
AFP Printing in an IBM Cross-System Environment

Document Number GG24-3765-00

August 1994

International Technical Support Organization
Poughkeepsie Center

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page ix.

First Edition (August 1994)

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. H52 Mailstation P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document has been written for IBM customers and IBM systems engineers
who are responsible for planning and installing AFP printers. It explores what
needs to be done so that printing resources (fonts, segments, overlays, form
definitions and page definitions) can be used on IBM AFP printers in a multiple
IBM host (print anywhere from anywhere) environment. The emphasis of the
book is on how to print from one system to another and how to deal with
resources needed in printing. How to connect the systems is not addressed.

PR (199 pages)

 Copyright IBM Corp. 1994 iii

iv AFP Printing in an IBM Cross-System Environment

Contents

Abstract . i i i

Special Notices . ix

Preface . xi
How This Document is Organized . xi
Related Publications . xii

Advanced Function Printing . xii
Printing in AS/400 . xii
Printing in OS/2 . xii
Printing in MVS . xii
Printing in VM . xiii
Printing in VSE . xiii
Print Services Facility/2 . xiii

International Technical Support Organization Publications xiii
Referenced Products . xiv
Acknowledgments . xv

Chapter 1. Introduction . 1
1.1 The Scope of the Document . 1
1.2 Methods of Communication Between Platforms 1
1.3 Test Cases . 2

Chapter 2. Differences and Restrictions . 5
2.1 Differences in AFP Implementations . 5
2.2 Differences in Operations . 5
2.3 Restrictions . 5
2.4 PSF/2 and Distributed Print Function . 6

Chapter 3. Migrating Resources between Systems 7
3.1 How Resources are Stored in Different Systems 7

3.1.1 Resources in MVS . 7
3.1.2 Resources in VM . 7
3.1.3 Resources in VSE . 7
3.1.4 Resources in OS/400 . 8
3.1.5 Resources in OS/2 . 8

3.2 Migrating Resources . 9
3.2.1 Moving Resources Manually . 9
3.2.2 Sending Resources through the Network as Files 9
3.2.3 Sending Resources Inline in a Print File 9

Chapter 4. Printing from an MVS Host . 11
4.1 Submitting a Print Request . 11

4.1.1 Job Submission . 11
4.1.2 Dynamic Allocation of Sysout Data Sets 12
4.1.3 Printing from the Command Level . 13

4.2 Banner Pages in MVS . 13
4.3 Accounting in MVS . 13
4.4 Naming of Resources . 14
4.5 Printing from MVS to MVS . 14

4.5.1 Print Request Functions . 14

 Copyright IBM Corp. 1994 v

4.5.2 Resource Migration from MVS to MVS 15
4.6 Printing from MVS to VM . 16

4.6.1 Print Request Functions . 16
4.6.2 Resource Migration from MVS to VM 17

4.7 Printing from MVS to VSE . 18
4.7.1 Print Request Functions . 18
4.7.2 Migration of Print Resources from MVS to VSE 19

4.8 Printing from MVS to OS/400 . 19
4.8.1 Print Request functions . 20

4.9 Printing from MVS to OS/2 . 22
4.9.1 Technical Hurdles . 22
4.9.2 Print Request Functions . 23
4.9.3 Print Resource Migration . 24

Chapter 5. Printing from a VM Host . 25
5.1 Submitting a Print Request . 25

5.1.1 Printing Using PRINT and PSF Commands 25
5.2 Naming of Resources . 26
5.3 Printing from VM to MVS . 26

5.3.1 Print Request Functions . 26
5.3.2 Print Resource Migration from VM to MVS 28

5.4 Printing from VM to VM . 29
5.4.1 Print Request Functions . 29
5.4.2 Print Resource Migration from VM to VM 30

5.5 Printing from VM to VSE . 31
5.5.1 Print Request Functions . 31
5.5.2 Resource Migration from VM to VSE . 33

5.6 Printing from VM to OS/400 . 33
5.6.1 Print Request Functions . 34
5.6.2 Print Resource Migration from VM to OS/400 35

5.7 Printing from VM to OS/2 . 36
5.7.1 Technical Hurdles . 36
5.7.2 Print Request Functions . 37
5.7.3 Print Resource Migration from VM to OS/2 38

Chapter 6. Printing from a VSE Host . 39
6.1 AFP Printing in VSE . 39
6.2 Printing from VSE to MVS . 40

6.2.1 Print Request Functions . 40
6.2.2 Print Resource Migration . 41

6.3 Printing from VSE to VM . 41
6.3.1 Print Request Functions . 41
6.3.2 Print Resource Migration . 42

6.4 Printing from VSE to VSE . 43
6.4.1 Print Request Functions . 43
6.4.2 Print Resource Migration . 43

6.5 Printing from VSE to AS/400 . 44
6.5.1 Print Request Functions . 44
6.5.2 Print Resource Migration . 44

6.6 Printing from VSE to OS/2 . 45
6.6.1 Print Resource Migration . 45

Chapter 7. Printing from an OS/400 Host . 47
7.1 Print Request Functions . 48

7.1.1 Using Send Network Spooled File (SNDNETSPLF) Command 48

vi AFP Printing in an IBM Cross-System Environment

7.1.2 Printing Using SAA PrintManager . 49
7.2 Printing from OS/400 to MVS . 49

7.2.1 Print Request Functions . 49
7.2.2 Migrating Resources from OS/400 to MVS 51

7.3 Printing from OS/400 to VM . 52
7.3.1 Print Request Functions . 52
7.3.2 Migrating Resources from OS/400 to VM 54

7.4 Printing from OS/400 to VSE . 54
7.4.1 Print Request Functions . 55
7.4.2 Migrating Resources from OS/400 to VSE 56

7.5 Printing from OS/400 to OS/400 . 57
7.5.1 Print Request Functions . 57
7.5.2 Migrating Resources from OS/400 to OS/400 58

7.6 Printing from OS/400 to OS/2 . 58
7.6.1 Technical Hurdles . 59
7.6.2 Print Request Functions . 60
7.6.3 Print Resource Migration from OS/400 to OS/2 60

Chapter 8. Printing from an OS/2 Host . 61
8.1.1 File Transfer Protocol Technical Hurdles 62

8.2 Printing from OS/2 to MVS . 63
8.2.1 Print Request Functions . 63
8.2.2 Print Resource Migration from OS/2 to MVS 63

8.3 Printing from OS/2 to VM . 64
8.3.1 Print Request Functions . 64
8.3.2 Print Resource Migration from OS/2 to VM 64

8.4 Printing from OS/2 to VSE . 65
8.4.2 Print Resource Migration . 65

8.5 Printing from OS/2 to OS/400 . 66
8.5.1 Migration of Print Resources . 66

8.6 Printing from OS/2 to OS/2 . 66
8.6.1 Print Request Functions . 67
8.6.2 Print Resource Migration . 71

Appendix A. PSF/MVS Exits and MVS Sample Programs 73
A.1 AFPDSFIX Routine . 73

A.1.1 REXX Coding . 74
A.2 Routine to Extract AFP Inline Resources . 76

A.2.1 REXX Coding . 76
A.3 PSF/MVS Inline Resource Exit APSUX04 . 77

A.3.1 Sample Assembler Code . 77
A.4 PSF/MVS Inline Resource Exit APSUX07 . 85

A.4.1 Sample Assembler Code . 85
A.5 ILRPACK Program . 94

A.5.1 Sample Assembler Code . 94
A.6 LN2AFPDS Program . 119

A.6.1 Main PL/I Coding . 119
A.6.2 Included PL/I Definitions . 143

Appendix B. VM AFP Sample Programs . 155
B.1 AFPDSFIX routine for VM . 155

B.1.1 REXX Coding . 155
B.2 OS/400 Resource Converter for VM . 158

B.2.1 REXX Coding . 158

Contents vii

Appendix C. VSE AFP Sample Programs . 163
C.1 Program to Punch an AFP Resource for MVS 163

C.1.1 IBM S/370 Assembler Coding for VSE 163
C.2 Program to Punch an AFP Resource for VM 166

C.2.1 IBM S/370 Assembler Coding for VSE 166
C.3 Program to Create a Resource from VSE Punch Output 168

C.3.1 IBM S/370 Assembler Coding for MVS 168
C.4 Program to Punch an AFP Resource Inline 169

C.4.1 IBM S/370 Assembler Coding for VSE 170
C.5 Program to Create a Resource in VM . 174

C.5.1 REXX EXEC Coding for VM . 174
C.6 Program to Create a Tape File for MVS or VM 175

C.6.1 IBM S/370 Assembler Coding for VSE 175
C.7 Program to Create a Tape File for AS/400 176

C.7.1 IBM S/370 Assembler Coding for VSE 176
C.8 Program to Create a Job for VSE . 178

C.8.1 C Coding for OS/2 . 178
C.9 Program to Create the Linkage Editor Job 180

C.9.1 IBM S/370 Assembler Coding for VSE 180
C.10 Program to Create a Punch File from a Resource 184

C.10.1 IBM S/370 Assembler Coding for VSE 184
C.11 Program to Create the Resource from a Downloaded Punch File . . . 186

C.11.1 C Coding for OS/2 . 186

Appendix D. OS/400 AFP Sample Programs 189
D.1 AS4002OS Routine to Remove Extra Blanks 189

D.1.1 AS4002OS C Program . 189
D.2 Program to Pad a Resource with Blanks 190

D.2.1 OS22AS4 C Program . 190

List of Abbreviations . 193

Index . 195

viii AFP Printing in an IBM Cross-System Environment

Special Notices

This publication is intended for IBM customers and IBM printer specialists who
are responsible for planning and installing AFP printers. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by products mentioned in this document. See the
PUBLICATIONS section of the IBM Programming Announcement for the products
described in this document for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

Advanced Function Presentation Advanced Function Printing
AFP AIX
AIX/ESA AIX/6000
AS/400 Bar Code Object Content Architecture

 Copyright IBM Corp. 1994 ix

BCOCA CICS
DisplayWrite GDDM
IBM IMS/ESA
Intelligent Printer Data Stream IPDS
MVS/ESA OfficeVision
Operating System/2 Operating System/400
OS/2 OS/400
Pennant Pennant Systems
Print Services Facility PrintManager
PSF PSF/6000
S/370 SAA
Systems Application Architecture VM/ESA
VM/XA VSE/ESA
VTAM

x AFP Printing in an IBM Cross-System Environment

Preface

This document is intended for customer and IBM printer specialists who are
responsible for planning and installing AFP Printers. It explores what needs to
be done to so that printing resources (fonts, segments, overlays, form definitions,
and page definitions) can be used on IBM AFP printers in a multiple host (print
anywhere from anywhere) environment.

The emphasis of the book is on how to print from one system to another and
how to handle the resources needed to print the file correctly. How the systems
are connected and how the communication parameters are set is not addressed
in this document.

How This Document is Organized
The document is organized as follows:

• Chapter 1, Introduction

This chapter introduces the organization of the book and provides an
overview of terminology used and the basic rationale of the project used to
create the book.

• Chapter 2, Differences and Restrictions

This chapter describes the differences between AFP implementations in
different systems and the restrictions in each implementation.

• Chapter 3, Migrating Resources between Systems

This chapter has information about the AFP resources in different systems
and about how to move resources between the systems.

• Chapter 4, Printing from an MVS Host

This chapter discusses the considerations for submitting a file from MVS to
print on AFP printers attached to other systems.

• Chapter 5, Printing from a VM Host

This chapter discusses the considerations for submitting a file from VM to
print on AFP printers attached to other systems.

• Chapter 6, Printing from a VSE Host

This chapter discusses the considerations for submitting a file from VSE to
print on AFP printers attached to other systems.

• Chapter 7, Printing from an OS/400 Host

This chapter discusses the considerations for submitting a file from OS/400
to print on AFP printers attached to other systems.

• Chapter 8, Printing from an OS/2 Host

This chapter discusses the considerations for submitting a file from OS/2 to
print on AFP printers attached to other systems.

• Appendix A, PSF/MVS Exits and MVS Sample Programs

This chapter lists the sample exits and programs written for the MVS
environment.

• Appendix B, VM AFP Sample Programs

 Copyright IBM Corp. 1994 xi

This chapter lists the sample exits and programs written for the VM
environment.

• Appendix C, VSE AFP Sample Programs

This chapter lists the sample exits and programs written for the VSE
environment. There are also VSE related programs for the OS/2
environment.

• Appendix D, OS/400 AFP Sample Programs

This chapter lists the programs written for the OS/400 environment, the
programs run in the OS/2 environment.

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

Advanced Function Printing
• Intelligent Printer Data Stream Reference, S544-3417

• Advanced Function Printing: Printer Information, G544-3290

• Advanced Function Printing: Data Stream Reference, S544-3202

• Advanced Function Printing: Host Font Data Stream Reference, S544-3289

• A Guide to IBM′s Advanced Function Printing, G544-3095

• Advanced Function Printing: Printer Summary, G544-3135

• Advanced Function Printing: Software General Information, G544-3415

• AFP Resources in a Multi-System Environment, GG24-4029

Printing in AS/400
• Advanced Function Printing Utilities/400 User′s Guide, SH18-2416

• AS/400 Guide to Programming for Printing, SC41-8194

• AS/400 Work Management Guide, SC41-8078

Printing in OS/2
• OS/2 Version 2.0 Technical Compendium, Volume 5: Printing Subsystem,

GG24-3775

• Minasi, Little, Semple & Camarda: Inside OS/2 2 Special Edition, New Riders
Publishing, Carmel, Indiana

Printing in MVS
• MVS/ESA JCL Reference, GC28-1654

• MVS/ESA Application Development Guide: Authorized Assembler Language
Programs, GC28-1645

• MVS/ESA Application Development Reference: Authorized Assembler
Language Programs Volume 1, GC28-1647

• MVS/ESA Application Development Reference: Authorized Assembler
Language Programs Volume 2, GC28-1648

xii AFP Printing in an IBM Cross-System Environment

• MVS/ESA Application Development Reference: Authorized Assembler
Language Programs Volume 3, GC28-1649

• MVS/ESA Application Development Reference: Authorized Assembler
Language Programs Volume 4, GC28-1650

• Print Services Facility/MVS: System Programming Guide, S544-3672

• Print Services Facility/MVS: Application Programming Guide, S544-3673

Printing in VM
• VM/ESA CMS Command Reference, SC24-5461

• VM/ESA CP Command Reference, SC24-5434

• VM/ESA CP General Command Reference for 370, SC24-5433

• Print Services Facility/VM: System Programming Guide, S544-3680

• Print Services Facility/VM: Application Programming Guide, S544-3677

• Print Services Facility/VM: Operator′s Guide, S544-3682

Printing in VSE
• VSE/POWER Administration and Operation, SC33-6572

• VSE/POWER Networking, SC33-6573

• VSE/POWER Application Programming, SC33-6574

• VSE/ESA System Control Statements, SC33-6513

• VSE/ESA System Macros Reference, SC33-6516

• Print Services Facility/VSE: System Programming Guide, S544-3665

• Print Services Facility/VSE: Application Programming Guide, S544-3666

Print Services Facility/2
• Print Services Facility/2: Getting Started, G544-3767

• Print Services Facility/2: Distributed Print Function Network Configuration
Guide for System/370, S544-3809

• Print Services Facility/2: Distributed Print Function Network Configuration
Guide for OS/400, S544-3823

• Print Services Facility/2: Type Transformer User′s Guide, G544-3796

• PSF/2 Technical Reference, online publication

International Technical Support Organization Publications
• AS/400 Printing II, GG24-3704

• AS/400 Printing III, GG24-4028

• Print and View Data Streams, GG24-3938

• Transforming Type 1 Outline Fonts, GG24-3964

• AFP Resources in a Multi-system Environment, GG24-4029

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

Preface xiii

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

To get listings of ITSO technical bulletins (redbooks) online, VNET users may
type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order ITSO Technical Bulletins (Redbooks)

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their IBM branch office.

Customers may order hardcopy redbooks individually or in customized sets,
called GBOFs, which relate to specific functions of interest. IBM employees
and customers may also order redbooks in online format on CD-ROM
collections, which contain the redbooks for multiple products.

Referenced Products
The following products are referenced in this document:

Program
Number

Program Name Version

OS/400

5738-SS1 OS/400 Version 2.1

5688-179 SAA PrintManager Release 1.0

MVS/ESA

5695-048 MVS/ESA and JES2 Version 4.2

5695-040 PSF/MVS Version 2.1

OS/2

5669-336 OS/2 EE 1.3

5601-298 PSF/2 EE 1.00

VM/ESA

5684-141 PSF/VM Version 2.1

5684-090 RSCS Version 3.1

5684-112 VM/ESA Version 1.1

VSE/ESA

5688-033 POWER Release 5.1

5686-040 PSF/VSE Version 2.1

5750-ACD VSE/ESA Release 1.2.3

xiv AFP Printing in an IBM Cross-System Environment

Acknowledgments
The advisors for this project were:

Andy Herrup
International Technical Support Organization, Poughkeepsie Center

Mikko Markkula
International Technical Support Organization, Poughkeepsie Center

The authors of this document are:

Barry Clasper
National Support Centre IBM Canada

Therese Cowie
ISM South Africa

Geoff Kitching
IBM UK

Mikko Markkula
IBM Finland

Gert Spitzmueller
IBM Germany

Angelika Stumpf
IBM Germany

This publication is the result of residencies conducted at the International
Technical Support Organization, Poughkeepsie Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Art Mazza
International Technical Support Organization, Poughkeepsie Center

Mark Dunn
International Technical Support Organization, Poughkeepsie Center

Bill Karras
International Technical Support Organization, Poughkeepsie Center

Fernando Nogal
International Technical Support Organization, Poughkeepsie Center

Helge Toftner
International Technical Support Organization, Poughkeepsie Center

Marcia Arcuri
International Technical Support Organization, Poughkeepsie Center

Michael Schwartz
International Technical Support Organization, Poughkeepsie Center

Preface xv

Scott Vetter
International Technical Support Organization, Poughkeepsie Center

Volker Willimzig
IBM Germany

Katherine Eland
IBM UK

Jan De Rover
IBM The Netherlands

xvi AFP Printing in an IBM Cross-System Environment

Chapter 1. Introduction

This chapter describes the scope of this document. It also lists the test cases
used in the project.

1.1 The Scope of the Document
This document is a result of various residencies and other activities at the ITSO
Poughkeepsie Center.

This document concentrates on printing using Advanced Function Printing*
(AFP*) in a cross-systems environment using normal transmission methods.
These are methods that are included in the operating system, and mostly do not
require any manual intervention or programming effort to work. There are some
cases, especially printing from and to different intelligent workstations, where at
least some manual actions are needed.

1.2 Methods of Communication Between Platforms
There are different ways to transmit print files between platforms:

• Using NJE connections

All host systems, MVS, VM, VSE, and AS/400*, provide NJE communications.
In MVS it is JES/NJE, in VM it is RSCS, in VSE it is POWER PNET, and in
AS/400 the NJE communications is handled by SNADS/Bridge.

The characteristics of a print file are included in the NJE headers. There are
differences in the implementations at different platforms, so all functions
available in one platform are not available in the other.

NJE communication enables routing of print files to different systems without
manual operation.

• Using TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) includes functions
to route print jobs from one system to another. There are some restrictions
concerning transmission of AFP data stream files and mixed AFP data
stream and line data. There are also differences in TCP/IP implementations
between different platforms.

The Line Printer Requester (LPR) command and the Line Printer Daemon
(LPD) procedure handle most of the line data printing properly, but does not
provide comprehensive support for AFPDS files.

• User programming

It is possible to create sophisticated systems to route print jobs between
platforms by writing programs. The programs and procedures may be based
on APPC communication between platforms, or may be based on TCP/IP and
its FTP functions.

In this document, we concentrate mainly on NJE connections, and in some
cases, on manual transferring of print files from one platform to another. TCP/IP
is not widely included in this document.

 Copyright IBM Corp. 1994 1

As PSF/6000* has no NJE connection capability, PSF/6000 and printing from and
to an AIX/6000* system is not included in this document.

1.3 Test Cases
In this document, there are references to different types of test files. The
following is a short description of each test case and a description of the terms
used:

Filetype Description

Flat file A file that has no hierarchical structure. In MVS terms, a
sequential data set which is comprised only of data (no print
control characters). In a S/370* or OS/400* environment,
these are EBCDIC and, in the OS/2* environment they are
ASCII.

Line data A flat file which is intended for printing. In many cases, there
is printer control information added. This can be one or two
bytes of information:

• The first byte is a carriage control (CC) character which
controls form movement (it can be machine code or ASA).

• The second (optional) byte is the table reference character
(TRC). This indicates which character set or font to use.

Either parameters in JCL or installation defaults tell how to
format the data. Parameters affecting the formatting are, for
example, FCB, which specifies line spacing and positions on a
page, where to skip when a certain CC is encountered, UCS
or CHARS specifying the character set or sets used.

Line data with reference to external controls
In addition to sending line data, the user references the
names of resources installed on the other system to
determine how to format the data.

Line data with structured field control records
The “typical AFP application” line data is intermixed with
structured fields to switch page formats or copy groups
between pages, or to include images or overlays. Only a
subset of the AFP data stream records are allowed mixed with
line data.

• Invoke Medium Map (IMM) is used to switch copy groups
within a form definition.

• Invoke Data Map (IDM) is used to switch page formats
within a page definition.

• Include Page Segment (IPS) is used to include a page
segment at specified coordinates.

• Include Page Overlay (IPO) is used to include a page
overlay, sometimes called a “floating” overlay, at
specified coordinates.

• Presentation Text (PTX) objects are used to include
composed page text objects.

• Image objects, either IM1 or IOCA, are used to include
images.

2 AFP Printing in an IBM Cross-System Environment

• Graphic objects are used to create graphic elements on a
page.

• Bar Code objects are used to print bar codes.

In this test case, only the simple structured fields, IMM, IDM
and IPO were used.

Line data mixed with complete objects
The line data is intermixed with complete AFPDS objects, like
image or bar code objects.

This is in principle the same print data set type as the
previous one. The only exception is that, in this case, more
complex objects were also inserted in the print data.

Line data with inline PAGEDEF/FORMDEF
A resource group containing a page definition and/or form
definition resource is transmitted ahead of the line data. The
names of the resources must be referenced in the control
information.

Line data with inline fonts
The resource group contains a complete font. This requires
some awareness about the printer so that the font has the
right resolution for the printer.

Except in PSF/VM, where any resource can be included to be
sent with the print data set, the last three data streams
require special programming. They cannot be created by all
editors or by utilities.

Full AFPDS This is the full AFP data stream such as DCF, DW/370, or OGL
creates. Besides DCF, there are programs like LN2AFPDS,
refer to A.6, “LN2AFPDS Program” on page 119, to convert
line data into AFPDS.

With the most recent releases of Print Services Facility*
program products (PSF/MVS*, PSF/VM*, PSF/VSE*, and
PSF/6000*), a program called AFP Conversion and Indexing
Facility (ACIF) was shipped. With this program it is possible
to create full AFPDS files from a line data file and a page
definition describing the wanted result. ACIF may be
considered to be the official version of the LN2AFPDS
program. ACIF supports conditional processing in page
definition but LN2AFPDS does not. The LN2AFPDS program
may be used with old releases of PSF where ACIF is not
available, and in some cases the output of ACIF may not be
accepted by that release of PSF.

With the most recent releases of Print Services Facility
program products, another way to create AFPDS files was
also offered. AFP Application Programming Interface
(AFPAPI) provides the programmer with tools to create an
AFP data stream directly from an application program (PL/1 or
COBOL).

SCS data Stands for SNA character string. It is the OS/400 print data
stream, and is the OS/400 equivalent of line data.

Chapter 1. Introduction 3

PM metafile In OS/2 Presentation Manager*, this is a method of handling,
storing and retrieving graphic representations. Metafiles do
not contain pixel image, but are encoded drawing commands
and coordinates that can create an image of lines, filled
areas, and text strings. The pictures created are GOCA DR
3.1 and are similar to IBM* GDDM* (Graphical Data Display
Manager) metafiles.

ASCII print data ASCII print data is an ASCII “flat file” that contains special
printer control escape sequences within the print data. These
escape sequences control actions such as line feeds, page
ejects, print quality, and character set. The escape
sequences are specific to a particular printer, such as a
ProPrinter or a QuietWriter. Hence, you will sometimes hear
such files referred to as “ProPrinter ASCII” or “QuietWriter
ASCII.”

In this document, we use the expression ″worked as expected″ to say that this
particular test case worked as it should work based on the information included
in product manuals.

4 AFP Printing in an IBM Cross-System Environment

Chapter 2. Differences and Restrictions

There are some significant differences in AFP implementations in different
operating systems. There are also different restrictions in each system. It is
important also to emphasize that different versions of the same product may
have different functions. The information included in this document refers to
those program products and versions listed in “Referenced Products” on
page xiv, except where clearly otherwise stated. The restrictions mentioned
refer to noncustomized systems. By using user exits some restrictions can be
removed. Some of these are described in the document.

2.1 Differences in AFP Implementations
All the AFP implementations have many similarities, and the basic principles are
mostly the same. There are, however, some differences that are significant.

AFP implementation in OS/2 does not include an AFP resource called page
definition. So in OS/2, one of the most interesting features of AFP, to be able to
format a line data output file from outside of the program (so-called outboard
formatting), is not possible. In OS/400, this is available when printing line data
files coming from S/370 nodes.

In VM AFP, processing is split into two clearly separate phases: Spool File
Conversion Machine processes the file partially and then Printer Driver Machine
finally prints it. In OS/400, the implementation is similar, but the user cannot see
these two phases as clearly as in VM.

2.2 Differences in Operations
There are differences in operating the AFP environments. In MVS and VSE, all
the commands that are used for a non-AFP printer work with an AFP printer.
These include, for example, forward spacing and backspacing. In other AFP
environments, there are no commands to do this.

In MVS and VSE, it is also possible to split the output into smaller parts
(segments) to allow producing the output and printing the output overlap. When
segmenting output directed to an AFP printer, the user must be very careful as
the segmenting originally was designed to work with non-AFP printers. The
segmenting is not based on AFP pages, but rather on number of line data pages
produced by the application.

2.3 Restrictions
AFP implementations in different operating environments have also different
restrictions. The most significant restriction concerning page definition was
already mentioned.

Another significant restriction is the maximum size of the line data record in
different systems. JES2 accepts line data records up to 32 KB in length. In older
JES3 releases, the limit was set by the size of buffer in the spool, as those
releases did not accept line records that spanned more than one buffer. The
most recent releases of JES3 (4.2.1 and later) remove this restriction. In VSE,

 Copyright IBM Corp. 1994 5

the maximum line data record length is 512 bytes, as this is the largest record
size DTFPR accepts. It is possible in VSE to use POWER macros for writing
larger records into the spool. In VSE, it is also possible to print larger line data
records when the spool file is coming, for example, from MVS. In VM and
VM/XA*, the size is limited to the maximum size of the virtual printer record, 204
bytes. This limitation applies also to spool files coming from other systems.
When VM is used as an intermediate node between different systems, larger
record sizes (up to 32KB) are accepted. VM/ESA* has a new printer type called
VAFP. Using a virtual printer of this new type, it is possible to print line data
records up to 32KB.

All PSF implementations do not accept the same repertoire of AFPDS records.
There are more differences between different versions of a certain PSF product
than between different PSF implementations. For example, the support for
Graphic Objects (GOCA and BCOCA*) was not available for PSF/VSE before
release 2.2. In PSF/MVS and PSF/VM, this support was included in an earlier
release.

OS/400 and VM AFP implementations accept all AFP resources inline in the print
data set. PSF/2 accepts all other resources inline except page definitions, which
is not at all recognized by OS/2. PSF/MVS and PSF/VSE accept only form
definitions and page definitions inline. With some programming work, it is
possible to have a restricted support for other resources inline in print data sets
printed in MVS (See Chapter 4, “Printing from an MVS Host” on page 11). With
a rather recent PTF for PSF/MVS, this support for inline resources other than
form definition and page definition was also provided.

2.4 PSF/2 and Distributed Print Function
Print Services Facility/2, the OS/2 implementation of Print Services Facility, is a
little different from the other PSF implementation.

In addition to the normal local services available in the host implementation,
PSF/2 Release 1.1 includes a special function called Distributed Print Function.
This function enables using of workstation attached printers as if they were
directly connected to the host system. So, the printers look quite normal system
attached printers in MVS/JES, VM/CP, VSE/POWER, and OS/400. The printers
are driven by the PSF/2 in the workstation. PSF/2 acting like a printer to the
host, receives the print file into the IPDS part of the PSF/2 spool, and after
receiving the file, PSF/2 prints the file in the order specified in the PSF/2 setup.

In a way this is cross-systems printing; but seen from the host system, it is not
cross-system printing, but a printer attached in a special way.

6 AFP Printing in an IBM Cross-System Environment

Chapter 3. Migrating Resources between Systems

Although in most cases print files can be transferred to other nodes and printed
without manual intervention, transferring resources between systems may need
manual intervention.

3.1 How Resources are Stored in Different Systems
The resources are stored in a different format depending on the system. This
also impacts the transferring of resources.

3.1.1 Resources in MVS
In MVS, resources are stored as members in libraries. The file format is usually
variable and blocked with a machine or ASA control character (VBM or VBA). It
is possible to also use fixed length records. Each resource is a separate
member in the library.

Most often, resources of different types are stored in different libraries. It is
common also to store IBM supplied resources and customer′s production and
customer ′s test resources in separate libraries. The libraries from which
resources are fetched are specified in the start procedure of each printer.

With the latest releases of MVS, it is also possible to specify a user library in an
MVS OUTPUT JCL statement to tell PSF where to find the resources for those
datasets referencing to this OUTPUT statement.

In MVS, the names of a form definition or a page definition are entered in the
JCL without the prefix F1 or P1. So without using PSF exits, it is only possible to
have a unique name up to six characters.

3.1.2 Resources in VM
In VM, resources are stored as CMS files. The record format is usually variable,
and the records include a machine or ASA control character. Each resource is a
separate file on a CMS minidisk.

Different resources usually have different file types. It is common to store IBM
supplied resources and customer′s production and customer′s test resources on
different minidisks. In VM it, is possible to store the resources on a user
minidisk and tell PSF either to fetch the resources from this minidisk or ask PSF
to send the resources inline in the print data set. In VM, even the name of a
form definition or a page definition can be unique up to eight characters.

3.1.3 Resources in VSE
In VSE, resources are stored as phases in VSE libraries. Compared with the
storing format of MVS or VM, the storing format in VSE is simply described as
being an object, where all the records in a resource are put after each other in
sequence to form one long record. This record is then stored as a phase.

As the prefixes of resources already tell the type of the resource, there is no
need to put different types of resources in separate libraries. In VSE, it is usual
to have all the different resources in one library. However, most often resources

 Copyright IBM Corp. 1994 7

supplied by IBM are separated from the customer′s own resources, and when
needed, test and production resources are stored in separate libraries.

In VSE, the names of a form definition or a page definition are entered in the
POWER JECL or Printer Parameter member without the prefix F1 or P1. So it is
only possible to have a unique name up to six characters.

3.1.4 Resources in OS/400
In OS/400, resources are stored as objects of special object types in OS/400
libraries. The format of resources is rather similar to that of VSE, but there are
also some differences based on OS/400 library and file structure. In addition, all
the objects have different type attributes in OS/400, for example, *FNTRSC refers
to a font resource object, and *FORMDF refers to a form definition. It is not
possible to browse or display the objects. The only way to find out the contents
is to use the DMPSYSOBJ command to print the object.

As the object types of the resources already tell the type of the resource, there
is no need to put different types of resources in separate libraries. In OS/400, it
is usual to have all the different resources in one library. However, most often
resources supplied by IBM are separated from customer′s own resources and
when needed, test and production resources are stored in separate libraries.

In OS/400, the name of a form definition or a page definition can be unique up to
eight characters. However, page definitions can only be referred by list files
coming from S/370 environments. In MVS and VSE, it is not possible (without
user modifications) to use other page definitions or form definitions than those
prefixed with P1 for page definitions and F1 for form definitions. Thus, in these
cases, the names can be unique only up to six characters. When the list is
coming from a VM system, then the names of page definitions and form
definitions can be unique up to eight characters. When form definitions are
referenced locally by OS/400 applications, the name of the form definition can be
unique up to eight characters as well.

A product is available in OS/400 to print files using the functions of AFP. In this
application, Advanced Function Printing Utility (AFPU), there is an object call
Printout Format Definition (PFD). Although this object has similar functions as a
page definition has, it is not same as a page definition, and there is no
conversion tool to convert between PFDs and page definitions.

3.1.5 Resources in OS/2
In OS/2, resources are stored as normal files on OS/2 disk. The format of
resources is similar to that of VSE.

In OS/2, a resource cannot be used in PSF/2 before the resource is registered in
PSF/2′s database using the RLADD command. With this command, a resource
name is tied to a file name on OS/2 disk.

In OS/2, the way to separate, for example IBM supplied and customer own
resources, is to define separate groups in the PSF/2 database system.

In OS/2, all the names of the resources can be unique up to eight characters.
This applies to even form definitions, as there is no way to send a list file from
an S/370 system to an OS/2 system so that the name of the form definition is
carried over to the OS/2 system. So there are no restrictions described above in
the OS/400 section.

8 AFP Printing in an IBM Cross-System Environment

3.2 Migrating Resources
There are different ways to move resources between systems. Some methods to
do this are described below.

Resources can be moved to another system at least using the following ways:

• Manually using a tape or a diskette

• Sending resources through network as files

• Sending resources inline in a print data set and then extracting the
resources in the receiving node

In the cross-system environment used in the residency producing this document,
all these methods were tested and used. See the specific sections in other
chapters.

3.2.1 Moving Resources Manually
Moving resources between systems can be done manually using tape or diskette
as media for transportation. In some cases, some programming work is needed
on both sides. When using the file transfer and a workstation, there are some
special considerations to preserve the format of the resource even when
transferring files between nodes of the same operating system.

3.2.2 Sending Resources through the Network as Files
Using a network in transferring resources requires that there exists a connection
between the systems. If this is the case, sending resources through the network
is the easiest way to handle the transmission. Because of some differences in
resources in different systems, programming work may be needed.

3.2.3 Sending Resources Inline in a Print File
This method also needs connection between the nodes. In addition, some
programming work is needed to extract the resources from the print file. If the
resources are needed only occasionally and the receiving system accepts all
needed resources inline, there is no need to copy the resources to the receiving
node, but they can included inline with the print data set when needed.

Chapter 3. Migrating Resources between Systems 9

10 AFP Printing in an IBM Cross-System Environment

Chapter 4. Printing from an MVS Host

The following chapter describes the different possibilities for AFP printing from
an MVS system. It discusses the different mechanisms for requesting and
transmitting a print request to a target system.

4.1 Submitting a Print Request
Since Print Services Access Facility and SAA/PrintManager have been
withdrawn from marketing, there is no IBM product to offer a front-end system to
submit a print job. Many customers have written their own procedures using
ISPF and other functions available in the MVS system to facilitate this task.

To submit a print request in MVS, the print interface of MVS must be used. This
can be done in different ways, such as submitting a utility job; or using dynamic
allocation, writing the data in the spool and then using dynamic deallocation.
The fact that the print file goes to a different system does not make a big
difference for the keywords used for the submission. Just a nodename must be
added to the printer destination. The destination information can be entered in a
JES2 /*ROUTE statement, JES3 //*MAIN ORG parameter or //*FORMAT DEST
parameter, or in OUTPUT JCL statement.

//O1 OUTPUT DEST=WTSCLSL4.PR3812

The previous statement specifies that the print data set referring to this OUTPUT
statement will be routed to the node id WTSCSL4 and to a destination (printer)
PR3812 in that node. All the AFP related parameters can be entered in the
OUTPUT and DD JCL statements. This information is passed to the receiving
node in NJE headers. To be sure that the resources referred to in OUTPUT
statement are available in the receiving node, the resources must be migrated to
the other system or, in cases when it is allowed, sent inline with the print data
set.

4.1.1 Job Submission
The easiest and most used way to initiate a transmission of a print data set to
another node is to submit a job that creates the spool output. Based on the
information in JES2 /*ROUTE, JES3 //*MAIN or //*FORMAT statements and JCL
OUTPUT and DD statements, the spool output is then transferred to another
node.

//PRTGERTX JOB 1,′ PRTGERT′ , MSGLEVEL=(1,1),MSGCLASS=X
//**
//S15 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//O1 OUTPUT CHARS=(GT20,GT18,GT24,ST12),
// DEST=WTSCSL2.PR3825,
// FORMDEF=A10120,
// PAGEDEF=W240F3,
// FORMS=STANDARD,
// DATACK=UNBLOCK,
// NOTIFY=WTSCSL2.PRTGERT,
// NAME=(′ John Doe′) ,
// ROOM=(′1018 EG′) ,
// BUILDING=′ 0 3 ′ ,
// DEPT=′2830′ ,

 Copyright IBM Corp. 1994 11

// ADDRESS=(′ Route 55′ , ′ Poughkeepsie N.Y. 12602′) ,
// TITLE=′ The pleasures of MVS JCL′

 //SYSIN DD DUMMY
 //SYSUT2 DD SYSOUT=U,OUTPUT=*.O1
 //SYSUT1 DD DSN=SYS1.VTAMLST(ATCCON00),DISP=SHR
 // DD DSN=SYS1.VTAMLST(NCPXPR),DISP=SHR

This example prints the data sets concatenated in the SYSUT1 DD statement to
the print class U using the OUTPUT statement O1 in the same job step. The
OUTPUT statement specifies the receiving node (WTSCSL2) and destination
(PR3825) and many AFP related parameters. After the job has been written into
the spool file the spool file, is transmitted by JES NJE to the receiving system.

It should be noted that some parameters are rather new and are supported only
in the latest releases of JES2 (4.1.0 or later) and JES3 (4.2.1) running in
MVS/ESA*. They are the parameters to facilitate the distribution of sysout data
sets:

• ADDRESS
• BUILDING
• DEPT
• NAME
• ROOM
• TITLE

These parameters are supported in MVS JCL only and are not available for all
other submission methods.

4.1.2 Dynamic Allocation of Sysout Data Sets
Dynamic allocation of sysout data sets with all the AFP print options is supported
only as system macro. The details of the DYNALLOC macro and its parameters
are described in MVS Application Development Guide, Authorized Assembler
Language Programs.

Some subsystems provide a little simplified access to dynamic allocation. In
CICS*, there are functions with which it is rather easy to specify parameters for
an output file and also write the spool file itself. The following example shows
how to write the SPOOLOPEN command in an CICS command level program
coded in assembler language. The parameter OUTDESCR refers indirectly to a
data field containing the AFP related parameters.

L R2,APARMPTR
EXEC CICS SPOOLOPEN OUTPUT OUTDESCR(R2)
...

APARMPTR DC A(PARMPTR)
PARMPTR DC A(PARMLEN)
PARMLEN DC F′ 4 4 ′
PARMDATA DC CL44′ DEST(PRT103) FORMDEF(CCSFDF) PAGEDEF(CCSPDF)′

In JES3, you cannot specify OUTPUT parameters in OUTDESCR. In JES3, it is
possible to specify print class in a SPOOLOPEN command. The print class could
be used to tie default AFP parameters to the output data set. This can be done
in a PSF exit. A sample program to show how to set the defaults based on form
name is included with PSF/MVS.

In IMS it is also possible to use dynamic allocation. This can be done directly,
for example, by calling an assembler language subprogram that issues the calls
for dynamic allocations. There is a so called SPE (Small Programming

12 AFP Printing in an IBM Cross-System Environment

Enhancement) to provide SPOOL API (Application Program Interface) services in
IMS (See APARs PL72699 and PL72700).

4.1.3 Printing from the Command Level
The TSO ALLOC command does not support AFP print options like PAGEDEF and
FORMDEF directly and offers limited possibilities for advanced function printing.
With the ALLOC command, it is, however, possible to refer to an OUTPUT
statement with an OUTDES parameter. To be able to use this method, the
OUTPUT statements referred to have to be in the user′s logon procedure.

When printing from ISPF, only a batch job is submitted. There is no possibility to
specify OUTPUT statements for each output data set created. By coding an
OUTPUT statement with DEFAULT=YES, the resources would be used for all the
print data sets produced by that particular job.

4.2 Banner Pages in MVS
Each print job can be preceded by a header separator page and followed by a
trailer separator page. Different data sets of a job and copies of the same data
set can be preceded by data set header pages. The information on these
header, or banner pages, varies depending on where the file came from. It is
possible to customize the information appearing on these pages in both JES and
PSF exits.

Only the most recent versions of JES2 to and JES3 in MVS/ESA print the
information of ADDRESS, BUILDING, DEPT, NAME, ROOM, TITLE on the
separator page.

Depending on the system where the file came from, the information on the
banner page differs.

If the file comes from a VM system, RSCS creates a jobid and a job name from
an RSCS number and puts the user ID to the name-field of the banner page.
Using an RSCS exit, or with a parameter in the RSCS setup, it is possible to
change the information to identify the sender a little better.

The OS/400 also puts the user ID in the name field and uses a constant job name
of AS400001 and a jobid of JOBnnnnn, where nnnnn is the JES-number. Except
the name field we found the information rather useless.

A banner page for a file from VSE contains job name and jobid, no user ID, and
in the middle of the page is block name and room from the POWER job card.

4.3 Accounting in MVS
Printing activity in MVS is recorded in SMF record type 6. In this record, there is
a special section for AFP printers. For each print data set, PSF creates one
record which is written before JES releases the data set to be purged. The
record contains information about the job which created the data set, about the
size of the data set and about the resources used to print it. It is possible to add
customized information in the PSF exit.

For each data set printed, a type 6 SMF record is written independently of where
the data set came from. However, none of the SMF records from outside

Chapter 4. Printing from an MVS Host 13

contained the user ID of the submitter. So it may be difficult to relate the
accounting record to the submitter of the print request.

The record produced by a print job coming from VM contains the RSCS ID and
the job name as RSCS creates it. Neither field is very useful for accounting.

The record caused by OS/400 is even worse. It contains the constant ′AS400001′
as job name and a job number from JES2. Both VM and OS/400 manage to
bring the user ID on to banner pages, but not into SMF records.

VSE does not bring the user ID into the SMF record, but the original VSE job
name is preserved.

4.4 Naming of Resources
When form and page definitions are referenced in the JCL, the names are
entered without the prefixes F1 and P1. So without any special processing in
exits the names can be unique only up to six characters. If the CHARS
parameter is used in JCL to specify a special coded font, the name of the coded
font is restricted to four characters. The system will add the prefixing X0. So in
this case, the resources can have a unique name up to four characters. All the
other resources can, at least in principle, have a unique name up to the
maximum in MVS, which is eight characters.

4.5 Printing from MVS to MVS
Printing from one MVS system to another MVS system is no more difficult than
printing on only one local system. You will be using the submission methods
described above and transfer the file via NJE. The format of the control
language is translated by NJE to a common protocol. Even the fact that the two
MVS systems may have different job entry subsystems, like JES2 and JES3, does
not affect the transport and the printing on the other system.

As a NJE connection between MVS systems is common practice, we decided to
have no MVS to MVS connection in our project. The observations we made from
printing locally only, however, are valid for printing on two different MVS system
as well.

4.5.1 Print Request Functions
This section describes the different ways to initiate a print request.

4.5.1.1 Using a Batch Job for Print Request Submission
If there is a NOTIFY parameter in the JOB card, the user gets notified via
JES-Message $HASP165 that the job has completed. Since PSF/MVS Version 2,
the user can have an additional NOTIFY parameter in the OUTPUT statement;
then message APS063 is issued when the printing of the file is complete.

As we are dealing with systems of same kind, the information on banner pages
is preserved and helps to identify the job easily.

The accounting information on the receiving side shows only the accounting data
for printing.

Flat file . Worked as expected.

14 AFP Printing in an IBM Cross-System Environment

Line data . Worked as expected. If the DSCB of the file specifies the type of the
carriage control character, this will be taken over automatically. If not, it must
be specified in the JCL.

Line data referencing external resources . Worked as expected.

Line data and structured field records . Worked as expected.

Line data and image objects . Worked as expected.

Line data with inline PAGEDEF/FORMDEF . Worked as expected. It should be
noted that the mere inclusion of a resource is not sufficient for the resource to
be used; the resource must be externally referenced. This is done by specifying
its name or DUMMY in the FORMDEF= or PAGEDEF= parameter in the
OUTPUT statement. When sending a print data set to another MVS system there
is no way in the JCL, to specify that certain resources are to be included, but the
user has to insert them in the print file. This is very easily done, for example,
using a REXX EXEC, or using the ILRPACK program described in A.5, “ILRPACK
Program” on page 94.

Line data with inline fonts . In MVS, the only resources allowed in a resource
group which has to precede the print data (and there can be only one resource
group for a file) are FORMDEFs and PAGEDEFs. Inline fonts and overlays are
not supported. However, via a record exit (APSUX04) and a resource exit
(APSUX07) it is possible to extract the resource records from the data stream
and put them into temporary libraries where PSF has access to them. Samples
of the two exits are contained in Appendix Appendix A, “PSF/MVS Exits and
MVS Sample Programs” on page 73. There is a recent official PTF to provide
these functions in PSF/MVS. When sending a print data set to another MVS
system, there is no way in the JCL to specify that certain resources are to be
included, but the user has to insert them in the print file. This is very easily
done, for example, using a REXX EXEC, or using the ILRPACK program.

Full AFPDS . Worked as expected.

The information included on the banner page includes correct information as
expected.

Also the SMF records have all necessary information that is needed for
accounting.

4.5.2 Resource Migration from MVS to MVS
Obviously, the migration of a resource module from one MVS system to another
one is a simple operation. The formats are identical. The resources can be
unloaded from a library on to a tape by using the IEBCOPY utility program and
then loaded to the library of the other system using the same utility. The
libraries or members of libraries can be sent to another system also by using
XMIT/RECEIVE commands through a telecommunications link, if one exists
between the two systems.

The steps to move resources from one MVS system to another are:

• Using telecommunications:

− On the sending side issue the command:

XMIT NODENAME.USER DA(RESLIB(RESNAME))

Chapter 4. Printing from an MVS Host 15

for a single resource, or

XMIT NODENAME.USER DA(RESLIB)

for a whole library.

NODENAME is the node name of the receiving node, and USER is the
user to receive the transmitted resource or resources. RESLIB is the
library from which the resource is sent, and RESNAME is the name of a
resource in the resource library, if only one member is sent. If only one
member is sent, adding parameter SEQ after causes the resource to be
sent as a file containing only the resource; otherwise it would be sent as
a PDS library. This is more important when sending to non-MVS
systems.

− On the receiving side issue the command:

RECEIVE

When the system displays the name of the file to be received, issue the
name of the file where you want to put the received resource. For
example:

DA(RESLIBN)

for a library to be received, or

DA(RESLIBN(RESNAMEN))

for a single resource.

• Using tape:

− On the sending side, run an IEBCOPY UNLOAD job to create a library
copy on the tape, or run an IEBGENER job to create a file with the
resource only.

− On the receiving side, run either an IEBCOPY LOAD job to load the
library onto a disk, or run an IEBGENER job to transfer a single resource
created by an IEBGENER job.

4.6 Printing from MVS to VM
This section describes printing from MVS on a VM system.

Sending print jobs from MVS to VM is done using NJE on the MVS side and
RSCS on the VM side. The systems are rather similar, and to print from an MVS
system to a VM system is relatively easy.

4.6.1 Print Request Functions
This section describes the use of the different ways to initiate a print request.

4.6.1.1 Using a Batch Job for Print Request Submission
This is the conventional way to submit a print request via a batch job which
executes an utility or an application program. The SYSOUT or the OUTPUT
statement of the print file contains DEST=nodeid.prtid.

In addition to using normal AFP related parameters in OUTPUT statements, there
is also easier ways to refer to resources when a print data set is sent from MVS
to VM. It is possible in VM to set some default values for AFP parameters, such
as form and page definitions, based on print class and form name.

16 AFP Printing in an IBM Cross-System Environment

As user notification, two messages are sent. You first receive RSCS message
DMTAXM104 when the file has been written to the VM spool. This message
contains only the JES2 job number. When the file has been printed, the PDM
sends message APRPRT437, which contains an RSCS number and, as file name,
the job name of the originating job. Especially when sending many files, it is
tedious to identify which files have been printed successfully. The second
message is sent only if COMPMSG is not set to NO in the PDM OPTIONS file. It
is possible to get the message file produced by PSF/VM SFCM and PDM virtual
machines back to the user who submitted the print job.

Job name and userid from the MVS side is shown on the banner page in the VM
system, so this makes it easy to identify to whom the output belongs.

Accounting data in the receiving system shows only the data related to printing
in the receiving system.

Line data . Worked as expected.

Line data referencing external resources . Worked as expected.

Line data and structured field records . Worked as expected.

Line data and image objects . Worked as expected.

Line data with inline PAGEDEF/FORMDEF . Worked as expected.

Line data with inline fonts . Worked as expected.

Full AFPDS . Worked as expected.

As VM is one of those PSF implementations accepting all resources inline in the
print data set, all the test cases were printed as expected. When inline
resources are included in the print data set, some programming work is needed,
as MVS does not provide any tools to include them automatically. For example,
a simple REXX EXEC or the ILRPACK program would do this.

4.6.2 Resource Migration from MVS to VM
Obviously, the migration of a resource module from an MVS system to a VM
system is a rather simple operation. The formats are identical. The resources
can be unloaded from a library on to a tape by using the IEBGENER utility
program and then loaded on the disk in the VM system by using the MOVEFILE
command.

MOVEFILE also allows you to receive members from a PDS library file unloaded
on the MVS side by an IEBCOPY job.

The libraries or members of libraries can be sent to another system also by
using a XMIT command through a telecommunications link, if one exists between
the two systems. In VM, the resource is received from the reader with the
RECEIVE command. If an ISPF library is sent, then ISPF is needed on the VM
side as well. Sending members as sequential files does not require ISPF in VM.

The steps to migrate resources from MVS to VM are:

• Using telecommunication:

− On the MVS side, issue the command

Chapter 4. Printing from an MVS Host 17

XMIT NODENAME.USER DA(RESLIB)

for a whole library, or

XMIT NODENAME.USER DA(RESLIB(RESNAME))

for a single member of the library. Sending a library or a member in this
way requires ISPF RECEIVE for receiving on the VM side.

− A single member can be sent as a normal flat file by adding the
parameter SEQ after to the XMIT command. A resource sent in this way
can be received using normal RECEIVE.

− On the VM side, issue a RECEIVE command from the RDRLIST display.
VM system will ask whether you want to use the name derived from the
MVS side or you want to give another name for the resource on the VM
side.

• Using tape:

− On the MVS side, run either an IEBCOPY job to unload the library (or
some members of a library) onto a tape, or run an IEBGENER job to
create a flat file of a single member of the library.

− On the VM side, use MOVEFILE to move the resource from the tape onto
a CMS disk. If the tape file was created with IEBCOPY, the PDS
parameter in MOVEFILE has to be used.

4.7 Printing from MVS to VSE
PSF implementations in MVS and VSE are rather similar. There are only some
minor differences.

4.7.1 Print Request Functions
We used the standard way to submit a print request, it is the batch job. The
results were identical for every case.

4.7.1.1 Using a Batch Job for Print Request Submission
When the file has arrived completely at the VSE spool, the submitter is notified
with message DMTNTR147I. A print completed message is not sent.

The separator page contains the job name in block letters and a special NJE line
containing the originating job number, the originating node and the originating
user. If specified in the right way, even the programmer name from the account
information is put on the separator page.

Accounting on the VSE system was not looked at, as VSE would have to account
for the printing only.

Line data . Worked as expected.

Line data referencing external resources . Worked as expected.

Line data and structured field records . Worked as expected.

Line data and image objects . Worked as expected. This works only for image
objects in PSF releases prior to 2.2. BCOCA or GOCA are supported from
Release 2.2 onwards.

18 AFP Printing in an IBM Cross-System Environment

Line data with inline PAGEDEF/FORMDEF . Worked as expected.

Line data with inline fonts . This is not possible. VSE supports only inline
PAGEDEFs and FORMDEFs.

Full AFPDS Worked as expected.

When inline resources are included in the print data set, some programming
work is needed, as MVS does not provide any tools to include them
automatically. For example, a simple REXX EXEC or the ILRPACK program
would do this.

4.7.2 Migration of Print Resources from MVS to VSE
Besides the physical transport of a resource from MVS to VSE, it must be
converted from the library format of MVS, a member of a partitioned data set, to
the format of VSE. PSF/MVS provides a resource conversion utility, APTRCONV.
It creates a link-edit job to be transmitted to VSE to be run there to create the
phase in the VSE sublibrary.

It is possible to write the resources and link-edit job control statements on a
tape and use this tape as an input for POWER. If a telecommunications link
exists between MVS and VSE, then the link job can be sent directly to the
POWER spool to be executed in VSE.

Steps to migrate resources from MVS to VSE:

• Using telecommunication:

− On the MVS side run APTRCONV or a similar job to create an input
stream (similar to punched cards) for the VSE linkage editor.

− Send the created stream to VSE using the XMIT command. This can be
done also by entering the proper routing information for punch data in
the previous step.

− On the VSE side, load the deck from the punch queue to an ICCF library
member, check the JCL and run the linkage editor job.

• Using a tape:

− Run the punching job (APTRCONV or similar) on the MVS side to create
a tape file.

− On VSE side start a POWER job from the tape. This will link-edit the
resources to the libraries.

4.8 Printing from MVS to OS/400
The concept of NJE where there are no special transmission commands for the
different file types and a printing subsystem which receives files and
automatically initiates the printing is unusual for the OS/400. To avoid the
manual initiation of print requests, a printer must be set up as an own userid.

OS/400 was able to handle all our requests adequately. For all our print files,
there was no reason to use the manual process of RCVNETF and PRTAFPDTA.

When the RCVNETF command is used, the file has to be in fixed record format
already in MVS. Even using this approach, OS/400 was able to print all the test
cases correctly.

Chapter 4. Printing from an MVS Host 19

4.8.1 Print Request functions
This section describes how to initiate a print request by submitting a batch job.

4.8.1.1 Using a Batch Job for Print Request Submission
This is the conventional way to send a print file to the OS/400 and have a nodeid
and a printer id in the DEST parameter of the OUTPUT or SYSOUT statement.

The originator is notified only by NJE when the file has been written to the
OS/400 spool completely. There is no print complete message sent back. In
case of trouble, it is up to the people at the OS/400 to dig through all the
different OS/400 queues to find the reason.

One thing should be mentioned here: the banner page of the OS/400 contains
very little useful information. It contains mostly fields originating from the
OS/400 system itself. The only term from MVS which shows up there is the
name of the job step, and it appears in the file name field.

Accounting information is not of much relevance here for two reasons: the job
that created the file ran under MVS and is accounted for there, and the data
available in OS/400 does not contain enough information from the sending node.

Line data . Worked as expected. ASA and machine code carriage control
characters were handled correctly. Machine code characters are converted
automatically.

Line data referencing external resources . Did not create a problem. Obviously,
the resources referenced had to be installed on the OS/400.

Line data and structured field records . Worked as expected.

Line data and image objects . Worked as expected.

Line data with inline PAGEDEF/FORMDEF . Worked as expected. It should be
mentioned that specifying FORMDEF=DUMMY to specify an inline FORMDEF
does not work. In this case, OS/400 looks for a resource with the name of
′DUMMY ′. Inline resources must be referenced explicitly.

Line data with inline fonts . Worked as expected.

Full AFPDS . Worked as expected.

When inline resources are included in the print data set, some programming
work is needed, as MVS does not provide any tools to include them
automatically. For example, a simple REXX EXEC or the ILRPACK program
would do this.

4.8.1.2 Print Resource Migration
There may be cases where the receiving OS/400 system does not have all the
resources required to print the job. In such cases, the resources must either be
placed inline with the print file, or they must be placed in the OS/400 system′s
resource libraries before the print request is submitted. Placing AFP resources
inline with a print file requires user programming.

AFPDS resources can be transferred from MVS to OS/400 either using tape as
the media or, if a telecommunications connection exists between MVS and

20 AFP Printing in an IBM Cross-System Environment

OS/400, using the XMIT command on the MVS side and the RCVNETF command
in OS/400.

AFP resources have to be created with appropriate CRT commands in OS/400.
These commands expect that the resources are in physical file members in
OS/400. The record format in OS/400 is fixed, so to avoid problems it is best to
change the record format of the resources to fixed length records already in the
MVS system. In the MVS system, a file with record length and block size equal
to the highest value that can be expected in the resources to be migrated and
record format FB is created. The resource to be migrated is copied to this file
and the file is then sent to OS/400. In the OS/400 system a physical file with the
same record length is created and the transferred file is received as a member
in that physical file using the RECVNETF command. Finally the resource is
created using the appropriate CRT command.

Instead of using a communications line, the fixed length record file created in
MVS can be moved into a tape file. This file can be copied to the physical file
member in OS/400 using the CPYFRMTAP command. After that, the resource
can be created using the appropriate CRT command.

The steps to move resources from an MVS system to an AS/400 system are:

• Using telecommunication:

− On the MVS side, create a file or library with a fixed record size large
enough to accommodate any resource to be migrated.

− Copy the resource or resources to be migrated to this library with the
fixed record size.

− Send the members using the XMIT command with the SEQ parameter.

− On the AS/400, side create a physical file with the same record size that
was used in the MVS system.

− Use the RECVNETF command to receive the sent files to this physical
file.

− Issue appropriate CRT commands to create the resources in AS/400
libraries.

• Using a tape:

− On the MVS side, create a file or library with a fixed record size large
enough to accommodate any resource to be migrated.

− Copy the resource or resources to be migrated to this library with the
fixed record size.

− Run an IEBGENER job to move the member or members to tape file or
files.

− On the AS/400, side create a physical file with the same record size that
was used in the MVS system.

− Use the CPYFRMTAP command to receive the resources from the tape to
this physical file.

− Issue appropriate CRT commands to create the resources in AS/400
libraries.

Chapter 4. Printing from an MVS Host 21

4.9 Printing from MVS to OS/2
This section describes printing of MVS files on a printer driven by Print Services
Facility* (PSF/2) on an OS/2 server.

In general, the facilities that support communications between MVS and OS2 do
not facilitate printing. There is, for instance, no direct spool-to-spool
communication of print files such as Network Job Entry (NJE) provides for MVS,
VM, VSE, and AS/400.

Using PSF/2 Distributed Print Function, an OS/2 attached AFP printer can be
used directly from the host system, but this happens using a different spool than
the local PSF/2 spool.

The first requirement is a vehicle to move the print file from MVS to OS2. There
are not many possibilities:

• OS/2 Communications Manager 3270 Emulation File Transfer Program

An OS/2 user that is logged on to TSO using the 3270 Emulation capability of
Communications Manager can issue an OS/2 command that will transfer a
file of data from MVS to the OS/2 workstation.

• TCP/IP File Transfer Protocol

A MVS user can use the TCP/IP FTP program to “login” to the OS/2 server
and ship a file of data.

The second requirement is a mechanism to deliver the print data to the spool of
the target OS/2 system, accompanied by the control information necessary to
govern the printing process. Both processes described above require user
interaction (that is an APRINT command) on the OS/2 machine in order to
complete the printing task.

4.9.1 Technical Hurdles
There are some technical hurdles associated with printing MVS files on an OS/2
server:

• OS/2 represents data in ASCII while MVS uses EBCDIC code points. This
means that normal text data must go through an EBCDIC to ASCII translation
during transport. Text files that contain unusual code points may not be
accurately translated. For instance, line-data files that contain machine
carriage control characters may not be properly translated by the standard
translate tables.

• AFPDS data, on the other hand, is exactly the same on both MVS and OS/2.
That is, when transporting AFPDS data from MVS to OS/2, no conversion
from EBCDIC to ASCII should be done (that is, a BINARY transfer).
Therefore, it is not possible to transport files that contain both AFPDS and
non-AFPDS data. The translation option chosen applies to the entire file
which means it will be incorrect for part of the data.

• OS/2 has no page definition concept. The page definition is used by
PSF/MVS to map line-data files to AFP pages. This mapping depends upon
1403/3800-1 line-data structures which are not native to OS/2. Therefore,
PSF/2 does not employ page definitions, nor does it support MVS line-data
print files, just as PSF/MVS does not support the printing of ASCII print files.

The lack of page definition support on OS/2 has some deeper implications:

22 AFP Printing in an IBM Cross-System Environment

− Many of the simple page formats MVS users expect to be able to apply
to print files, such as 2-up or landscape printing, are not available when
the file is sent to OS/2.

− It is not possible to select a character set (font) using the CHARS
parameter.

− Carriage control and TRC characters are not recognized by OS/2.

− Conditional processing is not available.

There is, however, a way to circumvent the problem of not having the page
definition in the PSF/2 implementation. Using either the LN2AFPDS program
listed in this document, or using AFP Conversion and Indexing Facility (ACIF)
program in the MVS system, the line data file can be converted to an AFPDS
file using the information in the page definition. Thus, page definition is not
needed on the OS/2 side, as the file is already in AFPDS format.

4.9.2 Print Request Functions
This section describes how to receive a print data file from an MVS system to an
OS/2 system and print it in the OS/2 system.

4.9.2.1 Using File Transfer to Download the Print File
If the file to be transmitted and printed is a flat file without carriage control
characters and TRC characters, the file can be transmitted using EBCDIC/ASCII
conversion in the file transfer. After the file has been received, it is possible to
print it using the APRINT command with the appropriate parameters.

If the file is an AFPDS file, it is downloaded with the BINARY option and then
printed using the APRINT command, again setting up the parameters as needed.

If the file is a mixture of line data and AFP data, or if the file is a line data file
with either carriage control or TRC bytes, the file has to be converted to AFPDS
to achieve a correct output. The file can be converted by using either the
LN2AFPDS program or ACIF program. After conversion, the file is in AFPDS
format and can be printed in the same way as any AFPDS file.

Appendix A, “PSF/MVS Exits and MVS Sample Programs” on page 73 contains
the PL/I source code of an MVS program called LN2AFPDS. This program will
read a line-data file, process it through a page definition, and produce an AFPDS
output file. This means that all formatting normally associated with the page
definition, plus the CHARS, CC, and TRC parameters are enabled. In addition,
the difficulties associated with sending files that contain a mix of AFPDS and
line-data are also avoided (see 4.9.1, “Technical Hurdles” on page 22).

The LN2AFPDS program does not support page definitions containing conditional
processing. If conditional processing statements are encountered, LN2AFPDS
ignores them.

The ACIF program shipped with the current release of PSF/MVS, supports all
functions of the page definition, and can be used to transform a line data file to
an AFPDS file.

As all the printing is done in the receiving system using commands in the OS/2
system, all accounting data as well as banner pages reflect the data in the OS/2
system.

Chapter 4. Printing from an MVS Host 23

4.9.3 Print Resource Migration
There may be cases where the receiving PSF/2 does not have all the resources
required to print the job. In such cases, the resources must either be placed
inline with the print file, or they must be placed in the PSF/2 resource libraries
before the print request is submitted. The use of inline resources is enabled by
the use of the LN2AFPDS utility which transforms the entire print file into AFPDS.
Otherwise, the mixed data represented by a line-data file prefixed with an inline
resource group would not be acceptable to PSF/2.

Creating an inline resource group usually requires some user programming.
With the current level of PSF/MVS, AFP Conversion and Indexing Facility
program is shipped. This program provides the necessary services to pack the
resources in front of the print file. Another solution for packing the resources in
front of the print file is in A.5, “ILRPACK Program” on page 94.

It is often easier to handle the requirement for a special resource by
preinstalling that resource in the PSF/2 resource library.

AFPDS resources may be transferred from MVS to OS/2 using either 3270 File
Transfer, or the TCP/IP File Transfer Protocol. In both cases, the transfer must
be BINARY to prevent the destruction of AFPDS data. The resulting OS/2 file
must then be added into the PSF/2 resource library using an RLADD command.
For example, the following commands:

receive d:\hostfont\gx12.fnt a:′ sys1.fontlibb(x0gx12)′
rladd r d:\hostfont\gx12.fnt gx12 hostres

would:

 1. Receive member X0GX12 from MVS file SYS1.FONTLIBB through emulator
session A and place it on the D drive in directory HOSTFONT as file
GX12.FNT

 2. Add the contents of the received file as a resource named GX12 in the PSF/2
resource group HOSTRES.

The RECEIVE command in the above example could have been replaced with a
TCP/IP File Transfer Protocol transfer.

24 AFP Printing in an IBM Cross-System Environment

Chapter 5. Printing from a VM Host

The following chapter describes the different possible implementations for AFP
printing from a VM system. It discusses the different mechanisms for requesting
and transmitting a print request to a target system.

5.1 Submitting a Print Request
Since IBM withdrew SAA/PrintManager program product, there is no IBM
product to serve as a front-end for print submission. Most of the customers have
written EXECs to facilitate the submitting of print jobs.

When a user prints a file from a VM CMS virtual machine, the printout goes to
the user′s virtual printer. The print data set remains in the user′s PRT queue
unless it has not been routed to the system to be automatically printed. The
user can also manually initiate the printing by changing the print data set to a
certain destination and transferring it to system.

The destination of a print data set can be specified in CP SPOOL and in CP TAG
DEV commands. See VM manuals for a detailed description.

CP SPOOL 00E DEST PR4028 CLASS A

specifies that all the print data sets to the virtual printer at the address 00E are
routed to a destination called PR4028 and to class A.

CP TAG DEV 00E WTSCSL2 SYSTEM 50 SYSOUT=T

routes virtual printer 00E output to a node called WTSCSL2 and to the system
itself. It also specifies that the priority will be 50 and the SYSOUT class will be
T. This is an example of how to route the output for the virtual printer 00E to an
MVS system.

To print from a VM system, there are different methods. It is possible to issue
print commands from and application program and to create a spool file in this
way.

5.1.1 Printing Using PRINT and PSF Commands
There are also standard commands in VM to initiate the printing of a file. The
most common way to start printing of a file is to issue a PRINT command.

PRINT MYDATA FILE A1 (CC

This command causes the printing of the file MYDATA FILE A1 so that the first
character in each record is interpreted to be a carriage control character (CC).
The parameters that can be specified in the PRINT command do not give very
many possibilities to specify the characteristics of the actual printout. For
example, there are almost no AFP related parameters.

To be able to specify AFP related characteristics concerning the print data set,
PSF/VM offers the PSF command. In the PSF command, there are lots of options
to be specified, thus allowing the user to tell how the print file has to be printed.

PSF MYFILE DATA A1 (PAGEDEF(P1MYPDEF PDEF38PP A) SEND FORMDEF(F1A10111) CC

This command initiates printing of the file MYDATA FILE A1. The command
specifies that the file contains carriage control characters (CC parameter). The

 Copyright IBM Corp. 1994 25

form definition to be used is called F1A10111, and it is taken from the system
printing the data set. Parameter PAGEDEF says that the page definition to be
used is called P1MYPDEF PDEF38PP, and it resides on the user′s A disk.
Parameter SEND after the PAGEDEF tells that the page definition is sent inline
with the print data set.

The size of a line data record is limited by the maximum record length of the
virtual printer. In VM/SP or VM/XA, this is limited to the maximum of 204 bytes
allowed by an IBM 3800 printer, in VM/ESA there is a new virtual printer type
called VAFP. Using this device type, the limit is 32 KB.

When printing AFPDS documents the size is limited to 32 KB in all versions of
VM. To use the PRINT command to print an AFPDS data set, parameter
OVERSIZE has to be used. In addition, parameter CC must be used, as an
AFPDS data set always has X′5A′ as a carriage control character in the
beginning of each record.

The banner page will give the following information:

• SPOOLID - the spool file number
• CLASS
• PRINTER (destination)
• PRINT DATE
• PRINT TIME
• USER/NODEID
• FILENAME/TYPE
• FILE CREATE DATE
• FILE CREATE TIME
• DIST - Distribution information

VM collects account information about printing.

5.2 Naming of Resources
PSF/VM lets the user name the resources by using the maximum number of
characters allowed by VM. The names can be unique up to eight characters.
Further, the user can use a file type up to eight characters as well, giving much
more freedom in naming.

5.3 Printing from VM to MVS
This section describes printing from VM on an MVS system.

Traditionally, the communication links between VM and MVS have been with
RSCS and NJE being the main carriers. In addition, the software compatibilities
(file structures) give no cause for cross-system print transmission concerns.

5.3.1 Print Request Functions
This section describes the use of different ways to initiate a print request.

26 AFP Printing in an IBM Cross-System Environment

5.3.1.1 Using Print and PSF Commands for Print Request
Submission
Submitting a print job from VM to MVS is usually done by spooling the user′s
virtual printer to RSCS and setting the destination and other necessary
parameters.

With CP TAG command it is possible to tag the spool file with information where
the output for that device should go.

In our case, when a print data set was going to be sent to destination PR3825 at
an MVS system called WTSCSL2, and into the SYSOUT class T, the following
commands were issued.

CP SPOOL 00E TO RSCS DEST PR3825
CP TAG DEV 00E WTSCSL2 SYSTEM 50 SYSOUT=T

After these commands were issued, all output to the user′s virtual printer at
address 00E was directed to the correct printer.

The spool file can be written using application programs, or by using PRINT or
PSF command.

PRINT command does not provide many AFP related parameters. The CC
parameter is used for indicating that the first character in each record is a
carriage control character. The OVERSIZE parameter is to indicate that the file
is AFPDS and may have longer records than accepted as line data to the virtual
printer.

If a more precise specification of AFP parameters is needed, the PSF command
must be used. The PSF command allows the user to not only specify the
parameters needed to make PSF/MVS print the output correctly using the
resources in MVS, but also to send the resources inline with the print file.
Without special programming in the MVS system, PSF/MVS does not accept any
inline resources other than form and page definitions. This support for other
inline resources is now available also as an official PTF for PSF/MVS.

