
SG24-4805-00

A Guide to the Internet Connection Servers

October 1996

International Technical Support Organization

A Guide to the Internet Connection Servers

October 1996

SG24-4805-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 305.

First Edition (October 1996)

This edition applies to Version 4.1 of IBM Internet Connection Server.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface . vii
How This Redbook Is Organized . vii
The Team That Wrote This Redbook . viii
Comments Welcome . vii i

Chapter 1. The Internet Connection Family . 1

Chapter 2. Internet Concepts . 5
2.1 TCP/IP . 5

2.1.1 TCP/IP Layers . 6
2.1.2 Request for Comments (RFC) . 6
2.1.3 TCP/IP Operation . 6
2.1.4 Applications . 7
2.1.5 Transport Layer . 10
2.1.6 Internet Layer . 10
2.1.7 Network Layer . 11

2.2 HTTP . 12
2.3 HTML . 14

2.3.1 HTML Characteristics . 14
2.3.2 Creating an HTML Document . 14
2.3.3 HTML Tags . 15
2.3.4 Sample Document . 29
2.3.5 Netscape-Specific Extensions . 30
2.3.6 Microsoft Internet-Specific Extensions 31
2.3.7 Creating Effective Online Information 31
2.3.8 HTML Editing Tools . 34
2.3.9 Icons and Cliparts . 35
2.3.10 Best of the Web . 35

2.4 Security . 36
2.4.1 Secure Sockets Layer (SSL) . 37
2.4.2 Secure HyperText Transport Protocol (S-HTTP) 37

2.5 Firewalls . 38
2.5.1 Proxy Servers . 40
2.5.2 SOCKS Servers . 40

2.6 Gateways . 41
2.6.1 DB2 WWW Connection . 42
2.6.2 CICS Internet Gateway . 42
2.6.3 MQSeries Internet Gateway . 43
2.6.4 IMS Internet Gateway . 43

2.7 Java . 43
2.8 Application Programming Interfaces . 44

2.8.1 Common Gateway Interface (CGI) . 45
2.8.2 Server-Side Include (SSI) . 45
2.8.3 Proprietary Application Programming Interface (API) 45
2.8.4 How to Choose a Programming Interface 46

Chapter 3. Web Browsers . 47
3.1 The Principles of Browsing . 47

3.1.1 Hypertext Transfer Protocol . 47
3.1.2 The Multipurpose Internet Mail Extensions (MIME) 52
3.1.3 HTML . 53

 Copyright IBM Corp. 1996 iii

3.2 The Features of a Good Web Browser . 53
3.2.1 Protocols . 53
3.2.2 HTML . 54
3.2.3 Java . 54
3.2.4 JavaScript . 54
3.2.5 ActiveX . 55
3.2.6 Security . 55
3.2.7 Network Security . 55

3.3 Available Browsers . 56
3.3.1 IBM WebExplorer . 56
3.3.2 Netscape Navigator . 56
3.3.3 Other Browsers and Ways to Surf the Net 56

Chapter 4. Internet Connection Servers - Installation and Configuration . . . 59
4.1 Standard Functions . 59
4.2 New Functions . 60
4.3 Export Version Restrictions . 61
4.4 Do I Need a Secure Server? . 61

4.4.1 Security Needs . 61
4.4.2 What Mechanisms Provide Security? 62
4.4.3 No Confidential Data on Your Web Server 63

4.5 Installing an Internet Connection Server . 63
4.5.1 AIX . 65
4.5.2 MVS/ESA . 71
4.5.3 AS/400 . 76
4.5.4 OS/2 Warp . 80
4.5.5 Windows NT . 90

4.6 Configuration . 96
4.6.1 Editing the HTTPD Configuration File 96
4.6.2 Using the Configuration and Administration Forms 100
4.6.3 How We Configured Our Server . 103
4.6.4 Key and Certificate Management . 133
4.6.5 Proxy Functions . 139
4.6.6 Tuning the Server . 144
4.6.7 Backup Procedures . 147
4.6.8 Logging Procedures . 148
4.6.9 AS/400 HTTP Server Configuration and Operation 165

Chapter 5. Establishing a Presence on the Internet 183
5.1 What May Be Presented on the Web? . 183
5.2 Why Should I Establish a Presence on the Web? 183
5.3 Can I Save Costs by Having a Web Presence? 184
5.4 Designing Your Web Page . 184

5.4.1 Text and Graphics Web Pages . 184
5.4.2 Form Web Pages . 189

5.5 Searching the Internet . 190
5.5.1 Search Engines . 190
5.5.2 Worms, Spiders and Robots . 191

5.6 Using URLs . 192
5.7 Example of Building a Presence on the Internet 192

5.7.1 The ABC Corporation Pages . 192
5.8 Changing Your Document Root Directory 195
5.9 Enhancing Your Web Server . 196

5.9.1 Clickable Image Maps - Shapes . 196
5.9.2 Clickable Image Maps - World Map 200

iv A Guide to the Internet Connection Servers

5.9.3 Animated Pages - Love All, Serve All 205
5.9.4 Server-Side Includes - Gods of Greek Mythology 209

Chapter 6. Establishing an Active Presence on the Internet 217
6.1 CGI Scripts . 217

6.1.1 Selecting Your Programming Language 218
6.1.2 Programming Languages . 219
6.1.3 Using Environment Variables - Welcome 220
6.1.4 Using Environment Variables - Switch 225
6.1.5 Linking to a CGI Script - Calendar . 228
6.1.6 Building On-The-Fly Pages - The Simpsons 234
6.1.7 Processing Forms - Calendar . 239
6.1.8 Configuration and Administration Forms 248
6.1.9 OS/400 CGI - ITSO Company . 253

6.2 API Applications . 274
6.2.1 API Development Rules and Principles 274
6.2.2 ICAPI Samples . 275
6.2.3 Using APIs versus Using CGIs . 288

Chapter 7. Enhancing Your Web Site with Java Applications 291
7.1 Java - Choosing a Presidential Candidate 291

7.1.1 Configuration . 292
7.1.2 Considerations . 292
7.1.3 Using the Application . 293

Appendix A. Two Simple Browsers and One Simple Server 299
A.1 A Basic REXX Browser . 299

A.1.1 The Basic Agent . 299
A.1.2 The Basic Browser . 300

A.2 A Basic Java Browser . 301
A.3 A Basic REXX Server . 302

Appendix B. Special Notices . 305

Appendix C. Related Publications . 309
C.1 International Technical Support Organization Publications 309
C.2 Redbooks on CD-ROMs . 309

How To Get ITSO Redbooks . 311
How IBM Employees Can Get ITSO Redbooks 311
How Customers Can Get ITSO Redbooks . 312
IBM Redbook Order Form . 313

Index . 315

Contents v

vi A Guide to the Internet Connection Servers

Preface

This redbook provides detailed coverage of the IBM Internet Connection Server
family of products. In particular, it focuses on the product′s implementation on
multiple platforms.

This redbook was written for Web site administrators and Internet specialists
who need to evaluate and implement the Internet Connection Server.

Many practical examples are presented that demonstrate how the Internet
Connection Server can be used to establish a presence and engage in electronic
commerce on the Internet.

Some knowledge of TCP/IP and the Internet is assumed. However, for the less
knowledgeable reader, we have included a chapter that covers basic concepts.

How This Redbook Is Organized
The redbook is organized as follows:

• Chapter 1, “The Internet Connection Family”

This chapter provides an introduction to the Internet Connection family of
products.

• Chapter 2, “Internet Concepts”

This chapter provides an overview of Internet concepts.

• Chapter 3, “Web Browsers”

This chapter covers the protocols and functions included in the most widely
used Web browsers.

• Chapter 4, “Internet Connection Servers - Installation and Configuration”

This chapter covers installation and configuration of the Internet Connection
server on a selection of the supported platforms.

• Chapter 5, “Establishing a Presence on the Internet”

This chapter covers the use of the Internet Connection server in establishing
a presence on the Internet.

• Chapter 6, “Establishing an Active Presence on the Internet”

This chapter covers the use of the Internet Connection server in establishing
an active presence on the Internet.

• Chapter 7, “Enhancing Your Web Site with Java Applications”

This chapter provides a practical example of the use of Java in establishing
an active presence on the Internet.

• Appendix A, “Two Simple Browsers and One Simple Server”

This appendix includes two basic browsers and a basic server that were
used during the project to investigate the HTTP protocol.

 Copyright IBM Corp. 1996 vii

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the Systems Management and Networking ITSO Center, Raleigh.

Eamon Murphy is a Senior International Technical Support Specialist at the
Systems Management and Networking ITSO Center, Raleigh. He graduated as a
Bachelor of Science in Mathematics and Economics from the University of
Sussex. He writes extensively and teaches IBM classes worldwide on all areas
of TCP/IP and Internet connectivity. Before joining the ITSO four years ago, he
worked in Customer Education, IBM UK as a Senior Networking Instructor.

Jean-Claude Andlauer is a Software Engineer in Availability Services in
Luxembourg. He graduated as a Telecommunications Engineer from the Swiss
Federal Institute of Technology in Lausanne. He has five years of experience in
the fields of TCP/IP networking and Web site administration. He has worked at
IBM for two years.

Catherine Ezvan is a Systems Engineer in the AIX National Support and Services
Center in France. She graduated as an Electronics Engineer from the Ecole
Superieure d′Electronique de l′Ouest in Angers, France. She has four years of
experience in the fields of TCP/IP networking, AIX administration and Web site
administration. She has worked at IBM for three years.

Manfred Genger is a Workstation Specialist in Technical Marketing in Germany.
He has one year of experience in the fields of TCP/IP networking and Web site
administration.

Tsuyoshi Kitazawa is a Systems Engineer in the NCC Systems Laboratory in
Japan. He graduated as a Master of Engineering from Tokyo Metropolitan
University. He has five years of experience in the fields of MVS systems
programming, TCP/IP networking and Web site administration. In particular, he
was a member of the team who were responsible for the IBM Japan home page.

Thanks to the following people for their invaluable contributions to this project:

David Boone
Systems Management and Networking ITSO Center, Raleigh.

Mike Ensley
Internet Servers Solutions Executive, IBM Raleigh

Ken Parzygnat
ICS Development, IBM Raleigh

Comments Welcome
We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the following
address:

 redbook@vnet.ibm.com

Your comments are important to us!

viii A Guide to the Internet Connection Servers

Chapter 1. The Internet Connection Family

As the title indicates, in this redbook we focus on the Internet Connection
servers. However, the IC servers are part of a larger family of products that also
includes firewalls, gateways, browsers, development tools and miscellaneous
others. In addition, there are selected products available from other vendors
which may be used to supplement the function of the IC family.

In this section we introduce the Internet Connection family and some
supplementary products in a series of tables. The tables show how these
products can be used to perform the following tasks:

• Create your own intranet and connect it safely to the Internet

• Establish a presence on the Internet

• Integrate your existing applications with the Internet

• Create new applications for the Internet

 Copyright IBM Corp. 1996 1

Table 1. Create Your Own Intranet and Connect It Safely to the Internet

Operating
System

TCP/IP Firewall Browser Secure
Browser

Phone

DOS TCP/IP for DOS n/a n/a n/a n/a

Windows 3.1x Internet
Connection for

Windows

n/a Netscape
Navigator

Netscape
Navigator

n/a

Windows 95 Internet
Connection for

Windows

n/a Netscape
Navigator

Netscape
Navigator

Internet
Connection

Phone

Windows NT Internet
Connection for

Windows

n/a Netscape
Navigator

Netscape
Navigator

n/a

OS/2 Warp TCP/IP for
OS/2

n/a Netscape
Navigator

Netscape
Navigator

n/a

AIX TCP/IP for AIX Secured
Network
Gateway

Netscape
Navigator

Netscape
Navigator

n/a

OS/390 TCP/IP for
MVS

n/a n/a n/a n/a

OS/400 TCP/IP for
OS/400

n/a n/a n/a n/a

VM TCP/IP for VM n/a n/a n/a n/a

Table 2. Establish a Presence on the Internet

Operating System Servers Secure Servers Commerce Servers

Windows 95 Internet Connection
Server for Windows 95

Internet Connection
Secure Server for

Windows 95

n/a

Windows NT Internet Connection
Server for Windows NT

Internet Connection
Secure Server for

Windows NT

Net.Commerce for
Windows NT

OS/2 Warp Internet Connection
Server for OS/2

Internet Connection
Secure Server for OS/2

Net.Commerce for OS/2

AIX Internet Connection
Server for AIX

Internet Connection
Secure Server for AIX

Net.Commerce for AIX

HP-UX Internet Connection
Server for HP-UX

Internet Connection
Secure Server for

HP-UX

Net.Commerce for
HP-UX

Solaris Internet Connection
Server for Solaris

Internet Connection
Secure Server for

Solaris

Net.Commerce for
Solaris

OS/390 Internet Connection
Server for MVS

Internet Connection
Secure Server for MVS

n/a

OS/400 Internet Connection
Server for OS/400

n/a n/a

2 A Guide to the Internet Connection Servers

Table 3. Integrate Your Existing Applications with the Internet

Operating
System

DB2 WWW
Gateway

CICS WWW
Gateway

CICS Client
for Java

MQSeries
WWW

Gateway

IMS WWW
Gateway

WWW
Bookserver

Windows NT DB2 WWW
Gateway for
Windows NT

CICS WWW
Gateway for
Windows NT

CICS Client
for Java for
Windows NT

n/a n/a n/a

OS/2 Warp DB2 WWW
Gateway for
OS/2 Warp

CICS WWW
Gateway for
OS/2 Warp

CICS Client
for Java for
OS/2 Warp

MQSeries
WWW

Gateway for
OS/2 Warp

n/a WWW
Bookserver

for OS/2

AIX DB2 WWW
Gateway for

AIX

CICS WWW
Gateway for

AIX

CICS Client
for Java for

AIX

MQSeries
WWW

Gateway for
AIX

n/a WWW
Bookserver

for AIX

HP-UX DB2 WWW
Gateway for

HP-UX

n/a n/a n/a n/a n/a

Solaris DB2 WWW
Gateway for

Solaris

n/a n/a n/a n/a n/a

OS/390 DB2 WWW
Gateway for

MVS

CICS WWW
Gateway for

MVS

n/a MQSeries
WWW

Gateway for
MVS

IMS WWW
Gateway for

MVS

WWW
Bookserver

for MVS

Table 4. Create New Applications for the Internet

Operating System Java Development Kit

Windows 3.1 Java Development Kit for Windows 3.1

OS/2 Warp Java Development Kit for OS/2

AIX Java Development Kit for AIX

OS/390 Java Development Kit for MVS

OS/400 Java Development Kit for OS/400

Chapter 1. The Internet Connection Family 3

4 A Guide to the Internet Connection Servers

Chapter 2. Internet Concepts

In this chapter we introduce some basic Internet concepts. Understanding these
concepts will help you to better appreciate the features and functions of the
Internet Connection servers.

The concepts introduced herein are:

• TCP/IP
• HTTP
• HTML
• Security
• Firewalls
• Gateways
• Java
• APIs

2.1 TCP/IP
In this section we introduce TCP/IP. For more information, refer to the redbook
TCP/IP Tutorial and Technical Overview, GG24-3376, published by Prentice Hall
as ISBN 0-13-460858-5.

TCP/IP is the acronym for Transmission Control Protocol and Internet Protocol.
TCP and IP are the two major protocols in a family of related protocols that is
generally referred to as the TCP/IP protocol suite. Because TCP/IP protocols are
widely used in the Internet, an alternative name is the Internet protocol suite.

The Internet protocol suite allows Internet-connected hosts to engage in such
activities as sharing files with other hosts, logging in to other hosts and many
other forms of cooperative processing.

TCP/IP was developed as the result of a project funded by the Defense Advanced
Research Projects Agency (DARPA) in the USA. The requirement was for a set
of open networking protocols which would foster communications between
affiliated defense, research and academic organizations. During the 1970s, the
set of protocols, originally known as Network Control Program (NCP), evolved so
that by the early 1980s, the TCP/IP-based Internet as we know it today was in
existence.

What has changed, particularly in the 1990s, is that the Internet is no longer
restricted to the research and defense industries but has been increasingly used
for general commercial purposes.

TCP/IP is a communication protocol which, like SNA, is based on layers. It
enables heterogeneous computers to communicate by performing
network-related processing such as message routing, network control, error
detection and correction.

 Copyright IBM Corp. 1996 5

2.1.1 TCP/IP Layers
In this section we describe the four TCP/IP layers.

• Application Layer

The application layer is provided by the program that uses TCP/IP for
communication. Examples of applications are Telnet, FTP, e-mail, Gopher
and SMTP.

• Transport Layer

The transport layer provides communication between application programs.
The applications may be on the same host or on different hosts. Multiple
applications can be supported simultaneously. The transport layer is
responsible for providing a reliable exchange of information. The main
transport layer protocol is TCP. Another is User Datagram Protocol (UDP),
which provides a connectionless service in comparison to TCP, which
provides a connection-oriented service.

• Internet Layer

The Internet layer provides communication between computers. Part of
communicating messages between computers is a routing function which
ensures that messages will be correctly delivered to their destination. The
Internet Protocol (IP) provides this routing function. Examples of Internet
layers are IP, ICMP, IGMP, ARP and RARP.

• Network Layer

The network layer is implemented by the physical network that connects the
computers. Examples are X.25, ISDN, Ethernet, token-ring and ATM.

2.1.2 Request for Comments (RFC)
Internet standards are called RFCs or Requests for Comments. A proposed
standard is initially issued as a proposal and has an RFC number. When it is
finally accepted, it is added to official Internet protocols but is still referred to by
its RFC number. We found databases that contain the RFCs at:

http://ds.internic.net
http://www.internic.net

or

http://www.nic.ch/newdom-other.htm

which has pointers to European, Asian and American network centers that may
also have useful reference data.

2.1.3 TCP/IP Operation
TCP/IP is built on connectionless technology. Information is transferred as a
sequence of datagrams. A datagram is a collection of data that is sent as a
single message. Each of these datagrams is sent through the network
individually. The datagrams are sent in transit; the network does not know that
there is any connection between them. It is possible that datagram 10 will arrive
before datagram 5. It is also possible that somewhere in the network an error
will occur and a datagram will not get through at all. In that case, that datagram
has to be sent again.

An IP datagram can cross different physical networks. Physical networks have a
maximum frame size, called the Maximum Transmission Unit (MTU). MTU limits

6 A Guide to the Internet Connection Servers

the length of a datagram that can be placed in one physical frame. IP requires
that each link has an MTU of at least 68 bytes, so if any network provides a
lower value than this, fragmentation and reassembly must be implemented in the
network interface layer in a way that is transparent to IP.

The terms datagram and packet are often used interchangeably. To be precise a
datagram is the unit of data transfer in a TCP/IP context. A packet is the unit of
data transfer in a network layer context.

TCP is responsible for breaking up the message into datagrams, reassembling
them at the other end, resending anything that gets lost and putting things back
in the right order.

IP is responsible for routing individual datagrams. TCP passes IP a datagram
with a destination. IP identifies in its routing table the first host in the path to the
destination host and sends the datagram. This process is then repeated by IP in
the first host and all subsequent hosts until the datagram reaches its destination.

2.1.4 Applications
In this section we describe some of the most commonly used TCP/IP
applications.

2.1.4.1 File Transfer Protocol (FTP)
Files may be transferred between hosts using the file transfer protocol (FTP).
FTP is designed in accordance with the client/server model: if both client and
server components of FTP are provided on a host then file transfer in both
directions is possible. By prompting for a user ID and a password security is
provided.

FTP is built on the services of TCP in the transport layer. FTP transfers files as
either ASCII characters or binary data. ASCII characters are used to transfer
data sets that contain only text characters. FTP provides functions, such as
listing remote directories, changing the current remote directory, creating and
removing remote directories and transferring one or more files in a single
request. For more information about FTP, see RFC 959.

2.1.4.2 Telnet
Telnet enables a user to log in to other computers on the network. By specifying
a computer on the network a connection will be established. Once the
connection is done, anything you type is sent to the computer. The connection to
the remote computer behaves much like a dial-up connection. For example, the
remote computer asks for a user ID and password as would be done with direct
access to the computer. There are Telnet implementations for 3270 and 5250
emulation available in the IBM TCP/IP products.

Telnet is built on the services of TCP in the transport layer. Telnet provides
duplex communication and sends data either as ASCII characters or binary data.
For more information about the Telnet protocol, see RFCs 854, 856, 857, 885 and
1091.

Chapter 2. Internet Concepts 7

2.1.4.3 Network File System (NFS)
The network file system (NFS) allows a system to access files on another
computer as if they were on your own computer. NFS uses the Remote
Procedure Call (RPC) protocol to communicate between the client and the
server. The files to be accessed reside on the server host and are made
available to the user on the client host. NFS supports a hierarchical file
structure. The directory and subdirectory structure can be different for individual
client systems. For more information about NFS, see RFC 1094.

2.1.4.4 Remote Printing (LPR/LPD)
The line printer requester (LPR) allows access to printers on other computers
running the line printer daemon (LPD) as though they were on your computer.
The clients provided (LPR, LPQ, LPRM or LPRMON) allow the user to send files
or redirect printer output to a remote host running a remote print server (LPD).
These clients can also be used to query the status of a job, as well as to
delegate a job. For more information about remote printing, see RFC 1179.

2.1.4.5 Remote Execution (RSH/REXEC)
Remote shell (RSH) and remote execution (REXEC) are similar protocols that
allow you to run programs and commands on different computers. The results
are received and displayed on the local host. This can be useful for small
computers to harness the power of large computers.

2.1.4.6 Simple Mail Transfer Protocol (SMTP)
The Simple Mail Transfer Protocol is an electronic mail protocol with both client
(sender) and server (receive) functions. For more information about SMTP see
RFCs 821, 822 and 974.

2.1.4.7 Post Office Protocol (POP)
The post office protocol is an electronic mail protocol with both client
(sender/receiver) and server (storage) functions. POP allows mail for multiple
users to be stored in a central location until a request for delivery is made by
the electronic mail program. For more information about POP, see RFC 1725.

2.1.4.8 Gopher
Gopher is a client/server protocol designed for information location and retrieval.
The client function provides a menu-driven interface to access the files stored on
a Gopher server. The server function allows descriptive names to be assigned
to the files. Thus, making it easier to identify the content of each file. Gopher
was designed at the University of Minnesota. For more information about
Gopher, see RCF 1436.

2.1.4.9 Hypertext Transfer Protocol (HTTP)
The hypertext transfer protocol is a protocol designed to allow the transfer of
hypertext markup language (HTML) documents. Hypertext markup language is a
tag language used to create hypertext documents. Hypertext documents include
links to other documents that contain additional information about the highlighted
term or subject.

8 A Guide to the Internet Connection Servers

2.1.4.10 Domain Name System (DNS)
The domain name system uses a hierachical system for naming hosts. Each host
name is composed of domain labels separated by periods. Each label represents
an increasingly higher domain level within an internet. The fully qualified domain
name of a host connected to a large internet generally has one or more
subdomains.

For example:

host.subdomain.subdomain.rootdomain

or

host.subdomain.rootdomain

Domain names often reflect the hierarchy level used by network administrators
to assign domain names. For example, the domain name eng.mit.edu is a
subdomain of edu. Local network administrators have the authority to name local
domains within an internet.

You can refer to hosts in your domain by host name only; however, a name
server requires a fully qualified domain name. The local resolver combines the
host name with the domain name before sending the address resolution request
to the domain name server.

Mostly, the default domain appended to a host name is stored in a file in the ETC
directory called, in OS/2 for example, RESOLV. For more about DNS, see RFCs
1034 and 1035.

2.1.4.11 Simple Network Management Protocol (SNMP)
The simple network management protocol provides a means for managing an
Internet environment. SNMP allows network management by elements, such as
gateways, routers and hosts. Network elements act as servers and contain
management agents, which perform the management functions requested.
Network management stations act as clients; they run the management
applications, which monitor and control the network. SNMP provides a means of
communicating between these elements and stations so they can send and
receive information about network resources. For more information about
network management using SNMP, see RFCs 1155, 1157, 1187 and 1213.

2.1.4.12 Talk
Talk allows you to send interactive messages, as opposed to the batch mail
capabilities of SMTP. When a local host sends a Talk request to a remote host,
the user on the remote host is notified that there is a connection request. The
user on the remote host must respond with a Talk message to the local host.
Message exchange can thus occur between the local and remote hosts.

2.1.4.13 Finger
The Finger protocol provides an interface for querying the current status of a
remote host or a user ID on a remote host. Finger uses TCP as the underlying
protocol. For more information about Finger, see RFC 1196.

Chapter 2. Internet Concepts 9

2.1.4.14 Routing Information Protocol (RIP)
The Routing Information Protocol creates and dynamically maintains network
routing tables. RIP arranges to have gateways and routers periodically
broadcast their routing tables to neighbors. Using this information, a RouteD
server can update a host′s routing tables. For example, RouteD determines if a
new route has been created, if a route is temporarily unavailable or if a more
efficient route exists. For more information about routing using RIP, see RFC
1058.

2.1.4.15 X Window System
The X Window System protocol supports network-transparent windowing and
graphics. For more information about X Window System protocol, see RFC 1013.

2.1.4.16 Sockets Application Programming Interface (API)
The sockets API allows you to write your own applications to supplement those
supplied by TCP/IP. Most of these additional applications communicate using
either TCP or UDP.

2.1.5 Transport Layer
This section describes the transport protocols in TCP/IP that allow
communication between application programs.

2.1.5.1 Transmission Control Protocol (TCP)
The Transmission Control Protocol provides a reliable vehicle for delivering
packets between hosts on an internet. TCP takes a stream of data, breaks it into
datagrams, sends each one individually using IP and reassembles the
datagrams at the destination node. If any datagrams are lost or damaged during
transmission, TCP detects this and resends the missing datagrams. The
received data stream is a reliable copy of the transmitted data stream. For more
information, see RFC 793.

2.1.5.2 User Datagram Protocol (UDP)
The user datagram protocol provides a less reliable mode of communication
than does TCP and is an alternative to TCP as a transport protocol.

Like IP, UDP does not guarantee datagram delivery or duplication protection.
UDP does provide checksums for both the header and data portions of a
datagram. Therefore, applications that require reliable delivery of streams of
data should use TCP. For more information about UDP, see RFC 768.

2.1.6 Internet Layer
This section describes the internet protocols in TCP/IP. Protocols in the internet
layer provide connection services for TCP/IP. These protocols connect physical
networks and transport protocols. RFCs 1118, 1180, 1206 and 1208 provide more
information.

2.1.6.1 Internet Protocol (IP)
The Internet Protocol provides the interface from the transport layer
(host-to-host) protocols to the physical level protocols. IP is the basic transport
mechanism for routing IP packets to the next gateway, router or destination host.

IP provides the means to transmit blocks of data (or packets of bits) from
sources to destinations. Sources and destinations are hosts identified by

10 A Guide to the Internet Connection Servers

fixed-length addresses. Outgoing packets automatically have an IP header sent
to the higher-level protocols. This protocol provides the universal addressing of
hosts in an internet network.

IP does not ensure a reliable communication because it does not require
acknowledgments from the sending host, the receiving host, or intermediate
hosts. IP does not provide error control for data; it provides only a header
checksum. IP does not perform retransmissions or flow control. A higher-level
protocol that uses IP must implement its own reliability procedures.

For more information about IP, see RFC 791.

2.1.6.2 Internet Control Message Protocol (ICMP)
The Internet Control Message Protocol passes control messages between hosts,
gateways and routers. For example, ICMP messages can be sent in any of the
following situations:

• When a host checks to see if another host is available (PING)

• When a packet cannot reach its destination

• When a gateway or router can direct a host to send traffic on a shorter route

• When a host requests a netmask or a time stamp

• When a gateway or router does not have the buffering capacity to forward a
packet

ICMP provides feedback about problems in the communication environment but
it does not make IP reliable. The use of ICMP does not guarantee that an IP
packet will be delivered or that an ICMP message will be returned to the source
when an IP packet is not delivered or is incorrectly delivered.

For more information about ICMP, see RFC 792.

2.1.6.3 Address Resolution Protocol (ARP)
The Address Resolution Protocol maps Internet addresses to hardware
addresses. ARP is not directly available to users or applications. When an
application sends an internet packet, IP requests the appropriate address
mapping. If the mapping is not in the mapping table, an ARP broadcast packet
is sent to all the hosts on the network requesting the physical hardware address
for the host.

For more information about ARP, see RFC 826.

2.1.7 Network Layer
This section describes the major protocols that implement the network layer in
TCP/IP. Network protocols define how data is transported over a physical
network. Typically a single host interface will be defined to use one of these
protocols.

2.1.7.1 Network Driver Interface Specification (NDIS)
Network driver interface specification is a medium access control (MAC)
interface for local area network (LAN) adapter and protocol drivers. NDIS has
become an industry standard, providing a common, open interface that enables
network adapters and LAN software from different manufacturers to
communicate with each other.

Chapter 2. Internet Concepts 11

A network adapter driver provides the communication between a network
adapter and a protocol, using NDIS as the interface. Network adapter drivers
handle the basic transmission and reception of packets on the network.

A protocol driver provides the communication between an application and a
network adapter driver using NDIS as the interface. Protocol drivers provide a
high level of communication between the data link layer and the application
layer.

2.1.7.2 Serial Line Internet Protocol (SLIP)
The Serial Line Internet Protocol (SLIP) allows you to set up a point-to-point
connection between two TCP/IP hosts over a serial line, for example, a serial
cable or a RS-232 connection into a modem and over a telephone line. You can
use SLIP to access a remote TCP/IP network (such as a service provider′s
network) from your local host or to route datagrams between two TCP/IP
networks.

For more information about SLIP, see RFC 1055.

2.1.7.3 Point-to-Point Protocol (PPP)
The point-to-point protocol allows you to set up a point-to-point connection
between two TCP/IP hosts over a serial line, for example, a serial cable or a
RS-232 connection into a modem and over a telephone line. You can use PPP to
access a remote TCP/IP network (such as a service provider′s network) from
your local host to route datagrams between two TCP/IP networks.

For more information about PPP, see RFCs 1717 and 1661.

2.1.7.4 X.25
You can use an X.25 network to establish a TCP/IP connection between two
hosts. X.25, recommended as a communication interface standard by the
International Telegraph and Telephone Consultative Committee (CCITT), defines
the interface between data terminal equipment (DTE) and data circuit-terminating
equipment (DCE). A DTE is a computer or workstation connected to a network.
A DCE is the equipment at the point of the connection to the network, such as a
modem.

For more information about TCP/IP over X.25, see RFC 877.

2.2 HTTP
HTTP is Hypertext Transfer Protocol. In simple terms, HTTP determines how a
browser interacts with a server.

The current version of HTTP at the time of writing is 1.0 and it is defined in RFC
1945. However, an Internet draft which describes HTTP 1.1 is also available.
Specifications may be obtained at the following site:

http://www.w3.org/pub/WWW/Protocols

HTTP enables distributed systems to communicate with each other. HTTP is an
application-level protocol and has been in use by the WWW global information
initiative since 1990.

12 A Guide to the Internet Connection Servers

HTTP is based on request-response activity. A client establishes a connection
with a server and sends a request to the server in the form of a request method.
The server responds with a status line, including the message′s protocol version
and a success or error code, followed by a message containing server
information, entity information and possible body content. This communication is
simply depicted below.

� �
User sends request to >...................................> Server

single connection >...................................<
response chain <...................................<� �

Figure 1. HTTP Client/Server Communication

An HTTP transaction is divided into four steps:

 1. The browser opens a connection.

 2. The browser sends a request to the server.

 3. The server sends a response to the browser.

 4. The connection is closed.

On the Internet, HTTP communication generally takes place over TCP/IP
connections. The default port is TCP 80, but other ports can be used. This does
not preclude HTTP from being implemented on top of any other protocol on the
Internet, or on other networks. HTTP only presumes a reliable transport; any
protocol that provides such guarantees can be used, and the mapping of the
HTTP 1.0 request and response structures onto the transport data units of the
protocol in question is outside the scope of this document.

Except for experimental applications, current practice requires that the
connection be established by the client prior to each request and closed by the
server after sending the response. Both clients and servers should be aware that
either party may close the connection prematurely, due to user action,
automated timeout, or program failure, and should handle such closing in a
predictable fashion. In any case, the closing of the connection by either or both
parties always terminates the current request, regardless of its status.

What we have just described means that, in simple terms, HTTP is a
connectionless protocol. To load a page including two graphics for example, a
graphic-enabled browser will open three TCP connections: one for the page, and
two for the graphics. Most browsers, however, are able to handle several of
these connections simultaneously.

HTTP is stateless, because it keeps no track of the connections. If a request
depends on the information exchanged during a previous connection, then this
information has to be kept outside the protocol.

For more information about the use of HTTP by Web browsers refer to
Chapter 3, “Web Browsers” on page 47.

Chapter 2. Internet Concepts 13

2.3 HTML
HTML stands for HyperText Markup Language. In this section we discuss:

• HTML characteristics

• Creating an HTML document

• The tagging reference

• How to create a sample document

• Netscape specific extensions

• Microsoft specific extensions

• Creating effective online information

• HTML editing tools

2.3.1 HTML Characteristics
HTML is a scripting language used to create Web pages. HTML is based upon
SGML (Standard Generalized Markup Language) and therefore contains many of
the same tags. HTML focuses on the content of the document and not on page
layout. An HTML document is comprised of ASCII text and as such can be
updated using any ASCII editor. The documents created are small and can be
sent over the network faster than larger documents.

HTML can be used on any platform which has a browser that understands HTML.
Therefore the creator of an HTML document does not need to be concerned with
the platform on which a user will be viewing the document. HTML is changing;
HTML 3.0 will include things such as aligned text, tables and mathematical
equations.

There are also extensions to HTML found in browsers such as Netscape. If you
use these extensions, only Netscape can understand them and not other
browsers.

2.3.2 Creating an HTML Document
HTML documents are created by using a text editor, word processor or specific
tools such as HTML-Wizard, HoTMetaL or HTML Assistant. HTML documents
have an extension of HTM or HTML so browsers can find them.

2.3.2.1 What Is an HTML Tag?
For the purposes of discussion we introduce the following example:

<HTML> this is the text for this tag </HTML>

• Tags in general have a starting p o i n t < H T M L > .

• Tags in general have an ending point </HTML>.

• HTML tags can be entered in upper, lower or mixed case.

• Text, which will be displayed by a browser, is entered between the starting
and ending tags.

• Some tags do not have a starting and ending point.

The following describes how an HTML document is structured:

14 A Guide to the Internet Connection Servers

<HTML>
<HEAD>

<TITLE>
</HEAD>

<BODY>
....
....

</BODY>
</HTML>

Three tags are used to describe a document′s structure:

 1 . < H T M L > starts and ends an HTML document. It indicates that the
document contained herein is HTML. The document is created between the
<HTML> and the < /HTML> tags .

 2 . <HEAD> describes the prologue to the rest of the document. This section
contains a <TITLE> tag to allow the browser to display it.

 3 . < B O D Y > delimits the rest of the HTML document. The main portion of the
document is bounded by the <BODY> and </BODY> tags.

These structure tags are optional, but recommended. More tools and browsers
will be able to understand your document if you use them.

2.3.3 HTML Tags
< H T M L > < / H T M L > The HTML tag identifies the file as an HTML document.

Only one pair of HTML tags is allowed per document. Make them the
first and last tags in the document.

< ! . . > The ! tag enables you to create comments in your HTML document.
Information written between comment tags is not displayed by
browsers.

Use comments to include information in a document that you do not
want to display, such as the date the document was created.
Although browsers do not display the comment contents, the
comment is part of the source and is accessible to the reader.
Comments should only be one line long, but are stackable.

< H E A D > < / H E A D > The HEAD tag identifies the section of the document that
contains general document information, such as the title and root URL
of the document.

Only one pair of HEAD tags is allowed per HTML document.

< B A S E > The BASE tag identifies the root URL of the document, which is used
with relative linking. This information is necessary in cases where
the document has been copied to another URL. HREF is required to
identify the original URL of the document. In cases where the
document has been moved from its original URL, this string is
appended to any relative links. The string does not consist of a pair
of starting and ending tags. When used, it must be included within
the HEAD tags.

< T I T L E > < / T I T L E > The TITLE tag must occur within the HEAD tags. It cannot
contain any links highlighting or paragraph tags. There can be only
one title per document. Titles should be as specific as possible.
However, due to the small amount of space that most browsers allow

Chapter 2. Internet Concepts 15

for a title, it is recommended that you not use titles longer than 50
characters. In most browsers, the title is displayed in the window title
bar. Also, many browsers display the title in their history list or hot
list.

< B O D Y > < / B O D Y > The BODY tag identifies the section of the document that
contains the text and graphics.

< I S I N D E X > Use the ISINDEX tag to provide a Web search interface.

The searchable index tag indicates to the Web server that this page
provides an interface for keyword searches. The searchable index
tag is a single tag; it does not have a paired starting and ending tag.
The tag, if used, should occur in the BODY of the HTML document.
The searchable index tag automatically generates an entry field and
instructions for using it.

An example follows:

<HTML>
<HEAD>
<TITLE>Example of Searchable Index</TITLE>
</HEAD>
<BODY>
<H1>Example of a Searchable Index</H1>
<ISINDEX>
</BODY>
</HTML>

Figure 2. Searchable Index

< H 1 > < / H 1 > Heading tag levels range from H1 (largest) to H6 (smallest).

You should begin each document with a primary heading <H1>.
You should not skip head levels within a document. For example, if
the first heading is an H1, subordinate information should begin with
an H2, not an H3 tag.

An example follows:

16 A Guide to the Internet Connection Servers

<HTML>
<HEAD>
<Title>Example of Headings</TITLE>
</HEAD>
<BODY>
<H1>This is a level-one heading (H1)</H1>
<H2>This is a level-two heading (H2)</H2>
<H3>This is a level-three heading (H3)</H3>
<H4>This is a level-four heading (H4)</H4>
<H5>This is a level-five heading (H5)</H5>
<H6>This is a level-six heading (H6)</H6>
</BODY>
</HTML>

Figure 3. Different Headings

< P > < / P > You can also use the paragraph tag as a single tag <P>. If you
use the single tag, place the paragraph tag at the end of a parameter
or the beginning of one, but not both. Do not use a paragraph tag in
conjunction with tags that also generate a blank line. In general, a
paragraph tag generates a blank line or half a blank line of space
before the next body of text. With some browsers, a paragraph tag
will also cause the first line of the paragraph to be slightly indented.

< A > < / A > The A (or anchor) tag is used to assign an ID to text to which you
want to link.

Attributes:

• NAME

Optional. Used to assign an ID to text to which you want to link (a
destination).

For example:

<H3>Ingredients</H3>

• HREF

Chapter 2. Internet Concepts 17

Optional. Used to identify the URL or ID of the information to
which you are linking. If the destination is outside the current
page, the identifier is the URL of the destination surrounded by
quotation marks. This URL can be explicit or relative. Explicit
URLs specify the protocol, the name of the server and location
(path and filename) of the linked file. Relative URLs specify only
the location (path and filename) of the linked file and must begin
with a slash (/).

For example:

It is worth seeing the site with
links to various museums.

If the destination is inside the current page, the identifier is the ID
assigned to the destination text (the value of the NAME attribute)
preceded by a pound sign (#) and delimited by quotation marks.

For example:

<H3><NAME=″ingred″>Ingredients</H3>
..
..
Before you begin, make sure you have all the necessary
ingredients.

• TITLE

Optional. When used with the HREF attribute, it indicates the title
of the destination. If the destination document or page has a title,
this attribute is informational only. If the destination document or
page does not have a title, as with some Gopher servers, many
browsers will display the value of this attribute as the title.

2.3.3.1 Highlighting Text
Tags for highlighting text distinguish certain text from the rest of the document
by displaying the text in a different manner. There are two types of highlighting:

• Explicit

• Interpreted

Explicit highlighting instructs the browser to display the text in a specific manner.
Interpreted highlighting instructs the browser to display the text in whatever
manner it determines is appropriate for the given emphasis.

If a browser does not know how to interpret a highlighting tag, it will not
highlight the surrounded text.

An example follows:

<HTML>
<HEAD>
<TITLE>Example of Highlighting</TITLE>
</HEAD>
<BODY>
<H1>Examples of Highlighting</H1>
<TT>This is monospaced text.</TT><P>
This is bold text.<P>
<I>This is italic text.</I><P>
<U>This is underscored text.</U><P>
This is emphasized text.<P>

18 A Guide to the Internet Connection Servers

This is text with stronger emphasis.<P>
<CODE>This represents program text.</CODE><P>
<SAMP>This represents sample text. </SAMPLE><P>
<CITE>This represents a citation.</CITE><P>
</BODY>
</HTML>

Figure 4. Different Highlighting

< T T > < / T T > Monospaced text appears in a font resembling typewritten
output. Monospaced text is an explicit highlighting that causes the
surrounded text to be displayed in a font resembling that of a
typewriter where every character (whether it is an i or a w) occupies
the same amount of horizontal space.

< B > < / B > Bold text is a thicker version of the default font. Bold is an explicit
highlighting that causes the surrounded text to be displayed in a bold
version of the default font.

< I > < / I > Italic text is a slanted version of the default font. Italic is an explicit
highlighting that causes the surrounded text to be displayed in an
italic (slanted) version of the default font.

< U > < / U > Underscored text is the default font with an underline.
Underscored is an explicit highlighting that causes the surrounded
text to be displayed in the default font with a line drawn beneath.

< E M > < / E M > Emphasized text appears in a different font, usually italics.

< S T R O N G > < / S T R O N G > Strongly emphasized text appears in a different font,
usually bold. Strong is an interpreted highlighting that causes the
surrounded text to be displayed with stronger emphasis than .
In general, most browsers will display the text in bold font.

< C O D E > < / C O D E > Code is an interpreted highlighting that causes the
surrounded text to be displayed as simulated code. In general, most
browsers will display the text in monospaced font.

Chapter 2. Internet Concepts 19

< S A M P > < / S A M P > Sample is an interpreted highlighting that causes the
surrounded text to be displayed as a simulated sample. In general,
most browsers will display the text in a monospaced font.

< K B D > < / K B D > Keyboard is a simulated text entry, usually used in a
monospaced font.

< V A R > < / V A R > Variable is an interpreted highlighting that causes the
surrounded text to be displayed with emphasis indicating it is a
variable (information that can be changed, such as the value of a
parameter). In general, most browsers will display the text in italic.

< D F N > < / D F N > Definition is an interpreted highlighting that causes the
surrounded text to be displayed with emphasis indicating it is a term
or phrase defined in text. In general, most browsers will display the
text in bold or in bold italic font.

< C I T E > < / C I T E > Citation is an interpreted highlighting that causes the
surrounded text to be displayed with emphasis indicating that it cites
a reference, such as a book title. In general, most browsers will
display the text in italic.

< O L > < / O L > The OL or ordered list tags generate a sequential list of
individual items. Use an ordered list when the items must be
addressed in a specific sequence, such as the steps of a procedure.

Place the beginning and ending tags on separate lines. The first line
after the starting tag must be a list item and begin with
< L I > . Each item in the list must be preceded by .

Each item begins on a separate line and is preceded by a number
and a period.

An example follows:

<HTML>
<HEAD>
<TITLE>Example of an Ordered List</TITLE>
</HEAD>
<BODY>
<H1>Example of an Ordered List</H1>

Select the desired transaction.
Enter the desired amount.
 Press Enter.

</BODY>
</HTML>

20 A Guide to the Internet Connection Servers

Figure 5. Ordered List

< U L > < / U L > The UL or unordered list tag is used to generate a bulleted list of
individual items. Use an unordered list when the sequence of the
items is unimportant, such as a list of benefits.

Place the beginning and ending tags on separate lines. The first line
after the starting tag () must be a list item and begin with
< L I > . Each item in the list must be preceded by .

< M E N U > < / M E N U > The MENU tag generates a list of individual items without
numbers or bullets. Use a menu list when the items are brief (usually
no more than one line) and a sequence of the items is unimportant,
such as a shopping list.

Place the beginning and ending tags on separate lines. The first line
after the starting tag <MENU> must be a list item and begin with
< L I > . Each item in the list must be preceded by .

< D I R > < / D I R > The DIR or directory tag generates a tabular list of individual
items. Use a directory list when items need to be displayed in
columns such as a price list.

Place the beginning and ending tags on separate lines. The first line
after the starting tag (<DIR>) must contain the items of the first row.
Each item in the list must be preceded by .

Each row of items begins on a separate line. In most cases, a
column is limited to about 25 characters. This is not a widely
supported list type.

< D L > < / D L > The DL or definition list tag generates a list of paired items. Use
a definition list when you want to list and describe items, such as a
list of glossary terms and definitions.

The attribute compact removes the vertical spacing between the term
and its description. Place the beginning and ending tags on separate
lines. Each term must be preceded by <DT>. Each description
must be preceded by <DD>. For each <DT> you must have a
cor respond ing <DD>.

Chapter 2. Internet Concepts 21

< B R > The BR or line break tag is a single tag; it does not have paired
starting and ending tags.

Text following the break is placed on the next line. No additional
vertical space is generated.

An example follows:

<HTML>
<HEAD>
<Title>Example of Line Breaks</Title>
</HEAD>
<BODY>
<H1>Example of Line Breaks</H1>
<Address>
Eamon Murphy

IBM ITSO

Cary

</ADDRESS>
</BODY>
</HTML>

Figure 6. Line Breaks

< H R > The HR or horizontal rule tag generates a line across the page (no
ending tag). Use horizontal rule tags to create a visual break in the
page.

<ADDRESS> < /ADDRESS> The ADDRESS tag combines interpreted
highlighting and paragraph formatting. Use address tags to set off
document identification information and addresses.

Paragraph tags used within address tags act as line break tags. They
do not generate additional vertical space. To generate a stacked
address format, similar to the format of an address on an envelope,
use line break tags inside the address tags.

As with interpreted highlighting tags, such as CITE, the browser
controls the emphasis that is placed on the surrounded text. In
general, most browsers will display the text in italic. Also, the ending
address tag acts as a paragraph tag, causing a line break and
generating additional vertical space prior to any following information.

An example follows:

22 A Guide to the Internet Connection Servers

<HTML>
<HEAD>
<Title>Example of an Address</TITLE>
</HEAD>
<BODY>
<H1>Example of an Address</H1>
<ADDRESS>
Pat Smith Software

3039 Cornwallis Road

RTP, NC 27709
</ADDRESS>
</BODY>
</HTML>

Figure 7. Address

<BLOCKQUOTE> </BLOCKQUOTE> The BLOCKQUOTE tag highlights text
intended as a quote, usually in italic font.

As with interpreted highlighting tags, such as CITE, the browser
control the emphasis that is placed on the surrounded text. In
general, most browsers will display the text in italic. Some also
indent the margins for the surrounded text. Also the ending block
quote tag acts as a paragraph tag, causing a line break and
generating additional vertical space prior to any following information.

< P R > < / P R > The PR or preformatted text tag combines interpreted
highlighting and line breaks. Use preformatted text tags to set off
information that needs to be displayed as it is in the HTML file, for
example, lines from a program or sample file.

HTML tags included within preformatted text tags are interpreted as
tags. If you want to include an example that shows HTML tagging,
you must use the HTML symbols to create the tag delimiters (<>).
Highlighting and linking can be used within preformatted text.
However, headings and formatting tags, such as paragraph and
address tags, should not be used within preformatted text.

< I M G > The IMG or image tag enables you to include an inline image in your
document.

Image tags can take the following attributes:

Chapter 2. Internet Concepts 23

 1. SRC: Required attribute. Specifies the source file of the inline
image. The SRC attribute is followed by a character string
(identifier) that identifies the image file and its location.

 2. ALIGN : Optional attribute. Specifies how the image should be
aligned vertically. Possible values are TOP, MIDDLE and
BOTTOM.

 3. ALT : Optional attribute. Specifies the label for the image that is to
be displayed if the browser does not support inline graphical
images.

 4. ISMAP : Optional attribute. Specifies that the image contains
defined areas that, when selected, link to other URLs.

The image tag is a single tag. It is not a paired set of starting and
ending tags. Some browsers cannot display inline images, but can
display linked images. If an image is crucial to a document, you may
want to link to it rather than include it inline.

For browsers that can display graphical images inline, the image is
left justified. If a series of images is specified, the images are
displayed on the same line, if possible. For browsers that cannot
display images inline, the label, if any, is displayed.

An example follows:

<HTML>
<TITLE>Example of Inline Graphics</TITLE>
<BODY>
<H1>Example of Inline Graphics</H1>
This site contains information about the following Acme products:
<P>
Spring Trap Model 220<P>
Spring Large Model 40<P>
Spring Tuned Model 50<P>

<P>
Feel free to drop a card in our<A HREF=′ mail.html′
>suggestion box.
</BODY>
</HTML>

Images are mostly .gif files. They are included on pages using the
IMG tag. You specify where the image is located using the SRC
attribute. The SRC attribute uses the same file conventions as the
HREF attribute. Just put the IMG tag where you want the image to
appear. Instead of a .gif image file you can also use the following
formats:

• jpeg compressed image format (.jpg)

• wave format sound files (.wav)

• mpeg audio (.mp2)

• mpeg video (mpg)

• avi video (.avi)

24 A Guide to the Internet Connection Servers

2.3.3.2 Creating Forms
The FORM tag allows you to create input forms.

Data from these forms can be submitted to a Web server for processing and
analysis.

Example for creating a form:

<HTML>
<HEAD>
<TITLE>Example of a Form</TITLE>
</HEAD>
<BODY>
<H1>Example of a Form</H1>
<FORM METHOD=POST ACTION=″mailto:survey@vnet.ibm.com″>
Please complete this survey so that we may better improve our service.<p>
Name: <INPUT TYPE=″text″ NAME=″name″ SIZE=45 MAXLENGTH=50
VALUE=″Enter your name here″><P>
Address: <TEXTAREA NAME=′ address′ COLS=40 ROWS=3>
Enter your address here.
</TEXTAREA><P>
Account ID: <INPUT TYPE=″text″ NAME=″acctID″ SIZE=30><P>
Password: <INPUT TYPE=″password″ NAME=″password″ SIZE=10><P>
Which application do you use?<P>
<INPUT TYPE=″checkbox″ NAME=″apps″ VALUE=″Gopher″> Gopher
<INPUT TYPE=″checkbox″ NAME=″apps″ VALUE=″Newsreader″>
Newsreader
<INPUT TYPE=″checkbox″ NAME=″apps″ VALUE=″ULTIMAIL′>
Ultimail
<INPUT TYPE=″checkbox″ NAME=″apps″ VALUE=″WebExplorer″>
WebExplorer
<INPUT TYPE=″checkbox″ NAME=″apps″ VALUE=″Archie″>
<INPUT TYPE=″checkbox″ NAME=″apps″ VALUE=″FTP″>
FTP
<INPUT TYPE=″checkbox″ NAME=″apps″ VALUE=″Telnet″>
Telnet<P>
How would you rate your overall satisfaction with our applications?<P>
<INPUT TYPE=″radio″ NAME=″rating″ VALUE=″1″> Very satisfied
<INPUT TYPE=″radio″ NAME=″rating″ VALUE=″2″> Satisfied
<INPUT TYPE=″radio″ NAME=″rating″ VALUE=″3″> Neutral
<INPUT TYPE=″radio″ NAME=″rating″ VALUE=″4″> Dissatisfied
<INPUT TYPE=″radio″ NAME=″rating″ VALUE=″5″> Very dissatisfied<P>
Reset fields: <INPUT TYPE=″reset″><P>
Select to submit your responses: <INPUT TYPE=″submit″
Value=″SEND″
</FORM>
</BODY>
</HTML>

Chapter 2. Internet Concepts 25

Figure 8. An Example of a Form

< F O R M > < / F O R M > The FORM tag indicates that the surrounded information
is part of a data entry form.

