
The Library for System Solutions
End User Interface Reference

Document Number GG24-4107-00

July 1994

International Technical Support Organization
Boca Raton Center

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xi.

First Edition (July 1994)

This edition applies to IBM and non-IBM products for End User Interface development.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 91J Building 235-2 Internal Zip 4423
901 NW 51st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document is part of the Library for Systems Solutions, which is intended for
professionals involved in defining solutions in the heterogeneous computing
environments. The library consists of three types of documents:

• Computing Technology
• Function Reference
• Technology Reference

This document is the Function Reference book regarding End User Interface.

The book consists of two parts. Part one gives an overview to several aspects of
End User Interfaces, Design principles, and explains the key components of
Graphical User Interface. Part two of the book briefly describes programs and
tools available to develop or utilize Graphical End User Interfaces on multiple
software platforms. Some knowledge of operating a Personal Computer is
assumed.

(71 pages)

 Copyright IBM Corp. 1994 iii

iv EUI Reference

Contents

Abstract . i i i

Special Notices . xi

Preface . xii i
How This Document is Organized . xiii
Related Publications . xiv
International Technical Support Organization Publications xiv
Acknowledgments . xv

Chapter 1. Overview . 1
1.1 What Is User Interface . 1
1.2 Evolution of User Interface . 2

1.2.1 Introduction . 3
1.2.2 User Interface with Operating Systems 5
1.2.3 User Interfaces In Fourth GL Environment 6
1.2.4 Graphic User Interface (GUI) . 6
1.2.5 IBM SAA Common User Access (CUA) 8
1.2.6 EUI and Object Oriented Technology 10
1.2.7 EUI in Client/Server Computing . 12
1.2.8 EUI in Multimedia Environment . 13
1.2.9 Open Systems User Interfaces . 14
1.2.10 Concluding Remarks . 15

Chapter 2. Design Principles/Guidelines . 17
2.1 Introduction . 17
2.2 Place a User in Control of the User Interface 18

2.2.1 Usage of Modes . 18
2.2.2 Displaying Helpful Messages . 19
2.2.3 Providing Immediate Feedback . 19
2.2.4 Consider Users with Different Skill Levels 20
2.2.5 Transparent User Interface . 20
2.2.6 Customizable User Interface . 20

2.3 Reduce User′s (Personal) Memory Load . 21
2.3.1 Meaningful and Concise Object Classes 21
2.3.2 Concrete and Recognizable Objects . 22

2.4 Consistent User Interface . 22
2.4.1 Sustaining the Context of a User′s Task 22
2.4.2 Continuity Within and Among Products 22
2.4.3 Aesthetic Appeal . 23

2.5 Simplicity and Clarity . 23
2.6 Balanced Performance with Function and Features 23

Chapter 3. Components . 25
3.1 Introduction . 25
3.2 Key Components and Their Description . 25

3.2.1 Keyboard and Mouse . 25
3.2.2 Workplace . 26
3.2.3 Cursors and Pointers . 26
3.2.4 Shortcut Keys . 27
3.2.5 Windows . 28

 Copyright IBM Corp. 1994 v

3.2.6 Icons . 29
3.2.7 Drag and Drop . 30
3.2.8 Dialog Box . 30
3.2.9 Menus . 30
3.2.10 Control Elements . 31
3.2.11 Cues . 35

3.3 Concluding Remarks . 36

Chapter 4. Solutions . 37
4.1 Introduction . 37
4.2 Overview to Application Programming Interface (API) 38
4.3 Tools and Products . 39

4.3.1 Host Environment . 40
4.3.2 Client/Server Environment . 47
4.3.3 Programmable Workstation (PWS) . 50
4.3.4 AIX-/X-Window Environment . 55

Appendix A. Customer Types and Their EUI Requirements 61

Appendix B. Environments / Tools Matrics . 63

Glossary . 65

List of Abbreviations . 67

Index . 69

vi EUI Reference

Figures

 1. Seeheim User Interface Model . 2
 2. System Application Architecture (SAA) Model 8
 3. SAA Common User Access (CUA) . 9
 4. EUI Extensions . 16
 5. Workplace, the Container which Holds Objects 26
 6. Selection Cursor . 27
 7. Text Cursor in Replace Mode . 27
 8. Shortcut Keys . 28
 9. Window and its Components . 29
10. Menu bar, Pull-Down Menu and Cascaded Menu 31
11. Radio Buttons . 32
12. Check Boxes . 32
13. List Box . 33
14. Push Buttons . 33
15. Combination Box . 34
16. Spin Buttons . 34
17. Value Set . 35

 Copyright IBM Corp. 1994 vii

viii EUI Reference

Tables

 1. Display Device and EUI Matrix . 2
 2. Customer Types and Their EUI Requirements 61
 3. EUI Tools and Their Use in Different Environments 63

 Copyright IBM Corp. 1994 ix

x EUI Reference

Special Notices

This publication is intended to help IS managers, user group mangers, project
leaders, consultants and other professionals involved in product selection for
development of enterprise wide user interfaces. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by products described in this publication. See the
PUBLICATIONS section of the IBM Programming Announcement for the products
that are mentioned in in this publication for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AD/Cycle AIX
AIX/ESA AIXwindows
APL2 AS/400
CICS CICS OS/2
COBOL/2 COBOL/400
Common User Access CUA
DATABASE 2 DB2/2
DB2/6000 GDDM
IBM IMS/ESA
IMS/VS MVS/ESA
MVS/SP MVS/XA
Operating System/400 OS/2
OS/400 POWERserver

 Copyright IBM Corp. 1994 xi

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

POWERstation PS/2
RISC System/6000 RPG/400
SAA SQL/DS
SQL/400 System/370
System/390 Systems Application Architecture
VisualAge VM/ESA
VM/XA Workplace Shell
Xstation Manager

Apple Macintosh Apple Computer,Inc.
Micro Focus Cobol Micro Focus Limited
Microsoft, Windows Microsoft Corporation
Microsoft SQL Server Microsoft Corporation
Motif, OSF/Motif Open Software Foundation, Inc.
Oracle Oracle Corporation
Smalltalk/V Digitalk Inc.
PostScript Adobe Systems, Inc.
Wabi Sun Microsystems, Inc.
X Window System Massachuchetts Insitute of Technology
UNIX Novell, Inc.
Flashpoint, KnowledgeWare Mozart, Mozart Systems Corp.
Enfin, Easel Corp. Ellipse, Cooperative Solutions

xii EUI Reference

Preface

This document is part of The Library for Systems Solutions, which is a set of
books that describes and explains information processing requirements and
solutions. The library provides solutions for multiple configuration environments
ranging from totally host to multilevel distributed environment.

This document is a reference book on End User Interface (EUI) development.
User interfaces are now most important aspect of information processing
systems. Technological development over the time, has now made it possible to
isolate the EUI part of software development from program logic. The
architectures and specifications like IBM SAA Common User Access and
OSF/Motif are evolving in a way to provide portable EUI across different
platforms.

This document defines EUI, discusses principles / guidelines for EUI
development, defines major components of workstation based Graphical User
Interface (GUI) and finally provide reference information about selected tools and
products which IS management can use for developing applications that can
provide efficient workstation based user interfaces.

It is not the intention of this document to describe all possibilities and all
products that enable development of EUI. The document discusses different
aspects of EUI at overview level. References to books and other documents have
been provided through out this book for the benefit of those who need more
in-depth knowledge on this subject.

The book is intended for IS managers, user group mangers, software
development project leaders, system analysts, consultants and other
professionals involved in selecting products for EUI development.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Overview”

This chapter explains what End User Interface (EUI) is, defines it and
provides brief discussion on evolution of EUI from entry level to GUI based
Workplace model of EUI. Discussion on different types of user interfaces has
been included at overview level.

• Chapter 2, “Design Principles/Guidelines”

This provides brief overview of EUI design principles and guidelines for
product designers. Whenever required the real life examples are included.
The design guidelines are mostly based on GUI Workplace model.

• Chapter 3, “Components”

This chapter defines and provides brief information on key elements used in
developing PWS Workplace based Graphic User Interface (GUI).

• Chapter 4, “Solutions”

This chapter gives short overview of tools which developers can use in
building EUI for their applications.

 Copyright IBM Corp. 1994 xiii

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• IBM Enterprise Solutions for the 1990s, G320-9929

• AS/400 Technology Journal, S325-6020

• System Application Architecture, GC26-4784

• SAA CUA Advance Interface Design Reference, SC34-4290

• Object-Oriented Interface Design - IBM CUA GUidelines, SC34-4399

• Tkach/Putick, Object Technology in Application Development, GG24-4290

• Edmonds, The Separable User Interface, ISBN 0-12-232150-2

• Shneiderman, Designing the User Interface, ISBN 0-201-16505-8

• OSF/Motif Programmer′s Reference Manual, OSF-0-M-00889-001

International Technical Support Organization Publications
The Library for Systems Solutions includes:

• Computing Technology Reference, GG24-4100 *

• Application Development Reference, GG24-4101

• Workload Management Reference, GG24-4102

• Data Reference, GG24-4103

• Directory, Naming, and Timing Reference, GG24-4104 *

• Printing and Viewing Reference, GG24-4105

• Security Reference, GG24-4106

• End User Interface Reference, GG24-4107

• Multimedia Reference, GG24-4108 *

• Image Processing Reference, GG24-4109

• Open Networking Reference, GG24-4110

• LAN Reference, GG24-4111

• Office Reference, GG24-4112

• System Management Reference, GG24-4113

• System Management Reference for Managed System/390, GG24-4114

• System Management Reference for Managed RISC/6000 Systems, GG24-4115

• System Management Reference for Managed Personal Systems, GG24-4116

• System Management Reference for Managed AS/400 Systems, GG24-4117

Note: Publications marked with asterisk (*) will be published in the future.

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

xiv EUI Reference

To get listings of redbooks online, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order Redbooks

IBM employees may order redbooks and CD-ROMs using PUBORDER.
Customers in the USA may order by calling 1-800-879-2755 or by faxing
1-800-284-4721. Visa and Master Cards are accepted. Outside the USA,
customers should contact their IBM branch office.

You may order individual books, CD-ROM collections, or customized sets,
called GBOFs, which relate to specific functions of interest to you.

Acknowledgments
The advisor for this project was:

Alexander Gregor
International Technical Support Organization, Boca Raton Center

The authors of this document are:

Sheikh Nisar Ahmed
IBM Pakistan

Ruediger W. Seidl
IBM Germany

This publication is the result of a residency conducted at the International
Technical Support Organization, Boca Raton Center.

Thanks to the following people for the advice and guidance provided in the
production of this document:

Ian Crane
IBM ITSO Poughkeepsie

Ray N. Shasteen
IBM ITSO Boca Raton

Doris Devensky
IBM ITSO Boca Raton

Preface xv

xvi EUI Reference

Chapter 1. Overview

This chapter explains what End User Interface (EUI) is, defines it and provides a
brief discussion on the evolution of EUI from entry level to GUI-based Workplace
models. Discussions on different types of user interfaces have been included at
an overview level.

1.1 What Is User Interface
The End User Interface (EUI) to a computer has always been a subject of prime
interest and concern for user management. Even in the early days of batch
processing, when users did not directly interface with computers, the designing
of output reports and input forms was an important user consideration. Also for
programmers ′ productivity, a good user-friendly editor was important. Many
papers and books on this subject were written. Still the words “User Interface”
remained ambiguously defined. In this section we will first establish a widely
accepted definition of EUI and in the next section we will try to help you
understand this subject in more detail by looking at the gradual evolution of the
EUI.

In English the normal use of the word “Interface” names the well-defined
relationship between two entities. In computer terms, “Interface” defines the
relationship which allows different objects to be connected together.
Considering this explanation of interface, we can conclude that a User Interface
is a set of techniques and mechanisms consisting of hardware and/or software
that a person uses to interact with computer-based systems. It can also be
defined as the means by which a user communicates with a computer and vice
versa.

It would be timely to mention here that a user (or end user) is not just the user
of the application but a person involved in application development (i.e.,
programmers, analysts etc.). System operations and system programming are
also users of the system and the user interface is also equally important to
them.

Thus, a user interface in the case of a computer can include a keyboard, a
pointing device, items appearing on display screens, the software which
supports these devices and techniques (commands, menu options, windows,
icons, etc.) and other devices used to provide human interaction with the
computer.

The end user interfaces can be divided into three basic categories:

• Command line user interfaces, in which a user remembers commands and
types them.

• Menu-Driven user interfaces, in which a user is provided with a
hierarchically organized set of choices.

• Graphical User Interfaces (GUIs) in which a user points to and interacts with
visible elements of the interface by using a pointing device or a keyboard.
This interface was further extended to enhanced models such as the
Workplace Model. These models are explained further in this topic.

 Copyright IBM Corp. 1994 1

Depending on the type of display device, the customer selects those models
that suit the interface which meet requirements. Table 1 summarizes the
availability of EUI in relation to display devices:

The User Interface (at the program level) is that part of the program that
presents, displays and accepts input from the person using that program. The
rest of the program is called “application semantic,” or briefly, “application.”

A comprehensive User Interface Management System (UIMS) helps developers
create and manage all aspects of user interfaces in such a way that they do not
have to code many details in the application. Considering the importance of this
separability, much debate has taken place about appropriate architectures for
user interfaces. Figure 1 represents one of the earliest architectures named
after the workshop in which it was developed in 1985. Although basic, it
provided a good platform for future development in this area.

Table 1. Display Device and EUI Matrix

EUI Categories Device Command
Line EUI

Menu
Driven EUI

GUI Basic GUI
Workplace

NPT (Nongraphic) √ √

NPT (Graphic) √ √ √ *

PWS √ √ √ √

Note: * with limited functions √ - denotes availability

Figure 1. Seeheim User Interface Model

This and other initial EUI models are described in detail in the book, “The
Separable User Interfaces” by E. A. Edmonds.

1.2 Evolution of User Interface

2 EUI Reference

1.2.1 Introduction
As mentioned earlier, probably the earliest user interface with a computer was
through input forms and output reports. A predesigned punched card used as a
fine-ticket by traffic police or by order entry operators to directly punch
information written on them is an example of such an interface. This was in the
′60s when almost all computing was done in batch mode. There were no tools
available and programmers implemented user interfaces for accepting input
from users and gave output to them by incorporating full code in applications.

The facilities such as COBOL Report Writer provided some relief. These made
report designing simple and an automated part of report coding. This also
separated report designing from application logic.

The need to have comprehensive User Interface Management Systems (UIMS)
increased when the user′s requirements moved from batch processing to online
processing in the ′70s. The applications were still central host-based with
Non-Programmable Terminals (NPTs) attached. Nonavailability of User
Interfacing tools made programming too complex with too much focus on
technical development and too little on business needs. An average
programmer spent more time in developing user interfaces, i.e., menus, screens,
printer forms, etc., than on application semantics.

So there was an acute need to simplify or automate the work of developing a
user interface to the application. In the subsequent development of map
formatters, report formatters, dialog managers, etc., efforts were made to meet
this need.

1.2.1.1 Screen Map Formatters
The announcement by IBM* of Basic Mapping Support (BMS) for creating maps
(i.e., screens and printer-form layouts) and mapsets for online application
development was a major breakthrough. Though appearing difficult to use when
compared to the many easy-to-use EUI tools of today, BMS was a great
productivity improvement tool of the ′70s. It eliminated tedious coding for screen
designing and made a large part of BMS coding reusable. BMS was made
available to run IBM mainframe (S/370) operating systems VSE and MVS*
supported by its online transaction manager, Customer Information Control
System (CICS*). CICS has now become the industry defacto standard as an
online transaction manager. It is available on all IBM operating systems and
also several non-IBM systems. All CICS environments in some way or other
support BMS.