The banner page will give the following information:

• JOB ID - MVS spool file number
• JOB NAME - The RSCS number or VM userid, selectable in RSCS

customization
• SYSOUT CLASS
• DESTINATION
• NAME - userid from the VM side

Flat file . Worked as expected.

Line data . Worked as expected.

Line data referencing external resources . Worked as expected.

Line data and structured field records . Worked as expected.

Line data and image objects . Worked as expected.

Line data with inline PAGEDEF/FORMDEF Worked as expected.

Line data with inline fonts . Worked as expected.

Chapter 5. Printing from a VM Host 27

To have inline resources other than form and page definitions accepted in a print
data set sent from VM to MVS, some user programming in the MVS side is
needed. In PSF/MVS the exits APSUX04 and APSUX07 were used to catch the
inline resources and put them into a library in MVS and then to use those
resources in printing. These functions are now shipped as an official PTF.

Full AFPDS . Worked as expected.

5.3.2 Print Resource Migration from VM to MVS
There may be cases where the receiving MVS system does not have all the
resources required to print the job. In such cases, the resources must either be
placed inline with the print file, or they must be placed in the MVS system′s
resource libraries before the print request is submitted. Note that inline
resources other than page definition and form definition are not supported
unless the Inline Resource Exits described in Appendix A, “PSF/MVS Exits and
MVS Sample Programs” on page 73 are installed. This support is also provided
with a rather recent official PTF for PSF/MVS. Placing AFP resources inline with
a print file requires user programming.

Flat files that require some special resource can only be handled by preinstalling
that resource in the MVS libraries.

As the structure of the AFP resources in VM and MVS is similar, the migration of
the resources is fairly simple. The resources can be moved manually using a
magnetic tape as the media. The resource is written on a tape with MOVEFILE
command in VM. In MVS the file can be moved on to a disk file using, for
example, the IEBGENER utility program.

If there is a telecommunications connection between the systems, then the
moving of resources is even easier. AFPDS may be transferred from VM to MVS
using the VM SENDFILE command. The resource file may be placed in the
PSF/MVS resource library using the TSO RECEIVE command.

The steps to migrate resources from a VM system to a MVS system are:

• Using telecommunication:

− Send the resource by issuing on the VM side the SENDFILE command:

SENDFILE RESOURCE FILE X USERID AT NODENAME

− Receive the file issuing a RECEIVE command on the MVS side. The
command will prompt for the name on the MVS side.

• Using a tape:

− Copy the resource from the VM library to a tape file using MOVEFILE
command.

− On the MVS side, run an IEBGENER job to copy the resource from the
tape file to a member in an MVS library.

28 AFP Printing in an IBM Cross-System Environment

5.4 Printing from VM to VM
This section describes printing from VM on a VM system.

The main ways to transmit print files between VM systems are the PRINT and
PSF commands.

When printing from VM to VM, we can be talking about both from within one VM
system and from a VM system to another via the conventional communication
links, like RSCS.

5.4.1 Print Request Functions
This section describes how to initiate a print request.

5.4.1.1 Using Print and PSF Commands for Print Request
Submission
Submitting a print job from VM to VM is usually done by spooling the user′s
virtual printer to RSCS with the CP SPOOL command and setting the destination
and other necessary parameters.

With the CP TAG command, it is possible to tag the spool file with information
where the output for that device should go.

In our case, when a print data set was going to be sent to destination 3820W10 at
an VM system called WTSCPOK, and into the print class I, the following
commands were issued.

CP SPOOL 00E TO RSCS DEST 3821W10 CLASS I
CP TAG DEV 00E WTSCPOK SYSTEM

After these commands were issued, all output to the user′s virtual printer at
address 00E was directed to the correct printer.

The spool file can be written using application programs, or by using the PRINT
or PSF command.

The PRINT command does not provide many AFP related parameters. The CC
parameter is used for indicating that the first character in each record is a
carriage control character. The OVERSIZE parameter is used to indicate that the
file is AFPDS and may have longer records than accepted as line data to the
virtual printer.

If a more precise specification of AFP parameters is needed, the PSF command
must be used. The PSF command allows the user to not only specify the
parameters needed to make PSF/VM print the output correctly using the
resources in the other VM, but also to send the resources inline with the print
file. It is possible in PSF/VM to set different default values for AFP related
parameters, for example, based on the print class and form name. If an
agreement exists between the different systems, then the class and form name
can be used to tell the receiving PSF/VM how to format the output. This is much
easier than entering all the parameters in the PSF command, and this solution
also works fine when using the PRINT command.

Flat file . Worked as expected.

Line data . Worked as expected.

Chapter 5. Printing from a VM Host 29

Line data referencing external resources . Worked as expected.

Line data and structured field records . Worked as expected.

Line data and image objects . Worked as expected.

Line data with inline PAGEDEF/FORMDEF . Worked as expected.

Line data with inline fonts . Worked as expected.

Full AFPDS . Worked as expected.

Printing in the conventional manner using PSF, and PRINT commands does not
pose any significant, additional or new problems.

Because there is no front-end panel to tie all the submission tasks together,
each of these tasks have to be done separately and simultaneously at print time.

These tasks include:

• Spool userid printer to RSCS

• Spool prt to specific classes

• Spool prt to specific form

• Tag device printer to destination

• PSF or print file with options

The spooling of the printer commands can of course all be consolidated into one
command.

A restriction of this is that each time a print file needs to be printed to a different
destination or printer, these parameters have to be changed each time.

The end-user notification is standard. The following information is placed on the
banner page.

• VM Spool id

• Class

• Printer id that it printed on

• System id

• Print start and finish date/time

• User/Nodeid

• File Name/Type

• File creation start and finish times

• Distribution

5.4.2 Print Resource Migration from VM to VM
There may be cases where the receiving VM system does not have all the
resources required to print the job. In such cases, the resources must either be
placed inline with the print file, or they must be placed in the VM system′s
resource libraries before the print request is submitted. VM implementation of
AFP allows any resource to be included inline in the print data set. The PSF

30 AFP Printing in an IBM Cross-System Environment

command provides functions to tell the sending node to include AFP resources
inline with a print file.

As the structure of the resources are similar when both systems are VM
systems, to move the resources is fairly simple. The resources can be moved
manually using a magnetic tape as the media. The resources are written onto a
tape using the TAPE DUMP command. In the receiving node, the resources are
loaded onto a disk using the TAPE LOAD command.

If there is a telecommunications connection between the systems, then the
moving of resources is even easier. AFPDS may be transferred from VM to VM
using the VM SENDFILE command. The resource file may be placed in the other
system ′s library using the VM RECEIVE command.

The steps to transmit resources from one VM system to another are:

• Using telecommunications:

− On the sending side, issue a SENDFILE command:

SENDFILE RESOURCE FILE X USERID AT NODENAME

− On the receiving side, issue a RECEIVE command on the RDRLIST
display.

• Using tape:

− On the sending side, dump the required resources onto a tape using
TAPE DUMP command

TAPE DUMP FN FT FM

− On the receiving side, load the resources from the tape onto a CMS disk
by using the TAPE LOAD command:

TAPE LOAD * * FM

.

5.5 Printing from VM to VSE
This section describes printing from VM on a VSE system.

Print files from VM to VSE are transmitted via RSCS on the VM side and POWER
PNET on the VSE side.

5.5.1 Print Request Functions
This section describes how to route a print job from a VM system to a VSE
system.

5.5.1.1 Using PRINT and PSF Commands for Print Request
Submission
Submitting a print job from VM to VSE is usually done by spooling the user′s
virtual printer to RSCS with the CP SPOOL command and setting the destination
and other necessary parameters.

With the CP TAG command, it is possible to tag the spool file with information
where the output for that device should go.

Chapter 5. Printing from a VM Host 31

In our case, when a print data set was going to be sent to destination PR3816 at
a VSE system called WTSCSL9, and into the SYSOUT class U, the following
commands were issued.

CP SPOOL 00E TO RSCS DEST PR3816
CP TAG DEV 00E WTSCSL9 SYSTEM 50 SYSOUT=U

After these commands were issued, all output to the user′s virtual printer at
address 00E was directed to the correct printer.

The spool file can be written using application programs, or by using the PRINT
or PSF command.

The PRINT command does not provide many AFP related parameters. The CC
parameter is used for indicating that the first character in each record is a
carriage control character. The OVERSIZE parameter is used to indicate that the
file is AFPDS and may have longer records than accepted as line data to the
virtual printer.

If a more precise specification of AFP parameters are is needed, the PSF
command must be used. The PSF command allows the user to not only specify
the parameters needed to make PSF/VSE print the output correctly using the
resources in VSE, but also to send the resources inline with the print file.
PSF/VSE does not accept any inline resources other than form and page
definitions.

The banner pages provide the following information:

• Header and trailer pages

• User/printer name

• Originating userid

• Print date/time

• VSE job number

Between the two systems there is no notification of job success or failure;
however there is notification that the job has arrived at VSE from VM, and this is
communicated back by RSCS.

Flat file . Worked as expected.

Line data . Worked as expected.

Line data referencing external resources . Worked as expected.

Line data and structured field records . Worked as expected.

Line data and image objects . Worked as expected. The support for BCOCA and
GOCA objects is included in PSF/VSE Release 2.2 and subsequent releases.

Line data with inline PAGEDEF/FORMDEF . Worked as expected.

Line data with inline fonts .

This is not possible, as PSF/VSE does not accept inline resources other than
form and page definitions included in a print data set sent from VM to VSE.

Full AFPDS . Worked as expected.

32 AFP Printing in an IBM Cross-System Environment

5.5.2 Resource Migration from VM to VSE
There may be cases where the receiving VSE system does not have all the
resources required to print the job. In such cases, the resources must either be
placed inline with the print file, or they must be placed in the MVS system′s
resource libraries before the print request is submitted. Note that inline
resources other than page definition and form definition are not supported in
VSE.

Flat files that require some special resource can only be handled by preinstalling
that resource in the VSE libraries.

Any resources that are needed from the VM print file on VSE need to be
transported and reformatted to be usable on VSE. A program is available on VM
to do this. It creates a link-edit job that is transmitted and run on VSE to create
a resource in a VSE library.

This link-edit job can be directly submitted to the VSE system′s reader if there is
a communications connection between the systems. The job can be moved onto
a tape and then moved manually to the VSE system to be used as input for
POWER reader.

The steps to migrate resources from a VM system to a VSE system are:

• Using telecommunications:

− In the VM system, run either an APTRCONV job or a similar job to punch
the resource in a stream suitable for the VSE linkage editor.

− Send the stream to the VSE system by using the VM PUNCH command.

− In the VSE, load the punch file to an ICCF library member, and run the
linkage editor job.

• Using a tape:

− In the VM system, run either an APTRCONV job or a similar job to punch
the resource in a stream suitable for the VSE linkage editor.

− Copy the output of the previous step to a tape file.

− Initiate a POWER job from the tape in the VSE system. This step
link-edits the resources in VSE libraries.

5.6 Printing from VM to OS/400
This section describes printing from VM on an OS/400 system. Transfer of files
along with resources is via RSCS to the OS/400. It should be noted here that
each time a print file was be sent to the OS/400, a manual intervention had to be
made to release the printout from the pending queue. This was generally due to
the setup of the printer on the OS/400 being incompatible with the incoming
forms code. Therefore, it should be recommended that the setup be made
compatible with the sending forms code before print submission.

Chapter 5. Printing from a VM Host 33

5.6.1 Print Request Functions
This section describes how to initiate a print request from a VM system to an
OS/400 system.

5.6.1.1 Using Print and PSF Commands for Print Request
Submission
Submitting a print job from VM to OS/400 is usually done by spooling the user′s
virtual printer to RSCS and setting the destination and other necessary
parameters.

With the CP TAG command, it is possible to tag the spool file with information
where the output for that device should go.

In our case, when a print data set was going to be sent to destination PR3812 at
an OS/400 system called WTSCSL4, and into the SYSOUT class A, the following
commands were issued.

CP SPOOL 00E TO RSCS DEST PR3812 CLASS A
CP TAG DEV 00E WTSCSL4

After these commands were issued, all output to the user′s virtual printer at
address 00E was directed to the correct printer.

The spool file can be written using application programs, or by using the PRINT
or PSF command.

The PRINT command does not provide many AFP related parameters. The CC
parameter is used for indicating that the first character in each record is a
carriage control character. The OVERSIZE parameter is used to indicate that the
file is AFPDS and may have longer records than accepted as line data to the
virtual printer.

If a more precise specification of AFP parameters are is needed, the PSF
command must be used. The PSF command allows the user to not only specify
the parameters needed to make OS/400 print the output correctly using the
resources in OS/400, but also to send the resources inline with the print file.
OS/400 accepts any resources inline with the print data set.

The banner page in an OS/400 system does not include very much data from the
submitting system, as OS/400 prints data related to its internal print job on the
page.

Flat file . Worked as expected.

Line data . Worked as expected.

Line data referencing external resources . Worked as expected.

Line data and structured field records . Worked as expected.

Line data and image objects . Worked as expected.

Line data with inline PAGEDEF/FORMDEF . Worked as expected.

Line data with inline fonts . Worked as expected.

Full AFPDS . Worked as expected.

34 AFP Printing in an IBM Cross-System Environment

5.6.2 Print Resource Migration from VM to OS/400
There may be cases where the receiving OS/400 system does not have all the
resources required to print the job. In such cases, the resources must either be
placed inline with the print file, or they must be placed in the OS/400 system′s
resource libraries before the print request is submitted.

Flat files that require some special resource can only be handled by preinstalling
that resource in the OS/400 libraries.

If the resources are needed occasionally, they can be sent inline with the print
data set. PSF/VM provides tools to include the resources, and OS/400 accepts
any resource inline.

The resources can migrated from VM to OS/400 manually using magnetic tape.
If a communications connection exists between the systems, the task is easier.

In both cases, a fixed length record has to be created in the VM system. The
record length must be set to the maximum value that can be expected in the
resources concerned. The file can be very easily created with the COPY
command in VM. The original file is copied to a temporary member with
specifying in COPY options (RECFM F LRECL xxxx, where xxxx is the maximum
record length needed. The file is then either moved with MOVEFILE to a tape file
and moved manually to the OS/400 system, or sent through the communications
link to OS/400. In OS/400, the file is either copied with CPYFRMTAP from a tape
onto a disk, or received with RCVNETF to a physical file member. The physical
file should have a record length that is at least as long as the resources
received.

With CRT commands, the resources are created using the received physical file
members as input files.

The steps to migrate resources from a VM system to an AS/400 system are:

• Using telecommunication:

− On the VM side, copy the resource to a file with fixed record large
enough to accommodate any record in the resource to be migrated.

COPY RESOURCE FILE X RESOURCE FIXFILE X (RECFM F LRECL maxl

− Send the files using the SENDFILE command.

− On the AS/400, side create a physical file with the same record size that
was used in the MVS system.

− Use the RCVNETF command to receive the sent files to this physical file.

− Issue appropriate CRT commands to create the resources in AS/400
libraries.

• Using a tape:

− On the VM side, copy the resource to a file with a fixed record size large
enough to accomodate any record of the resource to be migrated.

Copy RESOURCE FILE X RESOURCE FIXFILE X (RECFM F LRECL maxl

− Use the MOVEFILE command to copy the file to a tape file.

− On the AS/400 side, create a physical file with the same record size that
was used in the MVS system.

Chapter 5. Printing from a VM Host 35

− Use the CPYFRMTAP command to receive the resources from the tape to
this physical file.

− Issue appropriate CRT commands to create the resources in AS/400
libraries.

5.7 Printing from VM to OS/2
This section describes printing of VM files on a printer driven by PSF/2 on an
OS/2 server.

In general, the facilities that support communications between VM and OS2 do
not facilitate printing. There is, for instance, no direct spool-to-spool
communication of print files, such as Network Job Entry (NJE) provides for MVS,
VM, VSE, and AS/400.

The Distributed Print Function available in PSF/2 Release 1.10 provides a way to
use OS/2 workstation attached AFP supported printers directly from the VM
system. This is not actually printing from a VM system to an OS/2 system,
although the printer driver resides in the OS/2 PSF/2 program. From the VM
system, the printer looks like any other AFP printer attached to the VM system.
PSF/2 acts as a printer to the VM system, receives the print file to the IPDS part
of the PSF/2 spool, and prints the file when it is its turn to be printed.

Otherwise, the printing from a VM system to the OS/2 system requires manual
intervention.

The first requirement is a vehicle to move the print file from VM to OS2. There
are not many possibilities:

• OS/2 Communications Manager 3270 Emulation File Transfer Program

An OS/2 user that is logged on to CMS using the 3270 Emulation capability of
Communications Manager can issue an OS/2 command that will transfer a
file of data from VM to the OS/2 workstation.

• TCP/IP File Transfer Protocol

A VM user can use the TCP/IP FTP program to “login” to the OS/2 server
and ship a file of data.

The second requirement is a mechanism to deliver the print data to the spool of
the target OS/2 system, accompanied by the control information necessary to
govern the printing process. Both processes described above require user
interaction (it is an APRINT command) on the OS/2 machine in order to complete
the printing task.

5.7.1 Technical Hurdles
There are some technical hurdles associated with printing VM files on an OS/2
server:

• OS/2 represents data in ASCII while VM uses EBCDIC code points. This
means that normal text data must go through an EBCDIC to ASCII translation
during transport. Text files that contain unusual code points may not be
accurately translated. For instance, line-data files that contain machine
carriage control characters may not be properly translated by the standard
translate tables.

36 AFP Printing in an IBM Cross-System Environment

• AFPDS data, on the other hand, is exactly the same on both VM and OS/2.
That is, when transporting AFPDS data from VM to OS/2, no conversion from
EBCDIC to ASCII should be done (that is BINARY transfer). Therefore, it is
not possible to transport files that contain both AFPDS and non-AFPDS data.
The translation option chosen applies to the entire file which means it will be
incorrect for part of the data.

• OS/2 has no page definition concept. The page definition is used by PSF/VM
to map line-data files to AFP pages. This mapping depends upon
1403/3800-1 line-data structures which are not native to OS/2. Therefore,
PSF/2 does not employ page definitons, nor does it support VM line-data
print files, just as PSF/VM does not support the printing of ASCII print files.

The lack of page definition support on OS/2 has some deeper implications:

− Many of the simple page formats VM users expect to be able to apply to
print files, such as 2-up or landscape printing, are not available when the
file is sent to OS/2.

− It is not possible to select a character set (font) using the CHARS
parameter.

− Carriage control and TRC characters are not recognized by OS/2.

− Conditional processing is not available.

There is, however, a way to circumvent the problem of not having the page
definition in the PSF/2 implementation. Using either the LN2AFPDS program
(see A.6, “LN2AFPDS Program” on page 119) listed in this document, or
using the AFP Conversion and Indexing Facility (ACIF) program in the VM
system, the line data file can be converted to an AFPDS file using the
information in the page definition. The LN2AFPDS program does not support
conditional processing in the page definition, the ACIF program has this
support included. Thus, page definition is not needed on the OS/2 side, as
the file is already in AFPDS format.

5.7.2 Print Request Functions
This section describes how to receive a print data file from an MVS system to an
OS/2 system and print it in the OS/2 system.

5.7.2.1 Using File Transfer to Download the Print File
If the file to be transmitted and printed is a flat file without carriage control
characters and TRC characters, the file can be transmitted using EBCDIC/ASCII
conversion in the file transfer. After the file has been received, it is possible to
print it using the APRINT command with the appropriate parameters.

If the file is an AFPDS file, it is downloaded with the BINARY option and then
printed using the APRINT command, again setting up the parameters as needed.

If the file is a mixture of line data and AFP data, or if the file is a line data file
with either carriage control or TRC bytes, the file has to be converted to AFPDS
to achieve a correct output. The file can be converted by using either the
LN2AFPDS program or ACIF program. After conversion, the file is in AFPDS
format, and can be printed in the same way as any AFPDS file.

Chapter 5. Printing from a VM Host 37

5.7.3 Print Resource Migration from VM to OS/2
There may be cases where the receiving PSF/2 does not have all the resources
required to print the job. In such cases, the resources must either be placed
inline with the print file, or they must be placed in the PSF/2 resource libraries
before the print request is submitted. The use of inline resources is enabled by
the use of the LN2AFPDS utility which transforms the entire print file into AFPDS.
With the current level of PSF/VM, the AFP Converison and Indexing Facility
(ACIF) program is shipped. This program includes the necessary services to
pack the resources in front of the print file. Otherwise, the mixed data
represented by a line-data file prefixed with an inline resource group would not
be acceptable to PSF/2.

It is often easier, therefore, to handle the requirement for a special resource by
preinstalling that resource in the PSF/2 resource library.

AFPDS resources may be transferred from MVS to OS/2 using either 3270 File
Transfer, or the TCP/IP File Transfer Protocol. In both cases, the transfer must
be BINARY to prevent the destruction of AFPDS data. The resulting OS/2 file
must then be added into the PSF/2 resource library using an RLADD command.
For example, the following commands:

receive d:\hostfont\gx12.fnt a:x0gx12 font3820 m
rladd r d:\hostfont\gx12.fnt gx12 hostres

would:

 1. receive VM file X0GX12 FONT3820 M through emulator session A and place it
on the D drive in directory HOSTFONT as file GX12.FNT

 2. Add the contents of the received file as a resource named GX12 in the PSF/2
resource group HOSTRES.

The RECEIVE command in the above example could have been replaced with a
TCP/IP FTP transfer.

38 AFP Printing in an IBM Cross-System Environment

Chapter 6. Printing from a VSE Host

The following chapter describes the different possible implementations for AFP
printing from a VSE system. It discusses the different mechanisms for
requesting and transmitting a print request to a target system.

6.1 AFP Printing in VSE
Although VSE belongs to the S/390 family, VSE is a little different from MVS and
VM environments. The product repertoire to transmit print requests and objects
for printing is much less than in other S/390 systems. For example, transmitting
AFP resources is not possible in the same way as it is in VM.

VSE does not provide such printing utilities as PRINT or PSF commands in VM,
or IEBGENER in MVS.

When receiving AFP print jobs from other nodes PSF/VSE accepts only form
definitions and page definitions as inline resources. We were not able to
circumvent this restriction of PSF/VSE, as there are no user exits to intercept the
printing in the same way as it is possible in PSF/MVS.

Even sending form definitions and page definitions as an inline resource requires
programming.

To be able to transmit any of the resources in front of the print data set, a
program was written for this purpose (C.4, “Program to Punch an AFP Resource
Inline” on page 169).

VSE/POWER inserts a control record with X′73′ as the carriage control byte in
front of the print data set, when the print data set is transmitted to another node.
When inline resources are included in front of the print data set, this control
record has to be removed, as the receiving system (if it is not another
VSE/POWER) does not accept any records in front of the inline resource group.

PSF/VSE supports AFP data stream. GOCA and BCOCA are supported from
Release 2.2 onwards.

To have the capability to communicate with other systems, POWER has to be
generated with PNET support. POWER node table has to be customized to
include all the nodes with which communication is needed.

There are two ways to specify the AFP formatting resources (PAGEDEF and
FORMDEF) in VSE. The user can include SET commands in the POWER
AUTOSTART deck to enable the use of the AFP related keywords in the POWER
JECL LST statement. The user can also use a way that is more compatible with
line printing with preprinted forms. By creating a special object called printer
parameter member, a user can include references to the AFP resources, such as
FORMDEF, PAGEDEF and CHARS. This printer parameter member can be
referred to in the JECL LST statement keyword FNO. Thus replacing an old
preprinted form with AFP resources does not need any change in the JCL or
POWER JECL.

 Copyright IBM Corp. 1994 39

From VSE, all the print requests to MVS, VM and AS/400 can be routed by coding
the DEST parameter in the POWER JECL LST statement, or by coding the LDEST
parameter in the JECL JOB statement.

There is no standard method to route print data sets to OS/2.

PSF/2 Release 1.10 includes the Distributed Print Function that provides a way to
use an OS/2 attached AFP printer to act like any AFP printer in the VSE system.
PSF/2 emulates an AFP printer to the VSE system, receives the print data into
the PSF/2 spool, and finally prints it in the order set in the system setup for
PSF/2. This is not cross-system printing, but a printer attached to the host in a
special way.

The DEST parameter specifies receiving node identification and when needed,
also the user identification in the receiving node. The user identification usually
indicates a specific printer. For example, coding DEST=(WTSCSL2) tells VSE to
route the output to the destination WTSCSL2; coding DEST=(WTSCSL2,PR3825)
tells VSE to route the output to the printer PR3825 in the node WTSCSL2.

If you want to have banner pages, or separator pages as they a called in VSE,
you specify it in POWER generation. The values specified in generation can be
overridden with a POWER JECL LST statement.

There is no exit in PSF/VSE to customize the separator pages. Only functions
available in form definitions and page definitions can be used for customizing.

6.2 Printing from VSE to MVS
This section describes printing from VSE on an MVS system.

6.2.1 Print Request Functions
This section describes how to use the VSE POWER JECL to initiate a print
request. The following types of data are considered:

6.2.1.1 Using POWER JECL for Print Request Submission
All the different file types are handled in the same way in POWER JECL.

Some of the information included in the POWER JOB statement is transmitted to
the receiving node and included in the banner page.

If there are no inline resources included, then only the appropriate keywords in
POWER JECL JOB or LST statements have to be coded. These keywords are
LDEST in JOB statement or DEST in LST statement to route the output and the
CLASS parameter to select the print class. The AFP related parameters can be
included in a printer parameter member or specified as keywords in the POWER
JECL LST statement. The printer parameter member is referenced in the LST
statement by coding the FNO keyword. To be able to use the AFP keywords,
such as FORMDEF, PAGEDEF and so on, the POWER AUTOSTART deck has to
include SET commands for these keywords.

It is possible to get a message notifying you that the output has been routed to
another node, but it is not possible to get a notification indicating that the
printing has finished.

40 AFP Printing in an IBM Cross-System Environment

All the subtypes of print data sets mentioned in the table are handled in the
same way.

6.2.2 Print Resource Migration
In many instances, you will want to migrate print resources from the VSE system
to the MVS platform. To migrate print resources from VSE to MVS, some
programming work is needed, as the file transfer functions available in VSE do
not provide functions for transmitting AFP resources.

To ″punch″ an AFP resource onto cards, a program (C.1, “Program to Punch an
AFP Resource for MVS” on page 163) was written. Then JCL and the punched
output was sent to MVS. In MVS, another program (C.3, “Program to Create a
Resource from VSE Punch Output” on page 168) was written to create the
resource from the input.

The procedure described above is needed if the resources are moved through a
network using telecommunications.

If a tape file is used, the resource can be copied as a flat, variable-length record
file to a tape and then loaded from the tape to an MVS library. A program to
move a resource onto a tape is described in C.6, “Program to Create a Tape File
for MVS or VM” on page 175.

The steps to migrate resources from a VSE system to an MVS system are:

• Using telecommunications:

− Use a program in the VSE system to ″punch″ the resource into the
POWER queue. With proper parameters, the job is automatically sent to
the MVS system.

− If the file is not automatically routed to the MVS system, it can be loaded
to an ICCF library and the sent to an MVS user ID.

− On the MVS side, in the case where the job is not automatically started
from the VSE system, the file can be received, and then the job can be
run in MVS to create the resource in an MVS library.

• Using a tape:

− In the VSE system, the resource is copied to a tape file, for example,
using the program described in C.6, “Program to Create a Tape File for
MVS or VM” on page 175.

− In the MVS side, an IEBGENER job is run to load the resource to an MVS
system.

6.3 Printing from VSE to VM
This section describes printing from VSE on an VM system.

6.3.1 Print Request Functions
This section describes how to use VSE POWER JECL to initiate a print request.

Chapter 6. Printing from a VSE Host 41

6.3.1.1 Using POWER JECL for Print Request Submission
All the different file types are handled in the same way in POWER JECL.

Some of the information included in the POWER JOB statement is transmitted to
the receiving node and included in the banner page.

If there are no inline resources included, then only the appropriate keywords in
POWER JECL JOB or LST statements have to be coded. These keywords are
LDEST in JOB statement or DEST in LST statement to route the output and the
CLASS parameter to select the print class. The AFP related parameters can be
included in a printer parameter member or specified as keywords in the POWER
JECL LST statement. The printer parameter member is referenced in the LST
statement by coding the FNO keyword. To be able to use the AFP keywords,
such as FORMDEF, PAGEDEF and so on, the POWER AUTOSTART deck has to
include SET commands for these keywords.

It is possible to get a message notifying you that the output has been routed to
another node, but it is not possible to get a notification indicating that the
printing has finished.

All the subtypes of print data sets mentioned in the table are handled in the
same way.

6.3.2 Print Resource Migration
In many instances, you will want to migrate print resources from the VSE system
to the VM platform. To migrate print resources from VSE to VM, some
programming work is needed, as the file transfer functions available in VSE do
not provide functions for transmitting AFP resources.

A program to ″punch″ a resource to an entry in the POWER queue is described
in C.2, “Program to Punch an AFP Resource for VM” on page 166. This program
creates a file that can be loaded to an ICCF library member and then sent to the
VM system. By setting the the PDEST parameter in the POWER JECL JOB
statement correctly, it is possible to route the the puched output directly to a
user ID in the VM system. On the VM side, an EXEC to create the resource from
this file is used. See C.5, “Program to Create a Resource in VM” on page 174.

It is also possible to use a program to copy the resource to a tape file with
variable length records. This file can then be copied to the VM system with the
MOVEFILE command.

The steps to migrate a resource from a VSE system to a VM system are:

• Using telecommunications:

− Use a program in the VSE system to ″punch″ the resource into the
POWER queue. With proper parameters, the file is automatically sent to
the VM system.

− If the file is not automatically routed to the VM system, it can be loaded
to an ICCF library and the sent to an VM user ID.

− On the VM side, the file can be received, and then an EXEC can be run in
VM to create the resource on a CMS disk.

• Using a tape:

42 AFP Printing in an IBM Cross-System Environment

− In the VSE system the resource is copied to a tape file, for example,
using the program described in C.6, “Program to Create a Tape File for
MVS or VM” on page 175.

− On the VM side, the file can be copied onto a CMS disk by using the
MOVEFILE command.

6.4 Printing from VSE to VSE
This section describes printing from VSE on a VSE system.

If the VSE systems use a shared spool, no sending of the print data set is
needed. Both systems can write files into the spool and both systems can print
files from the spool onto the printers.

6.4.1 Print Request Functions
This section describes the use of the VSE POWER JECL to initiate a print
request.

6.4.1.1 Using POWER JECL for Print Request Submission
All the different file types are handled in the same way in POWER JECL.

Some of the information included in POWER JOB statement is transmitted to the
receiving node and included in the banner page.

If there are no inline resources included, then only the appropriate keywords in
POWER JECL JOB or LST statements have to be coded. These keywords are
LDEST in JOB statement or DEST in the LST statement to route the output and
the CLASS parameter to select the print class. The AFP related parameters can
be included in a printer parameter member or specified as keywords in the
POWER JECL LST statement. The printer parameter member is referenced in
the LST statement by coding the FNO keyword. To be able to use the AFP
keywords, such as FORMDEF, PAGEDEF and so on, the POWER AUTOSTART
deck has to include SET commands for these keywords.

It is possible to get a message notifying you that the output has been routed to
another node, but it is not possible to get a notification indicating that the
printing has finished.

All the subtypes of print data sets mentioned in the table are handled in the
same way.

6.4.2 Print Resource Migration
In many instances, you will want to migrate print resources from the VSE system
to another VSE platform. To migrate print resource, from VSE to another VSE
system is possible by using the standard functions of VSE.

As the systems are similar, it is easy to migrate resources from one VSE system
to another. The easiest way is to use VSE Librarian program to copy the
resources from the sending system to a tape, and then in the receiving system
again by using the Librarian program restore the resources to the receiving
system ′s library.

If the user wants to use direct communications between systems, it is also
possible to move resources from one system to another. The resources can be

Chapter 6. Printing from a VSE Host 43

″punched″ in the sending system by using the Librarian program and then
loaded to an ICCF library. The members in the ICCF library can be sent to the
other VSE system by using functions included in the VSE system.

6.5 Printing from VSE to AS/400
This section describes printing from VSE on an AS/400 system.

Officially, a direct NJE connection from VSE to AS/400 is not supported, although
it has been successfully tested. In our case, we used VM and RSCS as an
intermediate node.

6.5.1 Print Request Functions
This section describes the use of the VSE POWER JECL to initiate a print
request.

6.5.1.1 Using POWER JECL for Print Request Submission
All the different file types are handled in the same way in POWER JECL.

No information included in POWER JOB statement is transmitted to the receiving
node and included in the banner page.

If there are no inline resources included, then only the appropriate keywords in
POWER JECL JOB or LST statements have to be coded. These keywords are
LDEST in JOB statement or DEST in LST statement to route the output, and
CLASS parameter to select the print class. The AFP related parameters can be
included in a printer parameter member or specified as keywords in the POWER
JECL LST statement. The printer parameter member is referenced in the LST
statement by coding the FNO keyword. To be able to use the AFP keywords,
such as FORMDEF, PAGEDEF and so on, the POWER AUTOSTART deck has to
include SET commands for these keywords.

It is possible to get a message notifying you that the output has been routed to
another node, but it is not possible to get a notification indicating that the
printing has finished.

All the subtypes of print data sets mentioned in the table are handled in the
same way.

6.5.2 Print Resource Migration
In many instances, you will want to migrate print resources from the VSE system
to the AS/400 platform. To migrate print resources from VSE to AS/400, some
programming work is needed, as the file transfer functions available in VSE do
not provide functions for transmitting AFP resources.

If you want to use telecommunications, the resource to be migrated has to be
converted to a format that is suitable for transmission. One way to do this is to
use a program, for example C.2, “Program to Punch an AFP Resource for VM”
on page 166, to ″punch″ the resource into an entry in the POWER/VSE queue,
then load this punch file to an ICCF library member, and then finally send it to
the AS/400 system. A program is needed in AS/400 to create a physical file
member from the received file. From the physical file member it is possible to
create an AFP resource in the AS/400 system library by using appropriate CRT
commands.

44 AFP Printing in an IBM Cross-System Environment

Using tape, the procedure is a little easier. For example, by using a program
described in C.7, “Program to Create a Tape File for AS/400” on page 176, it is
possible to copy a resource from a VSE library to a tape file with fixed record
length. In AS/400, the file can be copied to a physical file member by using the
CPYFRMTAP command. And finally, the resource can be created from the
physical file member by using an appropriate CRT command.

6.6 Printing from VSE to OS/2
This section describes printing from VSE on an OS/2 system.

There is no direct way to submit a print job to an OS/2 system. Programming
work is needed to provide this capability.

With PSF/2 Release 1.10, it is possible to use Distributed Print Function for
printing. In this case, PSF/2 acts like a printer to the VSE system, receives the
print file into the IPDS spool of PSF/2, and finally prints it on a printer attached to
the PSF/2. This is not actually cross-system printing, but a different way to
attach a printer to the VSE system,

It is possible to manually transfer print files from the VSE/POWER queue to a
workstation and then print the file in the OS/2 workstation. This works rather
well with flat files without any carriage control characters or TRC characters, but
does not work with mixed AFPDS and line data or line data with control
characters.

It would be possible - with rather much programming work - to have a sort of
automatic print submission, for example using APPC in VSE/CICS and the OS/2
workstation. In the time frame for the residency, however, this was not even
tried.

6.6.1 Print Resource Migration
Moving resources from a VSE system to an OS/2 system needs quite a lot of
programming. There are some examples of programs showing how to migrate
resources from a VSE system to an OS/2 system in Appendix C, “VSE AFP
Sample Programs” on page 163.

Chapter 6. Printing from a VSE Host 45

46 AFP Printing in an IBM Cross-System Environment

Chapter 7. Printing from an OS/400 Host

The following chapter describes the different possible implementations for AFP
printing from an OS/400 system. It discusses the different mechanisms for
requesting and transmitting a print request to a target system.

As there is an excellent document on AS/400 Printing (IBM AS/400 Printing III)
available, there is no need to go into very small details in this document.

Compared with the other environments, the capabilities to create print files with
different characteristics are fewer. For example, including resources inline
means a lot of programming work either using SAA PrintManager or other
methods. The resource objects in OS/400 are inaccessible by normal
programming tools. Using Machine Interface (MI) and C/400 with PRPQ P10102,
it may be possible to access these objects and even create a complex print data
set with mixed line and AFP data. In the time frame available, it was impossible
to accomplish any tests using these methods.

PSF was included in OS/400 as a part of the operating system, so in this way it is
different from the other platforms where PSF is available. In the most recent
releases, PSF/400 is a separately orderable program product.

AFP implementation in OS/400 does not include page definitions for print files
that are produced with OS/400 applications. Page definitions are included in the
implementation only to enable printing of line data coming from S/370 nodes.

PSF in OS/400 is similar to the implementation in VM as inline resources are
concerned. PSF in OS/400 accepts any AFP resources included in the print data
stream. It is possible to create a spool file in the OS/400 system with an
application program or using the OS/400 services from the panels.

OS/400 produces header pages with some useful information only if the print file
is originating from the printing system itself. When a print file received from
another node is printed, hardly any information related to the originating node
can be found.

OS/400 also provides functions for collecting account information. This is
described in the Work Management Guide manual. The accounting information
only pertains to the operations in the printing node, and as no information
coming from the other nodes is included, it is not possible to use the data
gathered by OS/400 to, for example, charging the remote users for services.

There are some products that produce AFPDS output in OS/400.

Advanced Function Printing Utilities (AFPU) provide a method to create
formatting objects called Printout Format Definition (PFD). These objects can be
used as formatting resources by AFPU when printing a database file. This
method resembles using page definitions in S/370 systems. PFD has some
functions that are not included in page definitions and vice versa. The resource
PFD and page definition are not similar. No tools to convert these objects to
each other exist. AFPU has a function to print an overlay or an page segment.
This function creates a spool file with the resource as an inline resource
followed by an AFP document referring to this object. Because of that, the
receiving system has to have the capability to accept overlays and page

 Copyright IBM Corp. 1994 47

segments as inline resources if the output of the program is sent to another
node.

7.1 Print Request Functions
This section describes the ways to initiate a print request from an OS/400
system.

7.1.1 Using Send Network Spooled File (SNDNETSPLF) Command
No matter how the spool file is created, it can be sent to another node after the
spool file is in the OS/400 spool.

Sending a print file from an OS/400 system to another system is initiated by
using the Send Network Spooled File (SNDNETSPLF) command. This command
can be entered on the command line in an OS/400 system, or it can included in a
program. It is also possible to initiate the sending of a spool file when working
with output queues (WRKOUTQ). It is possible to enter code indicating a request
to send the file on one of the screens. In each case, the SNDNETSPLF command
is issued as the final step.

The use of the SNDNETSPLF command does not give a large repertoire of
parameters to be attached to the spool file sent. It is possible, of course, to give
the destination and node ID of the printer in the receiving node. It is also
possible to specify some other parameters, for example output class. AFP
related parameters, such as form definition, page definition, or characters to be
used cannot be entered in the SNDNETSPLF command.

Using the Work with Output Queue (WRKOUTQ) command it is possible to
change, for example, the form name, but there is no way to specify, for example,
the name of the form definition so that information would be passed to the
receiving system.

The menu screen of the SNDNETSPLF command is shown below.

__
|
| Send Network Spooled File (SNDNETSPLF)
|Type choices, press Enter.
|Spooled file > QSYSPRT Name
|User ID:
| User ID PR3825 Character value
| Address WTSCSL2 Character value
| + for more values
|Job name > DSP11 Name, *
| User > PRTANGEL Name
| Number > 008073 000000-999999
|Spooled file number > 11 1-9999, *ONLY, *LAST
|Data format *RCDDATA *RCDDATA, *ALLDATA
| Additional Parameters
|VM/MVS class A A, B, C, D, E, F, G, , I...
| Bottom
|F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
|F24=More keys
|
|___

48 AFP Printing in an IBM Cross-System Environment

The ″User ID″ (PR3825) specifies the destination in the in the receiving node
(WTSCSL2) that is specified in the field ″Address″. Print class can be specified
in ″VM/MVS class″. This works also with VSE.

There are two possibilities to specify the ″Data format″, either *RCDDATA or
*ALLDATA. When printing print data sets that where originally designed to be
printed on an SCS printer using *RCDDATA transfers the print file itself, but the
characteristics of the print file, such as drawer and form type, are not
transferred. By specifying *ALLDATA, all related information is also passed to
the receiving node. When a print data set including AFPDS or AFPDS and line
data is sent to another node, *ALLDATA must be specified.

In any case, there are restrictions in passing parameters to other nodes. So
without any programming effort on either the OS/400 side or in the receiving
node, print files are printed using the default value in the receiving node.

7.1.2 Printing Using SAA PrintManager
SAA PrintManager provides the user with more possibilities than SNDNETSPLF
to enter information about the characteristics of the print file.

The only way to use SAA PrintManager from OS/400 is to use an application
program written in C, COBOL, or RPG. Using SAA PrintManager, it is possible
to specify most of the AFP related parameters.

7.2 Printing from OS/400 to MVS
The spooled files from the OS/400 to MVS were transferred over NJE via the
VM/MVS Bridge. To initiate the sending different methods were used.

7.2.1 Print Request Functions
This section describes how to initiate a print request.

7.2.1.1 Using SNDNETSPLF for Print Request Submission
This is the normal way to initiate the sending of a spool file to an MVS system.
This command can be entered on the command line of the OS/400 system, it can
be initiated from WRKOUTQ panels, or it can be hidden in an application
program. In each case, the final stage is the same; the SNDNETSPLF command
with appropriate parameters is issued. There are different ways to create the
spool data set. Normally, OS/400 applications produce SCS data stream,
although it is also possible to create AFPDS print data sets.

There is a program called the Advanced Function Printing Utility to create some
types of AFPDS in an OS/400 system. This program can print overlays and page
segments on an AFP printer in OS/400 by creating a document calling these
resources and including the resources as inline resources in front of the
document. It can even print an OS/400 data base file using Printout Format
Definitions. In each case, the resulting file is an AFPDS print data set.

The print data sets do not include all the parameters needed to specify the
output characteristics. Neither is it possible to enter all these parameters in the
SNDNETSPLF command.

It means that in most of the cases the print file will be printed in MVS using the
default values specified on MVS side.

Chapter 7. Printing from an OS/400 Host 49

It is possible to transfer the print class and the form name to the MVS system.
In MVS it is possible to write an user exit (APSUX07) to change the default
values based on the print class and the form name information. There is an
example of changing the default values for different form names. The example
code is included in SAMPLIB with PSF/MVS. For more information about how to
code the exit, see PSF/MVS System Programmer′s Guide. Without user
modification (coding exits APSUX04 and APSUX07) or applying rather recent
PTFs to PSF/MVS, PSF/MVS does not accept AFP resources other than page
definition and form definition inline in the print data set.

SCS data

SCS print data sets were sent to MVS by using SNDNETSPLF. In this case, data
format *RCDDATA was used. The printing was done in the MVS system using
the default values. The files were printed as expected.

Line data and structured field records

As there were no tools available to create a line data file with structured fields
records imbedded, test files were created in the S/370 system and transferred to
OS/400 to be printed by using PRTAFPDTA. The problem in this case is also the
lack of tools to pass the AFP related information over to the MVS system. Thus,
the names of the copy group and page format names as well as the page
overlay names in the structured field records were made to match the names in
the form definition and page definition in the MVS system to allow IMM, IDM
and IPO records to be used. There is no similar problem with the page
segments and IPS commands, as using IPS does not require the names of the
segments to be specified in a form or page definition. The printed output was
printed as expected in the MVS system.

Line data with inline PAGEDEF/FORMDEF

As there were no tools available to create a line data file with inline resources in
OS/400, the test files were created in S/370 system and transferred to OS/400 to
be printed by using PRTAFPDTA. The spool file created by the PRTAFPDTA
command was then sent to the MVS system. The problem in this case is also
the lack of tools to pass the AFP related information over to the MVS system.
Thus, the names of the inline form definition and page definition were made to
match the default values in MVS. The printed output was printed as expected in
the MVS system.

Line data with inline fonts

As there were no tools available to create a line data file with inline resources in
OS/400, the test files were created in S/370 system and transferred to OS/400 to
be printed by using PRTAFPDTA. The spool file created by the PRTAFPDTA
command was then sent to the MVS system. AFP resources other than form
definition and page definition are not supported as inline resources by MVS. To
allow other resources to be inline, two user exits were coded on the MVS side.
With a rather recent PTF, this support is brought officially into PSF/MVS. With
these modifications, the printed output was printed as expected in the MVS
system.

Full AFPDS

50 AFP Printing in an IBM Cross-System Environment

Print files that are normal AFPDS documents print correctly except for the
restrictions imposed by OS/400 capabilities to transfer AFP related parameters.
The document was printed using the default form definition in the MVS system.

The data printed on the banner pages in the MVS system is missing all the
necessary information to show which job originally sent the print file. The
JOBNUMBER and JOBID fields constantly contain JOB00001 and AS400001. The
only information referring to anything on the OS/400 side is NAME field that has
the originating user ID printed.

As the information passed from the sending node is poor, it is not very useful,
for example, for accounting purposes.

The user sending the print file to MVS gets a message in the message queue.
This message only tells that the file has been received in the MVS node, but no
message is sent when the printing has finished.

7.2.2 Migrating Resources from OS/400 to MVS
In many instances you will want to migrate print resources from the OS/400
system to the MVS platform. The following shows some of the ways you can
accomplish this task.

As the AFP resources in OS/400 are in a format that is not accessible by normal
programming means, the migrating of the resources is rather difficult.

It may be possible to use Machine Interface and C/400 with PRPQ P10102 to
access the resources. It was not possible to test this during the residency.

So, even migrating the resources using a magnetic tape as the media needs
much programming work.

It is not possible to send the resources as normal files to other systems, where
more tools might be available. So, even this alternative requires programming.

If SAA PrintManager is available, it would be possible to use its inline resource
functions to send a file with inline resources to the MVS system. Then it would
be possible to extract the resources from the spool file with rather moderate
programming effort.

The OS/400 command DMPOBJ can access these resources, so it can be used to
find a laborious way to migrate the resources. The procedure starts with
dumping the resource with DMPOBJ. The output will be in the output queue
QPSRVDMP. The dump has all the data included in the resource printed in
hexadecimal. This spool file can be sent to another node using the
SNDNETSPLF command. In the receiving node this print file is received to a file.
With a REXX EXEC or a program written in some other language, this spool file
can be changed to a resource. Obviously this works, but the procedure is far
from an easy and user-friendly way to do it. We had no time to write the EXEC
or program code to accomplish the test.

By using AFPU to send page segments or overlays inline, resources can be
migrated. The file created by AFPU can be sent to a user ID in MVS, received to
a file in MVS, and then with an EXEC (see A.2, “Routine to Extract AFP Inline
Resources” on page 76) create a resource from the file. The AFPU program
does not support resources other than form definitions, page segments and

Chapter 7. Printing from an OS/400 Host 51

overlays. It is not very likely that unique fonts exist in AS/400 system, so the
need to send these objects is rather rare.

In the most recent releases, there is a function to transform an AFP resource to
a physical file member. This transformed file can then be sent through the
network, or it can be moved manually using a magnetic tape to the MVS system
and stored into an AFP resource library there.

7.3 Printing from OS/400 to VM
This section describes printing from OS/400 on a VM system. The spooled files
from OS/400 to VM were transferred over NJE via the VM/MVS Bridge.

7.3.1 Print Request Functions
This section describes how to initiate a print request.

7.3.1.1 Using SNDNETSPLF for Print Request Submission
This is the normal way to initiate the sending of a spool file to a VM system.
This command can be entered on the command line of the OS/400 system, it can
be initiated from WRKOUTQ panels, or it can be hidden in an application
program. In each case, the final stage is the same; the SNDNETSPLF command
with appropriate parameters is issued. There are different ways to create the
spool data set. Normally, OS/400 applications produce SCS data stream,
although it is also possible to create AFPDS print data sets.

There is a program called the Advanced Function Printing Utility to create some
types of AFPDS in an OS/400 system. This program can print overlays and page
segments on an AFP printer in OS/400 by creating a document calling these
resources and including the resources as inline resources in front of the
document. It can even print an OS/400 data base file using Printout Format
Definitions. In each case, the resulting file is an AFPDS print data set. This
approach works for VM, as VM accepts all resources as inline resources.

The print data sets do not include all the parameters needed to specify the
output characteristics. Neither is it possible to enter all these parameters in
SNDNETSPLF command.

It means that in most of the cases the print file will be printed in VM using the
default values specified on the VM side.

It is possible to transfer the print class and the form name to the VM system.
Based on form name or print class, it is possible in PSF/VM to set different
default values for all AFP related parameters. This enables more AFP related
information passed from OS/400 to VM. To have the expected result, an
agreement on print classes and form names and the parameters related to these
has to exist between OS/400 and VM systems.

SCS data

SCS print data sets were sent to VM by using SNDNETSPLF. In this case, data
format *RCDDATA was used. The printing was done in the VM system using the
default values. The files were printed as expected.

Line data and structured field records

52 AFP Printing in an IBM Cross-System Environment

As there were no tools available to create a line data file with structured fields
records imbedded, test files were created in the S/370 system and transferred to
OS/400 to be printed by using PRTAFPDTA. The problem in this case is also the
lack of tools to pass the AFP related information over to the VM system. Thus,
the names of the copy group and page format names as well as the page
overlay names in the structured field records were made to match the names in
the form definition and page definition in the VM system to allow IMM, IDM and
IPO records to be used. There is no similar problem with the page segments
and IPS commands, as using IPS does not require that the names of the
segments be specified in a form or page definition. The printed output was
printed as expected in the VM system.

Line data with inline PAGEDEF/FORMDEF

As there were no tools available to create a line data file with inline resources in
OS/400, the test files were created in the S/370 system and transferred to OS/400
to be printed by using PRTAFPDTA. The spool file created by the PRTAFPDTA
command was then sent to the VM system. The problem in this case is also to
lack of tools to pass the AFP related information over to the VM system. Thus
the names of the inline form definition and page definition were made to match
the default values in VM. The printed output was printed as expected in the VM
system.

Line data with inline fonts

As there were no tools available to create a line data file with inline resources in
OS/400, the test files were created in the S/370 system and transferred to OS/400
to be printed by using PRTAFPDTA. The spool file created by the PRTAFPDTA
command was then sent to the VM system. The printed output was printed as
expected in the VM system.

Full AFPDS

Print files that are normal AFPDS documents print correctly except for the
restrictions imposed by OS/400 capabilities to transfer AFP related parameters.
The document was printed using the default form definition in the VM system.

The data printed on the banner pages in the VM system is missing most of the
necessary information to show which job originally sent the print file. The
USERID and NODEID show correctly the user id and node id, where the print file
was sent from. It also shows in FILETYPE field the name of the original spool file
in OS/400.

As the information passed from the sending node is poor, it is not very useful,
for example, for accounting purposes.

The user sending the print file to VM gets a message in the message queue.
This message indicates that the file has been received in the VM node. PSF/VM
SFCM and PDM message files are returned to the user in OS/400 after PSF/VM
has finished the printing of the file.

Chapter 7. Printing from an OS/400 Host 53

7.3.2 Mig rating Resources from OS/400 to VM
In many instances, you will want to migrate print resources from the OS/400
system to the VM platform.

As the AFP resources in OS/400 are in a format that is not accessible by normal
programming means, the migrating of the resources is rather difficult.

It may be possible to use Machine Interface and C/400 with PRPQ P10102 to
access the resources. It was not possible to test this during the residency.

So, even migrating the resources using a magnetic tape as the media needs
much programming work.

It is not possible to send the resources as normal files to other systems, where
more tools might be available. So, even this alternative requires programming.

If SAA PrintManager is available, it would be possible to use its inline resource
functions to send a file with inline resources to the VM system. As VM accepts
any resources inline, there may be no need to put them in the libraries of the VM
system. Anyway, it would be possible to extract the resources from the spool
file with rather moderate programming effort.

The OS/400 command DMPOBJ can access these resources, so it can be used to
find a laborious way to migrate the resources. The procedure starts with
dumping the resource with DMPOBJ. The output will in the output queue
QPSRVDMP. The dump has all the data included in the resource printed in
hexadecimal. This spool file can be sent to another node using the
SNDNETSPLF command. In the receiving node, this print file is received to a file.
With a REXX EXEC or a program written in some other language, this spool file
can be changed to a resource. Obviously this works, but the procedure is far
from an easy and user-friendly way to do it. We had no time to write the EXEC
or program code to accomplish the test.

By using AFPU to send page segments or overlays inline, resources can be
migrated. The file created by AFPU can be sent to a user ID in VM, received to a
file in VM, and then with an EXEC (see B.2, “OS/400 Resource Converter for VM”
on page 158) create a resource from the file. The AFPU program does not
support resources other than form definitions, page segments and overlays. It is
not very likely that unique fonts exist in AS/400 system, so the need to send
these objects is rather rare.

In the most recent releases, there is a function to transform an AFP resource to
a physical file member. This transformed file can then be sent through the
network, or it can be moved manually using a magnetic tape to the VM system
and stored onto a CMS disk there.

7.4 Printing from OS/400 to VSE
This section describes printing from OS/400 on a VSE system. The spooled files
from OS/400 to VM were transferred over NJE via the VM/MVS Brigde. The
spooled files from the OS/400 to the VSE were transferred first through the
VM/MVS Bridge to a VM node and then with RSCS to VSE.

A direct connection between OS/400 and VSE has been successfully tested, but
this is not officially supported.

54 AFP Printing in an IBM Cross-System Environment

7.4.1 Print Request Functions
This section describes how to initiate a print request.

7.4.1.1 Using SNDNETSPLF for Print Request Submission
This is the normal way to initiate the sending of a spool file to an VSE system.
This command can be entered on the command line of the OS/400 system, it can
be initiated from WRKOUTQ panels, or it can be hidden in an application
program. In each case the final stage is the same; the SNDNETSPF command
with appropriate parameters is issued. There are different ways to create the
spool data set. Normally, OS/400 applications produce SCS data stream,
although it is also possible to create AFPDS print data sets.

There is a program called the Advanced Function Printing Utility to create some
types of AFPDS in an OS/400 system. This program can print overlays and page
segments on an AFP printer in OS/400 by creating a document calling these
resources and including the resources as inline resources in front of the
document. It can even print an OS/400 data base file using Printout Format
Definitions. In each case, the resulting file is an AFPDS print data set. This
approach does not work for VSE except for files that have no inline resources or
have only VSE supported inline resources included.

The print data sets do not include all the parameters needed to specify the
output characteristics. Neither is it possible to enter all these parameters in
SNDNETSPLF command.

It means that in most of the cases the print file will be printed in VSE using the
default values specified on the VSE side.

It is possible to transfer the form name to the VSE system. In VSE, it is possible
to include AFP related parameters in a printer parameter member with the name
of a form (prefixed by Z1). This would make it possible to define different sets of
defaults to be used for print jobs from an OS/400 system. PSF/VSE does not
accept AFP resources than page definition and form definition inline in the print
data set.

SCS data

SCS print data sets were sent to VSE by using SNDNETSPLF. In this case, data
format *RCDDATA was used. The printing was done in the VSE system using the
default values. The files were printed as expected.

Line data and structured field records

As there were no tools available to create a line data file with structured fields
records imbedded, test files were created in the S/370 system and transferred to
AS/400 to be printed by using PRTAFPDTA. The problem in this case is also the
lack of tools to pass the AFP related information over to the VSE system. Thus,
the names of the copy group and page format names as well as the page
overlay names in the structured field records were made to match the names in
the form definition and page definition in the VSe system to allow IMM, IDM and
IPO records to be used. There is no similar problem with the page segments
and IPS commands, as using IPS does not require that the names of the
segments be specified in a form or page definition. The printed output was
printed as expected in the VSE system.

Chapter 7. Printing from an OS/400 Host 55

Line data with inline PAGEDEF/FORMDEF

As there were no tools available to create a line data file with inline resources in
AS/400, the test files were created in the S/370 system and transferred to AS/400
to be printed by using PRTAFPDTA. The spool file created by the PRTAFPDTA
command was then sent to the VSE system. The problem in this case is also the
lack of tools to pass the AFP related information over to the VSE system. Thus,
the names of the inline form definition and page definition were made to match
the default values in VSE. The printed output was printed as expected in the VSE
system.

Line data with inline fonts

As VSE does not accept fonts as inline resources, this case was not tested.

Full AFPDS

Print files that are normal AFPDS documents print correctly except for the
restrictions imposed by OS/400 capabilities to transfer AFP related parameters.
The document was printed using the default form definition in the VSE system.

The data printed on the banner pages in the VSE system is missing all the
necessary information to show which job originally sent the print file. The JOB
NO field always contains 00001, and the JOBNAME is AS400001. The only
information referring to anything on the OS/400 side, is the ORG USER field that
has the originating user ID printed and NODE that indicates the node where the
file was sent from.

As the information passed from the sending node is poor, it is not very useful,
for example, fot accounting purposes.

The user sending the print file to VSE gets a message in the message queue.
This message only indicates that the file has been received in the VSE node, but
no message is sent when the printing has finished.

7.4.2 Migrating Resources from OS/400 to VSE
In many instances, you will want to migrate print resources from the OS/400
system to the VSE platform. The following shows some of the ways you can
accomplish this task.

As the AFP resources in OS/400 are in a format that is not accessible by normal
programming means, the migrating of the resources is rather difficult.

It may be possible to use Machine Interface and C/400 with PRPQ P10102 to
access the resources. It was not possible to test this during the residency.

So, even migrating the resources using a magnetic tape as the media needs
much programming work.

It is not possible to send the resources as normal files to other systems, where
more tools might be available. So, even this alternative requires programming.

If SAA PrintManager is available, it would be possible to use its inline resource
functions to send a file with inline resources to the VSE system. Then it would
be possible to extract the resources from the spool file with rather laborious
programming effort.

56 AFP Printing in an IBM Cross-System Environment

The OS/400 command DMPOBJ can access these resources, so it can be used to
find a laborious way to migrate the resources. The procedure starts with
dumping the resource with DMPOBJ. The output will in the output queue
QPSRVDMP. The dump has all the data included in the resource printed in
hexadecimal. This spool file can be sent to another node using the
SNDNETSPLF command. In the receiving node, this print file is placed to the
POWER queue. With a user written program, this spool file can be read from the
POWER list queue and changed to a resource in the VSE library. Obviously this
works, but the procedure is far from an easy and user-friendly way to do it. We
had no time to write the program code to accomplish the test.

By using AFPU to send page segments or overlays inline, resources can be
migrated. The file created by AFPU can be sent to the VSE system. A program
can be written to extract the resource from the spool file in the POWER/VSE
queue, but this is a very complicated way to do it. The AFPU program does not
support resources other than form definitions, page segments and overlays. It is
not very likely that unique fonts exist in AS/400 system, so the need to send
these objects is rather rare.

In the most recent releases, there is a function to transform an AFP resource to
a physical file member. This transformed file can then be moved manually using
a magnetic tape to the VSE system and, by using a user program, create an AFP
resource into the VSE library.

7.5 Printing from OS/400 to OS/400
In our test case two OS/400 systems were connected with an SDLC line.

7.5.1 Print Request Functions
This section describes how to initiate a print request.

7.5.1.1 Using SNDNETSPLF for Print Request Submission
This is the normal way to initiate the sending of a spool file to another OS/400
system. This command can be entered on the command line of the OS/400
system, it can be initiated from WRKOUTQ panels, or it can be hidden in an
application program. In each case, the final stage is the same; the SNDNETSPLF
command with appropriate parameters is issued. There are different ways to
create the spool data set. Normally, OS/400 applications produce SCS data
stream, although it is also possible to create AFPDS print data sets.

There is a program called the Advanced Function Printing Utility to create some
types of AFPDS in an OS/400 system. This program can print overlays and page
segments on an AFP printer in OS/400 by creating a document calling these
resources and including the resources as inline resources in front of the
document. It can even print an OS/400 data base file using Printout Format
Definitions. In each case, the resulting file is an AFPDS print data set. This
approach works when sending to another OS/400 system, as OS/400 AFP
accepts any resources as inline resources.

The print data sets do not include all the parameters needed to specify the
output characteristics. Neither is it possible to enter all these parameters in
SNDNETSPLF command. Specifying the *ALLDATA parameter in the data format
field causes all information relevant to that print file to be sent over to the other
OS/400 system.

Chapter 7. Printing from an OS/400 Host 57

SCS data . Worked as expected.

Line data and structured field records . Worked as expected.

Line data with inline PAGEDEF/FORMDEF . Worked as expected.

Line data with inline fonts . Worked as expected.

Full AFPDS . Worked as expected.

All the test cases were printed correctly. It is not possible, without major
programming work, to create all the test cases in OS/400. Because of that, files
that were created and then transferred to OS/400, were mostly used as test
cases.

In some cases, output from the AFP Utility was used as a test print file.

The data printed on the banner pages in the printing OS/400 contain, only
information from the printing system and does not identify the real origin of the
print file.

As the information passed from the sending node is poor, it is not very useful,
for example, for accounting purposes.

TCP/IP implementation in OS/400 has functions that allows the user to send
almost any print file to another OS/400 system. This was included in the new
version of the OS/400 operating system.

7.5.2 Migrating Resources from OS/400 to OS/400
In many instances, you will want to migrate print resources from the OS/400
system to the OS/400 platform. The following shows some the way you can
accomplish this task.

The example is from the IBM AS/400 Printing II.

• Create a Save File.

• Save the resource to the save file.

• Send the save to the other OS/400.

• RCVNETF on the receiving system.

• Restore the objects to a data base.

7.6 Printing from OS/400 to OS/2
This section describes printing of OS/400 files on a printer driven by PSF/2 on an
OS/2 server.

In general, the facilities that support communications between OS/400 and OS2
do not facilitate printing. There is, for instance, no direct spool-to-spool
communication of print files, such as Network Job Entry (NJE) provides for MVS,
VM, VSE, and OS/400.

The Distributed Print Function included in PSF/2 Release 1.10 enables an OS/2
attached PSF/2 supported printer to act as a printer to the OS/400 system. PSF/2
receives the print file to an IPDS spool file in OS/2 and prints it on a printer in

58 AFP Printing in an IBM Cross-System Environment

the order set by the system administrator. In this case, this is not really
cross-system printing, although the system controlling the printing is different
from the system driving the physical device.

AS/400 TCP/IP implementation provides some functions that allow the user to
send an OS/400 spool file to an OS/2 system to be printed there.

The first requirement is a vehicle to move the print file from OS/400 to OS2.
There are not many possibilities:

• OS/2 Communications Manager 3270 Emulation File Transfer Program

An OS/2 user that is logged on to the OS/400 using OS/400 PC Support can
issue an OS/2 command that will transfer a file of data from OS/400 to the
OS/2 workstation.

• TCP/IP File Transfer Protocol

An OS/400 user can use the TCP/IP FTP program to “login” to the OS/2
server and ship a file of data.

The second requirement is a mechanism to deliver the print data to the spool of
the target OS/2 system, accompanied by the control information necessary to
govern the printing process. Both processes described above require user
interaction (that is, an APRINT command) on the OS/2 machine in order to
complete the printing task.

7.6.1 Technical Hurdles
There are some technical hurdles associated with printing OS/400 files on an
OS/2 server:

• OS/2 represents data in ASCII while OS/400 uses EBCDIC code points. This
means that normal text data must go through an EBCDIC to ASCII translation
during transport. Text files that contain unusual code points may not be
accurately translated. For instance, line-data files that contain machine
carriage control characters may not be properly translated by the standard
translate tables.

• AFPDS data, on the other hand, is exactly the same on both OS/400 and
OS/2. That is, when transporting AFPDS data from OS/400 to OS/2, no
conversion from EBCDIC to ASCII should be done (that is, BINARY transfer).
Therefore, it is not possible to transport files that contain both AFPDS and
non-AFPDS data. The translation option chosen applies to the entire file
which means it will be incorrect for part of the data.

• OS/2 has no page definition concept. The page definition is used by PSF to
map line-data files to AFP pages. This mapping depends upon 1403/3800-1
line-data structures which are not native to OS/2. Therefore, PSF/2 does not
employ page definitions, nor does it support OS/400 SCS print files, just as
PSF on the OS/400 does not support the printing of ASCII print files.

The lack of page definition support on OS/2 has some deeper implications:

− Many of the simple page formats OS/400 users expect to be able to apply
to print files, such as 2-up or landscape printing, are not available when
the file is sent to OS/2.

− It is not possible to select a character set (font) using the CHARS
parameter.

− Carriage control and TRC characters are not recognized by OS/2.

Chapter 7. Printing from an OS/400 Host 59

− Conditional processing is not available.

There is no LN2AFPDS program available in an OS/400 environment, so
there is no way around the problems above.

7.6.2 Print Request Functions
This section describes how to receive a print data file from an OS/400 system to
an OS/2 system and print it in the OS/2 system.

7.6.2.1 Using File Transfer to Download the Print File
If the file to be transmitted and printed is a flat file without carriage control
characters and TRC characters, the file can be transmitted using EBCDIC/ASCII
conversion in the file transfer. After the file has been received, it is possible to
print it using the APRINT command with the appropriate parameters.

If the file is an AFPDS file, it is downloaded with the BINARY option and then
printed using the APRINT command, again setting up the parameters as needed.

If the file is a mixture of line data and AFP data, or if the file is a line data file
with either carriage control or TRC bytes, the file has to be converted to AFPDS
to achieve a correct output. There are no tools available for this in an OS/400
system. This conversion needs a major programming effort by the user. After
conversion, the file would be in AFPDS format, and can be received to the OS/2
system and then printed in the same way as any AFPDS file.

7.6.3 Print Resource Migration from OS/400 to OS/2
There may be cases where the receiving PSF/2 does not have all the resources
required to print the job. In such cases, the resources must either be placed
inline with the print file, or they must be placed in the PSF/2 resource libraries
before the print request is submitted. Since AFP resources are AFPDS
structures, under OS/2 they may only be used with full AFPDS files, for the
reasons discussed as “technical hurdles” on page 59. Flat files that require
some special resource can only be handled by preinstalling that resource in the
PSF/2 resource library.

AFPDS resources may be transferred from OS/400 to OS/2 using 3270 File
Transfer if the resources can be converted to physical file members. In the most
recent releases, there is a function to transform an AFP resource in an OS/400
system to a physical file member. This transformed file can be downloaded to
the OS/2 system. The transfer must be BINARY to prevent the destruction of
AFPDS data. As AS/400 pads all the records with blanks, the resource has to be
changed before it is usable in the PSF/2 system. A program to remove the extra
blanks is in D.1, “AS4002OS Routine to Remove Extra Blanks” on page 189. The
resulting OS/2 file must then be added into the PSF/2 resource library using an
RLADD command.

60 AFP Printing in an IBM Cross-System Environment

Chapter 8. Printing from an OS/2 Host

This chapter describes some possible implementations for AFP printing from an
OS/2 system. It discusses the different mechanisms for requesting and
transmitting a print request to a target system.

In general, no available facilities capable of connecting an OS/2 workstation to
something else provide a solid foundation for implementing automated handling
services for AFP print work. There is, for instance, no direct spool-to-spool
communication of print files, such as Network Job Entry (NJE) provides for MVS,
VM, VSE, and AS/400. Some specific product environments, such as
OfficeVision* and Enhanced Connectivity Facilities (ECF) offer support for their
own requirements, but there is no generic AFP print file support that is available
to a wide array of products and applications.

Some of the connections available to an OS/2 workstation:

• LAN Services

Local Area Networks are a very common method of joining OS/2, DOS, AIX,
and other types of workstation together. LANs provide the capability for
users to send messages to one another and share data and services.

Users on host mainframes, however, have no natural access to LAN-based
services. While it is true that host mainframes may be attached to LANs and
use them as communication vehicles, end users on the mainframe usually
have access only to some particular LAN-based application that has been
specifically coded to communicate with their host application.

• APPC

Advanced Program-to-Program Communication offers a set of facilities that
provide application program access to the SNA LU 6.2 protocol for program
to program communication. While it provides a well defined vehicle for
communication between a host mainframe application and an OS/2
application, it requires that those applications be written. APPC provides
programming interfaces only.

• Host Terminal Emulators

There are a number of 3270 terminal emulation packages available, including
the emulation services provided by the OS/2 Communication Manager.
These emulators offer the capability to move data files between the host
mainframe and the OS/2 workstation, in both directions.

These emulator packages are designed, however, to permit an end user at
the workstation to use it as a host terminal. Therefore, the facilities are
designed to require human interaction. The workstation must be logged on
to a host interactive session before files may be transferred. Further, all file
transfer activity must be initiated from the workstation.

• TCP/IP

TCP/IP provides protocols for connecting peer systems together that have
become a de facto industry standard over the past decade. It offers the
benefit of being designed to connect disparate systems together in a
transparent way. In addition to all IBM SAA platforms being supported,
TCP/IP permits connections to AIX and UNIX systems. Further, most
implementations provide some higher level application functions, such as

 Copyright IBM Corp. 1994 61

File Transfer Protocol, which moves files between systems, TELNET, which
provides remote logon service, and Simple Mail Transfer Protocol which
provides electronic mail services.

FTP provides facilities for files to be moved from one TCP/IP node to
another. Since both systems are peers, transport may be initiated by either
end. This fact makes it highly attractive as a vehicle for moving print files
from any client to any server.

There is also a common TCP/IP application known as Remote Print, usually
accessed using the command LPR. This command provides a neat user
interface for shipping print files to a printer driven by a remote system.

During the course of our project, we evaluated the feasibility of basing some
generalized server function on these available vehicles:

• LAN Server/Requester facilities are, of course, unavailable to host users.

• APPC offers the necessary facilities, but requires extensive user
programming to access them.

• The 3270 Emulation File Transfer Program cannot support a generalized
server function because file transfer can only be initiated from one end.

