager.
Although it was network aware, it was not network scope; so it was unable to
interpret remote file path names or path names that began with the SDE
WorkBench/6000 convention, /nfs/hostname. This is discussed in detail in 9.4.6,
“Integration Restrictions and Their Circumventions” on page 220.

The files of concern were all in the common development file tree that was
mounted at /ad and in the home directory of aixcase3 on bering. To circumvent

50 How to Migrate and Enhance Your Legacy Applications

the problems caused by this restriction, path names that did not begin with /nfs

were created on yellow, using the AIX command link .

Specifically, a link was created on yellow from /home/aixcase3 to
/nfs/bering/home/aixcase3 so the user could refer to files on the remote system
by a path name that AIC 1.2 interpreted to point to a local file. Another SDE
WorkBench/6000 tool, such as Program Editor, might have created that same file
using the local path name on /nfs/bering/home/aixcase3, but the user was able to
tell AIC 1.2 to look for it with the path /home/aixcase3.

In addition, a link was created on yellow from /ad to /nfs/bering/ad. This enabled
AIC 1.2 to find the files that other SDE WorkBench/6000 tools had manipulated with
their data context including bering as a host and /ad at the start of the path name.
AIC 1.2 could find these files if its current directory was set to the corresponding
local path name beginning /ad.

Figure 13 illustrates how the local file links masked the NFS mount implied by the
path names beginning with /nfs/hostname.

Figure 13. File Systems Cross-Mounted on Our Hosts

5.4.5 Common Development File Tree
As mentioned earlier, our common development file tree was placed in a file
system that was mounted directly at /ad on bering, but mounted indirectly (using
NFS) on every other host at /nfs/bering/ad.

The /ad directory contained a directory for each of two applications: ProductA (the
application being downsized), and ProductB (an imaginary second application).
These directories held file trees for the production releases of these two
applications. Each of these production release file trees contained the source,
compilation instructions, executables files, and all other files associated with the
release that it represented. The production releases were named according to the
target platform and numbered to identify their sequence. For example, the
production release file tree springing from the /ad/ProductA/MVS_Release_ð
directory contained the files comprising the original MVS release, before the
migration. The production release file tree springing from the

 Chapter 5. Our Application Development Environment 51

/ad/ProductA/MVS_Release_1 directory contained a version of this application
modified to support common code between the MVS and AIX releases. These
production release file trees are illustrated in Figure 18 on page 59.

The /ad directory contained other directories, which contained the prototype
development file trees for ProductA and ProductB. They were named
/ad/projectA_proto and /ad/projectB_proto. Below /ad/projectA_proto were
several layers of subdirectories that were organized according to source code
languages and the types of data contained in the various files.

When a source file was checked in the CMVC library, the relative path name
leading to that file in the prototype development file tree was also stored. When a
particular version of that file was later extracted from the library to the production
release file tree, CMVC used that same relative path name to place it in that file
tree. Therefore, there are similarities in the file tree organizations below
/ad/projectA_proto and the various release directories in /ad/ProductA.

5.4.5.1 ProjectA Prototype Development File Tree
The projectA_proto prototype development file tree is shown in Figure 14 on
page 53. It contained the following directories:

Directory Description

bin Contained executable files (binary data files) of the
application and any related test tools.

catalog Contained any message catalogs used by the application.
Message catalogs enable the separation of user message
texts from the application code and the retrieval at execution
time of message texts in the appropriate language of the
user executing the application.

db2 Contained all data, command scripts, and utilities related to
the DB2/6000 data base.

include This directory contained any C language include files
(filename.h) associated with the application's C language
source modules.

resource Contained X11 resource files for the individual OSF/Motif
widgets that are generated by AIC for each AIC interface file.
All language-dependent widget resources, such as label
strings, dialog titles, and mnemonics, can be set by means of
these resource files. This mechanism isolates all text strings
appearing in the GUI from the GUI code itself and enables
these test strings to be translated into multiple languages
with our recompiling the code. Separate X11 resource files
can be created containing the translation of these text strings
into each target language. When our application runs, the X
Windows System will identify the correct X11 resource file to
use according to values in certain shell variables. These
variables are set by each user.

source Contained source code for the application in appropriate
subdirectories.

test Contained test code and data.

52 How to Migrate and Enhance Your Legacy Applications

Figure 14. ProjectA Prototype Development File Tree

 Chapter 5. Our Application Development Environment 53

5.4.5.2 The Source Directory
The source directory contained a subdirectory for each of the three languages:

Directory Description

c Contained source modules in the C language

C Contained source modules in the C++ language

cobol Contained source modules in the COBOL language

The C Language Source Directory: This directory was named c because C
language file names end with the .c extension. It contained a directory for the main
routine of the application, two directories for the GUI source (PortedGUI and
ImprovedGUI), and a directory for utility subroutines. Figure 15 on page 55
illustrates the PortedGUI directory and Figure 16 on page 56 illustrates the
ImprovedGUI directory. The C language source directory contained:

Directory Description

main Contained the main module that invoked the GUI code.

PortedGUI Contained the AIC interface and callback source modules for
the AIX_Release_1 GUI (as first migrated to AIX). It also
contained a subdirectory for each window of the GUI and the
source for the interface file and callback subroutines.

ImprovedGUI Contained the AIC interface and callback source modules for
the AIX_Release_2 GUI (as made more CUA or UNIX-like).
It also contained a subdirectory for each window of the GUI
and the source for the interface file and callback subroutines.

util Contained the utility subroutines that replaced the assembler
code.

54 How to Migrate and Enhance Your Legacy Applications

Figure 15. PortedGUI Directory

 Chapter 5. Our Application Development Environment 55

Figure 16. ImprovedGUI Directory

The C++ Source Directory: The C++ directory was named C because C++ source
code file names end with the .C extension. It contained source code for the
object-oriented implementation and two subdirectories, one for the user interface
and one for the application itself. Figure 17 on page 57 illustrates this directory.
The C++ source language directory contained these:

Directory Description

OOGUI Contained the AIC source modules. There were no callback
source files, because the newer version of AIC required the
callbacks to be incorporated in the interface file in order to
generate correct C++ source files. It also contained a

56 How to Migrate and Enhance Your Legacy Applications

subdirectory for each window of the GUI. The source code
for these windows is stored in these subdirectories.

app Contained the application C++ source modules that defined its
classes and methods, and included C language modules that
were necessary for access to the DB2 CLI for C.

Figure 17. OOGUI Directory

The COBOL Source Directory: The cobol directory contained the COBOL source
code and all other source code necessary for the MVS build. The MVS releases
were not actually built on AIX; so there seemed little added value in placing the
various files in subdirectories based on language or file type. Files placed here
included MVS COBOL source and copy code modules, ISPF panel definition
source modules, JCL scripts, CLIST files, and assembler language source modules.

Note that some of these subdirectory names recurred in the directories containing
the production releases, but not all appeared beneath any one production release's
directory. For example, the AIX and MVS releases might have had directories
containing COBOL source, but the MVS releases would not have had directories
containing C language source code. Likewise, the object-oriented release did not
require a subdirectory for either the C or COBOL source code language modules.
However, all releases had a directory for the database, message catalogs, and
binaries.

 Chapter 5. Our Application Development Environment 57

5.4.5.3 The ProductA Production Release Directories
As mentioned earlier, /ad/ProductA contained a directory for each production
release. Partial contents of this directory are shown in Figure 18 on page 59. It
contained:

Directory Description

MVS_Release_ð Contained all the files required to build the original MVS
application. /ad/ProductA/MVS_Release_ð contained a file tree
whose subdirectories were a subset of those contained in
/ad/projectA_proto. For example, it contained a source

directory and below that a cobol directory, which contained
the original COBOL source, assembler, CLIST, and JCL files.
However, it did not contain a c or C directory because no
files were stored in the CMVC library with those path names.

MVS_Release_1 Contained all the files required to build the revised MVS
application. /ad/ProductA/MVS_Release_1 contained a file tree
similar to that of MVS_Release_ð.

AIX_Release_1 Contained all the files required to build the initial AIX release;
the minimal-effort migration. /ad/ProductA/AIX_Release_1
also contained a file tree whose subdirectories were a subset
of those contained in /ad/projectA_proto. It contained
directories for COBOL and C, but not for C++. Furthermore, it
did not contain ImprovedGUI below the c directory. Instead, it
contained only the PortedGUI directory.

AIX_Release_2 Contained all the files required to build the AIX release with
the improved, or object-oriented, GUI.
/ad/ProductA/AIX_Release_2 also contained a file tree whose
subdirectories were a subset of those contained in
/ad/projectA_proto. It contained directories for COBOL and
C, but not for C++. Furthermore, it did not contain PortedGUI

below the c directory; instead, it contained only the
ImprovedGUI directory.

OO_Version_1 Contained all the files required to build the initial
object-oriented AIX release. (Admittedly, it was poorly
named). /ad/ProductA/OO_Version_1 contained a file tree
whose subdirectories were a subset of those contained in
/ad/projectA_proto. It contained a directory for C++, but not
for C or COBOL.

58 How to Migrate and Enhance Your Legacy Applications

Figure 18. ProductA Production Release File Trees

 Chapter 5. Our Application Development Environment 59

60 How to Migrate and Enhance Your Legacy Applications

Chapter 6. Migrating the Legacy Application to AIX

This chapter describes the minimal-effort migration phase of our project. It details
how we used AIX AD tools to design and implement the GUI, port the COBOL to
AIX, migrate the database to AIX, and integrate the COBOL and GUI source code.

In this and subsequent chapters, we show how we used the AIX AD products while
designing, programming, and testing the project. We describe specific menus,
buttons, and other features of the user interfaces of the various AIX AD tools we
used. We also show many screen captures, and describe exact commands, menu
selections, and other user interactions with these tools. The intent is that the
reader should get a good feel not only for what these tools do, but also for how
using these tools and SDE WorkBench/6000 can enhance the developer's
productivity and efficiency. The reader should glean both a general understanding
of how these tools are used, and the specifics of using the tools in our particular
environment to accomplish our specific goals.

6.1 Using SDE WorkBench/6000 and Integrated Tools to Develop the
GUI

The tools our GUI developer used during this initial phase of the project were:

 � Tool Manager
 � Program Editor
 � Program Builder
 � Development Manager
 � Program Debugger
� AIXwindows Interface Composer/6000 v.1.1.1.

This section introduces some of these tools. How our developer used these tools
is described in this and subsequent sections.

All of these tools but AIC are integral elements of SDE WorkBench/6000. We
integrated AIC 1.1.1 with SDE WorkBench/6000 before we began to develop the
GUI. The integration effort is described in 9.4, “Tailoring SDE WorkBench/6000 for
AIC Programmers” on page 212.

6.1.1 Remote Access to SDE WorkBench/6000 and Integrated Tools
Our GUI developer did his work from the system console at the host sargasso as
the aixcase3 user. As mentioned earlier, we decided not to install SDE
WorkBench/6000 or AIC 1.1.1 on sargasso. Instead, our GUI developer needed to
run SDE WorkBench/6000 remotely on the host bering.

To invoke SDE WorkBench/6000 from the console of a system on which it is
installed, the user simply starts X Windows, and types in the command workbench
in a terminal emulation window. Access to SDE WorkBench/6000 from a remote
system on the network required a few preliminary steps.

The first step was to enable the remote AIXwindows client programs to have their
input and output handled by the local AIXwindows server on sargasso. To do this
we added the remote system's host name, bering, to the /etc/Xð.host file on
sargasso. An alternative to this would be for aixcase3 to run the xhost command
line shown in Figure 19 every time AIXwindows was started up.

 Copyright IBM Corp. 1995 61

 xhost +bering

Figure 19. Using the xhost Command to Authorize Remote System Access

The next step was necessary because SDE WorkBench/6000 requires that
/usr/softbench/bin precede the normal system directories, /usr/bin and /bin,
when the value of the PATH environment variable is set. (This requirement is
explained in Installing IBM AIX SDE WorkBench/6000 and IBM AIX SDE
Integrator/6000.) To ensure that the PATH variable would always be set correctly
before SDE WorkBench/6000 was invoked by our developer, we modified the
.profile file for aixcase3's login name on the bering host. This file is processed
by the Korn shell whenever the programmer logs in, either from a direct attach
device or remotely over the network. Figure 20 shows the line in the .profile file
which sets the PATH variable for our SDE WorkBench/6000 users. Note that this is
one continuous line in the file, not two lines as shown.

 PATH=/usr/softbench/bin:/usr/bin:/etc:/usr/sbin:usr/ucb:$HOME/bin:

 /usr/bin/X11:/sbin:/usr/lpp/cmvc/bin:.

Figure 20. PATH Setting in User's .profile File

From a terminal emulation window on the sargasso console, our programmer now
remotely logged in to the bering host and run SDE WorkBench/6000, directing it to
display output on the Xserver running on sargasso, with the command shown in
Figure 21.

 workbench -display sargasso:ð.ð

Figure 21. Executing SDE WorkBench/6000 for Remote Display of its Output

Since our developer intended always to log in to bering remotely from sargasso,
our developer decided to update the .profile file so the DISPLAY variable was
always pre-set to sargasso:ð.ð. This was done by adding to this file the statement
shown in Figure 22.

 export DISPLAY=sargasso:ð.ð

Figure 22. Setting DISPLAY Variable in .profile File

 Instead of using rlogin our programmer could also have used the rexec command
to remotely run SDE WorkBench/6000 on bering, while directing SDE
WorkBench/6000 to display output at the Xserver instance executing on sargasso.
The PATH and DISPLAY variables would still need to be set correctly, however. Since
no login shell would be spawned, the .profile file must be explicitly processed by
the same shell instance spawned to remotely run the workbench command. This
was accomplished by forcing that shell to run the .profile file before executing the
workbench command. Figure 23 on page 63 shows the rexec command line as it
would have been entered on sargasso.

62 How to Migrate and Enhance Your Legacy Applications

 rexec bering ". /home/aixcase3/.profile; workbench -display sargasso:ð"

Figure 23. Invoking SDE WorkBench/6000 on a Remote Host through rexec

Now that SDE WorkBench/6000 was running on the remote host and being
displayed on the local host, any tool started up using SDE WorkBench/6000
likewise displayed its output on the local host.

 6.1.2 Tool Manager
The first thing our developer saw after issuing the workbench command was the
WorkBench Tool Manager window. Tool Manager is one of the fundamental
components of SDE WorkBench/6000. It starts up automatically when the
workbench command is issued. The WorkBench Tool Manager window lists the
status and identity of all tools currently running on behalf of the user (on all hosts).
Figure 24, for example, shows the WorkBench Tool Manager window listing four
tool instances running on two different hosts.

Figure 24. WorkBench Tool Manager Window Lists Status of Running Tools

From Tool pull-down of the WorkBench Tool Manager window, the user starts and
stops developer tools that have been integrated with SDE WorkBench/6000. The
user can also set the execution host and/or data context for SDE WorkBench/6000
tools from this pull-down, and iconify or de-iconify a running tool. From the SDE
WorkBench/6000 pull-down, the user can take several actions including:

� Define a set of tools to be invoked automatically when SDE WorkBench/6000 is
started up.

� Start up a set of tools previously defined.
� Quit SDE WorkBench/6000 (stopping running tools).

 Chapter 6. Migrating the Legacy Application to AIX 63

� Iconify all tools at once.

Tool Manager is discussed in greater detail in later sections as our developer uses
it to start, stop, and otherwise control AIX application development tools that are
integrated with SDE WorkBench/6000.

6.1.3 Using Development Manager to Manage Files and Directories
The next thing our developer saw was the WorkBench Development Manager
window. Development Manager typically starts up automatically when a user
issues the workbench command. Development Manager is a fundamental element
of the SDE WorkBench/6000 product that provides the user access to files,
directories, and commands. It replaces the traditional command line mode of user
interaction with a graphical, point and click mechanism.

With the typical UNIX command line user interface, the user types a command
followed by various flags and parameters that indicate input files, output files, and
other options. To indicate the end of the command, the user presses the Enter
key. The output of the command is then displayed, if there is any. Nothing else is
displayed by default. For example, if the user wants to see a listing of the current
directory, the command ls can be entered. A snapshot of the directory contents is
presented. This listing would not be updated as a result of subsequent user
actions. If the user wants to copy a file into another file, the user types in a
command line like cp sourcefile targetfile, naming the source and target file
names as parameters to the copy command. The user takes it on faith that this
occurred, or requests that the directory listing be regenerated to confirm that faith.

Development Manager presents a very different pattern of user interaction. It
always presents the user with a directory contents list in a window. Each item in
the directory is shown with its name, an optional write-only symbol (-), and the file
type. This window includes a menu bar. To run a command, the user typically
selects one or more input file names from the contents list using a single click of
the left mouse button. Next, the user selects a pull-down menu from the menu bar
using the same mouse button, causing a list of command options to appear.
Finally, the user selects an option from the pull-down menu and the command is
run. If the action taken results in a change in the directory contents, Development
Manager immediately updates the window. Figure 25 on page 65 shows the
WorkBench Development Manager window with a file selected (highlighted) and the
Actions pull-down menu active. If the user chose the Compile option, the directory
listing would be updated automatically to show any new files created by the
compiler.

64 How to Migrate and Enhance Your Legacy Applications

Figure 25. WorkBench Development Manager Window with Pull-Down Menu Active

The Actions pull-down menu displays different lists of selections depending on
which type of file is highlighted before the menu is pulled down. Lists of possible
actions to take are predefined for various types of files. This is a configurable
aspect of Development Manager. In 9.4.3, “Modify the Action Pull-Down of
Development Manager” on page 216 we discuss how we defined new file object
types, and modified the Actions menu selections for them.

Some commands require more information than just the input file name(s). If
additional command parameters or flags are necessary, the command presents a
dialog box with fields into which the values can be entered. The user signals
completion of the command by using the mouse to select the OK button presented
in the dialog box, or presses the Enter key. Figure 26 on page 66 shows such a
dialog box being presented. The user identified the file to be copied by highlighting
it prior to selecting the Copy option from the File menu, but the copy command
also needed to know the name of the file into which the copied data must be
placed. This dialog box therefore prompted the user for that file name.

 Chapter 6. Migrating the Legacy Application to AIX 65

Figure 26. WorkBench Development Manager Window with Dialog Box

The user can also cause the default action for a file to be run by simply
double-clicking the left mouse button while the cursor is above the file name.
Development Manager uses predefined naming conventions to determine the
default action for a given file. The menu bar, pull-down menus, defined naming
conventions, and default actions are all tailorable features. Several ways we
tailored these features are discussed in Chapter 9, “Tailoring SDE
WorkBench/6000, Integrated Tools, and DB2/6000” on page 201.

Our GUI developer used Development Manager as his primary interface to the
operating system. The File pull-down menu of the WorkBench Development
Manager window enabled the user to set context, filter the directory contents listing,
copy, delete rename and change permissions on files. The Directory pull-down
enabled the developer to create, delete, rename, and list the contents of directories.
The CMVC and Windows pull-downs provided access to CMVC commands and
windows. These pull-downs are discussed as they are used in later sections. The
IBM SDE WorkBench/6000 Development Manager: Managing Files and Directories
details all features of this WorkBench tool.

6.1.3.1 Using Development Manager to Set Data Context
The first thing our developer did with Development Manager was to set the
Development Manager's data context. All SDE WorkBench/6000 tools have a data
context that defines the range of data on which the tool operates. Development
Manager data context consists of a host name and a directory path name
separated by a colon (:). To set the data context in Development Manager, our
developer chose the Set Context selection from the File pull-down, and entered the
information in the format shown in Figure 27 on page 67. This information
represented the host name separated by a colon from a directory path name.

66 How to Migrate and Enhance Your Legacy Applications

 bering:/ad/projectA_proto/source/c/PortedGUI

Figure 27. Format for Entering a Data Context Value

An alternative method of setting the data context is to press and hold the right
mouse button while the cursor is over the Context field of the WorkBench
Development Manager window. A pop-up identifies all possible directories that can
be changed to, from the current working directory. The first option is Change
Context ; selecting it will cause the listing of all directories in the root directory. The
traditional UNIX double dot (..) is used to represent the parent directory; any
subdirectories are listed individually. If there are subdirectories below any
selection, a simple arrow symbol appears to the right of the directory name. The
user continues to hold down the right mouse button while traversing the options
presented, and new pop-ups appear when the cursor is above any option that
includes subdirectories of its own. Figure 28 shows what our developer saw when
using the pop-up windows to change context from /ad/projectA_proto/source to
/ad/projectA_proto/source/c/PortedGUI/PaymentPanel.

Figure 28. WorkBench Development Manager Window with Context Pop-Ups

6.1.3.2 Using Development Manager to Change the Directory
After setting the context, the contents of the context directory were listed in the
window. The contents of other directories above and below that point could be
listed by changing the directory. The user can change to any directory on the host
specified in the data context. Changing the directory does not change the data
context, however.

 Chapter 6. Migrating the Legacy Application to AIX 67

To change the directory, the user places the cursor over any listed directory,
including the <Parent> directory, and double clicks the left mouse button. The
context field displays both the context and the relative path from there to the
current working directory. The window displays the new directory's contents list.
The context is displayed as it was previously, followed by a space, and the relative
path from the context directory to the new directory. For example, Figure 29
shows the context set to bering:/ad/projectA_proto while the current directory is
set to a directory named ProductA whose parent directory is up one level on the
tree from the context directory (indicated by the standard UNIX ../ notation).

Figure 29. WorkBench Development Manager Window Context vs. Directory

After setting Development Manager context and directory, our user interface
developer next created directories to hold the files that would be generated when
implementing the GUI.

6.2 Design and Implementation of Our User Interface
This section describes the development approach we took in implementing our new
user interface. It explains how we replaced the ISPF panels with windows
generated with AIC, and how we tested the GUI with callback stub code. It
describes how we incorporated the original COBOL code that accesses the
DB2/6000 database with the GUI to complete the migration of the application.
Throughout this section we describe how the developers interacted with and made
use of SDE WorkBench/6000 tools.

Porting an application from one environment to another raises a couple of
questions, especially if the target system supports an improved graphical user
interface compared to the one implemented in the existing application. When you
port an application from a 3270 panel-oriented dialog manager, such as ISPF, to a

68 How to Migrate and Enhance Your Legacy Applications

graphical user interface system, such as AIXwindows, you can exploit all the
features that are not available in an ISPF environment. For example, the ported
application could have multiple active windows, use point-and-click techniques, and
be based on advanced user interface guidelines, such as common user access
(CUA) or the OSF/Motif style guide.

Our goal in this initial migration was to undertake a minimal-effort migration, rather
than take advantage of features that are available on AIX. We, therefore, decided
to map the original ISPF panels as closely as possible to new GUI windows to
reuse as much of the original COBOL code as possible. A user using the GUI
would use the keyboard rather than the mouse, and the new windows would not
contain advanced features like menu bars and pop-up or pull-down menus, toggle
buttons, or other drag-and-drop capabilities. Instead, the new windows were
designed to be exact copies of the existing ISPF panels. The only concession to
the new platform was that the function keys were replaced by push buttons that
could be triggered either by pressing the Enter key after the focus had been moved
to the button or by clicking the mouse on the button.

6.2.1 Selecting Directory Organization and Naming Conventions
Because several developers worked on this project, it was important to determine
clear and reasonable file and directory naming conventions for files created while
developing the GUI. Because we were migrating an existing application from one
platform to another and would be maintaining parallel versions on both platforms,
we also needed naming conventions to help us relate various versions and types of
AIX files to the original and modified MVS files. There would not be a one-to-one
correspondence of the files on the two platforms that implemented the GUI,
because the types of files used to create the ISPF user interface were necessarily
different from those required to create an OSF/Motif GUI. Finally, we needed a
directory hierarchy that would facilitate finding the various files in the GUI
implementation.

6.2.1.1 Directories for the GUI Files
The original ISPF implementation consisted of six ISPF panels. We decided to
have one directory for each of the original ISPF panels and named these
directories after the ISPF panel headlines (top of screen labels). We decided to
place these directories on bering below the directory named
/ad/projectA_proto/source/c/PortedGUI. This enabled any developer on our
project to find and access them easily. These six directories, named after the
original MVS panels, would be:

 � AddressChange

 � DeletePanel

 � DuplicateSelectionPanel

 � Enrollments

 � OnlineUpdate

 � PaymentPanel.

We used Development Manager to create these new directories. First, we set the
context to bering:/ad/projectA_proto/source/c/PortedGUI. Then we chose
Create selection from the Directory pull-down, and filled in the name of the new
directory in the dialog box that appeared. The newly created directory was
immediately listed in the WorkBench Development Manager window directory
contents list. Figure 30 shows the WorkBench Development Manager window after
all these directories had been created.

 Chapter 6. Migrating the Legacy Application to AIX 69

Figure 30. Directories for the User Interface Files of the Ported GUI

6.2.1.2 Mapping ISPF Panels to AIC Interfaces and Windows
AIC introduces the notion of an interface (as in user interface). An AIC interface
would be used during execution of the application to cause the appearance of a
primary window (and, optionally, of secondary windows) on the display managed by
the Xserver. Certain characteristics of a window can be changed dynamically by
the application, including the title of the window, the behavior of fields, and the
callback functions associated with push buttons. A given application might have
several primary windows, generated by one or more interfaces. Any given
interface, however, can as the application runs be used to generate multiple
concurrent primary windows.

Primary windows for a single application act like the the WorkBench Tool Manager
and WorkBench Development Manager windows act. They can run in parallel, and
relatively independently. Secondary windows act like the dialog box shown earlier
popped-up from the WorkBench Development Manager window. Secondary
windows are closely related to actions taken in a primary window. They are often
transitory, also.

As we mentioned earlier, we intended to have one window for each of the original
six ISPF panels. This did not imply that we needed six unique AIC interfaces,
though. Of the six ISPF panels in our MVS application, we decided that four would
each require a separate AIC interface. However, we decided that the last two ISPF
panels could be implemented using the AIC interfaces designed for two of the
previously identified four panels. This was because the panel for changing a
customer address looked exactly like the one for enrolling a customer and the
panel for deleting a customer looked exactly like the one for showing payments.
The only significant differences were:

� Some fields were input/output fields on one panel while output-only on the
other panel.

� The panel labels differed between the two panels.
� The behavior of the application as a result of user actions differed. For

example callbacks would be different.

70 How to Migrate and Enhance Your Legacy Applications

In the AIXwindows environment, we could make one AIC interface meet the
functional requirements of two panels by making the following changes before
actually generating the window on the screen:

� Modify the input sensitivity of the appropriate fields.
� Change the window title.
� Redefine the callback functions associated with certain widgets.

We modified the input/output characteristics of a field by setting XmNsensitive

resource of that field to either True (input/outpt) or False (output only) in the
application. We managed the title with the XtVaGetValues() and XtVaSetValues()
functions. We changed the callback functions associated with the push buttons by
means of the XtRemoveAllCallbacks() and XtAddCallback() functions.

Therefore, we mapped the original six ISPF panels to just four AIC interfaces.
Each interface file name consisted of the name of the panel it replaced plus a .i
file name extension. We placed each interface file in the directory named for the
same panel. We determined, therefore, that the names of these AIC interfaces
would be:

 � AddressChange.i

 � DuplicateSelectionPanel.i

 � OnlineUpdate.i

 � PaymentPanel.i.

6.2.1.3 Source Files Generated from an AIC Interface
AIC can be made to generate C source files from the interface file. The source
files consist of a program source file and an include file (sometimes called a header
file).

Include files generally contain compile time constant declarations, structure and
other template declarations, function prototypes, and preproccessor directives (such
as the #include statement that causes an include file to be processed). The
include file generated for an interface was named identically to the corresponding
interface file except that the .i extension was replaced by a .h extension. The
include file contained the definition of the context structure for the interface. To
ensure AIC generated the include file for each interface, we set the
Aic.includeFile resource to True as shown in Figure 146 on page 222. For more
information on setting this and other AIC resources, refer to User Interface
Programming Concepts: AIXwindows Interface Composer, Volume 2.

The program file is named identically to the interface file from which it is generated,
except that its extension is a .c. The program code that generates the window
(the top-level and children widgets, representing input fields, push buttons) is
contained in this file. Callback code can also be generated in this file, if it is stored
in the interface.

We decided that the header and program source files that AIC would generate for
each interface belonged in the directory named for that interface. The names of
these source files would be, not surprisingly:

 � AddressChange.c

 � AddressChange.h

 � DuplicateSelectionPanel.c

 � DuplicateSelectionPanel.h

 � OnlineUpdate.c

 Chapter 6. Migrating the Legacy Application to AIX 71

 � OnlineUpdate.h

 � PaymentPanel.c

 � PaymentPanel.h.

We also decided to copy all include files into a common project directory, in
addition to storing them separately in the directories representing each former ISPF
panel. When we referenced one of these include files inside a C source program,
we enclosed the file name in double quotation marks, and omitted any path name
(for example, #include "AddressChange.h"). Using the -I flag we could instruct the
compiler to look for all these include files in the single directory named:
/ad/projectA_proto/include. This proved less trouble than having to identify a
unique path name for each include file in every file that referenced it.

6.2.1.4 Callback Source Files
We decided to separate the implementation of the callbacks from the
implementation of the interface by putting the callback code into separate files.
This was done because we preferred to use Program Editor over the internal editor
provided by AIC 1.1.1. If the callbacks were stored in the interface, then changes
to the callback code could only be done by invoking AIC and using its internal
editor. The AIC internal editor not only lacked the features of Program Editor, but
we also felt it a nuisance to have to use one editor for the callbacks source code,
while we used another for all other program source files.

We decided that the names of the C source files implementing the callbacks would
be identical to the names of the directories which represented the original six ISPF
panels, except that we would append the string Callbacks to them. Because the
behavior on each panel was different (even though two of them looked identical to
two others) we needed six callback source files, one for each original MVS panel.
Callback files that corresponded to the AIC interface files would be named:

 � AddressChangeCallbacks.c

 � DuplicateSelectionPanelCallbacks.c

 � OnlineUpdate.Callbacks.c

 � PaymentPanelCallbacks.c.

The two callback source files for the panels that were not implemented as a
separate AIC interface would be named:

 � DeletePanelCallbacks.c

 � EnrollmentsCallbacks.c.

6.2.1.5 Callback Include Files
To enable early compiler checks and to detect typing errors as early as possible,
we also decided to collect the function declarations (also known as function
prototypes) of all callbacks for each interface into an include file for that interface.
The base portions of these header file names would be identical to those of the C
source files implementing the callbacks, but file name extension for all would be .h.
These files would be placed in the same directories as the callback source code
files. And, as mentioned earlier, all include files would also be copied into a
common project directory, named /ad/projectA_proto/include. The callback
function include files were named:

 � AddressChangeCallbacks.h

 � DuplicateSelectionPanelCallbacks.h

 � OnlineUpdate.Callbacks.h

72 How to Migrate and Enhance Your Legacy Applications

 � PaymentPanelCallbacks.h

 � DeletePanelCallbacks.h

 � EnrollmentsCallbacks.h.

 6.2.1.6 Widgets
Each AIC interface consists of a top-level widget together with all its descendent
widgets. Widget names were chosen to be unique across all of the names
interfaces. Valid widget names would begin with the name of the interface and
continue with descriptive text, for example:

 � AddressChangeCustomerName

or

 � OnlineUpdateOkPushButton.

There would be no unique widgets for the two windows that had no separate
interface.

 6.2.1.7 Callback Functions
The corresponding callback function names would be composed of the panel (or,
AIX window) name, followed next by the name of the widget they were associated
with, and followed lastly by the string Callback. For example, valid callback
functions would be:

 � PaymentPanelEndPushButtonActivateCallback

or

 � AddressChangeOKPushButtonActivateCallback.

Callbacks associated with the two windows that were not generated from a unique
interface would simply replace the other window's name in the callback label with
their own, as in:

 � EnrollmentsUpdateOkPushButtonActivateCallback.

The only parameter that would be passed to each callback was the ID of the
corresponding widget.

6.2.1.8 Total Files Associated with Each Window
For each MVS panel (and therefore for each AIX window) that was implemented
with a unique AIC interface, we had the five source files stored in a common
directory. For example, the files associated with the AddressChange window would
be stored in the /ad/projectA_proto/source/c/PortedGUI/AddressChange directory
and named:

AddressChange.i AIC interface source file for the AddressChange
window

AddressChange.h Include file generated by AIC with a structure
definition for the interface

AddressChange.c C source file generated by AIC for the
AddressChange interface

AddressChangeCallbacks.h External declarations of the callbacks for
AddressChange

AddressChangeCallbacks.c Implementation of the callbacks for
AddressChange.

 Chapter 6. Migrating the Legacy Application to AIX 73

Development Manager directory contents listing of the AddressChange directory is
shown in Figure 31 on page 74.

Figure 31. Source Files for the AddressChange Window

For the two windows that were implemented by reusing AIC interfaces, we had only
two source files. The Enrollment window was built using the AIC interface
designed for the Address Change window. Thus, in the Enrollments directory, we
had only these files:

EnrollmentsCallbacks.h External declarations of the callbacks for
Enrollments

EnrollmentsCallbacks.c Implementation of the callbacks for Enrollments.

6.2.1.9 Mapping the GUI Versions to AIC Projects
A collection of related interfaces, such as all those supporting a given application,
or a given version of an application, can be collected together by means of an AIC
project. Certain information that is necessary to generate the C code is stored in
the file representing the project.

The project file's name includes the extension: prj. Mapping our effort to AIC
projects proved easy. We decided that the AIC project would suit our needs to
produce two separate GUIs for our application. We would have one project for the
minimum effort port, PortedGUI.prj, and another for the modernized GUI,
ImprovedGUI.prj.

AIC generates certain default names based on the project file name, unless
explicitly overridden by the developer. The application class, for instance, unless
specified differently, is named identically to the base portion of the project file
name. The application class is the identifier that ties together all Xwindow
resources belonging to the widgets, comprising the application GUI. It generates a
label in the C source code generated by AIC and is reflected in the various
mechanisms for setting and querying those resources. This label becomes the
name of the application's resource file, and appears as the client class label in this
file.

It is fine to have the project and application class be identical if you will have only
one project file for a given application. In our case, we had multiple project files for
different versions of essentially the same application. Had this been a production

74 How to Migrate and Enhance Your Legacy Applications

situation, where PortedGUI was simply a preliminary version and ImprovedGUI was
a later version of the same application, we might have explicitly set the application
class identically for both projects. For example, ibmoupd might have been
appropriate, if it were the name of the original MVS executable file with which the
users and test programs were already familiar. Instead, since we were only doing
a proof of concept effort, we set the application class to either PortedGUI or
ImprovedGUI, not worrying about the possible conflicts that might be caused in a
more realistic environment.

The makefile file generated by AIC also shares the same base file name as the
project file. For example: AIC generated a makefile file, named PortedGUI.mk,
when the interface was loaded in from PortedGUI.prj, but the makefile file was
named ImprovedGUI when the other project file was loaded. There was no problem
with this default, as there were in fact differences between the two.

Another implication to consider when choosing the project name is that AIC would
generate a makefile file that would make the executable file name identical to the
base portion of the project file name. Again, during informal testing, this was just
fine, as we wanted to distinguish between the executable files of the two versions.
However, had we been doing this for production, we might have modified the
makefile file to rename the executable file to the common file name of the
application. As suggested earlier, this name might have been ibmoupd.

6.2.1.10 Using AIC: Prototype Tool or Development and
Maintenance Tool?
Another decision we needed to make early was how to use AIC over the life of the
application. AIC can be used merely to produce a prototype of the GUI. In this
case, the prototype is developed interactively using AIC. AIC is used to generate
the first cut of the C or C++ source code. That source is then edited, compiled, and
debugged independently of AIC, as needed during the remainder of the
development and maintenance phases of the application's lifetime. This approach
can seem appropriate where large amounts of application code are hand coded
independently and the GUI is retroactively fitted to the application. The approach
also has reusability and maintainability implications with respect to the GUI.

AIC can also be used as a development and maintenance tool. In this scenario,
the source code is never edited. AIC is used to make all changes to the GUI.
Then new source code is regenerated and that code is recompiled, tested, and so
on.

If a project intends to use AIC throughout the development and maintenance
phases, then the files in which AIC stores the design and implementation decisions
made by the user must be the subjects of configuration control. AIC accumulates
this data as the user interactively creates the GUI using AIC. This data is
stored—in a format understandable only to AIC—in the interface, palette, and
project files that AIC creates.

The interface file contains information about the windows visual and behavioral
components. The palette is a library of widgets or widget hierarchies that can be
defined and then reused in the project. We did not use palettes, but mention them
occasionally in this volume for completeness. The project file contains information
relating several interfaces and data common to them. AIC generates the source
code from the data it stores in these files.

 Chapter 6. Migrating the Legacy Application to AIX 75

Both approaches can be correct; so the developer must deteremine early which to
take. We determined AIC would be used not only to develop, but also to maintain
the code for the long term. This issue influenced decisions we later reached when
we integrated our C++ code with that generated by AIC 1.2.

6.2.2 Design of the Windows Using AIC
After reaching these decisions and defining these conventions, we started the
design and layout of the windows, primarily with AIC. AIC was accessed from SDE
WorkBench/6000.

6.2.2.1 Starting AIC from the Tool Manager
We chose Start from the Tool pull-down menu of the WorkBench Tool Manager
window. This caused a dialog box to pop-up as shown in Figure 136 on page 214.
A scrolling list appears in this dialog box identifying the classes of tools available to
SDE WorkBench/6000 at the moment.

To find the class of tool we needed, we used the scroll bar to the right of the list,
scrolling the list up and down. To select the class, we simply clicked the left mouse
button while the cursor was over the selection. In the dialog box presented to our
developer, the option UIBUILD identified the class of tools class used to build user
interfaces. The UIBUILD class tool available on the host bering was AIC version
1.1.1.

The data context for this tool was preset for us by Tool Manager, based on the last
context setting. This default can be changed, as it can be in Development
Manager window, by pressing the right mouse button while the graphic cursor is
over the context field. As in Development Manager a series of cascading pop-ups
can be traversed until the correct context is identified to Tool Manager.
Alternatively, the data context can be changed by clicking on the New Context
push button and filling in the field on the resulting dialog box.

The execution host is set by clicking the left mouse button in that field and typing in
the name of a valid host. The execution host defaults to that host on which Tool
Manager is running. In our case, the default value bering was adequate.

Having selected the tool class and set the execution host and data context, we
started the tool by selecting the Start push button. Figure 32 on page 77 shows
the Tool Manager Start dialog box ready to start up the UIBUILD class tool (AIC).

76 How to Migrate and Enhance Your Legacy Applications

Figure 32. Tool Manager Start Dialog Box

One of the advantages of using SDE WorkBench/6000 is that the developer does
not need to learn the specifics of invoking a particular tool. The user does not
become familiar with flags and parameters used on the UNIX command line to start
up the tools. Instead, the developer asks for a list of the classes of tools available
and chooses the class that is needed for the moment. If the particular tool in a
class is replaced by the system manager at some later date, the invocation of the
new tool will be no different.

Another advantage is that the set of tool classes is not fixed by SDE
WorkBench/6000. In our case, the class UIBUILD was created when we integrated
AIC 1.1.1 with SDE WorkBench/6000. The integration effort is described in 9.4,
“Tailoring SDE WorkBench/6000 for AIC Programmers” on page 212.

6.2.2.2 Developing an Interface and Laying out the Window
After AIC started, we began to prototype the layout of the OnlineUpdate.i interface
(GUI window), which implements the main menu panel of the original application.
We selected Shells from the Create pull-down menu and selected Application to
create the application shell as the top widget for the interface. Using the right
mouse button we resized the window and could see the top level widget. We
clicked on the window, pressed the right mouse button and selected Property
Editor from the pop-up menu. Following the naming conventions established
earlier, we wanted to change the name of the widget to OnlineUpdate rather than
the default applicationShell1; so we selected the Declaration choice from the
toggle button. We entered OnlineUpdate as the new name for the interface,
selected Apply , and saw the windows as shown in Figure 33 on page 78.

 Chapter 6. Migrating the Legacy Application to AIX 77

Figure 33. Changing the Interface Declaration Using the Widget Property Editor

Using information in User Interface Programming Concepts: AIXwindows Interface
Composer, Volume 2, we proceeded to prototype the interface (window). We
designed the interface to match the original ISPF panel as closely as possible, and
finally got to a complete layout including all the buttons, labels, and text fields that
were required. From the interface browser we selected Save as from the File
pull-down menu, and saw the four application windows shown in Figure 34 on
page 79.

78 How to Migrate and Enhance Your Legacy Applications

Figure 34. Saving the OnlineUpdate Interface File

We finally ended up with the interfaces shown in Figure 35.

Figure 35. The Interfaces of the Ported GUI

 Chapter 6. Migrating the Legacy Application to AIX 79

Similarly, for each remaining GUI window, we saved an interface file in the
corresponding directory. We used either the uxcgen command or the Write C
Code As option on the File pull-down of AIC to make AIC generate the interface
include files and the corresponding interface C source files for the remaining GUI
windows: AddressChange, DuplicateSelectionPanel, and PaymentPanel. We
moved these files into subdirectories under our /ad/projectA_proto/include
directory. For information about generating C code for AIC projects and interfaces
refer to User Interface Programming Concepts: AIXwindows Interface Composer,
Volume 2, to learn more about this AIC feature.

6.2.3 Implementing the Callbacks
After we had finished the implementation of the user interface windows, we started
to implement the callbacks. To identify the callbacks we would need we looked at
the windows for push buttons. Look at the OnlineUpdate window of our application
shown in Figure 36. There are two push buttons on this window. For each of
these two buttons we had to provide the callback triggered when the button is
pressed. These two callback functions would be called:

 � OnlineUpdateOkPushButtonActivateCallback

and
 � OnlineUpdateEndPushButtonActivateCallback.

Figure 36. The Online Update Window

Implementing the callbacks required us to create two files initially: callback function
prototype source files and the corresponding callback stub source files. The stubs
would eventually be replaced by code which called the COBOL functions of our
original application.

80 How to Migrate and Enhance Your Legacy Applications

6.2.3.1 Using Program Editor to Create the Callback Function
Prototypes
To edit the files, we invoked Program Editor. We started Program Editor just as we
started AIC, using the Tool pull-down of the WorkBench Tool Manager window.
Program Editor initially presents the SDE WorkBench Program Editor - Message
Window. Messages from Program Editor to the user are displayed in this window.
Additional windows are generated as files (called documents in Program Editor
documenation) are edited. Additional windows can also be brought up to show
multiple views of the same file. A view presents another section of the file, or a
subset of the data in the file based on the parsing algorithms supported for that
type of file.

Like other AIX AD tools that are integrated with SDE WorkBench/6000, its primary
windows include a menu bar with a File pull-down. Clicking on the Edit selection of
this pull-down, we brought up the Edit a File dialog box window. We entered the
host name, path name, and file name of the file we intended to create in the Select
File field. This name was, as previously decided,
bering:/ad/projectA_proto/source/c/PortedGUI/OnlineUpdate

OnlineUpdateCallbacks.h. The message window and dialog box window are
shown in Figure 37.