Form tags can take the following attributes:

• METHOD - Required option. Indicates the HTTP method used to
send the data to the server. Possible values are GET and POST.
It is recommended you use POST.

• ACTION - Optional. Specifies the URL of the processing script.
The URL must be enclosed in quotation marks. If the ACTION
attribute is not specified, the default is the URL of the document.

• ENCTYPE - Optional. Specifies how the input data is encrypted.

< I N P U T > < / I N P U T > The INPUT tag can be used to create elements in an
HTML document that accept user input. These elements may be in
the form of selections or entry fields.

The attributes that an input tag can take depends upon the input type.

• TYPE

Is required. Specifies the type of fields to be displayed. Possible
values for field type are:

− CHECKBOX

26 A Guide to the Internet Connection Servers

Displays a box that can be selected. Use check boxes for
Boolean selections (on, or, off, yes or no). Multiple check
boxes can be grouped together. One or more check box in a
group may be selected.

Required attributes are NAME and VALUE.

An optional attribute is CHECKED.

− HIDDEN

Does not accept or display any information to the user.
Hidden form fields are used to send status information to the
server.

A required attribute is NAME.

An optional attribute is VALUE.

− IMAGE

Displays a graphic, which, when selected, submits the data to
the specified URL. Because IMAGE may be obsolete in the
future, it is recommended that you use the SUBMIT form type.

Required attributes are NAME and SRC.

An optional attribute is ALIGN.

− PASSWORD

Displays a single line entry field. Password fields are similar
to text fields except information entered in this field is not
displayed.

A required attribute is NAME.

Optional attributes are MAXLENGTH, SIZE and VALUE.

− RADIO

Displays a radio button (a circle that can be selected). Use
radio buttons for multiple choice selections where only one in
a series can be selected. All radio buttons in a group should
be assigned the same NAME.

Required attributes are NAME and VALUE.

An optional attribute is CHECKED.

− RESET

Displays a push button that when selected returns all the
form ′s fields to their original values. Use the VALUE attribute
to define the label for the push button.

The default value is RESET.

An optional attribute is VALUE.

− SUBMIT

Displays a push button that when selected, submits the data.
Use the VALUE attribute to define the label for the push
button. The default label is SUBMIT. You can also use the
SRC attribute to include an image on the push button.

Optional attributes are NAME, SRC and VALUE.

Chapter 2. Internet Concepts 27

− TEXT

Displays a single-line entry field. If you require a multiple-line
entry field, use the TEXTAREA tag.

A required attribute is NAME.

Optional attributes are MAXLENGTH, SIZE and VALUE.

• SRC

Required with type= ′ image ′.

Specifies the URL of the graphic to be displayed.

• ALIGN

Optional.

Specifies how the graphic should be aligned vertically. Possible
values are TOP, MIDDLE and BOTTOM.

• CHECKED

Optional.

Indicates the default section.

• MAXLENGTH

Optional.

Indicates the maximum number of characters that can be entered
into a field. If MAXLENGTH is greater than SIZE, the entry field
will allow the field to scroll as information is entered.

• NAME

Required.

The identifier assigned to a field. When a form is submitted, the
name of a field is paired with its value.

• SIZE

Optional.

Specifies the width in characters of a field area.

• VALUE

Required with TYPE=″checkbox″ and TYPE=″radio″.

For entry fields, VALUE is used to specify the initial setting. For
check boxes and radio buttons. VALUE is used to specify the
value assigned to a selection. For SUBMIT and RESET, VALUE is
the label to appear on the push button.

<TEXTAREA> </TEXTAREA> The TEXTAREA tag can be used to create
multiple-line entry fields.

TEXTAREA tags can take the following attributes:

• ROWS

Required.

Indicates the number of rows of input allowed.

• COLS

Required.

28 A Guide to the Internet Connection Servers

Indicates the number of characters allowed for each row.

• NAME

Required.

The identifier assigned to a field. When a form is submitted, the
name of a field is paired with its value.

<SELECT> < /SELECT> The SELECT tag is used to create a list box of choices,
similar to the radio or check box input types.

Select tags can take the following attributes:

• MULTIPLE

Optional.

Indicates that multiple selections are allowed.

• SIZE

Optional.

Indicates the number of items displayed in the selection list at
one time. If SIZE is less than the number of items listed, a scroll
bar is displayed to the right of the field, allowing users to scroll
through the other items in the list.

• NAME

Required.

The identifier assigned to a field. When a form is submitted, the
name of a field is paired with its value.

< O P T I O N > < / O P T I O N > The OPTION tag is used with SELECT tags to create a
list of choices, similar to the radio or check box input types.

Option tags can take the following attributes:

• SELECTED

Optional.

Indicates that this option is the default.

• VALUE

Optional.

The value to be paired with the name if this option is chosen. If
no VALUE is specified, the text associated with the option is sent
as the value.

2.3.4 Sample Document
<html>
<head>
<TITLE> my little sample HTML example </TITLE>

</HEAD>
<BODY>
<H1> HTML makes fun and is easy to learn </H1>

<P> WELCOME
This is the first paragraph </P>

<P> This is the second paragraph </P>

Chapter 2. Internet Concepts 29

</BODY>
</HTML>

The requi red e lements are the <HTML>, <HEAD> and <BODY> tag wi th
their end tags. Because you should include these tags in each file, you want to
create a template file with them for further use.

Figure 9. Web Browser View of Sample Document

If you require a complete definition of the HTML commands, you can choose
from a wide range of books. In addition, there are numerous WWW links that will
assist you in the proper use of HTML. For example:

http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html
http://www.ucc.ie/info/net/htmldoc.html

2.3.5 Netscape-Specific Ext ensions
Here are some extensions to HTML that have been provided by Netscape:

NOBR : No line break

WBR: Word break

BASEFONT : Specifies the default font size for the document

BLINK : Marks the enclosed text as blinking text

APPLET : Used to include an inline applet

PARAM : Defines a parameter for an applet

FRAMESET : Defines the layout of window frames within the browser window

SCRIPT: Used to include program scripts within an HTML document

30 A Guide to the Internet Connection Servers

2.3.6 Microsoft Internet-Specific Extensions
Here are some extensions to HTML that have been provided by Microsoft:

MARQUEE MARQUEE denotes a text string to be scrolled horizontally on the
display; the content of the element is the text to be scrolled.

BGSOUND BGSOUND inserts an inline audio snippet. By default, the sound is
loaded and played once.

2.3.7 Creating Effective Online Information
Although there are many printable documents available on the Web, the primary
purpose of the Web is to provide information in an online format.

Regardless of whether you are producing printed or online information, there are
three aspects to consider:

 1. Style

 2. Content

 3. Mechanics

This chapter provides some style guidelines and tips to help you produce Web
information. Although you are responsible for the content of your Web
information, this chapter provides some style guidelines that you may find
helpful.

2.3.7.1 Understanding Form
Information is often displayed in sizable windows. You do not have control over
the size of the window as you would with a printed book. Therefore, you should
steer away from complex formats, such as multiple columns and large amounts
of information in tabular format.

In many cases, the form can reinforce the content. If the information describes a
procedure, place the steps in an ordered (numbered) list. If the information
contains a set of choices, benefits or considerations, use an unordered (bulleted)
list. Lists can enhance the appearance of information as well as aid in user
comprehension.

2.3.7.2 Deciding When to Link
In some cases, despite attempts to keep it simple and concise, a topic cannot be
covered in a few pages of information. This situation calls for linking.
Consistency is one of the most important guidelines of linking. It is important
that you adopt a well-defined criteria for deciding when to include information
inline and when to separate it out as a separate entity to which you link. Users
become accustomed to how information is presented. For example, we are all
accustomed to finding the index in the back of the book. Because online
information is a relatively young medium, the rules of consistency are still being
developed.

In general, you should design the initial page of information for the high-level
user; the user who needs the least amount of information. Then, provide links to
additional information, such as definitions of terms that a novice user might not
understand, technical information that an experienced user might want, or
information about related topics. This will help reduce the amount of information
on the initial page. In online information, the term page is used to mean

Chapter 2. Internet Concepts 31

discrete blocks of information. This block may be more than a single window′s
worth of information. It may also contain links to (and be linked to by) other
pages.

2.3.7.3 General Guidelines for Web Information
In this section we give you some general guidelines for providing information in
HTML documents on the Web.

Be Brief: The acceptable length of a Web page document varies. First, try to
limit the number of times a reader has to scroll through a document. Three
times is a good limit. However, keep in mind that the acceptable length of a
document should also depend on the topic. On the whole, high-level documents
such as overviews, should be kept short. The reader expects this type of
information to be brief. In-depth documents are expected to be longer.
Remember, you can separate out and link to related information. But do not try
to break up a document unnaturally just to make it shorter.

Another element to consider is time. The information a reader is accessing is
likely to reside on a computer hundreds or thousands of kilometers away. The
amount of time it takes a browser to access and display a document will depend
on the speed of the reader′s connection. For example, using a computer
attached to a company network that is connected to the Internet via a dedicated
line, it might take 12 seconds to display the entire document. Displaying the
same document using a computer with a 14,400 baud dial-in connection to the
Internet might take 23 seconds. Individually, these access times may seem
acceptable. But when you consider that readers may be waiting several
seconds for each document, they may not be willing to wait for your document to
be displayed if it takes a few seconds longer than expected.

Provide Navigation Aids: It is not unusual for a reader to get lost perusing the
thousands of interconnected documents on the Web. In addition to any links that
you may have in your document, it will be helpful to your readers if you provide
push buttons or icons at the bottom of your document that link back to the parent
document or forward to another related topic. If yours is an exceptionally long
document, you might consider providing a link at the bottom to the top.

Clearly Identify the Document: When you send out a memo, write a letter or
provide a report for others to read, it is important that you include the date and
your name. This helps those who receive the document to know where it came
from and when. Considering the increased distribution that your document may
experience on the Web, this identification is even more important.

Despite the fact that HTML allows you to easily link to documents on other
servers, sometimes people prefer to copy a document to their own server.
Therefore it is a good idea to always clearly identify your document at the
beginning of your document. You should include the date, the status (such as
Draft or First Revision) and your name (including your e-mail address). Including
your e-mail address will allow others to contact you if they have comments or
notify you if they plan to link to your document.

Construct Links Appropriately: The intent of hypertext coding is to allow you to
highlight phrases that, when selected, lead the reader to additional information.
However, the content of a document should read well without the links.
Consider, for example, if someone wanted to print a document. The links would
no longer be functional, but the sentences would nonetheless read coherently.

32 A Guide to the Internet Connection Servers

Some examples follow:

• If you want more information about any of these products, contact your IBM
Marketing Representative .

In this case, the words IBM Marketing Representative provide a link to
information about how to contact IBM via phone or e-mail. However, if you
remove the link, the sentence still makes sense.

The following sentence demonstrate a poor use of linking:

• If you want more information about any of these products, click here .

If the link is not operational, the sentence no longer contains useful information.

Avoid Copying Documents: When you find information that you want to include
in your document, do not copy it; simply link to it. A good many of the
documents on the Web are living documents, which means that they are likely to
evolve and change. If you copy a document to your server, the author may
update the original document, making your copy obsolete. If you link to the
document, your readers will always be linking to the latest information.

Once you begin to maintain your own Web server, you will be surprised at how
quickly you can run out of space if you do not plan and manage your information
well. In addition to saving time (with change management), linking to a
document rather than copying one will also save space.

Using Graphics: Hypertext documents on the World Wide Web represent a
significant achievement in documentation. More information is available to more
people and the retrievability of the information is relatively easy. With the
introduction of graphics and multimedia, these documents can be more effective
than their printed predecessors.

Graphics can enhance a document. An illustration of a concept is sometimes
more meaningful than words. In most cases, a graphic can convey a message
without words. The graphic is therefore language-independent, making your
document more useful to those who may not speak your language. Graphics
can also add flair to a document, making it more interesting to your reader.

However, using graphics in a Web document is not without its problems. Some
browsers do not support inline graphics. Therefore, if your graphic contains
important information, such as links to other information, you will need to supply
a textual equivalent for the graphic.

Graphics are transferred separately from the text of a Web document; they
require additional transfer time. For a reader with a dial-in connection, the
additional time can cause the reader to lose interest and cancel the request for
the document. This is particularly true for readers who have a browser that
does not display Web documents until all associated graphics have been
transferred.

Using Multimedia: Multimedia (video and audio clips) can also enhance the
appeal and usefulness of a document. Video clips bring a concept to life. For
example, without multimedia an overview of heart functions would take
paragraphs of text and include numerous medical terms that require further
explanation. The chances are, many readers would abandon the document after
they hit the second or third paragraph. By including a video clip, the action of

Chapter 2. Internet Concepts 33

the heart comes to life. The video clip captures the attention of the reader while
providing the information in a format that can be understood by readers of
various knowledge levels. Add to that an audio clip that narrates the action
portrayed in the video, and it is like having a biology class in your computer.

It is quite easy to include video and audio clips in your Web document. Once
you have created your video or audio file, it is simply a matter of linking to that
life. The server and browser take care of the rest.

However, be careful of relying too heavily on multimedia to convey your
message. Not all browsers are capable of audio and video playback. Also
remember, that for most browsers, the playback of these files is provided
through a separate program. Therefore, the entire audio or video file must be
transferred to the reader ′s computer before it can be played back. This will
require additional wait time, additional disk space, and additional memory. This
may prevent some of your readers with more modest equipment from viewing or
hearing your message.

2.3.8 HTML Editing Tools
An HTML editor assists you in creating Web pages. Depending on the power of
the editor, a full set of HTML tags may be supported. There are many editing
tools available on the Internet:

• Boxer

• HTML Assistant

• HTML Hyperedit

• HTML Generator

• HTML Wizard

• HotDog

• HoTMetal

• SpHydir

• WebWriter/2

• EPM with HTML extensions

A reference to HTML editors may be found on:

http://www.w3.org/pub/WWW/Tools/Overview.html

The following are Gif/Jpeg editing programs:

• PMJpeg

• WebGif

2.3.8.1 HTML Validation Service
This service makes use of HTML forms and a CGI script which runs an HTML
validation program.

The following are reference Web pages:

http://www.arnes.si/books/www-handbook/handbook.long.html
http://www.lionsgate.com/VanOS2/WebCoding/web_tools.html
http://www.webtechs.com/html-val-svc

34 A Guide to the Internet Connection Servers

Figure 10. HTML-Wizard

2.3.9 Icons and Cliparts
To produce HTML documents containing icons and cliparts use this list of
resources:

ftp://ftp.winsite.com/pub/pc/win3/icons
http://www.cli.di.unipi.it/iconbrowser/icons.html

2.3.10 Best of the Web
A link with references to other URLs which show the best pages, is at:

http://www.yahoo.com/Computers_and_Internet/Internet/World_Wide_Web/Best_
of_the_Web/index.html

PC Magazine Top 100 Web sites are found at:

http://www.pcmag.com/special/web100

Chapter 2. Internet Concepts 35

Figure 11. PC Magazine Top 100 Web Sites

2.4 Security
One of the major concerns when providing commercial services on the Internet
is providing for transaction security and communications security.

Information exchanges are secure if all the following are true:

• Messages are confidential. Your message content is private and not
available to others as your messages flow through the Internet. Encryption
is used to ensure that the message content is confidential and no one
eavesdrops on your communications.

• The information exchange has integrity. With integrity your messages are not
altered as they flow from router to router. You can be assured that the
message received is the same as the message you sent. For example,
financial transactions are unchanged. Encryption and digital signatures
ensure integrity.

• Both sender and receiver are accountable. They both agree they took part in
the exchange. For example, the receiver knows that the sender signed the
contract. Digital signatures assure accountability.

• You can authenticate both parties in the exchange. Not only was the contract
signed, but it was signed by the proper person. The sender knows the
receiver is authentic and not someone masquerading as the receiver.
Authentication ensures that someone is who he or she says he or she is.

The Internet Connection Server has two security implementations that you can
choose between:

36 A Guide to the Internet Connection Servers

• Secure Sockets Layer (SSL)

• Secure HyperText Transport Protocol (SHTTP)

2.4.1 Secure Sockets Layer (SSL)
SSL is a security protocol that was developed by Netscape Communications
Corporation, along with RSA Data Security, Inc. The primary goal of the SSL
protocol is to provide a private channel between communicating applications
which ensures privacy of data, authentication of the partners and integrity.
SSL provides an alternative to the standard TCP/IP socket API which has
security implemented within it. Hence, in theory it is possible to run any TCP/IP
application in a secure way without changing it. In practice, SSL is so far only
implemented for HTTP connections.

In fact the protocol is composed of two layers:

• At the lowest layer is the SSL Record protocol. It is used for data
encapsulation.

• On the top of this layer is the SSL Handshake protocol used for initial
authentication and transfer of encryption keys.

The SSL protocol addresses the following security issues:

• Privacy. After the symmetric key is established in the initial handshake, the
messages are encrypted using this key.

• Integrity. Messages contain a message authentication code ensuring the
message integrity.

• Authentication. During the handshake, the client authenticates the server
using an asymmetric or public key.

SSL requires each message to be encrypted and decrypted and therefore has a
high performance and resource impact. In addition, since only the server is
authenticated, SSL is not suitable for applications, such as electronic banking,
which require that the server authenticate their clients.

The great thing about SSL is that it is easy to implement in a WWW server
environment. As soon as you have a key pair and a signed certificate (for
authentication purpose), you can begin serving SSL-protected documents to SSL
browsers. You have to set up SSL security in your WWW server only once.
Neither your HTML pages nor your server configuration file require additional
statements.

2.4.2 Secure HyperText Transport Protocol (S-HTTP)
S-HTTP is a security-enhanced version of HTTP developed by Enterprise
Integration Technologies (EIT). It uses a modified version of HTTP clients and
servers to allow negotiation of privacy, authentication and integrity
characteristics. Secure HTTP provides transaction security at a document or
even a field level. Fields, for example, with an account code or electronic
signature, or entire documents may be marked as private and/or signed by the
sender.

To use S-HTTP, the document code or server administrator specifies the security
options for each document anchor or hypertext link that they want to secure.
These cryptographic options, called CRYPOPTS, allow them to specify
parameters for communication such as:

Chapter 2. Internet Concepts 37

• Should the document be encrypted?

• Should the request be signed, encrypted or both?

• What about the reply?

• What cryptographic algorithm should be used?

• What certificate should be used?

CRYPTOPTS can also be specified for directories so that all the files in the
directory inherit the parameters for the directory.

When a user requests a secured document, the clients send an HTTP request
with its own CRYPTOPT enclosed. The negotiation is initiated. The server
knows that it is to be handled by S-HTTP because the URL starts with shttp:
instead of http:. The server responds with its side of the negotiation.

In this negotiation phase, the client and the server exchange messages detailing
what CRYPOPT features they accept. If the server is finally satisfied that the
client is authorized, it meets the request; otherwise the request fails.
The negotiation is such that integrity, privacy and authentication of both parties
are or can be carried out in almost any combination depending on the
cryptographic options.

Unlike SSL, S-HTTP requires some HTML changes to invoke it. This implies
application involvement. Therefore S-HTTP implementation is not as
straightforward as SSL implementation. However, the fact that the granularity of
security is at the documentation level increases flexibility and improves
performance.

One major advantage of S-HTTP is its ability to perform client authentication.
However, the fact that this requires the client to have a public-key certificate
limits the degree to which it may be applied.

2.5 Firewalls
When you connect your network to the Internet, you give your internal users the
possibility to access this tremendous world but you also offer the opportunity to
external users to reach your private network. Potentially, anyone can connect to
anyone, that is, any client can communicate with any server. In this way you can
expose your network to attacks.

This any-to-any connectivity can give you many security problems. You will need
to protect your own private data and also protect access to the machines inside
your private network against abusive use from outside.

The first step to achieving this is to limit the number of points at which your
network is connected to the Internet. The best configuration has a single point of
connection as shown in Figure 12 on page 39. If you have a unique path, you
gain a lot of control over which traffic to allow into and out of the Internet. We
call the gateway that gives you this control a firewall.

Firewalls tend to be seen as a protection between the Internet and a private
network. But generally speaking a firewall should be considered as a means to
divide the world into two or more networks: one or more secure networks and
one or more nonsecure networks.

38 A Guide to the Internet Connection Servers

Imagine a company where all the departments are connected to the internal
network, including sales, accounts, development and human resources
departments. The administrator would like to be able to restrict access from the
development department machines to the human resources department
machines and from the sales department to the development department.

In the following discussion, for ease of comprehension, we equate a nonsecure
network to the Internet or public network and a secure network to a private IP
network.

Figure 12. A Single Internet Connection

Firewalls differ in their implementation and in the degree of protection that they
offer. The most common types of firewalls are:

• Screening Filter: This uses a router to connect the private network to the
Internet. The screening filter looks at each IP packet flowing through it,
controlling access to machines and/or ports in the private network and
possibly limiting access from the private network to the Internet. Screening
filters operate at the Internet Protocol (IP) layer and cannot control access at
the application layer.

• Bastion: This is a machine placed between the private network and the
Internet which breaks the connection between the two. The bastion relays
messages to or from authorized users and denies access to all others.
Bastions can control access at the user or application layer, but can be
costly if many users are supported.

• Dual-Homed Gateway: This combines a screening filter and a bastion into
either a single machine or a series of machines. Combining a bastion and a
screening filter in a single machine protects the private network from
general access while making some bastion applications accessible.

The IBM Internet Connection Secured Network Gateway (SNG) supports all of the
implementations above. It includes also many other technologies to help in
implementing security in an Internet environment.

Chapter 2. Internet Concepts 39

2.5.1 Proxy Servers
Proxy servers are implementations of bastions. They are used to control access
to or from the private network relaying only acceptable communications from
known users.

Figure 13. Firewall with Proxy Servers

Users in the private network can access an application, such as FTP, in the
proxy server using their usual utilities (clients). Users authenticate themselves to
the proxy server and can then access the application on the desired machine in
the public network. Proxy servers can also be used from the public network to
access applications in the private network, but this exposes login names and
passwords to attackers in the public network. The proxy services supplied with
SNG include Telnet and FTP.

The Internet Connection servers can act as proxy servers. The internal users ask
the server running on the firewall to retrieve documents for them from external
servers.

2.5.2 SOCKS Servers
SOCKS servers are like proxy servers without the requirement for double
connections. With SOCKS, users can benefit from secure communications
without needing to be aware that it is happening.

40 A Guide to the Internet Connection Servers

Figure 14. Firewall with SOCKS Server

Users have to use new versions of the client called SOCKSified clients. The
SOCKSified client code directs its requests to the SOCKS port on the firewall.
Sessions are broken at the firewall, as they are with proxy servers. With
SOCKS, however, the connection to the destination application is created
automatically once the user is validated.

Both the client and the SOCKS server need to have SOCKS code. The SOCKS
server acts as an application-level router between the client and the real
application server. SOCKS is for outbound sessions only. It is simpler for the
private network user, but does not have secure password delivery so it is not
intended for sessions between public network users and private network
applications.

SNG includes SOCKSified Telnet and FTP client applications for AIX.

The majority of browsers are SOCKsified and you can get SOCKSified TCP/IP
stacks for most platforms. For additional information, refer to:

• http://www.raleigh.ibm.com/sng/sng-socks.html

• http://www.socks.nec.com

2.6 Gateways
Web browsers can directly access many Internet information services, but some
complex data formats and commercial applications often need some help. For
instance, application programs using CGI are needed in addition to the basic
Web server to read relational databases, dynamically build Web pages
containing the database records, and transmit them to the Web browser.

Web gateways allow Web clients to access your database, middleware, or
applications through the Web server without your having to make any changes to
the existing applications.

Chapter 2. Internet Concepts 41

IBM has provided a number of Web gateways and in the following section we
introduce these.

2.6.1 DB2 WWW Connection
DB2 WWW Connection delivers open Internet access to DB2 data, a simple yet
powerful development environment, and the capability of fitting into both a
two-tier and three-tier Internet-to-data client/server environment. In a two-tier
model (that is a local Web server with one or more Web clients), DB2 WWW
Connection lets you build an application that can access DB2 data on your
server.

In a three-tier model (that is, a local Web server with one or more Web clients
plus access to remote servers), your new application can access DB2 data on
the server and data on remote servers connected to the server with Distributed
Database Connection Service (DDCS), Client Application Enabler (CAE), or
DataJoiner. If the three-tier environment includes DataJoiner, the DB2 WWW
Connection application can also access ORACLE, Sybase, Microsoft SQL Server,
and other relational and nonrelational data sources.

Web applications for DB2 built with DB2 WWW Connection allow any Web user
with an HTML-standard Web browser to access your DB2 data without your
having to make any changes to the existing data structure. Using HTML and
SQL, you can build applications that query your DB2 data with standard SQL
statements.

The key feature of DB2 WWW Connection Version 1 is a CGI run-time engine,
which processes the input from HTML forms on the Web and sends SQL
commands to a DB2 system specified in a DB2 WWW Connection application.
This application consists of a macro file containing HTML input and report form
definitions, SQL commands, and variable definitions. DB2 WWW Connection uses
the Web page paradigm for application development, which means that the
application user on the Web sees only a familiar Web page form that may
prompt for user input and then kick off the application transaction, returning the
DB2 query results in another familiar looking Web page report.

DB2 WWW Connection applications use native HTML and SQL, exploiting the
expressive power of those languages without proprietary limitations. Both HTML
input and report forms can support various designs. The run-time engine
supports SQL commands for SELECT, INSERT, UPDATE, and DELETE. DB2 WWW
Connection applications can use data linking, the capability to use data returned
by an SQL query as input to one or more subsequent SQL commands that can
drill down further into DB2 data.

Note: For more information about DB2 WWW Connection, see
http://www.software.ibm.com/data/db2/db2wgafs.html.

2.6.2 CICS Internet Gateway
The CICS Internet Gateway provides automatic translation between CICS 3270
data streams and HTML. It uses the CICS External Presentation Interface (EPI)
and a standard mechanism known as the CGI.

One of the techniques it uses is intercepting the 3270 data stream which is
normally sent to end users′ screens. The screen layout is evaluated including
variable data fields and static text. By performing efficient translation between

42 A Guide to the Internet Connection Servers

3270 data and HTML, the user interface to your CICS application becomes
platform-independent.

In addition, the application can be made globally accessible with a more visually
appealing user interface. It means that your CICS applications can have a much
improved user interface, using the Web browser as an alternative to the 3270
interface. No CICS-specific software is needed on the end user′s system.

Note: For more information about CICS Internet Gateway, see
http://www.hursley.ibm.com/cics/saints/index.html.

2.6.3 MQSeries Internet Gateway
The MQSeries Internet Gateway provides a bridge between the synchronous
world of the WWW and the asynchronous world of MQSeries networks. With the
gateway, a Web server can provide access to MQSeries applications from a
standard Web browser.

The gateway is a conventional CGI application; when the Web server, on which
the gateway is available, receives a POST request from an HTML form
identifying the gateway, it runs the gateway program. The gateway then collects
information from the form and uses it to create an MQSeries message to be
passed to a specific queue and queue manager. The gateway then waits for a
response from the MQSeries application and when received passes the data
content back to the originator of the form.

Note: For more information about MQSeries Internet Gateway, see
http://www.hursley.ibm.com/mqseries/aboutmqs.html.

2.6.4 IMS Internet Gateway
An IMS Internet Gateway is planned for the MVS platform. However, currently
there is no further information available.

2.7 Java
Java is an important new technology in the world of the Internet. In summary, it
is a simple, robust, object-oriented, platform-independent, multithreaded,
dynamic general-purpose programming environment for creating applications for
the Internet and intranet. Java includes the following components:

• Java

Java is a programming language developed by Sun Microsystems, which is
object-oriented, distributed, interpreted, architecture neutral, and portable.
Java can be used to create downloadable program fragments, applets, that
augment the functionality of a Java-capable browser such as HotJava or
Netscape Navigator.

• JavaScript

JavaScript is an HTML extension and programming language, developed by
Netscape, which is a simple object-based language compatible with Java.
JavaScript programs are embedded as source directly in an HTML
document. They can control the behavior of forms, buttons and text
elements. It is used to create dynamic behavior in elements of the Web
page. In addition, it can be used to create forms whose fields have built-in
error checking routines.

Chapter 2. Internet Concepts 43

• Java Virtual Machine

The Java Virtual Machine (JVM) is an abstract computer that runs compiled
Java programs. JVM is virtual because it is generally implemented in
software on top of a real hardware platform and operating system. In this
way, it is architecture neutral and platform independent. All Java programs
should be compiled to run in a JVM.

The following diagram describes in simple terms how Java is implemented:

┌──────────────────────┐
│ Java bytecodes │
├──────────────────────┤
 │ Java Virtual Machine │
 ├──────────────────────┤
 │ Operating System │
 ├──────────────────────┤
 │ Hardware Platform │
 └──────────────────────┘

• HotJava

HotJava is a Java-enabled Web browser, developed by Sun Microsystems,
which lets you view Java applets.

• JavaOS

JavaOS is a highly compact operating system, developed by JavaSoft, which
is designed to run Java applications directly on microprocessors in anything
from personal computers to pagers. JavaOS will run equally well on a
network computer, a PDA, a printer, a game machine, or countless other
devices that require a very compact OS and the ability to run Java
applications.

• Java Beans

An initiative called Java Beans is brewing a similar set of APIs that will
make it easy to create Java applications from reusable components. Java
Beans will be used in a wide range of applications, from simple widgets to
full-scale, mission-critical applications. Many software vendors including
IBM have announced plans to support it.

Note: For more information about Java, see http://ncc.hursley.ibm.com/javainfo/
or http://java.sun.com/.

2.8 Application Programming Interfaces
The Web is an interactive medium that potentially allows users to give feedback
to a company about its products, use search utilities to locate information on a
topic, use conversion programs to convert one value to another, and more.
Although ICS does not perform these tasks, they are performed by external
programs using information passed to them by the server.

There are three application programming interfaces available today for
extending Web servers with external programs:

• Common Gateway Interface (CGI)

• Server-Side Include (SSI)

• Proprietary Application Programming Interface (API)

44 A Guide to the Internet Connection Servers

2.8.1 Common Gateway Interface (CGI)
The CGI allows the server and an external program to communicate. It is a
standard interface, supported by almost all Web servers, that defines how
information is exchanged between a Web server and an external program (CGI
program). CGI programs can be written in any language supported by the
operating system on which the server is run. The language can be a
programming language, l ike C++, or it can be a scripting language, such as
Perl or REXX. Programs written in programming languages need to be
compiled, and typically run faster than uncompiled programs. On the other hand,
those written in scripting languages tend to be easier to write, maintain, and
debug. CGI programs are stored in the cgi-bin directory.

Note: For more information about CGI, see http://hoohoo.ncsa.uiuc.edu/cgi/.

2.8.2 Server-Side Include (SSI)
SSI allows you to create documents that provide simple information to clients on
the fly. Such information can include the current date, and a file′s time stamp
and size, with no programming or CGI scripts. In its more advanced usage, it
can provide a powerful interface to CGI and external programs.

Note: For more information about SSI, see
http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html.

2.8.3 Proprietary Application Programming Interface (API)
An example of a proprietary API is the IBM Internet Connection API (IBM ICAPI).
ICAPI allows you to write extensions to do customized processing, such as:

• Publish customized pages based on a client′s code level

• Enhance the basic authentication or replace it with a site-specific process

• Add error handling routines to track problems or alert for serious conditions

• Detect and track information that comes in from the requesting client, such
as server referrals and user agent code

The ICAPI has several features that make it a viable choice:

• Efficient

Designed specifically for the threaded processing used by the ICS.

• Flexible

Contains rich and compatible functions that can be used to clone other APIs,
such as NSAPI, ISAPI and GoServe.

It is platform independent and language neutral. It runs on all the ICS
platforms and applications can be written in any of the programming
languages supported by these platforms.

• Simple and easy to use

Only passes simple data types by reference not value.

Has a fixed number of parameters for each function.

Has no return values from functions but does have a return code parameter.

Includes bindings for the C language and provides an OS/2 GoServe
compatibility module.

Chapter 2. Internet Concepts 45

Does not impact allocated memory. The API does not free the user′s
memory and the user does not free the API′s memory.

Note: More information about APIs is available at
http://webdev.raleigh.ibm.com/design/api.htm which is in the IBM intranet.

2.8.4 How to Choose a Programming Interface
Choosing a programming interface depends on your priorities. Different
programming interfaces have different characteristics. For example:

• Flexibility

CGI and ICAPI both have great flexibility to develop applications. On the
other hand, SSI has the lowest flexibility because it is a substitution
mechanism, that is, SSI script is inserted into a document at commented tag
locations. You can use many languages that are supported by your
operating system, for programming with CGI or ICAPI.

• Development Cost

SSI has the least development cost, but it does not have much flexibility. CGI
is widely known and many tools exist. ICAPI is new, and development
requires an expert programmer who knows ICAPI and details of the system.
ICAPI development may require the highest costs.

• Operational Risk

If your CGI/SSI script program abends, the Web server must not be brought
down by the bug. ICAPI has safety mechanisms to protect the server against
API program failure. However, if you mistakenly write the program to access
the server′s private data, it is possible that this will cause a fatal error at the
server.

• Running Cost

CGI and SSI are low performance because the CPU and memory overheads
are high. As a result, hardware costs are likely to be higher. If transactions
using CGI/SSI increase or CGI/SSI programs become larger, you may have
to upgrade your hardware.

46 A Guide to the Internet Connection Servers

Chapter 3. Web Browsers

In this chapter we discuss the characteristics of a typical Web browser.

3.1 The Principles of Browsing
To start with we introduce the basic protocols involved in a browser to server
communication.

3.1.1 Hypertext Transfer Protocol
The Hypertext Transfer Protocol (HTTP) determines how a browser interacts with
a server.

For more information regarding HTTP, refer to 2.2, “HTTP” on page 12.

An HTTP transaction is divided into four steps:

 1. The browser opens a connection.

 2. The browser sends a request to the server.

 3. The server sends a response to the browser.

 4. The connection is closed.

We now describe the four steps in detail. We have developed a basic browser
and a basic server using REXX for OS/2 to display the browser′s requests and
the server′s responses. Related documentation can be found in Appendix A,
“Two Simple Browsers and One Simple Server” on page 299.

3.1.1.1 The Browser Opens a Connection
The browser attempts to connect to the server. If a server is listening, it
establishes the connection. If not, the browser times out and displays an error
message.

3.1.1.2 The Browser Sends a Request to the Server
Once the connection is established, the browser sends a request to the server,
using one of the following request methods:

DELETE The DELETE method is used to delete a resource specified by its URI.
Even though this method is supported by most of the recent servers,
it is rarely enabled for obvious security reasons.

For example, to delete the /shapes/index.html page the browser
would send:

DELETE /shapes/index.html HTTP/1.0

GET The GET method is used to retrieve a resource specified by its URI.
This was the only method supported by the early versions of HTTP
(HTTP 0.9), and it is still, by far, the most used one.

For example, to load the /shapes/index.html page the browser would
send:

GET /shapes/index.html

 Copyright IBM Corp. 1996 47

To tell the browser to use HTTP 1.0 rather than a previous version of
the protocol, complete the method by HTTP/1.0 and two carriage
return line feeds (CRLFs) like so:

GET /shapes/index.html HTTP/1.0

Note that it is also possible to launch CGI scripts using GET, although
this is usually achieved using the POST method. Clicking on a
clickable image map would send the following request:

GET /cgi-bin/htimage/shapes/shapes.map?29,31

HEAD The HEAD method is used to get the header or the meta-information
of a resource specified by its URI. This is very useful to determine if
a resource is still accessible, or if it has been modified since the last
time it was retrieved.

To get information about the /shapes/index.html page, the browser
would send:

HEAD /shapes/index.html HTTP/1.0

LINK The LINK method is hardly ever used. Refer to RFC 1945 for more
details.

POST The POST method is used to submit the data of a form to a CGI script.

POST /action HTTP/1.0
Content-length: 55

cookie=99567&mode=compact&maxHits=25&searchText=Surfing

PUT The PUT method is used to put data on the server. Even though this
method is supported by most of the recent servers, it is rarely
implemented for obvious security reasons.

UNLINK The UNLINK method is hardly ever used. Refer to RFC 1945 for more
details.

3.1.1.3 Real-Life Requests
More elaborate browsers include more information in their requests. The
following figures represent the requests sent by Charlotte (an IBM VM browser),
the IBM WebExplorer Java Technology Demo, and the Netscape Navigator 2.02,
respectively.

GET /shapes/index.html HTTP/1.0
Accept: text/*
Accept: text/plain
Accept: text/html
Referer: http://9.24.104.247:8888/shapes/index.html
User-Agent: Charlotte/1.2.1 VM_ESA/1.2.2 CMS/11 via proxy gateway CERN-HTTPD/3.0 libwww/2.17

Figure 15. A GET Request by Charlotte

48 A Guide to the Internet Connection Servers

GET /shapes/index.html HTTP/1.0
Accept: */*; q=0.300
Accept: application/octet-stream; q=0.100
Accept: text/plain
Accept: text/html
Accept: application/pdf
Accept: audio/x-pn-realaudio
Accept: application/inf
Accept: audio/x-wav
Accept: audio/x-aiff
Accept: audio/basic
Accept: video/avs-video
Accept: video/x-msvideo
Accept: video/quicktime
Accept: video/mpeg
Accept: image/x-bitmap
Accept: image/bmp
Accept: image/tiff
Accept: image/jpeg
Accept: image/gif
Accept: application/editor
User-Agent: IBM WebExplorer DLL /v960311 Beta

Figure 16. A GET Request by the IBM WebExplorer Java Technology Demo

GET /shapes/index.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/2.02 (Win16; I)
Host: 9.24.104.247:8888
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Figure 17. A GET Request by the Netscape Navigator 2.02

3.1.1.4 The Server Responds to the Browser
Whether the request could be honored or not, the server sends a response to
the browser.

If the server uses a version of HTTP that is older than 1.0, the response only
contains the requested data, or the error message in HTML format, as described
in the following two figures.

Chapter 3. Web Browsers 49

<HTML>
<HEAD>
<TITLE>Shapes - Polygon</TITLE>
</HEAD>
<BODY BGCOLOR=FFFFFF>
<CENTER>
<H1>Shapes
Polygon</H1>
<I>You have selected a polygon</I>
<HR>
Back to previous page
<HR>
</CENTER>
</BODY>
</HTML>′

Figure 18. The HTTP 0.9 Response to a Successful GET Request

<HTML>
<HEAD>
<TITLE>Error</TITLE>
</HEAD>
<BODY>
<H1>Error 404</H1>

Not found - file doesn′ t exist or is read protected •even tried multi‘

<P><HR><ADDRESS>
IBM Internet Connection Secure Export Server</ADDRRESS>
</BODY>
</HTML>

Figure 19. The HTTP 0.9 Response to an Unsuccessful GET Request

If the server uses HTTP Version 1.0, then the response is composed of a header
followed by the requested data, as described in the following two figures.

50 A Guide to the Internet Connection Servers

HTTP/1.0 200 Document follows
Server: IBM-Secure-Export-ICS/4.1Beta4
Date: Thursday, 06-Jun-96 21:22:16 GMT
Content-Type: text/html
Content-Length: 457
Last-Modified: Friday, 24-May-96 15:44:07 GMT

<HTML>
<HEAD>
<TITLE>Shapes</TITLE>
</HEAD>
<BODY BGCOLOR=FFFFFF>
<CENTER>
<H1>Shapes
A Sample Clickable Image Map</H1>
<I>Select a shape</I>
<HR>

<P>
Polygon -
Circle -
Rectangle
<HR>
</CENTER>
</BODY>
</HTML>′

Figure 20. The HTTP 1.0 Response to a Successful GET Request

HTTP/1.0 404 Not found - file doesn′ t exist or is read protected •even tried multi‘
Server: IBM-Secure-Export-ICS/4.1Beta4
Date: Thursday, 06-Jun-96 20:48:56 GMT
Content-Type: text/html
Content-Length: 276

<HTML>
<HEAD>
<TITLE>Error</TITLE>
</HEAD>
<BODY>
<H1>Error 404</H1>

Not found - file doesn′ t exist or is read protected •even tried multi‘

<P><HR><ADDRESS>
IBM Internet Connection Secure Export Server</ADDRRESS>
</BODY>
</HTML>

Figure 21. The HTTP 1.0 Response to an Unsuccessful GET Request

In the successful example, the server returned an HTTP 1.0 response, the status
code was 200 (which is OK), and the reason phrase was Document follows.

Chapter 3. Web Browsers 51

In the unsuccessful example, the server also returned an HTTP 1.0 response, the
status code was 404, and the reason phrase was Not found.

In both cases the header contained the Content-Type which indicates the nature
of the data transmitted: text/html. This is described in more detail in the next
section.

3.1.1.5 The Browser or the Server Closes the Connection
The connection is closed when the server has transmitted its response to the
browser.

3.1.2 The Multipurpose Internet Mail Extensions (MIME)
In all the responses stated in the previous section, the Content-Type field of the
header was text/html. What would happen if we requested another type of
resource, such as a graphic, for example? To find out, we sent the following
request to our server:

GET /shapes/shapes.gif HTTP/1.0

The server′s response then was:

HTTP/1.0 200 Document follows
Server: IBM-Secure-Export-ICS/4.1Beta4
Date: Friday, 07-Jun-96 15:38:11 GMT
Content-Type: image/gif
Content-Length: 835
Last-Modified: Friday, 24-May-96 15:44:09 GMT
X-httpd-warning: Your browser didn′ t send the Accept header line for this

GIF89a...
(data flow truncated)

Figure 22. A Response to GET Requesting an Image

As this simple example shows, HTTP can transfer much more than the hypertext
its name mentions, such as graphics. After all, the World Wide Web has become
popular mainly because of its ability to carry sights and sounds (sons et
lumieres).

This is made possible by the Multipurpose Internet Mail Extensions which is
defined by RFCs 1521 and 1522.

When a browser exchanges data with HTTP 1.0, the request (PUT) or response
contains a MIME header, defining the data content and type. In the examples
above we encountered the following:

Content-Type: type/subtype
Content-Type: text/html
Content-Type: image/gif

Upon reception of this header, the receiving end (generally the browser) can
decide how to process the data flow (should it display it with an internal or
external viewer, launch an application, etc.). This provides a high level of
flexibility to browsers.

52 A Guide to the Internet Connection Servers

3.1.3 HTML
The Hypertext Markup Language (HTML) is used to write the pages that appear
on the World Wide Web. Please refer to 2.3, “HTML” on page 14 for more
details.

3.2 The Features of a Good Web Browser
There are many browsers available in the marketplace. In this section we
attempt to pinpoint the characteristics of a good browser.

3.2.1 Protocols
One characteristic of a good browser is that it should interface to most Internet
protocols. It should allow you to display pages, download files, send e-mail,
read from and append to newsgroups, etc.

3.2.1.1 HTTP
If the software does not support HTTP then it is not a browser.

3.2.1.2 FTP
The File Transfer Protocol (FTP) is certainly the most popular way to exchange
files of any format on the Internet. It is very convenient to have an FTP client
integrated in the browser. This allows you to get files from an FTP browser
simply by linking to them, as if they were WWW pages, rather than having to
launch a specific FTP client.

Note that most browsers do not allow you to put files on an FTP server. It is
therefore useful to keep an FTP client handy.

3.2.1.3 NNTP
The Internet also carries newsgroups. Newsgroups are a convenient way for a
group of people to share their experience or their data. You might consider
setting up news servers on your intranet if groups of people in your staff should
share the same flow of information.

Some browsers now support the newsgroup scheme name. This allows you to
link to the newsgroup simply by specifying news:newsgroup URL. Some
browsers use HTML pages that guide you through the news groups at the server.
However in most cases HTML pages are not appropriate for the mass of
information that some servers carry. We therefore preferred the browsers that
dedicate a specific window for reading news, such as Netscape Navigator.

Where possible, opt for a MIME-compliant news client, in order to be able to
process documents, images, etc. imbedded in appends to the newsgroups.

3.2.1.4 SMTP
Most browsers now support the mailto scheme name. This means that linking to
the mailto:name@host URL allows you to send an e-mail to name at host. To
send this e-mail, the browser must communicate with a mail server, and this
means the server must support the Simple Mail Transfer Protocol (SMTP).

Furthermore, some browsers allow you to receive and read e-mail from a POP
server. This implies that the browser uses the Post Office Protocol (POP).

Chapter 3. Web Browsers 53

In any case MIME-compliant mail clients are preferred so that you are able to
process documents imbedded in your mail.

3.2.1.5 Other Protocols
Some browsers also implement other protocols, such as Finger or the
ICMP-based PING and TRACEROUTE. Although it is convenient to access all
possible clients from a single interface, it is impossible to gather all IP-based
protocols into one browser; they are too numerous.

3.2.2 HTML
The Hypertext Markup Language (HTML) is used to write the World Wide Web′s
hypertext pages. A browser should be able to parse the highest possible
version of this language. The current version is 3.0 at the time of writing.

The early versions of HTML were rather basic and included only a few tags. The
need to create more sophisticated pages has caused HTML to change quickly
from Version 1.0 to 3.0 in recent times. But this has not been fast enough for
some browser developers who like to implement their own tags and then, in
some cases, they become de facto standards. Frames were introduced in this
way. These proprietary tags sometimes cause strange results if the browser
does not support them.

Therefore, although we advise you to use the most complete browsers, we also
recommend that you develop pages using standard HTML.

3.2.3 Java
Sun describes Java as a simple, object-oriented, distributed, interpreted, robust,
secure, architecture neutral, portable, high-performance, multithreaded and
dynamic language.

All these attributes are important, but the most important ones are architecture
neutral and portable. They mean that a Java applet will run on any browser on
any platform if this browser and platform support Java (not only the Netscape
Navigator or the Microsoft Internet Explorer). Note that Java has been or will be
ported to all major IBM platforms.

3.2.4 JavaScript
JavaScript is a programming language developed by Netscape. Here is a
description taken from the Netscape Web site:

JavaScript (is) a programmable API that allows cross-platform
scripting of events, objects, and actions. It allows the
page designer to access events such as startups, exits, and
user mouse clicks. Based on the Java language, JavaScript
extends the programming capabilities of Netscape Navigator
to a wide range of authors and is easy enough for anyone who
can compose HTML. Use JavaScript to glue HTML, inline
plug-ins, and Java applets to each other.

Most browsers (other than the Netscape Navigator) do not support JavaScript.

54 A Guide to the Internet Connection Servers

3.2.5 ActiveX
The latest Microsoft Internet Explorer also provides, with Aptivex, controls and
scripting that allow you to create animated or interactive pages.

The major problem with these languages is that they are browser dependent, if
not proprietary. A person not using the right hardware, the right operating
system and the right browser (that already includes a lot of people) will not be
able to properly display your interactive multimedia pages. All your efforts will
have been in vain.

Therefore think simple, think standard, love all, serve all.

3.2.6 Security
Security is a very important issue on an intranet or on the Internet. When it
comes to browsers the security on the net covers two aspects:

• TCP/IP security, that protects your resources (hardware such as computers,
printers, etc. and software such as applications, files, etc.) from misuse or
destruction

• HTTP security, that ensures the confidentiality of the data exchanged
between browsers and servers.

3.2.7 Network Security
Another important characteristic of a good browser is its network security
features.

3.2.7.1 Proxies
One way of implementing TCP/IP security is to set up proxy servers on firewalls.
For more information about the firewall and proxy concepts, please refer to 2.5,
“Firewalls” on page 38 and 2.5.1, “Proxy Servers” on page 40. In addition there
is a chapter dedicated to proxies in the Internet Connection Server Up and
Running manual.

HTTP supports proxy functions and most browsers can make use of this feature.
Furthermore, browsers have become more and more powerful, and they now
integrate more protocols than simply HTTP. For instance, it is possible to
connect to an FTP server from the browser. Since some of these protocols also
support proxying, such as FTP, Gopher and WAIS, a good browser should allow
you to configure these proxies.

3.2.7.2 SOCKS Servers
Another way of implementing TCP/IP security is to install SOCKS servers on
firewalls. For more information about SOCKS servers, please refer to 2.5.2,
“SOCKS Servers” on page 40. A good Web browser should allow you to
configure a SOCKS server.

3.2.7.3 S-HTTP
A good browser should support S-HTTP. For more information, refer to 2.4.2,
“Secure HyperText Transport Protocol (S-HTTP)” on page 37.

Chapter 3. Web Browsers 55

3.2.7.4 SSL
A good browser should support SSL. For more information, refer to 2.4.1,
“Secure Sockets Layer (SSL)” on page 37.

3.3 Available Brow sers
There are many browsers available for use on the World Wide Web. Here we list
the ones that are most widely used in the IBM Internet world.

3.3.1 IBM WebExplorer
IBM WebExplorer is IBM′s browser that is shipped with the OS/2 platform. There
are three versions: Base, Secure and Java. Although the Java version would
complement the Secure version, no such combination was available at the time
of writing.

During our project, no announcement had been made regarding the availability
of Netscape Navigator on the OS/2 Warp platform. However, the situation has
changed since that time: for more details refer to 3.3.2, “Netscape Navigator.”

3.3.1.1 IBM WebExplorer Base Version
IBM WebExplorer Base version supports HTTP 1.0 and FTP. It also supports the
mailto and news schemes.

3.3.1.2 IBM WebExplorer Secure Version
IBM WebExplore Secure Version adds S-HTTP and SSL support to the features of
the base product. Unlike the other WebExplorers, this one is chargeable.

3.3.1.3 IBM WebExplorer Java Technology
IBM WebExplorer Java Technology Demo offers Java support along with the
base product′s features. It only works in combination with IBM ′s Java
Development Kit for OS/2.

3.3.2 Netscape Navigator
Netscape Navigator is available on most graphical platforms. The actual market
share of this product (about 75 percent) promotes every feature of this browser
as a must-have for other browsers, if not as a de facto standard. Please link to
the Netscape home page for more details about the Navigator.

IBM and Netscape have recently made available a beta test version of Netscape
Navigator that is ported to the OS/2 Warp platform. Although WebExplorer is
part of the recently available OS/2 Warp V4 it should be understood that
Netscape Navigator is functionally superior in most areas. Netscape Navigator
will therefore be the browser of choice in most cases.

3.3.3 Other Browsers and Ways to Surf the Net
As we have demonstrated at the beginning of this chapter, rolling your own
browser requires little time and minimal skills. An Internet-oriented language
such as Java or REXX which offers a full grown parser can also help in this
process.

Thus, you can easily write a browser to load and display a specific resource, a
meteorological map for example, or create a robot-browser to automatically

56 A Guide to the Internet Connection Servers

send request methods, or a tool to download all the resources pointed to by the
HTML anchors of a page.

You can also integrate basic HTTP features into your existing applications, as
most software vendors have done. For example, it is already possible to load
Web pages directly as a document into some text processors.