• The TCP/IP option carries the powerful attraction that it permits connection
between a wide variety of operating platforms, both IBM and non-IBM. The
File Transfer Protocol function requires some user programming to make it
useful as a carrier of AFP print work, but far less than would be the case
with APPC. In addition, TCP/IP will connect to more platforms than APPC.

8.1.1 File Transfer Protocol Technical Hurdles
In implementing our TCP/IP File Transfer Protocol server, we encountered some
technical obstacles. Those germane to the OS/2 platform are:

• OS/2 represents data in ASCII while MVS, VM, VSE, and OS/400 use EBCDIC
code points. This means that normal text data must go through an ASCII to
EBCDIC translation during transport to one of these systems. File Transfer
Protocol provides for either BINARY transport, which does no code point
translation, or ASCII transport, which translates ASCII to EBCDIC during
transmission.

Text files that contain unusual code points may not be accurately translated.
For instance, line-data files that contain machine carriage control characters
may not be properly translated by the standard FTP translate tables. One
would not normally expect an OS/2 application to generate host line-data
output, but it is quite possible that such a file might arrive at the OS/2
system from elsewhere.

• AFPDS data, on the other hand, is exactly the same on all platforms. That is,
when transporting AFPDS data from OS/2 to an EBCDIC platform, no
conversion from ASCII to EBCDIC should be done (that is, BINARY transfer).
Therefore, it is not possible to transport files that contain both AFPDS and
non-AFPDS data. The translation option chosen applies to the entire file
which means it will be incorrect for part of the data.

• OS/2 has no concept of a record , whereas MVS, VM, VSE, and OS/400 expect
data files to comprise records. Files under OS/2 are a continuous stream of
characters. When such files are transported to one of these systems, they
must be reorganized into records. For text files this is done by breaking the
data stream into records based on the presence of Carriage Return/Line

62 AFP Printing in an IBM Cross-System Environment

Feed (CRLF) sequences. Because AFPDS must be transported to the host
using BINARY transmission (that is, no translation from ASCII to EBCDIC),
the records cannot be identified by the presence of CRLF sequences.
Therefore, AFPDS is broken into records by filling each record to the
maximum defined record length, without regard to the lengths of the actual
AFPDS structured fields. In the final result, some records may contain many
AFPDS structured fields, and, conversely, some AFPDS structured fields may
span multiple records. Such a file is not printable by PSF, which expects
each AFPDS structured field to occupy a single variable length record. The
MVS AFPDSFIX routine, described in A.1, “AFPDSFIX Routine” on page 73,
provides facilities to reconstruct AFPDS records that have been “streamed”
in this fashion.

8.2 Printing from OS/2 to MVS
This section describes printing of files from an OS/2 workstation on a printer
driven by PSF/MVS on an MVS system.

8.2.1 Print Request Functions
This section describes how to upload a print file from an OS/2 system to an MVS
system.

There is no automatic way to upload a print file from an OS/2 system to an MVS
system.

The user has to upload the file manually using terminal emulator session or
TCP/IP FTP.

After uploading, the file can be printed in the MVS system with the utilities
available in the MVS system.

A flat file from an OS/2 system can be uploaded using ASCII/EBCDIC conversion
provided that the file does not contain any printer control characters.

An AFPDS file can be uploaded, and it has to be uploaded as binary. The
differences in the file structure in OS/2 and MVS causes one extra step. An
AFPDS file in OS/2 is a file without a record structure, as if it were one long
record. In MVS it has to be split into records before PSF/MVS accepts it. One
way to do this splitting is described in A.1, “AFPDSFIX Routine” on page 73.

8.2.2 Print Resource Migration from OS/2 to MVS
There may be cases where the receiving MVS system does not have all the
resources required to print the job. In such cases, the resources must either be
placed inline with the print file, or they must be placed in the MVS system′s
resource libraries before the print request is submitted. Since AFP resources
are AFPDS structures, under OS/2 they may only be used with full AFPDS files,
for the reasons discussed as 8.1.1, “File Transfer Protocol Technical Hurdles” on
page 62. Flat files that require some special resource can only be handled by
preinstalling that resource in the MVS libraries.

AFPDS resources may be transferred from OS/2 to MVS using either 3270 File
Transfer, or the TCP/IP File Transfer Protocol. In both cases, the transfer must
be BINARY to prevent the destruction of AFPDS data. In both cases, the
resulting file will not be acceptable to PSF/MVS because of the “streaming” of

Chapter 8. Printing from an OS/2 Host 63

the AFPDS discussed as 8.1.1, “File Transfer Protocol Technical Hurdles” on
page 62. The AFPDSFIX routine, documented in A.1, “AFPDSFIX Routine” on
page 73 must be run against the resource on the MVS system before it is moved
into the PSF/MVS resource libraries.

The manual PSF/2 Type Transformer User′s Guide has some information about
how to migrate resources from an OS/2 system to the MVS system by using the
tools included in PSF/2 Type Transformer.

8.3 Printing from OS/2 to VM
This section describes printing of files from an OS/2 workstation on a printer
driven by PSF/VM on a VM system.

8.3.1 Print Request Functions
This section describes how to upload a print file from an OS/2 system to a VM
system.

There is no automatic way to upload a print file from an OS/2 system to a VM
system.

The user has to upload the file manually using a terminal emulator session or
TCP/IP FTP.

After uploading, the file can be printed in the VM system with the commands
available in the VM system.

A flat file from an OS/2 system can be uploaded using ASCII/EBCDIC conversion
provided that the file does not contain any printer control characters.

An AFPDS file can be uploaded, and it has to be uploaded as binary. The
differences in the file structure in OS/2 and VMS causes one more problem. An
AFPDS file in OS/2 is a file without a record structure, as if it were one long
record. In VM it has to be split into records before PSF/VM accepts it. One way
to do this splitting is described in B.1, “AFPDSFIX routine for VM” on page 155.

8.3.2 Print Resource Migration from OS/2 to VM
There may be cases where the receiving VM system does not have all the
resources required to print the job. In such cases, the resources must either be
placed inline with the print file, or they must be placed in the VM system′s
resource libraries before the print request is submitted. Since AFP resources
are AFPDS structures, under OS/2 they may only be used with full AFPDS files,
for the reasons discussed as 8.1.1, “File Transfer Protocol Technical Hurdles” on
page 62. Flat files that require some special resource can only be handled by
preinstalling that resource in the VM libraries.

AFPDS resources may be transferred from OS/2 to VM using either 3270 File
Transfer, or the TCP/IP File Transfer Protocol. In both cases, the transfer must
be BINARY to prevent the destruction of AFPDS data. In both cases, the
resulting file will NOT be acceptable to PSF/VM because of the “streaming” of
the AFPDS discussed as 8.1.1, “File Transfer Protocol Technical Hurdles” on
page 62. The AFPDS_FIX subroutine coding documented in B.1, “AFPDSFIX
routine for VM” on page 155 is used to reconstruct AFPDS print files that have

64 AFP Printing in an IBM Cross-System Environment

been “streamed” by OS/2. The AFPDS resources shipped to VM from OS/2 must
be run through a similar routine to make them usable by PSF/VM.

The manual PSF/2 Type Transformer User′s Guide has some information about
how to migrate resources from an OS/2 system to the VM system by using the
tools included in PSF/2 Type Transformer.

8.4 Printing from OS/2 to VSE
This section describes printing from OS/2 on a VSE system.

No IBM product available at the time of this writing provides support for the
automatic printing of OS/2 files on a printer driven by PSF/VSE.

In Power IWS (Intelligent Workstation Services) there are some restricted ways
to print from OS/2 or DOS directly to a printer attached to VSE. These methods
require that the user have a session to CICS in VSE. Using programs that have
been downloaded from the VSE system, the user can send a file into the POWER
spool. The file can be directly sent to the POWER list (LST) queue, or the file
can be sent to POWER reader (RDR) queue to be executed as a batch job in
VSE. With these methods, almost any print file originating from the workstation
can be sent to VSE and printed on a printer attached to VSE.

As VSE systems are rather often running under VM, it might be possible to use
the VM system as an intermediate node.

Then all the methods used in OS/2 to VM printing and then VM to VSE printing,
are possible.

8.4.1.1 Using POWER IWS for Print Request Submission
With VSE, a set of programs to enable moving files from an intelligent
workstation to the VSE POWER queues and from the POWER queues to the
workstation is provided.

The file is sent from an OS/2 system to the POWER list queue by issuing, for
example, the following command:

SEND PCFILE HOSTLIST (FILE=LST

This would send a PC file called PCFILE to the POWER list queue and to have
the name HOSTLIST in the POWER list queue.

This method works for a flat file with no control characters. It does not work for
other files. Sending, for example, AFP files from an OS/2 workstation to a VSE
system needs a lot of programming.

8.4.2 Print Resource Migration
To migrate resources from an OS/2 system to a VSE system needs a lot of
programming. An example of how to do this is described in Appendix C, “VSE
AFP Sample Programs” on page 163.

The manual PSF/2 Type Transformer User′s Guide has some information about
how to migrate resources from an OS/2 system to the VSE system by using the
tools included in PSF/2 Type Transformer.

Chapter 8. Printing from an OS/2 Host 65

8.5 Printing from OS/2 to OS/400
This section describes printing from OS/2 to an OS/400 system.

OS/400 PC support provides tools to initiate a print job from the OS/2 system to
the OS/400 system. From the user point of view a printer attached to the OS/400
system is as any printer locally attached to the OS/2 system. OS/400 PC support
accepts all kinds of data streams including PC ASCII and AFPDS.

The functions of OS/400 PC support are described in detail in the document IBM
AS/400 Printing III.

8.5.1 Migration of Print Resources
OS/400 PC support allows the user to send OS/2 resources to an OS/400 system.

The CRT commands in OS/400 expect that the resource is in a physical file
member. The format of the file has to be fixed length records and the records
must be padded with blanks. A program (see D.2, “Program to Pad a Resource
with Blanks” on page 190) was written to transform an AFP resource in the OS/2
library to a format with fixed length records padded with blanks.

After this transformation, by using OS/400 PC Support, the resource can be
uploaded to a physical file member in OS/400. After uploading, the resource can
be created with an appropriate CRT command.

The manual PSF/2 Type Transformer User′s Guide has some information about
how to migrate resources from an OS/2 system to the OS/400 system by using
the tools included in PSF/2 Type Transformer.

8.6 Printing from OS/2 to OS/2
This section describes the printing of files from an OS/2 workstation on a printer
driven by the PSF/2 print driver.

Local Area Networks are by far the most prevalent method of connecting OS/2
systems together. Therefore, we will discuss only the submission of print work
from a LAN requester to a print server machine. While it is true that users might
elect to run PSF/2 on their own workstations, it is unlikely that this will be
common. The RAM, disk, and processor resources required to operate PSF/2 do
not make it the driver of choice for a personal printer. PSF/2 is designed to
drive multiple shared printers in a server machine.

PSF/2 provides two mechanisms for submitting print work:

 1. The APRINT command that may be entered from any OS/2 command prompt.

 2. A Print Submitter PM application that provides a window interface for the
user. Requests built with this facility actually result in an APRINT command.
Therefore, we will deal only with the APRINT command in the discussion
below.

The user interface provided by PSF/2 permits the user to specify AFP
parameters, such as DUPLEX, BIN, COPIES, and FORMDEF.

In addition, to the submission facilities supplied by PSF/2, there are a number of
other ways to direct work to a PSF/2 printer:

66 AFP Printing in an IBM Cross-System Environment

• DOS PRINT to the device associated with the PSF/2 queue.

• OS2 COPY > to the device associated with the PSF/2 queue.

• OS2 TYPE > to the device associated with the PSF/2 queue.

• Assign the PSF/2 queue as the application default. This will cause all
undirected Presentation Manager print requests to be assigned to the PSF/2
queue. Printing a HELP screen would be an example of this.

All of the above amount to directing or redirecting the file to an OS2 queue or
device served by PSF/2.

8.6.1 Print Request Functions
This section describes two ways to initiate a print request.

8.6.1.1 Using APRINT for Print Request Submission
APRINT is an OS/2 command that is provided with the PSF/2 product. It may be
issued from any OS/2 command prompt using the following general syntax:

APRINT filename DEST=queuename PARM1= PARM2= ...

For example, the following:

aprint c:\config.sys dest=pr3820 copies=3 duplex=yes

would result in three duplexed copies of the CONFIG.SYS file being printed on
the printer serving the PrintManager Queue named PR3820.

PSF/2 also includes a Presentation Manager application that provides an
interactive interface for the APRINT command.

In order for these facilities to be accessible to workstations other than the one
running PSF/2, the PSF/2 server must be properly defined as a LAN server
machine, and the PSF/2 print queues and directories must be defined as shared
resources.

Additional Considerations

• User Notification

If the MESSENGER and NETPOPUP services are running, a message popup
is sent to the requester when the printing is finished. Unfortunately, the
message always indicates that the file has been deleted and did not print.
This effect is caused by the fact that PSF/2 first selects the file from the
PrintManager queue, puts it back in hold status, and then deletes it when the
printing has been successfully completed. PSF/2 must do this because the
OS/2 spooler lacks the facilities to permit proper recovery of the printing in
the event of an error. Therefore, PSF/2 must retain a copy of the print file in
the queue by using the hold technique. An unfortunate side effect of this is
that when PSF/2 finally deletes the job when the printing is complete, the
OS2 PrintManager sends a message to the requester that the file has been
deleted and did not print.

• Banner Information

Several APRINT parameters affect the information which is displayed on the
banner page:

− Jobowner: This parameter permits the specification of both a user ID
and a node ID. These are displayed in several places on the banner

Chapter 8. Printing from an OS/2 Host 67

page. The user ID will be displayed in the large block letters in the
center of the main box.

− Jobname: The text coded for this parameter will appear in sub-box
under the main box of the banner page.

− Distribution: The text coded for this parameter will appear in the upper
right corner, next to user ID and node ID.

• Accounting/Audit Information

PSF/2 provides an exit point for the extraction of auditing and accounting
information. No standard code is provided for this exit. Customers may
write their own routines to capture the information they deem useful.

Discussion of Data streams: Please see the definitions provided on page 1.3,
“Test Cases” on page 2 for descriptions of the data stream types referenced in
the following items.

• Flat file

ASCII flat files generally print correctly with no special parameters needed.
PSF/2 attempts to identify the type of input data file it receives and handle it
appropriately. Since it is possible, albeit unlikely, that an ASCII file might
accidentally appear to conform to valid AFPDS structures, try using the
DATATYPE=ASCII parameter on the APRINT command if a file prints
incorrectly.

• Full AFPDS

Full AFPDS files print with full support of all AFP functions. No special
APRINT parameters are required for AFPDS files. If the file contains inline
resources, they will be used. All resource types, with the exception of page
definition, are supported inline.

Note: It is not possible to mix AFPDS and non-AFPDS data in the same print
file. When PSF/2 encounters the first data that is not valid AFPDS structures,
it terminates the print job.

• Presentation Manager Metafile

OS/2 Presentation Manager applications may generate Presentation
Manager Metafiles. Often they contain graphics. They print with no special
considerations.

• QuietWriter ASCII data

Any ASCII print file generated using the QuietWriter3 level of printing escape
sequences, or a subset thereof 1, will print with no special considerations.
You must be aware, however, that this support is an emulation of QuietWriter
function and does not support everything in exactly the same fashion as a
real QuietWriter.

PSF/2 attempts to identify the type of input data file received and handle it
appropriately. Since it is possible, albeit unlikely, that an ASCII file might
accidentally appear to conform to valid AFPDS structures, try using the
DATATYPE=ASCII parameter on the APRINT command if a file prints
incorrectly.

1 ProPrinter ASCII is a subset of QuietWriter ASCII.

68 AFP Printing in an IBM Cross-System Environment

8.6.1.2 Using File Redirection for Print Request Submission
This section discusses the use of some traditional OS/2 and DOS techniques to
send print data to a PSF/2 server.

• Using DOS PRINT

DOS users often use the PRINT command to direct print work to a specific
print device. For example:

print config.sys /d:lpt1

could be used to print file CONFIG.SYS on the printer attached to port LPT1.
In a LAN environment, the LPT1 device may be assigned to a server queue
serviced by PSF/2. For example:

net use lpt1 \\r22srv11\pr3820
print config.sys /d:lpt1

would result in the file CONFIG.SYS being directed to the PR3820 queue on
the server named R22SRV11.

• Using OS/2 COPY or TYPE

A favorite technique used by OS/2 users to print a file is to redirect the
output of the COPY or TYPE command to a printer device. For example, the
commands:

copy config.sys > lpt1:
type config.sys > lpt1:

would both result in the file CONFIG.SYS being directed to the printer
attached as LPT1. As with the DOS example, the output may be directed to
an OS/2 PrintManager queue serviced by PSF/2, for example:

net use lpt1 \\r22srv11\pr3820
copy config.sys > lpt1:

OR

copy config.sys > \\r22srv11\pr3820

would both result in file CONFIG.SYS being sent to the OS/2 PrintManager
queue named PR3820 on the server named R22SRV11.

• Assigning PSF/2 as the Default Printer

OS/2 PrintManager permits the user to define a default print queue which
will receive all print requests not explicitly directed to a queue. For instance,
if the user requests that a help screen be printed, it will be directed to the
default printer. The default printer is defined using the Application Defaults
selection on the Setup pulldown on the main OS/2 PrintManager panel.

Additional Considerations

• User Notification

If the MESSENGER and NETPOPUP services are running, a message popup
is sent to the requester when the printing is finished. Unfortunately, the
message always indicates that the file has been deleted and did not print.
This effect is caused by the fact that PSF/2 first selects the file from the
PrintManager queue, puts it back in hold status, and then deletes it when the
printing has been successfully completed. PSF/2 must do this because the
OS/2 spooler lacks the facilities to permit proper recovery of the printing in
the event of an error. Therefore, PSF/2 must retain a copy of the print file in
the queue by using the hold technique. An unfortunate side effect of this is

Chapter 8. Printing from an OS/2 Host 69

that when PSF/2 finally deletes the job when the printing is complete, the
OS2 PrintManager sends a message to the requester that the file has been
deleted and did not print.

• Banner Information

Without using the APRINT command, it is not possible for the user to alter
any information that appears on the banner page. The LAN user ID from
which the request comes will appear in the large block letters.

• Accounting/Audit Information

PSF/2 provides an exit point for the extraction of auditing and accounting
information. No standard code is provided for this exit. Customers may
write their own routines to capture the information they deem useful.

Discussion of Data streams: Please see the definitions provided on page 2 for
descriptions of the data stream types referenced in the following items.

• Flat file

ASCII flat files generally print correctly. PSF/2 attempts to identify the type of
input data file it receives and handle it appropriately. In the unlikely case of
an ASCII file accidentally appearing to conform to valid AFPDS structures, it
will be necessary to use the APRINT command and specify
DATATYPE=ASCII.

• Full AFPDS

It is not possible to print AFPDS files using the DOS PRINT command. The
PRINT command does some character translation that invalidates AFPDS
data.

From an OS/2 command prompt, full AFPDS files print with all AFP function
supported. If the file contains inline resources, they will be used. All
resource types, with the exception of page definition, are supported inline.

Note: It is not possible to mix AFPDS and non-AFPDS data in the same print
file. When PSF/2 encounters the first data that is not valid AFPDS structures,
it terminates the print job.

• Presentation Manager Metafile

OS/2 Presentation Manager applications may generate Presentation
Manager Metafiles. Often they contain graphics. It is not possible to print
Presentation Manager Metafiles using the DOS PRINT command. The PRINT
command does some character translation that invalidates the data. There
are no special considerations when printing Presentation Manager Metafiles
from an OS/2 command prompt.

• QuietWriter ASCII data

Any ASCII print file generated using the QuietWriter3 level of printing escape
sequences, or a subset thereof 2, will print with no special considerations.
You must be aware, however, that this support is an emulation of QuietWriter
function and does not support everything in exactly the same fashion as a
real QuietWriter.

PSF/2 attempts to identify the type of input data file it receives and handle it
appropriately. In the unlikely case of an ASCII file accidentally appearing to

2 ProPrinter ASCII is a subset of QuietWriter ASCII.

70 AFP Printing in an IBM Cross-System Environment

conform to valid AFPDS structures, it will be necessary to use the APRINT
command and specify DATATYPE=ASCII.

8.6.2 Print Resource Migration
Migration of resources from one OS/2 to another OS/2 system is trivial.

If a telecommunications connection, for example a LAN connection, exists
between systems, the resources can be copied by using OS/2 system
commands. The resources in one system are also accessible from another
system without copying. To be accessible by a PSF/2 program the resources
have to be registered in the PSF/2 resource database by using the RLADD
command.

Moving resources from one system to another by using a diskette or diskettes is
also possible. In this case, the resources have to be added to the receiving
system by using the RLADD command before they are accessible by PSF/2.

Chapter 8. Printing from an OS/2 Host 71

72 AFP Printing in an IBM Cross-System Environment

Appendix A. PSF/MVS Exits and MVS Sample Programs

This appendix documents the exits and utility programs that we used on the MVS
platform to print our test cases.

All of the coding documented in this chapter is presented as sample coding only.

Be sure that you have read the information in “Special Notices” on page ix.

The following table serves as an index to the various routines.

Name Language Description Page

AFPDSFIX REXX
Routine that reconstructs AFPDS structured fields that have been
“streamed” during BINARY File Transfer Protocol transport.

73

CRTRSC2 REXX Routine that extracts AFP inline resources from an AFPDS file 76

APSUX04 Assembler
PSF/MVS Exit routine that operates in conjunction with a
companion APSUX07 exit to provide full inline resource support
for PSF/MVS.

77

APSUX07 Assembler
PSF/MVS Exit routine that operates in conjunction with a
companion APSUX04 exit to provide full inline resource support
for PSF/MVS.

85

ILRPACK Assembler 94Utility program that packs AFP resource objects inline with the
print file.

LN2AFPDS PL/I

Utility program that constructs an AFPDS output file from a
line-data input file and a pagedef. This program is an updated
version of the LINEAFP program available from Boulder on the
MVSTOOLS disk.

119

A.1 AFPDSFIX Routine
In order to preserve all the code points within the data, AFPDS files being
transported must use the BINARY translate tables. This causes the data to be
transmitted without any translation of code points. It also causes the data to
arrive at the receiving system as a continuous stream of bytes.

The data is not received with each AFPDS structured field record occupying its
own variable length record, which is the format expected by PSF/MVS and
PSF/VM. Instead, the records are formed by “streaming” the data into each
record to the maximum defined record length, without regard for the lengths of
the actual AFPDS structured fields. Several AFPDS structured fields may occupy
the same record or, conversely, a single AFPDS structured field may span more
than one physical record.

The purpose of the AFPDSFIX routine is to reconstruct the AFPDS data such that
each AFPDS structured field occupies its own variable length record.

Although coded in REXX and executed under TSO/E, the AFPDSFIX routine was
designed to run as a TSO batch job. The logic assumes the main datasets have
been preallocated. The input file must be allocated to the SYSUT1 DDNAME and
the output file to the SYSUT2 DDNAME.

 Copyright IBM Corp. 1994 73

A.1.1 REXX Coding
/* REXX */
/* */
/*--*/

 /* ROUTINE TO COPY PRINT FILE TO MVS SPOOL */
 /* */
 /* This routine copies the print data pointed at by DD SYSUT1 to */
 /* DD SYSUT2. The logic assumes that the routine is being executed */
 /* in TSO batch and that the files have been preallocated in the */
 /* startup JCL. It is also assumed that all print output parameters*/
 /* have been specified in the startup JCL. */
 /* */
 /* The routine examines the input file for AFPDS structured field */
 /* records that may have been reformatted during a transmission */
 /* from OS/2. During such a transmission, the structured fields */
 /* are treated as a stream of data and the original records are */
 /* lost. The transmitted file may have many structured fields in */
 /* a single record, or an individual structured field may span */
 /* multiple records. */
 /* */
 /* When properly formed AFPDS structured fields are detected they */
 /* are written to the output as 1 structured field per output */
 /* record. Data not occuring within a structured field is written */
 /* out according to the following rules: */
 /* */
 /* 1. If no structured field introducer is present in the */
 /* record, the entire record is written unaltered. */
 /* 2. If a structured field begins within the record, the data */
 /* preceding that structured field is written as a record. */
 /* 3. Data falling between two valid structured fields is */
 /* written as a record. */
 /* 4. Data following a valid structured field is written as a */
 /* record, with one exception. If the structured field is */
 /* IPO, IPS, IMM, or IDM and the remainder of the record in */
 /* which it is found is blank, it is assumed to be a */
 /* valid structured field control record imbedded in a fixed */
 /* length record data file. The trailing blanks are stripped */
 /* and ignored. */
 /* */
 /* This logic has the following effects: */
 /* */
 /* 1. Files with no structured field content are transcribed */
 /* verbatim. */
 /* */
 /* 2. Files containing only structured fields are written out */
 /* with 1 structured field per record. */
 /* */
 /* 3. Files with a mixture of structured field records and other */
 /* data may or may not be reconstructed accurately. Since */
 /* information about the original record lengths has been */
 /* lost, only AFPDS records can be accurately reconstructed. */
 /* If non-AFPDS data are isolated to their own records, the */
 /* reconstruction should be accurate. */
 /* */
 /*--*/
 /* */
/* REXX */
/* */ say ″>>AFPDSFIX Routine invoked to restructure AFPDS Records″
/*Prime nextrec buffer*/ nextrec = readrec()
/*Clear currec */ currec = ″″
/*Str=IPO IPS IMM IDM */ chkstrng = x2c(′ d3afd840d3af5f40d3abcc40d3abca′)
/*Init 1st char indic */ char1 = 0
/* */
/*Main execution loop */
/* */ Do Forever
/*Get an output rec */ outrec1 = get_outrec()
/*If end of file, quit*/ if outrec1 = ″*EOF*″ then leave
/*Write output rec */ Address TSO ″EXECIO 1 DISKW SYSUT2 (STEM OUTREC)″
/*End main loop */ end
/* */ ndit:
/*Close output file */ Address TSO ″EXECIO 0 DISKW SYSUT2 (FINIS)″
/*Close input file */ Address TSO ″EXECIO 0 DISKR SYSUT1 (FINIS)″
/*Scram */ exit
 /* */
 /*--*/
 /* Get Next Output Record */
 /* This routine isolates the next record to be written to the */
 /* output file. CURREC contains the current data record, NEXTREC */
 /* contains the next record from the input file. When CURREC is */
 /* fully processed, NEXTREC is moved to CURREC and a new record */
 /* is read into NEXTREC from the input file. The logic isolates */
 /* the next output record using the rules described earler. The */

74 AFP Printing in an IBM Cross-System Environment

 /* isolated record is returned to the caller and stripped from */
 /* CURREC. If the isolated record is a valid IPO, IPS, IMM, or IDM */
 /* and the remainder of CURREC is blank, it is assumed the str fld */
 /* is imbedded in a fixed length record, followed by trailing blanks*/
 /* The blanks are stripped and not treated as a following data rec. */
 /*--*/
 /* */
/* */ Get_Outrec: procedure expose currec nextrec chkstrng char1
/*If currec empty, */ if length(currec) < 1 then do
/* move in nextrec and*/ currec = nextrec
/* read next record */ nextrec = readrec()
/*Ind 1st char of rec */ char1 = 1
/* */ end
/*Hit eof, quit */ if currec = ″*EOF*″ then return currec
/*Start at position 0 */ candidate_pos = 0
/*Isolation loop */ Do forever
/*Look for ″ ! ″ */ candidate_pos = pos(″ ! ″ , currec,candidate_pos+1)
/*If none */ if candidate_pos = 0 then do
/* return whole record*/ outrec = currec
/* to caller */ currec = ″″
/* */ return outrec
/* */ end
/*Found a ″ ! ″ */ else do
/*Check for strfld rec*/ strlen = ver_strfld(currec||nextrec)
/*If not valid, */ if strlen = -99 then do
/* bump position and */ candidate_pos = candidate_pos + 1
/*Not at 1st char now */ char1 = 0
/* look for next ″ ! ″ */ iterate
/* */ end
/*Get strfld mneumonic*/ mneumonic = substr(currec,4,3)
/*ctlrec in rec pos 1?*/ if 0 < wordpos(mneumonic,chkstrng) & char1 then do
/* with len>currec len*/ if strlen > length(currec),
/* followed by linedat*/ & substr(currec||nextrec,strlen+1,1) <> ″!″ then do
/* then blankpad rec */ outrec = substr(currec,1,strlen)
/* clear currec */ currec = ″″
/* return strfld ctl */ return outrec
/* */ end
/* */ end
/* */
/*Found good strfld */
/*Must loop to read */
/* all data in strfld */
/* */
/*Not at 1st char now */ char1 = 0
/*Get whole str field */ do while strlen > length(currec)
/* oops */ if nextrec = ″*EOF*″ then do
/* bad str fld at end */ say ″Found incomplete structured field record at″ ,
/* */ ″end of input file″
/* save what we have */ outrec = currec
/* blank currec */ currec = ″″
/* return incompl rec */ return outrec
/* */ end
/* append nextrec */ currec = currec||nextrec
/* get another rec */ nextrec = readrec()
/*end loop */ end
/*Isolate strfld rec */ strfld = substr(currec,1,strlen)
/*Update currec */ currec = substr(currec,strlen+1)
/*Get strfld mneumonic*/ mneumonic = substr(strfld,4,3)
/*Str=IPO IPS IMM IDM */ chkstrng = x2c(′ d3afd840d3af5f40d3abcc40d3abca′)
/*If rec one of these */ if 0 < wordpos(mneumonic,chkstrng),
/* and remainder blank*/ & strip(currec) = ″″
/* assume fixed len */ then currec = ″″
/* str fld rec */
/*Return to caller */ return strfld
/* */ end
 /* */
 /*--*/
 /* Read a Physical Record */
 /* This routine reads the next physical record from the input file */
 /* and returns it to the caller. */
 /*--*/
 /* */
Readrec: procedure
/* */ Address TSO ″EXECIO 1 DISKR SYSUT1 (STEM DISKREC)″
/* */ if rc > 0 then return ″*EOF*″
/* */ return diskrec1
 /* */
 /*--*/
 /* Verfify a Structured Field */
 /* This routine verifys that the data string passed as an argument */
 /* conforms to the rules for a valid AFPDS structured field. If */
 /* the argument appears to be a structured field, the length of */
 /* structured field is retrieved from the AFPDS length field, */

Appendix A. PSF/MVS Exits and MVS Sample Programs 75

 /* incremented by 1 to account for the ″!″ byte and returned to */
 /* the caller. If the argument doesn′ t verify, -99 is returned. */
 /*--*/
 /* */
Ver_Strfld: procedure
/* */ parse arg 1 cc 2 len 4 flag1 5 flag2 6 .
/*1st char x′ 5a′ ? */ if cc <> ″!″ then return -99
/*4th char x′ d3′ ? */ if flag1 <> ″L″ then return -99
/*5th char in list? */ if 0 <> verify(flag2,x2c(′ aaabacaeafa2a6a7a8a9b1b6ee8c′)) then return -99
/*return str fld leng */ return 1+c2d(len)

A.2 Routine to Extract AFP Inline Resources
This REXX EXEC extracts AFP inline resources from an AFPDS file. It can be
used, for example, to extract resources from an AFPDS file created by OS/400
Advanced Function Printing Utility (AFPU).

A.2.1 REXX Coding
/* REXX EXEC TO EXTRACT RESOURCES FROM AN AFPDS FILE */ 00010000

SAY ′ GIVE THE NAME OF THE INPUT FILE′ 00020002
SAY ′ (FULLY QUALIFIED NAME WITHOUT APOSTROPHES, PLEASE)′ 00021002

PARSE UPPER PULL AFPNIMI 00030000
SAY ′ GIVE THE NAME OF THE OUTPUT FILE (LIBRARY)′ 00040002
SAY ′ (FULLY QUALIFIED NAME WITHOUT APOSTROPHES, PLEASE)′ 00041002

PARSE UPPER PULL AFPOVER 00050000
DATASEI = ′ DA(′ ′ ′ | | AFPNIMI || ′ ′ ′) ′ 00060002

SAY ′ EXTRACTING RESOURCES FROM′ AFPNIMI 00070002
SAY ′ AND PLACING THEM TO THE LIBRARY ′ AFPOVER 00080002

″ALLOC DD(AFPDS)″ DATASEI ″ SHR REUSE″ 00100000
RETU=RC 00110003
IF RETU<>0 THEN DO 00120003
SAY ′ INPUT DATASET NOT FOUND′ 00121003
EXIT 00122003

END 00123003
″EXECIO * DISKR AFPDS (FINIS STEM RIVI.″ 00130003

COUNT=RIVI.0 00140003
SAY ′ RECORD COUNT IN INPUT DATASET′ COUNT 00150003

DO I = 1 TO COUNT 00151003
IF SUBSTR(RIVI.I,4,3)=X2C(′ D3A9C6′) THEN DO 00153003
SAY ′ ERG ENCOUNTERED ′ 00154003
EXIT 00155003
END 00156003

IF SUBSTR(RIVI.I,4,3)=X2C(′ D3A8C6′) THEN LEAVE 00157003
END 00158003

IF I > COUNT THEN DO 00159103
SAY ′ BRG NOT FOUND′ 00159203
EXIT 00159303
END 00159403

IALKU=I 00160003
DO FOREVER 00170003
DO J = IALKU TO COUNT 00190003
IF SUBSTR(RIVI.J,4,3)=X2C(′ D3A9C6′) THEN DO 00340003
EXIT 00340103
END 00340203
IF SUBSTR(RIVI.J,4,3)=X2C(′ D3A8CE′) THEN LEAVE 00341003

END 00350003
IF J > COUNT THEN DO 00370003
SAY ′ BR NOT FOUND′ 00380003
EXIT 00390003
END 00400003

SAY ′ RESOURCE STARTING FROM RECORD ′ J 00401003
RESNAME = STRIP(SUBSTR(RIVI.J,10,8),′ T′) 00410003
SAY ′ RESOURCE NAME ′ RESNAME 00420003

DATASEO = ′ DA(′ ′ ′ | | AFPOVER || ′ (′ | | RESNAME || ′) ′ ′) ′ 00500003
SAY ′ STORING TO MEMBER′ DATASEO 00510003
″ALLOC DD(AFPOU)″ DATASEO ″ SHR REUSE″ 00520003
RETU=RC 00530003
IF RETU<>0 THEN DO 00540003
SAY ′ ALLOCATION OF OUTPUT DATASET FAILED′ 00541003
EXIT 00543003
END 00544003

DO I= J+1 TO COUNT 00560002
IF SUBSTR(RIVI.I,4,3)=X2C(′ D3A9CE′) THEN LEAVE 00590003
RDWLEN=X2D(C2X(SUBSTR(RIVI.I,2,2)),4) 00590104

RECLEN=RDWLEN+1 00590304
TEMP = SUBSTR(RIVI.I,1,RECLEN,′ ′) 00590404
QUEUE TEMP 00591004

76 AFP Printing in an IBM Cross-System Environment

END 00600003
IF I > COUNT THEN DO 00620002
 SAY ′ ER NOT FOUND′ 00630000
 EXIT 00640000
END 00650000
ELSE DO 00660002

SAY ′ END OF RESOURCE FOUND IN RECORD ′ I 00661003
QUEUE ″″ 00670000
″EXECIO * DISKW AFPOU (FINIS″ 00680000
IALKU=I+1 00700002
END 00710002
END 00720002

A.3 PSF/MVS Inline Resource Exit APSUX04
AFPDS defines a structure known as an Inline Resource Group which may be
present at the beginning of any print file. This structure may contain resource
objects to be used in printing the file. Objects found within an inline resource
group will be used in preference to identically named objects in the normal
system libraries. This capability makes it possible to build a completely
self-contained print file that does not require any resources to be installed on the
driving system before it can be printed.

PSF/VM Version 2 Release 1 and OS/400 Version 2 permit any type of resource
to be defined in an inline resource group. PSF/2 Version 1 Release 1 on the
OS/2 platform permits all resources except the pagedef, which is not a valid
object on OS/2. PSF/MVS Version 2 Release 1 and PSF/VSE Version 2 Release 1
permit only pagedefs and formdefs to be defined inline.

The PSF/MVS exit coding in this section, in concert with its companion APSUX07
exit documented in A.4, “PSF/MVS Inline Resource Exit APSUX07” on page 85,
provides a facsimile of full inline resource support for PSF/MVS. There are a
number of restrictions and caveats which are explained in the comments that
appear at the beginning of the coding. Please read them carefully.

A.3.1 Sample Assembler Code
**************** APSUX04 PSF LOGICAL RECORDS EXIT*********************
* <<< MVS INLINE RESOURCE PROCESSING EXIT >>> *
* *
* The exit coding in this module and the corresponding APSUX07 *
* module provides full inline resource support by capturing inline *
* objects not understood by PSF/MVS (as of PSF/MVS V2R1 that means *
* overlays, page segments, and font objects) and writing them to a *
* dataset that is part of PSF′ s concatenation of resource libraries.*
* Thus, when PSF references the object, it is available in the *
* normal resource library structure. *
* *
* Correct operation of this exit coding requires that DD statements *
* be added to the PSF startup JCL. See the comments in the APXUX07 *
* coding for details on the required JCL. *
* *
* APSUX07 is responsible for setting up the control blocks, opening *
* files, deleting PDS members, and other housekeeping functions *
* required by this exit. See the APSUX07 code for details. *
* *
* This exit is responsible for examining the records being read *
* from the JES spool, detecting the presence of an inline resource *
* object of a type not understood by PSF/MVS, writing such objects *
* to the appropriate temporary resource file, and deleting them *
* from the PSF datastream. Inline pagedefs and formdefs are passed *
* through to PSF unaltered. *
* *
* *

Appendix A. PSF/MVS Exits and MVS Sample Programs 77

* BASIC LOGIC: *
* *
* (Remember: this exit sees each record as it comes off the *
* spool, one record per exit call) *
* *
* 1. Locate workarea created by APSUX07. *
* *
* 2. Test current status. If we are currently diverting an *
* inline resource to a temporary dataset, go to step 5. *
* *
* 3. If we are not currently within an inline resource that is *
* being diverted, then check to see if current record is a *
* Begin Resource (BR) record for an inline resource requiring *
* diversion. If not, record is passed to PSF; exit execution *
* complete. *
* *
* 4. If current record is a BR for a type requiring diversion, *
* then: *
* *
* a) ILRFLAGS is set to indicate a resource is currently *
* being diverted. *
* *
* b) The write buffer area WRTBUFFR is initialized for the *
* correct dataset by storing the address of the DCB for *
* the type of object being diverted, the block size of *
* that file, resetting the block descriptor word to *
* indicate no records in the block (yet) and resetting the*
* next record pointer to point to the start of the buffer.*
* *
* c) Then the next available BLDL entry is updated with the *
* object name found in the Begin Resource (BR) record and *
* the address of the DCB to which it is being written. *
* *
* 5. If we are currently diverting a resource, then: *
* *
* a) Check to see if current record is an End Resource (ER) *
* record. If so, go to step 6. *
* *
* b) Check to see if current record will fit into remaining *
* space in buffer, if so move it into buffer, update *
* appropriate control fields, and delete record from PSF *
* datastream. *
* *
* c) If current record length + used buffer space > block *
* size of file, then write the current buffer to DASD, *
* reinitialize pointers to indicate buffer is empty again *
* and go back to beginning of Step 5. *
* *
* 6. If current record is an End Resource (ER) then: *
* *
* a) Write out any partially-filled IO buffer and reset *
* pointers to indicate buffer is empty. *
* *
* b) Issue a STOW to update PDS directory for member just *
* completed. *
* *
* c) Reset ILRFLAGS to indicate no resource is currently *
* being diverted. *
* *
* *
* *
* ### *
* # # *
* # WARNING * WARNING * WARNING * WARNING # *
* # RESTRICTIONS # *
* # # *

78 AFP Printing in an IBM Cross-System Environment

* ### *
* *
* This exit has the following restrictions: *
* *
* - There a number of restrictions and caveats associated with *
* the use of the functions provided by this exit and its *
* companion APSUX07 module. They are documented in the *
* APSUX07 coding. *
* *
* - This exit depends upon pointers and data areas being set up *
* by corresponding code in APSUX07. If this exit is executed *
* in the absence of that APSUX07 coding, an ABEND (most *
* likely a 0C4) will occur. *
* *
* - The above logic was designed for simplicity and makes no *
* attempt to analyze the incoming datastream for errors. If *
* the user builds an invalid resource group or an invalid *
* resource within a group, the error will not be detected *
* until the object is first examined by PSF. In most cases, *
* this will not constitute a problem. PSF will issue the *
* same error that would have been appropriate if the exit *
* were not present. However, in the case where a Begin *
* Resource record is detected, thereby causing the resource *
* to be diverted into the temporary datasets, and no *
* subsequent End Resource record is encountered by this exit, *
* then the entire print dataset will be written into the *
* temporary dataset. If the dataset is large this may cause *
* an E37 ABEND in the exit (and therefore, in PSF). If that *
* does not happen, the error may be difficult to detect *
* because PSF will simply see a null print dataset, and *
* therefore no error messages will be issued. *
* *
* - This exit uses a number of MVS system service macros. The *
* coding as written does not do error checking or result *
* validation on return from these calls. Therefore, an IO *
* error or other recoverable failure could result in an *
* ABEND of the PSF address space. *
* *
* - This exit will run ONLY AMODE 24, RMODE 24. *
* *
* - If PSF is not marked non-swappable in the PPT, unpredictable*
* abends may occur. *
* *
* The basic logic and environment for PSF exits are described in *
* the PSF System Programming Guide (S544-3672). *
* *
* *
**
APSUX04 START 0

TITLE ′ DSECT - XTP′
APSGEXTP LIST=YES
TITLE ′ DSECT - ECA′
APSUECA LIST=YES
TITLE ′ INLINE RESOURCE HANDLING EXIT (APSUX04)′

APSUX04 CSECT ,
APSUX04 AMODE 24
APSUX04 RMODE 24

USING *,R15
B START
DC AL1(16) LENGTH OF FOLLOWING FIELDS
DC CL8′ APSUX04 ′ NAME OF THIS ROUTINE
DC CL8′&SYSDATE′ DATE OF THIS ASSEMBLY
DC CL16′ SOURCEM: V2X4ILR′
DROP R15

START DS 0H
STM R14,R12,R12(R13) SAVE CALLERS REGISTERS

Appendix A. PSF/MVS Exits and MVS Sample Programs 79

LR BASEREG,R15 SWITCH BASE REGISTER
USING APSUX04,BASEREG
USING APSGEXTP,XTPPTR
USING APSUECA,ECAPTR
L XTPPTR,0(,R1) LOAD ADDRESS OF APSGEXTP
L ECAPTR,XTPECAP LOAD ADDRESS OF APSUECA
LR R2,R13 LOAD ADDRESS OF CALLERS SAVE
LA R13,ECAUSAVE ADDRESS OF APSUX04 SAVE AREA
ST R2,4(,R13) SAVE CALLERS SAVE AREA ADDRESS
ST R13,8(,R2) SAVE APSUX04 SAVE AREA ADDRESS
MVI XTPPIND,XTPWRT ENSURE DEFAULT IS TO WRITE

* ORIGINAL RECORD

* Find ILRCOMM area at end of ECAWKBUF and load pointer to ILRWORK *

L ILRPTR,ECALEN ILRPTR = LEN OF ENTIRE ECA 00107516
LA R3,ILRCOMML R3 = LEN OF ILRCOMM AREA 00107616
SLR ILRPTR,R3 ILRPTR = ECALEN-LEN OF ILRCOMM 00107716
LA ILRPTR,APSUECA(ILRPTR) ILRPTR -> ILRCOMM FIELD 00107816
L ILRPTR,0(ILRPTR) ILRPTR -> ILR WORK AREA
USING ILRWORK,ILRPTR ADDRESSABILITY TO ILRWORK AREA
L RECPTR,XTPRECP RECPTR -> INPUT RECORD
USING BRREC,RECPTR ESTABLISH ADDRESSABILITY TO REC

*

* Determine current status and branch to proper handler *

TM ILRFLAGS,OVSTARTD+PSSTARTD+FOSTARTD IS AN OVLY, PSEG,
* OR FONT IN PROCESS?

BNZ GODIVERT IF YES, GO DIVERT IT TO TEMP DS
*
* ---*
* At this point we know we are not currently processing an *
* inline resource that is being diverted to a file. Check to *
* see if current record is a Begin Resource, if not give it to *
* PSF. *
* ---*

CLC INOPCOD,BROC IS INPUT A BEGIN RESOURCE REC?
BNE GETOUT IF NOT, GIVE IT TO PSF

*
* ---*
* We found a Begin Resource record. Determine the type of resource *
* and whether PSF can handle it or it gets diverted to the *
* temporary resource library. ILRWORK contains a list of words, *
* one for each type of object that has to be diverted. The *
* high-order byte of the word contains the flag that will be found *
* in the BR record for that type of resource. The low order 3 *
* bytes contain the address of the DCB for the file to which that *
* object type is to be written. *
* ---*

LA R2,4 SET INCREMENT
LA R3,NDOBJLST INITIALIZE END POINTER
LA R4,STOBJLST INITIALIZE START POINTER

BROBJLP EQU *
CLC BROBJTYP,0(R4) CHECK BR OBJECT TYPE
BE BRGOTOBJ FOUND IT, GO PROCESS
BXLE R4,R2,BROBJLP LOOP TO NEXT LIST ENTRY
B GETOUT NOT IN LIST, PSF GETS IT

BRGOTOBJ EQU *
L R5,0(R4) R5 -> DCB FOR OUTPUT FILE
LA R5,0(R5) CLEAR FLAG FROM HIGH ORDER
MVI ILRFLAGS,X′ 0F′ INDICATE DIVERSION UNDERWAY

*

* Initialize IO control blocks for objects not going to PSF *
* (this routine assumes the DCB address for the file to be *

80 AFP Printing in an IBM Cross-System Environment

* written is contained in R5) *

*
INITIO EQU *

USING IHADCB,R5 ESTABLISH ADDRESSABILITY TO DCB
L R2,WRTBUFAD R2 -> WRITE BUFFER AREA
USING WRTBUFFR,R2 ADDRESSABILITY TO WRITE BUFFER
ST R5,WRTBDCB SAVE DCB ADDR FOR WRITE ROUTINE
MVC WRTBBDW,CONS4 INITIALIZE BLOCK DESC WORD
LA R3,WRTBRDW R3 -> 1ST AVAIL REC LOCATION
ST R3,WRTBNEXT SAVE FOR WRITE ROUTINE
LH R3,DCBBLKSI R3 = MAX BLOCK SIZE
ST R3,WRTBBLKS SAVE FOR WRITE ROUTINE
DROP R2 DROP ADDRESSABILITY TO WRTBUFFR
L R2,BLDLLAST R2 -> LAST USED BLDL ENTRY
L R3,BLDLLEN LENGTH OF BLDL ENTRIES
LA R2,0(R3,R2) R2 -> NEW BLDL ENTRY
USING BLDLNTRY,R2 ESTABLISH ADDRESSABILITY TO BLDL
ST R5,BLDLDCB SAVE DCB ADDRESS IN BLDL NTRY
MVC BLDLMNAM,BRRNAME MOVE IN MEMBER NAME OF OBJECT
SLR R4,R4 CLEAR R4
ST R4,BLDLFLGS SET BLDL FLAG WORD TO ZEROS
ST R2,BLDLLAST SAVE ADDR OF THIS BLDL ENTRY
MVI XTPPIND,XTPSKP DELETE THIS BR REC FROM PSF
B GETOUT NOW WE GO
DROP R2 DROP BLDL ADDRESSABILITY

*
*

* This routine handles records within a non-PSF inline resource. It *
* writes all records to the DCB addr contained in WRTBDCB field. *
* It looks for the End Resource marker and terminates the member *
* with a STOW when it is found. *

*
GODIVERT EQU *

CLC INOPCOD,EROC IS INCOMING REC AN END-RESOURCE?
BE ERFILES IF YES, GO END RESOURCE
L R1,WRTBUFAD R1 -> OUTPUT BUFFER AREA
USING WRTBUFFR,R1 ESTABLISH ADDRESSABILITY
LH R2,WRTBBDW R2 = CURRENT BLOCK LENGTH
LA R2,4(R2) BUMP IT UP 4 BYTES (FOR RDW)
A R2,XTPRECL ADD LENGTH OF NEW RECORD
C R2,WRTBBLKS WILL NEW RECORD FIT IN CURR BLK?
BH WRITEBLK IF NOT, GO WRITE CURRENT BLOCK
STH R2,WRTBBDW UPDATE BDW FOR NEW RECORD
L R2,WRTBNEXT R2 -> NEXT RECORD LOCATION
SLR R3,R3 CLEAR R3
ST R3,0(R2) INITIALIZE RDW FOR NEW RECORD
L R5,XTPRECL R5 = LENGTH OF NEW RECORD
LA R3,4(R5) R3 = LEN NEW REC + RDW
STH R3,0(R2) STORE NEW RDW
LR R3,R5 R3 = LENGTH OF NEW RECORD
LR R4,RECPTR R4 -> NEW RECORD FROM SPOOL
LA R2,4(R2) R2 -> FIRST TARGET DATA BYTE
MVCL R2,R4 MOVE RECORD TO OUTPUT BUFFER
ST R2,WRTBNEXT SAVE NEXT AVAIL REC BYTE POINTER
MVI XTPPIND,XTPSKP TELL PSF TO FORGET THIS RECORD
B GETOUT NOW WE′ RE DONE
DROP R1 DROP ADDRESSABILITY TO WRTBUFFR

*
--
* This routine writes a completed block to DASD and reinitializes *
* the buffer area. *
--
WRITEBLK EQU *

Appendix A. PSF/MVS Exits and MVS Sample Programs 81

LR R2,R1 R2 -> WRITE BUFFER AREA
USING WRTBUFFR,R2 ESTABLISH NEW ADDRESSABILITY
L R3,WRTLSTAD R3 -> LIST FORM WRITE MACRO
L R4,WRTBDCB R4 -> DCB TO WRITE
LA R5,WRTBBDW R5 -> BLOCK TO WRITE
WRITE (R3),SF,(R4),(R5),MF=E WRITE THE CURRENT BLOCK
CHECK (R3) WAIT FOR IO TO COMPLETE
MVC WRTBBDW,CONS4 INDICATE AN EMPTY BUFFER
LA R3,WRTBRDW R3 -> 1ST AVAIL REC LOCATION
ST R3,WRTBNEXT SAVE FOR WRITE ROUTINE
B GODIVERT LOOP BACK TO PROCESS CURR REC
DROP R2

*
--
* This routine handles the End-Resource condition. It writes any *
* incomplete buffers and issues a STOW for the member. Then it *
* turns off the object-in-process flags. *
--
ERFILES EQU *

L R2,WRTBUFAD R1 -> WRITE BUFFER AREA
USING WRTBUFFR,R2 ESTABLISH NEW ADDRESSABILITY
CLC WRTBBDW,CONS4 ARE THERE UNWRITTEN RECORDS?
BE ERFILES1 BR IF NONE
L R3,WRTLSTAD R3 -> LIST FORM WRITE MACRO
L R4,WRTBDCB R4 -> DCB TO WRITE
LA R5,WRTBBDW R5 -> BLOCK TO WRITE
WRITE (R3),SF,(R4),(R5),MF=E WRITE THE CURRENT BLOCK
CHECK (R3) WAIT FOR IO TO COMPLETE
MVC WRTBBDW,CONS4 INDICATE AN EMPTY BUFFER

ERFILES1 EQU *
L R3,BLDLLAST R3 -> CURRENT BLDL ENTRY
L R4,WRTBDCB R4 -> DCB FOR STOW
STOW (R4),(R3),R UPDATE THE DIRECTORY
MVI ILRFLAGS,0 CLEAR IN-PROCESS FLAGS
MVI XTPPIND,XTPSKP DON′ T GIVE RECORD TO PSF
B GETOUT TIME TO GO
DROP R2

*
**
* EXIT ROUTINE *
**
*
GETOUT EQU *

SLR R15,R15 PSF EXPECTS ZERO RETURN CODE
L R13,4(,R13) RESTORE CALLERS SAVE AREA ADDR.
L R14,12(,R13) RESTORE CALLERS RETURN ADDRESS
LM R0,R12,20(R13) RESTORE CALLERS REGISTERS
BR R14 RETURN TO CALLER
SPACE 2

*

* REGISTER AND OTHER EQUATES

R0 EQU 0 SYMBOL FOR GP REG 0
R1 EQU 1 SYMBOL FOR GP REG 1
R2 EQU 2 SYMBOL FOR GP REG 2
R3 EQU 3 SYMBOL FOR GP REG 3
R4 EQU 4 SYMBOL FOR GP REG 4
R5 EQU 5 SYMBOL FOR GP REG 5
R6 EQU 6 SYMBOL FOR GP REG 6
R7 EQU 7 SYMBOL FOR GP REG 7
R8 EQU 8 SYMBOL FOR GP REG 8
R9 EQU 9 SYMBOL FOR GP REG 9
R10 EQU 10 SYMBOL FOR GP REG 10
R11 EQU 11 SYMBOL FOR GP REG 11
R12 EQU 12 SYMBOL FOR GP REG 12

82 AFP Printing in an IBM Cross-System Environment

R13 EQU 13 SYMBOL FOR GP REG 13
R14 EQU 14 SYMBOL FOR GP REG 14
R15 EQU 15 SYMBOL FOR GP REG 15
ILRPTR EQU R6 POINTER TO ILR WORK AREA
XTPPTR EQU R7 POINTER TO APSGEXTP
ECAPTR EQU R8 POINTER TO APSUECA
RECPTR EQU R9 POINTER TO INPUT RECORD
BASEREG EQU R12 BASE REGISTER
*

* DATA AREAS

CONS4 DC H′ 4 ′ , H′ 0 ′ CONSTANT 4
*
* *
**
* AFPDS OPCODES *
**
* *
BROC DC XL3′ D3A8CE′
EROC DC XL3′ D3A9CE′
* *
**
* WTL LIST FORM FOR USE IN TRACING EXECUTION *
* *
**
WTLLIST WTL ′ APSUX04: ′ , *

MF=L
WTLLISTL EQU *-WTLLIST
**
* *
**
* DSECT TO MAP LIST FORM WTL BUILT WITH WTL MF=(L) *
**
WTLDSECT DSECT

DS F
DS CL9

WTLTEXT DS CL47
* *
**
* DSECT FOR ILR COMM AREA AT END OF UECA ECAWKBUF FIELD *
**
ILRCOMM DSECT
ILRPARMS DS 0F POINTER TO GETMAINED PARAMETER AREA
ILRWKPTR DS AL4 ADDRESS OF GETMAINED WORK AREA
ILRCOMML EQU *-ILRCOMM LENGTH OF ILR COMM AREA
*
*
**
* ILRWORK CONTROL BLOCKS DSECT STARTS HERE
**
*
ILRWORK DSECT
ILRFLAGS DS AL1 CONTROL FLAGS
OVSTARTD EQU B′00000001′ OVERLAY BEING PROCESSED (BR FOR OVLY FOUND)
PSSTARTD EQU B′00000010′ PSEG BEING PROCESSED (BR FOR PSEG FOUND)
FOSTARTD EQU B′00000100′ FONT BEING PROCESSED (BR FOR FONT FOUND)

DS AL3
WRTBUFAD DS AL4 POINTER TO OUTPUT BUFFER
OPENLAD DS AL4 POINTER TO OPEN PARM LIST
--------------------Start Of Object DCB Table----------------------
STOBJLST EQU * ADDR OF FIRST ENTRY IN OBJECT LIST
OVLDCBAD DS AL4 POINTER TO OVERLAY DCB
PSGDCBAD DS AL4 POINTER TO PSEG DCB
FCSDCBAD DS AL4 POINTER TO FONT DCB (CHAR SETS)
FCPDCBAD DS AL4 POINTER TO FONT DCB (CODE PAGES)

Appendix A. PSF/MVS Exits and MVS Sample Programs 83

NDOBJLST EQU * ADDR OF LAST ENTRY IN OBJECT LIST
FCFDCBAD DS AL4 POINTER TO FONT DCB (CODED FONTS)
----------------------End Of Object DCB Table----------------------
WRTLSTAD DS AL4 POINTER TO WRITE PARM LIST
BLDLLAST DS AL4 POINTER TO LAST BLDL ENTRY
BLDLLEN DS AL4 LENGTH OF EACH BLDL ENTRY

DS CL100 BUNCHES MORE STUFF THAT IS
* POINTED AT BY ABOVE ADDRESSES
**
* BLDL ENTRY DSECT STARTS HERE
**
*
BLDLNTRY DSECT DSECT FOR ENTRIES
BLDLENT DS 0CL16 BLDL LIST ENTRY
BLDLMNAM DS CL8 MEMBER NAME
BLDLFLGS DS XL4 FLAG WORD
BLDLDCB DS AL4 ADDRESS OF DCB THAT MEMBER WAS WRITTEN TO
* *
* *
**
* WRITE BUFFER DSECT STARTS HERE
* This DSECT is used by the GODIVERT and WRITEBLK routines to do
* the file IO to divert an object into a temporary dataset. The
* first 3 words are control information and the rest of the area
* is the buffer into which the output block is being built.
* The values for the DCB address, next record address, and current
* blocksize are set up by the INITIO routine when the BR record
* is first encountered in the incoming datastream.
**
*
WRTBUFFR DSECT DSECT FOR THE WRITE OUTPUT BUFFER
WRTBDCB DS AL4 POINTER TO DCB BEING WRITTEN
WRTBNEXT DS AL4 POINTER TO NEXT AVAILABLE RECORD LOCATION
WRTBBLKS DS AL4 MAX BLOCK SIZE FOR FILE BEING WRITTEN
WRTBBDW DS CL4 BLOCK DESCRIPTOR WORD
WRTBRDW DS CL4 FIRST RECORD DESCRIPTOR WORD
* *
**
* AFPDS RECORDS DSECTS *
**
* *
BRREC DSECT BEGIN RESOURCE RECORD
INCC DS CL1 X′ 5A′
INLEN DS CL2
INOPCOD DS CL3
INSEQ DS CL3
BRRNAME DS CL8 RESOURCE NAME

DS CL4 CONSTANT FLAGS
BROBJTYP DS CL1 OBJECT TYPE FLAGS
BRCSET EQU X′ 4 0 ′ CHARACTER SET FLAG
BRCPAGE EQU X′ 4 1 ′ CODE PAGE FLAG
BRCFONT EQU X′ 4 2 ′ CODED FONT FLAG
BRPSEG EQU X′ FB′ PAGE SEGMENT FLAG
BROVLY EQU X′ FC′ OVERLAY FLAG
BRPDEF EQU X′ FD′ PAGEDEF FLAG
BRFDEF EQU X′ FE′ FORMDEF FLAG
* *
**
* DCB DSECT EXPANSION *
**
* *

DCBD DSORG=(PO),DEVD=(DA)
END APSUX04

/*

84 AFP Printing in an IBM Cross-System Environment

A.4 PSF/MVS Inline Resource Exit APSUX07
AFPDS defines a structure known as an Inline Resource Group which may be
present at the beginning of any print file. This structure may contain resource
objects to be used in printing the file. Objects found within an inline resource
group will be used in preference to identically named objects in the normal
system libraries. This capability makes it possible to build a completely
self-contained print file that does not require any resources to be installed on the
driving system before it can be printed.

PSF/VM Version 2 Release 1 and OS/400 Version 2 permit any type of resource
to be defined in an inline resource group. PSF/2 Version 1 Release 1 on the
OS/2 platform permits all resources except the pagedef, which is not a valid
object on OS/2. PSF/MVS Version 2 Release 1 and PSF/VSE Version 2 Release 1
permit only pagedefs and formdefs to be defined inline.

The PSF/MVS exit coding in this section, in concert with its companion APSUX04
exit documented in A.3, “PSF/MVS Inline Resource Exit APSUX04” on page 77,
provides a facsimile of full inline resource support for PSF/MVS. There are a
number of restrictions and caveats which are explained in the comments that
appear at the beginning of the coding. Please read them carefully.