Figure 37. The WorkBench Program Editor - Message Window and Edit a File Window

A document window appeared representing the new file we wanted to create. We
typed in two lines of code, one prototype for each callback function. The contents
of this file is shown in Figure 38 on page 82.

 Chapter 6. Migrating the Legacy Application to AIX 81

Figure 38. The Include File for the Callbacks for the OnlineUpdate Window

The title bar of this document window showed us that this is the third file
(document) loaded by the editor, and this was the first view of it. This was
indicated by the cryptic numbers: 3:1. It also showed us the host, directory, and
file names of the file, although not all of the information is shown, because of the
size we chose for the illustration. Notice that the document window also has a
menu-bar with a File pull-down. It also has several other pull-downs relating to
editing the file and controlling the editor, which were not used at this time.

Also, notice in this and subsequent screen captures that Program Editor recognizes
syntactical elements of the C programming language and displays them in different
fonts. In Figure 38, the key words extern and void show up in boldface type,
while the rest of the statements show up in another font. Were these illustrations in
color, you could see that these fonts can appear in different colors, also.

Having entered this file's contents, we selected Save from the File pull-down to
write the file in the /ad/projectA_proto/source/c/OnlineUpdate directory, where all
source- and AIC-generated files related to this panel are stored. This file would be
named OnlineUpdateCallbacks.h, according to our naming conventions. However,
we determined earlier that all include files would be also placed in single project
directory: /ad/projectA_proto/include. To do this we copied the file into that
directory, using the Save As selection from the File pull-down.

6.2.3.2 Creating Callback Stub Code
We next started to implement the callback code itself by using the Edit selection
from the File pull-down of the document window. After entering the name of our
new file, OnlineUpdateCallbacks.c, a second document window appeared.

According to our design principles and the file naming standards explained earlier,
we begin this file identifying the appropriate include files, as shown in Figure 39
on page 83.

82 How to Migrate and Enhance Your Legacy Applications

Figure 39. Editing the OnlineUpdateCallbacks.c File Using Program Editor

We designed callback stub code at this point and coded it. The stub code
consisted of calls to UxPopupInterface and UxPopdownInterface only, to provide a
visual indication that the callbacks had been successfully triggered during testing.
How these work is explained in the discussion of ux library functions in User
Interface Programming Concepts: AIXwindows Interface Composer, Volume 2. The
stub code enabled us to test the user interface code independently of the COBOL
logic that it would exercise in the completed application. This stub code would later
be replaced by COBOL logic ported over from the original application. Refer to 6.3,
“Design and Implementation of the COBOL Code” on page 89 and 6.5, “Integration
and Test” on page 122 for details about the changes applied to the original COBOL
code when integrating it with the user interface, and about the C-to-COBOL
interlanguage calling issues.

Once the OnlineUpdateCallbacks.c file was completed, we saved the file and
selected the BUILD class tool from the Tool Manager Start window as shown in
Figure 136 on page 214. We set the context environment of Program Builder to

 Chapter 6. Migrating the Legacy Application to AIX 83

the /ad/projectA_proto/source/c/PortedGUI/OnlineUpdate directory and selected
Create Program from the Makefile pull-down of Program Builder. We added the
option -I/ad/projectA_proto/include to the FLAGS field in the Program Builder
dialog window shown in Figure 40.

Figure 40. Generating a Makefile File Using Program Builder

When we selected OK on the Program Builder window, the Makefile file was
generated. We then selected Update Dependencies from the Makefile pull-down
from the WorkBench Program Builder window to have the generated makefile file
reflect the dependencies of OnlineUpdateCallbacks.c on the various header files as
shown in Figure 39 on page 83. The makefile file was updated by Program
Builder, and finally we could invoke Program Builder with the proper target of
OnlineUpdateCallbacks.o. Program Builder started the compilation with the proper
flags -I/ad/projectA_proto/include, and created an object file
OnlineUpdateCallbacks.o. This was reflected in Development Manager window
shown in Figure 41 on page 85.

84 How to Migrate and Enhance Your Legacy Applications

Figure 41. Compiling OnlineUpdateCallbacks.c

We used the Close Document selection from the File pull-down to stop editing
these callback source files. We did not need to exit Program Editor, if we wanted
to begin editing other files. Using the Edit selection from the File pull-down of the
message window we could begin the cycle again.

The same sequence of steps was performed for the remaining five callback source
files in the corresponding directories and contexts. Finally, these object files were
successfully created in their corresponding directories:

 � AddressChangeCallbacks.o

 � DuplicateSelectionCallbacks.o

 � OnlineUpdateCallbacks.o

 � PaymentPanelCallbacks.o

 � DeletePanelCallbacks.o

 � EnrollmentsCallbacks.o.

6.2.3.3 Testing the GUI with Stub Code
We decided to test the end user interface stand-alone. To do this, we had to
generate an executable file from the source files generated by AIC and the callback
stubs. We loaded all the interface files into the AIC project that would be written
out in the file PortedGUI.prj. We wanted to use the AIC Write C Code selection
that can be chosen from the File pull-down in the AIC main window. Before we did
this, we had to modify the makefile file to add the six callbacks to the list of object

 Chapter 6. Migrating the Legacy Application to AIX 85

modules to be linked. We selected Program Layout from the Edit pull-down of the
main AIC window, and pressed the ... button left to the Xt Makefile text widget in
the Program Layout Editor window to edit the makefile file template. We added the
names of the object modules for the six callback files to the definition of the
APPL_OBJS makefile variable as shown in Figure 42. This is discussed further in
Supporting Projects in AIC in the User Interface Programming Concepts:
AIXwindows Interface Composer, Volume 2.

Figure 42. Generating a Makefile File for Testing the Ported GUI

 We pressed the OK button in the Text Editor window and pressed the Apply
button in the Program Layout Editor window to activate the changes. We then
selected Write C Code from the File pull-down of the AIC main window to generate
the code, generate the makefile file, and build the program. The makefile file
generated by AIC assumed that the C source file for each interface and the
corresponding include files had already been generated by AIC. This is because
AIC triggered the generation process before it run the makefile file.

As an alternative we could also have edited and created the makefile file ourselves,
using Program Editor, and run the makefile file manually. This makefile file could
have used the uxcgen utility that is shipped with AIC to generate the source code,
compile, and link in one makefile file.

86 How to Migrate and Enhance Your Legacy Applications

AIC would generate an executable file called PortedGUI. We decided to use
Program Debugger to test the code, and selected the PortedGUI file in the
WorkBench Development Manager window with the left mouse button. We then
selected Debug from the Actions pull-down to start Program Debugger. We
configured Program Debugger to use the correct directories to look for the source
file by selecting Dbx Configuration... from the Options pull-down of Program
Debugger. We added the path
/ad/projectA_proto/source/c/PortedGUI/OnlineUpdate to the end of the path list
in the Use Path text field and pressed the
 Apply button. In the WorkBench Program Debugger window we selected the
entry for OnlineUpdateOkPushButtonActivateCallback in the function list and
pressed the
 Set Breakpoint button to set a debug break point when entering this function. We
then pressed the Run button to start the debug session.

The system showed the main menu of the application as shown in Figure 36 on
page 80, where we entered 23 in the Action field and 12345 in the Argument field.
We pressed the OK push button and Program Debugger stopped as the specified
break point was reached. We could then use the Step over push button to
continue with the program execution instruction by instruction and use the View
option to look at the contents of certain variables. Figure 43 on page 88 shows
how we displayed the contents of the variable
 Action.

 Chapter 6. Migrating the Legacy Application to AIX 87

Figure 43. Using the Program Debugger

Thus, we used Program Debugger to test the application. Errors were detected
and corrected, and the compile and build cycle as described in the previous chapter
was repeated until we had a stable version of the application.

This version of the callbacks along with the corresponding version of the AIC
interface source files was submitted as the initial baseline version placed under
control of CMVC/6000.

88 How to Migrate and Enhance Your Legacy Applications

6.3 Design and Implementation of the COBOL Code
Our porting efforts were aimed at preserving as much of the original COBOL code
as possible. By doing so we hoped to gain a couple of things:

� Reuse of most of the original code
� Low porting cost
� Low maintenance cost
� A single base code.

We determined to keep a common program logic. This is illustrated with Figure 7
on page 37 in Chapter 4, “Defining the Project and Setting Its Goals” on page 29.
This decision was only possible because the original code was written in a
structured way. Even though we implemented a completely new user interface, the
changes to the main logic proved to be minor. The next paragraphs show
step-by-step how the original code was transformed from an ISPF-based MVS
application to a GUI-based AIX application. We used SDE WorkBench/6000 and
the following integrated application development tools from IBM and Micro Focus:

 � Development Manager
� A few pieces of the code to show the concept

 � Program Builder
� Micro Focus COBOL
� Micro Focus Animator

 6.3.1 Design Decisions
When porting an application from one platform to another, the goal should be to
keep as much of the original logic as possible. Sometimes this is just not possible,
because the code is not suited for it. In our case, we were able to keep most of
the original code intact, except what we replaced for the user interface upgrade.

Looking at our original code, we found that it was made up of larger code portions,
each representing a logical part of the program. Figure 44 on page 90 illustrates
the design of the online program. ISPF calls are made from the IBMOUððx-routines,
where x are between 1 and 6.

 Chapter 6. Migrating the Legacy Application to AIX 89

Figure 44. Online Program Logic

The program was organized into a main loop and five subsections. From the
original code, most of the logic except for the ISPF panel interactions and some
DB2 declarations were kept in the newer MVS and AIX versions. The original code
also used two external assembler modules, IBMCUST and IBMDATE . These
modules were rewritten in C so we could keep the logic intact. All routines except
for the external ones were called with a PERFORM statement. Figure 45 on page 91
shows the main loop, which is a very tight loop consisting of only 14 lines of code
(including two labels).

90 How to Migrate and Enhance Your Legacy Applications

 PROCEDURE DIVISION.

 STARTA.

 \

ACCEPT TODAY FROM DATE.

 Aððð.

 PERFORM PANEL-INIT.

 A1ðð.

 PERFORM BLANKA-ALL.

 PERFORM PANEL-ANROP-IBMOUðð1.

MOVE SPACES TO ERRMSG.

IF LASTCC = 8 GO TO A999.

IF ACT = "ð1" PERFORM ENROLLMENT.

IF ACT = "23" PERFORM ADDRESS-CHANGE.

IF ACT = "6ð" PERFORM PAYMENTS-SUB.

IF ACT = "99" PERFORM DELETES-SUB.

IF ACT = "S" PERFORM SEARCH-TAB.

IF ACT = "s" PERFORM SEARCH-TAB.

GO TO A1ðð.

 A999.

 STOP RUN.

Figure 45. Main Loop

The original program was written in one module, with 1578 lines of code. For the
new versions we split the program into smaller chunks of code, and utilized the
COPY statement extensively to bring them together at compile time. With this
approach, we could rearrange part of the code, or even replace part of it, but still
keep the main logic intact. The next paragraph shows how we implemented this.

 6.3.2 Implementation
In this section we work our way through the original program, showing what we did,
and even showing some future design considerations. We do not work our way
through the whole program, but rather focus on smaller sections to show the
concept. This section examines the following:

� DB2/6000 related changes
� The main loop

 � The ADDRESS-CHANGE SECTION

� The use of COPY files
� The user interface interactions

 � Future concepts.

6.3.2.1 DB2/6000 Related Changes
The DB2 interface of the legacy application ported transparently. There were a few
statements that were appropriate only for MVS, but these were treated as
comments by the COBOL compiler on AIX. No code changes were made related
to DB2/6000 at all. Version 3.1.3 of Micro Focus COBOL for AIX, and subsequent
releases, include support for DB2/6000. We used the compiler directives SQLDB
“dbname” , SQLDB2 , and IBMCOMP to compile our IBM VS COBOL II source that
included embedded SQL. The SQLDB directive parameter is the name of the
database to which our program must connect.

6.3.2.2 The Main Loop
The biggest changes to the program affected the main loop. As shown in
Figure 45, the main loop consisted of only 14 lines of code. When we
implemented the GUI, the COBOL program was no longer the main program.
Instead, portions of the COBOL program are called by callbacks when user actions
trigger them through the user interface. In the original version, the main loop
revolved around the main panel (IBMOU001), shown in Figure 46 on page 92.

 Chapter 6. Migrating the Legacy Application to AIX 91

The new main panel looked almost the same, but was no longer implemented by
the COBOL code.

Figure 46. Main Panel

To enable the COBOL program to be called by other programs, in our case C
programs, we had to create a LINKAGE SECTION. The LINKAGE SECTION contained
all the variables that are used when calling the COBOL program from another
program, refer to Figure 78 on page 123. One thing to keep in mind, when dealing
with interlanguage calls, especially between COBOL and C, is that C terminates
strings with a null character (hexadecimal X'00'), whilst COBOL does not. This
can be dealt with in a couple of ways, either by declaring string variables in the
manner shown in Figure 47 or by treating the variables as memory variables in C.

 WORKING-STORAGE SECTION.

 ð1 STR.

 ð3 STR-TEXT PIC X(1ð).

ð3 FILLER PIC X VALUE X"ðð".

Figure 47. Declaration of Variables to Be Passed Between C and COBOL

The same methods are valid for COBOL programs calling C programs.

92 How to Migrate and Enhance Your Legacy Applications

The next step was to create the ENTRY points in the COBOL program. The
statements in the original version, shown in Figure 48, were replaced by separate
ENTRY points.

 Aððð.

IF ACT = "ð1" PERFORM ENROLLMENT.

IF ACT = "23" PERFORM ADDRESS-CHANGE.

IF ACT = "6ð" PERFORM PAYMENTS-SUB.

IF ACT = "99" PERFORM DELETES-SUB.

IF ACT = "S" PERFORM SEARCH-TAB.

IF ACT = "s" PERFORM SEARCH-TAB.

Figure 48. Legacy Statements to Be Replaced by ENTRY Statements

The last two statements were replaced by one ENTRY point. So, the replaced main
loop looked like Figure 49.

 PROCEDURE DIVISION.

 STARTA.

 \

ACCEPT TODAY FROM DATE.

 Aððð.

EXEC SQL CONNECT TO AIXDBM IN SHARE MODE END-EXEC.

 EXIT PROGRAM.

\ Here follows the different Entry points.

ENTRY "enroll" USING CHANGE.

 ...

 EXIT PROGRAM.

 \

ENTRY "change" USING CHANGE.

MOVE SPACES TO ERRMSG.

 PERFORM ADDRESS-CHANGE.

MOVE SQLCODE TO SQLC IN CHANGE.

 EXIT PROGRAM.

 \

ENTRY "payment" USING CHANGE.

 ...

 EXIT PROGRAM.

 \

ENTRY "delete" USING CHANGE.

 ...

 EXIT PROGRAM.

 \

ENTRY "search" USING CHANGE.

 ...

 EXIT PROGRAM.

 \

Figure 49. Code Changes for Use of ENTRY Points

6.3.2.3 The ADDRESS-CHANGE SECTION
Figure 50 on page 94 shows the original version of the ADDRESS-CHANGE SECTION.

 Chapter 6. Migrating the Legacy Application to AIX 93

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ ADDRESS-CHANGE PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE MAKES ADDRESS CHANGES

 ADDRESS-CHANGE SECTION.

\ CHECK IF CUSTOMER EXISTS

 DBððð.

 PERFORM PANEL-ANROP-IBMOUðð3.

MOVE SPACES TO ERRMSG.

IF LASTCC = 8

MOVE ZERO TO LASTCC

GO TO DB999.

CALL "IBMCUST" USING PCUSTNO, NCUSTNO, ERRMSG.

IF ERRMSG IS NOT = " " GO TO DBððð.

MOVE NCUSTNO TO WCUSTNO.

INSPECT PZIPCODE TALLYING COUNTX FOR CHARACTERS

REPLACING ALL SPACES BY ZEROS.

MOVE NZIPCODE TO WZIPCODE.

MOVE SPACES TO STR.

MOVE PSTREET TO STREET IN ROAD.

 PERFORM STR-INSPECT.

MOVE STREET IN ROAD TO PSTREET.

MOVE SPACES TO STR.

IF PSTREET IS NOT = STREET IN PGM-NAME OR

WZIPCODE IS NOT = ZIPCODE IN PGM-NAME

IF WCUSTNO = CUSTNO IN PGM-CUST

GO TO DB2ðð.

 DB1ðð.

 EXEC SQL

WHENEVER SQLERROR GO TO DB99ð

 END-EXEC.

 EXEC SQL

SELECT CUSTNO, REFNO, MAILID, SOURCECODE

 INTO :PGM-CUST.CUSTNO,

 :PGM-CUST.REFNO,

 :PGM-CUST.MAILID,

 :PGM-CUST.SOURCECODE

 FROM IBPED.CUST

WHERE CUSTNO = &column.WCUSTNO

 END-EXEC.

IF SQLCODE = +1ðð

MOVE "CUSTOMER DOES NOT EXISTS" TO ERRMSG

GO TO DBððð.

 DB15ð.

 EXEC SQL

SELECT CUSTNO, FIRSTNAME, LASTNAME, STREET, ZIPCODE

 INTO :PGM-NAME.CUSTNO,

 :PGM-NAME.FIRSTNAME,

 :PGM-NAME.LASTNAME,

 :PGM-NAME.STREET,

 :PGM-NAME.ZIPCODE

 FROM IBPED.NAME

WHERE CUSTNO = :PGM-CUST.CUSTNO

 END-EXEC.

 EXEC SQL

SELECT ZIPCODE, CITY

 INTO :PGM-ZIP.ZIPCODE,

 :PGM-ZIP.CITY

 FROM IBPED.ZIP

WHERE ZIPCODE = :PGM-NAME.ZIPCODE

 END-EXEC.

MOVE CUSTNO IN PGM-CUST TO PCUSTNO.

MOVE REFNO IN PGM-CUST TO PREFNO.

MOVE MAILID IN PGM-CUST TO PMAILID.

MOVE SOURCECODE IN PGM-CUST TO PSRC.

MOVE FIRSTNAME IN PGM-NAME TO PFNAME.

MOVE LASTNAME IN PGM-NAME TO PLNAME.

MOVE STREET IN PGM-NAME TO PSTREET.

MOVE ZIPCODE IN PGM-NAME TO PZIPCODE.

MOVE CITY IN PGM-ZIP TO PCITY.

GO TO DBððð.

Figure 50 (Part 1 of 2). Original ADDRESS-CHANGE SECTION of Legacy Application

94 How to Migrate and Enhance Your Legacy Applications

 DB2ðð.

IF WZIPCODE = ZIPCODE IN PGM-NAME

GO TO DB4ðð.

MOVE WZIPCODE TO ZIPCODE IN PGM-NAME.

\ CHECK IF VALID ZIPCODE

 EXEC SQL

SELECT ZIPCODE, CITY

INTO :PGM-ZIP.ZIPCODE, :PGM-ZIP.CITY

 FROM IBPED.ZIP

WHERE ZIPCODE = &column.WZIPCODE

 END-EXEC.

IF SQLCODE = +1ðð

MOVE "MISSING" TO CITY IN PGM-ZIP

MOVE "ZIPCODE DOES NOT EXISTS IN ZIP-TABLE" TO ERRMSG.

\ IF NOT CREATE NEW RECORD IN THE ZIP-TABLE

MOVE WZIPCODE TO ZIPCODE IN PGM-ZIP.

IF CITY IN PGM-ZIP = "MISSING"

 EXEC SQL

INSERT INTO IBPED.ZIP

 (ZIPCODE, CITY)

VALUES (:PGM-ZIP.ZIPCODE, :PGM-ZIP.CITY)

 END-EXEC

 EXEC SQL

 COMMIT WORK

 END-EXEC.

MOVE CITY IN PGM-ZIP TO PCITY.

\ UPDATE THE NAME-TABLE

 DB4ðð.

MOVE PSTREET TO STREET IN PGM-NAME.

MOVE WZIPCODE TO ZIPCODE IN PGM-NAME.

 EXEC SQL

 UPDATE IBPED.NAME

SET STREET = :PGM-NAME.STREET,

ZIPCODE = :PGM-NAME.ZIPCODE

WHERE CUSTNO = :PGM-NAME.CUSTNO

 END-EXEC.

 EXEC SQL

 COMMIT WORK

 END-EXEC.

MOVE "ADDRESS HAS BEEN UPDATED" TO ERRMSG.

GO TO DBððð.

 DB99ð.

MOVE SQLERRMC TO ERRMSG.

GO TO DBððð.

 DB999.

 EXIT.

Figure 50 (Part 2 of 2). Original ADDRESS-CHANGE SECTION of Legacy Application

In our new AIX version, implemented with a GUI, there was a small rearrangement
of this code, and the statements shown in Figure 51 were removed.

 PERFORM PANEL-ANROP-IBMOUðð3.

MOVE SPACES TO ERRMSG.

IF LASTCC = 8

MOVE ZERO TO LASTCC

GO TO DB999.

Figure 51. Statements Deleted from Legacy Application

These lines were related to the ISPF interface and were thus no longer needed.
The reader might notice that the line shown in Figure 52 was moved to the ENTRY
point shown in Figure 49 on page 93 instead.

MOVE SPACES TO ERRMSG.

Figure 52. Resetting ERRMSG Variable Moved in Legacy Application

This rearrangement affects the label DBððð. This label played a central part as a
return point to the ISPF panel in the original version. By moving this label to the
end of the ADDRESS-CHANGE SECTION we solved a lot of potential problems, and

 Chapter 6. Migrating the Legacy Application to AIX 95

created possibilities of future solutions, such as using only one main skeleton for
the generation and testing of both MVS and AIX code. This is shown in Figure 53.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ ADDRESS-CHANGE PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE MAKES ADDRESS CHANGES

 ADDRESS-CHANGE SECTION.

\ CHECK IF CUSTOMER EXISTS

CALL "IBMCUST" USING PCUSTNO, NCUSTNO, ERRMSG.

 .

 .

 .

 DB999.

 DBððð.

 EXIT.

Figure 53. New Location for DB000 Label in Legacy Application

6.3.2.4 Use of Copy Files
Typically, COPY files are used for code which is to be shared among several
programs. It is a means of modularizing your code used in many languages. We
anticipated using COPY files to isolate the changes we made to the COBOL
application specifically to support the AIX version. By removing this
platform-specific code from the main file, we laid the groundwork for the possibility
of later sharing this main module between the MVS and AIX versions of the
application. This also opened up the potential to isolate differences between the
two planned AIX versions as well. It also broke up the very large COBOL
application into units that were more reasonable to manipulate. The following
sections were first moved to COPY files:

 � Variable declarations
 � Call structures
� The ENTRY points

 � The ENROLLMENT SECTION

 � The ADDRESS-CHANGE SECTION

 � The PAYMENT-SUB SECTION

 � The DELETE-SUB SECTION

 � The SEARCH-TAB SECTION

If this idea were implemented, a future version of our program might look like
Figure 54 on page 97.

96 How to Migrate and Enhance Your Legacy Applications

 IDENTIFICATION DIVISION.

 PROGRAM-ID. IBMOUPD.

AUTHOR. LEIF TRULSSON.

 DATE-WRITTEN. 93ð812.

 \REMARKS.

\ DB2 ONLINE UPDATE PROGRAM.

 \

 \

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 \

EXEC SQL INCLUDE SQLCA END-EXEC.

 \

\ Copy file for SQL-environment variables

COPY 'sqlenv.cbl' IN '/u/db2/sqllib/include'.

\ Copy file for Level-77 variables

COPY 'level77var.cbl' .

\ Copy file for Host-variables

EXEC SQL INCLUDE 'hostvarsql.cbl' END-EXEC.

\ Copy file for Common variables

COPY 'commonvar.cbl' .

\ Copy file for PANEL VARIABLES

COPY 'panvarnew.cbl' .

\ Copy file for Call-structures

COPY 'enroll.cbl' .

COPY 'change.cbl' .

COPY 'payment.cbl' .

COPY 'delete.cbl' .

COPY 'search.cbl' .

 \

 PROCEDURE DIVISION.

 STARTA.

 \

ACCEPT TODAY FROM DATE.

 \

COPY 'entry.cbl' .

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ BLANKA-ALL PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE BLANKS ALL PANEL AND TABLE VARIABLES

 BLANKA-ALL SECTION.

COPY 'blanka.cbl' .

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ ENROLLMENT PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE ENROLLS NEW CUSTOMERS

 ENROLLMENT SECTION.

EXEC SQL INCLUDE 'enrollsql.cbl' END-EXEC.

 DAððð.

 EXIT.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ ADDRESS-CHANGE PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE MAKES ADDRESS CHANGES

 ADDRESS-CHANGE SECTION.

EXEC SQL INCLUDE 'addrchgsql.cbl' END-EXEC.

 DBððð.

 EXIT.

Figure 54 (Part 1 of 2). AIX Version of the Legacy Application

 Chapter 6. Migrating the Legacy Application to AIX 97

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ PAYMENT PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE CREATES RECORD IN PAYMENT TABLE

 PAYMENTS-SUB SECTION.

EXEC SQL INCLUDE 'paysql.cbl' END-EXEC.

 DCððð.

 EXIT.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ PAYMENT-RECORD PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE RETREIVES THE TABLE-VALUES FOR THE PAYMENTS

\ AND DELETES PANELS

 PAYMENT-RECORD SECTION.

EXEC SQL INCLUDE 'payrecsql.cbl' END-EXEC.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ DELETES PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE DELETES CUSTOMERS

 DELETES-SUB SECTION.

EXEC SQL INCLUDE 'deletesql.cbl' END-EXEC.

 DDððð.

 EXIT.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ SEARCH-TAB PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ THIS PROCEDURE SEARCHES APPROPRIATE TABEL ACCORDING TO

\ SEARCH ARGUMENT

 SEARCH-TAB SECTION.

EXEC SQL INCLUDE 'searchsql.cbl' END-EXEC.

 DE1ðð.

 EXIT.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ STR-INSPECT PROCEDURE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 STR-INSPECT SECTION.

COPY 'strinsp.cbl' .

Figure 54 (Part 2 of 2). AIX Version of the Legacy Application

The EXEC SQL INCLUDE 'filename' END-EXEC. would replace the COPY statement for
the part of the code containing SQL-syntax.

6.3.2.5 The User Interface Interactions
As we said earlier, the new COBOL version does not handle any direct user
interactions. But, most of the original ISPF panel variables were still used in the
new version by our program to pass information from the database to the new user
interface code. We also wanted to be able to test our COBOL portion of the
application in a stand-alone mode (especially while the GUI was being concurrently
developed). We also planned on continuing the development of new MVS versions
of the program on AIX, which presented us with the need to be able to test those
versions that would continue to have an ISPF user interface.

For the purpose of testing the ADDRESS-CHANGE SECTION in the new AIX version of
our program, we created a C program called testchg.c, that called the change
entry. This program is discussed in more detail in 6.3.4, “Test Tools” on page 113
.

To be able to test the MVS version, we had to rewrite the ISPF calls, or we could
try to find an ISPF emulator for AIX. We managed to find an IBM Internal Tool that

98 How to Migrate and Enhance Your Legacy Applications

gave us limited ISPF support on AIX. We also looked at rewriting the panel
interactions with the Enhanced ACCEPT/DISPLAY and SCREEN SECTION support, as
supported by Micro Focus COBOL. We show this in more detail in 6.3.4, “Test
Tools” on page 113. We could also have used another Micro Focus tool to build
our new AIX panels. This tool is the Dialog System from Micro Focus.

 6.3.2.6 Future Concepts
As mentioned earlier, we might want to be able to maintain only one main skeleton
module, but separate, parallel sets of COPY files with the platform-specific code in
them. This possibility depends on the notion that a file naming convention can be
devised that is acceptable to both MVS and AIX, and that enables the Micro Focus
COBOL compiler to distinguish the AIX from MVS files depending on the build
instructions. We explored this possibility and concluded that the following scheme
should work.

The Micro Focus COBOL compiler supports the COPYEXT compiler directive. This
directive enables us to specify the file name extension of the AIX COPY files
differently from the MVS COPY files on the compiler invocation command line. This
compiler also enables us to cite only the common base portion of the file name in
the source code at the COPY statement. Using this directive on AIX, we can compile
a version destined for both platforms for purpose of debugging with the Micro
Focus Animator.

The MVS compiler does not support this directive, because MVS itself does not
support the notion of file base names with file name extensions. However, this was
not a problem if the base name (which was the entire file name as far as MVS was
concerned) was entered on the COPY statement in the file. The build automation
program can ensure that the files get named properly during the upload to MVS.

We decided to store MVS COPY code in files with the .cpy extension and AIX
modules in files with the .cbl extension. Figure 55 on page 100 illustrates this
concept of using different compiler directives and file name extensions to maintain
one main skeleton for the two platform versions.

 Chapter 6. Migrating the Legacy Application to AIX 99

Figure 55. Future Concepts Using Compiler Directives

6.3.3 Edit, Compile, and Debug
In this section, we show how the AIX AD products supported the edit, compile, and
debug cycle while we were migrating the COBOL code to AIX. The first thing we
did was to create a new main module for the MVS_Release_1 and one for the
AIX_Release_1. We did this through SDE WorkBench/6000 with the help of
Program Editor. To save us time, we copied the original file. We used
Development Manager to do this, and the procedure is shown in Figure 56 on
page 101 and in Figure 57 on page 101.

First, we selected the file to copy, by clicking once with the left mouse button on
the line displaying the name of the file we wanted to copy. This highlighted the
line. By clicking the left mouse button once, while the cursor was over the File
item in the Action bar of WorkBench - Development Manager, we got the pull-down
menu shown in Figure 56 on page 101.

100 How to Migrate and Enhance Your Legacy Applications

Figure 56. Copying a File with the Development Manager

From this pull-down menu, we selected Copy. Next we got the window shown in
Figure 57.

Figure 57. Development Manager Copy File Window

In this window we entered the name of our new file, and then we clicked on OK.
The file was copied, and it was time to edit it.

 Chapter 6. Migrating the Legacy Application to AIX 101

6.3.3.1 Editing the Main module
To invoke the editor from the WorkBench Development Manager, we can click
twice with the left mouse button on the line, displaying the name of the file to be
edited, or select the line displaying the name, and then from the File pull-down
menu select the Edit option, as shown in Figure 58.

Figure 58. To Edit a File Using SDE WorkBench/6000

If you select the Edit option you get a new window as shown in Figure 59. If you
want to continue, you just select OK, or press ENTER.

Figure 59. Development Manager Edit File Window

This should open up the Program Editor edit window as shown in Figure 60 on
page 103.

102 How to Migrate and Enhance Your Legacy Applications

Figure 60. Editing the New Main Module

Development Manager and Program Editor both recognize the specific file type by
examining the files extension. The files extensions that are recognized by default
for COBOL source files are:

 � CBL
 � cbl
 � cob

For more information about how to support other file extensions such as COBOL
source files, see 9.2.4, “Tailoring Program Editor” on page 206.

6.3.3.2 Compiling the COBOL Code
Because we wanted to evaluate SDE WorkBench/6000, we decided to use both
Program Builder and the Micro Focus COBOL Toolbox for compilations. We
therefore integrated both the Animator and the Micro Focus COBOL Toolbox with
SDE WorkBench/6000 as described in 9.2, “Tailoring SDE WorkBench/6000 for
COBOL Programmers” on page 202 .

The next paragraphs illustrate the compilation process, including the use of Micro
Focus RTE, makefile files, and Micro Focus COBOL Toolbox.

Creating a New Micro Focus Run Time Environment: It is sometimes
necessary to create a new Micro Focus RTE. For instance, if you want to Animate
a COBOL program that makes calls to subroutines that are written in languages
other than COBOL, then you have to include these routines in your Micro Focus
RTE. Routines that are included in the Micro Focus RTE do not have to be
specified at compile or link time.

 Chapter 6. Migrating the Legacy Application to AIX 103

The current Micro Focus RTE is located in the $COBDIR directory. Before you
rebuild the Micro Focus RTE, you might want to rename the file containing the old
one. To rebuild the Micro Focus RTE, you must log in as root, do cd
$COBDIR/src/rts , and then run the script mkrts with the modules you want to
include as parameters. For example, to link the two C language modules called by
IBMOUPD, use:

mkrts $HOME/source/c/IMBCUST.c $HOME/source/c/IBMDATE.c

The new Micro Focus RTE will be created in the current directory. A clean Micro
Focus RTE can always be created by running the mkrts script without any
parameters.

The Micro Focus COBOL Version 3.1.3 also includes a script called St2 that
enables you to rebuild the Micro Focus RTE to include DB2/6000 support.
Unfortunately, running this script ruins the previously created Micro Focus RTE that
includes foreign subroutines. To be able to include both our own subroutines and
the DB2/6000 support in the Micro Focus RTE, we created a script called
mkdb2rts . This script is shown in Figure 61.

if test $# -lt ð

then

echo "usage: mkdb2rts <prog.o> fflffl<prog.o>“ .. “"

 exit 1

fi

INCFLAGS="-I sqlgintp -I sqlgcmpl -I sqlgahvr -I sqlginit -I sqlgstar \

-I sqlgfini -I sqlgaloc -I sqlgcall -I sqlgdloc -I sqlgsets \

-I sqlgsetv -I sqlgstop -I sqlgstrt -I sqlgusda -ldb2"

sh -x mkrts -vUDD ${INCFLAGS} $\

Figure 61. The mkdb2rts Script. This script rebuilds the Run-Time system with both
DB2/6000 support and user defined routines

Compiling With Makefile Files: When building our makefile files for the testing of
our COBOL programs, we decided to use a modified version of the sample
makefile file shipped together with DB2/6000. This modified test makefile file is
shown in Figure 62 on page 105.

104 How to Migrate and Enhance Your Legacy Applications

###

MAKEFILE for COBOL ibmoupd Program

Enter the Following:

#

make all -- makes all programs

#

make ibmoupd -- makes ibmoupd program

make IBMDATE -- makes IBMDATE program

make IBMCUST -- makes IBMCUST program

#

make cleanup -- removes builds from all sample programs

###

DATABASE=aixdbm

DB2HOME=/u/$(DB2INSTANCE)

LINK_FLAGS= -a -x -L$(DB2HOME)/sqllib/lib -ldb2

COMPILER=cob

CLIB=$(HOME)/source/c

CCOMP=cc

CC_FLAGS= -c -g

COPY = ibmpan1.cbl ibmpanel2.cbl ibmpanel3.cbl ibmpanel4.cbl \

 ibmpanel5.cbl ibmpanel6.cbl

all : IBMCUST.o IBMDATE.o ibmoupd

cleanup :

rm -f ibmoupd ibmoupd.bnd ibmoupd.o ibmoupd.cbl ibmoupd.int ibmoupd.lst 2>/dev/null

ibmoupd.cbl : ibmoupd.sqb

db2 CONNECT TO $(DATABASE) && \

db2 PREP ibmoupd.sqb BINDFILE && \

db2 BIND ibmoupd.bnd && \

db2 CONNECT RESET

ibmoupd : ibmoupd.cbl IBMCUST.o IBMDATE.o $(COPY)

$(COMPILER) $(LINK_FLAGS) $@.cbl IBMCUST.o IBMDATE.o

IBMCUST.o : $(CLIB)/IBMCUST.c

$(CCOMP) $(CC_FLAGS) $(CLIB)/IBMCUST.c

IBMDATE.o : $(CLIB)/IBMDATE.c IBMCUST.o

$(CCOMP) $(CC_FLAGS) $(CLIB)/IBMDATE.c IBMCUST.o

Figure 62. Test Makefile File

Depending on what build target you use at build time, you can do the following:

� Remove all COBOL executable and intermediate files.
� Build object files from our C files.
� Compile and link the final executable file.

We used the appropriate Micro Focus COBOL compiler directives as shown in
Figure 63 on page 106.

 Chapter 6. Migrating the Legacy Application to AIX 105

###

MAKEFILE for COBOL ibmoupd Program

Enter the Following:

#

make all -- makes all programs

#

make ibmoupd -- makes ibmoupd program

make IBMDATE -- makes IBMDATE program

make IBMCUST -- makes IBMCUST program

#

make cleanup -- removes builds from all sample programs

###

DATABASE=aixdbm

DB2HOME=/u/$(DB2INSTANCE)

LINK_FLAGS= -a -x -C SQLDB=$(DATABASE) SQLDB2 SQLPRE IBMCOMP

COMPILER=cob

CLIB=$(HOME)/source/c

CCOMP=cc

CC_FLAGS= -c -g

COPY = ibmpan1.cbl ibmpanel2.cbl ibmpanel3.cbl ibmpanel4.cbl \

 ibmpanel5.cbl ibmpanel6.cbl

all : IBMCUST.o IBMDATE.o ibmoupd

cleanup :

rm -f ibmoupd ibmoupd.bnd ibmoupd.o ibmoupd.cbl ibmoupd.int ibmoupd.lst 2>/dev/null

ibmoupd : ibmoupd.cob IBMCUST.o IBMDATE.o $(COPY)

$(COMPILER) $(LINK_FLAGS) $@.cob IBMCUST.o IBMDATE.o

IBMCUST.o : $(CLIB)/IBMCUST.c

$(CCOMP) $(CC_FLAGS) $(CLIB)/IBMCUST.c

IBMDATE.o : $(CLIB)/IBMDATE.c IBMCUST.o

$(CCOMP) $(CC_FLAGS) $(CLIB)/IBMDATE.c IBMCUST.o

Figure 63. Micro Focus COBOL Version 3.1.3 Test Makefile File

In the early stages of our testing, we did not use CMVC to control our test makefile
files. But as the environment stabilized, we also put the test makefile files under
the control of CMVC.

Compiling with Micro Focus COBOL Toolbox: When compiling with the Micro
Focus COBOL Toolbox, you do not have to worry about creating makefile files.
Instead you just specify the compiler directives you want to be in effect.

If you did not have SDE WorkBench/6000 installed, you would invoke the Micro
Focus COBOL Toolbox with the command tbox from any command shell. But as
mentioned earlier, we decided to integrate the Micro Focus COBOL Toolbox with
SDE WorkBench/6000. Refer to 9.2, “Tailoring SDE WorkBench/6000 for COBOL
Programmers” on page 202 for more information about how to integrate the Micro
Focus COBOL Toolbox with SDE WorkBench/6000. So, we invoked the Micro
Focus COBOL Toolbox from the pull-down menu. But, before doing so, we set the
context to the appropriate directory, in this case $HOME/source/cobol . Setting the
context variable to the directory of the program to compile, will make life easier for
us while we are inside the Micro Focus COBOL Toolbox environment.

Invoking the Micro Focus COBOL Toolbox brings up a screen as shown in
Figure 64 on page 107.

106 How to Migrate and Enhance Your Legacy Applications

Figure 64. Micro Focus COBOL Toolbox Main Window

From this window, you select which function to use by pressing the appropriate
function key. The Alt and Ctrl menus are reached by entering either /a or /c and
then pressing ENTER. To compile, we pressed F3 and a new window is displayed,
as shown in Figure 65 on page 108.

 Chapter 6. Migrating the Legacy Application to AIX 107

Figure 65. Micro Focus COBOL Toolbox Compile Window

If we had already set the context to the directory of our program, or if we had
already positioned ourselves to this directory before invoking the Micro Focus
COBOL Toolbox from a command shell, the path would already be displayed, and
all we have to do is to enter the name of the program, as shown in Figure 65.

To tell the compiler what compiler directives to use, press F9 and then F10. A new
window as shown in Figure 66 on page 109 appears.

108 How to Migrate and Enhance Your Legacy Applications

Figure 66. Micro Focus COBOL Toolbox Compiler Directives Window

The compiler directives we specified were:

SQLDB “aixdbm” 1 Tells the compiler which database we want to connect to.

SQLDB2 Specifies that our program is using DB2 (MVS) syntax.

SQLPRE This tells the compiler to precompile the SQL-code.

IBMCOMP Turns on word-storage mode as used on IBM mainframes.

Figure 67 on page 110 shows the messages returned from a successful
compilation.

1 Notice the difference in specifying the database, between command line compilation as shown in Figure 63 on page 106, and
compiling with the Micro Focus COBOL Toolbox.

 Chapter 6. Migrating the Legacy Application to AIX 109

Figure 67. Micro Focus COBOL Toolbox Compiler Message Window

6.3.3.3 Debugging the COBOL Code
Even without using the Micro Focus COBOL Toolbox to build our executable files,
we still use the Micro Focus Animator for debugging the COBOL code. To be able
to use the Animator on COBOL programs calling other language routines, in our
case C routines, we have to rebuild the Micro Focus RTE to incorporate these
foreign modules into the Micro Focus RTE. The procedure of how to rebuild the
Micro Focus RTE is described in “Creating a New Micro Focus Run Time
Environment” on page 103.

As we already integrated the Micro Focus Animator with SDE WorkBench/6000, we
invoke the Animator from the Development Manager's Actions pull-down menu, as
shown in Figure 68 on page 111.

110 How to Migrate and Enhance Your Legacy Applications

Figure 68. Actions Pull-Down Menu for .int Files

The steps to invoke the Animator are:

1. Mark the COBOL intermediate file (the file with the extension .int).
2. Pull down the Actions menu in the WorkBench Development Manager window.

 3. Select Softanim

Softanimator will open up a new window, load the intermediate code, and display
the first lines of code in the programs PROCEDURE DIVISION, as shown in Figure 69
on page 112.

 Chapter 6. Migrating the Legacy Application to AIX 111

Figure 69. Showing Animator Window

The Animator enables you to do several things:

� Step through the code.
� Do a full run.
� View selected variables.
� Animate the code. This means that you will see all variables displayed as the

Animator processes the code line by line.
 � Modify variables.

You start the animation by pressing the A. When in animation mode, you can
choose at what speed you want the Animator to process the code, by pressing any
of the keys 0-9. An example of what the screen looks like when animating the
code is shown in Figure 70 on page 113.

112 How to Migrate and Enhance Your Legacy Applications

Figure 70. Using the Animation Mode

 6.3.4 Test Tools
To be able to test the COBOL part of our application in stand-alone mode,
separated from the GUI, we had to write some additional test programs. These test
programs were written in both COBOL and C, depending on their purpose. For the
purpose of testing the GUI call interface, the programs were of course written in C,
but for testing the SQL calls we used COBOL programs. We also wrote a C
program to test the MVS ISPF panels with the help of an IBM Internal tool. For the
purpose of testing the different MVS releases on AIX without testing the ISPF
panels, we wrote a new character-based screen handler, replacing the ISPF calls.
This is to illustrate a mechanism that someone without the IBM internal tool might
use to eliminate the ISPF dependency in the AIX environment while testing MVS
targeted code.

The following paragraphs show and discuss some of the test programs.