Chapter 3. Web Browsers 57

58 A Guide to the Internet Connection Servers

Chapter 4. Internet Connection Servers - Installation and
Configuration

The purpose of this chapter is to provide you with guidelines for installing an
Internet Connection server. This chapter covers:

• An overview of the Internet Connection server features.

• A step-by-step description of how you should install and configure your
Internet Connection server.

• A discussion on how you should operate your Internet Connection server.
This is comprised of sections on security, backup and logs.

As you will read in 4.1, “Standard Functions,” the Internet Connection server is
available for many IBM and non-IBM platforms. Naturally, the installation
process varies from one platform to another. Consequently this chapter contains
separate sections for each platform providing specific information related to the
installation and administration procedures.

Note that, with the exceptions of the OS/390 and OS/400 platforms, the Internet
Connection server featured is Version 4.1.

4.1 Standard Functions
In this section we introduce the standard functions of the Internet Connection
servers.

• Home Page Repository

Acts as a repository for resources (home pages) created with Hypertext Markup
Language (HTML).

• HTTP Support

Honors requests from Web browsers (clients) using Hypertext Transfer Protocol
(HTTP) to transfer the document.

• Multimedia Serving

Simplifies explanations or livens up Web pages, HTML documents often including
in-line images, or links to audio or video clips.

• Logging

For each request, the server logs pertinent information such as the date, time, IP
number of the client machine, and the text of the request. There are various
types of logging which we discuss in 4.6.8, “Logging Procedures” on page 148.

• Proxy Support

Retrieves documents from other servers on behalf of clients. Optionally, these
can be stored locally in a cache at the server.

Acts as an agent for clients to access remote servers not directly accessible by
the browser due to security access restrictions. In some instances this process
involves a referral to a firewall for access to the Internet. For more information
about firewalls and security in general, refer to 2.4, “Security” on page 36. The
proxy server supports HTTP, FTP, Gopher, WAIS and HTTP-S requests.

• CGI Support

 Copyright IBM Corp. 1996 59

Provides access to applications using the Common Gateway Interface (CGI). CGI
is an application programming interface between the Internet Connection server
and another application such as a database. Sample CGI scripts are provided
that will negotiate the movement of data between the Internet Connection server
and the outside application.

• Integration of DB2 Gateway

Allows you to access DB2 data using standard Web browsers. Using this feature,
you can develop Web applications without a proprietary language, data
encapsulation or database reformatting. Application programmers can combine
dynamic SQL with HTML forms to access DB2 databases. For more information
about the DB2 Gateway use your Web browser to go to the following URL:

http://www.software.ibm.com/data/db2/db2wgafs.html

• Integration of CICS Gateway

Allows you to develop and run transaction processing applications on the Web
and to access new and many existing CICS applications using standard Web
browsers. Typically, no changes are required for CICS applications using this
feature, nor is any application code required to use the CICS Gateway. In most
cases, you do not need to recompile CICS applications or CICS Basic Mapping
Support (BMS) maps. For more information about the CICS Gateway use your
Web browser to go to the following URL:

http://www.hursley.ibm.com/cics/saints/index.html

• Internet Security

IBM ′s secure servers feature the industry ′s two most popular security protocols:

• Secure Sockets Layer (SSL)

• Secure Hypertext Transfer Protocol (S-HTTP)

IBM ′s secure servers not only support the industry standards for x.509
certificates used in the SSL and SHTTP protocols, but also provide the facilities
to issue certificates for use in a company′s enterprise.

4.2 New Functions
Internet Connection Secure Server V4.1 includes:

• IBM ICAPI API

Allows you to extend the server′s base functions. Using this API, you can write
extensions to perform site-specific processes, such as publishing customized
pages based on a client′s code level, enhancing the basic authentication, and
adding error routines to track problems or alert you about various conditions.

• Netscape API

Allows you to use the Netscape API on the Internet Connection Server. Using
the server′s NSAPI compatibility module, you can port existing NSAPI programs
without losing any functions.

• Server-Side Includes

Allows you to dynamically insert information into an HTML document that the
server sends to a client. The current date, the size of a file and the last change
of a file are examples of dynamic information that can be sent to the client.

• Error Message Customization

60 A Guide to the Internet Connection Servers

Allows you to customize the messages that your server sends back to the client
when error conditions occur. By creating your own HTML message files, you can
provide additional information, suggest solutions, and name a contact person, if
desired.

• Multiple IP Address Support

Allows you to maintain multiple Web sites on a single Internet Connection
server. By running the server on a machine with multiple network connections,
you can serve different files based on the host name entered by the client
making the request. Clients can reach each of your home pages with a simple
URL that does not specify a file name or port number.

• Enhanced Logging and Reporting

Allows you to control which requests your server logs. The reporting function
lets you create and view reports based on the information in your access logs.

4.3 Export Version Restrictions
Two versions of these secure products exist; one for the U.S. and Canada and
one for all other countries. The version for U.S. and Canada cannot be
announced or made available outside the U.S. or Canada since they contain
triple DES cryptographic algorithms for bulk encryption as well as 128-bit RC2
and 128-bit RC4 encryption. These products can not be exported outside the U.S.
and Canada to any entities. The version of the products announced outside of
the U.S. and Canada use 40-bit RC2 and 40-bit RC4 encryption for data privacy.

A session between an export version and a non-export version will be negotiated
between the servers at the lowest level of encryption.

For more information about RC2 and RC4 go to following URL:

http://www.rsa.com

4.4 Do I Need a Secure Server?
In this section we discuss the need for security in Internet and intranet
communications.

At a simple level, it would appear that security is most vital in the case of a
corporate intranet with a connection to the Internet. Conversely, we may not
need any security within a corporate intranet. In practice, every network we set
up will need a thorough security audit prior to going live.

Our discussions should help you decide whether you need to install the Internet
Connection secure server or whether the nonsecure version will suffice. For an
introduction to security concepts please refer to 2.4, “Security” on page 36.

4.4.1 Security Needs
Depending on your involvement with the Internet, you will have different security
objectives. If you are an end user that is using an electronic commerce facility
on the Internet, you would like to be sure about things such as:

• To whom am I talking?

• Can I trust them?

Chapter 4. Internet Connection Servers - Installation and Configuration 61

• What happens with my credit card information?

• Can they use my payment twice?

However, if you are the provider of that electronic commerce facility you will
have different security objectives. For example, you would like to know the
following:

• Who has access to my systems?

• Can they prove their identity?

• What else on my system can they access?

• How can I bill them?

• Who guarantees thier payment?

Security objectives fall into one or more of the following five categories:

• Access Control

Assurance that the person or computer at the other end of the session is
permitted to do what he or she asks for.

• Authentication

Assurance that the resource (human or machine) at the other end of the
session really is what it claims to be.

• Integrity

Assurance that the information that arrives is the same as what was sent.

• Accountability

Assurance that any transaction that takes place can subsequently be proved
to have taken place. Both the sender and the receiver agree that the
exchange took place (also called non-repudiation).

• Privacy

Assurance that sensitive information is not visible to an eavesdropper. This
is usually achieved using encryption.

4.4.2 What Mechanisms Provide Security?
You can protect your environment by using firewalls. Firewalls can control:

• Which computers on either side of the firewall can be accessed

• In what way these computers can be accessed

• Who can access these computers

• How the end user identifies and authenticates himself

You should consider a firewall when you connect a company intranet to the
Internet. It allows you to protect all of the machines on your intranet from any
external attacks. You can decide what types of traffic will reach which
applications on which machines. You can also implement various authorization
schemes for getting through the firewall. Unwanted traffic can be filtered out and
you can get audit trails to help in detecting attacks.

In addition, security mechanisms are provided on the server platform where the
service is implemented. Platform security can provide, for example, the
following security facilities:

62 A Guide to the Internet Connection Servers

• End-user identification and authentication

• Access control for applications and data

• Audit records

The server and the client should agree on the protocols that are used to connect
each other and provide enhanced security on the Internet. Among these
protocols you will find:

• Secure Sockets Layer (SSL)

• Secure Hypertext Transfer Protocol (S-HTTP)

• Secure Electronic Transactions (SET)

These protocols provide the following for messages that are sent over the
Internet:

• Authentication

• Integrity

• Accountability

• Privacy

Internet Connection Secure Server Family supports SSL and S-HTTP. SET at the
time of writing is still under development. SET support is planned for the
Internet Connection server and associated products like Net.Commerce.

4.4.3 No Confidential Data on Your Web Server
If your Web server is providing company information that should be available for
any employee through the company intranet, the server may not need any
security functions. You can therefore choose either the standard (nonsecure)
version or the secure version of ICS.

4.4.3.1 Confidential Data Included on Your Web Server
There may also be a requirement to restrict some of the information on the Web
server to specific users in the organization. Although you might have the
impression that you don ′ t need any strict security practices in place if you are
using an internal network, you should realize that most security breaches today
are carried out by people inside a company taking a chance to access
information they should not access. Therefore, if there is a need to store
confidential information on the Web server even within an intranet, some
important security aspects must be considered. In this case, you would be wise
to consider using the secure version of ICS.

4.5 Installing an Internet Connection Server
In this section we describe how to install your Internet Connection server. We
take you from the moment you select the platform on which your server will be
running, to the moment you launch it safely for your network.

We have broken down the installation process into the elementary steps that we
have identified while installing Internet Connection servers on selected platforms
for which this product is available.

These steps are:

Chapter 4. Internet Connection Servers - Installation and Configuration 63

• Prepare Your Platform

First of all you should make sure that your platform is ready for the
installation of an Internet Connection server. Do you have the appropriate
hardware and the proper release of the operating system and TCP/IP stack?
Have you applied the required level of maintenance?

• Prepare Your Network

Once your platform is ready you should prepare your IP network.

While you install and configure your server, the information it advertises may
be incomplete or even erroneous. Furthermore, the security settings may not
be fully or correctly implemented. You will therefore want to limit the number
of hosts that can access your server.

Your server is a sensible machine; you expect it to deliver the relevant
information continuously. You should therefore disable all the unnecessary
applications that could stop the server or corrupt its contents, as an unstable
release of a browser, or FTP or TELNET servers, respectively.

You will need to install a browser to read the HTML documents shipped with
your Internet Connection server, access the remote configuration and
administration forms, and to verify the behavior of your server.

• Get Your Copy of the Internet Connection Server

How you get a copy of the Internet Connection server depends greatly on the
platform on which you install it. The Internet Connection server is now
shipped with the latest releases of some IBM operating systems, such as
AIX, OS/390 and OS/400. Furthermore, you may download the Internet
Connection server for the other IBM operating systems as well as for
non-IBM operating systems from the Internet Connection Family Web site at
http://www.ics.raleigh.ibm.com. You may also purchase an Internet
Connection server from IBM Direct.

• Read the Documentation

This step is essential! It is possible to download and install an Internet
Connection server without reading the installation instructions. This is
especially true for OS/2 Warp and Windows NT. But this is definitely not
advisable! A Web server exposes the machine and the network on which it
is running. You should therefore make sure you know what you are doing.
Your first source of information is the Internet Connection Family Web site at
http://www.ics.raleigh.ibm.com. Other documents are shipped with the
Internet Connection server.

• Plan for the Installation

During this step you will decide what resources you attribute to the server,
and which of the installation options you will select.

• Install Your Server

You are now ready to install your Internet Connection server.

As you will discover later in this chapter, Internet Connection servers are very
similar across platforms during operation. Installation, however, is very much
dependent on the platform. With this in mind, each of the following subsections
describes how to install an Internet Connection server on one particular
platform.

64 A Guide to the Internet Connection Servers

4.5.1 AIX
In this section we tell you how to prepare and install an Internet Connection
Server for AIX.

The following topics are covered:

• Hardware requirements

• Software requirements

• Getting your copy of the Internet Connection Server for AIX

• Securing the AIX server

• Preparing for the installation

• Installing the server

4.5.1.1 Hardware Requirements
• A RS/6000 or IBM Power Series Family with AIX Version 4.1.3 or later.

• Approximately 7 MB of free disk space to install the server. This includes
the base file sets, security file sets and message catalog. An additional 4
MB of free disk space is required to install the DB2 and CICS Gateway
features.

• A mouse, trackball, trackpoint or pen. Although all functions can be
performed with the keyboard, a pointing device is recommended.

• Any communication hardware that is supported by the TCP/IP protocol stack
to make network connections.

• 32 MB memory should be sufficient for most servers. However, actual
memory requirements will depend on what other applications are running.

4.5.1.2 Software Requirements
• AIX Version 4.1.3 or later

Note: It is recommended that AIX software be upgraded to Version 4.1.4 or
higher to take advantage of the latest enhancements and fixes to the
operating system, particularly those that address TCP/IP and security.

• If your server handles a large number of incoming connections, the fix for
APAR IX52752 for AIX Version 4.1.3 or later should be applied. This fix
increases from 10 to 100 the listen() backlog max limit that is set by AIX.

For capacity and security reasons, it is not recommended to have other
applications running on the server. You should install only a minimal AIX, that is
the basic file sets that are installed automatically plus the TCP/IP file set (both
client and server parts).

4.5.1.3 Getting Your Copy of the Internet Connection Server for AIX
They are several ways to get a copy of the Internet Connection Server for AIX:

• You are a lucky owner of an AIX 4.2 server license. Then you have the
product included in the Bonus Pack provided with your license.

• Purchase the product. The software is delivered on a CD/ROM or on
diskettes and it comes with the Up and Running! documentation. Both
secure and nonsecure versions can be purchased. Here are the references
for the AIX products:

Chapter 4. Internet Connection Servers - Installation and Configuration 65

5765-638 Internet Connection Server Version 4.1 for AIX
5697-A74 Internet Connection Secure Server Version 4.1 for AIX

• Download the code. You can download the last released version of the
Internet Connection Server for AIX, as well as beta versions of the product
(both secure and nonsecure versions). You should be aware that the secure
beta product is a 60-days demonstration product.

If you already have the Internet Connection Server product, you should jump
directly to 4.5.1.4, “Securing the AIX Server” on page 67.

Downloading the Code: Prior to download, decide in which directory you want
to store the server code. The downloaded file requires approximately 7 MB of
temporary storage. The packages that you will extract from this file require
approximately 14 MB.

You can get the server code via anonymous FTP on:

service2.boulder.ibm.com

or at the Internet Connection Family Web site:

http://www.ics.raleigh.ibm.com/ics/icfgive.htm

The latter is the recommended alternative to download the code since the WWW
server helps you in determining which file should be downloaded with regard to
criteria such as your National Language Support.

Note: At the time of writing, only the nonsecure servers are available on
Boulder FTP server. The downloaded code is a compressed tar file. In order to
extract the file sets, you must be in the directory into which you downloaded the
server code. At the prompt, enter:

zcat <compressed tar filename> | tar -xpvf -

The following packages will be extracted :

• cig.rte (CICS Internet Gateway)

• db2www.doc.xx_xx (DB2 WWW Product Documentation)

• db2www.www (DB2 World Wide Web Connection)

• internet_server.Bnd (Internet Connection Server Bundle)

• internet_server.base (Internet Connection Server)

• internet_server.security.common (Internet Connection Server Common
Secure Files - secure version only)

• internet_server.security.export (Internet Connection Server Export Secure
Files - secure version only)

Printing the Documentation: On the Web page:

http://www.ics.raleigh.ibm.com/ics/icftoops.htm

you will find references to the Postscript files containing the U.S. English
versions of the documentation.

If you do not have a Postscript printer, you won ′ t be alone. When the server
installation is over, you can browse the documentation with your preferred HTML
browser; it is online.

66 A Guide to the Internet Connection Servers

4.5.1.4 Securing the AIX Server
Detailing all the mechanisms that you should set up in order to secure your AIX
Server is beyond the scope of this redbook. For detailed directives, you can
refer to Safe Surfing: How to Build a Secure World Wide Web Connection
SG24-4564. You should at least apply the following techniques:

Setting Up a User ID for the Web Server: Although the standard
recommendation for a Web server is to run it under the nobody user and group
IDs, we suggest setting up dedicated user and group IDs. The user ID should not
be used for login, or for FTP. You can set up the user ID as follows:

mkgroup -A www
mkuser pgrp=www groups=www sugroups=system home=/var/nowhere \
gecos=′ The Web Server′ login=false rlogin=false www

Add the WWW user ID to the file /etc/ftpusers. (Create the file if it does not
already exist.)

Removing Unnecessary Services: Many TCP/IP services are enabled by default.
You should disable most of them. Some are started via inetd and configured
through /etc/inetd.conf; others are started through /etc/rc.tcpip or other
commands that are triggered by the init process (see /etc/inittab). In order to
disable the undesired services, we suggest you do the following:

• Browse /etc/inetd.conf and disable services such as shell login, exec, ftfp,
etc. As a minimal configuration, you should keep internal services, telnet
and FTP for remote maintenance purposes. If you wish to log FTP activity,
which is recommended, the ftpd daemon should be invoked with the -l option
as follows:

ftp stream tcp nowait root /usr/sbin/ftpd ftpd -l

• Browse /etc/rc.tcpip and disable startup commands for subsystems such as
routed, gated, etc. As a minimal configuration, you should keep syslogd,
sendmail and if required named.

• Browse /etc/inittab and disable the dispatch command for processes such as
NFS daemon.

Cleaning Up User IDs and Setting Up Password Rules: You should keep as few
user accounts as possible on your Web server. The minimal set of user
accounts is: root, daemon, bin, adm, nobody and www (if you chose to add it)
plus your regular logins for remote maintenance. You should set up a password
policy to encourage users to regularly change their passwords and to choose
nontrivial passwords (see default stanza in /etc/security/user file).

Setting Up Logs: You should configure syslogd to log messages related to
daemon activities and authentication. As the log files tend to grow larger and
could turn the file system they depend on into a full file system, create a
separate file system for your log files. Depending on the activity of your server
and the frequency with which you will back up your log files, the size of your file
system can range from several MB up to 1 GB. First of all, create a new file
system by entering:

smitty crjfs

The following panel appears:

Chapter 4. Internet Connection Servers - Installation and Configuration 67

Figure 23. Creating the /var/ log File System

The file system is not mounted yet. You should do it manually as follows:

mount /var/log

Modify the /etc/inetd.conf file to include the following statements:

auth.debug /var/log/auth.log
daemon.debug /var/log/daemon.log

Then create the log files and refresh the syslogd daemon as follows:

touch /var/log/auth.log
touch /var/log/daemon.log
refresh -s syslogd

Refer to 4.6.8, “Logging Procedures” on page 148 for information about setting
up your Web server to log files.

A new feature in Internet Connection Server 4.1 allows you to set up the syslog
daemon to log HTTP daemon error messages.

The channel on which the HTTP daemon sends its messages is user.err. In
order to activate this facility, you should add the following statement to
/etc/inetd.conf:

user.err /var/log/user.log

and create the corresponding file:

touch /var/log/user.log

before refreshing the syslogd daemon.

68 A Guide to the Internet Connection Servers

4.5.1.5 Preparing for the Installation
To perform the following operations and to install the server, you will need root
authority.

• Make sure that the hostname of your server machine is correctly set by
entering:

hostname

• Check the operation of TCP/IP (ping any known machine, test DNS, etc.)

• Check the consistency of your AIX system by entering:

lppchk -v

and fix reported problems (if any).

• Although the server installation should not damage your system, think of
backing up your system (always a good idea).

4.5.1.6 Installing the Server
To install, you must be logged in as root.

 1. Enter:

smitty install_latest

 2. From the Install Software at Latest Level screen:

• If you purchased the product and have it on distribution media, press F4
for the INPUT device / directory for Software option and select the
appropriate device.

• If you downloaded the product, enter the name of the directory in which
you extracted the packages.

Then press Enter.

 3. From the Install Software Products at Latest Level updated screen, press F4
for the Software to install option. The SOFTWARE to install screen appears
as shown below with a list of packages you can selectively install.

Figure 24. Installing the Internet Server Package

Chapter 4. Internet Connection Servers - Installation and Configuration 69

 4. Move the cursor to internet_server.base and press F7 to select to install
Internet Connection Server, Internet Connection Server Administration and
Internet Connection Server Documentation file sets. Move the cursor to the
security related packages and press F7 to select (if applicable). Select also
the CICS Gateway and DB2 WWW packages if desired. Then press Enter.
The SOFTWARE to install option, in the Install Software Product at Latest
Level screen is updated to show that you want to install
internet_server.base.

 5. To install internet_server.base, press Enter. You wil l have to press Enter
again at the ARE YOU SURE screen.

When the server is successfully installed, you will get Command: OK in the
COMMAND STATUS screen.

 6. Press F10 to exit smitty.

Verify that the server is properly installed as follows:

lslpp -l ′ internet*′

You should observe the following:

Path: /usr/lib/objrepos
internet_server.base.admin

4.0.0.0 COMMITTED Internet Connection Server
Administration

 internet_server.base.doc
4.0.0.0 COMMITTED Internet Connection Server

Documentation
 internet_server.base.httpd

4.0.0.0 COMMITTED Internet Connection Server
 internet_server.msg.en_US.httpd

4.0.0.0 COMMITTED Internet Connection Server
Messages - en_US

Path: /etc/objrepos
internet_server.base.admin

4.0.0.0 COMMITTED Internet Connection Server
Administration

 internet_server.base.httpd
4.0.0.0 COMMITTED Internet Connection Server

Your HTTP daemon has been added as the subsystem in your AIX server and
automatically started by the installation procedure with the default configuration
settings. Verify that it is effectively started:

lssrc -s httpd

Verify that you can view the Internet Connection Server front page by pointing
your browser at your server with the following URL:

http://your.server.name/

If your AIX server is on the network, anyone can now access your Web server.
Since your Internet Connection Server may be configured remotely, you should
now stop your server as follows:

stopsrc -s httpd

and you should restart it only when the Web administrator′s password is
changed. Your server is now ready to run.

70 A Guide to the Internet Connection Servers

4.5.2 MVS/ESA
In this section we tell you how to prepare and install Internet Connection Server
for MVS.

4.5.2.1 Prerequisites
To start we list the hardware and software requirements for the product.

Hardware Requirements: Internet Connection Server for MVS/ESA (ICS/MVS)
operates on all ESA-capable machines supporting MVS/ESA SP Version 5.2.2.
Additional requirements include:

• One tape or cartridge drive for installation

• Communication hardware for network attachment supported by the transport
provider such as TCP/IP or VTAM

• One or more workstations capable of running a Web browser for
configuration and administration

Software Requirements:

• MVS/ESA SP Version 5.2.2 (5655-068 or 5655-069) with APAR OW14736 or

• OS/390 (5645-001)

IBM Internet Connection Server for MVS/ESA(5655-156) exploits and depends
upon OpenEdition services and requires installation, configuration and starting of
the OpenEdition shell in its specified operating environment. The PTFs
associated with the following MVS/ESA OE APARS should be installed:

− OW15675

− OW15773

− OW16636

− OW13795

In addition, the following are required:

• DFSMS PTFs associated with APAR OW16222

• SMP/E Release 8.1 or later (5668-949)

• IBM C/C++ for MVS/ESA Language Support feature or Language
Environment for MVS and VM 5.1 (5688-198) or higher

• RACF 2.1 with APAR OW09834 or 2.2 (5695-039) or higher and PTFs
associated with APARs PN76907, PN75884

Note: An external security system supporting SAF at an equivalent level may
be used.

One of the following is required as a transport provider:

• TCP/IP Version 3 (5655-HAL) and PTFs associated with APARs:

− PN72972, PN70461, PN62474, PN65950, PN71946, PN75274, PN77544,
PN71946, PN77696, PN73070

• ACF/VTAM Version 4 Release 3 (5695-117) with AnyNet/MVS feature

Note: For further information, see http://www.raleigh.ibm.com/icf/icfprod.html.

Chapter 4. Internet Connection Servers - Installation and Configuration 71

4.5.2.2 Getting the Software
ICS/MVS can be ordered as a product for installation under MVS 5.2.2. In
addition, OS/390 Internet BonusPak which includes ICS/MVS, with supplementary
tools and samples, is available for MVS 5.2.2 and OS/390.

Unlike some of the other Internet Connection servers, there are no FTP servers
from where you can download the ICS/MVS code.

4.5.2.3 Planning for the Installation
ICS/MVS is installed using the SMP/E.

OpenEdition and HFS: Before you install ICS/MVS, you must have OpenEdition
MVS installed on your system. Also, you should prepare HFS disk spaces and
consider authorization environments.

TCP/IP for MVS: Make sure that the configuration file is updated for OpenEdition
MVS. ICS exploits Virtual IP Address (VIPA) through the -h run-time parameter.
VIPA allows multiple copies of ICS/MVS to run on the same MVS system.

RACF: ICS/MVS has extensive access control support including RACF validation
of user IDs and passwords and access control through SURROGAT user ID
support. These control Web access to resources on MVS. Users are identified by
an OMVS user ID (UID), which is kept in the RACF user profile, and an OMVS
group ID (GID), which is kept in the RACF group profile.

LE/370: To install the ICS, LE/370 must be installed and customized for the MVS
OE system.

Web Browser: You can use the Configuration and Administration Forms from a
remote client that has access to the server. All you need is IBM WebExplorer (or
any other Web browser) and your ICS must be up and running.

4.5.2.4 Installation
The installation steps for ICS/MVS R1 are as follows:

 1. Unload the ICS/MVS installation samples.

 2. Using sample IMWJALLO, allocate your target and distribution libraries.

 3. Create mount point /usr/ lpp/internet and mount the target hierarchical file
system (HFS) using ISHELL.

 4. Using sample IMWJDDDF, provide SMP/E access to your data sets.

 5. Using sample IMWMKDIR, create the HFS structure.

 6. Using sample IMWJR100, SMP RECEIVE ICS/MVS′s functions.

 7. Using sample IMWJEXAP, SMP APPLY ICS/MVS′s functions.

 8. Using sample IMWJEXAC, SMP ACCEPT ICS/MVS′s functions.

 9. Set up the security environment.

10. Set up the TCP/IP configuration.

11. Copy and customize the Server Procedure.

12. Set up the ownership of the installed files.

13. Manage the configuration file (httpd.conf).

72 A Guide to the Internet Connection Servers

Considerations

• The hardware configuration and the network topology need to be considered
when setting up the TCP/IP and httpd configuration files.

• Security and protection

− Packet filtering and a firewall

− User name and password

− Address template

• Character Codes

− Code page / locale

− ASCII and EBCDIC issues

Before creating your own home page, there are some ASCII/EBCDIC
considerations you should understand. MVS OE stores HTML files in
EBCDIC or ASCII. The ICS/MVS uses different file suffixes to distinguish
between EBCDIC, ASCII, and binary. EBCDIC is the default and allows the
file to be viewable to MVS OE editors such as ISPF.

EBCDIC data must be in OpenSystems Latin-1 code page (IBM1047).
ASCII data can be stored in OpenSystems Latin-1 code page ISO8809-1
or in any MVS OE code page. Binary data can be delivered without
translation by using the AddEncoding and AddType directive.

4.5.2.5 Setup and Customization
• TCP/IP configuration

Put the TCP/IP data configuration in a location such as
SYS1.TCPPARMS(TCPDATA) so that OpenEdition sockets can find the name
server.

In the TCP/IP profile, reserve the port that the Web server uses (default is
the port ′80 TCP OMVS′) to access OMVS.

• Start Procedures Table

Copy the IMWEBSRV sample to a site procedure library, for example,
SYS1.PROCLIB or USER.PROCLIB, and modify the parameters in the
procedure.

• Security environment

Create the IMWEB group ID, the WEBADM/WEBSRV user IDs, and surrogate
user IDs for the Web server.

• Customize the httpd.conf file

Copy the sample httpd.conf file to /etc/httpd.conf and modify it for your
environment.

• Getting Content on MVS

One of the biggest issues you will face is building content and getting it on
MVS. Generally, HTML content files can be edited directly using OEDIT in the
OpenEdition shell. If you edit the files on another platform such as AIX, you
have to move them to MVS, using FTP or copy them after mounting the HFS
using NFS.

Chapter 4. Internet Connection Servers - Installation and Configuration 73

4.5.2.6 Testing
We recommend that you run the following tests:

• Starting and stopping the Web server. Although IMWEBSRV is usually
started as a started task, it can be controlled by using OpenEdition
commands. You can use the kill or wwwcmd commands to stop or restart the
process in OMVS. You can also use the MVS commands PURGE and
CANCEL to stop the job.

• Viewing the ICS/MVS Front Page from a Web browser.

• Checking whether authorized/not-authorized clients can access the server.

4.5.2.7 Tuning
Since ICS/MVS uses OpenEdition services, such as threads and HFS, TCP/IP or
AnyNet for network services, it is important that these components are tuned
correctly for optimal throughput.

System Resources Management (SRM) is one of the MVS components that
determines which address spaces should be given access to system resources,
and the rate at which the address spaces are allowed to consume those
resources. The access to resources is controlled by assigning address spaces to
performance groups. The following are areas to consider:

• Updating IEALPAxx to place LE/370 modules in shared storage

• Adding libraries to Virtual Lookaside Facility (VLF)

• Updating SYS1.PARMLIB to set up the MIN/MAX for APPC initiators

• Caching and placement of HPF data sets

• Monitoring TCP/IP performance

• Monitoring NFS performance

• Modifying Max/MinActiveThreads in httpd.conf

4.5.2.8 Backing Up
The following essential files must be backed up:

• httpd.conf configuration file

• Password files

• Group files

• ACL files

• Content files

• Access/error log files

The four main options when it comes to backing up these files are as follows:

 1. Back up the HFS data set using IEBCOPY or any other tool

 2. Back up the files to another media using standard shell commands such as
cp/xcopy, tar and cpio

 3. Back up the files individually using ADSM

 4. Back up the files to a remote machine using FTP or NFS

74 A Guide to the Internet Connection Servers

There are several backup tools such as DDR, IEBCOPY, and DFDSS for an MVS
system. Thus, you can select and combine your favorite methods to back up
those files.

4.5.2.9 Inspecting Logs
There are several log tools available that can help you in inspecting or
debugging any problems. The tools are as follows:

• wwwlogs (AccessLogs and ErrorLogs)

AccessLog and ErrorLog files are in the wwwlogs directory. You can use
them directly to specify where the server should log all requests made by
the client and any internal errors.

The format of the common log record is:

remotehost remoteuser authuser date request status bytes

The parameters are defined as follows:

remotehost The hostname or IP address if the hostname cannot be
resolved

remoteuser The remote log name of the user as defined by RFC931

authuser The name with which the user has been authenticated

date The date and time of the request

request The request sent from the client

status The HTTP/1.0 status code returned to the client

bytes The number of bytes of data transferred to the client

• Master console log (or using SDSF)

RACF sends access violation messages to the MVS console. These
messages contain, for example, information about the following:

− The resource that was accessed

− The user ID and group ID that was used in the access check

− The requested access authority and the access authority this user ID has

− The function that was used when the violation occurred

− Date and time stamps

• Operator commands to get a current status

 For example, ′D OMVS,A=ALL ′

• RACF SMF reports

RACF writes records to the system management facility (SMF) for detected
unauthorized attempts to enter the system. Optionally RACF writes records
to SMF for authorized attempts and detected unauthorized attempts in the
following categories:

− Access to RACF-protected resources

− Issuing of RACF commands

− Attempts to modify profiles on the RACF database.

RACF writes these records to an MVS data set. To list SMF records, you
should use the RACF SMF data unload utility. With the RACF SMF data

Chapter 4. Internet Connection Servers - Installation and Configuration 75

unload utility, you can browse or upload to a database, query, or reporting
package, such as DB2.

4.5.3 AS/400
In this section we introduce the Internet Connection for AS/400 System. For
information on preparing and configuring the product refer to 4.6.9, “AS/400
HTTP Server Configuration and Operation” on page 165.

4.5.3.1 TCP/IP
In this section we provide some introductory information regarding the TCP/IP
capabilities of the AS/400 system. We have not done this for all the platforms in
this chapter but it seems appropriate due to the special communications
characteristics of the AS/400 system.

To connect the AS/400 system to the Internet, you need the TCP/IP protocol. The
AS/400 system has implemented TCP/IP since V1R2. With V3R0M5, it was free
(no charge), and with V3R1 it is integrated into OS/400.

The TCP/IP protocol has been available on the AS/400 system since V1R2 as a
separately-priced licensed program product (LPP) called the TCP/IP Connectivity
Utilities/400. But, it was not until V3R1 that it was really integrated into the
operating system (OS/400). The product, TCP/IP Connectivity Utilities/400, still
exists and includes all of the applications such as Telnet, FTP, and so on, but is
a free LPP that comes when you purchase OS/400.

Also on V3R1, we have integrated the C-Sockets interface into OS/400, so
client/server applications can be written to work through the Internet or even in
a local TCP/IP network. Most of the TCP/IP applications have been rewritten
using a C-Sockets Interface on V3R1.

V3 Customers - Excluding V3R05: All of the integrated functions of TCP/IP are
on V3R1 and the following list contains some of the highlights:

 1. Free (no charge).

 2. Many of the applications were rewritten from Pascal to ILE C/400.

 3. Performance is comparatively better. It is up to eight times faster.

V2 and V3R05 Customers - Excluding V2R1: For those customer that have not
upgraded to V3R1 and intend to install TCP/IP on their machines, it is probably
cheaper if they go to V3R1 instead of purchasing the TCP/IP product for V2.

76 A Guide to the Internet Connection Servers

Note:

�1� New in V3R2

Table 5. Cross-Reference: OS/400 Licensed Program x Function

OS/400 Licensed Program Function

OS/400 (5763-SS1) TCP/IP protocol stack

Configuration support for TCP/IP
protocol stack

Configuration support for SLIP �1�

NETSTAT command

PING command

SNMP agent

Configuration support for SNMP agent

APPC over TCP/IP

TCP/IP over AnyNet using sockets API

C sockets API

TCP/IP Connectivity Utilities (5763-TC1) Pascal TCP and UDP API

Telnet

SMTP

FTP

LPR/LPD

POP3 �1�

HTTP server �1�

WSG �1�

DB2WWW �1�

TCP/IP File Server Support/400
(5798-TAA and 5798-TAZ)

NFS

AS-IS Service Offering Gopher

4.5.3.2 Hardware Connectivity
The hardware required to connect an AS/400 to the Internet is dependent on the
following:

• What type of connection are you going to use (SLIP, PPP, X.25, and so on)?

• How does your ISP provide that type of connection?

Table 6 (Page 1 of 2). Cross-Reference: Hardware x Connection Type

Type of Connection Hardware Needed External Har dware
Needed

X.25 Communications port None

Frame Relay Communications port None

SDDI SDDI IOP None

FDDI FDDI IOP None

Wireless Wireless IOP None

SLIP Communications port None

Chapter 4. Internet Connection Servers - Installation and Configuration 77

Table 6 (Page 2 of 2). Cross-Reference: Hardware x Connection Type

Type of Connection Hardware Needed External Har dware
Needed

PPP LAN Adapter (token-ring,
Ethernet, wireless)

IP router

4.5.3.3 Internet Connection for AS/400
Important note

Install PTFs SF32078 (for 5763-TC1) and SF31077 (for 5763-SS1) before using
Internet Connection for AS/400.

With the announcement of Internet Connection for AS/400, IBM offers AS/400
customers the capability to take an active part in the ever-growing and exciting
World Wide Web. In doing so, IBM followed its commitment to network
computing on the AS/400 system which means that everyone can access and
distribute information, applications, and services provided by the network.

4.5.3.4 HTTP Server Configuration and Operation
Many of the features of Internet Connection for AS/400 are reliant upon the HTTP
server.

4.5.3.5 The HTTP Server Is a Read-Only Server
The HTTP specification defines seven ″methods″ that represent seven types of
requests that a remote HTTP client application can send to an HTTP server. The
HTTP server implements only the GET, HEAD, and POST requests. The HTTP
server does not implement two other methods, PUT and DELETE. This makes it
impossible for a request from an external client to cause an AS/400 object to be
overwritten.

4.5.3.6 I/NET′s Web Server/400
I/NET′s Web Server/400 is another Web server available, at a cost, for the AS/400
system.

78 A Guide to the Internet Connection Servers

Figure 25. I/NET′s Web Server/400

This server is fully HTTP/1.0 compliant and as this book is being written, offers
the following features:

• Integrated File System support

• Scripts (including REXX, CL, ILE-C, RPG, and COBOL)

• Database, shared folders, and spooled files

• Ultimedia System Facilities support

• Logging

• National language support

For the latest details of their product, take a look at URL: http://www.inetmi.com

You can order I/NET′s Web server code from:

I/NET, Inc.
643 West Crosstown Parkway
Kalamazoo, MI 49008
USA
ATTN: Web Server/400 Customer Service

Phone: (616) 344-3017 ext. 158
FAX (616) 344-0186
E-Mail: websales@inetmi.com

Chapter 4. Internet Connection Servers - Installation and Configuration 79

4.5.4 OS/2 Warp
In this section we tell you how to prepare and install Internet Connection Server
for OS/2 Warp.

4.5.4.1 Prerequisites
To start we list the hardware and software requirements for the product.

• Software Requirements:

− OS/2 Warp V3.0 or later

− One of the following:

- TCP/IP V3.0, which is part of Warp Connect

- TCP/IP V3.1, which is part of Warp Server

- Internet Connection for OS/2 which is included in all versions of Warp

- TCP/IP V2.0 with latest CSD

- A partition formatted using the High Performance File System (HPFS)

− For the DB2 Gateway feature:

- DB2/2 Version 1.2 or later

- 2 MB of free disk space

− For the CICS Gateway feature:

- Access to a CICS for OS/2 server

- CICS client for OS/2 Version 1.0 installed, including updates from
Corrective Service Disk (CSD) 1

- 4.5 MB of free disk space

Please refer to the READ.ME file for further instructions.

This server must be installed on an HPFS-formatted drive; it cannot be installed
on a FAT-formatted drive. Only the server needs to be on the HPFS partition, not
the entire operating system.

• Hardware Requirements:

− A computer that can support OS/2 Warp V3.0 or later

− A communications adapter that is supported by the TCP/IP protocol stack

− 4 MB of free disk space (11 MB with both the DB2 Gateway and CICS
Gateway features installed)

− A minimum of 12 MB of memory (16 MB of memory is recommended.)

− A 1.44 MB diskette drive or a CD-ROM drive for installation purposes

− Available documentation which is sent with the product; including
readme file(s).

Use the VIEW utility to view any required information files. Note that information
files can be identified by their .INF extension.

Refer to the Up and Running in folder IBM Internet Connection Secure Server
after the product is installed.

80 A Guide to the Internet Connection Servers

In the folder IBM DB2 World Wide Web Connection for OS/2 you will find the
following documentation:

• Application Developer ′s Guide in INF and HTML format

• License agreement

• Installation information for DB2 Gateway program

4.5.4.2 Get Your Copy of the Internet Connection Server for OS/2
Warp
You have two possibilities to get a copy of the Internet Connection server:

• Download it from the Internet Connection Family Web site at:
http://www.ics.raleigh.ibm.com.

• Purchase it

4.5.4.3 Types of Installation
The different types of installation are as follows:

• First time installation

Follow the steps under installing for the first time in the Up and Running
manual.

• Migration

If Internet Connection Server (without security function) or a different version
of Internet Connection Secure Server is installed, you can migrate to this
version of Internet Connection Secure Server. When you migrate, you can
build upon the configuration you had for your old server.

Refer to the Up and Running manual for more information regarding
migration.

• Reinstallation:

Refer to the Up and Running manual for more information regarding
reinstallation.

If you are installing for the first time, there are two options to consider:

• Diskettes/CD-ROM

Enter X:install.

X is the drive where the Internet Connection Secure Server diskette or
CD-ROM can be found.

• Remote code server

Enter Z:\path\install.

Z is the drive where the Internet Connection Secure Server files reside on
the code server.

Chapter 4. Internet Connection Servers - Installation and Configuration 81

Figure 26. Installation - Check System Requirements

From the Instructions for Installation window shown in Figure 26 click on
Continue after you have read the information and checked that your system
meets the specifications.

82 A Guide to the Internet Connection Servers

Figure 27. Installation - Update CONFIG.SYS and Install Product

From the Install window shown in Figure 27 you have the following options:

• Click on Update CONFIG.SYS .

• Click on OK to start installation.

Update CONFIG.SYS. You should leave this box checked so that the installation
procedure will automatically update your CONFIG.SYS file to include the
directories where you install the Internet Connection Secure Server.

Chapter 4. Internet Connection Servers - Installation and Configuration 83

Figure 28. Installation - Select Components and Directories

From the Install - directories window shown in Figure 28 click on Select all or on
the components that you wish to install. Available components are as follows:

• IBM Internet Connection Secure Server

• Documentation

• DB2 Gateway for OS/2

• DB2 NLS package

• DB2 Sample application

• DB2 Documentation

• CICS Gateway for OS/2

Click on Disk space if you will not install on the C drive.

Click on Install for continuing the installation.

Select the components you want to install by highlighting them or click the Select
all button to install all products.

Select Disk space to get a list of all available drives to install.

84 A Guide to the Internet Connection Servers

Figure 29. Installation - Disk space

From the Disk space window shown in Figure 29, select the drive where the
product should be installed and click on OK . This action will return you to
Figure 28 on page 84.

If all is OK, click on the Install button to begin the installation.

4.5.4.4 Initial Configuration

Figure 30. Configuration

Chapter 4. Internet Connection Servers - Installation and Configuration 85

Next you will see the Internet Connection Secure Server Install Configuration
window as shown in Figure 30.

We recommend that you immediately change the default administrator ID
webadmin and password webibm. If you do not do this, you may allow an
unauthorized user to access your system.

Explanation of the fields:

Host name The name by which your server will be known must be unique to your
LAN. The default value is the host name defined in your CONFIG.SYS
file.

HTTP/S-HTTP Port The default value of 80 is the well-known port number for
Hypertext Transfer Protocol (HTTP) and Secure Hypertext Transfer
Protocol (S-HTTP).

SSL Port The port you want your server to listen on for requests for documents
protected by the Secure Sockets Layer (SSL) protocol. The default is
443.

Key ring file The name of the file where you want to store public-private key
pairs that the server can use for secure communications.

Administrator ID The ID of your server administrator. Anyone attempting to use
the Internet Connection Secure Server Configuration and
Administration Forms will be prompted to enter this ID. The default
value is webadmin. As mentioned before it is strongly recommended
that you change the default during installation.

Password The password you want to use to protect access to the Configuration
and Administration forms. Anyone attempting to use the Internet
Connection Secure Server Configuration and Administration forms will
be prompted to enter this password. The default value is webibm. It
is strongly recommended that you change the default during
installation. Note that the password is case-sensitive.

Use the Auto Start Server at Bootup check box to indicate if you want the
Internet Connection Secure Server to start automatically when you start your
host machine. If you check the box, the server will be added to your OS/2 startup
folder. You can start Internet Connection Secure Server from any OS/2 command
prompt by entering HTTPD. You can stop the server the same way that you stop
other OS/2 programs. We list below the methods of stopping the server:

• Double-click on the icon in the top left corner of the Internet Connection
Secure Server window.

• Select Exit from the server pull-down menu on the menu bar of the Internet
Connection Secure Server.

• Press F3 from the Internet Connection Secure Server window.

• Press Ctrl+Esc. Click with the right mouse button on the window list entry
for Internet Connection Secure Server. Click on Close .

Target directories are shown here for information and cannot be changed. You
may want to make a note of the information in this window for future reference.

The directory structure is as follows:

executables directory d:/www/bin

86 A Guide to the Internet Connection Servers

dll directory d:/www/dl l

documentation d:/www/docs

CGI binscripts d:/www/cgi-bin

HTML d:/www/html

remote admin directory d:/www/admin

icons+graphics d:/www/icons

logs d:/www/logs

DB2 WWW base directory d:/db2www

DB2 WWW macro directory d:/db2www/macro

CICS Client base d:/cicscli

You can view the directory structure online by clicking on the Installation Utility
in the Internet Connection Secure Server folder. Once it is loaded, select Details
and then Product status from the pull-down menu.

Once the server is running you should back up the following files:

• Configuration file located at drive/mptn/etc/httpd.cnf

• Password files located at drive/mptn/etc/admin.pwd

• Key ring files located at drive/www/bin/keyfile.kyr

4.5.4.5 Installed Folders
After your installation has successfully completed you have a new folder on your
desktop as shown in Figure 31.

Figure 31. IBM Internet Connection Secure Server for OS/2 Warp

The options that are available from this folder are as follows:

• Up and Running!

For viewing all of the information that is provided with Internet Connection
Secure Server for OS/2

• Installation Utility

For installation and maintenance for IBM Internet Connection Secure Server
for OS/2 (view installed products, view directories where the products are
installed, update/delete products, etc.)

• Internet Connection Secure Server

For starting the Internet Connection Secure Server and DB2 WWW
Connection (if you selected to install it)

If you also installed DB2 WWW Connection then you will have the additional new
folder shown in Figure 32 on page 88.

Chapter 4. Internet Connection Servers - Installation and Configuration 87

Figure 32. DB2 WWW Connection

The selectable options here are:

• Application Developer ′s Guide in HTML and INF format

• Install demo on DB2

• License agreement

• A README file providing installation and configuration information

4.5.4.6 Features of DB2 and CICS
Web applications for DB2 built with DB2 WWW Connection V1 allow any Internet
user with an HTML standard Web browser to access your DB2 data. Changes to
the existing data structure are not necessary. Using standard hypertext markup
language (HTML) and structured query language (SQL), you can build
applications that query your DB2 data with standard SQL statements.

The CICS Internet Gateway provides automatic translation between CICS 3270
data streams and HTML. It uses the CICS External Presentation Interface. CICS
dialogs can now be conducted via the Internet.

4.5.4.7 Viewing the Front Page
After you install the product and have the server running, you can use the
WebExplorer or any other Web browser to look at the Internet Connection Secure
Server Front Page. Point your browser at your server with the following URL:

 http://your.server.name/

Where your.server.name is the fully qualified name of your host. You should see
something similar to Figure 33 on page 89.

88 A Guide to the Internet Connection Servers

Figure 33. Internet Connection Secure Server Front Page

The server front page contains the following links:

• Configuration and Administration Forms

• Sample Home Page

• Webmaster Resource List

• Documentation

4.5.4.8 Changing the Default Home Page
The home page is the document that your server returns when a client sends a
request that does not point to a specific directory or file. The server tries to
serve the request from the document root directory, which is the directory you
specified as your HTML directory during installation. The installation default is
C:/WWW/HTML.

The default configuration file defines a list of four welcome pages. The order of
the welcome pages is important because the server goes down the list from top
to bottom when looking for the file it should return.

 1. Welcome.html

 2. welcome.html

 3. index.html

 4. Frntpage.html

We now take you through the steps that are involved in changing the default
home page:

Chapter 4. Internet Connection Servers - Installation and Configuration 89

 1. Make sure the server is running.
 2. Go to the Internet Connection Secure Server Front Page.
 3. Click on Sample Home Page .
 4. Open the file with your browser editor.
 5. Make some changes; for example, change ″This is a size 2 header″ into your

local language.
 6. Save the file with a name of Welcome.html and copy it to drive /www/html.
 7. Make sure that the cache of your browser is disabled.
 8. Repeat steps 1 to 3 and you should be able to see the changes. The results

of our efforts are shown in Figure 34.

Be careful in changing the file. Use an editor which supports a file length greater
than 256 characters a line or a specific HTML browser like HTML Wizard.

Figure 34. New Default Home Page

4.5.5 Windows NT
In this section we tell you how to prepare and install the Internet Connection
Server for Windows NT.

4.5.5.1 Check the Prerequisites
First of all, you should make sure you have everything you need to install
Internet Connection Server for Windows NT.

You will find these requirements on the Internet Connection Family Web site at
http://www.ics.raleigh.ibm.com, in the installation package ′s READ.ME file, and in
Internet Connection Server for Windows NT Up and Running!. We explain how to
read and print these documents later in this subsection. The two first references
contain late breaking information, so please read them carefully.

The hardware and software prerequisites are:

• A computer running Windows NT with TCP/IP configured

• 4 MB of free disk space on an HPFS or NTFS formatted drive

• A CD-ROM drive (only if your Internet Connection Server for Windows NT
comes on a CD-ROM).

90 A Guide to the Internet Connection Servers

4.5.5.2 Plan for the Installation
• Windows NT Server vs Workstation

You may install an Internet Connection Server for Windows NT on both a
Windows NT server and a Windows NT workstation. We advise you to use a
workstation for the following reasons:

− A Windows NT workstation is much cheaper than a Windows NT server.
Installing an Internet Connection Server for Windows NT on a Windows
NT server that is not used as a server would thus be unnecessarily
expensive.

− A Windows NT server may be a sensible piece of your network when it
comes to availability and security issues. However, a Web server
exposes the machine and the network on which it is running to user
mistakes or even sabotage. Installing an Internet Connection Server for
Windows NT on a Windows NT server that is used as a server would thus
be quite risky.

Installing an Internet Connection Server for Windows NT on a Windows NT
workstation is therefore the cheapest and the safest solution.

• HPFS vs NTFS

You must install the Internet Connection Server for Windows NT on an HPFS
or NTFS formatted drive. We advise you to use an NTFS formatted drive,
because it will allow you to use the Windows NT security features.

• Normal Application vs Windows NT Service

You may run the Internet Connection Server for Windows NT as a normal
application or as a Windows NT service.

To start the Internet Connection Server for Windows NT as a normal
application, you have to log on as a user, start the server, and remain
logged on as long as the server is to be up. As a consequence, the server is
running with the authority of the user that started it. Furthermore, no other
user may log on to the machine while the server is running.

You start the Internet Connection Server for Windows NT as a Windows NT
service through the Services Control Panel. As with all Windows NT
services, you will be able to launch the server upon the startup of your
system. The server will run in the background with its own authority, and
users will be able to log on normally, without affecting the server′s
operations. Only one instance of the Internet Connection Server for Windows
NT may be run as a service, all other instances have to run as normal
applications.

4.5.5.3 Read the Documentation
Since the Internet Connection Server for Windows NT is a rapidly evolving
product, we advise you to read all the available information carefully.

Documentation covering the Internet Connection Server for Windows NT may be
found in the following places:

• The Internet Connection Family Web site

The Internet Connection Family Web site provides you with the prerequisites,
updated installatio procedures and information about the latest code. The
Internet Connection Family Web site can be found at
http://www.ics.raleigh.ibm.com.

Chapter 4. Internet Connection Servers - Installation and Configuration 91

• The installation package ′s READ.ME file

You will find the latest information about your copy of the Internet
Connection Server for Windows NT in the installation package′s READ.ME
file.

• Internet Connection Server for Windows NT Up and Running!

This is the Internet Connection Server for Windows NT manual. Read it! It
contains all you ever wanted to know about your server.

If you purchased your copy of the Internet Connection Server for Windows
NT, then you received a hardcopy of Internet Connection Server for Windows
NT Up and Running! with the software package.

If you downloaded the Internet Connection Server for Windows NT from the
Internet, then you will find a softcopy of this manual on the Internet
Connection Family Web site at http://www.ics.raleigh.ibm.com, and within the
server ′s installation package. Unfortunately, it is not possible to read this last
version of the manual prior to installation. We therefore advise you to print it
from the Internet, whenever possible.