Many high level screen designing tools developed later for IBM mainframe
environments (S/370) were based on BMS specifications. In fact, they first
generated BMS macros to be converted into assembly code by translators.
Screen Designing Facility (SDF) was one of the first. SDF was first announced
for VSE, the operating system for IBM mid-range S/370 systems. It is an online
development tool for CICS/DOS/VS (VSE version of CICS) application
programmers who want to define or edit maps, mapsets, and partition sets for
displays and printers. SDF eliminates BMS coding. The online operations and
easily used oriented functions of the tool enhanced productivity in application
development. SDF was later announced for VM and MVS as SDF-II. This
product included functions of SDF and covered other areas of the EUI such as
panel definition, and operator control tables. SDF-II provided migration facilities
across different operating environments for EUI elements (screens, menus,
panels, etc.) on IBM mainframe systems as well as OS/2*. Screen Design Aid

Chapter 1. Overview 3

(SDA), an integral part of OS/400*, the operating system for IBM AS/400* system,
(a follow-up product of IBM S/36 and S/38) provided a very easy-to-use interface
for developing menus and screens.

SDF, SDA and many other screen formatters relieved programmers from tedious
user interface coding and helped them to concentrate on the application.

Impacts:

• Screen formatters improved development productivity significantly.

• Limited portability of EUI application elements was possible. SDF-II enabled
users to port their screens, menus and panels to almost all IBM
environments.

• EUI development was separated from application semantic.

• EUI code reusability increased.

1.2.1.2 Dialog Management
With the rapid increase of online base applications, more capabilities were
required than just designing screens, menus and reports. One such requirement
is Dialog Management. A dialog is defined as, “The interchange of information
between a computer and its user through a sequence of action requests by the
user and presentation of responses by the computer.” Panels facilitate this
information exchange. The dialog with the user begins when the application
displays a panel and asks for user interaction. These panels and their
management are provided by the dialog manager. IBM ′s Interactive System
Productivity Facility (ISPF) was one of the first dialog managers. ISPF provided
control and services to support processing of interactive applications in different
IBM host environments. ISPF and its associated product ISPF/PDF together are
designed to increase productivity in development of online/interactive
applications and ease-of-use for the operators. The dialog management facilities
were later made available on other platforms in different names and now have
become a key element of information processing.

The personal computers and workstations have had significant impact on dialog
management development because of better graphic capabilities and built-in
intelligence. In the PC environment a dialog is redefined as, “Interaction
between a computer and a person through a single primary window, its
associated pop-up windows and associated help windows.” All pop-up windows
are organized in a single chain of the primary widow. Almost all PC and
workstation-based systems offer dialog management facilities to a varying
degree, either as a built-in function or as an optional product.

Impacts:

• Dialog managers now offer interfaces that do most of the dialog-related
work, thus relieving the application of the need to function. This simplifies
development work.

• Makes navigation across different applications possible without any
additional code being written.

• Most of the available dialog managers offer Application Programming
Interfaces (APIs) which provide greater flexibility to developers.

4 EUI Reference

1.2.2 User Interface with Operating Systems
The user interface with operating systems and subsystems was normally
provided by system operator commands or special commands interpreted by
these subsystems such as Job Control Language (JCL) commands. In the 1970s
IBM ′s Interactive Productivity Facility (IPF) provided some relief to the system
users who found a command-based interface difficult to learn and work with. IPF
reduced the requirement for learning JCL to some extent and in an interactive
manner created JCL-based options selected by users. IPF was made available
in both VSE and VM, the most popular mid-range mainframe (S/370) operating
systems. Later on, the Interactive Interface was provided as a built-in function of
VSE/SP, the new version of VSE announced in the mid 1980s, which completely
eliminated the requirement for learning commands and all system programming
and development tasks could be performed through menu options. This facility
was further enhanced in the late ′80s and ′90s.

In MVS, the operating system for the IBM large mainframe environment and the
user interface remained command and JCL-based. This was because customers
in this environment wanted a very high degree of performance rather than
ease-of-use. Their users were highly skilled, matured and well-trained. Support
for a large number of concurrent users and tasks with very fast response time
was their priority. However, availability of very high speed processors and the
operating system′s ability to support large processors and virtual storage has
now made it possible to implement high level, easy-to-use user interfaces even
in MVS without compromising performance.

As in the case of mainframe environments, the user interface in smaller systems
such as the S/3X was also command-driven in the initial stages. In the late ′80s
the Interactive Interface was also implemented in OS/400, the operating system
for AS/400 which was the follow-up product of the S/3X systems.

In the latest version of OS/400 (version 2) the system and user interfaces were
further simplified and enhanced by including a new interface called Operational
Assistant User Interface. This focuses on common system tasks done by users
and system operators, such as: working with output, batch jobs, sending and
receiving messages, working with device status, backup tasks, changing system
options, cleaning the system, enrolling the users, etc. This interface makes users
more productive, frees up technical support personnel, and minimizes training
needs.

For more information on EUIs provided by AS/400, see IBM publication AS/400
Technology Journal (S325-6020).

Many of the latest versions of the operating systems now also provide GUIs for
system management functions. IBM SystemView framework for automation of
system management tasks provides specifications for development of GUI-based
interfaces.

Impacts:

• System operation and system programming functions became simpler and
more manageable.

• Reduced training and learning curve for system personnel.

• IS management dependency on highly skilled system personnel reduced.

Chapter 1. Overview 5

1.2.3 User Interfaces In Fourth GL Environment
With significant advancement in fourth GL′s and end-user computing in the ′80s,
query-based user interfaces became important. This was the time when use of
Relational Database Management Systems (RDBMS) spread rapidly. The
availability of Structured Query Language (SQL) to manipulate data on RDBMS
created several opportunities for EUI developers to develop interfaces which
were easy to learn and use. These interfaces were:

• Query By Example (QBE) based, where a mask of an entity (table) along with
their attributes (columns) is drawn on the screen by tools and the user
selects desired attributes for the desired operations and conditions. The tool
then builds SQL commands based on the user′s input.

• Fill in the Form type, where users are given a form on screen to fill in names
of entities, attributes, selection criteria, joining conditions, output format
options, etc. The tools then build commands or programs based on this
information.

• Conversational Mode, where the user responds to questions asked by these
products as if they are in conversation with the system.

IBM Query Management Facility (QMF) and Application System (AS) on the
mainframe, Query/36 (followed by Query/400 and QM/400) and OS/2 Query
Manager are examples where at least one of the interfaces mentioned above
has been implemented. Almost all fourth GL tools provide similar interfaces.

Impacts:

• EUI in the fourth GL environment tremendously reduced the need for
developing programs for meeting users′ day-to-day requirements.

• Users started using these tools to meet their adhoc requirements.

• Users′ dependency on IS was reduced.

1.2.4 Graphic User Interface (GUI)
This was also the time when customers demanded graphic user interface (GUI)
with end user computing products. In IBM mainframe environments GUI was
provided with the help of Graphic Data Display Manager (GDDM*) and the
associated tools. GDDM was available on all three mainframe operating
systems, i.e., VSE, VM, and MVS on S/370 platform and users were using it to
meet their graphic needs. Many query and fourth GL products built their EUIs on
GDDM.

The emergence of personal computers as programmable workstations (PWSs)
with their graphical capabilities enhanced GUI requirements. The current GUI
specifications provide multiple windows and iconic representations of system
capabilities. Users use a pointing device (mouse) or keyboard keys to select an
icon. The GUIs are closely related to Object Oriented User Interface (OOUI).
Object orientation is now a mandatory requirement for good GUI-based products.
Almost all leading Computer Aided Software Engineering (CASE) tools provide a
user interface at upper levels, i.e., at analysis and design level based on GUI.
With NPTs, users work most of the time in a single session screen mode. Now
on PWS a user can open several windows on one screen accessing different
applications in each window. This created a need to have a common user
interface for all applications or tasks users would run on their PWSs. This
means it is now more important that GUIs conform to industry standards.

6 EUI Reference

The main elements from which a GUI is constructed are windows, icons, menus,
and pointers. These elements work together to provide users with a consistent
and easy-to-use interface to their tasks.

The presentation component produces the interface that the user views and
interacts with. It is often, but not always, a graphical user interface. GUIs
provide a graphic-oriented presentation front-end to applications, and provide (or
simulate) multitasking processing. The major windowing environments are
Windows from Microsoft, OS/2 Presentation Manager from IBM, Motif** from
Open System Foundation, Openlook from UNIX** System Laboratories (USL) and
DECwindows** for Digital′s Ultrix and VMS-based systems.

Macintosh ′s** (Apple′s**) contribution in development of GUIs and windowing
technology is significant. The ease-of-use initially provided by Apple systems
has finally been imported to other environments. The Macintosh interface has
been the basis for the new GUI style, such as NeXTStep from NeXT Inc. The
NeXTStep′s object-oriented techniques allow a developer to work with visual
representation of tasks and their corresponding code and add consistency to the
appearance of application screens.

Impacts:

• GUI resulted in significantly improving users and developers productivity. A
user could now open several windows on his/her PWS and run different
applications in each one of them simultaneously.

• GUI provided consistency across applications and in some cases across
different platforms.

• GUI made it possible to look at a screen similar to one′s desk. Now icons
can be created to represent each document you are handling.

• GUI made workstation interface possible with new information types such as
voice, sound, pictures, images, etc.

During the 1970s, the shift from batch to online processing and integration of
telecommunications with computing, took on increased importance as the growth
of use of NPTs and interconnection of computing systems via communication
lines. In the late 1980s we saw mushrooming growth of personal, work-group,
department computing. NPTs were being replaced with Intelligent Work Stations
(IWS), or as we have named them in this book, PWSs. Personal and
departmental computers were connected together, and also to central hosts.
These interconnected systems belonged to different platforms, IBM as well as
non-IBM. This created an urgent need to have common frameworks so that
customers got consistency in dealing with these systems. This was more
important for EUI, as it provided direct interaction with users of the systems.
Several architectures were announced to address this problem.

Until the mid ′80s the primary users of computerized systems were professional
programmers, operators, data entry clerks and well-trained users. The
technological advancement had then made it affordable for individuals and
departments to have their own computing facilities. However, they could not
afford sophisticated data processing expertise. This meant that they needed an
interface with the computer which could mask the complexity of the computer
system from them and they could still could do the job. This also increased the
necessity of a new design approach and a new interface design. This need
demanded tools to provide ease-of-use. However, these tools were very

Chapter 1. Overview 7

complex to develop so there was an urgent need for properly and accurately
defined architectures.

1.2.5 IBM SAA Common User Access (CUA)
In 1987, IBM made one of the most important announcements of its history:
System Application Architecture* (SAA*). SAA defines an architecture design
framework that has the objective to provide the base for building consistent
applications across IBM′s major computing systems. To achieve its objectives of
consistency, SAA defines three underlying architectures:

 1. Common User Access* (CUA*)

 2. Common Communication Support (CCS)

 3. Common Programming Interface (CPI)

The last two are beyond the scope of this book. In this section CUA provides
detailed specifications for user interface for SAA. Figure 2 briefly explains CUA′s
position in SAA framework:

Figure 2. System Application Architecture (SAA) Model

SAA and CUA are major developments in the user interface area. Their
guidelines are based on sound user interface design principles and
object-oriented relationships. They specify common user interface components,
techniques and guidelines for applying them. SAA and CUA provide guidelines
for how the user will interface with systems using keyboards, menu selections,
mouse, scrolling keys, etc., how the “Help” system should be built into the
applications, how the use of colors should be standardize and how users should
receive messages from systems and respond to those messages.

8 EUI Reference

Figure 3. SAA Common User Access (CUA)

Like other major frameworks and architectures, CUA specifications have also
changed in line with technological development and users′ needs and
expectations. In its first announcement in 1987 (CUA87), it was assumed that an
environment of personal computers would be intermixed with host-attached
nonprogrammable terminals. It had, at that time, a goal of consistency and the
transfer of a user′s knowledge between these environments. But personal
computer technology and capabilities advanced rapidly. The gap between how a
user could use a terminal and a personal computer widened significantly.

The CUA interface specifications as modified in 1989 (CUA89), focused more on
the needs of personal computer users. CUA89 was still based on the main
principles of CUA87 and still provided a rich set of user interface mechanisms,
such as windows which are sizable and movable, standard menus, user interface
controls and dialogs. The first product to be announced based on CUA89 was
OS/2. OS/2 Presentation Manager provided end user interface as promised by
CUA87 and CUA89. The multitasking capability of OS/2 and its Presentation
Manager offered a graphical view of programs, data, results and the ability to
run multiple applications concurrently.

CUA was further redefined in 1991 (CUA91). This time specifications to move
user interfaces closer to the way users accomplish work in the real world were
included. The OS/2 Workplace Shell* which was based on CUA91, redefined
data and applications to create a set of familiar user objects and provide the
ability for users to utilize these objects in ways that support a variety of user
tasks.

While recognizing the importance of PWSs, one must not forget that large
numbers of terminals (NPTs) are still in use and will continue to be used by
computer users. To balance the need to support both NPTs and PWSs, CUA
defines two categories of user interface models: Entry/Text Models and Graphic
Models.

Chapter 1. Overview 9

Graphic Model is best suited for PWSs running with OS/2 and makes extensive
use of its windowing capabilities. Graphic Model was further extended as
mentioned above to Workplace Model in CUA91. This supports integration of
applications into an electronic version of a working environment. This model
fully exploits GUI specifications.

Entry/Text Model is best suited for NPT environment and for applications that
have panels with menu prompts. It is also intended for data entry intensive
applications on NPT and may also be appropriate for such applications on PWSs.

CUA′s evolution since 1987 is now maturing. More and more IBM and third-party
applications are now available which have based their end user interfaces on
CUA. CUA has influenced industry standards as well as customers. The user
interfaces defined by SAA and CUA can be summarized as follows:

 1. Entry model for NPTs. This is a single window based full screen with menu
option selections.

 2. Text model for NPTs and PWSs. This includes action bars and multiple
windows with pull-down and pop-up facilities.

 3. Basic Graphic Model for PWSs and Graphic NPTs.

 4. Workplace Model for PWSs. This is iconic and object-based.

For more information on SAA and CUA refer to the following documentation:

• System Application Architecture - IBM SAA Strategy (GC26-4784)

• Object-Oriented Interface Design - IBM CUA Guidelines (SC34-4399)

Impacts:

• Provides consistency across key IBM operating environments to application
users as well as developers. This will result in increasing their productivity
and investment protection.

• Provides a sound base for EUI tool development. We have already seen
products conforming to CUA and many more will be available in the near
future. This means customers will have wider choices.

• The migration from one platform to another can more easily be kept
transparent to users.

• Many CUA specifications have been accepted as industry standards at the
same time CUA have whenever possible accepted open system standards
based on OSF/Motif**. This has increased portability and coexistence of SAA
and open systems in an enterprise.

1.2.6 EUI and Object Oriented Technology
The user interfaces based on object orientation are called Object Oriented User
Interfaces or OOUI. When using OOUI, the user′s focus is on objects. The user
sees and uses representations of their data and applications in the form of
objects, and each different kind of object supports actions appropriate for the
object. The objects are composed of and contain other objects, which can be
used individually or collectively. The hierarchy of these objects and their
classes and subclasses is closer to the real world. An OOUI allows a user to
focus on objects and work with them directly. This more closely reflects a user′s
real world way of doing things rather than having to go through an application to
get to these objects. The user performs actions on objects using various

10 EUI Reference

techniques, including point-and-select, menu option, and direct manipulation.
These objects are often represented on a user′s screen as icons (small graphic
images that help a user to identify an object). Thus, icons are used to provide a
concise, easy to manipulate representation of an object regardless of how much
additional information the object may contain. The user can open an icon to see
this additional information in a window if he/she wants. However, iconic
representation is not a must for OOUI. On nongraphic, nonprogramable
terminals enough details are given for users to perform desired operations on
the objects. The user can this by going through hierarchically organized menus
or even by commands. AS/400 object orientation is an excellent example of
such an interface.