6.3.4.1 Testing the C-to-COBOL Interface (testchg.c)
Our first program is the testchg.c program. This program tests the C-to-COBOL
interface for the ADDRESS-CHANGE SECTION. The program accepts a customer
number from the console, and then calls the change entry in the AIX version of the
ibmoupd program.

After having completed the call to the COBOL program, the calling C program will
display the completed call structure chg on the console and it will also display the
return code as returned by DB2/6000. Refer to Figure 50 on page 94 for more
details about the COBOL code.

 Chapter 6. Migrating the Legacy Application to AIX 113

/\\\/

/\ testchg.c \/

/\ Program to test interface from C to COBOL \/

/\ Author : Leif Trulsson, IBM Sweden \/

/\ \/

/\ Use testchg.mk to build executable \/

/\\\/

#include <stdio.h>

#define ERROR -1

struct chg { /\ Call structure for COBOL call \/

 char custno[1ð];

 char refno[1ð];

 char mailid[2];

 char sourcecode[3];

 char firstname[13];

 char lastname[18];

 char street[26];

 char city[2ð];

 char zipcode[5];

 char errmsg[7ð];

 int sqlcode;

 };

char in[8ð]; /\ Input string from console \/

extern int ibmoupd(); /\ COBOL program - initialization \/

extern int change(); /\ COBOL program - address change \/

extern int cobexit(); /\ Close down COBOL system and exit\/

main(argc, argv)

int argc;

char \argv[]

{

 int status;

struct chg chg;

#ifdef DEBUG

 printf("Init ibmoupd()\n");

#endif

if (status = ibmoupd()) /\ Call COBOL to initialize \/

 cobexit(status);

while(status == ð)

 {

getnum(); /\ Get a Customer Number \/

 sprintf(chg.custno,"%1ðs",in);

#ifdef DEBUG

 printf("custno = %s\n",chg.custno);

 printf("Call change()\n");

#endif

/\ Call COBOL to get the zipcode \/

if (status = change(&chg))

 {

status = ð;

 /\ cobexit(status); \/

 }

printf("chg = %s\n", chg.custno); /\ Print the whole struc/

printf("sqlcode = %d\n", chg.sqlcode);

 };

 cobexit(status);

}

Figure 71 (Part 1 of 2). C-to-COBOL Interface Test Program

114 How to Migrate and Enhance Your Legacy Applications

getnum()

{

char \ret; /\ Return value from console read \/

printf("Enter Customer Number : ");

ret = gets(&in[ð]);

if (strlen(in) == ð) /\ If empty string, terminate \/

 cobexit(ð);

{

Figure 71 (Part 2 of 2). C-to-COBOL Interface Test Program

The following figure shows the makefile file for building our testchg executable file.

###

MAKEFILE for COBOL ibmoupd Program

Enter the Following:

#

make all -- makes all programs

#

make ibmoupd -- makes ibmoupd program

make testchg -- makes testchg program

make IBMCUST -- makes IBMCUST program

#

make cleanup -- removes builds from all sample programs

###

EXECUTABLE=testchg

DATABASE =aixdbm

DB2HOME =/u/db2

LINK_FLAGS= -a -x -C SQLDB=$(DATABASE) -C SQLDB2 -C SQLPRE \

-C IBMCOMP -L$(DB2HOME)/sqllib/lib -ldb2

COMPILER =cob

CLIB =$(HOME)/source/c

CC = cc

CFLAGS = -DDEBUG

COPY = panvarnew.cbl change.cbl

MAIN =testchg1.c

APPL_OBJS = $(CLIB)/IBMCUST.c

COBPGM = ibmoupd.cob

SQLOBJ = $(COBDIR)/sqlinix.o

OBJS = $(MAIN:.c=.o) $(APPL_OBJS:.c=.o)

.c.o:

$(CC) -g -c $(CFLAGS) $< -o $@

$(EXECUTABLE): $(OBJS) $(COBPGM) $(COPY)

$(COMPILER) $(LINK_FLAGS) $(OBJS) $(COBPGM) $(SQLOBJ)

Figure 72. Testchg.mk Makefile File

6.3.4.2 Testing the ISPF panels
Figure 156 on page 236 shows a C program that was written to test the MVS ISPF
panel definitions with the IBM Internal Tool AIXISPF. This tool enables the testing
of the ISPF panels written for MVS on the AIX development platform. This tool
made it possible to not only test the COBOL and DB2 code, but the MVS user
interface itself, all on AIX. This tool consists of a library of C language calls that
the developer uses in writing a panel test program. The source code for a sample
test panel program is shown in Appendix B, “Sample Panel Test Program” on
page 235.

 Chapter 6. Migrating the Legacy Application to AIX 115

6.3.4.3 The Character-Based Screen Handler
To be able to test the MVS releases on AIX without the limitation of the ISPF panel
interface, we decided to write a character-based screen handler for AIX. This
character-based screen handler uses the Micro Focus COBOL SPECIAL-NAMES and
SCREEN-SECTIONs. To be consistent with our discussion in 6.3.2.4, “Use of Copy
Files” on page 96, we created the following new COPY files:

panvarnew.cbl Contains the new Panel variables definitions, as shown in
Figure 157 on page 241. These definitions replace the ISPF
panels as defined in the files ibmou001.pan through
ibmou006.pan.

paninitnew.cbl Initializes the new environment, as shown in Figure 73.

ibmpanel1.cbl Contains the call to the Main panel, as shown in Figure 74.

ibmpanel2.cbl Contains the call to the Delete panel.

ibmpanel3.cbl Contains the call to the Address-Change panel.

ibmpanel4.cbl Contains the call to the Payments panel.

ibmpanel5.cbl Contains the call to the Delete panel.

ibmpanel6.cbl Contains the call to the Duplicate Selections panel.

Refer to Appendix C, “Panel Definitions” on page 241 for the source code for the
new panel definitions.

COPY File

\ Disable all other user function keys

CALL x"AF" USING SET-BIT-PAIRS DISABLE-ALL-OTHER-KEYS.

\ Enable the F3 key

CALL x"AF" USING SET-BIT-PAIRS ENABLE-F3.

\ Enable the F1ð key

CALL x"AF" USING SET-BIT-PAIRS ENABLE-F1ð.

Figure 73. New Environment Initialization

 \\

 \ \

 \\

\ THIS PROCEDURE CALLS THE MAIN MENU

 Nððð.

MOVE 1 TO CURSOR-ROW.

MOVE 1 TO CURSOR-COLUMN.

MOVE ZERO TO LASTCC.

MOVE ZERO TO EXIT-FLAG.

 N1ðð.

\ Loop until ENTER key or F3 are pressed.

PERFORM UNTIL EXIT-FLAG = 1

 DISPLAY PANEL1

 ACCEPT PANEL1

 EVALUATE KEY-TYPE

\ Accept terminated by the ENTER key

 WHEN "ð"

MOVE 1 TO EXIT-FLAG

IF ACT = "s" OR ACT = "S"

MOVE SPACES TO ERRMSG

MOVE SPACES TO PCUSTNO

CALL "IBMCUST" USING ARG NCUSTNO ERRMSG

Figure 74 (Part 1 of 2). New Character-Based Main Panel

116 How to Migrate and Enhance Your Legacy Applications

IF ERRMSG = SPACES

MOVE NCUSTNO TO WCUSTNO

MOVE WCUSTNO TO CUSTNO IN PGM-CUST

CUSTNO IN PGM-NAME

 ELSE

MOVE SPACES TO STR

MOVE ARG TO LASTNAME IN L-NAME

 PERFORM STR-INSPECT

MOVE LASTNAME IN L-NAME

TO LASTNAME IN PGM-NAME

 END-IF

MOVE SPACES TO ERRMSG

 END-IF

\ Accept terminated by a Function key

 WHEN "1"

IF KEY-CODE-1 = 3

MOVE 1 TO EXIT-FLAG

MOVE 8 TO LASTCC

 END-IF

 END-EVALUATE

 END-PERFORM.

Figure 74 (Part 2 of 2). New Character-Based Main Panel

The only other change we had to make to our original program was to include the
lines shown in Figure 75, just before the beginning of the DATA DIVISION. This sets
up the environment to use function keys and to use the console as input/output
device.

\ Use SPECIAL-NAMES for Screen displays

 SPECIAL-NAMES.

CONSOLE IS CRT

CURSOR IS CURSOR-POSITION

CRT STATUS IS KEY-STATUS.

Figure 75. Code Changes for the Use of Function Keys

6.4 Migration of the Database
There are several issues to consider when moving data from one database and
environment, to another database and another environment. These include:

� What binary format is used
� National Language Support
� How to extract data from the old system
� In which format the data should be extracted
� Importing the data into the new system.

In our case, the data was moved from MVS where it was stored in EBCDIC format,
to AIX where it was to be stored in ASCII format. We were also moving the data
from one system (MVS) with the National Language Support of Swedish to another
system where the language of choice was U.S. English. This means that the
system has to be able to take care of the special Swedish letters. The system also
has to handle other language specific matters, such as:

 � Sort/collating sequences
 � Uppercasing rules
 � Date/time formats.

 Chapter 6. Migrating the Legacy Application to AIX 117

By carefully choosing language Locales , Code Set , and Code Page the same
results can be achieved. Please refer to IBM DATABASE 2 AIX/6000
Administration Guide for more information about National Language Support.

In the following paragraphs we talk about:

� Creating the database
� Extracting and moving the old data
� Creating tables and importing the data.

6.4.1 Creating the Database
Creating the new database on AIX posed the least problem in our project. In fact,
we used the same table definitions as were used when creating the tables on MVS
DB2, as shown in Figure 77 on page 120. We created the database by issuing
the following command as sysadm:

db2 create database aixdbm

After having created the database, we connected to the database and granted
other users ability to connect to the database by issuing the following commands:

db2 connect to aixdbm

db2 grant connect on database to public

6.4.2 Extracting and Moving the Old Data
After the database had been created, it was time to create the tables, and load
them with data. But before we could do this, we had to move the data from DB2
on MVS to AIX as ASCII files. In our case the MVS DB2 database was located in
Malmö, Sweden, and our AIX system was located in San Jose, California, U.S.A.
Because of this, we were not able to set up our DB2/6000 to utilize DDCS/6000 to
connect to the MVS DB2 system as described in Figure 1 on page 20 in
Chapter 4, “Defining the Project and Setting Its Goals” on page 29. Normally, this
is the easiest and most suitable way to transfer data between systems. With the
DDCS/6000 product, it is possible to export data from DB2 on MVS to a PC/IXF
(Personal Computer/Integrated Exchange Format) file on the workstation, and
import this file into and existing DB2/6000 table, and vice versa.

As the data format produced by the MVS DB2 DUMP utility was not supported by
DB2/6000, we had to write our own data extraction (export) program, as shown in
Appendix D, “Sample Data Extraction Program” on page 253. We decided to
extract the data into character format, so we could use the DB2/6000 ASCII import
facility. After extracting the data into ordinary MVS data sets, we had to transfer
the data from our MVS system in Sweden to our AIX system the in USA. Figure 76
on page 119 shows the path our data took to reach its destination.

118 How to Migrate and Enhance Your Legacy Applications

Figure 76. Route Taken by DB2 Data from its MVS Host to AIX

We transferred our four database files to an IBM 6150 RT PC computer using a
tool which is called APPC File Transfer (AFT) . This tool was developed and is
sold by IBM Sweden. From the RT PC, we transferred the files, with the help of
the TCP/IP FTP (File Transfer Protocol) utility, to a VM system located in
Stockholm, Sweden. From this VM system in Sweden we sent the files over the
IBM internal VM network to a VM system in San Jose. And from this VM system
we once again used FTP to transfer the data from this VM system down to our
target AIX system.

 Chapter 6. Migrating the Legacy Application to AIX 119

6.4.3 Creating Tables and Importing the Data
With the data finally on our AIX system, we were ready to create our tables and
import the data into our previously created database. The data is imported with the
help of the same file we used to create our tables, as shown in Figure 77.

-- Issue 'db2 -svtf db2cust'. (Note: the quote ' is not part of what

-- you should issue.) The flags "-svtf" have the following meanings:

-- -s -- Stops on SQL error.

-- -v -- Echo the command.

-- -t -- Each SQL statement is terminated by semicolon.

-- -f -- The parameter following this flag is the file containing

-- all the SQL commands.

-- Establish a database connection.

connect to aixdbm;

-- Create the tables and indexes.

CREATE TABLE CUST

(CUSTNO NUMERIC(1ð) NOT NULL,

REFNO NUMERIC(1ð) NOT NULL,

ACTDATE DECIMAL(6) NOT NULL WITH DEFAULT,

ADDRCHG DECIMAL(6) NOT NULL WITH DEFAULT,

 PROFIT NUMERIC(7,2),

MAILID NUMERIC(2) NOT NULL,

SOURCECODE NUMERIC(3) NOT NULL,

 COLLECTCODE SMALLINT,

 DUNNCODE SMALLINT);

CREATE INDEX CUST_IX1 ON CUST (ACTDATE ASC);

CREATE UNIQUE INDEX CUST_IX2 ON CUST (CUSTNO ASC);

Figure 77 (Part 1 of 2). File to Create Tables and Import data

120 How to Migrate and Enhance Your Legacy Applications

CREATE TABLE NAME

(CUSTNO NUMERIC(1ð) NOT NULL,

FIRSTNAME CHARACTER(13) NOT NULL,

LASTNAME CHARACTER(18) NOT NULL,

STREET CHARACTER(26) NOT NULL,

ZIPCODE INTEGER NOT NULL);

CREATE INDEX NAME_IX ON NAME (CUSTNO ASC);

CREATE TABLE PAYMENT

(REFNO NUMERIC(1ð) NOT NULL,

 PAYDATE DECIMAL(6) NOT NULL,

AMOUNT NUMERIC(7,2) NOT NULL);

CREATE INDEX PAYMENT_IX ON PAYMENT (REFNO ASC);

CREATE TABLE ZIP

(ZIPCODE INTEGER NOT NULL,

CITY CHARACTER(2ð) NOT NULL);

CREATE UNIQUE INDEX ZIP_IX ON ZIP (ZIPCODE ASC);

-- Do commit to save work.

commit work;

-- Import the data using ASC method into the tables.

import from cust.tab of asc

method l (1 1ð, 12 21,23 28,3ð 35,37 45,47 48,5ð 52,54 54,56 56) insert into cust;

import from name.tab of asc

method l (1 1ð, 12 24,26 43,45 7ð,72 76) insert into name;

import from payment.tab of asc

method l (1 1ð, 12 17,19 26) insert into payment;

import from zip.tab of asc

method l (1 5, 6 25) insert into zip;

-- Do commit to save work.

commit work;

Figure 77 (Part 2 of 2). File to Create Tables and Import data

Having created the tables, we had to grant other users access rights to our tables.
The commands to do this are:

db2 grant all on table cust to public

db2 grant all on table name to public

db2 grant all on table payment to public

db2 grant all on table zip to public

Finally, we were ready to test the application on our data.

 Chapter 6. Migrating the Legacy Application to AIX 121

6.5 Integration and Test
This section describes the various steps to integrate the calls to the modified
COBOL code with the generated GUI code from AIC 1.1 and the callbacks. It
describes the Application Program Interface (API) from C to COBOL and shows the
use of the various tools that are integrated with SDE WorkBench/6000 to implement
and test this interface.

6.5.1 Application Program Interface Conventions
We now needed to enhance the callbacks with calls to corresponding COBOL
functions. These COBOL functions would then actually call the DB2 database to
read, add, change or delete from or to the database. The COBOL environment had
to be prepared before any other COBOL function was called, and a corresponding
termination call had to be made when returning from the application. With each call
to a specific COBOL function we decided to pass along a data structure with all
interface parameters. We decided to have a separate data structure for each of the
main selections that were available on the main menu shown in Figure 36 on
page 80. So we had to define five interface structures, and we decided to call
them

 � Enroll

 � Change

 � Payment

 � Delete

 � Search.

For both COBOL and C we would have a separate file to contain these structure
definitions. These files had the same name, but the file name extension was .cbl
for the COBOL file, and .h for the C file. For example, for the change() function
we had a COBOL source file change.cbl and a C source file change.h. These two
files had to reflect the same offsets of the data, so we had to make sure that both
languages read and write to the same offset in the data structure when accessing a
particular field. Refer to Figure 78 on page 123 for the data structure definitions in
the change.cbl file and Figure 79 for the change.h file.

122 How to Migrate and Enhance Your Legacy Applications

\ Structure to be used when called from Main C-pgm to the

\ ADDRESS-CHANGE routine.

\ This is a part of the LINKAGE-SECTION

 LINKAGE SECTION.

 ð1 CHANGE.

ð3 PCUSTNO PIC X(1ð) VALUE SPACE.

ð3 NCUSTNO REDEFINES PCUSTNO PIC 9(1ð).

ð3 PREFNO PIC X(1ð) VALUE SPACE.

ð3 NREFNO REDEFINES PREFNO PIC 9(1ð).

ð3 PMAILID PIC X(2) VALUE SPACE.

ð3 NMAILID REDEFINES PMAILID PIC 9(2).

ð3 PSRC PIC X(3) VALUE SPACE.

ð3 NSRC REDEFINES PSRC PIC 9(3).

ð3 PFNAME PIC X(13) VALUE SPACE.

ð3 PLNAME PIC X(18) VALUE SPACE.

ð3 PSTREET PIC X(26) VALUE SPACE.

ð3 PCITY PIC X(2ð) VALUE SPACE.

ð3 PZIPCODE PIC X(5) VALUE SPACE.

ð3 NZIPCODE REDEFINES PZIPCODE PIC 9(5).

ð3 ERRMSG PIC X(7ð) VALUE SPACE.

ð3 SQLC PIC X(2) COMP-5.

Figure 78. The change.cbl File for the COBOL API Structure

/\ Structure to be used when calling the change() subroutine to \/

/\ interface to the COBOL function. \/

typedef struct change {

 char custno[1ð];

 char refno[1ð];

 char mailid[2];

 char sourcecode[3];

 char firstname[13];

 char lastname[18];

 char street[26];

 char city[2ð];

 char ZIPCode[5];

 char SQLErrorMessage[7ð];

 int SQLCODE;

 } ChangeStruct;

Figure 79. The change.h File for the C API Structure

6.5.2 Implementing the Calls to COBOL in the Callbacks
Once the interface structure files as shown in Figure 78 and Figure 79 were
implemented and saved in the corresponding directories, we started to modify the
callbacks to implement the calls to the COBOL code.

The extracts of the code shown in this chapter process the action code 23, shown
in Figure 36 on page 80, for a given customer number that is entered in the
Argument text field. Doing so, a user could request an address change for a
customer identified by a given customer number. Once the user selects OK, the

 Chapter 6. Migrating the Legacy Application to AIX 123

OnlineUpdateOkPushButtonActivateCallback gets started. The callback should take
the customer number and insert it into the corresponding custno field in the
ChangeStruct structure, as shown in Figure 79, initialize the COBOL environment,
and call the change function, implemented in COBOL, passing the interface
structure. The change COBOL routine would fill all the other fields in the structure
after having queried the database. The callback would then create a new window
to show the customer details and fill the text fields of that window with the
corresponding data values.

As a result of the activities as described in 6.2, “Design and Implementation of Our
User Interface” on page 68 the new source files were placed under control of
CMVC also. The first step in adding the COBOL logic to the callbacks was to
check out the OnlineUpdateCallbacks.c from the CMVC library. To do this, we first
created a defect that should be used to gather all code changes for enabling the
calls to COBOL.

We selected Defects from the Windows pull-down of the WorkBench Development
Manager window. CMVC started and the CMVC Tasks window and the CMVC
Defects window appeared. We selected Open from the Actions pull-down of the
CMVC Defects window and entered the data in the Open Defect window as shown
in Figure 80 on page 125.

124 How to Migrate and Enhance Your Legacy Applications

Figure 80. Creating a Defect to Add the Calls to COBOL

 We pressed the OK button to create the defect in CMVC. Once we had the defect
created, we could check out the OnlineUpdateCallbacks.c file. We changed the
directory of Development Manager to show the
/ad/projectA_proto/source/c/PortedGUI/OnlineUpdate directory. The entry for the
OnlineUpdateCallbacks.c file showed a dash character following the file name to
indicate that the file was read-only and currently checked in. We selected the file in
the list and then selected Check Out... from the CMVC pull-down of WorkBench
Development Manager window and saw the windows as shown in Figure 81 on
page 126.

 Chapter 6. Migrating the Legacy Application to AIX 125

Figure 81. Checking Out the OnlineUpdateCallbacks.c Source File from CMVC

We pressed OK to check the file out so we could edit it. We then invoked Program
Editor to edit the OnlineUpdateCallbacks.c file by selecting Edit from the Actions
pull-down of Development Manager. Figure 82 on page 127 shows the
initialization part of OnlineUpdateCallbacks.c. We added the #include directive to
include the change.h header file (.1/), and added extern definitions for the
functions ibmoupd, change and cobexit (.2/). We then added the call to intialize
the COBOL environment depending on the value of a static variable as shown in
.3/ at the beginning of the activate callback for the OK push button. If the call to
ibmoupd() failed for any reason, the connection from C to COBOL could not be
established. In that case, a proper error handling routine would be invoked.

126 How to Migrate and Enhance Your Legacy Applications

#include "change.h" .1/

static init = ð; /\ Did we initialize the COBOL environment? \/

extern int ibmoupd();

extern int cobexit(); .2/
extern int change(ChangeStruct \Parms);

void OnlineUpdateOkPushButtonActivateCallback(Widget PushButton)

{

 Widget NextWidget;

char \Action, \Argument; /\ The user input of the two text fields \/

/\ establish addressability and set the context pointer \/

UxOnlineUpdateContext = (_UxCOnlineUpdate \)UxGetContext(PushButton);

if (!init) {

/\ It's the first time that we activate the button. We need to \/

/\ initialize the COBOL environment. \/

init = 1;

if ((rc = ibmoupd()) !=ð) .3/
 OnlineUpdateProcessInitializationErrors();

 }

Figure 82. The COBOL Environment Initialization Code in OnlineUpdateCallbacks.c

Figure 83 shows the termination code of OnlineUpdateCallbacks.c. The
corresponding code to shut down the COBOL environment in an orderly fashion
was done in the activate callback of the End push button as shown at the place
indicated by .4/. If the user pressed this button, the application terminated and the
COBOL environment was cleaned up.

void OnlineUpdateEndPushButtonActivateCallback(Widget PushButton)

{

/\ End of the application \/

/\ rc is a static global variable that is set to a corresponding \/

/\ numeric value. It is passed to cobexit, and is returned \/

/\ to the operating system shell. \/

 cobexit(rc); .4/
}

Figure 83. The COBOL Environment Termination Code in OnlineUpdateCallbacks.c

The remaining activity was in fact the most important one: we had to implement the
call to the change() function, which was implemented in COBOL as explained in
6.3, “Design and Implementation of the COBOL Code” on page 89.

We invoked Program Editor from WorkBench Development Manager window by
selecting Edit from the Actions pull-down. We then changed the
OnlineUpdateCallbacks.c file to contain the corresponding code required to invoke
the COBOL function as shown in Figure 84 on page 128 and indicated with .5/.

 Chapter 6. Migrating the Legacy Application to AIX 127

/\ Read in the contents of the text fields \/

Action = XmTextFieldGetString(OnlineUpdateActionTextField);

Argument = XmTextFieldGetString(OnlineUpdateArgumentTextField);

if (strcmp(Action, "23")==ð) {

/\ 'Address change' was selected \/

Widget NextWidget; /\ Widget for the CustomerDetails window \/

ChangeStruct Parms; /\ Interface structure C to COBOL \/

char field[27]; /\ String to be written to text fields \/

/\ Initialize the structure to be passed to the COBOL function \/

memset(&Parms, ' ', sizeof(Parms));

 Parms.SQLCODE=ð;

/\ Create a Widget for the CustomerDetails window by using the \/

/\ function as generated by AIC 1.1 \/

NextWidget = create_AddressChange();

/\ Initialize the static context variable that is declared in \/

/\ the header file generated by AIC 1.1 \/

UxAddressChangeContext = (_UxCAddressChange \)UxGetContext(NextWidget);

/\ Fill the interface structure with the customer number as it \/

/\ was read from the window. \/

memcpy(Parms.custno, Argument, strlen(Argument));

/\ Call the COBOL program to read from the DB and to return the \/

/\ result data. Use the interface structure to pass data to \/

/\ the COBOL function as well as to return results. \/

 if (rc=change(&Parms)!=ð) .5/
{ /\ Error occured during C-to-COBOL call \/

 OnlineUpdateProcessCOBOLErrors(OnlineUpdateEndPushButton);

 }

if (Parms.SQLCODE!=ð) {

/\ SQL error occurred \/

 OnlineUpdateProcessDBErrors(Parms);

} else {

/\ The DB2 query succeeded and the COBOL function filled in \/

/\ the reply data. Read the structure and fill the text fields \/

/\ one by one. \/

/\ The customer number is already available from the main \/

 /\ window. \/

 XmTextFieldSetString(AddressChangeCustomerNo, Argument);

/\ All the others are taken from the interface structure \/

memcpy(&field, Parms.refno, 1ð);

 field[1ð]='\ð';

 XmTextFieldSetString(AddressChangeReferenceNo, field);

memcpy(&field, Parms.mailid, 2);

 field[2]='\ð';

 XmTextFieldSetString(AddressChangeMailId, field);

/\ The other fields are omitted here in this example.

\/

/\ ... and now show the customer details window filled with data

\/

 UxPopupInterface(NextWidget, no_grab);

 }

 }

128 How to Migrate and Enhance Your Legacy Applications

Figure 84. Calling the COBOL Function from the C Callback

Once the changes were edited, we selected Compile from the Actions pull-down of
the WorkBench Development Manager window to compile this new version of the
OnlineUpdateCallbacks.c file. This is similar to what is shown in Figure 41 on
page 85.

6.5.3 Link and Test
After both the changes to the callbacks implemented in the
OnlineUpdateCallbacks.c file, and the database logic implemented in the
ibmoupd.cbl file, were successfully compiled, we had to link these together. To do
this, we decided to have a makefile file that can be called for compilation of the
COBOL programs, compilation of the C programs, and linking the various object
modules and libraries together. The makefile file we started from was the one
generated from AIC because this was satisfactory. A makefile file used after an
independent extract from CMVC would have used a makefile file that did not
require the generation of the interface source and include files like the one we
used.

We invoked Program Editor from WorkBench Development Manager window and
edited the PortedGUI.mk makefile file.

The makefile file consisted of rules to:

� Compile the C source files generated by AIC
� Compile the C source files for some edit checks being called by the COBOL

programs
� Compile the COBOL source files with DB2 support
� Link the object modules of the compiled files together with object modules of

the compiled callbacks.

Figure 85 on page 130 shows how Program Editor was used to edit the
PortedGUI.mk makefile file.

 Chapter 6. Migrating the Legacy Application to AIX 129

Figure 85. Editing the Makfile File to Create the PortedGUI Program

 We saved the makefile file and started Program Builder from the Tool Manager
Start dialog box. We selected Set Name... from the Makefile pull-down in Program
Builder, we entered the name PortedGUI.mk in the text field that showed up, and we
pressed the OK button. We entered the name PortedGUI in the Target field and
pressed the Build push button.

Program Builder run the makefile file and built an executable file program called
PortedGUI as shown in Figure 86 on page 131.

130 How to Migrate and Enhance Your Legacy Applications

Figure 86. Using Program Builder to Create an Executable File

 We could invoke this program by double-clicking the entry for it in
 the WorkBench Development Manager window,
 or by entering the program name
 in any window that offers a command line interface. The system would show the
main menu of the application, where we could enter 23 for the Action text field and
1111 for the Argument text field. When we selected OK, the system would look up
the data for the specified customer number in the DB2 database, and display them
as shown in Figure 87 on page 132.

 Chapter 6. Migrating the Legacy Application to AIX 131

Figure 87. Testing the Complete Application

The explanations and examples shown so far dealt with the logic required for
displaying customer data during a request for changing a customer address.
Similar enhancements had to be added to the various other callbacks and COBOL
source files to implement the corresponding logic for displaying, changing, and
deleting customers and for displaying and adding customer payments.

Once the code changes were done, we had to:

1. Create a track for the defect, so the defect changes into fix state

2. Check-in the modified source files into the library for the created track

3. Modify the track to put it into integrate state.

 Once this was done, AIXtester, the person doing the integration, would be notified
that certain tracks are to be integrated. Once all the tracks associated with a
particular level were in this state, the build would be extracted and the level status
would change from integrate to commit after a successful compile and link cycle.
Because of our customized process, we would change the defect to verify state to
inform the testers that the defect was fixed and is ready for an independent test. A
successful execution of the test would then enable closing the defect.

132 How to Migrate and Enhance Your Legacy Applications

Chapter 7. Improving the Application's GUI

This chapter describes our approach to improving the GUI of the ported legacy
application. The goal of the first migrating activity, described in Chapter 6,
“Migrating the Legacy Application to AIX” on page 61, was to port the legacy
application to AIX with minimum programming effort, and with an identical user
interface. This approach might be used where one wished to avoid end user
retraining. The result of this effort, however, was a user interface that did not take
advantage of the capabilities of the AIXwindows system and that was quite
old-fashioned in its look-and-feel.

Our next step was to develop a new user interface for the legacy application, that
was based on modern human factors principles and object-oriented program design
considerations. This chapter looks at our design decisions, how we implemented
them and how we used the tools that were integrated with SDE WorkBench/6000
while we improved our application's GUI.

7.1 Using SDE WorkBench/6000 and Integrated Tools to Improve the
GUI

Our GUI developer made use of the same tools as used earlier when creating the
first graphical user interface, except that we now chose to make use of the newer
version of AIXwindows Interface Composer/6000. We moved to AIC 1.2 at this
time because it offered us a chance to look at the impact that an increased degree
of integration with SDE WorkBench/6000 would have on the developer. It also
positioned us well to move on to the next phase of the project which would include
generating C++ code from AIC and reimplementing the COBOL in C++. An additional
benefit was that it gave us a chance to look at issues related to having multiple
tools in a single SDE WorkBench/6000 tool class operating on different hosts in our
development environment.

7.1.1 Multiple Tools in a Single Tool Class on Separate Hosts
As we mentioned earlier, AIC 1.2 was installed only on yellow, while the older
version was installed on bering. This was necessary because the newer version of
AIC generates code compatible only with the newer version of AIX, which was
installed on yellow. It was not surprising that AIC 1.2 would run only under the
newer version of AIX.

Installing two versions of AIC illustrates the situation where a development
environment needs multiple versions of the very same tool to support applications
that can run on multiple versions of a single operating system. It is very similar to
the situation where the development environment needs platform-specific tools of
the same type, because the application is targeted to run on platforms supplied by
different vendors. The compiler, link-editor, and debuggers, for instance, would be
unique to each vendor's platform. Though the source code might be identical, the
executable binaries would be uniquely generated for each platform.

To ensure a tool is run on a particular host, the SDE WorkBench/6000 user simply
specifies the execution host before starting up an instance of that tool class. If the
tool is host-scoped, it is possible to have multiple tools of the same class executing
simultaneously on different hosts in the environment. Data context can be

 Copyright IBM Corp. 1995 133

manipulated separately; therefore the same source files can be specified as input to
various compilers in the network, for instance, if the NFS underpinnings are
correctly implemented.

7.1.2 Remote Execution of AIC 1.2
Our GUI developer had to ensure that the host yellow was added to the
/etc/Xð.hosts file on sargasso, thereby enabling X Windows clients executing on
that remote host to display their output at the local X server instance. Then, while
remotely logged in bering where SDE WorkBench/6000 was run, our developer
brought up the Tool Manager - Start window. The developer specified yellow as
the execution host, and selected the UIBUILD class of tool. The windows
associated with starting AIC 1.2 through SDE WorkBench/6000 are shown in
Figure 88.

Figure 88. AIC 1.2 Started from SDE WorkBench/6000

 We were now able to take

134 How to Migrate and Enhance Your Legacy Applications

 advantage of the improved integration of AIC 1. 2 with SDE WorkBench/6000.
Our developer could, for instance, now invoke Program Editor directly from the AIC
1.2 widget property editor. AIC 1.2 also provided for BMS interactions with
Program Builder to run makefile files, and with Configuration Management class
tool. This created a richer, more powerful environment. Executing the SDE
WorkBench/6000 on bering, we could start up AIC 1.2 on yellow using Tool
Manager, and later AIC 1.2 would automatically cause Program Editor already
executing on bering to display a callback header file. Figure 89 shows this
situation. Notice that the WorkBench Development Manager window shows the
host on which the different types of tools are executing. Notice also that each tool
is operating in an independently specified data context. The editor text window is
operating on a file in /tmp on yellow, while Development Manager is operating in a
subdirectory of the / file SYSSTMT on bering.

Figure 89. Distribution of Various Tools among Multiple Hosts

 Chapter 7. Improving the Application's GUI 135

7.2 Redesigning our User Interface
In developing this second, improved GUI, we chose to follow the graphical user
interface standards defined by Common User Access (CUA). This section
introduces the principles of object-oriented user interfaces as defined by CUA. This
section describes how users move from one window to another, and shows the
contents of the new windows. The section also describes the various steps we
took to implement the callback subroutines required to link the windows together.

7.2.1 Graphical User Interfaces
 Different kinds of user interfaces for interactive applications are available, such as:

� Command-line interfaces, where the user has to type in commands to
communicate with the application

� Menu-driven interfaces, where the user follows a hierarchy of organized sets of
choices

� Graphical user interfaces, where the user points and clicks to visible elements
on the screen by using a mouse.

In order to have the same look-and-feel for multiple applications, various
organizations have suggested standards for user interfaces like IBM's CUA
definition. The CUA principles of user interface design are based on
object-oriented relationships. As a result, users of products with an interface
designed according to CUA should find these products easy to use and efficient.
The object-oriented structure of CUA also creates a working environment where
multiple objects can interact with one another, so the aspect of reuse becomes
important and boundaries that distinguish applications from one another are no
longer apparent. For more details about CUA refer to SAA Common User Access
Guide to User Interface Design or SAA Common User Access Advanced Interface
Design Guide.

The user interface design of the ported legacy application, as described in
Chapter 6, “Migrating the Legacy Application to AIX” on page 61, was totally based
on compliance with the existing ISPF maps. However, the second step of migration
as described in this chapter tries to implement a user interface based on CUA
principles. We tried to follow the object-oriented model of CUA and strictly follow
the object-action paradigm.

7.2.2 Window Contents and Application Flow
According to CUA guidelines we would have two different primary windows, one for
each class of objects the user manipulates with the application, namelyCustomers
and Payments. Each of these primary windows would have a scrolled list of
multiple objects, from which a single entry can be selected. Each primary window
would have a menu bar with one pull-down for class-specific actions, such as New,
Edit , or Delete and one pull-down for help functions.

The figure shown inFigure 90 on page 137 shows the two primary windows.

136 How to Migrate and Enhance Your Legacy Applications

Figure 90. The Primary Windows for the Improved GUI

In addition to the two primary windows, there is one secondary window for each of
these. This secondary window would show details for one object, and this
secondary window would not have a menu bar. Instead, window help is offered
through a push button at the bottom of the window. The figure shown in Figure 91
on page 138 shows the two secondary windows.

 Chapter 7. Improving the Application's GUI 137

Figure 91. The Secondary Windows for the Improved GUI

The first window presented by the application would show a list of customers, which
initially is empty.By entering search criteria, this list can be filled with entries. The
user can select one customer in the list and request either the detailed data for that
customer or the payments for that customer. In the latter case, the primary
Payments window would be displayed with a list of payments made by the
previously selected customer. The user can quit the application by selecting Close
from the window menu button in the title bar of the Customers or Payments
window.

The Customers and Payments windows look similar to each other, as do the
Customer Details and Payment Details windows.The menu bars, pull-downs, and
push buttons also look similar on the two different windows. The learning effort for
users is minimal, because users can work with different classes of objects in the
same way. In addition, the GUI implementation of these objects, Payment and
Customer, can be reused in another application, because there is no dependency
on a specific application logic in the user interface code.

So, even this small example shows the advantage of a user interface based on
CUA.

138 How to Migrate and Enhance Your Legacy Applications

7.3 User Interface Implementation
This section shows the various steps we took to implement the windows we just
described and illustrated.

7.3.1 Conventions and Files
The naming conventions we used during development of the improved GUI was
very similar to the ones that we used when we developed ISPF-like GUI. These
are described in 6.2.1, “Selecting Directory Organization and Naming Conventions”
on page 69. We decided to have one directory for each of the windows, and
named these directories after the window title. Thus, we created these four
directories for the improved GUI:

 � Customers
 � CustomerDetails
 � Payments
 � PaymentDetails

 Each of these directories contained the interface file for the window that we
generated using AIC 1.2. We chose the names of the AIC interfaces to be identical
to the names of the windows:

 � Customers.i

 � CustomerDetails.i

 � Payments.i

 � PaymentDetails.i

We created one callback C source file for each interface.We appended the string
Callbacks. to the window name and then added the .c file type extension:

 � CustomersCallbacks.c

 � CustomerDetailsCallbacks.c

 � PaymentsCallbacks.c

 � PaymentsDetailsCallbacks.c.

Again, we made widget names unique for all widgets in all the interfaces. Valid
widget names began with the window name. For example:

 � CustomersCustomerName

or

 � CustomersSearchPushButton

We named the callback functions after the corresponding widgets and appended a
string identifying the type of callback.For example:

 � CustomersCustomerNameModifyVerifyCallback

or

 � CustomersSearchPushButtonActivateCallback.

The only parameter that was passed to each callback was the ID of the
corresponding widget.

To enable early compiler checks, and to detect typing errors as early as possible,
we also decided to collect the function declarations of all callbacks for each window
into a separate header file.We named these header files the same as the

 Chapter 7. Improving the Application's GUI 139

corresponding C source files that implemented the callbacks, except that we
replaced the .c with a .h:

 � CustomersCallbacks.h

 � CustomerDetailsCallbacks.h

 � PaymentsCallbacks.h

 � PaymentsDetailsCallbacks.h.

We also decided to have AIC generate a header file for each generated interface.
We did this by setting the Aic.includeFile resource to True as shown in Figure 146
on page 222. For more information on the AIC resource file, refer to Installing and
Configuring AIC, Version 1.2.

For the four windows that were implemented as an AIC interface, we created three
source files each, and AIC generated an additional include file and a C source file.
For example we had the following five source files for the Customers window:

Customers.i AIC interface source file for the Customers
window

Customers.h Include file generated by AIC with a structure
definition for the interface

Customers.c C source file generated by AIC for the Customers
interface

CustomersCallbacks.h Extern declarations of the callbacks for Customers
CustomersCallbacks.c Implementation of the callbacks for Customers

After these conventions were defined, we started the design of the windows for the
improved GUI.

7.3.2 Design and Implementation of the Windows Using AIC 1.2
The process of designing the windows shown inFigure 90 on page 137 and
Figure 91 on page 138 using AIC 1. 2 is similar to that described in 6.2.2, “Design
of the Windows Using AIC” on page 76. We followed the same naming
conventions for the improved GUI as we did for the initial implementation of the
GUI. Because we designed four windows for the improved GUI, we had four files
implementing the callbacks and four header files. These header files contained the
extern declarations for the functions implemented in each corresponding callback
source file. AIC 1.2 generated a header file along with a C source file for each
interface, and we had one interface for each window. Thus, we had four source
files associated with each window.

As described in 6.2.3, “Implementing the Callbacks” on page 80, we invoked
Program Editor and edited the callback source and header files one after another.
Because the improved GUI's windows contain menu bars and push buttons, several
callbacks needed to be implemented. The calls to the COBOL code that contained
the application logic and accessed the database were already in the callbacks of
the ISPF-like GUI. These calls just had to be moved into these callbacks.

Figure 92 on page 141 shows a snippet of the callback header file for the
Customers window. Figure 93 on page 142 shows a snippet of the callback
source code. In both figures, we show the use of Program Editor, invoked from
Development Manager, to edit the files.

140 How to Migrate and Enhance Your Legacy Applications

Figure 92. Editing the Header File for CustomerCallbacks.h

As shown in Figure 92 there are activation callbacks as well as cascading
callbacks implemented. We wanted to use the cascading callbacks to set some
push buttons to insensitive when there is no item in the list and when there is no
item selected.

 Chapter 7. Improving the Application's GUI 141

Figure 93. Editing the Callback Implementation for CustomerCallbacks.c

As we did for the ISFP-like GUI, we saved the files when editing was complete, and
started Program Builder using Tool Manager. In this case, it would not matter
which execution host we specified for Program Builder, so long as it had access to
the files specified as its data context through proper NFS underpinning. Figure 94
on page 143 shows, how Program Builder was started on yellow with a data
context of the /ad/projectA_proto/source/c/ImprovedGUI/Customers/ on the host
bering and a build target of CustomersCallbacks.o. The source file was actually on
bering, but made available through NFS to Program Builder which looked for it by
prefixing the file's path name with /nfs/bering/.

142 How to Migrate and Enhance Your Legacy Applications

Figure 94. Compiling CustomerCallbacks.c on the Host yellow

After all the callbacks had been implemented and compiled successfully, Program
Builder was started to link all intermediate files and to create an executable
program. Program Builder had to link the four compiled files generated by AIC, the
callback files we implemented, and all the libraries that are required for the
prerequisite software products and for system functions.

 Chapter 7. Improving the Application's GUI 143

144 How to Migrate and Enhance Your Legacy Applications

Chapter 8. Object-Orientation of Our Legacy Application

This chapter describes our effort to convert the legacy application into an
object-oriented program. It describes the design of the application class hierarchy,
and highlights how this code interfaces with both the DB2/6000 database and the
code generated by AIC. It also discusses how we used AIC 1.2 to generate C++

code and integrate that generated code with the application logic. This chapter
begins by taking a look at the ongoing development of objected-oriented technology
and the relationship between it and the evolution of user interface programming.

8.1 Using SDE WorkBench/6000 and Integrated Tools for
Object-Oriented Development

One of the original goals of the project was to see how well SDE WorkBench/6000
and the integrated tools supported object-oriented development. We found that the
C++ programmer interacted with SDE WorkBench/6000 and most of the standard
integrated tools in the same manner as the C programmer, deriving exactly the
same benefits and advantages we have already described.

The edit, compile, and debug process for the C++ developer differs very little from
the process for the C developer. Program Editor recognizes C++ source code
keywords and lexical symbols just as it does with C source code. The XL C++

compiler does, however, include a graphical class browser that the C compiler does
not require. Program Builder works identically. Program Debugger enables C++

source level debugging, just as it does for C. In 9.3, “Tailoring SDE
WorkBench/6000 for C++ Programmers” on page 207 we describe how we
customized SDE WorkBench/6000 for our C++ developer.