4.5.5.4 Get Your Copy of the Internet Connection Server for
Windows NT
You have two possibilities to get a copy of the Internet Connection Server for
Windows NT:

• Download it from the Internet

• Purchase it

4.5.5.5 Prepare Your IP Network
Connect the server′s host to your intranet or to the Internet. Enable the IP-based
servers that you may need to maintain and operate your Internet Connection
server remotely; disable all the others. Although FTP and Telnet are very useful,
we do not advise you to enable them, because they could expose your server
even more than it already is.

4.5.5.6 Installing your Internet Connection Server for Windows NT
• Visit the Internet Connection Family Web site at

http://www.ics.raleigh.ibm.com. Read the latest news about the Internet
Connection Server for Windows NT, check the prerequisites, and print the
updated installation procedure.

• Get your copy of the Internet Connection Server for Windows NT: download
or purchase it.

• If you downloaded your Internet Connection Server for Windows NT as a zip
file from the Internet, unzip the installation files.

Suppose you have downloaded the SERVER.ZIP file into the U:\DOWNLOAD
directory, that your unzip program is V:\ZIP\UNZIP.EXE, and that you would
like to unzip the installation files into the W:\INSTALL directory. Then do the
following:

− Open an MS-DOS window.

− At the command prompt enter w:.

− Enter cd \install.

− Enter v:\zip\unzip u:\download\server.zip.

92 A Guide to the Internet Connection Servers

− Enter exit.

• Read the READ.ME file.

From now on, the installation files are located in a well-known directory. It is
the W:\INSTALL directory described in the previous step, or, if the Internet
Connection Server for Windows NT was shipped on diskettes or on a
CD-ROM, it is W:\, where W is the name of the diskette or CD-ROM drive.
We refer to it as W:\INSTALL for the remainder of this subsection.

We used the Notepad application to edit the READ.ME file.

− Within the File Manager select the File menu.

− Select Run .

− Enter NOTEPAD W:\INSTALL\READ.ME at the command line.

− Select Ok .

• Install the Internet Connection Server for Windows NT.

− Run the setup program:

- Within the File Manager select the File menu.

- Select Run .

- Enter W:\INSTALL\SETUP.

- Select Ok .

− Read the Welcome window and click Next .

− From the Select Components window:

- Select the IBM Internet Connection Server check box if you want to
run your Internet Connection Server for Windows NT as a normal
application.

- Select both the IBM Internet Connection Server and the NT Service
check boxes to launch your Internet Connection Server for Windows
NT as a Windows NT service.

− From the Choose Target Directory window, do the following:

- The default destination directory for the server is C:\WWW\. Click
Browse if you want to change the drive or directory destination.

- Select Next .

− From the Select Component Directories window, do the following:

- Review the destination subdirectories for the server components.
These directories define where you want to install the Internet
Connection Server components and where you want to store the
resources you will be making available through the Internet
Connection Server.

• Remote Administration directory - The files used by the Internet
Connection Server Configuration and Administration Forms are
installed in this directory.

• Executables directory - The Internet Connection Server
executable program files and other related files are installed in
this directory.

• CGI Bin scripts directory - The directory where you want to put
your script programs that use the Common Gateway Interface

Chapter 4. Internet Connection Servers - Installation and Configuration 93

(CGI); the Internet Connection Server htimage program is
installed in this directory

• Documentation directory - The Internet Connection Server
documentation files are installed in this directory.

• HTML directory - The directory where you want to put your HTML
documents; the Internet Connection server sample HTML pages
and the Internet Connection server front page are installed in this
directory.

• Icons and graphics directory - The default directory list icons are
installed in this directory. You may also choose to put your own
icon and graphics files in this directory

• Logs directory - The directory where you want the Internet
Connection server to put log files.

- If you have no changes to make, do not select any of the check
boxes.

- If you want to change any of the default installation directories, select
the corresponding check box.

- Click Next .

- If you opted to change any of the component directories, you will be
prompted on additional windows for those directories.

− From the Select Program Folder window, do the following:

- Optionally, change the default program folder name of Internet
Connection Server by selecting one of the existing folders listed.

- Click Next .

− From the Configuration Parameters window, do the following:

- Review the default values for hostname, port, administrator ID and
password.

• Host Name - The default value is the host name defined as part
of your TCP/IP configuration. If you want to use an alias, you can
change this field to a fully qualified host name that is defined in
your domain name server.

• Port - The default value of 80 is the well-known port number for
Hypertext Transfer Protocol (HTTP). Other port numbers less
than 1024 are reserved for other TCP/IP applications. Port
numbers 8080 and 8008 are commonly used for testing servers.

• Administrator ID - The ID of your server administrator. Anyone
attempting to use the Internet Connection Server Configuration
and Administration Forms will be prompted to enter this ID. The
default value is webadmin.

• Password - This is the password you want to use to protect
access to the Configuration and Administration forms. Anyone
attempting to use the Internet Connection Server Configuration
and Administration forms will be prompted to enter this
password. The default value is webibm.

- If you have no changes to make, do not select any of the check
boxes.

94 A Guide to the Internet Connection Servers

- If you want to change any of the default values, select the
corresponding check box. We recommend that you change the
default administrator ID and password now.

- Click Next .

− The server files will be installed and the server icons added.

• Read and print Internet Connection Server for Windows NT Up and Running!.
To do so, we advise you to install a Web browser. Start browsing from the
FRNTPAGE.HTML file, located in your server′s documentation directory. If
you have kept all the defaults during the installation, this file is
C:\WWW\DOCS\FRNTPAGE.HTML. From there, link to the online
documentation.

• Configure your server. Please do not start your server before you have
configured it. We explain how to configure your server later in this chapter.

• Start your server.

− To start your server as a normal application:

- Double-click on the Internet Connection Server icon in the Internet
Connection group. You may also enter whttpg at the command
prompt of a DOS window.

− To start your server as a Windows NT Service:

- Double-click the Control Panel icon from the Main program group.

- Select the Services icon from the Control Panel program group.

- From the Services panel, highlight the Internet Connection Server.

- Click Start to start the service.

Click Stop to stop the service.

Click Startup to configure the service. To display the server′s
graphical user interface the next time the server service is started,
check the Allow the Service to Interact with Desktop check box.
Please read the Windows NT manual for more information about
Windows NT services.

− To start another instance of the Internet Connection Server for Windows
NT:

- Open an MS-DOS window.

- If you installed your Internet Connection Server for Windows NT as a
normal application, enter whttpd.

- If you installed your Internet Connection Server for Windows NT as a
Windows NT service, enter whttpd -noservice.

• Uninstalling your server

To remove the Internet Connection Server icon and product from your
machine, select the Uninstall Internet Connection Server icon in the Internet
Connection Server group.

Chapter 4. Internet Connection Servers - Installation and Configuration 95

4.6 Configuration
There are two ways to configure an IBM Internet Connection server:

• By editing the HTTPD configuration file

• By using the Configuration and Administration forms

4.6.1 Editing the HTTPD Configuration File
The behavior of every IBM Internet Connection server is controlled by its
configuration file, whose name is HTTPD. (The extension of this file depends on
the operating system.) It is possible to edit this file using standard editors on all
the platforms for which the Internet Connection server is available. Editing the
HTTPD file is probably the fastest and safest way to configure your server. It is
fast because you can modify all the directives at once, rather than having to
browse through numerous forms. It is safe because your server does not need
to be online or even up while you configure it.

This method has two drawbacks however: it requires some understanding of the
directives in the configuration file, and it is prone to syntax errors. (There is no
spell or syntax checking.)

4.6.1.1 A Configuration Example
In this section we describe how we configured one of our IBM Internet
Connection servers by editing the HTTPD file.

We have divided the configuration process into the following steps:

 1. Identify and document the topology of your IP network.

This step is important as it will help you to identify the resources located on
your intranet. These resources include the hosts (clients and servers) and
their peripherals that can be accessed from the IP network. In addition, your
analysis will need to include your demilitarized zone(s), the Internet as well
as your intranet.

This information will allow you to place your server optimally in terms of
accessibility, security and throughput.

 2. Categorize the information you are serving and group the people accessing
it.

You should always be able to associate a security level and a group of
people to the information you serve. This will allow you to serve everybody
differently.

In our case we have identified the following categories of pages and groups of
people.

96 A Guide to the Internet Connection Servers

Table 7. Categories of Pages and Groups of People

Administrators Project Members Intranet Internet

Public Pages X X X X

Local Pages X X X X

Test Pages X X

Configuration and
Administrat ion

Forms

X

Categories of pages:

• Public pages contain the information we want to be available on the whole of
the Internet. In our example the public pages are located in the C:\Internet\
directory.

• Private Pages contain the information we want to be available on our
intranet only. In our example the private pages are located in the
C:\Intranet\ directory.

• Project Pages are pages developed by the project members; only the project
members should be able to read them from their host for security and
confidentiality reasons. Project members also have access to their own
pages. In our example the projects pages are located in the C:\Project\
directory, and the member directories are:

C:\Andlauer\,
C:\Ezvan\,
C:\Genger\,
C:\Kitazawa\, and
C:\Murphy\.

• Configuration and Administration forms allow you to remotely configure and
administer the server; only the administrators should be able to access them
from a very limited number of hosts. In our example we have moved the
Configuration and Administration forms from the default C:\WWW\Admin\ to
the C:\Nothing\ directory.

Let us now tell the server where to find the pages that the browsers will request.
Here is how we modified the HTTPD configuration file:

Exec /admin-bin/* C:\Nothing*
Exec /cgi-bin/* C:\WWW\CGI-Bin*
Pass /Project/* C:\Project*
Pass /Andlauer/* C:\Andlauer*
Pass /Ezvan/* C:\Ezvan*
Pass /Genger/* C:\Genger*
Pass /Kitazawa C:\Kitazawa*
Pass /Murphy/* C:\Murphy*
Pass /httpd-internal-icons/* C:\WWW\Icons*
Pass /icons/* C:\WWW\Icons*
Pass /Internal/* C:\Intranet*
Pass /* C:\Internet*

Figure 35. Exec and Pass Directives

The groups of people are:

Chapter 4. Internet Connection Servers - Installation and Configuration 97

• The Administrator - Responsible for the server operation and contents; he or
she should therefore be able to access all the data hosted on the server.

• The Project Members - Develop pages and applications on the server; they
have developed the pages hosted on the server, and are still busily working;
they should have access to all their works to finish and correct them.

• The Intranet - The people located on the intranet should be able to read
information hosted on the server that is internal to the service, as well as
information that the service wants to advertise on the Internet.

• The Internet - The people located on the Internet should only be able to
access the information hosted on the server that the service wants to
advertise on the Internet (and nothing more).

• Apply the corresponding security

We used the htadm tool to attribute passwords to the administrator and the
project members, as below:

htadm -create C:\Anything\Administrators.p
htadm -adduser C:\Anything\Administrators.p Laurel Sun Jean-Charles
htadm -adduser C:\Anything\Administrators.p Hardy Mercury Manfred

htadm -create C:\Anything\ProjectMembers.p
htadm -adduser C:\Anything\ProjectMembers.p Catherine Pwd1 Catherine
htadm -adduser C:\Anything\ProjectMembers.p Eamon Pwd2 Eamon
htadm -adduser C:\Anything\ProjectMembers.p Jean-Charles Pwd3 Jean-Charles
htadm -adduser C:\Anything\ProjectMembers.p Tsuyoshi Pwd4 Tsuyoshi
htadm -adduser C:\Anything\ProjectMembers.p Manfred Pwd5 Manfred

Then we created the associated group files, as listed below:

Sheriff: Laurel@(9.24.104.181,9.24.104.247)
Sidekick: Hardy@9.24.104.181

Figure 36. The Administrators.g Group File

UMurphy: Eamon@9.24.104.18
UEzvan: Catherine@9.24.104.27
UKitazawa: Tsuyoshi@9.24.104.118
UAndlauer: Jean-Charles@9.24.104.244
UGenger: Manfred@9.24.104.245
GResidents: UMurphy,UEzvan,UKitazawa,UAndlauer,UGenger
GProject: UMurphy,GResidents

Figure 37. The ProjectMembers.g Group File

Note that we could have placed the passwords and the groups in one single
password file and one single group file. But the method we use
compartments the users and the group names, so that it is impossible to
grant an administrator privilege to a project member unless the wrong
password and group files are used.

Furthermore, notice that the team members may access their pages from
their computer only.

98 A Guide to the Internet Connection Servers

Let us now restrict access to the files to the authorized users. We added the
following lines to the HTTPD configuration file:

− For the administrators:

Protection Administration {
GroupFile C:\Anything\Administrators.g
PasswdFile C:\Anything\Administrators.p
Mask Users
PostMask Users

 PutMask Users
 GetMask Users
 AuthType Basic
 ServerID Server_Administration
}
Protect /admin-bin/* Administration

− For the project members:

Protection Project-Prot {
GroupFile C:\Anything\ProjectMembers.g
PasswdFile C:\Anything\ProjectMembers.p
Mask GProject
PostMask GProject

 PutMask GProject
 GetMask GProject
 AuthType GProject
 ServerID Project_Member
}
Protect /Project/* Project-Prot

− For one resident (here Catherine Ezvan):

Protection Catherine-Prot {
GroupFile C:\Anything\ProjectMembers.g
PasswdFile C:\Anything\ProjectMembers.p
Mask UEzvan,UMurphy,UAndlauer
PostMask UEzvan,UMurphy,UAndlauer

 PutMask UEzvan,UMurphy,UAndlauer
 GetMask UEzvan,UMurphy,UAndlauer
 AuthType UEzvan,UMurphy,UAndlauer
 ServerID Jardin_Secret
}
Protect /Ezvan/* Catherine-Prot

− For a user on the intranet:

Protection Intranet-Prot {
Mask @9.24.104.*
PostMask @9.24.104.*

 PutMask @9.24.104.*
 GetMask @9.24.104.*
 AuthType @9.24.104.*
 ServerID Internal_Services
}
Protect /Internal/* Intranet-Prot

Note that it is possible to group users defined in the password file in the
group file, and both users defined in the password file and groups defined in
the group file in the HTTPD configuration file. This basically means that
there are many ways to achieve the same protection.

Also note that there is no protection by default. Therefore, if you set the
Pass or Exec attribute for a file or directory, then anybody may request these

Chapter 4. Internet Connection Servers - Installation and Configuration 99

files unless you define and set a protection. We thus recommend that you
define, set and test the protection first without files. Then create the
directory, place the files on the server and set the corresponding Pass and
Exec directives.

It is possible to achieve better access control using Access Control List (ACL
files). Please read the Up and Running! manual for more details about
them.

4.6.2 Using the Configuration and Administration Forms

Figure 38. The Configuration and Administration Forms Entry Point

The IBM Internet Connection servers are shipped with Configuration and
Administration forms on every platform. These forms are contained in HTML
pages which call CGI scripts which in turn update the HTTPD configuration file.

The forms may be used from any form-enabled Web browser: IBM WebExplorer
or Netscape Navigator, for example. By definition, access to the forms may be
local or remote through the underlying IP network. You may restrict access to
these pages to a limited number of hosts (IP address or hostname) and/or to a
limited number of people (passwords). We describe how this is done later in this
section.

Using Configuration and Administration forms is very convenient because you do
not need to be at the server ′s location to configure it. It also avoids having to
install an additional FTP server alongside the Web server in order to update the

100 A Guide to the Internet Connection Servers

configuration file remotely, which would be an additional security exposure.
Furthermore, the forms are well documented, guide you throughout the
configuration process, and tell you if the changes you have made have been
processed successfully or not.

But this method of customizing also has some drawbacks. The first one is that it
requires the Internet Connection server to be running. This means that the
server has to be running before the security can be configured using the forms.
We recommend that you never run a server before having set the security to the
desired level.

Furthermore, this method potentially exposes your server more than you might
like to. For example, we have found IBM Internet Connection servers where it
was possible to access the Configuration and Administration forms from
anywhere on the Internet with the default user ID and password! We have of
course informed their owners of this security exposure. Never forget that the
Internet contains people who own the same server software as you do, and
some of them may know it better than you do.

Another drawback of the Configuration and Administration forms is that they only
allow you to modify the main server, that is the server whose configuration,
name and location are the default ones. In the case of Windows NT this file is
C:\WINNT35\httpd.cnf.

In conclusion, the forms are well-suited to making small punctual configuration
changes, but not so well-suited for larger ones.

4.6.2.1 Example
Here is an example of how to use the Configuration and Administration forms.
Before you use these forms make sure that the server ′s and browser′s caching
options are disabled. If you do not disable them, then the forms your browser
displays may not reflect the server′s current configuration.

First of all, let us change the README Text position, using the form shown in the
figure below:

Chapter 4. Internet Connection Servers - Installation and Configuration 101

Figure 39. Example of a Form

To do so, load the page, fill out the form according to your wishes, and select
Apply to apply the changes. Select Reset to reset the form according to your
server ′s current settings.

If your changes were successfully applied, then you will be taken to a successful
confirmation page as shown below.

102 A Guide to the Internet Connection Servers

Figure 40. A Successful Confirmation Page

Select Restart to restart your server and activate the changes you just made, or
Configuration Page to make further changes.

Note that if you do not restart your server, then the forms you will load may not
reflect the current server settings.

Furthermore, some configuration changes require that you reboot the server
before they will take effect, as is the case for the reception of a certificate
(described later).

If the changes could not be made, then the server will send you a negative
confirmation page. In this case, correct the error and retry the operation.

4.6.3 How We Configured Our Server
We have made it our practice when configuring our servers to edit the
configuration files. Our justification for doing this is based upon the good
security reasons which we described earlier. For the servers on which we did
not delete the Configuration and Administration forms we did the following: (We
explain how it is done later in this section.)

• Changed the default user ID and password to access the forms

• Restricted the hosts from which it is possible to access the forms

Chapter 4. Internet Connection Servers - Installation and Configuration 103

• Changed the forms′ URL

We learned a great deal about the HTTPD configuration file directives from using
the forms. We advise you to use them if you are not familiar with the Internet
Connection servers.

In the next subsections we describe the most important directives contained in
the HTTPD configuration file of an IBM Internet Connection server. We first show
the Configuration and Administration form and, where appropriate, show the
corresponding default directives and examples of how these directives may be
modified. Note that, in most cases, the directive has explanatory notes
associated with it in the HTTPD configuration file.

4.6.3.1 Basic
Here is the Basic form.

Figure 41. The Basic Form

104 A Guide to the Internet Connection Servers

As you can see in Figure 42 on page 106, the directives have explanatory
comments associated with them.

For more information regarding the use of server-side includes and the Common
Gateway Interface (CGI), please refer to 5.9.4, “Server-Side Includes - Gods of
Greek Mythology” on page 209 and 6.1.5, “Linking to a CGI Script - Calendar” on
page 228, respectively.

Chapter 4. Internet Connection Servers - Installation and Configuration 105

Here are the default directives that correspond to the Basic form.

#
Set ServerRoot to point to the directory where you unpacked this
distribution, or wherever you want your server to have its home.
Default: <none>
Syntax: ServerRoot <path, including drive letter>
There can only be one value per keyword.
#
ServerRoot C:\WWW\Bin

#
Specify the fully-qualified hostname, including the domain. You can
use an alias (if you have one set up) instead of the machine′ s real name
name so that clients will not be able to see the real host name.
Default: <none>
Syntax: Hostname <fully-qualified host name>
#
Hostname win-nt
#
Don′ t lookup hostnames of clients
#
DNS-Lookup Off

#
If you are not root you have to
use a port above 1024; good defaults are 8000, 8001, 8080
Default value for HTTP: 80
Syntax: Port <number>
There can only be one value per keyword.
#
Port 80

#
imbeds:
Use this directive to enable server side includes.
Syntax: imbeds <on/off/files/cgi><.suffix>
<.suffix> is optional - if present, it limits which files are
parsed for server side includes.
Default: on .shtml
If more than one imbeds directive is specified, the last one is used
#
imbeds on .shtml

#
The following are vendor-specific CAD-formats commonly
used at CERN and in HEP institutes:
#
AddType .htmls text/x-ssi-html 8bit 1.0 # Server-side includes
AddType .shtml text/x-ssi-html 8bit 1.0 # Server-side includes

Figure 42. The Directives Corresponding to the Basic Form

106 A Guide to the Internet Connection Servers

4.6.3.2 User Administration
Here is the Add User form.

Figure 43. The Add User Form

The Add User form does not correspond to directives of the HTTPD configuration
file. Rather, it interfaces to the HTADM administrative tool. The syntax of
HTADM is as follows:

Administrative tool for IBM Internet Connection server access authorization

Usage:
htadm -adduser pwfile]user]password]real name[[[
htadm -deluser pwfile]user[
htadm -passwd pwfile]user]password[[
htadm -check pwfile]user]password[[
htadm -create pwfile

Figure 44. The Syntax of the HTADM Command

To create the same user as we did with the Add User form using HTADM, do the
following:

• Create the C:\Anything directory. Note that the Add User form cannot create
directories. Therefore, the group and password files it creates can only be
placed in existing directories.

Chapter 4. Internet Connection Servers - Installation and Configuration 107

• Create the C:\Anything\Developers.p password file by running:

htadm -create C:\Anything\Developers.p

• Add a password for Dave E Lauper by running:

htdam -adduser C:\Anything\Developers.p LauperD Dave E Lauper

• Add LauperD to the Developers group of the C:\Anything\Developers.g group
file as listed below:

Developers: LauperD

Figure 45. The C:\Anything\Developers.g Group File

The other user administration forms and uses of the HTADM tool are very similar
to the above example. Please refer to the Internet Connection Server Up and
Running! manual for further details.

We advise you to give inconspicuous names and extensions to your group and
password files, and to place them in discreet directories, as we did in our
example. This will prevent unauthorized people, who may have (in one way or
another) gained access to the server, from finding the files too easily.

4.6.3.3 Initial Page - Welcome Page
Here is the Initial Page - Welcome Page form.

108 A Guide to the Internet Connection Servers

Figure 46. The Initial Page - Welcome Page Form

As you can see from the form, we are adding a directive to change the order in
which the server will look for and present a welcome page.

Here are the default directives that correspond to the Initial Page - Welcome
Page form.

Chapter 4. Internet Connection Servers - Installation and Configuration 109

#
Specify the default document to be displayed to the client
when only a directory name is specified in the URL.
The first Welcome statement has precedence.
Defaults: Welcome.html, welcome.html, index.html
Syntax: Welcome <filename.html>
This directive may be defined multiple times in the
configuration file.
#
Welcome Welcome.html
Welcome welcome.html
Welcome index.html
Welcome Frntpage.html

Figure 47. The Directives Corresponding to the Init ial Page - Welcome Page Form

4.6.3.4 Initial Page - Directory List Viewing Form
Here is the Initial Page - Directory List Viewing form.

Figure 48. The Initial Page - Directory List Viewing Form

We advise you to always display a welcome page. This will prevent the display
of the contents of your server′s directories. A directory listing is not
aesthetically pleasing, and Web users should only encounter them by choice
(selecting a hyperlink, for example). Furthermore, this information reveals the
structure of your server to the Internet. This information may be useful,
especially to competitors and hackers.

110 A Guide to the Internet Connection Servers

For the same reason, we advise you not to allow directory access (DirAccess set
to off). If you really need to serve files in an FTP-like style, then only show
directories with browse access enabled (DirAccess set to Selective). This will
hide the contents of the directories in which you did not place the
.www_browsable file.

Here are the default directives that correspond to the Initial Page - Directory List
Viewing form.

#
Indicate if the absence of a trailing slash in the URL will
provide a directory listing or the default welcome page.
Default: On
Syntax: AlwaysWelcome <on/off>
#
AlwaysWelcome On

#
Enable/disable or selective directory browsing
Default: On
Syntax: DirAccess <on/off/selective>
One value per keyword is allowed. One keyword/value pair is
allowed.
DirAccess On

Figure 49. The Directives Corresponding to the Init ial Page - Directory List Viewing Form

4.6.3.5 Directory List Contents
Here is the Directory List Contents form.

Chapter 4. Internet Connection Servers - Installation and Configuration 111

Figure 50. The Directory List Contents Form

We advise you not to display hidden files.

Here are the default directives that correspond to the Directory List Contents
form.

112 A Guide to the Internet Connection Servers

#
Control the appearance of the directory listing.
Defaults: DirShowIcons On
DirShowDate On
DirShowSize On
DirShowDescription On
DirShowBrackets On
DirShowCase On
DirShowHidden On
DirShowBytes Off
Syntax: <directive> <on/off>
Only one value per keyword is allowed. Only one keyword/value
pair is allowed.
#
DirShowDate On
DirShowSize On
DirShowDescription On
DirShowCase On
DirShowHidden On
DirShowBytes Off

#
Specify the maximum width for the description text in
directory listings.
Default: DirShowMaxDescrLength 25
Syntax: DirShowMaxDescrLength <num>
Only one value per keyword is allowed. Only one keyword/value
pair is allowed.
#
DirShowMaxDescrLength 25

#
Specify the minimum width for the filename field for
directory listings.
Default: DirShowMinLength 15
Syntax: DirShowMinLength <num>
Only one value per keyword is allowed. Only one keyword/value
pair is allowed.
DirShowMinLength 15

#
Specify the maximum width for the filename field for
directory listings.
Default: DirShowMaxLength 25
Syntax: DirShowMaxLength <num>
Only one value per keyword is allowed. Only one keyword/value
pair is allowed.
#
DirShowMaxLength 25

Figure 51. The Directives Corresponding to the Directory List Contents Form

Chapter 4. Internet Connection Servers - Installation and Configuration 113

4.6.3.6 Directory Icons - Directory
Here is the Directory Icons - Directory form.

Figure 52. The Directory Icons - Directory Form

Here are the default directives that correspond to the Directory Icons - Directory
form.

114 A Guide to the Internet Connection Servers

#
Control the appearance of the directory listing.
Defaults: DirShowIcons On
DirShowDate On
DirShowSize On
DirShowDescription On
DirShowBrackets On
DirShowCase On
DirShowHidden On
DirShowBytes Off
Syntax: <directive> <on/off>
Only one value per keyword is allowed. Only one keyword/value
pair is allowed.
#
DirShowIcons On
DirShowBrackets On

#
Specify path for the standard icons included in directory listings
Default: IconPath <ServerRoot>/icons/*
Syntax: IconPath <icon directory path>
#
IconPath /icons/

#
Specify blank icon URL for directory listing
Default: default shown below
Syntax: AddBlankIcon <icon URL><ALT text>
#
Specify directory icon URL for directory listing
Default: default shown below
Syntax: AddDirIcon <icon URL><ALT text>
#
Specify parent directory icon URL for directory listing
Default: default shown below
Syntax: AddParentIcon <icon URL><ALT text>
#
Specify unknown icon URL for directory listing
Default: default shown below
Syntax: AddUnknownIcon <icon URL><ALT text>
#
AddBlankIcon blank.gif
AddDirIcon dir.gif DIR
AddParentIcon back.gif UP
AddUnknownIcon unknown.gif ???

Figure 53. The Directives Corresponding to the Directory Icons - Directory Form

4.6.3.7 Directory Icons - MIME Types
Here is the Directory Icons - MIME Types form.

Chapter 4. Internet Connection Servers - Installation and Configuration 115

Figure 54. The Directory Icons - MIME Types Form

Here are the default directives that correspond to the Directory Icons - MIME
Types form.

#
Bind icon URL to a MIME content-type or content-encoding
Default: default set of icons shown below
Syntax: AddIcon <icon URL><ALT text><template>
#
AddIcon binary.gif BIN binary
AddIcon text.gif TXT text/*
AddIcon image.gif IMG image/*
AddIcon movie.gif MOV video/*
AddIcon sound.gif AU audio/*
AddIcon tar.gif TAR multipart/*tar
AddIcon compress.gif CMP x-compress x-gzip

Figure 55. The Directives Corresponding to the Directory Icons - MIME Types Form

116 A Guide to the Internet Connection Servers

4.6.3.8 README Text
Here is the README Text form.

Figure 56. The README Text Form

We strongly advise you to place README files wherever users will encounter
directory listings on your server. These files are informative to the user and will
save them time.

Here are the default directives that correspond to the README Text form.

#
Configure/disable readme feature for directory browsing.
Default: top
Syntax: DirReadme <top/bottom/off>
One value per keyword is allowed. One keyword/value pair is
allowed.
DirReadme top

Figure 57. The Directives Corresponding to the README Text Form

4.6.3.9 User Directories
Here is the User Directories form.

Chapter 4. Internet Connection Servers - Installation and Configuration 117

Figure 58. The User Directories Form

There are no default directives that correspond to the User Directories form.

4.6.3.10 Global Log File Configuration Settings
Here is the Global Log File Configuration Settings form.

118 A Guide to the Internet Connection Servers

Figure 59. The Global Log File Configuration Settings Form

We advise you to use the common log file format, since it can be processed
using most available log analysis programs as well as using the tools shipped
with the Internet Connection server. For more information about logging, please
refer to 4.6.8, “Logging Procedures” on page 148.

Here are the default directives that correspond to the Global Log File
Configuration Settings form.

#
Default: LocalTime
Syntax: LogTime <GMT | LocalTime>
Example:
LogTime LocalTime
#
LogTime LocalTime

#
Default: Common
Syntax: LogFormat <Old | Common>
Example:
LogFormat Common
#
LogFormat Common

Figure 60. The Directives Corresponding to the Log File Configuration Settings Form

Chapter 4. Internet Connection Servers - Installation and Configuration 119

4.6.3.11 Access Log File Configuration
Here is the Access Log File Configuration - Maintenance form.

Figure 61. The Access Log File Configuration - Maintenance Form

Here are the default directives that correspond to the Access Log File
Configuration - Maintenance form.

120 A Guide to the Internet Connection Servers

Logging; if you want logging, uncomment these lines and specify
locations for your access and error logs
Default: <none>
Syntax: AccessLog <filename>
Example:
AccessLog d:\www\daemon\etc\httlog
AccessLog C:\WWW\Logs\httpd-log

AccessLogArchive directive:
Enables the purge options (purge) or the user exit option (userexit)
or does not do either (none) for Access logs.
When selected, the purge action or userexit action will take place at
midnight immediately after the previous day′ s logs have been closed
and the new day′ s logs have been opened.
If the userexit option is specified, the name and location of the user exit
that is called must be specified following the userexit option parameter
Default: none
Syntax: AccessLogArchive <none | purge | userexit user_exit_spec>
Examples:
AccessLogArchive none
AccessLogArchive purge
AccessLogArchive userexit c:\usercode\movelogs.exe -d -o -g
AccessLogArchive none

AccessLogExpire directive:
#
Sets the age limit, in days, for access log files. It is only a
number, no additional # parameters (such as the text ″days″) is
expected or handled. Any access log files older than this date
will be erased. If set to zero then no expiration date exists.
The file creation date as reported by the operating system is used
to determine the date - the suffix of the filename (such as
httpd-log.Mar2296) is not used to determine file age.
Default: 0
Syntax: AccessLogExpire <time-spec>
Example:
AccessLogExpire 30
AccessLogExpire 0

AccessLogSizeLimit directive:
#
Sets the sum total size limit, in megabytes, for the access logs.
It is only a number, no additional parameters (such as the text
″meg″) is expected or handled. If set to zero then no maximum size
to the Access Logs is enforced. This directive takes effect after
AccessLogExpire has been applied. If the sum total size of access
log files is larger than the limit assigned, files will be deleted
starting with the oldest file until within the limit.
Default: 0
Syntax: AccessLogSizeLimit <size-spec>
Example:
AccessLogSizeLimit 20
AccessLogSizeLimit 0

Figure 62. The Directives Corresponding to the Access Log File Configuration - Maintenance Form

Chapter 4. Internet Connection Servers - Installation and Configuration 121

4.6.3.12 Access Log File Configuration - File Exclusions
Here is the Access Log File Configuration - File Exclusions form.

Figure 63. The Access Log File Configuration - File Exclusions Form

Here are the default directives that correspond to the Access Log File
Configuration - File Exclusions form.

#
AccessLogExcludeURL directive
#
A filter to exclude request URLs matching a given template
Default <none>
Syntax AccessLogExcludeURL <URL template>
Examples:
AccessLogExcludeURL *.gif
AccessLogExcludeURL \Freebies*

Figure 64. The Directives Corresponding to the Access Log File Configuration - File Exclusions Form

122 A Guide to the Internet Connection Servers

4.6.3.13 Access Log File Configuration - Host Exclusions
Here is the Access Log File Configuration - Host Exclusions form.

Figure 65. The Access Log File Configuration - Host Exclusions Form

Note you have to set the DNS-Lookup directive to On in order to be able to
specify hostnames here. Refer to Figure 42 on page 106 for more information.

Here are the default directives that correspond to the Access Log File
Configuration - Host Exclusions form.

Chapter 4. Internet Connection Servers - Installation and Configuration 123

NoLog directive:
#
Suppress access log entries for host matching a given IP address or
hostname. Wild cards ″*″ may be used. This directive may be used
multiple times within the configuration file.
Default: <none>
Syntax: NoLog <hostnames and IP addresses>
Examples:
NoLog 128.141.*.*
NoLog *.location.company.com
Nolog *.*.*.com
NoLog *.ch *.fr *.it
#

Figure 66. The Directives Corresponding to the Access Log File Configuration - Host Exclusions Form

4.6.3.14 Access Log File Configuration - Other Exclusions
Here is the Access Log File Configuration - Other Exclusions form.

124 A Guide to the Internet Connection Servers

Figure 67. The Access Log File Configuration - Other Exclusions Form

We recommend that you log as much information as possible. This will allow
you to identify server and security problems faster.

Here are the default directives that correspond to the Access Log File
Configuration - Other Exclusions form.

Chapter 4. Internet Connection Servers - Installation and Configuration 125

AccessLogExcludeMethod directive:
#
A filter to exclude requests of a given method
Default: <none>
Syntax AccessLogExcludeMethod <Get | Put | Post | Delete>
Examples:
AccessLogExcludeMethod Get
AccessLogExcludeMethod Put
AccessLogExcludeMethod Post

AccessLogExcludeReturnCode directive:
#
A filter to exclude requests with a given return code range
(200s, 300s, 400s, 500s)
Default: <none>
Syntax: AccessLogExcludeReturnCode <200 | 300 | 400 | 500>
Examples:
AccessLogExcludeReturnCode 300
AccessLogExcludeReturnCode 400

AccessLogExcludeMimeType directive:
#
A filter to exclude requests for files of a given mime type.
Default: <none>
Syntax: AccessLogExcludeMimeType <text/html | text/plain |
text/other | image/gif |
image/jpeg | image/(other) |
application/* |
audio/* | video/* |
(other)/other)>
Examples:
AccessLogExcludeMimeType text/html
AccessLogExcludeMimeType text/plain

Figure 68. The Directives Corresponding to the Access Log File Configuration - Other Exclusions Form

4.6.3.15 Error Log File Configuration
Here is the Error Log File Configuration form.

126 A Guide to the Internet Connection Servers

Figure 69. The Error Log File Configuration Form

Here are the default directives that correspond to the Error Log File
Configuration form.

Chapter 4. Internet Connection Servers - Installation and Configuration 127

#
Default: <none>
Syntax: ErrorLog <filename>
Example:
ErrorLog d:\www\daemon\etc\htterr
#
ErrorLog C:\WWW\Logs\httpd-error

ErrorLogArchive directive:
Enables the purge options (purge) or the user exit option (userexit)
or does not do either (none) for Error logs. When selected, the
purge action or userexit action will take place at midnight
immediately after the previous day′ s logs have been closed and the
new day′ s logs have been opened.
If the userexit option is specified, the name and location of the user exit
that is called must be specified following the userexit option parameter
Default: none
Syntax: ErrorLogArchive <none | purge | userexit user_exit_spec>
Example:
ErrorLogArchive none
ErrorLogArchive purge
ErrorLogArchive userexit c:\usercode\movelogs.exe -d -o -g
ErrorLogArchive none

ErrorLogExpire
Sets the age limit, in days, for the error logs. It is only a number,
no additional parameters (such as the text ″days″) is expected or
handled. Any error log files older than this date will be erased.
If set to zero then no expiration date exists. The file creation
date as reported by the operating system is used to determine the
date - the suffix of the filename (such as httpd-log.Mar2296) is not
used to determine file age.
Default: 0
Syntax: ErrorLogExpire <time-spec>
Example:
ErrorLogExpire 30
#
ErrorLogExpire 0

ErrorLogSizeLimit
Sets the sum total size limit, in megabytes, for the error logs. It
is only a number, no additional parameters (such as the text ″meg″)
is expected or handled. If set to zero then no maximum size to the
Error Logs is enforced. This directive take effect after
ErrorLogExpire has been applied. If the sum total size of error log
files is larger than the limit assigned, files will be deleted
starting with the oldest file until within the limit.
Default: 0
Syntax: ErrorLogSizeLimit <size-spec>
Example:
ErrorLogSizeLimit 20
ErrorLogSizeLimit 0

Figure 70. The Directives Corresponding to the Error Log File Configuration Form

128 A Guide to the Internet Connection Servers

4.6.3.16 Access Log Report Template
Here is the Access Log Report Template form.

Figure 71. The Access Log Report Template Form

The logging feature of the IBM Internet Connection Servers is addressed in detail
in 4.6.8, “Logging Procedures” on page 148.

4.6.3.17 OS/400 Logging
In this section we introduce the directives that control logging in the HTTP
Server of OS/400. For more information about the HTTP Server and Internet
Connection for OS/400, please refer to 4.5.3, “AS/400” on page 76.

The following is a list of HTTP Server directives that control logging in the
OS/400 HTTP Server environment.

AccessLog log-file-name {max-size}
The AccessLog directive specifies the log-file-name of the access log
file. When the HTTP server is started, a member is automatically
created in QUSRSYS/log-file-name with a member name based on
time and date.

Chapter 4. Internet Connection Servers - Installation and Configuration 129

The optional max-size parameter specifies the maximum size of the
file in kilobytes. If 0 is specified, the log file keeps growing until
STRTCPSVR SERVER(*HTTP) RESTART(*YES) is executed. The
default value is 2 Mb.

If this directive is not explicitly specified in the HTTP server
configuration, no access logging is performed.

� �
Display Physical File Member

 File : LEEACLO3 Library : QUSRSYS
 Member : Q0960507 Record : 1
 Control W60 Column : 1
 Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
 [07/May/1996:12:38:34 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/qpgmsrc.file/
 [07/May/1996:12:38:51 +0000] w3proxy-b.SYSMA99.ibm.com GET /QSYS.LIB/A960301C.
 [07/May/1996:12:39:33 +0000] w3proxy-b.SYSMA99.ibm.com GET /QSYS.LIB/A960301C.
 [07/May/1996:12:39:53 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/QPGMSRC.FILE/
 [07/May/1996:12:40:32 +0000] w3proxy-b.SYSMA99.ibm.com POST /QSYS.LIB/A960301C
 [07/May/1996:12:41:01 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/WEBCGR00.PGM
 [07/May/1996:12:41:10 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/QPGMSRC.FILE/
 [07/May/1996:12:41:16 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/QPGMSRC.FILE/
 [07/May/1996:12:41:25 +0000] w3proxy-b.SYSMA99.ibm.com POST /QSYS.LIB/A960301C
 [07/May/1996:12:46:55 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/QPGMSRC.FILE/
 [07/May/1996:12:47:00 +0000] w3proxy-b.SYSMA99.ibm.com GET /QSYS.LIB/A960301C.
 [07/May/1996:12:47:05 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/qpgmsrc.file/
 [07/May/1996:12:48:09 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/qpgmsrc.file/
 [07/May/1996:12:48:16 +0000] w3proxy-b.SYSMA99.ibm.com GET /PGMS/QPGMSRC.FILE/
 [07/May/1996:12:48:22 +0000] w3proxy-b.SYSMA99.ibm.com POST /QSYS.LIB/A960301C

More...
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

� �
Figure 72. Typical Access Log Member (Left)

� �
Display Physical File Member

 File : LEEACLO3 Library : QUSRSYS
 Member : Q0960507 Record : 1
 Control W60 Column : 60
 Find
6....+....7....+....8....+....9....+....0....+....1....+....2....+....3....+..
 /PGMS/qpgmsrc.file/stdoutin.mbr HTTP/1.0
 /QSYS.LIB/A960301C.LIB/QPGMSRC.FILE/RDSIN.MBR HTTP/1.0
 /QSYS.LIB/A960301C.LIB/QPGMSRC.FILE/RDSIN.MBR HTTP/1.0
 /PGMS/QPGMSRC.FILE/RDSIN.MBR HTTP/1.0
/QSYS.LIB/A960301C.LIB/WEBCGR00.PGM HTTP/1.0

 /PGMS/WEBCGR00.PGM HTTP/1.0
 /PGMS/QPGMSRC.FILE/RDSIN.MBR HTTP/1.0
 /PGMS/QPGMSRC.FILE/RDSIN.MBR HTTP/1.0
/QSYS.LIB/A960301C.LIB/WEBCGR00.PGM HTTP/1.0

 /PGMS/QPGMSRC.FILE/RDSIN.MBR HTTP/1.0
 /QSYS.LIB/A960301C.LIB/QPGMSRC.FILE/RDSIN.MBR HTTP/1.0
 /PGMS/qpgmsrc.file/stdoutin.mbr HTTP/1.0
 /PGMS/qpgmsrc.file/stdoutin.mbr HTTP/1.0
 /PGMS/QPGMSRC.FILE/RDSIN.MBR HTTP/1.0
/QSYS.LIB/A960301C.LIB/WEBCGR00.PGM HTTP/1.0

More...
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

� �
Figure 73. Typical Access Log Member (Right)

130 A Guide to the Internet Connection Servers

Access logging is a useful aid for analyzing who is accessing your
system, how frequently your system is being accessed and which
Web pages are being accessed. This is useful for both security
auditing and marketing related analysis.

ErrorLog file-name {max-size}
The ErrorLog directive specifies the file name of the access log file.
When the HTTP server is started, a member is automatically created
in QUSRSYS/file-name with a member name based on time and date.

The optional max-size parameter specifies the maximum size of the
file in kilobytes. If 0 is specified, the log file keeps growing until
STRTCPSVR SERVER(*HTTP) RESTART(*YES) is executed. The
default value is 2 Mb. If this directive is not explicitly specified in the
HTTP server configuration, no access logging is performed.

LogFormat DDS | Common
The LogFormat directive defines which format the log files are saved
in. Common file format is a source physical file with the total record
length of 375 bytes. It is very hard to process using PDM because the
SEU can handle only records up to 240 bytes long. DDS file format is
divided into three fields and has a total record length of 375 bytes.
We have included into library ITSOIC400 the object and source code
for program PRTWWWLOG, which is a quite simple ILE RPG program
that produces a print of both file formats.

LogTime LocalTime | GMT
Specifies how the log file entries are time stamped.

NoLog template{ template{...}}
The NoLog directive is used to disable the logging of HTTP server
accesses for selected groups of client/browser host names and host
addresses. It can be used to filter out log entries of your regular
users and leave just those entries that may be considered security
breaches, or those of interest for marketing reasons.

Examples

NoLog 9.180.*.*

NoLog *.local.users.com

NoLog *.abc *.pqr *.xyz

The template parameter is either a dotted decimal host address or a
dotted Internet Host name. An asterisk (′*′) may be used as a wild
card for any of the terms.

This directive is relevant only when the AccessLog directive is
specified. It may be specified multiple times in the HTTP server
config and more than one template may be specified on each NoLog
directive.

4.6.3.18 Security Configuration
Here is the Security Configuration form.

Chapter 4. Internet Connection Servers - Installation and Configuration 131

Figure 74. The Security Configuration Form

Note that both sslmode and normalmode directive cannot be set to off. In that
case the server would not accept secure or nonsecure HTTP transactions, that is
it would accept no transactions at all.

Here are the default directives that correspond to the Security Configuration
form.

132 A Guide to the Internet Connection Servers

#
Security directives.
#
sslmode:
Use this directive to turn on/off SSL security using the port specified by the
sslport directive.
Syntax: sslmode <on/off>
Default: on
#
sslmode on

#
sslport:
Use this directive to specify the port that should be used for SSL transactions
Syntax: sslport <port number>
Default: 443
#
sslport 443

#
normalmode:
Use this directive to turn on/off non-secure transactions over the port
specify with the port directive.
Syntax: normalmode: <on/off>
Default: on
#
normalmode on

keyfile:
Use this directive to specify the names of key files that are available. Mu;tiple
keyfile directives are allowed.
Syntax: keyfile <filename.kyr>
Default: keyfile.kyr
Note: The last file in the list is the file that the server will use.
#

Figure 75. The Directives Corresponding to the Security Configuration Form

4.6.4 Key and Certificate Management
This section describes how to request a certificate and to create a public-private
key pair for your IBM Internet Connection Server. This will enable the server to
use the Secure Sockets Layer (SSL) in its communications with browsers.

This procedure is the same whether you chose Verisign or another certification
authority. In the example described here we request and install a VeriSign Low
Assurance Certificate.

The Administration and Configuration forms are the best way to do this.
However, we advise you to disconnect your server from any unsecure network
and not to exchange sensible data before and while you configure your server.

The first step is to link to the Create Key and Request Certificate form as shown
in Figure 76 on page 134. The default URL of this page, relative to the server
root is:

Chapter 4. Internet Connection Servers - Installation and Configuration 133

/admin-bin/sctyin/key

Figure 76. The Create Key and Request Certificate Form

From the form shown above, select your certification authority. In our case we
opted for VeriSign and their Low Assurance Certificate. We completed the forms
that were presented to us as shown in Figure 77 on page 135, Figure 78 on
page 136, and Figure 78 on page 136.

134 A Guide to the Internet Connection Servers

Figure 77. VeriSign Low Assurance Certificate Form (Part 1)

Chapter 4. Internet Connection Servers - Installation and Configuration 135

Figure 78. VeriSign Low Assurance Certificate Form (Part 2)

Figure 79. VeriSign Low Assurance Certificate Form (Part 3)

136 A Guide to the Internet Connection Servers

As it was not possible to send or receive e-mail from our Internet Connection
Server host, submitting this form ended with a Certificate request was not
mailed error.

But we had made sure the certificate request would be saved in the
C:/Key/CertReq.txt file (see Figure 79 on page 136). We then took the content of
this file and placed it in an e-mail to persona-request@rsa.com, as shown in
Figure 80. If you also do this, make sure that the characters in the string are not
translated in any way while you copy the request from the file to the e-mail, and
when this e-mail is sent from your host to the recipient.

From: ANDLAUER--BRUVMIS1 Date and time 14/06/96 22 :39:38
To: INTERNET--IBMMAIL

From : Jean-Charles Andlauer (andlauer@be.ibm.com)
Subject: Request Certificate
===
/internet
/to persona-request@rsa.com
/end
-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Proc-Type: 4,MIC-ONLY
Content-Domain: RFC822
Originator-Certificate:
 MIIB7TCCAZcCBDHByRUwDQYJKoZIhvcNAQECBQAwgYExCzAJBgNVBAYTAlVTMSAw
 HgYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5jLjEcMBoGA1UECxMTUGVyc29u
 YSBDZXJ0aWZpY2F0ZTEyMDAGA1UEAxMpQSBHdWlkZSB0byB0aGUgSW50ZXJuZXQg
 Q29ubmVjdGlvbiBGYW1pbHkwGhcLOTYwNjE0MjAxOFoXCzk3MDYxNDIwMThaMIGB
 MQswCQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4x
 HDAaBgNVBAsTE1BlcnNvbmEgQ2VydGlmaWNhdGUxMjAwBgNVBAMTKUEgR3VpZGUg
 dG8gdGhlIEludGVybmV0IENvbm5lY3Rpb24gRmFtaWx5MFwwDQYJKoZIhvcNAQEB
 BQADSwAwSAJBALGJbQ0fkFHzDIa4cTF46C2/zoF9Ov3lSrtLoaex3ilTvVWkZ486
 j6h2AvKiaAh041Wt6mimGyP1ZXQSfEiSQ9ECAwEAATANBgkqhkiG9w0BAQIFAANB
 AIyJvuw7zcOq69mxAmhwAA8OWItBvaeSx6KhIw4vCqAXI49r8KxybN0uOg3XKwZh
 AYbeygbpyx5+7v52DJcrgIA=
MIC-Info: RSA-MD5,RSA,
 h8/+k24RvYKbqCf9Phcch6JwvPH5R7TmV2qb4NQdhqwAfyzuX6ZL7egbiguQQMUJ
 7SgyWKOWTs8dBz8MLprzew==

VGhpcyBpcyBhbiBSRkMtMTQyNCBDU1IuCg==
-----END PRIVACY-ENHANCED MESSAGE-----

===
Best Regards, Availability Services Tel 360 385 373
Jean-Charles Andlauer IBM Belgium/Luxembourg Fax 360 385 444

Figure 80. Certificate Request to persona-request@rsa.com

After a while we received the reply presented in Figure 81 on page 138.

Chapter 4. Internet Connection Servers - Installation and Configuration 137

From: I5250411--IBMMAIL Date and time 14/06/96 21 :46:38
Date: Fri, 14 Jun 96 13:41:54 PDT
From: low-ca-administrator@RSA.COM
To: andlauer@be.ibm.com

In response to the certificate request for user named:
A Guide to the Internet Connection Servers

-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Proc-Type:4,MIC-ONLY
Content-Domain:RFC822
Originator-Certificate:
 MIIByDCCAWQCAgo/MA0GCSqGSIb3DQEBAgUAME0xCzAJBgNVBAYTAlVTMSAwHgYD
 VQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5jLjEcMBoGA1UECxMTUGVyc29uYSBD
 ZXJ0aWZpY2F0ZTAeFw05NjA2MTQyMDE4MDBaFw05NzA2MTQyMDE4MDBaMIGBMQsw
 CQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4xHDAa
 BgNVBAsTE1BlcnNvbmEgQ2VydGlmaWNhdGUxMjAwBgNVBAMTKUEgR3VpZGUgdG8g
 dGhlIEludGVybmV0IENvbm5lY3Rpb24gRmFtaWx5MFwwDQYJKoZIhvcNAQEBBQAD
 SwAwSAJBALGJbQ0fkFHzDIa4cTF46C2/zoF9Ov3lSrtLoaex3ilTvVWkZ486j6h2
 AvKiaAh041Wt6mimGyP1ZXQSfEiSQ9ECAwEAATANBgkqhkiG9w0BAQIFAANPAAFi
 WuVxm4hauCoHePUb8KVxm/V5jLM8GnAwCRIpRXLNz1sg11Xb+mhA5xx71ShRYU7b
 xy7l2YJTL+H4Fj62Dwvm0RDBUpxnMvWz2aIbEQ==
Issuer-Certificate:
 MIIBxzCCAVECBQJAAAAUMA0GCSqGSIb3DQEBAgUAMF8xCzAJBgNVBAYTAlVTMSAw
 HgYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5jLjEuMCwGA1UECxMlTG93IEFz
 c3VyYW5jZSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTAeFw05NDAxMDcwMDAwMDBa
 Fw05NjAxMDcyMzU5NTlaME0xCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSU0EgRGF0
 YSBTZWN1cml0eSwgSW5jLjEcMBoGA1UECxMTUGVyc29uYSBDZXJ0aWZpY2F0ZTBp
 MA0GCSqGSIb3DQEBAQUAA1gAMFUCTgaqCFANr1eL/bMB1gSolUhxiGUs3UWkj21d
 DWbrNnf09hcrxSGiPQSzuRZG/yELTi+qQ4rCd1ZvNW2+gdA6Y/yc6SS4GL4BC+AW
 hFyA5QIDAQABMA0GCSqGSIb3DQEBAgUAA2EAP/lSjvEN2nj2hmb0ag1w+FlxbV76
 eiMu8ddYBT8IGTB9xH4VJ/iFDl4W7UCNi/pap/jfRd70S3n6OCcxOKrgufCBN0Dz
 FBfh6UnP1DNChuQTddU6NUC0IVyaKKfzREHw
MIC-Info: RSA-MD5,RSA,
 h8/+k24RvYKbqCf9Phcch6JwvPH5R7TmV2qb4NQdhqwAfyzuX6ZL7egbiguQQMUJ
 7SgyWKOWTs8dBz8MLprzew==

VGhpcyBpcyBhbiBSRkMtMTQyNCBDU1IuCg==
-----END PRIVACY-ENHANCED MESSAGE-----

---- End of mail text

Additional SMTP headers from original mail item follow:
Received: from RSA.COM by E-MAIL.COM (IBM VM SMTP V2R3) with TCP;

Fri, 14 Jun 96 16:45:02 EDT
Received: by RSA.COM

id AA07452; Fri, 14 Jun 96 13:41:54 PDT
Message-Id: <9606142041.AA07452@RSA.COM>

Figure 81. Certificate from low-ca-administrator@rsa.com

We then placed the certificate, that is the part of the reply placed between the
Begin and End Privacy-Enhanced Message lines inclusive, on our server′s host
in the C:\Key\Certificate.txt file.