The Workplace Model of CUA91 is based on object orientation. OOUI offers
many benefits, to operators, programmers or application users:

• Direct access to and focus on objects:

By giving a user direct access to objects, an OOUI lessens the need for a
user to be aware of programming that is providing functions that the user
needs. Instead, the user can concentrate on objects and actions that the
user wants to perform.

• Removal of user interaction requirements and obstacles:

An OOUI removes user interaction requirements and obstacles that some
graphic user interfaces still impose. For example, by removing the necessity
for starting and running programs, you can simplify the learning process for
each user. The learning process is simplified because the user has only one
process to deal with, opening an object as opposed to starting an application
and then finding and opening or creating a file.

• The internal structure of the object is hidden: For example, a data base file
is made up of four elements, i.e., a space, a cursor, data and data index. In
object orientation all this detail is masked from the user and he/she only
knows one element, i.e., the file. Also, the user does the same operations
on objects whether it is a file, document, letter, folder or even a network
definition.

An implicit benefit of an OOUI is that the designers have to think more precisely
about distinctions between object classes that are useful to users. This
ultimately results in better quality applications.

The announcement of AS/400 by IBM in the late ′80s was a significant progress
towards providing object-based user interface. The machine and its operating
system, OS/400, were designed based on object orientation. Each element,
whether a file, a program, a library, a screen, a menu or even a network
definition was treated as an object and was treated in the same way. Similar
operations which could be command or menu driven could be done on all
elements. By selecting the proper menu options, authorized users could do
whatever they wrere authorized to do, without having to give commands. On
later models of AS/400 a new graphical user interface expanded the usability of
the AS/400 system significantly. End users and system operators were able to
take advantage of direct manipulation capabilities of Programmable Work
Stations (PWS), i.e., point and click or drag and drop, rather than having to type
commands or give menu options to do the same things.

The AS/400 object oriented user interface is designed to allow each user to
comfortably begin work and grow in productivity using menus, layered entry

Chapter 1. Overview 11

panels, list panels and command lines. It is a very consistent interface across
all AS/400 functions and introduces consistency between programmable
workstations and nonprogrammable terminals, without compromising the
potential and strengths of either.

The other products currently using object based GUI′s are: Flashpoint**,
Mozart**, ENFIN** and Ellipse**.

Additional Reference Information:

• Object Technology in Application Development

• Object-Oriented Interface Design IBM CUA Guidelines (SC34-4399).

Impacts:

• Object Oriented User Interface (OOUI) makes object oriented programming
easy. Without these interfaces OOP would have been extremely difficult.

• Faster development through standard objects and their codes re-use rapid
prototyping and modeling.

• OOUI have made it possible for a business analyst to actively participate in
application development or even to replace an IS analyst.

• Applications implementing OOUI principles are readily accepted by users.

1.2.7 EUI in Client/Server Computing
The Client/Server (C/S) Computing has been defined in a number of different
ways. However, in simple terms, it is a multicomputer environment where
processing is done and is most suited to do so. The other terms used for this
are cooperative processing, distributed processing and network processing. We
will not go into details about describing what C/S computing is. From a User
Interface point of view we will visualize the most common Client/Server
environment and then discuss the requirements and progress being made in this
area. The most common C/S environment is where a number of PWSs are
connected to a computer which has more computer resources (however, this is
not necessarily the case). This computer provides some services to PWSs
connected to it. It is called the server, and since PWSs request some services
they are called clients. Depending on application requirements this role may
interchange. When we talk about EUI we mean interface with the client, which
most of the time is PWS.

The application user interface in Client/Server computing is basically the same
as all other environments we have seen above. It is built around GUIs and
further extended to OOUI and workplace models. The significant impact of EUI in
C/S computing is in application development. The new development tools have
been made available and existing products are evolving to take full advantage of
the GUI and C/S capabilities of PWSs. These products distribute development
work to client and server to improve productivity and system performance. The
modeling, designing and code development part is done on client or PWS where
facilities such as windowing, iconic objects, cut/paste, etc., significantly increase
development and productivity.

A client/server application can be developed in several ways. However, their
user interface can be built in the following ways:

• Distributed Presentation - The GUI presentation part may be split up across
both client and server. This interface could be used when a large part of the

12 EUI Reference

users ′ needs could be met by NPTs attached to the host, but some specific
requirements could only be met by PWS using GUI. The users of legacy
applications requiring the power of personal computers in selected areas
can go for this option.

• Remote (client) Presentation - The GUI presentation may reside entirely on
the client (PWS) with the rest of the application residing on the server or
spread over both. This would be good for applications that require the
power of PWSs and the flexibility of GUI. With the gap between the costs of
personal computers and NPTs narrowing and also the availability of tools
improving, this is becoming the preferred option.

IBM ′s Cooperative Development Environment/370 (CODE/370), CODE/400, and
HighPoint are some of the development tools that take full advantage of GUI and
PWS and develop applications for host environments.

Impacts:

• Processing is done where it is needed and most suitable.

• Development load is distributed across clients and servers so host
availability for production jobs increases.

• Use of CASE and OOP techniques increases productivity in development
work.

• Client Server applications are more complex to develop. However,
GUI-based tools are now helping this development.

1.2.8 EUI in Multimedia Environment
With the advancement in personal computer technology supported by
advancement in GUI technology, we now see large numbers of graphic and
image applications emerging which uses high performance graphics. This has
not limited itself to computer games only but many business applications have
emerged. With this the use of animation, sound, voice recognition, still video,
and motion video is increasing. This has created a need for information
processing technology called “Multimedia.”

Multimedia is comprised of support for elements such as animation, touch
screen, still video, motion video, sound, images, etc. It uses computers to
integrate and control these elements. The EUI in multimedia is based on GUI
workplace models with some more elements such as touch sensitive displays
included in it. Figure 5 indicates the evolution of applications using EUIs from
entry/text based to multimedia based over time. Multimedia information can
enrich and improve communication between people and between users and their
computers. However, designing a product with a multimedia interface is more
challenging than designing a product that uses text and graphics. A designer or
a team of designers must be well versed with graphics as well as audio and
video production aspects.

Impacts:

• Development of multimedia applications is very complex.

• Increased demand for multimedia specific skills.

• Demand for systems with high speed processing and large databases
increased.

• Opens up computer power to new applications and new users.

Chapter 1. Overview 13

1.2.9 Open Systems User Interfaces
The definition of Open Systems has changed over time. UNIX does not have to
be called “Open.” Different international standard organizations have defined
open systems. The most accepted definition comes from IEEE:

“A comprehensive and consistent set of international information technology
standards and functional standard profiles that specify interfaces, services, and
supporting formats to accomplish interoperability and portability of applications,
data and people′s skills.”

In open systems, in the area of user interfaces, attention has been focused on
the emergence of GUIs, based on windows and icons, that utilize input devices
such as buttons and mouse devices. While there are still many competing
definitions of how a visual interface would be implemented, most are sufficiently
intuitive to serve users even if there are differences in implementation.
Examples of GUIs in open systems include Motif, Open Look, Windows, HP
NewWave**, and the Macintosh interface.

IBM is committed to open systems and promises to make AIX*, its UNIX
operating system which is now available on Personal Systems, RS/6000, S/390s*
and the follow-up systems of S/370s, a true open operating system. User
interface in AIX is offered by AIX presentation services. These services are
provided through the X-Window system and AIX Windows. AIX Windows is a
user interface management application/toolkit that is based on the OSF/Motif.

OSF/Motif is a GUI based user interface combining a toolkit, presentation
description language, window manager and style guide. The toolkit is a
collection of software modules called widgets and gadgets for building OSF/Motif
compliant applications. Motif widgets and gadgets are based on an earlier
widget library developed by Hewlett-Packard**. The presentation description
language can be put into simple text files and describes the visual properties of
the initial states of interface components. The window manager provides the
functions to set up and handle window operations including such things as
sizing, iconizing and arranging windows. The style guide provides information
on how new widgets and gadgets should look and react to developing
applications that conform to OSF/Motif specifications. The OSF/Motif
programmer ′s reference manual (OSF-0-M-00889-001) provides the details of how
to build new widgets and gadgets.

Motif is based on the X-Window System developed by X-Window Consortium at
the Massachusetts Institute of Technology. IBM intends to provide AIX Windows
and X-Window systems** for its SAA platform, i.e., MVS, VM, OS/400 and OS/2.

IBM also promises to provide an consistency between SAA, CUA and OSF/Motif
so that customers can implement multivendor systems in such a way that
hardware and software platforms remain transparent to users.

To supplement the evolving Client/Server environment, IBM has announced that
it will divide AIX into client and server versions that will share as much of the
AIX infrastructure as possible. A/UX is the UNIX operating system for Macintosh
(Apple) with powerful windowing features. PowerOpen is the joint IBM and
Apple operating system which is based on IBM′s AIX and Apple′s A/UX. The
aim of PowerOpen is to make Macintosh productivity applications and AIX
technical applications accessible to clients through common user interface. The

14 EUI Reference

“PINK” system, another joint venture of IBM and Macintosh, promises to provide
an object-oriented environment to PowerOpen.

Many software houses have started developing tools which make it possible to
develop EUIs that are portable across different platforms. One such example is
Neuron Data Open Interface. This set of tools builds GUIs which are portable
across five major windowing environments: Windows, OS/2 Presentation
Manager, OSF/Motif and AT&T Open Look.

Impacts:

• Mushroom growth of window based applications.

• OSF/Motif-based applications run on many platforms from different vendors
so it provides wider choices to customers for meeting their information
processing needs.

1.2.10 Concluding Remarks
As advancement is being made in an exponential manner in Information
Technology, more and more functions are being automated. A system
programmer in the ′60s and ′70s never imagined that a multiuser/multitasking
system could be installed and made operational within hours without going
through the tedious tasks of system generation. This is possible because the
system management part is being automated continuously and even now a
system programmer is not required to know what is happening inside the
machine. He/she communicates with the machine and operating system through
user interfaces which mask the system complexity from him/her. Similarly, so is
the case with application development. A large part of the application can now
be built without the writing code. The fourth GL tools, the application generators
and CASE tools have reduced coding to a large extent with the help of their
easy-to-use user interfaces. Advancement in this area is also continuing. The
story is the same in data management, network management and other aspects
of information processing. This means that outside software laboratories, large
numbers of computer users, whether programmers, system programmers, IS
analysts, business analysts, application users or operators, will be interacting
with computers through EUIs (And this number is continuously increasing). Thus,
End User Interface (EUI) is becoming the most important element in information
processing.

As we are moving towards the end of this century, the technology and functional
enhancements to EUI components will be optimized to PWSs and progress on
EUI for NPTs will be capped but support will continue. The new level of EUIs will
be designed to support Voice, Images, Video information type (i.e., EUI for
Multimedia) based on the GUI workplace model. The user interface processing
load of an application and that part will run on PWSs. Figure 4 gives you some
idea about trends in EUI technology based on customers needs.

Chapter 1. Overview 15

Figure 4. EUI Extensions

In this important area IBM strategy remains based on dynamically changing
customers ′ requirements. IBM will continue to support SAA and CUA evolution
to meet its customers on the proprietary systems. At the same time IBM will
very aggressively participate in the open system area and whenever industry
standards are available will meet those standards. In the absence of those
standards IBM will develop its own. IBM will also incorporate open system
standards in CUA so that CUA-based interfaces become part of a heterogeneous
environment. The overall goal of IBMs strategy is to meet its customers′ need to
build and use applications that run on multiple platforms. The CUA Graphic User
Interface′s (GUI) workplace model will be IBM′s preferred model. However,
support and required enhancements in the entry model and basic GUI model will
continue.

See appendix A for an overview of types of customer and their EUI needs.

16 EUI Reference

Chapter 2. Design Principles/Guidelines

In this chapter we will discuss the design principle and considerations for
developing EUI products and applications. Our discussion will also be oriented
towards the EUIs currently in use and where technological advancements are
being made, in other words, GUI based workplace models of EUI.

2.1 Introduction
As defined in the first chapter EUI is for enabling computer users to interact or
communicate with computers. We have also seen how technology in this area
has progressed over time from the EUI entry model to the GUI workplace model
and beyond.

Considering the importance of EUI in information processing, many frameworks
have been announced and tools are being developed based on them. IBM SAA
Common User Access (CUA) stands out in terms of clarity of specifications and
details about implementations. In the real world OSF/Motif provides tools and
APIs for developing user interfaces. In this chapter we will summarize the
principles and guidelines from these frameworks and available specifications
with a large part coming from IBM, SAA, and CUA documentation.

These guidelines will not only be helpful to designers but also to IS executives
involved in EUI product selection. For more information on EUI principles,
guidelines and techniques see the following manuals:

• SAA and CUA Guide to User Interface (SC34-4289).

• SAA and CUA Advance Interface Design Reference (SC34-4290).

• OSF/Motif Programmers′ Reference Manual (OSF-0-M-00889-001).

The major objectives of EUI design can be summarized as follows:

• Increases users′ productivity. (Users meaning besides application users,
developers, system programmers, and operators).

• Increases users′ satisfaction with the system they are using.

• Reduces users′ error rate. This can also be termed as increased
productivity.

• Helps users to transfer knowledge across products. This means that if a
user learns to use one product he/she should be able to use most of the
other products as part of his/her overall system environment.

Basically, the user can be divided into three categories: novice users,
knowledgeable intermittent users and experts (frequent users). For a successful
product, it is very important that it addresses all these categories. A novice user
of today may become an expert tomorrow.

The principles a designer must adhere to while developing EUI tools to achieve
the above objectives can be grouped according to these categories:

• Placing the user in control of the user interface

• Reducing the user′s (personal) memory load

• Making the user interface consistent

 Copyright IBM Corp. 1994 17

• Simplicity and clarity

• Balanced performance with functions and features

If a designer combines these design principles with their knowledge of the
requirements of the user of the product, the resulting product will meet the
objectives. Now let us discuss these categories of principles and guidelines to
implement them.

2.2 Place a User in Control of the User Interface
A user should always be able to communicate with the computer and should
never feel that the computer is in control. Whenever possible, a designer should
avoid program-driven sequences that prompt a user through fixed steps and
directive messages. Program-driven interaction is like travelling in a train, for
example, a user must go where the program takes him/her and should reach the
destination after following a fixed route. A designer should aim for user-driven
interface which is like driving a car, giving enough flexibility to users to reach
their destination through the route of their choice, according to a schedule
suitable to them. The product should allow a user an alternative course of
action and should not limit a user by imposing the “correct” sequence for
accomplishing a task. In general, users should never feel that they are doing
something wrong and the product should always be able to respond to any user
action.

This principle is difficult to implement but not impossible. Following are some
guidelines to implement this.

2.2.1 Usage of Modes
A mode is a state of a product in which only certain actions are available. That
is, modes restrict a user′s options. For most of the users the confusion starts
because of their lack of understanding of the mode in which they are working.
Many times we hear complaints such as, ″Isn′ t it funny, this command works OK
sometimes and sometimes it doesn′ t!″ In fact, the command works only in
certain modes and the user is unable to differentiate from them.