The basic use of AIC 1.2 to design an interface does not change significantly
whether AIC is used to generate C or C++ source code. There are increased
benefits derived from the improved integration of AIC 1.2 with SDE
WorkBench/6000. The programmer must learn how AIC defines classes and
methods, and how to write C++ application code that is integrated with the GUI
acceptable to AIC's C interpreter. A few things are different in setting up AIC 1.2 to
generate C++ source code. This chapter focuses on these differences.

In 9.5, “Tailoring AIC” on page 221, we describe how we tailored AIC 1.2. In 9.4,
“Tailoring SDE WorkBench/6000 for AIC Programmers” on page 212 we describe
how we customized SDE WorkBench/6000 for an AIC developer. Finally, we
discuss how our GUI developer gained accesss to AIC 1.2 across the network in
7.1.1, “Multiple Tools in a Single Tool Class on Separate Hosts” on page 133.

8.2 Object-Oriented Technology and Graphical User Interfaces
Object-oriented technology is not just a new way of extending current software
development technology—it is conceptually different. Object-oriented technology
was developed in response to difficulties encountered by software engineers and
programmers as the problems they attacked and the solutions they devised
became increasingly larger and more complex, had increasingly rigorous reliability
requirements, and became unacceptably expensive. The development and
acceptance of object-oriented programming is linked with the concurrent evolution

 Copyright IBM Corp. 1995 145

of graphical user interfaces. This section briefly examines this relationship and the
development of both technologies.

8.2.1 Classes and Objects—the Basic Building Blocks
Objects are the basic building blocks of object-oriented programming. Software
entities are built of objects, and can also be an object. An object is a collection of
data and application program code that operates on that data. Objects are sent
messages requesting that they perform a particular functionality of which they are
capable. Objects model reality, in that the programmer, or software, that utilizes an
object is not required to “know” how the object performs its function, simply how to
request the performance. For example, a TV is an object. It “knows” how to
display a picture, change a channel, show the time, and other such operations. To
use a TV, we do not have to know or understand how it works; we only need to
know how to issue a simple set of commands.

A class is a generalization, of which an object is an instance. It is used to
generalize the characteristics common to all of its instances. If, for example, we
wanted to gather information about different characteristics of operating systems,
we would establish a class, operating system. Then, we would be able to
manipulate objects representing AIX, OS/2, VM, MVS, and MS-DOS as
instances—objects—of this class, and we would be able to treat them uniformly
regardless of their differences.

8.2.2 Evolution of User Interfaces
One of the first and most successful uses of the object-oriented paradigm has been
with the software technology that made graphical user interfaces possible. Having
a GUI is fast becoming an absolute requirement for new applications under
development. Many older applications are being given a modernized look-and-feel
with the addition of a GUI. GUIs have evolved from very primitive and much less
successful user interfaces. Their evolution provides an excellent example of the
successful application of object-oriented programming principles to software
engineering.

The first computers had very poor user interfaces. Commands were issued in
batches on punched cards, and results were presented on paper printouts. With
the appearance of terminals, user interfaces became interactive. A program issued
a message, waited for a user to respond, and reported the result back to the user.
Such “command-line dialogs” were repeated over and over again.

Command-line interfaces were replaced by screen-based user interfaces. These
screens had input and output fields in fixed positions on the screen. They had a
fixed position on the screen where messages to the user could be displayed, and a
fixed position where commands could be entered also. The cursor moved among
these fields to indicate to the user where input was currently being accepted.

As applications became more complex, a single screen was found to be too small
to hold all of the fields an application might need. But it was also discovered that
for a specific user interaction, the application did not need to have all possible fields
displayed simultaneously. Character-based windows were created as a way of
dividing the total number of fields into appropriate subsets for given user
interactions. Programmable function keys were created to replace numerous and
complicated sets of commands. Function keys also provided mechanisms for
moving the cursor among various fields and for moving between the various

146 How to Migrate and Enhance Your Legacy Applications

windows. The combination of alphanumeric and programmable function keys,
along with character-based screens, provided a simple repertoire of mechanisms
for developing user interfaces. Although simple for the programmer to code, they
were difficult for the application user to use.

With the introduction of the mouse (and other types of pointing devices) and the
graphical (all-points-addressable) display screen, it became possible to develop
graphical user interfaces. GUIs were quickly found to be both intuitive and easy to
use. Through a GUI, the programmer could facilitate user interactions with
applications that model real-life objects and actions on these objects.

Virtual desktops—populated with icons, windows, and dialog boxes— were
developed. Icons, visual metaphors of reality, were designed to mimic real objects,
not only visually, but functionally as well. The user could now use the mouse to
push a graphical representation of a push button to change the state of some
object. The user could also use the mouse to drag an icon representing a file
folder across a virtual desktop to another icon representing a trash can and then
drop it to indicate its removal. The icon representing a printer “knew” how to print a
document when an icon representing that document was dropped on it.

The advent of GUIs offered many more choices than before in application user
interface engineering, but it also presented the programmer with more complex and
difficult challenges. One challenge was the proliferation of variety in GUIs being
developed. Each new GUI was developed from scratch, borrowing design
principles but not reusing code from other GUI examples in the developer's
experience. GUIs were created for specific operating systems and for specific
flavors of a common operating system, UNIX. This created the need for
standardization of both the visual vocabulary (types of visual objects and their
associated behaviors) and of the broader grammar (“look and feel”) of GUIs.

Efforts at MIT** to develop the X Window System and Project Athena, or at OSF to
popularize and widely distribute OSF/Motif were undertaken consciously to
eliminate this chaos. The visual objects were organized into hierarchies whereby
complex objects were built up from (or derived from) less complicated objects, and
could be presumed to inherit qualities from their predecessor objects. Style guides
were developed to ensure that developers made appropriate use of the objects
provided in the GUI libraries.

This trend assured reusability and portability, and enabled the GUI developer to
concentrate on the needs of the application, instead of developing the mechanics of
graphically presenting and accepting information.

Another challenge was the inherent difficulty in programming an application's GUI,
even when using a standard library of GUI subroutines and advised by a style
guide. GUI code is characterized by long and complicated variable and function
naming conventions, a complex hierarchy of objects, and it turns the traditional
program structure inside out. While the traditional program's flow of control is
envisioned as one in which the application logic is at the core, and the user
interface code fragmented at the extremities of logic paths, the typical graphical
application consists of a central event-driven user interface loop, with the program
logic fragmented at the extremities.

Because of these challenges, GUI programming did not really begin to spread until
GUI builders were developed. GUI builders are tools that allow the developer to

 Chapter 8. Object-Orientation of Our Legacy Application 147

design the GUI visually and interactively, and then generate automatically the
complex and difficult source code that implemented the design. GUI builders
eliminated much of the difficulty of programming GUIs. Typically, GUI builders
generate C source language because the underlying GUI libraries of which they
make use were implemented in C. Most of the newly developed applications being
developed for the open systems platforms were also being written in C; so this was
an obvious language choice for the vendors developing GUI builders.

8.2.3 GUIs Demonstrate Object-Oriented Principles
The modern GUI demonstrates several characteristics that are considered
hallmarks of object-oriented programming:

� Modelling of a realty in software
� Clustering together functions (behavior) with visual entities (appearance)
� Class hierarchies from which instances are created
� Inheritance of characteristics from base classes
� Communication between objects

Likewise the maintainability, reusability, and manageability of the GUI software has
focused attention on its underlying object-oriented nature.

8.2.4 Object-Oriented Application Development and GUIs
Object-oriented languages evolved in parallel with, but independently of, GUI
technology. One object-oriented language, C++, has gained the widest acceptance.
This language is highly compatible with C, the language in which most of the GUI
libraries and application code has been written.

The accepted superiority of GUIs over traditional user interfaces proved that
significant benefits could be derived from the object-oriented programming
principles, though neither GUI libraries nor GUI code was typically written in an
object-oriented language. This proof was not sufficient to cause the widespread
introduction of object-oriented languages, or even object-oriented practices with
traditional languages, however. The bulk of commercial, technical, and scientific
application programming continued along traditional lines, using non-object-oriented
technology. Meanwhile, object-oriented methodologies, design tools, language
products, and databases continued to mature and proliferate.

As programmers came to understand object-oriented principles, they began to
recognize that combining an object-oriented GUI component with a
non-object-oriented application code and data component creates difficulties for the
programmer and strains the object-oriented paradigm of the GUI technology. They
concluded that these difficulties were only going to be resolved by extending the
object-oriented paradigm to the application logic itself.

Vendors of GUI builders reached this same conclusion and began recently to make
their GUI builders capable of generating C++. For the first time it became practical
to easily generate GUI code and application logic code in the same object-oriented
language, C++. Even though the underlying GUI libraries are still implemented in C,
implementing the application's GUI in C++ makes very good sense from this
perspective.

AIC 1.2 can generate C++ source code from the same GUI design information, from
which it generates C source code. This makes it possible to take an existing
interface design, regenerate the GUI code in C++, and link it with a new application

148 How to Migrate and Enhance Your Legacy Applications

logic written also in C++. How to integrate the C++ GUI code generated by AIC 1.2,
with application code written by ourselves in C++, was a central question we wanted
to explore in this last phase of our project.

8.2.5 Continuing the Evolution of Object-Oriented Technology
As more object-oriented applications have been developed, the problems
encountered integrating object-oriented applications with non-object-oriented
operating systems has pointed out the need for inherently object-oriented operating
systems. In theory, object-oriented applications should be built of objects, which
themselves should be built of objects, and so on. As more and more objects are
built, greater and greater numbers of applications can be built from reused objects
in the application's execution or compilation environment. The fundamental objects
used in this process should be the operating system resources on which all
applications depend.

However, the object-oriented nature of applications currently being written break
down at the level of operating system calls and subroutines. The interface to the
traditional operating system services is not one of objects, but of traditional
non-object-oriented programming.

IBM and other operating system vendors recognizing this have made investments
in the development of object-oriented compiler and operating system technologies.
The development of System Object Model (SOM) and Distributed System Object
Model (DSOM) support in compilers, within a single operating system and across
network environments, is a first step in this direction. The Taligent effort, an
attempt to build a commercial operating system from the ground up using
object-oriented technology, is the logical extension of this technology. When an
application executes in an object-oriented operating system environment, such as
Taligent promises, it will access operating system resources in exactly the same
manner as it accesses other program resources.

Successful, large-scale code reuse can be achieved only when programmers can
build applications from preexisting objects in the object-oriented operating
environment. This will be possible only when object-oriented operating systems
come onto the market. Object-oriented operating systems represent the future
direction of software engineering, according to many experts today. Once
object-oriented operating systems are in place, the evolution of object-oriented
technology will have reached the point where all of the benefits promised by the
technology can be realized.

Table 4 on page 150 summarizes the characteristics of object-oriented systems at
different stages of their evolution. Three layers—A, B, and C—denote three distinct
components of software products as we perceive them today:

 � A—GUI
� B—data and application code
� C—operating system interface.

As systems move toward inherently object-oriented systems, the layers as such
disappear, and their function becomes incorporated in objects, thus simplifying the
programming paradigm and making it more powerful for developers and users alike.
By redesigning our application in C++ and using AIC/6000 to generate its GUI, we
intended to advance our legacy application along this evolutionary path as far as it
could go, until it can be rehosted on an object-oriented operating system.

 Chapter 8. Object-Orientation of Our Legacy Application 149

Table 4. Evolution of Object-Oriented Systems

Non-Object-Oriented Object-Oriented GUI Object-Oriented
Applications

Inherently
Object-Oriented

Legend: A - GUI, B - data and application code, C - operating system interface

No notion of objects in
application.

Objects are distinctive
only in GUI part of
application.

Objects are part of
application.

Objects are part of object
space.

All communication has to
be hard-coded into
application (for example,
by means of shared
memory, sockets, and
other communication
mechanisms).

GUI enables “primitive”
interobject
communication (for
example cut-and-paste
between different fields).

Interobject
communication among
objects in same
application is possible
and easy, but it is more
difficult among objects
from different
applications (for example
drag-and-drop of icons,
fields).

Interobject
communication always
possible and easy.

Application must store
execution data in flat files
or databases.

GUI objects are mapped
to data structures, and it
is the application's
responsibility to store
data in either flat files or
databases.

Objects are transient,
they exist only during
execution of the
application, and it is the
application's
responsibility to store
data about objects from
one execution to another
in flat files or databases,
or to store objects in an
object-oriented database.

Objects are persistent;
they take care of all the
data they need, as long
as they exist in the
object space.

Code reuse by means of
developing and using
common libraries.

Code reuse of GUI
elements.

Code reuse of classes in
different applications.

Code reuse is the way of
developing new objects.

8.3 Our Object-Oriented Design Effort
We did not start out from scratch designing an object-oriented application. We
accepted several constraints on our development effort, including
non-object-oriented interfaces to the operating system, to our data base through the
DB2 CLI for C, and a desire to reuse the improved GUI design that we had just
itegrated with the existing COBOL application logic. We also did not have the time
to completely reanalyze the customer's complete problem domain, nor did we set
out to design and develop a generalized application that might be independent of
its underlying database and operating system technology.

Our effort illustrates a practical approach to gradually incorporating object-oriented
principles and technologies with an existing application heritage. It addresses

150 How to Migrate and Enhance Your Legacy Applications

several issues related to the use of AIC to generate GUI code in C++ and link that
GUI code with separately developed C++ application code.

This section explains the fundamental design we used to restructure the legacy
application on an object-oriented model. It also explains the decisions we made
about the design and hierarchy of the application classes. Additionally, it shows
how the code, generated by AIC, was combined with new code we wrote to replace
the COBOL code.

8.3.1 Our Base and Derived Classes (Class Hierarchy)
Figure 90 on page 137 and Figure 91 on page 138 are pictures of what users of
our Improved GUI application will see on their screens. The four windows,
Customers, Customer Details, Payments, and Payment Details, focus the user's
attention on two types of entities: customer and payment. These represent the
classes of objects that the users of our application are familiar with from their work.
The Customer and Payment windows present the user with limited information
about several objects in each class. The Customer Details and Payment Details
windows show only one object of each class, but show all the characteristics of that
object. From these windows, users perform actions on these objects in a
predefined number of ways. From this perspective, our enhanced GUI is
object-oriented. Therefore, we decided to use the objects defined in the GUI
design as a basis for our design of an object-oriented version of this application.

From the point of view of AIC, a project represents a set of interfaces. The code
AIC generates to implement these interfaces constitutes the application. Each
interface represents a type of window. The interface is implemented as a unique
class in the C++ source code that AIC generates.

In the simplest case, all the application logic is embedded within each interface,
tied to the callback functions that define the behavior of the widgets in the interface.
When an object of that class is instantiated, an actual window appears on the
screen. Multiple windows of the same interface can be displayed at one time;
therefore there can be multiple instances (objects) of a given class, each more or
less self-contained (data and functionality).

In a more complex case, the developer would want to have the user interface and
the application logic separated and independent of one another. There are several
reasons for this, including:

� The GUI and application logic can be developed and tested independently of
one another.

� The GUI is reusable with other applications.
� The application logic is reusable with other GUI implementations.
� Maintenance of the GUI and application are simplified.

In this case, the developer would not embed application logic by means of the
callback functionality in the interface. Instead, the developer would embed
debugging functionality in the GUI, so the GUI code could be tested independently.
The developer would create one base class implementing the application logic
corresponding to each base class (interface) in the GUI. Non-GUI test programs
would be coded for testing these application logic classes. One application class
would be written for each interface that derives from the two base classes
corresponding to that interface. The two base classes “know” nothing about each
other, but the application class—derived from each of these base classes—can

 Chapter 8. Object-Orientation of Our Legacy Application 151

make use of data and methods (functionality) inherited from them both. The
derived class can also override these inherited methods, creating unique
functionality that neither base class exhibits. The “application” would consist of a
set of these derived classes, one for each interface in the project.

We chose to follow the second strategy, which is suited for a larger scale
development effort than our three-person project, because it gave the potential to
reap more of the benefits promised by object-oriented technology.

Our Improved GUI design, consisted of four interfaces which corresponded to the
Payments, Payment Details, Customers and Customer Details windows. The
design included four application classes:

 � Payments
� Payment (Payment Details)

 � Customers
� Customer (Customer Details).

Each of these application classes were derived from one of four unique GUI base
classes:

 � PaymentsGUI
� PaymentGUI (Payment Details)

 � CustomersGUI
� CustomerGUI (Customer Details)

and from one of four unique application logic base classes:

 � PaymentsApp
� PaymentApp (Payment Details)

 � CustomersApp
� CustomerApp (Customer Details).

Figure 95 on page 153 illustrates the relationship between the base, derived, and
component classes implementing the Payment Details and Customer Details
windows. This illustration, based on Coad-Yourdon notation conventions, shows
that the application class Payment is derived from the GUI base class PaymentGUI
and from the application logic class PaymentApp. It also shows how the derivation
of the application class Customer similarly. These GUI base classes, defined in the
C++ source code that was generated by AIC, are named slightly differently in the
actual source code. The application logic base classes, implemented in C++ source
code by our developers, are named exactly as shown in the illustration. The
application classes that derive from the base classes, implemented by our
developers in C++, are also named exactly as shown.

152 How to Migrate and Enhance Your Legacy Applications

Figure 95. The C++ Implementation Class Hierarchy

8.3.2 Other Relationships between Objects
Now that we have chosen classes and defined a class derivation hierarchy for our
application, we need to examine other relationships among the classes of our
application. The relationship between classes follows the relationship between the
real life entities they represent. For instance, one customer can make many
payments, but a given payment can only be made by a single customer.

Figure 96 on page 154 illustrates this entity relationship, using Coad-Yourdon
notation conventions.

 Chapter 8. Object-Orientation of Our Legacy Application 153

Figure 96. The Relationship between Customer and Payment Classes

 8.3.3 Component Classes
Other classes were also required to implement our application. These classes
enabled the application logic classes, but were not be in any way unique to the
specific application logic classes. Called “component” classes, these classes are
often general purpose and can be reused by other application logic classes.

We contemplated two categories of component classes in designing our
object-oriented version of this application. The most necessary category was a set
of classes with which to wrap object-oriented code around the DB2 CLI for C. The
second category was a set of classes with which we could describe the data stored
within the database.

In 8.4, “Our DB2/6000 Object-Oriented Interface” on page 155 we discuss the
classes we implemented to access DB2/6000. These classes are illustrated in
Figure 95 on page 153. The relationship between these component classes and
the application logic classes is not always as direct and easy to illustrate as the
hierarchical relationship between base and derived classes. In the following
paragraphs we describe other candidates for component classes that we chose not
to implement.

Figure 96 shows attributes associated with the two classes. Some attributes have
similar characteristics and can be grouped accordingly:

Character strings First name, Last name, Street, City, Mail ID, Source
code, Customer name

Numerical values ZIP code, Reference no, Customer number, Amount

Dates Last activity, Address change, (Payment) Date.

Such grouping indicates possible classes (component classes) from which
Customer and Payment classes could be built. Classes like characterString and
Date are good examples of component classes — building blocks for other classes.
This type of class would typically be found in general purpose class libraries.
These would be purchased commercially, or developed in-house, if significant reuse

154 How to Migrate and Enhance Your Legacy Applications

on subsequent projects was anticipated. We did not feel an investment in this type
of class library was necessary for this project.

8.3.4 Object Behavior and Interactions in Our Application Design
At execution, an object of the derived class corresponding to the main window type,
or primary interface, of the project would be instantiated through execution of the
main module (generated by AIC 1.2). From the user's perspective, the main
window would be displayed when the program starts. Ensuing user actions would
trigger callback functions in this derived class that were inherited from its GUI class.
Callback functions, which affect GUI behavior, might also cause the execution of
application logic inherited from its application logic class, which in turn would result
in database query results being displayed.

Ultimately, callbacks could cause the dynamic instantiation of one or more objects
of the remaining derived classes. In other words, as a result of user interactions
with the main window, the database would be queried, results displayed, and
multiple copies of the remaining windows would be displayed as needed.

8.4 Our DB2/6000 Object-Oriented Interface
 One group of component classes that our application logic needed
 was a set of classes to provide an object-oriented interface to the DB2/6000
relational database. Developing this set of classes seemed a good investment
because it seemed likely to be reused on future projects, and it illustrated the
general problem of making a non-object-oriented programming interface available to
an object-oriented application. In the future, if all database access for our
applications were restricted to these interface classes, then any changes in our
database interface would be localized and we could prevent applications from being
affected by such changes. Similarly, to enable applications to make use of an
alternate database management system (DBMS), we would need only to provide a
set of such interface classes. Our applications would not require modifications.
With the growth of object-oriented systems, it is likely that such interface classes
soon will be provided either by database vendors themselves, or by third party
companies, specializing in development of class libraries.

The database interface classes we developed for DB2/6000 are:

dbserver This class is used to establish connection to the DB2/6000 server; to
allocate and initialize a communication area prior to the startup of the
application; and to do cleanup, freeing the DB2/6000 resources on
completion of the application.

dbstmt This class is used for preparing and executing DB2/6000 SQL queries
and making the results available to the application.

dberror If an error occurs during the DB2/6000 session, the appearance of an
object of this class contains detailed information about the error
condition, enabling the application to decide how to proceed.

 Chapter 8. Object-Orientation of Our Legacy Application 155

8.4.1 DB2/6000 C++ Classes
Classes for DB2/6000 services were built using the DB2 CLI for C. IBM
DATABASE 2 AIX/6000 Call Level Interface Guide and Reference explains in detail
how DB2 CLI works in the C environment. C++ is a superset of C; so it was easy
and straightforward to use the DB2 CLI for C in our C++ code.

Our choice of classes to encapsulate the DB2 CLI for C services was based on the
fact that some functions in the DB2 CLI for C are effective for an entire application,
whereas other functions are oriented toward single SQL statements. The class
dbserver encapsulates functions that provide services for the whole application (for
example, establishing and releasing the connection to DB2/6000). DB2 CLI for C
functions that provide SQL services are encapsulated in the dbstmt class. They all
have an SQL statement handle (a variable of SQLHSTMT type) as the first
parameter in their parameter list (except SQLAllocStmt, which allocates a new
statement handle).

Our encapsulated functions have the same names as the corresponding DB2 CLI
functions. The parameters are in the same order, except that parameters that are
known to the class are omitted.

For error handling, we have developed the dberror class, instances of which are
created and run when an error condition is encountered. All DB2 CLI functions
report their success or failure in their return code. Typical error codes and our
code's resulting actions are as follows:

SQL_SUCCESS No action; execution continues.

SQL_SUCCESS_WITH_INFO Print a message; execution continues.

SQL_NO_DATA_FOUND Print a message; execution continues.

SQL_ERROR Print a message; an exception is triggered and
the execution is interrupted.

SQL_INVALID_HANDLE This error should never occur. If it does, we
proceed as in case of SQL_ERROR.

Header comments from our code samples are not included in the figures because
they take up a lot of space, and are really not relevant to our discussion.

Names of all protected class members start with an underscore (_), so they can be
easily differentiated from publicly accessible members, names of which start with a
character.

 8.4.2 Class dbserver
This is a top level class used to connect our application to the DB2/6000 database.
The application needs at least one object of this class to connect to the database.
It was not clear to us, from our reading of IBM DATABASE 2 AIX/6000 Call Level
Interface Guide and Reference whether one such object is all that is needed, or
one is needed for each separate database instance that the application connects to
simultaneously. Resolution of this issue was not necessary for this project, as we
used only one database instance. The class declaration is shown in Figure 97 on
page 157.

156 How to Migrate and Enhance Your Legacy Applications

#ifndef dbserver_h

#define dbserver_h

#include "iostream.h"

extern "C" .1/
{

#include "sqlcli.h"

}

class dberror; .2/

class dbserver

{

 protected:

 typedef enum

 {

 NAME_LEN = 2ð,

 STATE_LEN = 6

 } _info;

SQLHENV _henv; // environment handle

SQLHDBC _hdbc; // connection handle

 SQLRETURN _rc; // return code

 SQLCHAR _server_name[NAME_LEN+1],

 _user_name[NAME_LEN+1],

 _password[NAME_LEN+1] ;

 public:

dbserver(const char\ serv_name,

const char\ user_name,

const char\ password) throw(dberror);

virtual ˜dbserver(void) throw(dberror);

SQLHENV get_henv(void) const;

SQLHDBC get_hdbc(void) const;

};

#endif

Figure 97. dbserver.h, dbserver Class Declaration

To use the DB2 CLI for C, the appropriate header file, sqlcli.h, must be included
in the source code. C++ enables C header files to be included, but it requires that
the include directive be enclosed in an extern "C" {} statement (.1/).

We need to make a forward declaration of the class dberror (.2/), to be able to
specify that an instance of the dberror class will be thrown in case an exception
occurs.

The implementation of the class dbserver is shown in Figure 98 on page 158.

 Chapter 8. Object-Orientation of Our Legacy Application 157

#include <stdio.h>

#include <iostream.h>

#include <iomanip.h>

#include <string.h>

#include "dbserver.h"

#include "dberror.h"

dbserver::dbserver(const char\ server_name,

const char\ user_name,

const char\ password) throw(dberror)

{

 strncpy((char \)_server_name,server_name,NAME_LEN);

 strncpy((char \)_user_name,user_name,NAME_LEN);

 strncpy((char \)_password,password,NAME_LEN);

_rc = SQLAllocEnv(&_henv); .1/

if(SQL_ERROR == _rc)

 throw(dberror(this,"dbserver::dbserver SQLAllocEnv"));

_rc = SQLAllocConnect(_henv,&_hdbc); .2/

if(SQL_SUCCESS != _rc)

 throw(dberror(this,"dbserver::dbserver SQLAllocConnect"));

_rc = SQLConnect(_hdbc, .3/
 _server_name,SQL_NTS,

 _user_name, SQL_NTS,

 _password, SQL_NTS);

 switch(_rc)

 {

 case SQL_SUCCESS:

 break;

 case SQL_SUCCESS_WITH_INFO:

cout << dberror(this,"dbserver::dbserver SQLConnect info").msg();

 break;

 default:

 throw(dberror(this,"dbserver::dbserver SQLConnect"));

 }

}

Figure 98 (Part 1 of 2). dbserver.C, dbserver Class Implementation

158 How to Migrate and Enhance Your Legacy Applications

dbserver::˜dbserver(void) throw(dberror)

{

_rc = SQLTransact(_henv,_hdbc,SQL_ROLLBACK); .4/

 switch(_rc)

 {

 case SQL_SUCCESS:

 break;

 case SQL_SUCCESS_WITH_INFO:

cout << dberror(this,"dbserver::˜dbserver SQLTransact info").msg();

 break;

 default:

 throw(dberror(this,"dbserver::˜dbserver SQLTransact"));

 }

_rc = SQLDisconnect(_hdbc); .5/

 switch(_rc)

 {

 case SQL_SUCCESS:

 break;

 case SQL_SUCCESS_WITH_INFO:

cout << dberror(this,"dbserver::˜dbserver SQLDisconnect info").msg();

 break;

 default:

 throw(dberror(this,"dbserver::˜dbserver SQLDisconnect"));

 }

_rc = SQLFreeConnect(_hdbc); .6/

if(SQL_SUCCESS != _rc)

 throw(dberror(this,"dbserver::˜dbserver SQLFreeConnect"));

_rc = SQLFreeEnv(_henv); .7/

if(SQL_ERROR == _rc)

 throw(dberror(this,"dbserver::˜dbserver SQLFreeEnv"));

}

SQLHENV dbserver::get_henv(void) const .8/
{

 return _henv;

}

SQLHDBC dbserver::get_hdbc(void) const .9/
{

 return _hdbc;

}

Figure 98 (Part 2 of 2). dbserver.C, dbserver Class Implementation

The constructor allocates resources (.1/, .2/) needed for the DB2/6000 connection
to work (.3/). In the destructor, the transaction is completed (.4/), the connection
is closed (.5/) and the resources are released (.6/, .7/). Member functions
(.8/,.9/) provide Read Only access to protected dbserver variables for clients that

 Chapter 8. Object-Orientation of Our Legacy Application 159

need to know them (for example, SQLError() function that is used in the dberror
class).

 8.4.3 Class dbstmt
Objects of class the dbstmt issue SQL requests and return results in C++ format.
Figure 99 shows the declaration for this class.

#ifndef dbstmt_h

#define dbstmt_h

extern "C" .1/
{

#include "sqlcli.h"

}

class dbserver; .2/
class dberror; .3/

class dbstmt

{

 protected:

 typedef enum

 {

 NAME_LEN = 2ð,

 STATE_LEN = 6

 } _info;

SQLHSTMT _hstmt; // SQL statement handle

 dbserver\ _dbserver; // pointer to dbserver object

 SQLRETURN _rc; // for return code

Figure 99 (Part 1 of 3). dbstmt.h, dbstmt Class Declaration

160 How to Migrate and Enhance Your Legacy Applications

 public:

dbstmt(dbserver \ds) throw(dberror);

virtual ˜dbstmt(void) throw(dberror);

void SQLAllocStmt(void) throw(dberror);

void SQLFreeStmt(SQLSMALLINT option=SQL_DROP) throw(dberror);

void SQLPrepare(SQLCHAR\ sql_string) throw(dberror);

 void SQLSetParam(SQLSMALLINT par_no,

 SQLSMALLINT par_type,

 SQLSMALLINT col_type,

 SQLINTEGER col_length,

 SQLSMALLINT par_scale,

 SQLPOINTER data_ptr,

 SQLINTEGER\ data_size) throw(dberror);

void SQLExecute(void) throw(dberror);

 void SQLDescribeCol(SQLSMALLINT col_no,

 SQLCHAR\ col_name,

 SQLSMALLINT col_name_buffer_size,

 SQLSMALLINT\ col_name_actual_size,

 SQLSMALLINT\ col_type,

 SQLINTEGER\ col_length,

 SQLSMALLINT\ col_scale,

 SQLSMALLINT\ col_nullable) throw(dberror);

void SQLNumResultCols(SQLSMALLINT\ num_col);

 void SQLBindCol(SQLSMALLINT col_no,

 SQLSMALLINT col_type,

 SQLPOINTER col_data_buffer,

 SQLINTEGER col_data_buffer_size,

 SQLINTEGER\ col_data_actual_size) throw(dberror);

void SQLFetch(void) throw(dberror);

Figure 99 (Part 2 of 3). dbstmt.h, dbstmt Class Declaration

 Chapter 8. Object-Orientation of Our Legacy Application 161

 void SQLGetData(SQLSMALLINT col_no,

 SQLSMALLINT col_type,

 SQLPOINTER col_data_buffer,

 SQLINTEGER col_data_buffer_size,

 SQLINTEGER\ col_data_actual_size) throw(dberror);

 void SQLRowCount(SQLINTEGER\ no_rows) throw(dberror);

};

#endif

Figure 99 (Part 3 of 3). dbstmt.h, dbstmt Class Declaration

We need to include the DB2 CLI include file (.1/), as well as forward declarations
for the dbserver (.2/) and dberror (.3/) classes to be able to use them in the
declaration.

Figure 100 shows the implementation for the dbstmt class. Due to the size, only a
couple of selected functions are included here—enough to illustrate wrapping of
DB2 CLI functions.

#include <stdio.h>

#include <string.h>

#include "dbstmt.h"

#include "dbserver.h" .1/
#include "dberror.h" .2/

dbstmt::dbstmt(dbserver\ ds) throw(dberror) : _dbserver(ds)

{

 SQLAllocStmt();

}

dbstmt::˜dbstmt(void) throw(dberror)

{

 SQLFreeStmt();

}

Figure 100 (Part 1 of 2). dbstmt.C, Selected Parts of dbstmt Class Implementation

162 How to Migrate and Enhance Your Legacy Applications

void dbstmt::SQLAllocStmt(void) throw(dberror)

{

_rc = ::SQLAllocStmt(_dbserver->get_hdbc(),&_hstmt); .3/

 switch(_rc)

 {

 case SQL_SUCCESS:

 break;

 case SQL_SUCCESS_WITH_INFO:

cout << dberror(_dbserver,"dbstmt::SQLAllocStmt info").msg();

 break;

 default:

 throw(dberror(_dbserver,"dbstmt::SQLAllocStmt"));

 }

}
...
...

void dbstmt::SQLBindCol(SQLSMALLINT col_no,

 SQLSMALLINT col_type,

 SQLPOINTER col_data_buffer,

 SQLINTEGER col_data_buffer_size,

 SQLINTEGER\ col_data_actual_size)

 throw(dberror)

{

_rc = ::SQLBindCol(_hstmt,col_no,col_type,col_data_buffer, .4/
 col_data_buffer_size,col_data_actual_size);

 switch(_rc)

 {

 case SQL_SUCCESS:

 break;

 case SQL_SUCCESS_WITH_INFO:

cout << dberror(_dbserver,"dbstmt::SQLBindCol info").msg();

 break;

 default:

 throw(dberror(_dbserver,"dbstmt::SQLBindCol"));

 }

}
...

Figure 100 (Part 2 of 2). dbstmt.C, Selected Parts of dbstmt Class Implementation

Include statements (.1/, .2/) are needed because if we have forward declarations
for classes dbserver and dberror in the dbstmt.h file, then full declarations are
needed so objects of these classes can be accessed (.3/) and constructed
(throw(dberror) statements). A call to SQLAllocStmt()(.3/) is preceded with a
double colon (::) to ensure that the global DB2 CLI function will be called, rather
then this member function where the call is made. This would result in an infinite
recursion, causing the application to fail. Since C++ differentiates functions not only
by name, but also by number and type of their parameter lists, in this particular
case, the infinite recursion problem would not have occurred. However, such a
practice does not pose any overhead for the application and makes the code more
readable.

 Chapter 8. Object-Orientation of Our Legacy Application 163

The reason dbstmt member functions do not need the SQL statement handle
(_hstmt) to be passed as a parameter is that the SQL statement handle (_hstmt) is
already part of the class and can simply be accessed by member functions that
need access to it, as shown in line .4/.

 8.4.4 Class dberror
Objects of the class dberror are created when an exception is triggered. The
declaration is shown in Figure 101.

#ifndef dberror_h

#define dberror_h

extern "C"

{

#include "sqlcli.h"

}

class dbserver;

class dberror

{

 protected:

 typedef enum

 {

 MSG_ID_LEN = 3ð,

 STATE_LEN = 1ð

 } _info;

 dbserver\ _dbserver;

 SQLRETURN _rc; .1/

 SQLCHAR _sqlstate[STATE_LEN]; .2/
 char\ _errmsg[SQL_MAX_MESSAGE_LENGTH+MSG_ID_LEN]; .3/
 SQLINTEGER _sqlcode; .4/
 SQLSMALLINT _errmsglen;

 public:

dberror(dbserver\ dbserver,const char\ init_text);

 virtual ˜dberror(void);

 const char\ msg(void);

};

#endif

Figure 101. dberror.h, dberror Class Declaration

The objects of the class dberror contain the following information returned by
DB2/6000:

� Return code (.1/)
� SQL state code (.2/)

164 How to Migrate and Enhance Your Legacy Applications

� Error message text (.3/)
� SQL code (.4/).

Figure 102 on page 166 contains the dberror.C file, where the dberror class is
implemented.

 Chapter 8. Object-Orientation of Our Legacy Application 165

#include <stdio.h>

#include <iostream.h>

#include <iomanip.h>

#include <string.h>

#include "dberror.h"

#include "dbserver.h"

dberror::dberror(dbserver\ dbserver,const char\ init_text) :

 _dbserver(dbserver)

{

 static SQLCHAR errmsg[SQL_MAX_MESSAGE_LENGTH+2ð];

 static SQLCHAR tmpmsg[SQL_MAX_MESSAGE_LENGTH+2ð];

 SQLSMALLINT errmsglen;

 SQLRETURN ret;

 sprintf((char \)_errmsg,"[%s]",init_text); .1/

ret = SQLError(_dbserver->get_henv(), .2/
 _dbserver->get_hdbc(),

 SQL_NULL_HSTMT,

 _sqlstate,&_sqlcode,errmsg,

 SQL_MAX_MESSAGE_LENGTH-1,

 &errmsglen);

 switch(ret)

 {

 case SQL_NO_DATA_FOUND: .3/
sprintf((char\)tmpmsg," SQLError - No error found\n");

 break;

 case SQL_SUCCESS: .4/
 case SQL_SUCCESS_WITH_INFO:

sprintf((char\)tmpmsg,"\nSQL state: %s SQL code: %d\n%s",_sqlstate,

 _sqlcode,

 errmsg);

 break;

 default: .5/

sprintf((char\)tmpmsg,"SQLError failed with rc= %d\n",ret);

 }

 strcat((char\)_errmsg,(char\)tmpmsg); .6/
}

dberror::˜dberror(void)

{

}

const char\ dberror::msg(void) .7/
{

 return (char\)_errmsg;

}

Figure 102. dberror.h, dberror Class Declaration

166 How to Migrate and Enhance Your Legacy Applications

In the constructor, the message is constructed by concatenating (.6/) the initial text
and (.1/) with the error codes and the text (.3/, .4/, or .5/) returned from the
SQLError() (.2/) DB2 CLI function.

The initial text (.1/) is passed as a parameter when dberror is created (when an
exception is thrown), to indicate in which module the exception has occurred.
SQLError() is a function that returns additional information about the error that has
occurred in one of the DB2 CLI functions. Being a DB2 CLI function itself, it can
fail or succeed, just like any other DB2 CLI function; so to ensure validity of
returned values its return code must be tested, and an appropriate message must
be created (.3/, .4/, or .5/). msg(void) (.7/) is a public member function that will
return the message.

8.5 Implementation Consideration and Organization
This section describes the various conventions we used for the names of
directories, files, and functions.

8.5.1 Conventions and Files
 We decided to put all the source files related to the C+ + activity into a separate
directory as we did for the PortedGUI and ImprovedGUI applications. We created a
new directory called C in the /ad/projectA_proto/source directory for this purpose.
(C++ source files have the extension of .C.)

Beneath /ad/projectA_proto/source/C we created a directory to hold the files
related to the GUI that we would design and generate with AIC 1.2. This was
named OOGUI. Beneath OOGUI we created one subdirectory for each interface.
Following our design, we named the interfaces and the sudirectories that would
contain their files:

CustomersGUI The primary window—the Customers window. It
showed search fields for Customer Name and
Customer Number, a Search push button, and a list of
Customers that matched the search criteria.

CustomerGUI A secondary window—the Customer Details window. It
showed all the fields for one customer.

PaymentsGUI A primary window—the Payments window. It showed a
list of Payments made by a particular customer.

PaymentGUI A secondary window—the Payment Details window. It
showed the detail fields for a particular payment.

 In the PortedGUI and the ImprovedGUI implementations, shown in 6.2.3,
“Implementing the Callbacks” on page 80 and 7.3, “User Interface Implementation”
on page 139, we implemented the callback code in a separate C source file so we
could use Program Editor, rather than the AIC editor, to create and maintain the
callback source code. Now, however, we wanted to generate C++ source code from
this interface. We moved the callbacks back into the interface file, so they could be
generated as member functions of the class that implemented this interface.
Fortunately, the improved integration of AIC 1.2 with SDE WorkBench/6000 now

 Chapter 8. Object-Orientation of Our Legacy Application 167

enabled us to use Program Editor with AIC. This meant there would be no callback
source files in the OOGUI subdirectories.

 We had AIC generate a header file for each interface and place
 them in the interface directories under OOGUI.

 Beneath /ad/projectA_proto/source/C we created an include to contain the
links to all the include files that we created in any directory containing C+ + source
files.

Beneath /ad/projectA_proto/source/C we created a main directory in which to
store the AIC project file, the generated C main program, and the associated
makefile.

Finally, beneath /ad/projectA_proto/source/C we created an app directory to hold
the source code files defining the application classes. Figure 103 shows the
Development Manager window after creating these directories in
/ad/projectA_proto/source/C/OOGUI.

Figure 103. The Subdirectories for the C++ Development Project

We should have gone on to create additional directories for the source
implementing the application classes, and the component classes for database
access. However, we were running out of time. Knowing that we would not be
able to implement the entire application in C++, we redirected our goals to include
proving the basic concepts of the design and exploring the GUI and application
code integration issues. Under these circumstances, we decided to create the
remaining C++ source files in the app directory.

Had we completed entire application, the following subdirectories containing these
files would have existed:

app The C++ source files, described in 8.7, “Implementation
of C++ Application Code” on page 174, implementing
the application classes and integrating the GUI with
them:

 � Customers.C

 � Customers.h

 � Payments.C.

168 How to Migrate and Enhance Your Legacy Applications

 � Payments.h

 � Customer.C

 � Customer.h

 � Payment.C.
 � Payment.h

 � aux.C

 � aux.h

app_logic The C++ source files, described in 8.7, “Implementation
of C++ Application Code” on page 174, implementing
the application logic classes:

 � CustomersApp.C

 � CustomersApp.h

 � PaymentsApp.C

 � PaymentsApp.h

 � CustomerApp.C

 � CustomerApp.h

 � PaymentApp.C

 � PaymentApp.h

component The C++ source files, described in 8.4, “Our DB2/6000
Object-Oriented Interface” on page 155, implementing
the classes that provided database access:

 � dbserver.C

 � dbserver.h

 � dberror.C

 � dberror.h

 � dbstmt.C

 � dbstmt.h

8.6 Implementation of the GUI Using AIC 1.2
The following sections describes the effort to implement the design of the windows
illustrated in Figure 90 on page 137 and Figure 91 on page 138 with C++. It
shows how we used AIC 1.2 to generate the GUI in C++.

8.6.1 Preparing AIC for C ++ Code Generation
We started SDE WorkBench on the yellow host, because AIC 1.2 was installed and
integrated with SDE WorkBench/6000 on that host. We then started AIC 1.2 using
SDE WorkBench/6000.

To set up our AIC environment for C++ development, we selected Code Generation
... from the Options pull-down in the AIC main window. In the resulting dialog box,
we selected C++ as the programming language, entered C for the C file suffix, and
chose to not use the Ux convenience library. We pressed the Apply push button
to activate these changes. We then selected Save Options... from the File
pull-down of the AIC main window to save these settings for future invocations of
AIC. For more information on code generation, refer to AIXwindows Interface
Composer Developer's Guide, Version 1.2.

 We had to make sure that the AIC interpreter used the path
/nfs/bering/ad/projectA_proto/source/C/include when it looked for include files.
We therefore added an entry to the AIC resource file that added this path name to

 Chapter 8. Object-Orientation of Our Legacy Application 169

the list of values associated with the variable Aic12.cflags. Modifying the AIC
resource file is described in 9.5, “Tailoring AIC” on page 221 and illustrated in
Figure 147 on page 222

8.6.2 Copying the OOGUI Interfaces from the Improved GUI Interfaces
For the ImprovedGUI, we had designed four interfaces:

 � Customers
 � CustomerDetails
 � Payments
 � PaymentDetails.