A.4.1 Sample Assembler Code
********************* APSUX07 PSF RESOURCE EXIT***********************
* <<< MVS INLINE RESOURCE PROCESSING EXIT >>> *
* *
* The exit coding in this module and the corresponding APSUX04 *
* module provide full inline resource support by capturing inline *
* objects not understood by PSF/MVS (as of PSF/MVS V2R1 that means *
* overlays, page segments, and font objects) and writing them to a *
* dataset that is part of PSF′ s concatenation of resource libraries.*
* Thus, when PSF references the object, it is available in the *
* normal resource library structure. *
* *
* Correct operation of this exit coding requires that DD statements *
* be added to the PSF startup JCL. Three DD statements must be *
* added to reference the temporary resource libraries to which *
* inline resources will be written. They must have the following *
* DDNAMES: *
* INLNOVLY: Points to the temporary overlay library *
* INLNPSEG: Points to the temporary page segment library *
* INLNFONT: Points to the temporary font library *
* *
* In addition, the SAME datasets that are referenced by these 3 *
* DDNAMES must also appear FIRST in the concatenation for their *
* respective PSF resource libraries. Thus, if PSEG01 is the DDNAME *
* that defines PSF′ s page segment library, the library referenced *
* by DDNAME INLNPSEG must appear first in the concatenation of *
* datasets referenced by DDNAME PSEG01. This means that these *
* temporary datasets must have a format compatible with PSF resource*
* libraries and have a block size that is equal or larger than any *
* of the libraries following in the concatenation. A sample of the *
* necessary JCL coding is shown below: *
* *
* //INLNOVLY DD DSN=&&OVERLIB,DISP=(,PASS),UNIT=SYSDA, *
* // SPACE=(CYL,(10,10,50)), *
* // DCB=(RECFM=VBM,LRECL=8205,BLKSIZE=8209) *
* //INLNPSEG DD DSN=&&PSEGLIB,DISP=(,PASS),UNIT=SYSDA, *
* // SPACE=(CYL,(10,10,50)), *
* // DCB=(RECFM=VBM,LRECL=8205,BLKSIZE=8209) *
* //INLNFONT DD DSN=&&FONTLIB,DISP=(,PASS),UNIT=SYSDA, *

Appendix A. PSF/MVS Exits and MVS Sample Programs 85

* // SPACE=(CYL,(10,10,50)), *
* // DCB=(RECFM=VBM,LRECL=8205,BLKSIZE=8209) *
* //OLAY01 DD DSN=&&OVERLIB,DISP=SHR, *
* // UNIT=SYSDA,VOL=REF=*.INLNOVLY *
* // DD DSN=AFPDEMO.OVERLIB,DISP=SHR *
* // DD DSN=SYS1.OVERLIB,DISP=SHR *
* //PSEG01 DD DSN=&&PSEGLIB,DISP=SHR, *
* // UNIT=SYSDA,VOL=REF=*.INLNPSEG *
* // DD DSN=AFPDEMO.PSEGLIB,DISP=SHR *
* // DD DSN=SYS1.PSEGLIB,DISP=SHR *
* //FONT01 DD DSN=&&FONTLIB,DISP=SHR, *
* // UNIT=SYSDA,VOL=REF=*.INLNFONT *
* // DD DSN=AFPDEMO.PROD.FONTLIB,DISP=SHR *
* // DD DSN=SYS1.FONT3820,DISP=SHR *
* *
* This exit receives control from PSF at FSA initialization and *
* sets up the environment required by APSUX04 to divert inline *
* overlays, page segments, coded fonts, character sets, and code *
* pages to the temporary libraries. Subsequently, this exit *
* receives control at the beginning of each print dataset in order *
* to delete any objects written to the temporary datasets by the *
* preceding job. Control is also received at FSA termination to *
* close files and release GETMAINed storage. *
* *
* APSUX04 is responsible for detecting the presence of an inline *
* resource in the datastream and writing it to the appropriate *
* dataset. This module is responsible for the following: *
* *
* On PSF INITIALIZATION: *
* *
* 1. GETMAIN and initialize control areas and write buffers. *
* 2. Open files. *
* *
* At Beginning of Each New Dataset: *
* *
* 1. Check to see if objects have been written into any of *
* the temporary libraries by the previous job. *
* 2. If objects were written by the previous job, use STOW *
* to delete these members from the library. *
* *
* At FSA Termination: *
* *
* 1. Check to see if objects have been written into any of *
* the temporary libraries by the previous job and delete *
* them if there were. *
* 2. Close files and FREEMAIN storage. *
* *
* *
* This exit also requests control at access time for pagedefs and *
* formdefs so that it can force a reload from dasd. This function *
* is completely independent of the inline resource handling *
* function. *
* *
* The basic logic and environment for PSF exits are described in *
* the PSF System Programming Guide (S544-3672). *
* *
* *
* ### *
* # # *
* # WARNING * WARNING * WARNING * WARNING # *
* # RESTRICTIONS # *
* # # *
* ### *
* *
* This exit has the following restrictions: *
* *

86 AFP Printing in an IBM Cross-System Environment

* *
* - While this exit has been coded to be re-entrant, it should *
* not be employed in a PSF address space that is supporting *
* multiple FSAs (i.e. printers). This sample coding employs *
* a single set of temporary resource libraries. If more than *
* one printer is active in the address space, then exit *
* processing done on behalf of one printer may delete or *
* overlay objects required for another. The logic could be *
* adapted to a multiple printer situation by adding *
* additional temporary file DCBs, one set of 3 for each *
* printer driven by the address space. They would have to *
* have different DCB names. Also, the control block areas *
* that pass DCB addresses back and forth would have to be *
* updated to reflect any DCBs added to the exit coding. *
* *
* - There is another reason to avoid driving multiple printers *
* per address space when employing this coding. Normal PDS *
* facilities (i.e. BLDL and STOW) are used to add and delete *
* members. While, at any given moment, the temporary *
* datasets contain only members provided in the datastream of *
* the current dataset, over time a printer supporting a high *
* level of inline resource activity may cause these datasets *
* to expand beyond 16 extents or ask for additional space *
* that is not available (i.e. incur an x37 ABEND). If a *
* single printer is supported in the address space, and the *
* JCL coding shown above is employed (i.e. using temporary *
* datasets) then this situation can be fixed by simply *
* cancelling the PSF address space and restarting the *
* printer. For MVS/ESA systems operating at the required *
* level of DFP, the new PDSE support could be used to *
* circumvent this problem completely. *
* *
* - The exit logic tacitly assumes that all resources will be *
* deleted by PSF at the end of each print dataset. This is *
* not true in the case of fonts. The default algorithms used *
* by PSF to manage fonts permit them to remain in the printer *
* across dataset boundaries. Thus, if an inline font named *
* GT10 is loaded into the printer, it may not be deleted at *
* the end of the dataset and may become accessible to a *
* subsequent job. If this is undesirable, code could be added*
* to APSUX07 to force the deletion of all resources loaded *
* from the temporary libraries. *
* *
* - The converse of the above may also be a problem. For *
* instance, if a font GT10 is included inline, but another *
* font GT10 already exists in the printer, then PSF will not *
* load the ″inline″ font. This is because PSF does not *
* perceive the font as being inline, but rather as coming *
* from its normal library. Again, this problem should be *
* addressable with additional code. APSUX07 can set the *
* RLSTLOAD flag to cause a reload from DASD. *
* *
* - In repositioning situations, the Begin Data Set call of *
* APSUX07 is not always executed. Imagine the case of two *
* print datasets, A and B. PSF sends the final pages of *
* dataset A to the printer which absorbs them into its page *
* buffer and starts to physically print them. While the *
* printer works on these pages, PSF starts working on dataset *
* B, which contains some inline resources. These resources *
* are diverted into the temporary datasets by APSUX04. But *
* before all of the last pages of dataset A can be physically *
* printed, a printer error occurs requiring PSF to reposition *
* backwards beyond the start of dataset B into the last pages *
* of dataset A. Now, however, if dataset A references a *
* resource with the same name as one loaded by dataset B into *
* the temporary libraries, the ″wrong″ copy may be loaded. *

Appendix A. PSF/MVS Exits and MVS Sample Programs 87

* *
* This is an unlikely situation, but it is possible. Again, *
* additional code should provide a resolution. For instance, *
* one possibility might be to change the name of diverted *
* objects so as to make them inaccessible without action by *
* APSUX07. Then APSUX07 could, in turn, ensure that only the *
* owning print dataset got access to the renamed resource. *
* *
* - This exit uses a number of MVS system service macros. The *
* coding as written does not do error checking or result *
* validation on return from these calls. Therefore, an IO *
* error or other recoverable failure could result in an *
* ABEND of the PSF address space. *
* *
* - This exit will ONLY run AMODE 24, RMODE 24. *
* *
* - If PSF is not marked non-swappable in the PPT, unpredictable*
* abends may occur. *
* *
* *
**
APSUX07 START 0

TITLE ′ DSECT - GEXTP′
APSGEXTP LIST=YES
TITLE ′ DSECT - UECA′
APSUECA LIST=YES
TITLE ′ DSECT - RLST′
APSURLST LIST=YES
TITLE ′ APSUX07 - RESOURCE EXIT: INLINE RESOURCE HANDLING′

APSUX07 CSECT ,
APSUX07 AMODE 24
APSUX07 RMODE 24

USING *,R15
B START
DC AL1(16) LENGTH OF FOLLOWING FIELDS
DC CL8′ APSUX07 ′ NAME OF THIS ROUTINE
DC CL8′&SYSDATE′ DATE OF THIS ASSEMBLY
DC CL16′ SOURCEM: V2X7ILR′
DROP R15

START DS 0H
STM R14,R12,R12(R13) SAVE CALLERS REGISTERS
USING APSUX07,BASEREG NEW ADDRESSABILITY
LR BASEREG,R15 SWITCH BASE REGISTER

*
**
* Get basing for control blocks *
**

USING APSGEXTP,GEXTPTR SET ADDRESSABILITY TO GEXTP
USING XTP7,XTP7PTR SET ADDRESSABILITY TO XTP7
USING APSUECA,ECAPTR SET ADDRESSABILITY TO APSUECA
USING APSURLST,RLSTPTR SET ADDRESSABILITY TO APSURLST
L GEXTPTR,0(,R1) LOAD ADDRESS OF GEXTP
L ECAPTR,XTPECAP LOAD ADDRESS OF APSUECA
LR R2,R13 LOAD ADDRESS OF CALLERS SAVE
LA R13,ECAUSAVE ADDRESS OF APSUX04 SAVE AREA
ST R2,4(,R13) SAVE CALLERS SAVE AREA ADDRESS
ST R13,8(,R2) SAVE APSUX04 SAVE AREA ADDRESS
L XTP7PTR,XTPRECP LOAD ADDRESS OF XTP7
L RLSTPTR,XTP7LSTP LOAD ADDRESS OF APSURLST

*
**
* Determine what type of call is being made to the exit. If not *
* an initialization call or an access call, establish addressability*
* to the GETMAINed work areas for the other routines. *
**
CALLTYPE EQU *

88 AFP Printing in an IBM Cross-System Environment

TM XTP7ETYP,INITCALL INITIALIZATION CALL?
BO INITRTN YES, GOTO INIT ROUTINE
TM XTP7ETYP,ACCCALL RESOURCE ACCESS TIME CALL?
BO ACCRTN YES, GOTO ACCESS ROUTINE
L ILRPTR,ECALEN ILRPTR = LEN OF ENTIRE ECA 00107516
LA R3,ILRCOMML R3 = LEN OF ILRCOMM AREA 00107616
SLR ILRPTR,R3 ILRPTR = ECALEN-LEN OF ILRCOMM 00107716
LA ILRPTR,APSUECA(ILRPTR) ILRPTR -> ILRCOMM AREA 00107816
L ILRPTR,0(ILRPTR) ILRPTR -> GETMAINED WORK AREA
USING ILRWORK,ILRPTR ADDRESSABILITY TO ILRWORK AREA
TM XTP7ETYP,BDSCALL BEGIN DATASET CALL?
BO BDSRTN YES, GOTO BDS ROUTINE
TM XTP7ETYP,TRMCALL TERMINATION OF FSA CALL?
BO TERMRTN YES, GOTO TERM ROUTINE
B GETOUT THIS SHOULD NEVER HAPPEN

*
**
* INITIALIZATION ROUTINE: *
* FUNCTION: *
* - Request control at access time for formdefs and pagedefs *
* - Initialize communication area for APSUX04 *
* - Getmain a workarea and copy DCBs, OPEN parm lists and *
* other control blocks needed by APXUX04 into it *
* - Open files *
* - Initialize BLDL list area *
**
INITRTN EQU *
SWTL------------------TRACING WTL------------------------------------
* USING WTLDSECT,R1
* MVC ECAWKBUF+100(WTLLISTL),WTLLIST MOVE WTLLIST TO WORK
* LA R1,ECAWKBUF+100 R1 -> WTL LIST FORM
* MVC WTLTEXT,=CL47′ INITIALIZING INLINE RESOURCE EXITS FOR′
* MVC WTLTEXT+39(8),XTP7PNAM PUT PRINTER NAME IN WTL MSG
* WTL MF=(E,(1))
EWTL------------------END TRACING WTL--------------------------------

MVI XTP7NACC,XTP7AFD+XTP7APD REQUEST CONTROL AT ACCESS
* TIME FOR FDEFS AND PDEFS

MVI XTP7MISC,XTP7ETRM+XTP7EBDS AND ALSO AT FSA TERMINATION
* AND BEGINNING OF DATASET
*

* GETMAIN an area for control blocks and place its address in the *
* last word of the ECAWKBUF area. This pointer will be visible to *
* APSUX04. *

L ILRPTR,ECALEN ILRPTR = LEN OF ENTIRE ECA 00107516
LA R3,ILRCOMML R3 = LEN OF ILRCOMM AREA 00107616
SLR ILRPTR,R3 ILRPTR = ECALEN-LEN OF ILRCOMM 00107716
LA ILRPTR,APSUECA(ILRPTR) ILRPTR -> ILRCOMM AREA 00107816
USING ILRCOMM,ILRPTR ADDRESSABILITY TO ILRCOMM AREA
GETMAIN RU,LV=4000 GET CONTROL BLOCK WORK AREA
ST R1,ILRCOMM SAVE POINTER FOR UX04

*

* Now initialize GETMAINed area for use by UX04. Move in IO control *
* blocks, open temporary object files, GETMAIN a write buffer area, *
* and initialize pointers to a BLDL list for use by UX04. *

LR ILRPTR,R1 ILRPTR -> GETMAINED AREA
USING ILRWORK,ILRPTR
LA R2,ILRWORK R2 -> MOVE TARGET
LA R3,ILRBLEN R3 = MOVE LENGTH
LA R4,ILRLITS R4 -> MOVE SOURCE
LR R5,R3 R5 = MOVE LENGTH
MVCL R2,R4 MOVE CTL BLKS TO WORK AREA

Appendix A. PSF/MVS Exits and MVS Sample Programs 89

* The control blocks we just moved into the GETMAINed area don′ t have*
* the DCB addresses, etc. needed by UX04, we have to store them now. *

LA R4,OVLYDCB R4 -> DCB FOR TEMP OVERLAYS
STCM R4,7,OVLDCBAD+1 SAVE ADDR FOR UX04
STCM R4,7,OPENLST+1 AND IN OPEN PARM LIST
LA R4,PSEGDCB R4 -> DCB FOR TEMP PAGE SEGMENTS
STCM R4,7,PSGDCBAD+1 SAVE ADDR FOR UX04
STCM R4,7,OPENLST+5 AND IN OPEN PARM LIST
LA R4,FONTDCB R4 -> DCB FOR TEMP FONTS
STCM R4,7,FCSDCBAD+1 SAVE ADDR FOR UX04
STCM R4,7,FCPDCBAD+1 SAVE ADDR FOR UX04
STCM R4,7,FCFDCBAD+1 SAVE ADDR FOR UX04
STCM R4,7,OPENLST+9 AND IN OPEN PARM LIST
LA R1,OPENLST R1 -> OPEN PARM LIST
OPEN ,MF=(E,(1)) OPEN 3 TEMP LIBRARIES
GETMAIN RU,LV=WRTBUFLN GET OUTPUT BUFFER
ST R1,WRTBUFAD SAVE POINTER FOR UX04
LR R2,R1 R2 -> WRITE BUFFER AREA
L R3,WRTBUFLW R3 = LENGTH OF GETMAINED AREA
BCTR R3,0 DECR BY 1 JUST TO BE SAFE
SLR R5,R5 CLEAR R5 TO ZEROS
MVCL R2,R4 CLEAR WRITE BUFFER TO ZEROS
LA R4,BLDLNT1-BLDLELEN R4 -> 1ST BLDL ENTRY -1 ENTRY
ST R4,BLDLLAST SAVE POINTER (IND 0 ENTRIES)
LA R4,WRITELST R4 -> WRITE PARM LIST
ST R4,WRTLSTAD SAVE POINTER FOR UX04
B GETOUT EXIT APSUX07

*
**
* ACCESS ROUTINE: *
* (NOTE: This routine is not related to the inline resource *
* handling functions.) *
* FUNCTION: *
* - Check dataset type and don′ t process headers, trailers, msgds*
* - Set RLSTLOAD flag to force pagedef/formdef reload from DASD *
* for non-inline resources. PSF won′ t use virtual storage *
* copy. *
**
ACCRTN EQU *

TM XTP7DSAT,XTP7PDFT+XTP7PJHD+XTP7PJTR+XTP7PDSH+XTP7PMDS
* TEST FLAGS FOR NON-USER DATASET

BNZ GETOUT EXIT IF NON-USER
OI RLSTAFLG,RLSTLOAD REQUEST RESOURCE LOAD FROM DASD

* FOR ALL PAGEDEFS AND FORMDEFS
B GETOUT SCRAM, WE′ RE DONE

*
**
* BDS ROUTINE: *
* FUNCTION: *
* - Check to see if previous job has stored inline resources *
* in the temp libraries, if so we delete them using STOW. *
* If no resources exist in any temporary library, then the *
* address in the BLDLLAST field will be < address of first *
* available BLDL entry. *
**
BDSRTN EQU *

MVI ILRFLAGS,0 CLEAR ILRFLAGS FIELD
TM XTP7DSAT,XTP7PDFT+XTP7PJHD+XTP7PJTR+XTP7PDSH+XTP7PMDS

* TEST FLAGS FOR NON-USER DATASET
BNZ GETOUT EXIT IF NON-USER
LA R4,BLDLNT1 R4 -> FIRST BLDL ENTRY
L R3,BLDLLAST R3 -> LAST BLDL ENTRY
CR R3,R4 BLDLLAST -> B4 START OF LIST?
BL GETOUT IF YES, EXIT - NO BLDL ENTRIES
L R2,BLDLLEN R3 = LENGTH OF EACH ENTRY

90 AFP Printing in an IBM Cross-System Environment

USING BLDLNTRY,R4 ADDRESSABILITY FOR BLDL DSECT
DELMBR EQU *

L R1,BLDLDCB R1 -> DCB FOR MEMBER DELETE
STOW (1),(4),D DELETE MEMBER
BXLE R4,R2,DELMBR LOOP TO NEXT MEMBER
LA R2,BLDLNT1-BLDLELEN R2 -> START OF LIST -1 ENTRY
ST R2,BLDLLAST RESET TO INDICATE NO ENTRIES
B GETOUT SCRAM, WE′ RE DONE
DROP R4

**
* FSA TERMINATION ROUTINE: *
* FUNCTION: *
* - Delete any members in temp libraries *
* - Close files and free getmained areas *
**
TERMRTN EQU *

LA R4,BLDLNT1 R4 -> FIRST BLDL ENTRY
L R3,BLDLLAST R3 -> LAST BLDL ENTRY
CR R3,R4 BLDLLAST -> B4 START OF LIST?
BL CLOSEM IF YES, EXIT - NO BLDL ENTRIES
L R2,BLDLLEN R3 = LENGTH OF EACH ENTRY
USING BLDLNTRY,R4 ADDRESSABILITY FOR BLDL DSECT

DELMBR1 EQU *
L R1,BLDLDCB R1 -> DCB FOR MEMBER DELETE
STOW (1),(4),D DELETE MEMBER
BXLE R4,R2,DELMBR1 LOOP TO NEXT MEMBER
LA R2,BLDLNT1-BLDLELEN R2 -> START OF LIST -1 ENTRY
ST R2,BLDLLAST RESET TO INDICATE NO ENTRIES
DROP R4

CLOSEM EQU *
LA R1,OPENLST R1 -> OPEN PARM LIST
CLOSE ,MF=(E,(1)) CLOSE ALL FILES
L R1,WRTBUFAD R1 -> WRITE BUFFER AREA
FREEMAIN RU,LV=32700,A=(1) FREE BUFFER
FREEMAIN RU,LV=4000,A=(ILRPTR) FREE WORKAREA
B GETOUT TIME TO LEAVE

*
**
* EXIT LINKAGE *
**
GETOUT EQU *

SLR R15,R15 PSF EXPECTS ZERO RETURN CODE
L R13,4(,R13) RESTORE CALLERS SAVE AREA ADDR.
L R14,12(,R13) RESTORE CALLERS RETURN ADDRESS
LM R0,R12,20(R13) RESTORE CALLERS REGISTERS
BR R14 RETURN TO CALLER

*
**
* EQUATES TO VERIFY TYPE OF EXIT CALL, COMPARE WITH XTP7ETYP *
**
INITCALL EQU B′10000000′ RESOURCE MANAGER INITIAL CALL
BDSCALL EQU B′01000000′ BEGINNING OF DATA SET CALL
ACCCALL EQU B′00100000′ RESOURCE ACCESS
LDBCALL EQU B′00010000′ RESOURCE LOAD BEGIN
LDECALL EQU B′00001000′ RESOURCE LOAD END
DSECALL EQU B′00000100′ RESOURCE DELETE AT DATA SET END
TRMCALL EQU B′00000010′ TERMINATION OF FSA
**
* EQUATES TO VERIFY TYPE OF RESOURCE CALL, COMPARE WITH XTP7RTYP *
**
PDEF EQU B′10000000′ PAGEDEF
FDEF EQU B′01000000′ FORMDEF
FONT EQU B′00100000′ CODED FONT
OVLY EQU B′00010000′ MEDIUM OVERLAY
PSEG EQU B′00001000′ PAGE SEGMENT
**

Appendix A. PSF/MVS Exits and MVS Sample Programs 91

* EQUATES FOR RLSTATTR FLAG FIELD *
**
DFLT EQU B′10000000′ DEFAULT FD/PD RESOURCE
MDFLT EQU B′01000000′ MODIFIED DEFAULT FD/PD RESOURCE
INLINE EQU B′00100000′ INLINE FD/PD RESOURCE
SOFTPS EQU B′00010000′ SOFT PAGE SEGMENT
MEFONT EQU B′00001000′ MULTIPLE ENTRY FONT
**
* REGISTER EQUATES *
**
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
GEXTPTR EQU R7
XTP7PTR EQU R8
ECAPTR EQU R9
RLSTPTR EQU R10
ILRPTR EQU R11
BASEREG EQU R12
* *
**
* WRITE BUFFER LENGTH, FOR GETMAIN AND CLEARING CODE
**
*
WRTBUFLN EQU 37000
WRTBUFLW DC AL4(WRTBUFLN)
* *
**
* RELOCATABLE CONTROL BLOCKS FOR IO, BLDL, ETC.
* The following DCs define the constant data that will be
* moved into the GETMAINed work area by the INITRTN. The first
* 11 words are pointers that will be initialized with the proper
* addresses after the control blocks have been moved into the the
* work area. Following these pointers are the DCBs, the WRITE
* list-form macro, and the first BLDL entry in the work area.
* Once moved, this data is referenced by ILRPTR and mapped by
* DSECT ILRWORK.
**
*
ILRLITS DS 0D
ILRL0 DC AL4(0) RESERVED FOR UX04 FLAGS
ILRL1 DC AL4(0) POINTER TO WRITE BUFFER
ILRL2 DC AL4(0) POINTER TO OPEN PARM LIST
-------------------Start Of DCB Pointer Table ---------------------
* The following five words are used as a search table by UX04.
* The high-order byte of each word contains the code that is
* used in a Begin Resource record to identify the type of
* resource that is to be written to the DCB having its address
* in the remaining 3 bytes of the word. There are 3 types
* of font resource and they are all written to the same
* physical file. However, there is a separate DCB pointer for
* each type of font object (all pointing to the same DCB) to
* make the search logic in UX04 more generic.

92 AFP Printing in an IBM Cross-System Environment

ILRL3A DC AL1(BROVLY) FLAG FOR INLINE OVERLAY
ILRL3B DC AL3(0) POINTER TO OVERLAY DCB
ILRL4A DC AL1(BRPSEG) FLAG FOR INLINE PSEG
ILRL4B DC AL3(0) POINTER TO PSEG DCB
ILRL5A DC AL1(BRCSET) FLAG FOR INLINE CHARACTER SET
ILRL5B DC AL3(0) POINTER TO FONT DCB
ILRL6A DC AL1(BRCPAGE) FLAG FOR INLINE CODE PAGE
ILRL6B DC AL3(0) POINTER TO FONT DCB
ILRL7A DC AL1(BRCFONT) FLAG FOR INLINE CODED FONT
ILRL7B DC AL3(0) POINTER TO FONT DCB
-------------------- End Of DCB Pointer Table ---------------------
ILRL8 DC AL4(0) POINTER TO WRITE PARM LIST
ILRL9 DC AL4(0) POINTER TO LAST BLDL ENTRY
ILRL10 DC AL4(BLDLELEN) LENGTH OF EACH BLDL ENTRY
OPENLIT OPEN (,(OUTPUT),,(OUTPUT),,(OUTPUT)),MF=L

DS 0F
OPENLITL EQU *-OPENLIT
OVLYLIT DCB MACRF=W,DSORG=PO,RECFM=VBM,DDNAME=INLNOVLY, X

LRECL=8205,BLKSIZE=8209
DS 0F

OVLYLN EQU *-OVLYLIT
PSEGLIT DCB MACRF=W,DSORG=PO,RECFM=VBM,DDNAME=INLNPSEG, X

LRECL=8205,BLKSIZE=8209
DS 0F

PSEGLN EQU *-PSEGLIT
FONTLIT DCB MACRF=W,DSORG=PO,RECFM=VBM,DDNAME=INLNFONT, X

LRECL=8205,BLKSIZE=8209
DS 0F

FONTLN EQU *-FONTLIT
WRITELIT WRITE OUTDECB,SF,MF=L

DS 0F
WRITELN EQU *-WRITELIT
BLDLLITE EQU *

DC CL8′ ′ BLANK NAME ENTRY
DC XL4′00000000′ BLDL FLAGS
DC XL4′00000000′ DCB ADDRESS FOR THIS MEMBER

BLDLELEN EQU *-BLDLLITE
ILRBLEN EQU *-ILRLITS

DC F′ 0 ′
**
WTLLIST WTL ′ APSUX07: ′ , *

MF=L
WTLLISTL EQU *-WTLLIST
**
* BEGIN RESOURCE RECORD FLAGS FOR RESOURCE TYPE
**
BRCSET EQU X′ 4 0 ′ CHARACTER SET FLAG
BRCPAGE EQU X′ 4 1 ′ CODE PAGE FLAG
BRCFONT EQU X′ 4 2 ′ CODED FONT FLAG
BRPSEG EQU X′ FB′ PAGE SEGMENT FLAG
BROVLY EQU X′ FC′ OVERLAY FLAG
BRPDEF EQU X′ FD′ PAGEDEF FLAG
BRFDEF EQU X′ FE′ FORMDEF FLAG
* *
**
* DSECT FOR ILR COMM AREA AT END OF UECA ECAWKBUF FIELD *
**
ILRCOMM DSECT
ILRPARMS DS F POINTER TO GETMAINED PARAMETER AREA
ILRCOMML EQU *-ILRCOMM LENGTH OF ILR COMM AREA
*
**
* ILRWORK CONTROL BLOCKS DSECT STARTS HERE
* THIS MAPS THE GETMAINED WORK AREA
**

Appendix A. PSF/MVS Exits and MVS Sample Programs 93

*
ILRWORK DSECT
ILRFLAGS DS AL4 APSUX04 FLAG AREA
WRTBUFAD DS AL4 POINTER TO OUTPUT BUFFER
OPENLAD DS AL4 POINTER TO OPEN PARM LIST
OVLDCBAD DS AL4 POINTER TO OVERLAY DCB
PSGDCBAD DS AL4 POINTER TO PSEG DCB
FCSDCBAD DS AL4 POINTER TO FONT DCB (CHAR SETS)
FCPDCBAD DS AL4 POINTER TO FONT DCB (CODE PAGES)
FCFDCBAD DS AL4 POINTER TO FONT DCB (CODED FONTS)
WRTLSTAD DS AL4 POINTER TO WRITE PARM LIST
BLDLLAST DS AL4 POINTER TO LAST BLDL ENTRY
BLDLLEN DS AL4 LENGTH OF EACH BLDL ENTRY
OPENLST EQU * OPEN PARAMETER LIST

ORG OPENLST+OPENLITL
OVLYDCB DS 0F DCB FOR INLINE OVERLAY FILE

ORG OVLYDCB+OVLYLN
PSEGDCB DS 0F DCB FOR INLINE PSEG FILE

ORG PSEGDCB+PSEGLN
FONTDCB DS 0F DCB FOR INLINE FONT FILE

ORG FONTDCB+FONTLN
WRITELST EQU *

ORG WRITELST+WRITELN
BLDLLIST EQU *
BLDLNT1 DS CL12 BLDL LIST ENTRY

DS CL4 DCB FOR FILE MEMBER WAS WRITTEN TO
**
* BLDL ENTRY DSECT STARTS HERE
* This DSECT is used when deleting members from
* the temporary datasets with STOW. The member name
* and DCB address have been filled in by UX04 when the
* member was written into the dataset.
**
*
BLDLNTRY DSECT DSECT FOR ENTRIES
BLDLENT DS 0CL16 BLDL LIST ENTRY
BLDLMNAM DS CL8 MEMBER NAME
BLDLFLGS DS XL4 FLAG WORD
BLDLDCB DS XL4 ADDRESS OF DCB OF FILE CONTAINING MEMBER
* *
**
* DSECT TO MAP LIST FORM WTL BUILT WITH WTL MF=(L) *
**
WTLDSECT DSECT

DS F
DS CL9

WTLTEXT DS CL47
END

A.5 ILRPACK Program
This utility program may be used to create a print file with an inline resource
group. See A.3, “PSF/MVS Inline Resource Exit APSUX04” on page 77 for a
discussion on inline resource groups.

A.5.1 Sample Assembler Code

94 AFP Printing in an IBM Cross-System Environment

TITLE ′ AFP INLINE RESOURCE PACKER′
ILRPACK CSECT
**
* This program reads a control file containing a list of names of *
* AFP resource objects. The resource objects are retrieved from *
* the appropriate library and written to the output print file *
* (ILROUT) as an AFP resource group. Then the input print file *
* (ILRIN) is copied to the print output file after the resource *
* group. When this file is shipped to a PSF/VM (or a PSF/MVS with *
* the inline resource exits installed) the resources packed inline *
* by this program will be used in preference to accessing resources*
* in the normal resource libraries defined to that PSF. Therefore,*
* the file becomes ″portable″ from system to system. *
* *
* DEFAULT FILE DDS: *
* ----------------- *
* The DDNAMES shown below are the defaults. The ILRSYSIN ddname*
* may be changed with an EXEC parm, like so: *
* *
* //STEP1 EXEC PGM=ILRPACK,PARM=′ ILRSYSIN=NEWNAME′ *
* *
* which would cause the file with ddname NEWNAME to be opened as *
* the input control file. The other ddnames may be changed by *
* entering a command in the ILRSYSIN (or whatever) input file. *
* Here are the default ddnames: *
* *
* //ILRSYSIN DD POINTS TO INPUT CONTROL FILE *
* //ILRIN DD POINTS TO INPUT PRINT FILE *
* //ILROUT DD POINTS TO OUTPUT PRINT FILE *
* //ILRSYSPR DD POINTS TO OUTPUT REPORT FILE *
* //ILRPDEF DD POINTS TO INPUT PAGEDEF LIBRARY *
* //ILRFDEF DD POINTS TO INPUT FORMDEF LIBRARY *
* //ILROVLY DD POINTS TO INPUT OVERLAY LIBRARY *
* //ILRPSEG DD POINTS TO INPUT PAGESEG LIBRARY *
* //ILRFONT DD POINTS TO INPUT FONT LIBRARY *
* *
* If resources of a particular type (e.g. fonts or overlays) are *
* not required, the ddname defining that library may be omitted. *
* Do not allocate unnecessary libraries to ′ DD DUMMY′ , an ABEND *
* will result. *
* *
* INPUT CONTROL FILE SYNTAX: *
* -------------------------- *
* User requests to pack objects into an Inline Resource Group *
* are organized into ″request groups″ . Each request group defines *
* the input file, the output file, and the resource objects that *
* are to be packed into the output file with the original input *
* file. At the beginning of each request group, all the input and *
* output files with the exception of ILRSYSIN itself may be *
* redefined. If no ddname redefinitions are encountered the *
* defaults above are used. For all request groups but the first, *
* it is mandatory that, at a minimum, new input and output files *
* be defined. All other ddnames that are not redefined will *
* remain as they were. *
* *
* Two types of command may be entered. The first type specifies *
* the ddname to use for any of the program files except for *
* ILRSYSIN. The second type identifies a resource type and the *
* name of an object of that type to be retrieved from the *
* currently active library and packed into a resource group at the *
* beginning of the print output dataset. *
* *
* All ddname definitions must precede the list of object names *
* to be retrieved using those DD definitions. Once object *
* retrieval has started, encountering a ddname definition causes *
* the current resource group to be ended, the current input file *

Appendix A. PSF/MVS Exits and MVS Sample Programs 95

* to be copied to output, and all files except ILRSYSIN to be *
* closed. Then the new dd definition cards are read, new ddnames *
* assigned, and the files reopened. This is assumed to represent *
* a request for a new output file. Therefore at a minimum, the *
* ddnames for ILRIN and ILROUT must be redefined. Otherwise, the *
* reopen of these DCBs will fail and the program terminates with a *
* return code of 20. All other ddnames may remain the same if *
* desired. *
* *
* Below is the syntax of the control cards. Note that fields are *
* positional and must appear in the columns indicated. *
* *
* DD DEFINITION SYNTAX: *
* COL1 COL9 *
* | | *
* V V *
* DDIDENT =NEW DDNAME *
* *
* Where DDIDENT is one of: *
* ILRPDEF IDENTIFIES PAGE DEFINITION LIBRARY *
* ILRFDEF IDENTIFIES FORM DEFINITION LIBRARY *
* ILROVLY IDENTIFIES OVERLAY LIBRARY *
* ILRPSEG IDENTIFIES PAGE SEGMENT LIBRARY *
* ILRFONT IDENTIFIES FONT LIBRARY *
* ILRIN IDENTIFIES INPUT PRINT FILE *
* ILROUT IDENTIFIES OUTPUT PRINT FILE *
* ILRSYSPR IDENTIFIES REPORT LISTING FILE *
* *
* Where new ddname is the ddname the program is to use for *
* for the current request *
* *
* *
* RESOURCE PACKING REQUEST SYNTAX: *
* COL 1 COL 10 COL 19 *
* | | | *
* V V V *
* OBJTYPE OBJECT NAME NEST=OV,PS,FO *
* *
* Where OBJTYPE = ONE OF: PAGEDEF = PAGE DEFINITION *
* FORMDEF = FORM DEFINITION *
* OVERLAY = OVERLAY *
* PAGESEG = PAGE SEGMENT *
* CFONT = CODED FONT *
* CPAGE = CODE PAGE *
* CHARSET = CHARACTER SET *
* SCANFILE= SCAN THE INPUT FILE FOR*
* RESOURCE REFERENCES *
* *
* Where OBJECT NAME = member name of object (including *
* prefix) in resource library *
* *
* Where NEST= is an optional parameter that indicates that *
* ″nested″ resources are to be retrieved. *
* When one resource object internally *
* references another, that is termed a *
* nested reference. When this parameter is *
* coded, objects of the type(s) listed in *
* the NEST= parameter that are referenced *
* from within the object named in the object *
* name field will be retrieved and packed. If *
* the objtype field is ″scanfile″ , then this *
* parameter must be coded. Legal values *
* are: *
* NEST=OV pack referenced OVERLAYS *
* NEST=PS pack referenced PAGE SEGMENTS *
* NEST=FO pack referenced FONTS (implies *

96 AFP Printing in an IBM Cross-System Environment

* all 3 types of font object; code *
* pages, character sets, and coded *
* fonts). This causes both *
* bounded and unbounded (i.e. 3820 *
* and 3800) versions of referenced *
* fonts to be retrieved if present *
* in the font library). *
* NEST=BB pack referenced BOUNDED BOX *
* FONTS (same as nest=fo except *
* only 3820 fonts are retrieved) *
* NEST=UB pack referenced UNBOUNDED BOX *
* FONTS (same as nest=fo except *
* only 3800 fonts are retrieved) *
* *
* *
* A sample ILRSYSIN control file might look like the following, *
* the numbers to the left of the statements correspond to the *
* following notes that describe what that statement does: *
* //ILRSYSIN DD * *
* 1. ILRSYSPR=XXXPRINT *
* 2. ILROUT =MYOUTPUT *
* 3. PAGEDEF P1TINLN1 NEST=FO,PS *
* 4. FORMDEF F1TINLN1 NEST=OV,PS,FO *
* 5. OVERLAY O1TINLN1 NEST=PS *
* 6. PAGESEG S1TINLN1 *
* 7. ILRIN =INPUT2 *
* 8. ILROUT =OUTPUT2 *
* 9. SCANFILE NEST=PS,BB *
* 10. PAGEDEF P1JUNK NEST=PS,BB *
* 11. FORMDEF F1TRASH *
* 12. ILRIN =AFPDSIN *
* 13. ILROUT =OUTPUT3 *
* 14. SCANFILE NEST=PS *
* /* *
* *
* 1. Use ddname XXXPRINT for the output report *
* 2. Write final output file to ddname MYOUTPUT *
* 3. Pack pagedef P1TINLN1 plus any fonts and psegs it *
* refrerences. *
* 4. Pack formdef F1TINLN1 plus any overlays it references, plus *
* any psegs and fonts (both bounded and unbounded) that those *
* overlays in turn reference. *
* 5. Pack overly O1TINLN1 plus any psegs that it references. *
* Note that an overlay retrieved because of statement 4 will *
* have both referenced psegs and referenced fonts packed along *
* with it, because of the NEST= parm on the FORMDEF request. *
* This request, however, (for overlay O1TINLN1) will only *
* retrieve psegs referenced by O1TINLN1 because that is what *
* is specified on the NEST= parameter of this packing request. *
* 6. Pack pseg S1TINLN1. *
* 7. Change the input print file from the default (ILRIN) to *
* INPUT2. This causes the previous request group to be ended, *
* the print output file to be written, and all files except *
* ILRSYSIN to be closed. The program now accepts dd *
* redefinition cards until it encounters an object packing *
* request. *
* 8. Change the output print file from the default (ILROUT) to *
* OUTPUT2. This is an object packing request, so all files *
* are reopened and any new ddnames become active. *
* 9. The SCANFILE command causes the entire input print file *
* (INPUT2) to be scanned and any psegs or bounded box (i.e. *
* 3820) fonts that it references are packed into the resource *
* group. *
* 10. Pack pagedef P1JUNK plus any psegs and bounded box (i.e. *
* 3820) fonts that it references. *
* 11. Pack formdef F1TRASH *

Appendix A. PSF/MVS Exits and MVS Sample Programs 97

* 12 Change the input print file from INPUT2 to AFPDSIN. This *
* causes the previous request group to be ended, the print *
* output file to be written, and all files except ILRSYSIN to *
* be closed. *
* 13. Change the output print file from OUTPUT2 to OUTPUT3. *
* 14. Reopen all files, scan the input print file (AFPDSIN) and *
* pack all psegs that it references. *
* *
* *
* OUTPUT FILE CHARACTERISTICS: *
* ---------------------------- *
* The output file will have the following characteristics: *
* - variable blocked records *
* - carriage control, either the same as the input file or *
* ansi if input has no carriage control. If input has no *
* carriage control output records will have a blank CC *
* prefixed to the beginning of the original record. *
* - LRECL will be set to the largest LRECL found in the *
* 5 resource libraries libraries and the input dataset. *
* - BLKSIZE will be set to the largest BLKSIZE found in *
* the 5 resource libraries libraries and the input *
* dataset *
* *
* These characteristics are ENFORCED and if an existing file is *
* referenced by the ″ILROUT″ DD, it will be OVERWRITTEN with *
* these characteristics. *
* *
* GENERAL LOGIC: *
* -------------- *
* Comments in the following code use a convention. Comment *
* blocks that precede a major piece of logic or a subroutine are *
* enclosed in asterisks (i.e. *******). Comment blocks that mark *
* a significant point within a piece of inline code are marked by *
* hypens (i.e. ------). *
* *
* BASIC LOGIC FLOW IS: *
* *
* 1. Main program housekeeping *
* 2. Request group initialization (label READDD). Reads DD redef *
* cards, opens files for request group, writes BRG record to *
* output file. *
* 3. Request processing loop (label READREQ). Reads packing *
* request, if a DD redef go to step 2., otherwise retrieve *
* named object from resource library and pack into output *
* file. If internal references are encountered while reading *
* the resource file and NEST= has been coded, these requests *
* are built into an internal request list called NESTLIST. *
* *
* At EOF on the resource being read, the NESTLIST is checked *
* to see if any entries exist. If so, each entry is processed*
* as if it had been read from the control file, using the nest*
* parameter currently in effect from the control file (i.e. *
* the references made from within nested objects will be *
* handled using the same rules as for the main object.) When *
* the NESTLIST is empty, we go back to step 3. *
* *
* This loop continues until a new request group or EOF on *
* ILRSYSIN. At that point an end resource group (ERG) record *
* is written to the output file to terminate the resource *
* group and the print input file is copied to the print output*
* file. At EOF on the ILRIN file, all files except ILRSYSIN *
* are closed and and we return to step 2, unless there is also*
* EOF on ILRSYSIN in which case we terminate. *
* *
**
*

98 AFP Printing in an IBM Cross-System Environment

**
* MAIN PROGRAM INITIALIZATION AND HOUSEKEEPING *
**

PRINT GEN
USING *,R15 USE CALLER′ S REG. AS TEMPORARY BASE
STM R14,12,12(13) SAVE CALLER′ S REGS. IN CALLER′ S S.AREA
B BYLITS
DC CL8′ ILRPACK ′ NAME OF THIS ROUTINE
DC CL8′&SYSDATE′ DATE OF THIS ASSEMBLY

BYLITS EQU *
LA R2,SAVE1 GET OWN S.AREA AND DO FORWARD-
ST R2,8(R13) -POINTING IN CALLER′ S SAVEAREA
ST R13,SAVE1+4 DO BACKWARD POINTING IN OWN S.AREA
BAL R13,START MAKE OWN SAVEAREA CURRENT & GOTO START
USING SAVE1,R13
DROP R15

SAVE1 DS 18F STORAGE FOR OWN SAVEAREA
--
* CHECK FOR EXEC PARMS, NEW DDNAME FOR SYSIN MAY BE SUPPLIED *
--
START EQU *

L RDA,DATCSECT |RDA->DATA CSECT
USING ILRPACKD,RDA |ESTABLISH ADDRESSABILITY
L R1,0(R1) |R1->INPUT EXEC PARM AREA
LA R1,0(R1) |CLEAR HIGH ORDER BYTE
CLC HWNINE,0(R1) |WAS A PARMLIST PROVIDED?
BNL GETBUF |BR IF NOT
CLC 2(9,R1),=C′ ILRSYSIN=′ |IS PARM ILRSYSIN=?
BNE GETBUF |BR IF NOT
MVC ILRSYSIN+DDNAME(8),=CL8′ ′ | CLEAR DDNAME FIELD
LA R2,ILRSYSIN+DDNAME |R2->DDNAME IN SYSIN DCB
LH R3,0(R1) |R3 = LENGTH OF PARM FIELD
SH R3,HWNINE |R3 = LEN LESS LEN OF ILRSYSIN=
LA R4,8(R1) |R4 -> NEW DDNAME
LR R5,R3 |R5 = MOVE LENGTH
MVCL R2,R4 |MOVE NEW DDNAME TO ILRSYSIN DCB

--
* INITIALIZE MAIN RESOURCE INPUT BUFFER AND PACKWORK AREA *
--
GETBUF EQU *

GETMAIN RU,LV=RBUFSIZE |GET INPUT RESOURCE BUFFER AREA
LR RRB,R1 |RRB -> RESOURCE INPUT BUFFER
USING RESBUF,RRB |SET ADDRESSIBILITY
USING RESTBENT,RLT |ADDRESSABILITY TO RESLIBTB NTRY
GETMAIN RU,LV=PKWKSIZE |GET PACKWORK AREA
LR RPW,R1 |RPW -> PACKWORK AREA
USING PACKWORK,RPW |SET ADDRESSIBILITY
LR R2,R1 |R2-> WORKAREA
L R3,=AL4(PKWKSIZE-8) |R3 = LENGTH TO CLEAR
LA R4,0 |SET FOR SHOW, NOT NEEDED
L R5,PWCLEAR |BLANK PAD BYTE, ZERO LENGTH
MVCL R2,R4 |CLEAR PACKWORK TO SPACES
LA R1,LISTAREA |R1 -> START OF PACKLIST
MVC PACKWORK(8),=CL8′ PACKWORK′ | PUT ID IN AREA
ST R1,PAKLSTRT |SAVE POINTER
ST R1,PAKLNEXT |INDICATE EMPTY LIST
L R1,NSTLOFFS |GET OFFSET TO NESTLIST
LA R1,LISTAREA(R1) |GET ADDRESS OF NESTLIST
BCTR R1,R0 |DECREMENT BY 1
BCTR R1,R0 |DECREMENT BY ANOTHER 1
ST R1,PAKLMAX |STORE MAX EXTENT OF PACKLIST
LA R1,LISTAREA |R1 -> START OF PACKLIST
L R2,NSTLOFFS |R2 -> OFFSET TO NESTLIST
LA R1,0(R2,R1) |R1 -> START OF NESTLIST
ST R1,NSTLSTRT |SAVE START POINTER
ST R1,NSTLNEXT |INDICATE NESTLIST IS EMPTY

Appendix A. PSF/MVS Exits and MVS Sample Programs 99

ST R1,NSTLCURR |INDICATE NESTLIST IS EMPTY
L R2,NSTLSIZE |R2 = MAX LENGTH OF NESTLIST
LA R1,0(R2,R1) |R1 -> MAX EXTENT OF NESTLIST
ST R1,NSTLMAX |STORE MAX EXTENT OF NESTLIST
EXTRACT TIOTADDR,FIELDS=TIOT
L R2,TIOTADDR |R2 -> TIOT
LA R2,24(R2) |R2 -> 1ST TIOT ENTRY
ST R2,TIOTADDR |SAVE POINTER TO FIRST ENTRY

--
* OPEN INPUT CONTROL FILE (SYSIN). THIS IS DONE ONLY ONCE, *
* ALL OTHER FILES ARE OPENED ONCE FOR EACH REQUEST GROUP ENCOUNTERED.*
--
OPNSYSIN EQU *

MVC WTOTEXT(8),ILRSYSIN+DDNAME |PUT DDNAME IN MSG
OPEN (ILRSYSIN) |OPEN INPUT CONTROL FILE
TM ILRSYSIN+OPENFLAG,DCBOFOPN |TEST FOR SUCCESSFUL OPEN
BO READDD |BR IF OK, OTHERWISE STOP NOW
MVC WTOTEXT+8,=CL50′ DD COULD NOT BE OPENED′
B ABORT

*
**
* REQUEST GROUP INTITIALIZATION *
* THE FOLLOWING CODE READS DD REDEFINITION CARDS, THEN OPENS ALL *
* THE NECESSARY FILES FOR THE REQUEST PROCESSING LOOPS. *
**
*
--
* LOOK FOR DDNAME REDEFINITIONS. *
* REDEFINITIONS HAVE THE DEFAULT DDNAME IN COLS 1-8, *
* AN ″=″ IN COL 9 AND THE NEW DDNAME IN COLS 10-17. ALL DD REDEFS *
* MUST PRECEDE THE FIRST RESOURCE REQUEST CARD FOR THE REQUEST GROUP.*
* THE FIRST SYSIN INPUT RECORD WITHOUT ″=″ IN COL 9 IS TAKEN AS THE *
* FIRST RESOURCE REQUEST RECORD. *
--
READDD EQU *

GET ILRSYSIN,REQREC |GET AN INPUT RECORD
CLI DDEQUAL,C′ = ′ |IS IT A DDNAME DEFINITION?
BNE OPENSYSP |BR IF NOT, WE HAVE 1ST REQ REC

*
--
* SET UP POINTERS TO DDNAME TABLE FOR SEARCH *
--
INITDDTB EQU *

LA R3,DDNAMETB |R3 -> TABLE OF DDNAMES
LA R4,DDNAMELN |R4 = INCREMENT
LA R5,DDNAMETX |R5 = END OF DDNAME TABLE

*
--
* FIND DEFAULT DDNAME (LEFT SIDE OF =) IN DDNAME TABLE *
--
FINDDD EQU *

CLC REQTYPE,0(R3) |IS IP DDNAME = TABLE DDNAME?
BE CHGDDNAM |IF YES, LEAVE LOOP
BXLE R3,R4,FINDDD |INCR POINTER & LOOP
LA R1,WTOLIST |R1 -> WTO PARM LIST
MVC WTOTEXT(8),REQTYPE |PUT FAILED DDNAME IN MSG
MVC WTOTEXT+9,=CL35′ INVALID FILE REFERENCE′
WTO MF=(E,(1)) |PUT OUT MSG
B READDD |NOT FOUND, IGNORE DDCARD

CHGDDNAM EQU *
L R4,8(R3) |R4 -> DCB FOR DDNAME ON CARD
MVC DDNAME(8,R4),REQNAME |PUT NEW DDNAME IN DCB
B READDD |LOOP TO NEXT CARD

*
--
* OPEN ILRSYSPR REPORT FILE *

100 AFP Printing in an IBM Cross-System Environment

--
OPENSYSP EQU *

MVC WTOTEXT(8),ILRSYSPR+DDNAME |PUT DDNAME IN MSG TEXT
MVC REPDDNAM,ILRSYSPR+DDNAME |PUT DDNAME IN REP TEXT
OPEN (ILRSYSPR,(OUTPUT)) |OPEN ILRSYSPR REPORT FILE
TM ILRSYSPR+OPENFLAG,DCBOFOPN |TEST FOR SUCCESSFUL OPEN
BO OPNRLIBS |BR IF OK, OTHERWISE STOP NOW
MVC WTOTEXT+9(35),=CL35′ REPORT DD COULD NOT BE OPENED′
B ABORT

--
* OPEN INPUT RESOURCE LIBRARIES *
--
OPNRLIBS EQU *

PUT ILRSYSPR,HYPHNMSG |WRITE SEPARATOR
PUT ILRSYSPR,INITMSG |WRITE HEADER TO ILRSYSPR
PUT ILRSYSPR,INITMSG2 |WRITE HEADER TO ILRSYSPR
PUT ILRSYSPR,BLANKMSG |WRITE SPACER

* OPEN (ILRPDEF,,ILRFDEF,,ILRPSEG,,ILROVLY,,ILRFONT)
LA RLT,RESLIBTB |RLT -> TABLE OF RESOURCE LIBS
LA R4,RESLIBLN |R4 = INCREMENT
LA R5,RESLIBX1 |R5 = END OF RESOURCE LIB TABLE

*
--
* CHECK RESOURCE LIBRARY DCBS TO VERIFY SUCCESSFUL OPEN *
--
CHKRLDCB EQU *

L R2,RESTDCB |R2->DCB
BAL RLINK1,SCANTIOT |CHECK IF DDNAME EXISTS
C R15,ZERO |IS IT OK?
BNE WRTDCBEM |WRITE WARNING MSG IF NOT
OPEN ((R2))
TM OPENFLAG(R2),DCBOFOPN |THIS DCB GET OPENED OK?
BNO WRTDCBEM |IF NOT, GO WRITE ERROR MSG

DCBINCR BXLE RLT,R4,CHKRLDCB |INCR POINTER & LOOP
B CHKPDFRL |END OF LIST

WRTDCBEM EQU *
MVC DCBERNAM,DDNAME(R2) |PUT DDNAME INTO ERROR MESSAGE
PUT ILRSYSPR,DCBOPMSG |WRITE ERROR MESSAGE
CLI RCODE,4 |CURRENT RCODE > 4?
BH DCBINCR |RETURN TO LOOP IF YES
MVI RCODE,4 |SHOW NON-ZERO RETURN CODE
B DCBINCR |RETURN TO LOOP

--
* PLUG HIGEST RESOURCE LRECL AND BLKSIZE INTO ILROUT DCB *
--
CHKPDFRL EQU *

CLC ILRPDEF+LRECL,ILROUT+LRECL |PDEF LRECL > ILROUT?
BNH CHKFDFRL |BRANCH IF NOT
MVC ILROUT+LRECL(2),ILRPDEF+LRECL |COPY PD LRECL TO OP
MVC ILROUT+BLKSIZE(2),ILRPDEF+BLKSIZE |PD BLKSIZE TO OP

CHKFDFRL EQU *
CLC ILRFDEF+LRECL,ILROUT+LRECL |FDEF LRECL > ILROUT?
BNH CHKOVRRL |BRANCH IF NOT
MVC ILROUT+LRECL(2),ILRFDEF+LRECL |COPY FD LRECL TO OP
MVC ILROUT+BLKSIZE(2),ILRFDEF+BLKSIZE |FD BLKSIZE TO OP

CHKOVRRL EQU *
CLC ILROVLY+LRECL,ILROUT+LRECL |OVLY LRECL > ILROUT?
BNH CHKPSGRL |BRANCH IF NOT
MVC ILROUT+LRECL(2),ILROVLY+LRECL |COPY OV LRECL TO OP
MVC ILROUT+BLKSIZE(2),ILROVLY+BLKSIZE |OV BLKSIZE TO OP

CHKPSGRL EQU *
CLC ILRPSEG+LRECL,ILROUT+LRECL |PSEG LRECL > ILROUT?
BNH CHKFNTRL |BRANCH IF NOT
MVC ILROUT+LRECL(2),ILRPSEG+LRECL |COPY PS LRECL TO OP
MVC ILROUT+BLKSIZE(2),ILRPSEG+BLKSIZE |PS BLKSIZE TO OP

CHKFNTRL EQU *

Appendix A. PSF/MVS Exits and MVS Sample Programs 101

CLC ILRFONT+LRECL,ILROUT+LRECL |FONT LRECL > ILROUT?
BNH OPENINPT |BRANCH IF NOT
MVC ILROUT+LRECL(2),ILRFONT+LRECL |COPY FO LRECL TO OP
MVC ILROUT+BLKSIZE(2),ILRFONT+BLKSIZE |FO BLKSIZE TO OP

--
* OPEN PRINT INPUT FILE. ENSURE LRECL AND BLKSIZE OF ILROUT *
* ARE NOT LESS THAN CORRESPONDING ILRIN PARAMETERS. *
--
OPENINPT EQU *

MVC PRIPDDNM,ILRIN+DDNAME |SAVE DDNAME FOR MESSAGES
OPEN (ILRIN) |OPEN INPUT PRINT FILE
TM ILRIN+OPENFLAG,DCBOFOPN |WAS OPEN OK?
BO OPENIPOK |BRANCH IF YES
MVC WTOTEXT(8),PRIPDDNM |PUT DDNAME IN MSG
MVC WTOTEXT+9(35),=CL35′ INPUT FILE DD COULD NOT BE OPENED′
B ABORT

OPENIPOK EQU *
CLC ILRIN+LRECL(2),ILROUT+LRECL |CHECK INPUT LRECL
BNH RECLOK |INPUT LRECL < CURRENT, BRANCH
MVC ILROUT+LRECL(2),ILRIN+LRECL |COPY IP LRECL TO OP

RECLOK EQU *
CLC ILRIN+BLKSIZE(2),ILROUT+BLKSIZE |CHK INPUT BLKSIZE
BNH BLKLOK |INPUT BLKSZ < CURRENT, BRANCH
MVC ILROUT+BLKSIZE(2),ILRIN+BLKSIZE |IP BLKSIZE TO OP

BLKLOK EQU *
TM ILRIN+RECFM,DCBRECCA |IS INPUT ANSI CARRIAGE CNTRL?
BO CHKOPTCD |IF YES, GO CHECK OPTCD
TM ILRIN+RECFM,DCBRECCM |IS INPUT MACH CARRIAGE CNTRL?
BO INMACHCC |BR IF YES

--
* INPUT FILE HAS NO CARRIAGE CONTROL,
* WE MUST ADD A CHAR TO OUTPUT BLKSIZE AND LRECL TO ACCOMMODATE
--

LH R1,ILROUT+LRECL |GET ILROUT LRECL
LA R1,1(R1) |BUMP BY 1 TO ADD CC CHARS
STH R1,ILROUT+LRECL |STORE BACK INTO DCB
LA R1,4(R1) |BUMP LRECL BY 4
CH R1,ILROUT+BLKSIZE |IS NEW LRECL+4 > BLKSIZE?
BNH CHKOPTCD |IF NOT, GO CHECK OPTCD
STH R1,ILROUT+BLKSIZE |STORE NEW BLKSIZE IN DCB
B CHKOPTCD |NOW GO CHECK OPTCD

INMACHCC EQU *
MVI ILROUT+RECFM,MACHCC |SET MACHINE CC ON OUTPUT

*
--
* CHECK FOR OPTCD=J IN INPUT FILE AND CARRY THROUGH TO OUTPUT *
--
CHKOPTCD EQU *

TM ILRIN+OPTCD,DCBOPTJ |DOES INPUT HAVE TRCS?
BNO OPENOUT |BRANCH IF NOT
OI ILROUT+OPTCD,DCBOPTJ |SET OPTCD=J IN OUTPUT

*
--
* OPEN PRINT OUTPUT FILE *
--
OPENOUT EQU *

TM ILRIN+RECFM,DCBRECV |IS INPUT RECFM=V
BO OPENOUT1 |BR IF YES
MVC RDWADJ,ZERO |SET RDW ADJUSTMENT TO ZERO

* | - ACCOUNTS FOR FIXED LEN INPUT
OPENOUT1 EQU *

MVC PROPDDNM,ILROUT+DDNAME |SAVE DDNAME FOR MSGS
OPEN (ILROUT,(OUTPUT)) |OPEN PRINT OUTPUT FILE
TM ILROUT+OPENFLAG,DCBOFOPN |WAS OPEN OK?
BO WRITEBRG |BRANCH IF YES
MVC WTOTEXT(8),PROPDDNM |PUT DDNAME IN MSG

102 AFP Printing in an IBM Cross-System Environment

MVC WTOTEXT+9(35),=CL35′ OUTPUT FILE DD COULD NOT BE OPENED′
B ABORT |SCRAM RIGHT NOW

*
--
* WRITE A BEGIN RESOURCE GROUP RECORD TO OUTPUT FILE *
* INITIALIZE POINTERS IN RESOURCE INPUT BUFFER FOR FIRST READ *
--
WRITEBRG EQU *

PUT ILROUT,BRGREC |WRITE INITIAL BEGIN RES GRP
LA R1,RESRDW |R1 -> 1ST RDW IN BLOCK
ST R1,RESRDWP |SAVE POINTER IN BUFFER AREA
SLR R1,R1 |CLEAR R1
ST R1,RESEOBP |SET END-BLOCK POINTER TO ZERO
PUT ILRSYSPR,BLANKMSG |SPACE REPORT FILE 1
B REQ1 |BYPASS REQ READ, WE HAVE 1ST

*
**
* END OF REQUEST GROUP INITIALIZATION CODE *
**
*
**
* MAIN REQUEST PROCESSING LOOP *
* PACKING REQUESTS ARE READ FROM SYSIN. DETECTION OF A DD DEF *
* COMMAND TERMINATES THE CURRENT REQUEST GROUP AND CAUSES A RESET *
* TO PROCESS A NEW REQUEST GROUP. IF NESTED RESOURCE PACKING HAS *
* BEEN REQUESTED, THEN PROCESSING THE OBJECT EXPLICITLY REQUESTED *
* ON THE REQUEST CARD MAY RESULT IN NESTED REQUESTS BEING PLACED *
* IN THE NESTLIST. THESE MUST BE PROCESSED BEFORE THE NEXT REQ *
* IS PROCESSED FROM SYSIN. TO AVOID PACKING OBJECTS MORE THAN *
* ONCE, THE PACKLIST AREA IS USED TO RECORD OBJECTS ALREADY PACKED*
**
READREQ EQU *

GET ILRSYSIN,REQREC |READ A REQUEST RECORD
CLI DDEQUAL,C′ = ′ |IS IT A DDNAME DEFINITION?
BE ENDREQ |BR IF NOT, AT END OF CURR REQ

REQ1 EQU *
MVC MSGREQ,REQREC |MOVE REQUEST TO INFO MESSAGE
MVC MSGOUT,PROCMSG |OUTPUT IN PROCESS MSG
MVC MSGFLAG,=C′ ===>′ |SET UP VISUAL FLAG
PUT ILRSYSPR,MSGREC |WRITE INFO MSG

* MVC MSGFLAG,=C′ =>′ |MOVE EXPLICIT REQ FLAG TO MSG
BAL RLINK1,PARSNEST |GO SET NEST FLAGS IF REQD
CLC REQTYPE,=CL8′ SCANFILE′ | REQUEST TO SCAN INPUT FILE?
BNE REQ2 |IF NOT, CHECK FOR NORMAL REQ
BAL RLINK1,SCANFILE |GO SCAN INPUT FILE FOR REFS
B REQ3 |GO HANDLE NESTED REQUESTS

REQ2 EQU *
BAL RLINK1,GETRES |GO FIND REQUESTED RESOURCE
C R15,ZERO |ARE WE READY TO READ RESOURCE?
BNE READREQ |GET NEXT REQUEST IF NOT
BAL RLINK1,PACKOBJ |GO PACK REQUESTED RESOURCE

REQ3 EQU *
TM NESTFLAG,NESTREQ |WERE NESTED REQUESTS FOUND?
BO PACKNEST |IF YES, GO PROCESS NESTED REQS
B READREQ |GO READ ANOTHER REQUEST

*
--
* PACK OBJECTS FOUND IN THE NESTED REQUEST LIST. THIS LOOP IS *
* ENDED WHEN LIST EXHAUSTED, INDICATED BY R2->NEXT AVAILABLE ENTRY *
--
PACKNEST EQU *

L R2,NSTLSTRT |R2->BEGINNING OF NESTED REQ LST
PAKNST1 EQU *

C R2,NSTLNEXT |IS LIST NOW EMPTY?
BL PAKNST2 |BR IF NOT, DO NEXT NEST REQ
MVC NSTLNEXT,NSTLSTRT |RESET NESTLIST TO EMPTY

Appendix A. PSF/MVS Exits and MVS Sample Programs 103

B READREQ |GO GET NEXT USER REQUEST
PAKNST2 EQU *

MVC REQREC(17),0(R2) |PUT NESTED REQUEST INTO REQ REC
MVC REQREC+17(32),BLANKMSG |CLEAR NEST FLAGS FROM REQ AREA
LA R2,WRKLNTLN(R2) |BUMP PTR TO NEXT LIST ITEM
MVC MSGREQ,REQREC |MOVE REQUEST TO INFO MESSAGE
MVC MSGFLAG,NSTMFLAG |MOVE NESTED REQ FLAG TO MSG
MVC MSGFLAG,=C′ +′ |MOVE NESTED REQ FLAG TO MSG
BAL RLINK1,GETRES |GO FIND REQUESTED RESOURCE
C R15,ZERO |ARE WE READY TO READ RESOURCE?
BNE PAKNST1 |GET NEXT REQUEST IF NOT
BAL RLINK1,PACKOBJ |GO PACK NESTED RESOURCE
B PAKNST1 |GO LOOK AT NEXT NESTED REQUEST

*
--
* WE GOT AN END-OF-REQUEST GROUP INDICATOR (EITHER EOF ON SYSIN *
* OR ENCOUNTERED A DD REDEF CARD IN SYSIN) *
--
ENDREQ EQU *

PUT ILROUT,ERGREC |WRITE FINAL END RES GRP REC
L R1,PACKCTR |R1 = PACKED COUNT
LTR R1,R1 |WAS ANYTHING PACKED?
BP ENDREQ1 |BR IF YES
MVI RCODE,8 |SET RC FOR POSSIBLE PROBLEM
PUT ILRSYSPR,BLANKMSG |
PUT ILRSYSPR,NOPAKMSG |WRITE WARNING MESSAGE
PUT ILRSYSPR,BLANKMSG |

ENDREQ1 EQU *
MVC COPYIPNM,PRIPDDNM |PUT INPUT DDNAME IN MSG
MVC COPYOPNM,PROPDDNM |PUT OUTPUT DDNAME IN MSG
PUT ILRSYSPR,COPYMSG |WRITE COPY NOTICE
PUT ILRSYSPR,=CL121′ ′ |WRITE BLANK LINE

*
--
* COPY INPUT FILE TO OUTPUT FILE. OUTPUT IS ALWAYS VARIABLE *
* LENGTH RECORDS. LRECL IS CAPTURED FROM INPUT RECORD AND PLACED *
* IN RDW FOR OUTPUT RECORD. IF INPUT HAS NO CARRIAGE CONTROL, OUTPUT*
* IS SHIFTED ONE BYTE RIGHT TO MAKE A BLANK IN CC CHARACTER. OUTPUT *
* MUST HAVE CARRIAGE CONTROL FOR INLINE RESOURCES TO BE DETECTED. *
* LOOP ENDS AT END-OF-FILE ON ILRIN, WHICH BRANCHES TO EOFPRTIN *
--

MVI PRTINFLG,COPYFLAG |SET INPUT COPY FLAG
COPYFILE EQU *

GET ILRIN |GET PRINT INPUT RECORD
LR R4,R1 |R4 -> RECORD READ
LH R3,ILRIN+LRECL |R3 = LEN RECORD JUST READ
AH R4,RDWADJ |ADJUST REC PTR FOR RDW
SH R3,RDWADJ |ADJUST REC LEN FOR RDW
LR R5,R3 |R5 ALSO = LEN OF RECORD
STH R5,RESRDW |SAVE REC LENGTH SO FAR
LA R2,RESREC |R2 -> 1ST BYTE OF OUTPUT PRDATA
TM ILRIN+RECFM,DCBRECCC |WAS CC USED ON INPUT?
BNZ CLCCOK2 |BR IF YES
MVI 0(R2),C′ ′ |BLANK FIRST CHAR IN OP BUFF
LA R2,1(R2) |BUMP TARGET POINTER BY 1
LA R5,1(R5) |BUMP REC LENGTH BY 1
STH R5,RESRDW |SAVE NEW REC LENGTH
LR R5,R3 |RESET ORIGINAL MOVE LENGTH

CLCCOK2 EQU *
MVCL R2,R4 |MOVE INPUT BUFFER TO OUTPUT BUF
LH R5,RESRDW |RESTORE ACTUAL REC LEN - RDW
LA R5,4(R5) |ADD 4 TO LEN FOR RDW
STH R5,RESRDW |SAVE RDW FOR PUT
PUT ILROUT,RESRDW |WRITE IT OUT
B COPYFILE

*

104 AFP Printing in an IBM Cross-System Environment

**
* END OF MAIN REQUEST LOOP *
**
*
*
**
--
* CALLABLE SUBROUTINES *
--
**
*
**
* PACK AN OBJECT INTO THE ILROUT FILE. THIS ROUTINE ASSUMES *
* THAT THE GETRES ROUTINE HAS LOCATED THE OBJECT AND SETUP THE DCB *
* TO READ THE RESOURCE OBJECT. RETURN TO CALLER IS VIA RLINK1. *
**
PACKOBJ EQU *

STM R1,R5,INTSAVE1 |SAVE CALLER′ S REGS
*

USING WRKLNTRY,R2 |ESTABLISH R2 AS BASE FOR
* |NESTLIST ENTRIES IN CHECK RTNS

USING AFPDS,R3 |ESTABLISH R3 AS BASE FOR
* |AFPDS RECORDS

L R2,PAKLSTRT |R3 -> START OF PACKLIST
LA R4,WRKLNTLN |R4 = LENGTH OF LIST ENTRIES
L R5,PAKLNEXT |R5 -> NEXT OPEN ENTRY
S R5,=F′ 4 ′ |R5 -> LAST USED ENTRY

*
--
* CHECK TO SEE IF OBJECT HAS ALREADY BEEN PACKED. *
--
PACKCHK EQU *

CLC WRKLNTRY,REQREC |REQUEST ALREADY PACKED?
BE PAKIGNOR |IGNORE REQUEST IF YES
BXLE R2,R4,PACKCHK |LOOP TO NEXT ENTRY
MVC BROBJTYP,RESTTYPC |SET OBJ TYPE IN BR RECORD
MVC BRRNAME,REQNAME |INSERT RES NAME IN BR REC
MVC ERRNAME,REQNAME |INSERT RES NAME IN ER REC
PUT ILROUT,BRREC |WRITE BR REC

*
--
* NOW PACK RESOURCE OBJECT INTO OUTPUT FILE. RECORD OPCODES ARE *
* CHECKED FOR RECORDS THAT MIGHT MAKE REFERENCE TO OTHER OBJECTS *
* (I.E. NESTED REFERENCES) *
--
PACKLOOP EQU *

BAL RLINK2,READRES |GO READ A RESOURCE RECORD
PUT ILROUT,(R3) |WRITE RESOURCE RECORD
LA RLINK2,PACKLOOP |SET RETURN ADDR FOR CHK RTNS
CLC 7(3,R3),MCF |IS IT A MCF RECORD?
BE CHKMCF |BR IF YES
CLC 7(3,R3),MMO |IS IT A MMO RECORD?
BE CHKMMO |BR IF YES
CLC 7(3,R3),MPS |IS IT A MPS RECORD?
BE CHKMPS |BR IF YES
CLC 7(3,R3),IPS |IS IT A IPS RECORD?
BE CHKIPS |BR IF YES
CLC 7(3,R3),CFI |IS IT A CFI RECORD?
BE CHKCFI |BR IF YES
B PACKLOOP |DO IT SOME MORE

*
--
* WE GOT A DUPLICATE PACK REQUEST, WE′ RE IGNORING IT. *
--
PAKIGNOR EQU *

LM R1,R5,INTSAVE1 |RESTORE CALLERS REGS

Appendix A. PSF/MVS Exits and MVS Sample Programs 105

BR RLINK1 |RETURN TO CALLER IF OK
*
--
* WE GOT AN END-OF-FILE ON RESOURCE MEMBER WE WERE READING *
--
EPAKLOOP EQU *

PUT ILROUT,ERREC |WRITE END RESOURCE REC
CLC MSGFLAG,NSTMFLAG |NESTED PACK REQUEST?
BNE EPAKLOP1 |BR IF NOT, NO MESSAGE
MVC MSGOUT,NESTMSG |OUTPUT NESTMSG
PUT ILRSYSPR,MSGREC |WRITE INFO MSG

EPAKLOP1 EQU *
L R1,PACKCTR |R1 = CURRENT PACKED COUNT
LA R1,1(R1) |INCR COUNT
ST R1,PACKCTR |STORE COUNT
L R1,PAKLNEXT |R1->LAST
MVC 0(WRKLNTLN,R1),MSGREQ |SAVE REQUEST IN PACKLIST
LA R1,WRKLNTLN(R1) |BUMP TO NEXT ENTRY
ST R1,PAKLNEXT |SAVE POINTER
C R1,PAKLMAX |ARE WE PAST MAX ALLOWED?
BNL KILL1 |KILL IF YES
LM R1,R5,INTSAVE1 |RESTORE CALLERS REGS
BR RLINK1 |RETURN TO CALLER IF OK

KILL1 EQU *
WTO ′>>>>>>>>>>>>> ERROR ERROR ERROR <<<<<<<<<<<<<′ , X

ROUTCDE=(11)
WTO ′ EXCEEDED AVAILABLE SPACE IN PACKLIST WORKAREA′ , X

ROUTCDE=(11)
WTO ′>>>>>>>>>>>>> ERROR ERROR ERROR <<<<<<<<<<<<<′ , X

ROUTCDE=(11)
ABEND 999
DROP R2
DROP R3

*
**
* END OF PACK OBJECT LOOP *
**
*
*
**
* STRUCTURED FIELD CHECKING ROUTINES *
* THE FOLLOWING CHK... ROUTINES ARE CALLED WHEN THE INDICATED TYPE *
* OF AFPDS RECORD IS ENCOUNTERED IN THE INPUT FILE OR ANOTHER RESRCE *
* OBJECT. IF THE NESTFLAG FOR THE RESOURCE IS ON THEN A PACK REQUEST*
* IS BUILT INTO THE NESTED REQUEST LIST FOR IT, OTHERWISE IT IS *
* IGNORED. THESE ROUTINES MAY BE CALLED EITHER BY PACKOBJ OR BY *
* SCANFILE. *
**
*
--
* KILL ROUTINE IN CASE WE BLOW THE NESTLIST AREA *
--
KILL2 EQU *

WTO ′>>>>>>>>>>>>> ERROR ERROR ERROR <<<<<<<<<<<<<′ , X
ROUTCDE=(11)

WTO ′ EXCEEDED AVAILABLE SPACE IN NESTLIST WORKAREA′ , X
ROUTCDE=(11)

WTO ′>>>>>>>>>>>>> ERROR ERROR ERROR <<<<<<<<<<<<<′ , X
ROUTCDE=(11)

ABEND 999
USING WRKLNTRY,R2 |ESTABLISH R2 AS BASE FOR

* |NESTLIST ENTRIES IN CHECK RTNS
USING AFPDS,R3 |ESTABLISH R3 AS BASE FOR

* |AFPDS RECORDS
*
--

106 AFP Printing in an IBM Cross-System Environment

* WE READ A MCF RECORD, CHECK TO SEE IF NESTED FONT PACKING IS *
* REQUESTED AND, IF SO, ADD FONTS LISTED IN MAP RECORD TO THE *
* NESTLIST. TWO TYPES OF FONTS MAY BE PACKED, BOUNDED BOX FONTS *
* AND UNBOUNDED BOX FONTS. EITHER TYPE, OR BOTH TYPES MAY BE PAKD *
* DEPENDING UPON WHAT THE USER REQUESTED IN THE NEST= PARAMETER ON *
* THE PACKING REQUEST RECORD. CODING BB RETRIEVES BOUNDED BOX *
* FONTS, CODING UB RETRIEVES UNBOUNDED BOX FONTS, AND CODING FO *
* RETRIEVES BOTH. *
--
CHKMCF EQU *

TM NESTFLAG,NESTFO |DO WE RETRIEVE NESTED FONTS?
BZR RLINK2 |IF NOT, IGNORE MCF
STM R1,R5,INTSAVE2 |SAVE CALLERS REGS
L R2,NSTLNEXT |R2->NEXT AVAIL NESTLIST ENTRY
C R2,NSTLMAX |ARE WE POINTING BEYOND ENDLIST?
BNL KILL2 |KILL IF YES
SLR R4,R4 |CLEAR R4
IC R4,MCFRGLEN |R4 = LEN OF REPEAT GROUP
LR R5,R3 |R5->BEGINNING OF RECORD
AH R5,AFPDSRDW |R5->END OF RECORD + 1
SR R5,R4 |R5->1ST BYTE OF LAST RPT GRP
S R5,=AL4(MCFRGOFF) |R5->VIRTUAL ORIGIN OF LAST RGRP

CHKMCFL EQU *
CLI MCFCFNAM,X′ FF′ |IS THERE A CODED FONT NAME?
BE CHKMCF1 |BR IF NOT
TM NESTFLAG,NESTBB |BOUNDED BOX FONTS REQUESTED?
BZ CHKMCF0 |BR AROUND IF NOT

* <<< BOUNDED BOX CODED FONT >>>
MVC WRKLTYPE(9),=CL9′ CFONT′ | SET OBJECT TYPE TO CODED FONT
MVC WRKLNAME,MCFCFNAM |PUT CFONTNAME IN NEST REQ
MVI WRKLNAME+1,C′ 0 ′ |FORCE BOUNDED BOX PREFIX
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY

CHKMCF0 EQU *
* <<< UNBOUNDED BOX CODED FONT >>>

TM NESTFLAG,NESTUB |UNBOUNDED BOX FONTS REQUESTED?
BZ CHKMCF1 |BR AROUND IF NOT
MVC WRKLTYPE(9),=CL9′ CFONT′ | SET OBJECT TYPE TO CODED FONT
MVC WRKLNAME,MCFCFNAM |PUT CFONTNAME IN NEST REQ
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY

CHKMCF1 EQU *
* <<< CODE PAGE >>>

CLI MCFCPNAM,X′ FF′ |IS THERE A CODE PAGE NAME?
BE CHKMCF2 |BR IF NOT
MVC WRKLTYPE(9),=CL9′ CPAGE′ | SET OBJECT TYPE TO CODEPAGE
MVC WRKLNAME,MCFCPNAM |PUT CODEPAGE NAME IN NEST REQ
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY

CHKMCF2 EQU *
CLI MCFCSNAM,X′ FF′ |IS THERE A CHAR SET NAME?
BE CHKMCF4 |BR IF NOT
TM NESTFLAG,NESTBB |BOUNDED BOX FONTS REQUESTED?
BZ CHKMCF3 |BR AROUND IF NOT

* <<< BOUNDED BOX CHARACTER SET >>>
MVC WRKLTYPE(9),=CL9′ CHARSET′ | SET OBJECT TYPE TO CHARSET
MVC WRKLNAME,MCFCSNAM |PUT CHARSET NAME IN NEST REQ
MVI WRKLNAME+1,C′ 0 ′ |FORCE BOUNDED BOX PREFIX
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY

CHKMCF3 EQU *
TM NESTFLAG,NESTUB |UNBOUNDED BOX FONTS REQUESTED?
BZ CHKMCF4 |BR AROUND IF NOT

* <<< UNBOUNDED BOX CHARACTER SET >>>
MVC WRKLTYPE(9),=CL9′ CHARSET′ | SET OBJECT TYPE TO CHARSET
MVC WRKLNAME,MCFCSNAM |PUT CHARSET NAME IN NEST REQ
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY

CHKMCF4 EQU *
BXLE R3,R4,CHKMCFL |LOOP TO NEXT REPEAT GROUP
ST R2,NSTLNEXT |SAVE POINTER TO NEXT LIST NTRY

Appendix A. PSF/MVS Exits and MVS Sample Programs 107

LM R1,R5,INTSAVE2 |RESTORE CALLER REGS
BR RLINK2 |RETURN TO MAIN LOOP

*
--
* WE READ A MMO RECORD, CHECK TO SEE IF NESTED OVERLAY PACKING IS*
* REQUESTED AND, IF SO, ADD OVERLAYS LISTED IN THE MAP RECORD TO *
* NESTLIST. *
--
CHKMMO EQU *

TM NESTFLAG,NESTOV |DO WE RETRIEVE NESTED OVS?
BZR RLINK2 |IF NOT, IGNORE MMO
STM R1,R5,INTSAVE2 |SAVE CALLER REGS
L R2,NSTLNEXT |R2->NEXT AVAIL NESTLIST ENTRY
C R2,NSTLMAX |ARE WE POINTING BEYOND ENDLIST?
BNL KILL2 |KILL IF YES
SLR R4,R4 |CLEAR R4
IC R4,MMORGLEN |R4 = LEN OF REPEAT GROUP
LR R5,R3 |R5->BEGINNING OF RECORD
AH R5,AFPDSRDW |R5->END OF RECORD + 1
SR R5,R4 |R5->1ST BYTE OF LAST RPT GRP
S R5,=AL4(MMORGOFF) |R5->VIRTUAL ORIGIN OF LAST RGRP

CHKMMOL EQU *
MVC WRKLTYPE(9),=CL9′ OVERLAY′ | SET OBJECT TYPE TO OVERLAY
MVC WRKLNAME,MMONAME |PUT OVLY NAME IN NEST REQ
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY
BXLE R3,R4,CHKMMOL |LOOP TO NEXT REPEAT GROUP
ST R2,NSTLNEXT |SAVE POINTER TO NEXT LIST NTRY
LM R1,R5,INTSAVE2 |RESTORE CALLERS REGS
BR RLINK2 |RETURN TO MAIN LOOP

*
--
* WE READ A MPS RECORD, CHECK TO SEE IF NESTED PSEG PACKING IS *
* REQUESTED AND, IF SO, ADD PSEGS LISTED IN THE MAP RECORD TO *
* NESTLIST. *
--
CHKMPS EQU *

TM NESTFLAG,NESTPS |DO WE RETRIEVE NESTED PSEGS?
BZR RLINK2 |IF NOT, IGNORE MPS
STM R1,R5,INTSAVE2 |SAVE CALLER REGS
L R2,NSTLNEXT |R2->NEXT AVAIL NESTLIST ENTRY
C R2,NSTLMAX |ARE WE POINTING BEYOND ENDLIST?
BNL KILL2 |KILL IF YES
LR R5,R3 |R5->BEGINNING OF RECORD
AH R5,AFPDSRDW |R5->END OF RECORD + 1
BCTR R5,R0 |R5->END OF RECORD
SLR R4,R4 |CLEAR R4
IC R4,MPSRGLEN |R4 = LEN OF REPEAT GROUP

CHKMPSL EQU *
MVC WRKLTYPE(9),=CL9′ PAGESEG′ | SET OBJECT TYPE TO PSEG
MVC WRKLNAME,MPSNAME |PUT PSEG NAME IN NEST REQ
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY
BXLE R3,R4,CHKMPSL |LOOP TO NEXT REPEAT GROUP
ST R2,NSTLNEXT |SAVE POINTER TO NEXT LIST NTRY
LM R1,R5,INTSAVE2 |RESTORE CALLERS REGS
BR RLINK2 |RETURN TO MAIN LOOP

*
--
* WE READ A IPS RECORD, CHECK TO SEE IF NESTED PSEG PACKING IS *
* REQUESTED AND, IF SO, ADD PSEGS NAMED IN IPS RECORD TO NESTLIST *
--
CHKIPS EQU *

TM NESTFLAG,NESTPS |RETRIEVAL OF NESTED PSEGS ON?
BZR RLINK2 |IF NOT, IGNORE IPS
STM R1,R5,INTSAVE2 |SAVE CALLER REGS
L R2,NSTLNEXT |R2->NEXT AVAIL NESTLIST ENTRY
C R2,NSTLMAX |ARE WE POINTING BEYOND ENDLIST?