However, modes in many situations are useful. For example, they can extend
the capabilities of input devices by allowing several actions to be accomplished
with the same technique, key, button, etc. Modes can also help an expert user
perform a series of actions very quickly.

Modes can be useful in directing a user′s interaction with the product. However,
designers have historically overused modes without regards for how modes
affect users. Users can feel powerless when a mode restricts their actions. For
a long time we have been seeing products which will not allow users to give a
command which is not valid for the mode they are in. For example, if you are
working with an editor you could only give commands valid in edit mode. If you
want to give other commands you have to come out of the edit mode and enter
another mode. The IBM VM system was the first IBM system to give some relief
to users in this area. In VM users could also give commands for the modes
higher in hierarchy than the one they were working in.

While working in different modes, users tend to forget which mode they are in
unless the product clearly indicates the current mode. A user can be puzzled
when an action leads to an unintended result. For example, pressing a right

18 EUI Reference

arrow key in a typing-mode typically moves the cursor to the right. In a
line-drawing mode, the same key extends a horizontal line by some increment.
If a user presses the right arrow key intending to edit some text, and instead
draws a longer line, the user can be confused, surprised or even angry.

To avoid some of the problems associated with modes, a designer should try to
use only those modes that require an ongoing user action, such as pressing a
mouse button or a keyboard key, to maintain the mode. In addition, the designer
should specify some kind of mode indicator. For example, a pointer or cursor
could have one visual representation when the user is in text-editing mode (for
instance, I-beam pointer) and another when the user is in a line-drawing mode
(for instance, cross-hair pointer).

If a designer finds it necessary to use a mode for a particular part of a product,
the designer should keep the scope of the mode narrow and should allow a user
to continue to interact with other parts of the product while the mode is in effect.
For example, if a product requires more information from the user and displays a
message window to elicit the information, the user should still be able to scroll
the underline window and interact with other parts of the window not affected by
the lack of that information. The user should also be able to interact with other
objects.

In general, a designer should use modes with caution and should make them
obvious, easy to get out of and get into.

2.2.2 Displaying Helpful Messages
It is possible that the user will interact with a product in a way that the designer
did not anticipate. In this situation the product should indicate to the user that it
cannot interpret the user′s action. Typically, a product should display some kind
of helpful message. In simple situations an audible cue or a graphical cue would
be sufficient. Different levels of help messages can be provided. For example,
level-1 can be for experienced users and level-n can be for novices.

Because a situation in which a message is displayed is often a situation in which
a user needs the most support, messages should be clear and provide a
mechanism for the user′s interaction. A message should describe the situation
objectively, without placing blame and should help the user correct the situation.

For example, one of the most common examples is if a user inserts a diskette
that has not been formatted, and then tries to save an object to the diskette, the
product should display a message that tells the user that the diskette is not
formatted. The message or message window should include mechanisms that
allows the user to complete his/her task, that is, to format the diskette without
leaving the window or to take some other course of action.

2.2.3 Providing Immediate Feedback
The results of the user′s actions should be obvious immediately. If the results
are not as expected, the user can choose an alternate action right away. For
example, when a user selects a choice to change the font of some selected text,
the appearance of the selected text should change immediately. The user can
then decide if the resulting effect is desirable or can select another choice. The
other example could be spreadsheet products where change in one figure
should immediately change the resulting subtotals and totals. The product
should also allow users to “undo” the impact of a user′s action. If the user

Chapter 2. Design Principles/Guidelines 19

wants to, he/she should be able to “re-do” the work he/she has undone. In
other words, no user action should be irreversible. In most cases, particularly in
the case of irreversible actions, the product should display a message that gives
an outcome of the action taken. Also it should indicate alternate actions which
could be taken.

If the results of a user′s actions cannot be made obvious immediately, for
example, if a network delay interferes, the product should still provide some kind
of feedback. For example, it should be indicated to the user that the action is
being processed. However, the designer should make sure that a product′s
feedback does not interrupt a user′s work.

2.2.4 Consider Users with Different Skill Levels
Much of the user interface design is focused on novice or casual users.
However, products should also offer features for more expert users. When
designing a user interface, a designer should provide a way for a user to
proceed at a comfortable pace. The design should also provide a way for a user
to go beyond the basic level of knowledge required for frequently used features.
As the user′s expertise increases, the user should be able to discover more
advanced features.

For a novice user, a designer should rely heavily on visual cues and should
avoid making a user remember details or key in a lot of information. To
accommodate an expert or experienced user the design should provide a
mechanism, such as shortcut keys, commands or condensed sequences of
steps. The expert should also be able to turn off the display of some of the
information that is not then required.

In general, an interface should be flexible enough to accommodate a full range
of users, but the designer should make sure that the interface must serve the
needs of the primary users.

2.2.5 Transparent User Interface
A user interface provides tools that help a user accomplish a task. Therefore, an
interface should focus a user′s attention on the task or end product. A user is
only incidentally interested in the EUI tools that are menus, pointers, keyboards,
fastpaths, icons, windows, etc. A user is normally interested in calculating tax
returns, preparing payrolls, replenishing inventory, preparing a project plan or a
machine design. The interface designer should make sure that the tools
provided by a user interface do not get into the user′s way. A good user
interface helps the user concentrate on the business task they are performing
and relieves the user from the technicalities of using interface tools.

2.2.6 Customizable User Interface
No two users are alike. They have varying interests, motivations, and
backgrounds. To accommodate individual differences, a designer should create
flexible interfaces that each user can customize according to personal
preferences. He/she should be able to customize menu choices, sequences of
steps in a process, colors, sizes of windows/characters and any other aspect of
the user interface. A designer should never underestimate the user′s creativity
or desire for imprinting a personal style on a computer.

20 EUI Reference

Allowing users to completely customize EUI can lead to higher productivity and
higher user satisfaction. However, a designer must provide defaults that are
satisfactory to most of the users and that a user can revert to.

2.3 Reduce User′s (Personal) Memory Load
A user should never have to rely on his/her memory. A product should be able
to “remember” for him/her. The designer must know that people are better at
“recognition” than at “recall.” A product should present alternatives and let the
user choose from among them. For example, a product could provide a list of
items, such as choices in a menu. A user can recognize choices in a menu
without having to recall commands or their syntax.

A product should also provide reminders to help a user keep track of the task at
hand. For example, a product could provide visual cues, (such as highlighting),
progress indicators or textual cues, (such as status messages). Highlighting can
remind a user that an object is selected and a progress indicator can remind a
user that a process is underway.

Another way to avoid overloading a user′s memory is to provide default settings
and save previously selected settings. For example, a user might want to
change the colors that appear on the screen. After experimenting with various
colors the user might settle on a particular combination and save those settings.
At a later date, however, the user might decide to revert to the original colors.
By providing for a default setting for screen colors, the product relieves the user
of the responsibility of remembering the original colors.

2.3.1 Meaningful and Concise Object Classes
When designing objects for object-oriented user interfaces, a designer should
consider the tasks a user will want to accomplish and then should ensure that
the characteristics of the object support the user′s tasks.

A designer should clearly define the properties of each object and should
establish a hierarchy of object classes based on these properties.

The objects should be designed so that a user can easily recognize members of
an object class and can understand what distinguishes one class of objects from
another. The distinction among classes should be meaningful to a user and
should not be based on underlying programming requirements.

An object hierarchy should be concise. So should the visual representation of
the objects in the hierarchy. Typically, each object in an object class is
represented by the same icon. The individual objects are identified by different
icon labels which indicate the name of each object. While creating an object
class hierarchy the designer should be aware of the fact that too many object
types with too many iconic representations can make the user uncomfortable.
To keep users focused on the correct objects, the user should keep the number
of object classes to a minimum without loosing an object′s specific
characteristics.

Chapter 2. Design Principles/Guidelines 21

2.3.2 Concrete and Recognizable Objects
When a computer object resembles a real-world object in appearance, behavior
or both, the user can transfer knowledge about the real-world object to the
computer environment easily. By including familiar objects in a product, a
designer can help users learn to use the product more quickly. The visible
representation of computer objects should be easily recognizable and a
computer object should resemble its real world computer counterpart.

2.4 Consistent User Interface
Consistency helps a user transfer knowledge from one product to another and
helps a user predict how something new will work. To create a consistent user
interface, a designer should develop paradigms that provide for identical
implementation of common functions throughout the product. For example, IBM
SAA, CUA or OSF/Motif guidelines specify that a user should be able to use the
same technique for editing text, regardless of where text appears in their
respective environments.

For any single design decision, a designer must consider whether being
consistent with respect to one component of an interface can affect the
consistency of other components. Some components might be consistent in
shape, location and color. Others might be consistent in interaction techniques.
A designer should make sure that components are consistent in a way that users
would expect.

Sometimes it is impractical or impossible to be completely consistent. In that
case, a designer must make consistency compromises based on the knowledge
of the user′s conceptual model and should be consistent in whichever way
seems more natural to a user.

2.4.1 Sustaining the Context of a User′s Task
A product should maintain a useful point of reference while a user works on a
task. For example, when a user adds objects to a folder, the appearance of the
folder′s window should remain the same while the appearance of the window
contents changes.

Also, a user should be able to complete a step or a series of related steps
without having to switch between input devices. For example, a user should not
have to use a pointing device to scroll through text while editing that text from a
keyboard. The text should scroll automatically when the cursor reaches the
boundary of the area (or window) the user is working in. The product should
also use the keyboard′s scrolling mechanism in this situation.

2.4.2 Continuity Within and Among Products
A designer should not discount a user′s experience with other user interfaces,
such as those provided in prior versions of a product, or those generally
accepted as industry standards. Instead, a new product or a new version of the
existing product should be built on a user′s knowledge and experience.
Therefore, the designer should be cautious in changing the behavior of an object
from one version of the product to the next. A designer must test a new
behavior to make sure that its benefits outweigh the drawbacks of forcing a user
to relearn the object′s behavior. One way to accommodate both new users and

22 EUI Reference

experienced users is to provide both old and new behavior for an object and let
users choose which to use.

2.4.3 Aesthetic Appeal
The appearance of a product′s interface significantly affects a user′s attitude
towards that product. Inconsistent design and haphazard placement of the
objects can confuse a user and can contribute to a user′s dissatisfaction with the
product.

When designing the appearance of a user interface, a designer should adhere to
generally accepted practices for information presentation. By skillfully using
background space, colors, proximity, size and shape differences and other
components of visual communication, a designer can make an interface more
efficient and effective and can increase the users′ satisfaction with the product.

2.5 Simplicity and Clarity
Part of this aspect of user interface has already been discussed. But its
importance demands that we discuss it further under a separate heading.
Simplicity is the most important aspect of user interface. The first impression a
user gets about an application is from how it looks. A good visual presentation
contributes to simplicity. Interface should look good and distinctive but not too
flashy. For example, an architect wants a new building to have a presence of its
own but does not want it to look out of place in the surrounding environment.
Users are more likely to be afraid to try an application that is visually
overwhelming. If it looks complicated or too different, users will treat it with
caution.

Clearly labelled controls contribute to simplicity. At one time or another, each of
us has been a beginning user. The rate at which we become more experienced
is based on several factors, including our technical interest, need, and how
frequently we use the product. In fact, some products are used so infrequently
that users cannot be expected to remember how they operate. For example, a
tax return preparation program might be used once a year only. In that program
the command for calculating and printing a tax return could be labelled as
“Calculate and Prepare Tax Return.” If the same program is designed to be used
by accountants who understand the process of tax return preparation and are
using this program frequently, the same command can be labelled as “Tax
Return.”

Both novices and experts appreciate the clarity. No one will appreciate
ambiguous labels and commands.

2.6 Balanced Performance with Function and Features
No matter how good a user interface is, unless it is supplemented by good
system performance it will not be acceptable to users. For example, to be more
helpful to users you design an interface where you display a part description
with a part number of all alternate parts in a situation where a part in demand is
out of stock. This information is coming from the database server or central
host. This is an excellent help to application users, but make sure that the user
does not have to wait unusually long for this information. A designer needs to
evaluate each function and feature offered to users not only from a user point of
view but also from a system performance point of view. Balance the users′ need

Chapter 2. Design Principles/Guidelines 23

and system performance needs. The designer should be aware that good
performance is also one key user requirement.

24 EUI Reference

Chapter 3. Components

A brief discussion on different key elements of EUI on PWS is included in this
chapter. The discussion is restricted to the GUI workplace model. However,
these elements can also be used for other models.

3.1 Introduction
The elements described here are used in different kind of interfaces and many
IBM and non-IBM products are already using it. Please note that all elements
are not included here. The objective is to provide some more details to IS senior
personnel who wish to know more on this subject. However, we have taken care
not to leave out any important element. In the user interface area the most
accepted specifications are IBM SAA CUA and OSF/Motif. Whenever possible a
brief comment on similarities and differences in these two specifications are
included. While doing, so we are restricted to EUI components only.

For more information on this subject please see :

• SAA CUA Advance Interface Design Reference (SC34-4290).

• Object Oriented Interface Design - IBM CUA Guidelines (SC34-4399).

• OSF/Motif Programmer Reference Manual (OSF-0-M-00889-0001).

Products like OS/2 Presentation Manager implement support for these elements
and provide application programming interfaces (APIs) so that users can build
applications based on these elements. Where support for these element is not
provided the application must provide them to meet the requirements of the GUI
workplace model.

3.2 Key Components and Their Description
The following sections describe the components of GUI workplace model.

3.2.1 Keyboard and Mouse
Both keyboard and mouse are the primary means of user interaction in the
workplace style of graphical user interface. Both CUA and Motif provides specific
guidelines for using these devices. Applications should provide equal support for
both these devices and both should virtually be interchangeable. CUA and Motif
both support this principle. However, CUA puts greater emphasis on the mouse
in the graphical model.

Mouse functions are basically the same between CUA and Motif. Motif assumes
a three-button mouse and CUA assumes a mouse with two buttons and a third
optional button which is application defined. Motif also defines functions of the
third button to be application specific.

 Copyright IBM Corp. 1994 25

3.2.2 Workplace
The workplace is a container on your screen that holds all objects you deal with
while using your work station. It usually fills the whole screen and serves as a
electronic desk-top for a user′s work. Objects in the workplace for different
user ′s tasks are represented by icons. The users are allowed to include or
delete any object from the workplace and also to arrange them the in any way
they want.

The workplace is based on the GUI Workplace Model specified by SAA CUA and
IBM OS/2. The operating system for IBM Personal Systems is the first product to
implement this. Many other vendors now promise to implement the workplace
model in their PWS products.

Figure 5. Workplace, the Container which Holds Objects

3.2.3 Cursors and Pointers
Cursors and Pointers are visual cues that indicate where a user′s next
interaction with the user interface will take place. They provide a way for a user
to select and interact with things that appear on the workplace.

The Pointer: Typically only one pointer appears on the workplace at a time. It
is associated with the user′s pointing device, such as mouse, trackball or
joystick. When a user moves the pointing device, the pointer moves
correspondingly, and when the user presses a button on the pointing device, the
object that the pointer is on is affected or selected.

The pointer is usually shaped like an arrow. However, the shape of the pointer
can change to indicate the type of action being taken. Products can provide
product specific pointers. For example, many word processing products provide
an I-Beam pointer when it is over the text to be edited. The graphic products
provide special Cross-Hair pointers to help the user draw lines accurately.

The Cursor: According to CUA specifications, there is only one cursor on the
workplace at a time, and it is associated with the user′s keyboard. There are
two types of cursors, a Selection cursor and a Text cursor. The selection cursor
indicates which item user can interact from the keyboard. For example, a
selection cursor can indicate which item can be selected or which item can
display a pop-up menu.