Because the callback and interface source files for these were stored in directories
of the same names, we did not have to create a new AIC project and design four
new interfaces to look exactly like those we had already designed for
ImprovedGUI. Instead we reused these existing interfaces.

First, we loaded the existing interface for the Customers window of the
ImprovedGUI into AIC. To do this, we selected Open... from the File pull-down. In
the resulting dialog box, we entered the complete path name of this interface file:
/nfs/bering/ad/projectA_proto/source/c/ImprovedGUI/Customers/Customers.i.
To complete the action, we pressed the OK push button. We repeated this
process, loading each of the remaining three interface files of the ImprovedGUI into
AIC 1.2.

Each interface file that we loaded contained the path name used by AIC when
saving the interface file. The interface file also contained the path name of the
directory in which the generated code files should be placed. These directories
were associated with the ImprovedGUI application. We, therefore, had to change
these path names to point to correct directories, such as
nfs/bering/ad/projectA_proto/source/C/OOGUI/CustomersGUI.

To do this, we performed the following steps for each of the interfaces:

1. Highlight the interface icon in the AIC Interfaces area.
2. Select Save Interface As... from the resulting pop-up menu.
3. Enter the new path name in the resulting dialog box.
4. Press the OK push button.
5. Press the right mouse button, again.
6. Select Generate Interface Code As.. from the resulting pop-up menu.
7. Enter the new path name in the resulting dialog box.
8. Press the OK push button.

For more information about working with interfaces, refer to AIXWindows Interface
Composer Developer's Guide, Version 1.2.

We next set the X Windows application class name of our project. The X Windows
application class should not be confused with a C++ application class. In X
Windows terminology, this is the name for a string that can be used to identify
resource values of widgets in the GUI of a particular application. This string is
prefixed to the X resource name when the resource's value is set in the .Xdefaults
file. This string can also be used to name an application-specific resource file in
which the resource values are set.

170 How to Migrate and Enhance Your Legacy Applications

To do this, we selected Program Layout... from the Edit pull-down of the AIC main
window and entered OOGUI in the Application Class text field. We then pressed
the Apply push button.

We set the name of the AIC project to OOGUI by selecting Save Project As... from
the File pull-down of the AIC main window. In the resulting dialog box we entered
the name OOGUI.prj. We pressed the OK push button to complete this action.

The resulting AIC windows are shown in Figure 104. The name of the project
OOGUI is reflected in the dialog title of the AIC main project window, which is the
lowest window in the figure. The default widget palette is being composed of all
OSF/Motif widgets as shown in the window at the right of the figure. The four
windows Customers, Payments, Customer Details, and Payment Details, as shown
in this figure, as drawn from the information in the interface files loaded into AIC.
They look just as they did in the ImprovedGUI version.

Figure 104. AIC 1.2 with the OOGUI Project

 Chapter 8. Object-Orientation of Our Legacy Application 171

8.6.3 Modifying the Callbacks
We now had to implement the callbacks of the four interfaces. As is shown in
Figure 89 on page 135, the callbacks for the ImprovedGUI version of our
application were implemented as C functions in external source files. Only a call to
each function was entered in the interface directly. Entering this call required our
using the AIC widget Property Editor. To write the actual function in C, we edited
the separate source file using Program Editor. This was illustrated in Figure 89 on
page 135.

We could reuse these C functions with the OOGUI version of our application if we
moved the source code back into the interface. AIC 1.2 would generate C++

wrapper code for these C language functions, turning them into private C++ function
members of the GUI classes.

We reused the C source code for the callback functions in the Customers window
by using these steps (see Figure 105 on page 173):

1. Highlight the Customers icon in the Interfaces area of the AIC main window
with the left mouse button.

2. Select Browser from the Edit pull-down.

3. Select the CustomerCustomersCascadeButton widget in the Browser window.

4. Select Property Editor... from the Edit pull-down of the Browser window.

5. Change the toggle button in the Widget Property Editor window to Behavior
rather than Core.

6. The Widget Property Editor displays the list of callbacks along with the
corresponding code. Scroll to the entry for the Cascading Callback, and press
the ... button right to the text field of that callback entry.

7. After the Callback Editor window is displayed, select Modify Code from the
Edit pull-down to invoke Program Editor.

8. Program Editor displays a source that line looks like this:

 CustomerCustomersCascadingCallback(UxWidget);

9. Set the context of Development Manager to the source directory of the code
that was implemented in the separate CustomersCallbacks.c source file for the
ImprovedGUI.

10. Select Edit from the Actions pull-down. A second instance of the Program
Editor window is displayed containing this source file.

11. Replace this call in the one file with the code from the second file, using the
Program Editor's cut-and-paste mechanism.

12. Close the second editor session by selecting Close from the File pull-down.
Figure 105 on page 173 shows the AIC and Program Editor windows that are
used at this point.

13. Save the changes to the first file and close Program Editor.

172 How to Migrate and Enhance Your Legacy Applications

Figure 105. Editing Callbacks for the OOGUI Project

We repeated these steps for each of the callbacks in the interfaces. For more
details on editing widget properties, refer to AIXwindows Interface Composer
Developer's Guide, Version 1.2. For more information on specifying callback
behavior, refer to AIXwindows Interface Composer Developer's Guide, Version 1.2.

We now had an AIC project identifying four interfaces each of which contained its
own callback logic. The source code that was generated from these interfaces had
no dependency on externally compiled functions. These callbacks did not contain
any application logic, however. They contained the functionality necessary to set
the sensitivity for push buttons in pull-down menus, and make calls to
UxPopupInterface and UxPopdownInterface in the activate callbacks for the
corresponding push buttons. This enabled testing the GUI without related
application logic or its access to the DB2/6000 database.

 Chapter 8. Object-Orientation of Our Legacy Application 173

8.6.4 Generating C ++ GUI and Building the Executable GUI
 To test the GUI stand-alone, we had to generate C++ code, generate a makefile,
and run that makefile. We decided to use the AIC code generation utilities for this
task.

 We selected Current Directory... from the Options pull-down of the AIC main
project window. In the resulting dialog box we set the current directory of AIC to
/ad/projectA_proto/source/C/main. We pressed the OK push button to complete
this action. We did not set the path to start with /nfs/bering. This was to
circumvent the problems with network file resolution that appeared when we used
AIC 1.2 together with SDE WorkBench/6000 as described in 9.4.6, “Integration
Restrictions and Their Circumventions” on page 220. For more information about
setting the current directory, refer to “Setting Default Options” in AIXwindows
Interface Composer Developer's Guide, Version 1.2.

 We selected Generate Project As... from the File pull-down of the AIC main
project window. In the resulting dialog box, we entered the project code directory
name. We set the options to generate the modified interfaces, the main file, and
the makefile. We also set the option to run the makefile. We pressed the OK push
button to complete this action.

AIC 1.2 started the Program Builder to run the generated makefile. For more
information about this, refer to Chapter 21, “Generating Code” in AIXwindows
Interface Composer Developer's Guide, Version 1.2.

 The generated OOGUI executable file was written to the
/ad/projectA_proto/source/C/main directory, and could be executed from there.

8.6.5 Saving the New AIC Interfaces
After we had tested the application code, we saved the project by selecting Save
from the File pull-down of the AIC main project window. We then quit AIC by
selecting Exit from the File pull-down.

8.7 Implementation of C ++ Application Code
This section shows how the base classes, implementing application logic, and
DB2/6000 services were used as building blocks for Customer and Payment
application classes. This section includes sample code that is important for further
understanding of the integration process.

 8.7.1 Class CustomerApp
Class CustomerApp provides the application logic for class Customer. This
application logic results in the appropriate data for the Customer Details window
being updated to or extracted from the application's database. Figure 106 on
page 175 shows the contents of CustomerApp.h file that contains the declaration of
CustomerApp class.

174 How to Migrate and Enhance Your Legacy Applications

#ifndef CustomerApp_h

#define CustomerApp_h

#include "dbstmt.h"

class CustomerApp

{

 protected:

 typedef enum

 {

 NUMBER_SIZE = 8,

FIRST_NAME_SIZE = 13,

 LAST_NAME_SIZE = 18,

 STREET_SIZE = 26,

 ZIP_CODE_SIZE = 5,

 CITY_SIZE = 2ð

 } _info;

 SQLINTEGER _customer_no; .1/
 SQLINTEGER _reference_no;

 SQLCHAR _first_name[FIRST_NAME_SIZE+1];

 SQLCHAR _last_name[LAST_NAME_SIZE+1];

 SQLCHAR _street[STREET_SIZE+1];

 SQLINTEGER _zip_code;

 SQLCHAR _city[CITY_SIZE+1];

 SQLINTEGER _address_change;

 SQLINTEGER _mail_id;

 SQLINTEGER _source_code;

 SQLINTEGER _last_activity;

 dbstmt _cust; .2/
 dbstmt _name;

 dbstmt _zip;

 public:

 CustomerApp(dbserver \dbsrv);

 virtual ˜CustomerApp(void);

void get_by_custno(int custno); .3/
SQLINTEGER reference_no(void) const;

friend ostream& operator<<(ostream& x, const CustomerApp& a);

};

#endif

Figure 106. CustomerApp.h, CustomerApp Class Declaration

In this declaration, storage is reserved for all data fields related to the Customer
Details window (.1/). This storage is made accessible only to the CustomerApp
and its derived classes. For each of the database tables we need to access there
is a corresponding dbstmt variable (.2/), which provides the database interface.

Public interface consists of three functions (.3/), in addition to the constructor and
the destructor:

void get_by_custno(int custno)

Initiates the retrieval of data about the person, whose
customer number is custno, from the database.

SQLINTEGER reference_no(void) const

Permits information about the reference number to be
available outside the class in Read Only mode.

 Chapter 8. Object-Orientation of Our Legacy Application 175

friend ostream& operator<<(ostream& x, const CustomerApp& a)

C++ output stream function for CustomerApp class.
Strictly speaking this is not a member function of a
CustomerApp class, but a friend operator function.
Nevertheless it is logically part of public interface for
CustomerApp class, and therefore mentioned here.

File CustomerApp.C contains implementation of CustomerApp class as shown in
Figure 107.

#include <stdio.h>

#include <iostream.h>

#include <iomanip.h>

#include <string.h>

#include "CustomerApp.h"

CustomerApp::CustomerApp(dbserver \dbsrv): .1/
 _cust(dbsrv),_name(dbsrv),_zip(dbsrv)

{

 static SQLINTEGER actsize;

 _cust.SQLBindCol(1,SQL_C_LONG,&_customer_no,sizeof(_customer_no),&actsize);

 _cust.SQLBindCol(2,SQL_C_LONG,&_reference_no,sizeof(_reference_no),&actsize);

 _cust.SQLBindCol(3,SQL_C_LONG,&_last_activity,sizeof(_last_activity),&actsize);

 _cust.SQLBindCol(4,SQL_C_LONG,&_address_change,sizeof(_address_change),&actsize);

 _cust.SQLBindCol(6,SQL_C_LONG,&_mail_id,sizeof(_mail_id),&actsize);

 _cust.SQLBindCol(7,SQL_C_LONG,&_source_code,sizeof(_source_code),&actsize);

 _name.SQLBindCol(2,SQL_C_DEFAULT,_first_name,sizeof(_first_name),&actsize);

 _name.SQLBindCol(3,SQL_C_DEFAULT,_last_name,sizeof(_last_name),&actsize);

 _name.SQLBindCol(4,SQL_C_DEFAULT,_street,sizeof(_street),&actsize);

 _name.SQLBindCol(5,SQL_C_LONG,&_zip_code,sizeof(_zip_code),&actsize);

 _zip.SQLBindCol(2,SQL_C_DEFAULT,_city,sizeof(_city),&actsize);

 }

 CustomerApp::˜CustomerApp(void)

 .2/
 {

 }

Figure 107 (Part 1 of 2). CustomerApp.C, CustomerApp Class Implementation

176 How to Migrate and Enhance Your Legacy Applications

void CustomerApp::get_by_custno(int custno) .3/
{

 static SQLCHAR tmp[SQL_MAX_MESSAGE_LENGTH+2ð];

sprintf((char \)tmp,"select \ from name where custno=%d",custno);

 _name.SQLPrepare(tmp);

 _name.SQLExecute();

 _name.SQLFetch();

 _name.SQLFreeStmt(SQL_CLOSE);

sprintf((char \)tmp,"select \ from cust where custno=%d",custno);

 _cust.SQLPrepare(tmp);

 _cust.SQLExecute();

 _cust.SQLFetch();

 _cust.SQLFreeStmt(SQL_CLOSE);

sprintf((char \)tmp,"select \ from zip where zipcode=%d",_zip_code);

 _zip.SQLPrepare(tmp);

 _zip.SQLExecute();

 _zip.SQLFetch();

 _zip.SQLFreeStmt(SQL_CLOSE);

 }

SQLINTEGER CustomerApp::reference_no(void) const

{

 return _reference_no;

 }

ostream& operator<<(ostream& x, const CustomerApp& a) .4/
{

x << setfill('ð')

<< setw(CustomerApp::NUMBER_SIZE) << a._customer_no <<

" "

<< setfill(' ') << setiosflags(ios::left)

<< setw(CustomerApp::FIRST_NAME_SIZE) << (char \)

a._first_name << " "

<< setw(CustomerApp::LAST_NAME_SIZE) << (char \)

a._last_name << " "

<< setw(CustomerApp::STREET_SIZE) << (char \)

a._street << " "

<< setfill('ð') << setiosflags(ios::right)

 << setw(CustomerApp::ZIP_CODE_SIZE) << a._zip_code <<

" "

<< setfill(' ') << setiosflags(ios::left)

<< setw(CustomerApp::CITY_SIZE) << (char \)

a._city << " "

<< a._address_change << " ";

 return x;

 }

Figure 107 (Part 2 of 2). CustomerApp.C, CustomerApp Class Implementation

In the constructor (.1/), instances of the dbstmt class are initialized with a pointer
to the instance of the dbserver class that was created earlier. The constructor also
uses the SQLBindCol() member function in three instances of the dbstmt class to
bind appropriate data members of the CustomerApp class to specific data fields in
the customer, name, and zip code tables. This is necessary to transfer data from
the database to the class data members.

If some resources, like database locks, were obtained during the lifetime of the
object, they would typically be released in the destructor (.2/). Since this was not
the case in our example, the destructor simply does nothing.

 Chapter 8. Object-Orientation of Our Legacy Application 177

Function void CustomerApp::get_by_custno(int custno) (.3/) issues SQL
requests to retrieve data from three different tables (name, cust, and zip) and
stores the results in C++ variables.

The operator << (.4/) produces a line of output. Typically it would be used for
debugging or producing tables.

 8.7.2 CustomerGUI
The CustomerGUI class was generated by AIC. Since it is one of the direct base
classes for Customer class, we needed to examine the generated source code and
determine how we would integrate it with the application class we would derive
from it. Figure 108 contains the CustomerGUI.h file—the declaration of
CustomerGUI class.

#ifndef _CUSTOMERGUI_INCLUDED

#define _CUSTOMERGUI_INCLUDED

#include <stdio.h>

#include <Xm/Xm.h>

#include <Xm/MwmUtil.h>

#include <Xm/MenuShell.h>

#include "UxXt.h"

#include <Xm/PushB.h>

#include <Xm/RowColumn.h>

#include <Xm/TextF.h>

#include <Xm/Label.h>

#include <Xm/Form.h>

#include <X11/Shell.h>

Figure 108 (Part 1 of 2). CustomerGUI.h, CustomerGUI Class Declaration

178 How to Migrate and Enhance Your Legacy Applications

class _UxCCustomerGUI: public _UxCInterface .1/
{

public:

 _UxCCustomerGUI();

 Widget _create_CustomerGUI(void);

protected:

 Widget CustomerGUI; .2/
 Widget form1;

 Widget label1;

 Widget label2;

 Widget label3;

 Widget CustomerDetailsFirstName;

 Widget CustomerDetailsLastName;

 Widget CustomerDetailsStreet;

 Widget CustomerDetailsZIPCode;

 Widget CustomerDetailsCustomerNo;

 Widget CustomerDetailsMailId;

 Widget label14;

 Widget CustomerDetailsCity;

 Widget label15;

 Widget CustomerDetailsReferenceNo;

 Widget label18;

 Widget rowColumn1;

 Widget CustomerDetailsOkPushButton;

 Widget CustomerDetailsCancelPushButton;

 Widget CustomerDetailsHelpPushButton;

 Widget CustomerDetailsSourceCode;

 Widget label2ð;

 Widget CustomerLastActivity;

 Widget label21;

 Widget CustomerLastAddressChange;

 Widget label4;

 Widget label5;

 Widget label12;

 .3/
void activateCB_CustomerDetailsOkPushButton(Widget, XtPointer, XtPointer);

 .4/
static void Wrap_activateCB_CustomerDetailsOkPushButton(Widget,

 XtPointer,

XtPointer);

 void activateCB_CustomerDetailsCancelPushButton(Widget,

 XtPointer,

XtPointer);

static void Wrap_activateCB_CustomerDetailsCancelPushButton(Widget,

XtPointer, XtPointer);

static void UxDestroyContextCB(Widget, XtPointer, XtPointer);

private:

 Widget _build();

 CPLUS_ADAPT_CONTEXT(_UxCCustomerGUI)

} ;

Widget create_CustomerGUI(void);

#endif

Figure 108 (Part 2 of 2). CustomerGUI.h, CustomerGUI Class Declaration

The first thing we noted was that the actual name for the CustomerGUI class is
_UxCCustomerGUI (.1/). The prefix _UxC is automatically attached by AIC. It is
important to use the actual name in C++ code, but for conceptual discussion it is
less confusing to use the name we have used so far—CustomerGUI and we will
continue to do so.

 Chapter 8. Object-Orientation of Our Legacy Application 179

Another thing worth noting is the naming convention for members of the
CustomerGUI—it is just the opposite of the naming convention we used for the
CustomerApp class. In this code, names of public members start with an
underscore (_) (so does the actual class name), while names of protected and
private members start with an alphanumeric character. This AIC convention
contradicts the convention widely encountered in the authors' experience. We
followed the more common C++ naming convention, using the leading underscore to
indicate a private and protected label in all the code we wrote ourselves.

All GUI elements, the X widgets, are declared (.2/), and so are the callback
functions (.3/ and .4/).
Notice that Wrap_activateCBCustomerDetailsOkPushButton() (.4/) is declared as
static, while activateCB_CustomerDetailsOkPushButton() (.3/) is not. The
significance of this is made clear when we examine the selected details of
implementation of the CustomerGUI class, shown in Figure 109.

#include <stdio.h>

#include <Xm/Xm.h>

#include <Xm/MwmUtil.h>

#include <Xm/MenuShell.h>

#include "UxXt.h"

#include <Xm/PushB.h>

#include <Xm/RowColumn.h>

#include <Xm/TextF.h>

#include <Xm/Label.h>

#include <Xm/Form.h>

#include <X11/Shell.h>

#include "CustomerGUI.h"

void _UxCCustomerGUI::activateCB_CustomerDetailsOkPushButton(.1/
 Widget wgt,

 XtPointer cd,

 XtPointer cb)

{

Widget UxWidget = wgt;

XtPointer UxClientData = cd;

XtPointer UxCallbackArg = cb;

 {

 UxPopdownInterface(UxThisWidget);

 }

}

Figure 109 (Part 1 of 3). CustomerGUI.C, Selected Parts of CustomerGUI Class
Implementation

180 How to Migrate and Enhance Your Legacy Applications

void _UxCCustomerGUI::Wrap_activateCB_CustomerDetailsOkPushButton(.2/
 Widget wgt,

 XtPointer cd,

 XtPointer cb)

{

 _UxCCustomerGUI \UxContext;

Widget UxWidget = wgt;

XtPointer UxClientData = cd;

XtPointer UxCallbackArg = cb;

UxContext = (_UxCCustomerGUI \) UxGetContext(UxWidget); .3/
 UxContext->activateCB_CustomerDetailsOkPushButton(UxWidget, .4/
 UxClientData,

 UxCallbackArg);

}

...

Widget _UxCCustomerGUI::_build()

{

// Creation of CustomerGUI

CustomerGUI = XtVaCreatePopupShell("CustomerGUI",

 topLevelShellWidgetClass,

 UxTopLevel,

 XmNx, 718,

 XmNy, 12ð,

 XmNwidth, 47ð,

 XmNheight, 59ð,

XmNiconName, "Customer ",

 XmNtitle, "Customer",

 NULL);

UxPutContext(CustomerGUI, (char \) this);

...

// Creation of CustomerGUIOkPushButton

 CustomerDetailsOkPushButton =

 XtVaCreateManagedWidget("CustomerDetailsOkPushButton",

 xmPushButtonWidgetClass,

 rowColumn1,

 XmNx, -4ð,

 XmNy, ð,

 XmNwidth, 76,

 XmNheight, 47,

RES_CONVERT(XmNlabelString, " Ok "),

XmNfontList, UxConvertFontList("rom1ð"),

 XmNnavigationType, XmTAB_GROUP,

 NULL);

XtAddCallback(CustomerDetailsOkPushButton, XmNactivateCallback,

 (XtCallbackProc) &_UxCCustomerGUI::Wrap_activateCB_CustomerDetailsOkPushButton,

(XtPointer) NULL);

UxPutContext(CustomerDetailsOkPushButton,(char \) this); .5/

...

return (CustomerGUI);

}

Figure 109 (Part 2 of 3). CustomerGUI.C, Selected Parts of CustomerGUI Class
Implementation

 Chapter 8. Object-Orientation of Our Legacy Application 181

swidget _UxCCustomerGUI::_create_CustomerGUI(void)

{

 Widget rtrn;

UxThis = rtrn = _build();

// Final Code from declarations editor

 return(rtrn);

}

_UxCCustomerGUI::_UxCCustomerGUI(void)

{

}

swidget create_CustomerGUI(void)

{

_UxCCustomerGUI \theInterface =

 new _UxCCustomerGUI();

 return (theInterface->_create_CustomerGUI());

}

Figure 109 (Part 3 of 3). CustomerGUI.C, Selected Parts of CustomerGUI Class
Implementation

Of particular interest are the two class member functions generated for every
callback function. One function, whose name begins with Wrap_, is used to register
the function (.2/) as a callback function for the widget. Because of how X
Windows is implemented, a registered function must have external linkage. This
means its address must be resolvable at link-edit time. However, C++ member
functions do not have external linkage, unless they are declared as static, as this
one was.

However, being static, this function does not have access to any class data
members that are created dynamically at execution. To circumvent the problem of
access, this pointer (a class internal pointer pointing to itself) is stored in the X
context when the callback is registered (.5/) and retrieved in the callback function
(.3/). This static wrap function also cannot be inherited by nor overridden in
derived classes. Introduction of the second function (.1/) that is called from the
static callback function through this pointer (.4/) should solve this problem because
this second function is a “proper” member function. It is not declared as static.
This member function can be inherited by a derived class. However, because AIC
fails to explicitly declare it virtual, it cannot be overridden in the derived class.

This fact seemed to undermine one of our fundamental design decisions. Our
design implied the GUI and application logic classes for a given interface are both
free of code which “had knowledge” of the other. The derived class, having access
to member data and functions in both, should be the only place where knowledge
of their interrelationships resides. If a callback in a GUI class needs to display
information retrieved from the database by a function in the application logic class,
it would be best if that callback function were overridden in the application class
with a function that accesses both the application logic class member function and
performs the callback actions using GUI class resources.

We researched this problem and postulated three alternatives that would allow us
to continue with our basic design:

1. Embed calls to functions of the application logic classes directly in the callback
functions of the GUI classes when they are needed. It is wise to group these
calls together in a single subroutine and make the one call in the callback.
Then define that subroutine in a separately compiled module, an auxiliary

182 How to Migrate and Enhance Your Legacy Applications

module. When the application is built, the auxiliary module would be compiled
and linked with it. During test and debug of the GUI code, a dummy version of
this module could be substituted for the actual one, which does only what is
necessary to test the GUI.

This approach does not undermine the basic design principles. There is still
value in having the derived classes, of course, because routines that are
unique to the application can be placed in these classes. Routines like
Customer::fill_GUI_fields() illustrate this point. But, where a callback must
retrieve and then display data from the database, that code which would have
been in the derived class is simply placed in subroutines that are part of this
external module.

2. Create AIC methods in the GUI class. AIC methods are a new feature of AIC
1.2. AIC methods are generated as virtual member functions in the class
representing the interface. As such, AIC methods are polymorhpic—they can
be overridden in derived classes.

While they are not specifically associated with any callback function, AIC
methods could be written to contain the code necessary to debug the GUI
stand-alone. They would also be overridden in the derived application classes.
The AIC methods would have to be called from the second member function
associated with the callback (not the function whose name begins with Wrap_).
AIC methods are described in AIXwindows Interface Composer Developer's
Guide, Version 1.2.

3. Modify the code after generation by AIC to insert the word virtual in front of
the appropriate callback function. We decided that this idea had merit, if it
could be done algorithmically, without manual intervention during the build
process, and if we could confirm that AIC would in later releases correct this
problem, which we thought of as an oversight. Subsequent discussions with
Visual Edge who produce UIM/X on which AIC is based, indicated that this
choice had merit, but did not produce a certain resolution. AIC 1.2 is based on
UIM/X 2.5. After this project was completed, but before a later release of AIC
came on the market, Visual Edge released UIM/X 2.6. Visual Edge advised the
authors that when UIM/X 2.6 generates C++ the second member function
associated with each callback was declared virtual. However, they also
indicated that users could only add to the callback lists, not override callbacks.
Until a new AIC release picks up this change, we cannot evaluate it firsthand.

 8.7.3 Customer
Our project did not have the time to evaluate all three options, though we
determined that the second and third were probably the most promising in the long
run. However, we pursued the first option with the goal to confirm a minimal
integration of the C++ code generated by AIC with the C++ code that we wrote. We
illustrate this approach in our implementation of the Customer class and Search :
push button callback of the Customers class.

The Customer class is derived from the CustomerGUI class that provides it with
knowledge about how to interact with users, and from CustomerApp that provides it
with knowledge about how to interact with the DB2/6000. This class demonstrates
the power of inheritance in integrating those qualities together in a single object.

The declaration for Customer class is shown in Figure 110 on page 184.

 Chapter 8. Object-Orientation of Our Legacy Application 183

#ifndef Customer_h

#define Customer_h

#include "UxXt.h"

#include "CustomerApp.h"

#include "CustomerGUI.h"

class dbserver;

class Customer : public CustomerApp, public _UxCCustomerGUI

{

 public:

 Customer(dbserver\ dserv);

 virtual ˜Customer(void);

swidget get_topLevelswidget(void) const;

 void fill_GUI_fields(void);

friend ostream& operator<<(ostream& x, const Customer& a);

};

#endif

Figure 110. Customer.h, Customer Class Declaration

Implementation of the Customer class is shown in Figure 111.

#include <iostream.h>

#include <iomanip.h>

#include <string.h>

#include "Customer.h"

#include "dbserver.h"

Customer::Customer(dbserver\ dserv): .1/
 CustomerApp(dserv),

 _UxCCustomerGUI()

{

 _create_CustomerGUI();

 }

 Customer::˜Customer()

 {

 }

swidget Customer::get_topLevelswidget(void) const

{

 return UxThis;

 }

ostream& operator<<(ostream& x, const Customer& a) .2/
{

x << (CustomerApp) a;

 return x;

 }

Figure 111 (Part 1 of 2). Customer.C: Customer Class Implementation

184 How to Migrate and Enhance Your Legacy Applications

void Customer::fill_GUI_fields(void) .3/
{

 XmTextFieldSetString(CustomerDetailsFirstName,(char \)_first_name);

 XmTextFieldSetString(CustomerDetailsLastName,(char \)_last_name);

 XmTextFieldSetString(CustomerDetailsStreet,(char \)_street);

 char tmp[NUMBER_SIZE+1];

 sprintf(tmp,"%d",_zip_code);

 XmTextFieldSetString(CustomerDetailsZIPCode,tmp);

 sprintf(tmp,"%d",_customer_no);

 XmTextFieldSetString(CustomerDetailsCustomerNo,tmp);

 sprintf(tmp,"%d",_reference_no);

 XmTextFieldSetString(CustomerDetailsReferenceNo,tmp);

 XmTextFieldSetString(CustomerDetailsCity,(char \)_city);

 sprintf(tmp,"%d",_address_change);

 XmTextFieldSetString(CustomerLastAddressChange,tmp);

 sprintf(tmp,"%d",_last_activity);

 XmTextFieldSetString(CustomerLastActivity,tmp);

 sprintf(tmp,"%d",_mail_id);

 XmTextFieldSetString(CustomerDetailsMailId,tmp);

 sprintf(tmp,"%d",_source_code);

 XmTextFieldSetString(CustomerDetailsSourceCode,tmp);

 }

Figure 111 (Part 2 of 2). Customer.C: Customer Class Implementation

In the constructor, we can see that Customer objects are constructed from two
pieces—CustomerApp and CustomerGUI(.1/).

Customer operator <<() (.2/) in our case only calls operator <<() from
CustomerApp class, but if CustomerGUI had such an operator, it would typically be
called here as well.

Connecting the data belonging to the two base classes occurs in function void
Customer::fill_GUI_fields(void) (.3/). Here results of database query that are
stored in data members of the CustomerApp class are transferred to data members
in the CustomerGUI class.

8.8 Integration and Test
This section discusses a test scenario that demonstrates all the integration issues
we needed to examine and prove successful during this phase of the project. This
section also address how AIC 1.2 is used to make the changes necessary to
integrate and test the C++ code.

8.8.1 Defining a Useful Test Scenario
Before we explain the AIC mechanics of integration, we need to define a test
scenario and explore the programming issues it raises. While we have been talking
about a derived class inheriting member functions and data from its base classes,
we have not addressed how these are actually accessed during execution on an
application. Public member data and functions are available to the main program
and to member functions of other classes. Having defined our base and derived

 Chapter 8. Object-Orientation of Our Legacy Application 185

classes, we now needed to examine what belonged in the main executable
program and look at how instances of one class caused the creation of instances of
other independent classes. In other words, we needed to examine how to start the
program going and tie the different windows together logically.

The program must have a the main module with an entry point defining where
execution begins. After defining global data, the executing code must create its
first instance of a class; then it can access the public member data and functions of
that instance . Member functions of this object can in turn create other instances of
classes and then access their public data and member functions. Iterations and
recursions on this theme are how the execution of an application flows and grows.

A complete test scenario for our application would be complex. Consider, for
instance a sequence of events that parallels one we demonstrated with the earlier
versions of our application:

1. This main routine begins to execute when the application is started. It creates
an instance of the Customers class, causing the Customers window to be
displayed. This window is associated with the Customers class, which is
derived jointly from the CustomersGUI and CustomersApp class. This instance
inherits member data and functions from its base classes. The callback
functionality associated with menus and push buttons on this window are
member functions of this Customers class.

2. The user enters either a customer name or a customer number in one of the
data entry fields on this window and then presses the Search push button.

3. The callback associated with this push button calls a member function,
inherited from its base class CustomerApp, to query the database and extract
all relevant records. This process makes use of member functions from the
component classes providing DB2/6000 access: dbserver, dbstmt, and dberror.

4. Specific fields from these records are copied from data members inherited from
the CustomersApp class, to data members inherited from the CustomersGUI
class, by means of a member function of the Customers class. This member
function is similar to Customer::fill_GUI_fields(void) shown at (.3/) in
Figure 111 on page 184.

5. The callback function causes this data to be displayed.

6. Subsequently, the user highlights a specific customer record from the display,
and selects Show Details from the Customer pulldown menu.

7. Another callback is triggered. This callback must create an instance of a new
class, the Customer class. This class is associated with the Customer Details
window. Now member data and functions from this class are available to the
callback.

8. This same callback calls Customer::get_by_custno(), a member function of the
Customer class. This function queries the database for information about this
customer, using the customer number the callback passes it. This function has
been inherited by the Customer class from its base class CustomerApp. This
process indirectly makes use of the resources of the component classes
providing DB2/6000 access: dbserver, dbstmt, and dberror.

9. The callback then calls Customer::fill_GUI_fields(void), a member function
in the Customer class. This function transfers data from the data members it
inherits from the CustomerApp class, to data members it inherits from the
CustomerGUI class.

186 How to Migrate and Enhance Your Legacy Applications

10. Finally, the second window is displayed and the callback is completed.

We determined it was not necessary to implement this entire scenario to discuss
the relevant test and integration issues in this book. We settled on an abbreviated
version in which we do step 1 and then skip immediately to step 6 in the scenario.
The user enters a customer number, instead of highlighting a customer record. We
then execute steps 7 through 10.

8.8.2 Linking the Classes Together—Our Auxiliary Source Code
Module

The piece of code that we have not examined yet is the auxiliary source module
defining the subroutines executed by the callbacks in the GUI classes that provide
linkage to the application classes. This module was introduced in 8.7.2,
“CustomerGUI” on page 178 as the first of three options we envisioned employing
to get around the problem that with the code generated by AIC 1.2 we could not
actually override base class member functions for callbacks in the application
classes. The subroutines in this module contain the code that would have been
placed in the callback subroutine in the derived class. Therefore, this code,
probably even stored as it is in an auxiliary module, would be required in our
application regardless of which option we employed.

We named the auxiliary module aux.C. We named the header file for this module
aux.h. A subroutine named create_Customer implements steps 7 through 9 of our
test scenario. It is shown in Figure 112.

#include <iostream.h>

#include "aux.h"

swidget create_Customer(int CustomerNumber)

{

theCustomer = new Customer(db2); .1/
 theCustomer->get_by_custno(CustomerNumber); .2/
 theCustomer->fill_GUI_fields(); .3/
 return theCustomer->get_topLevelswidget(); .4/
}

Figure 112. Portion of aux.C.

This subroutine first creates a new instance of the Customer class (.1/), which
implicitly creates the new widget for the Customer window. Then, it calls the
member function get_by_custno, which it inherited from its base class,
CustomerApp. The get_by_custnofunction issues the database query(.2/). Then
create_Customer calls fill_GUI_fields, a member function that it inherited from its
other base class, CustomerGUI class. This function fills the display fields with data
just retrieved from the database(.3/) by get_by_customerno. Finally,
create_customer, returns the top level widget of the window it has just created
(.4/).

 The code as shown carries a restriction,
 because we have illustrated the most simple case only.This restriction is seen in
the fact that there is only one (global) declaration of a variable for an instance of
the Customer class. This sample code works, therefore, with no more than one
customer detail window being shown at a time. In the proper application, this
would be changed so multiple windows could be displayed at any given time,
showing the details from different customers. Figure 113 on page 188 shows the
file aux.h.

 Chapter 8. Object-Orientation of Our Legacy Application 187

#ifndef aux_h

#define aux_h

#ifdef __cplusplus

#include "UxXt.h"

#endif

extern swidget create_Customers(void);

extern swidget create_Payments(void); .1/
extern swidget create_Customer(int CustomerNumber);

extern swidget create_Payment(void);

#ifdef __cplusplus

#include "dbserver.h"

#include "dberror.h"

#include "Customer.h"

#include "Payment.h"

extern dbserver\ db2;

extern Customer\ theCustomer; .2/
extern Payment\ thePayment;

#endif

#endif

Figure 113. The aux.h File

 The declarations of the function prototypes (.1/), as well as external declarations
for the class instance variables used in the aux.C file (.2/), are contained in the
aux.h file.

8.8.3 Integrating Our C ++ Code with the Callbacks
The integration of the GUI and application code required interacting with AIC 1.2 to
accomplish these three things:

� Modifications of the various callbacks of the interfaces to integrate the GUI
code with the application logic we implemented in C++.

� Modification of the main program, named OOGUI, to declare some global
variables.

� Additions to the makefile file, OOGUI.mk, generated by AIC to include compile
and link steps for the handwritten C++ application code.

The following sections elaborate on these steps.

8.8.4 Modifying the Callback Code
We needed to ensure that the call to the create_Customer would be included in the
callback code generated by AIC at the appropriate place. To include this we did
the following.

 First, we ensured that aux.h would be included in the declarations portion of the
source file that would be generated for the interface. We selected the Customers
icon in the AIC main project window, pressed the right mouse button, and selected
Declarations... from the pop-up menu. We pressed the ... push button to the right
of the Includes, defines, and global variables label and Program Editor was
invoked. We added the line shown in Figure 114 on page 189 and selected Save
from the File pull-down of Program Editor. For more about using the declarations
file, refer to AIXwindows Interface Composer Developer's Guide, Version 1.2.

188 How to Migrate and Enhance Your Legacy Applications

 #include "aux.h"

Figure 114. Modification to the List of Include Files

Next we needed to ensure that the call to create_Customer would be included in
the generated code for the callback. We selected Close from the File pull-down of
Program Editor and pressed the OK button in the Declaration Editor window. We
selected Browser from the Edit pull-down of the AIC project main window and
selected CustomersSearchPushButton in the Browser window for the Customers
widget. We selected Property Editor from the Edit pull-down and changed the
toggle button from Core to Behavior in the Widget Property Editor window. We
selected the ... push button to the right of the Activate callback label, and selected
Modify code... from the Edit pull-down of the Callback Editor window. This
invoked Program Editor, which enabled us to edit the activate callback code for this
widget. We added the call to create_Customer. At this point, we saw the
overlapping windows shown in Figure 115 on page 190.

 Chapter 8. Object-Orientation of Our Legacy Application 189

* 5.0x6.0

Figure 115. The Interface from the Callback to the Application Code

 We selected Save from the File pull-down of Program Editor, closed Program
Editor and pressed the OK button in the Callback Editor window. We then pressed
the Apply push button in the Widget Property Editor window to activate the
changes. We selected the Save Project push button of the File pull-down of the
AIC main project window to save these changes.

8.8.5 Modifying the Main Program
 The main program required three modifications:

1. The aux.h file needed to be included at compile time.

2. Global variables for the Customer, Payment, and dbserver class instances
needed to be declared.

3. Code needed to be added to ensure that database access errors would be
handled properly.

190 How to Migrate and Enhance Your Legacy Applications

The aux.h file is written in C++, which is a superset of C. We had to make sure that
the AIC 1.2 interpreter, which is based on a pure C parser, would not complain
about any constructs which are unique to C++ when we tested the application.
AIXwindows Interface Composer Developer's Guide, Version 1.2 discusses the
interpreter and suggests surrounding any pure C++ constructs with #ifdef
__cplusplus and #endif directives. The __cplusplus macro variable is automatically
set to a true Boolean value, and this tells the AIC interpreter to ignore them.

 We selected Program Layout ... from the Edit pull-down of the AIC project
window, and pressed the ... button to the right of the Xt Main Program label.
Program Editor was invoked, and we entered changes that would affect the main
program code generated by AIC 1.2. Figure 116 shows some of these
modifications being entered in the declaration part of the main program. For more
information on modifying the AIC main program, see the discussion of generating
main programs and makefiles in AIXwindows Interface Composer Developer's
Guide, Version 1.2.

Figure 116. Modified Xt Main Program With Declarations for C++ Variables

 Chapter 8. Object-Orientation of Our Legacy Application 191

Figure 117 on page 193 shows the code generated by AIC 1. 2 for the main
program. It shows additional modifications we made in the area of the event loop.
We added a call to the constructor of the db2server class (.2/), and the entire main
program was embraced with a try construct (.1/) to catch C++ events in the
corresponding catch directive (.3/). The catch part just printed an error message
to standard output, but a more sophisticated exception routine could have been
written and added here.

192 How to Migrate and Enhance Your Legacy Applications

#ifdef _NO_PROTO

main(argc,argv)

 int argc;

 char \argv[];

#else

main(int argc, char \argv[])

#endif /\ _NO_PROTO \/

{

#ifdef __cplusplus

 try .1/
 {

#endif

 /\---

 \ Declarations.

\ The default identifier - mainIface will only be declared

\ if the interface function is global and of type swidget.

\ To change the identifier to a different name, modify the

\ string mainIface in the file "xtmain.dat". If "mainIface"

\ is declared, it will be used below where the return value

\ of PJ_INTERFACE_FUNCTION_CALL will be assigned to it.

 \--\/

 $PJ_INTERFACE_RETVAL_TYPE

 /\---------------------------------

\ Interface function declaration

 \--------------------------------\/

 $PJ_INTERFACE_FUNCTION_DECL

 $PJ_INTERFACE_FUNCTION_ARG_DECL

 /\---------------------

\ Initialize program

 \--------------------\/

#ifdef __cplusplus

db2 = new dbserver("customer","root","lorna"); .2/
#endif

#ifdef XOPEN_CATALOG

 XtSetLanguageProc(NULL,(XtLanguageProc)NULL,NULL);

#endif

UxTopLevel = XtAppInitialize(&UxAppContext, "$PJ_APP_CLASS_NAME",

NULL, ð, &argc, argv, NULL, NULL, ð);

UxDisplay = XtDisplay(UxTopLevel);

UxScreen = XDefaultScreen(UxDisplay);

/\ We set the geometry of UxTopLevel so that dialogShells

that are parented on it will get centered on the screen

(if defaultPosition is true). \/

 XtVaSetValues(UxTopLevel,

 XtNx, ð,

 XtNy, ð,

XtNwidth, DisplayWidth(UxDisplay, UxScreen),

XtNheight, DisplayHeight(UxDisplay, UxScreen),

 NULL);

 /\---

\ Insert initialization code for your application here

 \--\/

 /\--

\ Create and popup the first window of the interface. The

\ return value can be used in the popdown or destroy functions.

\ The Widget return value of PJ_INTERFACE_FUNCTION_CALL will

\ be assigned to "mainIface" from PJ_INTERFACE_RETVAL_TYPE.

 \---\/

 $PJ_INTERFACE_FUNCTION_CALL

 $PJ_POPUP_CALL

 /\-----------------------

\ Enter the event loop

 \----------------------\/

 $PJ_EVENT_LOOP

#ifdef __cplusplus

 }

 catch(dberror x) .3/
 {

cout << x.msg() << endl;

 }

#endif

}

Figure 117. Modified Event Loop of Xt Main Program

 Chapter 8. Object-Orientation of Our Legacy Application 193

 After the modification were entered we selected Save from the File pull-down of
Program Editor to save the changes. We selected Close Document to leave the
Program Editor and pressed the Apply push button to activate the changes in the
Program Layout Editor window.

8.8.6 Modifying the Makefile File
 After all the changes had been coded, we had to adjust themakefile
 file generated by AIC to reflect our file structure and to add the various object
modules that had been implemented manually. To do this, we selected Program
Layout... from the Edit pull-down in the AIC project main window and pressed the
... button to the right of the Xt Makefile label. Program Editor was started, showing
us a template for the makefile file. When we were finished making our changes,
we selected Save from the File pull-down of Program Editor to save the changes
and closed Program Editor. We selected Apply in the Program Layout Editor
window to activate the changes in AIC.