108 AFP Printing in an IBM Cross-System Environment

BNL KILL2 |KILL IF YES
MVC WRKLTYPE(9),=CL9′ PAGESEG′ |SET OBJECT TYPE TO PSEG
MVC WRKLNAME,IPSNAME |PUT PSEG NAME IN NEST REQ
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY
ST R2,NSTLNEXT |SAVE POINTER TO NEXT ENTRY
LM R1,R5,INTSAVE2 |RESTORE CALLERS REGS
BR RLINK2 |RETURN TO MAIN LOOP

*
--
* WE READ A CFI RECORD, CHECK TO SEE IF NESTED FONT PACKING IS *
* REQUESTED AND, IF SO, ADD CHARSET AND CODEPAGE REFERENCED BY CFI *
* RECORD TO NESTLIST. *
--
CHKCFI EQU *

TM NESTFLAG,NESTFO |ANY FONT NEST FLAGS ON
BZR RLINK2 |IF NOT, IGNORE CFI
STM R1,R5,INTSAVE2 |SAVE CALLER REGS
L R2,NSTLNEXT |R2->NEXT AVAIL NESTLIST ENTRY
C R2,NSTLMAX |ARE WE POINTING BEYOND ENDLIST?
BNL KILL2 |KILL IF YES
TM NESTFLAG,NESTBB |RETRIEVE BOUNDED BOX FONTS?
BZ CHKCFI1 |BR IF NOT
MVC WRKLTYPE(9),=CL9′ CHARSET′ |SET OBJECT TYPE TO CSET
MVC WRKLNAME,CFICSNAM |PUT CSET NAME IN NEST REQ
MVI WRKLNAME+1,C′ 0 ′ |FORCE BOUNDED BOX PREFIX
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY
MVC WRKLTYPE(9),=CL9′ CPAGE′ | SET OBJECT TYPE TO CODEPAGE
MVC WRKLNAME,CFICPNAM |PUT CPAGE NAME IN NEST REQ
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY

CHKCFI1 EQU *
TM NESTFLAG,NESTUB |RETRIEVE UNBOUNDED BOX FONTS?
BZ CHKCFI2 |BR IF NOT
MVC WRKLTYPE(9),=CL9′ CHARSET′ |SET OBJECT TYPE TO CSET
MVC WRKLNAME,CFICSNAM |PUT CSET NAME IN NEST REQ

* | (NOTE THAT UNBOUNDED BOX
* | PREFIX IS LEFT ALONE IN CASE
* | A NON-ZERO ROTATION HAS BEEN
* | SPECIFIED BY APPLICATION)

LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY
MVC WRKLTYPE(9),=CL9′ CPAGE′ | SET OBJECT TYPE TO CODEPAGE
MVC WRKLNAME,CFICPNAM |PUT CPAGE NAME IN NEST REQ
LA R2,WRKLNTLN(R2) |R2->NEXT AVAIL NESTLIST ENTRY

CHKCFI2 EQU *
ST R2,NSTLNEXT |SAVE POINTER TO NEXT ENTRY
LM R1,R5,INTSAVE2 |RESTORE CALLERS REGS
BR RLINK2 |RETURN TO MAIN LOOP
DROP R2
DROP R3

*
**
* END OF STRUCTURED FIELD CHECKING ROUTINES *
**
*
**
* WE GOT AN END-OF-FILE ON INPUT REQUEST FILE (SYSIN) *
**
EOFSYSIN EQU *

MVI SYSINEOF,X′ FF′ |INDICATE RECEIVED EOF ON SYSIN
B ENDREQ |GO HANDLE END OF REQUEST GROUP

*
**
* END OF EOFSYSIN *
**
*
**
* GOT AN END-OF-FILE ON CURRENT PRINT INTPUT FILE. DETERMINE *

Appendix A. PSF/MVS Exits and MVS Sample Programs 109

* WHETHER FILE WAS BEING SCANNED FOR RESOURCE REFERENCES OR WAS *
* BEING COPIED TO OUTPUT FILE AND TAKE APPROPRIATE ACTION *
**
EOFPRTIN EQU *

CLI PRTINFLG,SCANFLAG |SCANNING FOR RESOURCE REFS?
BNE EOFPRTI1 |BR IF NOT
CLOSE (ILRIN) |CLOSE ILRIN FILE
OPEN (ILRIN,(INPUT)) |REOPEN ILRIN FILE
MVI PRTINFLG,COPYFLAG |SET INPUT COPY FLAG
B EOFSCAN |RETURN TO SCANFILE ROUTINE

--
* WE FINISHED COPYING THE INPUT FILE, REQUEST IS NOW COMPLETE *
* CLOSE ALL FILES EXCEPT SYSIN AND LOOK FOR NEXT REQUEST *
--
EOFPRTI1 EQU *

CLOSE (ILRPDEF,,ILRFDEF,,ILROVLY,,ILRPSEG,,ILRFONT)
CLOSE (ILRSYSPR,,ILRIN,,ILROUT)
MVC ILRIN+DDNAME(8),=CL8′ UNDEFIND′ | RESET FOR NEW DDNAME
MVC ILROUT+DDNAME(8),=CL8′ UNDEFIND′ | RESET FOR NEW DDNAME
CLI SYSINEOF,X′ FF′ |NO MORE REQUESTS?
BE GETOUT |EXIT IF NOT
LA R1,LISTAREA |R1 -> START OF PACKLIST
L R2,NSTLOFFS |R2 -> OFFSET TO NESTLIST
LA R1,0(R2,R1) |R1 -> START OF NESTLIST
ST R1,NSTLSTRT |SAVE START POINTER
ST R1,NSTLNEXT |INDICATE NESTLIST IS EMPTY
ST R1,NSTLCURR |INDICATE NESTLIST IS EMPTY
LA R1,0(R2,R1) |R1 -> MAX EXTENT OF NESTLIST
ST R1,NSTLMAX |STORE MAX EXTENT OF NESTLIST
MVI PRTINFLG,COPYFLAG |RESET INPUT FILE FLAG
B INITDDTB |GO PROCESS NEW DD DEF CARDS

*
**
* END OF EOFPRTIN *
**
*
**
* READ A RESOURCE RECORD FROM THE LIBRARY MEMBER *
* RETURN TO CALLER VIA RLINK2 *
**
READRES EQU *

STM R1,R5,INTSAVE2 |SAVE CALLER′ S REGS
LM R3,R4,RESBUF |GET BUFFER CONTROL INFO

* | R3->START OF NEXT RDW
* | R4->END OF BLOCK

CR R3,R4 |IS NEXT < END?
BNL NEWBLOCK |GET NEW BLOCK IF NOT
LH R4,0(R3) |R4 = LEN OF CURR BLOCK
LA R4,0(R3,R4) |R4 -> NEXT RDW
ST R4,RESRDWP |SAVE ADDR OF NEXT RDW
BR RLINK2 |RETURN WITH R3->CURR RECORD

NEWBLOCK EQU *
LA R2,RESBDW |R2 -> INPUT BUFFER
READ READDECB,SF,(RESDCB),(R2),′ S′
CHECK READDECB
LH R3,RESBDW |R3 = LENGTH OF NEW BLOCK
LA R4,RESBDW(R3) |R4 ->END OF NEW BLOCK
LA R3,RESRDW |R3 ->FIRST RDW
STM R3,R4,RESBUF |SAVE POINTERS
B READRES |NOW PROCESS NEW BLOCK

*
**
* END OF READRES *
**
*
**

110 AFP Printing in an IBM Cross-System Environment

* ROUTINE TO SCAN THE TIOT AND SEE IF DDNAMES EXIST OR NOT. *
* R2 IS EXPECTED TO POINT TO THE DCB TO BE CHECKED. *
**
SCANTIOT EQU *

STM R1,R5,INTSAVE1 |SAVE CALLER REGS
L R3,TIOTADDR |R3->TIOT FIRST DD
LA R15,0 |SET GOOD RETURN CODE AS DEFAULT

SCANTIOL EQU *
CLC DDNAME(8,R2),4(R3) |DCB DDNAME IN TIOT?
BE SCANTIOX |EXIT IF YES
LA R3,TIOTLEN(R3) |BUMP POINTER
CLC 4(4,R3),ZERO |DDNAME HEX ZEROS?
BNE SCANTIOL |IF NOT, LOOP TO NEXT TIOT ENTRY
LA R15,20 |SET NOFIND RETURN CODE

SCANTIOX EQU *
LM R1,R5,INTSAVE1 |RESTORE CALLERS REGS
BR RLINK1 |RETURN TO CALLER

*
**
* END OF SCANTIOT *
**
*
**
* ROUTINE TO PARSE THE NEST= PARAMETER ON THE INPUT CARD AND *
* SET NESTFLAG ACCORDINGLY. *
* RETURN VIA RLINK1 *
**
PARSNEST EQU *

STM R1,R5,INTSAVE1 |SAVE CALLER REGS
NI NESTFLAG,X′ 0 0 ′ |TURN ALL NEST FLAGS OFF
CLC NESTKEYW,=C′ NEST=′ |NESTED RESOURCE RETRIEVAL REQ?
BNER RLINK1 |IF NOT, RETURN TO CALLER
LA R4,3 |R4 = INCREMENT
LA R5,NESTVAL4 |R5->LAST POSSIBLE VALUE
LA R2,NESTVALU |R2->FIRST VALUE

PARSLOOP EQU *
CLI 0(R2),C′ ′ |ITEM BLANK?
BE PARSLXIT |EXIT IF YES
CLC 0(2,R2),=C′ OV′ |RETRIEVE NESTED OVERLAYS?
BNE PARSLPS |IF NOT, CHK PSEGS
OI NESTFLAG,NESTOV+NESTREQ |SET RETRIEVE OVERLAY FLAG
B PARSITER |GO ITERATE LOOP

PARSLPS EQU *
CLC 0(2,R2),=C′ PS′ |RETRIEVE NESTED PSEGS?
BNE PARSLBB |IF NOT, CHK BB FONTS
OI NESTFLAG,NESTPS+NESTREQ |SET RETRIEVE PSEGS FLAG
B PARSITER |GO ITERATE LOOP

PARSLBB EQU *
CLC 0(2,R2),=C′ BB′ |RETRIEVE BOUNDED BOX FONTS?
BNE PARSLUB |IF NOT, CHK UB FONTS
OI NESTFLAG,NESTBB+NESTREQ |SET RETRIEVE PSEGS FLAG
B PARSITER |GO ITERATE LOOP

PARSLUB EQU *
CLC 0(2,R2),=C′ UB′ |RETRIEVE UNBOUNDED BOX FONTS?
BNE PARSLFO |IF NOT, CHK ALL FONTS
OI NESTFLAG,NESTUB+NESTREQ |SET RETRIEVE PSEGS FLAG
B PARSITER |GO ITERATE LOOP

PARSLFO EQU *
CLC 0(2,R2),=C′ FO′ |RETRIEVE ALL NESTED FONTS?
BNE PARSITER |IF NOT, ITERATE LOOP
OI NESTFLAG,NESTFO+NESTREQ |SET RETRIEVE ALL FONTS FLAG

PARSITER EQU *
BXLE R2,R4,PARSLOOP |INCR POINTER AND LOOP

PARSLXIT EQU *
LM R1,R5,INTSAVE1 |RESTORE CALLERS REGS

Appendix A. PSF/MVS Exits and MVS Sample Programs 111

BR RLINK1 |RETURN TO CALLER
*
**
* END OF PARSNEST *
**
*
**
* SCAN INPUT FILE FOR NESTED OBJECT REFERENCES *
* THIS ROUTINE ASSUMES THAT ILRIN IS ALREADY OPEN. WHEN EOF IS *
* ENCOUNTERED ON ILRIN THE EOFPRTIN ROUTINE IS CALLED. THE SETTING*
* OF THE PRTINFLG INDICATES TO EOFPRTIN THAT THE ROUTINE DOING THE *
* READING WAS THE SCANFILE ROUTINE, NOT THE COPYFILE ROUTINE. *
* EACH RECORD READ IS CHECKED TO SEE IF IT IS A MAP CODED FONT, MAP *
* PAGE SEGMENT, OR INCLUDE PAGE SEGMENT STRUCTURED FIELD (THESE ARE *
* THE ONLY NESTED REFERENCES POSSIBLE FROM A PRINT INPUT FILE). IF *
* ONE OF THESE IS FOUND THE APPROPRIATE CHK... ROUTINE IS CALLED TO *
* HANDLE IT. *
**
SCANFILE EQU *

STM R1,R5,INTSAVE1 |SAVE CALLER′ S REGS
MVI PRTINFLG,SCANFLAG |SET INPUT SCAN FLAG

SCANLP1 EQU *
GET ILRIN |GET PRINT INPUT RECORD
LR R3,R1 |R3 -> RECORD READ
TM ILRIN+RECFM,DCBRECV |IS INPUT RECFM=V
BO SLRECV |BR IF YES
S R3,=AL4(4) |PRETEND AN RDW EXISTS

SLRECV EQU *
CLI 4(R3),X′ 5A′ |IS RECORD A STR FLD REC?
BNE SCANLP1 |LOOP IF NOT
LA RLINK2,SCANLP1 |SET RETURN ADDR FOR CHK RTNS
CLC 7(3,R3),MCF |IS IT A MCF RECORD?
BE CHKMCF |BR IF YES
CLC 7(3,R3),MPS |IS IT A MPS RECORD?
BE CHKMPS |BR IF YES
CLC 7(3,R3),IPS |IS IT A IPS RECORD?
BE CHKIPS |BR IF YES
B SCANLP1 |LOOP TO NEXT RECORD

EOFSCAN EQU *
LM R1,R5,INTSAVE1 |RESTORE CALLER REGS
BR RLINK1 |RETURN TO CALLER

*
**
* END OF SCANFILE *
**
*
**
* ROUTINE TO VALIDATE A RESOURCE PACK REQUEST, FIND THE MEMBER*
* IN THE RESOURCE LIBRARY, AND SETUP TO READ THE MEMBER. RETURN *
* VIA RLINK1. *
**
GETRES EQU *

STM R1,R5,INTSAVE1 |SAVE CALLER′ S REGS
LA RLT,RESLIBTB |RLT -> TABLE OF RESOURCE LIBS
LA R4,RESLIBLN |R4 = INCREMENT
LA R5,RESLIBTX |R5 = END OF RESOURCE LIB TABLE

*
--
* FIND OBJECT TYPE IN RESOURCE TABLE (RESLIBTB) *
--
FINDTYPE EQU *

CLC REQTYPE,RESTTYPL |IS REQUESTED TYPE = LIB TYPE?
BE FINDMBR |IF YES, LEAVE LOOP
BXLE RLT,R4,FINDTYPE |INCR POINTER & LOOP
LA R2,ERRMSG1 |NOT FOUND, SET ERROR MESSAGE

112 AFP Printing in an IBM Cross-System Environment

B WRFNDERR |GO WRITE ERROR MESSAGE
*
--
* WE KNOW TYPE OF OBJECT, SEE IF NAMED OBJECT EXISTS IN RESLIB*
--
FINDMBR EQU *

L RESDCB,RESTDCB |RESDCB->LIB TO PULL RES FROM
TM OPENFLAG(RESDCB),DCBOFOPN |IS THIS DCB OPEN?
BNO FINDERR |ISSUE ERROR MSG IF NOT
FIND (RESDCB),REQNAME,D |DO FIND ON REQUESTED MEMBER
C R15,ZERO |DID FIND GIVE ZERO RC?
BNE FINDERR |IF NOT, ISSUE ERROR
SLR R15,R15 |RETURN CODE ZERO TO CALLER
LM R1,R5,INTSAVE1 |RESTORE CALLER′ S REGS
BR RLINK1 |RETURN TO CALLER

FINDERR EQU *
LA R2,ERRMSG2 |BLDL FAILED, SET ERROR MSG
B WRFNDERR |GO WRITE ERROR MSG

WRFNDERR EQU *
MVC MSGOUT,0(R2) |PUT MSG TEXT IN OUTPUT AREA
PUT ILRSYSPR,MSGREC |WRITE INFO MSG
LA R15,4 |RETURN CODE 4 TO CALLER
LM R1,R5,INTSAVE1 |RESTORE CALLER′ S REGS
BR RLINK1 |RETURN TO CALLER

*
**
* END OF GETRES *
**
*
**
* EXIT PROGRAM WITH AN ERROR WRITTEN TO PROGRAMMER LOG *
**
ABORT EQU *

LA R1,WTOLIST
WTO MF=(E,(1))
MVC WTOTEXT,=CL50′ >>> EXECUTION ABORTED <<<′
LA R1,WTOLIST
WTO MF=(E,(1))
MVI RCODE,20

*
**
* EXIT LINKAGE *
**
GETOUT EQU *

CLOSE (ILRSYSIN)
FREEMAIN RU,LV=RBUFSIZE,A=(RRB) |FREE BUFFER RESOURCE BUFFER
FREEMAIN RU,LV=PKWKSIZE,A=(RPW) |FREE BUFFER PACKWORK BUFFER
CLI RCODE,4 |WHAT IS MAX RETURN CODE SO FAR?
BH SETRCODE |BR IF HIGHER THAN 4
L R1,PACKCTR |GET PACKED COUNT
LTR R1,R1 |TEST FOR COUNT > 0
BP SETRCODE |BR IF > 0
MVI RCODE,8 |SET RCODE TO MEAN NOTHING PACKD

SETRCODE LA R15,0 |SET RETURN CODE
RCODE EQU SETRCODE+3

L R13,4(,R13) |RESTORE CALLERS SAVE AREA ADDR.
L R14,12(,R13) |RESTORE CALLERS RETURN ADDRESS
LM R0,R12,20(R13) |RESTORE CALLERS REGISTERS
BR R14 |RETURN TO CALLER

*
DATCSECT DC A(ILRPACKD)
*
*
**
--
* DATA AREA DEFINITIONS *

Appendix A. PSF/MVS Exits and MVS Sample Programs 113

--
**
*
ILRPACKD CSECT

DC CL8′ ILRPACKD′
*
**
* REGISTER EQUATES *
**
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
RDA EQU R6 |POINTER TO DATA CSECT
RPW EQU R7 |POINTER TO PACKWORK AREA
RLINK1 EQU R8 |INTERNAL LINKAGE REGISTER
RESDCB EQU R9 |POINTER TO CURRENT RESOURCE LIB DCB
RLINK2 EQU R10 |INTERNAL LINKAGE REGISTER
RLT EQU R11 |POINTS TO CURRENT ENTRY IN RES LIB TABLE
RRB EQU R12 |BASE FOR RESOURCE INPUT BUFFER
* *
RECFM EQU DCBRECFM-IHADCB |OFFSET TO RECFM IN DCB
LRECL EQU DCBLRECL-IHADCB |OFFSET TO LRECL IN DCB
BLKSIZE EQU DCBBLKSI-IHADCB |OFFSET TO BLKSIZE IN DCB
OPTCD EQU DCBOPTCD-IHADCB |OFFSET TO OPTCD IN DCB
DDNAME EQU DCBDDNAM-IHADCB |OFFSET TO DDNAME IN DCB
OPENFLAG EQU DCBOFLGS-IHADCB |OFFSET TO OPEN FLAGS IN DCB
RBUFSIZE EQU 32760 |RESOURCE BUFFER AREA IS 32K
PKWKSIZE EQU 64*1024 |PACKWORK AREA IS 64K
PAKLSIZE EQU 15*1024 |PACKLIST SIZE IS 15K
TIOTLEN EQU 20 |LENGTH OF A TIOT ENTRY
MACHCC EQU B′01010010′ |DCB RECFM FOR MACHINE CC

DC CL8′ INTSAVE1′
INTSAVE1 DC 12F′ 0 ′

DC CL8′ INTSAVE2′
INTSAVE2 DC 12F′ 0 ′
TIOTADDR DC F′ 0 ′
ZERO DC F′ 0 ′
PACKCTR DC F′ 0 ′
NSTLOFFS DC AL4(PAKLSIZE+16)
NSTLSIZE DC AL4(PKWKSIZE-(PAKLSIZE+36))
PWCLEAR DC XL1′ 4 0 ′ , AL3(0)
HWNINE DC H′ 9 ′
RDWADJ DC H′ 4 ′ |ADJUSTMENT VALUE FOR RDW
* | 0=RECFM=F, 4=RECFM=V
PRIPDDNM DC CL8′ ′
PROPDDNM DC CL8′ ′
SYSINEOF DC X′ 0 0 ′
PRTINFLG DC X′ 0 0 ′
SCANFLAG EQU X′ FF′ |INPUT FILE SCAN IN PROGRESS
COPYFLAG EQU X′ 0 0 ′ |INPUT FILE COPY IN PROGRESS
NESTFLAG DC X′ 0 0 ′
NESTOV EQU B′00000001′ |RETRIEVE NESTED OVERLAYS
NESTPS EQU B′00000010′ |RETRIEVE NESTED PAGESEGMENTS

114 AFP Printing in an IBM Cross-System Environment

NESTBB EQU B′00000100′ |RETRIEVE NESTED BOUNDED BOX FONTS
NESTUB EQU B′00001000′ |RETRIEVE NESTED UNBOUNDED BOX FONTS
NESTFO EQU B′00001100′ |RETRIEVE NESTED FONTS (BOTH TYPES)
NESTREQ EQU B′10000000′ |SOME NEST REQUEST WAS MADE
**
* RESOURCE LIBRARY TABLE
* ENTRIES MAPPED BY DSECT RESTBENT
* USED FOR TWO PURPOSES: RELATE AN OBJECT TYPE TO A DCB ADDR,
* AND AS A LIST OF RESOURCE LIB DCB ADDRESSES. RESLIBX1 IS USED
* AS END-OF-LIST WHEN SCANNING DCB ADDRESSES, RESLIBTX IS USED
* WHEN RELATING OBJECT TYPES TO DCB ADDRESSES.
**
RESLIBTB DS 0F

DC CL8′ PAGEDEF ′ , A(ILRPDEF),A(BRPDEF)
DC CL8′ FORMDEF ′ , A(ILRFDEF),A(BRFDEF)
DC CL8′ OVERLAY ′ , A(ILROVLY),A(BROVLY)
DC CL8′ PAGESEG ′ , A(ILRPSEG),A(BRPSEG)

RESLIBX1 EQU *
DC CL8′ CHARSET ′ , A(ILRFONT),A(BRCSET)
DC CL8′ CPAGE ′ , A(ILRFONT),A(BRCPAGE)
DC CL8′ CFONT ′ , A(ILRFONT),A(BRCFONT)

RESLIBLN EQU (*-RESLIBTB)/7
RESLIBTX EQU *-RESLIBLN
**
* DDNAME TABLE
**
DDNAMETB DS 0F

DC CL8′ ILRPDEF ′ , A(ILRPDEF)
DC CL8′ ILRFDEF ′ , A(ILRFDEF)
DC CL8′ ILROVLY ′ , A(ILROVLY)
DC CL8′ ILRPSEG ′ , A(ILRPSEG)
DC CL8′ ILRFONT ′ , A(ILRFONT)
DC CL8′ ILRIN ′ , A(ILRIN)
DC CL8′ ILROUT′ , A(ILROUT)
DC CL8′ ILRSYSPR′ , A(ILRSYSPR)

DDNAMELN EQU (*-DDNAMETB)/8
DDNAMETX EQU *-DDNAMELN
**
* INPUT REQUEST RECORD AREA
**
REQREC DS 0CL80
REQTYPE DC CL8′ ′ |TYPE OF OBJECT: PD,FD,OV,PS,CF,CS,CP
DDEQUAL DC CL1′ ′ |= SIGN FOR DD DEFN RECORDS
REQNAME DC CL8′ ′ |FULL MEMBER NAME OF OBJECT IN RESOURCE LIB

DC CL1′ ′
NESTKEYW DC CL5′ ′ |EITHER BLANK OR NEST=
NESTVALU DS 0CL8 |PS,FO,OV,BB,UB (ANY ORDER OR COMBO)
NESTVAL1 DC CL2′ ′ , C′ , ′
NESTVAL2 DC CL2′ ′ , C′ , ′
NESTVAL3 DC CL2′ ′ , C′ , ′
NESTVAL4 DC CL2′ ′ , C′ , ′

DC CL50′ ′
**
INITMSG DS 0CL121

DC CL10′ ′
DC CL46′ **** ILRPACK ACTION REPORT WRITTEN TO DDNAME: ′

REPDDNAM DC CL8′ ′
DC CL59′ **** ASSEMBLED: &SYSDATE &SYSTIME′

INITMSG2 DS 0CL121
DC CL7′ ′
DC CL114′ (′ ′===>′ ′ MEANS EXPLICIT PACKING REQUEST, ′ ′ + ′ ′ MEX

ANS NESTED REQUEST)′
NSTMFLAG DC C′ + ′
MSGREC DS 0CL121
MSGFLAG DC CL5′ ′
MSGREQ DC CL35′ ′

Appendix A. PSF/MVS Exits and MVS Sample Programs 115

MSGOUT DC CL98′ ′
NESTMSG DC CL98′ PACKED DUE TO INDIRECT REFERENCE′
BLANKMSG DC CL121′ ′
HYPHNMSG DS 0CL121

DC CL1′ 1 ′
DC CL40′ --′
DC CL40′ --′
DC CL40′ --′

PROCMSG DC CL98′ NOW BEING PROCESSED′
DC CL76′ ′

COPYMSG DS 0CL121
DC CL35′ RESOURCE GROUP WRITTEN TO DDNAME ′

COPYOPNM DC CL8′ ′
DC CL25′ NOW COPYING FROM DDNAME ′

COPYIPNM DC CL8′ ′
DC CL50′ ′

ERRMSG1 DC CL98′ >>> INVALID RESOURCE TYPE, NOT PACKED′
ERRMSG2 DC CL98′ >>> NOT FOUND IN LIBRARY, NOT PACKED′
NOPAKMSG DC CL121′ >>> WARNING: PRECEEDING RESOURCE GROUP IS EMPTY, X

NOTHING WAS PACKED <<<′
DCBOPMSG DS 0CL121

DC CL29′ >>>> COULD NOT OPEN DDNAME: ′
DCBERNAM DC CL8′ ′

DC CL90′ RESOURCES IN THIS LIBRARY NOT AVAILABLE >>>′
**
WTOLIST WTO ′ ILR:> ′ , *

MF=L,ROUTCDE=(11)
WTOLISTL EQU *-WTOLIST

ORG WTOLIST+9
WTOTEXT DS CL51

ORG
**
BLDLLIST DS 0D

DC H′ 1 ′ , H′ 1 4 ′
BLDLNAME DC CL8′ ′
BLDLFLAG DC XL6′000000000000′
* *
**
* AFPDS RECORD AREAS *
**
MCF DC XL3′ D3B18A′ | MAP CODED FONT OP CODE
MMO DC XL3′ D3B1DF′ | MAP MEDIUM OVERLAY OP CODE
MPS DC XL3′ D3B15F′ | MAP PAGE SEGMENT OP CODE
IPS DC XL3′ D3AF5F′ | INCLUDE PAGE SEGMENT OP CODE
CFI DC XL3′ D38C8A′ | CODED FONT INDEX OP CODE
*
* -------------------BEGIN RESOURCE GROUP STRUCTURED FIELD RECORD *
BRGREC DS 0H BEGIN RESOURCE GROUP RECORD

DC AL2(BRGLEN),H′ 0 0 ′
DC XL9′ 5A0008D3A8C6000000′

BRGLEN EQU *-BRGREC
* -------------------BEGIN RESOURCE STRUCTURED FIELD RECORD *
BRREC DS 0H |BEGIN RESOURCE RECORD

DC AL2(BRLEN),H′ 0 0 ′
BRINTRO DC XL9′ 5A001AD3A8CE000000′ | INTRODUCER
BRRNAME DC CL8′ ′ |RESOURCE NAME

DC XL4′00000821′ |CONSTANT FLAGS
BROBJTYP DC XL1′ 0 0 ′ |OBJECT TYPE FLAG, WILL BE ONE OF:
BRCSET EQU X′ 4 0 ′ | CHARACTER SET FLAG
BRCPAGE EQU X′ 4 1 ′ | CODE PAGE FLAG
BRCFONT EQU X′ 4 2 ′ | CODED FONT FLAG
BRPSEG EQU X′ FB′ | PAGE SEGMENT FLAG
BROVLY EQU X′ FC′ | OVERLAY FLAG
BRPDEF EQU X′ FD′ | PAGEDEF FLAG
BRFDEF EQU X′ FE′ | FORMDEF FLAG

116 AFP Printing in an IBM Cross-System Environment

DC XL5′ 0 0 ′ |CONSTANT
BRLEN EQU *-BRREC
* -------------------END RESOURCE STRUCTURED FIELD RECORD *
ERREC DS 0H END RESOURCE RECORD

DC AL2(ERLEN),H′ 0 ′
ERINTRO DC XL9′ 5A0010D3A9CE000000′ | INTRODUCER
ERRNAME DC CL8′ ′ |RESOURCE NAME
ERLEN EQU *-ERREC
* -------------------END RESOURCE GRP STRUCTURED FIELD RECORD *
ERGREC DS 0H |BEGIN RESOURCE GROUP RECORD

DC AL2(ERGLEN),H′ 0 0 ′
DC XL9′ 5A0008D3A9C6000000′

ERGLEN EQU *-ERGREC
* *
**
* DCB DEFINITIONS
**
ILRPDEF DCB MACRF=R,DSORG=PO,RECFM=VBM,DDNAME=ILRPDEF, X

EODAD=EPAKLOOP,BUFL=32760
ILRFDEF DCB MACRF=R,DSORG=PO,RECFM=VBM,DDNAME=ILRFDEF, X

EODAD=EPAKLOOP,BUFL=32760
ILROVLY DCB MACRF=R,DSORG=PO,RECFM=VBM,DDNAME=ILROVLY, X

EODAD=EPAKLOOP,BUFL=32760
ILRPSEG DCB MACRF=R,DSORG=PO,RECFM=VBM,DDNAME=ILRPSEG, X

EODAD=EPAKLOOP,BUFL=32760
ILRFONT DCB MACRF=R,DSORG=PO,RECFM=VBM,DDNAME=ILRFONT, X

EODAD=EPAKLOOP,BUFL=32760
ILRSYSPR DCB MACRF=PM,DSORG=PS,RECFM=FBA,LRECL=121,BLKSIZE=5445, X

DDNAME=ILRSYSPR,BUFL=32760
ILRSYSIN DCB MACRF=GM,DSORG=PS,RECFM=FB,LRECL=80,EODAD=EOFSYSIN, X

DDNAME=ILRSYSIN,BUFL=32760
ILRIN DCB MACRF=GL,DSORG=PS,DDNAME=ILRIN,EODAD=EOFPRTIN, X

BUFL=32760
ILROUT DCB MACRF=PM,DSORG=PS,DDNAME=ILROUT,RECFM=VBA, X

BUFL=32760
LTORG

**
* DSECT TO MAP RESOURCE TABLE ENTRIES *
**
RESTBENT DSECT
RESTTYPL DS CL8
RESTDCB DS F

DS AL3
RESTTYPC DS AL1
**
* DSECT TO MAP RESOURCE LIB INPUT BUFFER AREA *
**
RESBUF DSECT
RESRDWP DS AL4
RESEOBP DS AL4
RESBDW DS F
RESRDW DS F
RESREC DS F
**
* DSECT TO MAP WORKAREA FOR NESTLIST AND PACKLIST *
* PACKLIST AND NESTLIST ENTRIES HAVE THE SAME FORMAT (WHICH IS *
* ALSO THE SAME AS THE PACK REQUEST FORMAT IN THE SYSIN STREAM) *
* THE ENTRIES IN THESE LISTS ARE MAPPED BY THE WORKLIST DSECT *
**
PACKWORK DSECT
PAKWRKID DS D
PAKLSTRT DS F
PAKLNEXT DS F
PAKLMAX DS F
NSTLSTRT DS F
NSTLCURR DS F

Appendix A. PSF/MVS Exits and MVS Sample Programs 117

NSTLNEXT DS F
NSTLMAX DS F
LISTAREA EQU *
**
* DSECT TO MAP A WORKLIST ENTRY *
**
WORKLIST DSECT
WRKLNTRY DS 0CL17
WRKLTYPE DS CL8

DS CL1
WRKLNAME DS CL8
WRKLNTLN EQU *-WRKLNTRY
**
* DSECT TO MAP AFPDS RECORDS FOR CHK ROUTINES *
**
AFPDS DSECT
AFPDSRDW DS F
AFPDSCC DS XL1 |X′ 5A′ , RECLEN
AFPDSLEN DS XL2 |RECORD LENGTH
AFPDSOP DS XL3 |AFPDS OPERATION CODE
AFPDSFLG DS XL1 |AFPDS FLAG BYTE
AFPDSSEQ DS XL2 |AFPDS RECORD SEQUENCE
AFPDSDAT EQU *
MMOREC EQU *
MMORGLEN DS CL1 |LENGTH OF MMO REPEATING GROUPS

DS CL3
MMORG EQU * |START OF MMO REPEATING GROUPS (MAX 127)
MMORGOFF EQU (*-AFPDSRDW) |OFFSET ORIGIN FOR REPEAT GROUPS

DS CL4 |FLAGS ETC.
MMONAME DS CL8 |NAME OF OVERLAY

ORG AFPDSDAT
MPSREC EQU *
MPSRGLEN DS CL1 |LENGTH OF MPS REPEATING GROUPS

DS CL3
MPSRG EQU * |START OF MPS REPEATING GROUPS (MAX 127)

DS CL4 |FLAGS ETC.
MPSNAME DS CL8 |NAME OF PAGE SEGMENT

ORG AFPDSDAT
MCFREC EQU *
MCFRGOFF EQU (*-AFPDSRDW) |OFFSET ORIGIN FOR REPEAT GROUPS
MCFRGLEN DS CL1 |LENGTH OF MCF REPEATING GROUPS

DS CL3
MCFRG EQU * |START OF MCF REPEATING GROUPS

DS CL4 |FLAGS ETC.
MCFCFNAM DS CL8 |NAME OF CODED FONT
MCFCPNAM DS CL8 |NAME OF CODE PAGE
MCFCSNAM DS CL8 |NAME OF CHARACTER SET

ORG AFPDSDAT
CFIREC EQU *
CFICSNAM DS CL8 |CHARACTER SET NAME
CFICPNAM DS CL8 |CODE PAGE NAME

ORG AFPDSDAT
IPSREC EQU *
IPSNAME DS CL8 |PAGE SEGMENT NAME
**
* DSECT TO MAP BPAM DCBS *
**

DCBD DSORG=(PO),DEVD=(DA)
END ILRPACK

118 AFP Printing in an IBM Cross-System Environment

A.6 LN2AFPDS Program
This utility program converts System/370 line-data print files (that is, 1403 or
3800-1 print files) into AFPDS. This is done by processing the file through an
AFP pagedef in much the same fashion as PSF does.

The pagedef is an AFP object that provides a “mapping” from line-data to a
finished composed page. Thus, it defines such specifications as line spacing and
placement, the number of lines on a page, fonts used, and page orientation
(portrait or landscape). After processing, all these variables are defined within
the AFPDS output and the need for pagedef processing by PSF is removed.
Therefore, the output AFPDS file is printable on systems that do not have the
necessary pagedef, or that do not support pagedef processing at all.

Another advantage of converting a line-data file to AFPDS is that AFPDS is a
self-defining datastream that is easy to transport. Some platforms do not use
the concept of records, or use different code points for text, or do not understand
variable length records. In all of these cases, transport of AFPDS is successful,
whereas line-data may be clobbered.

A.6.1 Main PL/I Coding
*PROCESS MAR(2,72,1) AG A(F) LMSG INC M MAP NEST NSYN(S) STMT X(F);
*PROCESS NAME(′ LN2AFPN′) NOCOUNT NOFLOW NGS OPT(TIME) CMP(V2);
 /* LAST UPDATE ON 13 FEB 1990 AT 10:07:47 BY VEND730 VERSION 01 */
 /* COPYRIGHT NOTICE */
 %dcl debug char; /* debug-global switch */
 %debug = ′ no′ ; /* debug-on = ′ debug′ */
 LN2AFPN: PROCEDURE(RUN_TIME_PARM) OPTIONS(MAIN);
 /**/
 /* */
 /* */
 /* A program to create an AFP data stream from line data */
 /* using a PAGEDEF to format the pages. */
 /* */
 /* This program takes line data input and a PAGEDEF input and does */
 /* the following: */
 /* 1.Reads LND and associated structures into acquired memory. */
 /* 2.Reads lines sequentially from line input, processing them */
 /* against the page definition to emit composed text */
 /* (presentation text) structured fields suitable for printing */
 /* by any PSF. */
 /* */
 /* THIS PROGRAM WHEN COMPILED WILL ISSUE A WARNING MESSAGE */
/* IEL0872I ADDR BUILTIN FUNCTION POINTS AT STRING LENGTH FIELD. */
/* */
 /* FOR FURTHER INFORMATION, SEE THE AFP DATA STREAM REFERENCE */
 /* (S544-3202). */
 /* */
 /* written by: Howard L. Turetzky, Boulder Programming Center. */
 /* VEND605 at BLDVM2, (303)924-9079. */
 /* */
 /* COPYRIGHT 1989, 1990, IBM CORPORATION. */
 /**/
 /**/
 /* Global data declarations. */
 /**/

 DECLARE
(ADDR, BIN, BIT, CHAR, DATE, INDEX, LENGTH, LOW, FIXED, MAX, MIN,
HIGH, NULL, SUBSTR, TIME, TRANSLATE, UNSPEC)

BUILTIN; /* DECLARE BUILT IN FCTNS. */

Appendix A. PSF/MVS Exits and MVS Sample Programs 119

DECLARE
CPR CHAR(30) STATIC INIT(′ COPYRIGHT 1989, 1990 IBM CORP′) ,
VID char(60) static

init(′ H.L. Turetzky, IBM Boulder Programming Center, v.1.0′) ,
 DUMPLBL CHAR(80) STATIC INIT(′ NOREASON′) ,

DUMPOPTS CHAR(10) STATIC INIT(′ TFSHB′) , /*PLIDUMP OPTIONS */
 PGMNAME CHAR(8) STATIC INIT(′ LN2AFPDS′) , /* PROGRAM NAME */

RUN_TIME_PARM char(44) varying, /* execution parm string */
(CC_Parm, TRC_Parm) char(4) var, /* invocation parameters */
Chars_Parm char(28) var, /* for CHARS= parm */
(i,j) fixed bin, /* misc indexes, counters */
AFPHdrLen fixed bin(7) init(9), /*cc+structured fld header */
TRUE BIT(1) static init(′ 1 ′ B) aligned,

/* Flags for loop */
FALSE BIT(1) static init(′ 0 ′ B) aligned;

/* and file control. */
declare linedata_started bit(1) static;

 dcl /* global paramter settings flags. */
NOCC bit(1), /* uses no carriage control*/
Mach_CC bit(1), /* machine carriage control*/
ANSI_CC bit(1), /* ANS carriage control */
TRC bit(1), /* input has TRC byte */
CHARS bit(1) init(false); /* global CHARS valid flag */

 /**/
 /* global dynamic structure pointers, list anchors, and list */
 /* templates. */
 /**/
 DECLARE
CCP_List_start pointer /*1st ccp for PAGEDEF */

static init(null),
prevptr pointer /* previous list entry */

static init(null);
 DECLARE
PDEF_List_Anchor pointer /* pagedef records list*/

static init(null),
PDEFPTR pointer /* pagedef record */

static,
PDEF_Reclen fixed bin, /* input record length */

 1 PDEF_Rec based(PDEFPTR), /*pagedef list */
5 PDEF_Next pointer, /* next pagedef line */
5 PDEF_Length fixed bin, /* length of record */
5 PDEF_Data char(PDEF_Reclen refer (PDEF_Length))

/* variable length data*/;
 DECLARE
 /* There is one PFMT record for each page format in the page

definition. It contains information about the page′ s active
environment in the form of pointers to the start of the
active environment group and the first record and record count
of objects that may occur more than once. There is also a
pointer to the LND list associated with this PAGEDEF. */

PFMT_List_Anchor pointer /*page format list head*/
static init(null),

PFMTPTR pointer /*page format entry */
static,

 1 PFMT_Rec based(PFMTPTR), /*page fmt list */
5 PFMT_Next pointer, /* next page format */
5 PFMT_Data,

10 PFMT_start pointer /* start of this format*/
init(null),

10 PFMT_name char(8), /* format token name */
10 PFMT_MCF,

15 PFMT_1st_MCF pointer, /* 1st mcf this datamap*/
15 PFMT_MCF_cnt fixed bin(15) /* number of mcf recs */

init(0),
10 PFMT_MPS,

15 PFMT_1st_MPS pointer, /* 1st MPS this datamap*/

120 AFP Printing in an IBM Cross-System Environment

15 PFMT_MPS_cnt fixed bin(15) /* number of MPS recs */
init(0),

10 PFMT_LND_List pointer /* LND list for this map */
init(null),

10 PFMT_FDX,
15 PFMT_1st_FDX pointer, /* 1st FDX this datamap*/
15 PFMT_FDX_cnt fixed bin(15) /* number of FDX recs */

init(0),
15 PFMT_bytes fixed bin(31); /* number of FDX bytes */

 DECLARE
 /* There is one LND record and array for each page format. It

contains all of the LND fields, in order, in the data map, in
the same form as they appear in the LND structured field.
The LND count is taken from the LNC record. */

 1 LND_List based(PFMT_LND_List), /*page fmt list */
5 LNDLST_LNC fixed bin(15), /* line descriptor count*/
5 LNDLST_array (LNC_FDS_cnt refer (LNDLST_LNC)),

10 LNDLST_data unaligned, /* contents of an LND */
15 LND_flags char(2), /* flag bits */
15 LND_inline fixed bin(15),/* inline position */
15 LND_baseln fixed bin(15),/* baseline position */
15 LND_orient char(4), /* text orientation */
15 LND_fontid char(1), /* local font identifier */
15 LND_channel char(1), /* channel code */
15 LND_nxt_skip fixed bin(15),/* next LND if skipping */
15 LND_nxt_spc fixed bin(15),/* next LND if spacing */
15 LND_nxt_reuse fixed bin(15),/* next LND if reusing data*/
15 LND_supp_token char(8), /* suppression token name */
15 LND_reserved char(1),
15 LND_data_start fixed bin(31),/* data start position */
15 LND_data_len fixed bin(15),/* data length */
15 LND_color char(2), /* text color value */
15 LND_nxt_cond fixed bin(15),/* next LND if cond. proc. */
15 LND_subpage char(1), /* subpage id */
15 LND_ccp_id fixed bin(15),/* CCP identifier */

 1 LND_List_rdef based, /*redefinition */
5 LNDLST_LNC_rdef fixed bin(15), /* line descriptor count*/
5 LNDLST_data_rdef (LNC_FDS_cnt refer (LNDLST_LNC_rdef))

char(40); /* contents of an LND */
 declare /* LND flag values */

lndflag_endskip bit(16) static /*end page if skipping */
init(′1000000000000000′b),

 lndflag_endspc bit(16) static /*end page if spacing */
init(′0100000000000000′b),

 lndflag_inline bit(16) static /*generate inline position*/
init(′0010000000000000′b),

lndflag_baseline bit(16) static /*generate baseline posn. */
init(′0001000000000000′b),

lndflag_fontchg bit(16) static /*generate font change */
init(′0000100000000000′b),

lndflag_suppress bit(16) static /*generate suppression */
init(′0000010000000000′b),

lndflag_reuse bit(16) static /*reuse record */
init(′0000001000000000′b),

lndflag_fixdata bit(16) static /*used fixed data */
init(′0000000100000000′b),

lndflag_TRC bit(16) static /*use compatibility trc */
init(′0000000001000000′b),

lndflag_color bit(16) static /*set text color */
init(′0000000000100000′b),

lndflag_condproc bit(16) static /*conditional processing */
init(′0000000000010000′b);

 /**/
 /* FILE DECLARES-NOTE SYSPRINT IS PL/I DEFAULT FOR OUTPUT DEVICE */
 /**/
 DECLARE

Appendix A. PSF/MVS Exits and MVS Sample Programs 121

Pdeflib FILE RECORD INPUT, /* page definition file */
Pagedef_EOF BIT(1) STATIC INIT(′ 0 ′ B), /* END OF FILE FLAG */
SYSPRINT FILE STREAM OUTPUT ENV (F RECSIZE(080)); /* message file*/

 /**/
 /* AFPDS record descriptions: each type of record referenced is */
 /* defined based on a pointer. Records read from the PAGEDEF are */
 /* referenced with the same pointer (INREC_PTR). Records to be */
 /* written are referenced with OUTREC_PTR. Some record types */
 /* (eg., in the active environment) may be both read and written. */
 /**/
 DECLARE
1 AFPDSREC BASED(InRec_ptr) UNALIGNED, /* general afpds record */
5 CC CHAR(1) , /* Carriage control 5A hex */
5 COUNT FIXED BIN(15), /* Length AFPDS record */
5 TYPE bit(24), /* Type of AFPDS record */
5 FLAG bit(8), /* flag byte */
5 SEQUENCE fixed bin(15), /* structure sequence num. */
5 REST CHAR(32758) /* Rest of the record */;

 DECLARE
InRec_ptr pointer static, /* input record pointer */
AFPDString based(InRec_ptr) unaligned /* string for assignment */

char(32767);
 DECLARE
1 CNTREC BASED(InRec_ptr) UNALIGNED, /* count records(LNC,FDS) */
5 CC CHAR(1) , /* Carriage control 5A hex */
5 COUNT FIXED BIN(15), /* Length AFPDS record */
5 TYPE bit(24), /* Type of AFPDS record */
5 FLAG bit(8), /* flag byte */
5 SEQUENCE fixed bin(15), /* structure sequence num. */
5 LNC_FDS_cnt fixed bin(15); /* number of lnd records */

 DECLARE
1 LNDREC BASED(InRec_ptr) UNALIGNED, /* line descriptor record */
5 CC CHAR(1) , /* Carriage control 5A hex */
5 COUNT FIXED BIN(15), /* Length AFPDS record */
5 TYPE bit(24), /* Type of AFPDS record */
5 FLAG bit(8), /* flag byte */
5 SEQUENCE fixed bin(15), /* structure sequence num. */
5 LNDREC_data char(40); /* LND structured fields */

 DECLARE
 /* The MSU record occurs in a FORMDEF, and relates text suppression

identifiers (named in LNDs) to suppression identifiers (used in
BSU/ESU text controls). If suppression is used, a FORMDEF (or at
least an MSU record) must occur in the PDEFLIB input or all text
suppression will be ignored. */
MSU_cnt fixed bin(15), /* repeating groups */
(MSUPTR,MSUdptr) pointer /* to the MSU, or null */

init(NULL),
 1 MSU_Record based(MSUPTR), /* map suppression record */

5 MSU_Num_Gps fixed bin(15), /* number of repeating grps*/
5 MSU_array (MSU_cnt refer (MSU_Num_Gps)),

10 MSU_data unaligned, /* contents of the MSU */
15 MSU_supp_token char(8), /* suppression token name */
15 MSU_reserved char(1),
15 MSU_supp_id char(1), /* suppression identifier */

MSU_data_rdef based unaligned /* string definer for array*/
char(1280);

 DCL
/**/
/* The MCF is mapped to allow calculation of the high water mark */
/* font index used for TRC error detection, and for constructing */
/* an MCF to be used if CHARS= is specified. */
/**/

(TRC_Char_Font_cnt, /*compat (TRC) max fonts*/
TRC_Font_cnt, /*non-compat max fonts */
MCF_cnt) fixed bin(15) init(0), /* calculate number of gps */
MCF_REC_Ptr pointer, /* to MCF records */

122 AFP Printing in an IBM Cross-System Environment

MCF_ent_len fixed bin(8) init(30), /* entry len for fake MCF */
 1 MCF_REC BASED(MCF_REC_Ptr) unaligned,

5 MCF_REC_len fixed bin, /* length prefix for wrt*/
5 MCF_record unaligned, /* actual record */

10 CC CHAR(1), /* Carriage control 5A hex */
10 COUNT FIXED BIN(15),/* Length AFPDS record */
10 TYPE bit(24), /* Type of AFPDS record */
10 FLAG bit(8), /* flag byte */
10 SEQUENCE fixed bin(15),/* structure sequence num. */
10 MCF_GRP_LEN bit(8), /* repeating element len */
10 FILLER CHAR(1),
10 MCF_rpt_grp fixed bin(15), /* number of elements */

/*note: mcf_rpt_grp is not a field in the MCF. it is */
/* unchecked filler used here as a place to keep the */
/* array counter required by PL/I. */

10 MCF_GRP (MCF_cnt refer (MCF_rpt_grp)), /*font mapping array*/
15 MCF_CFLI char(1), /* coded font local id */
15 FILLER CHAR(1),
15 MCF_CFSI char(1), /* double-byte section id */
15 FILLER2 CHAR(1),
15 (MCF_CODED_FONT, /* font name */

MCF_CODE_PAGE, /* code page name */
MCF_CHAR_SET) CHAR(8), /* character set name */

15 MCF_ROTATION CHAR(2); /* rotation value */
 DECLARE
1 CCPList BASED(CCPPTR) UNALIGNED, /* ccp record list entry */
5 Next_CCP_ptr pointer, /* next record in list */
5 CCP_Rec,
10 CCP_Id fixed bin(15), /* ccp identifier */
10 Next_CCP fixed bin(15), /* next ccp to process */
10 Subpage_Flag char(1), /* subpage action flags */
10 reserved char(1),
10 Rpt_Grp_Cnt fixed bin(15), /* number of repeating groups */
10 Rpt_Grp_Len fixed bin(15), /* length of repeating group */
10 Compare_Len fixed bin(15), /* length of comparison string*/
10 CCP_Group /* ccp repeating group */

(ccprec.rpt_grp_cnt refer
(CCPList.rpt_grp_cnt)),

15 Timing char(1), /* timing of action */
/* 0=take default action

1=take action immediately
2=before current subpage
-127=after current line
-126=after current subpage */

15 Med_Map_Act char(1), /* medium map action */
/* 0=ignore

1=use current with pg eject
2=invoke named medium map
3=invoke first medium map
4=invoke next medium map */

15 Med_Map_Nm char(8), /* medium map name */
15 Data_Map_act char(1), /*data map action */

/* 0=ignore
1=use current with pg eject
2=invoke named data map
3=invoke first data map
4=invoke next data map */

15 Data_Map_Nm char(8), /* medium map name */
15 Comparison char(1), /* compare type */

/* 0=any change
1=equal to
2=less than
3=equal to or less than
4=greater than
5=equal to or greater than
6=not equal

Appendix A. PSF/MVS Exits and MVS Sample Programs 123

7=take action w/o compare */
15 Compare_string /* comparison string */

char(ccprec.Compare_len refer
(CCPList.Compare_len));

%PAGE;
%DCL GEN CHAR;
%GEN = ′ BIT′ ;
%include sfidequ; /* structured field defs */
/*===*/
/*+++++++++>>>>>>>>> BEGIN MAINLINE <<<<<<<<<+++++++++*/
/*===*/
on error begin;
DUMPLBL = ′ ON ERROR EXIT ′ ;
call PLIDUMP(dumpopts,dumplbl);
end;
on condition(substringrange);
on condition(stringrange);
call Process_Parms; /* set up invocation parms */
call parse_pagedef; /* prepare pagedef */

 %if debug = ′ debug′ %then %do; /* debug */
pfmtptr = pfmt_list_anchor; /* debug */
do until (pfmtptr = null); /* debug */
put edit(′ PFMT name: ′ , pfmt_name) /* debug */

(skip,a,a); /* debug */
do i=1 to lndlst_lnc; /* debug */
(noconversion): /* debug */
put edit(i, /* debug */

unspec(lnd_flags(i)), /* debug */
lnd_inline(i), /* debug */
lnd_baseln(i), /* debug */
unspec(lnd_fontid(1)), /* debug */
unspec(lnd_channel(1)), /* debug */
lnd_nxt_skip(i), /* debug */
lnd_nxt_spc(i), /* debug */
lnd_nxt_reuse(i)) /* debug */

(skip,f(4),x(1),b(12),2(x(1),f(4)), /* debug */
2(x(1),b(8)),3(x(1),f(4))); /* debug */

end; /* debug */
pfmtptr = pfmt_next; /* debug */

end; /* debug */
 %end; /* debug */
call Process_Linedata; /* create AFPDS output */

 %if debug = ′ debug′ %then %do; /* debug */
dumplbl = ′ PAGEDEF Processing′ ; /* debug */
call plidump(dumpopts,dumplbl); /* debug */

 %end; /* debug */
 Process_Parms: proc;
/* Process run-time parms. These parms may be determined by flags */
/* from the caller or from JCL using a different API. */
/* determine carriage control type from parameter or external rtn. */

 dcl
fontstr (4) char(8) var, /* font name array */
null_font char(8) unaligned /* value for null MCF font */

init((high(2)||low(6)));
if length(Run_Time_Parm) > 0 /* was execution parm */
then do;
CC_Parm = substr(Run_Time_Parm,1,4); /* carriage control type */
TRC_Parm = substr(Run_Time_Parm,6,3); /* using TRC? */
ANSI_CC = (CC_Parm = ′ ANSI′) ; /* determine carriage */
Mach_CC = (CC_Parm = ′ MACH′) ; /*control type from parm. */
NOCC = ¬(ANSI_CC | Mach_CC); /* set by parm or ext. rtn.*/
TRC = (TRC_Parm = ′ TRC′) ; /* set by parm or ext. rtn.*/
Chars_Parm = substr(Run_Time_Parm,10); /* look for CHARS=(font...)*/
/* validate parms and report them. */
if length(Chars_Parm) > 0 /* validate user fonts */
then

124 AFP Printing in an IBM Cross-System Environment

if substr(Chars_Parm,1,7) = ′ CHARS=(′
then do;
i = 8; /* start of font names */
do until (i >= length(Chars_Parm)); /* parse the list */
j = index(substr(Chars_Parm,i),′ , ′) ; / * list separator */
if j = 0 /* no comma--may be last */
then
j = index(substr(Chars_Parm,i),′) ′) ; / * list end */

if j = 0
then
call ErrorExit(10,Chars_Parm,′ ′ , ′ ′) ; / * terminate w/msg */

TRC_Char_Font_cnt = TRC_Char_Font_cnt + 1; /* maximum fonts */
fontstr(TRC_Char_Font_cnt) = ′ X0′ | |

substr(Chars_Parm,i,(j-1)); /*coded font*/
i = j + i; /* next font in list */
end/*until i>=parm*/;

/* create and initialize the MCF for use with TRC and CHARS= */
MCF_cnt = TRC_Char_Font_cnt; /* alloc size for TRC MCF */
allocate MCF_REC; /* make a TRC font map */
MCF_REC.cc = ′ ! ′ ; /* make it like a real MCF */
MCF_REC.count = MCF_cnt * MCF_ent_len + 12; /* AFP rec length */
MCF_REC_len = MCF_REC.count + 1; /* record len + cc to write*/
MCF_REC.type = SF_MCF; /* identify as MCF record */
MCF_REC.flag = ′00000000′b;
MCF_REC.sequence = 0;
MCF_GRP_len = substr(unspec(MCF_ent_len),9,8);

/* use max group entry len */
do i = 1 to TRC_Char_Font_cnt; /* set up each entry */
unspec(MCF_CFLI(i)) = substr(unspec(i),9,8);

/* local font id */
MCF_CFSI(i) = low(1); /* for double-byte fonts */
MCF_CODED_FONT(i) = fontstr(i); /* fill in font name */
MCF_CODE_PAGE(i) = null_font; /* null for code pg */
MCF_CHAR_SET(i) = null_font; /* null for charset */
MCF_ROTATION(i) = low(2); /* 0-degree rotation */
end/*1 to font count*/;
CHARS = true; /* set global CHARS flag */
end/*if CHARS=*/;
else /* invalid CHARS parm */
call ErrorExit(10,Chars_Parm,′ ′ , ′ ′) ; / * terminate w/msg */

end/*run_time_parm>0*/;
else; /* call external routine */

 end Process_Parms;
 Parse_PAGEDEF: proc;
 /***/
 /*** Build the list structures needed for processing line data. ***/
 /*** each page format is identified and its environment and lnd ***/
 /*** records indexed. ***/
 /***/
 /*==> Any construct that creates an array giving data start, ***/
 /*** orientation, font, next line, and other LND parameters could ***/
 /*** be used in place of a PAGEDEF. ***/
 /***/
 /***/
 /*** Reads PAGEDEF records and returns a pointer to them. Null is ***/
 /***returned at EOF. ***/
 /***/
Get_PDEF: proc returns(pointer);
dcl
recptr pointer;
read file(pdeflib) set(recptr); /* get pointer to next rec */
if Pagedef_EOF /* eof? */
then
return(null); /* return eof indication */
else
return(recptr); /* return record pointer */

Appendix A. PSF/MVS Exits and MVS Sample Programs 125

end Get_PDEF;
/***/
 /* Saves pagedef records into a list in memory. */
 /***/
Store_PDEF: procedure(recptr) returns(pointer);
dcl
recptr pointer; /* record pointer parameter*/

pdef_reclen = recptr->AFPDSREC.count + 1; /* afpds record length */
if PDEF_List_anchor = null /* 1st record in list? */
then do; /* initialize list */
allocate PDEF_Rec; /* first record */
prevptr = PDEFPtr; /* save for forward chain */
PDEF_List_anchor = PDEFPtr; /* anchor the list head */
PDEF_Next = null; /* no next entry yet */
PDEF_Data = substr(recptr->AFPDString, /* save data record of */

1,pdef_reclen); /* input data length */
return(PDEFPtr); /* give back list entry */
end;
else do; /* add successor list items*/
allocate PDEF_Rec set(prevptr->PDEF_Next); /* chain to last rec */
prevptr = prevptr->PDEF_Next; /* save new entry pointer */
prevptr->PDEF_Next = null; /* no next record yet */
prevptr->PDEF_Data =

substr(recptr->AFPDString, /* save data record of */
1,pdef_reclen); /* input data length */

return(prevptr); /* give back list entry */
end;
end Store_PDEF;
/**/
/*** Read each PAGEDEF record and store or bypass as ***/
/*** needed. Framing and constant records are ignored, ***/
/*** but checked for proper begin-end structure. ***/
/**/
dcl
(found_PGD, found_CTC, found_PTD, /* required record flags */
was_BPM, was_BAG, was_BDX) bit(1) init(false),
(PFMT_cnt, edm_cnt, ccp_cnt)

fixed bin init(0), /* structure counters */
LND_indx fixed bin, /* LND array subscript */
(PFMT_prev_ptr, tempptr) pointer init(null); /* list temporaries*/
OPEN FILE (Pdeflib);
ON ENDFILE (Pdeflib) Pagedef_EOF = true;
InRec_Ptr = Get_PDEF; /* page def priming read */
do until (PAGEDEF_EOF); /* process all PDEF records*/
select (AFPDSREC.Type);
when(SF_BPM) do; /* must be only one */
if was_BPM
then
call ErrorExit(1,′ ′ , ′ ′ , ′ ′) ; /* report error and exit */
else
was_BPM = true;

end /*SF_BPM*/;
when(SF_EPM) do; /* must be only one */
if was_BPM
then
;
else
call ErrorExit(2,′ ′ , ′ ′ , ′ ′) ; /* report error and exit */

end /*SF_EPM*/;
when(SF_BDM) do;
PFMT_cnt = PFMT_cnt + 1; /* count data maps */
if PFMT_cnt = 1
then do;
alloc PFMT_REC; /* data map list header */
PFMT_prev_ptr = PFMTptr; /* save new rec pointer */
PFMT_List_Anchor = PFMTptr; /* page map list head */

126 AFP Printing in an IBM Cross-System Environment

end;
else do; /* next data map list entry*/
alloc PFMT_REC set(PFMT_prev_ptr->PFMT_next);
PFMT_prev_ptr = PFMT_prev_ptr->PFMT_next; /*forward chain */
PFMT_prev_ptr->PFMT_next = null; /* list end */
PFMTptr = PFMT_prev_ptr; /* for reference this PFMT */
end;
PFMT_name = substr(AFPDSREC.rest,1,8);/* identifies map name */
PFMT_start = STORE_PDEF(InRec_ptr); /* start of this data map */
end /*SF_BDM*/;
when(SF_EDM) do; /* must be only one */
edm_cnt = edm_cnt + 1; /* end map count */
if edm_cnt ¬= PFMT_cnt /* same begin/end counts */
then
call ErrorExit(5,′ EDM′ , ′ BDM′ , ′ ′) ; / * quit if unmatched */

end /*SF_EDM)*/;
when(SF_BAG) do; /* must be only one */
if was_BAG
then
call ErrorExit(3,′ ′ , ′ ′ , ′ ′) ; /* report error and exit */
else
was_BAG = true; /* note active env. start */

end /*SF_BAG*/;
when(SF_EAG) do; /* must be only one */
if was_BAG
then
was_BAG = false; /* reset for next environ. */
else
call ErrorExit(4,′ ′ , ′ ′ , ′ ′) ; /* report error and exit */

end /*SF_EAG*/;
when(SF_BDX) do; /* datamap subcase match */
if was_BDX
then
call ErrorExit(6,′ BDX′ , ′ EDX′ , ′ ′) ; / * report error and exit */
else
was_BDX = true; /* note datamap subcase */

end /*SF_BDX*/;
when(SF_EDX) do; /* datamap subcase match */
if was_BDX
then
was_BDX = false; /* reset for next subcase */
else
call ErrorExit(7,′ BDX′ , ′ ′ , ′ ′) ; /* report error and exit */

end /*SF_EDX*/;
when(SF_CCP) do; /* condition control */
ccp_cnt = ccp_cnt + 1; /* number of CCPs */
tempptr = STORE_PDEF(InRec_ptr); /* save in PDEF list */
if ccp_cnt = 1 /* first CCP */
then
CCP_list_start = tempptr; /* start of CCPs */

end /*SF_CCP*/;
when(SF_MCF) do; /* font list records */
PFMT_MCF_cnt = PFMT_MCF_cnt + 1; /* number of MCFs */
tempptr = STORE_PDEF(InRec_ptr); /* save in PDEF list */
if PFMT_MCF_cnt = 1 /* first MCF */
then
PFMT_1st_MCF = tempptr; /* start of MCFs for map */

tempptr = addr(tempptr->PDEF_Length); /* point to record prefix */
TRC_Font_cnt = ((tempptr->MCF_Rec.count - AFPhdrlen - 1) /

unspec(tempptr->MCF_rec.MCF_GRP_len)) +
TRC_Font_cnt; /* max number of fonts */

end /*SF_MCF*/;
when(SF_MPS) do; /* font list records */
PFMT_MPS_cnt = PFMT_MPS_cnt + 1; /* number of MPSs */
tempptr = STORE_PDEF(InRec_ptr); /* save in PDEF list */
if PFMT_MPS_cnt = 1 /* first MPS */

Appendix A. PSF/MVS Exits and MVS Sample Programs 127

then
PFMT_1st_MPS = tempptr; /* start of MPSs */

end /*SF_MPS*/;
when(SF_LNC) do; /* line descriptor count */
if LNC_FDS_cnt > 0 /* valid LND count? */
then do;
alloc LND_List; /* LND array for this PFMT */
LND_indx = 1; /* reset LND subscript */
end;
else
call ErrorExit(8,char(CNTREC.sequence),′ ′ , ′ ′) ;

/* stop on invalid count */
end /*SF_LNC*/;
when(SF_LND) do; /* line descriptors */
tempptr = PFMT_LND_list; /* point to lnd array */
tempptr->LNDLST_data_rdef(LND_indx) =

LNDREC_data; /* move entire LND */
LND_indx = LND_indx + 1; /* number of next LND */
end /*SF_LND*/;
when(SF_FDS) do; /* fixed data length */
PFMT_Bytes = LNC_FDS_cnt; /* bytes of fixed text */
end /*SF_FDS*/;
when(SF_FDX) do; /* fixed data text */
PFMT_FDX_cnt = PFMT_FDX_cnt + 1; /* number of FDXs */
tempptr = STORE_PDEF(InRec_ptr); /* save in PDEF list */
if PFMT_FDX_cnt = 1 /* first FDX */
then
PFMT_1st_FDX = tempptr; /* start of FDXs */

end /*SF_FDX*/;
when(SF_PGD) do; /* page descriptor (reqd) */
tempptr = STORE_PDEF(InRec_ptr); /* save in PDEF list */
found_PGD = true; /* mark found */
end /*SF_PGD*/;
when(SF_PTD) do; /* pres txt descr. (reqd) */
tempptr = STORE_PDEF(InRec_ptr); /* save in PDEF list */
found_PTD = true; /* mark found */
end /*SF_PTD*/;
when(SF_CTC) do; /* comp txt ctl (compat) */
tempptr = STORE_PDEF(InRec_ptr); /* save in PDEF list */
found_CTC = true; /* mark found */
end /*SF_CTC*/;
when(SF_MSU) do; /* suppression map--FORMDEF*/
MSU_cnt = (AFPDSrec.count - 8) / 10; /* number of repeating grps*/
allocate MSU_Record; /* save in it′ s own record */
MSUdptr = addr(MSU_Array); /* fill entire array */
substr(MSUdptr->MSU_data_rdef,1,(AFPDSREC.Count - 8)) =

substr(AFPDString,10, /*start after hdr*/
(AFPDSRec.Count - 8)); /* length - header */

end /*SF_MSU*/;
otherwise do; /* save all other recs */
tempptr = STORE_PDEF(InRec_ptr); /* save in PDEF list */
end;
end /*select case of record type*/;
InRec_Ptr = Get_PDEF; /* page def priming read */
end /*do until eof pagedef*/;
close FILE (Pdeflib);
if ¬found_PGD /* report missing records */
then
call ErrorExit(5, ′ EAG′ , ′ PGD′ , ′ ′) ; /* terminate with message */

if ¬found_CTC /* report missing records */
then
call ErrorExit(5, ′ EAG′ , ′ CTC′ , ′ ′) ; /* terminate with message */

if ¬found_PTD /* report missing records */
then
call ErrorExit(5, ′ EAG′ , ′ PTD′ , ′ ′) ; /* terminate with message */

 end Parse_PAGEDEF;

128 AFP Printing in an IBM Cross-System Environment

 Process_LineData: PROC;
 /***/
 /* Line data records are read and processed against the appropriate */
 /* page format as determined by the carriage control byte and type. */
 /* */
 /***/
dcl