The text cursor is used to enter data through the keyboard. The text cursor is
further specified as the insertion cursor and replace cursor.

26 EUI Reference

Figure 6. Selection Cursor

Figure 7. Text Cursor in Replace Mode

A user can move the cursor by using cursor movement keys given on the
keyboard,for example, Arrow keys, Page-up, Page-down, Home and End keys. A
user can also move the cursor by pressing and releasing a button on the mouse
or the other pointing devices. For example, when a user presses the selection
button on the mouse, the cursor moves to the position of the pointer.

Motif also defines two types of cursors, a location cursor and a insertion cursor.
The location cursor reflects movement of the cursor around the screen using
navigation keys and indicates current keyboard input focus. The insertion cursor
is used to indicate where text may be entered. The specifications about further
divisions of the insertion cursor as we have in CUA is missing in Motif.

3.2.4 Shortcut Keys
A shortcut key is a key or a combination of keys on the keyboard that a user can
press to select a choice from a menu. The menu need not be displayed. Shortcut
keys are provided for choices that are used frequently. These keys provide
quicker methods of interaction, particularly for experienced users who are likely
to prefer remembering the combinations for displaying and navigating through a
menu for each desired choice.

Chapter 3. Components 27

Figure 8. Shortcut Keys

3.2.5 Windows
A window is a part of the workplace through which a user can view an object. A
window is bounded by a window boarder, which separates the window from
other windows. Within the windows there are mechanisms that allow a user to
manipulate the window and its contents. SAA CUA and OSF/Motif interface
specifications provides two types of windows: a Primary window and a
Secondary window. A primary window appears when a user opens an object; it
is where the main interaction between user and object takes place.

28 EUI Reference

Figure 9. Window and its Components

A secondary window appears when a user needs, or needs to provide,
information related to an object in a primary window. For example, a secondary
window might contain a message or help information.

The concept of a window is the same in both CUA and Motif. CUA tends to be
more specific and Motif more general. CUA window components have an action
bar and scroll bar. These are not considered fundamental in Motif.

3.2.6 Icons
An icon is the small graphic image that represents an object. It should convey
the information to its corresponding object, and its appearance can change when
something about the object changes. For example, the icon of an printer can
change to indicate that printer has run out of paper. An icon does not have to be
a static image. It can be an animated image or even a video image.

CUA uses the term “icon” to cover the pictorial representation of an object or a
selection choice. In CUA, icons can represent objects that users want to work on
or actions that users want to perform. A unique icon also represents an
application when it is minimized. Motif definition and use of terms relating to
icons vary slightly. The Motif icon represents the application or window and not
a pictorial representation of an object. This is because Motif basically tries to
define Window Manager rather than an object-oriented environment. Motif
supports pushbuttons with graphical labels. This results in Motif using buttons in
many places where CUA uses the term ″icon″.

Chapter 3. Components 29

3.2.7 Drag and Drop
Drag and drop is the interaction technique that enables direct manipulation of
the object. It is called drag and drop because it involves moving an object from
one place (dragging) and leaving it at another place (dropping). This technique
often involves a source object and target object. A source object is usually the
object a user is working with. A target object is the object that a user is
transferring information to. For example if a user drags the spreadsheet object to
the printer object to print a spreadsheet, then the spreadsheet is the source and
the printer is the target object.

The results of drag and drop can change depending on what the source object
is. For example, if a user drags a spreadsheet object from one folder object and
drops it onto another, the spreadsheet is moved to the target folder. However, if
a user drops the same spreadsheet object onto the printer object instead of a
folder, the operating environment makes a copy of the spreadsheet and puts it
into the printer′s queue to be printed. The original spreadsheet remains at the
original location.

3.2.8 Dialog Box
A dialog box is a movable window, fixed in size, that asks the user for
information to complete a dialog. The dialog box is always associated with
another window. CUA defines two types of dialog boxes : Modal and Modeless.

Modal dialog boxes require the user to complete the dialog before continuing to
work on the application. The required input is essential to further processing.
Modal dialog boxes are ended by selecting an action that submits the dialog box
task for processing. These boxes also contain “Cancel” and “Close.”

Modeless dialog boxes allow the user to continue without providing the required
information. He/she can leave the modeless dialog box to work in another
window because processing can continue without information. These boxes are
used for repeatable actions such as find and change.

Dialog boxes are similar between CUA and Motif. CUA explicitly restricts any
sizing of the dialog box, whereas Motif has no specific restriction. Both support
the concept of modal and modeless dialog boxes.

3.2.9 Menus
Menu is a mechanism for presenting lists of choices to a user. This has
remained one of the most widely used users′ interface with computer
applications for a long time. The menus′ look and use both changed dramatically
with the concept of GUI. On PWS There are usually four types of menus :

 1. Menu bar

 2. Pull-down menu

 3. Cascaded menu

 4. Pop-up menu

Menu Bar: A menu bar appears across the top of most windows, just below the
window title. It is a horizontal list of routine choices. When a user selects the
choice from the menu bar, an associated pull-down menu is displayed.

30 EUI Reference

Pull-down Menu: The pull-down menu is displayed when a user selects a choice
from the Menu bar. It contains choices that are related to one another in some
manner. For example, all choices in the pull-down menu could apply to an
entire object, a selected object within a window, help information or a view of
the object.

Cascaded Menu: A cascaded menu is displayed beside a pull-down menu or a
pop-up menu when a user selects a routing choice labelled with the --> symbol.
A cascaded menu contains choices that modify or are related to the routing
choice. Cascaded menus provide a way for the designer to layer choices so that
a user can have access to a wide range of functions without being confused by
lengthy lists of choices.

Figure 10. Menu bar, Pull-Down Menu and Cascaded Menu

Pop-up Menu: The pop-up menu contains only those choices that pertain to an
object at the time the menu is displayed. It is called the pop-up menu because
they appear to “pop up” next to an object when a user presses the appropriate
key or mouse button. A pop-up menu is available for each object in the interface.
Access to an object′s action by way of a pop-up menu is more direct than access
by way of other types of menus mentioned above because a user does not have
to select a choice from the menu bar first. Also, a pop-up menu has the
advantage of not using up screen space.

The contents of a pop-up menu is based on an object′s context. Variation in an
object context leads to variation in its pop-up menu. When a user displays a
pop-up menu for a group of objects, the menu contains only those choices that
are common to all objects in that group.

3.2.10 Control Elements
The following section describes control elements. They are primarily used in
dialog boxes but may be used in any window. They have to be visually unique
and present a specific type of choice.

Chapter 3. Components 31

3.2.10.1 Radio Buttons
Radio buttons consist of circles with their associated “choice text.” They provide
a single selection field of mutually exclusive choices.

Figure 11. Radio Buttons

3.2.10.2 Check Box
A check box consists of a square box and choice text. Several check boxes can
be used together to provide a multiple selection field. Selection are not mutually
exclusive but are complimentary. This means that more than one choice can be
selected. A selected check box is filled with an “X” as the visual indicator.

Figure 12. Check Boxes

32 EUI Reference

3.2.10.3 List Box
A list box is used If the list of choices is lengthy and would consume too much
space. It can be scrolled both vertically and horizontally. The list box may
contain more than one smaller box. For example in a “OPEN” list box there
could be a smaller box for files and another smaller box for directories.

Figure 13. List Box

3.2.10.4 Push Buttons
The push buttons are used in dialog boxes, secondary windows and message
boxes. They consist of a command surrounded by a rounded border and are
usually used as an alternative to an action bar. Once selected the action occurs
immediately. If several pushbuttons appear in the same window one of them
should be the default action which is indicated by a bold border.

Figure 14. Push Buttons

3.2.10.5 Combination Box
A combination box is a combination of an entry field with a list box. The list box
contains a list of possible choices available to the entry field. This entry field
collects information from the user. The user points to an item in the list box to
place that item in the entry field.

Chapter 3. Components 33

Figure 15. Combination Box

3.2.10.6 Drop-down Combination Box
A drop-down combination box is a variation of a combination box where the list
box is hidden until the user requests it. A prompt-box with a downward pointing
arrow appears to the right of the entry field to indicate the presence of the
hidden list box.

3.2.10.7 Spin Button
Spin buttons are used to select a desired value from the list by scrolling through
the consecutively ordered choices. The values in a spin button are displayed as
if they are arranged in a ring. When a user presses the down arrow, the value
displayed increases. And when a user presses the up arrow, the value
displayed decreases.

Figure 16. Spin Buttons

3.2.10.8 Progress Indicators
The progress indicator provides feedback to the user during longer processes. It
is a visible cue that indicates progress toward the completion of a process, for
example copying, formatting, etc. A progress indicator could consist of a digital
clock and display the time remaining in a process. It can also be a slider that
fills gradually as process continues. When the process is complete the slider is
completely filled. A progress indicator can appear in its own window or in the
window of the object that is undergoing the process.

3.2.10.9 Value Set
A value set is a single selection field, similar to a radio button but without the
choice text. It is used to present mutually exclusive choices. The choices are
arranged in a matrix. The value sets are useful for creating palettes of tools.

34 EUI Reference

Figure 17. Value Set

The controls are quite similar between CUA and OSF/Motif specifications with
some variations. Motif defines a “scale” control that is similar to CUA “progress
indicator.” The CUA value set control is not specifically defined in the OSF/Motif
Style Guide but the subarea control panel would be a place to implement that
function. Motif defines the “stepper button” which is the equivalent of CUA′s
spin button.

3.2.11 Cues
The system informs users about the exceptional situation through cues. CUA
defines three type of cues:

Audible Cues: An audible cue is the sound generated by a user′s computer to
draw a user′s attention. A beep is an example of a simple audible cue. If the
product can be used with computer hardware that has advanced audio
capabilities, a designer can be imaginative in specifying more elaborate audible
cues, such as speech synthesis.

Visible Cues: A visible cue is a change in the appearance of a product′s
components. For example, if a user places inappropriate type of information in
an entry field, the color of the entry field could change to alert the user that the
information given is inaccurate.

Textual Cues: When a user needs more information than can be conveyed with
the audible or visible cues, a designer can use a textual cue. This can be
displayed in a message window.

Chapter 3. Components 35

3.3 Concluding Remarks
The IBM SAA, CUA and OSF/Motif user interface specifications provide similar
directions to user interface development between SAA and AIX systems. Enough
information is provided both in the CUA Advance Interface Design Guide and
OSF/Motif Style Guide that can provide additional direction for development of a
complementary user interface to span SAA, AIX and other UNIX systems. This
should be possible while maintaining affinity to these environments so that
applications that are developed either within customer enterprises or by
software vendors can provide smooth, easy to understand interface to end users.

CUA and Motif user interface styles are evolving with experience and
technological development. Each revision in both these specifications removes
some differences between them. Thus, we see the emergence of common user
interface specifications which will mask the underlying operating environment
from users.

36 EUI Reference

Chapter 4. Solutions

This chapter briefly introduces some solutions which are available to create,
exploit and support todays Graphical User Interface. Before these products are
described, the benefit and usage of Application Programming Interfaces are
explained.

4.1 Introduction
Getting a computer to do what we want it to do requires a method which tells the
computer how to behave. While in the 60′s it was sufficient to hard code a
tabulating machine with a switchboard-like panel, today′s application and user
front ends need more complex tools and products to develop an application
program.

In the 70′s centralized computers were used to accomplish the every day
computer work. To create a program the programmer had very rough tools on
his/her hand. Normally a programming language with access to a database was
used and later on a tool to define screen panels was used. The choice of tools
was not overwhelming and more important was the result. Terms like ″ease of
use″, ″consistency″ or ″software engineering″ were not known in those days.

This changed dramatically as the first personal computers entered the
marketplace in the 80′s. This was the first time a computer on the desktop was
able to take over specific tasks from the large computers. The flexibility of a
programmable workstation and the availability of computer languages running
on a PC encouraged to develop software for PC′s. This resulted in widespread
use of PC programs such as spreadsheet and word processor applications.

Until now all the applications came with their own type of user interface. Users
found it very difficult to switch between the different applications. This resulted in
a higher learning curve and reduced productivity. At the same time software
vendors were confronted with new and more complex applications which should
run on different platforms. It was now necessary to develop software in a more
strict manner and to keep track of different versions running on different
platforms.

In March 1987, IBM announced its System Application Architecture (SAA). SAA
describes the use of common methods, products and interfaces for IBM′s 3
hardware platforms. In order for applications to conform to SAA they must:

 1. Present applications with a common ″look and feel″

 2. Use common programming interfaces and languages which makes it easy to
port a application from one system platform to another

 3. May be created with standard development tools for increasing productivity
such as the AS/400 Developer Utilities.

Based on SAA, ISVs and IBM offers development tools for different hardware and
the operating system environment. This enables ISVs to create consistent and
maintainable products within a reasonable time frame. This chapter describes
some of the tools available.

 Copyright IBM Corp. 1994 37

4.2 Overview to Application Programming Interface (API)
The purpose and usage of an API is best illustrated by the example of DOS and
OS/2. DOS offers a rich set of interrupt calls (Int XXh) to perform specific
functions. To display for instance, a specific character on the screen the Int 21h
may be used. The programmer supplies in register AH the function code 02h for
″Display Output″ and in register DL the character itself. The character is
displayed after the Int 21h request is issued to DOS. DOS itself has to perform a
lot more instructions to perform this function. The main advantage of this type of
access is the unified structure calling this service and the ease of use for the
programmer.

Unfortunately there are ways to issue interrupt calls in DOS which may crash the
complete system. While this may be acceptable in a single task system it is not
in a multitasking system such as OS/2. OS/2 has its own scheme and usage of
APIs. In OS/2 protect mode, the program pushes parameters onto the stack and
then issues a CALL to an OS/2 API which is in fact a call to an external routine.
OS/2 has over 700 APIs available which are grouped in functional areas such as:

 1. Device handling (Keyboard, Mouse, Video)

 2. General functions (Memory, File, Multitasking)

 3. Windows (PM user interface)

 4. Graphics

The advantage of APIs are that the developed application:

 1. Can execute only documented and allowed functions (OS/2 takes care)

 2. Is upward compatible to new versions of OS/2

 3. Is easy to maintain.

In fact, not only DOS and OS/2 provides their own APIs. For example, to
manipulate host sessions within Communications Manager/2 an API package
called High-Level Language Application Programming Interface is available.
This API can be called from many languages such as C or even REXX.

38 EUI Reference

4.3 Tools and Products
The PC primarily developed for exclusive use for end user purposes is seen
today in nearly every combination with other computers. Also, added functions
in the operating systems allow applications to communicate in a different way
with the user. The text-based applications are being replaced by graphics-based
ones, which makes applications much more usable.

Trying to keep pace as an application developer in this changing environment is
very difficult. Therefore, it is very important for software developers to get
application development tools that will simplify a developer′s job.

There are different ways an application is used on PCs. This requires different
tools and techniques for application development:

 1. The application is still full-screen and runs in a host emulator window on the
PC.

 2. The application conforms to CUA 89 and is written for the Entry or Text
model.

 3. The application runs as a client/server application and util izes on the PC the
Graphical User Interface conforming to CUA 91.

 4. The application is written for the exclusive use on a PC and runs, for
example, as a OS/2 application.

All of the above usages have their own tools. Some of them are listed in the
following section. The list is not to be seen as a recommendation or preference
for any of the products. The technical facts are based on the product description
available from the vendor.