Figure 118 on page 195 shows the makefile file that AIC 1.2 later generated
reflecting the edits we made at this time. These changes were:

1. We added the file names of the additional object modules that were
implemented manually (.1/). Refer to 8.5.1, “Conventions and Files” on
page 167 for a description of the additional source files external to AIC.

2. We added the DB2 libraries and the corresponding library path to the compile
options (.2/).

3. We added the -I flag along with a file name to point to our include directory
/ad/projectA_proto/source/C/include and to the DB2 include directory (.3/).

4. We added a rule to compile the additional source files (.4/).

For more about modifying the makefile file that AIC generates, see the discussion
of generating main programs and makefiles in AIXwindows Interface Composer
Developer's Guide, Version 1.2

194 How to Migrate and Enhance Your Legacy Applications

EXECUTABLE = $PJ_EXECUTABLE

MAIN = $PJ_MAIN_SRC

INTERFACES = $PJ_INTERFACES_SRC

LANGUAGE = $PJ_LANGUAGE_OPTION

APPL_OBJS = $PJ_SPECIAL_MODULES

EXTERNAL_OBJS = /nfs/bering/ad/projectA_proto/source/C/app/aux.o \

 /nfs/bering/ad/projectA_proto/source/C/app/CustomerApp.o \

 /nfs/bering/ad/projectA_proto/source/C/app/Customer.o \

 /nfs/bering/ad/projectA_proto/source/C/app/PaymentApp.o \ .1/
 /nfs/bering/ad/projectA_proto/source/C/app/Payment.o \

 /nfs/bering/ad/projectA_proto/source/C/app/dberror.o \

 /nfs/bering/ad/projectA_proto/source/C/app/dbstmt.o \

 /nfs/bering/ad/projectA_proto/source/C/app/dbserver.o

UX_DIR = /usr/lpp/aic12

UX_LIBPATH = $(UX_DIR)/lib

X_LIBS = -lXm -lXt -lX11

X_LIBPATH =

MOTIF_LIBPATH =

X_CFLAGS =

MOTIF_CFLAGS =

DB2_LIBPATH = -L/usr/db2/lib .2/
DB2_LIBS = -ldb2

KR_CC = cc

ANSI_CC = xlc

CPLUS_CC = xlC

KR_CFLAGS = -D_NO_PROTO

ANSI_CFLAGS =

CPLUS_CFLAGS = -+ -I/usr/lpp/xlC/include -I/usr/include \

-I/usr/db2/include -I/nfs/bering/ad/projectA_proto/source/C/include \ .3/
CFLAGS = -D_BSD -DXT_CODE -DXOPEN_CATALOG -DAIXV3 \

 $(X_CFLAGS) $(MOTIF_CFLAGS)

LIBPATH = $(X_LIBPATH) $(MOTIF_LIBPATH) $(DB2_LIBPATH)

LIBS = $(DB2_LIBS) $(X_LIBS) -lm

OBJS = $(MAIN:$PJ_SOURCE_SUFFIX=.o) $(INTERFACES:$PJ_SOURCE_SUFFIX=.o) $(APPL_OBJS) \

 $(EXTERNAL_OBJS) .4/

$(EXECUTABLE): $(OBJS)

 @echo Linking $(EXECUTABLE)

$(CC) $(OBJS) $(LIBPATH) $(LIBS) -o $(EXECUTABLE)

 @echo "Done"

.SUFFIXES:

.SUFFIXES: .o $PJ_SOURCE_SUFFIX .c

.c.o:

@echo Compiling $< [$(LANGUAGE)] [XT-CODE]

$(CC) -c $(CFLAGS) $< -o $@

$PJ_SOURCE_SUFFIX.o:

@echo Compiling $< [$(LANGUAGE)] [XT-CODE]

$(CC) -c $(CFLAGS) $< -o $@

CC = \

@ if ["$(LANGUAGE)" = "C++"]; then echo $(CPLUS_CC) $(CPLUS_CFLAGS);fi \

if ["$(LANGUAGE)" = "ANSI C"]; then echo $(ANSI_CC) $(ANSI_CFLAGS); fi \

if ["$(LANGUAGE)" = "KR-C"]; then echo $(KR_CC) $(KR_CFLAGS); fi

Figure 118. Modifications to the Makefile File Used for Our C++ Application

 We now had implemented all the changes that were required to
 implement the interface to the C++ application code.

8.8.7 Generating Code and Test
Once all the modifications had been implemented, we were able to run the makefile
file as it was generated by AIC. This makefile file included the modifications we
had made to the makefile file template, and all the interfaces to the C++ application
code had been implemented in the AIC callbacks.

 Chapter 8. Object-Orientation of Our Legacy Application 195

 We selected Generate project Code... from the File pull-down in the AIC main
project window. AIC then generated the various source files and the makefile file,
and would then started Program Builder to execute the makefile file. The
discussion of generating code in AIXwindows Interface Composer Developer's
Guide, Version 1.2 explains this aspect of AIC 1.2. The Workbench Program
Builder window is shown as it looked at the completion of this process in
Figure 119.

Figure 119. Generating the Final C++ Application From AIC

From either a terminal emulation, or the WorkBench Development Manager
window, executing on yellow, we could now invoke the application and test it. The
windows displayed would look very similar to those shown earlier in Figure 87 on
page 132.

8.8.8 Overriding Callbacks in Application Classes
As indicated in 8.7.2, “CustomerGUI” on page 178 we would have preferred to
implement the code found in the auxiliary source module in the context of the
application class by overriding the callback function provided by the GUI class.
This would require that the callback member function in the base class to be
declared virtual.

If this were the case, the callback in the derived class would call a subroutine in our
auxiliary source module, very similar to create_Customer. By overriding the GUI

196 How to Migrate and Enhance Your Legacy Applications

class callback, this member function of the derived class would also have to handle
any GUI related functionality that might be required. However, it would be best if
that functionality remained in the GUI class to maintain design integrity and prevent
duplication of that code in the application class. Therefore, additional, general
purpose member functions might be needed in the base class, which would be
used in the derived class, for this purpose.

 Chapter 8. Object-Orientation of Our Legacy Application 197

198 How to Migrate and Enhance Your Legacy Applications

Part 3. Customizing and Tailoring AIX AD Products

 Copyright IBM Corp. 1995 199

200 How to Migrate and Enhance Your Legacy Applications

Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools,
and DB2/6000

This chapter describes how SDE WorkBench/6000 was tailored for the particular
convenience of each of our developers. Customization for COBOL, C++, and AIC
are addressed. It also discusses how SDE WorkBench/6000 was tailored for our
GUI developer. This chapter also contains a brief description of how AIC itself was
tailored by our GUI developer.

9.1 DB2/6000 Installation, Initialization, and Shutdown
Before you install DB2/6000, we recommend that you read DATABASE 2 AIX/6000
Information and Planning Guide. The DB2/6000 release we installed, was a June
23, 1993 Beta release, and we used the Beta Driver #2 Release Notes as
installation instructions.

We used the following procedure to install our DB2/6000 system:

1. Transferred the installation file onto our system (bengal).

2. Created a separate File System with mount point /u/db2 .

3. Created a group by the name of sysadm .

4. Created an instance owner by the name of db2 , with the home directory of
/u/db2 , and the primary group of sysadm .

5. Used SMIT to install DB2/6000 from the installation file.

6. Created symbolic links as per the Beta Driver #2 Release Notes.

7. Run the db2instance as root.

8. Included the environment variable definitions as defined in the
/u/db2/sqllib/db2profile in the users $HOME/.profile .

9. Updated the root and the aixcase2 users with sysadm group authority, as
these users are our system administrators.

10. Started the database.

11. Tested the database.

After this we also updated the aixcase2 users .xsession 2 file with the following
line:

xset fp+ /u/db2/sqllib/dbat/fonts

This enabled the database administrator to use the OSF/Motif-based DBA tool.
The DBA tool is invoked in a aixterm window or from the OSF/Motif Window
Manager (MWM) by issuing the command db2adm . To enable the user to start the
DBA tool from the MWM-menu, we include the following line into the
$HOME/.mwmrc file:

"DB2ADM" f.exec "db2adm &"

2 The update to the .xsession file is because the user aixcase2 is using the xdm environment. Normally you would put the same
line into the .xinit file.

 Copyright IBM Corp. 1995 201

9.2 Tailoring SDE WorkBench/6000 for COBOL Programmers
In our project we decided to make full use of SDE WorkBench/6000, and do all
development in SDE WorkBench/6000. So even if Micro Focus COBOL Toolbox
comes as a stand-alone environment, we decided to integrate it with SDE
WorkBench/6000. The default tool started by the Animate item in the Development
Manager Actions pull-down menu for a .int file type is anim . This starts the
nonencapsulated version of the Micro Focus COBOL Animator debug tool. Version
3.0 of Micro Focus COBOL Toolbox includes a version of the Animator that has
been integrated with SDE WorkBench/6000. It is called softanim . So we wanted
to create a separate pull-down menu for Micro Focus COBOL in the WorkBench
Development Manager Action pull-down menu, and create a new selection in the
Actions pull-down menu labelled softanim . The following paragraphs take you
through the steps of integrating the above items with SDE WorkBench/6000.

9.2.1 Creating a Separate Micro Focus COBOL Menu Item
There are two ways of creating new menu items in the Development Manager.

� SDE WorkBench/6000 provides a Menu tree, /usr/softbench/menus , where
additional menu directories can be created and menu files can be placed. If
the new menu files are put in the correct place, they are picked up by the
hosting tool automatically. Files and directories are added to the menu
directory tree by the system administrators when they integrate additional tools
with SDE WorkBench/6000.

� The other choice is to place the file in an arbitrary directory created by the
user, and direct the hosting tool to pick up the menu using the userMenus
resource. User-defined menus are typically handled in this manner.

We chose to do the latter, as our programmers need to access different tools in
their development. So our COBOL programmer created a new directory in his
home directory called menus , and in this directory he created a new directory
called mf . In the mf directory we created two files, the $LANG and MDF.m files,
as shown in Figure 120 and Figure 121 on page 203, where the $LANG
represents our language locale (in our case En_US). To accommodate for different
language locales, there should be one file for every locale used on the system.
The $LANG language environment variable controls which resource file is read. If
$LANG is not set, the C resource file, which contains American English text, is
used as the default.

! Add a menu for MicroFocus tools to the DM Menu bar

Softdm\menuBarButtonList: DM_mf_menu

Softdm\DM_mf_menu.labelString: MicroFocus

Softdm\DM_mf_menu.mnemonic: F

Softdm\DM_mftde.labelString: Micro Focus Toolbox

Softdm\DM_mftde.mnemonic: x

Softdm\DM_mfds.labelString: Micro Focus Dialog System

Softdm\DM_mfds.mnemonic: D

Figure 120. The En_US Resource File

202 How to Migrate and Enhance Your Legacy Applications

Add items for MicroFocus tools menu in DM window

Menu DM_mf_menu

 {

DM_mftde f_exec MenuMsgObjectFunc "TERM TERMINAL \

%Context_Host% 2 %Context_Dir% 2 - - %Context_Host% 2 tbox"

DM_mfds f_exec MenuMsgObjectFunc "TERM TERMINAL \

%Context_Host% 2 %Context_Dir% 2 - - %Context_Host% 2 ds"

 }

Figure 121. The MDF.m Menu Description File

By setting the application resource in $HOME/.Xdefaults to:

 Softdm.userMenus: /home/aixcase2/menus/mf

our menu files can be read by the hosting tool, in this case the Development
Manager. After having restarted SDE WorkBench/6000, our new Development
Manager looks like Figure 122.

Figure 122. Our New Development Manager

We also changed the file /usr/softbench/config/termsrv.config and used the file
/usr/softbench/config/termsrv.general , instead, to get the right apearance of the
Toolbox window as shown in Figure 64 on page 107.

To read more about adding choices to existing menus, refer to IBM AIX SDE
Integrator/6000 Distributing and Encapsulation.

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 203

9.2.2 Integrating Softanim Tool
Softanim is an encapsulation of the Micro Focus Animator debugger for use in the
SDE WorkBench/6000. The Animator screen is displayed in a window, with a
menu bar to access SDE WorkBench/6000 functions and a label describing the
current context file. To integrate the Animator with SDE Workbench/6000, you can
either modify the /usr/softbench/config/softinit file, or copy this file to your home
directory, and rename it to .softinit . In our case we choose the latter.

The file /usr/softbench/config/softinit provides SDE WorkBench/6000 with the
information necessary to start applications properly. If you do not have the
environment variable SOFTINIT defined, SDE WorkBench/6000 reads the softinit
files in the following order:

/usr/softbench/config/softinit

$HOME/.softinit

Therefore, you only need to specify the addition or modifications to the system
default entries in $HOME/.softinit.

If the SOFTINIT environment variable is defined, SDE WorkBench/6000 reads the
files specified by the content of that variable for softinit information. You should
normally have /usr/softbench/config/softinit as the first file in this list. The files
listed in SOFTINIT are read in order. If there are multiple entries of the same tool
class operating on the same file types, the last one read takes precedence. Thus,
you can modify any tool initiation specification by having a local version of softinit
in your home directory and specifying it last in the SOFTINIT list, as in the following
Korn shell example:

SOFTINIT="/usr/softbench/config/softinit $HOME/mysoftinit"

export SOFTINIT

After having copied the /usr/softbench/config/softinit to our home directory, and
having renamed it .softinit , we added the lines as shown in Figure 123.

Micro Focus COBOL Animator as Debugger for int files

DEBUG TOOL FILE COBOL_INTER %Local% softanim -host %Host% -dir %Directory% -file %File%

Figure 123. The New Entries in the .softinit File

9.2.3 Creating the Softanim Item
Having done this, we have to create an Actions Menu item. The Actions menu is
located in menu directories below /usr/softbench/menus/Softdm/ACTIONS . The
key difference between the ACTIONS menu directories and the other application
menu directories is that all the ACTIONS menu directories are read whereas only a
single application menu directory per tool class is read. The Development Manager
uses this capability to define panes that are dynamically attached to the Actions
menu bar button. All ACTIONS menus must be available simultaneously, since the
user is free to select any file type in the Development Manager directory list at any
time.

In our case, we created a subdirectory called mfcobol . In this directory we created
one resource file and one menu description file. As we have explained earlier, the
$LANG environment variable controls which resource file is read, and if $LANG is
not set, the C resource file is used. So we created just a C resource file. The

204 How to Migrate and Enhance Your Legacy Applications

contents of our resource and menu description files are shown in Figure 124 on
page 205, and in Figure 125 on page 205.

! Add action to softtype cobolinter for MF integrated animator

Softdm\DM_cobolinter_filesoftanim.labelString: Softanim

Softdm\DM_cobolinter_filesoftanim.mnemonic: S

Figure 124. The Resource File for the Softanim Item

Add new item to cobolinter softtype for MF integrated animator

Menu cobolinter

 {

DM_cobolinter_filesoftanim f_exec MenuMsgSelectFunc "DEBUG START"

 }

Figure 125. The Menu Description File for the Softanim Item

Figure 126 shows the new Softanim item in the Actions pull-down menu. For
more information about adding items to the Actions menu, and integrating new
tools with Development Manager, refer to IBM AIX SDE Integrator/6000 Distributing
and Encapsulation and IBM AIX SDE Integrator/6000 Programmer's Guide.

Figure 126. The Softanim Item in the Actions Pull-Down Menu

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 205

9.2.4 Tailoring Program Editor
Program Editor is a live parsing editor, which uses different color schemes to aid
the programmer in the editing. Tailored macros can be built, and the support for
various programming languages can be accommodated. Program Editor comes
bundled with support for C++, C, COBOL, FORTRAN, and Data Composition
Language (DCF).

If you want to tailor Program Editor to your own needs, without affecting other
users, you should create a directory in your home directory, like:

 mkdir lpex_dir

and place your own macros in this directory.

After you have done this, and created your own macros in this directory either by
copying existing ones or by writing new ones, you have to tell Program Editor
where to look for tailored macros. You do this by setting the environment variable
MY_LPEX_DIR to the directory just created, like:

 export MY_LPEX_DIR=$HOME/lpex_dir

You should also put this line in your .profile .

In our case, we wanted support for COBOL files with the extension of .sqb ,
because our DB2/6000 precompiler required this naming convention. To enable
Program Editor to recognize any file with the extension of .sqb as a COBOL file,
we copied the file cob.LXL from the /usr/softbench/lpex/lpex/macros directory to
our $HOME/lpex_dir, and renamed it to sqb.LXL. We also needed to tell the
Development Manager that all files with the extensions of .sqb are COBOL files, so
they show up correctly in the WorkBench Development Manager window. To do
this, we had to log in as root, and then do the following:

 cd /usr/softbench/config/softtypes/config/$LANG

In this directory we modified the file called ibm_cobol. After the modification, the
file looked like Figure 127.

 COBOL Intermediate| .int COBOL_INTER cobolinter

 COBOL Source| .sqb COBOLSOURCE source

 COBOL Native| .gnt COBOL_NATIVE cobolnative

 Build| .mk BUILD make

ISPF panels| .pan MVS_ISPF generic

 MVS CLIST| .cls MVS_CLIST generic

 MVS JCL| .jcl MVS_JCL generic

Figure 127. The ibm_cobol File

As you notice, we have also added entries for our non-AIX-files, like the ISPF
panel-files that have the extension .pan. When we are finished editing this file, we
have to merge our new softtypes with the existing ones. This merging is done by:

 /usr/softbench/etc/merge-types

After having done this, we have to restart SDE WorkBench/6000. The effect of the
change is shown in Figure 128 on page 207.

206 How to Migrate and Enhance Your Legacy Applications

Figure 128. The Appearance of New softtypes

For more information about softtypes , refer to the IBM AIX SDE Integrator/6000
Distributing and Encapsulation.

9.3 Tailoring SDE WorkBench/6000 for C ++ Programmers
 Although SDE WorkBench/6000 supports C++ development, we customized the
following tools to tailor SDE WorkBench/6000 for our project:

 � Program Editor

 � Development Manager

 � Program Builder.

Customization of Program Editor was done on a global basis, to accommodate all
C++ users. Customization of Development Manager and Program Builder was done
on a local per user basis.

9.3.1 Customization of Program Editor
We customized Program Editor to change the default parsing based on file naming
convention. By default, Program Editor treats files with extension .H as C++ header
files, and files with extension .h as C header files. We wanted C++ header files to
have extension .h, because all XL C++ system header files have this extension (for
example, iostream.h).

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 207

To instruct Program Editor to treat .h files as C++ files we created our own version
of the h.LXL load macro file, as shown in Figure 129 on page 208, and made it
available to Program Editor by following the instructions in IBM AIX SDE
WorkBench/6000 Program Editor.

/\\\

\ \

\ h.LXL - load macro for .h (C++ header) files \

\ \

\ This macro is invoked by Program Editor when a \

\ file with an extension of .h is edited, unless \

\ the /asis or /nopro options are used. It sets up \

\ the C++ emphasis parser and fonts for a color \

\ display. \

\ \

\\/

'lxr macro C.LXL'

Figure 129. Contents of the h.LXL File

Our customization consisted of the following steps:

1. Create a /usr/local/SDE_WorkBench_Cust directory.

2. Create the h.LXL file in that directory.

3. Set up the environment variable LPEXDIR adding the lines shown in
Figure 130 to the /etc/environment file.

4. Log off and then log in again, to enable the changes to take effect.

5. Restart the SDE WorkBench/6000.

Note that only users with system administration authority (root) can perform steps 1
to 3, because those steps are executed on files and directories for which ordinary
users do not have write authority.

###

Environment variables for SDE WorkBench Program Editor

###

LPEXPATH=/usr/local/SDE_WorkBench_Cust /usr/softbench/lpex/lpex/macros

Figure 130. Lines Added to the /etc/environment File

9.3.2 Customization of Development Manager
We customized Development Manager by specifying the default file selection filter
for our C++ development directories. We created a filter, as shown in Figure 131
on page 209, to display only C++ source files and makefile files and to make it
easier to spot them among other files created dynamically during the development
process (for example, files with extension .o or .u).

208 How to Migrate and Enhance Your Legacy Applications

Softdm\Filter_label_ð : \.C \.h

Softdm\Filter_expression_ð : ^(.\)[.]((C)|(h))$

Softdm\Filter_IsRegex_ð : TRUE

Softdm\Filter_activate_ð : TRUE

Softdm\Filter_ByExclusion_ð : FALSE

Softdm\Filter_label_1 : Makefile

Softdm\Filter_expression_1 : ^((m)|(M)akefile)

Softdm\Filter_IsRegex_1 : TRUE

Softdm\Filter_activate_1 : TRUE

Softdm\Filter_ByExclusion_1 : FALSE

Figure 131. Lines Added to the .softbenchrc File

The detailed syntax for writing filter resources is explained in IBM AIX SDE
WorkBench/6000 Development Manager:Managing Files and Directories.

9.3.3 Customization of Program Builder
We customized the makefile template for automatic generation of makefile files, as
shown in Figure 132, modifying the copy of the
/usr/lpp/workbench/config/buildt.p file. We removed lines not relevant to C++,
and added some, including comments, that we needed for our project.

##--+

##

makefile for SDE WorkBench

##

This file has been generated automatically .1/
##

##--+

COMPFLAGS = -c $(DEBUG)

CXXFLAGS = $(COMPFLAGS)

COMP = $(CCC)

LD = $(CCC)

LDFLAGS = $(DEBUG)

PROGRAM =

Figure 132 (Part 1 of 3). Modified Makefile Template for Program Builder

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 209

##--+

##

Uncomment the following lines and run Makefile/Update dependencies

to include:

##

system header files

##SYSHDRS = .2/
##

XL C++ header files

##EXTHDRS = .3/
##

application header files

##HDRS = .4/
##

application source files

##SRCS = .5/
##

##--+

##--+

LIST OF OBJECT FILES AND LIBRARIES .6/
##--+

OBJS =

LIBS =

##--+

GLOBAL DEFINITIONS

##--+

.C.o:

$(COMP) $(CXXFLAGS) $<

Figure 132 (Part 2 of 3). Modified Makefile Template for Program Builder

210 How to Migrate and Enhance Your Legacy Applications

##--+

LINK LINE

##--+

$(PROGRAM): $(OBJS) $(LIBS)

$(LD) $(LDFLAGS) $(OBJS) $(LIBS) -o $@

##--+

UTILITY LINES

##--+

depend:; @mkmf -f $(MAKEFILE) ROOT=$(ROOT)

clean:; @rm -f $(OBJS) core

clobber:; @rm -f $(OBJS) $(PROGRAM) core

##--+

DEPENDENCIES .7/
##--+

Figure 132 (Part 3 of 3). Modified Makefile Template for Program Builder

The makefile template is used for automatic generation of makefile files. Some
lines have a specific meaning for mkmf, the program invoked by Program Builder to
generate makefile files:

.1/ This is just a comment line. It appears as written. Note that the text is
true for the generated makefile file, rather than for the makefile template
where it appears.

.2/ Uncommenting this line causes system header files (for example,
stdio.h) to be included in the dependency lines.

.3/ Uncommenting this line causes XL C++ header files (for example,
iostream.h) to be included in dependency lines. To do so, put the
/usr/lpp/xlC/include option on the DIRS text field of the Program
Builder window (the top window in Figure 40 on page 84). If both
system and XL C++ header files are to be included, the DIRS text field
must contain /usr/include /usr/lpp/xlC/include in that order.

.4/ Uncommenting this line causes application header files to be listed in
the makefile HDRS variable. The files will, however, appear on
dependency lines, whether or not the HDRS variable was commented
out.

.5/ Same as .4/, with respect to the SRCS variable.

.6/ The OBJS and LIBS variables contain the application's object files and
libraries.

.7/ mkmf places dependency lines at the end of the generated makefile file.

To instruct Program Builder to use the customized version of the makefile

template, we added a line (Figure 133 on page 212) to the .softinit file.

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 211

Build\progTemplateFile : /home/aixcase1/SDE_WorkBench_Cust/project_Makefile

Figure 133. Line Added to .softbenchrc File

9.4 Tailoring SDE WorkBench/6000 for AIC Programmers
Some of the customization instructions in this chapter are based on the IBM
publication IBM AIX SDE Integrator/6000 Distributing and Encapsulation; so make
sure you have this manual even if you do not intend to order the product IBM AIX
SDE Integrator/6000.

In this chapter we explain the various levels of integrating AIC with the SDE
WorkBench/6000.We applied the following steps to customize SDE
WorkBench/6000 we used throughout our development:

1. We added a new entry to the tools list of SDE WorkBench/6000 so we could
start AIC from the tools list of the Tool Manager Start window.

2. We added new entries for the extensions of the AIC interface and project files
so Development Manager would display a proper descriptive text for these AIC
files.

3. We added new pull-down menus to the Actions pull-down of Development
Manager so AIC-specific functions would be called for AIC interface, project, or
palette files.

4. We changed the default action triggered from Development Manager so a
double click on an AIC interface, project, or palette file would invoke AIC.

5. We also customized AIC so SDE WorkBench/6000 tools such as Program
Editor or CMVC would be invoked directly from AIC. This integration step is
supported in AIC Release 1.2 and above, and not in the preceding releases of
AIC. This customization offered a much better integration.

There is more on this subject in the discussion of running AIC under WorkBench in
AIXwindows Interface Composer Developer's Guide, Version 1.2.

9.4.1 Modify the Tools List of Tool Manager
To start AIC as a user interface builder tool from the Tool Manager Start window in
our environment, we considered AIC as a tool from the new class,UIBUILD. We
wanted to add a new entry for this tool class to the list of tools available to SDE
WorkBench/6000.

By default Tool Manager uses the /usr/softbench/config/softinit file followed
by the user's $HOME/.softinit file to show the list of tools. Each user can,
however, use the SOFTINIT environment variable to change this order or even the
files SDE WorkBench/6000 looks for. An additional entry for a new tool can
therefore be made to:

� The system-wide softinit file

or
� A private softinit file (like the .softinit in the $HOME directory).

212 How to Migrate and Enhance Your Legacy Applications

To add a new tool as a default tool for a new class, follow these steps exemplified
with the integration of AIC:

1. Log in as root, edit the /usr/softbench/config/softinitsrc/tool-override/ui

file, and add the lines shown in Figure 134 to the end of the file when running
AIC Release 1.2.

UIBUILD TOOL DIR \ %Host% /usr/lpp/aic12/bin/aic12 -scope \

dir -dir %Directory%

Figure 134. Entry to Define AIC Rel. 1.2 as a New Tool to Tool Manager

 When running AIC releases previous to 1. 2 add the line as shown in
Figure 135 to the end of the file.

 UIBUILD TOOL FILE \ %Host% aic

Figure 135. Entry to Define AIC as a New Tool to Tool Manager

 This line defines a new tool class UIBUILD on the local host, and
 SDE starts this tool using the aic command.

2. Run the /usr/softbench/etc/merge-init utility.

This utility reads the modified file and updates the system-wide
/usr/softbench/config/softinit file. We do not recommend editing this file
directly, as various tool vendors and system integrators also contribute to this
file.

To add a new tool for an individual user, edit the user's private.softinit file and
add an entry like that in Figure 134 or Figure 135. You do not need to run a utility
to activate the changes. SDE WorkBench/6000 reads the modified file the next
time you start it.

Once you have modified the tools list and started SDE WorkBench/6000 again, you
can select Start from the Tool menu of the Tool Manager window and get to the
Tool Manager Start window as shown in Figure 136 on page 214, which includes
an entry for the tool class UIBUILD.

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 213

Figure 136. A Tool Manager Start Window with an Entry for the UIBUILD Tool Class

9.4.2 Modify Extension-Based File-Typing of Development Manager
The Save selection from the File menu of AIC saves the data being edited into
interface, palette, or project files. These files store the window definitions in a
format that is specific to AIC so other AIC utilities like uxcgen for code generation
or AIC itself can interpret the data. These files have the specific file type
extensions of .i, .pal, or .prj.

We wanted these AIC-specific files to be identified in Development Manager so
Development Manager could recognize a file with an extension of i, .pal, or .prj
as an AIC interface, palette, or project file. Development Manager could then
display a descriptive string along with the file name to further explain the contents
of the file.

Development Manager uses the /usr/softbench/config/softtypes/$LANG file to
recognize particular file types, where $LANG is the language environment variable
of the user. There are different translated versions of the softtypes file, because
Development Manager should display different strings for different languages. If
the $LANG environment variable is not set, Development Manager looks for the
/usr/softbench/config/softtypes/C file.

To add new file type extensions to Development Manager follow these steps as
exemplified by adding AIC file type extensions:

1. Log in as root and edit the
/usr/softbench/config/softtypes/config/$LANG/softtypes file, where $LANG
is the language for which you want to modify the descriptive strings. In our
case we modified the
/usr/softbench/config/softtypes/config/En_US/softtypes file for users
running with a US English locale (En_US). If, for example, you want to support
the German locale De_DE, you need to put a translated softtypes file into the
corresponding directory /usr/softbench/config/softtypes/config/De_DE for
users running with a German locale (De_DE).

214 How to Migrate and Enhance Your Legacy Applications

Add the lines shown in Figure 137 to the end of the
/usr/softbench/config/softtypes/config/En_US/softtypes file.

AIC Interface File “ .i UIAICINTERFACE aicInterface

AIC Project File “ .prj UIAICPROJECT aicProject

AIC Palette File “ .pal UIAICPALETTE aicPalette

Figure 137. Entries to the softtypes File for Development Manager

 Each line of the file specifies:

� The descriptive string to be displayed by Development Manager
� The file type extension of the file that matches to the description
� A unique identification of the file type extension
� A menu definition for a pull-down menu that is displayed when you select a

file with this file type and pull down the ACTIONS menu.

 Refer to 9.4.3, “Modify the Action Pull-Down of Development Manager” on
page 216 for an explanation about how to define the additional menu. If you
do not want to add new Action menus, specify generic instead of
aicInterface, aicProject, and aicPalette. You then get the same ACTIONS
pull-down menu for these file types as for h source files, and the offered
selections are Edit and Print .

2. Run the /usr/softbench/etc/merge-types utility.

This utility reads the modified file and updates the
system-wide/usr/softbench/config/softtypes/$LANG files. For example, when
you modified the /usr/softbench/config/softtypes/config/En_US/softtypes

file as shown above and run /usr/softbench/etc/merge-types , the
/usr/softbench/config/softtypes/En_US file gets updated. We do not
recommend that you edit this file directly, as the next invocation of
merge-types will overwrite the changes from the specified sources.

Once you have made the modifications and started SDE WorkBench/6000 again,
Development Manager recognizes the AIC-specific file type extensions and displays
the proper descriptive text as shown in Figure 138 on page 216.

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 215

Figure 138. Development Manager Recognizing AIC-Specific File Type Extensions

9.4.3 Modify the Action Pull-Down of Development Manager
Development Manager attaches different Action pull-down menus for files with
different file type extensions. For example, the Actions pull-down for C source files
includes a push button to start a compile, whereas the Actions pull-down for
makefile files contains a push button to run make .

Development Manager reads the menu definitions along with the label strings and
mnemonics for the push buttons from customization files in the
/usr/softbench/menus/Softdm directory. These customization files exist for each
language that is supported, and Development Manager uses the $LANG
environment variable to determine which files are to be used. To change the menu
definitions you can either change the
/usr/softbench/menus/Softdm/DM/Softdm/$LANG and
/usr/softbench/menus/Softdm/DM/Softdm/MDF.m files directly, or create a new
directory in /usr/softbench/menus/Softdm/ACTIONS and add the entries to the new
$LANG and MDF.m files in that directory.

In our environment the English locale En_US was used, and we wanted to have an
AIC-specific Action pull-down for the AIC-specific file type extensions. As explained
in 9.4.2, “Modify Extension-Based File-Typing of Development Manager” on
page 214 we modified the extension file typing of SDE WorkBench/6000 and
defined new menus to SDE WorkBench/6000. Refer to Figure 137 on page 215.

Follow these steps to add the new menu definitions:

1. Log in as root and create a new UIBUILD directory in the
/usr/softbench/menus/Softdm/ACTIONS directory.

2. Create a new file called En_US. To have different label strings for different user
locales, copy the translated contents of the file to a file with the proper locale
name. The file contains the line as shown in Figure 139 on page 217.

216 How to Migrate and Enhance Your Legacy Applications

 Softdm\aicInterface.labelString: Actions

 Softdm\aicInterface.mnemonic: A

 Softdm\aicProject.labelString: Actions

 Softdm\aicProject.mnemonic: A

 Softdm\aicPalette.labelString: Actions

 Softdm\aicPalette.mnemonic: A

 Softdm\ACTIONS_UIBUILD_aicProject_aic.labelString: AIC

 Softdm\ACTIONS_UIBUILD_aicProject_aic.mnemonic: A

 Softdm\ACTIONS_UIBUILD_aicProject_edit.labelString: Edit

 Softdm\ACTIONS_UIBUILD_aicProject_edit.mnemonic: E

 Softdm\ACTIONS_UIBUILD_aicInterface_aic.labelString: AIC

 Softdm\ACTIONS_UIBUILD_aicInterface_aic.mnemonic: A

 Softdm\ACTIONS_UIBUILD_aicInterface_edit.labelString: Edit

 Softdm\ACTIONS_UIBUILD_aicInterface_edit.mnemonic: E

 Softdm\ACTIONS_UIBUILD_aicPalette_aic.labelString: AIC

 Softdm\ACTIONS_UIBUILD_aicPalette_aic.mnemonic: A

 Softdm\ACTIONS_UIBUILD_aicPalette_edit.labelString: Edit

 Softdm\ACTIONS_UIBUILD_aicPalette_edit.mnemonic: E

Figure 139. Entries to the En_US File Used for Menu Definition

3. Create a new file called MDF.m. Under AIC 1.2, the file contains the lines shown
in Figure 140.

Menu aicProject {

 ACTIONS_UIBUILD_aicProject_aic f_exec \

MenuMsgSelectFunc "UIBUILD LOAD-UIFILE"

ACTIONS_UIBUILD_aicProject_edit f_exec \

MenuMsgSelectFunc "EDIT WINDOW"

 }

Menu aicInterface {

 ACTIONS_UIBUILD_aicInterface_aic f_exec \

MenuMsgSelectFunc "UIBUILD LOAD-UIFILE"

ACTIONS_UIBUILD_aicInterface_edit f_exec \

MenuMsgSelectFunc "EDIT WINDOW"

 }

Menu aicPalette {

 ACTIONS_UIBUILD_aicPalette_aic f_exec \

 MenuMsgSelectFunc "UIBUILD LOAD-UIFILE"

ACTIONS_UIBUILD_aicPalette_edit f_exec \

MenuMsgSelectFunc "EDIT WINDOW"

 }

Figure 140. Entries to the MDF.m File Used for Menu Definition (AIC 1.2)

When using AIC releases previous to 1.2, the file contains the lines shown in
Figure 141 on page 218.

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 217

Menu aicProject {

ACTIONS_UIBUILD_aicProject_aic f_exec \

MenuMsgObjectFunc "TERM NO-STDIO \

%Context_Host% 2 %Context_Dir% 2 - - %Context_Host% 2 \

aic %List% 1 %Select% %Warning% 1 %White_space% %Warning%"

ACTIONS_UIBUILD_aicProject_edit f_exec \

 MenuMsgSelectFunc "EDIT WINDOW"

 }

Menu aicInterface {

ACTIONS_UIBUILD_aicInterface_aic f_exec \

MenuMsgObjectFunc "TERM NO-STDIO \

%Context_Host% 2 %Context_Dir% 2 - - %Context_Host% 2 \

aic %List% 1 %Select% %Warning% 1 %White_space% %Warning%"

 ACTIONS_UIBUILD_aicInterface_edit f_exec \

MenuMsgSelectFunc "EDIT WINDOW"

 }

Menu aicPalette {

 ACTIONS_UIBUILD_aicPalette_aic f_exec

MenuMsgObjectFunc "TERM NO-STDIO \

%Context_Host% 2 %Context_Dir% 2 - - %Context_Host% 2 \

aic %List% 1 %Select% %Warning% 1 %White_space% %Warning%"

 ACTIONS_UIBUILD_aicPalette_edit f_exec

MenuMsgSelectFunc "EDIT WINDOW"

 }

Figure 141. Entries to the MDF.m File for AIC Releases Previous to 1.2

The Action pull-down modifications are in effect the next time you start SDE
WorkBench/6000. When you select an AIC interface, project, or palette file, and
pull down the ACTIONS menu, the window looks like that shown in Figure 142 on
page 219.

218 How to Migrate and Enhance Your Legacy Applications

Figure 142. Actions Pull-Down for AIC-Specific File Type Extensions

9.4.4 Modify the Default Action of Development Manager
Development Manager can assign different default actions to different file type
extensions; so a double click triggers different actions for different file type
extensions.

To set the default action for AIC interface, project, and palette files to invoke AIC
directly for the selected file, follow these steps:

1. Either edit the .Xdefaults file in the $HOME directory

or log in as root and edit the/usr/softbench/menus/Softdm/ACTIONS/$LANG file,
where $LANG is the locale.

2. Add the lines shown in Figure 143 when using AIC 1.2.

Softdm.actionPanelDoubleClick_aicInterface: MenuMsgSelectFunc \

 UIBUILD LOAD-UIFILE

Softdm.actionPanelDoubleClick_aicProject: MenuMsgSelectFunc \

 UIBUILD LOAD-UIFILE

Softdm.actionPanelDoubleClick_aicPalette: MenuMsgSelectFunc \

 UIBUILD LOAD-UIFILE

(AIC 1.2)

Figure 143. Modify the Default Action for AIC-Specific File Type Extensions

Or, add the lines shown in Figure 144 on page 220 when using releases
previous to AIC 1.2.

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 219

 Softdm.

actionPaneDoubleClick_aicInterface: MenuMsgObjectFunc \

TERM NO-STDIO \

%Context_Host% 2 %Context_Dir% 2 - - %Context_Host% 2 \

aic %List% 1 %Select% %Warning% 1 %White_space% %Warning%

 Softdm.actionPaneDoubleClick_aicProject: MenuMsgObjectFunc \

TERM NO-STDIO \

%Context_Host% 2 %Context_Dir% 2 - - %Context_Host% 2 \

aic %List% 1 %Select% %Warning% 1 %White_space% %Warning%

 Softdm.actionPaneDoubleClick_aicPalette: MenuMsgObjectFunc \

TERM NO-STDIO \

%Context_Host% 2 %Context_Dir% 2 - - %Context_Host% 2 \

aic %List% 1 %Select% %Warning% 1 %White_space% %Warning%

Figure 144. Modify the Default Action (AIC Releases Previous to 1.2)

These default action modifications are in effect the next time SDE WorkBench/6000
is started. When Development Manager displays an AIC interface, profile, or
palette file, and you-double click that file, AIC starts and loads the selected file
automatically.

9.4.5 Modify the Invocation of Other Tools from AIC
AIC 1.2 enables you to invoke other SDE WorkBench/6000 tools. For example,
you can use Program Editor to edit AIC callbacks, makefile files, or resource
properties, or use Program Builder for generating C code, or use CMVC for library
control functions. In addition, AIC 1.2 responds to messages from other SDE
WorkBench/6000 tools. For example, when you change the context in
Development Manager and start AIC for a selected AIC project, palette, or interface
file, the current directory as shown in AIC is also changed to the current context of
Development Manager. To enable this behaviour, add the line shown in in
Figure 145 to your .Xdefaults file. For more details, refer to the discussion of
running AIC under SDE WorkBench/6000 in AIXwindows Interface Composer
Developer's Guide, Version 1.2.

 Aic12\usingSoftbench: true

Figure 145. Enabling AIC to Use SDE WorkBench/6000 Tools

This setting becomes active the next time you start X, or explicitly enter the xrdb
.Xdefaults command.

9.4.6 Integration Restrictions and Their Circumventions
We found that the AIC 1. 2 release we used had a restriction when AIC was
integrated with SDE WorkBench/6000. The problem became obvious when the
current directory set in AIC was in fact a remote file that was NFS-mounted to the
system where AIC was executing. AIC would then fail to interface to other SDE
WorkBench/6000 tools.

For example, invoking Program Builder from a current directory of/nfs/bering/ad
(which is in fact remote and NFS-mounted) would result in an AIC error message.
The error message would say that Program Builder could not change the current

220 How to Migrate and Enhance Your Legacy Applications

directory to /nfs/bering/nfs/bering/ad. For some reason, the remote path prefix
/ad/bering got appended to the current directory name again.

In this case the circumvention we used was as follows. We created a directory /ad
on the local system where AIC was executing, and linked that directory to
/nfs/bering/ad. If we now change the current directory of AIC to /ad, AIC would
then add the path name /nfs/bering to that name, and Program Builder and AIC
would be able to access the same file.

AIC development has committed to correcting this restriction and providing the
appropriate PTF for AIC.
 Contact your IBM AIX service provider for details of the PTF order number and
availability.

 9.5 Tailoring AIC
You can customize AIC by modifying some of AIC's X11 resources. When you use
AIC releases previous to 1.2 these modifications can be made either to the
system-wide /usr/lpp/aic/newconfig/app-defaults/Aic resource file, or to your
private Aic resource file that is addressed by the XAPPLRESDIR environment
variable, or to your .Xdefaults resource file. When you run AIC 1.2, the
corresponding file names are /usr/lpp/aic12/newconfig/app-defaults/Aic12 and
Aic12.

In our environment we wanted to make changes to the system-wide resource file,
because all the members of our team had to use AIC in the same customized
version. We set the following AIC resources for releases prior to AIC 1.2:

Aic.cflags These are the flags AIC passes along to the interpreter.

Aic.includeFile If set to True, AIC generates an include file for each
AIC interface.

Aic.writeCCode If set to Xt Code, AIC generates plain Xt calls rather
than calls to the AIC Ux libraries.

The discussion of basic concepts of AIC in User Interface Programming Concepts:
AIXwindows Interface Composer, Volume 2, gives more details on using the AIC
resource file.

For AIC 1.2 we set the following options:

Aic12.cflags These are the flags AIC passes along to the interpreter.

Aic12.includeFile If set to True, AIC generates an include file for each
AIC interface.

Aic12.cgUxLib If set to false, AIC generates plain Xt calls rather than
calls to the AIC Ux libraries.

These resources are described in Installing and Configuring AIC, Version 1.2.

In our project environment we wanted AIC to load the include files from our project
include directory both during interpretation time and for compilations, we wanted to
have an include file generated for each AIC interface, and we wanted to generate
plain Xt code to achieve the highest degree of portability.

 Chapter 9. Tailoring SDE WorkBench/6000, Integrated Tools, and DB2/6000 221

The modified resource file contains the lines shown in Figure 146 on page 222 for
releases previous to AIC 1.2:

 Aic.

cflags: -I/ad/projectA_proto/include

 Aic.includeFile: true

 Aic.writeCCode: XtCode

Figure 146. Modified AIC Resource File Previous to AIC 1.2

The modified resource file for AIC 1.2 contains the lines shown in Figure 147.