 /***/
 /* constants */
 /***/

Mach_skip bit(8) init(′10000000′b) /*mach carr ctl skip flag*/
aligned, /* */

Mach_immed bit(8) init(′00000010′b) /*mach carr ctl skip flag*/
aligned, /* */

Mach_value fixed bin(7) init(8), /*mach skip/space amt shift*/
ctl_5A bit(8) init(′01011010′b) /* x′ 5A′ */

aligned, /* structured fld cc */
ANSI_skc1 bit(8) init(′11110001′b) /* x′ F1′ */

aligned, /* skip channel 1 */
ANSI_skc2 bit(8) init(′11110010′b) /* x′ F2′ */

aligned, /* skip channel 1 */
ANSI_skc3 bit(8) init(′11110011′b) /* x′ F3′ */

aligned, /* skip channel 1 */
ANSI_skc4 bit(8) init(′11110100′b) /* x′ F4′ */

aligned, /* skip channel 1 */
ANSI_skc5 bit(8) init(′11110101′b) /* x′ F5′ */

aligned, /* skip channel 1 */
ANSI_skc6 bit(8) init(′11110110′b) /* x′ F6′ */

aligned, /* skip channel 1 */
ANSI_skc7 bit(8) init(′11110111′b) /* x′ F7′ */

aligned, /* skip channel 1 */
ANSI_skc8 bit(8) init(′11111000′b) /* x′ F8′ */

aligned, /* skip channel 1 */
ANSI_skc9 bit(8) init(′11111001′b) /* x′ F9′ */

aligned, /* skip channel 1 */
ANSI_skcA bit(8) init(′11000001′b) /* x′ C1′ */

aligned, /* skip channel 10 */
ANSI_skcB bit(8) init(′11000010′b) /* x′ C2′ */

aligned, /* skip channel 11 */
ANSI_skcC bit(8) init(′11000011′b) /* x′ C3′ */

aligned, /* skip channel 12 */
ANSI_spc0 bit(8) init(′01001110′b) /* x′ 4E′ */

aligned, /* print no space */
ANSI_spc1 bit(8) init(′01000000′b) /* x′ 4 0 ′ */

aligned, /* print 1 space */
ANSI_spc2 bit(8) init(′11110000′b) /* x′ F0′ */

aligned, /* print 2 space */
ANSI_spc3 bit(8) init(′01100000′b) /* x′ 6 0 ′ */

aligned, /* print 3 space */
page_SKP bit(8) init(′00000001′b)

aligned, /* new page skip/space*/
page_IDM bit(8) init(′00000010′b)

aligned, /* new pageformat */
page_IMM bit(8) init(′00000011′b)

aligned, /* new copygroup */
page_text bit(8) init(′00000100′b)

aligned, /* text write force pg*/
font_ids char(10) unaligned, /*for translate */
font_ids_tbl (10) char(1) based /* font id table x′ 0 0 ′-′ 0 9 ′*/

unaligned,
 /***/
 /* flags and counters global to line data processing */
 /***/

(End_Page_Skip, /* end page if skipping */
End_Page_Spc, /* end page if spacing */
New_Page, /* IDM new page created */

Appendix A. PSF/MVS Exits and MVS Sample Programs 129

Pg_Pend, /* TOF skip pending */
held_IMM, /* pending IMM flag */

 BPT_Open) bit(1) aligned, /* present. pg started */
chnl_code bit(8) aligned, /* channel control code */
ChNum bit(8) aligned, /* skip channel number */
CurrLND fixed bin(15), /* LND to use for printing */
Page_cnt fixed dec(07), /* output page counter */
RecNum fixed bin(15) init(0), /* line input record cntr */
(LinePtr, /* to current line record */
OutRec_ptr) pointer, /* to output buffer */
ChCode char(1), /* channel code as char */
DataMap char(8), /* page format name */
Last_IMM char(17) var, /* last IMM record */
space_cnt fixed bin(7); /* line spacing counter */
Dcl
LineIn FILE RECORD INPUT, /* Input line data file */
LineIn_EOF BIT(1) STATIC INIT(′ 0 ′ B), /* END OF FILE FLAG */
1 LineRec based UNALIGNED, /* line data input record */
5 len fixed bin(15), /* input record length */
5 CC bit(8), /* carriage control byte */
5 TRC_byte char(1), /* table reference (font) */

LineData char(16384) varying, /* line input data */
Line_len fixed bin(15), /* length of line data */
1 LineAFP BASED(InRec_ptr) UNALIGNED, /*general afpds in linedata */
5 len fixed bin(15), /* input record length */
5 CC CHAR(1) , /* Carriage control 5A hex */
5 COUNT FIXED BIN(15), /* Length AFP data */
5 TYPE bit(24), /* Type of AFP record */
5 FLAG bit(8), /* flag byte */
5 SEQUENCE fixed bin(15), /* structure sequence num. */
5 REST CHAR(32756), /* Rest of the record */

AFPDS FILE RECORD output, /* AFPDS output */
1 AFPout BASED(OutRec_ptr) UNALIGNED, /*general afpds output */
5 len fixed bin(15), /* input record length */
5 CC bit(8) aligned, /* Carriage control 5A hex */
5 COUNT FIXED BIN(15), /* Length AFP data */
5 TYPE bit(24), /* Type of AFP record */
5 FLAG bit(8), /* flag byte */
5 SEQUENCE fixed bin(15), /* structure sequence num. */
5 Data CHAR(16380); /* 8K records */

Get_Line: proc returns(pointer);
 /***/
 /* Read a line data input line and return a pointer to it */
 /***/

dcl
recptr pointer;
read file(LineIn) into (LineData); /* get pointer to next rec */
line_len = length(LineData); /* set global to data len */
if LineIn_EOF /* eof? */
then
return(null); /* return eof indication */
else do;
RecNum = RecNum + 1; /* count the input record */
return(addr(LineData)); /* return record pointer, */

/* point past length */
end;

end Get_Line;
Write_AFP: Proc(DataPtr,LNDnum,DontPrnt) recursive;

 /***/
 /* Constructs AFP data from line data using LNDnum LND specification.*/
 /* AFP records that have been input or constructed are written */
 /* directly (LNDnum=0), otherwise Present_Text is called to create */
 /* a presentation text record from input data and LNDnum. */
 /***/

dcl
DataPtr pointer, /* to line data */

130 AFP Printing in an IBM Cross-System Environment

AFPstring char(32767) var based, /* string overlay */
DontPrnt bit(1) aligned, /* postion without printing*/
LNDnum fixed bin(15); /* LND index */
if LNDnum ¬= 0 /* format into PTX record */
then do;
if Pg_Pend /* hanging new page? */
then
call Page_Environ(Page_cnt,page_text); /* new page before text*/

call Present_Text(LNDnum,LineData,DontPrnt); /*format text */
end;
write file(AFPDS) from(DataPtr->AFPstring); /*length+AFP record */
end Write_AFP;
Find_Skip: PROC(CC,StartLND) returns(fixed bin);

 /***/
 /* Finds LND to use for skip to channel command. If no channel is */
 /* found, a message is printed and single spacing is used. */
 /* Because ANSI control is control before write, a StartLND value of */
 /* zero is used to signal beginning the channel search at LND 1 */
 /* instead of the LND after the first one. */
 /***/

dcl
CC bit(8) aligned, /* channel code char value */
Skip_Top bit(1), /* save skip form flag */
(StartLND, NextLND, FirstSkpLND)

fixed bin(15); /* LND array indexes */
if StartLND = 0 /* initial case ANSI */
then
NextLND = 1; /* start at first LND */
else
NextLND = LND_Nxt_skip(StartLND); /* start with next skip */

FirstSkpLND = NextLND; /* save starting point */
call Set_EndPage_Flags(NextLND); /* was this a TOF? */
if End_Page_Skip /* save page eject flag */
then
Skip_Top = true; /* must skip to next page */
else
Skip_Top = false; /* no eject on 1st try */

do while (unspec(LND_Channel(NextLND)) ¬= CC); /*find chnl code */
NextLND = LND_Nxt_skip(NextLND); /* next LND in skip chain */
call Set_EndPage_Flags(NextLND); /* was this a TOF? */
if End_Page_Skip /* save page eject flag */
then
Skip_Top = true; /* must skip to next page */

if (NextLND = FirstSkpLND) & /* back to start and */
(unspec(LND_Channel(NextLND)) ¬= CC) /* channel not found */

then do;
call ErrorMsg(1,char(fixed(CC)),char(recnum),′ ′) ;
if StartLND = 0 /* initial case ANSI */
then
return((1)); /* default to first LND */
else
return(LND_Nxt_spc(StartLND)); /* single space next line */

end;
end/*while ¬ channel code*/;
if Skip_Top /* a TOF was found */
then
End_Page_Skip = true; /* set global skip flag */

if (NextLND < FirstSkpLND) /* went all the way around */
then do;
call Page_Environ(page_cnt,page_SKP); /* make a new page */
End_Page_Skip = false; /* reset global skip flag */
end;
return(NextLND); /* use this LND next */
end Find_Skip;
Find_Spc: PROC(Spaces,StartLND) returns(fixed bin);

 /***/

Appendix A. PSF/MVS Exits and MVS Sample Programs 131

 /* Finds LND to use for line spacing command. If any LND in the */
 /* space chain from StartLND to the LND to be printed is flagged for */
 /* spacing, the end-page spacing flag is set. */
 /***/

dcl
Spaces fixed bin(7), /* channel code char value */
Spc_Top bit(1), /* save Spc form flag */
(StartLND, NextLND, i)

fixed bin(15); /* LND array indexes */
if StartLND = 0 /* initial case ANSI */
then
NextLND = 1; /* start at first LND */
else
NextLND = StartLND; /* start with current LND */

call Set_EndPage_Flags(NextLND); /* reset starting flags */
Spc_Top = false; /* start already acted on */
do i = 1 to spaces; /* find space LND to use */
NextLND = LND_nxt_spc(NextLND); /* follow the space chain */
call Set_EndPage_Flags(NextLND); /* was this a TOF? */
if End_Page_Spc /* save page eject flag */
then
Spc_Top = true; /* must space to next page */

end/*i=1 to spaces*/;
if Spc_Top /* a TOF was found */
/**/
/* PSF′ s incorrect handling of spacing after page overflow is */
/* emulated by forcing print to LND 1 after an end of page while */
/* spacing. */
/**/
then
if StartLND > NextLND /* we′ ve gone to a new page*/
then do;
call Page_Environ(page_cnt,page_SKP); /* make a new page */
NextLND = 1; /* start at top of page */
End_Page_Spc = false; /* reset global SPC flag */
end;
else /* we will go to a new page*/
End_Page_Spc = true; /* after this line prints */

return(NextLND); /* use this LND next */
end Find_Spc;
Set_EndPage_Flags: Proc(LNDnum);

 /***/
 /* set global flags for end page skip/space from given LND */
 /***/

dcl
LNDnum fixed bin(15); /* lnd to set flags from */
End_Page_Skip = ((unspec(LND_flags(LNDnum)) & LNDFLAG_endskip) =

LNDFLAG_endskip); /* initial page skip flag */
End_Page_Spc = ((unspec(LND_flags(LNDnum)) & LNDFLAG_endspc) =

LNDFLAG_endspc); ; /* initial page space flag */
end Set_EndPage_Flags;
Bracket: Proc(sfld,seq_num);
/***/
/* Write structured field begin/end pair type using seq_num */
/* for the sequence number and token value. */
/***/

 /*==> Replace with equivalents, if any, to emit non-AFP datastream. */
/***/
dcl sfld bit(24), /* structured field value */
seq_num fixed dec(07); /* page num for seq. field */
AFPout.len = AFPHdrLen + 8; /* cc+afp header+id */
AFPout.count = AFPout.len - 1; /* exclude cc */
AFPout.cc = ctl_5a; /* AFP carriage control */
AFPout.type = sfld; /* bracket field to write */
AFPout.flag = ′ 0 ′ b; /* clear flags */
AFPout.sequence = seq_num; /* use page for seq. numb. */

132 AFP Printing in an IBM Cross-System Environment

AFPout.data = substr(seq_num,3,8); /* identify by page number */
call Write_AFP(OutRec_ptr,0,(false)); /* pass to write routine */

end Bracket;
Page_Environ: Proc(page_num,page_type);

 /***/
 /* Constructs AFP data for new page using data from the current data */
 /* map. An Active Environment Group is constructed from the page */
 /* map pointed to by the PFMTPTR. Page_num is the page number as */
 /* well as the flag for start and end document. Global page number */
 /* is incremented for each new page. */
 /* If IDM structured fields and form skip carriage controls are */
 /* intermixed, adjacent controls only create new pages using the IDM.*/
 /* if IMMs are found, the current page is ended, the input IMM is */
 /* issued, then a new page started. */
 /***/
 /*==> Replace with code to start a new page, frame, screen, or */
 /* similar construct. Note previous page is ended, then a new one */
 /* started. The proper PAGEDEF has already been selected. */
 /***/

dcl page_num fixed dec(07), /* page num/action flag */
 page_type bit(8) aligned, /* SKP = 1b (skip control)*/

/* IDM = 10b */
/* IMM = 11b */

lptr ptr, /* points to pagedef recs */
i fixed bin(15), /* loop counter */
seq_num fixed dec(07), /* page num for seq. field */
(dt,tm,time_stamp) char(30) var static;/* identifying strings */
Comment: Proc(Text);
/***/
/* Write structured field NOP using page number for the sequence */
/* and Text for the data. */
/***/
dcl Text char(*); /* text for NOP data */
AFPout.len = AFPHdrLen + length(Text); /* nop length */
AFPout.count = AFPout.len - 1; /* exclude cc */
AFPout.cc = ctl_5a; /* AFP carriage control */
AFPout.type = SF_NOP; /* begin document */
AFPout.flag = ′ 0 ′ b; /* clear flags */
AFPout.sequence = seq_num; /* doc start sequence zero */
AFPout.data = Text; /* NOP string */
call Write_AFP(OutRec_ptr,0,(false)); /* pass to write routine */

end Comment;
/**/
/* Determine if a new page environment should be written. If the */
/* record is an IDM, it is always written. If it is a form skip, */
/* it is written if it is not adjacent to an IDM. Thus, only 1 */
/* new page is created when IDMs and form skips are intermixed. */
/**/
if page_type = page_text /* force a new page */
then do;
Pg_Pend = false; /* reset any pending page */
end;
else do; /* a skip form request */
Pg_Pend = true; /* wait for IDM or text */
return; /* don′ t write yet */
end/*if not page pending*/;
/* first, end the old page and start the next page. */
if page_num > 0 /* not first page, so end */
then do; /* previous page. */
seq_num = page_num; /* use page number */
if BPT_Open /* close off present text */
then
call Bracket(SF_EPT,seq_num); /* end presentation text */

BPT_Open = false; /* text block closed */
call Bracket(SF_EPG,seq_num); /* end page */

Appendix A. PSF/MVS Exits and MVS Sample Programs 133

if held_IMM /* pass the IMM through */
then do;
call Write_AFP(addr(Last_IMM),0,(false)); /* last seen IMM rec*/
held_IMM = false; /* disposed of saved IMM */
end;

end;
else
if page_num = 0
then do; /* first page setup */
seq_num = 0; /* document starts at zero */
call Bracket(SF_BDT,seq_num); /* begin document */
dt = date; /* get date, time only once*/
tm = time; /* to minimize system calls*/
time_stamp = pgmname || substr(dt,1,2) || ′ / ′ | | / *id string */

substr(dt,3,2) || ′ / ′ | | substr(dt,5,2) ||
′ ′ | | substr(tm,1,2) || ′ : ′ | | substr(tm,3,2) ||
′ : ′ | | substr(tm,5,2) || ′ : ′ | | substr(tm,7,3);

call Comment(time_stamp); /* write a NOP identifier */
if held_IMM /* pass the IMM through */
then do;
call Write_AFP(addr(Last_IMM),0,(false)); /* initial IMM */
held_IMM = false; /* disposed of saved IMM */

end;
end/*start of document: page_num = 0*/;
else do; /* end of document bracket */
seq_num = page_cnt; /* final page w/last pg num*/
if BPT_Open /* close off present text */
then do;
call Bracket(SF_EPT,seq_num); /* end presentation text */
BPT_Open = false; /* text block closed */

end;
call Bracket(SF_EPG,seq_num); /* end page */
seq_num = 0; /* reset so brackets match */
AFPout.len = AFPHdrLen + length(time_stamp); /* nop length */
AFPout.count = AFPout.len - 1; /* exclude cc */
AFPout.cc = ctl_5a; /* AFP carriage control */
AFPout.type = SF_NOP; /* begin document */
AFPout.flag = ′ 0 ′ b; /* clear flags */
AFPout.sequence = 0; /* doc start sequence zero */
AFPout.data = time_stamp; /* identify document */
call Write_AFP(OutRec_ptr,0,(false)); /*pass to write routine*/
call Bracket(SF_EDT,seq_num); /* end document */
return; /* don′ t start another doc */
end/*end of document: page_num < 0*/;

page_cnt = page_cnt + 1; /* global page counter */
seq_num = page_cnt; /* current page for bracket*/
/* mark the start of the new page. */
call Bracket(SF_BPG,seq_num); /* begin page */
call Comment(PFMT_Name); /* identify map name */
/* then, write the BAG for the new environment. */
call Bracket(SF_BAG,seq_num); /* begin environment */
/* next, write any font or segment identifier records */
if CHARS & (PFMT_MCF_cnt = 0) /* use compatibility TRC? */
then do;
MCF_record.sequence = seq_num; /* identify with page numb */
call Write_AFP(MCF_Rec_ptr,0,(false)); /* use length as string */
end/*if CHARS*/;
else do; /* use MCF from PAGEDEF */
PDEFPTR = PFMT_1st_MCF; /* initial MCF, if any */
do i = 1 to PFMT_MCF_cnt; /* write each MCF */
lptr = addr(PDEF_Length); /* start of record in list */
lptr->AFPout.sequence = seq_num; /* identify with page numb */
call Write_AFP(lptr,0,(false)); /* use length as string */
PDEFPTR = PDEF_next; /* next PDEF rec in list */
end;

end/*not CHARS*/;

134 AFP Printing in an IBM Cross-System Environment

PDEFPTR = PFMT_1st_MPS; /* initial MPS, if any */
do i = 1 to PFMT_MPS_cnt; /* write each MPS */
lptr = addr(PDEF_Length); /* start of record in list */
lptr->AFPout.sequence = seq_num; /* identify with page numb */
call Write_AFP(lptr,0,(false)); /* use length as string */
PDEFPTR = PDEF_next; /* next PDEF rec in list */
end;
/* now search for the Page Descriptor */
PDEFPTR = PFMT_Start; /* 1st rec of this datamap */
InRec_ptr = addr(PDEF_data); /* data portion of list */
do until (AFPDSREC.Type = SF_PGD); /* find required PGD */
PDEFPTR = PDEF_next; /* next in list */
InRec_ptr = addr(PDEF_data); /* data portion of list */
end;
lptr = addr(PDEF_Length); /* start of record in list */
lptr->AFPout.sequence = seq_num; /* identify with page numb */
call Write_AFP(lptr,0,(false)); /* make fake string */
/* now search for Composed Text Control for compatibility only */
PDEFPTR = PFMT_Start; /* 1st rec of this datamap */
InRec_ptr = addr(PDEF_data); /* data portion of list */
do until (AFPDSREC.Type = SF_CTC); /* find required CTC */
PDEFPTR = PDEF_next; /* next in list */
InRec_ptr = addr(PDEF_data); /* data portion of list */
end;
lptr = addr(PDEF_Length); /* start of record in list */
lptr->AFPout.sequence = seq_num; /* identify with page numb */
call Write_AFP(lptr,0,(false)); /* make fake string */
/* now search for the Presentation Text Descriptor */
PDEFPTR = PFMT_Start; /* 1st rec of this datamap */
InRec_ptr = addr(PDEF_data); /* data portion of list */
do until (AFPDSREC.Type = SF_PTD); /* find required PTD */
PDEFPTR = PDEF_next; /* next in list */
InRec_ptr = addr(PDEF_data); /* data portion of list */
end;
lptr = addr(PDEF_Length); /* start of record in list */
lptr->AFPout.sequence = seq_num; /* identify with page numb */
call Write_AFP(lptr,0,(false)); /* make fake string */
/* finally, write the enclosing EAG bracket. */
call Bracket(SF_EAG,seq_num); /* end environment */
end Page_Environ;
Present_Text: Proc(LNDstart,TextData,NoPrint);

 /***/
 /* Constructs AFP record for presentation text from the current data */
 /* map LND and the input text line. LNDstart is the 1st LND to use */
 /* (reuse chains may use subsequent LNDs). TextData is the input */
 /* text string pointer. */
 /***/
 /*==> The following procedures generate the text using data in the */
 /*==> LND array to control placement. Strings other than PTXs could */
 /*==> be constructed. Be careful of text length and any limits of */
 /*==> the target device. This version does not optimize text. */
 /***/

dcl
(LNDstart, LND) fixed bin(15), /* lnd subscripts */
TextData char(*), /* input text to print */
NoPrint bit(1), /* text not to be printed */
Last_Orient char(4), /* orientation change flag */
Last_FontID char(1), /* font change flag */
Last_Color char(2), /* color changed flag */
endstr char(2), /* text string terminator */
(PTXlen, LStart) fixed bin(15); /* text length, start pos */
PTX_Hdr: Proc;

/**/
/* Create the header for the PTX record. Length is set up after the */

 /* entire record is generated. The initial escape is placed in the */
 /* data output string and initial length set. */

Appendix A. PSF/MVS Exits and MVS Sample Programs 135

/**/
dcl
WorkStr char(2); /* work string storage */
if ¬BPT_Open /* start new text object? */
then
call Bracket(SF_BPT,Page_Cnt); /* create begin text */

BPT_Open = true; /* tell all in text block */
AFPout.cc = ctl_5a; /* AFP control character */
AFPout.type = unspec(SF_PTX); /* presentation text rcd. */
AFPout.flag = ′ 0 ′ b; /* flag byte cleared */
AFPout.sequence = Page_cnt; /* use page for seq. numb. */
unspec(workstr) = TC_ESC;
substr(AFPout.data,1,2) = workstr; /*initial ESC sequence */
PTXlen = 2; /* ESC length */
end PTX_Hdr;
Concat_Txt: Proc(LND);

/**/
/* Create the text data stream and its associated text controls from*/

 /* the LND. Each call begins at the end of the current data output */
 /* string. Both input text and fixed text are created. The global */
 /* string length, PTXlen, reflects the new length. */
 /**/

dcl
LND fixed bin(15), /* LND for text controls */
len_byte char(1), /* 1-byte control length */
supp_id char(1), /* text suppress identifier*/
Font_val char(1), /* hold area for font id */
WorkStr char(256), /* work string storage */
(curlen, /* amt. to print this TRN */
start, /* initial string position */
i, /* loop counter */

 remain) fixed bin(15), /* left to print this line */
maxtxt fixed bin(15) init(255);/* maximum TRN text length */
TRN_len: Proc(TRNlen);
dcl TRNlen fixed bin(15); /* data length for TRN */
/**/
/* Puts length TRNlen and TRN control into AFPout.Data at the */
/* current PTXlen position and increments PTXlen to the next slot.*/
/**/
unspec(len_byte) = substr(bit((TRNlen+2)),9,8);

/* convert to length byte: length + control length */
unspec(workstr) = /* TRN length, control code*/

unspec((TC_TRN | TC_CCTL));
substr(workstr,1,1) = len_byte; /* stuff in length byte */
substr(AFPout.Data,PTXlen+1) = workstr; /* concat to output str*/
PTXlen = PTXlen + 2; /* bump by len of control */
end TRN_len;
Font_ID: Proc returns(char); /* function to get font id */
/**/
/* Determine the local font identifier to use. */
/* if the LND font id is indicated in the LND, that font is used, */
/* otherwise if TRC is specified and a CHARS= parameter was given*/
/* the TRC font is selected from the CHARS font list (or defaulted*/
/* to the first if the TRC value is greater than the CHARS list). */
/* If no CHARS= was specified, the corresponding value from the */
/* PAGEDEF MCF is used (or defaulted). If there is no MCF, then */
/* the hardware default font is indicated. */
/**/
dcl

 FontID char(1); /* hold temp font ident */
if (unspec(LND_Flags(LND)) & /* use font from PAGEDEF? */

LNDFLAG_FontChg)
then do;
FontID = LND_FontID(LND); /* use font from LND */
end;
else do; /* TRC or defaults */

136 AFP Printing in an IBM Cross-System Environment

if TRC
then do;
FontID = Lineptr->LineRec.TRC_byte; /* font index value */
FontID = translate(FontID,font_ids,

′0123456789′); /* map any compat TRCs */
/* non-compatibility TRCs remain unchanged. */

unspec(FontID) = fixed(unspec(FontID) + 1,8);
/* fontids begin at 1 */

if CHARS /* JCL CHARS= statement */
then
if unspec(FontID) > substr(unspec(TRC_Char_Font_cnt),9,8)

/* TRC ¬ in CHARS */
then do;
unspec(FontID) = ′00000001′b; /* default to first font */
call ErrorMsg(2,′ ′ , ′ ′ , ′ ′) ; /* inform user & continue */
end;
else; /*use font in CHARS and TRC*/

else /* no CHARS */
if PFMT_MCF_cnt > 0 /* MCF in PAGEDEF? */
then
if unspec(FontID) > substr(unspec(TRC_Font_cnt),9,8)
then do;
FontID = low(1); /* assume 1st fontid is 1 */
call ErrorMsg(2,′ ′ , ′ ′ , ′ ′) ; / * inform user & continue */
end;
else; /* use TRC in MCF */
else /* no MCF either */
FontID = high(1); /* use hardware default */

end/*if TRC*/;
else /* no TRC */
if PFMT_MCF_cnt > 0 | CHARS /* MCF in PAGEDEF or from */
then /* CHARS= (compatibility) */
unspec(FontID) = ′00000001′b; /* use 1st font in MCF */
else /* no MCF in PAGEDEF */
FontID = high(1); /* use hardware default */

end; /* don′ t use PAGEDEF font */
return(FontID); /* send result back */
end Font_ID;
if (unspec(LND_Flags(LND)) & /* text suppression? */

LNDFLAG_Suppress)
then do;
unspec(supp_id) = ′00000001′b; /* init to x′01′ default */
if MSUPTR ¬= NULL /* was there an MSU record?*/
then
do i = 1 to MSU_Num_gps; /* search for supp. token */
if MSU_Supp_Token(i) = LND_Supp_Token(LND)
then do; /* token found--get id */
supp_id = MSU_Supp_ID(i); /* save suppression id */
leave; /* and exit search */
end;

end/*i=1 to num gps*/;
unspec(workstr) = /* insert begin suppression*/
unspec(TC_BSU | TC_CCTL) ||
unspec(supp_id); /* use id or 1 if no MSU */

substr(AFPout.Data,PTXlen+1) = workstr; /* concat to output str*/
PTXlen = PTXlen + substr(TC_BSU,1,8); /*length of BSU sequence */
end/*suppression flagged*/;
if LND_Orient(LND) ¬= Last_Orient /* generate only if changed*/
then do;
unspec(workstr) = /* start after last char */
unspec(TC_STO | TC_CCTL) || /*text orient chained */
unspec(LND_Orient(LND)); /* value from LND */

substr(AFPout.Data,PTXlen+1) = workstr; /* concat to output str*/
PTXlen = PTXlen + substr(TC_STO,1,8); /*length of STO sequence */
Last_Orient = LND_Orient(LND); /* remember last value */
end;

Appendix A. PSF/MVS Exits and MVS Sample Programs 137

if (unspec(LND_Flags(LND)) & /* set baseline indicated? */
LNDFLAG_Baseline)

then do;
unspec(workstr) = /* start after last char */
(unspec((TC_AMB | TC_CCTL)) || /* abs move baseline chnd*/

 unspec(LND_Baseln(LND))); /* value from LND */
substr(AFPout.Data,PTXlen+1) = workstr; /* concat to output str*/
PTXlen = PTXlen + substr(TC_AMB,1,8); /*length of AMB sequence */
end;
if (unspec(LND_Flags(LND)) & /* set inline indicated? */

LNDFLAG_InLine)
then do;
unspec(workstr) = /* start after last char */
(unspec((TC_AMI | TC_CCTL)) || /*abs move inline chned */

 unspec(LND_InLine(LND))); /* value from LND */
substr(AFPout.Data,PTXlen+1) = workstr; /* concat to output str*/
PTXlen = PTXlen + substr(TC_AMI,1,8); /*length of AMI sequence */
end;
if (unspec(LND_Flags(LND)) & /* color indicated? */

LNDFLAG_Color)
then
if LND_COLOR(LND) ¬= last_Color /* only if color changed */
then do;
unspec(workstr) = /* color has changed */
(unspec((TC_STC | TC_CCTL)) || /* color change command */
unspec(LND_COLOR(LND)) || /* value from LND for color*/
′00000001′b); /* default if not supported*/

substr(AFPout.Data,PTXlen+1) = workstr; /*concat to out str*/
PTXlen = PTXlen + substr(TC_STC,1,8); /*length STC sequence*/
Last_COLOR = LND_COLOR(LND); /* remember last value */
end;

Font_val = Font_ID; /* get local font id */
if Font_val ¬= last_FONTID /* change font indicated? */
then do;
unspec(workstr) = /* start after last char */
(unspec((TC_SCFL | TC_CCTL)) || /*text FONTID chained */
unspec(Font_val)); /* value from LND */

substr(AFPout.Data,PTXlen+1) = workstr; /* concat to output str*/
PTXlen = PTXlen + substr(TC_SCFL,1,8); /* length SCFL sequence */
Last_FontID = Font_val; /* remember last value */
end;
if NoPrint /* text position only */
then
return; /* don′ t generate any text */

start = LND_Data_Start(LND) + 1; /* begin text + substr bias*/
remain = LND_Data_Len(LND); /* remaining text length */
if (unspec(LND_Flags(LND)) & /* is text from input? */

LNDFLAG_FixData) = 0
then do;
if remain < 0 /* -1 denotes all remaining*/
then
remain = line_len; /* maximum possible text */

remain = min(remain,(line_len-(start-1+Lstart)));
/*for input text, the amount to print is the lesser of the */
/*LND text length, the input line length from the current */
/*starting point, or the greater of the input length - start */
/*point if maximum length is specified in the LND (denoted */
/*by lnd data length of -1). */
end;
do while(remain > 0); /* place all text */
if (unspec(LND_Flags(LND)) & /* determine text source */

LNDFLAG_FixData)
then do; /* text from fixed data */
curlen = min(remain,maxtxt); /* most that will fit TRN */
call TRN_len(curlen); /* insert length, control */
substr(AFPout.Data, PTXlen+1) = /* TRN from FDX */

138 AFP Printing in an IBM Cross-System Environment

substr(PFMT_1st_FDX->PDEF_Data,start+AFPHdrLen,curlen);
end;
else do; /* text from input record */
curlen = min(remain,(Line_len-(start-1+Lstart)),maxtxt);

/* residual text length */
call TRN_len(curlen); /* insert length, control */
substr(AFPout.Data, PTXlen+1) = /* TRN from input text*/

substr(LineData,start+Lstart,curlen);
end;

PTXlen = PTXlen + curlen; /* running record length */
start = curlen + start; /* begin in source string */
remain = remain - curlen; /* residual text length */
end/*while remain > 0)*/;
if (unspec(LND_Flags(LND)) & /* text suppression? */

LNDFLAG_Suppress)
then do;
unspec(workstr) = /* insert end suppression*/
unspec(TC_ESU | TC_CCTL) ||
unspec(supp_id); /* use id or 1 if no MSU */

substr(AFPout.Data,PTXlen+1) = workstr; /* concat to output str*/
PTXlen = PTXlen + substr(TC_ESU,1,8); /*length of ESU sequence */
end/*suppression flagged*/;

end Concat_Txt;
/***/
/* Presentation text main routine. Determines starting point for */
/* input text and initial font id (from TRC or LND), and calls the */
/* routines to set up the text record and fill in as much text as */
/* is required. */
/***/
LND = LNDStart; /* initial LND for text */
if NOCC /* adjust for carr. ctl. */
then
LStart = 0; /* 1st byte is printable */
else
if TRC /* skip over TRC byte? */
then do;
LStart = 2; /* skip TRC and carr. ctl. */
end;
else do;
LStart = 1; /* carriage control only */
end;

call PTX_Hdr; /* start AFP text record */
Last_Orient = ′ ′ ; /* no previous orientation */
Last_FontID = ′ ′ ; /* no previous font */
if (unspec(LND_Flags(LND)) & /* reusing input record? */

LNDFLAG_Reuse)
then
do until(LND = 0); /*follow reuse chain to end*/
call Concat_Txt(LND); /* get text for this LND */
LND = LND_Nxt_Reuse(LND); /* next in reuse chain */
end;
else
call Concat_Txt(LND); /* place text in output */

unspec(endstr) = ′00000010′b ||
substr(TC_NOP,9,8);/*NOP len, no chain */

substr(AFPout.Data,PTXlen+1) = endstr; /* NOP is last control */
PTXlen = PTXlen + 2; /* adjust for NOP */
AFPout.Len = PTXlen + AFPHdrLen; /* actual record length */
AFPout.Count = AFPout.Len - 1; /* strct. fld len - cc */
end Present_Text;

 /***/
 /* Read each line, find the LND, format the line using the LND */
 /* values into an AFP data stream written to the AFPDS output file. */
 /* Machine, ANSI, and no channel codes are processed. */
 /* */
 /***/

Appendix A. PSF/MVS Exits and MVS Sample Programs 139

/* initialize the font lookup table, since PL/I 1.5 can′ t handle */
/* specification of hex values. */
do i = 1 to 10; /* convert integer to 1-byte numeric value 0-9 */
unspec(addr(font_ids)->font_ids_tbl(i)) = substr(bit((i-1)),9,8);
end;
OPEN FILE (LineIn);
ON ENDFILE (LineIn) LineIn_EOF = true;
OPEN FILE(AFPDS) OUTPUT ;
alloc AFPout; /* output AFP data buffer */
PFMTPTR = PFMT_List_Anchor; /* set initial data map */
linedata_started = false;
if ANSI_cc /* initial conditions */
then do;
currlnd = 0; /* ANSI starts before 1st */
End_Page_Spc = false; /* can′ t be page overflow */
end;
else do;
currlnd = 1; /* machine starts with 1st */
call Set_EndPage_Flags(currlnd); /* initial space/skip */
end;
page_cnt = 0; /* first page flag */
lineptr = Get_Line; /* read priming record */
BPT_Open = false; /* no text yet generated */
if ((lineptr ¬= null) & /* no first structured fld?*/

((lineptr->LineRec.cc ¬= ctl_5a) | NOCC))
then do;
call Page_Environ(0,page_text); /* initial page setup */
linedata_started = true;
end;

do while (lineptr ¬= null); /* until all records read */
chnl_code = lineptr->LineRec.cc; /* dereference channel code*/
select; /* by carriage ctl type */
when (chnl_code = ctl_5a & ¬NOCC) do; /* structured field recs */
/**/
/* Structured field records that are not IDM are passed to the */
/*output unaltered. If carriage controls are not used, then */
/*′ 5A′ records are treated as data and printed. */
/**/
select (lineptr->LineAFP.type); /* type of structured field*/
when (SF_IDM) do; /* invoke data map */
DataMap = substr(lineptr->LineAFP.rest,1,8); /* data map name */
if DataMap ¬= PFMT_Name /* not current format? */
then do;
PFMTPTR = PFMT_List_Anchor; /* start from first map */
do while (¬(DataMap = PFMT_Name | /* matching name or */

PFMT_Next = null)); /* list end-name not found */
PFMTPTR = PFMT_Next; /* next in map list */
end; /* while not end of chain */
end; /* datamap ¬= pfmt_name */
if DataMap = PFMT_Name /* found the data map */
then do;
currlnd = 1; /* start new page with */
call Page_Environ(page_cnt,page_IDM); /* first LND in map */

linedata_started = true;
end; /* datamap found */
else do; /* map not found-error */
call Page_Environ(-1,page_text); /* write ending doc. envir.*/
/*terminate if unknown map requested in line input. */
call ErrorExit(9,DataMap,′ ′ , ′ ′) ; / * exit via error rtn */
end; /* datamap not found-quit */

end; /* when IDM */
when (SF_IMM) do; /* invoke medium map */
/* IMM must end current page, insert IMM, then start new page. */
Last_IMM = LineData; /* save for deferred write */
held_IMM = true; /* we′ re saving an IMM */
call Page_Environ(page_cnt,page_IMM); /* newpage does it all */

140 AFP Printing in an IBM Cross-System Environment

end; /* when IMM */
otherwise do; /* any other SF record */
/* Assume structured field must not be in current presentation */
/* text environment, if one exists at this point. */
if BPT_Open
then
call Bracket(SF_EPT,page_cnt); /* close current text */

BPT_Open = false; /* tell all block closed */
call Write_AFP(Lineptr,0,(false)); /* write 5a & reset envir. */
end/*all others*/;
end/*select AFP type*/;
end/*select structured field*/;
when (mach_cc) do; /* machine carriage control*/
/**/
/*Machine carriage controls write and then position (to the next */
/*LND) for either skipping or spacing. Control only codes create */
/*text positioning commands so that mixed 5A data can be */
/*positioned correctly. */
/**/
if linedata_started = false then do;

call Page_Environ(0,page_text);
linedata_started = true;
end;

if (chnl_code & mach_immed) = 0 /* after write (not immed) */
then
call Write_AFP(OutRec_ptr,currlnd,(false)); /*write data first*/
else
if ¬(End_Page_Skip | End_Page_Spc) /* position within page */
then
call Write_AFP(OutRec_ptr,currlnd,(true)); /*just position */

select; /* machine carriage control*/
when (chnl_code & mach_skip) do; /*machine skip channel */
if End_Page_Skip
then
call Page_Environ(page_cnt,page_SKP); /* set next pg envir.*/

ChNum = ′ 0 ′ b; /* init for substring */
substr(ChNum,5,4) = substr(chnl_code,2,4); /*extract chann. num*/
currlnd = Find_Skip(ChNum,currlnd); /*LND for skip channel */
end/*machine skip to channel*/;
when ((chnl_code & mach_skip) = 0) do; /*machine space */
if End_Page_Spc
then do;
call Page_Environ(page_cnt,page_SKP); /* set next pg envir.*/
end;
space_cnt = fixed((chnl_code / 8)); /* number of spaces */
currlnd = Find_Spc(space_cnt,currlnd); /*LND for space/print */
end/*machine space*/;
otherwise do; /* unrecognized control */
call ErrorMsg(1,char(chnl_code),char(recnum),′ ′) ;
end/*unrecognized control*/;
end/*select skip or space*/;
end/*select machine control*/;
when (ansi_cc) do; /* ANSI carriage control*/
/**/
/* ANSI carriage controls are processed in the opposite order of */
/*machine controls. Thus, the data is written with the current LND*/
/*and then the next LND to use is determined. Page skip/space */
/*breaks are set up for the next data line to print. */
/**/
if linedata_started = false then do;

call Page_Environ(0,page_text);
linedata_started = true;
end;

select (chnl_code); /* ANSI carriage control*/
when (ANSI_skc1, ANSI_skc2, ANSI_skc3, /*ANSI skip channel */

ANSI_skc4, ANSI_skc5, ANSI_skc6,

Appendix A. PSF/MVS Exits and MVS Sample Programs 141

ANSI_skc7, ANSI_skc8, ANSI_skc9,
ANSI_skcA, ANSI_skcB, ANSI_skcC) do;

if End_Page_Skip
then
call Page_Environ(page_cnt,page_SKP); /*set next pg envir.*/

unspec(ChCode) = chnl_code; /*convert to char for index*/
unspec(ChNum) = fixed(index(′123456789ABC′ ,

ChCode),8); /*find chanl number*/
currlnd = Find_Skip(ChNum,currlnd); /*LND for skip channel */
end/*ANSI skip to channel*/;
when (ANSI_spc0, ANSI_spc1, /*ANSI space */

ANSI_spc2, ANSI_spc3) do;
if End_Page_Spc
then do;
call Page_Environ(page_cnt,page_SKP); /* set next pg envir.*/
end;
unspec(ChCode) = chnl_code; /*convert to char for index*/
space_cnt = index(′+ 0-′ , ChCode) - 1; /* # of spaces,+=none */
currlnd = Find_Spc(space_cnt,currlnd); /*LND spacing */
end/*ANSI space*/;
otherwise do; /* unrecognized control */
call ErrorMsg(1,char(chnl_code),char(recnum),′ ′) ;
end/*unrecognized control*/;
end/*select skip or space*/;
call Write_AFP(OutRec_ptr,currlnd,(false)); /*wrt after skip */
end/*select ANSI*/;
when (NoCC) do; /* no carriage control */
call Write_AFP(OutRec_ptr,currlnd,(false)); /* write line first */
if End_Page_Spc
then
call Page_Environ(page_cnt,page_SKP); /* set up for new page */

currlnd = Find_Spc(1,currlnd); /*LND single spacing */
end/*no carriage control*/;
end/*select carriage control*/;
Lineptr = Get_line; /* next record */
end/*while not EOF linedata*/;
close FILE (LineIn);

 /***/
 /* write terminating document bracket before close. */
 /***/
call Page_Environ(-1,page_text); /* write ending doc. envir.*/
close FILE(AFPDS);

 end Process_LineData;
 ErrorMsg: PROCEDURE(MSGIDX,S1,S2,S3);
 /**/
 /*** ***/
 /*** ERRORMSG displays the appropriate error message and ***/
/*** returns control to the caller. ***/
/*** ***/
/*** eventually will get message from auxillary list and ***/
/*** either terminate, return control, or return error to ***/
/*** external caller (if called from API). ***/
/*** ***/
/**/
dcl MSGIDX FIXED BIN(15),

(s1,s2,s3) char(80) var, /* substituted strings */
ERR_MSG(10) CHAR(240); /* ERROR MESSAGE ARRAY */

/***********************************/
/* Error Messages Initialized */
/***********************************/

ERR_MSG(1) = ′ APS346I DATA IN AN INPUT RECORD OR PAGEDEF RESOURCE′ | |
′ IS INVALID: A SKIP TO A NON-EXISTANT CHANNEL = ′ ||
S1 || ′ ON RECORD ′ | | S2 || ′ WAS DETECTED WITHIN ′ ||
′ THE LND STRUCTURED FIELDS. OUTPUT WAS FORCED TO ′ ||
′ SINGLE SPACING AND MAY CONTAIN BLANK PAGES.′ ;

ERR_MSG(2) = ′ APS341I A FONT NAMED IN THE PAGEDEF RESOURCE OVERRI′ | |

142 AFP Printing in an IBM Cross-System Environment

′ DES THE FONT SPECIFIED IN THE TABLE REFERENCE′ ||
′ CHARACTER ON ONE OR MORE RECORDS. PRINTED OUTPUT ′ ||
′ MAY BE ACCEPTABLE′ ;

put file(SYSPRINT) skip list (ERR_MSG(MSGIDX));
END ErrorMsg;
ErrorExit: PROCEDURE(MSGIDX,S1,S2,S3);
/**/
/*** ***/

 /*** ErrorExit closes all files and the appropriate error ***/
/***message is displayed. ***/
/*** ***/
/*** eventually will get message from auxillary list and ***/
/*** either terminate, return control, or return error to ***/
/*** external caller (if called from API). ***/
/*** ***/
/**/
dcl MSGIDX FIXED BIN(15),

(s1,s2,s3) char(*) var, /* substituted strings */
ERR_MSG(10) CHAR(240); /* ERROR MESSAGE ARRAY */

/***********************************/
/* Error Messages Initialized */
/***********************************/

ERR_MSG(1) = ′ Invalid PAGEDEF more than 1 BPM found′ ;
ERR_MSG(2) = ′ Invalid PAGEDEF no BPM found.′ ;
ERR_MSG(3) = ′ Invalid PAGEDEF BAG without EAG.′ ;
ERR_MSG(4) = ′ Invalid PAGEDEF EAG without BAG.′ ;
ERR_MSG(5) = ′ APS216I AN INPUT-DATA RECORD IS MISSING: ′ | | S1 ||

′ STRUCTURED FIELD WAS RECEIVED, BUT NO ′ || S2 ||
′ STRUCTURED FIELD WAS SPECIFIED.′ ;

ERR_MSG(7) = ′ APS305I DATA IN A PAGEDEF RESOURCE IS INVALID: ′ ||
′ STRUCTURED FIELD ′ | | S1 || ′ WAS FOUND WHERE AN ′ | |
′ EDX STRUCTURED FIELD WAS EXPECTED′ ;

ERR_MSG(8) = ′ APS300I DATA IN A PAGEDEF RESOURCE IS INVALID: ′ | |
′ THE NEXT LINE DESCRIPTOR IF SKIPPING PARAMETER ′ | |
′ VALUE IN LND STRUCTURED FIELD NUMBER ′ | | S1 || ′ IS 0′ ;

ERR_MSG(9) = ′ APS162I MISMATCH BETWEEN PRINT DATA SET AND PAGEDEF′ | |
′ RESOURCE: DATA MAP ′ ′ ′ | | S1 || ′ ′ ′ SPECIFIED IN′ ||
′ IDM STRUCTURED FIELD WAS NOT FOUND IN PAGEDEF ′ ′ ′ ||
S2 || ′ ′ ′ ′ ;

ERR_MSG(10)= ′ APSTTTI INVALID CHARS= PARAMETER SPECIFIED. ′ ||
S1 || ′ IS NOT A VALID VALUE′ ;

put file(SYSPRINT) skip list (ERR_MSG(MSGIDX));
call pliretc(16); /*set return code*/
STOP;
END ErrorExit;

 END LN2AFPN;

A.6.2 Included PL/I Definitions
%GOTO SFIDPLI; / 00010034

MACRO 00020000
SFIDEQU 00030000

--- 00040000
* SYMBOLIC EQUATES FOR STRUCTURED FIELD IDENTIFIERS AND COMPOSED-TEXT | 00050000
* CONTROLS. SEE PSF DATA STREAM REFERENCE, SH35-0073-03. | 00060000
* | 00070000
* LAST UPDATE ON 10 JAN 1990 AT 15:22:50 BY VEND730 VERSION 02 | 00080037
* ADD NEW STRUCTURED FIELD TYPES FOR GRAPHICS, BAR CODES. | 00090037
* LAST UPDATE ON 2 JAN 1990 AT 15:24:53 BY VEND730 VERSION 02 | 00100037
* USE BIT STRING VALUES FOR PLI CONTSTANTS FOR PL/I 1.5. | 00110037
--- 00120000
* SYMBOLS FOR STRUCTURED FIELD IDENTIFIERS 00130000
SF$FNI EQU X′ D38C89′ , 3 , C′ X′ * FONT INDEX 00140037
SF$CFI EQU X′ D38C8A′ , 3 , C′ X′ * CODED FONT INDEX 00150037
SF$MCC EQU X′ D3A288′ , 3 , C′ X′ * MEDIUM COPY COUNT 00160037
SF$FNM EQU X′ D3A289′ , 3 , C′ X′ * FONT PATTERNS MAP 00170037

Appendix A. PSF/MVS Exits and MVS Sample Programs 143

SF$OBD EQU X′ D3A66B′ , 3 , C′ X′ * OBJECT AREA DESCRIPTOR 00180037
SF$IID EQU X′ D3A67B′ , 3 , C′ X′ * IMAGE INPUT DESCRIPTOR 00190037
SF$CPD EQU X′ D3A687′ , 3 , C′ X′ * CODE PAGE DESCRIPTOR 00200037
SF$MDD EQU X′ D3A688′ , 3 , C′ X′ * MEDIUM DESCRIPTOR 00210037
SF$FND EQU X′ D3A689′ , 3 , C′ X′ * FONT DESCRIPTOR 00220037
SF$CTD EQU X′ D3A69B′ , 3 , C′ X′ * COMPOSED-TEXT DESCRIPTOR 00230037
SF$PTD EQU X′ D3A69B′ , 3 , C′ X′ * PRESENTATION TEXT DESCRIPTOR 00240037
SF$PGD EQU X′ D3A6AF′ , 3 , C′ X′ * PAGE DESCRIPTOR 00250037
SF$GDD EQU X′ D3A6BB′ , 3 , C′ X′ * GRAPHICS DATA DESCRIPTOR 00260037
SF$FGD EQU X′ D3A6C5′ , 3 , C′ X′ * FORM ENVIRONMENT GROUP DESCRIPTOR 00270037
SF$DXD EQU X′ D3A6E3′ , 3 , C′ X′ * DATA MAP TRANSMISSION SUBCASE DESC 00280037
SF$LND EQU X′ D3A6E7′ , 3 , C′ X′ * LINE DESCRIPTOR 00290037
SF$BDD EQU X′ D3A6EB′ , 3 , C′ X′ * BAR CODE DATA DESCRIPTOR 00300037
SF$IDD EQU X′ D3A6FB′ , 3 , C′ X′ * IMAGE DATA DESCRIPTOR IO 00310037
SF$IOC EQU X′ D3A77B′ , 3 , C′ X′ * IMAGE OUTPUT CONTROL 00320037
SF$CPC EQU X′ D3A787′ , 3 , C′ X′ * CODE PAGE CONTROL 00330037
SF$MMC EQU X′ D3A788′ , 3 , C′ X′ * MEDIUM MODIFICATION CONTROL 00340037
SF$FNC EQU X′ D3A789′ , 3 , C′ X′ * FONT CONTROL 00350037
SF$CFC EQU X′ D3A78A′ , 3 , C′ X′ * CODED FONT CONTROL 00360037
SF$CTC EQU X′ D3A79B′ , 3 , C′ X′ * COMPOSED-TEXT CONTROL 00370037
SF$CCP EQU X′ D3A7CA′ , 3 , C′ X′ * CONDITIONAL PROCESSING CONTROL 00380037
SF$BPS EQU X′ D3A85F′ , 3 , C′ X′ * BEGIN PAGE SEGMENT 00390037
SF$BIM EQU X′ D3A87B′ , 3 , C′ X′ * BEGIN IMAGE OBJECT IM 00400037
SF$BCP EQU X′ D3A887′ , 3 , C′ X′ * BEGIN CODE PAGE 00410037
SF$BFN EQU X′ D3A889′ , 3 , C′ X′ * BEGIN FONT 00420037
SF$BCF EQU X′ D3A88A′ , 3 , C′ X′ * BEGIN CODED FONT 00430037
SF$BGR EQU X′ D3A88B′ , 3 , C′ X′ * BEGIN GRAPHICS OBJECT 00440037
SF$BCT EQU X′ D3A89B′ , 3 , C′ X′ * BEGIN COMPOSED-TEXT BLOCK 00450037
SF$BPT EQU X′ D3A89B′ , 3 , C′ X′ * BEGIN PRESENTATION TEXT 00460037
SF$BDT EQU X′ D3A8A8′ , 3 , C′ X′ * BEGIN DOCUMENT 00470037
SF$BPG EQU X′ D3A8AF′ , 3 , C′ X′ * BEGIN PAGE 00480037
SF$BDG EQU X′ D3A8C4′ , 3 , C′ X′ * BEGIN DOCUMENT ENVIRONMENT GROUP 00490037
SF$BFG EQU X′ D3A8C5′ , 3 , C′ X′ * BEGIN FORM ENVIRONMENT GROUP 00500037
SF$BRG EQU X′ D3A8C6′ , 3 , C′ X′ * BEGIN RESOURCE GROUP 00510037
SF$BOG EQU X′ D3A8C7′ , 3 , C′ X′ * BEGIN OBJECT ENVIRONMENT GROUP 00520037
SF$BAG EQU X′ D3A8C9′ , 3 , C′ X′ * BEGIN ACTIVE ENVIRONMENT GROUP 00530037
SF$BDM EQU X′ D3A8CA′ , 3 , C′ X′ * BEGIN DATA MAP 00540037
SF$BPM EQU X′ D3A8CB′ , 3 , C′ X′ * BEGIN PAGE MAP 00550037
SF$BMM EQU X′ D3A8CC′ , 3 , C′ X′ * BEGIN MEDIUM MAP 00560037
SF$BFM EQU X′ D3A8CD′ , 3 , C′ X′ * BEGIN FORM MAP 00570037
SF$BR EQU X′ D3A8CE′ , 3 , C′ X′ * BEGIN RESOURCE 00580037
SF$BMO EQU X′ D3A8DF′ , 3 , C′ X′ * BEGIN MEDIUM OVERLAY 00590037
SF$BBC EQU X′ D3A8EB′ , 3 , C′ X′ * BEGIN BAR CODE OBJECT 00600037
SF$BDX EQU X′ D3A8E3′ , 3 , C′ X′ *BEGIN DATA MAP TRANSMISSION SUBCASE 00610037
SF$BIMO EQU X′ D3A8FB′ , 3 , C′ X′ * BEGIN IMAGE OBJECT IO 00620037
SF$EPS EQU X′ D3A95F′ , 3 , C′ X′ * END PAGE SEGMENT 00630037
SF$EIM EQU X′ D3A97B′ , 3 , C′ X′ * END IMAGE BLOCK 00640037
SF$ECP EQU X′ D3A987′ , 3 , C′ X′ * END CODE PAGE 00650037
SF$EFN EQU X′ D3A989′ , 3 , C′ X′ * END FONT 00660037
SF$ECF EQU X′ D3A98A′ , 3 , C′ X′ * END CODED FONT 00670037
SF$ECT EQU X′ D3A99B′ , 3 , C′ X′ * END COMPOSED-TEXT BLOCK 00680037
SF$EPT EQU X′ D3A99B′ , 3 , C′ X′ * END PRESENTATION TEXT BLOCK 00690037
SF$EPG EQU X′ D3A9AF′ , 3 , C′ X′ * END PAGE 00700037
SF$EDT EQU X′ D3A9A8′ , 3 , C′ X′ * END DOCUMENT 00710037
SF$EGO EQU X′ D3A9BB′ , 3 , C′ X′ * END END GRAPHICS OBJECT 00720037
SF$EDG EQU X′ D3A9C4′ , 3 , C′ X′ * END DOCUMENT ENVIRONMENT GROUP 00730037
SF$EFG EQU X′ D3A9C5′ , 3 , C′ X′ * END FORM ENVIRONMENT GROUP 00740037
SF$ERG EQU X′ D3A9C6′ , 3 , C′ X′ * END RESOURCE GROUP 00750037
SF$EAG EQU X′ D3A9C9′ , 3 , C′ X′ * END ACTIVE ENVIRONMENT GROUP 00760037
SF$EDM EQU X′ D3A9CA′ , 3 , C′ X′ * END DATA MAP 00770037
SF$EPM EQU X′ D3A9CB′ , 3 , C′ X′ * END PAGE MAP 00780037
SF$EMM EQU X′ D3A9CC′ , 3 , C′ X′ * END MEDIUM MAP 00790037
SF$EFM EQU X′ D3A9CD′ , 3 , C′ X′ * END FORM MAP 00800037
SF$ER EQU X′ D3A9CE′ , 3 , C′ X′ * END RESOURCE 00810037
SF$EMO EQU X′ D3A9DF′ , 3 , C′ X′ * END MEDIUM OVERLAY 00820037
SF$EDX EQU X′ D3A9E3′ , 3 , C′ X′ * END DATA MAP TRANSMISSION SUBCASE 00830037

144 AFP Printing in an IBM Cross-System Environment

SF$LNC EQU X′ D3AAE7′ , 3 , C′ X′ * LINE DESCRIPTOR COUNT 00840037
SF$EBC EQU X′ D3A9EB′ , 3 , C′ X′ * END BAR CODE OBJECT 00850037
SF$FDS EQU X′ D3AAEC′ , 3 , C′ X′ * FIXED DATA SIZE 00860037
SF$MCF2 EQU X′ D3AB8A′ , 3 , C′ X′ * MAP CODED FONT (FORMAT 2) 00870037
SF$MGO EQU X′ D3ABBB′ , 3 , C′ X′ * MAP GRAPHIC OBJECT 00880037
SF$IDM EQU X′ D3ABCA′ , 3 , C′ X′ * INVOKE DATA MAP 00890037
SF$IMM EQU X′ D3ABCC′ , 3 , C′ X′ * INVOKE MEDIUM MAP 00900037
SF$MPO EQU X′ D3ABD8′ , 3 , C′ X′ * MAP PAGE OVERLAY 00910037
SF$MSU EQU X′ D3ABEA′ , 3 , C′ X′ * MAP SUPPRESSION 00920037
SF$MBC EQU X′ D3ABEB′ , 3 , C′ X′ * MAP BAR CODE 00930037
SF$MIO EQU X′ D3ABFB′ , 3 , C′ X′ * MAP IO IMAGE OBJECT 00940037
SF$OBP EQU X′ D3AC6B′ , 3 , C′ X′ * OBJECT AREA POSITION 00950037
SF$ICP EQU X′ D3AC7B′ , 3 , C′ X′ * IMAGE CELL POSITION 00960037
SF$CPI EQU X′ D3AC87′ , 3 , C′ X′ * CODE PAGE INDEX 00970037
SF$FNP EQU X′ D3AC89′ , 3 , C′ X′ * FONT POSITION 00980037
SF$PGP EQU X′ D3ACAF′ , 3 , C′ X′ * PAGE POSITION 00990037
SF$FNO EQU X′ D3AE89′ , 3 , C′ X′ * FONT ORIENTATION 01000037
SF$IPS EQU X′ D3AF5F′ , 3 , C′ X′ * INCLUDE PAGE SEGMENT 01010037
SF$IPO EQU X′ D3AFD8′ , 3 , C′ X′ * INCLUDE PAGE OVERLAY 01020037
SF$MPS EQU X′ D3B15F′ , 3 , C′ X′ * MAP PAGE SEGMENT 01030037
SF$MCF EQU X′ D3B18A′ , 3 , C′ X′ * MAP CODED FONT (FORMAT 1) 01040037
SF$MMO EQU X′ D3B1DF′ , 3 , C′ X′ * MAP MEDIUM OVERLAY 01050037
SF$IRD EQU X′ D3EE7B′ , 3 , C′ X′ * IMAGE RASTER DATA 01060037
SF$FNG EQU X′ D3EE89′ , 3 , C′ X′ * FONT PATTERNS 01070037
SF$CTX EQU X′ D3EE9B′ , 3 , C′ X′ * COMPOSED-TEXT DATA 01080037
SF$PTX EQU X′ D3EE9B′ , 3 , C′ X′ * PRESENTATION TEXT 01090037
SF$GAD EQU X′ D3EEBB′ , 3 , C′ X′ * GRAPHICS DATA 01100037
SF$BDA EQU X′ D3EEEB′ , 3 , C′ X′ * BAR CODE DATA 01110037
SF$FDX EQU X′ D3EEEC′ , 3 , C′ X′ * FIXED DATA TEXT 01120037
SF$NOP EQU X′ D3EEEE′ , 3 , C′ X′ * NO OPERATION 01130000
SF$IPD EQU X′ D3EEFB′ , 3 , C′ X′ * IMAGE PICTURE DATA 01140037
* COMPOSED TEXT CONTROL SEQUENCES. 01150000
* TEXT CONTROLS ARE DESCRIBED AS FOLLOWS: 01160000
* BYTE 1: LENGTH. ZERO REPRESENTS A VARIABLE LENGTH CONTROL. 01170000
* BYTE 2: TEXT-CONTROL CODE, UNCHAINED. (EVEN VALUES) 01180000
* CHAINED CONTROL CODES ARE REPRESENTED BY THE LOW-ORDER 01190000
* BIT TURNED ON (ODD VALUES). THESE VALUES MAY BE CODED 01200000
* SYMBOLICALLY BY: CHAINED_VALUE EQU ″TC″+CCTL, WHERE 01210000
* ″TC″ IS THE TEXT-CONTROL MNEMONIC. 01220000
TC$AMB EQU X′04D2′ , 2 , C′ X′ * ABSOLUTE MOVE BASELINE 01230000
TC$AMI EQU X′04C6′ , 2 , C′ X′ * ABSOLUTE MOVE INLINE 01240000
TC$BLN EQU X′02D8′ , 2 , C′ X′ * BEGIN LINE 01250000
TC$BSU EQU X′03F2′ , 2 , C′ X′ * BEGIN SUPPRESSION 01260000
TC$CCTL EQU B′00000001′ * CHAINED CONTROL FLAG BIT 01270000
TC$DBR EQU X′07E6′ , 2 , C′ X′ * DRAW BASELINE RUL 01280000
TC$DIR EQU X′07E4′ , 2 , C′ X′ * DRAW INLINE RUL 01290000
TC$ESC EQU X′ 2BD3′ , 2 , C′ X′ * ESCAPE SEQUENCE 01300000
TC$ESU EQU X′03F4′ , 2 , C′ X′ * END SUPPRESSION 01310000
TC$NOP EQU X′00F8′ , 2 , C′ X′ * NO OPERATION 01320000
TC$RMB EQU X′04D4′ , 2 , C′ X′ * RELATIVE MOVE BASELINE 01330000
TC$RMI EQU X′04C8′ , 2 , C′ X′ * RELATIVE MOVE INLINE 01340000
TC$RPS EQU X′00EE′ , 2 , C′ X′ * REPEAT STRING 01350000
TC$SBI EQU X′04D0′ , 2 , C′ X′ * SET BASELINE INCREMENT 01360000
TC$SCFL EQU X′03F0′ , 2 , C′ X′ * SET CODED FONT LOCAL 01370026
TC$SII EQU X′04C2′ , 2 , C′ X′ * SET INTERCHARACTER INCREMENT 01380000
TC$SIM EQU X′04C0′ , 2 , C′ X′ * SET INLINE MARGIN 01390000
TC$STC EQU X′0574 ′ ,2 ,C′ X′ * SET TEXT COLOR 01400031
TC$STO EQU X′06F6′ , 2 , C′ X′ * SET TEXT ORIENTATION 01410031
TC$SVI EQU X′04C4′ , 2 , C′ X′ * SET VARIABLE SPACE CHAR INCREMENT 01420000
TC$TRN EQU X′00DA′ , 2 , C′ X′ * TRANSPARENT DATA 01430000

MEND , */ 01440000
 %SFIDPLI: ; 01450000
DECLARE 01460000

 /* LAST UPDATE ON 18 AUG 1989 AT 10:30:14 BY VEND730 VERSION 01 */ 01470000
 /*--*/ 01480000
 /* SYMBOLIC EQUATES FOR STRUCTURED FIELD IDENTIFIERS AND */ 01490000

Appendix A. PSF/MVS Exits and MVS Sample Programs 145

 /* COMPOSED-TEXT CONTROLS. SEE PSF DATA STREAM REFERENCE, */ 01500000
 /* SH35-0073-03. */ 01510000
 /*--*/ 01520000
 /* SYMBOLS FOR STRUCTURED FIELD IDENTIFIERS: */ 01530000
 SF_BAG BIT(24) STATIC /* BEGIN ACTIVE ENVIRON D3A8C9 HEX */ 01540000