All that is left to do is to receive the certificate in its key ring, using the Receive
Certificate form of the Configuration and Administration forms, as shown in
Figure 82 on page 139.

138 A Guide to the Internet Connection Servers

Figure 82. Receive Certificate Form

Once this is done successfully, use the Key Management forms to manage your
keys.

In order to activate the changes described above it is necessary to shut down
and restart your server again. (Restarting the server from the graphical user
interface or the Administration and Configuration forms is not enough.)

After restart you are ready to serve files securely through SSL.

4.6.5 Proxy Functions
The Internet Connection server can be configured to retrieve documents on
behalf of the Web browsers which it is serving. As such it is referred to as a
proxy server. In addition, you can configure the proxy server to cache the
retrieved documents locally.

Most Web browsers also support the local caching of documents so a part of
your planning will be to decide where and when to cache. Some important
choices to consider are as follows:

• Location of cache - server, browser or both

• Size of cache

• Which documents to cache

• How long to keep cached documents

In this section we use Configuration and Administration Forms to set up the
Internet Connection server as a caching proxy server.

Chapter 4. Internet Connection Servers - Installation and Configuration 139

4.6.5.1 Resource Mapping - Request Routing

Figure 83. Request Routing

The first step is to set up rules for dealing with requests received at the server.
In our case we did the following:

• Started up Configuration and Administration Forms

• Selected Request Routing and obtained the panel shown in Figure 83.

• In this panel, we specified the following:

− A Pass rule for all HTTP requests. As you can see, ″wild card″
characters are permissible.

4.6.5.2 Proxy Server Settings

140 A Guide to the Internet Connection Servers

Figure 84. Proxy Server Settings

The next step is to specify the proxy buffer size and any non-proxy domains. We
did this as follows:

• Selected Proxy Server Settings and obtained the panel shown in Figure 84.

• In this panel, we specified the following:

− A proxy buffer with a size of 1000 KB

− No non-proxy domains

The non-proxy domain option is most useful if you are using multiple
proxies. Let us suppose that there were a second proxy on a firewall
which protected the intranet from the Internet. Let us further suppose
that this proxy would forward requests bound for the Internet to the
firewall proxy. In this case it would be appropriate to limit the forwarding
of requests to the firewall proxy by specifying non-proxy domains within
our intranet.

Since we are not specifying multiple proxies, we have no need to specify
non-proxy domains.

Chapter 4. Internet Connection Servers - Installation and Configuration 141

4.6.5.3 Caching Settings

Figure 85. Caching Settings

The next step is to enable proxy caching and related parameters. We did this as
follows:

• Selected Caching Settings and obtained the panel shown in Figure 85.

• In this panel, we specified the following:

− Enable proxy caching (by clicking on the button)

− A cache size of 5 MB

− A caching root directory of d:\cache

− A cache log file of d:\cache\log

− Other parameters were allowed to default

The caching root directory d:\cache\log will be empty to start with but, once
Web browsers start making use of the proxy server, it will start to fill up.

For example, suppose that a browser makes a request for the IBM home
page at www.ibm.com. The proxy server will create additional directories off
of the root for HTTP requests and, in particular, those destined for
www.ibm.com. Hence, all HTML files and associated images that are
retrieved from www.ibm.com will be cached in the
d:\cache\http\www.ibm.com directory.

142 A Guide to the Internet Connection Servers

4.6.5.4 Caching Filters

Figure 86. Caching Filters - 1 of 2

The next step is to optionally specify caching filters that will determine from
which URLs documents will be retrieved by the proxy server and cached locally.
We did this as follows:

• Selected Caching Filters and obtained the panel shown in Figure 86.

• In this panel, we specified the following:

− Requests for URLs starting http://www.favesite should be cached

As you have no doubt guessed, this is a made up example. If you do not
specify any caching filters then requests for all HTTP URLs will be cached.
We chose initially in this example to cache only HTTP requests (see 4.6.5.1,
“Resource Mapping - Request Routing” on page 140). However, other
protocols, FTP for example, are also supported.

Chapter 4. Internet Connection Servers - Installation and Configuration 143

Figure 87. Caching Filters - 2 of 2

At this stage we had completed the main steps in setting up our Internet
Connection server as a caching proxy. In Figure 87 we see that there are
further options that allow us to set time limits for cache files, specify multiple
proxies, etc.

All that remained at this stage was to click on the Apply button to make these
changes. As always where configuration changes are concerned it was also
necessary to restart the server to put the changes into effect.

4.6.6 Tuning the Server
Server performance will be influenced by the following directives:

• MinActiveThreads

• MaxActiveThreads

• CacheLocalFile

• IdleThreadTimeout

Each time the server receives a request from a client, it uses one or two threads
to perform the requested action. One thread is used if the server is not
performing DNS lookup. The server first checks to see if any threads are
available. If so, the server uses available threads to process the request. If no
threads are available and the maximum number of active threads has not been

144 A Guide to the Internet Connection Servers

reached, the server starts new threads to process the request. If the maximum
number of active threads has been reached, the server holds the request until
threads are available. When a request finishes, the threads it was using become
idle. As long as idle threads do not expire, they are available for the server to
use again.

The following are the meanings of the performance-related directives:

• MinActiveThreads

Specify the minimum number of threads to keep available or active. Use this
directive to set the minimum number of threads that you want the server to
either be using or have available to use. The server will not close threads below
this minimum even if the threads are idle. Generally, the more power your
machine has, the higher the value you should use for this directive. If your
machine starts to spend too much time on overhead tasks, such as swapping
memory, try reducing this value.

Default: MinActiveThreads 20

• MaxActiveThreads

Specify the maximum number of threads to keep available or active. Use this
directive to set the maximum number of threads that you want to have active at
one time. If the maximum is reached, the server holds new requests until
another request finishes and threads become available. Generally, the more
power your machine has, the higher the value you should use for this directive. If
your machine starts to spend too much time on overhead tasks, such as
swapping memory, try reducing this value.

Default: MaxActiveThreads 40

• CacheLocalFile

Specify files you want to load in memory at startup. Use this directive to specify
the names of files you want to load into the server′s memory each time you start
the server. You can have multiple occurrences of this directive in the
configuration file. Include a separate directive for each file you want to load into
memory. By keeping your most frequently requested files loaded in the server′s
memory, you can improve your server′s response time for those files. For
example, if you load your server′s welcome page into memory at startup, the
server can handle requests for the page much more quickly than if it had to read
the file from a disk. Keep in mind that for each file you load into memory, you
are making that amount of memory unavailable for other uses.

Before responding to a request for a file that is stored in memory, the server
checks to see if the file has changed since the server was started. If the file has
changed, the server responds to the request with the updated file and deletes
the old version from its memory. To load the new file into memory, you need to
restart the server.

• IdleThreadTimeout

Specify length of time to keep idle threads available. Use this directive to
specify how long the server should keep an idle thread available. A thread
becomes idle after the last request to use it completes. If the number of threads
already available or active is greater than the value on MinActiveThreads and
the server does not use the thread again within the specified time, the server
closes the idle thread. Specify the time value in any combination of hours,

Chapter 4. Internet Connection Servers - Installation and Configuration 145

minutes or seconds. If you use the default value of forever, the server does not
close any idle threads.

Default: IdleThreadTimeout forever

• ServerPriority

Specify the priority you want your server to have on your system. Use this
directive to specify a priority class for the Internet Connection Server. The
operating system uses priority classes to determine which processes have
priority over others. Valid values are:

• 0 - No priority

• 1 - Maximum priority as a normal process

• 2 - Maximum priority as a foreground server process

You may want to use a value of 0 if the machine of your Internet Connection
Server is running on and is also processing other types or requests.

Default: ServerPriority 1

4.6.6.1 ACL Files
Use this directive to specify whether access control list files will be checked for
file protection. Set this directive to never or protect only for better server
performance. The format of the directive is:

UseACLs setting

The value of setting may be:

• always

The server will always look for an ACL file on every file request.

• protect only

The server will only look for an ACL file when the file request is for a file that is
covered by a protection statement.

• never

The server will never look for an ACL file on request.

Examples:

UseACLs protect only
UseACLs always

4.6.6.2 Meta Files
Use this directive to specify whether meta files will be used by the server. Set
this directive to off for better server performance. The format of the directive is
either on or off.

UseMetaFiles on
UseMetaFiles off

The default is on.

146 A Guide to the Internet Connection Servers

4.6.7 Backup Procedures
Backup is based on the concept of protecting data from being lost or destroyed.
The concept of backup and restore is based on one golden rule: your backup
policies must be able to provide the data that is required to meet your recovery
requirements. You cannot back up data without giving any thought to the restore
process. The restore process, and its requirements, must drive the backup
method.

In preparing backup procedures we have to consider the following:

• Human error

• Media failure

• Outage minimization

• Disaster recovery

4.6.7.1 Backup Requirements
You should make a backup of the ICS files as soon as possible after you install
the ICS for the first time. This ensures that you can recover any portion of the
ICS files that is accidentally erased or corrupted.

You can choose from two ways to back up the ICS related files: full backup and
incremental backup. A full backup may take longer to run than an incremental
backup, however, recovery time may be faster with a full backup since
incremental backups do not need to be applied. If you want to back up
automatically, you may use a storage manager such as Adstar Distributed
Storage Manager (ADSM). In addition, you have to consider the backup cycle for
the files. If you update any files related to the ICS, you should back up them as
soon as possible.

At least the following files must be backed up to another machine or another
media such as tapes or diskettes:

• Httpd.conf configuration file

• Password files

• Group files

• ACL files

• Content files

• Access/error log files

The three main options that are available for backing up these files are as
follows:

• Back up the files to another media using standard shell commands such as
cp/xcopy, tar and cpio

• Back up the files individually using ADSM

• Back up the files to a remote machine using FTP or NFS

Note: Files are often bundled together in single files by utilities like pax, tar, and
cpio. When these files are bundled into a single file it is called an archive file. To
save backup space and backup time, archive files can also be compressed with
utilities like compress, pkzip, and lha, or the utilities by using -z option.

Chapter 4. Internet Connection Servers - Installation and Configuration 147

4.6.8 Logging Procedures
The Internet Connection server logs different types of information in various files,
according to your configuration.

In this section, we describe to you the format of those files and we provide you
with some guidelines on administering them. Finally, we discuss some analysis
tools.

4.6.8.1 Log Files Format and Location
The server starts new log files each day at midnight if it is running. Otherwise
the server starts new log files the first time you start it on a given day. When
creating the file, the server uses the file names you specified in the configuration
file or the predefined names, depending on the log file and appends a date
suffix. The date suffix is in the format:

Mmmddyy

where Mmm is the first three letters of the month (calendar name), dd is the day
of the month and yy is the last two digits of the year; for example:

httpd-log.Jun0696

Note that MVS appends an additional suffix which corresponds to the time of the
first request/error on the server; for example:

httplog.Jun0696.0531

Also, note that several different files will be created if you restart your server. On
the other hand, no log files are created if your server is not accessed during the
day.

As you will see in the following sections, dedicated directives allow you to set up
the log files′ locations. It is up to you to decide the directory (or directories) in
which you want to store the log files. You must pay attention to the fact that the
log files tend to grow quickly and you would probably not appreciate it if your
server filled up one of your vital file systems (for example, the root (/) on an AIX
system).

There is no universal law as to where the log files should be stored and how
much disk space should be dedicated to them. This will depend greatly on how
many disks are installed on your system, how they are partitioned, etc. But it
also depends on the traffic to and from your Web server and the structure of the
Web site. A service with many short pages will generate more log entries than a
service with less pages, even if the amount of information sent to the client is
equivalent. Pages with many images (GIF, JPEG, etc) will also generate more
log entries than plain text files.

Only experience will provide you with information on how much space you
should consider dedicating to your log files for your specific site. To some extent
this will depend upon how often you will be backing up and purging the files.
Based upon our experience we concluded that we should allow or allocate in
excess of 100 MB of disk space.

Please refer to 4.6.8.8, “Log Files Administration” on page 153 for guidelines on
how to administer the log files.

The information logged relates to incoming requests, internal server errors, CGI
script errors, requests for cached files (if your server acts as a proxy server).

148 A Guide to the Internet Connection Servers

If your server is Release 4.1 (or higher), it will also log information on the
referrer and the agent of incoming requests.

Each entry in the log files contains the time. You can choose between the local
time and Greenwich Mean Time formats. See the LogTime directive in the
configuration file. The time format is common to all log files:

DD/Mon/YYYY:hh:mm:ss TTTTT

That is date, month (calendar name), year, hour (24-hour format), minutes,
seconds and time zone.

4.6.8.2 Access and Cache Log Files Format
The access log file and the cache log file can have two different formats:

• The common format which is the one used by most Web servers

• The old format which was used with early versions of Web servers from
CERN

Since you will probably run a generic statistics program, you most likely will
want to use the common format, which is the default (see the LogFormat
directive in the configuration file).

The common format is:

REMOTE-ADDRESS REMOTE-IDENT REMOTE-USER [TIME] ″REQUEST″ STATUS BYTES

where:

REMOTE-ADDRESS is the address of the requester (that is the client′s host
machine). If the server is set to reverse resolve, the IP address of the
client, and if the address was successfully resolved, this information
is the name of the host, otherwise it is the IP address of the host.
This information is equivalent to that passed in REMOTE_HOST and
REMOTE_ADDR environment variables to CGI programs.

REMOTE-IDENT is in theory the name of the user as retrieved from the client ′s
identd server; in practice, this mechanism has not so far been
implemented so far in the Internet Connection servers so that this
field is always set to - (hyphen). This information is equivalent to the
REMOTE_IDENT variable that is passed to CGI programs.

REMOTE-USER is the name of the user that was provided during the
authentication process if one occurred; if no name was provided, this
field is set to - (hyphen). This information is equivalent to the
REMOTE_USER variable that is passed to CGI programs.

TIME is the time in common or old format according to the LogTime
directive.

REQUEST is the first line of the request (generally the request method followed
by the URL and the HTTP version as defined in the HTTP protocol).

STATUS is the status code of the request as defined in the HTTP protocol.

BYTES is the number of bytes returned to the requester in the response (not
including the HTTP header).

Here are some examples of access log entries:

Chapter 4. Internet Connection Servers - Installation and Configuration 149

jeansan.itso.ral.ibm.com - - [12/Jun/1996:09:45:38 +0500] \
″GET /cgi/environ HTTP/1.0″ 200 439

9.67.43.8 - webadmin [12/Jun/1996:16:42:31 +0500] \
″GET /admin-bin/cfgin/initial HTTP/1.0″ 200 6183

9.24.104.27 - - [12/Jun/1996:16:54:19 +0500] ″GET /junk HTTP/1.0″ 404 335

(Note that the \ character indicates that the entry is to be continued on the next
line.)

The first entry shows an append when the DNS-Lookup directive is set to On.
The second entry shows an append corresponding to an access to a protected
resource thus requiring an authentication. The last entry shows an append for an
error condition. (The object requested could not be found.)

The access log file name is specified in the AccessLog directive in the
configuration file. There is a default path name which depends on the platform
on which the server is running.

Here are examples of settings:

AccessLog /var/log/www/httpd-log
AccessLog D:\WWW\LOG\HTTP-LOG
AccessLog /usr/local/ServerRoot/logs/httplog

for AIX, OS/2 (or Windows NT) and MVS respectively.

The cache log file name is specified in the CacheAccessLog directive in the
configuration file. By default, the proxy server does not log cache access
requests; you have to include this directive in your configuration file.
Here are examples of settings:

CacheAccessLog /var/log/www_cache/httpd_cache.log
CacheAccessLog D:\WWW\LOG\CACHE-LOG
CacheAccessLog /usr/local/ServerRoot/logs/httpcache

for AIX, OS/2 (or Windows NT) and MVS respectively. Note that you can specify
that you do not want to log access requests made from specific hosts or
domains that match a given template. See the NoLog directive in the
configuration file:

NoLog 9.* (if DNS-Lookup is Off)
NoLog *.ibm.com (if DNS-Lookup is On)

4.6.8.3 Logging Access Facilities
The new logging access feature in Internet Connection Server V4.1 introduces
flexibility.

At the time of writing, the Internet Connection Server V4.1 is not yet generally
available so the functions may change slightly.

You have the choice to log everything or selected information in the access log
files (access and proxy cache). Filters for URL, request method, MIME type and
return code can be defined to determine what level of information will be logged
in the access log.

By default, all of the information is logged to the access log files. The following
directives in the configuration setup define the filter settings:

• AccessLogExcludeURL

• AccessLogExcludeMethod

150 A Guide to the Internet Connection Servers

• AccessLogExcludeReturnCode

• AccessLogExcludeMimeType

However, unless you have disk space restrictions, you will most likely keep all
information logged and set up report filter rules (see 4.6.8.9, “Log Files Analysis”
on page 154). The more information that is logged, the more accurate and
exhaustive will be the resulting reports.

4.6.8.4 Error Log File Format
The Internet Connection Server logs errors in a separate file. It logs internal
errors and HTTP protocol errors.

Internal errors are logged using the following format:

[TIME] TEXT

where:

TIME is the time in common or old format according to the LogTime
directive.

TEXT is a text phrase describing the internal server error.

Internal server errors include service messages, warning and error reports. The
text is self explanatory and should help you with problem diagnosis.

The HTTP protocol errors are logged using the following format:

[TIME] [STATUS] [REQUESTER] DESCRIPTION

where:

TIME is the time in common or old format according to the LogTime
directive.

STATUS is the status returned in the response to the requester; this is
expressed in text (MULTI FAILED, NOT AUTHORIZED, etc.).

REQUESTER describes the identity of the requester including host name and, if
available, the referrer URL. (Not all browsers send this information.)

DESCRIPTION gives more information on the nature of the error; for example the
forbidden or unauthorized URL.

Here are some examples of error log entries:

Auto Login file for Key Ring was not found.
Secure Server was started by SRC function and requires an Auto Login file.
[12/Jun/1996:16:54:19 +0500] [MULTI FAILED] [host: 9.24.104.27] /junk

The two first entries are internal server errors; they were appended at server
startup and indicate that the resources required for security facilities were not
found. The last entry corresponds to an HTTP protocol error; the object
requested could not be found (error code 404).

The error log file name is specified in the ErrorLog directive in the configuration
file. There is a default path name which depends on the platform on which the
server is running. The following are examples of settings for AIX, OS/2 (or
Windows NT) and MVS respectively:

ErrorLog /var/log/www/error-log
ErrorLog D:\WWW\LOG\ERROR-LOG
ErrorLog /usr/local/ServerRoot/logs/errorlog

Chapter 4. Internet Connection Servers - Installation and Configuration 151

4.6.8.5 CGI Script Errors Log File
According to the Common Gateway Interface, what the program writes on
STDOUT (standard output) is sent as is to the requester. But the CGI program
may also write output to STDERR. All the messages sent to STDERR (standard
error) are logged in the CGI error log file.

There is no prototype for error messages. Therefore the CGI error log file has no
specific format. It is up to the CGI scripts developer to define a common format
if required for maintenance purposes.

Note that for debug purposes this error log file is very useful. Debugging
messages sent to STDERR will be appended to the CGI error file.

The CGI error file name and file path are predefined. This file is located in the
same directory as the error log file and is named cgi_error.

This file is not created when running Internet Connection Server for MVS. In any
case, the system log gives all required information on execution errors.

4.6.8.6 Referer Log File Format
The referer log file exists only on Internet Connection Server V4.1 (or higher).
The server records in this file referer information using the following format:

[TIME] ″REFERER″

where:

TIME is the time in common or old format according to the LogTime
directive.

REFERER is the last location of the browser, equivalent to the REFERER_URL
variable passed to CGI programs. Note that this information is not
sent by all browsers and, for those that do, only in certain
circumstances.

Here are some examples of referer log entries:

[12/Jun/1996:08:00:49 +0500] ″http://rs60004.itso.ral.ibm.com/shapes/″
[12/Jun/1996:08:01:14 +0500] ″″

The first entry is a standard one in that the browser sent the information related
to the last location. The second entry corresponds to a case where the
information was not given by the browser.

The referer log file name and file path are predefined. This file is located in the
same directory as the access log file and is named referer_log.

4.6.8.7 Agent Log File Format
The agent log file exists only in Internet Connection Server V4.1 (or higher). The
server records the user agent information in this file using the following format:

[TIME] ″AGENT″

where:

TIME is the time (as described above).

AGENT is the name of the browser; equivalent to the HTTP_USER_AGENT
variable passed to CGI programs.

Here are some examples of agent log entries:

152 A Guide to the Internet Connection Servers

[04/Jun/1996:11:05:49 +0500] ″IBM WebExplorer DLL /v960311 Beta″
[04/Jun/1996:12:47:35 +0500] ″Mozilla/3.0b3 (X11; I; AIX 1)″

The agent log file name and file path are predefined. This file is located in the
same directory as the access log file and is named agent_log.

4.6.8.8 Log Files Administration
No matter where the log files are stored, they tend to grow. You need a
mechanism to manage the logs.

The mechanism will make sure that the log files are:

• Sent to an archive

• Compressed if they are going to be stored for some time on the system

• Removed when they are old

The mechanism will be implemented according to your platform. You should
consider activating it daily or at least weekly. The corresponding procedure will
be launched using the scheduling tools available on your platform (cron for AIX,
AT for Windows NT, Automated Operations Control for MVS).

This backup and purge procedure will be generally preceded by the log analysis
procedure. You will find a discussion on log analysis in 4.6.8.9, “Log Files
Analysis” on page 154.

In order to help you with log file maintenance, Internet Connection Server V4.1
introduces an automatic log removal capability.

Access log and error logs can be purged based on their age (in days) or their
collective size (in megabytes). For each log, you have the option of turning
purge on or off or of setting up a user exit program.

AccessLogArchive none/purge/userexit
ErrorLogArchive none/purge/userexit

Examples:

AccessLogArchive none
ErrorLogArchive purge
ErrorLogArchive userexit C:\WWWCODE\MVLOGS.EXE

When selected, the purge actions or userexit action will take place at midnight
immediately after the previous day′s logs have been closed and the new day′s
logs have been opened.

If you turn on the purge option, you can set up the thresholds for purging to
occur. Files are removed based on the settings defined for the AccessLogExpire
and AccessLogSizeLimit directives. If any logs are older than the
AccessLogExpire setting, they are remote. The size of the remaining logs is
then calculated; if the sum total of the remaining log exceeds the value of the
AccessLogSizeLimit directive, the server will remove log files, starting with the
oldest one, until the sum total size of the logs falls below the value of the
AccessLogSizeLimit directive.

For example, to remove files older than 14 days without any size consideration,
the settings would be:

Chapter 4. Internet Connection Servers - Installation and Configuration 153

AccessLogArchive purge
AccessLogExpire 14
AccessLogSizeLimit 0

If you activate this purge mechanism (or any other purge mechanism), pay
attention that you do not remove the files before they are analyzed.

If you select the user exit option, the server will call on a daily basis the exit
specified. To compress error log files older than 7 days, the settings would be
as follows on a UNIX platform:

ErrorLog /var/log/www/httpd-errors
ErrorLogArchive userexit /usr/local/server_root/maintenance/compress_log

where /usr/local/server_root/maintenance/compress_log is a basic shell script:

#!/bin/ksh
compress_log
#
This script is invoked as an user exit by the server or htlogrep binary
It is invoked with the list of log files to handle as arguments
#
compress_log compresses log files older than 3 days

for file in $*
do

find $file -mtime +3 -exec compress {} \;
done

Note that the user exit program will be invoked with the log files′ names as an
argument. In the previous example, compress_log is invoked using the following
command:

/usr/local/server_root/compress_log /var/log/www/httpd-errors*

4.6.8.9 Log Files Analysis
Analyzing the log files is a job that all Webmasters should consider doing
regularly and certainly before the files are erased for disk space considerations.

Analyzing the log files means on the one hand detecting internal errors, link
failures, etc., and on the other hand monitoring the usage of the Web site.

The error log file, as we have seen in 4.6.8.1, “Log Files Format and Location”
on page 148, is a list of all the troubles your server has and also the troubles
people have accessing the pages on your site. Keeping an eye on this log file is
mandatory and will probably be the job of the Webmaster or systems
administrator. Because browsing this file with the naked eye is not realistic and
because you would probably like to know immediately what is going on, you
should consider using software to monitor your system (daemons, disk space,
CPU utilization, etc.). The file monitoring capability of this tool will check for
updates and error messages and generate alerts if required.

The most important job for the Webmaster is probably access log analysis.

By monitoring the usage of your Web site, you will find out:

• How many people are accessing your Web site

• Which pages are the most popular

• Where people are coming from

154 A Guide to the Internet Connection Servers

• Which browser the clients are using

• How many bytes were sent

Depending on the level of information you expect from the analysis of the log
files, you will probably decide either to develop your own analysis programs or
to use one of the tools available on the Internet or simply to use the new log
reporting feature implemented in Internet Connection Server V4.1.

4.6.8.10 Internet Connection Server Reporting Feature
New functions related to logging and reporting activities have been implemented
in Internet Connection Server V4.1. At the time of writing, the product is not yet
available so that the functions may change somewhat. Nevertheless, it is worth
having a look at these functions since their usage will avoid having to implement
an additional tool.

These new facilities allow users to create HTML reports for the entire server, or
for specific files and/or directories on the server.

You can create your own templates for server access reports. The resulting
reports give daily, weekly, monthly and yearly statistics on:

• Requestor IP/Hostname

• Requested URL/Filename

All the access reports will be stored in a unique directory according to the value
specified in AccessReportRoot in your configuration file.

Example:

AccessReportRoot D:\WWW\REPORTS

The syntax of a template is:

AcessReportTemplate TemplateName {
AccessReportDescription Report Description
(template subdirective)
(template subdirective)
etc

}

Although the AccessReportDescription is optional, we recommend that you use it
for readability reasons. In fact, this description appears on the front page
generated by the reporting tool as shown in Figure 88 on page 156.

Chapter 4. Internet Connection Servers - Installation and Configuration 155

Figure 88. Logging Templates

The subdirectives that can be used in a report template definition to create
customized reports are:

• AccessReportTopList to specify the top number of items on which to report
(All for all items, which is a default, otherwise a number.)

• AccessReportExcludeURL to exclude access log records with URLs matching
a given template

• AccessReportIncludeURL to include access log records with URLs matching
a given template

• AccessReportExcludeHostName to exclude access log records with
hostnames matching a given template

• AccessReportIncludeHostName to include access log records with
hostnames matching a given template

• AccessReportExcludeMethod to exclude access log records with a given
method

• AccessReportExcludeReturnCode to exclude access log records with given
range (Valid values are 200, 300, 400 and 500.)

You can create as many report templates as you wish. The only known limits
are your creativity and the number of files that you agree to create in your report
directory. (The log reporting tool is quite prolific.)

Let us take a look at a simple scenario.

In order to focus on the design of your more accessed pages you want to
determine the top 10 HTML pages of your Web server. But the users in your
intranet do not make ″standard″ use of your server and you want your report to
reflect the customers′ accesses.

The resulting report template configuration would appear as:

156 A Guide to the Internet Connection Servers

AccessReportTemplate HTMLTop10 {
AccessReportDescription Top 10 HTML pages
AccessReportTopList 10
AccessReportIncludeURL *.html
AccessReportExcludeHostname 9.*
AccessReportExcludeHostname *.ibm.com

}

and you would obtain a HTML page such as the one shown in Figure 89.

Figure 89. Daily Statistics for URL/File Names

The Log Reports are generated automatically daily at midnight immediately after
the previous day′s logs have been closed and the new day′s logs have been
opened, that is at the same time as log purge or userexit actions.

However, you can test your templates by running the htlogrep utility that
performs exactly the same actions as the server each night.

The htlogrep executable is located as follows:

• \WWW\BIN\HTLOGREP.EXE on OS/2 and Windows NT

• /usr/sbin/htlogrep on AIX

Chapter 4. Internet Connection Servers - Installation and Configuration 157

The htlogrep command is usually invoked without any argument. It will process
the log files of the previous day and generate the requested reports.

4.6.8.11 Log Tools
Because the access log files are produced in a common format, many of the
tools you will find on the Internet are applicable.

The following URL gives many references to existing tools. These range from
free, basic analysis tools up to powerful commercial products.

http://www.yahoo.com/Computers_and_Internet/Internet
/World_Wide_Web/HTTP/Servers/Log_Analysis_Tools

A parameter that will certainly impact your choice is of course your environment:
both platform and available programming languages. Most programs are
developed in Perl or C; some come compiled, others require a compiler.

Most of the tools produce HTML pages; but you will also find tools that create
and maintain databases (such as PressView for Windows NT).

In order to show you what kind of output you can expect from those tools, we will
discuss two of the tools available on Internet. These tools have been
implemented and tested successfully on an AIX platform. Because our
experimental server was not as solicited as a production server should be, we
will show you output on real-life servers.

Our choice was at random (or nearly since we have only tested free software or
software for which an evaluation copy was available). We do not intend to
promote one product more than another one. It is simply that writing on all
existing tools is beyond the scope of this book.

Analog: This log file analysis program is free and works on any UNIX and DOS
machine:

• It is written in C, thus requiring a C compiler.

• It produces ASCII output as well as HTML. The HTML code produced does
not use tables or image-stretching properties so it works on any browser.

• It has a form interface allowing users to select which options they want via a
Web page.

Refer to the following URL:

http://www.statslab.com.ac.uk/∼ sret1/analog

You will find here an example of the output that analog has produced at the
Sierra Club Web site. It is partial output only since the full report is really
detailed and long. This first page of statistics (Figure 90 on page 159) is
interesting since it gives valuable information like the total of requests and the
total of data transferred. It may help you in sizing your Web site and in
providing solid numbers to make claims about your site.

158 A Guide to the Internet Connection Servers

Figure 90. Analog - General Summary

For Web sites serving different servers (for different companies or departments)
you can produce separate reports. Each report will have its general summary
giving information on requests and data transferred.

The analog program can produce many reports and summaries as shown in
Figure 91 on page 160.

Chapter 4. Internet Connection Servers - Installation and Configuration 159

Figure 91. Analog - Monthly and Weekly Reports

The default output will satisfy most users but you can set up an analog to
produce other reports. The options are taken from a configuration file or from
command line arguments. It′s really flexible.

Among the built reports, the directory report (Figure 92 on page 161) is
particularly valuable. Using this, you would easily detect that only a few people
are using a particular area of your site even if you thought that it would be
perceived as the most interesting; it may be that people do not know of this area
in which case you can advertise it.

160 A Guide to the Internet Connection Servers

Figure 92. Analog - Directory Report

Also, from this report you can figure out which pages are the most accessed and
focus more attention on them and use them to advertise new areas, new
products, etc.

Wusage: Wusage is a product of Boutell.Com, Inc. A licence is required for the
usage of this software.: You can download an evaluation copy (expires after 30
days) by accessing the following URL:

http://www.boutell.com/wusage

It is a compiled program that will run on AIX, OS/2, Microsoft Windows, Windows
95 or Windows NT. It produces many statistics relating to the activity of your
Web server including daily, weekly and monthly history reports as well as
summary reports, hourly reports, popular documents reports, result codes
reports, etc.

Chapter 4. Internet Connection Servers - Installation and Configuration 161

The following statistics samples were extracted from the Boutell Web server
itself:

Figure 93. Wusage - Total Reports

The report begins with a report on total accesses and bytes transmitted during
the time period (a day, a week or a month according to the setting) for each of
the totals specified in the configuration file (Figure 93). In this case, the period
time is a week and the output type is a table. (It could have been a graph.)

162 A Guide to the Internet Connection Servers

Figure 94. Wusage - Day Report

Then there are time period reports: day, week and month reports such as in
Figure 94.

Chapter 4. Internet Connection Servers - Installation and Configuration 163

Figure 95. Wusage - Popular Documents Report

The Top 20 Documents report in Figure 95 is a pie chart and a table featuring
the most frequently accessed documents on the site. The table is ranked by
total access in this case but could be ranked by total bytes instead.

It produces historical graphs, but also a tab-delimited ASCII file which any
spreadsheet program can open directly.

164 A Guide to the Internet Connection Servers

If you turn on the notfound option, your reports will end with a list of the URLs
that users unsuccessfully tried to access on your server. Sometimes, you may
realize that you have accidentally removed or renamed a file.

Other utilities, such as pwebstats by the University of Melbourne (see URL
http://www.unimelb.edu.au/pwebstats/pwebstats.html), produce sophisticated
bars in addition to pie charts. It is to some extent a question of taste.

4.6.8.12 Log Analysis Administration
In all cases, you will have to run your analysis tool on a regular basis. It is up to
you to decide whether you want daily, weekly or monthly reports. But it is
advisable to run your tool often since your log files will grow larger and you will
probably not be able to keep them for an infinite time.

Note that some tools, like wusage, work on compressed files or STDIN, thus
allowing you to compress more regularly your files and run your analysis tool
less often.

In order to automate the launch of the statistics program, you will have to set up
automatic scheduling tools. Some examples are:

• Cron on AIX (or any UNIX platform)

• AT command on Windows NT

• Automated Operations Control (AOC) on MVS

4.6.9 AS/400 HTTP Server Configuration and Operation
Many of the features of Internet Connection for AS/400 are reliant upon the HTTP
server. In this section, we look in detail at the HTTP server, its configuration,
and its operation.

 Note

The HTTP server configuration must be modified by the user before the
AS/400 system can be used as a Web server. By default, access to any Web
page is forbidden.

If the documents are served from the QDLS file system (folders), user profile
QTMHHTTP must have a directory entry added using the ADDDIRE command.
Likewise, user profile QTMHHTTP must have object authority to all of the
objects that are served.

4.6.9.1 HTTP Server Configuration Commands
The following list contains TCP/IP configuration commands for the TCP/IP HTTP
Server:

 1. CFGTCPHTTP (Configure TCP/IP HTTP)

This menu of options is used to configure the HTTP server.

 2. CHGHTTPA (Change HTTP attributes)

This command is used to change the HTTP server attributes, such as the
number of servers to start, whether to autostart the server, and so on. It is
also an option on the Configure TCP/IP HTTP menu.

 3. WRKHTTPCFG (Work with HTTP configuration)

Chapter 4. Internet Connection Servers - Installation and Configuration 165

This command presents the user with a work-with display to allow HTTP
administrators to add, change, display, or remove HTTP configuration
options. The configuration format follows the CERN HTTP server
configuration model and may look unfamiliar to many AS/400 users, but a
traditional AS/400 work-with list display is used to interact with the file. It is
also an option on the Configure TCP/IP HTTP menu.

There are several methods of starting the HTTP server once you have finished
configuring it:

• The STRTCP command starts the server if the HTTP server attribute
AUTOSTART is set to *YES.

• The STRTCPSVR SERVER(*HTTP) command starts the server if TCP/IP is
already started and the HTTP server is not.

• The STRTCPSVR SERVER(*HTTP) RESTART(*HTTP) command restarts the
HTTP server if both TCP/IP and the HTTP server are already started. This is
useful when the configuration is changed and the HTTP server must be
restarted in order for those changes to take effect. Since HTTP is basically a
stateless protocol, this can be done while clients are accessing the AS/400
server. A client may just experience a slight delay while the server restarts.

4.6.9.2 The CFGTCPHTTP Display
The Configure TCP/IP HTTP display appears if the CFGTCPHTTP command is
entered from the command line, or if CFGTCPAPP option 14 is selected.

� �
Configure TCP/IP HTTP

System: SYSNM011
Select one of the following:

1. Change HTTP attributes
2. Work with HTTP configuration

Related options:
10. Configure workstation gateway

 Selection or command
 ===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel� �
Figure 96. CFGTCPHTTP Display

• Option 1 - Prompts the CHGHTTPA command.
• Option 2 - Calls the WRKHTTPCFG command.
• Option 10- Calls the CFGTCPWSG command.

4.6.9.3 The CHGHTTPA Display
The Change HTTP Attributes display appears if the CHGHTTPA command is
prompted from the command line or if CFGTCPHTTP option 1 is selected.

166 A Guide to the Internet Connection Servers

� �
Change HTTP Attributes (CHGHTTPA)

System: SYSNM011
 Type choices, press Enter.

 Autostart *NO *NO, *YES, *SAME
 Number of server jobs:

Minimum 3 1-200, *SAME, *DFT
Maximum 5 1-200, *SAME, *NOMAX, *DFT

 Coded character set identifier 00819 1-65533, *SAME, *DFT
 Server mapping tables:

Outgoing EBCDIC/ASCII table . *CCSID Name, *SAME, *CCSID, *DFT
Library __________ Name, *LIBL, *CURLIB *DFT

Incoming ASCII/EBCDIC table . *CCSID Name, *SAME, *CCSID, *DFT
Library __________ Name, *LIBL, *CURLIB *DFT

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys� �

Figure 97. Change HTTP Attributes Display

The values that are used on the preceding display are the default values.

Let′s take time to look at some of the parameters.

Autostart (AUTOSTART)
Controls when the AS/400 system starts the HTTP server. Select
*YES if you want the server to start whenever TCP/IP is started. If
you use the STRTCPSRV command, this parameter is ignored and the
HTTP server is started.

Number of Server Jobs (NBRSVR)
Use this parameter to specify the minimum number of HTTP server
jobs to start when the HTTP server is started and the maximum
number of HTTP server jobs to be used. If you set the maximum
number of servers too high, this affects the performance of HTTP
servers satisfying browser requests. You may want to increase this,
however, if the HTTP servers are serving large documents that
″tie-up″ a server job for a long period.

Even if, for example, all of the HTTP servers are busy at a given
moment, the new client requests coming into the HTTP server are
queued. As soon as an HTTP server becomes available, the request
is processed.

The remaining parameters are concerned with character translation and are
similar to the parameters in Telnet attributes and FTP attributes. They are
outside of the current discussion. For a complete explanation, see the TCP/IP
Configuration and Reference.

4.6.9.4 The WRKHTTPCFG Display
This display appears if CFGTCPHTTP option 2 is selected or if the WRKHTTPCFG
command is entered from a command line.

Chapter 4. Internet Connection Servers - Installation and Configuration 167

� �
Work with HTTP Configuration

System: .SYSNM008
 Type options, press Enter.

1=Add 2=Change 3=Copy 4=Remove 5=Display 13=Insert

Sequence
Opt Number Entry

00010 # * >
00020 # HTTP DEFAULT CONFIGURATION >
00030 # * >
00040 # >
00050 # >
00060 # HostName your.full.host.name >
00070 # >
00080 # The default port for HTTP is 80; Should specify por >
00090 # if port 80 is not used. >
00100 # Port 80 >
00110 # >
00120 # Enable GET >

More...
F3=Exit F5=Refresh F6=Print List F12=Cancel F17=Top F18=Bottom
 F19=Edit Sequence

� �
Figure 98. WRKHTTPCFG Display

Note: The # character is used to comment out a line.

� �
Work with HTTP Configuration

System: .SYSNM008
 Type options, press Enter.

1=Add 2=Change 3=Copy 4=Remove 5=Display 13=Insert

Sequence
Opt Number Entry

00130 # Enable HEAD >
00140 # Disable {all others} >
00150 # >
00160 # Map /test/* /as400/* >
00170 # Pass /as400SYS/* /QSYS.LIB/HTTPDEV.LIB/HTML.FILE/* >
00180 # Pass /as400/* /QDLS/400HOME/* >
00190 # Pass /QSYS.LIB/AS400LIB.LIB/HTML.FILE/* >
00200 # Pass /QDLS/graphics/* >
00210 # Fail /QDLS/TESTING/* >
00220 # Redirect /some_url/* http://some_server/some_url/* >
00230 # >
00240 # Search <search_script_pathname> >

More...
F3=Exit F5=Refresh F6=Print List F12=Cancel F17=Top F18=Bottom
 F19=Edit Sequence

� �
Figure 99. More of the WRKHTTPCFG Display

When the HTTP server is started, this configuration information that is stored in
file QUSRSYS/QATMHTTPC.CONFIG is used to process incoming client requests.

This configuration file can be saved and restored so before you make changes to
a working HTTP server configuration, it may be worth backing it up.

168 A Guide to the Internet Connection Servers

You may find it easier to use the Source Entry Utility (SEU) to make lots of
changes to the HTTP configuration file. If this is the case, then you should copy
the HTTP configuration file member to a Source Physical File, modify it using
SEU, then copy the changed file member back to QUSRSYS/QATMHTTPC.
Time-wise, this is only worth doing if you are making major modifications to the
file or do not feel comfortable with the HTTP server configuration interface. This
method has one limitation. SEU can only handle files with the record length of
240 bytes which leaves 228 bytes for the actual data. When using SEU, you
might get into difficulties with long path names in the directives.

An alternative way to edit the configuration file is to download the file to a PC
using FTP and after editing it, upload it using FTP. Remember, though, that if
you use any of these alternative ways to change the HTTP configuration, you
should syntax check the file using the WRKHTTPCFG command.

Note: Before we discuss the configuration in detail, there are some
considerations when working with HTTP configuration:

• Options 1, 2, 4 and 13 are only available if the user has *IOSYSCFG
special authority, otherwise, only option 5 for display is allowed.

• Options 1, 2, 4 and 13 are only available to one user at a time. If the
file is being modified by one user, only option 5 for display is
available to subsequent users.

• Entry length is 640 characters, 55 of which are shown from the Work
with HTTP Configuration display.

• Sequence numbers are reset to increments of 10 once configuration
changes have been completed and processed.

• The configuration file is read sequentially.

• A valid entry comprises two parts, a directive and a value. The
syntax should follow rules as defined by the CERN validation module.

• After configuration changes have been made, the file is checked by
the CERN validation module and any invalid entries are highlighted.

• After modifying the HTTP Server configuration, the HTTP Server
should be restarted. This can be accomplished without ending the
server using the STRTCPSVR SERVER(*HTTP) RESTART(*HTTP)
command.

4.6.9.5 HTTP Server Directives
AS/400 HTTP server directives determine how the HTTP server behaves. These
directives are derived from the CERN configuration model and information about
it can be viewed at URL:
http://www.w3.org/hypertext/WWW/Daemon/User/Admin.html

The directives supported for the AS/400 HTTP server include:

• General settings:

− HostName
− Port
− Enable
− Disable

• Mapping rules (also known as URL translation rules):

− Map

Chapter 4. Internet Connection Servers - Installation and Configuration 169

− Pass
− Fail
− Redirect
− Exec

• File name suffix definitions (source type definitions for QSYS.LIB):

− AddType
− AddEncoding
− AddLanguage
− SuffixCaseSense

• Accessory programs (also known as accessory scripts):

− Search
− POST-Script

• Directory listings:

− DirAccess
− Welcome
− AlwaysWelcome
− DirReadme
− DirShowDate
− DirShowSize
− DirShowBytes
− DirShowOwner
− DirShowDescription
− DirShowMaxDescrLength

• Logging:

− AccessLog
− ErrorLog
− LogFormat
− LogTime
− NoLog

• Timeouts:

− InputTimeOut
− OutputTimeOut
− ScriptTimeOut

 Note

The minimum directives that you need to serve a document or execute a CGI
are a Pass or Exec directive.

Let us look in detail at the HTTP server directives and their use.

4.6.9.6 General Settings
Hostname full.server.host.name

The HostName directive is used to override the host name value set
using the Change local domain and host names option of the AS/400
Configure TCP/IP (CFGTCP) command. The directive only applies to
those circumstances where HTTP server generates URLs that are self
referential. We leave this directive commented out (#).

170 A Guide to the Internet Connection Servers

Port port-no
The Port directive is used to override the listening port value
specified in the TCP/IP Services table for service www (accessible
through the Configure TCP/IP (CFGTCP) Configure related tables
option and then the Work with service table entries option). It may be
useful to run the HTTP server on a non-standard port for testing
purposes but without the need to change the Services Table. It is
recommended that you use a port number greater than 1024 if you
override the default HTTP sever port 80. To access the server with a
HTTP server port of 1025, the required URL looks similar to this:
http://ServerName:1025/welcome.htm

Enable & Disable method-name
The Enable and Disbale directives cause the HTTP server to accept or
reject incoming request URIs based on the Method coded in the URI.
These methods are described in the HTTP/1.0 specification. The
AS/400 HTTP server supports GET, HEAD, and POST. All other
methods are rejected.

In our HTTP server configuration, we changed the default values so
that GET and POST were both enabled, as a simple browser request
uses the GET method and many FORMS use the POST method. If a
method is disabled, the HTTP server sends an error message to the
Web browser informing the end user that a particular method is not
enabled.

Figure 100. Method GET Disabled on Server

Note: The error message is sent by the AS/400 HTTP server in the
form of an HTML document. The error message, therefore, is the
same regardless of the type of Web browser.

Defaults

• Enable GET

• Enable HEAD

Chapter 4. Internet Connection Servers - Installation and Configuration 171

• Disable POST

If the methods are commented out, then the defaults values
determine what is enabled or disabled. Therefore, there should be no
value in adding a directive such as:

Enable GET

4.6.9.7 Mapping Rules
Mapping rules (which are also known as URL translation rules) allow the Web
administrator to define a virtual hierarchy of Web resources that are presented
by the HTTP server. This virtual hierarchy is independent of the physical file
system (or systems) on which the resources are actually stored. This is very
useful since:

 1. It allows resources to be physically relocated without changing the apparent
hierarchy and its implied associations.

 2. The details of the underlying physical file systems can be hidden from client
applications accessing the HTTP server.

The second reason is especially important for the HTTP server because of the
differences between some of the AS/400 file systems and the tree structured
hierarchical UNIX file systems upon which the HTTP protocol and the URL
scheme are based.

4.6.9.8 URL Mapping Overview
The mapping directives Map, Pass, Fail, Redirect and Exec are used to specify a
set of rules that define a process for translating and processing the path (and
file) information contained in a URL that is received in a client request URL.

Each of the mapping directives may be specified multiple times and in any
combination, and may be placed anywhere in the HTTP server configuration.
When the HTTP server configuration is read during initialization, the mapping
directives are stored, in order of appearance, in an internal mapping rule table.

The named object in each incoming URL is compared against each of the
mapping directives in turn. If a directive applies, the specified translation or
action is carried out. Depending on the directive that was matched, rule
processing is either suspended or continues with the next rule using the newly
translated URL.

4.6.9.9 Mapping Directive Descriptions and Examples
Note: It is important to note that the following directives are case sensitive. A
template checks the input value for a match letter-by-letter. This has important
security implications, especially for the Fail directive that we cover later in this
section.

Map template replacement
If the URL matches the template, substitute the replacement string for
the template and continue to the next rule using the resulting URL.

Example: Your Welcome.htm document is reached through the
following path in the QDLS file system:

http://ServerName/QDLS/FOLDER1/WEBSTUFF/HTML/Welcome.htm

This is quite a complex URL for a client to remember and type so it
makes sense to present a simpler, virtual structure to the client.

172 A Guide to the Internet Connection Servers

Using the Map directive, we can modify the HTTP server configuration
as follows:

Map /info/* /QDLS/FOLDER1/WEBSTUFF/HTML/*

Now the client can type a URL such as:

http://ServerName/info/Welcome.htm

The Map statement replaces the /info/* value with the
/QDLS/FOLDER1/WEBSTUFF/HTML/* replacement string and the HTTP
server continues with further rule processing using the resulting URL.

Pass template {replacement}
If the URL matches the template, rule processing is terminated.

If the optional replacement string is present, substitute it for the
template string and complete the client request using the resultant
URL.

Example: We want to allow Web clients to browse the document
Welcome.htm; therefore, we must code a Pass statement:

Pass /info/Welcome.htm /QDLS/FOLDER1/WEBSTUFF/HTML/Welcome.htm

When a Web client requests URL:

http://ServerName/info/Welcome.htm

The HTTP server Passes (or allows) the request. In this case,
however, we used the optional replacement string to modify the
request through the real file structure to the Welcome.htm document.

Note: A generic statement such as Pass /* is a simple way of
allowing access to any document, file member, and so on, but the
security implications are such that we recommend using specific Pass
statements to only those objects that you want the public to see.

Fail template
If the URL matches the template rule, processing is terminated and
access is refused. An error code is returned to the client.

Chapter 4. Internet Connection Servers - Installation and Configuration 173

Figure 101. A Failed URL Request

Because these templates are case sensitive and some file systems
are not, it is easier to secure objects using the Pass directive than the
Fail. This is because you need to add a statement for every possible
combination of upper and lower case letters in the object you are
trying to secure.

Example: You want to refuse access to object secure.htm,so
considering case sensitivity, you add two Fail statements as shown in
the following example:

Fail /info/secure.htm

Fail /info/SECURE.HTM

You assume that you are secure since both upper and lowercase
possibilities have been covered. It is, however, possible to access
the document using a URL such as:

http://ServerName/info/SeCuRe.htm

Since the value SeCuRe.htm does not match either of your Fail
statement templates, the request does not fail and the document is
accessed.

Once again, we recommend using specific Pass statements and
maybe, as an additional measure, a generic Fail /* catch-all at the
bottom of your configuration file, although it should not be necessary
if your Pass statements are explicit enough, as requests should fail by
default.

Redirect template replacement
When documents, or entire virtual trees of documents, are moved
from one server to another, the Redirect directive can be used to
redirect the request to another server.

If the URL matches the template, rule processing is terminated.
Substitute the replacement string for the template string and send a
Redirect containing the resulting URL back to the requester.

174 A Guide to the Internet Connection Servers

Using this directive, the requester is transparently re-routed to the
URL specified in the replacement string.

Example:

Redirect /info/* http://AnotherServer/NewDir/Welcome.htm

This redirects a request for any document in the /info directory to the
Welcome.htm document on the host called AnotherServer.

Exec template replacement
A match with the template specified on an Exec directive indicates
that the URL should be interpreted as referring a program to be
executed by the HTTP sever on behalf of a client/browser.

On this directive, both template and replacement are required to end
with a wildcard (asterisk *).

A template identifies the virtual path to a program (or you can think of
this as a virtual directory that contains one or more of your
programs). It is replaced with replacement which is the actual path to
the program on this server.