 Aic12.

cflags: -I/ad/projectA_proto/include

 Aic12.includeFile: true

 Aic12.cgUxLib: false

Figure 147. Modified AIC Resource File for AIC 1.2

222 How to Migrate and Enhance Your Legacy Applications

Chapter 10. Integrating User-Developed Utilities into SDE
WorkBench/6000

This chapter describes how additional tools, utilities, or applications can be
integrated with SDE WorkBench/6000. Integration in this sense means that the
new tool would be sensitive to messages that are exchanged to and from the
message bus, and would thus be able to interface with other tools by sending
messages or reacting to messages from others. This process is called
encapsulation of a tool. We show the basic principles of how this can be done and
explain the various levels of encapsulation with or without modifications to the
existing code of the tool.

 10.1 Concepts
This section shows the rationale for encapsulating a tool and shows the benefits of
doing so. It also discusses the different steps of the encapsulation process.

When encapsulating a tool for use with SDE WorkBench/6000, you are required to
install an additional IBM LPP, SDE Integrator/6000.

10.1.1 Why Encapsulate a Tool?
When you have a set of tools to be used during your development process, these
tools do not stand beside one another. Rather, they have to interact either directly
(if the logical output of one tool is the input to another one), or they have to be
used beside one another (if one tool invokes another and the called tool provides
the output to the calling one). In addition, sometimes several tools have to be used
in a coordinated fashion, like tools to support the edit, compile, and debug cycle.

One solution to manage this kind of interaction is to have the user do this. A
developer would then have to take care of invoking one tool after the other, and
would have to provide the required input manually. As an example, a developer
would have to manually invoke the editor after an unsuccessful compilation (of
course this does not happen with good programmers...). However, in an integrated
environment the tools would be linked together so whenever a tool needs help from
another tool they will communicate with one another accordingly.

This idea is exactly the concept of the message system of SDE WorkBench/6000.
However, this system must also support a way to enable customers or vendors to
plug in additional tools as they appear or are required along the development
process. Integration implies using tools across the network, and it may also imply
using a consistent end user interface.

When a requirement for a new tool arises, a development shop must be able to
integrate this new tool with the existing set of tools.

For example consider a tool to support some kind of additional project control by
gathering statistical data for source code like counting the number of executable
source line instructions (we do not imply that this is a real requirement, but just use
this as an example); so an integrated use of the tool would imply that each time a
source file is modified in the library system, new statistics would be generated. So
the counting tool would be encapsulated such that it would listen for Checkin

 Copyright IBM Corp. 1995 223

messages from the Configuration Management tool. Each time such a message is
received from the bus, the counting tool would start automatically and update the
corresponding count. In addition, the count tool could send a START message to a
TERM tool in order to display the generated number on a screen. The tool would
also be added to the ACTIONS pull-down of Development Manager; so once the
new option is selected for a given file, the tool would also be started.

10.1.2 Steps of an Encapsulation
You have to follow the steps as described in this section when you intend to
encapsulate a tool.

1. Define the messages to which the tool will listen and react, and define the
actions your tool is going to perform in these cases.

2. Define the messages that the tool is going to send out, and define which other
tool is going to receive these messages.

3. If you want to integrate an existing tool with a standard input/output user
interface or no user interface at all, you can implement a wrapper
encapsulation without touching the existing code.

4. If you want to integrate an existing tool with an existing event driven user
interface, you may need to merge the event loops of your existing code with
the new one as required by the encapsulation.

5. If you want to integrate and develop a new tool, you need to decide whether to
use the SDE WorkBench/6000 development tools for user interface and
message- and help-text handling.

6. Choose the implementation language for the encapsulation. SDE
Integrator/6000 supports EDL (a high level meta language), C, or C++.

7. Implement the encapsulation and create the corresponding binary executable
file.

8. Install the required programs and data files in corresponding directories.

9. Customize SDE WorkBench/6000 to reflect the addition of the tool by modifying
the softtypes and softinit files or the menu definitions.

Have a look at IBM AIX SDE Integrator/6000 Programmer's Guide for more details
about how to implement a tool encapsulation.

 10.2 Encapsulation Approaches
This section describes the various encapsulation approaches that are possible. It
explains the various types of events to which a tool reacts, and explains the
different ways of encapsulating tools with or without source code modifications.
Finally an example is described that shows the interaction between new tools and
existing ones.

10.2.1 Events a Tool May React to
SDE WorkBench/6000 differentiates between the following event types:

Application Events These are events that are triggered when the tool
sends output to stdout or stderr

224 How to Migrate and Enhance Your Legacy Applications

User Events These are events that are triggered when a user
interacts with the encapsulated application and triggers
a X event (such as clicking a button)

Message Events These are events triggered when the encapsulated tool
receives a message from the message server.

System Events These are system signals from the operating system.

The major tasks during design time of the encapsulation is to decide, how (if at all)
the encapsulated application should react if one of the events as described above
is received. This reaction can either be the invocation of some application function,
or sending a message to another tool, or both. Of course, events can also just be
ignored by the application.

The main effort when implementing an encapsulation is to implement the programs
that handle those events that are important for the application. Once the event was
handled by the program, the control is simply returned to the main event loop until
another event occurs. In that aspect, writing an encapsulation is very similar to
implementing an AIXwindows application.

10.2.2 Encapsulations with No Code Modifications
The easiest way of encapsulating an application is to build some kind of a shell
around the existing application. This shell defines the events the tool would react
to, and would call the existing application for corresponding events. The existing
code of the application is not touched; instead the encapsulation is like an
additional wrapper layer around the application itself. As explained in 10.1.2,
“Steps of an Encapsulation” on page 224 the encapsulation can be written in EDL,
C++, or C.

This wrapper approach for encapsulation can be chosen if the application uses only
standard input and output rather than a graphical user interface, or if the application
does not have a user interface at all.

In this case the encapsulation code would define the events the tool reacts to and
would code the calls to invoke the original application executable in the
corresponding event definition.

10.2.3 Encapsulations with Code Modifications
If the application to be encapsulated is already based on an event-driven user
interface system, such as AIXwindows, there is more effort involved. In this case, it
may be necessary to merge the event loops of the original application with the
event loop of the encapsulation so when certain events occur in the old application
actions for the encapsulation are triggered.

This effort is more sophisticated and is described in great detail in IBM AIX SDE
Integrator/6000 Programmer's Guide.

 Chapter 10. Integrating User-Developed Utilities into SDE WorkBench/6000 225

10.3 Integrated Utility Example
A common requirement in a development organization environment is to count the
number of source lines for modules. This number can be used for planning
purposes, such as estimating project schedules, upcoming test effort, or resource
assignments for maintenance. In our project we decided to use an IBM internal
tool that counts the number of source lines for a given source file. This section
does not intend to describe the algorithm used to calculate that number. Rather
than that, we want to show how this IBM internal tool was used as a base, and how
we wrote an encapsulation around the tool. This encapsulated tool was then
integrated with Development Manager so the tool could be started from the Actions
pull-down of Development Manager once a source file has been selected, or from
the Tool Manager Start window.

10.3.1 The Original Counting Tool
As mentioned the encapsulation was based on an existing program, for which we
did not have the source code. The basic tool was program that could be invoked
from the command line and would accept a number of options along with
parameters. The name of the file to be counted was prompted from standard input,
and the output result was written to standard output. Additional flags could define
whether to produce verbose output or not, and what kind of language definition
profile was to be used.

To invoke the tool without having any more input required, we could use the echo
command along with the file name of the source file to be counted, and pipe the
output to the counting tool.

10.3.2 Design of the New Tool
We decided to write a tool that would be a member of the COUNT tool class. The
tool would be invoked either from the Tool Manager Start window, or from the
Actions pull-down of Development Manager once a source file was selected. The
message sent to the COUNT tool would be RUN-COUNT, and the definition of the
tool in the .softinit file would map the name of the tool to the proper invocation
command of the encapsulated tool.

The tool itself would show a window along with the standard SDE WorkBench/6000
menu bar entries for File and Help. The window would show the name of the file to
be counted and a scrolled text area where the output from the counting process
would be displayed.

The window would look like Figure 148 on page 227.

226 How to Migrate and Enhance Your Legacy Applications

Figure 148. User Interface of the New Tool

10.3.3 Implementation of the New Tool
We decided to implement the new tool using the C language. Figure 149 on
page 228 shows the source code of the encapsulated tool.

 Chapter 10. Integrating User-Developed Utilities into SDE WorkBench/6000 227

 #include <edl/edl_names.

h>

/\ global definitions for the objects as part of the COUNT tool window \/

object top, pane1, pane2, number, file;

/\ global definitions for the name of the file to be counted \/

string filepath;

void run_count_first_time(void)

{

/\ called, if the main program is invoked from Execution manager \/

string part1, command, result;

 busy(number);

 busy(file);

/\ build the command to be executed \/

part1 = string_concat("echo ", filepath);

command = string_concat(part1, "|/home/aixcase3/slocc/slocc -p /home/aixcase3/slocc/slocc.pro -d -vq");

/\ issue command and put output out to the screen \/

result = system(command, NULL);

 append(number, result);

 unbusy(number);

 unbusy(file);

}

void run_count(void)

{

/\ called, if the RUN-COUNT message is received \/

string part1, command;

 busy(number);

 busy(file);

 clear(file, ð);

 clear(number, ð);

/\ get the name of the file to be counted from message parameters \/

filepath = make_filename(message_host(), message_directory(), message_file(),

 False);

 append(file, filepath);

/\ issue command and put output out to the screen \/

 append_to(number, False);

part1 = string_concat("echo ", filepath);

command = string_concat(part1, "|/home/aixcase3/slocc/slocc -p /home/aixcase3/slocc/slocc.pro -d -vq");

send_command(command, True); .1/

 unbusy(number);

 unbusy(file);

send_message(Notify, ð, "RUN-COUNT", message_id(), ð, ð);

}

/\ Function to announce operations that COUNT tool supports \/

void establish_message_interface(void)

{

/\ post to pay attention to the RUN-COUNT message \/

 add_event(make_event(Message, .2/
 make_message_pattern(Request, "COUNT",

"RUN-COUNT",

 ð,ð,ð,ð,ð,ð,ð),

 run_count

));

}

Figure 149 (Part 1 of 2). The Implemented Source Code for the Encapsulation

228 How to Migrate and Enhance Your Legacy Applications

main (int argc, char \argv[])

{

 attribute temp;

 attribute att;

/\ Init the tool encapsulation \/

 init(&argc, argv);

 tool_class("COUNT"); .3/

/\ Define the window layout \/ .4/
top = make_manager(NULL, Toplevel, "Count");

pane1 = make_manager(top, Pane, "CountPane1");

make_object(pane1, "contextLabel1", Label, "File to be counted: ",

READONLY, ð);

att = merge_attribute(XOFFSET(ð), SINGLELINE);

temp = merge_attribute(att, READONLY) ;

att = merge_attribute(temp, COLUMNS(5ð));

file = make_object(pane1, "file", Edit, " ", att, ð);

pane2 = make_manager(top, Pane, "CountPane2");

make_object(pane2, "contextLabel2", Label, "Results of counting: ",

READONLY, ð);

att = merge_attribute(ROWS(8) , XOFFSET(ð)) ;

temp = merge_attribute(att, READONLY);

number = make_object(pane2,

Note: umber

, Edit, " ", temp, ð);

/\ display the window \/

 display(top, ð);

/\ define the messages the tool listens to \/

 establish_message_interface();

 clear(file, ð);

if (strcmp(argv[5], "RUN-COUNT")==ð)

{ .5/
/\ invocation done from Actions pull-down \/

 if (strcmp(argv[7],"/")==ð)

filepath = print_to_string("/%s", argv[8]);

 else

filepath = print_to_string("%s/%s", argv[7],

argv[8]);

 append(file, filepath);

 run_count_first_time();

send_message(Notify, ð, "RUN-COUNT", message_id(), ð, ð);

 } else { .6/
/\ called from the Tool Start window \/

/\ just put the context directory info the 'File name' field \/

filepath = print_to_string("%s", argv[7]);

 append(file, filepath);

send_message(Notify, ð, "START", message_id(), ð, ð);

 }

/\ and start the event loop with a sub process \/

 start("sh", ð,ð,ð);

/\ cleanup (called once the event loop was broken) \/

 finish();

}

Figure 149 (Part 2 of 2). The Implemented Source Code for the Encapsulation

The encapsulation as shown in Figure 149 on page 228 defines the new tool class
COUNT (.3/) and defines the window layout at the beginning of the main program
(.4/). The event monitored is the RUN-COUNT message (.2/), and the
corresponding routine to be triggered is the run_count function with the final call to
the existing IBM internal tool (.1/). The main program, if invoked for a START
request, would not start counting but just display the window (.6/). This would be
the case if we invoked COUNT from the Tool Manager Start window rather than
from the Actions pull-down of Development Manager. To find out how COUNT was
called, the parameters as passed to the program were used. As defined in the
.softinit file, shown in Figure 151 on page 230, the parameter being passed to
COUNT is the entire message string. The fifth parameter of the message (which is
the sixth command line argument, as the first one is the name of the called
program itself) is either the string START or RUN-COUNT. Thus the variable
argv[5] can be used to determine whether COUNT was invoked from the Tool

 Chapter 10. Integrating User-Developed Utilities into SDE WorkBench/6000 229

Manager Start window or not. This is shown at the lines indicated by .5/ in
Figure 149 on page 228.

The source file as implemented was then compiled using the SDE Integrator/6000
include files and linked using the corresponding libraries. The command used to do
this is shown in Figure 150.

 cc -I/usr/softbench/include \

 -L/usr/softbench/lib \

 -lencapinit \

 -lencap \

 -lXe \

 -lXeTest \

 -lbms \

 -lXm \

 -lXt \

 -lX11 \

-lsoftlib -o kloc kloc.

c

Figure 150. Compile Command to Build the Encapsulation

After we compile and link, the system would build the encapsulated executable
kloc file.

10.3.4 Integration of the New Tool with SDE WorkBench/6000
Once the encapsulation was built, we had to integrate the new tool with SDE
WorkBench/6000. This included defining the new COUNT entry in either the
system wide softinit fil or in the user's private .softinit file. For test purposes
we decided to modify the private .softinit file, and we added the line as shown in
Figure 151.

COUNT TOOL HOST \ %Host% /home/aixcase3/ToolIntegration/kloc %Message%

Figure 151. Softinit Entry to Define the Class of the Encapsulated Tool

We then modified the Actions pull-down of Development Manager. We logged in
as root and edited the file /usr/softbench/menus/Softdm/DM/Softdm/MDF.m. We
added the line indicated by .1/ in Figure 152 of the definition of the source
pull-down menu.

Menu source {

DM_source_fileedit f_exec MenuMsgSelectFunc "EDIT WINDOW"

DM_source_filecompile f_exec MenuMsgSelectFunc "BUILD COMPILE-FILE - - -"

DM_source_filelistfuncs f_exec MenuMsgCurrentDirFunc "STATIC SHOW-FUNCTIONS"

 DM_source_fileprint f_exec fileprint NULL

DM_source_filecount f_exec MenuMsgSelectFunc "COUNT RUN-COUNT" .1/
}

Figure 152. Modifying the Actions Menu Definition for the New Tool

We then added the label text definition of the new push button of the menu.
 To do this, we edited the file /usr/softbench/menus/Softdm/DM/Softdm/C. We
added the line shown in Figure 153.

Softdm\DM_source_filecount.labelString: Count LOC

Figure 153. Modifying the Labels of the Actions Pull-Down for the New Tool

230 How to Migrate and Enhance Your Legacy Applications

When we started SDE WorkBench/6000 the next time, Development Manager
would show the pull-down as shown in Figure 154 once a C source file is selected.

* 4i*3i

Figure 154. Modified Actions Pull-Down for Encapsulated Tool

Once Count LOC is selected from the Actions menu, the window as shown in
Figure 155 would be displayed when the tool was invoked for the source of the tool
encapsulation program itself.

Figure 155. The Window after Invoking the Encapsulated Tool

 Chapter 10. Integrating User-Developed Utilities into SDE WorkBench/6000 231

232 How to Migrate and Enhance Your Legacy Applications

Appendix A. Third-Party SDE Integrated AD Tools

IBM provides various products integrated with the SDE WorkBench/6000, most of
which were described in this book. Here is a list of these:

Following is a list of tools supplied by various other software vendors and also
integrated with SDE WorkBench/6000. These products supplement the tools as
supplied by IBM. This list does not imply a recommendation to use one of these
tools, nor is it considered to be complete. To the best of our knowledge, it
represents the set of tools that are integrated with SDE Workbench/6000 at control
integration level at the time of writing this book .

Table 5. List of IBM Products in the SDE Environment

IBM product name Product number

SDE WorkBench/6000 5696-524

SDE Integrator/6000 5696-523

C++ POWERbench 5696-733

COBOL POWERbench 5696-761

FORTRAN POWERbench 5696-551

AIXwindows Interface Composer 5756-027

CMVC/6000 5765-207

CMVC for Sun 5622-063

CMVC for Solaris Systems 5765-397

CMVC for HP 5765-202

Table 6 (Page 1 of 2). List of Vendor Products Integrated with SDE WorkBench/6000

Product name Vendor name

SEDIT** BENAROYA

Teamwork** Cadre

Process WEAVER** CAP Gemini Sogeti (CGS)

CaseWare/CM** CaseWare

Software Backplane** CRI (Atherton)

INFORMIX/4GL for ToolBus** Informix

StP-ISE** IDE

Interleaf 5** Interleaf

PVCS CB and VM** INTERSOLV

KeyOne** LPS

COBOL, COBOL with Toolbox** Micro Focus

Innovator** MID

SMARTsystem** PROCASE

ROSE** Rational

Systemator** Sysdeco

 Copyright IBM Corp. 1995 233

In addition to the list above, several vendors had announced support for integration
with SDE WorkBench/6000 in their products and was in the process of
implementing it.

Table 7 contains a list of these products, many of which are already available in
beta version. Check the corresponding vendor for details about the availability
date.

Table 6 (Page 2 of 2). List of Vendor Products Integrated with SDE WorkBench/6000

Product name Vendor name

SDT** TeleLOGIC

Emacs editors** Unipress Software

ASE/ASA, AGE/GEODE, LOGISCOPE** VERILOG

VADS** Verdix

ViSTA** VERITAS Software

View, Vutil** Versant

UIM/X (IBM logo: AIC) Visual Edge

I-CASE** Westmount

Table 7. List of Vendor Products Integrated with SDE WorkBench/6000 (Planned or
Announced)

Product name Vendor name

AdaWorld** Alsys

TRITON Tools** Baan International B.V.

Prolog by BIM** BIM

ProMod-PLUS** CAP debis GEI

DECADE** Delaware Computing

APPLIDUAL** DUAL

ENFIN/3** Easel

FrameMaker** Frame Technology

XRunner** Mercury Interactive Corp., Israel

Micro Focus Dialog System** Micro Focus

Open Interface** Neuron Data

OBJECTORY** Objective Systems (OS)

REFINE/FORTRAN** Reasoning Systems

HyperWork** PBS

Objecteering** Softeam

Software TestWorks (STW)** Software Research

Uniface WB** UnifAce

VIEWS/VSF** Virtual Software Factory

234 How to Migrate and Enhance Your Legacy Applications

Appendix B. Sample Panel Test Program

Figure 156 on page 236 shows a C program that was written to test the MVS ISPF
panel definitions with the IBM Internal Tool AIXISPF. This tool enables the testing
of the ISPF panels written for MVS on the AIX development platform. This tool
made it possible to test not only the COBOL and DB2 code, but also the MVS user
interface itself, all on AIX. This tool consists of a library of C language calls that
the developer uses in writing a panel test program.

 Copyright IBM Corp. 1995 235

/\\\/

/\ testpan.c \/

/\ Program to test ISPF panels on AIX. \/

/\ Makes use of the IBM Internal Tool AIXISPF. \/

/\ Author: Leif Trulsson, IBM Sweden \/

/\ \/

/\\\/

#include <stdio.h>

#define PANEL_LIB "./panels"

/\ these global variables are vdefined to match ISPF variables. \/

char ZCMD[255];

char ERRMSG[7ð];

char PFK[4];

char ACT[2];

char ARG[18];

char PFNAME[13];

char PLNAME[18];

char PSTREET[26];

char PZIPCODE[5];

char PCITY[2ð];

char PCUSTNO[1ð];

char PREFNO[1ð];

char PMAILID[2];

char PSRC[3&rbracket;

char PACTDATE[6];

char PADDRCHG[6];

char PPROFIT[8];

char PDCODE[1];

char PCOLLC[1];

char PPAYDATE[6];

char PAYDAT1[6];

char PAYDAT2[6&4bracket.;

char PAYDAT3[6];

char PAYDAT4[6];

char PAYDAT5[6];

char PAMOUNT[8];

char AMOUNT1[8];

char AMOUNT2[8];

char AMOUNT3[8];

char AMOUNT4[8];

char AMOUNT5[8];

char VAL[2];

struct rad {

 char nr[2];

 char fill1;

 char custno[1ð];

 char fill2;

 char firstname[13];

 char fill3;

 char lastname[18];

 char fill4;

 char street[26];

 char fill5;

 char zipcode[5]“;

 char null;

 } ;

Figure 156 (Part 1 of 5). ISPF Panel Test Program

236 How to Migrate and Enhance Your Legacy Applications

struct rad R1;

struct rad R2;

struct rad R3;

struct rad R4;

struct rad R5;

struct rad R6;

struct rad R7;

struct rad R8;

struct rad R9;

struct rad R1ð;

struct rad R11;

struct rad R12;

struct rad R13;

struct rad R14;

struct rad R15;

/\ link variables to ISPF variables \/

int vdef_vars()

{

 char com[255];

 int rc;

ZCMD[sizeof(ZCMD)-1] = '\ð';

rc = isplink("VDEFINE", "ZCMD", ZCMD, "CHAR", sizeof(ZCMD)-1);

if (rc) return rc;

ERRMSG[sizeof(ERRMSG)-1] = '\ð';

rc = isplink("VDEFINE", "ERRMSG", ERRMSG, "CHAR", sizeof(ERRMSG)-1);

if (rc) return rc;

PFK[sizeof(PFK)-1] = '\ð';

rc = isplink("VDEFINE", "PFK", PFK, "CHAR", sizeof(PFK)-1);

if (rc) return rc;

ACT[sizeof(ACT)-1] = '\ð';

rc = isplink("VDEFINE", "ACT", ACT, "CHAR", sizeof(ACT)-1);

if (rc) return rc;

ARG[sizeof(ARG)-1] = '\ð';

rc = isplink("VDEFINE", "ARG", ARG, "CHAR", sizeof(ARG)-1);

if (rc) return rc;

PFNAME[sizeof(PFNAME)-1] = '\ð';

rc = isplink("VDEFINE", "PFNAME", PFNAME, "CHAR", sizeof(PFNAME)-1);

if (rc) return rc;

PLNAME[sizeof(PLNAME)-1] = '\ð';

rc = isplink("VDEFINE", "PLNAME", PLNAME, "CHAR", sizeof(PLNAME)-1);

if (rc) return rc;

PSTREET[sizeof(PSTREET)-1] = '\ð';

rc = isplink("VDEFINE", "PSTREET", PSTREET, "CHAR", sizeof(PSTREET)-1);

if (rc) return rc;

PZIPCODE[sizeof(PZIPCODE)-1] = '\ð';

rc = isplink("VDEFINE", "PZIPCODE", PZIPCODE, "CHAR", sizeof(PZIPCODE)-1);

if (rc) return rc;

PCITY[sizeof(PCITY)-1] = '\ð';

rc = isplink("VDEFINE", "PCITY", PCITY, "CHAR", sizeof(PCITY)-1);

if (rc) return rc;

PCUSTNO[sizeof(PCUSTNO)-1] = '\ð';

rc = isplink("VDEFINE", "PCUSTNO", PCUSTNO, "CHAR", sizeof(PCUSTNO)-1);

if (rc) return rc;

PREFNO[sizeof(PREFNO)-1] = '\ð';

rc = isplink("VDEFINE", "PREFNO", PREFNO, "CHAR", sizeof(PREFNO)-1);

if (rc) return rc;

PMAILID[sizeof(PMAILID)-1] = '\ð';

rc = isplink("VDEFINE", "PMAILID", PMAILID, "CHAR", sizeof(PMAILID)-1);

if (rc) return rc;

PSRC[sizeof(PSRC)-1] = '\ð';

rc = isplink("VDEFINE", "PSRC", PSRC, "CHAR", sizeof(PSRC)-1);

Figure 156 (Part 2 of 5). ISPF Panel Test Program

 Appendix B. Sample Panel Test Program 237

if (rc) return rc;

PACTDATE[sizeof(PACTDATE)-1] = '\ð';

rc = isplink("VDEFINE", "PACTDATE", PACTDATE, "CHAR", sizeof(PACTDATE)-1);

if (rc) return rc;

PADDRCHG[sizeof(PADDRCHG)-1] = '\ð';

rc = isplink("VDEFINE", "PADDRCHG", PADDRCHG, "CHAR", sizeof(PADDRCHG)-1);

if (rc) return rc;

PPROFIT[sizeof(PPROFIT)-1] = '\ð';

rc = isplink("VDEFINE", "PPROFIT", PPROFIT, "CHAR", sizeof(PPROFIT)-1);

if (rc) return rc;

PDCODE[sizeof(PDCODE)-1] = '\ð';

rc = isplink("VDEFINE", "PDCODE", PDCODE, "CHAR", sizeof(PDCODE)-1);

if (rc) return rc;

PCOLLC[sizeof(PCOLLC)-1] = '\ð';

rc = isplink("VDEFINE", "PCOLC", PCOLLC, "CHAR", sizeof(PCOLLC)-1);

if (rc) return rc;

PPAYDATE[sizeof(PPAYDATE)-1] = '\ð';

rc = isplink("VDEFINE", "PPAYDATE", PPAYDATE, "CHAR", sizeof(PPAYDATE)-1);

if (rc) return rc;

PAYDAT1[sizeof(PAYDAT1)-1] = '\ð';

rc = isplink("VDEFINE", "PAYDAT1", PAYDAT1, "CHAR", sizeof(PAYDAT1)-1);

if (rc) return rc;

PAYDAT2[sizeof(PAYDAT2)-1] = '\ð';

rc = isplink("VDEFINE", "PAYDAT2", PAYDAT2, "CHAR", sizeof(PAYDAT2)-1);

if (rc) return rc;

PAYDAT3[sizeof(PAYDAT3)-1] = '\ð';

rc = isplink("VDEFINE", "PAYDAT3", PAYDAT3, "CHAR", sizeof(PAYDAT3)-1);

if (rc) return rc;

PAYDAT4[sizeof(PAYDAT4)-1] = '\ð';

rc = isplink("VDEFINE", "PAYDAT4", PAYDAT4, "CHAR", sizeof(PAYDAT4)-1);

if (rc) return rc;

PAYDAT5[sizeof(PAYDAT5)-1] = '\ð';

rc = isplink("VDEFINE", "PAYDAT5", PAYDAT5, "CHAR", sizeof(PAYDAT5)-1);

if (rc) return rc;

PAMOUNT[sizeof(PAMOUNT)-1] = '\ð';

rc = isplink("VDEFINE", "PAMOUNT", PAMOUNT, "CHAR", sizeof(PAMOUNT)-1);

if (rc) return rc;

AMOUNT1[sizeof(AMOUNT1)-1] = '\ð';

rc = isplink("VDEFINE", "AMOUNT1", AMOUNT1, "CHAR", sizeof(AMOUNT1)-1);

if (rc) return rc;

AMOUNT2[sizeof(AMOUNT2)-1] = '\ð';

rc = isplink("VDEFINE", "AMOUNT2", AMOUNT2, "CHAR", sizeof(AMOUNT2)-1);

if (rc) return rc;

AMOUNT3[sizeof(AMOUNT3)-1] = '\ð';

rc = isplink("VDEFINE", "AMOUNT3", AMOUNT3, "CHAR", sizeof(AMOUNT3)-1);

if (rc) return rc;

AMOUNT4[sizeof(AMOUNT4)-1] = '\ð';

rc = isplink("VDEFINE", "AMOUNT4", AMOUNT4, "CHAR", sizeof(AMOUNT4)-1);

if (rc) return rc;

AMOUNT5[sizeof(AMOUNT5)-1] = '\ð';

rc = isplink("VDEFINE", "AMOUNT5", AMOUNT5, "CHAR", sizeof(AMOUNT5)-1);

if (rc) return rc;

VAL[sizeof(VAL)-1] = '\ð';

rc = isplink("VDEFINE", "VAL", VAL, "CHAR", sizeof(VAL)-1);

if (rc) return rc;

 return ð;

 }

Figure 156 (Part 3 of 5). ISPF Panel Test Program

238 How to Migrate and Enhance Your Legacy Applications

/\ Process our panels \/

int primary_cmd()

{

 char com[255];

 int rc;

 char c;

do { /\ Do unitl PF3 is pressed \/

strcpy(com, "VPUT (ACT ARG ERRMSG) SHARED");

rc = ispexec(strlen(com), com);

strcpy(com, "DISPLAY PANEL (IBMOUðð1)");

rc = ispexec(strlen(com), com);

if (rc == 8)

 break;

ERRMSGfflð“ = '\ð';

strcpy(com, "VGET (ACT ARG) SHARED");

rc = ispexec(strlen(com), com);

if (!strcmp(ACT, "ð1"))

 {

ACT[ð] = '\ð';

strcpy(com, "VPUT (PFNAME PLNAME PSTREET PZIPCODE PCITY PCUSTNO PREFNO PMAILID PSRC) SHARED");

rc = ispexec(strlen(com), com);

 do {

strcpy(com, "DISPLAY PANEL (IBMOUðð2)");

rc = ispexec(strlen(com), com);

} while (rc != 8);

ERRMSG[ð&rbraket. = '\ð';

strcpy(com, "VGET (PFNAME PLNAME PSTREET PZIPCODE PCITY PCUSTNO PREFNO PMAILID PSRC) SHARED");

rc = ispexec(strlen(com), com);

rc = ð;

 }

if (!strcmp(ACT, "23"))

 {

 do {

ACTfflð“ = '\ð';

strcpy(com, "DISPLAY PANEL (IBMOUðð3)");

rc = ispexec(strlen(com), com);

} while (rc != 8);

ERRMSG[ð] = '\ð';

rc = ð;

 }

if (!strcmp(ACT, "6ð"))

 {

 do {

ACT[ð] = '\ð';

strcpy(com, "DISPLAY PANEL (IBMOUðð4)");

rc = ispexec(strlen(com), com);

} while (rc != 8);

ERRMSGYlbracket.ð] = '\ð';

rc = ð;

 }

if (!strcmp(ACT, "99"))

 {

 do {

ACT[ð] = "\ð";

strcpy(com, "DISPLAY PANEL (IBMOUðð5)");

rc = ispexec(strlen(com), com);

} while (rc != 8);

ERRMSG[ð] = '\ð';

rc = ð;

 }

} while (rc != 8);

Figure 156 (Part 4 of 5). ISPF Panel Test Program

 Appendix B. Sample Panel Test Program 239

if (!strcmp(ZCMD, "END")) { /\ Clean up \/

 }

strcpy(com, "CONTROL DISPLAY RESTORE");

rc = ispexec(strlen(com), com);

}

/\ Take care of any Errors \/

void errexit (int rc, char \msg)

{

printf("demo1: error: command returned nonzero code %d\n",rc);

printf("demo1: command was: %s\n",msg);

 exit_services();

 exit (1);

 }

main(int argc, char \\argv)

{

 char com[255];

 int rc;

/\ start ISPF services. \/

 init_services();

/\ vdefine variables \/

if (rc = vdef_vars()) {

fprintf(stderr, "vdefine: returned %d\n", rc);

 exit(1);

 }

/\ define libraries \/

sprintf(com, "LIBDEF ISPPLIB FILE ID(%s)", PANEL_LIB);

rc = ispexec(strlen(com), com);

rc = ð;

 primary_cmd();

/\ make sure to call this before exiting \/

 exit_services();

 }

Figure 156 (Part 5 of 5). ISPF Panel Test Program

240 How to Migrate and Enhance Your Legacy Applications

 Appendix C. Panel Definitions

To be able to test the MVS releases on AIX without the limitation of the ISPF panel
interface, we decided to write a character-based screen handler for AIX. This
character-based screen handler uses the Micro Focus COBOL SPECIAL-NAMES and
SCREEN-SECTIONs. Figure 157 shows the new panel definitions.

\ PANEL VARIABLES

 77 LASTCC PIC 9(4).

ð1 EXIT-FLAG PIC 9(2) COMP-X VALUE ð.

ð1 ERRMSG PIC X(7ð) VALUE SPACE.

ð1 PFK PIC X(4) VALUE SPACE.

ð1 ACT PIC X(2) VALUE SPACE.

ð1 ARG PIC X(18) VALUE SPACE.

ð1 NARG REDEFINES ARG.

 ð5 CNUM PIC 9(1ð).

 ð5 FILLER PIC X(8).

ð1 PFNAME PIC X(13) VALUE SPACE.

ð1 PLNAME PIC X(18) VALUE SPACE.

ð1 PSTREET PIC X(26) VALUE SPACE.

ð1 PZIPCODE PIC X(5) VALUE SPACE.

ð1 NZIPCODE REDEFINES PZIPCODE PIC 9(5).

ð1 PCITY PIC X(2ð) VALUE SPACE.

ð1 PCUSTNO PIC X(1ð) VALUE SPACE.

ð1 NCUSTNO REDEFINES PCUSTNO PIC 9(1ð).

ð1 PREFNO PIC X(1ð) VALUE SPACE.

 ð1 NREFNO REDEFINES PREFNO PIC 9(1ð).

ð1 PMAILID PIC X(2) VALUE SPACE.

ð1 NMAILID REDEFINES PMAILID PIC 9(2).

ð1 PSRC PIC X(3) VALUE SPACE.

ð1 NSRC REDEFINES PSRC PIC 9(3).

ð1 PACTDATE PIC X(6) VALUE SPACE.

ð1 NACTDATE REDEFINES PACTDATE PIC 9(6).

ð1 PADDRCHG PIC X(6) VALUE SPACE.

ð1 NADDRCHG REDEFINES PADDRCHG PIC 9(6).

ð1 PPROFIT PIC X(8) VALUE SPACE.

ð1 EPROFIT PIC ZZZZ9.99 VALUE ZERO.

ð1 PDCODE PIC X(1) VALUE SPACE.

ð1 NDCODE REDEFINES PDCODE PIC 9(1).

ð1 PCOLLC PIC X(1) VALUE SPACE.

ð1 NCOLLC REDEFINES PCOLLC PIC 9(1).

ð1 PPAYDATE PIC X(6) VALUE SPACE.

ð1 NPAYDATE REDEFINES PPAYDATE PIC 9(6).

ð1 PAYDAT1 PIC X(6) VALUE SPACE.

ð1 PAYDAT2 PIC X(6) VALUE SPACE.

ð1 PAYDAT3 PIC X(6) VALUE SPACE.

ð1 PAYDAT4 PIC X(6) VALUE SPACE.

ð1 PAYDAT5 PIC X(6) VALUE SPACE.

ð1 PAMOUNT PIC X(8) VALUE SPACE.

ð1 EAMOUNT PIC ZZZZ9.99 VALUE ZERO.

 ð1 XAMOUNT.

ð5 HTAL PIC 9(5) VALUE ZERO.

ð5 FILLER PIC X VALUE ".".

ð5 DEC PIC 9(2) VALUE ZERO.

ð1 AMOUNT1 PIC X(8) VALUE SPACE.

ð1 AMOUNT2 PIC X(8) VALUE SPACE.

ð1 AMOUNT3 PIC X(8) VALUE SPACE.

ð1 AMOUNT4 PIC X(8) VALUE SPACE.

ð1 AMOUNT5 PIC X(8) VALUE SPACE.

ð1 VAL PIC X(2) VALUE SPACE.

ð1 VAL-NUM REDEFINES VAL PIC 9(2).

Figure 157 (Part 1 of 11). New Panel Definitions

 Copyright IBM Corp. 1995 241

 ð1 PANEL-RADER.

 ð5 R1.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R2.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R3.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R4.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R5.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

Figure 157 (Part 2 of 11). New Panel Definitions

242 How to Migrate and Enhance Your Legacy Applications

 ð5 R6.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R7.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R8.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R9.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R1ð.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

Figure 157 (Part 3 of 11). New Panel Definitions

 Appendix C. Panel Definitions 243

 ð5 R11.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R12.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R13.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R14.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

 ð5 R15.

1ð NR PIC X(2) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð CUSTNO PIC X(1ð) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð FILLER PIC X(1) VALUE SPACE.

1ð ZIPCODE PIC X(5) VALUE SPACE.

Figure 157 (Part 4 of 11). New Panel Definitions

244 How to Migrate and Enhance Your Legacy Applications

\

 ð1 BLANK-P-RADER.

ð5 R1 PIC X(76) VALUE SPACE.

ð5 R2 PIC X(76) VALUE SPACE.

ð5 R3 PIC X(76) VALUE SPACE.

ð5 R4 PIC X(76) VALUE SPACE.

ð5 R5 PIC X(76) VALUE SPACE.

ð5 R6 PIC X(76) VALUE SPACE.

ð5 R7 PIC X(76) VALUE SPACE.

ð5 R8 PIC X(76) VALUE SPACE.

ð5 R9 PIC X(76) VALUE SPACE.

ð5 R1ð PIC X(76) VALUE SPACE.

ð5 R11 PIC X(76) VALUE SPACE.

ð5 R12 PIC X(76) VALUE SPACE.

ð5 R13 PIC X(76) VALUE SPACE.

ð5 R14 PIC X(76) VALUE SPACE.

ð5 R15 PIC X(76) VALUE SPACE.

 \\\

\ CURSOR-POSITION is returned by ADIS containing the position \ \

\ of the cursor when the ACCEPT was terminated. \ \

 \\\

 ð1 CURSOR-POSITION.

 ð3 CURSOR-ROW PIC 99.

 ð3 CURSOR-COLUMN PIC 99.

 \\

\ Parameters to be used for the X"AF" call \ \

 \\

ð1 SET-BIT-PAIRS PIC 9(2) COMP-X VALUE 1.

ð1 GET-SINGLE-CHARACTER PIC 9(2) COMP-X VALUE 26.

 ð1 KEY-STATUS.

 ð3 KEY-TYPE PIC X.

ð3 KEY-CODE-1 PIC 9(2) COMP-X.

ð3 KEY-CODE-2 PIC 9(2) COMP-X.

 ð1 USER-KEY-CONTROL.

ð3 USER-KEY-SETTING PIC 9(2) COMP-X.

ð3 FILLER PIC X VALUE "1".

ð3 FIRST-USER-KEY PIC 9(2) COMP-X.

ð3 NUMBER-OF-KEYS PIC 9(2) COMP-X.

 ð1 ENABLE-F3.

ð3 FILLER PIC 9(2) COMP-X VALUE 1.

ð3 FILLER PIC X VALUE "1".

ð3 FILLER PIC 9(2) COMP-X VALUE 3.

ð3 FILLER PIC 9(2) COMP-X VALUE 1.

 ð1 ENABLE-F1ð.

ð3 FILLER PIC 9(2) COMP-X VALUE 1.

ð3 FILLER PIC X VALUE "1".

ð3 FILLER PIC 9(2) COMP-X VALUE 1ð.

ð3 FILLER PIC 9(2) COMP-X VALUE 1.

 ð1 DISABLE-ALL-OTHER-KEYS.

ð3 FILLER PIC 9(2) COMP-X VALUE ð.

ð3 FILLER PIC X VALUE "1".

ð3 FILLER PIC 9(2) COMP-X VALUE ð.

ð3 FILLER PIC 9(2) COMP-X VALUE 126.

Figure 157 (Part 5 of 11). New Panel Definitions

 Appendix C. Panel Definitions 245

 \\\

 \ Screen Section. \ \

 \\\

 SCREEN SECTION.

 ð1 PANEL1.

 ð3 blank screen.

ð3 line 1 column 28

value "Samlaren AB" highlight.

ð3 line 2 column 28

value "On-line update" highlight.

ð3 line 9 column 18

value "ð1" highlight.

ð3 line 9 column 22

value "= Enrollment".

ð3 line 1ð column 18

value "23" highlight.

ð3 line 1ð column 22

value "= Address change".

ð3 line 11 column 18

value "6ð" highlight.

ð3 line 11 column 22

value "= Payment".

ð3 line 12 column 18

value "99" highlight.

ð3 line 12 column 22

value "= Delete".

ð3 line 13 column 18

value "S" highlight.

ð3 line 13 column 22

value "= Search".

ð3 line 17 column 5

value "ACTION : " highlight.

ð3 pic X(2) using ACT reverse-video prompt " ".

ð3 line 17 column 23

value "ARGUMENT : " highlight.

ð3 pic X(18) using ARG reverse-video prompt " ".

ð3 line 18 column 1

pic X(7ð) using ERRMSG highlight usage is display.

ð3 line 19 column 9

value "PF3 = END" highlight.

 ð1 PANEL2.

 ð3 blank screen.

ð3 line 1 column 28

value "Samlaren AB" highlight.

ð3 line 2 column 29

value "ENROLLMENTS" .

ð3 line 8 column 6

value "FIRST NAME : " highlight.

ð3 pic X(13) using PFNAME reverse-video prompt " ".

ð3 line 1ð column 6

value "LAST NAME : " highlight.

ð3 pic X(18) using PLNAME reverse-video prompt " ".

ð3 line 12 column 6

value "STREET : " highlight.

ð3 pic X(26) using PSTREET reverse-video prompt " ".

ð3 line 14 column 6

value "ZIP CODE : " highlight.

ð3 pic X(5) using PZIPCODE reverse-video prompt " ".

ð3 line 14 column 31

value "CITY : ".

ð3 pic X(2ð) using PCITY usage is display.

ð3 line 16 column 6

value "CUSTOMER NO.: " highlight.

Figure 157 (Part 6 of 11). New Panel Definitions

246 How to Migrate and Enhance Your Legacy Applications

ð3 pic X(1ð) using PCUSTNO reverse-video prompt " ".

ð3 line 16 column 35

value "REFERENSE NO. : ".

ð3 pic X(1ð) using PREFNO usage is display.

ð3 line 18 column 6

value "MAIL ID : " highlight.

ð3 pic X(2) using PMAILID reverse-video prompt " ".

ð3 line 18 column 35

value "SOURCE CODE : " highlight.

ð3 pic X(3) using PSRC reverse-video prompt " ".

ð3 line 22 column 1

pic X(7ð) using ERRMSG highlight usage is display.

ð3 line 24 column 9

value "PF3 = END" highlight.

 ð1 PANEL3.

 ð3 blank screen.

ð3 line 1 column 28

value "Samlaren AB" highlight.