Chapter 4. Solutions 39

4.3.1 Host Environment

4.3.1.1 ISPF Version 4 Release 1
ISPF Version 4 Release 1 for MVS includes ISPF Client/Server, which enables
any existing application using ISPF display services on the mainframe
(customer written, independent software vendor, and IBM applications) to be
displayed on OS/2 or Windows workstations. This gives the application the
ability to display common user access (CUA) constructs (action bars,
multiple windows, push buttons, and check boxes) in a graphical mode. In
this way, ISPF Version 4 Release 1 has become an enabler for CUA 89 both
at the workstation and on a nonprogrammable terminal (NPT). ISPF
applications are displayed in this GUI (Graphical User Interface) window,
which allows the application to run on the workstation unchanged. Using
ISPF V4 Release 1 for MVS to write GUI applications has all the advantages
of host applications including security, central distribution, and maintenance
while also having the advantages of the GUI at the workstation.
Communication between the mainframe and workstation is through popular
products including Transmission Control Protocol/ Internet Protocol (TCP/IP)
and advanced program-to-program communication (APPC).

Presently, the VM version of ISPF has support for the CUA 89 Entry and Text
models of EUI.

Execution Environment

• MVS

• OS/2 2.x (with ISPF client and server)

• Microsoft Windows 3.1 (with ISPF client/server)

Program Number (Order Number)

• 5655-042

GIM Form Number

• GC34-4439 ISPF Specifications V4.1 for MVS

40 EUI Reference

4.3.1.2 Screen Definition Facility II
Screen Definition Facility II (SDF II) is a tool for developing and maintaining
screen and printer oriented objects (panels, panel groups, partition sets, AID
tables, and operator control tables) interactively for applications developed
with or using CICS/BMS assembler macros, definition, GDDM-IMD, CSP/AD,
CSP/370AD and CSP/2AD. Objects can be developed online on all display
devices supported by ISPF (V2R2 or later), which is the dialog manager for
SDF II.

Development Environment

SDF II operates in the following interactive development environments:

Execution Environment

SDF II allows its definitions, to make use in applications running in the
following systems:

• CICS (MVS, VM, OS/2)

• ISPF (MVS and VM)

• CSP (AD, 2AD and 370)

 Program Number (Order Number)

• 5665-366 (for MVS)

• 5664-307 (for VM)

GIM Form Number

• GH19-6114 SDF II General Information

Chapter 4. Solutions 41

4.3.1.3 CSP/2AD and CSP/2RS
CSP/370AD and CSP/2AD provide application developers with the facilities to
quickly learn the development products, develop an application, and
maintain development libraries using interactive panels on the host or
windows on the workstation.

You can define and test applications on your workstation using CSP/2AD.
Applications developed on the workstation can be transferred to the host for
generation. Applications and member definitions created on the host can be
transferred to the workstation for further definition, testing, or maintenance
(to the workstation where CSP/2RS is installed for running in the CICS).

To develop and maintain an application with the Cross System Product set,
an application developer does the following:

• Defines the data, maps, and application logic, getting online help when
necessary

• Tests the application for errors

• Maintains the application with the provided utilities and facilities

The application developer then generates a COBOL application with the
CSP/370AD generation facility. The generated COBOL application is then
ready for running in the production environment where CSP/370RS or
CSP/2RS is installed.

Development Environment

CSP/2AD requires the following software:

• CSP/370AD for application generation

• MVS/TSO for installing from a MVS host system

• OS/2 1.3 or later release

• OS/2 EE or Communications Manager/2

• OS/2 EE Database Manager or DB2/2

Execution Environment

• CICS OS/2 Version 1.2

• OS/2 1.3 or later release

• OS/2 EE or Communications Manager/2

• OS/2 EE Database Manager or DB2/2

• Micro Focus COBOL Version 3 or later release

 Program Number (Order Number)

• 5688-205 (CSP/2AD)

• 5688-195 (CSP/2RS)

GIM Form Number

• GH23-6515 IBM SAA Cross System Product

42 EUI Reference

4.3.1.4 IBM SAA AD/Cycle in S/370 Environment
AD/Cycle CODE/370 is an integral component of IBM′s AD/Cycle new
framework for high-level language application development and maintenance
across all IBM SAA platforms.

IBM SAA AD/Cycle Cooperative Development Environment/370 is an SAA
cooperative processing implementation. It provides a language-sensitive
editor and an interactive debugger. The editor operates on the OS/2
programmable workstation and interacts cooperatively with the host to
provide application development functions. The interactive debugger allows
for OS/2 workstation-based cooperative debugging of host applications, and
host-based full screen, line mode and batch debugging.

AD/Cycle CODE/370 allows the application developer to migrate from the
nonprogrammable terminal environment to the OS/2 workstation
environment. With the OS/2 workstation, the OS/2 Presentation Manager
graphical user interface is exploited to deliver the SAA CUA architecture.

Execution Environment

CODE/370 runs under the latest releases of these programming systems:

• MVS/SP 3.1, MVS/ESA 4.1

• VM/ESA 1

The IBM OS/2 CODE Workstation Feature requires:

• IBM OS/2 Extended Edition 1.3 or a later release

 Program Number (Order Number)

• 5688-194

GIM Form Number

• GC26-4661 IBM SAA AD/Cycle CODE General Information

Chapter 4. Solutions 43

4.3.1.5 IBM SAA AD/Cycle in AS/400 Environment
AD/Cycle CODE/400 provides a cohesive edit, compile and debug facility and
a Data Description Specifications Design Utility (DSU). The AD/Cycle
CODE/400 tools operate on the IBM Operating System/2 Version 2 (OS/2 2.0)
or higher, with a programmable workstation and interacts cooperatively with
the host to provide application development functions. It will support Control
Language (CL) and will include the CODE Object Lists that provide the
interface to Application Development Tools and Application Development
Manager/400 for parts, a new enhanced editor and DDS (Data Description
Specification) support in DSU for Enhanced Nonprogrammable Terminal User
Interface (ENPTUI).

CODE/400 enhances the ability of the application developer to maintain and
extend the useful lives of existing applications. The DDS support for
Enhanced Nonprogrammable Terminal User Interface (ENPTUI) in DSU allows
existing and new applications to be designed to use graphical user
interfaces in their applications such as menu bars, pull-downs, single choice
selections, etc. The DDS keywords for ENPTUI functions can be incorporated
into any application and does not require new hardware. The DSU WYSIWYG
interface for creating these new keywords is extremely functional and easy
to use.

Execution Environment

CODE/400 2.3 runs under:

• OS/400 2.3

The CODE Workstation Feature requires:

• IBM OS/2 2.0 with

• IBM Extended Services for OS/2 or

• IBM Communications Manager/2 or

• IBM Communications Manager/400

 Program Number (Order Number)

• 5738-CD1

GIM Form Number

• GC26-4661 IBM SAA AD/Cycle CODE General Information

44 EUI Reference

4.3.1.6 IBM RUMBA/400
RUMBA/400 provides a set of functions (including display, print, and file
transfer) that run entirely within a graphical windows environment which
allows users the ability to point-and-click for quick and easy access to host
resources. Starting an application, moving information, and simultaneously
working with multiple applications is easily handled by moving a mouse.

RUMBA/400 is packaged as a separately orderable, separately priced feature
of PC Support, and is designed to take advantage of all the capabilities of a
windows environment. There are two versions of RUMBA/400. One runs
entirely on Microsoft Windows and one runs in OS/2 PM. These two
RUMBA/400 versions are contained within the single feature - thus, providing
a flexible and inexpensive migration path between the PC operating systems.

Execution Environment

RUMBA/400 runs under:

• OS/400 2.2 or a later release

The PWS-related requirements are:

• IBM OS/2 2.0 or later release

• IBM PC DOS 5.0 or later release

• Microsoft Windows 3.1 or later compatible release

 Program Number (Order Number)

• 5738-PC1 Feature 0795

Manual

• SC41-0135 AS/400 PC Support/400 RUMBA/400 Guide & Reference

Chapter 4. Solutions 45

4.3.1.7 IBM ENVY/400
The IBM ENVY/400 licensed program offering is an object-oriented
client/server integrated cooperative application development environment.
ENVY/400 supports the Microsoft Windows(DOS) environment as well as the
OS/2 environment for development. Customers have the flexibility to create
applications that are portable between these environments with few, if any,
source code changes. ENVY/400 applications are source compatible between
the OS/2 and Windows environments.

ENVY/400 provides all the same development features for developing
applications from either environment. The notebook and container CUA 91
controls are also provided in both the OS/2 and Windows environments.
Using ENVY/400′s collaborative environment, a development team can create
applications in a mixed environment of development workstations. The
applications thus developed can run on host AS/400 from Digitalk, Inc. for the
workstation environment(s) ordered. ENVY/400 applications contain all
necessary ENVY/400 run-time support. ENVY/400 applications do not require
any run-time license fees on the AS/400 system or on the workstation.

Development Environment

• OS/400 2.2 or a later release

• IBM PC Support/400

The PWS-related requirements are:

• IBM OS/2 2.0 or a later release

• IBM Extended Services for OS/2

• IBM PC Support/400

• or

• IBM DOS 5.0

• Microsoft Windows 3.1 (DOS)

• IBM PC Support/400

Execution Environment

• OS/400 2.2 or a later release

• IBM PC Support/400

The PWS-related requirements are:

• IBM OS/2 2.0 or a later release

• IBM Extended Services for OS/2

• IBM PC Support/400

• or

• IBM DOS 5.0

• Microsoft Windows 3.1 (DOS)

• IBM PC Support/400

 Program Number (Order Number)

• 5733-CS6

GIM Form Number

• GG24-4126 Introduction to ENVY/400

46 EUI Reference

4.3.2 Client/Server Environment

4.3.2.1 CICS OS/2 Version 2.0
CICS OS/2 Version 2 is available as a single or multiuser license. If CICS
OS/2 Version 2 multiuser is licensed then distributed, features may also be
licensed for the support of LAN attached clients.

CICS OS/2 Version 2 single-user may operate attached to a mainframe,
stand-alone, or attached to a LAN. CICS OS/2 Version 2 single-user is a
subset of CICS OS/2 Version 2 multiuser; it supports the same CICS API, and
contains all functions except for those required for the support of multiple
users, though it supports ASCII terminals with native attachment (up to 8,
subject to hardware limitations).

CICS OS/2 Version 2 multiuser contains functions in a distributed feature
which may be installed or downloaded into client machines on the LAN.
These are provided for OS/2, DOS, and Windows client machines, and are
optimized for these environments; they can occupy less than 100K of
storage.

In addition to requesting CICS function from the server applications, running
in the client machines may interface to other local applications and may run
their own user interfaces, including advanced Graphical User Interfaces
(GUIs). They will access a server through the LAN.

Execution Environment

CICS OS/2 Version 2.0 multiuser server and single-user will require the
following operating system:

• OS/2 2.0 or a later release

CICS OS/2 Version 2.0 multiuser clients will run under any of the following:

• OS/2 2.0 or a later release

• Windows 3.1

• DOS 3.3 or a later release

 Program Number (Order Number)

• 5871-AAA Feature 3127 Single-user (US)

• 5871-AAA Feature 3130 Multiuser (US)

• 5648-036 (Single and Multiuser)

GIM Form Number

• GC33-0637 IBM CICS OS/2 General Information

Chapter 4. Solutions 47

4.3.2.2 VisualAge for OS/2 Version 1.0
VisualAge* is an integrated, application development environment designed
especially for client-server, mission-critical, line of business applications
through visual programming and construction-from component technologies.
It provides a series of high productivity, OS/2 based power tools for the
development of applications targeting OS/2 execution systems.

There are two base products in the VisualAge family:

 1. ′VisualAge ′ for the individual user

 2. ′VisualAge Team ′ for team development

′VisualAge Team′ provides all the functionality of ′VisualAge ′ plus support for
team programming.

VisualAge provides the following functionality:

• Visual programming (construction-from-components) which enables the
development of complete applications from pre-existing or custom-built
components with little or no knowledge of the underlying language.

• Support for reusing programs developed in C, COBOL or any language
which creates DLLs. This capability promotes the reuse of existing code,
reducing development cycle time and future maintenance requirements.
C support is included in the base VisualAge and VisualAge Team
products. COBOL support may be ordered separately.

• Advanced graphical user interface (GUI) capability, including support to
implement CUA ′91 user interface controls.

• Communications and transaction processing components which provides
a diverse menu of protocols with a simplified common access, including
TCP/IP, APPC, and CICS OS/2 ECI.

• Database components for interfacing with both IBM and non-IBM
databases which provides a menu of databases with a simplified
common is provided in the base VisualAge and VisualAge Team
products. The additional database support may be ordered separately.

IBM plans to make VisualAge for Windows and VisualAge System Object
Model (SOM) support for OS/2 available during the first half of 1994.

Development Environment

• IBM OS/2 2.1

 Program Number (Order Number)

• 5871-BBB Feature 7280 VisualAge (US)

• 5871-BBB Feature 7281 VisualAge Team (US)

• 5621-387 VisualAge

• 5621-388 VisualAge Team

GIM Form Number

• G325-0801 VisualAge Technology Booklet

48 EUI Reference

4.3.2.3 IBM Application System 3.2
IBM Application System (AS) is the Fourth GL decision support product for
VM and MVS environments. The design criteria of AS is to help professionals
and managers to meet their information processing needs without having to
learn computers. AS provides very easy-to-use interface to its users. The
conversational end user interface provided by AS stands out in terms of
ease-of-use and acceptability. This interface allows users to work with AS in
conversational mode. The user responds to questions asked by AS and
based on these responses AS builds applications. For more experienced
users AS provides GUI (on PWSs) and also command language interfaces.

AS provides a wide range of facilities which include : Query, Reports, Charts,
Data Management, Project Management, Business Planning and Statistics
modules. It also provides very powerful set of AS language commands for
application development by experienced IS professionals.

AS combined with PAS/2 provides ideal cooperative processing facilities in
the client/server environment. The PS/AS running on OS/2 exploits API
facilities of OS/2 and enables AS to act as an intelligent server on the
mainframe. The client/server module of AS increases the customers choices
for the development of client/server applications. These applications are able
to take full advantage of GUI workplace models.

AS provides all these facilities and still masks the complexities of
computerization from its users.

Execution Environment

• IBM VM/ESA, VM/XA and VM/SP

• IBM MVS/ESA and MVS/XA

To make use of the Client API:

• IBM OS/2 2.0 or a later release

• IBM Communications Manager Client Server/2 Version 1

• IBM VM PWSCS 1.2 (suitable for both VM and MVS)

• IBM Communications Manager/2 1.x or

• IBM Extended Services for OS/2

 Program Number (Order Number)

• 5648-018

GIM Form Number

• GH45-5520 General Information

Chapter 4. Solutions 49

4.3.3 Programmable Workstation (PWS)

4.3.3.1 IBM OS/2 Version 2.1
OS/2 (R) Version 2.1 is available as the desktop operating environment of
choice. This version of OS/2 is a robust and stable platform for developing
and delivering all types of applications: productivity, mission-critical,
educational and entertainment.

Highlights:

• OS/2 Version 2.1, with a 32-bit foundation, runs a wide variety of DOS,
Windows and OS/2 applications simultaneously in a protected
environment.

• OS/2 Version 2.1 is the platform for mission-critical applications,
advanced client/server environments, wide area communications
support, relational database support and systems management.

• OS/2 Version 2.1 has superior stability and reliability backed by
unmatched IBM service and support.

• Implementation of CUA 91 Workplace model such as Workplace shell.

The OS/2 Version 2.1 Workplace Shell sets the standard for ease-of-use in
the personal computer industry. The object-oriented approach allows users
to manage many types of objects, programs, data files, printers, network
servers and drives from a single interface called the desktop. From the
desktop, users can directly manipulate objects so that printing, for example,
becomes as simple as dragging and dropping a picture (or icon)
representing a letter onto an icon representing a printer.