Note: AS/400 executable programs are required to be program
objects in a library in the QSYS.LIB file system. Therefore, the URL
specified by replacement must be of the form /QSYS.LIB{/lib.LIB}/*.

The beginning of the text represented by the wildcard is assumed to
be the actual name of the program.

Example

Exec /info/cgipgm/* /QSYS.LIB/as400cgi.LIB/*

The Exec directive maps the /info/cgipgm directory into the
/QSYS.LIB/as400cgi.LIB library where, in this example, our CGI
programs are kept.

Note: You should be aware that the position of directive statements in the HTTP
server configuration is important. For example, a statement such as Pass /*
positioned before a Map or Exec statement prevents rule processing from ever
reaching them, as every incoming URL matches the generic catch-all Pass
statement, and rule processing ends. Always ensure that any directive
statements that you add do not adversely affect subsequent statements.

4.6.9.10 Accessory Programs
The Search and POST-script directives are used to specify a default program to
use when a CGI search or a POST request are received but do not match any
Exec directives.

We are not talking about this area in this book. For a detailed explanation, see
the TCP/IP Configuration and Reference.

4.6.9.11 Directory Listings
DirAccess On | Off | Selective

This directive enables/disables the generation of a directory listing
document for URLs that do not refer to a specific IFS file or QSYS.LIB
member.

Chapter 4. Internet Connection Servers - Installation and Configuration 175

Figure 102. Typical Directory Listing Document

Note: The HTTP server′s decision to generate a directory listing is
also affected by the Welcome and AlwaysWelcome directives.

On Generation of directory listings documents is enabled. It is
enabled for URLs of the form /QSYS.LIB{/lib.LIB}/file.FILE.
Other QSYS.LIB forms are rejected.

Off Generation of directory listing documents is disabled for all
URLs.

Selective Generate a directory listing document when an entity
named wwwbrws is present.

This enables the system administrator to selectively allow
directory listings of specific files (in
/QSYS.LIB{/lib.LIB}/file.FILE) and directories (IFS
directories).

QSYS.LIB Create a file member named wwwbrws to allow
the generation of a directory listing document of
the file containing this member.

IFS Create a directory, a file object in the directory,
a folder, or document within the folder called
wwwbrws to generate a directory listing of the
directory or folder containing the object
wwwbrws. Figure 103 on page 178 shows
folder LEETEST in QDLS that contains three
HTML files and a file wwwbrws that allows the
generation of a directory listing document for
this folder.

176 A Guide to the Internet Connection Servers

Welcome name

The Welcome directive specifies the name of a file to be used when
no file is specified on an incoming URL. It is a useful method of
forcing a client to a particular document such as your home page.

When an incoming URL has no QSYS.LIB file, IFS file, or QDLS
document specified in it, the HTTP server, depending upon the state
of the AlwaysWelcome directive, scans the file or directory in the URL
for a welcome file matching the name (or names) specified. If an
object is found that matches a name, then it is returned to the client.
If it does not find a matching object, then a directory listing document
may be returned to the client in accordance with the setting of the
DirAccess directive.

It is possible to add multiple Welcome directives should you need a
welcome page with a different name in a different file.

Note: Welcome processing is further controlled by the setting of the
AlwaysWelcome directive.

AlwaysWelcome On | Off

The AlwaysWelcome directive can be used to further control welcome
file processing for URLs that do not refer to a specific resource.

Off If the URL ends with a trailing slash (/), the welcome file (if
one exists) is returned to the client.

If the URL does not end with a trailing slash, the URL is

Table 8. HTTP Server Welcome Object Processing

Condition Result

Welcome name
exists

AllwaysWelcome
directive

URL has trailing
′/′ �1�

Yes ON (Default) Ignored Serve Welcome

Yes OFF Yes Serve Welcome

Yes OFF No Check DirAccess
(see Table 9)

No Ignored Ignored Check DirAccess
(see Table 9)

�1� Refers to integrated file system directory, AS/400 file or QDLS folder with no file
specified. The URL must always point to a directory for welcome or directory
processing.

Table 9. Directory Processing

Condition Result

DirAccess directive ′wwwbrws ′ in directory

OFF (Default) Ignored Error 403

ON Ignored Serve Directory

Selective Yes Serve Directory and
contents of README file
if enabled with
DirReadme

Selective No Error 403

Chapter 4. Internet Connection Servers - Installation and Configuration 177

processed in accordance with the setting of the DirAccess
directive.

On The welcome file (if one exists) is always returned
regardless of the presence or absence of a trailing slash in
the URL.

The remaining directives in this section control the appearance of
directory listing documents generated by the HTTP server.
Figure 103 shows a directory listing of folder LEETEST in QDLS with
directive DirReadme set to Top, DirShowDate, DirShowSize,
DirShowBytes, DirShowOwner, DirShowDescription set On, and
DirShowMaxDescrLenth set to 25 (the default).

Figure 103. Directory Listing

See the following list for a brief explanation of these directives. The
default setting for each directive is shown underlined.

DirReadme Top | Bottom | Off
This directive controls if and where README information is
placed in a directory listing document.

If README is a member name in QSYS.LIB or a file name
in the IFS, then the plain text it contains is displayed on
the directory listing document.

DirShowDate On | Off
Controls whether the modification date is displayed for
each entity in the listing.

178 A Guide to the Internet Connection Servers

DirShowSize On | Off
Controls whether the size is displayed for each entity in
the listing.

DirShowBytes On | Off
Controls whether, for objects smaller than one kilobyte, the
exact size in bytes is displayed.

DirShowOwner On | Off
Controls whether the owning user ID is displayed for each
entity displayed in the listing.

DirShowDescription On | Off

Controls whether the descriptions of documents are
included in the listing. For QSYS.LIB members, the
member description is shown. For members that contain
HTML and whose description is blank, or for HTML files in
the IFS, the description is extracted, if possible, from the
TITLE section of the document.

DirShowMaxDescrLength len
Sets the maximum number of characters allowed for
description text.

The order in which the resultant values of these directives are displayed on the
listing document is fixed regardless of the order the directives are entered in the
HTTP server config.

4.6.9.12 Timeouts
These directives allow the HTTP server administrator to set time limits for the
various parts of the request handling process. All three directives require a
time-spec argument in one of the following forms:

• 2 minutes

• 10 minutes

• 1 hour

Whole minutes are the smallest increment that can be set.

InputTimeOut time-spec
The time to wait for a client to send the MIME header part of the
request. (The message body, if there is one, is read during
subsequent processing.)

Default: The default value is 2 minutes.

OutputTimeOut time-spec
The time to allow for sending the response back to the client. This
time may need to be increased if large files are being served over
slow links.

Default: The default value is 20 minutes.

ScriptTimeOut time-spec
The time to wait for a CGI program to finish. If the program does not
finish in the allotted time, processing of the entire request is forcefully
terminated and an error code returned to the client.

Default: The default value is 5 minutes.

Chapter 4. Internet Connection Servers - Installation and Configuration 179

4.6.9.13 Updates to Existing TCP/IP Commands
The following is a list of TCP/IP commands that are updated to support the
TCP/IP server.

 1. CFGTCPAPP (Configure TCP/IP Applications)

The menu of options is updated to include an option to call the CFGTCPHTTP
command.

 2. STRTCPSVR (Start TCP/IP Servers)

The SERVER parameter is updated to allow the special value *HTTP (Start
HTTP server).

A new *RESTART parameter is added, which is only valid for a server value
of *HTTP. This gives the HTTP server a restart option, which is common with
CERN-like HTTP servers and gives the customers a greater degree of
control.

All HTTP server jobs run in batch mode under the QSYSWRK subsystem, and
are started with the STRTCPSRV SERVER(*HTTP) command and ended with the
ENDTCPSRV SERVER(*HTTP) command.

4.6.9.14 URI Interpretation
The AS/400 HTTP server acts on browser requests in accordance with the
content of the request URI (Universal Resource Identifier) from the request line.

The following description shows how URLs for each file system are written and
handled.

Requests for QSYS.LIB objects
Physical Files and Source Physical Files

The format for a physical file/source physical file URL is:

QSYS.LIB/library.LIB/file.FILE/member.MBR

If a member is identified, the member is sent after being translated
from EBCDIC to ASCII. The member type must be HTML for the
contents to be identified as HTML, otherwise the content is identified
as plain text.

If the file is specified with no member, a list of the members is sent
as an HTML document using the member descriptions as identifiers.
If a member HEADER is present, it is added as a description at the
beginning of a list. If a member README is present, it is added as a
description at the end of the list.

Requests for QDLS objects
The format for a QDLS URL is:

QDLS/folder1/folder.../document

PCFILE objects in QDLS are sent ″as-is″ with the file extension
determining the type. A list of types is provided with the server, and
others may be added.

Program call (CGI interface)
The format for a program call is:

QSYS.LIB/library.LIB/program.PGM

The client can request that the HTTP server run a program. The
program identified by the client is expected to produce an HTML

180 A Guide to the Internet Connection Servers

document that the server can serve back to the requesting client.
The Common Gateway Interface (CGI) specification defines how the
server is expected to call such external programs, and how those
programs should return the document that they produce. Refer to
6.1.5, “Linking to a CGI Script - Calendar” on page 228 and 6.1.9,
“OS/400 CGI - ITSO Company” on page 253 for some CGI
implementation examples.

Note: The CGI program must be in the QSYS.LIB file system which is
the only file system from which you can execute programs on the
AS/400 system.

DB2 database requests
DB2/www is an extension to the AS/400 HTTP server. The HTTP
server recognizes requests for DB2/www when parsing the URL of a
client′s request and passes such requests to the DB2/www server
extension.

The format for a DB2/www URL is:

QSYS.LIB/library.LIB/db2www.PGM/{macro-file}/{command}

Maps Image map requests are another form of program call (CGI) requests.

The format for a image map request is:

QSYS.LIB/library.LIB/imagemap.PGM/{imagemap-spec}

HTML maps can be served by either a server-provided image
mapping program (image map) or a user-provided image mapping
program. Refer to 5.9.1, “Clickable Image Maps - Shapes” on
page 196 and 5.9.2, “Clickable Image Maps - World Map” on
page 200 for examples of implementing clickable image maps.

Note: The image map program must be in the QSYS.LIB file system
which is the only file system from which you can execute programs
on the AS/400 system.

Request for other file systems
Requests for objects from other file systems are processed using the
Integrated File System.

• Root
• QOpenSys
• QLANSrv

Files from these file systems are considered to be binary files not
requiring translation. They are sent as-is to the client.

Chapter 4. Internet Connection Servers - Installation and Configuration 181

182 A Guide to the Internet Connection Servers

Chapter 5. Establishing a Presence on the Internet

In this chapter we discuss the process whereby you can establish a presence on
the Internet using an Internet Connection server.

To start with we might ask some basic questions:

• What may be presented on the Web?
• Why should I establish a presence on the Web?
• Can I save costs by having a Web presence?

5.1 What May Be Presented on the Web?
It is possible to use the multimedia capabilities of the Web to present many
diverse types of information including the following:

• General administrative information:

− E-mail, reports, memos
− Announcement of organizational changes
− Corporate policies
− Posting of job openings

• Marketing and sales information:

− Description of products/services
− Catalog/information ordering
− Pricing, features, functions and benefits
− Photos of products and events

• Engineering information:

− Drawings
− Specifications
− Manuals

• Transaction information:

− Statistics
− Database queries

• Software updates

5.2 Why Should I Establish a Presence on the Web?
This is an easy question to answer. There are millions of people around the
world who connect to the Web and who are, therefore, your potential audience.
And of course the Web population is growing all the time.

In addition, the following characteristics of the worldwide Internet are worth
considering:

• Speed - Instant access anywhere in the world, no delivery times
• Availability - 24 hours a day, 7 days a week
• Cost - One monthly fee to the Internet provider
• Scope - Send/receive information to/from anyone, anywhere, anytime so long

as a connection exists

 Copyright IBM Corp. 1996 183

5.3 Can I Save Costs by Having a Web Presence?
Providing information to your customers via the Web is highly cost-effective.
Let′s look at some examples.

You need not send thousands of letters to your customers. Make or change just
one page on your Web site and the information given to your customers is up to
date.

Place all the items on your Web site that your customer may ask for. This saves
you and your customer time and money.

Add a remark to your advertising pages on TV, newspaper etc. that advertises
your Web site′s URL. There are no additional costs associated with doing this.

As a user of the Web, you can gain valuable commercial marketing information
by watching the news groups or online forums on the Internet. It can be useful
to be active in these forums, to give answers or raise questions regarding your
products and services.

5.4 Designing Your Web Page
In the following sections we discuss the different types of Web pages that you
can choose from. These are as follows:

• Text only
• Text and graphics
• Forms

5.4.1 Text and Graphics Web Pages
A text Web page contains no graphic elements. Such a Web page may be
viewed by all kinds of browsers even those without graphic support.

Figure 104. A Text-Only Web Page

184 A Guide to the Internet Connection Servers

The indext.html file generates the text-only page shown in Figure 104. The file
indext.html is designed for browsers with a limited capability. By pointing to A
graphical version of this page is available, file index.html will be invoked. This
page is built with HTML that supports and invokes the graphical features shown
in Figure 105.

Here is an excerpt from the indext.html file:

electronic one-stop shopping and a convenient source for product information
and service.
<p>

Stores
News
Mall Information and Services

<p>A graphical version of this page is available.</

<hr>
Customer Service

<!-- end ibmbody---
<hr>
<h4>

Here is the result of selecting the hyperlink to index.html:

Figure 105. A Graphic Web Page

Here is an excerpt from the index.html file:

Electronic one-stop shopping and a convenient source for product information
and service. </p>
<p>

Chapter 5. Establishing a Presence on the Internet 185

</p>
<p>

A text-only version of this page is available.

</p>
<hr>
Customer Service

<!-- end ibmbody---
<hr>
<h4>

By clicking on one of the three graphical icons (Stores, News or Mall
Information) one of three further pages will be loaded (index, news or info HTML
files).

Here is another text-based Web page:

Figure 106. ASCII Web Page

Here we are viewing the HTML associated with Figure 106. This we did by
selecting the View HTML option from the File pull-down menu of WebExplorer.

186 A Guide to the Internet Connection Servers

Figure 107. Viewing the HTML

The Web page shown in Figure 108 consists of a background file and an image
file.

Figure 108. Graphic Web Page

Here we are viewing the HTML associated with Figure 109 on page 188.

Chapter 5. Establishing a Presence on the Internet 187

Figure 109. HTML Document of Graphic Web Page

188 A Guide to the Internet Connection Servers

5.4.2 Form Web Pages
This type of Web page allows you to fill in text in preformatted fields and submit
the form to an electronic address. Here is an example:

Figure 110. Web Page with Forms Elements

Here we are viewing the HTML associated with Figure 110.

Figure 111. HTML Document with Form Elements

Chapter 5. Establishing a Presence on the Internet 189

5.5 Searching the Internet
In this section we look at what is available to assist in searching for information
on the Internet.

5.5.1 Search Engines
There are many search engines on the Internet. Among the most popular are:

• AltaVista

http://www.altavista.digital.com

• InfoMarket

http://www.infomarket.ibm.com

• Lycos

http://www.lycos.com

• Magellan

http://www.mckinley.com

• Netscape

http://www.netscape.com

• Search

http://www.search.com

• WebCrawler

http://webcrawler.com

• Yahoo

http://www.yahoo.com

Each program has its own way to start searching. All provide help facilities
which provide further information. It is very useful to know how to limit the
search and get better results.

The search machines will often provide a tool to add your document to the
search machine ′s database. Thus, you are given the opportunity to promote or
advertise any intellectual capital that you would like to make freely available on
the Web.

In Figure 112 on page 191, we see how it is possible to add URLs to the
WebCrawler index database.

190 A Guide to the Internet Connection Servers

Figure 112. Adding Documents to the WebCrawler Index

InfoMarket Search on the other hand provides a cryptolope mechanism which
enables articles, literature and other forms of intellectual capital to be available
at a price. Only by paying for the viewing rights, using a secure Web browser,
are you able to obtain a document.

A collection of WWW search programs is available at:

http://cui.unige.ch/meta-index.html
http://ds2.internic.net/tools

We found lists with the best Web pages at:

http://www.primenet.com/donnlee/best95.html
http://www.bergen.gov/AAST/Wow/wow.html

For registering your server you could start at:

http://www.w3.org/hypertext/DataSources/WWW/Geographical_generation/
new-servers.html

5.5.2 Worms, Spiders and Robots
These tools automate the process of searching Web servers.

Disadvantages:

• Server and network performance will be decreased when using these tools.

• The tools cannot usually evaluate the quality of the information that they find.

Here are some examples of such tools with their associated URLs:

• Aliweb

http://www.nexor.co.uk/public/aliweb/aliweb.html

• Swish

http://www.eit.com/software/swish/swish.html

• Wais

http://www.eit.com/software/wwwwais/wwwwais.html

In addition, a list of WWW robots, wanderers and spiders can be found at:

Chapter 5. Establishing a Presence on the Internet 191

http://info.webcrawler.com/mak/projects/robots/robots.html

5.6 Using URLs
A Uniform Resource Locator (URL) is used to point to a specific file on an
Internet host. URLs can also point to queries and documents stored within
databases.

Different uses for the URL:

• File URL

URLs to a file server are specified as follows:

file://ftp.tamtam.com/public/files/rire.txt

Top level is: files://ftp.tamtam.com/.

Public directory level is files://ftp.tamtam.com/pub.

• Gopher URL

URLs to a gopher server are specified as follows:

gopher://os2info.austin.ibm.com

• News URL

URLs to a newsgroup are specified as follows:

news:comp.os.os2.misc

Note that not every browser supports this news command.

• WWW URL

URLs to a Web server are specified as follows:

http://www.baba.com/∼ doris

The tilde (∼) indicates that the resource is in the specified home directory of
user doris.

A reference to URLs and more can be found at:

http://www.w3.org/pub/WWW/Addressing

A URL normally indicates the absolute position of a resource. Therefore,
selecting the URL will take you straight to the resource without needing to take a
step-by-step path through a host′s directory structure.

5.7 Example of Building a Presence on the Internet
In this section we introduce an example of building a Web server presence on
the Internet. You will learn among other things how easy it is to build HTML
pages.

5.7.1 The ABC Corporation Pages
The home page of the fictitious ABC corporation is depicted in Figure 113 on
page 193.

192 A Guide to the Internet Connection Servers

Figure 113. The Home Page of the ABC Corporation

We set up this home page as follows:

We created two gif files:

• abcback.gif

• abcmast.gif

File abcback.gif is the file which repeats ABC in the background. File
abcmast.gif contains the header The ABC Corporation and a graphic triangle.

Next we created The ABC Corporation home page and named it abcmast.htm.
The HTML contained in abcmast.htm is as follows:

<HTML>
<HEAD>
<TITLE>The ABC Corporation - Welcome</TITLE>
</HEAD>
<BODY BACKGROUND=″abcback.gif″ BGCOLOR=00FF00>
<CENTER>
<H1>

Welcome
</Center>

<Center>
<H2> Introduction to the ABC Corporation</H2>

<H2> What we offer to you</H2>

Chapter 5. Establishing a Presence on the Internet 193

<H2> Our locations</H2>

<H2> Services</H2>
</Center>
</H1>
<HR>
<HR>
</CENTER>
</BODY>

<H6> last update: 05.June 1996 </H6>
<H6> responsible for updates M. Genger </H6>
<H6> send mail to M. Genger </H6>
</HTML>

Within the document, there are three links to other documents:

• What we offer to you

• Our locations

• Services

and a mailto function to the person responsible for the document. Please notice
that, in this example, all documents are stored in the same directory on the
server.

If you select What we offer to you, you will be hyperlinked to the wwoffer.htm
document.

Document wwoffer.htm contains the following HTML:

<HTML>
<HEAD>
<TITLE>Introduction to the ABC Corporation </TITLE>
</HEAD>
<BODY BACKGROUND=″abcback.gif″ BGCOLOR=00FF00>
<CENTER>

<H2> We offer: </H2>
</br>

<H2> Delivery all over the world </H2>

<H2> Best quality at lowest price </H2>

<H2> Fullservice</H2>
</CENTER>

The other two pages, Our locations and Services, are set up in a similar way.

Next we copied the HTML pages to our server directory:

D:/www/html

To provide access to the new pages we changed the configuration sequence of
the HTML pages and added abcmast.htm as the first page to be shown (see
Figure 114 on page 195). Do not forget to restart the server to make the
changes effective.

194 A Guide to the Internet Connection Servers

Figure 114. The Welcome Page Configuration Panel

To get access to the Configuration and Administration panel on the server add
frntpage.html to the URL of your server, as follows:

http://warp/frntpage.html

Bear in mind that when the server receives requests that do not point to a
specific directory, it tries to serve the request from the document root directory.
As a result of this, if you want your home page to be returned for requests that
do not specify a directory or file name, you need to have your home page in your
document root directory.

The document root directory is the directory you specified as your HTML
directory during installation. If you used the installation defaults the document
root directory is c:/www/html.

5.8 Changing Your Document Root Directory
If you are creating a new set of HTML documents for your server you might want
to change your document root directory.

From the Configuration and Administration Forms page click Request routing .
On the request routing form do the following:

• Select the Replace button.

• Change the index field to the number of the pass rule that has /* as its URL
request template.

• Change the action field to pass.

• Enter /* in the URL request template field.

• Enter your new document root directory in the replacement file path field.

• Click Apply .

Chapter 5. Establishing a Presence on the Internet 195

5.9 Enhancing Your Web Server
In this section we look at examples of using clickable image maps, animation
and server-side includes to enhance the appeal and usability of your Web server.

5.9.1 Clickable Image Maps - Shapes
Our first example is a clickable image map. This example is remarkable for two
reasons. The first is that it requires no programming at all, since the htimage
service it involves is shipped with the Internet Connection Server package. The
second is that htimage is called in combination with an IMG tag, and not as a
stand-alone URL or as a form action.

Users will see something like Figure 115 when they link to our Shapes home
page if their browser can display GIF graphics.

Figure 115. The Shapes Home Page, When Graphics are Displayed

If not, their browser will display something like Figure 116 on page 197.

196 A Guide to the Internet Connection Servers

Figure 116. The Shapes Home Page, When Graphics Are Not Displayed

In the first case, when graphics are supported, clicking in one of the shapes
represented on the image will take the user to the corresponding page. One of
these pages is represented in Figure 117.

Figure 117. The Page Displayed if the User Clicked on the Circle

Chapter 5. Establishing a Presence on the Internet 197

Furthermore, if users click on the image but not inside a shape, they will be
notified as in Figure 118 on page 198.

Figure 118. The Page Displayed if the User Clicked Outside the Defined Shapes

Whether the user′s browser accepts GIF graphics or not, clicking on the text link
will always take the user to the relevant page.

5.9.1.1 The Associated HTML
The HTML source of our Shapes home page is as follows:

198 A Guide to the Internet Connection Servers

<HTML>
<HEAD>
<TITLE>Shapes</TITLE>
</HEAD>
<BODY BGCOLOR=FFFFFF>
<CENTER>
<H1>Shapes
A Sample Clickable Image Map</H1>
<I>Select a shape</I>
<HR>

<P>
Polygon -
Circle -
Rectangle
<HR>
</CENTER>
</BODY>
</HTML>

Figure 119. The HTML Source of the Shapes Home Page

The essential htimage mechanism implemented in this page is included in the
three following lines:

Let′s describe them, starting with the IMG tag:

• SRC specifies where the graphic is located.

• The ALT attribute (Please use the text links) is very important in this
example, since the graphic is the key to our page. If the users′ browsers
cannot display the graphic, the users will not be able to click on it. It is
therefore very important to tell the users that the page offers a clickable
image map, and to guide them to alternate ways of linking to further pages.

We then simply added the lines:

Polygon -
Circle -
Rectangle

• The ISMAP attribute indicates that the graphic is an image map.

Let us now examine the anchor tag:

 . . .< /A>

When the graphic is clicked upon, the browser will send the
http://server/cgi-bin/htimage/shapes/shapes.map URL to the server. The
directive in the HTTPD configuration file that indicates to the server that it should
execute htimage/shapes/shapes.map is:

Exec /cgi-bin/* C:\WWW\CGI-Bin*

We have developed this application on an Internet Connection Server for
Windows NT, that includes htimage as a service.

Chapter 5. Establishing a Presence on the Internet 199

The default HTTPD configuration file includes the following line:

Service /cgi-bin/htimage* C:\WWW\CGI-Bin\htimage:HTIMAGE*

This simply means that htimage should be called in combination with the map
whose URL is located after cgi-bin/htimage. This URL is relative to the server
root as base and in our case the map′s URL is /shapes/shapes.map.

Let us now take a look at the graphic and the corresponding map. The graphic
is a 177 pixels wide and 59 pixels high GIF represented in Figure 115 on
page 196. The map file is a text file whose lines have the following format:

region-identifier [region definition] URL

Our shapes.map map file is the following:

default /shapes/missed.html
polygon (29, 5) (53,29) (29,53) (5,29) /shapes/polygon.html
circle (88,29) 24 /shapes/circle.html
rectangle (123,5) (171,53) /shapes/rectangle.html

Figure 120. The shapes.map Map File

• The default region is the region that is not covered by any of the defined
regions.

• A polygon is defined by its corners. Htimage allows polygons with up to 100
corners.

• A circle is defined by its center and its radius.

• A rectangle is defined by two diagonally opposite corners.

All coordinates are given relative to the upper left corner of the picture, which is
(0,0).

5.9.2 Clickable Image Maps - World Map
Suppose you want people to be able to choose a car, check if a certain model is
available, and make reservations from your Web server. What would be better
than to show them a map of the country and allow them to click on any location
and make the desired reservation? That is what a clickable image map can do.
It can have many other uses also. For example, it helps users better understand
a picture or diagram by allowing them to click on a component represented in
the graphic to see an explanation. It also lets users move down to finer levels of
detail on a map of a campus, building, or whatever you want.

Clickable image maps obviously work only with graphically oriented Web
browsers. You should always try to provide alternate text-based methods of
accessing the same information.

200 A Guide to the Internet Connection Servers

Figure 121. Clickable World Map. This figure shows a clickable map and an alternate
text-based method of accessing the same information.

Image map requests are another form of program call or CGI. You can request
image maps from either a server-provided image mapping program or a
user-provided image mapping program. The easiest way to provide this level of
function for your Web application is to take advantage of a server-provided
mapping program such as the one found on the AS/400 system. This IBM written
CGI-BIN application is called QTMHIMAG in the QTCP library.

If an image map request is made from a user-provided image program, it is
handled as a standard program call request that must meet the CGI interface.
We do not show an example of the user-provided image mapping, as this is
more work than it is worth.

There are several steps you need to take when creating a server-provided image
map:

• Plan a clickable image map.

• Map the hotspots in a map file.

• Reference your clickable image map in HTML.

• Configure the HTTP server.

Let′s take a look at each of these steps in detail.

Chapter 5. Establishing a Presence on the Internet 201

5.9.2.1 Planning the Clickable Image Map
First, determine the image you are going to use. As for any inline images, the
graphics need to be in GIF format for the widest portability. Then define where
you are going to map the clickable areas or hotspots.

Depending on the size and make up of the image you are mapping, you can use
polygons, rectangles, or circles to identify hotspots.

5.9.2.2 Mapping the Hotspots in a Map File
The next step is to develop an image map file such as the one seen previously.
You need to create a separate image map file for each clickable image map on
your Web server. Each line in an image map file represents a hotspot by
defining an area within the graphic and the corresponding URL to be returned if
someone clicks on that area with their Web browser. By using a program on
your PC such as MAPEDIT, hotspots on the image are formatted in CERN by:
Shape, Coordinate-1, Coordinate-2 ... Coordinate-n, URL.

Figure 122. Defining Hotspots and Associated URLs. This figure shows North America in
a circle shape mapped to its associated URL.

This map is made up of circles and triangular shaped polygons. A rectangular
shape was mapped last for the entire image as a default area.

Shapes are defined by the following:

• A circle - For a circle (a pair of coordinates for the center and a single value
for the radius).

• A polygon - For a polygon (The number of coordinates depend on the
number of sides defined for the polygon.)

• A rectangle - For a rectangle (with two coordinate pairs: upper-left and
lower-right).

202 A Guide to the Internet Connection Servers

Coordinates are x,y pairs counting in pixels from the upper left-hand corner of
the image. The URL can be either an actual URL pointing to any resource on the
World Wide Web, or it can point to another image or document on your server.

*************** Beginning of data ********************************
001.00 circle (101,123) 42 /ITSOIC.400/imvh301.htm#SAMERICA
002.00 circle (56,46) 45 /ITSOIC.400/imvh301.htm#NAMERICA
003.00 circle (180,98) 41 /ITSOIC.400/imvh301.htm#AFRICA
004.00 circle (265,50) 47 /ITSOIC.400/imvh301.htm#ASIA
005.00 poly (218,10) (215,58) (138,49) /ITSOIC.400/imvh301.htm#EUROPE
006.00 poly (346,68) (184,170) (347,170) /ITSOIC.400/imvh301.htm#OCEANIA
007.00 rect (4,3) (351,177) /ITSOIC.400/imvh301.htm#OCEANIA
008.00 default /ITSOIC.400/imvh301.htm#OCEANIA

****************** End of data ***********************************

Figure 123. Image Map Coordinates. This example shows circular, polygon, and
rectangular shapes and their defined URLs.

The server takes the coordinates from a user′s mouse click and steps through
the map file to determine if the click is within any hotspots. As soon as the first
match is found, the corresponding URL is used to redirect a document to the
user ′s Web browser. If no matches are found, a default URL (that you specify in
the image map file) is returned.

Notice that the last line in the file is a default statement. An image map file
must always contain a default statement. This is required so that if a user clicks
on a part of the image that has not been mapped, the user is sent to a defined
default area.

It is normal to mix and match circles, polygons, and rectangles in the same map
file. Although you should try to minimize overlapping hotspots in the image
map, if there are any, the first match is the one used.

5.9.2.3 Referencing Your Clickable Image Map in HTML
The final step in creating an image map is to tell the Web browser accessing the
HTML document that the inline image it displays is a clickable image map. In
practice, what you do is create a link where this image is the link trigger and the
URL invokes the image map script and passes it the map name. For example:

 ISMAP>

5.9.2.4 Configuring Your Clickable Image Map in the HTTP Server
In order to configure the HTTP server on the AS/400 system, we reference the
previous example. Our imagemap.pgm is qtcp/qtmhimag and our image maps
are found in the imagemap.file. Here is how our URL looks using the AS/400
system to serve image maps:

<A HREF=″http://servername/qsys.lib/qtcp.lib/qtmhimag.pgm�1�
/qsys.lib/itsoic400.lib/imagemap.file/mapk.mbr″>�2�
�3�

�1� This section of the URL represents the server name and also where the
image mapping program resides on the AS/400 system.

�2� This section tells the server where the actual image map file is located
on the AS/400 system.

�3� This section shows the source of the image or GIF file that is to be
mapped and ISMAP tells the server this is an image map.

Chapter 5. Establishing a Presence on the Internet 203

We can shorten and simplify the URL by taking advantage of the HTTP mapping
rules. For example, we use the following URL to do the same thing:

Where you see /cgi-bin/imagemap, we used the HTTP Map configuration
statement to reference the longer URL. The following lines must be added to the
HTTP configuration to make it work:

Map /cgi-bin/imagemap/* /qsys.lib/qtcp.lib/qtmhimag.pgm
/qsys.lib/itsoic400.lib/imagemap.file/*

Pass /qsys.lib/itsoic400.lib/imagemap.file/*

Exec /qsys.lib/qtcp.lib/*

In order to access the HTTP configuration file, type WRKHTTPCFG on an AS/400
command line. Add the Map, Pass, and Exec statements noted previously. By
using the Map directive in our HTTP configuration, we are able to use shorter
URLs in our HTML documents. The Pass statement is there in order to pass the
image map files from the server. There must also be an Exec statement in order
to call the qtmhimag program from the qtcp library.

Figure 124. Mapping of Image Map URL to HTTP Configuration

 Note

More information on image mapping and image map requests on the AS/400
system is available in the TCP/IP Configuration and Reference, Version 3,
SC41-3420.

204 A Guide to the Internet Connection Servers

5.9.3 Animated Pages - Love All, Serve All
HTML gives you the possibility to serve hypertext pages to people using various
hardware, operating systems and browsers. You should therefore take care that
most, if not all, users can view all the information located on the pages you
design.

Here are some typical examples of what you should not do, and why:

• Do not place all the links to all your pages only in a clickable image map or
Java applet in your home page. People linking to your page with a browser
that does not support graphics or Java will only see a crippled home page
and may not be able to link further.

• Do not use browser-specific tags or features extensively. What if someone
can not or does not wish to use this particular browser?

• Do not locate critical information in tables only. Tables are a convenient way
of organizing your pages, and almost every browser now supports the
TABLE tag. Some however do not; think about them.

If you have to or want to ignore the advice above, you are recommended to
always serve alternate pages in standard HTML. Minimize the version of HTML
required to view these alternate pages as much as possible, so as to comply
with most browsers.

In this section we introduce a little example of how you can include an animation
in a page so that most browsers will be able to display it. Depending on their
browser, the users will see:

• A Java applet

• An animated image

• A static image

• Text

Let′s take a look at some different options.

Chapter 5. Establishing a Presence on the Internet 205

Figure 125. A Java Applet with IBM WebExplorer Java Technology Demo

Figure 126. An Animated Image with Netscape Navigator 2.0 for Windows 3.1

206 A Guide to the Internet Connection Servers

� �
Projects - The Animated Page

1/8
Projects

The Animated Page

Animated Duke

Jean-Charles updated this page on June 14, 1996 *

 PF1= Help 2= Query URL 3= Return 4= Receive 5= Go to URL 6= TopBot
 PF7= Backward 8= Forward 9= Alt Keys 10= Add List 11= Hot List 12= Quit� �

Figure 127. A Line of Text with Charlotte Browser for VM

5.9.3.1 The Associated HTML
The HTML source of our page is listed below:

Chapter 5. Establishing a Presence on the Internet 207

<HTML>
<HEAD>
<TITLE>Projects - The Animated Page</TITLE>
</HEAD>
<BODY BGCOLOR=FFFFFF>
<ANIMATE>
<FRAME SRC=″duke01.gif″><FRAME SRC=″duke01.gif″>
<FRAME SRC=″duke02.gif″><FRAME SRC=″duke02.gif″>
<FRAME SRC=″duke03.gif″><FRAME SRC=″duke03.gif″>
<FRAME SRC=″duke04.gif″><FRAME SRC=″duke04.gif″>
<FRAME SRC=″duke05.gif″><FRAME SRC=″duke05.gif″>
<FRAME SRC=″duke06.gif″><FRAME SRC=″duke06.gif″>
<FRAME SRC=″duke07.gif″><FRAME SRC=″duke07.gif″>
<FRAME SRC=″duke08.gif″><FRAME SRC=″duke08.gif″>
<FRAME SRC=″duke09.gif″><FRAME SRC=″duke09.gif″>
<FRAME SRC=″duke10.gif″><FRAME SRC=″duke10.gif″>
</ANIMATE>
<CENTER>
<H1>Projects
The Animated Page</H1>
<HR>
<APPLET CODE=″Animator.class″ WIDTH=50 HEIGHT=50>
<param name=imagesource value=″.″>
<param name=endimage value=10>
<param name=pause value=200>

</APPLET>
<HR>
<I>Jean-Charles updated this page on
June 14, 1996</I>
</CENTER>
</BODY>
</HTML>

Figure 128. The HTML of the Animated Page

The ANIMATE Tag: As you can see we included the ANIMATE tag, which is only
supported by the IBM WebExplorer. This tag allows you to change the browsers
default animation by adding a personalized one that will remain until the
browser is stopped or another animation is loaded.

The syntax of the ANIMATE tag is simply:

<ANIMATE>
<FRAME SRC=url>
</ANIMATE>

The graphics referenced by the FRAME tag should be 50 by 50 pixels JPEGs or
noninterlaced GIFs without transparency.

Using the ANIMATE tag is rather safe, since all the requirements are handled by
HTML tags. Browsers that do not support them should thus disregard them.

The APPLET Tag: The APPLET tag imbeds a Java applet into the page, when it
is viewed by a Java-enabled browser. Here we simply included the Animator
applet, distributed by Sun as a sample Java application.

208 A Guide to the Internet Connection Servers

As was the case for the ANIMATE tag, all the information required by the
APPLET tag is included in HTML tags. If a browser does not support them, it
does not interpret them.

However, the APPLET tag also allows you to set an alternate HTML source
between the begin and end tags. In our case it is:

This alternate source is interpreted only if the browser does not support Java
(the APPLET tag). It is disregarded if the browser supports Java (the APPLET
tag).

Animated GIFs: The GIF graphical image format allows you to code sequences
of images and thus animations. Tools to create such animated graphics are now
available on most platforms.

For example, if the viewer used to display such a GIF does not support animated
GIFs then it will only display the first image as does the IBM WebExplorer.
Therefore make sure that the first image is meaningful.

Our page thus includes an alternate animation to the Animator applet for the
browsers that support animated GIFs. This alternative is a simple graphic for
the browser that accepts GIFs, but not the animated ones.

Finally, the Animated Duke text is provided in all other cases.

The ALT Attribute of the IMG Tag: Never forget to set the ALT attribute of your
IMG tags so that non-graphical browsers are taken care of.

5.9.4 Server-Side Includes - Gods of Greek Mythology
The Internet Connection servers all feature server-side includes. Server-side
includes allow you to add dynamic data into your HTML pages. Typical
examples of such data are the current time, the date a document was updated,
or the size of a file.

Furthermore, server-side includes allow to you include any other document into
your HTML pages, as text or other HTML files. This feature is very useful to
rationally organize your server, as our scenario demonstrates.

We planned to set up pages dedicated to the gods of Greek mythology on our
server. Our first concern was to offer the most detailed information as soon as
possible.

This data was available in the form of 17 text files comprising one summary and
16 descriptions, one of which is listed in Figure 129 on page 210.

Chapter 5. Establishing a Presence on the Internet 209

HEBE, the goddess of youth, was the daughter of Zeus and
Hera. Hebe served for a long time as cupbearer to the gods,
serving them their nectar and ambrosia. She was replaced in
this office by the Trojan prince Ganymede.
According to one story, she resigned as cupbearer to the
gods upon her marriage to the hero Hercules, who had just
been deified. In another, she was dismissed from her position
because of a fall she suffered while in attendance on the
gods.

Figure 129. Hebe, A Text File

This organization corresponded to our needs. We therefore simply tagged the
text files to transform them into basic HTML files, as shown in Figure 130, and
installed them on our server.

<HTML>
<HEAD>
<TITLE>Gods of the Greek Mythology - Hebe</TITLE>
</HEAD>
<BODY BGCOLOR=FFFFFF>
<CENTER>
<H1>Gods of the Greek Mythology
Hebe</H1>
<HR>
</CENTER>
HEBE, the goddess of youth, was the daughter of Zeus and
Hera. Hebe served for a long time as cupbearer to the gods,
serving them their nectar and ambrosia. She was replaced in
this office by the Trojan prince Ganymede.
<P>According to one story, she resigned as cupbearer to the
gods upon her marriage to the hero Hercules, who had just
been deified. In another, she was dismissed from her position
because of a fall she suffered while in attendance on the
gods.
<CENTER>
<HR>
</CENTER>
</BODY>
</HTML>

Figure 130. Hebe, A Basic HTML File

We used the approach described above to a create an index page. This page,
as viewed with an IBM WebExplorer, is shown in Figure 131 on page 211.

210 A Guide to the Internet Connection Servers

Figure 131. Index, A Basic HTML File Viewed with an IBM WebExplorer

Our Gods of Greek Mythology pages had only been on the Web for a short while
when users already complained that:

• It was impossible to complain about these pages because they did not link to
an e-mail address.

• Going from one god to another required returning to the index.

• The pages were far too sober for such an attractive subject.

We therefore designed a page template that responded to these demands. The
source of this template is listed in Figure 132 on page 212. Figure 133 on
page 213 shows how this template looks when it is viewed with an IBM
WebExplorer.

Chapter 5. Establishing a Presence on the Internet 211

<HTML>
<HEAD>
<TITLE>Gods of the Greek Mythology - Name the god here</TITLE>
</HEAD>
<BODY BACKGROUND=″venus.jpg″>
<CENTER>
<H1>
Gods of the Greek Mythology

Name the god here
</H1>
Index -
Aphrodite -
Apollo -
Ares -
Artemis -
Athena -
Dionysus -
Eros -
Gaea -
Hades -
Hebe -
Hera -
Hermes -
Nemesis -
Pan -
Poseidon -
Zeus
<HR>
</CENTER>
Describe the god here
<CENTER>
<HR>
This page was updated by Homer
</CENTER>
</BODY>
</HTML>

Figure 132. Page Template - HTML Source

212 A Guide to the Internet Connection Servers

Figure 133. The Page Template, Viewed with an IBM WebExplorer

We now had to solve the following problem: how could we easily apply this
template to all the existing descriptions in such a way that any modification to
the template would also impact the descriptions?

The answer was clear: server-side includes. The advantage of server-side
includes is that they allow you to include files in HTML documents.

Our first step then was to activate the server-side includes; we did this by adding
the following AddType directive to our HTTPD configuration file:

AddType .shtml text/x-ssi-html 8bit 1.0

This directive enables the interpretation of the server-side includes in documents
whose extension is shtml. As we see later, server-side includes are placed
inside HTML comments, and are therefore not interpreted in documents whose
extension is not specified in such an AddType directive. For example, this is the
case for files whose extension is html where the default HTTPD configuration file
is in use.

Then we modified the page template, as shown in Figure 134 on page 214, and
saved it as template.shtml.

Chapter 5. Establishing a Presence on the Internet 213

<HTML>
<HEAD>
<TITLE>Gods of the Greek Mythology - <!--#echo var=NAME --></TITLE>
</HEAD>
<BODY BACKGROUND=″venus.jpg″>
<CENTER>
<H1>
Gods of the Greek Mythology

<!--#echo var=NAME -->
</H1>
Index -
Aphrodite -
Apollo -
Ares -
Artemis -
Athena -
Dionysus -
Eros -
Gaea -
Hades -
Hebe -
Hera -
Hermes -
Nemesis -
Pan -
Poseidon -
Zeus
<HR>
</CENTER>
<!--#include file=″&NAME;\.html″ -->
<CENTER>
<HR>
This page was updated on <!--#flastmod file=″&NAME;\.html″ -->
by Homer
</CENTER>
</BODY>
</HTML>

Figure 134. template.shtml, the Modified Template

Because the extension of our template is shtml, the server-side includes it
contains will be interpreted.

The syntax of a server-side include is the following:

<!--#command tag=value ... -->

Note that, as we mentioned earlier, it is included in an HTML comment.

Our template contains three different server-side includes:

• <!--#echo var=NAME -->

The echo server-side include displays the value of a variable. In our case, it
is the variable NAME whose value is the name of the god. We describe how
this variable is set later in this section.

• <!--#include file=″&NAME;\.html″ -->

The include server-side include includes a file in the output. We want to
include the description of a given god, which is located in a file whose name

214 A Guide to the Internet Connection Servers

is simply the god′s name, and whose extension is html; zeus.html for
example. ″&NAME;\.html″ creates this string. &NAME; echoes the NAME
variable that contains the god′s name. \. is a period. Please read the
Internet Connection server′s manual for the complete list of escape
characters.

• <!--#flastmod file=″&NAME;\.html″ -->

The flastmod server-side include displays the last time a document was
modified. Here we display the last time the description of the god was
modified.

Now we have to set the NAME variable, which is what users do when they
browse a page such as the one listed below:

<!--#global var=NAME value=hebe -->
<!--#include file=″template\.shmtl″ -->

Figure 135. Invoking Hebe with Hebe.shtml

Here we set the global variable NAME to hebe with the global server-side
include. NAME will keep this value throughout all the included documents. If we
had used the set server-side include, NAME would have been set to hebe in the
current document only.

All we have to do now is modify the description of the gods so that they fit in the
new template. We simply stripped the HTML, HEAD, BODY and H1 tags, to
obtain something like we see in Figure 136.

HEBE, the goddess of youth, was the daughter of Zeus and
Hera. Hebe served for a long time as cupbearer to the gods,
serving them their nectar and ambrosia. She was replaced in
this office by the Trojan prince Ganymede.
<P>According to one story, she resigned as cupbearer to the
gods upon her marriage to the hero Hercules, who had just
been deified. In another, she was dismissed from her position
because of a fall she suffered while in attendance on the
gods.

Figure 136. Hebe, A Modified HTML File

We have now achieved our goal: we separated the contents of our pages from
their layout, and it has become an easy matter to spread any change in the
layout to all of our pages.

Here is how this looks when it is browsed.

Chapter 5. Establishing a Presence on the Internet 215

Figure 137. Hebe, The Definitive Result

5.9.4.1 Conclusion
As this example shows, the server-side includes are very useful to organize the
data that is hosted on your server rationally. Server-side includes however have
a major drawback: they use a lot of the server′s resources. In fact, the server
parses the files containing server-side includes before it sends them to the
browser.

You should therefore consider alternatives to server-side includes if you intend
to set up heavy duty, large scale or long term Internet servers. At the time we
were writing this book, the trend was still to use CGI scripts, because of the
large range of possibilities that they permit. But it is certain that the use of
server APIs will dominate all the other programming techniques, because they
combine flexibility and performance. For more about the use of CGIs and APIs
refer to Chapter 6, “Establishing an Active Presence on the Internet” on
page 217.

216 A Guide to the Internet Connection Servers

Chapter 6. Establishing an Active Presence on the Internet

In Chapter 5, “Establishing a Presence on the Internet” on page 183, we
discussed how to develop a Web server that can offer static documents and links
to other pages or servers. You can develop a more active presence on the
Internet by using CGI scripts and API extensions to add function to your server.

In case you are not familiar with the CGI and API acronyms, here is a reminder:

• CGI refers to Common Gateway Interface

• API refers to Application Program Interface

CGI programs are often called CGI scripts, but as you see in the examples
below, you can develop your own CGI programs in many languages, not only in
scripting languages. The reason they are referred to as scripts is historical in
that they were originally developed in sh, bash, and perl on UNIX platforms.

Referring to an API out of context has no real meaning. You will find APIs in all
domains including network, Windows environments, etc. In our context, API is a
generic term used to refer to the available interfaces in the Web environment.
This covers in our case IBM ICAPI, but also Netscape′s NSAPI and Microsoft′s
ISAPI.

In this chapter we generically refer to CGI applications and API applications; only
where necessary do we refer to a particular API, ICAPI for example. Whatever
term you use to refer to them, CGIs and APIs should be considered as
extensions to your server to increase its capabilities.

The following examples show you how CGIs and APIs can animate your Web
server. The intent is not to teach you any particular language but to explain to
you what kind of extension you can expect from scripts and, using basic
examples, how you should implement them on your Internet Connection server.

None of these examples requires an in-depth knowledge of any particular
language. However, in order to show the large choice of tools available to you,
each of the CGI samples has been developed in a different language: Perl, Korn
Shell, C, REXX and batch.

6.1 CGI Scripts
There are many things we can do using CGI scripts:

• Provide help in redirecting to other URLs

• Build interactive images

• Build on-the-fly images

• Process forms

 Copyright IBM Corp. 1996 217

6.1.1 Selecting Your Programming Language
The principle of Common Gateway Interface is that you should be able to use
any programming language. You choose the one you will be using according to:

• The platform on which your server is running

• The task your application has to perform

• Your programming skills

6.1.1.1 Your Server Platform
The operating system on which your server is running is probably the decisive
factor in your choice of a programming language.

Not all programming languages are available on every platform. For example,
there is no port of Visual Basic for AIX, OS/2 or MVS. This fact is not only
essential when you plan to develop intranet or Internet applications, but also if
you consider migrating your server to another platform. Imagine you have set
up a server that has become so popular that it has outgrown the resources of
the Windows NT host on which you have installed it. Because the Internet
Connection Servers are ported from the same code, you can easily migrate your
server to a more powerful AIX or MVS system, unless you programmed your
applications in a platform-specific programming language, such as Visual Basic.

Furthermore, some languages are more suited to an operating system than
others. This is typically the case of C for AIX and REXX for OS/2. We advise you
to use a standard language which is supported on most platforms rather than
exotic flavors of rare but nevertheless powerful languages. This will assure you
of better support and will allow you to share the experience and sometimes even
the applications of other developers. Check your favorite search engine and
your news server to find them.

6.1.1.2 The Purpose of Your Application
Another important criterion in selecting a programming language is the purpose
of your application. Not all languages are suited to every application. For
example, a batch file under Windows NT is all it takes to switch to a different
page depending on the browser used to view it. However, DOS commands are
clearly inappropriate to query and update complex databases. Therefore, make
sure the programming language you choose allows you to do want you want it to
do, and even a little more. A good way of finding out if it does is to search the
Internet for examples of applications similar to the ones you want to create.

6.1.1.3 Your Programming Skills
The two previous criteria may still leave you with a choice among several
programming languages. In this case, use a programming language that you
are familiar with. This will allow you to develop safe and reliable applications
easily. After all, you are developing potentially exposed applications. You need
to have sufficient knowledge of the language to ensure that your CGI scripts are
reliable and do not expose your server to hackers and other undesirables.
Furthermore, you want to deliver the relevant information continuously and
safely for your network. This will be much easier if you are comfortable with
your programming environment.

218 A Guide to the Internet Connection Servers

6.1.1.4 Response Time
The response times of your application may determine whether you will use an
interpreted or a compiled programming language. If the required response
times are to be small then you will want to opt for a compiled language. Some
languages, such as REXX, may be run interpreted or compiled, thus offering both
the easy testing and debugging of an interpreted language, and the speed of a
compiled language.

6.1.2 Programming Languages
In this section we list some of the programming languages with which it is
possible to develop CGI scripts. Select the one you will use based upon the
above criteria.

A complete description of these languages would exceed the scope of this book
so we do not attempt it.

Furthermore, updated descriptions of the languages most commonly used on the
Internet are available on the Internet. We recommend that you consult these
descriptions before you start a large project. A good starting point is Yahoo
which can be found at:

http://www.yahoo.com/Computers_and_Internet/Programming_Languages/

Please refer to Table 10 for a summary of available languages by platform.

Table 10. CGI Programming Languages by Platform

Windows NT OS/2 AIX HP-UX Solaris MVS

Scripting
Languages

DOS, batch
files

OS/2, batch
files,

command
files

Shell
Scripts

(Bourne,
Korn, C,

bash, etc.)

Shell
Scripts

(Bourne,
Korn, C,

bash, etc.)

Shell
Scripts

(Bourne,
Korn, C,

bash, etc.)

OMVS
POSIX Shell

Script

C Freeware Freeware Operating
System,

Freeware,
Commercial

Operating
System,

Freeware

Operating
System,

Freeware

Commercial

Perl Freeware Freeware Freeware Freeware Freeware Freeware

REXX Evaluation,
Commercial

Operating
System

Freeware,
Shareware,
Commercial

Freeware,
Shareware

Freeware,
Shareware

Operating
System

NetRexx Not
Avai lable

Freeware Not
Avai lable

Not
Avai lable

Not
Avai lable

Not
Avai lable

Java Not
Avai lable

Freeware Freeware Freeware Freeware Not
Avai lable

Notice that Perl is available on all platforms for which there is an Internet
Connection server. This explains why Perl is one of the most popular CGI
programming languages.