ð3 line 2 column 28

value "ADDRESS CHANGE" .

ð3 line 8 column 6

value "FIRST NAME : " .

ð3 pic X(13) using PFNAME usage is display.

ð3 line 1ð column 6

value "LAST NAME : " .

ð3 pic X(18) using PLNAME usage is display.

ð3 line 12 column 6

value "STREET : " highlight.

ð3 pic X(26) using PSTREET reverse-video prompt " ".

ð3 line 14 column 6

value "ZIP CODE : " highlight.

ð3 pic X(5) using PZIPCODE reverse-video prompt " ".

ð3 line 14 column 31

value "CITY : ".

ð3 pic X(2ð) using PCITY usage is display.

ð3 line 16 column 6

value "CUSTOMER NO.: " highlight.

ð3 pic X(1ð) using PCUSTNO reverse-video prompt " ".

ð3 line 16 column 35

value "REFERENSE NO. : ".

ð3 pic X(1ð) using PREFNO usage is display.

ð3 line 18 column 6

value "MAIL ID : " .

ð3 pic X(2) using PMAILID usage is display.

ð3 line 18 column 35

value "SOURCE CODE : ".

ð3 pic X(3) using PSRC usage is display.

ð3 line 22 column 1.

ð3 pic X(7ð) using ERRMSG highlight usage is display.

ð3 line 24 column 9

value "PF3 = END" highlight.

 ð1 PANEL4.

 ð3 blank screen.

ð3 line 1 column 28

value "Samlaren AB" highlight.

ð3 line 2 column 28

value "PAYMENT PANEL" highlight.

ð3 line 5 column 6

value "FIRST NAME : " .

Figure 157 (Part 7 of 11). New Panel Definitions

 Appendix C. Panel Definitions 247

ð3 pic X(13) using PFNAME usage is display.

ð3 line 6 column 6

value "LAST NAME : " .

ð3 pic X(18) using PLNAME usage is display.

ð3 line 7 column 6

value "STREET : " .

ð3 pic X(26) using PSTREET usage is display.

ð3 line 8 column 6

value "ZIP CODE : " .

ð3 pic X(5) using PZIPCODE usage is display.

ð3 line 8 column 32

value "CITY : ".

ð3 pic X(2ð) using PCITY usage is display.

ð3 line 1ð column 6

value "CUSTOMER NO. : " highlight.

ð3 pic X(1ð) using PCUSTNO reverse-video prompt " ".

ð3 line 1ð column 36

value "REFERENSE NO. : ".

ð3 pic X(1ð) using PREFNO usage is display.

ð3 line 11 column 6

value "MAIL ID : " .

ð3 pic X(2) using PMAILID usage is display.

ð3 line 11 column 36

value "SOURCE CODE : ".

ð3 pic X(3) using PSRC usage is display.

ð3 line 12 column 6

value "LAST ACT DATE: " .

ð3 pic X(6) using PACTDATE usage is display.

ð3 line 12 column 36

value "ADDR.CHG.DATE : ".

ð3 pic X(6) using PADDRCHG usage is display.

ð3 line 14 column 6

value "PROFIT : ".

ð3 pic X(8) using PPROFIT usage is display.

ð3 line 14 column 25

value "DUNNING CODE : ".

ð3 pic X using PDCODE usage is display.

ð3 line 14 column 47

value "COLLECTING CODE : ".

ð3 pic X using PCOLLC usage is display.

ð3 line 15 column 6

value "------------------- PAYMENT TABLE -----------------------"

 highlight.

ð3 line 16 column 6

value "LINE NO DATE AMOUNT" highlight.

ð3 line 17 column 6

 value "ð1 " highlight.

ð3 pic X(6) using PAYDAT1 usage is display.

ð3 line 17 column 35

pic X(8) using AMOUNT1 usage is display.

ð3 line 18 column 6

 value "ð2 " highlight.

ð3 pic X(6) using PAYDAT2 usage is display.

ð3 line 18 column 35

pic X(8) using AMOUNT2 usage is display.

ð3 line 19 column 6

 value "ð3 " highlight.

ð3 pic X(6) using PAYDAT3 usage is display.

ð3 line 19 column 35

pic X(8) using AMOUNT3 usage is display.

Figure 157 (Part 8 of 11). New Panel Definitions

248 How to Migrate and Enhance Your Legacy Applications

ð3 line 2ð column 6

 value "ð4 " highlight.

ð3 pic X(6) using PAYDAT4 usage is display.

ð3 line 2ð column 35

pic X(8) using AMOUNT4 usage is display.

ð3 line 21 column 6

 value "ð5 " highlight.

ð3 pic X(6) using PAYDAT5 usage is display.

ð3 line 21 column 35

pic X(8) using AMOUNT5 usage is display.

ð3 line 22 column 6

value "NEW : " highlight.

ð3 pic X(6) using PPAYDATE reverse-video prompt " ".

ð3 line 22 column 35.

ð3 pic X(8) using PAMOUNT reverse-video prompt " ".

ð3 line 23 column 1.

ð3 pic X(7ð) using ERRMSG highlight usage is display.

ð3 line 24 column 9

value "PF3 = END" highlight.

 ð1 PANEL5.

 ð3 blank screen.

ð3 line 1 column 28

value "Samlaren AB" highlight.

ð3 line 2 column 28

value "DELETE PANEL " highlight.

ð3 line 5 column 6

value "FIRST NAME : " .

ð3 pic X(13) using PFNAME usage is display.

ð3 line 6 column 6

value "LAST NAME : " .

ð3 pic X(18) using PLNAME usage is display.

ð3 line 7 column 6

value "STREET : " .

ð3 pic X(26) using PSTREET usage is display.

ð3 line 8 column 6

value "ZIP CODE : " .

ð3 pic X(5) using PZIPCODE usage is display.

ð3 line 8 column 32

value "CITY : ".

ð3 pic X(2ð) using PCITY usage is display.

ð3 line 1ð column 6

value "CUSTOMER NO. : " highlight.

ð3 pic X(1ð) using PCUSTNO reverse-video prompt " ".

ð3 line 1ð column 36

value "REFERENSE NO. : ".

ð3 pic X(1ð) using PREFNO usage is display.

ð3 line 11 column 6

value "MAIL ID : " .

ð3 pic X(2) using PMAILID usage is display.

ð3 line 11 column 36

value "SOURCE CODE : ".

ð3 pic X(3) using PSRC usage is display.

ð3 line 12 column 6

value "LAST ACT DATE: " .

ð3 pic X(6) using PACTDATE usage is display.

ð3 line 12 column 36

value "ADDR.CHG.DATE : ".

ð3 pic X(6) using PADDRCHG usage is display.

ð3 line 14 column 6

value "PROFIT : ".

ð3 pic X(8) using PPROFIT usage is display.

Figure 157 (Part 9 of 11). New Panel Definitions

 Appendix C. Panel Definitions 249

ð3 line 14 column 25

value "DUNNING CODE : ".

ð3 pic X using PDCODE usage is display.

ð3 line 14 column 47

value "COLLECTING CODE : ".

ð3 pic X using PCOLLC usage is display.

ð3 line 15 column 6

value "------------------- PAYMENT TABLE -----------------------"

 highlight.

ð3 line 16 column 6

value "LINE NO DATE AMOUNT" highlight.

ð3 line 17 column 6

 value "ð1 " highlight.

ð3 pic X(6) using PAYDAT1 usage is display.

ð3 line 17 column 35

pic X(8) using AMOUNT1 usage is display.

ð3 line 18 column 6

 value "ð2 " highlight.

ð3 pic X(6) using PAYDAT2 usage is display.

ð3 line 18 column 35

pic X(8) using AMOUNT2 usage is display.

ð3 line 19 column 6

 value "ð3 " highlight.

ð3 pic X(6) using PAYDAT3 usage is display.

ð3 line 19 column 35

pic X(8) using AMOUNT3 usage is display.

ð3 line 2ð column 6

 value "ð4 " highlight.

ð3 pic X(6) using PAYDAT4 usage is display.

ð3 line 2ð column 35

pic X(8) using AMOUNT4 usage is display.

ð3 line 21 column 6

 value "ð5 " highlight.

ð3 pic X(6) using PAYDAT5 usage is display.

ð3 line 21 column 35

pic X(8) using AMOUNT5 usage is display.

ð3 line 23 column 1

pic X(7ð) using ERRMSG highlight usage is display.

ð3 line 24 column 9

value "PF3 = END PF1ð = DELETE"

 highlight.

 ð1 PANEL6.

 ð3 blank screen.

ð3 line 1 column 22

value "DUPLICATE SELECTION PANEL" highlight.

ð3 line 3 column 1

value "NR CUSTNO FIRST NAME" highlight.

ð3 line 3 column 3ð

 value"LAST NAME STREET ZIPCODE"

 highlight.

ð3 line 4 column 1

pic X(79) using R1 IN PANEL-RADER usage is display.

ð3 line 5 column 1

pic X(79) using R2 IN PANEL-RADER usage is display.

ð3 line 6 column 1

pic X(79) using R3 IN PANEL-RADER usage is display.

ð3 line 7 column 1

pic X(79) using R4 IN PANEL-RADER usage is display.

ð3 line 8 column 1

pic X(79) using R5 IN PANEL-RADER usage is display.

Figure 157 (Part 10 of 11). New Panel Definitions

250 How to Migrate and Enhance Your Legacy Applications

ð3 line 9 column 1

pic X(79) using R6 IN PANEL-RADER usage is display.

ð3 line 1ð column 1

pic X(79) using R7 IN PANEL-RADER usage is display.

ð3 line 11 column 1

pic X(79) using R8 IN PANEL-RADER usage is display.

ð3 line 12 column 1

pic X(79) using R9 IN PANEL-RADER usage is display.

ð3 line 13 column 1

pic X(79) using R1ð IN PANEL-RADER usage is display.

ð3 line 14 column 1

pic X(79) using R11 IN PANEL-RADER usage is display.

ð3 line 15 column 1

pic X(79) using R12 IN PANEL-RADER usage is display.

ð3 line 16 column 1

pic X(79) using R13 IN PANEL-RADER usage is display.

ð3 line 17 column 1

pic X(79) using R14 IN PANEL-RADER usage is display.

ð3 line 18 column 1

pic X(79) using R15 IN PANEL-RADER usage is display.

ð3 line 21 column 4

value "SELECT NR ==> " highlight.

ð3 pic X(2) using VAL reverse-video prompt " ".

ð3 line 23 column 1

pic X(7ð) using ERRMSG highlight usage is display.

ð3 line 24 column 9

value "PF3 = END" highlight.

Figure 157 (Part 11 of 11). New Panel Definitions

 Appendix C. Panel Definitions 251

252 How to Migrate and Enhance Your Legacy Applications

Appendix D. Sample Data Extraction Program

This chapter shows the layout of our data extraction (export) program. We decided
to extract the data into character format, so we could use the DB2/6000 ASCII
import facility.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EXPTAB.

AUTHOR. LEIF TRULSSON.

 DATE-WRITTEN. 93ð726.

 \REMARKS.

\ DB2 BATCH PROGRAM.

\ EXPORTS TABLES: CUST, NAME, PAYMENT AND ZIP

\ FROM DATABASE IBPED.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT CUSTUT ASSIGN TO CUSTUT.

SELECT NAMEUT ASSIGN TO NAMEUT.

SELECT PAYUT ASSIGN TO PAYUT.

SELECT ZIPUT ASSIGN TO ZIPUT.

 DATA DIVISION.

 FILE SECTION.

FD CUSTUT BLOCK CONTAINS ð RECORDS

LABEL RECORDS ARE STANDARD

DATA RECORDS ARE CUST-UT.

 ð1 CUST-UT SYNC.

 ð5 FILLER PIC X(8ð).

FD NAMEUT BLOCK CONTAINS ð RECORDS

LABEL RECORDS ARE STANDARD

DATA RECORDS ARE NAME-UT.

 ð1 NAME-UT SYNC.

 ð5 FILLER PIC X(8ð).

FD PAYUT BLOCK CONTAINS ð RECORDS

LABEL RECORDS ARE STANDARD

DATA RECORDS ARE PAY-UT.

 ð1 PAY-UT SYNC.

 ð5 FILLER PIC X(8ð).

FD ZIPUT BLOCK CONTAINS ð RECORDS

LABEL RECORDS ARE STANDARD

DATA RECORDS ARE ZIP-UT.

 ð1 ZIP-UT SYNC.

 ð5 FILLER PIC X(8ð).

 WORKING-STORAGE SECTION.

 \

77 CLOCK PIC 9(8) VALUE ZERO.

 \

 EXEC SQL

 INCLUDE SQLCA

 END-EXEC.

 \

Figure 158 (Part 1 of 7). Program to Extract Data from MVS/DB2

 Copyright IBM Corp. 1995 253

 EXEC SQL

DECLARE IBPED.CUST TABLE

(CUSTNO NUMERIC(1ð) NOT NULL,

REFNO NUMERIC(1ð) NOT NULL,

 ACTDATE INTEGER,

 ADDRCHG INTEGER,

 PROFIT NUMERIC(7,2),

MAILID NUMERIC(2) NOT NULL,

SOURCECODE NUMERIC(3) NOT NULL,

 COLLECTCODE SMALLINT,

 DUNNCODE SMALLINT)

 END-EXEC.

 EXEC SQL

DECLARE IBPED.NAME TABLE

(CUSTNO NUMERIC(1ð) NOT NULL,

FIRSTNAME CHARACTER(13) NOT NULL,

LASTNAME CHARACTER(18) NOT NULL,

STREET CHARACTER(26) NOT NULL,

ZIPCODE INTEGER NOT NULL)

 END-EXEC.

 EXEC SQL

DECLARE IBPED.ZIP TABLE

(ZIPCODE INTEGER NOT NULL,

CITY CHARACTER(2ð) NOT NULL)

 END-EXEC.

 EXEC SQL

DECLARE IBPED.PAYMENT TABLE

(REFNO NUMERIC(1ð) NOT NULL,

PAYDATE INTEGER NOT NULL,

AMOUNT NUMERIC(7,2) NOT NULL)

 END-EXEC.

 \

 ð1 PGM-CUST.

1ð CUSTNO COMP-3 PIC S9(1ð)V.

1ð REFNO COMP-3 PIC S9(1ð)V.

 1ð ACTDATE COMP PIC S9(6).

 1ð ADDRCHG COMP PIC S9(6).

1ð PROFIT COMP-3 PIC S9(5)V9(2).

1ð MAILID COMP-3 PIC S9(2)V.

1ð SOURCECODE COMP-3 PIC S9(3)V.

 1ð COLLECTCODE COMP PIC S9(1).

 1ð DUNNCODE COMP PIC S9(1).

 ð1 PGM-NAME.

1ð CUSTNO COMP-3 PIC S9(1ð)V.

 1ð FIRSTNAME PIC X(13).

 1ð LASTNAME PIC X(18).

 1ð STREET PIC X(26).

 1ð ZIPCODE COMP PIC S9(5).

 ð1 PGM-ZIP.

 1ð ZIPCODE COMP PIC S9(5).

 1ð CITY PIC X(2ð).

 ð1 PGM-PAYMENT.

1ð REFNO COMP-3 PIC S9(1ð)V.

 1ð PAYDATE COMP PIC S9(6).

1ð AMOUNT COMP-3 PIC S9(5)V9(2).

 \

Figure 158 (Part 2 of 7). Program to Extract Data from MVS/DB2

254 How to Migrate and Enhance Your Legacy Applications

 ð1 BLANK-CUST.

1ð CUSTNO COMP-3 PIC S9(1ð)V VALUE ZERO.

1ð REFNO COMP-3 PIC S9(1ð)V VALUE ZERO.

1ð ACTDATE COMP PIC S9(6) VALUE ZERO.

1ð ADDRCHG COMP PIC S9(6) VALUE ZERO.

1ð PROFIT COMP-3 PIC S9(5)V9(2) VALUE ZERO.

1ð MAILID COMP-3 PIC S9(2)V VALUE ZERO.

1ð SOURCECODE COMP-3 PIC S9(3)V VALUE ZERO.

1ð COLLECTCODE COMP PIC S9(1) VALUE ZERO.

1ð DUNNCODE COMP PIC S9(1) VALUE ZERO.

 ð1 BLANK-NAME.

1ð CUSTNO COMP-3 PIC S9(1ð)V VALUE ZERO.

1ð FIRSTNAME PIC X(13) VALUE SPACE.

1ð LASTNAME PIC X(18) VALUE SPACE.

1ð STREET PIC X(26) VALUE SPACE.

1ð ZIPCODE COMP PIC S9(5) VALUE ZERO.

 ð1 BLANK-ZIP.

1ð ZIPCODE COMP PIC S9(5) VALUE ZERO.

1ð CITY PIC X(2ð) VALUE SPACE.

 ð1 BLANK-PAYMENT.

1ð REFNO COMP-3 PIC S9(1ð)V VALUE ZERO.

1ð PAYDATE COMP PIC S9(6) VALUE ZERO.

1ð AMOUNT COMP-3 PIC S9(5)V9(2) VALUE ZERO.

 \

ð1 TRANS-DATA PIC X(8ð) VALUE SPACE.

 \

ð1 CUST-DATA REDEFINES TRANS-DATA.

 ð5 CUSTNO PIC 9(1ð).

ð5 FILLER PIC X(1) .

 ð5 REFNO PIC 9(1ð).

ð5 FILLER PIC X(1) .

 ð5 ACTDATE PIC 9(6).

ð5 FILLER PIC X(1) .

 ð5 ADDRCHG PIC 9(6).

ð5 FILLER PIC X(1) .

 ð5 PROFIT PIC 9(9).

ð5 FILLER PIC X(1) .

 ð5 MAILID PIC 9(2).

ð5 FILLER PIC X(1) .

 ð5 SOURCECODE PIC 9(3).

ð5 FILLER PIC X(1) .

 ð5 COLLECTCODE PIC 9(1).

ð5 FILLER PIC X(1) .

 ð5 DUNNCODE PIC 9(1).

 ð5 FILLER PIC X(24).

 \

ð1 NAME-DATA REDEFINES TRANS-DATA.

 ð5 CUSTNO PIC 9(1ð).

ð5 FILLER PIC X(1) .

 ð5 FIRSTNAME PIC X(13).

ð5 FILLER PIC X(1) .

 ð5 LASTNAME PIC X(18).

ð5 FILLER PIC X(1) .

 ð5 STREET PIC X(26).

ð5 FILLER PIC X(1) .

 ð5 ZIPCODE PIC 9(5).

ð5 FILLER PIC X(14) .

 \

Figure 158 (Part 3 of 7). Program to Extract Data from MVS/DB2

 Appendix D. Sample Data Extraction Program 255

ð1 PAY-DATA REDEFINES TRANS-DATA.

 ð5 REFNO PIC 9(1ð).

ð5 FILLER PIC X(1) .

 ð5 PAYDATE PIC 9(6).

ð5 FILLER PIC X(1) .

 ð5 AMOUNT PIC 99999.99.

ð5 FILLER PIC X(54) .

 \

ð1 ZIP-DATA REDEFINES TRANS-DATA.

 ð5 ZIPCODE PIC 9(5).

 ð5 FILLER PIC X(1) .

 ð5 CITY PIC X(2ð).

ð5 FILLER PIC X(54) .

 \

 \

 PROCEDURE DIVISION.

 STARTIT.

 \

 OPEN-FILES.

DISPLAY "OPEN FILES " CLOCK.

OPEN OUTPUT CUSTUT NAMEUT PAYUT ZIPUT.

ACCEPT CLOCK FROM TIME.

 PROCESS-TAB.

 PERFORM PCUST.

 PERFORM PNAME.

 PERFORM PPAY.

 PERFORM PZIP.

 CLOSE-FILES.

ACCEPT CLOCK FROM TIME.

DISPLAY "CLOSE FILES " CLOCK.

CLOSE CUSTUT NAMEUT PAYUT ZIPUT.

 ENDIT.

 STOP RUN.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ EXPORT CUST TABLE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 PCUST SECTION.

 AAððð.

DISPLAY "READING CUST TABLE".

 EXEC SQL

WHENEVER SQLERROR GO TO AA8ðð

 END-EXEC.

 EXEC SQL

DECLARE C1 CURSOR FOR

 SELECT \

 FROM IBPED.CUST

 END-EXEC.

 EXEC SQL

 OPEN C1

 END-EXEC.

Figure 158 (Part 4 of 7). Program to Extract Data from MVS/DB2

256 How to Migrate and Enhance Your Legacy Applications

 AA1ðð.

MOVE BLANK-CUST TO PGM-CUST.

 EXEC SQL

 FETCH C1

 INTO :PGM-CUST

 END-EXEC.

IF SQLCODE IS = 1ðð

GO TO AA9ðð.

MOVE CUSTNO IN PGM-CUST TO CUSTNO IN CUST-DATA.

MOVE REFNO IN PGM-CUST TO REFNO IN CUST-DATA.

MOVE ACTDATE IN PGM-CUST TO ACTDATE IN CUST-DATA.

MOVE ADDRCHG IN PGM-CUST TO ADDRCHG IN CUST-DATA.

MOVE PROFIT IN PGM-CUST TO PROFIT IN CUST-DATA.

MOVE MAILID IN PGM-CUST TO MAILID IN CUST-DATA.

MOVE SOURCECODE IN PGM-CUST TO SOURCECODE IN CUST-DATA.

MOVE COLLECTCODE IN PGM-CUST TO COLLECTCODE IN CUST-DATA.

MOVE DUNNCODE IN PGM-CUST TO DUNNCODE IN CUST-DATA.

WRITE CUST-UT FROM TRANS-DATA.

GO TO AA1ðð.

 AA8ðð.

\ WE HAD A SQL-ERROR

DISPLAY "SQLCODE =" SQLCODE.

DISPLAY "ERROR : " SQLERRMC.

 AA9ðð.

\ CLOSE TABLE

 EXEC SQL

 CLOSE C1

 END-EXEC.

 AA999.

 EXIT.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ EXPORT NAME TABLE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 PNAME SECTION.

 BBððð.

MOVE SPACES TO TRANS-DATA.

DISPLAY "READING NAME TABLE".

 EXEC SQL

WHENEVER SQLERROR GO TO BB8ðð

 END-EXEC.

 EXEC SQL

DECLARE N1 CURSOR FOR

 SELECT \

 FROM IBPED.NAME

 END-EXEC.

 EXEC SQL

 OPEN N1

 END-EXEC.

 BB1ðð.

MOVE BLANK-NAME TO PGM-NAME.

 EXEC SQL

 FETCH N1

 INTO :PGM-NAME

 END-EXEC.

IF SQLCODE IS = 1ðð

GO TO BB9ðð.

Figure 158 (Part 5 of 7). Program to Extract Data from MVS/DB2

 Appendix D. Sample Data Extraction Program 257

MOVE CUSTNO IN PGM-NAME TO CUSTNO IN NAME-DATA.

MOVE FIRSTNAME IN PGM-NAME TO FIRSTNAME IN NAME-DATA.

MOVE LASTNAME IN PGM-NAME TO LASTNAME IN NAME-DATA.

MOVE STREET IN PGM-NAME TO STREET IN NAME-DATA.

MOVE ZIPCODE IN PGM-NAME TO ZIPCODE IN NAME-DATA.

WRITE NAME-UT FROM TRANS-DATA.

GO TO BB1ðð.

 BB8ðð.

\ WE HAD A SQL-ERROR

DISPLAY "SQLCODE =" SQLCODE.

DISPLAY "ERROR : " SQLERRMC.

 BB9ðð.

\ CLOSE TABLE

 EXEC SQL

 CLOSE N1

 END-EXEC.

 BB999.

 EXIT.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ EXPORT PAYMENT TABLE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 PPAY SECTION.

 CCððð.

MOVE SPACES TO TRANS-DATA.

DISPLAY "READING PAYMENT TABLE".

 EXEC SQL

WHENEVER SQLERROR GO TO CC8ðð

 END-EXEC.

 EXEC SQL

DECLARE P1 CURSOR FOR

 SELECT \

 FROM IBPED.PAYMENT

 END-EXEC.

 EXEC SQL

 OPEN P1

 END-EXEC.

 CC1ðð.

MOVE BLANK-PAYMENT TO PGM-PAYMENT.

 EXEC SQL

 FETCH P1

 INTO :PGM-PAYMENT

 END-EXEC.

IF SQLCODE IS = 1ðð

GO TO CC9ðð.

MOVE REFNO IN PGM-PAYMENT TO REFNO IN PAY-DATA.

MOVE PAYDATE IN PGM-PAYMENT TO PAYDATE IN PAY-DATA.

MOVE AMOUNT IN PGM-PAYMENT TO AMOUNT IN PAY-DATA.

WRITE PAY-UT FROM TRANS-DATA.

GO TO CC1ðð.

 CC8ðð.

\ WE HAD A SQL-ERROR

DISPLAY "SQLCODE =" SQLCODE.

DISPLAY "ERROR : " SQLERRMC.

 CC9ðð.

\ CLOSE TABLE

 EXEC SQL

 CLOSE P1

 END-EXEC.

 CC999.

 EXIT.

Figure 158 (Part 6 of 7). Program to Extract Data from MVS/DB2

258 How to Migrate and Enhance Your Legacy Applications

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

\ EXPORT ZIP TABLE

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 PZIP SECTION.

 DDððð.

MOVE SPACES TO TRANS-DATA.

DISPLAY "READING ZIP TABLE".

 EXEC SQL

WHENEVER SQLERROR GO TO DD8ðð

 END-EXEC.

 EXEC SQL

DECLARE Z1 CURSOR FOR

 SELECT \

 FROM IBPED.ZIP

 END-EXEC.

 EXEC SQL

 OPEN Z1

 END-EXEC.

 DD1ðð.

MOVE BLANK-ZIP TO PGM-ZIP.

 EXEC SQL

 FETCH Z1

 INTO :PGM-ZIP

 END-EXEC.

IF SQLCODE IS = 1ðð

GO TO DD9ðð.

MOVE ZIPCODE IN PGM-ZIP TO ZIPCODE IN ZIP-DATA.

MOVE CITY IN PGM-ZIP TO CITY IN ZIP-DATA.

WRITE ZIP-UT FROM TRANS-DATA.

GO TO DD1ðð.

 DD8ðð.

\ WE HAD A SQL-ERROR

DISPLAY "SQLCODE =" SQLCODE.

DISPLAY "ERROR : " SQLERRMC.

 DD9ðð.

\ CLOSE TABLE

 EXEC SQL

 CLOSE Z1

 END-EXEC.

 DD999.

 EXIT.

Figure 158 (Part 7 of 7). Program to Extract Data from MVS/DB2

 Appendix D. Sample Data Extraction Program 259

260 How to Migrate and Enhance Your Legacy Applications

 Glossary

AIC Interface . A top-level widget, together with all of
its descendants.

AIC Interface File . An ASCII file consisting of a
header and a sequence of X Windows style resource
specifications that together describe an AIC Interface.
AIC generates an interface file when you save an
interface.

ASCII. The standard coded character set using 7-bit
characters (8th bit for parity) and used widely on
non-IBM mainframe computers.

Batch program . A batch program reads its input from
a file or device and writes its output to a file or device
without the interaction of a user.

BSD. Berkeley Software Distribution (UC at Berkeley,
UNIX).

Callback . C code that is associated with a widget or
gadget and is executed when a specified event occurs.
For example, a push button has an activate callback,
which is executed when a the button is pressed and
released.

CLIST. Command list; a mechanism on MVS for
starting a COBOL program.

COSE. Common Open Software Environment, a
consortium formed in 1993 by IBM, HP, Sun, and other
UNIX software and hardware vendors whose goal is to
create a common software environment on their
UNIX-based operating systems. Their first
accomplishment is the Common Desktop Environment
(CDE), a specification defining APIs that software
vendors can use to create applications with a COSE
“look and feel.”

Downsizing . Migrating a mainframe application to a
midrange or desktop computer. Sometimes also
referred to as rightsizing by marketing literature.

EBCDIC. A coded character set of 256 8-bit characters
used on IBM and other mainframes.

EDL. Encapsulator Description Language is a
mechanism for integrating an application development
tool with SDE WorkBench/6000. It is a component of
SDE Integrator/6000.

Encapsulation . Encapsulation is the process of
integrating a tool with SDE WorkBench/6000 so it
communicates with other tools by means of messages.
The tool has a graphical user interface similar to other
SDE WorkBench/6000 tools, and it can be controlled

through Tool Manager. Encapsulation is possible using
SDE Integrator/6000.

FIPS. Federal Information Processing Standard (USA).

Function key . A key appearing above or beside the
normal character keys on a keyboard. The key can be
programmed to perform particular functions in particular
program contexts.

IEC. International Electrotechnical Commission .

ISO. International Organization for Standardization .

JCL . Job control language. On MVS, a command
interpreter/programming language that is used to submit
jobs (executable programs) to the operating system.

Korn shell . The default UNIX shell executed on AIX.
It is virtually identical to the proposed POSIX standard
shell.

NIST. National Institute of Standards and Technology
(USA, formerly the National Bureau of Standards)

Object . An object is a collection of data and
application program code that operates on that data.

Online program . A user provides input interactively to
an online program and views its output on a display,
panel or window.

Open Systems . Operating systems that are available
on many different vendors' computers, across which
programs may be easily ported. UNIX and MS-DOS,
two operating systems that are available on a great
many vendor platforms, are both considered open
systems by many people. Typically, an open system
supports de facto industry and de jure formal standard
interfaces, subsystems, languages, and utilities.

Palette . A palette is a set of interface building blocks,
such as the OSF/Motif widgets.

Pane. In the AIX operating system, a display screen, a
portion of a window used to present information to the
user. A window can consist of one or more panes.

Panel . In ISPF, a logical subset of data displayed in a
rectangular space on a character-based display
terminal. Analogous to a window on a graphical display
terminal. Sometimes also called an input/output screen
or display map.

POSIX. Portable operating system interface for
computer environments; an IEEE operating system

 Copyright IBM Corp. 1995 261

standard, closely related to the UNIX system (software
writing).

Project . A project is a set of interfaces designed for a
single application.

Property . In AIC, a property is a widget variable that
defines the appearance and behavior of a widget.

Shell . Generic name for UNIX command-line
interpreter. UNIX shells are also noncompiled
procedural programming languages with which end
users and system administrators can build utility
programs.

SVID. System V Interface Definition (AT&T, UNIX).

Tool . In SDE WorkBench/6000 terminology, a tool is
an encapsulated application.

Top-level widget . A top-level widget is a widget at the
root of a widget hierarchy. A top-level widget interacts
with the window manager.

Widget . A widget is a basic component of an X
Windows user interface and has a set of built-in
properties and behaviors.

X client . An application that makes calls to X Windows
library subroutines to request an Xserver program
perform input/output at a graphical display.

X server . The X Windows software that manages the
input/output resources of a graphical display, such as
the monitor, the keyboard, and the pointing devices.

X station . A network-attached device that executes
the X server software that controls a display unit such
as the monitor, the keyboard, and the pointing device.
Some X stations also support attachment of a printer,
hard disk, and other I/O devices, but an X station is not
a general purpose computer. Using and X station, a
user must log in at another computer on the network.

X Windows . A client-server praphical windowing
product from MIT (Massachuset Institute of
Technology).

262 How to Migrate and Enhance Your Legacy Applications

List of Abbreviations

4GL Fourth-Generation Language

AIC AIXwindows Interface
Composer

AD Application Development

ADT Application Development
Toolkit

AES Application Environment
Specification

AIC AIXwindows Interface
Composer

AIX Advanced Interactive Executive

ANSI American National Standards
Institute

API Application Programming
Interface

APPC Advanced Program-to-Program
Communications

ASCII American National Standard
Code for Information
Interchange

BMS Broadcast Message Server

BSD Berkeley Software Distribution

CASE Computer Aided Software
Engineering

CLI Call Level Interface

CLIST Command List

CMVC Configuration Management
Version Control

COSE Common Open Software
Environment

CUA Common User Access

DB2 DATABASE 2

DCF Data Composition Facility

DDCS Distributed Database
Connection Services

DNS Domain Name Service

DRDA Distributed Database Relational
Architecture

DSOM Distributed System Object
Model

EBCDIC Extended Binary Coded
Decimal Interchange Code

ECMA European Computer
Manufacturers Association

EDL Encapsulator Description
Language

FTP File Transfer Protocol

GB Gigabyte

GUI Graphical User Interface

HFT High Function Terminal

IBM International Business
Machines Corporation

IO Input/output

IP Internet Protocol

ISPF Interactive System Productivity
Facility

ITSC International Technical Support
Center

ITSO International Technical Support
Organization

LAN Local Area Network

LPP Licensed Program Product

LPEX Live Parsing Extensible Editor
(PC and AIX version of LEXX)

MB Megabyte

MF Micro Focus

MVS Multiple Virtual Storage

NCS Network Computing Service

NFS Network File System

NIS Network Information System

NLS National Language Support

OEM Original equipment
manufacturer

OODB Object Oriented Data Base

OPP Optional Program Product

OS Operating system

OSF Open Software Foundation

PCTE Portable Common Tools
Environment

POWER Performance Optimized With
Enhanced RISC

PROFS Professional Office System

PTF Program Temporary Fix

PVCS Program Version Control
System

 Copyright IBM Corp. 1995 263

RCS Revision Control System

RISC Reduced Instruction Set
Computer

SAA Systems Application
Architecture

SCCS Source Code Control System

SCRB Software Change Review
Board

SDE Software Development
Environment

SDK Software Developers Kit

SDRB Software Design Review Board

SEE Software Engineering
Environment

SEI Software Engineering Institute

SMP Symmetrical multiprocessor

SNA Systems Network Architecture

SOM System Object Module

SQA Software Quality Assurance

SQL Structured Query Language

TCP/IP Transmission Control
Protocol/Internet Protocol

UIL User Interface Language

US United States

X11R4 X Windows Version 11
Release 4

X11R5 X Windows Version 11
Release 5

XL C XL C Compiler/6000

XL C++ XL C++ Compiler/6000

264 How to Migrate and Enhance Your Legacy Applications

 Index

A
abbreviations 263
acronyms 263
actions pull-down 64
Actions pull-down menu 202
AD environment 7
AD framework 6
AIC

AIC 1.1.1 61
AIC 1.2 133
AIC project 74
AIXwindows Interface Composer/6000 (AIC) 14
application class 74
interface file 75
maintenance tool 75
palette 75
project file 74, 75
prototype tool 75
resource file 74, 222
tailoring 221

AIC interface 70
AIX 3
AIX versions 43
AIXwindows Interface Composer

See AIC
API

Application Program Interface 122
C API data structure 123
C to COBOL 122, 129
COBOL API data structure 123

application class name 170
application development environment 39
Application Program Interface

See API
ASCII 117

B
BMS

Broadcast Message Server (BMS), 12
breakpoint 87
Broadcast Message Server

See BMS

C
C to COBOL interface 113
callback

function prototypes 80
functions 73
include file 72
source file 72

check out a file from CMVC 124
class 146, 151, 155
class hierarchy 153
CMVC

access control 17
architecture 16
automatic notification 17
change control 17
CMVC/6000 12
configurability 17
configuration management 17
Integrated Problem Tracking 17
problem tracking 1
release management 17
task window 124
version control 17

Coad-Yourdon notation 152, 153
COBOL

COBOL 36
intermediate file 111
porting issues 34
program structure issues 36

code generation 174, 195
Common Open Software Environment (COSE) 5
common user access

See CUA
compiler servers 45
compiling 85
component classes 154
Configuration Management Version Control

See CMVC
conventions 167
creating database tables 120
cross-platform support 8
CUA 35, 69, 136
customer class 151, 183
CustomerApp class 174
CustomerGUI class 178

D
data context 66, 76
database creation 118
database migration 33, 117
database migration issues 35
DB2 Call Level Interface

See DB2/6000, DB2 CLI
DB2/6000

DB2 CLI 19
DB2 CLI for C 156
DB2 Client Support/6000 18
DB2/6000 and object orientation 145

 Copyright IBM Corp. 1995 265

DB2/6000 (continued)
DB2/6000 and related products 18
DB2/6000 migration 117—121
DB2/6000 object oriented interface 155
DDCS/6000 19
DRDA 19
installation 201
mainframe affinity 5

DCS
distributed computing support 12
distributed data 12
distributed display 13
distributed execution 12, 47

defect 124, 132
dependency update of a makefile 84
development directories 46
Development Manager 140
Development Manager (DM)

copying a file 101
customization 208
introduction 12
managing files and directories 64
menu 202
modifying extension based file typing 214
modifying the Action pull-down 216
modifying the default action 219
tailoring for C++ 207
window 168

dialog box 65
directory naming conventions 69
disk requirements 41
display requirements 41
DISPLAY setting for SDE WorkBench/6000 62
distributed application development environment 30
Distributed Computing Support

See DCS
distributed data

See DCS
Distributed Database Connection Services/6000

See DB2/6000, DDCS/6000
distributed display

See DCS
distributed execution

See DCS
Distributed Relational Database Architecture

See DB2/6000, DRDA
downsizing 3, 32

E
EBCDIC 117
ECMA

reference model for frameworks 9
ENTRY points 93
European Computer Manufacturers Association

See ECMA

events 224
extracting data from a database 118

F
file system topology 46
file trees

common development file tree 51
development file tree 52
production release file tree 58
production release file trees 51
prototype development file trees 52

FTP 14

G
glossary 261
graphical user interface

See GUI
GUI

for ported legacy application 61
implementation 169
implementing 68
improving 133—143
user interface design 68

I
implementation of C++ application logic classes 174
import facility 118
importing data 120
industry standards 5
integrate state 132
integrated tools 61
integrating GUI and C++ application code 185
interface file 71

See also AIC
interface structure 122
ISO 9000 8
ISPF 35, 68, 113

L
legacy application

database design 24
functionality 23
ISPF panels 26
main panel 92
main program loop 91
minimal migration project 61
object-orientation 145
program structure 23
user interface 26

life cycle support 8
LINKAGE SECTION 92
Live Parsing Extensible Editor

See Program Editor, LPEX

266 How to Migrate and Enhance Your Legacy Applications

LPEX
See Program Editor, LPEX

LPP versions 43

M
Mail Tool 14
main program 188, 190
makefile 13, 84, 104, 115, 129, 174, 194
makefile template 211
memory requirements 41
menu definition 217
Message Monitor 14
meta-data 16
Micro Focus

cobrun command 16
custom file handlers 16
facilities 16
intermediate file 111
Micro Focus Animator 15, 89, 112, 202
Micro Focus COBOL 15, 89
Micro Focus COBOL Toolbox

compile window 108
compiler directives window 109
compiler message window 110
compiling with 106
integration with SDE WorkBench/6000 202
introduction 16
main window 107

Micro Focus RTE 16, 103
mixed language programming 16
Native Code Generator 16
screen displays 16

Micro Focus Run Time Environment
See Micro Focus, Micro Focus RTE

migration 3, 32
mkrts 104
modernizing strategy 32
MS-DOS affinity on UNIX 6

N
naming conventions

callback file names 139
callback function names 139
directory names 139
interface file names 139
widget names 139

national language support
See NLS

network topology 39
NFS 46
NLS

database migration considerations 117
special symbols 35

O
object-orientation 145
object-oriented interface to a database

dberror class 155, 164
dbserver class 155, 156
dbstmt class 155, 160

object-oriented operating systems 149
object-oriented technology 145
object-oriented user interfaces 136
objects 146
Open Software Foundation (OSF) 5
open systems

migrating to 3
standards 9
support of 8

OS/2 Live Parsing Editor
See Program Editor, LPEX

overriding a member function 196

P
palette

See AIC
PATH setting for SDE WorkBench/6000 62
payment class 151
POSIX 5, 10
POWER 4
PowerPC 4
price performance ratio 4
primary window 70, 136, 167
Program Builder 13, 83, 130, 142, 207
Program Debugger 14, 87
Program Editor

customization 207
GNU Emacs 14
LPEX 13, 263
Program Editor 13, 81, 86, 129, 135, 140, 189, 207
vi 14

programming languages 7, 31
project feasibility 33
project file

See AIC

R
RCS

Revision Control System (RCS) 12
reader audience

application developers xxi
managers xxi
software configuration managers xxi

remote access to SDE WorkBench/6000 61
remote execution 134
Revision Control System

See RCS

 Index 267

RIOS 4
RISC System/6000 3, 4

S
SCCS

version control 12
SDE Integrator/6000 18
SDE WorkBench/6000

creating a Softanim menu item 204
customization of Program Builder 209
encapsulation 223
encapsulation approaches 224
encapsulation compilation 230
encapsulation steps 224
integrating Softanim 204
integrating user-developed utilities 223
integration restriction 220
introduction 11
tailoring for AIC 212—221
tailoring for C++ 207—212
tailoring for COBOL 202—207
tailoring Program Editor 206

secondary window 70, 137, 167
SEE

Software Engineering Environment (SEE) 10
SEI Capability Maturity Model 9
SNA 18
Softanim 204
Softanim encapsulation 204
softinit file 204, 212, 226, 229
softtypes file 206, 214
Software Development Environment WorkBench/6000

See SDE WorkBench/6000
Software Engineering Environment

See SEE
software topology 42
Source Code Control System

See SCCS
Static Analyzer 14

T
target 84
tbox 106
team programming 31
test tools 113
testing 85, 132
testing ISPF 115
tool class 133
tool encapsulation 226
tool interaction 223
Tool Manager (TM)

Execution Manager 12
modifying tools 212
Tool Manager start window 226

Tool Manager (TM) (continued)
using 63, 76, 130, 142

toolbox
See Micro Focus, Micro Focus COBOL Toolbox

Tools
SDE WorkBench/6000 Bundled Tools 13

track 132

U
UIBUILD tool 76
UIBUILD tool class 134, 212
UNIX

AIX and Open Systems Software 5
migrating to 3
multiple vendors in common environment 29

upsizing 3
user interfaces

command-line interfaces 136
graphical user interfaces 136
menu-driven interfaces 136

uxcgen 80

W
widget 73
wrapper 18, 172, 224
wrapper approach 225

X
X server 43
X server requirements 41
xhost command 62

268 How to Migrate and Enhance Your Legacy Applications

ITSO Technical Bulletin Evaluation
RED000

International Technical Support Organization
AIX Application Development and
How To Migrate and Enhance
Your Legacy Applications
May 1995

Publication No. GG24-4177-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

� Mail it to the address on the back (postage paid in U.S. only)
� Give it to an IBM marketing representative for mailing
� Fax it to: Your International Access Code + 1 914 432 8246
� Send a note to REDBOOK@VNET.IBM.COM

Name Address

Company or Organization

Phone No.

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spelling
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4177-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 471, Building 070B
5600 COTTLE ROAD
SAN JOSE CA
USA 95193-0001

Fold and Tape Please do not staple Fold and Tape

GG24-4177-00

IBM

Printed in U.S.A.

GG24-4177-ðð