INIT(′110100111010100011001001′B), 01550000
 SF_BBC BIT(24) STATIC /* BEGIN BAR CODE OBJECT D3A8EB HEX */ 01560037

INIT(′110100111010100011101011′B), 01570037
 SF_BCF BIT(24) STATIC /* BEGIN CODED FONT D3A88A HEX */ 01580000

INIT(′110100111010100010001010′B), 01590000
 SF_BCP BIT(24) STATIC /* BEGIN CODE PAGE D3A887 HEX */ 01600000

INIT(′110100111010100010000111′B), 01610000
 SF_BCT BIT(24) STATIC /* BEGIN COMPOSED-TEXT D3A89B HEX */ 01620037

INIT(′110100111010100010011011′B), 01630037
 SF_BDA BIT(24) STATIC /* BAR CODE DATA D3EEEB HEX */ 01640037

INIT(′110100111110111011101011′B), 01650037
 SF_BDD BIT(24) STATIC /* BAR CODE DESCRIPTOR D3A6EB HEX */ 01660037

INIT(′110100111010011011101011′B), 01670037
 SF_BDG BIT(24) STATIC /* BEGIN DOC ENVIRON GRP D3A8C4 HEX */ 01680037

INIT(′110100111010100011000100′B), 01690037
 SF_BDM BIT(24) STATIC /* BEGIN DATA MAP D3A8CA HEX */ 01700000

INIT(′110100111010100011001010′B), 01710000
 SF_BDT BIT(24) STATIC /* BEGIN DOCUMENT D3A8A8 HEX */ 01720000

INIT(′110100111010100010101000′B), 01730000
 SF_BDX BIT(24) STATIC /* BEGIN DATA MAP XMIT SUBCASE D3A8E3 HEX */ 01740000

INIT(′110100111010100011100011′B), 01750000
 SF_BFG BIT(24) STATIC /* BEGIN FORM ENVIRONMENT GRP D3A8C5 HEX */ 01760000

INIT(′110100111010100011000101′B), 01770000
 SF_BFM BIT(24) STATIC /* BEGIN FORM MAP D3A8CD HEX */ 01780000

INIT(′110100111010100011001101′B), 01790000
 SF_BFN BIT(24) STATIC /* BEGIN FONT D3A889 HEX */ 01800000

INIT(′110100111010100010001001′B), 01810000
 SF_BGR BIT(24) STATIC /* BEGIN GRAPHICS OBJECT D3A88B HEX */ 01820037

INIT(′110100111010100010001011′B), 01830037
 SF_BIM BIT(24) STATIC /* BEGIN IMAGE BLOCK D3A87B HEX */ 01840037

INIT(′110100111010100001111011′B), 01850037
SF_BIMO BIT(24) STATIC /* BEGIN IMAGE OBJECT IO D3A8FB HEX */ 01860037

INIT(′110100111010100011111011′B), 01870037
 SF_BMM BIT(24) STATIC /* BEGIN MEDIUM MAP D3A8CC HEX */ 01880000

INIT(′110100111010100011001100′B), 01890000
 SF_BMO BIT(24) STATIC /* BEGIN MEDIUM OVERLAY D3A8DF HEX */ 01900000

INIT(′110100111010100011011111′B), 01910000
 SF_BOG BIT(24) STATIC /* BEGIN OBJ ENVIR GROUP D3A8C7 HEX */ 01920037

INIT(′110100111010100011000111′B), 01930037
 SF_BPG BIT(24) STATIC /* BEGIN PAGE D3A8AF HEX */ 01940000

INIT(′110100111010100010101111′B), 01950000
 SF_BPM BIT(24) STATIC /* BEGIN PAGE MAP D3A8CB HEX */ 01960000

INIT(′110100111010100011001011′B), 01970000
 SF_BPS BIT(24) STATIC /* BEGIN PAGE SEGMENT D3A85F HEX */ 01980000

INIT(′110100111010100001011111′B), 01990000
 SF_BPT BIT(24) STATIC /* BEGIN PRESENTATION TEXT D3A89B HEX */ 02000000

INIT(′110100111010100010011011′B), 02010000
SF_BR BIT(24) STATIC /* BEGIN RESOURCE D3A8CE HEX */ 02020000

INIT(′110100111010100011001110′B), 02030000
 SF_BRG BIT(24) STATIC /* BEGIN RESOURCE GROUP D3A8C6 HEX */ 02040000

INIT(′110100111010100011000110′B), 02050000
 SF_CCP BIT(24) STATIC /* CONDITIONAL PROC CNTL D3A7CA HEX */ 02060000

INIT(′110100111010011111001010′B), 02070000
 SF_CFC BIT(24) STATIC /* CODED FONT CONTROL D3A78A HEX */ 02080000

INIT(′110100111010011110001010′B), 02090000
 SF_CFI BIT(24) STATIC /* CODED FONT INDEX D38C8A HEX */ 02100000

INIT(′110100111000110010001010′B), 02110000
 SF_CPC BIT(24) STATIC /* CODED PAGE CONTROL D3A787 HEX */ 02120000

INIT(′110100111010011110000111′B), 02130000
 SF_CPD BIT(24) STATIC /* CODED PAGE DESCRIPTOR D3A687 HEX */ 02140000

INIT(′110100111010011010000111′B), 02150000

146 AFP Printing in an IBM Cross-System Environment

 SF_CPI BIT(24) STATIC /* CODED PAGE INDEX D3AC87 HEX */ 02160000
INIT(′110100111010110010000111′B), 02170000

 SF_CTC BIT(24) STATIC /* COMPOSED TEXT CONTROL D3A79B HEX */ 02180000
INIT(′110100111010011110011011′B), 02190000

 SF_CTD BIT(24) STATIC /* COMPOSED TEXT DESCR. D3A69B HEX */ 02200000
INIT(′110100111010011010011011′B), 02210000

 SF_CTX BIT(24) STATIC /* COMPOSED TEXT DATA D3EE9B HEX */ 02220000
INIT(′110100111110111010011011′B), 02230000

 SF_DXD BIT(24) STATIC /* DATA MAP SUBCASE DESC D3A6E3 HEX */ 02240000
INIT(′110100111010011011100011′B), 02250000

 SF_EAG BIT(24) STATIC /* END ACTIVE ENVIR GRP D3A9C9 HEX */ 02260000
INIT(′110100111010100111001001′B), 02270000

 SF_EBC BIT(24) STATIC /* END BAR CODE OBJECT D3A9EB HEX */ 02280037
INIT(′110100111010100111101011′B), 02290037

 SF_ECF BIT(24) STATIC /* END CODED FONT D3A98A HEX */ 02300000
INIT(′110100111010100110001010′B), 02310000

 SF_ECP BIT(24) STATIC /* END CODED PAGE D3A987 HEX */ 02320000
INIT(′110100111010100110000111′B), 02330000

 SF_ECT BIT(24) STATIC /* END COMPOSED TEXT BLK D3A99B HEX */ 02340000
INIT(′110100111010100110011011′B), 02350000

 SF_EDG BIT(24) STATIC /* END DOC ENVIRN GROUP D3A9C4 HEX */ 02360000
INIT(′110100111010100111000100′B), 02370000

 SF_EDM BIT(24) STATIC /* END DATA MAP D3A9CA HEX */ 02380000
INIT(′110100111010100111001010′B), 02390000

 SF_EDT BIT(24) STATIC /* END OF DOCUMENT D3A9A8 HEX */ 02400000
INIT(′110100111010100110101000′B), 02410000

 SF_EDX BIT(24) STATIC /* END DATA MAP XMIT SUB D3A9E3 HEX */ 02420000
INIT(′110100111010100111100011′B), 02430000

 SF_EFG BIT(24) STATIC /* END FORM ENVIRON GRP D3A9C5 HEX */ 02440000
INIT(′110100111010100111000101′B), 02450000

 SF_EFM BIT(24) STATIC /* END FORM MAP D3A9CD HEX */ 02460000
INIT(′110100111010100111001101′B), 02470000

 SF_EFN BIT(24) STATIC /* END FONT D3A989 HEX */ 02480000
INIT(′110100111010100110001001′B), 02490000

 SF_EGO BIT(24) STATIC /* END GRAPHICS OBJECT D3A9BB HEX */ 02500037
INIT(′110100111010100110111011′B), 02510037

 SF_EIM BIT(24) STATIC /* END IMAGE BLOCK D3A97B HEX */ 02520037
INIT(′110100111010100101111011′B), 02530037

 SF_EMM BIT(24) STATIC /* END MEDIUM MAP D3A9CC HEX */ 02540000
INIT(′110100111010100111001100′B), 02550000

 SF_EMO BIT(24) STATIC /* END MEDIUM OVERLAY D3A9DF HEX */ 02560000
INIT(′110100111010100111011111′B), 02570000

 SF_EOG BIT(24) STATIC /* END OBJECT ENVIR GRP D3A9C7 HEX */ 02580037
INIT(′110100111010100111000111′B), 02590037

 SF_EPG BIT(24) STATIC /* END PAGE D3A9AF HEX */ 02600000
INIT(′110100111010100110101111′B), 02610000

 SF_EPM BIT(24) STATIC /* END PAGE MAP D3A9CB HEX */ 02620000
INIT(′110100111010100111001011′B), 02630000

 SF_EPS BIT(24) STATIC /* END PAGE SEGMENT D3A95F HEX */ 02640000
INIT(′110100111010100101011111′B), 02650000

 SF_EPT BIT(24) STATIC /* END PRESENT. TEXT BLK D3A99B HEX */ 02660025
INIT(′110100111010100110011011′B), 02670025

SF_ER BIT(24) STATIC /* END RESOURCE D3A9CE HEX */ 02680000
INIT(′110100111010100111001110′B), 02690000

 SF_ERG BIT(24) STATIC /* END RESOURCE GROUP D3A9C6 HEX */ 02700000
INIT(′110100111010100111000110′B), 02710000

 SF_FDS BIT(24) STATIC /* FIXED DATA SIZE D3AAEC HEX */ 02720000
INIT(′110100111010101011101100′B), 02730000

 SF_FDX BIT(24) STATIC /* FIXED DATA TEXT D3EEEC HEX */ 02740000
INIT(′110100111110111011101100′B), 02750000

 SF_FGD BIT(24) STATIC /* FORM ENVIRN GRP DESC D3A6C5 HEX */ 02760000
INIT(′110100111010011011000101′B), 02770000

 SF_FNC BIT(24) STATIC /* FONT CONTROL D3A789 HEX */ 02780000
INIT(′110100111010011110001001′B), 02790000

 SF_FND BIT(24) STATIC /* FONT DESCRIPTOR D3A689 HEX */ 02800000
INIT(′110100111010011010001001′B), 02810000

Appendix A. PSF/MVS Exits and MVS Sample Programs 147

 SF_FNG BIT(24) STATIC /* FONT PATTERNS D3EE89 HEX */ 02820000
INIT(′110100111110111010001001′B), 02830000

 SF_FNI BIT(24) STATIC /* FONT INDEX D38C89 HEX */ 02840000
INIT(′110100111000110010001001′B), 02850000

 SF_FNM BIT(24) STATIC /* FONT PATTERNS MAP D3A289 HEX */ 02860000
INIT(′110100111010001010001001′B), 02870000

 SF_FNO BIT(24) STATIC /* FONT ORIENTATION D3AE89 HEX */ 02880000
INIT(′110100111010111010001001′B), 02890000

 SF_FNP BIT(24) STATIC /* FONT POSITION D3AC89 HEX */ 02900000
INIT(′110100111010110010001001′B), 02910000

 SF_GAD BIT(24) STATIC /* GRAPHICS DATA D3EEBB HEX */ 02920037
INIT(′110100111110111010111011′B), 02930037

 SF_GDD BIT(24) STATIC /* GRAPHICS DATA DESCRIP D3A6BB HEX */ 02940037
INIT(′110100111010011010111011′B), 02950037

 SF_ICP BIT(24) STATIC /* IMAGE CELL POSITION D3AC7B HEX */ 02960037
INIT(′110100111010110001111011′B), 02970037

 SF_IDD BIT(24) STATIC /* IMAGE DATA DESCR IO D3A6FB HEX */ 02980037
INIT(′110100111010011011111011′B), 02990037

 SF_IDM BIT(24) STATIC /* INVOKE DATA MAP D3ABCA HEX */ 03000037
INIT(′110100111010101111001010′B), 03010037

 SF_IID BIT(24) STATIC /* IMAGE INPUT DESCRIPT. D3A67B HEX */ 03020000
INIT(′110100111010011001111011′B), 03030033

 SF_IMM BIT(24) STATIC /* IMAGE MEDIUM MAP D3ABCC HEX */ 03040000
INIT(′110100111010101111001100′B), 03050000

 SF_IOC BIT(24) STATIC /* IMAGE OUTPUT CONTROL D3A77B HEX */ 03060000
INIT(′110100111010011101111011′B), 03070000

 SF_IPD BIT(24) STATIC /* IMAGE PICTURE DATA D3EEFB HEX */ 03080037
INIT(′110100111110111011111011′B), 03090037

 SF_IPO BIT(24) STATIC /* INCLUDE PAGE OVERLAY D3AFD8 HEX */ 03100037
INIT(′110100111010111111011000′B), 03110037

 SF_IPS BIT(24) STATIC /* INCLUDE PAGE SEGMENT D3AF5F HEX */ 03120037
INIT(′110100111010111101011111′B), 03130037

 SF_IRD BIT(24) STATIC /* IMAGE RASTER DATA D3EE7B HEX */ 03140000
INIT(′110100111110111001111011′B), 03150000

 SF_LNC BIT(24) STATIC /* LINE DESCRIPTOR COUNT D3AAE7 HEX */ 03160000
INIT(′110100111010101011100111′B), 03170000

 SF_LND BIT(24) STATIC /* LINE DESCRIPTOR D3A6E7 HEX */ 03180000
INIT(′110100111010011011100111′B), 03190000

 SF_MBC BIT(24) STATIC /* MAP BAR CODE D3ABEB HEX */ 03200037
INIT(′110100111010101111111011′B), 03210037

 SF_MCC BIT(24) STATIC /* MEDIUM COPY COUNT D3A288 HEX */ 03220037
INIT(′110100111010001010001000′B), 03230037

 SF_MCF BIT(24) STATIC /* MAP CODED FONT FMT 1 D3B18A HEX */ 03240037
INIT(′110100111011000110001010′B), 03250000

SF_MCF2 BIT(24) STATIC /* MAP CODED FONT FMT 2 D3AB8A HEX */ 03260037
INIT(′110100111010101110001010′B), 03270037

 SF_MDD BIT(24) STATIC /* MEDIUM DESCRIPTOR D3A688 HEX */ 03280000
INIT(′110100111010011010001000′B), 03290000

 SF_MGO BIT(24) STATIC /* MAP GRAPHIC OBJECT D3ABBB HEX */ 03300037
INIT(′110100111010101110111011′B), 03310037

 SF_MIO BIT(24) STATIC /* MAP IO IMAGE OBJECT D3ABFB HEX */ 03320037
INIT(′110100111010101111111011′B), 03330037

 SF_MMC BIT(24) STATIC /* MEDIUM MODIFICATION D3A788 HEX */ 03340037
INIT(′110100111010011110001000′B), 03350037

 SF_MMO BIT(24) STATIC /* MAP MEDIUM OVERLAY D3B1DF HEX */ 03360000
INIT(′110100111011000111011111′B), 03370000

 SF_MPO BIT(24) STATIC /* MAP PAGE OVERLAY D3ABD8 HEX */ 03380037
INIT(′110100111010101111011000′B), 03390037

 SF_MPS BIT(24) STATIC /* MAP PAGE SEGMENT D3B15F HEX */ 03400037
INIT(′110100111011000101011111′B), 03410037

 SF_MSU BIT(24) STATIC /* MAP SUPPRESSION D3ABEA HEX */ 03420029
INIT(′110100111010101111101010′B), 03430029

 SF_NOP BIT(24) STATIC /* NO OPERATION D3EEEE HEX */ 03440000
INIT(′110100111110111011101110′B), 03450000

 SF_OBD BIT(24) STATIC /* OBJECT AREA DESCRIPT D3A66B HEX */ 03460037
INIT(′110100111010011001101011′B), 03470037

148 AFP Printing in an IBM Cross-System Environment

 SF_OBP BIT(24) STATIC /* OBJECT AREA POSITION D3AC6B HEX */ 03480037
INIT(′110100111010110001101011′B), 03490037

 SF_PGD BIT(24) STATIC /* PAGE DESCRIPTOR D3A6AF HEX */ 03500000
INIT(′110100111010011010101111′B), 03510000

 SF_PGP BIT(24) STATIC /* PAGE POSITION D3ACAF HEX */ 03520000
INIT(′110100111010110010101111′B), 03530000

 SF_PTD BIT(24) STATIC /* PRESENT. TEXT DESCR. D3A69B HEX */ 03540000
INIT(′110100111010011010011011′B), 03550000

 SF_PTX BIT(24) STATIC /* PRESENTATION TEXT D3EE9B HEX */ 03560028
INIT(′110100111110111010011011′B), 03570028

/*---*/ 03580000
 /* COMPOSED TEXT CONTROL SEQUENCES. */ 03590000
 /* TEXT CONTROLS ARE DESCRIBED AS FOLLOWS: */ 03600000
 /* BYTE 1: LENGTH. ZERO REPRESENTS A VARIABLE LENGTH CONTROL. */ 03610000
 /* BYTE 2: TEXT-CONTROL CODE, UNCHAINED. (EVEN VALUES) */ 03620000
 /* CHAINED CONTROL CODES ARE REPRESENTED BY THE LOW-ORDER*/ 03630000
 /* BIT TURNED ON (ODD VALUES). */ 03640000
 /*---*/ 03650000
TC_AMB BIT(16) STATIC /* ABSOLUTE MOVE BASELINE 04D2 HEX */ 03660000

INIT(′0000010011010010′B), 03670000
TC_AMI BIT(16) STATIC /* ABSOLUTE MOVE INLINE 04C6 HEX */ 03680000

INIT(′0000010011000110′B), 03690000
TC_BLN BIT(16) STATIC /* BEGIN LINE 02D8 HEX */ 03700000

INIT(′0000001011011000′B), 03710000
TC_BSU BIT(16) STATIC /* BEGIN SUPPRESSION 03F2 HEX */ 03720000

INIT(′0000001111110010′B), 03730000
TC_CCTL BIT(16) STATIC /* CHAINED CONTROL FLAG BIT 1 HEX */ 03740000

INIT(′0000000000000001′B), 03750000
TC_DBR BIT(16) STATIC /* DRAW BASELINE RULE 07E6 HEX */ 03760000

INIT(′0000011111100110′B), 03770000
TC_DIR BIT(16) STATIC /* DRAW INLINE RULE 07E4 HEX */ 03780000

INIT(′0000011111100100′B), 03790000
TC_ESC BIT(16) STATIC /* ESCAPE SEQUENCE 2BD3 HEX */ 03800000

INIT(′0010101111010011′B), 03810000
TC_ESU BIT(16) STATIC /* END SUPPRESSION 03F4 HEX */ 03820000

INIT(′0000001111110100′B), 03830000
TC_NOP BIT(16) STATIC /* NO OPERATION 00F8 HEX */ 03840000

INIT(′0000000011111000′B), 03850000
TC_RMB BIT(16) STATIC /* RELATIVE MOVE BASELINE 04D4 HEX */ 03860000

INIT(′0000010011010100′B), 03870000
TC_RMI BIT(16) STATIC /* RELATIVE MOVE INLINE 04C8 HEX */ 03880000

INIT(′0000010011001000′B), 03890000
TC_RPS BIT(16) STATIC /* REPEAT STRING 00EE HEX */ 03900000

INIT(′0000000011101110′B), 03910000
TC_SBI BIT(16) STATIC /* SET BASELINE INCREMENT 04D0 HEX */ 03920000

INIT(′0000010011010000′B), 03930000
TC_SCFL BIT(16) STATIC /* SET CODED FONT LOCAL 03F0 HEX */ 03940026

INIT(′0000001111110000′B), 03950000
TC_SII BIT(16) STATIC /* SET INTERCHAR INCREMENT 04C2 HEX */ 03960000

INIT(′0000010011000010′B), 03970000
TC_SIM BIT(16) STATIC /* SET INLINE MARGIN 04C0 HEX */ 03980000

INIT(′0000010011000000′B), 03990000
TC_STC BIT(16) STATIC /* SET TEXT COLOR 0574 HEX */ 04000031

INIT(′0000010101110100′B), 04010031
TC_STO BIT(16) STATIC /* SET TEXT ORIENTATION 06F6 HEX */ 04020031

INIT(′0000011011110110′B), 04030031
TC_SVI BIT(16) STATIC /* SET VAR SPC CHAR INCR 04C4 HEX */ 04040000

INIT(′0000010011000100′B), 04050000
TC_TRN BIT(16) STATIC /* TRANSPARENT DATA 00DA HEX */ 04060000

INIT(′0000000011011010′B); 04070000
 %GOTO DONE; 04080035
 %SFIDPLI2: ; 04090000
 %DCL DTYP ENTRY; 04100021
 %DTYP: PROC(HEX) RETURNS(CHAR); 04110016
DCL (HEX, STR) CHAR; 04120019
IF GEN = ′ CHAR′ 04130016

Appendix A. PSF/MVS Exits and MVS Sample Programs 149

THEN 04140016
STR=′ INIT(′ ′ ′ | | HEX||′ ′ ′ X)′ ; 04150020
ELSE 04160016
STR=′ INIT(′ ′ ′ | | HEX||′ ′ ′ BX)′ ; 04170020

RETURN(STR); 04180019
 %END DTYP; 04190012
 %DECLARE TYP CHAR; 04200012
 %IF GEN = ′ CHAR′ 04210001
 % THEN %DO; 04220002
 % TYP = ′ CHAR(3)′ ; 04230012
 % END; 04240000
 % ELSE %DO; 04250002
 % TYP = ′ BIT(24)′ ; 04260012
 %END; 04270000
DECLARE 04280000

 /*--*/ 04290000
 /* LAST UPDATE ON 08 SEP 1989 AT 10:30:14 BY VEND730 VERSION 02 */ 04300000
 /* SYMBOLIC EQUATES FOR STRUCTURED FIELD IDENTIFIERS AND */ 04310000
 /* COMPOSED-TEXT CONTROLS. SEE PSF DATA STREAM REFERENCE, */ 04320000
 /* SH35-0073-03. */ 04330000
 /* CHANGED FOR PL/I VER. 2, WHICH ALLOWS HEX BIT STRINGS. */ 04340000
 /* FOR PL/I VER. 1, USE SFIDPLI, ABOVE. */ 04350000
 /* BIT HEX VALUES MAY BE GENERATED BY PRECEEDING THE */ 04360005
 /* INCLUDE FOR SFIDEQU BY THE FOLLOWING: */ 04370000
 /* %DCL GEN; GEN=′ BIT′ ; */ 04380005
 /* CHARACTER HEX VALUES MAY BE GENERATED BY PRECEEDING THE */ 04390005
 /* INCLUDE FOR SFIDEQU BY THE FOLLOWING: */ 04400005
 /* %DCL GEN; GEN=′ CHAR′ ; */ 04410005
 /*--*/ 04420000
 /* SYMBOLS FOR STRUCTURED FIELD IDENTIFIERS: */ 04430000
 SF_BAG TYP STATIC /* BEGIN ACTIVE ENVIRON */ 04440022

DTYP(D3A8C9), 04450017
 SF_BBC TYP STATIC /* BEGIN BAR CODE OBJECT */ 04460037

DTYP(D3A8EB), 04470037
 SF_BCF TYP STATIC /* BEGIN CODED FONT */ 04480022

DTYP(D3A88A), 04490022
 SF_BCP TYP STATIC /* BEGIN CODE PAGE */ 04500022

DTYP(D3A887), 04510022
 SF_BCT TYP STATIC /* BEGIN COMPOSED-TEXT */ 04520022

DTYP(D3A89B), 04530022
 SF_BDA TYP STATIC /* BAR CODE DATA */ 04540037

DTYP(D3EEEB), 04550037
 SF_BDD TYP STATIC /* BAR CODE DATA DESCRIPTOR*/ 04560037

DTYP(D3A6EB), 04570037
 SF_BDG TYP STATIC /* BEGIN DOC ENVIRON GROUP */ 04580022

DTYP(D3A8C4), 04590022
 SF_BDM TYP STATIC /* BEGIN DATA MAP */ 04600022

DTYP(D3A8CA), 04610022
 SF_BDT TYP STATIC /* BEGIN DOCUMENT */ 04620022

DTYP(D3A8A8), 04630022
 SF_BDX TYP STATIC /* BEGIN DATA MAP XMIT SUBCASE */ 04640022

DTYP(D3A8E3), 04650022
 SF_BFG TYP STATIC /* BEGIN FORM ENVIRONMENT GRP */ 04660022

DTYP(D3A8C5), 04670022
 SF_BFM TYP STATIC /* BEGIN FORM MAP */ 04680022

DTYP(D3A8CD), 04690022
 SF_BFN TYP STATIC /* BEGIN FONT */ 04700022

DTYP(D3A889), 04710022
 SF_BGR TYP STATIC /* BEGIN GRAPHICS OBJECT */ 04720037

DTYP(D3A88B), 04730037
 SF_BIM TYP STATIC /* BEGIN IMAGE BLOCK */ 04740037

DTYP(D3A87B), 04750037
SF_BIMO TYP STATIC /* BEGIN IMAGE OBJECT IO */ 04760037

DTYP(D3A8FB), 04770037
 SF_BMM TYP STATIC /* BEGIN MEDIUM MAP */ 04780022

DTYP(D3A8CC), 04790022

150 AFP Printing in an IBM Cross-System Environment

 SF_BMO TYP STATIC /* BEGIN MEDIUM OVERLAY */ 04800022
DTYP(D3A8DF), 04810022

 SF_BOG TYP STATIC /* BEGIN OBJECT ENVIR GROUP*/ 04820037
DTYP(D3A8C7), 04830037

 SF_BPG TYP STATIC /* BEGIN PAGE */ 04840037
DTYP(D3A8AF), 04850037

 SF_BPM TYP STATIC /* BEGIN PAGE MAP */ 04860022
DTYP(D3A8CB), 04870022

 SF_BPS TYP STATIC /* BEGIN PAGE SEGMENT */ 04880022
DTYP(D3A85F), 04890022

 SF_BPT TYP STATIC /* BEGIN PRESENTATION TEXT */ 04900022
DTYP(D3A89B), 04910022

SF_BR TYP STATIC /* BEGIN RESOURCE */ 04920022
DTYP(D3A8CE), 04930022

 SF_BRG TYP STATIC /* BEGIN RESOURCE GROUP */ 04940022
DTYP(D3A8C6), 04950022

 SF_CCP TYP STATIC /* CONDITIONAL PROC CNT */ 04960022
DTYP(D3A7CA), 04970022

 SF_CFC TYP STATIC /* CODED FONT CONTROL */ 04980022
DTYP(D3A78A), 04990022

 SF_CFI TYP STATIC /* CODED FONT INDEX */ 05000022
DTYP(D38C8A), 05010022

 SF_CPC TYP STATIC /* CODED PAGE CONTROL */ 05020022
DTYP(D3A787), 05030022

 SF_CPD TYP STATIC /* CODED PAGE DESCRIPTO */ 05040022
DTYP(D3A687), 05050022

 SF_CPI TYP STATIC /* CODED PAGE INDEX */ 05060022
DTYP(D3AC87), 05070022

 SF_CTC TYP STATIC /* COMPOSED TEXT CONTRO */ 05080022
DTYP(D3A79B), 05090022

 SF_CTD TYP STATIC /* COMPOSED TEXT DESCR. */ 05100022
DTYP(D3A69B), 05110022

 SF_CTX TYP STATIC /* COMPOSED TEXT DATA */ 05120022
DTYP(D3EE9B), 05130022

 SF_DXD TYP STATIC /* DATA MAP SUBCASE DES */ 05140022
DTYP(D3A6E3), 05150022

 SF_EAG TYP STATIC /* END ACTIVE ENVIR GRP */ 05160022
DTYP(D3A9C9), 05170022

 SF_EBC TYP STATIC /* END BAR CODE OBJECT */ 05180037
DTYP(D3A9EB), 05190037

 SF_ECF TYP STATIC /* END CODED FONT */ 05200022
DTYP(D3A98A), 05210022

 SF_ECP TYP STATIC /* END CODED PAGE */ 05220022
DTYP(D3A987), 05230022

 SF_ECT TYP STATIC /* END COMPOSED TEXT BL */ 05240022
DTYP(D3A99B), 05250022

 SF_EDG TYP STATIC /* END DOC ENVIRN GROUP */ 05260022
DTYP(D3A9C4), 05270022

 SF_EDM TYP STATIC /* END DATA MAP */ 05280022
DTYP(D3A9CA), 05290022

 SF_EDT TYP STATIC /* END OF DOCUMENT */ 05300022
DTYP(D3A9A8), 05310022

 SF_EDX TYP STATIC /* END DATA MAP XMIT SU */ 05320022
DTYP(D3A9E3), 05330022

 SF_EFG TYP STATIC /* END FORM ENVIRON GRP */ 05340022
DTYP(D3A9C5), 05350022

 SF_EFM TYP STATIC /* END FORM MAP */ 05360022
DTYP(D3A9CD), 05370022

 SF_EFN TYP STATIC /* END FONT */ 05380022
DTYP(D3A989), 05390022

 SF_EGO TYP STATIC /* END GRAPHICS OBJECT */ 05400037
DTYP(D3A9BB), 05410037

 SF_EIM TYP STATIC /* END IMAGE BLOCK */ 05420037
DTYP(D3A97B), 05430037

SF_EIMO TYP STATIC /* END IMAGE BLOCK */ 05440037
DTYP(D3A9FB), 05450037

Appendix A. PSF/MVS Exits and MVS Sample Programs 151

 SF_EMM TYP STATIC /* END MEDIUM MAP */ 05460022
DTYP(D3A9CC), 05470022

 SF_EMO TYP STATIC /* END MEDIUM OVERLAY */ 05480022
DTYP(D3A9DF), 05490022

 SF_EOG TYP STATIC /* END OBJECT ENVIRON GROUP*/ 05500037
DTYP(D3A9C7), 05510037

 SF_EPG TYP STATIC /* END PAGE */ 05520022
DTYP(D3A9AF), 05530022

 SF_EPM TYP STATIC /* END PAGE MAP */ 05540022
DTYP(D3A9CB), 05550022

 SF_EPS TYP STATIC /* END PAGE SEGMENT */ 05560022
DTYP(D3A95F), 05570022

 SF_EPT TYP STATIC /* END PRESENTATION TEXT */ 05580025
DTYP(D3A99B), 05590025

SF_ER TYP STATIC /* END RESOURCE */ 05600022
DTYP(D3A9CE), 05610022

 SF_ERG TYP STATIC /* END RESOURCE GROUP */ 05620022
DTYP(D3A9C6), 05630022

 SF_FDS TYP STATIC /* FIXED DATA SIZE */ 05640022
DTYP(D3AAEC), 05650022

 SF_FDX TYP STATIC /* FIXED DATA TEXT */ 05660022
DTYP(D3EEEC), 05670022

 SF_FGD TYP STATIC /* FORM ENVIRN GRP DESC */ 05680022
DTYP(D3A6C5), 05690022

 SF_FNC TYP STATIC /* FONT CONTROL */ 05700022
DTYP(D3A789), 05710022

 SF_FND TYP STATIC /* FONT DESCRIPTOR */ 05720022
DTYP(D3A689), 05730022

 SF_FNG TYP STATIC /* FONT PATTERNS */ 05740022
DTYP(D3EE89), 05750022

 SF_FNI TYP STATIC /* FONT INDEX */ 05760022
DTYP(D38C89), 05770022

 SF_FNM TYP STATIC /* FONT PATTERNS MAP */ 05780022
DTYP(D3A289), 05790022

 SF_FNO TYP STATIC /* FONT ORIENTATION */ 05800022
DTYP(D3AE89), 05810022

 SF_FNP TYP STATIC /* FONT POSITION */ 05820022
DTYP(D3AC89), 05830022

 SF_GAD TYP STATIC /* GRAPHICS DATA */ 05840037
DTYP(D3EEBB), 05850037

 SF_GDD TYP STATIC /* GRAPHICS DATA DESCRIPT. */ 05860037
DTYP(D3A6BB), 05870037

 SF_ICP TYP STATIC /* IMAGE CELL POSITION */ 05880037
DTYP(D3AC7B), 05890037

 SF_IDD TYP STATIC /* IMAGE DATA DESCRIPT. IO */ 05900037
DTYP(D3A6FB), 05910037

 SF_IDM TYP STATIC /* INVOKE DATA MAP */ 05920037
DTYP(D3ABCA), 05930037

 SF_IID TYP STATIC /* IMAGE INPUT DESCRIPT */ 05940022
DTYP(D3A67B), 05950022

 SF_IMM TYP STATIC /* IMAGE MEDIUM MAP */ 05960022
DTYP(D3ABCC), 05970022

 SF_IOC TYP STATIC /* IMAGE OUTPUT CONTROL */ 05980022
DTYP(D3A77B), 05990022

 SF_IPD TYP STATIC /* IMAGE PICTURE DATA */ 06000037
DTYP(D3EEFB), 06010037

 SF_IPO TYP STATIC /* INCLUDE PAGE OVERLAY */ 06020037
DTYP(D3AFD8), 06030037

 SF_IPS TYP STATIC /* INCLUDE PAGE SEGMENT */ 06040037
DTYP(D3AF5F), 06050037

 SF_IRD TYP STATIC /* IMAGE RASTER DATA */ 06060022
DTYP(D3EE7B), 06070022

 SF_LNC TYP STATIC /* LINE DESCRIPTOR COUN */ 06080022
DTYP(D3AAE7), 06090022

 SF_LND TYP STATIC /* LINE DESCRIPTOR */ 06100022
DTYP(D3A6E7), 06110022

152 AFP Printing in an IBM Cross-System Environment

 SF_MBC TYP STATIC /* MAP BAR CODE */ 06120037
DTYP(D3ABEB), 06130037

 SF_MCC TYP STATIC /* MEDIUM COPY COUNT */ 06140037
DTYP(D3A288), 06150037

 SF_MCF TYP STATIC /* MAP CODED FONT FORMAT 1 */ 06160037
DTYP(D3B18A), 06170022

SF_MCF2 TYP STATIC /* MAP CODED FONT FORMAT 2 */ 06180037
DTYP(D3AB8A), 06190037

 SF_MDD TYP STATIC /* MEDIUM DESCRIPTOR */ 06200022
DTYP(D3A688), 06210022

 SF_MGO TYP STATIC /* MAP GRAPHIC OBJECT */ 06220037
DTYP(D3ABBB), 06230037

 SF_MIO TYP STATIC /* MAP IO IMAGE OBJECT */ 06240037
DTYP(D3ABFB), 06250037

 SF_MMC TYP STATIC /* MEDIUM MODIFICATION */ 06260022
DTYP(D3A788), 06270022

 SF_MMO TYP STATIC /* MAP MEDIUM OVERLAY */ 06280022
DTYP(D3B1DF), 06290022

 SF_MPO TYP STATIC /* MAP PAGE OVERLAY */ 06300037
DTYP(D3ABD8), 06310037

 SF_MPS TYP STATIC /* MAP PAGE SEGMENT */ 06320037
DTYP(D3B15F), 06330037

 SF_MSU TYP STATIC /* MAP SUPPRESSION */ 06340022
DTYP(D3ABEA), 06350029

 SF_NOP TYP STATIC /* NO OPERATION */ 06360022
DTYP(D3EEEE), 06370022

 SF_OBD TYP STATIC /* OBJECT AREA DESCRIPTOR */ 06380037
DTYP(D3A66B), 06390037

 SF_OBP TYP STATIC /* OBJECT AREA POSITION */ 06400037
DTYP(D3AC6B), 06410037

 SF_PGD TYP STATIC /* PAGE DESCRIPTOR */ 06420022
DTYP(D3A6AF), 06430022

 SF_PGP TYP STATIC /* PAGE POSITION */ 06440022
DTYP(D3ACAF), 06450022

 SF_PTD TYP STATIC /* PRESENT. TEXT DESCR. */ 06460022
DTYP(D3A69B), 06470022

 SF_PTX TYP STATIC /* PRESENTATION TEXT DATA */ 06480028
DTYP(D3EE9B), 06490028

 /*--*/ 06500022
 /* COMPOSED TEXT CONTROL SEQUENCES. */ 06510022
 /* TEXT CONTROLS ARE DESCRIBED AS FOLLOWS: */ 06520022
 /* BYTE 1: LENGTH. ZERO REPRESENTS A VARIABLE LENGTH CODE. */ 06530022
 /* BYTE 2: TEXT-CONTROL CODE, UNCHAINED. (EVEN VALUES) */ 06540022
 /* CHAINED CONTROL CODES ARE REPRESENTED BY THE HIGH-ORDER */ 06550022
 /* BIT TURNED ON (ODD VALUES). */ 06560022
 /*--*/ 06570022
 %IF GEN = ′ CHAR′ 06580022
 % THEN %DO; 06590022
 % TYP = ′ CHAR(2)′ ; 06600022
 % END; 06610022
 % ELSE %DO; 06620022
 % TYP = ′ BIT(16)′ ; 06630022
 %END; 06640022
TC_AMB TYP STATIC /* ABSOLUTE MOVE BASELI */ 06650022

DTYP(04D2), 06660022
TC_AMI TYP STATIC /* ABSOLUTE MOVE INLINE */ 06670022

DTYP(04C6), 06680022
TC_BLN TYP STATIC /* BEGIN LINE */ 06690022

DTYP(02D8), 06700022
TC_BSU TYP STATIC /* BEGIN SUPPRESSION */ 06710022

DTYP(03F2), 06720022
TC_CCTL TYP STATIC /* CHAINED CONTROL FLAG */ 06730022

DTYP(0001), 06740022
TC_DBR TYP STATIC /* DRAW BASELINE RULE */ 06750022

DTYP(07E6), 06760022
TC_DIR TYP STATIC /* DRAW INLINE RULE */ 06770022

Appendix A. PSF/MVS Exits and MVS Sample Programs 153

DTYP(07E4), 06780022
TC_ESC TYP STATIC /* ESCAPE SEQUENCE */ 06790022

DTYP(2BD3), 06800022
TC_ESU TYP STATIC /* END SUPPRESSION */ 06810022

DTYP(03F4), 06820022
TC_NOP TYP STATIC /* NO OPERATION */ 06830022

DTYP(00F8), 06840022
TC_RMB TYP STATIC /* RELATIVE MOVE BASELI */ 06850022

DTYP(04D4), 06860022
TC_RMI TYP STATIC /* RELATIVE MOVE INLINE */ 06870022

DTYP(04C8), 06880022
TC_RPS TYP STATIC /* REPEAT STRING */ 06890022

DTYP(00EE), 06900022
TC_SBI TYP STATIC /* SET BASELINE INCREME */ 06910022

DTYP(04D0), 06920022
TC_SCFL TYP STATIC /* SET CODED FONT LOCAL */ 06930026

DTYP(03F0), 06940022
TC_SII TYP STATIC /* SET INTERCHAR INCREM */ 06950022

DTYP(04C2), 06960022
TC_SIM TYP STATIC /* SET INLINE MARGIN */ 06970022

DTYP(04C0), 06980022
TC_STC TYP STATIC /* SET TEXT COLOR */ 06990031

DTYP(0574), 07000031
TC_STO TYP STATIC /* SET TEXT ORIENTATION */ 07010022

DTYP(06F6), 07020022
TC_SVI TYP STATIC /* SET VAR SPC CHAR INC */ 07030022

DTYP(04C4), 07040022
TC_TRN TYP STATIC /* TRANSPARENT DATA */ 07050022

DTYP(00DA); 07060022
 %DEACTIVATE GEN, TYP, DTYP; 07070022
 %DONE: ; 07080035

154 AFP Printing in an IBM Cross-System Environment

Appendix B. VM AFP Sample Programs

This appendix documents the exits and utility programs that we used on the VM
platform to print our test cases.

All of the coding documented in this chapter is presented as sample coding only.

Be sure that you have read the information in “Special Notices” on page ix.

The following table serves as an index to the various routines.

Name Language Description Page

AFPDSFIX REXX
Splits a resource sent as binary into records to make them
usable by PSF/VM.

155

CRTRSC REXX
Processes AFP resource objects shipped from OS/400 to make
them usable by PSF/VM.

158

B.1 AFPDSFIX routine for VM
This program fixes an AFP resource that has been uploaded as binary. When
uploaded as binary, the record structure of a resource is lost, this routine splits
the resource into records. After the procedure, the resource is usable in the VM
system.

B.1.1 REXX Coding
/* REXX EXEC*/
/* */
 /* The routine examines the input file for AFPDS structured field */
 /* records that may have been reformatted during a transmission */
 /* from OS/2. During such a transmission, the structured fields */
 /* are treated as a stream of data and the original records are */
 /* lost. The transmitted file may have many structured fields in */
 /* a single record, or an individual structured field may span */
 /* multiple records. */
 /* */
 /* When properly formed AFPDS structured fields are detected they */
 /* are written to the output as 1 structured field per output */
 /* record. Data not occuring within a structured field is written */
 /* out according to the following rules: */
 /* */
 /* 1. If no structured field introducer is present in the */
 /* record, the entire record is written unaltered. */
 /* 2. If a structured field begins within the record, the data */
 /* preceding that structured field is written as a record. */
 /* 3. Data falling between two valid structured fields is */
 /* written as a record. */
 /* 4. Data following a valid structured field is written as a */
 /* record, with one exception. If the structured field is */
 /* IPO, IPS, IMM, or IDM and the remainder of the record in */
 /* which it is found is blank, it is assumed to be a */
 /* valid structured field control record imbedded in a fixed */
 /* length record data file. The trailing blanks are stripped */
 /* and ignored. */
 /* */
 /* This logic has the following effects: */
 /* */

 Copyright IBM Corp. 1994 155

 /* 1. Files with no structured field content are transcribed */
 /* verbatim. */
 /* */
 /* 2. Files containing only structured fields are written out */
 /* with 1 structured field per record. */
 /* */
 /* 3. Files with a mixture of structured field records and other */
 /* data may or may not be reconstructed accurately. Since */
 /* information about the original record lengths has been */
 /* lost, only AFPDS records can be accurately reconstructed. */
 /* If non-AFPDS data are isolated to their own records, the */
 /* reconstruction should be accurate. */
 /* */
 /*--*/
 Parse upper arg fns
 parse var fns fid fn fm fid2 fn2 fm2 .
 state fid fn fm
if rc¬=0 then do
 Say ′ file not found′
 exit
 end
infile = fid fn fm
outfile = fid2 fn2 fm2
/*Prime nextrec buffer*/ nextrec = readrec()
/*Clear currec */ currec = ″″
/*Main execution loop */
/* */ Do Forever
/*Get an output rec */ outrec = get_outrec()
/*If end of file, quit*/ if outrec = ″*EOF*″ then leave
/*Write output rec */ ″EXECIO 1 DISKW″ outfile ″ (VAR OUTREC″
/*End main loop */ end
/* */ ndit:
/*Close output file */ ″FINIS″ outfile
/*Close input file */ ″FINIS″ infile
/*Scram */ return 0
 /* */
 /*--*/
 /* Get Next Output Record */
 /* This routine isolates the next record to be written to the */
 /* output file. CURREC contains the current data record, NEXTREC */
 /* contains the next record from the input file. When CURREC is */
 /* fully processed, NEXTREC is moved to CURREC and a new record */
 /* is read into NEXTREC from the input file. The logic isolates */
 /* the next output record using the rules described earler. The */
 /* isolated record is returned to the caller and stripped from */
 /* CURREC. */
 /*--*/
 /* */
/* */ Get_Outrec: procedure expose currec nextrec infile
/*If currec empty, */ if length(currec) < 1 then do
/* move in nextrec and*/ currec = nextrec
/* read next record */ nextrec = readrec()
/* */ end
/*Hit eof, quit */ if currec = ″*EOF*″ then return currec
/*Start at position 0 */ candidate_pos = 0
/*Isolation loop */ Do forever
/*Look for ″ !″ */ candidate_pos = pos(″ ! ″ ,currec,candidate_pos+1)
/*If none */ if candidate_pos = 0 then do
/* return whole record*/ outrec = currec
/* to caller */ currec = ″″
/* */ return outrec
/* */ end
/*Found a ″ !″ */ else do
/*Check for strfld rec*/ strlen = ver_strfld(currec||nextrec)
/*If not valid, */ if strlen = -99 then do
/* bump position and */ candidate_pos = candidate_pos + 1

156 AFP Printing in an IBM Cross-System Environment

/* look for next ″ !″ */ iterate
/* */ end
/*Found good strfld */
/*Must loop to read */
/* all data in strfld */
/* */
/*Get whole str field */ do while strlen > length(currec)
/* oops */ if nextrec = ″*EOF*″ then do
/* bad str fld at end */ say ″Found incomplete structured field record at″ ,
/* */ ″end of input file″
/* save what we have */ outrec = currec
/* blank currec */ currec = ″″
/* return incompl rec */ return outrec
/* */ end
/* append nextrec */ currec = currec||nextrec
/* get another rec */ nextrec = readrec()
/*end loop */ end
/*Isolate strfld rec */ strfld = substr(currec,1,strlen)
/*Update currec */ currec = substr(currec,strlen+1)
/*Get strfld mneumonic*/ mneumonic = substr(strfld,4,3)
/*Str=IPO IPS IMM IDM */ chkstrng =

x2c(′ d3afd840d3af5f40d3abcc40d3abca′)
/*If rec one of these */ if 0 < wordpos(mneumonic,chkstrng),
/* and remainder blank*/ & strip(currec) = ″″
/* assume fixed len */ then currec = ″″
/* str fld rec */
/*Return to caller */ return strfld
/* */ end
 /* */
 /*--*/
 /* Read a Physical Record */
 /* This routine reads the next physical record from the input file */
 /* and returns it to the caller. */
 /*--*/
 /* */
Readrec: procedure expose infile
/* */ ″EXECIO 1 DISKR″ infile ″ (VAR DISKREC″
/* */ if rc > 0 then return ″*EOF*″
/* */ return diskrec
 /* */
 /*--*/
 /* Verify a Structured Field */
 /* This routine verifys that the data string passed as an argument */
 /* conforms to the rules for a valid AFPDS structured field. If */
 /* the argument appears to be a structured field, the length of */
 /* structured field is retrieved from the AFPDS length field, */
 /* incremented by 1 to account for the ″!″ byte and returned to */
 /* the caller. If the argument doesn′ t verify, -99 is returned. */
 /*--*/
 /* */
Ver_Strfld: procedure
/* */ parse arg 1 cc 2 len 4 flag1 5 flag2 6 .
/*1st char x′ 5A′ ? */ if cc <> ″!″ then return -99
/*4th char x′ D3′ ? */ if flag1 <> ″L″ then return -99
/*5th char in list? */ if 0 <>

verify(flag2,x2c(′ aaabacaeafa2a6a7a8a9b1b6ee8c′)
then return -99

/*return strfld length*/ return 1+c2d(len)

Appendix B. VM AFP Sample Programs 157

B.2 OS/400 Resource Converter for VM
When the OS/400 SNDNETSPLF command is used to ship AFP print resource
objects from OS/400 to VM, the object is not in a format acceptable to PSF/VM.
The CRTRSC EXEC will read the resource from the VM virtual reader and convert
the object into a format acceptable to PSF/VM.

B.2.1 REXX Coding
/* This ′ CRTRSC′ program creates an overlay */
/* or a page segment from AFP U/400 */
/* generated spooled file to VM */

trace ′ Off′
address ′ COMMAND′
parse upper source . . $fn . . $syn .
parse upper arg spid fn ft fm . ′ (′ opts
if spid = ′ ′ | spid = ′ ? ′ then signal tell

call init
trace value trace_opts
call read
call finish
exit

INIT:
cpcmd = ′ EXECIO 0 CP (STRING′
call set_opts
call check_spid
call set_fileid

tempfile = $fn ′ $$TEMP$$′ fm
call erase tempfile

′ EXECIO 1 CP (STRING QUERY VIRTUAL 00C′
parse pull . . . rdr_class rdr_cont rdr_hold . rdr_ready .
if rdr_ready <> ′ READY′ then call abort 36,′ Reader 00C not ready.′
cpcmd ′ SPOOL 00C CLASS * NOCONT HOLD′
cpcmd ′ ORDER RDR′ spid
return

SET_OPTS:
opt_errs = 0
valid_opts = ′ HOLD MSG NOMSG PURGE TRACE′
parse value ′0 1 Off′ with opt.purge opt.msg trace_opts
do forever
parse var opts opt opts
if opt = ′ ′ then leave
opt1 = deabbrev(opt,valid_opts)
if opt1 = ′ ′ then call opt_err ′ Unrecognized option ′ ′ ′ opt′ ′ ′ . ′
else select
when opt1 = ′ HOLD′ then opt.purge = 0
when opt1 = ′ MSG′ then opt.msg = 1
when opt1 = ′ NOMSG′ then opt.msg = 0
when opt1 = ′ PURGE′ then opt.purge = 1
when opt1 = ′ TRACE′ then do
parse var opts trace_opts opts
end /* when */

end /* else select */
end /* do forever */
if opt_errs > 0 then
call abort opt_errs,′ Option errors found. Nothing done.′

return

OPT_ERR:

158 AFP Printing in an IBM Cross-System Environment

call warn arg(1)
opt_errs = opt_errs + 1
return

CHECK_SPID:
if datatype(spid) <> ′ NUM′ then
call abort 16,′ Invalid spoolid ′ ′ ′ spid′ ′ ′ . ′

if (trunc(spid)<>spid) | ((0+spid)<0) | ((0+spid)>9999) then
call abort 16,′ Invalid spoolid ′ ′ ′ spid′ ′ ′ . ′

spid = right(′ 0 0 0 ′ | | spid,4)
′ EXECIO * CP (STRING QUERY RDR′ spid
parse pull hdr
if subword(hdr,3) = ′ DOES NOT EXIST′ then
call abort 28,′ Spoolid′ spid ′ does not exist.′

parse pull . . . spf_type . . spf_hold .
if spf_type <> ′ PRT′ then
call abort 28,′ Spoolid′ spid ′ is a′ spf_type ′ file, not PRT.′

if spf_hold <> ′ NONE′ then do
cpcmd ′ CHANGE RDR′ spid ′ NOHOLD′
call abort (rc%1000),′ Can′ ′ t change HOLD status for spoolid′ spid′ . ′
end

return

SET_FILEID:
if (fn = ′ ′) | (find(′= . *′ , fn) > 0) then fn = ′ NONE′
if (ft = ′ ′) | (find(′= . *′ , ft) > 0) then ft = ′ NONE′
if fm <> ′ ′ then do

′ MAKEBUF′
′ LISTFILE $ $′ fm ′ (LIFO′
lrc = rc
′ DROPBUF′
if lrc = 24 then
call abort lrc,′ Invalid filemode′ fm′ . Nothing done.′

if lrc = 36 then
call abort lrc,′ Disk′ left(fm,1) ′ not accessed. Nothing done.′

if ¬rw_disk(fm) then
call abort 36,′ Disk′ left(fm,1) ′ is read-only. Nothing done.′

end /* if */
else fm = get_rw_disk()
if verify(fn ft fm,′%*(=′ , ′ Match′) > 0 then
call abort 20,′ Invalid character in file id ′ ′ ′ fn ft fm′ ′ ′ . ′

′ STATE′ fn ft fm
if rc = 20 then exit rc
return

READ:
dowrite = 0
sprecs = 0
do forever
parse value diag(14,′ RNSB′ , ′ 0 0 C′) with code 2 . 9 buffer
if code <> 0 then leave
parse var buffer . 13 sprecnum +4 data
sprecs = sprecs + c2d(sprecnum)
do c2d(sprecnum)
parse var data cc 2 . 5 flag 6 . 7 len 9 . 11 next 13 .
select
when flag = ′ 7 0 ′x then do
if dowrite = 1 then do

′ EXECIO 1 DISKW′ tempfile ′ (VAR CC′
call abort rc,′ Unexpected error -- see file ′ ′ ′ tempfile′ ′ ′ . ′
end

data = substr(data,9)
end /* when */

when flag = ′ 6 0 ′x then do
if dowrite = 0 then sprecs = sprecs - 1
line = cc || substr(data,13,c2d(len))

Appendix B. VM AFP Sample Programs 159

if substr(line,4,3) = ′ D3A8DF′ x |,
substr(line,4,3) = ′ D3A85F′ x then do
if fn = ′ NONE′ then fn = substr(line,10,8)
if ft = ′ NONE′ then
if substr(line,6,1) = ′ DF′ x then
ft = ′ OVLY38PP′

else
ft = ′ PSEG38PP′

dowrite = 1
end

if dowrite = 1 then do
recdata = cc || substr(data,13,c2d(len))
′ EXECIO 1 DISKW′ tempfile ′ (VAR RECDATA′
end

data = substr(data,c2d(next)+1)
if substr(line,4,3) = ′ D3A9DF′ x |,

substr(line,4,3) = ′ D3A95F′ x then do
sprecs = sprecs + 1
dowrite = 0
end

end /* when */
otherwise
call abort 99,′ Unrecognized CCW flags ′ ′ ′ c2x(flag)′ ′ ′ . ′ ,

′ Execution halted.′
end /* select */

end /* do n */
end /* do forever */
return

FINISH:
′ FINIS′ tempfile
call erase fn ft fm

′ RENAME′ tempfile fn ft fm
if rc <> 0 then
call warn ′ Return code′ rc ′ from RENAME command. ′ ,

′ See file ′ ′ ′ tempfile′ ′ ′ . ′
cpcmd ′ CLOSE 00C HOLD′
cpcmd ′ SPOOL 00C CLASS′ rdr_class rdr_cont rdr_hold
if opt.purge then cpcmd ′ PURGE RDR′ spid
else if spf_hold <> ′ NONE′ then cpcmd ′ CHANGE RDR′ spid ′ HOLD′
if opt.msg then
call warn ′ File′ fn ft fm ′ created with′ sprecs ′ records.′

return

RW_DISK: procedure
parse arg disk
′ QUERY DISK′ left(disk,1) ′ (LIFO′
parse pull . 16 acc_mode .
if length(acc_mode) <= 3 then parse pull . /* scrap header line */
return acc_mode = ′ R/W′

GET_RW_DISK:
′ MAKEBUF′
′ QUERY DISK R/W (STACK FIFO′
parse pull x .
if x <> ′ LABEL′ then
call abort 36, ′ No Read/Write disk available. Can′ ′ t continue.′

parse pull . 12 x .
′ DROPBUF′
return x

ERASE: procedure
parse arg fn ft fm .
′ STATE′ fn ft fm
if rc = 0 then ′ ERASE′ fn ft fm

160 AFP Printing in an IBM Cross-System Environment

return

DEABBREV: procedure
/* If ′ first′ is a prefix of some word in ′ rest′ , then returns that word;

else returns null string */
parse upper arg first, rest
if strip(first) = ′ ′ then return ′ ′
n = pos(′ ′ first,′ ′ rest)
if n > 0 then return word(substr(rest,n),1)
else return ′ ′

ABORT: procedure
if arg(1) = 0 then return
call warn arg(2)
exit arg(1)

WARN: procedure
parse upper source $syn .
say $syn′ : ′ arg(1)
return

TELL:
′ VMFCLEAR′
if $syn <> $fn then do
say ′ You have invoked′ $fn $ft $fm ′ under the synonym′ $syn′ . ′
say ′ ′
end

say ′ Syntax: ′ $fn ′ spoolid <fn <ft <fm>>> <(options <)>>′
say ′ ′
say ′ Options: HOLD -- Leave spooled file in reader′
say ′ PURGE -- Delete spooled file after processing′
say ′ MSG -- Give informational message after processing′
say ′ NOMSG -- Forego message′
say ′ ′
say ′ Defaults: fn -- overlay name from BMO structured field′
say ′ page segment name from BPS structured field′
say ′ ft -- OVLY38PP (overlay)′
say ′ PSEG38PP (page segment)′
say ′ fm -- first available Read/Write disk′
say ′ Options -- HOLD MSG′
say ′ ′
say ′ If spooled file ′ ′ spoolid′ ′ is in one′ ′ s reader and is of type′
say ′ PRT,′ $fn ′ will extract the overlay or page segment from the′
say ′ spooled file and save it into a file.′
exit 100

Appendix B. VM AFP Sample Programs 161

162 AFP Printing in an IBM Cross-System Environment

Appendix C. VSE AFP Sample Programs

This appendix documents the exits and utility programs that we used on the VSE
platform to print our test cases.

All of the coding documented in this chapter is presented as sample coding only.

Be sure that you have read the information in “Special Notices” on page ix.

The following table serves as an index to the various routines.

Name Language Description Page

AFPPUNCH Assembler
Punches an AFP resource from the VSE library, includes JCL to
initiate a job in the MVS system.

163

AFPPUNC2 Assembler
Punches an AFP resource from the VSE library, no JCL included,
intended to be used by an EXEC in the VM system.

166

RESMAKE Assembler
Creates an AFP resource in an MVS library from the VSE
punched output

168

RESIN Assembler Copies AFP resources inline in front of the print file. 169

RESVM REXX
Creates an AFP resource onto a VM CMS disk from an input file
sent from the VSE system.

174

RESTAPE Assembler
Copies an AFP resource to a tape file with variable length
records.

175

RESAS4 Assembler Copies an AFP resource to a tape file with fixed length records. 176

OS2PUNCH C Creates a VSE job from a resource in the OS/2 system 178

RESLINK Assembler Creates a link-edit job to link a resource to the VSE library 180

VSEPCH Assembler Creates a punch file from a resource in the VSE system. 184

VSE2OS2 C
Creates a resource into the OS/2 system using the input from a
VSE system.

186

C.1 Program to Punch an AFP Resource for MVS
This program can be used in connection with C.3, “Program to Create a
Resource from VSE Punch Output” on page 168 to extract an AFP resource from
a VSE library, create a an input file for the MVS program, and create the
necessary JCL statements to invoke the resource creating program in the MVS
system. By setting the PDEST parameters in the POWER JECL properly, the
resulting file is sent automatically to the MVS system.

C.1.1 IBM S/370 Assembler Coding for VSE
// JOB AFPPUNCH PUNCH A RESOURCE WITH JCL FOR MVS
// OPTION LINK,NOALIGN
// ASSGN SYSLST,FEE
// ASSGN SYSPCH,PUNCH
// EXEC ASSEMBLY,SIZE=512K
RESPUNCH CSECT

BALR 12,0 ESTABLISH
USING *,12 ADDRESSABILITY
LA 13,SAVEA LOAD ADDRESS OF SAVE AREA

 Copyright IBM Corp. 1994 163

TM 0(1),X′80′ IS THERE A PARAMETER RECORD?
BNO NOPARM NO, THEN QUIT
L 2,0(1) LOAD ADDRESS OF PARAMETER AREA
LA 1,2(,2) LOAD ADDRESS OF PARAMETER DATA
LH 2,0(2) LOAD LENGTH OF PARAMETER DATA
SH 2,=H′ 1 ′ DECREASE LENGTH BY 1
EX 2,PARMMOVE MOVE THE PARAMETER DATA
CLI PARMAREA,X′40′ IS THERE A NAME IN PARAMETER AREA
BE NOPARM NO THEN QUIT
MVC FDEFNAME(8),PARMAREA MOVE THE NAME
LA 1,FDEFNAME LOAD THE ADDRESS OF THE NAME
CDLOAD (1),RETPNF=YES ISSUE THE LOAD FOR THE PHASE
LTR 15,15 WAS IT SUCCESSFUL?
BNZ NOPARM NO, THEN QUIT
ST 0,MODADDR REQUESTED FORMDEF LOADED
ST 1,MODENTRY STORE REGISTERS
ST 14,MODLENGT ON THE TIME OF RETURN
MVC FDEFNAMX+1(8),FDEFNAME MOVE THE NAME TO TEMP FIELD
LA 1,FDEFNAMX+8 THE ADDRESS OF 8TH LETTER OF THE NAME
LA 2,7 SET COUNTER

CLI40 DS 0H
CLI 0(1),X′40 ′ IS IT A BLANK
BNE LASTCHAR NO, THEN THIS WAS THE LAST CHARACTER
S 1,=F′ 1 ′ YES, GO TEST THE PREVIOUS CHAR
BCT 2,CLI40

LASTCHAR DS 0H THIS IS THE LAST NON-BLANK
MVI 1(1),C′) ′ INSERT A RIGHT PARANTHESIS
MVC NAMEXXXX(10),FDEFNAMX MOVE THE NAME TO THE OUTPUT JCL
OPEN PUNCH OPEN THE PUNCH
LA 2,RECAREA1 LOAD THE ADDRESS OF THE FIRST RECAREA

CLIRC1FF DS 0H
CLI 0(2),X′ FF′ IS THAT THE END
BE ENDREC1 YES
MVC IO1,0(2) MOVE TO IOAREA
PUT PUNCH PUNCH IT
LA 2,81(,2) NEXT RECORD
B CLIRC1FF GO TEST OFR THE LAST

ENDREC1 DS 0H LAST RECORD IN THE TABLE
L 3,MODADDR LOAD PHASE ADDRESS IN GETVIS
L 5,MODLENGT LOAD PHASE LENGTH

TESTL DS 0H
LTR 5,5 LENGTH ALREADY = 0
BZ END YES, THEN FINISH
MVC HLENGTH,0(3) MOVE RECORD LENGTH
LH 4,HLENGTH LOAD INTO REG 4
SH 4,=H′ 4 ′ SUBSTRACT THE LENGTH OF THE PREFIX
LA 2,4(3) LOAD THE ADDRESS OF THE 5A RECORD
BAL 10,PUTPUNCH PUNCH IT ONTO THE CARDS
AH 3,HLENGTH ADD LENGTH TO THE ADDRESS
SH 5,HLENGTH DECREASE REMAINING LENGTH
B TESTL GO BACK TO TEST

END DS 0H END OF RESOURCE
LA 2,RECAREA2 LOAD ADDRESS OF THE SECOND RECORD AREA

CLIRC2FF DS 0H
CLI 0(2),X′ FF′ IS IT THE LAST RECORD?
BE ENDREC2 YES, THEN GO TO THE END
MVC IO1,0(2) MOVE RECORD TO IOAREA
PUT PUNCH PUNCH IT
LA 2,81(,2) GO TO THE NEXT RECORD

164 AFP Printing in an IBM Cross-System Environment

B CLIRC2FF GO TO TEST FOR THE LAST RECORD
ENDREC2 DS 0H LAST RECORD

CLOSE PUNCH SO THE JOB IS DONE
NOPARM DS 0H

EOJ
PUTPUNCH DS 0H PUNCH THE RECORDS OF THE MODULE

ST 4,PR4SAVE STORE R4
ST 2,PR2SAVE STORE R2
MVC IO1(81),=CL81′ ′ CLEAR OUTPUT
MVI IO1+1,X′5A′ FIRST CHAR 5A INDICATES A NEW RECORD

PRLTR44 DS 0H
LTR 4,4 LENGTH POSITIVE
BNP PRRET NO, RETURN
C 4,=F′60 ′ LENGTH LESS THAN 60?
BNH PUTREST GO PUNCH THE LAST CARD
MVC PUTWORKA(60),0(2) MOVE 60 CHARACTERS FROM MODULE
PUT PUNCH PUNCH THE CARD
MVC IO1(81),=CL81′ ′ CLEAR OUTPUT
LA 2,60(,2) INCREASE POINTER BY 60
S 4,=F′60 ′ DECREASE REMAINING LENGTH BY 60
B PRLTR44 GO TEST LENGTH

PUTREST DS 0H LAST CARD
S 4,=F′ 1 ′ DECREASE LENGTH BY 1
EX 4,PUTMOVE MOVE THE REMAINING BYTES
PUT PUNCH PUNCH

PRRET DS 0H RETURN
L 4,PR4SAVE LOAD THE
L 2,PR2SAVE SAVED REGISTERS
BR 10 BRANCH BACK TO CALLING ROUTINE

PUTMOVE MVC PUTWORKA(1),0(2)
PARMMOVE MVC PARMAREA(1),0(1)
IO1 DC CL81′ ′
PUTWORKA EQU IO1+2
SAVEA DS 9D
FDEFNAME DS D
PDEFNAME DS D
PR4SAVE DS F
PR2SAVE DS F
MODADDR DS F
MODLENGT DS F
MODENTRY DS F
HLENGTH DS H
PARMAREA DS 0CL100

DC 100C′ ′
LTORG

PUNCH DTFDI DEVADDR=SYSPCH,IOAREA1=IO1,RECSIZE=80
FDEFNAMX DC C′ (′

DC CL8′ ′
DC C′) ′

RECAREA1 DC CL81′ / / PRTMIKKO JOB (00000),′ ′ MARKKULA′ ′ , CLASS=A,′
DC CL81′ / / MSGCLASS=X′
DC CL81′ / /*′
DC CL81′ /*ROUTE PRINT WTSCSL2′
DC CL81′ / / O1 OUTPUT DEFAULT=YES′
DC CL81′ / / STEP1 EXEC PGM=RESMAKE ′
DC CL81′ / / STEPLIB DD DSN=PRTMIKK.MTM.LIB,DISP=SHR′

NR DC CL81′ / / SYSUT2 DD DISP=OLD,DSN=PRTMIKK.FONTLIB′
NAMEXXXX EQU NR+41

DC CL81′ / / SYSPRINT DD SYSOUT=X′

Appendix C. VSE AFP Sample Programs 165

DC CL81′ //SYSIN DD DUMMY′
DC CL81′ / / SYSUT1 DD *′
DC X′ FF′

RECAREA2 DC CL81′ / / ′
DC X′ FF′
END RESPUNCH

/*
// EXEC LNKEDT
// LIBDEF PHASE,SEARCH=PRD2.AFP
// EXEC ,PARM=′ T1000437′
/*
/&

C.2 Program to Punch an AFP Resource for VM
This program creates an input file for the REXX EXEC C.5, “Program to Create a
Resource in VM” on page 174. The only difference with C.1, “Program to Punch
an AFP Resource for MVS” on page 163 is that this program does not create
JCL around the resource, as the output of this program is used for a REXX EXEC.
It loads an AFP resource from the VSE library, splits it into 60 character length
records, and puts the records to the POWER/VSE punch queue. If the output
record starts a new AFP record, the output record is prefixed with a X′5A′
character, otherwise the record will be prefixed by a blank character.

From the punch queue the file can be sent to a VM system by specifying the
PDEST parameter in the POWER JECL JOB statement.

C.2.1 IBM S/370 Assembler Coding for VSE
// JOB AFPPUNC2 PUNCH A RESOURCE FOR VM
// OPTION LINK,NOALIGN
// ASSGN SYSLST,FEE
// ASSGN SYSPCH,PUNCH
// EXEC ASSEMBLY,SIZE=512K
RESPUNCH CSECT

BALR 12,0 ESTABLISH
USING *,12 ADDRESSABILITY
LA 13,SAVEA LOAD ADDRESS OF SAVE AREA
TM 0(1),X′80′ IS THERE A PARAMETER RECORD?
BNO NOPARM NO, THEN QUIT
L 2,0(1) LOAD ADDRESS OF PARAMETER AREA
LA 1,2(,2) LOAD ADDRESS OF PARAMETER DATA
LH 2,0(2) LOAD LENGTH OF PARAMETER DATA
SH 2,=H′ 1 ′ DECREASE LENGTH BY 1
EX 2,PARMMOVE MOVE THE PARAMETER DATA
CLI PARMAREA,X′40′ IS THERE A NAME IN PARAMETER AREA
BE NOPARM NO THEN QUIT
MVC FDEFNAME(8),PARMAREA MOVE THE NAME
LA 1,FDEFNAME LOAD THE ADDRESS OF THE NAME
CDLOAD (1),RETPNF=YES ISSUE THE LOAD FOR THE PHASE
LTR 15,15 WAS IT SUCCESSFUL?
BNZ NOPARM NO, THEN QUIT
ST 0,MODADDR REQUESTED FORMDEF LOADED
ST 1,MODENTRY STORE REGISTERS
ST 14,MODLENGT ON THE TIME OF RETURN
OPEN PUNCH OPEN THE PUNCH
L 3,MODADDR LOAD PHASE ADDRESS IN GETVIS

166 AFP Printing in an IBM Cross-System Environment

L 5,MODLENGT LOAD PHASE LENGTH
TESTL DS 0H

LTR 5,5 LENGTH ALREADY = 0
BZ END YES, THEN FINISH
MVC HLENGTH,0(3) MOVE RECORD LENGTH
LH 4,HLENGTH LOAD INTO REG 4
SH 4,=H′ 4 ′ SUBSTRACT THE LENGTH OF THE PREFIX
LA 2,4(3) LOAD THE ADDRESS OF THE 5A RECORD
BAL 10,PUTPUNCH PUNCH IT ONTO THE CARDS
AH 3,HLENGTH ADD LENGTH TO THE ADDRESS
SH 5,HLENGTH DECREASE REMAINING LENGTH
B TESTL GO BACK TO TEST

END DS 0H END OF RESOURCE
CLOSE PUNCH SO THE JOB IS DONE

NOPARM DS 0H
EOJ

PUTPUNCH DS 0H PUNCH THE RECORDS OF THE MODULE
ST 4,PR4SAVE STORE R4
ST 2,PR2SAVE STORE R2
MVC IO1(81),=CL81′ ′ CLEAR OUTPUT
MVI IO1+1,X′5A′ FIRST CHAR 5A INDICATES A NEW RECORD

PRLTR44 DS 0H
LTR 4,4 LENGTH POSITIVE
BNP PRRET NO, RETURN
C 4,=F′60 ′ LENGTH LESS THAN 60?
BNH PUTREST GO PUNCH THE LAST CARD
MVC PUTWORKA(60),0(2) MOVE 60 CHARACTERS FROM MODULE
PUT PUNCH PUNCH THE CARD
MVC IO1(81),=CL81′ ′ CLEAR OUTPUT
LA 2,60(,2) INCREASE POINTER BY 60
S 4,=F′60 ′ DECREASE REMAINING LENGTH BY 60
B PRLTR44 GO TEST LENGTH

PUTREST DS 0H LAST CARD
S 4,=F′ 1 ′ DECREASE LENGTH BY 1
EX 4,PUTMOVE MOVE THE REMAINING BYTES
PUT PUNCH PUNCH

PRRET DS 0H RETURN
L 4,PR4SAVE LOAD THE
L 2,PR2SAVE SAVED REGISTERS
BR 10 BRANCH BACK TO CALLING ROUTINE

PUTMOVE MVC PUTWORKA(1),0(2)
PARMMOVE MVC PARMAREA(1),0(1)
IO1 DC CL81′ ′
PUTWORKA EQU IO1+2
SAVEA DS 9D
FDEFNAME DS D
PDEFNAME DS D
PR4SAVE DS F
PR2SAVE DS F
MODADDR DS F
MODLENGT DS F
MODENTRY DS F
HLENGTH DS H
PARMAREA DS 0CL100

DC 100C′ ′
LTORG

PUNCH DTFDI DEVADDR=SYSPCH,IOAREA1=IO1,RECSIZE=80
END RESPUNCH

/*

Appendix C. VSE AFP Sample Programs 167

// EXEC LNKEDT
// LIBDEF PHASE,SEARCH=PRD2.AFP
// EXEC ,PARM=′ T1000437′
/*
/&

C.3 Program to Create a Resource from VSE Punch Output
This program is used for creating an AFP resource in the MVS system from the
output created by C.1, “Program to Punch an AFP Resource for MVS” on
page 163 in the VSE system.

This program has to be link-edited into an MVS library before invoking the
program with a batch job from the VSE system.

C.3.1 IBM S/370 Assembler Coding for MVS
RESMAKE CSECT

PRINT NOGEN
USING *,R15 ESTABLISH ADDRESSABILITY
STM R14,R12,12(R13) SAVE REGISTERS
BALR 12,0 USE REG 12 AS BASE REGISTER
DROP 15 DROP USE OF REG 15
USING *,12 AND USE REG 12
ST R1,PARMSAVE ST REG1
LA R1,SAVE1 LOAD ADDRESS OF THE NEW SAVE
ST R1,8(R13) AREA AND
ST R13,SAVE1+4 PUT IT INTO THE CHAIN
LR R13,R1
OPEN (GETDCB,INPUT) OPEN INPUT
OPEN (PUTDCB,OUTPUT) AND OUTPUT
LA R8,OUTREC+4 POINT TO THE 5TH BYTE OF OUTREC

READREC DS 0H
BAL R10,GETREC READ INPUT
CLI INREC,X′5A′ 5A IDENTIFIES A NEW RECORD
BNE CONTINUE NOT A NEW, THEN OLD CONTINUED
CLI FIRSTIND,X′ FF′ NEW, IS IT FIRST
BNE FIRST IT IS THE FIRST, SO SKIP
BAL R10,PUTREC OLD RECORD OUTPUTTED
LA R8,OUTREC+4 POINT TO 5TH BYTE

FIRST DS 0H
MVI FIRSTIND,X′ FF′ SET FIRST OFF

CONTINUE DS 0H
MVC 0(60,R8),INREC+1 MOVE DATA BYTES TO OUTPUT
LA R8,60(,R8) INCREASE POINTER BY 60
B READREC GET NEXT

ERRXIT EQU * THIS IS ENTERED AT EOF
BAL R10,PUTREC THEN WE JUST PUT THE OLD

EXIT DS 0H
CLOSE (GETDCB) CLOSE
CLOSE (PUTDCB) FILES
L R13,SAVE1+4 LOAD REGISTERS
LM R14,R12,12(R13) FOR RETURNING

SETRCODE LA R15,0 RETURN CODE IN REG 15
RCODE EQU SETRCODE+3

BR R14 GET OUT
GETREC DS 0H

GET GETDCB,INREC GET INPUT RECORD

168 AFP Printing in an IBM Cross-System Environment

BR R10
PUTREC DS 0H

LH R8,OUTREC+5 LOAD OUTPUT RECORD LENGTH
AH R8,=H′ 5 ′ ADD 5 TO INCLUDE HEADER
STH R8,OUTREC STORE LENGTH IN FRONT
MVC OUTREC+2(2),=X′0000′ CLEAR NEXT TWO BYTES
PUT PUTDCB,OUTREC PUT THE OUTPUT RECORD
BR R10

SAVE1 DS 18F
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

LTORG
PUTDCB DCB MACRF=PM,DSORG=PS,RECFM=VBM,DDNAME=SYSUT2, X

LRECL=32756,BLKSIZE=32760
GETDCB DCB MACRF=GM,DSORG=PS,RECFM=FB,DDNAME=SYSUT1,EODAD=ERRXIT, X

LRECL=80,BLKSIZE=3120
DS 0H

PARMSAVE DC F′ 0 ′
FIRSTIND DC X′00 ′
INREC DS CL80
OUTREC DS CL10000

DS CL10000
DS CL10000
DS CL10000
END RESMAKE

C.4 Program to Punch an AFP Resource Inline
There are no tools in the VSE system to include resources inline in front of the
print data set. This program is an example how to access the resources from
the VSE libraries and print them as an inline resource group.

The program takes the names and types of the resources from parameter cards:

Columns
1 8 9 16
Type Name

Type is FORMDEF for a form definition, PAGEDEF for a page definition, OVERLAY
for an overlay, SEGMENT for a page segment, FONT for a coded font, CPAGE for
a code page, and CHARSET for a character set.