Java however is now becoming the Internet programming language, because of
its adaptation to the Internet. Although Java is mainly used in applets imbedded
into HTML documents, it is possible to write stand-alone Java programs that can
thus be used as CGI scripts. We provide an example of this in Appendix A,
“Two Simple Browsers and One Simple Server” on page 299.

Chapter 6. Establishing an Active Presence on the Internet 219

6.1.3 Using Environment Variables - Welcome
This example demonstrates the use of the server′s environment variables, and
involves minimal programming.

As we mentioned before, an HTTP transaction is divided into four steps:

• The browser connects to the server.

• The browser sends a request to the server.

• The server responds to the browser.

• The connection is closed.

Also, as we already stated, the browser′s request may contain some surplus
fields in addition to the HTTP request. Most of these fields describe the browser
and its capabilities. The server places the most common fields in environment
variables that are accessible to any application triggered by the browser′s
request. This is the case for CGI scripts or programs using the server ′s API.

In this example the Welcome CGI script returns a page containing some
information about the browser used to display it. This information has been
previously stored by the server in the form of environment variables.

In Figure 138, Figure 139 on page 221, Figure 140 on page 222, and Figure 141
on page 223, you can see the page returned by the CGI script when viewed
using IBM WebExplorer Java Technology Demo, the Netscape Navigator Atlas
Preview Release 2 for AIX, the Netscape Navigator Atlas Preview Gold Release 2
for Windows NT, and Charlotte for VM respectively.

Figure 138. The Welcome Page when Browsed with an IBM WebExplorer Java Technology Demo

220 A Guide to the Internet Connection Servers

Figure 139. The Welcome Page when Browsed with a Netscape Navigator Atlas Release 2 for AIX

Chapter 6. Establishing an Active Presence on the Internet 221

Figure 140. The Welcome Page when Browsed with a Netscape Atlas Preview Gold Release 2 for Windows NT

222 A Guide to the Internet Connection Servers

� �
win-nt.itso.ral.ibm.com:80 welcomes a stranger

1/16
Welcome

 All this server knows about you, because it is not too shy to ask...
__

Welcome!

I am a IBM Internet Connection Secure Export Server/4.1Beta4 listening to port
 80 at win-nt.itso.ral.ibm.com . I speak HTTP/1.0 and CGI/1.1 . I am here to
serve you.

You are a stranger from far away (also known as 9.132.6.14). You have linked
here from http://www.ibm.net with a Charlotte/1.2b2 VM_ESA/1.2.2 CMS/11 . You
understand text/*, text/plain, text/html . Please leave this site in the state
in which you found it.
__

 PF1= Help 2= Query URL 3= Return 4= Receive 5= Go to URL 6= TopBot
 PF7= Backward 8= Forward 9= Alt Keys 10= Add List 11= Hot List 12= Quit� �

Figure 141. The Welcome Page when Browsed with Charlotte

The Welcome page is simply called by linking to the URL of the welcome.bat
batch file, which during our project was:

http://win-nt.itso.ral.ibm.com/welcome/welcome.bat.

To be able to launch this batch program from a browser we added this line in
our HTTPD configuration file:

Exec /welcome/* C:\WWW\Welcome*

Note that if we had added this line in our HTTPD configuration file:

Exec /welcome/* C:\WWW\Welcome\\welcome.bat

the users would have been able to trigger the application by linking to the
simpler http://win-nt.itso.ral.ibm.com/welcome URL.

The batch file itself is listed below.

Chapter 6. Establishing an Active Presence on the Internet 223

@echo OFF

REM Read the environment variables

SET GI=%GATEWAY_INTERFACE%
SET HA=%HTTP_ACCEPT%
SET HU=%HTTP_USER_AGENT%
SET RA=%REMOTE_ADDR%
SET RH=%REMOTE_HOST%
SET RI=%REMOTE_IDENT%
SET RU=%REFERER_URL%
SET SN=%SERVER_NAME%
SET SO=%SERVER_PORT%
SET SR=%SERVER_PROTOCOL%
SET SS=%SERVER_SOFTWARE%

REM Correct some values

IF ″%HA%″==″″ SET HA=text/html to say the least
IF ″%HU%″==″″ SET HU=unknown user agent
IF ″%RH%″==″″ SET RH=far away
IF ″%RI%″==″″ SET RI=a stranger
IF ″%RU%″==″″ SET RU=nowhere

REM Send the document type

cgiutils -ct text/html

REM Send the HTML

echo ^<HTML^>
echo ^<HEAD^>
echo ^<TITLE^>%SN%:%SO% welcomes %RI%^</TITLE^>
echo ^</HEAD^>
echo ^<BODY BGCOLOR=FFFFFF^>
echo ^<CENTER^>
echo ^<H1^>Welcome^</H1^>
echo ^<I^>All this server knows about you, because it is not too shy to ask...^</I^>
echo ^<HR^>
echo ^</CENTER^>
echo ^<P^>Welcome!
echo ^<P^>I am a ^<B^>%SS%^</B^> listening to port ^<B^>%SO%^</B^> at ^<B^>%SN%^</B^>.
echo I speak ^<B^>%SR%^</B^> and ^<B^>%GI%^</B^>.
echo I am here to serve you.
echo ^<P^>You are ^<B^>%RI%^</B^> from ^<B^>%RH%^</B^> (also known as ^<B^>%RA%^</B^>).
echo You have linked here from ^<B^>%RU%^</B^> with a ^<B^>%HU%^</B^>.
echo You understand ^<B^>%HA%^</B^>.
echo Please leave this site in the state in which you found it.
echo ^<CENTER^>
echo ^<HR^>
echo ^</CENTER^>
echo ^</BODY^>
echo ^</HTML^>

Figure 142. The Welcome.bat Batch File

224 A Guide to the Internet Connection Servers

This simple batch file processes the server′s environment variables and sends
an HTML page to the browser that summoned it.

This example is fairly self-explanatory, so we do not go any further with
explaining DOS batch file programming.

The following line is quite important, however:

cgiutils -ct text/html

This creates a minimal HTTP 1.0 header containing the MIME content-type field.
The cgiutils tool is a convenient way to create standard HTTP 1.0 headers. Note
that the cgiutils tool must be located in the application path, and that this would
normally be the case after the Internet Connection server installation. For more
details about the HTTP header, please refer to Chapter 3, “Web Browsers” on
page 47. For more details about the cgiutils tools please refer to the
InternetConnection Server Up and Running! manual.

6.1.3.1 The Browser ′s Host and Domain Name
Looking at the examples illustrating the Welcome page, it seems that the
Remote_Host environment variable is never set. However these examples were
produced while the DNS-Lookup directive of the HTTPD configuration file was set
to Off, as we strongly recommend. The DNS-Lookup directive specifies whether
the server looks up the names of the clients. If the DNS-Lookup directive had
been set to On, then the Welcome page would have returned the browser′s full
host name.

Note that the server always knows the browser′s IP address, and also note that
this address may also be the one associated with the browser ′s SOCKS or proxy
server.

When the DNS-Lookup directive is set to Off, it is possible to compute the
browser ′s host name from its IP address by using the HOST command, shipped
with every good TCP/IP stack.

6.1.4 Using Environment Variables - Switch
In the previous example we introduced the environment variables. In this
example we show some further uses for them.

What we are trying to achieve in this example is a home page which is
compatible with as many browsers as possible.

The user always connects to the same URL (http://win-nt.itso.ral.ibm.com), but
the server sends a different page whether the browser is the IBM WebExplorer
Java Technology Demo or any other browser, as shown in Figure 143 on
page 226 and Figure 144 on page 226, respectively.

Chapter 6. Establishing an Active Presence on the Internet 225

Figure 143. Browsing with an IBM WebExplorer Java Technology Demo

Figure 144. Browsing with Netscape Navigator for Windows 3.1

Let us first describe the program that returns the location to load depending on
the browser′s type. As the programming involved is rather elementary (an IF
THEN ELSE branch) we used the DOS batch file listed below.

226 A Guide to the Internet Connection Servers

@ECHO OFF

REM Determine the browser

SET HU=%HTTP_USER_AGENT%

REM Determine the page corresponding to the browser

SET HP=java.html
IF NOT ″%HU%″==″IBM WebExplorer DLL /v960311 Beta″ SET HP=other.html

REM Tell the browser to load the relevant page

ECHO Location: http://win-nt.itso.ral.ibm.com/switched/%HP%
ECHO.

REM And don′ t forget the mandatory empty line (ECHO.)

Figure 145. The switch.bat Batch File

We named this batch file switch.bat, and we located it in the C:\WWW\Switch
directory.

In order to be able to run this batch file from a browser, we must add the
following line to the HTTPD configuration file:

EXEC /switch/* C:-WWW-Switch-*

It is now possible to view the page corresponding to our browser by linking to
http://win-nt.itso.ral.ibm.com/switch/switch.bat.

But we want this to happen upon linking to http://win-nt.itso.ral.ibm.com. To
achieve this we simply add the following line prior to the above EXEC directive:

MAP /* /switch/switch.bat

This makes sure that any link to http://win-nt.itso.ral.icm.com/* will call the
switch.bat CGI script. Thus, any link to a file or directory that is not stated in an
EXEC, PASS or REDIRECT directive prior to the previous MAP directive will call
the switch.bat program. For example, if a user links to
http://win-nt.itso.ral.ibm.com/foo/foo.html and neither the foo directory nor the
foo.html file are defined, then the user will launch the switch.bat script.

Note that instead of having:

MAP /* /switch/switch.bat
EXEC /switch/* C:\WWW\Switch*

we could have specified:

MAP /* /switch/*
EXEC /switch/* C:\WWW\Switch\switch.bat

Chapter 6. Establishing an Active Presence on the Internet 227

6.1.5 Linking to a CGI Script - Calendar
In this sample, we show you:

• How to invoke your script from your HTML page

• How to design your CGI script

• Where to store your files

• How to customize your Internet Connection server to serve the new files

Let′s start with a description of this sample.

The URL:

http://rs60004.itso.ral.ibm.com/cal

identifies the following page:

Figure 146. Calendar Home Page

By clicking on the Current Month Calendar link, the user is redirected to a new
HTML page that contains a calendar of the current month:

228 A Guide to the Internet Connection Servers

Figure 147. Built on the Fly Calendar HTML Page

6.1.5.1 Invoking a Script from a Link
Invoking a script from a link is as simple as linking a page to another page.

The statement to declare a link to another page would be:

<A HREF=″ /cal/anotherpage.html″Another Page

Whereas for a call to the month CGI script it is:

Current month calendar

where /cal-bin/month is the request path that identifies the CGI script.

Here is the code being used on the home page shown in Figure 146 on
page 228.

Chapter 6. Establishing an Active Presence on the Internet 229

<HTML>
<HEAD>
<TITLE>A Guide to Internet Connection Family - CGI Scripts</TITLE>
</HEAD>
<BODY>
<CENTER>
<H1>

CGI Scripts</H1>
<P>
Current month calendar<P>
Query Calendar
</CENTER>
<P>
<HR>
<I>This page was updated on May 21, 1996</I>
</BODY>
</HTML>

Figure 148. HTML Source

6.1.5.2 Designing the CGI Script
From the URL displayed in Figure 147 on page 229, you may have guessed that
the script is named month.

Since month relies on the standard UNIX cal command and does not require
high-level routines, a shell script seems to be an appropriate language to use.

Month ′s task is to return to the client:

• A header describing the nature of the response

• The body of the response which is, in this case, the text of the HTML page

As defined in the Common Gateway Interface standard, the output of the script
should go to the standard output. Thus, month should write to stdout some plain
text such as that shown in Figure 149.

Content-type: text/html

<HTML><HEAD><TITLE>Page title</TITLE></HEAD>
<BODY>
Page body
</BODY>
</HTML>

Figure 149. HTML Source Pattern

The month script is now straightforward. Our version in shell script is listed in
Figure 150 on page 231 but we are sure you will find it easy to rewrite it in your
favorite language.

230 A Guide to the Internet Connection Servers

#!/bin/ksh

#
month script
#
This script is invoked without any argument
It builds an HTML page including :
all required HTML tags (<HTML>, <HEAD>, <BODY>, etc)
a H1 header
the calendar of the month (as displayed by the Unix cal command)
#
The output of this script will be sent as is to the client (browser)
this means that it must first print the header
#

echo ″Content-type: text/html\n″
echo ″<HTML><HEAD><TITLE>″
echo ″A Guide to Internet Connection Family - Calendar″
echo ″</TITLE></HEAD><BODY>″
echo ″″
echo ″<H1>Current month calendar</H1><HR>″
echo ″<PRE>″
cal
echo ″</PRE><HR>″
echo ″<I>This page has been created on the fly on date</I>″
echo ″</BODY></HTML>″

Figure 150. Month Shel l Script

Note for UNIX developers

Make sure that the first statement in your script indicates the shell required
to execute it otherwise you will get an internal error (execve() failed).

6.1.5.3 Storing Files
Deciding where to store the files does not look like a crucial job in this particular
example; nevertheless it ′s worth discussing this matter because the way you
organize your files has an impact on maintenance and security.

Keeping the files related to your program in a specific directory is certainly a
good habit to develop. It will help you with all administration tasks such as
backup, access restrictions, program maintenance, etc. You should create a
dedicated subdirectory in the root directory of your Web server. In this example,
we have created the /usr/local/server_root/cal subdirectory on our AIX platform.
This subdirectory contains the document files. It would have been:

• D:\WWW\CAL

• /usr/local/ServerRoot/cal

for OS/2 or Windows NT and MVS respectively.

You should remember to have a welcome page in all your document directories
unless you have set the DirAccess directive to Off in your configuration file. This
will help you to make sure that you don′ t let the server list directories when you
don ′ t mean to and furthermore it will help the user to find the key HTML
document in your directory.

Chapter 6. Establishing an Active Presence on the Internet 231

In our example, the Welcome Page (shown in Figure 146 on page 228) is named
index.html.

The Internet Connection Server distinguishes requests between documents and
CGI programs according to the URL. The mapping directives in the configuration
file (Exec, Fail, Map, Pass and Redirect) control which requests your server
accepts and maps to your actual files.

You see in 6.1.5.4, “Customizing the Internet Connection Server” which
directives are required for this specific example.

In some situations, if you mix CGI programs and document files in the same
directory, it may happen that CGI programs are viewed by the client as mere
documents thus allowing the client to download them to its workstation. This
could happen if:

• DirAccess is set to On and there is no welcome document in the directory.

• DirAccess is set to selective, there is no welcome document in the directory
and the directory is browsable. (.www_browsable file exists in the directory.)

This is why we advise you not to locate your CGI files in the same directory as
your document files.

You should create a subdirectory to keep CGI files. In our example:

• /usr/local/server_root/cal/cgi

• D:\WWW\CAL|CGI

• /usr/local/ServerRoot/cal/cgi

for AIX, OS/2 or Windows NT and MVS respectively.

6.1.5.4 Customizing the Internet Connection Server
At this point in the implementation process, the users still do not have access to
the files. Additional directives are required in the configuration file in order to
map requests to complete file paths for both CGI programs and document files.

Since we want our server to respond to requests starting with /cal with a
document in /usr/local/server_root/cal, the following directive should be added
to the configuration file:

Pass /cal/* /usr/local/server_root/cal/*

We also want our server to respond to requests starting with /cal/cgi-bin with the
execution of CGI programs in /usr/local/server_root/cal/cgi; therefore, the
following directive should be added to the configuration file:

Exec /cal-bin/* /usr/local/server_root/cal/cgi/*

These directives can be added by using the Configuration and Administration
Forms. The corresponding entry in the menu is:

• Request Routing - Route URL requests to server files

The form is shown in Figure 151 on page 233.

232 A Guide to the Internet Connection Servers

Figure 151. Request Routing Form

For the first directive to be added:

• Action is Pass.

• URL Request Template is /cal/*.

• Replacement File Path is /usr/local/server_root/cal/*.

This directive should be inserted in any case before the last directive, that is:

Pass /* /usr/local/server_root/pub/*

which routes in last resort to the server root.
Click on the Apply button of the form to validate it.

After a few seconds, the Confirmation page will invite you either:

• To make further changes before restarting the server

• To invoke the changes

Chapter 6. Establishing an Active Presence on the Internet 233

Figure 152. Request Routing Confirmation

When you are finished with the changes and the directives have been added to
your configuration, restart the server in order to activate the configuration
changes you have made. After a restart of the server, you can access the
Calendar Home Page and from there launch your CGI script.

Note that, as for any CGI script, you could launch the month CGI script manually;
in this case by requesting the URL:

http://rs60004.itso.ral.ibm.com/cal-bin/month

6.1.6 Building On-The-Fly Pages - The Simpsons
There are many occasions when you would like to build on-the-fly pages in your
Web server. For example:

• Having a random image on your home page to animate your server

• Advertising for one of your business partners

• Displaying a contextual image based on criteria such as date, time, etc.

In order to illustrate this technique, we chose the following scenario: when
accessing the URL httpd://rs60004.itso.ral.ibm.com/randgif an HTML page will be

234 A Guide to the Internet Connection Servers

returned to the browser including a header, some text and a random image.
This image will be randomly chosen from the portraits of the Simpsons
characters. (The GIF files of the Simpsons family were found on the Web at
http://www-pcd.stanford.edu/gifs.)

An example follows:

Figure 153. HTML Page with Random GIF Image

6.1.6.1 Integrating a Random Image in a Page
The technique would be the same if you wanted to integrate a page-hit counter
or an advertisement or any other image in your HTML document.

The following HTML code:

is included in the HTML source page. This means that when someone requests
the document, the user′s browser will also request an image file named
/randgif-bin/randgif to be loaded. This is not a real image file, but it causes the
Web server to run the program in order to build the image.

Therefore, the code for the HTML page is as follows:

Chapter 6. Establishing an Active Presence on the Internet 235

<HTML>
<HEAD>
<TITLE>A Guide to Internet Connection Family - CGI Scripts</TITLE>
</HEAD>
<BODY>
<CENTER>
<H1>

CGI Scripts</H1>
<P>
<H1>Below is a random GIF image !</H1>
<P>

<P>
</CENTER>
<HR>
<I>This page was updated on May 21, 1996</I>
</BODY>
</HTML>

Figure 154. HTML Source

6.1.6.2 Designing the CGI Program
The CGI program, randgif, randomly chooses one of the images in the pool of
Simpsons family images and writes it to the standard output. As in the example
in 6.1.5, “Linking to a CGI Script - Calendar” on page 228, the CGI script must
first send a header prior to the image itself. This means that the output should
look something like the following.

Content-type: image/gif

<GIF file contents (binary)>

Figure 155. HTML Source Pattern

To develop this CGI script, we chose to write it in C language. In order to
randomize the choice of the GIF image, we used the result of the integer division
of the current time by the number of images in the pool. We relied on the UNIX
time() routine which returns the current time expressed in seconds since 00:00:00
Coordinated Universal Time, January 1, 1970.

The C source is included in the figure below.

236 A Guide to the Internet Connection Servers

/*
* randgif.c
*
* input parameters:
* none
*
* output:
 * This program send to the standard output:
 * - a header to give information on
 * the nature of the following data
 * - the binary data corresponding to a GIF image
 * randomly selected in a pool of images
 */

#include <stdio.h>
#include <errno.h>
#include <time.h>
#include <fcntl.h>

/* definitions */
/* directory where GIF files are stored */
#define GIFPATH ″ /usr/local/server_root/randgif/gifs″
#define BUFSZ 256 /* temporary storage size */

/* GIF filenames array - as listed in GIF directory */
char *gifs[] = {

″simp.baby.gif″ ,
″simp.bart.gif″ ,
″simp.boss.gif″ ,
″simp.clown.gif″ ,
″simp.granpa.gif″ ,
″simp.homer.gif″ ,
″simp.lisa.gif″ ,
″simp.moe.gif″ ,
″simp.nerd.gif″ ,
″simp.saunders.gif″

};

/* response header for GIF image */
char header[] = ″Content-type: image/gif-n-n″ ;

Figure 156 (Part 1 of 2). Randgif.c Source Code

Chapter 6. Establishing an Active Presence on the Internet 237

/*
* main
*/
{

time_t curtime; /* current time */
int nb_of_gifs; /* number of entries in array */
int fd; /* GIF file handler */
int count; /* I/O counter */
char gif_file[255]; /* GIF file name */
char buf[BUFSZ]; /* temporary storage */

/* get current time */
curtime = time(NULL);

/*
* choose filename ″randomly″ :
* remainder of the integer division serves as random number
* in the correct range
*/

/* calculate the number of entries in the filename array */
nb_of_gifs = sizeof(gifs) / sizeof(char *);

/* build the GIF filename, using the ″random″ number */
sprintf(gif_file, ″%s/%s″ , GIFPATH,

gifs[curtime % nb_of_gifs]);

if ((fd = open(gif_file, O_RDONLY)) < 0) {
perror(″open″) ;
exit(1);

}

/* write the header to standard output */
write(1, header, strlen(header));

/* copy GIF data file to standard output */
while (count = read(fd, buf, BUFSZ)) {

write(1, buf, count);
}
close(fd);
exit(0);

Figure 156 (Part 2 of 2). Randgif.c Source Code

6.1.6.3 Customizing the Internet Connection Server
In this example, we organized our files in the following manner:

• We created a new directory:

/usr/local/server_root/randgif

in which we stored the Welcome HTML page (named index.html).

• We created a subdirectory:

/usr/local/server_root/randgif/gifs

in which we stored the Simpsons GIF files.

238 A Guide to the Internet Connection Servers

• We created a subdirectory:

/usr/local/server_root/randgif/cgi

in which we stored the CGI program (source and executable files).

We added the following directives to our configuration file:

Exec /randgif-bin/* /usr/local/server_root/randgif/cgi/*
Pass /randgif/* /usr/local/server_root/randgif/*

Note that there is no need to add any directive relative to the
/usr/local/server_root/randgif/gifs directory since this directory is never directly
accessed by the Internet Connection server.

6.1.7 Processing Forms - Calendar
In this sample, we show you how to process forms with a CGI script. Forms can
be used for many purposes such as:

• E-mail gateway

• Feedback form

• Order form

• Bulletin board systems

The scenario described in this section returns to our earlier theme of calendars
(see 6.1.5, “Linking to a CGI Script - Calendar” on page 228). This time the
users will be able to choose, via a form, the month and the year for which they
want the calendar to be displayed. The end result of our efforts is shown in
Figure 157.

Figure 157. Calendar Form

As you can see, users have a simple, easy-to-understand interface. They just
have to select the month and the year from the select-lists, then click on the Go!
button.

Chapter 6. Establishing an Active Presence on the Internet 239

The page returned to the browser by the script returns the calendar
corresponding to the request:

Figure 158. Answer to Calendar Query

The HTML source code listed in Figure 159 on page 241 shows you that the key
to building such pages is the <FORM> tag.

240 A Guide to the Internet Connection Servers

<HTML>
<HEAD>
<TITLE>A Guide to Internet Connection Family - Query Calendar</TITLE>
</HEAD>
<BODY>
<CENTER>
<H1>

Query Calendar
</H1>
<P>
<FORM ACTION=″ /cal-bin/qcal″ METHOD=″GET″>
Month
<SELECT NAME=month><OPTION SELECTED VALUE=01>January
<OPTION VALUE=02>February
<OPTION VALUE=03>March
<OPTION VALUE=04>April
<OPTION VALUE=05>May
<OPTION VALUE=06>June
<OPTION VALUE=07>July
<OPTION VALUE=08>August
<OPTION VALUE=09>September
<OPTION VALUE=10>October
<OPTION VALUE=11>November
<OPTION VALUE=12>December
</SELECT>
Year
<SELECT NAME=year><OPTION SELECTED VALUE=1996>1996
<OPTION VALUE=97>1997
<OPTION VALUE=98>1998
<OPTION VALUE=99>1999
</SELECT>

<INPUT TYPE=submit NAME=″submit″ VALUE=″Go !″></FORM>
</CENTER>
<P>
<HR>
<I>This page was updated on May 21, 1996</I>
</BODY>
</HTML>

Figure 159. HTML Source

The <FORM> tag is quite complicated in that it requires many statements
spread on several lines in our sample.

The first line:

<FORM ACTION=″ /cal-bin/qcal″ METHOD=″GET″>

contains the beginning tag and tells the server what to do with the information
that the user will fill in. When the user validates the form, the information will be
sent to the server and the server will execute the CGI program whose URL is
/cal-bin/qcal, using the GET method.

Note that the METHOD element could be omitted in this tag since the default
method is the GET method.

The lines:

Chapter 6. Establishing an Active Presence on the Internet 241

<SELECT NAME=month><OPTION SELECTED VALUE=01>January

<SELECT NAME=year><OPTION SELECTED VALUE=1996>1996

tell the server which information the user will have to give. In this case, the user
will have to choose the month and the year using selection lists.

The line:

<INPUT TYPE=submit NAME=″submit″ VALUE=″Go !″>

tells the server to execute the CGI program when the Go ! button is clicked and
ends the <FORM> tag.

Before invoking the CGI program, the server will set the environment according
to the CGI standard specification. The environment variables are described in
the Writing Common Gateway Interface Programs chapter of the Up and
Running! manual.

In the GET method, the information is passed to the CGI program in the
QUERY_STRING variable. In our sample, the information takes the following
form:

month=09&year=1996&submit=Go+%21

Refer to 6.1.7.2, “Choosing between POST or GET Methods” on page 244 for a
discussion on which method to use in your forms and an explanation regarding
the format of the information passed to the scripts.

6.1.7.1 Designing the CGI Script using Perl
This sample uses qcal, a simple Perl script that takes the information from the
user and uses it to create a personalized HTML page. The qcal script is simple
and is quite easy to customize to give you the results you want. The structure is
basic and straightforward:

• Initialization

• Processing

• Output

• Termination

In the initialization step, the script parses the argument. In this specific case,
the cgiparse and cgiutils tools shipped with the Internet Connection server were
used. The arguments could also have been retrieved from the environment
variables.

In the processing step, the variable elements of the outgoing HTML page are
evaluated.

In the next step, the header and the HTML page code are sent to the standard
output.

No specific termination code was developed in this simple sample (no lock to
release, no temporary file to erase, etc.).

The Perl script is documented in Figure 160 on page 243.

242 A Guide to the Internet Connection Servers

#!/usr/local/bin/perl

#
qcal script
#
This Perl script is invoked with two arguments :
- month: decimal number (01-12) - month of year
- year: decimal number - year with century
It builds an HTML page including :
all required HTML tags (<HTML>, <HEAD>, <BODY>, etc)
a H1 header
the calendar of the required month (as displayed by the Unix cal
command)
#
The output of this script will be sent as is to the client (browser)
this means that it must first print the header
#

define variables
$parser=′ / usr/lpp/internet/server_root/cgi-bin/cgiparse′ ;
$utils=′ / usr/lpp/internet/server_root/cgi-bin/cgiutils′ ;

parse arguments
$month = $parser -value month; chop($month);
$year = $parser -value year; chop($year);

$cal = cal $month $year;
$date = date;
$header = $utils -ct text/html;

print ″$header″ ;
print ″<HTML><HEAD><TITLE>″ ;
print ″A Guide to Internet Connection Family - Query Calendar″ ;
print ″</TITLE></HEAD><BODY>\n″ ;
print ″<IMG SRC=\″ /img/masthead.gif\″″ ;
print ″ ALT=\″A Guide to Internet Connection Family\″>\n″ ;
print ″<H1>Here is your answer !</H1><HR>\n″ ;
print ″<PRE>\n″ ;
print ″$cal\n″ ;
print ″<HR>\n″ ;
print ″<I>This page has been created on the fly on $date</I>\n″ ;
print ″</PRE></BODY></HTML>\n″ ;

Figure 160. Perl Source Code

If you are looking for Perl samples, take a look at the following URL:

http://www.yahoo.com/Computers_and_Internet/World_Wide_Web/Programmi
ng/Perl_Scripts/

In addition, there are many public domain Perl libraries on the Web which will
help you to develop your scripts. These include standard routines for processing
forms, parsing arguments, etc. Take a look, for example, at:

http://www.bio.cam.ac.uk/cgi-lib/
http://www.ics.uci.edu/WebSoft/libwww-perl/

Chapter 6. Establishing an Active Presence on the Internet 243

6.1.7.2 Choosing between POST or GET Methods
There are actually two methods to submit a form to a Web server: POST and
GET.

In both methods, the data passed to the CGI application has the same form:
ordered pairs of information with an equal sign tying together two elements of a
pair and an ampersand tying pairs together; a plus sign takes place of spaces
and special characters are encoded in hexadecimal. This is easier to see than
to describe, for example:

sel1=value1&sel2=value21+value22&submit=Apply+%21

When the GET method is used, the data is passed by the server in the
QUERY_STRING environment variable.

When the POST method is used, the CONTENT_LENGTH environment variable is
set to the length of the data and the data is sent by the server to the standard
input of the CGI program.

When choosing the method (GET or POST) for your application, consider the
amount of data that will be passed. Because the GET method relies on an
environment variable, the amount of data is limited. POST will consequently be
preferred for large amounts of data.

The trend is to have the CGI program accepting both methods, relying on the
REQUEST_METHOD environment variable to figure out which method was used
to invoke the CGI.

Note that if you are using in an HTML page a link to a CGI script such as:

your script is invoked using the GET method.

6.1.7.3 CGI Security Considerations
At this point of the discussion, we must warn you against the risks you have to
face when you develop and install CGI scripts on your Web server.

The Web is like the real world, with its fair share of malevolent people who will
take advantage of the first security hole in your server to break it down. No
doubt; a single security mistake in a CGI can give a hacker complete access to
your machine.

Let′s have another look at the Query Calendar Form and the qcal Perl script.
The qcal script could be invoked by hand using the URL:

http://rs60004.itso.ral.ibm.com/cal-bin/qcal?month=09&year=1996

The HTML Form may be considered as an aid to users for building a URL based
upon their own criteria. The problem is there is no way to prevent a user from
submitting to the server a handmade URL.

As you can see in the listing of the qcal script in Figure 156 on page 237, no
data validation is performed for the year and month parameters. This means
that a malicious hacker looking for some hole in your CGI script could guess that
your script is a Perl script running on a UNIX system and is simply passing the
arguments to an existing UNIX command.

244 A Guide to the Internet Connection Servers

Any UNIX user knows that the ″;″ character is a command separator allowing
two commands to be executed in sequence. Our hacker might therefore try to
run the script file with the URL:

http://rs60004.itso.ral.ibm.com/cal-bin/qcal?month=02&year=1996;cat+/etc/passwd

The parsing of the year calendar by the:

$year = $parser -value year; chop($year);

command would supply to the year variable the value:

1996;cat /etc/passwd

Furthermore, cal could be abused as a result of the following command:

cal 02 1996;cat /etc/passwd

That is, the calendar for February 1996 immediately followed by a request for the
contents of the /etc/passwd file. For people not familiar with UNIX, the cat
command is equivalent to the DOS type command and writes to the standard
output the files passed as arguments.

The resulting page would be as depicted in Figure 161.

Figure 161. Misusage of CGI Script

Chapter 6. Establishing an Active Presence on the Internet 245

Sending /etc/passwd is not as serious in AIX as it sounds since it does not
contain the user passwords. But this shows you the kinds of doors that can
opened by poor CGI scripts.

Clearly, you must perform data validation in your CGI scripts.

A secured Perl script for our example could be coded as shown in Figure 162 on
page 247.

246 A Guide to the Internet Connection Servers

#!/usr/local/bin/perl

#
qcal script
#
This perl script is invoked with two arguments :
- month: decimal number (01-12) - month of year
- year: decimal number - year with century
It builds an HTML page including :
all required HTML tags (<HTML>, <HEAD>, <BODY>, etc
a H1 header
the calendar of the required month (as displayed by the Unix cal
command)
#
The output of this script will be sent as is to the client (browser)
this means that it must first print the header
#

define variables
$parser=′ / usr/lpp/internet/server_root/cgi-bin/cgiparse′ ;
$utils=′ / usr/lpp/internet/server_root/cgi-bin/cgiutils′ ;

parse arguments
$month = $parser -value month; chop($month);
$year = $parser -value year; chop($year);

$header = $utils -ct text/html;

test arguments validity
$_ = $month;
if (! /[\d\d$/) {

&outout;
}
$_ = $year;
if (! /[\d\d\d\d$/) {

&outout;
}

$cal = cal $month $year;
$date = date;

print ″$header″ ;
print ″<HTML><HEAD><TITLE>″ ;
print ″A Guide to Internet Connection Family - Query Calendar″ ;
print ″</TITLE></HEAD><BODY>\n″ ;
print ″<IMG SRC=\″ /img/masthead.gif\″″ ;
print ″ ALT=\″A Guide to Internet Connection Family\″>\n″ ;
print ″<H1>Here is your answer !</H1><HR>\n″ ;
print ″<PRE>\n″
print ″$cal\n″ ;
print ″<HR>\n″ ;
print ″<I>This page has been created on the fly on $date</I>\n″ ;
print ″</PRE></BODY></HTML>\n″ ;

Chapter 6. Establishing an Active Presence on the Internet 247

routine
sub outout {

print ″$header″ ;
print ″<HTML><HEAD><TITLE>Out out !!</TITLE></HEAD>″ ;
print ″<BODY><H1> OUT OUT !!</H1>-n″ ;
print ″</BODY></HTML>\n″ ;
exit;

}

Figure 162 (Part 2 of 2). Secured Perl Script

This script verifies the validity of the arguments: month must be a two digit
number and year a four digit number.

If invalid arguments are passed to the CGI script, the returned HTML page will
send a special HTML page informing the client that it noticed the misusage of
the script (refer to outout routine in Figure 162 on page 247).

Another piece of advice is, when possible, to avoid giving to your scripts names
that will inform the user of the nature of the script. Avoid naming a Perl script
myscript.pl or a shell script myscript.sh, for example.

We leave you to imagine what a hacker would have been able to do if he or she
managed to break into the Web server using the security exposure described
earlier. We cannot stress enough that the server should be run with as low a
level of privileges as possible; only what is needed to read the documents and
run the scripts, not more.

6.1.7.4 Customizing the Internet Connection Server
In this example, we organized our files in the following manner:

• We stored the HTML page, qcal.html in:

/usr/local/server_root/cal

• We stored the Perl script in:

/usr/local/server_root/cal/cgi

As a consequence, the following directives were required in our configuration
file:

Exec /cal-bin/* /usr/local/server_root/cal/cgi/*
Pass /cal/* /usr/local/server_root/cal/*

6.1.8 Configuration and Administration Forms
The Internet Connection server package for most platforms (OS/2 Warp, Windows
NT, AIX, etc.) includes several CGI programs (executable binaries). These are:

• Htimage which handles clickable images

• Cfgin and cfgout which are used by the Configuration and Administration
Forms for general administration tasks

• Larin and larout which are used for Logging And Reporting Forms

• Sctyin and sctyout which are used to set up security for the server (available
with Internet Connection Secure Servers)

248 A Guide to the Internet Connection Servers

• Db2in and db2out which are used by the administration procedures for the
DB2 Gateway (only for platforms which support the DB2 Gateway).

Htimage is discussed in 5.9.1, “Clickable Image Maps - Shapes” on page 196.
Note that in Internet Connection Server V4.1 htimage is shipped as a program
which relies on the IBM ICAPI.

In this section, we discuss how administration and configuration procedures are
implemented using CGI programs in the Internet Connection server. See 4.6,
“Configuration” on page 96 to read more about configuring your server using
Administration and Configuration tasks.

6.1.8.1 Administration and Configuration Interface
Immediately after installing Internet Connection Server on your system, the
home page of your brand new Web server gives you a link to the Configuration
and Administration Forms main page.

Because configuration and administration tasks are not supposed to be done by
any client, you certainly should not keep this link in any of your HMTL pages.

However, except if you changed or deleted the directives related to
administration in your configuration file, you are still able to access the
Configuration and Administration Forms using the URL:

http://<your_system_name>/admin-bin/cfgin/initial

at least from any authorized hosts.

We see in section 6.1.8.2, “Administration and Configuration Forms
Implementation” on page 252 which directives are required in the configuration
file for the Configuration and Administration Forms to work properly.

From the main page of the Configuration and Administration Forms, you can link
to each of the input forms. A click on Caching , for example, takes you to the
caching form, as shown in the following figure.

Chapter 6. Establishing an Active Presence on the Internet 249

Figure 163. Caching Setup Form

The new URL is:

http://<your_system_name>/admin-bin/cfgin/caching

If you fill in the form and click on Apply , the server runs a CGI program and
shows you a message contained in a confirmation page indicating that your input
was accepted.

The confirmation page is shown below.

250 A Guide to the Internet Connection Servers

Figure 164. Caching Setup Confirmation Page

You are now located on:

http://<your_system_name>/admin-bin/cfgout/caching

If you take a close look at all of these URLs, you will find out that they all rely on
cfgin, cfgout, larin, larout, sctyin and sctyout which are the administration CGI
programs.

The way the CGI programs are invoked differs here from the ways we have seen
before. In addition to QUERY_STRING (for GET method) and stdin (for POST
method), arguments may be passed to the CGI program by an additional relative
path information in the URL. This additional information comes after the script
name but before any query data. For example, in:

http://rs60004.itso.ral.ibm.com/admin-bin/cfgin/basic

the additional relative path information is:

/basic

This additional information is passed to your CGI program in the PATH_INFO
environment variable.

Therefore, any Internet Connection server′s Administration Form can be reached
directly by passing the right parameter in the URL. Furthermore, if you do not

Chapter 6. Establishing an Active Presence on the Internet 251

specify any subcommand by means of this parameter, the CGI program will
return to you an HTML page with the following error message: Environment
variable PATH_INFO not set.

6.1.8.2 Administration and Configuration Forms Implementation
In this section we discuss where the files required by the Administration and
Configuration Forms are stored and which directives are required in your
configuration file to have the tool working properly.

The location of the CGI programs and of the documents they rely on (HTML
pages and GIF files) differ between the different platforms.

AIX Platform: After the installation of the Internet Connection server on an AIX
platform, the CGI programs and the files related to administration and
configuration tasks are located according to the following scheme:

• /usr/lpp/internet/server_root/cgi-bin contains htimage (htimage.so in Version
4.1).

• /usr/lpp/internet/server_root/admin-bin contains:

− cfgin, cfgout,

− larin, larout (in Version 4.1)

− sctyin, sctyout (in secure versions)

− db2in, db2out

• /usr/lpp/internet/server_root/Admin contains the HTML pages and the GIF
files related to the administration.

Consequently, the following directives are required in the configuration file:

Exec /cgi-bin/* /usr/lpp/internet/server_root/cgi-bin/*
Exec /admin-bin/* /usr/lpp/internet/server_root/admin-bin/*
Pass /Admin/* /usr/lpp/internet/server_root/Admin/*

In the case of Version 4.1 of the product, the following statements are also
required in the configuration file:

Service /cgi-bin/htimage* /usr/lpp/internet/server_root/cgi-bin/htimage.so:HTImage*
Service /cgi-bin/imagemap* /usr/lpp/internet/server_root/cgi-bin/htimage.so:HTImage*

This is due to the fact that in this version, the htimage is no longer a CGI
program but is in fact an IBM ICAPI program (see 6.2, “API Applications” on
page 274).

OS/2 and Windows NT Platforms: After the installation of the Internet Connection
server on an OS/2 or a Windows NT platform, the CGI programs and the files
related to administration and configuration tasks are located according to the
following scheme:

• $WWWDIR\CGI-BIN contains HTIMAGE.EXE (HTIMAGE.DLL in Version 4.1).

• $WWWDIR\ADMIN contains:

− Cfgin, cfgout,

− Larin, larout (in Version 4.1)

− Sctyin, sctyout (in secure versions)

− Db2in, db2out

− The HTML pages and GIF files related to the administration

252 A Guide to the Internet Connection Servers

where $WWWDIR is the directory you chose for installing the product.

Consequently, if the product was installed in D:\WWW directory, the following
directives are required in the configuration file:

Exec /cgi-bin/* D:\WWW\CGI-BIN*
Exec /admin-bin/* D:\WWW\ADMIN*
Pass /Admin/* D:\WWW\ADMIN*

In the case of Version 4.1 of the product, the following statements are also
required in the configuration file:

Service /cgi-bin/htimage* D:\WWW\CGI-BIN-htimage:HTImage*
Service /cgi-bin/imagemap* D:\WWW\CGI-BIN-htimage:HTImage*

This is due to the fact that in this version of the product, the htimage is no longer
a CGI program but is in fact an IBM ICAPI program (see 6.2, “API Applications”
on page 274).

6.1.9 OS/400 CGI - ITSO Company
In this section, we look at how the CGI is implemented on the OS/400 platform.
We provide an example based upon an imaginary ITSO company but, prior to
that, we look at some OS/400 CGI specifics. Many of the points discussed are
also relevant to CGI programming on other platforms.

6.1.9.1 CGI Programming
For accessing a CGI program, you have to use the FORM tag in your HTML
document. Figure 165 on page 254 shows an example on how to write an HTML
document with the FORM tag.

Chapter 6. Establishing an Active Presence on the Internet 253

<html>
<head>
<title>Ordering an AS/400 Method=GET</title>
</head>
<body bgcolor=″#F8F8FF″>

 Ordering an IBM System AS/400
<p>
Please fill in the following :
<form method=″GET″ action=″ /BonusCGI/ORDAS400G.PGM″>
<INPUT type=″hidden″ name=″MBR″ value=″ORDAS400E ″ size=10>
Name :
<input type=text name=″NAME″ size=″30″ maxlength=″40″ clear=″all″>
<p>
Address :
<textarea name=″ADDRESS″ cols=30 rows=2 VALUE=″ ″>
</textarea>
<p>
Which AS/400 would you like to order ?

<input name=″TYPE″ value=″P1″ type=radio checked>Portable
<input name=″TYPE″ value=″P2″ type=radio>Server
<input name=″TYPE″ value=″P3″ type=radio>System
<p>
Do you want the Support Line Service ?

<input name=″SERV″ value=″T″ type=radio checked>Yes
<input name=″SERV″ value=″F″ type=radio>No
<p>
Please order :
<p>
<input type=submit VALUE=″Order″>
<input type=reset VALUE=″Clear Form″>
</form>
</P>
Back Demo-Menue

Figure 165. The HTML Source Using the FORM Tag

When the Web browser displays the HTML document, it is similar to the following
figure.

254 A Guide to the Internet Connection Servers

Figure 166. The HTML Document Using the FORM Tag Displayed by the Browser

A Form basically consist of three elements:

 1. The Form method:

<FORM METHOD=″GET″ ACTION=″ /BonusCGI/ORDAS400G.PGM″>

or

<FORM METHOD=″POST″ ACTION=″ /BonusCGI/ORDAS400P.PGM″>

 2. The Input tags:

text, textarea, checkbox, radiobutton, options...

 3. Submit button

All three elements are used in Figure 165 on page 254. Note that the action
keyword contains the URL address to send the input data to when the Submit
button is selected. In this case, action=″/BonusCGI/ORDAS400x.PGM″.

A match with an EXEC directive in our HTTP configuration enables the HTTP
server to execute a CGI program on behalf of the client.

In our case, action=″/BonusCGI/ORDAS400x.PGM″ is mapped with:

EXEC /BonusCGI/* /QSYS.LIB/ITSCOIC400.LIB/*

 Note

Please note that only programs in the QSYS.LIB library may be the target for
the input data.

This is because only programs in the QSYS.LIB File System may be executed
on the AS/400 system.

Chapter 6. Establishing an Active Presence on the Internet 255

The following figure shows the HTML output after the execution of the CGI-BIN
program.

Figure 167. The HTML Output Information Back on the Browser

Figure 168. Mapping of CGI URL to HTTP Configuration

256 A Guide to the Internet Connection Servers

There are two methods that can be used to access your forms. Depending on
which method you use, you receive the encoded results of the form in a different
way. The two methods are:

Method Description

GET If your form in the HTML document has METHOD=″GET″ in its FORM
tag, your CGI program receives the encoded form input in the
environment variable QUERY_STRING.

POST If your form in the HTML document has METHOD=″POST″ in its
FORM tag, your CGI program receives the encoded form input on
stdin. The server does not send you an End of File (EOF) on the end
of the data. Instead, you must use the environment variable
CONTENT_LENGTH to determine how much data you should read
from stdin.

 Note

POST is often the preferred method of operating with CGI-BIN programming.

The reason why POST is preferred is that GET uses the environment variable
QUERY_STRING.

Some server platforms are limited in the length of environment variables.

A form with a lot of data could cause a loss of data.

In the POST method, there are no limits. (All data is passed through
STANDARD INPUT, a way of transferring information in a ″stream″ without
limits.)

As you can see, the form method determines the way of passing the encoded
input data from the browser to the CGI program through the server. The server
and the CGI program communicates in four major ways, all supported by the
AS/400 system:

Environment variables Used for the GET method.

The command line Used in the case of an ISINDEX query.

Standard input Used for the POST method.

Standard output Used to produce output data.

The AS/400 HTTP server provides the means whereby called CGI programs can
access environment variables and standard input stream (stdin). The server
also provides the means for a CGI program to return data in the standard output
stream.

Request for programs in an HTML document can be made using either the GET
or the POST method. See Figure 169 on page 258 and Figure 170 on page 260.

Note This!

The AS/400 system runs CGI programs under the QTMHHTP1 user profile.
The QTMHHTP1 user profile must have authority to access all the objects
accessed by the CGI programs.

Chapter 6. Establishing an Active Presence on the Internet 257

GET

Figure 169. AS/400 CGI Using the GET Method

The HTML document displayed by the browser uses <FORM METHOD=″GET″.

When the GET method is used, the input parameters are passed to the called
CGI program in one of two ways:

 1. In command line parameters (program call parameters):

Parameters are passed to the CGI program using command line arguments
(program call parameters) only when the data in the request URL beyond the
first question mark (?) contains no equal signs (=). This is called an
ISINDEX. In the URL for an ISINDEX request, the CGI parameters are
positional (being separated by plus (+) signs). The server parses the
parameters and puts each parameter, according to its position in the string,
into corresponding parameters of the CGI program call.

An example of a URL is:

http://sysnm003.sysnmaa.ibm.com/CGILIB/INDEX.PGM?value1+value2+value3

 2. In the environment variable QUERY_STRING:

258 A Guide to the Internet Connection Servers

If the parameter string of the URL beyond the first question mark (?)
contains an equal sign (=), the entire parameter string is put into the
QUERY_STRING environment variable. This is the most normal case.

An example for the URL is:

http://sysnm003.sysnmaa.ibm.com/CGILIB/FORM.PGM?kwd1=value1
&kwd2=value2&kwd3=value3

 Note

The assumption is made that CGILIB has been mapped to a library in
QSYS.LIB containing CGI programs with the MAP and Exec directives for the
AS/400 HTTP server.

The mapping directives allow the Web Administrator on the AS/400 system to
define a virtual hierarchy of Web resources that is presented by the AS/400
HTTP server. This virtual hierarchy is independent of the physical file system
(or systems) on which the resources are actually stored. This is very useful
since:

 1. It allows resources to be physically relocated without changing the
apparent hierarchy and its implied associations.

 2. The details of underlying physical file systems can be hidden from client
applications that are accessing the AS/400 HTTP server.

The second reason is especially important for the AS/400 HTTP server
because of the differences between some of the AS/400 file systems and the
tree structured hierarchical UNIX file systems upon which the HTTP protocol
and the URL scheme are based.

The mapping directives, MAP and Exec, are used to specify a set of rules that
define a process for translating and processing the path (and file) information
contained in a URL that is received in a client request URL.

Each of the mapping directives may be specified multiple times and in any
combination, and may be placed anywhere in the AS/400 HTTP server
configuration. When the AS/400 HTTP server configuration is read during
initialization, the mapping directives are stored in order of appearance in a
mapping rule table.

The incoming URL is compared against each of the specified mapping rules
in turn. If a directive applies, the specified translation is carried out.
Depending on the rule that was matched, rule processing is either suspended
or continues with the next rule using the newly translated URL.

The mapping and the Exec definitions are created through the WRKHTTPCFG
command.

POST: When the POST method is being used, the QUERY_STRING environment
variable contains a null string. The null string makes the CGI program look for
its input in the standard input stream. See Figure 170 on page 260. The CGI
program can determine the method, GET or POST, from the REQUEST_METHOD
environment variable.

Chapter 6. Establishing an Active Presence on the Internet 259

Figure 170. AS/400 CGI Using the POST Method

When the HTML document uses the <FORM METHOD=″POST″, the form is
submitted with the standard input data stream, stdin. The CGI program inspects
the request method to determine if post data is available by reading the
REQUEST_METHOD environment variable. The CGI program can obtain other
environment variables set by the HTTP server regardless of the request method.

In order to support environment variables, the AS/400 HTTP server creates an
environment variable user index that contains the name and value for each
environment variable set by the server. The index is named QTMHENVI in the
QTEMP library.

The reason why it is created in the QTEMP library is that it has to be unique for
each child job that defines it. So each child job creates the index that is
accessible to the CGI programs that the server child job calls.

Each time a CGI program is called, a new index is created and new environment
variables are set (preventing one CGI program from using the environment
variables intended for another CGI program). Creation of the index is not
dependent on the use of either method, GET or POST. The index is always
created.

260 A Guide to the Internet Connection Servers

The QTMHENVI index contains the following environmental variables:

When the CGI program has finished executing, it is expected to return an HTML
document or a redirection to an HTML document.

The CGI program passes output from other programs or databases plus any
additional information back to the server. To do that, the CGI program uses the
standard output data stream, stdout.

There is support for CGI programs written in:

• C language

• ILE RPG

• ILE COBOL

Necessary APIs are available to support the environment variables, the standard
input stream, and the standard output stream.

Table 11. CGI Environment Variables in the QTMHENVI Index File

Environment Variable Contain

QUERY_STRING Information that follows the first question mark (?) in the
URL referencing the CGI program.

SERVER_SOFTWARE The name and version of the information server
software answering the request (and running the
gateway).

SERVER_NAME Host name, DNS alias, or IP address of the server.

GATEWAY_INTERFACE The version of the CGI specification to which the server
complies.

SERVER_PROTOCOL The name and revision of the information protocol this
request came in with.

SERVER_PORT The port number to which the request was sent.

REQUEST_METHOD The method with which the request was made. For
HTTP, this is GET or POST.

PATH_INFO The extra path information following the path
information required to identify the CGI program name.

PATH_TRANSLATED The server provides a translated version of PATH_INFO,
which takes the path and does any virtual-to-physical
mapping to it.

SCRIPT_NAME A virtual path to the program being executed.

REMOTE_HOST The host name making the request.

REMOTE_ADDR The IP address of the host name making the request.

REMOTE_USER This is the user name making the request.

CONTENT_TYPE For queries that have attached information, such as
HTTP POST, this is the content type of the data.

CONTENT_LENGTH The length of data in the attached HTTP POST from the
client.

IBM_CCSID_VALUE The CCSID under which the current server job is
running.

Chapter 6. Establishing an Active Presence on the Internet 261

The C language supports the environment variables through the getenv() API.
The standard input stream and the standard output stream are supported
through many APIs. Examples are fgets() and fwrite().

For the C programs, the APIs are found in the QTMHCGI *SVCPGM. A C
language header file member named QTMHCGI is provided in H file in library
QSYSINC.