The Workplace Shell works the way users do, and it can look the way users
want it to look. More flexible than ever, OS/2 Version 2.1 allows users
maximum freedom to customize desktops, including colors, fonts, object
locations and many other aspects of appearance.

The Workplace Shell represents the culmination of earlier technologies
evolving over time from the command line to graphical icons, to the current
object-oriented interface technology which implements the workplace model
defined by Common User Access (CUA) 91. OS/2 Version 2.1 is the Systems
Application Architecture environment for the workstation. The Workplace
Shell makes OS/2 Version 2.1 an excellent desktop operating environment
for all users today and advances operating system technology for tomorrow.

Hardware Requirements

• Personal Computer with an 80386SX (recommended 386DX or a later
release)

• 4-8MB Memory

• 60MB hard disk (20 - 40MB available for OS/2)

 Program Number (Order Number)

• 5871-AAA Feature 4999 IBM Operating System/2 Version 2.1 (US)

• 5604-467 IBM Operating System/2 Version 2.1

Manual

• G326-0169 OS/2 V2.1 Facts and Features

50 EUI Reference

4.3.3.2 IBM Personal Application System/2 Version 3
IBM Personal AS/2 Version 3 provides multifunction, data analysis solutions
for the business professional in an office environment, fully exploiting the
advanced facilities of OS/2 Version 2 (for example, 32 bit workplace shell,
drag/drop and DDE). When installed on a PC, IBM Personal AS/2 Version 3 is
able to operate across a LAN or WAN if connected. This provides access to a
wide range of data on host systems and personal computers, including
access to OS/2 Database Manager.

IBM Personal AS/2 Version 3 is fully integrated with OS/2 Version 2,
exploiting both 32 bit and the workplace shell. This means that functions
such as drag/drop to OS/2 objects such as Mail, Folders, Printers and the
Shredder are supported. Use of the clipboard and Dynamic Data Exchange
(DDE) links can be established with other products running in the OS/2
environment.

Using IBM Personal AS Builder/2 Version 3, 32 bit applications can be built
that integrate with the work-place shell of OS/2 Version 2, enabling the
creation of fully integrated customized solutions to business problems by
using:

 1. The powerful analysis and presentation functions of IBM Personal AS/2
Version 3.

 2. The application creation facilities of IBM Personal AS Builder/2 Version
3, which can be used to extend the standard decision support function
provided, in order to meet specific customer requirements.

Execution Environment

• IBM OS/2 2.0 (with Service Pak XR06055) or later release

• IBM OS/2 J and OS/2 K are needed for Japanese and Korean versions

 Program Number (Order Number)

• 5875-XXX Feature 5401 IBM Personal AS/2 Version 3 (US)

• 5871-BBB Feature 5400 IBM Personal AS Builder/2 Version 3 (US)

• 5622-103 IBM Personal AS/2 Version 3

• 5622-104 IBM Personal AS Builder/2 Version 3

Manual

• GH45-5054 Personal AS/2 V3: Making more

Chapter 4. Solutions 51

4.3.3.3 IBM Communications Manager/2 Version 1.1
Communications Manager/2 Version 1.1 is IBM′s premier communications
manager for OS/2 workstations. It contains the communication functions from
Extended Services for OS/2 and Communications Manager/2 Version 1.0, and
includes major enhancements over these products including:

• Conversion to Presentation Manager

• Configuration and installation aids

• Improved 3270 emulation

• Conversion of 5250 emulation to Presentation Manager interface

• Improved problem determination functions

• Addition of ISDN communication services

 The Communications Manager/2 3270 and 5250 emulators are being
enhanced to further provide a more consistent look and feel with the IBM
family of emulators. This cross emulator consistency reduces end user
training time and improves the ease with which end users can move
between emulators. The end user functions being added are:

• Integrated mouse support
- Pop-up key pad window
- Screen hot spots

• Menu bar and pull-down menus

• Automatic font selection option

• Improved keyboard remapping

• File transfer usability improvements

Execution Environment

• IBM OS/2 1.3.1 SE and EE (with CSD 5050, or a later release)

• IBM OS/2 2.0 or a later release

 Program Number (Order Number)

• 5622-078

• 5781-AAA Feature 6485 (US)

Manual

• SC31-7007 CM/2 1.1 Information & Planning Guide

52 EUI Reference

4.3.3.4 IBM Database 2 OS/2 Version 1
IBM Database 2 OS/2 Version 1 is a relational database management system
and a member of the IBM Relational Database family of products, OS/400.

DB2/2 Version 1 supports access to OS/2 database servers from OS/2, DOS
and DOS Windows database client workstations. DB2/2 Version 1 is a 32-bit
product and includes the functions previously provided in the OS/2 Extended
Services (ES) Version 1.0 Database Manager products. DB2/2 Version 1 also
includes additional new functions focused on application portability, DB2
compatibility, SQL and industry standards compliance, new connectivity
options, integrity enhancements, reliability, availability, systems
management and performance.

Application Programming Interfaces (APIs) and tools are provided for
programmers and a database command line processor. Query Manager is
provided for use by novice and experienced users.

Execution Environment

• IBM OS/2 2.0 (with Service Pak XR06055) or a later release

 Program Number (Order Number)

• 5622-044

• 5781-AAA Feature 4864 (US)

Manual

• S62G-3662 DB2/2 Information & Planning Guide

Chapter 4. Solutions 53

4.3.3.5 Smalltalk/V PM
Smalltalk/V PM is a pure, object-oriented, development tool that implements
classes for all controls available in OS/2 V2 Workplace Shell. These controls
include the new CUA ′91 elements, such as Container, Notebook, and Slider.
Smalltalk also supports DDE, OS/2 Help Manager, the OS/2 drag/drop APIs,
DBCS, and access to DLL-routines (including the APIs available with PM).
Application development in Smalltalk/V PM is highly interactive because of
the incremental compiler that allows the changes to take effect immediately.

Smalltalk/V PM supports direct access to DLL routines, so the product can
be easily extended using the C language, for example. Database Manager
support is available from Digitalk as a separate offering.

The run-time environment consists of three base Smalltalk DLL libraries, one
executable file, and one or more application DLL files. Each holds binary
images of one or more classes. Run time DLL modules are built using the
Object Library Builder, which is shipped with the product as a separate DLL.

Development Environment

• OS/2 Version 2 or a later release

Execution Environment

• OS/2 Version 2 or a later release

Vendor

• Digitalk
Los Angeles, CA 90045

Manuals (provided with product)

• Tutorial

• Programming Reference

• Encyclopedia of Classes

54 EUI Reference

4.3.4 AIX-/X-Window Environment

4.3.4.1 AIXwindows Environment/6000
AIXwindows* Environment/6000 Version 1.2.5 provides a graphical and
compatible with the industry-accepted X Window System and the OSF/Motif
1.2.2 graphical user interface, and can interact with other AIX and other
equipment manufacturer systems implementing the X Window System and
OSF/Motif interfaces. AIXwindows Environment/6000 provides a sophisticated
graphical desktop (AIXwindows Desktop) that can be tailored for integrating
and launching applications. AIXwindows Environment/6000 provides the
facilities to execute and develop X applications, OSF/Motif applications or
applications requiring Display.

The graphical user interface included in AIXwindows is based on the
OSF/Motif user interface offering and has been enhanced to support
internationalized applications that can handle MBCS (Multi-Byte Character
Set). AIXwindows will run in the Enhanced X-Windows environment. The
AIXwindows user interface is comprised of the AIXwindows run time
environment and the AIXwindows application development environment.

The AIXwindows run time environment consists of an OSF/Motif window
manager and AIXwindows Desktop, a sophisticated graphical
OSF/Motif-based desktop that provides an iconic view of the file system and
the ability to shield the user from the low-level complexities of the AIX
operating system. AIXwindows Desktop is an enhanced version of Xdesktop
Version 3.0. Simple file maintenance functions can be performed on the files
via direct manipulation of the icons. The AIXwindows Desktop can be tailored
by the user to integrate and launch applications.

AIXwindows Environment/6000 Version 1.2.5 is compatible with both
XWindow System, Version 11 Release 4 and Version 11 Release 5 from
Massachusetts Institute of Technology (MIT). AIXwindows Environment/6000
can be accessed by the IBM Xstation 120, 130, 140, (LAN).

AIXwindows Environment/6000 Version 1.2.5 is designed to execute on
Version 3.2.5 for RISC System/6000.

Execution Environment

• AIX Version 3.2.5 for RISC System/6000

 Program Number (Order Number)

• 5601-257

Manual

• GC23-2202 AIX General Concepts and Procedures for RISC/6000

Chapter 4. Solutions 55

4.3.4.2 AIXwindows Environment/ESA Version 1.2
IBM AIXwindows Environment/ESA Version 1 Release 2, is a state-of-the-art
graphical user interface that runs on the AIX/ESA* Version 2 Release 2
operating system for the IBM ESA-capable processors. AIXwindows
Environment/ESA Version 1.2 includes several new features over Version 1.1
such as Enhanced X-Windows support based on X Window System Version
11 Release 5, enhanced OSF/Motif support based on OSF/Motif Version 1.1.4,
scalable fonts and a font server, and internationalization support based on
industry standards and defacto standards.

The enhanced X-Windows client function, based on the X-Window System
Version 11 Release 4 is designed to increase the usability of the application
processing environment by providing an end user graphical interface. Since
this user interface is consistent across multiple UNIX-based platforms, a
customer can become productive at a rapid pace. The AIXwindows Desktop
function represents the computer as an extension of the real world allowing
a user an organizational environment that makes it easier to manage work
effectively.

Xdesktop represents the computing system as an extension of the real world.
It allows manipulation of the data directly with a mouse in ways that will
seem familiar and natural. With this function the screen is seen as a desktop,
on which are the directories, programs and files to work with. The Xdesktop
function gives an organizational environment that makes it easy to manage
work efficiently. An experienced UNIX or AIX user will have all of these
benefits plus access to a UNIX shell whenever needed.

Execution Environment

• AIX/ESA Version 2.1

 Program Number (Order Number)

• 5696-150

Manual

• GC23-3065 AIXwindows/ESA General Information Guide

56 EUI Reference

4.3.4.3 AIXwindows Environment for PS/2
AIXwindows Environment for PS/2* Version 1.3, is a graphical user interface
environment that provides the ability to develop and run AIXwindows and
X-based applications. It contains AIXwindows Desktop, that is an iconic front
end to ease productivity.

Improvements in the windowing and Graphical User Interface (GUI) areas are
highlighted with the introduction of the X Windowing System V11 R5 from
MIT, available in the following products:

 1. AIX PS/2 X-Windows Version 1.3

 2. AIXwindows Environment for PS/2 Version 1.3

 3. OSF′s Motif 1.1.3 (which is available in AIXwindows Environment for PS/2
Version 1.3)

Support for the IBM Xstation 120 and Xstation 130 is provided in the

Execution Environment

• AIX PS/2 Operating System Version 1.3

 Program Number (Order Number)

• 5765-170

Manual

• SC23-2251 AIX PS/2 AIXwindows User′s Guide

Chapter 4. Solutions 57

4.3.4.4 IBM Emulator for the X Window System (X3270)
The IBM 3270 Emulator for the X Window System Release 2 (x3270)
introduces new functions and combines multi-platform support in a single
x3270 product. x3270 is an enhanced 3270 emulator that provides workstation
access to 3270 applications on IBM System/370 and networks using the
Transmission Control Protocol/Internet Protocol (TCP/IP).

x3270 offers substantially more function than most 3270 emulators. Existing
x3270 functions include graphics support (GDDM), APL2 extended data
stream support, user font selection, screen print, screen zoom, cut and
paste, mouse support, programmable symbol support, keystroke buffering
and full 16 color support. Comprehensive documentation and on-line manual
pages are provided to facilitate use.

3270 operates in X Window System environments using the OSF/Motif
graphical user interface (GUI) as well as OpenWindows. x3270 presentations
can be displayed on all IBM Xstation models.

Execution Environment

• AIX Version 3.2 for RISC System/6000

 Program Number (Order Number)

• 5765-011

Manual

• SC23-0579 3270 Emulator User′s Guide.

58 EUI Reference

4.3.4.5 Wabi 1.1 for AIX
Wabi** 1.1 for AIX is a new feature of the AIXwindows Environment/6000
Version 1.2.5 licensed program product. Wabi 1.1 provides an environment
for the execution of many popular Microsoft Windows-based applications on
the IBM RISC System/6000 with AIX. Wabi 1.1 for AIX currently certifies
support for a specific set of Microsoft Windows-based applications. The
certified applications supported by Wabi 1.1 install and operate like they
would if installed and operated under Microsoft Windows 3.1 on an IBM or
IBM-compatible personal computer.

Wabi 1.1 for AIX is a separately orderable feature of AIXwindows
Environment/6000 Version 1.2.5. AIXwindows Environment/6000 Version 1.2.5
is a prerequisite for this product. For the majority of applications currently
certified by Wabi 1.1 for AIX, Microsoft Windows is not required to execute
Microsoft Windows applications.

Wabi 1.1 can perform as an excellent Windows application server using X
terminals to split the workload of the Windows applications between the CPU
and graphics intensive work. For graphics intensive applications, the
performance of the application is greater than running the application all on
the same system. The reason for this is because the X terminal off-loads the
graphics rendering of the application from the server system.

Execution Environment

• AIX Version 3.2.5 for RISC System/6000

• AIXwindows Environment/6000 Version 1.2.5

 Program Number (Order Number)

• 5601-257 (Europe, Middle Eastern, Africa only)

Manual

• SC23-2643 Wabi 1.1 for AIX: Users Guide

Chapter 4. Solutions 59

60 EUI Reference

Appendix A. Customer Types and Their EUI Requirements

The table 2 included in this appendix summaries the EUI requirements of five
primary customer segments. These five customer segments are :

Stable Host: The stable host segment is composed of those customers who run
the majority of their applications on the host today, and continue to do so in the
near future.

Platform Optimizing: These customers′ applications run today primarily on the
host, and will continue to do so for at least the next two years, but they are
moving parts of or whole applications to the workstation environment.

Downsizing: Downsizing customers run the majority of their applications on the
host today but in two years the execution environment for the majority of their
applications will have migrated to workstations.

PC/WS LAN Host Server: These customers have primarily workstation
applications and are using the host as a server.

PC/WS LAN PC/WS Server: These are PC/WS only customers. They use PC as
workstations as well as servers. These are normally new entrant in IT.

Table 2. Customer Types and Their EUI Requirements.

Type of EUI Models
Stable
Host

Platform
Optimizing

Down-
sizing

PC/WS
LAN
Host

Server

PC/WS
LAN

PC/WS
Server

Entry Model
NPT based

M M M * - -

Text Model
NPT based

M M M * - -

Text Model
PWS based

O M M O O

Basic GUI
NPT based

O O O - -

Basic GUI
PWS based

O O O O O

GUI
Workplace model

- M M M M

GUI with
Mult imedia support

- O O O O

Note:

Legend:

M = Mandatory
O = Opt ional
* = During transit ion phase

 Copyright IBM Corp. 1994 61

62 EUI Reference

Appendix B. Environments / Tools Matrics

The following table provides a brief overview to the tools and programs we
mentioned in Chapter 4, “Solutions” on page 37. The table shows the terminal
type used as frontend and the operating environment on which this program/tool
runs.

Table 3. EUI Tools and Their Use in Different Environments.

Tool NPT PWS Environment for GUI

VM MVS OS/400 OS/2 AIX MS-Win.