Appendix C. VSE AFP Sample Programs 169

C.4.1 IBM S/370 Assembler Coding for VSE
* $$ JOB JNM=MIKKOTST,DISP=D,CLASS=0,PRI=9
* $$ LST DISP=H,CLASS=X
* $$ LST DISP=D,CLASS=U,LST=02E, C
* $$ DEST=(WTSCSL2,PR3825),PAGEDEF=DUMMY,FORMDEF=DUMMY
// JOB RESINCL TESTING FOR INCLUDING AFP RESOURCES
// LIBDEF PHASE,CATALOG=PRD2.AFP
// OPTION CATAL,NOALIGN
 PHASE MMRESUPR,*
// ASSGN SYS010,02E
// ASSGN SYSLST,00E
// EXEC ASSEMBLY,SIZE=512K
RESIN1 CSECT

BALR 12,0 ESTABLISH
USING *,12 ADDRESSABILITY
LA 13,SAVEA SAVE AREA ADDRESS
LA 6,RESTABLE POINTER TO THE START OF TABLE
OPEN CARDIN OPEN CARD READER (PARAMETERS)

CARDREAD DS 0H
GET CARDIN,CARD GET A CARD
MVC 0(16,6),CARD MOVE INFORMATION INTO THE TABLE
LA 6,16(,6) INCREASE POINTER
B CARDREAD BACK TO READ

CARDEOF DS 0H
MVI 0(6),X′ FF′ MARK THE END OF THE TABLE
OPEN PRINTER OPEN PRINTER FILE
LH 4,HRECBRG PUT
PUT PRINTER,BRG BEGIN RESOURCE GROUP
LA 6,RESTABLE POINTER TO THE START OF THE TABLE

CLIEND DS 0H
CLI 0(6),X′ FF′ AT END?
BE RESEND YES, EXIT
MVC RESNAME(8),8(6) MOVE RESOURCE NAME
LA 1,RESNAME LOAD THE RESOURCE
CDLOAD (1),RETPNF=YES FROM THE LIBRARY
LTR 15,15 FOUND IT?
BNZ NEXTRES NO, TO THE NEXT ENTRY
ST 0,MODADDR STORE MODULE ADDRESS
ST 1,MODENTRY STORE ENTRY POINT (NOT USED)
ST 14,MODLENGT STORE MODULE LENGTH
CLC =C′ CPAGE′ ,0(6) A CODE PAGE?
BE INLINECP YES
CLC =C′ CHARSET′ ,0(6) A CHARACTER SET?
BE INLINECS YES
CLC =C′ FORMDEF′ ,0(6) A FORM DEFINITION?
BE INLINEFD YES
CLC =C′ PAGEDEF′ ,0(6) A PAGE DEFINITION?
BE INLINEPD YES
CLC =C′ OVERLAY′ ,0(6) AN OVERLAY?
BE INLINEOV YES
CLC =C′ SEGMENT′ ,0(6) A PAGE SEGMENT?
BE INLINEPS YES
CLC =C′ FONT′ , 0 (6) A CODED FONT
BE INLINEFN YES

NEXTRES DS 0H NEXT ENTRY
LA 6,16(,6) INCREASE POINTER
B CLIEND BACK TO TEST THE END

INLINEFD DS 0H FORM DEFINITION
LH 4,HRECFD LOAD ADDRESS OF BR RECORD

170 AFP Printing in an IBM Cross-System Environment

MVC BRFDEF,8(6) MOVE NAME
PUT PRINTER,BRFD PUT THE BR RECORD
B PUNCHRES GO TO PRINT THE RESOURCE

INLINEPD DS 0H PAGE DEFINITION
LH 4,HRECPD LOAD ADDRESS OF BR RECORD
MVC BRPDEF,8(6) NOVE NAME
PUT PRINTER,BRPD PUT THE BR RECORD
B PUNCHRES GO TO PRINT THE RESOURCE

INLINEOV DS 0H OVERLAY
LH 4,HRECOV LOAD ADDRESS OF BR RECORD
MVC BROVER,8(6) MOVE NAME
PUT PRINTER,BROV PUT THE BR RECORD
B PUNCHRES GO TO PRINT THE RESOURCE

INLINEPS DS 0H PAGE SEGMENT
LH 4,HRECPS LOAD ADDRESS OF THE BR RECORD
MVC BRPSEG,8(6) MOVE NAME
PUT PRINTER,BRPS PUT THE BR RECORD
B PUNCHRES GO TO PRINT THE RESOURCE

INLINEFN DS 0H CODED FONT
LH 4,HRECFN LOAD ADDRESS OF THE BR RECORD
MVC BRFONT,8(6) MOVE NAME
PUT PRINTER,BRFN PUT THE BR RECORD
B PUNCHRES GO TO PRINT THE RECORD

INLINECS DS 0H CHARACTER SET
LH 4,HRECCS LOAD ADDRESS OF THE BR RECORD
MVC BRCSET,8(6) MOVE NAME
PUT PRINTER,BRCS PUT THE BR RECORD
B PUNCHRES GO TO PRINT THE RESOURCE

INLINECP DS 0H CODE PAGE
LH 4,HRECCP LOAD ADDRESS OF THE BR RECORD
MVC BRCPAG,8(6) MOVE NAME
PUT PRINTER,BRCP PUT THE BR RECORD

PUNCHRES DS 0H
MVC ERNAME(8),8(6) MOVE NAME TO THE ER RECORD
L 3,MODADDR LOAD PHASE ADDRESS IN GETVIS
L 5,MODLENGT LOAD PHASE LENGTH

TESTL DS 0H
LTR 5,5 TEST FOR REMAINING PHASE LENGTH
BZ END 0, SO IT IS THE END
MVC HLENGTH,0(3) MOVE LENGTH OF THE RECORD
LH 4,HLENGTH LOAD INTO REG 4
SH 4,=H′ 4 ′ DECREASE BY 4 (RECORD LENGTH FIELD)
LA 2,4(3) LOAD ADDRESS OF THE 5A RECORD
PUT PRINTER,(2) PUT THE RECORD
AH 3,HLENGTH MOVE POINTER TO THE NEXT RECORD
SH 5,HLENGTH DECREASE REMAINING LENGTH
B TESTL GO TEST REMAINING LENGTH

END DS 0H END
LH 4,HRECER PUT
PUT PRINTER,ER END RESOURCE
B NEXTRES

RESEND DS 0H
LH 4,HRECERG PUT
PUT PRINTER,ERG END RESOURCE GROUP
CLOSE PRINTER
EOJ

RECORD DS CL80
IN DS CL80
OUT DS CL80

Appendix C. VSE AFP Sample Programs 171

DIN DS CL80
DOUT DS CL88

LTORG
SAVEA DS 9D
RESNAME DS D
MODADDR DS F
MODLENGT DS F
MODENTRY DS F
HLENGTH DS H
CARD DS CL80
*
BRG DC X′5A0010D3A8C6000000′ , C′ RESGROUP′
BRGE EQU *
HRECBRG DC AL2(BRGE-BRG)
*
BRFD DC X′5A001AD3A8CE000000′
BRFDEF DC CL8′ F1MIKKO1′

DC X′00000821FE0000000000′
BRFDE EQU *
HRECFD DC AL2(BRFDE-BRFD)
*
ER DC X′5A0010D3A9CE000000′
ERNAME DC CL8′ F1MIKKO1′
ERE EQU *
HRECER DC AL2(ERE-ER)
*
BRPD DC X′5A001AD3A8CE000000′
BRPDEF DC CL8′ P1MIKKO1′

DC X′00000821FD0000000000′
BRPDE EQU *
HRECPD DC AL2(BRPDE-BRPD)
*
BRPS DC X′5A001AD3A8CE000000′
BRPSEG DC CL8′ S1MIKKO1′

DC X′00000821FB0000000000′
BRPSE EQU *
HRECPS DC AL2(BRPSE-BRPS)
*
BROV DC X′5A001AD3A8CE000000′
BROVER DC CL8′ O1MIKKO1′

DC X′00000821FC0000000000′
BROVE EQU *
HRECOV DC AL2(BROVE-BROV)
*
BRFN DC X′5A001AD3A8CE000000′
BRFONT DC CL8′ X0MIKKO1′

DC X′00000821420000000000′
BRFNE EQU *
HRECFN DC AL2(BRFNE-BRFN)
*
BRCS DC X′5A001AD3A8CE000000′
BRCSET DC CL8′ C0MIKKO1′

DC X′00000821400000000000′
BRCSE EQU *
HRECCS DC AL2(BRCSE-BRCS)
*
BRCP DC X′5A001AD3A8CE000000′
BRCPAG DC CL8′ T1MIKKO1′

172 AFP Printing in an IBM Cross-System Environment

DC X′00000821410000000000′
BRCPE EQU *
HRECCP DC AL2(BRCPE-BRCP)
*
ERG DC X′5A0010D3A9C6000000′ , C′ RESGROUP′
ERGE EQU *
HRECERG DC AL2(ERGE-ERG)
*
CARDIO1 DS CL80
RESTABLE DS CL320
IO1 DS CL512

DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512
DS CL512

CARDIN DTFCD DEVADDR=SYSIPT,IOAREA1=CARDIO1,WORKA=YES,TYPEFLE=INPUT, C
EOFADDR=CARDEOF

PRINTER DTFPR DEVADDR=SYS010,IOAREA1=IO1,BLKSIZE=512,RECSIZE=(4), C
RECFORM=UNDEF,CTLCHR=ASA,DEVICE=PRT1,WORKA=YES

END RESIN1
/*
// EXEC LNKEDT
// LIBDEF PHASE,SEARCH=PRD2.AFP
// EXEC
PAGEDEF P1OWN
FORMDEF F1OWN
/*
/&
* $$ EOJ

Appendix C. VSE AFP Sample Programs 173

C.5 Program to Create a Resource in VM
The following EXEC creates a resource from the input created by C.2, “Program
to Punch an AFP Resource for VM” on page 166.

The format of the input file is special for this EXEC.

To create a resource, it has to be received onto a CMS disk, then this EXEC can
be used to create the resource.

C.5.1 REXX EXEC Coding for VM
/* REXX */
/* This routine creates a resource from the file sent from VSE */
/* The input file is created by a special program in VSE */
/* */
/* To invoke this enter */
/* VSE2VM oldname ot om newname nt nm */
/* where oldname is the name of the file from VSE */
/* ot is the type of the file from VSE */
/* om is the mode of the file from VSE */
/* newname is the name of the file to be created */
/* nt is the type of the file to be created */
/* nm is the mode of the file to be created */
/* */
/* This EXEC builds the variable length records from the input */
/* and then adjusts the length to the correct 5A-record length */
/* */
 Parse upper arg fns
 parse var fns fid fn fm fid2 fn2 fm2 .
 state fid fn fm
if rc¬=0 then do
 Say ′ file not found′
 exit
 end
/*
fid2 = fid
fn2 = ′ AFPR3820′
fm2 = ′ *′
*/
″ERASE″ fid2 fn2 fm2
″EXECIO * DISKR ″ fid fn fm ″ (FINIS STEM RIVI. ″
COUNT = RIVI.0
TEMP = ″″
DO I = 1 TO COUNT
 IF SUBSTR(RIVI.I,1,1)=X2C(′5A′) THEN DO

IF LENGTH(TEMP)>0 THEN DO
len5a=c2d(substr(temp,2,1))*256+c2d(substr(temp,3,1))+1
temp = substr(temp,1,len5a)
″EXECIO 1 DISKW ″ fid2 fn2 fm2 ″ (VAR TEMP ″
END

TEMP=SUBSTR(RIVI.I,2,60)
END

 ELSE DO
TEMP=TEMP || SUBSTR(RIVI.I,2,60)
END

 END
len5a=c2d(substr(temp,2,1))*256+c2d(substr(temp,3,1))+1

174 AFP Printing in an IBM Cross-System Environment

temp = substr(temp,1,len5a)
″EXECIO 1 DISKW ″ fid2 fn2 fm2 ″ (VAR TEMP ″
QUEUE ″″
″EXECIO * DISKW ″ fid2 fn2 fm2 ″ (FINIS ″

C.6 Program to Create a Tape File for MVS or VM
The following program copies an AFP resource from the VSE system library onto
a tape file for transferring to an MVS or a MVS system. The tape file has
undefined length records.

In MVS, the file can be copied to an AFP library by using the IEBGENER utility
program.

IN VM, the file can be copied by using the MOVEFILE command.

C.6.1 IBM S/370 Assembler Coding for VSE
* $$ JOB JNM=LIBTEST,CLASS=0,PRI=9,DISP=D
// JOB LISTEST TESTING FOR IMBEDDING AFP RECORDS
// OPTION LINK,NOALIGN
// ASSGN SYSLST,FEE
// ASSGN SYSPCH,PUNCH
// EXEC ASSEMBLY,SIZE=512K
RESPUNCH CSECT

BALR 12,0 ESTABLISH
USING *,12 ADDRESSABILITY
LA 13,SAVEA LOAD ADDRESS OF SAVE AREA
TM 0(1),X′80′ IS THERE A PARAMETER RECORD?
BNO NOPARM NO, THEN QUIT
L 2,0(1) LOAD ADDRESS OF PARAMETER AREA
LA 1,2(,2) LOAD ADDRESS OF PARAMETER DATA
LH 2,0(2) LOAD LENGTH OF PARAMETER DATA
SH 2,=H′ 1 ′ DECREASE LENGTH BY 1
EX 2,PARMMOVE MOVE THE PARAMETER DATA
CLI PARMAREA,X′40′ IS THERE A NAME IN PARAMETER AREA
BE NOPARM NO THEN QUIT
MVC FDEFNAME(8),PARMAREA MOVE THE NAME
LA 1,FDEFNAME LOAD THE ADDRESS OF THE NAME
CDLOAD (1),RETPNF=YES ISSUE THE LOAD FOR THE PHASE
LTR 15,15 WAS IT SUCCESSFUL?
BNZ NOPARM NO, THEN QUIT
ST 0,MODADDR REQUESTED FORMDEF LOADED
ST 1,MODENTRY STORE REGISTERS
ST 14,MODLENGT ON THE TIME OF RETURN
OPEN TAPEOUT OPEN THE OUTPUT
L 7,MODADDR LOAD PHASE ADDRESS IN GETVIS
L 8,MODLENGT LOAD PHASE LENGTH

TESTL DS 0H
LTR 8,8 LENGTH ALREADY = 0
BZ END YES, THEN FINISH
MVC HLENGTH,0(7) MOVE RECORD LENGTH
LH 3,HLENGTH LOAD INTO REG 3
SH 3,=H′ 4 ′ DECREASE BY 4 TO THE ACTUAL LENGTH
LA 2,4(7) LOAD THE ADDRESS OF THE 5A RECORD
PUT TAPEOUT,(2) PUT THE RECORD ONTO THE TAPE
AH 7,HLENGTH ADD LENGTH TO THE ADDRESS
SH 8,HLENGTH DECREASE REMAINING LENGTH

Appendix C. VSE AFP Sample Programs 175

B TESTL GO BACK TO TEST
END DS 0H END OF RESOURCE

CLOSE TAPEOUT SO THE JOB IS DONE
NOPARM DS 0H

EOJ
PARMMOVE MVC PARMAREA(1),0(1)
SAVEA DS 9D
FDEFNAME DS D
PDEFNAME DS D
PR4SAVE DS F
PR2SAVE DS F
MODADDR DS F
MODLENGT DS F
MODENTRY DS F
HLENGTH DS H
PARMAREA DS 0CL100

DC 100C′ ′
LTORG

IO1 DS CL16384
TAPEOUT DTFMT DEVADDR=SYS011,IOAREA1=IO1,TYPEFLE=OUTPUT,BLKSIZE=16388,X

RECFORM=UNDEF,FILABL=STD,RECSIZE=(3),WORKA=YES
END RESPUNCH

/*
// EXEC LNKEDT
// LIBDEF PHASE,SEARCH=PRD2.AFP
// ASSGN SYS011,181,00
// TLBL TAPEOUT,′ VM/MVS FILE′
// EXEC ,PARM=′ T1000437′
/*
/&
* $$ EOJ

C.7 Program to Create a Tape File for AS/400
The following program copies an AFP resource from a VSE system library onto a
tape file for transferring the resource to an AS/400 system. To facilitate the
process on the AS/400 side, the tape file has fixed length records, in our case
the size 16384 bytes, which should be enough for any resource.

On the AS/400, the tape file is copied to a physical file member with the
CPYFRMTAP command, and then transformed to a resource with an appropriate
CRT command.

C.7.1 IBM S/370 Assembler Coding for VSE
* $$ JOB JNM=LIBTEST,CLASS=0,PRI=9,DISP=D
// JOB LISTEST TESTING FOR IMBEDDING AFP RECORDS
// OPTION LINK,NOALIGN
// ASSGN SYSLST,FEE
// ASSGN SYSPCH,PUNCH
// EXEC ASSEMBLY,SIZE=512K
RESPUNCH CSECT

BALR 12,0 ESTABLISH
USING *,12 ADDRESSABILITY
LA 13,SAVEA LOAD ADDRESS OF SAVE AREA
TM 0(1),X′80′ IS THERE A PARAMETER RECORD?
BNO NOPARM NO, THEN QUIT
L 2,0(1) LOAD ADDRESS OF PARAMETER AREA

176 AFP Printing in an IBM Cross-System Environment

LA 1,2(,2) LOAD ADDRESS OF PARAMETER DATA
LH 2,0(2) LOAD LENGTH OF PARAMETER DATA
SH 2,=H′ 1 ′ DECREASE LENGTH BY 1
EX 2,PARMMOVE MOVE THE PARAMETER DATA
CLI PARMAREA,X′40′ IS THERE A NAME IN PARAMETER AREA
BE NOPARM NO THEN QUIT
MVC FDEFNAME(8),PARMAREA MOVE THE NAME
LA 1,FDEFNAME LOAD THE ADDRESS OF THE NAME
CDLOAD (1),RETPNF=YES ISSUE THE LOAD FOR THE PHASE
LTR 15,15 WAS IT SUCCESSFUL?
BNZ NOPARM NO, THEN QUIT
ST 0,MODADDR REQUESTED FORMDEF LOADED
ST 1,MODENTRY STORE REGISTERS
ST 14,MODLENGT ON THE TIME OF RETURN
OPEN TAPEOUT OPEN THE OUTPUT
L 7,MODADDR LOAD PHASE ADDRESS IN GETVIS
L 8,MODLENGT LOAD PHASE LENGTH

TESTL DS 0H
LTR 8,8 LENGTH ALREADY = 0
BZ END YES, THEN FINISH
MVC HLENGTH,0(7) MOVE RECORD LENGTH
LH 3,HLENGTH LOAD INTO REG 4
SH 3,=H′ 4 ′ DECREASE BY FOUR TO GET ACTUAL LENGTH
ICM 3,B′1000′,=X′40′ BLANK AS THE FILL CHARACTER
LH 5,=H′16384′ SIZE OF OUT FIXED LENGTH RECORD
LA 2,4(7) LOAD THE ADDRESS OF THE 5A RECORD
LA 4,IO1 REG 4 TO POINT TO IOAREA
MVCL 4,2 MOVE THE RECORD
PUT TAPEOUT PUNT THE RECORD ONTO THE TAPE
AH 7,HLENGTH ADD LENGTH TO THE ADDRESS
SH 8,HLENGTH DECREASE REMAINING LENGTH
B TESTL GO BACK TO TEST

END DS 0H END OF RESOURCE
CLOSE TAPEOUT SO THE JOB IS DONE

NOPARM DS 0H
EOJ

PARMMOVE MVC PARMAREA(1),0(1)
SAVEA DS 9D
FDEFNAME DS D
PDEFNAME DS D
PR4SAVE DS F
PR2SAVE DS F
MODADDR DS F
MODLENGT DS F
MODENTRY DS F
HLENGTH DS H
PARMAREA DS 0CL100

DC 100C′ ′
LTORG

IO1 DS CL16384
TAPEOUT DTFMT DEVADDR=SYS011,IOAREA1=IO1,TYPEFLE=OUTPUT,BLKSIZE=16384,X

RECFORM=FIXUNB,FILABL=STD
END RESPUNCH

/*
// EXEC LNKEDT
// LIBDEF PHASE,SEARCH=PRD2.AFP
// ASSGN SYS011,181,00
// TLBL TAPEOUT,′ AS/400 FILE′
// EXEC ,PARM=′ T1000437′

Appendix C. VSE AFP Sample Programs 177

/*
/&
* $$ EOJ

C.8 Program to Create a Job for VSE
This program takes the name of the input file (the resource to be dumped) and
the name of the output file (a temporary file) where the dumped resource with
JCL is written as an ASCII file. The third argument to the program is a
parameter record including three eight-byte fields: library name, sublibrary
name, and member name for the resource to be dumped and uploaded to the
VSE system.

The output file includes POWER JECL and VSE JCL statements (in ASCII format)
in front of and after the resource. The resource is dumped in 60 character
records in hexadecimal ASCII format. This format was chosen to avoid the
problems caused by the code conversion when uploading the file.

The output file can be uploaded to the VSE system using the Intelligent
Workstation feature by entering the following command SEND outfile (FILE=RDR.
This command puts the output file in the POWER reader queue.

C.8.1 C Coding for OS/2
#include <stdio.h>
#include <io.h>
#include <ctype.h>
#include <string.h>

 char hexchars[16]=″0123456789ABCDEF″ ;
 char jcbstr[21]=″* $$ JOB JNM=OS22VSE\n″ ;
 char jcbst2[21]=″* $$ PUN DISP=I \n″ ;
 char jcbst3[21]=″* $$ EOJ \n″ ;
 char jobstr[21]=″ / / JOB LIBRTEST \n″ ;
 char jobstr2[38]=″ / / LIBDEF PHASE,SEARCH=PRD2.AFP \n″ ;
 char jobstr3[53]=

″ / / EXEC LIBRTEST,PARM=′ ′ \n″ ;
 char jobstr4[5]=″ /* \n″ ;
 char jobstr5[5]=″/& \n″ ;

FILE *stream;
FILE *stream2;
char namebuf[15];
char namebuf2[15];
char namebuf3[26];
char buffer[62];
char *name;
char *name2;
char *name2;
char *name3;
char ch;
int numread;
int i;
int i1;
int i2;
int imax;

main(argc,argv)
int argc;

178 AFP Printing in an IBM Cross-System Environment

char *argv[];
{

/* Get a file if one was not specified as an argument */
if (argc > 1)
name = argv[1];
else {

 printf (″Enter output file name: ″) ;
name = gets(namebuf);
}

 if (argc > 2)
name2= argv[2];
else {
printf(″Enter input file name: ″) ;
name2 = gets(namebuf2);
}

 if (argc > 3)
name3= argv[3];
else {
printf(″Enter parameters: ″) ;
name3 = gets(namebuf3);
}

/* Open files in binary mode */

if ((stream = fopen(name,″w″)) == NULL)
return(1);

if ((stream2 = fopen(name2,″rb″)) == NULL)
return (1);

/* Move parameter field on the card */
for (i=0;i<24;i++)
jobstr3[23+i]=name3[i];
/* write JECL and JCL records in front of the resource */
numread=fwrite(jcbstr,1,21,stream);
numread=fwrite(jcbst2,1,21,stream);
numread=fwrite(jobstr,1,21,stream);
numread=fwrite(jobstr2,1,38,stream);
numread=fwrite(jobstr3,1,53,stream);
i=0;
imax=60;

 hachar:
ch=getc(stream2);

if (feof(stream2))
{goto finish;}

/* change the char read to two hex chars */
i1 = (unsigned char) ch/16;
i2= (unsigned char) ch-16*i1;
buffer[i]=hexchars[i1];
buffer[i+1]=hexchars[i2];
i+=2;

/* if record full, write it on the disk */
if (i==imax)

{
buffer[imax]=0x0d;
buffer[imax+1]=0x0a;

numread=fwrite(buffer,1,imax+2,stream);
i=0;}
goto hachar;

/* write the last record */

Appendix C. VSE AFP Sample Programs 179

finish:
buffer[i]=0x0d;
buffer[i+1]=0x0a;
numread=fwrite(buffer,1,i+2,stream);
/* write JECL and JCL records after the resource */
numread=fwrite(jobstr4,1,5,stream);
numread=fwrite(jobstr5,1,5,stream);
numread=fwrite(jcbst3,1,21,stream);
return (0);

}

C.9 Program to Create the Linkage Editor Job
This program runs in the VSE system. It is started by sending a reader file fom
the OS/2 system to the VSE system. This program punches another job in
POWER reader. The job created will link the resource in the appropriate
resource library.

C.9.1 IBM S/370 Assembler Coding for VSE
* $$ JOB JNM=MIKKOLIB,DISP=D,CLASS=0,PRI=9
// JOB OS22VSER RESOURCE FROM OS/2 to VSE
// LIBDEF PHASE,CATALOG=PRD2.AFP
// ASSGN SYSLST,00E
// OPTION CATAL
 PHASE LIBRTEST,*
// EXEC ASSEMBLY,SIZE=256K

PRINT GEN
TEST CSECT

BALR 12,0 ESTABLISH
USING *,12 ADDRESSABILITY
LA 13,SAVEA LOAD SAVEA AREA ADDRESS
TM 0(1),X′80 ′ IS THERE A PARAMETER RECORD?
BNO NOPARM NO, THEN QUIT
L 2,0(1) LOAD ADDRESS OF PARAMETER AREA
LA 1,2(,2) LOAD ADDRESS OF PARAMETER DATA
LH 2,0(2) LOAD LENGTH OF PARAMETER DATA
SH 2,=H′ 1 ′ DECREASE LENGTH BY 1
EX 2,PARMMOVE MOVE THE PARAMETER DATA
CLI PARMAREA,X′40′ IS THERE A NAME IN PARAMETER AREA
BE NOPARM NO THEN QUIT
MVC MEMBNAME(8),PARMAREA+16 SAVE MEMBER NAME
MVC LIBSLIB(8),PARMAREA MOVE LIBRARY NAME
LA 5,LIBSLIB POINTER TO START OF LIBR.NAME

CLILIB40 DS 0H
CLI 0(5),X′40 ′ BLANK?
BE FOUBLANK YES, END OF LIBR.NAME
LA 5,1(,5) NO, INCREASE POINTER
B CLILIB40 BACK TO CHECK

FOUBLANK DS 0H FOUND SPACE
MVI 0(5),C′ . ′ INSERT A DOT
MVC 1(8,5),PARMAREA+8 AND MOVE SUBLIBR.NAME
OPEN CARDS OPEN INPUT FILE
LA 5,MODAREA POINTER TO START OF RESOURCE
SR 9,9 CLEAR R9

GETCARD DS 0H
GET CARDS,INCARD GET A CARD
LA 6,INCARD POINTER TO START OF THE CARD

180 AFP Printing in an IBM Cross-System Environment

LA 7,30 MAX 30 BYTES (60 HEX DIGITS)
CLI40 DS 0H

CLI 0(6),X′40 ′ A BLANK?
BE LOPPU YES, QUIT
TR 0(1,6),TRTAUL TRANSLATE FIRST DIGIT
TR 1(1,6),TRTAUL TRANSLATE SECOND DIGIT
SR 8,8 CLEAR R8
SR 10,10 CLEAR R10
IC 8,0(6) INSERT FIRST DIGIT
SLL 8,4 SHIFT IT TO THE RIGHT PLACE
IC 10,1(6) INSERT SECOND DIGIT
AR 8,10 DIGITS TO THE SAME BYTE
STC 8,0(5) STORE CHAARCTER
LA 5,1(,5) INCREASE OUTPUT POINTER
LA 9,1(,9) INCREASE NUMBER OF BYTES
LA 6,2(,6) INCREASE INPUT POINTER
BCT 7,CLI40 DATA LEFT, BACK TO PROCESS
C 9,MAXDATA COMPARE IF AREA FULL
BH LOPPU2 YES, DUMP
B GETCARD NO, GET ANOTHER CARD

LOPPU2 DS 0H AREA FULL, DUMP
DUMP

LOPPU DS 0H BLANKS FOUND IN INPUT
CLOSE CARDS CLOSE INPUT
ST 9,LEN STORE TOTAL LENGTH
L 2,=A(MOD2AREA) POINTER TO SECOND AREA
LA 8,MODAREA POINTER TO INPUT AREA
LR 5,9 MOVE LENGTH TO REG 5

CLI5A DS 0H
CLI 0(8),X′5A′ IS IT 5A-RECORD
BNE LOPPU3 NO THEN WE ARE AT THE END
MVC HLEN(2),1(8) MOVE LENGTH FIELD
LH 6,HLEN LOAD IT TO REG 6
LR 1,6 AND REG 1
A 6,=F′ 1 ′ ADD ONE (5A-BYTE)
STH 6,REC5AL STORE 5A-RECORD LENGTH
A 6,=F′ 4 ′ ADD 4 BYTES FOR REC LENGTH
STH 6,HLEN STORE TO LENGTH
MVC 0(2,2),HLEN MOVE TO MODAREA2
MVC 2(3,2),=X′00005A′ ZEROS OF RECL AND 5A
LA 2,5(,2) INCREASE OUTPUT POINTER
LA 8,1(,8) INCREASE INPUT POINTER

LOOPCHAR DS 0H
MVC 0(1,2),0(8) MOVE FROM AREA TO AREA2
LA 2,1(,2) INCREASE OUTPUT POINTER
LA 8,1(,8) INCREASE INPUT POINTER
BCT 1,LOOPCHAR BACK, IF STILL BYTES
L 1,FLEN INCREASE
AH 1,HLEN THE TOTAL LENGTH
ST 1,FLEN AND STORE BACK
SH 5,REC5AL DECREASE 5A-RECL FROM INPUT
BP CLI5A BACK IF STILL POSITIVE

LOPPU3 DS 0H
MVC LEN,FLEN MOVE LENGTH OF RESULT
OPEN PUNCH OPEN PUNCH FILE
LA 2,RECAREA LOAD ADDRESS OF THE JCL RECORD AREA

CLIRCAFF DS 0H
CLI 0(2),X′ FF′ IS IT THE LAST RECORD?
BE ENDREC1 YES, THEN GO TO THE END

Appendix C. VSE AFP Sample Programs 181

MVC IO1,0(2) MOVE RECORD TO IOAREA
PUT PUNCH PUNCH IT
LA 2,81(,2) GO TO THE NEXT RECORD
B CLIRCAFF GO TO TEST FOR THE LAST RECORD

ENDREC1 DS 0H LAST RECORD
MVC PHASECD+8(8),MEMBNAME MOVE MEMBER NAME TO PHASE CARD
LA 1,PHASECD+8 POINTER TO THE START OF NAME
L 2,8 LENGTH MAX 8

CLI40NAM DS 0H
CLI 0(1),X′40 ′ IS IT BLANK
BE LESST8 YES
LA 1,1(,1) NO, INCREASE POINTER
BCT 2,CLI40NAM AND BACK, IF STILL CHARS

LESST8 DS 0H
MVC 0(L′ PHASEX,1),PHASEX MOVE TEXT AFTER PHASENAME
MVC IO1,PHASECD MOVE TO IOAREA
PUT PUNCH AND PUNCH
MVC ESDRECA,INITADDR+1 MOVE INITADDR TO ESD CARD
MVC ESDRECL,LEN+1 MOVE LENTH TO ESD CARD
MVC ESDRECN,MEMBNAME MOVE NAME TO ESD CARD
MVC IO1,ESDREC MOVE TO IOAREA
PUT PUNCH AND PUNCH
L 4,=A(MOD2AREA) POINTER TO THE START OF MODULE
L 5,LEN LENGTH OF THE MODULE
MVC ADDR,INITADDR INITIALE ADDRESS

SHR5 DS 0H
SH 5,=H′56 ′ SUBSTR 56 (BYTES/CARD)
BNP LASTREC IF NOT POSITIVE, LAST CARD
MVC TXTRECA,ADDR+1 MOVE CURRENT ADDR TO TXT CARD
MVC TXTRECL,=H′56 ′ MOCE LENGTH TO TXT CARD
MVC TXTRECD(56),0(4) MOVE CONSTANT FIELD TO TXT CARD
MVC IO1,TXTREC MOVE TO IOAREA
PUT PUNCH AND PUNCH
L 1,ADDR INCREASE
AH 1,=H′56 ′ ADDRESS
ST 1,ADDR AND STORE
MVC TXTRECD,=CL56′ ′ CLEAR TXT CARD
LA 4,56(,4) INCREASE INPUT POINTER
B SHR5 BACK TO COMPARE

LASTREC DS 0H THE LAST CARD
AH 5,=H′56 ′ ADD 56 TO GET LENGTH
STH 5,HTEMP STORE IT
MVC TXTRECL,HTEMP MOVE TO THE TXT CARD
BCTR 5,0 DECREASE BY 1 FOR EX
EX 5,OUTMOVE MOVE THE BYTES
MVC TXTRECA,ADDR+1 MOVE CURRENT ADDRESS
MVC IO1,TXTREC MOVE TO IOAREA
PUT PUNCH AND PUNCH
MVC ENDRECA,INITADDR+1 MVC INIT.ADDR. TO END CARD
MVC IO1,ENDREC MOVE TO IOAREA
PUT PUNCH AND PUNCH
LA 2,RECAREA2 LOAD ADDRESS OF THE SECOND JCL AREA

CLIRC2FF DS 0H
CLI 0(2),X′ FF′ IS IT THE LAST RECORD?
BE ENDREC2 YES, THEN GO TO THE END
MVC IO1,0(2) MOVE RECORD TO IOAREA
PUT PUNCH PUNCH IT
LA 2,81(,2) GO TO THE NEXT RECORD

182 AFP Printing in an IBM Cross-System Environment

B CLIRC2FF GO TO TEST FOR THE LAST RECORD
ENDREC2 DS 0H LAST RECORD
NOPARM DS 0H

EOJ
PARMMOVE MVC PARMAREA(1),0(1)
OUTMOVE MVC TXTRECD(0),0(4)
SAVEA DS 9D
INITADDR DC X′00027078′
ADDR DC F′ 0 ′
MAXDATA DC F′32000′ ADJUST TO MATCH THE AREA
HTEMP DS H
RECAREA DC CL81′ / / JOB LINK′

DC CL25′ / / LIBDEF PHASE,CATALOG=′
LIBSLIB DC CL56′ ′

DC CL81′ / / OPTION CATAL′
DC CL81′ INCLUDE′
DC X′ FF′

RECAREA2 DC CL81′ /*′
DC CL81′ / / EXEC LNKEDT′
DC CL81′ /*′
DC CL81′ /&&′
DC X′ FF′

PHASEX DC C′ , S+X′ ′000000′ ′ ′
PHASECD DC CL81′ PHASE ′
ESDREC DS 0CL81

DC X′4002′
DC C′ ESD′
DC C′ ′
DC X′0010′
DC C′ ′
DC X′0001′

ESDRECN DC CL8′ ′
DC X′00 ′

ESDRECA DC X′000000′
DC C′ ′

ESDRECL DC AL3(0)
DC CL48′ ′

TXTREC DS 0CL81
DC X′4002′
DC C′ TXT ′

TXTRECA DC AL3(0)
DC C′ ′

TXTRECL DC XL2′0000′
DC C′ ′
DC X′0001′

TXTRECD DC CL56′ ′
DC CL8′ ′

ENDREC DS 0CL81
DC X′4002′
DC C′ END ′

ENDRECA DC AL3(0)
DC C′ ′
DC X′0001′
DC CL64′ ′

PARMAREA DC CL100′ ′
LTORG

PUNCH DTFDI DEVADDR=SYSPCH,IOAREA1=IO1,RECSIZE=80
CARDS DTFCD DEVADDR=SYSIPT,TYPEFLE=INPUT,EOFADDR=LOPPU,IOAREA1=IO1, C

Appendix C. VSE AFP Sample Programs 183

WORKA=YES
IO1 DS CL80
INCARD DS CL80
LEN DS F
FLEN DS F′ 0 ′
HLEN DS H′ 0 ′
REC5AL DS H′ 0 ′
MEMBNAME DC CL8′ ′
TRTAUL DS 0CL256

DC 193X′00 ′
DC X′0A0B0C0D0E0F000000000000000000′
DC 32X′00 ′
DC X′00010203040506070809000000000000′
DS 0F

MODAREA DS CL32000 COPY AS MANY AS NEEDED
MOD2AREA DS CL32000 COPY AS MANY AS NEEDED

DS CL32000
END

/*
// EXEC LNKEDT,SIZE=256K
/*
/&
* $$ EOJ

C.10 Program to Create a Punch File from a Resource
This program punches a resource in a hexadecimal dump format in the POWER
punch queue. The output file consists of 80-byte records. The hexadecimal
representation is used to avoid the problems with the code conversion while
transferring the punched output to the OS/2 system.

The punch file can be downloaded to the workstation using the Intelligent
Workstation functions by entering the command RECEIVE pcfile (FILE=PUN.

C.10.1 IBM S/370 Assembler Coding for VSE
* $$ JOB JNM=RESTOOS2,CLASS=0,DISP=D,PRI=9
// JOB VSE2OS2P PUNCHING A RESOURCE INTO THE PUNCH QUEUE
// OPTION LINK,NOALIGN
// ASSGN SYSLST,FEE
* $$ PUN DISP=K,CLASS=A,JSEP=(0,N)
// ASSGN SYSPCH,PUNCH
// EXEC ASSEMBLY,SIZE=512K
RESPUNCH CSECT

BALR 12,0 ESTABLISH
USING *,12 ADDRESSABILITY
LA 13,SAVEA LOAD ADDRESS OF SAVE AREA
TM 0(1),X′80 ′ IS THERE A PARAMETER RECORD?
BNO NOPARM NO, THEN QUIT
L 2,0(1) LOAD ADDRESS OF PARAMETER AREA
LA 1,2(,2) LOAD ADDRESS OF PARAMETER DATA
LH 2,0(2) LOAD LENGTH OF PARAMETER DATA
SH 2,=H′ 1 ′ DECREASE LENGTH BY 1
EX 2,PARMMOVE MOVE THE PARAMETER DATA
CLI PARMAREA,X′40 ′ IS THERE A NAME IN PARAMETER AREA
BE NOPARM NO THEN QUIT
MVC FDEFNAME(8),PARMAREA MOVE THE NAME
LA 1,FDEFNAME LOAD THE ADDRESS OF THE NAME

184 AFP Printing in an IBM Cross-System Environment

CDLOAD (1),RETPNF=YES ISSUE THE LOAD FOR THE PHASE
LTR 15,15 WAS IT SUCCESSFUL?
BNZ NOPARM NO, THEN QUIT
ST 0,MODADDR REQUESTED RESOURCE LOADED
ST 1,MODENTRY STORE REGISTERS
ST 14,MODLENGT ON THE TIME OF RETURN
OPEN PUNCH OPEN THE PUNCH
LA 6,IO1 LOAD IOAREA ADDRESS
ST 6,CARDPOS STORE CURRENT POSITION
LA 1,80 80 BYTES PER CARD
ST 1,CARDREM STORE NUMBER OF BYTES LEFT
L 3,MODADDR LOAD PHASE ADDRESS IN GETVIS
L 5,MODLENGT LOAD PHASE LENGTH

TESTL DS 0H
LTR 5,5 LENGTH ALREADY = 0
BZ END YES, THEN FINISH
MVC HLENGTH,0(3) MOVE RECORD LENGTH
LH 4,HLENGTH LOAD INTO REG 4
SH 4,=H′ 4 ′ SUBSTRACT THE LENGTH OF THE PREFIX
LA 2,4(3) LOAD THE ADDRESS OF THE 5A RECORD
BAL 10,PUTPUNCH PUNCH IT ONTO THE CARDS
AH 3,HLENGTH ADD LENGTH TO THE ADDRESS
SH 5,HLENGTH DECREASE REMAINING LENGTH
B TESTL GO BACK TO TEST

END DS 0H END OF RESOURCE
L 1,CARDREM BYTES REMAINING ON THE CARD
C 1,=F′80 ′ IS IT 80?
BE NOMORE YES, DO NOT PUNCH EMPTY CARD
PUT PUNCH PUT THE LAST CARD

NOMORE DS 0H
CLOSE PUNCH SO THE JOB IS DONE

NOPARM DS 0H
EOJ

PUTPUNCH DS 0H PUNCH THE RECORDS OF THE MODULE
ST 5,PR5SAVE STORE R5
ST 4,PR4SAVE STORE R4
ST 2,PR2SAVE STORE R2
L 6,CARDPOS RESTORE POSITION
L 1,CARDREM AND SPACE REMAINING ON CARD

PRLTR44 DS 0H
LTR 4,4 LENGTH POSITIVE
BNP PRRET NO, RETURN
LA 5,0(2) GET RECORD ADDR
SR 7,7 CLEAR R7

NEXTCHAR DS 0H
IC 7,0(5) GET A CHARACTER
SLL 7,24 CLEAR SECOND HEX DIGIT
SRL 7,28 FROM THE CHARACTER
STC 7,0(6) STORE FIRST HEX DIGIT
IC 7,0(5) GET THE CHARACTER
SLL 7,28 CLEAR THE FIRST DIGIT
SRL 7,28 FROM THE CHARACTER
STC 7,1(6) STORE SECONF HEX DIGIT
TR 0(2,6),=C′0123456789ABCDEF′ CONVERT HEX TO CHAR
LA 6,2(,6) INCREASE POINTER ON THE CARD
LA 5,1(,5) AND IN THE INPUT AREA
S 1,=F′ 2 ′ SPACE REMAINING DECREASED BY TWO
BP NEXTCHAC CHECK THE NEXT CHAR
PUT PUNCH CARD FULL, PUNCH THE CARD

Appendix C. VSE AFP Sample Programs 185

MVC IO1(80),=CL80′ ′ CLEAR OUTPUT
LA 6,IO1 RESET POINTER
LA 1,80 AND SPACE REAMINING

NEXTCHAC DS 0H
BCT 4,NEXTCHAR CHECK IF STILL CHARACTERS IN INPUT

PRRET DS 0H RETURN
ST 1,CARDREM SAVE SPACE REMAINING
ST 6,CARDPOS AND POSITION on THE CARD
L 5,PR5SAVE LOAD THE
L 4,PR4SAVE SAVED
L 2,PR2SAVE REGISTERS
BR 10 BRANCH BACK TO CALLING ROUTINE

PARMMOVE MVC PARMAREA(1),0(1)
DS 0F

IOC1 DS 0CL80
IO1 DC CL80′ ′
SAVEA DS 9D
FDEFNAME DS D
CARDREM DS F
CARDPOS DS F
PR5SAVE DS F
PR4SAVE DS F
PR2SAVE DS F
MODADDR DS F
MODLENGT DS F
MODENTRY DS F
HLENGTH DS H
PARMAREA DS 0CL100

DC 100C′ ′
LTORG

PUNCH DTFCD DEVADDR=SYSPCH,DEVICE=1442,IOAREA1=IOC1,BLKSIZE=80, C
TYPEFLE=OUTPUT,RECFORM=FIXUNB

END
/*
// EXEC LNKEDT
// LIBDEF PHASE,SEARCH=PRD2.AFP
// EXEC ,PARM=′ T1000437′
/*
/&
* $$ EOJ

C.11 Program to Create the Resource from a Downloaded Punch File
This program creates the resource using the hexadecimal punch file created in
the VSE system and then downloaded to the OS/2 system. The program
receives the names of the input and output files as parameters. The output file
is a resource that can be added to the library in PSF/2 by using the RLADD
command.

C.11.1 C Coding for OS/2
#include <stdio.h>
#include <io.h>
#include <ctype.h>
#include <string.h>
FILE *stream;
FILE *stream2;
char namebuf[15];

186 AFP Printing in an IBM Cross-System Environment

char namebuf2[15];
char *name;
char *name2;
char testbuf[5]=″0x ″ ;
main(argc,argv)
int argc;
char *argv[];
{
char *stopstring;
char buffer[10];
char ch;
int numread;
unsigned long il;
/* if input file name was not given obtain it */
if (argc > 1)
name = argv[1];
else {
printf (″Enter input file name: ″) ;
name = gets(namebuf);
}
/* if output file name was not given obtain it */
if (argc > 2)
name2 = argv[2];
else {
printf (″Enter output file name: ″) ;
name2 = gets(namebuf2);
}
if ((stream = fopen(name,″rb″)) == NULL) return(1);
if ((stream2 = fopen(name2,″wb″)) == NULL) return(2);
/* get two hex digits (discard CRLF, end with blank) */
/* convert them to one character and write to the output */
hachar:
 ch=getc(stream);
if (ch==0x20) goto finish;
 testbuf[2]=ch;
 if (feof(stream2)) goto finish;
 ch=getc(stream);
 testbuf[3]=ch;
 if (testbuf[2]==0x0a) goto hachar;
 if (testbuf[2]==0x0d) goto hachar;
 if (feof(stream)) goto finish;
il=strtoul(testbuf,&stopstring,16);
buffer[0]=il;
numread=fwrite(buffer,1,1,stream2);
goto hachar;
finish:
return(0);
}

Appendix C. VSE AFP Sample Programs 187

188 AFP Printing in an IBM Cross-System Environment

Appendix D. OS/400 AFP Sample Programs

This chapter documents two utility programs that we used for the OS/400
platform to print our test cases.

All of the coding documented in this chapter is presented as sample coding only.

Be sure that you have read the information in “Special Notices” on page ix.

The following table serves as an index to the various routines.

Name Language Description Page

AS4002OS C
This routine removes the extra blanks from an AFP resource
transferred from the host system to an OS/2 system.

189

OS22AS4 C
This routine pads the AFP records in an AFP resource in the OS/2
system with trailing blanks.

190

D.1 AS4002OS Routine to Remove Extra Blanks
As AFP files are transferred from an AS/400 system, the files are padded with
trailing blanks. PSF/2 does not accept resources in this format. This C language
program removes the blanks from each AFP record, so the resulting resource is
usablo in PSF/2.

D.1.1 AS4002OS C Program
#include <stdio.h>
#include <io.h>
#include <ctype.h>
#include <string.h>

FILE *stream;
FILE *stream2;
char namebuf[15];
char namebuf2[15];
char *name;
char *name2;
char ch;
char ch1;
char ch2;
int numread;
int i;
int j;
char buffer[80];

main(argc,argv)
int argc;
char *argv[];
{

/* Get a file if one was not specified as an argument */

if (argc > 1)
name = argv[1];
else {

 printf (″Enter output file name: ″) ;

 Copyright IBM Corp. 1994 189

name = gets(namebuf);
}

if (argc > 2)
name2 = argv[2];
else {
printf(″Enter input file name: ″) ;
name2 = gets(namebuf2);
}

/* Open files in binary mode */

if ((stream = fopen(name,″wb″)) == NULL)
return (1);
if ((stream2 = fopen(name2,″rb″)) == NULL)\
return (1);

 hachar:
ch=getc(stream2);
if (feof(stream2))
{goto finish;}
if (ch == 0x5a)

{
buffer[0]=ch;
numread=fwrite(buffer,1,1,stream);
ch1=getc(stream2);
ch2=getc(stream2);
buffer[0]=ch1;
buffer[1]=ch2;
numread=fwrite(buffer,1,2,stream);
j=ch1*256+ch2;
for (i=1;i<j-1;i++)
{buffer[0]=getc(stream2);
numread = fwrite(buffer,1,1,stream);}
}
goto hachar;

finish:
return (0);

}

D.2 Program to Pad a Resource with Blanks
Physical file members used for creating AFP resources in an AS/400 system
have to padded with blanks. The file has also to have fixed length records. This
routine pads records in an AFP resource in OS/2 with trailing blanks. The record
size in this program is set to 16384 bytes, which should be enough to
accommodate any AFP resource.

D.2.1 OS22AS4 C Program
#include <stdio.h>
#include <io.h>
#include <ctype.h>
#include <string.h>

FILE *stream;
FILE *stream2;
char namebuf[15];
char namebuf2[15];
char *name;

190 AFP Printing in an IBM Cross-System Environment

char *name2;
char ch;
char ch1;
char ch2;

 int numread;
 int i;
 int j;
 char buffer[80];
main(argc,argv)
int argc;
char *argv[];
{

/* Get a file if one was not specified as an argument */

if (argc > 1)
name = argv[1];
else {

 printf (″Enter output file name: ″) ;
name = gets(namebuf);
}

if (argc > 2)
name2 = argv[2];
else {
printf(″Enter input file name: ″) ;
name2 = gets(namebuf2);
}

/* Open files in binary mode */

if ((stream = fopen(name,″wb″)) == NULL)
return (1);
if ((stream2 = fopen(name2,″rb″)) == NULL)\
return (1);

 hachar:
ch=getc(stream2);
if (feof(stream2))
{goto finish;}
if (ch == 0x5a)

{
buffer[0]=ch;
numread=fwrite(buffer,1,1,stream);
ch1=getc(stream2);
ch2=getc(stream2);
buffer[0]=ch1;
buffer[1]=ch2;
numread=fwrite(buffer,1,2,stream);
j=ch1*256+ch2;
for (i=1;i<j-1;i++)
{buffer[0]=getc(stream2);
numread = fwrite(buffer,1,1,stream);}

for (i=1;i<16384-j;i++)
{buffer[0]=0x40;
numread = fwrite(buffer,1,1,stream);}
}
goto hachar;

finish:
return (0);

}

Appendix D. OS/400 AFP Sample Programs 191

192 AFP Printing in an IBM Cross-System Environment

List of Abbreviations

ACIF AFP Conversion and Indexing
Facility (PSF)

AFP advanced function
presentation (printing)

AFPDS advanced function printing
data stream

AIX advanced interactive
executive (IBM ′s flavor of
UNIX)

API application program interface

APPC advanced
program-to-program
communication

ASA American Standards
Association

ASCII American National Standard
Code for Information
Interchange

BCOCA Bar Code Object Content
Architecture (IBM trademark)

CC carriage control

CD-ROM (optically read) compact disk
- read only memory

CICS customer information control
system (IBM)

CMS conversational monitor
system (VM-based software,
IBM)

CP command processor

CRLF carriage return/l ine feed

DOS disk operating system (PC
and 370 system)

FORMDEF form definit ion

FTP f i le transfer program

GDDM graphical data display
manager (IBM program
product)

GOCA graphics object content
architecture

IBM International Business
Machines Corporation

ICCF interactive computing and
control facil ity

IEBCOPY util ity program (MVS)

IEBGENER util ity program (MVS)

IMS information management
system

IPDS intell igent printer data stream
(IBM)

IPS include page segment (AFP
command)

ISPF interactive system
productivity facil ity (MVS &
VM)

ISPF interactive structured
programming faci l i ty

ITSO International Technical
Support Organization

JCL job control language (MVS
and VSE)

JECL job entry control language

JES job entry subsystem (MVS
counterpart to VM ′s RSCS)

KB kilobyte, 1000 bytes (1024
bytes memory) case should
be Kb

LAN local area network

LPD l ine printer daemon (AIX)

LPR l ine printer control program
and spooler (AIX)

LRECL logical record length

MVS multiple virtual storage (IBM
System 370 & 390)

MVS/ESA multiple virtual
storage/enterprise systems
architecture (IBM)

NJE network job entry

OGL overlay generation language

PAGEDEF page definition

PC Personal Computer (IBM)

PDM printer driver machine

PM presentation manager (SAA)

PNET power networking interface

POWER priority output writers,
execution processor, and
input readers (DOS)

PRPQ programming request for
price quotation (IBM custom
built program products)

PSF Print Services Facility (IBM
program product)

PSF/MVS Print Services Facility/MVS

PSF/VM Print Services Facility/VM

 Copyright IBM Corp. 1994 193

PSF/VSE Print Services Facility/virtual
storage extended

PTF program temporary f ix

RDR reader

RECFM record format

REXX restructured extended
executor language

RSCS remote spooling
communications subsystem
(VM ′s counterpart to MVS
JES NJE)

SAA Systems Application
Architecture

SCS SNA character string

SFCM spool fi le conversion machine

SMF system measurement facil i ty

SNA systems network architecture
(IBM)

TCP/IP Transmission Control
Protocol/Internet Protocol

TRC table reference character
(3800)

TSO t ime sharing option

UCS universal character set

VAFP virtual advanced function
printer (VM)

VBA variable blocked (with ANSI
carriage control characters)

VBM variable blocked (with
machine carriage control
characters)

VM virtual machine (IBM System
370 & 390)

VM/ESA virtual machine/enterprise
systems architecture (IBM)

VSE virtual storage extended (IBM
System/370)

VSE/POWER virtual storage
extended/priority output
writers, execution processors,
and input readers (IBM)

XMIT t ransmit

194 AFP Printing in an IBM Cross-System Environment

Index

A
abbreviations 193
accounting

MVS 13
ACIF 3, 23, 24
acronyms 193
Advanced Function Printing Util ity 8
AFP Application Programming Interface 3
AFP Conversion and Indexing Facility 3, 23, 24
AFPAPI 3
AFPU 8, 49, 52, 55, 57
ALLOC 13
APPC 61
APRINT 23, 36, 60, 66, 67
APSUX04 15, 28
APSUX07 15, 28
APTRCONV 19, 33
ASCII data, Printing of

From OS/2 to OS/2
With APRINT 68

ASCII print data, Description of 4
AUTOSTART 39, 40, 42, 43, 44

B
banner pages

MVS 13
OS/2 67, 70
OS/400 47
VM 26
VSE 40

Bar Code Object 3
BCOCA 6, 18, 39

C
CICS 12
COMPMSG 17
COPY 35
CP SPOOL 25, 27, 29, 31, 34
CP TAG DEV 25, 27, 29, 31, 34
CPYFRMTAP 21

D
DEST 40, 42, 43, 44
Differences between Systems 5
Distributed Print Function 6, 22, 36, 40, 45, 58
DOS PRINT 67, 69, 70
DPF 6, 22, 36, 40, 45, 58
DSCB 15
DTFPR 6
DYNALLOC 12

F
f i le transfer 22, 36, 59, 62
Flat file, Description of 2
Flat file, Printing of

From MVS to MVS
With a batch job 14

From OS/2 to OS/2
With APRINT 68
With File Redirection 70

From VM to MVS
With Print and PSF Command 27, 29

From VM to OS/400
With Print and PSF Command 34

From VM to VSE
With Print and PSF Command 32

From VSE to AS/400
With POWER JECL 44

From VSE to MVS
With POWER JECL 41

From VSE to VM
With POWER JECL 42

From VSE to VSE
With POWER JECL 43

Full AFPDS, Description of 3
Full AFPDS, Printing of

From MVS to MVS
With a batch job 15

From MVS to OS/400
With a batch job 20

From MVS to VM
With a batch job 17

From MVS to VSE
With a batch job 19

From OS/2 to OS/2
With APRINT 68
With File Redirection 70

From OS/400 to MVS
With SNDNETSPLF 50

From OS/400 to OS/400
With SNDNETSPLF 58

From OS/400 to VM
With SNDNETSPLF 53

From OS/400 to VSE
With SNDNETSPLF 56

From VM to MVS
With Print and PSF command 28, 30

From VM to OS/400
With Print and PSF command 34

From VM to VSE
With Print and PSF command 32

From VSE to AS/400
With POWER JECL 44

From VSE to MVS
With POWER JECL 41

 Copyright IBM Corp. 1994 195

Full AFPDS, Printing of (continued)
From VSE to VM

With POWER JECL 42
From VSE to VSE

With POWER JECL 43

G
GOCA 6, 18, 39
Graphic Object 3

H
header pages 13

I
ICCF 19
IDM 2
IEBCOPY 15, 16, 18
IEBGENER 16, 17, 18
ILRPACK 15, 24
Image Object 2
IMM 2
IMS 13
Include Page Overlay 2
Include Page Segment 2
inline resource 6, 15, 17, 19, 20, 24, 27, 28
Invoke Data Map 2
Invoke Medium Map 2
IPO 2
IPS 2
ISPF 11, 17
ISPF Print 13
IWS 65

J
JECL 40, 41, 43, 44
JES2 5, 12
JES3 5, 12

L
LAN 61, 66
LDEST 40, 42, 43, 44
Line data and image objects, Printing of

From MVS to MVS
With a batch job 15

From MVS to OS/400
With a batch job 20

From MVS to VM
With a batch job 17

From MVS to VSE
With a batch job 18

From VM to MVS
With Print and PSF Command 27, 30

From VM to OS/400
With Print and PSF Command 34

Line data and image objects, Printing of (continued)
From VM to VSE

With Print and PSF Command 32
From VSE to AS/400

With POWER JECL 44
From VSE to MVS

With POWER JECL 41
From VSE to VM

With POWER JECL 42
From VSE to VSE

With POWER JECL 43
Line data and structured field records, Printing of

From MVS to MVS
With a batch job 15

From MVS to OS/400
With a batch job 20

From MVS to VM
With a batch job 17

From MVS to VSE
With a batch job 18

From OS/400 to MVS
With SNDNETSPLF 50

From OS/400 to OS/400
With SNDNETSPLF 58

From OS/400 to VM
With SNDNETSPLF 52

From OS/400 to VSE
With SNDNETSPLF 55

From VM to MVS
With Print and PSF Command 27, 30

From VM to OS/400
With Print and PSF Command 34

From VM to VSE
With Print and PSF Command 32

From VSE to AS/400
With POWER JECL 44

From VSE to MVS
With POWER JECL 41

From VSE to VM
With POWER JECL 42

From VSE to VSE
With POWER JECL 43

Line data mixed with complete objects, Description
of 3

Line data referencing external resources, Printing of
From MVS to MVS

With a batch job 15
From MVS to OS/400

With a batch job 20
From MVS to VM

With a batch job 17
From MVS to VSE

With a batch job 18
From VM to MVS

With Print and PSF Command 27, 30
From VM to OS/400

With Print and PSF Command 34
From VM to VSE

With Print and PSF Command 32

196 AFP Printing in an IBM Cross-System Environment

Line data referencing external resources, Printing of
(continued)

From VSE to AS/400
With POWER JECL 44

From VSE to MVS
With POWER JECL 41

From VSE to VM
With POWER JECL 42

From VSE to VSE
With POWER JECL 43

Line data with inline fonts, Description of 3
Line data with inline fonts, Printing of

From MVS to MVS
With a batch job 15

From MVS to OS/400
With a batch job 20

From MVS to VM
With a batch job 17

From MVS to VSE
With a batch job 19

From OS/400 to MVS
With SNDNETSPLF 50

From OS/400 to OS/400
With SNDNETSPLF 58

From OS/400 to VM
With SNDNETSPLF 53

From OS/400 to VSE
With SNDNETSPLF 56

From VM to MVS
With Print and PSF Command 27, 30

From VM to OS/400
With Print and PSF Command 34

From VM to VSE
With Print and PSF Command 32

From VSE to AS/400
With POWER JECL 44

From VSE to MVS
With POWER JECL 41

From VSE to VM
With POWER JECL 42

From VSE to VSE
With POWER JECL 43

Line data with inline PAGEDEF/FORMDEF, Description
of 3

Line data with inline PAGEDEF/FORMDEF, Printing of
From MVS to MVS

With a batch job 15
From MVS to OS/400

With a batch job 20
From MVS to VM

With a batch job 17
From MVS to VSE

With a batch job 19
From OS/400 to MVS

With SNDNETSPLF 50
From OS/400 to OS/400

With SNDNETSPLF 58
From OS/400 to VM

With SNDNETSPLF 53

Line data with inline PAGEDEF/FORMDEF, Printing of
(continued)

From OS/400 to VSE
With SNDNETSPLF 56

From VM to MVS
With Print and PSF Command 27, 30

From VM to OS/400
With Print and PSF Command 34

From VM to VSE
With Print and PSF Command 32

From VSE to AS/400
With POWER JECL 44

From VSE to MVS
With POWER JECL 41

From VSE to VM
With POWER JECL 42

From VSE to VSE
With POWER JECL 43

Line data with reference to external controls,
Description of 2

Line data with structured fields, Description of 2
Line data, Description of 2
Line data, Printing of

From MVS to MVS
With a batch job 15

From MVS to OS/400
With a batch job 20

From MVS to VM
With a batch job 17

From MVS to VSE
With a batch job 18

From VM to MVS
With Print and PSF Command 27, 29

From VM to OS/400
With Print and PSF Command 34

From VM to VSE
With Print and PSF Command 32

From VSE to AS/400
With POWER JECL 44

From VSE to MVS
With POWER JECL 41

From VSE to VM
With POWER JECL 42

From VSE to VSE
With POWER JECL 43

LN2AFPDS 3, 23, 24
LPD 1
LPR 1, 62

M
migrating resources

inline 9
manually 9
through network 9

Migrating Resources between Systems 7
Migration of print resources

From MVS to OS/2 24
From MVS to OS/400 20

Index 197

Migration of print resources (continued)
From MVS to VSE 19
From OS/2 to MVS 63
From OS/2 to OS/2 71
From OS/2 to OS/400 66
From OS/2 to VM 64
From OS/2 to VSE 65
From OS/400 to MVS 51
From OS/400 to OS/2 60
From OS/400 to OS/400 58
From OS/400 to VM 54
From OS/400 to VSE 56
From VM to MVS 28
From VM to OS/2 38
From VM to OS/400 35
From VM to VM 30
From VM to VSE 33
From VSE to AS/400 44
From VSE to MVS 41
From VSE to OS/2 45
From VSE to VM 42
From VSE to VSE 43

MODCA 4
MOVEFILE 17, 35, 42
MVS 5

N
naming of resources

MVS 7, 14
OS/2 8
OS/400 8
VM 7, 26
VSE 8

Network Job Entry 1
NJE 1, 14, 18, 22, 26
NOTIFY 14

O
OS/2 5, 61
OS/2 Communication Manager 22
OS/2 COPY 67, 69
OS/2 TYPE 67, 69
OS/400 5, 33
OS/400 PC Support 66
OUTDES 13
OUTDESCR 12
OUTPUT 11, 12, 13, 14, 15, 20

P
PDEST 42
PDM options 17
PFD 8
PM metafile, Description of 4
PNET 31, 39
POWER 6, 31, 39, 40, 41, 43, 44

POWER JECL 39
Presentation Manager Metafiles, Printing of

From OS/2 to OS/2
With APRINT 68
With File Redirection 70

Presentation Text 2
PRINT 25, 27, 29, 32, 34
Printing from a VM Host 25
Printing from a VSE Host 39
Printing from an MVS Host 11
Printing from an OS/2 Host 61
Printing from an OS/400 Host 47
Printing from MVS to MVS 14
Printing from MVS to OS/2 22
Printing from MVS to OS/400 19
Printing from MVS to VM 16
Printing from MVS to VSE 18
Printing from OS/2 to MVS 63
Printing from OS/2 to OS/2 66
Printing from OS/2 to OS/400 66
Printing from OS/2 to VM 64
Printing from OS/2 to VSE 65
Printing from OS/400 to MVS 49
Printing from OS/400 to OS/2 58
Printing from OS/400 to OS/400 57
Printing from OS/400 to VM 52
Printing from OS/400 to VSE 54
Printing from VM to MVS 26
Printing from VM to OS/2 36
Printing from VM to OS/400 33
Printing from VM to VM 29
Printing from VM to VSE 31
Printing from VSE to AS/400 44
Printing from VSE to MVS 40
Printing from VSE to OS/2 45
Printing from VSE to VM 41
Printing from VSE to VSE 43
PrintManager 67
PRTAFPDTA 19
PSF command 25, 27, 29, 32, 34
PSF/2 66, 67
PTX 2

Q
QuietWriter ASCII 4
QuietWriter ASCII data, Printing of

From OS/2 to OS/2
With APRINT 68

R
RCVNETF 19, 21, 35
RECEIVE 15, 17, 24, 31
resources

MVS 7
OS/2 8
OS/400 8
VM 7

198 AFP Printing in an IBM Cross-System Environment

resources (continued)
VSE 7

Restrictions in Systems 5
RLADD 8, 24, 60, 71
RSCS 26, 29, 31, 33

S
SCS data, Description of 3
SCS, Printing of

From OS/400 to MVS
With SNDNETSPLF 50

From OS/400 to OS/400
With SNDNETSPLF 58

From OS/400 to VM
With SNDNETSPLF 52

From OS/400 to VSE
With SNDNETSPLF 55

SENDFILE 31
shared spool 43
SMF 13
SNDNETSPLF 49, 52, 55, 57
SPOOL API 13
SPPOLOPEN 12

T
TAPE DUMP 31
TAPE LOAD 31
TCP/IP 1, 22, 61
Transmission Control Protocol/Internet Protocol 1

V
VAFP 6
VM 5, 6, 25
VM/ESA 6
VM/MVS Bridge 49, 52
VM/XA 6
VSE 5, 6, 39

W
WRKOUTQ 49, 52, 55, 57

X
XMIT 15, 17, 19, 21

Index 199

ITSO Technical Bulletin Evaluation RED000

AFP Printing in an IBM Cross-System Environment

Publication No. GG24-3765-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-3765-00 IBML

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Mail Station P099
522 SOUTH ROAD
POUGHKEEPSIE NY
USA 12601-5400

Fold and Tape Please do not staple Fold and Tape

GG24-3765-00

IBML

Printed in U.S.A.

GG24-3765-00

	AFP Printing in an IBM Cross-System Environment
	Abstract
	Contents
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	Advanced Function Printing
	Printing in AS/ 400
	Printing in OS/ 2
	Printing in MVS
	Printing in VM
	Printing in VSE
	Print Services Facility/ 2
	International Technical Support Organization Publications
	Referenced Products
	Acknowledgments

	Chapter 1. Introduction
	The Scope of the Document
	Methods of Communication Between Platforms
	Test Cases

	Chapter 2. Differences and Restrictions
	Differences in AFP Implementations
	Differences in Operations
	Restrictions
	PSF/ 2 and Distributed Print Function

	Chapter 3. Migrating Resources between Systems
	How Resources are Stored in Different Systems
	Resources in MVS
	Resources in VM
	Resources in VSE
	Resources in OS/ 400
	Resources in OS/ 2
	Migrating Resources
	Moving Resources Manually
	Sending Resources through the Network as Files
	Sending Resources Inline in a Print File

	Chapter 4. Printing from an MVS Host
	Submitting a Print Request
	Job Submission
	Dynamic Allocation of Sysout Data Sets
	Printing from the Command Level
	Banner Pages in MVS
	Accounting in MVS
	Naming of Resources
	Printing from MVS to MVS
	Print Request Functions
	Resource Migration from MVS to MVS
	Printing from MVS to VM
	Print Request Functions
	Resource Migration from MVS to VM
	Printing from MVS to VSE
	Print Request Functions
	Migration of Print Resources from MVS to VSE
	Printing from MVS to OS/ 400
	Print Request functions
	Printing from MVS to OS/ 2
	Technical Hurdles
	Print Request Functions
	Print Resource Migration

	Chapter 5. Printing from a VM Host
	Submitting a Print Request
	Printing Using PRINT and PSF Commands
	Naming of Resources
	Printing from VM to MVS
	Print Request Functions
	Print Resource Migration from VM to MVS
	Printing from VM to VM
	Print Request Functions
	Print Resource Migration from VM to VM
	Printing from VM to VSE
	Print Request Functions
	Resource Migration from VM to VSE
	Printing from VM to OS/ 400
	Print Request Functions
	Print Resource Migration from VM to OS/ 400
	Printing from VM to OS/ 2
	Technical Hurdles
	Print Request Functions
	Print Resource Migration from VM to OS/ 2

	Chapter 6. Printing from a VSE Host
	AFP Printing in VSE
	Printing from VSE to MVS
	Print Request Functions
	Print Resource Migration
	Printing from VSE to VM
	Print Request Functions
	Print Resource Migration
	Printing from VSE to VSE
	Print Request Functions
	Print Resource Migration
	Printing from VSE to AS/ 400
	Print Request Functions
	Print Resource Migration
	Printing from VSE to OS/ 2
	Print Resource Migration

	Chapter 7. Printing from an OS/400 Host
	Print Request Functions
	Using Send Network Spooled File (SNDNETSPLF) Command
	Printing Using SAA PrintManager
	Printing from OS/ 400 to MVS
	Print Request Functions
	Migrating Resources from OS/ 400 to MVS
	Printing from OS/ 400 to VM
	Print Request Functions
	Migrating Resources from OS/ 400 to VM
	Printing from OS/ 400 to VSE
	Print Request Functions
	Migrating Resources from OS/ 400 to VSE
	Printing from OS/ 400 to OS/ 400
	Print Request Functions
	Migrating Resources from OS/ 400 to OS/ 400
	Printing from OS/ 400 to OS/ 2
	Technical Hurdles
	Print Request Functions
	Print Resource Migration from OS/ 400 to OS/ 2

	Chapter 8. Printing from an OS/2 Host
	File Transfer Protocol Technical Hurdles
	Printing from OS/ 2 to MVS
	Print Request Functions
	Print Resource Migration from OS/ 2 to MVS
	Printing from OS/ 2 to VM
	Print Request Functions
	Print Resource Migration from OS/ 2 to VM
	Printing from OS/ 2 to VSE
	Print Resource Migration
	Printing from OS/ 2 to OS/ 400
	Migration of Print Resources
	Printing from OS/ 2 to OS/ 2
	Print Request Functions
	Print Resource Migration

	Appendix A. PSF/MVS Exits and MVS Sample Programs
	A.1 AFPDSFIX Routine
	A.1.1 REXX Coding
	A.2 Routine to Extract AFP Inline Resources
	A.2.1 REXX Coding
	A.3 PSF/ MVS Inline Resource Exit APSUX04
	A. 3.1 Sample Assembler Code
	A.4 PSF/ MVS Inline Resource Exit APSUX07
	A. 4.1 Sample Assembler Code
	A.5 ILRPACK Program
	A. 5.1 Sample Assembler Code
	A.6 LN2AFPDS Program
	A.6.1 Main PL/ I Coding
	A. 6.2 Included PL/ I Definitions

	Appendix B. VM AFP Sample Programs
	B. 1 AFPDSFIX routine for VM
	B. 1.1 REXX Coding
	B. 2 OS/ 400 Resource Converter for VM
	B. 2.1 REXX Coding

	Appendix C. VSE AFP Sample Programs
	C. 1 Program to Punch an AFP Resource for MVS
	C. 1.1 IBM S/ 370 Assembler Coding for VSE
	C. 2 Program to Punch an AFP Resource for VM
	C. 2.1 IBM S/ 370 Assembler Coding for VSE
	C. 3 Program to Create a Resource from VSE Punch Output
	C. 3.1 IBM S/ 370 Assembler Coding for MVS
	C. 4 Program to Punch an AFP Resource Inline
	C. 4.1 IBM S/ 370 Assembler Coding for VSE
	C. 5 Program to Create a Resource in VM
	C. 5.1 REXX EXEC Coding for VM
	C. 6 Program to Create a Tape File for MVS or VM
	C. 6.1 IBM S/ 370 Assembler Coding for VSE
	C. 7 Program to Create a Tape File for AS/ 400
	C. 7.1 IBM S/ 370 Assembler Coding for VSE
	C. 8 Program to Create a Job for VSE
	C. 8.1 C Coding for OS/ 2
	C. 9 Program to Create the Linkage Editor Job
	C. 9.1 IBM S/ 370 Assembler Coding for VSE
	C. 10 Program to Create a Punch File from a Resource
	C. 10.1 IBM S/ 370 Assembler Coding for VSE
	C. 11 Program to Create the Resource from a Downloaded Punch File
	C. 11.1 C Coding for OS/ 2

	Appendix D. OS/400 AFP Sample Programs
	D. 1 AS4002OS Routine to Remove Extra Blanks
	D. 1.1 AS4002OS C Program
	D. 2 Program to Pad a Resource with Blanks
	D. 2.1 OS22AS4 C Program

	List of Abbreviations
	Index
	A F
	B
	C
	D
	G
	H
	I
	J
	L
	M
	N
	O
	Q
	P R
	S
	T
	V
	W
	X
	ITSO Technical Bulletin Evaluation RED000