ISPF 4.1 √ √ √ √• √•

SDF II √ √ √ √ √

CSP/2AD √ √ √ √

CICS OS/2 √ √ √

CODE/370 √ √ √ √•

CODE/400 √ √ √•

RUMBA/400 √ √ √• √

ENVY/400 √ √ √ √

VisualAge
for OS/2

√ √

AS 3.2 √ √ √ √•

OS/2 2.1 √ √

PAS/2 √ √

CM/2 1.1 √ √

DB2/2 1.0 √ √

Smalltalk/V √ √

AIXWindows
Environment

/6000
√• √

AIXWindows
Environment

/ESA
√ √

AIXWindows
Environment

for PS/2
√ √

x3270 √• √

Wabi for AIX √• √

Note:
√ = Suppor ted
• = Client-Part on Programmable Workstation
• = IBM Xstation or RISC/6000 Display

 Copyright IBM Corp. 1994 63

64 EUI Reference

Glossary

Application programming interface (API). The term
used to describe the set of functions by which an
application program may gain access to operating
systems or subsystem services.

Application schematic. The part of an application
which deals with process definition and logic.

Audible cue. A sound generated by the computer to
draw the user ′s attention to or provide feedback
about an event or state of the computer.

Batch processing. The processing of data or the
accomplishment of jobs accumulated in advance
without user interaction. In such processing huge data
is submitted to the computer usually on a sequential
file. The system reads this data serially and
processes it.

Cascaded menu. A menu that appears from, and
contains choices related to, a cascading choice in
another menu. This menu is used to reduce the length
of a pull-down menu or pop-up menu.

Client. See client/server technology

Client/server technology. This is a new name given
to distributed processing. More than one computer
participates in carrying out one task. The basic
principle in client/server processing is that the part of
the task is performed at the processor where it is
most suitable. More than one computer system is
connected together and share each other ′s resources.
A job running on one computer (client) requests
another connected computer (server) to perform
some task for it.

Common user access (CUA). Guidelines for interface
between human users and computers through
workstation or terminal. CUA is one of the three
architectures of SAA. Please see SAA.

Control elements. Visual user-interface components
that allow a user to interact with data and computers.
Controls are usually identified by text, for example,
heading labels in push buttons, field prompts and
titles in windows.

Conversational mode. A mode of operation of a
computer system or application in which a sequence
of alternating entries and responses between a user
and system takes place in a manner similar to a
dialog between two persons. In this mode the user
maintains a train of thoughts while working with the
system.

CASE. An development environment consisting of a
set of interfacing tools which enables automation of
different phases of software development. The tools

which help to automate analysis and design phases
are called Upper CASE tools. The tools which
generate code are called lower CASE tools.

Cursor. A visible indication of the position where
user interaction with the keyboard will appear next.

Dialog. The interaction between user and computer.

End user interface (EUI). A set of techniques and
mechanisms consisting of hardware and software that
a person uses to interact with computer based
systems.

Drag and drop. To directly manipulate an object by
moving it and placing it somewhere else using a
pointing device.

EUI. See End User Interface.

Fastpath. A method of doing something more directly
and quickly than the usual way.

Graphical user interface (GUI). A type of user
interface that takes advantage of high resolution
graphics. In common usage, a graphical user interface
includes a combination of graphics, object icons, the
use of pointing devices, menus and overlapping
windows.

GUI. See graphic user interface.

Icon. A graphical representation of an object,
consisting of an image, image background and a
label.

Intelligent work station (IWS). A term used for
programmable work stations (PWS). See PWS.

Interoperability. The ability to interconnect systems
from different architectures, and have them work
together to satisfy a business requirement. Some
examples of this requirement are: message
interchange between systems, sharing of resources,
such as data between applications running on
different platforms, migration of applications across
these platforms and migration of skills.

List box. A control that contains a list of objects or
setting choices that a user can select.

Mainframe. A computer, usually in a computer
center, with extensive capabilities and resources to
which other computers may be connected so that they
can share these resources.

Mode. A method of operation in which the actions
that are available to the user are determined by the
state of the system.

 Copyright IBM Corp. 1994 65

Multitasking. A mode of operation that provides for
concurrent performance, or interleaved execution of
two or more tasks.

Nonprogrammable terminals (NPT). A user terminal
having no processing capability. NPTs are attached to
host computer which controls most of the part user
interface functions on NPTs.

Object. In EUI, an object is a visual component that a
user can work with to perform a task. An object can
appear as text or an icon. In Object-oriented
technology an object is defined as a software packet
containing a collection of data elements and a set of
procedures that are only valid operations on that
data.

Object oriented technology (OOT). The evolving
technology which deals with object orientation. This
leads towards software developments through
software parts (objects).

Object Class. The categorization or grouping of
objects that share similar behaviors and
characteristics.

Object hierarchy. A way of illustrating the
relationships among objects. Each object that
appears in a level below another object is an example
of the upper object and inherit the properties of its
parent.

Open systems. A system whose characteristics
comply with the standards made available throughout
the industry and that, therefore, can be connected to
other systems complying with the same standards.

OSF/Motif. The graphical user interface combining a
toolkit, presentation description, window manager and
style guide. It provides guidelines for developing user
interface for Unix based systems.

Pointing device. A device, such as a mouse, trackball
or joystick used to move a pointer on the screen.

Progress indicator. The control used to inform a user
about the progress of a process.

Programmable workstation (PWS). A workstation that
has processing capability and that allows a user to
change its functions.

Relational database management systems (RDBMS).
The data management system which manages
relational data. The relational data is organized in two
dimensional tables and accessed according to the
relationships between data elements. SQL is
normally used for manipulating relational data.

Scroll bar. A window component that shows a user
that more information is available in a particular
direction and can be scrolled into view. Scroll bars
can be either horizontal or vertical.

Scroll box. The part of a scroll bar that indicates the
position of the visible information relative to the total
amount of information available in a window. A user
clicks on the scroll box with a pointing device and
manipulates it to see information that is not currently
visible.

Server. See Client/server Technology

Shortcut key. A key or combination of keys assigned
to a menu choice, even if the associated menu is not
currently displayed. This is used by more experienced
users to gain fastpath access.

Spin button. A control used to display, in sequence,
a ring of related but mutually exclusive choices. It
contains a field that can accept the user′s input,
which allows a user to make a selection by typing a
valid choice, or displays a field with a value that the
user can merely accept. The user can change the
value by spinning through the ring of choices.

System application architecture (SAA). SAA is the
detailed architecture (specifications) about software
interfaces, conventions and protocols that
programmers use to create common applications.
SAA specifications provide a structure that enables
consistent, transparent access to information
resources across IBM operating environments i.e.
OS/2, OS/400, VM, MVS and any other which adhere
to these specifications.

User interface. See End user interface (EUI)

User interface management systems (UIMS). This
helps developers to create and manage all aspects of
user interfaces in such a way that they do not have to
code details of these aspects in application.

Value set. A control that allows the a user to select
one choice from a group of mutually exclusive
choices. A value set is used primarily for graphic
choices.

Window. An area with visible boundaries that
presents a view of an object or with which a user
conducts a dialog with a computer system.

Workplace. A container that fil ls the entire screen
and holds all of the objects that make up the user
interface.

66 EUI Reference

List of Abbreviations

AIX Advanced Interactive Executive

API Application Programming
Interface

APPC Advanced Program-to-Program
communication

AS Application System

ASCII American National Standard Code
for Information Interchange

BMS Basic Mapping Support

CASE Computer Aided Software
Engineering

CCS Common Communication Support

CPI Common Programming Interface

CICS Customer Information Control
System

COBOL Common Oriented Business
Language

CODE Cooperative Development
Environment

CPU Central Processing Unit

CSD Corrective Service Delivery

CSP Cross System Product

CUA Common User Access

DB2 Database 2

DBCS Double Byte Character Set

DDE Dynamic Data Exchange

DDS Data Description Specification

DLL Dynamic Link Library

DOS Disk Operating System

DSU Data Description Specifications
Design Util ity

HLLAPI High-Level Language Application
Programming Interface

ENPTUI Enhanced Nonprogrammable
Terminal User Interface

ESA Enterprise Systems Architecture

EUI End User Interface

GDDM Graphic Data Display Manager

GUI Graphical User Interface

IBM International Business Machines
Corporation

IEEE Institute of Electrical and
Electronic Engineers

IPF Interactive Productivity Facil ity

ISDN Integrated Services Digital
Network

ISPF Interactive System Productivity
Facility

ISV Independant Software Vendor

ITSO International Technical Support
Organization

IWS Intelligent Work Stations

JCL Job Control Language

LAN Local Area Network

MBCS Multibyte Character Set

MIT Massachusetts Institute of
Technology

MVS Multiple Virtual Storage

NPT Nonprogrammable Terminal

OOP Object Oriented Programming

OOUI Object Oriented User Interface

OS Operating System

OSF Open Software Foundation (Inc.)

PAS Personal Application System

PC Personal Computer

PM Presentation Manager

POWER Performance Optimization With
Enhanced RISC

PDF Program Development Facil ity

PWS Programmable Workstation

QBE Query By Example

QMF Query Management Facil ity

RDBMS Relational Database Management
System

REXX Restructured EXtended eXecutor
Language

RISC Reduced Instruction Set
Computer

SAA System Application Architecture

SDA Screen Design Aid

SDF Screen Designing Facility

SOM System Object Model

SQL Structured Query Language

TCP/IP Transmission Control
Protocol/Internet Protocol

UIMS User Interface Management
System

 Copyright IBM Corp. 1994 67

VM Virtual Machine

VSE Virtual Storage Extended

WYSIWYG ″What You See Is What You Get″

68 EUI Reference

Index

A
A/UX 14
Abbreviat ions 67
Acronyms 67
Action bar 29
AIX 14
AIX Windows 14
Application Programming Interface 4, 25
Application System 6
AS/400 5, 11
AS/400 Technology Journal 5
Audible cue 19, 35

B
Basic Mapping Support 3
Batch processing 1

C
Cascaded menu 31
CASE 15
Check box 32
CICS 3
Client/Server Computing 12
COBOL Report Writer 3
CODE/370 13
CODE/400 13
Combination box 33
Command line user interface 1
Common Communication Support 8
Common Programming Interface 8
Common User Access 8
Computer Aided Software Engineering 6
Consistent user interface 22
Conversational Mode 6
Cross-hair pointer 19, 26
CUA87 9
CUA89 9
CUA91 9
Cursor 26

D
DECwindow 7
Default action 33
Default setting 21
Department computing 7
Design guidelines 17
Design principles 17
Dialog box 30
Dialog Management 4
Direct manipulation 11

Distributed presentation 12
Drag and drop 30
Dropdown combination box 34

E
Ellipse 12
End user interface 1, 15
Entry field 34
Entry/Text Model 9

F
Flashpoint 12
Fourth GL 6

G
GDDM 6
Graphic Model 9
Graphic user interface 6
Graphical cue 19
Graphical User Interface 1
GUI 6

H
Help message 19
HighPoint 13

I
I-beam pointer 19, 26
IBM Query Management Facil ity 6
Icon 11
Icons 29
IEEE 14
Input device 18
Intell igent Workstation 7
Interactive interface 5
Interface 1
Interoperabil i ty 14
Irreversible action 20
ISPF 4
ISPF/PDF 4

J
Job Control Language 5

K
Keyboard 6, 25

 Copyright IBM Corp. 1994 69

L
List box 33
Location cursor 27

M
Macintosh 7
Menu 30
Menu bar 30
Menu-Driven user interface 1
Microsoft 7
Modal (mode) 30
Mode 18
Mode indicator 19
Modeless (mode) 30
Motif 14
Mouse 25
Mozart 12
Mult imedia 13
Multiple selection field 32

N
NewWave 14
NeXTStep 7

O
Object 21, 26
Object class 21
Object hierarchy 21
Object orientation 11
Object Oriented User Interface 6, 10
Open Look 7, 14, 15
Open system 14, 16
Operational Assistant User Interface 5
OS/2 Query Manager 6
OS/2 Workplace Shell 9
OS/400 11
OS2 Presentation Manager 25
OSF/Motif 10, 14, 22, 25

P
Performance 23
Pink 15
Point-and-select 11
Pointer 26
Pointing device 6
Pop-up menu 26, 31
Portabil ity 14
PowerOpen 14
Program-driven interaction 18
Progress indicator 21, 34
Pull-down menu 31
Punched card 3
Push button 33

Pushbutton 29
PWS 7

Q
QM/400 6
Query By Example 6
Query/400 6

R
Radio button 32
Relational Databases Management System 6
Remote presentation 13

S
SAA CUA 22
Screen Design Aid 4
Screen formatter 3
Scroll bar 29
SDF-II 3
Seeheim user interface model 2
Selection cursor 26
Shortcut key 20, 27
Skill level 20
Source object 30
Spin button 34
Status message 21
Stepper button 35
Structured Query Language 6
System Application Architecture 8
SystemView 5

T
Target object 30
Text cursor 26
Textual cue 35

U
UNIX 14
User interface 1
User Interface Management System 2

V
Value set 34
Visible cue 34, 35
Visual communication 23
Visual presentation 23
VSE/SP 5

W
Window 14, 28
Workplace 26

70 EUI Reference

X
X-Window 14

Index 71

ITSO Technical Bulletin Evaluation RED000

The Library for System Solutions
End User Interface Reference

Publication No. GG24-4107-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4107-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 91J, Building 235-2
Internal Zip 4423
901 NORTHWEST 51ST STREET
BOCA RATON FL
USA 33431-1328

Fold and Tape Please do not staple Fold and Tape

GG24-4107-00

IBM

Printed in U.S.A.

GG24-4107-00

	The Library for System Solutions End User Interface Reference
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	Acknowledgments

	Chapter 1. Overview
	What Is User Interface
	Evolution of User Interface
	Introduction
	User Interface with Operating Systems
	User Interfaces In Fourth GL Environment
	Graphic User Interface (GUI)
	IBM SAA Common User Access (CUA)
	EUI and Object Oriented Technology
	EUI in Client/ Server Computing
	EUI in Multimedia Environment
	Open Systems User Interfaces
	Concluding Remarks

	Chapter 2. Design Principles/Guidelines
	Introduction
	Place a User in Control of the User Interface
	Usage of Modes
	Displaying Helpful Messages
	Providing Immediate Feedback
	Consider Users with Different Skill Levels
	Transparent User Interface
	Customizable User Interface
	Reduce User s (Personal) Memory Load
	Meaningful and Concise Object Classes
	Concrete and Recognizable Objects
	Consistent User Interface
	Sustaining the Context of a User s Task
	Continuity Within and Among Products
	Aesthetic Appeal
	Simplicity and Clarity
	Balanced Performance with Function and Features

	Chapter 3. Components
	Introduction
	Key Components and Their Description
	Keyboard and Mouse
	Workplace
	Cursors and Pointers
	Shortcut Keys
	Windows
	Icons
	Drag and Drop
	Dialog Box
	Menus
	Control Elements
	Cues
	Concluding Remarks

	Chapter 4. Solutions
	Introduction
	Overview to Application Programming Interface (API)
	Tools and Products
	Host Environment
	Client/ Server Environment
	Programmable Workstation (PWS)
	AIX-/ X- Window Environment

	Appendix A. Customer Types and Their EUI Requirements
	Appendix B. Environments / Tools Matrics
	Glossary
	List of Abbreviations
	Index
	A
	E
	F
	B
	G
	C
	H
	I
	D
	J
	K
	L
	Q
	M
	R
	S
	N
	O
	T
	U
	P
	V
	W
	X
	ITSO Technical Bulletin Evaluation RED000