The APIs to support ILE RPG and ILE COBOL are provided in source files. The
source files are:

• QCBLLESRC for ILE COBOL

• QRPGLESRC for ILE RPG

Four APIs are provided as shown in Table 12.

Note This for RPG

For the CRTPGM, you must always specify the BNDSRVPGM QTCP/QTMHCGI
to ensure they satisfy any module import request for QtmhGetEnv,
QtmhRdStin, QtmhWrStout, and QtmhCvtDB.

The APIs are provided to simplify parsing form data from either stdin or from the
environment variable QUERY_STRING. The CGI program is expected to provide
the name of the DDS file specification that identifies the anticipated form
variables and their attributes.

The server times the operation CGI programs and terminates child server jobs
exceeding the time limit. There are three timeout keywords for input timeout,
output timeout, and script timeout.

Also, the server protects itself from CGI program exceptions by providing
exception handling that reduces any escape messages resulting from CGI
program failures to diagnostic messages.

Table 12. The APIs Provided for ILE RPG, ILE COBOL, and C Programs

Type of API ILE RPG ILE COBOL C Language

Get Environment
Variable

QtmhGetEnv QtmhGetEnv getenv()

Read from Stdin QtmhRdStin QtmhRdStin Many, for
example fgets()

Write to Stdout QtmhWrStout QtmhWrStout Many, for
example fwrite()

Parse CGI input QtmhCvtDB QtmhCvtDB #pragma mapinc

6.1.9.2 Examples for Environment Variables
On the following pages are some inquiry examples for environment variables.

Environment Variables with GET

Figure 172 on page 264 shows the inquiry results with the Method=GET.

The environment variable QUERY_STRING contains the name/value pairs.

262 A Guide to the Internet Connection Servers

Environment Variables with POST

Figure 174 on page 265 shows the inquiry results with the Method=POST.

The environment variable QUERY_STRING is empty.

POST always reads from STDIN.

The following figure shows the form for program CGIENVGET and environment
variables with METHOD=GET.

Figure 171. The HTML Document Using the FORM Tag with Method=GET

The following figure shows the HTML output from program CGIENVGET.

Chapter 6. Establishing an Active Presence on the Internet 263

Figure 172. Document Returned from the Program CGIENVGET

The following figure shows the form for program CGIENVPOST and environment
variables with METHOD=POST.

Figure 173. The HTML Document Using the FORM Tag with Method=POST

The following figure shows the HTML output from program CGIENVPOST.

264 A Guide to the Internet Connection Servers

Figure 174. Document Returned from the Program CGIENVPOST

Chapter 6. Establishing an Active Presence on the Internet 265

6.1.9.3 ITSO Company Demonstrations

Figure 175. Demonstrations Welcome to the ITSO Company

All programs, files, HTMLs and source files are located in the library ITSOIC400.
The images (GIFs) are in the directory ITSOIC.400.

Table 13. Overview Demo - Programs HTMLFILE=INPUT

Program Function Files HTML-Mbr HTMLO-Mbr Language

CGIENVGET Environment
Vars GET

ENVFILE
ENVGETDS
HTMLO

FORMGETE CGIENVGETE ILE RPG

CGIENVPOST Environment
Vars
POST

ENVFILE
ENVPOSTDS
HTMLO

FORMPOSE CGIENVPOSE ILE RPG

CGIGET Search
Online
Catalog

INVFILE
QUERYDS

L04P040 ILE RPG

CGIPOST Feedback
Talk To
Us

TALKTOUS
TALKDS

L04P060 ILE RPG

ORDAS400G Ordering
an
AS/400
GET

ORDAS00F
ORDASDS
HTMLO

AS4FORMGE ORDAS400E ILE RPG

ORDAS400P Ordering
an
AS/400
POST

ORDAS00F
ORDASDS
HTMLO

AS4FORMPE ORDAS400E ILE RPG

PARSECGIP Ordering
an
AS/400
POST

RESIFORM ILE C

266 A Guide to the Internet Connection Servers

Source-Code RPG Program ORDAS400G: ILE RPG program example for the
Method=GET.

The information from the URL (value/name pairs) is assigned to the environment
variable QUERY_STRING.

This gateway program picks out the name/value pairs of the variables from this
QUERY_STRING through the API for ILE RPG.

The following example shows the GET environment variable QtmhGetEnv
(subroutine GETENV).

.

**
* Simple ILE RPG program ORDAS400G to test CGI Method=GET
*
*
* 1. Compile this source member as module ORDAS400G (PDM Option=15)
*
* 2. Create program ORDAS400G from module ORDAS400G (PDM Option=26)
* with PROMPT(PF4) and BNDSRVPGM(QTCP/QTMHCGI)
*
* Define your files here
**
* Order Database file
**
FORDAS00F O A E DISK
**
* HTMLFILE Input file (read FORM input)
**
FHTMLFILE IF E DISK
**
* HTMLO Output file (prepared HTML Output in SRC-PF HTMLO)
* (MBR = hidden field in HTML Input Form)
**

 FHTMLO IF E DISK USROPN RENAME(HTMLO:HTMLOUT)
**

�A�
| *Variables for the CGI interface APIs
| *These are for the APIEnVar

 | DENBuff S 2048A INZ
 | DENBuffLn S 9B 0 INZ(2048)
 | DENActLn S 9B 0 INZ
 | DENVarName S 64A INZ
 | DENVarLn S 9b 0 INZ
�A�

*These are for the APICvtDB Datastructure INPUT fields
**
DDBFileName S 20A INZ(′ ORDASDS *LIBL ′)
**
DDBBuff S 2048A INZ
DDBBuffLn S 9B 0 INZ(2048)
DDBDSLn S 9B 0 INZ
DDBActLn S 9B 0 INZ
DDBRespCd S 9B 0 INZ
*These are used for APIStdOut
DOutBuff S 2048A INZ
DOutBuffLn S 9B 0 INZ(2048)
**
*Externally described data structure. Used for Parsing
*Need a different one in each CGI-BIN you write
DORDASDS E DS
**

Figure 176 (Part 1 of 5). ILE RPG Program ORDAS400G Method=GET

Chapter 6. Establishing an Active Presence on the Internet 267

**
* Data structure for error reporting. Copied from QSYSINC/QRPGLESRC(QUSEC
DQUSEC DS
D* Qus EC
D QUSBPRV 1 4B 0 INZ(16)
D* Bytes Provided
D QUSBAVL 5 8B 0
D* Bytes Available
D QUSEI 9 15
D* Exception Id
D QUSERVED 16 16
D* Reserved
D*QUSED01 17 116
D*
D* Varying length
**
*Constants for names of CGI APIs
DAPIStdIn C ′ QtmhRdStin′
DAPIStdOut C ′ QtmhWrStout′
DAPICvtDB C ′ QtmhCvtDb′
DAPIEnVar C ′ QtmhGetEnv′
*Compile-time array for OVRDBF
DOVRDBF S 80 DIM(2) PERRCD(1) CTDATA
DOVRARR S 1 DIM(80)
D**
D* Define NewLine
DNewLine C x′ 15 ′
D**
D* Define break
DBreak C ′
′
**

Figure 176 (Part 2 of 5). ILE RPG Program ORDAS400G Method=GET

268 A Guide to the Internet Connection Servers

**
�B�
| * Get the Environment Variable called QUERY_STRING
| * Set the ENVarName to QUERY_STRING
| *You must count the length of the Var Name!
| *Set the ENVarLn to this length (12 In This Case)

 | C MOVEL *BLANKS ENBuff
 | C MOVEL ′ QUERY_STRING′ ENVarName
 | ***
 | C Z-ADD 12 ENVarLn
 | ***
 | C EXSR GETENV
| * Upon return, your Query_String data is in ENBuff with the len
| * of the data returned in ENActLn
| * Move this data to the DBCvt parms
| **

 | C Z-ADD 103 DBDSLn
 | **
 | C MOVEL ENBuff DBBuff
 | C Z-ADD ENActLn DBBuffLn
�B�

**
* Circumvention for HIDDEN fields (find out MEMBER-NAME for HTMLO)
**
C MOVEL ENBuff M14 14
C MOVE M14 M10 10

 C ′ + ′ : ′ ′ XLATE M10 MBR 10

* END Circumvention
**
* Parse using the CvtDB API
C EXSR PARSE
* The field names in your Ext DS now
* contain the Values passed in the POST data
* Move them to the DB file fields
**
* OVR HTMLOUT with MEMBER ORDAS400 and open file

 C MOVEA OVRDBF(1) OVRARR
 C MOVEA MBR OVRARR(24)
 C MOVEA OVRARR CMD 80
 C Z-ADD 80 L 15 5
 C CALL ′ QCMDEXC′
 C PARM CMD
 C PARM L
 C open HTMLO

* Move FORM Input to Database fields
**
C MOVEL NAME NAME_X
C MOVEL ADDRESS ADDRESS_X
C MOVEL TYPE TYPE_X
C MOVEL SERV SERV_X

* Write Database record file ORDAS00F
**
C WRITE ORDASR
**

Figure 176 (Part 3 of 5). ILE RPG Program ORDAS400G Method=GET

Chapter 6. Establishing an Active Presence on the Internet 269

**
* Create the HTML Output
* Write HTML Required control records
* ADD NewLine append after 80 to 120 characters to OutBuff
**
C DO 9 I 5 0
C READ HTMLOUT 98

 C OutBuff cat SRCDTA:0 OutBuff
 C OutBuff CAT NewLine:0 OutBuff

* Prepare variable OUTPUT
 C I ifeq 9
 C OutBuff CAT Break:0 OutBuff
 C OutBuff CAT Break:0 OutBuff
 C OutBuff cat NAME:0 OutBuff
 C OutBuff CAT Break:0 OutBuff
 C OutBuff cat ADDRESS:0 OutBuff
 C OutBuff CAT NewLine:0 OutBuff
 C TYPE ifeq ′ P1′
 C OutBuff CAT Break:0 OutBuff
 C OutBuff CAT Break:0 OutBuff
 C 10 CHAIN HTMLOUT 98
 C OutBuff CAT SRCDTA:0 OutBuff
 C OutBuff CAT NewLine:0 OutBuff
 C endif
 C TYPE ifeq ′ P2′
 C OutBuff CAT Break:0 OutBuff
 C OutBuff CAT Break:0 OutBuff
 C 11 CHAIN HTMLOUT 98
 C OutBuff CAT SRCDTA:0 OutBuff
 C OutBuff CAT NewLine:0 OutBuff
 C endif
 C TYPE ifeq ′ P3′
 C OutBuff CAT Break:0 OutBuff
 C OutBuff CAT Break:0 OutBuff
 C 12 CHAIN HTMLOUT 98
 C OutBuff CAT SRCDTA:0 OutBuff
 C OutBuff CAT NewLine:0 OutBuff
 C endif
 C OutBuff CAT Break:0 OutBuff
 C OutBuff CAT Break:0 OutBuff
 C SERV ifeq ′ T′
 C 13 CHAIN HTMLOUT 98
 C OutBuff CAT SRCDTA:0 OutBuff
 C OutBuff CAT NewLine:0 OutBuff
 C else
 C 14 CHAIN HTMLOUT 98
 C OutBuff CAT SRCDTA:0 OutBuff
 C OutBuff CAT NewLine:0 OutBuff
 C endif
 C endif
 C ENDDO
 C MOVE *OFF *IN98
 C 15 setll htmlout
 C *IN98 DOWEQ *OFF
 C read htmlout 98
 C *IN98 CABEQ *ON EndHTM
 C OutBuff cat SRCDTA:0 OutBuff
 C OutBuff CAT NewLine:0 OutBuff
 C EndHTM TAG

* End variable OUTPUT
C ENDDO

Figure 176 (Part 4 of 5). ILE RPG Program ORDAS400G Method=GET

270 A Guide to the Internet Connection Servers

**
* Read HTMLFILE until EOF
C MOVE *OFF *IN99

 C *IN99 DOWEQ *OFF
 C READ HTMLREC 99
 C ENDDO

* Send OutBuff to standard output
 C OutBuff CAT NewLine:0 OutBuff
 C EXSR STDOUT

* End program
C CLOSE HTMLO

 C MOVEA OVRDBF(2) OVRARR
 C MOVEA OVRARR CMD 80
 C CALL ′ QCMDEXC′
 C PARM CMD
 C PARM L
 C MOVE *ON *INLR

* These are the APIs used in subroutines to keep the main processing
* simple. They do not need to be SUBRs!

�C�
| * Subroutine to Get Environment Variable

 | C GETENV BEGSR
 | C CALLB APIEnVar
 | C parm ENBuff
 | C parm ENBuffLn
 | C parm ENActLn
 | C parm ENVarName
 | C parm ENVarLn
 | C parm QUSEC
 | C ENDSR
�C�

C* Parse subroutine
 C PARSE BEGSR
 C CALLB APICvtDB
 C parm DBFileName
 C parm DBBuff
 C parm DBBuffLn

** Remember to code your External DS name. The API returns your data
** in this structure. The field names are in the structure
**
C parm ORDASDS
**
C parm DBDSLn
C parm DBActLn
C parm DBRespCd
C parm QUSEC
C ENDSR
* This is the STD OUT SUBR

 C STDOUT BEGSR
 C callb APIStdOut
 C parm OUTBuff
 C parm OUTBuffLn
 C parm QUSEC
 C ENDSR
**CTDATA OVRDBF
OVRDBF FILE(HTMLO) MBR(1234567890) LVLCHK(*NO) OVRSCOPE(*JOB)
DLTOVR FILE(HTMLO) LVL(*JOB)

Figure 176 (Part 5 of 5). ILE RPG Program ORDAS400G Method=GET

Source-Code RPG Program ORDAS400P: ILE RPG program example for the
Method=POST.

The logic of this program is identical with the program in Figure 176 on
page 267.

Only three parts are replaced:

�A� by �1�,
�B� by �2� and
�C� by �3�

Chapter 6. Establishing an Active Presence on the Internet 271

This CGI program receives the name/value pairs from the form as encoded form
input from STDIN.

The environment variable CONTENT_LENGTH determines how much data must
be read from STDIN.

The following example shows the read from STDIN QtmhRdStin (subroutine
STDIN).

�1�
**
*Variables for the CGI interface APIs
*These are used for APIStdIn
DInData S 2048A INZ
DInDataLn S 9B 0 INZ(2048)
DInActLn S 9B 0
**

�2�
**
* Get the Input parameters from the POST from STDIN
C MOVE *BLANKS OutBuff
C EXSR STDIN
* Upon return, your POST data is in INData and its length is in
* INActLn It is in the FLD=VAR format at this time
* Move this data to the DBCvt parms
* Set up the parameters before CALLB
* This includes the length of your Ext DS (103 is correct)
**
C Z-ADD 103 DBDSLn
**
C MOVEL INData DBBuff
C Z-ADD INActLn DBBuffLn
**

�3�
**
* Subroutine to read STD IN

 C STDIN BEGSR
 C CALLB APIStdIn
 C parm INData
 C parm INDataLn
 C parm INActLn
 C parm QUSEC
 C ENDSR

**

Figure 177. ILE RPG Program ORDAS400P Method=POST

6.1.9.4 Source-Code C Program PARSECGIP
ILE C program example for the Method=POST: This is the program for
Ordering an AS/400 system in the C-Language.

C Programs #include qp0z1170.h

The qp0z1170.h must included to get the getenv() and putenv() functions
which are not part of the stdio.h at this time.

The qp0z1170.h is a member in the file H in the library QSYSINC.

272 A Guide to the Internet Connection Servers

/**
/* Simple ILE C program PARSECGIP to test CGI Method=POST *
/* *
/* *
/* 1. Compile this source member as module PARSECGIP (PDM Option=15) *
/* *
/* 2. Create program PARSECGIP from module PARSECGIP (PDM Option=26) *
/* with PROMPT(PF4) and BNDSRVPGM(ITSOIC400/UTIL) *
/* *
/**
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <qp0z1170.h>

#define MAX_ENTRIES 10000

typedef struct {
char *name;
char *val;

} entry;

char *makeword(char *line, char stop);
char *fmakeword(FILE *f, char stop, int *len);
char x2c(char *what);
void unescape_url(char *url);
void plustospace(char *str);

main(int argc, char *argv[]) {
entry entries[MAX_ENTRIES];
register int x,m=0;
int cl;

printf(″Content-type: text/html\n\n″) ;

if(strcmp(getenv(″REQUEST_METHOD″) , ″POST″)) {
printf(″This script should be referenced with a METHOD of POST.\n″) ;
exit(1);

}
if(strcmp(getenv(″CONTENT_TYPE″) , ″application/x-www-form-urlencoded″)) {

printf(″This script can only be used to decode form results. \n″) ;
exit(1);

}
cl = atoi(getenv(″CONTENT_LENGTH″)) ;
for(x=0;cl && (!feof(stdin));x++) {

m=x;
entries[x].val = fmakeword(stdin,′&′,&cl);
plustospace(entries[x].val);
unescape_url(entries[x].val);
entries[x].name = makeword(entries[x].val,′ = ′) ;

}

printf(″<html>\n″) ;
printf(″<body>\n″) ;
printf(″<H1>Query Results</H1>″) ;
printf(″You submitted the following name/value pairs:<p>″) ;
printf(″″) ;

for(x=0; x <= m; x++)
printf(″ <code>%s = %s</code>″ , entries[x].name,

entries[x].val);
printf(″″) ;
printf(″</body>\n″) ;
printf(″</html>\n″) ;

}

Figure 178. ILE C Program PARSECGIP Method=POST

Chapter 6. Establishing an Active Presence on the Internet 273

6.2 API Applications
The Internet Connection Server V4.1 includes two APIs:

• IBM ICAPI

• Netscape API

The IBM ICAPI allows you to extend the server′s base functions. You can write
extensions to do customized processing, such as:

• Publish customized pages

• Enhance the basic authentication or replace it with a site-specific process

• Add error handling routines to track problems or alert for serious conditions

• Detect and track information that comes in from the requesting client.

The Internet Connection Server includes an NSAPI compatibility module that
supports the Netscape API. Using this module, you can easily port your NSAPI
programs to run on the Internet Connection Server without any loss of function.
This compatibility module gives you the ability to use your NSAPI programs on a
wider variety of operating systems: Windows NT, Solaris, HP-UX, AIX, OS/2, etc.

In this section, we focus on two ICAPI samples and we discuss the benefits and
drawbacks of the API programs versus CGI programs.

6.2.1 API Development Rules and Principles
When you are developing and testing an ICAPI program, you should always keep
in mind the following principles:

• The Internet Connection server runs in a multi-threaded environment;
therefore your application functions must be re-entrant.

• Eliminate global variables or protect them with a mutual exclusion
semaphore.

• Always check your return codes and provide conditional processing when
necessary.

• Always free any allocated resources.

• Make sure to play only with your own data. If you mistakenly write into the
server ′s private data area, it will likely cause a fatal crash of your server.

• Keep the actions in your application within the scope of a thread. Do not
perform any actions such as exit, change uid, etc.

• Do not forget to send complete responses to the HTTP requests including the
Content-Type header.

The ultimate rule is to test rigorously your API application before installing it on
a production server.

The ICAPI is platform independent: you will be able to port your APIs between
Windows NT, OS/2 and UNIX platforms.

The ICAPI is language neutral: your APIs can be written in any of the
programming languages supported by these platforms.

274 A Guide to the Internet Connection Servers

If you want your application to be portable and since the provided interface
(include files, etc) and documentation are C oriented, you will probably find that
the C language is the preferred language to develop your extensions.

The Internet Connection Server product provides you with:

• The API library containing the pre-defined functions:

• /usr/lib/httpdapi.o

• \WWW\DLL\HTTPDAPI.dll

• \WWW\BIN\HTTPDAPI.dll

for AIX, OS/2 and Windows NT respectively,

• An include file with pre-defined functions prototypes and return codes
definitions:

• /usr/samples/internet_server/API/HTAPI.h

• \WWW\HTML\EXAMPLES\HTAPI.H

for AIX and Windows or OS/2 respectively,

• An export file or a library file that identify the external symbols made
available by the API library:

• /usr/samples/internet_server/API/libhttpdapi.exp

• \WWW\HTML\EXAMPLES\HTTPDAPI.LIB

for AIX and Windows NT or OS/2 respectively.

You will find in the Web Programming Guide the instructions to build the
Dynamically Linked Libraries (DLLs) or Shared Objects (SO) as required for your
operating system.

When you are testing your brand new API application, you will certainly face the
problem of having a previous release of your library (or shared object) stuck in
memory. Unloading the current version of the library will be required before
installing the code of the new version in the right place (right directory) and
loading the new library. This means that you will have to:

• Stop your Web server

• Install the code of the library

• Restart your Web server

6.2.2 ICAPI Samples
In this section we introduce two ICAPI samples. These samples are basic and
do not require an in-depth knowledge of the C language; they were developed
only for tutorial purposes and would be unlikely to win any competitions. These
samples have been developed and tested on an AIX platform but should run
equally well on Windows NT and OS/2.

The first sample in 6.2.2.1, “ICAPI Log Sample” on page 276 is a transaction
logging program. It logs information related to queries sent to the server by the
GET method.

The second sample in 6.2.2.2, “ICAPI Service Sample” on page 280 is a request
processor. It builds a page containing some of the variables passed to the
service routines.

Chapter 6. Establishing an Active Presence on the Internet 275

6.2.2.1 ICAPI Log Sample
This sample demonstrates how you can plug your own transaction logging
function into the server′s request process.

In this sample, the information logged is:

• The IP address of the requester, that is the REMOTE_ADDR variable

• The searchpart of the URL submitted with the request, that is the
QUERY_STRING variable

• The additional information passed in the URI (the portion that follows the
string that identifies the CGI or API program), that is the PATH_INFO variable

This information is only logged when the QUERY_STRING variable is not null.
That way, all the GET requests with arguments will be logged.

Each record in the log file is a set of data separated by the vertical bar character
(|). For example:

9.67.43.8|bidule|/truc
9.67.43.8|month=08&year=1996&submit=Go+%21|

This example does not make much sense, except if you think of it as a means of
detecting hackers who are trying to break into your system. Refer to 6.1.7.3,
“CGI Security Considerations” on page 244 for a related discussion. The entry
for the request of the malevolent user would have been:

9.9.9.9:month=02&year=1996;cat+/etc/passwd:

Note that the IP address 9.9.9.9 is purely fictitious and does not refer to any
known hacker.

Figure 179 on page 277 shows the source code for this log application.

276 A Guide to the Internet Connection Servers

/*
* mylog.c
*
 * ICAPI log sample
 *
 * This sample contains a log routine: MyLog()
 * As stated in the documentation, this routine is called after the
 * socket has been closed, during a request process, regardless of the
 * success or failure of the request.
 *
 * MyLog logs in a dedicated log file:
 * - the searchpart of the URL submitted with the request (QUERY_STRING)
 * - the additional information passed in the URI (PATH_INFO)
 *
 * when QUERY_STRING is not NULL.
 *
 * This sample was tested on an AIX platform, but should run as well
 * on an OS/2 or Windows NT platforms
 */

#include <stdarg.h>
#include <stdio.h>
#include <string.h>

#include ″HTAPI.h″

#define ALLOCMEMORY malloc
#define DUPLICATE(x,y) x = strdup(y)
#define FREEMEMORY(x) if (x) free(x)

/*
 * getvar routine
 * extracts the value of a variable from the environment
 * allocates memory for the string
 */

#define BUF_LEN 2

unsigned char *getvar(unsigned char *name)
{

long rc;
unsigned char buf[BUF_LEN],

*value = NULL;
unsigned long name_len,

value_len = sizeof(buf) - 1;

name_len = (unsigned long)strlen((char *)name);
/* extract the value of the variable */
HTTPD_extract(NULL, name, &name_len, buf, &value_len, &rc);

if (rc == HTTPD_BUFFER_TOO_SMALL) {
/* buf is too small - need to allocate a bigger buffer */
value = (unsigned char *)ALLOCMEMORY((size_t)value_len + 1);

Figure 179 (Part 1 of 2). Mylog.c Source Code

Chapter 6. Establishing an Active Presence on the Internet 277

/* retry to extract the value of the variable */
HTTPD_extract(NULL, name, &name_len, value, &value_len, &rc);
if (rc == HTTPD_SUCCESS)

value[value_len] = ′ \0′ ;
else

value = NULL;
}
else if (rc == HTTPD_SUCCESS) {

/* allocate memory for string and duplicate */
buf[value_len] = ′ \0′ ;
DUPLICATE(value, buf);

} /* endif */

return(value);
} /* getvar */

/*
 * Log entry point
 */

#define MYLOG ″ /tmp/mylog″

void HTTPD_LINKAGE MyLog(unsigned char *handle, long *return_code)
{

unsigned char *remote_addr, *query_string, *path_info;
FILE *mylog;

/* open log file */
mylog = fopen(MYLOG, ″a″) ;

if (mylog) {

/* get the variables from the environment */
remote_addr = getvar(″REMOTE_ADDR″) ;
query_string = getvar(″QUERY_STRING″) ;
path_info = getvar(″PATH_INFO″) ;

if (strlen(query_string))
fprintf(mylog, ″%s|%s|%s\n″ ,

remote_addr, query_string, path_info);

if (mylog)
fclose(mylog);

/* free allocated memory */
FREEMEMORY(remote_addr);
FREEMEMORY(query_string);
FREEMEMORY(path_info);

}

/* fill in return code */
*return_code = HTTP_NOACTION;
return;

} /* MyLog */

Figure 179 (Part 2 of 2). Mylog.c Source Code

Some comments on this sample source:

278 A Guide to the Internet Connection Servers

• The variables are extracted by a call to the pre-defined function
HTTPD_extract()

• The variables are local (not global)

• All the required precautions have been taken in the getvar() routine to make
sure that no stack or memory overflow could occur, and all the return codes
are tested

• The returned code of MyLog() is HTTP_NOACTION. That way, the server will
also perform its default action for the log step.

Note that if you have multiple applications (or extensions) in the same library
and if those applications use a common set of basic routines like getvar() in this
sample, the code for this set of routines will be loaded in memory only once for
all the applications.

To associate this log function with the appropriate step of the request process, a
directive should be added in the configuration file.

On our AIX test platform, the shared object mylog.so was stored as:

/usr/local/server_root/api/mylog.so

So that the required directive was:

Log /* /usr/local/server_root/api/mylog.so:MyLog

The directive can be added manually by editing the configuration file or with the
help of an administration form.

The link in the main menu of Administration and Configuration Forms is:

• ICAPI Application Processing - Specify which ICAPI Applications to call
during request processing.

The ICAPI Application Processing Form is shown in Figure 180 on page 280.

Chapter 6. Establishing an Active Presence on the Internet 279

Figure 180. ICAPI Application Processing Form

Note that the directive would have been:

Log /cal-bin/* /usr/local/server_root/api/mylog.so:MyLog

to log only accesses to URLs matching the /cal-bin/* template.

6.2.2.2 ICAPI Service Sample
This sample demonstrates how you can plug your service application into the
server ′s request process.

The service given by this application is really basic; it returns to the requester
the value of three variables that are accessible by the service routine itself:
QUERY_STRING, PATH_INFO and PATH_TRANSLATED as shown in Figure 181
on page 281.

280 A Guide to the Internet Connection Servers

Figure 181. HTML Page Returned by Userappl ICAPI Application

The source code for this service application is listed in Figure 182 on page 282.

Chapter 6. Establishing an Active Presence on the Internet 281

/*
* userappl.c
*
* ICAPI sample
*
 * This sample includes one application function : UserAppl
 * This function build a customized page displaying environment
 * variables (QUERY_STRING, PATH_INFO and PATH_TRANSLATED)
 *
 * This sample was tested on an AIX platform, but should run as well
 * on an OS/2 or Windows NT platform
 */

#include <stdarg.h>
#include <stdio.h>
#include <string.h>

#include ″HTAPI.h″

#define ALLOCMEMORY malloc
#define DUPLICATE(x,y) x = strdup(y)
#define FREEMEMORY(x) if (x) free(x)

/*
 * getvar routine
 * extracts the value of a variable from the environment
 * allocates memory for the string
 */

#define BUF_LEN 2

unsigned char *getvar(unsigned char *name)
{

long rc;
unsigned char buf[BUF_LEN],

*value = NULL;
unsigned long name_len,

value_len = sizeof(buf) - 1;

name_len = (unsigned long)strlen((char *)name);

/* extract the value of the variable */
HTTPD_extract(NULL, name, &name_len, buf, &value_len, &rc);

if (rc == HTTPD_BUFFER_TOO_SMALL) {
/* buf is too small - need to allocate a bigger buffer */
value = (unsigned char *)ALLOCMEMORY((size_t)value_len + 1);

/* retry to extract the value of the variable */
HTTPD_extract(NULL, name, &name_len, value, &value_len, &rc);
if (rc == HTTPD_SUCCESS)

value[value_len] = ′ \0′ ;
else

value = NULL;
}

Figure 182 (Part 1 of 5). Userappl.c Source Code

282 A Guide to the Internet Connection Servers

else if (rc == HTTPD_SUCCESS) {
/* allocate memory for string and duplicate */
buf[value_len] = ′ -0′ ;
DUPLICATE(value, buf);

} /* endif */

return(value);
} /* getvar */

/*
 * va_list_length routine
 * estimate the amount of space needed to malloc before
 * calling vsprintf()
 */

int va_list_length(const char *fmt, va_list marker)
{

char *q = (char *)fmt;
int len = strlen(fmt);
va_list temp = marker;

while (q = strchr(q, ′%′)) {
/* search for the format type - might not be q[1]...

 */
if (q[1] != ′%′) {

int i;
int done;
char *p;

for (i = 1, done = 0; |done; i++) {
switch(q[i]) {
case ′ c′ :

len += 5;
va_arg(temp, char);
done = 1;
break;

case ′ s′ :
if (p = va_arg(temp, char *))

len += strlen(p);
done = 1;
break;

case ′ d′ :
case ′ i′ :

len += 20;
va_arg(temp, int);
done = 1;
break;

case ′ h′ :
case ′ H′ :

len += 20;
va_arg(temp, short);
done = 1;
break;

Figure 182 (Part 2 of 5). Userappl.c Source Code

Chapter 6. Establishing an Active Presence on the Internet 283

case ′ l′ :
case ′ L′ :

len += 20;
va_arg(temp, long);
done = 1;
break;

case ′ o′ :
case ′ u′ :
case ′ x′ :
case ′ X′ :

len += 20;
va_arg(temp, unsigned);
done = 1;
break;

case ′ e′ :
case ′ E′ :
case ′ f′ :
case ′ g′ :
case ′ G′ :

len += 20;
va_arg(temp, double);
done = 1;
break;

case ′ p′ :
len += 10;
va_arg(temp, void *);
done = 1;
break;

case ′ n′ :
len += 20;
va_arg(temp, int *);
done = 1;
break;

default:
break;

}
}

} /* endif */
q++;

}
return len;

} /* va_list_length */

Figure 182 (Part 3 of 5). Userappl.c Source Code

284 A Guide to the Internet Connection Servers

/*
 * vHprintf routine
 * ICAPI vprintf
 */

int vHprintf(const char *fmt, va_list marker)
{

long rc;
unsigned long len = va_list_length(fmt, marker);
unsigned char *q = (unsigned char *)ALLOCMEMORY((2 * len) + 1);

if (q) {
if ((len = vsprintf((char *)q, fmt, marker)) > 0) é

HTTPD_write(NULL, q, &len, &rc);
if (rc != HTTPD_SUCCESS)

len = 0;
}
else {

/* vsprintf returned a negative number, which is an erro
r */

len = 0;
}
FREEMEMORY(q);

}
else

len = 0;

return((int)len);
} /* vHprintf */

/*
 * Hprintf routine
 * ICAPI printf
 */

int Hprintf(const char *fmt, ...)
{

va_list marker;
int rc;

va_start(marker, fmt);
rc = vHprintf(fmt, marker);
va_end(marker);
return(rc);

} /* Hprintf */

Figure 182 (Part 4 of 5). Userappl.c Source Code

Chapter 6. Establishing an Active Presence on the Internet 285

/*
 * User Application entry point
 */

void HTTPD_LINKAGE UserAppl(unsigned char *handle, long *return_code)
{

unsigned char *path_info, *path_translated, *query_string;

/* get the variables from the environment */
path_info = getvar(″PATH_INFO″) ;
path_translated = getvar(″PATH_TRANSLATED″) ;
query_string = getvar(″QUERY_STRING″) ;

/* write the customized HTML page */
Hprintf(″HTTP/1.0 200\n″) ;
Hprintf(″Content-Type: text/html\n\n″) ;

Hprintf(″<HTML><HEAD><TITLE>ICAPI Sample</TITLE></HEAD><BODY >″) ;
Hprintf(″<H1>Environment variables</H1><HR>″) ;
Hprintf(″<P>QUERY_STRING [%s]″ , query_string ? query_s

tring : ″NULL″) ;
Hprintf(″<P>PATH_INFO [%s]″ , path_info ? path_info : ″

NULL″) ;
Hprintf(″<P>PATH_TRANSLATED [%s]″ , path_translated ? p

ath_translated : ″NULL″) ;
Hprintf(″</BODY></HTML>″) ;

/* free allocated memory */
FREEMEMORY(query_string);
FREEMEMORY(path_info);
FREEMEMORY(path_translated);

/* fill in return code */
*return_code = HTTP_OK;
return;

} /* UserAppl */

Figure 182 (Part 5 of 5). Userappl.c Source Code

Some comments on this sample source:

 1. The response is sent back to the client by calling HTTPD_write().

 2. The response includes the required Content-Type header.

 3. Special care has been taken in the vHprintf() routine to allocate enough
memory to handle the string before calling vsprintf(). You shouldn′ t take the
risk of a buffer overflow in any of your API applications.

 4. The allocated resources, in this case only memory, have been carefully
released.

 5. The return code of UserAppl() is HTTP_OK which means that the request has
been handled by this application function. That way, the server knows that it
should not call any other application function and should proceed with the
next step which is data filter.

286 A Guide to the Internet Connection Servers

In order to associate this service function with the appropriate step of the
request process, a directive should be added in the configuration file.

On our AIX platform, the shared object userappl.so was stored as:

/usr/local/server_root/api/userappl.so

The following directive was added to the configuration file:

service /api/userappl* /usr/local/server_root/api/userappl.so:UserAppl*

The directive can be added manually by editing the configuration file or with the
help of an administration form.

The link in the main menu of Administration and Configuration Forms is:

• Request Routing - Route URL requests to server files

The Request Routing Form is shown in Figure 183.

Figure 183. Request Routing Form

Chapter 6. Establishing an Active Presence on the Internet 287

As a result, the URL for the application program is:

http://rs60004.itso.ral.ibm.com/api/userappl

Because this API application displays the QUERY_STRING, PATH_INFO and
PATH_TRANSLATED variables, the returned HTML page will show null pointers
unless you have a search string in your URL such as:

http://rs60004.itso.ral.ibm.com/api/userapp/truc?bidule

6.2.3 Using APIs versus Using CGIs
API programs have supporters but also detractors.

Some people look at CGI as an inefficient cross-platform interface that can break
down a server′s performance.

Other people consider the API as a major risk to the reliability and stability of a
server.

But all agree that both CGI and API extend the capabilities of a Web server.
There is no doubt that CGIs and APIs are required to set up an active presence
on the Internet.

Before trying to construct a list of benefits and drawbacks of APIs versus CGIs,
let′s start with some reminders on their principles.

6.2.3.1 CGI Principles
CGI scripts are external programs that the Web server can invoke in a process
environment.

When the URL passed to the Web server points to a CGI program, the server
prepares a number of environment variables representing its current state and
the request.

Then the server launches the CGI script with these variables set up which are
valid only for that particular request. Launching a script means starting (forking)
a new process.

A busy server often has many requests at once for the same URL; this leads to a
situation where the same script is running simultaneously multiple times with
different environments and on behalf of multiple processes.

6.2.3.2 API Principles
API applications are stored in the following libraries:

• Dynamically Linked Libraries (DLLs) on Windows platforms

• Shared Objects (SOs) on UNIX platforms

At startup, the server reads from the configuration file the list of libraries
containing the applications and loads them into memory.

When the URL passed to the server points to an application function (service)
into an API library, the server sets up memory variables in its memory space
and then calls the routine.

When the application routine is invoked, its code is already in memory and has
access to the server ′s predefined functions. These predefined functions provide
access to the variables associated with the request.

288 A Guide to the Internet Connection Servers

6.2.3.3 API Benefits and Drawbacks
From the principles of the two technologies and from their practical
implementation, we can address the following list of benefits and drawbacks of
API applications compared to CGI scripts.

API Benefits

 1. APIs require less memory than CGIs because there is only one occurrence
of the application code loaded in memory at once, even if multiple requests
are processed simultaneously.

 2. APIs have less CPU overhead as the libraries are loaded at startup time and
stay resident. Furthermore, the applications run in the context of the server
itself (threads).

 3. APIs are not limited to requests servicing. APIs allow you to plug in to the
server ′s request process your own program functions such as authentication,
authorization, logging, error handling, data filtering, etc.

API Drawbacks

 1. API applications require specialized developers with qualifications in
techniques such as multithreading, concurrency synchronization, etc.

 2. Failure of API applications can affect directly the server and can cause it to
crash. The applications should be intensively tested before being installed
on a production server.

The existence in the market of different types of API and the fact that there was
no standard for this interface used to be seen as a drawback of this technology.
This is no longer true as you can observe with the Internet Connection servers: a
compatibility module allows you to port your existing NSAPI programs from
Netscape servers to the IBM Internet Connection servers.

Furthermore, we can expect to see in the near future an intermediate solution
where API extensions will provide support for interpreted or pseudo-compiled
languages such as Perl and Java. This would be a good compromise between
performance and the ease with which programming extensions can be
developed.

Chapter 6. Establishing an Active Presence on the Internet 289

290 A Guide to the Internet Connection Servers

Chapter 7. Enhancing Your Web Site with Java Applications

Java is a programming language, developed by Sun Microsystems, which is
object-oriented, distributed, interpreted, architecture neutral, and portable.

Java has definitely become the in-vogue Web programming language in a short
space of time. While the scope of our project does not allow us to delve deeply
into the subject of Java we feel that we should at least provide an example of
how Java can be used to good effect. Accordingly, in the next section we
provide such an example.

For a summary of Java support on the Internet Connection server platforms,
please refer to Chapter 1, “The Internet Connection Family” on page 1.

7.1 Java - Choosing a Presidential Candidate
The scenario we consider in this section is how to access legacy data from your
clients and how to cooperate your legacy systems and internet applications
using Java. The main objective is to provide information from an MVS platform
to your clients using Web technology.

We selected the 1996 Republican Presidential Race as a basis for developing a
Java application. The data processing associated with the election can be
handled by a typical online transaction system. Many transactions such as data
input and query jobs are occurring at the same time. If clients want to know the
current status of the election in real time from everywhere, the transaction
system must be connected to a global network such as the Internet. If the
clients are not familiar with 3270 screens, any GUI client software such as
WebExplorer or Netscape Navigator is required.

• Business Requirements:

− Serve the dynamic needs of their clients by improving customer service

− Leverage investments in their existing systems

− Exploit the Internet as another way to increase opportunities

− Extend current access to their systems over the Internet quickly

• Solution

− Implement a flexible, open, and distributed computing environment

• Characteristics:

− Uses Java technology

− Uses Web technology

• Benefits:

− Reduces the development costs and time

− Integrates new technology with existing systems leveraging hardware
and software investments

This example is simplified for ease of understanding. The election data is
updated by using an ISPF editor. If you develop real OLTP applications, you may
use some subsystems like CICS and IMS, and you may need gateways between
the subsystems and your Web server such as the CICS Internet Gateway.

 Copyright IBM Corp. 1996 291

7.1.1 Configuration
The software configuration used for this example is as follows:

• Web Server

− MVS/ESA 5.2.2 OpenEdition

− DFSMS, SMP/E, LE/370, RACF, ISPF, and TCP/IP

− Internet Connection Server for MVS/ESA R1.0

− Java applets and htmls

• Web Clients

− OS/2 Warp Connect

− WebExplorer Java Technology Demo

7.1.2 Considerations
There are some areas to consider which arise from developing a Java
application in the environment described.

7.1.2.1 Portability
The Java environment is a new approach to distributed computing. Developing
your applications using Java results in software that is portable across multiple
machine architectures, operating systems, and graphical user interfaces. With
Java, your job as a software developer is much easier.

7.1.2.2 Legacy Systems
The Internet related technologies such as Web technology will give your legacy
applications a boost, via a more familiar graphical user interface, and they will
require a minimal amount of redevelopment investment.

7.1.2.3 Application Model
An application model for this example is the Enterprise Distributed Web Model.
Enterprise Distributed Web applications are true open client/server applications.
The client is coded in downloadable Java, which runs in any Java-enabled
browser like Netscape Navigator or HotJava. A page containing the Java applet
is downloaded by a Web server to a browser. While the applet runs in the
browser, it opens its own communications session to the server. The applet also
communicates with a server to provide access to the data in the legacy system.

7.1.2.4 Access Control
The server and applet should only deliver restricted documents to authorized
users. ICS/MVS has extensive access control support including RACF validation
of user IDs and passwords and access control through SURROGAT user ID
support. Users are identified by an OMVS user ID (UID), kept in the RACF user
profile, and an OMVS group ID (GID), kept in the RACF group profile. Although
this scenario uses RACF for user IDs and passwords authentication, we do not
recommend to use RACF over the Internet because there is the risk of
intercepting the user ID and password.

292 A Guide to the Internet Connection Servers

7.1.3 Using the Application
When you access the Web server that runs this example for the first time, the
sign-on panel is displayed by the access control of the Web server (Figure 184).
If you enter the user ID and password correctly, you will be successfully signed
on to the server.

Figure 184. Document is Protected

Figure 185 on page 294 is the first menu page of this example. If you click on
any state name that you want to see, the browser starts to load the HTML file
and the related applet. After loading, the applet starts to run on the browser.

Chapter 7. Enhancing Your Web Site with Java Applications 293

Figure 185. Delegate Counts - Selection Menu

When the applet starts running, it gets the election result data of the state from
the Web server at specified intervals (value=10000 means about 10 second
intervals; for more details refer to Figure 189 on page 297). It then displays a
graph of the newest data on the browser (see Figure 186 on page 295). If the
election data (the arizona.txt file) is updated, the graph is also updated within the
specified intervals.

The applet that we use in this example is BarChart.class which is based on the
sample class Chart.class included in Sun′s Java Development Toolkit.

294 A Guide to the Internet Connection Servers

Figure 186. US Presidential Primaries Result - State of Arizona.

Figure 187 on page 296 is a screen of the ISPF panel used for editing the result
data of the state of Arizona (the arizona.txt file). For example, three candidates ′
values are updated:

• Bob Dole 30% - -> 10%

• Pat Buchanan 27% - -> 37%

• Lamar Alexander 7% - -> 17%

Chapter 7. Enhancing Your Web Site with Java Applications 295

Figure 187. ISPF Panel (before Updating)

Figure 188 shows the ISPF panel after updating.

Figure 188. ISPF Panel (after Updating)

After the save command is entered, the client can see the updated graph on the
Web browser within the specified intervals (Figure 189 on page 297).

It is really a live graph on the browser.

296 A Guide to the Internet Connection Servers

Figure 189. US Presidential Primaries Result - State of Arizona (Updated)

The HTML source of arizona.html is as follows:

HTML source - arizona.html

<HTML>
<HEAD>
<title>US Presidential Primaries - Arizona</title>
</HEAD>
<BODY>
<hr>
<H1>US Presidential Primaries</H1>
<H2>Arizona</H2>
<applet code=″BarChart.class″ width=500 height=250>
<param name=title value=″Vote Percentage″>
<param name=orientation value=″horizontal″>
<param name=infile value=″arizona.txt″> // Graph Data File
<param name=interval value=″10000″> // refresh interval time
<param name=scale value=″5″> // Data Display Scale
<param name=barwidth value=″3″> // Bar width
<param name=interspace value=″5″> // Space between Bars
</applet>
<hr>
</BODY>
</HTML>

Chapter 7. Enhancing Your Web Site with Java Applications 297

It is very simple and easy to understand. The Java applet is included in the Web
page with the <applet> tag. A Java-enabled browser displays any alternate
HTML that appears between <applet> and </applet>. The <param> tag is
to specify parameter values for the applet. In this example, the BarChart.class
applet is loaded and seven parameter values are passed to the applet. The
following table is the file of the result data for the state of Arizona. This file is
read from the applet which runs on a Java-enabled browser, and it can be
updated from an ISPF editor on the legacy host system. The file name is
specified at the <parm name=infi le value> in the HTML fi le, and is passed to
the applet.

result data - arizona.txt

Bob_Dole, red, solid, 30
Pat_Buchanan, green, solid, 27
Lamar_Alexander, blue, solid, 7
Steve_Forbes, pink, solid, 33
Phil_Gramm, orange, solid, 0
Alan_Keyes, magenta, solid, 1
Richard_Lugar, cyan, solid, 1
Morry_Taylor, white, solid, 0

298 A Guide to the Internet Connection Servers

Appendix A. Two Simple Browsers and One Simple Server

An important part of this project was to study the elementary behavior of the
servers and browsers we described. Basically, we needed to make visible the
HTTP request of any browser and the HTTP response of any server. We
therefore developed the tools presented in this appendix.

These tools are designed to be run on an OS/2 platform. But they are
programmed in REXX and Java so porting them to any other platform should not
be a problem.

Finally, they are quick and dirty: do not expect fancy interfaces or subtle error
recovery procedures.

A.1 A Basic REXX Browser
We wrote the basic REXX browser in order to be able to send any request to a
server, and to display the corresponding response from the server. As we used
it, it is an HTTP browser. But you may use it to experiment with any other
connectionless protocol based on TCP/IP. The protocol must be connectionless,
because the server closes the connection after it gets a response.

The basic browser is composed of two parts: the agent and the user interface.

A.1.1 The Basic Agent
The agent is listed in Figure 190 on page 300. It simply does the following:

• Opens a socket

• Sends a request

• Receives a response and places it in a queue

• Closes the socket

 Copyright IBM Corp. 1996 299

/* Basic Agent */

/* Constants */
MAX_LEN = 512

/* Parse the parameters */
PARSE ARG addr,port,request

/* Initialize the Rexx Socket API */
rc = RxFuncAdd(″SockLoadFuncs″ , ″rxSock″ , ″SockLoadFuncs″)
rc = SockLoadFuncs()

/* Create a socket */
socket = SockSocket(″AF_INET″ , ″SOCK_STREAM″ , ″IPPROTO_TCP″)

/* Open the socket */
address.!addr = addr
address.!port = port
address.!family = ″AF_INET″
rc = SockConnect(socket,″address.!″)

/* Send the request */
rc = SockSend(socket,request)

/* Create a queue */
qnew = RXQUEUE(″Create″)
qold = RXQUEUE(″Set″ ,qnew)

/* Receive the response and place it in the queue */
DO WHILE SockRecv(socket,response,MAX_LEN) > 0
QUEUE response
DROP response

END

/* Reset the queue to the one used previously */
CALL RXQUEUE ″Set″ ,qold

/* Close the socket */
rc = SockClose(socket)

/* Return the name of the response queue */
RETURN qnew

Figure 190. The Basic Agent (AGENT.CMD)

A.1.2 The Basic Browser
The basic browser is listed in Figure 191 on page 301. It is a loop that first asks
you for a socket in the format ″ip_address:port″, as 9.24.104.181:80 for example,
then for a request, that can span over several lines. Enter an exclamation point
(!) to stop the loop, or to signify the end of the request to the browser.

300 A Guide to the Internet Connection Servers

/* Basic Browser */

/* Constant */
CRLF = d2c(13)″″d2c(10)

/* Defaults */
addr = ″9.24.104.181″
port = ″80″

/* Loop */
DO FOREVER

/* Read and parse the socket */
SAY ″Enter the server′ s socket (Enter=″addr″ :″port″, !=quit)″
PARSE PULL input
SELECT
WHEN input = ″″ THEN NOP
WHEN input = ″!″ THEN LEAVE
OTHERWISE PARSE VALUE input WITH addr″ :″port

END

/* Read the request */
SAY ″Enter the browser′ s request (!=end)″
request = ″″
DO FOREVER
PARSE PULL line
IF line = ″!″ THEN LEAVE
request = request″″line″″CRLF

END

/* Call the agent with the socket and the address */
CALL AGENT addr,port,request

/* Print the response */
qnew = RESULT
qold = RXQUEUE(″Set″ ,qnew)
DO WHILE QUEUED() > 0
PARSE PULL buf
SAY buf

END
CALL RXQUEUE ″Set″ ,qold

END

EXIT

Figure 191. The Basic Browser (BROWSER.CMD)

To launch the basic browser simply enter BROWSER at an OS/2 command prompt.

A.2 A Basic Java Browser
The term browser is a little pompous for the little Java applet described here,
because it does not return the server ′s response. It only returns the date at
which the data pointed by the URL passed as argument was last modified.

Appendix A. Two Simple Browsers and One Simple Server 301

The source of the applet is listed in Figure 192 on page 302 and, as with every
tiny applet, it includes a large overhead.

/* Import */
import java.applet.*;
import java.io.*;
import java.net.*;
import java.util.*;
/* The LastModified class */
public class LastModified extends Applet{
/* main */
public static void main(String[] args) {
/* Variables */
URL MyURL;
Date MyDate;
URLConnection MyURLConnection;
/* Try to parse the URL */
try {
/* Parse the URL */
MyURL = new URL(args[0]);
/* Try to open the connection */
try {
/* Open the connection */
MyURLConnection = MyURL.openConnection();
/* Read the date the data was last modified */
MyDate = new Date(MyURLConnection.getLastModified());
/* Print this date */
System.out.println(MyDate.toString());

} catch (IOException e) {};
} catch (MalformedURLException e) {};

}

}

Figure 192. A Basic Java Browser (LastModified.java)

To launch the basic java browser on an OS/2 platform, enter JAVA LastModified
[URL] at an OS/2 command prompt.

A.3 A Basic REXX Server
The purpose of the basic REXX server is to display the HTTPD request of any
browser. As a basic REXX browser, you may use it to study any connectionless
TCP/IP-based protocol.

The basic REXX server is listed in Figure 193 on page 303.

302 A Guide to the Internet Connection Servers

/* Basic Server */

/* Constants */
CRLF = d2c(13)″″d2c(10)

/* Load the Rexx Socket Support */
rc = RxFuncAdd(″SockLoadFuncs″ , ″rxSock″ , ″SockLoadFuncs″)
rc = SockLoadFuncs()

/* Create a socket */
domain = ″AF_INET″
type = ″SOCK_STREAM″
protocol = ″IPPROTO_TCP″
socket0 = SockSocket(domain,type,protocol)

/* I don′ t know but I was told... */
rc = SockSetSockOpt(socket0,″SOL_SOCKET″ , ″SO_REUSEADDR″ ,0)
rc = SockIoctl(socket0,″FIONBIO″ ,1)

/* Bind */
dum = CHAROUT(,″Enter the server′ s socket : ″)
socket = LINEIN()
PARSE VALUE socket WITH addr″ :″port
address.!addr = addr
address.!port = port
address.!family = ″AF_INET″
rc = SockBind(socket0,″address.!″)

/* Listen */
rc = SockListen(socket0,32)

r.0 = 1
r.1 = socket0

rc = SockSelect(″r.″ , ″ ″ , ″ ″)

/* Accept */
socket1 = SockAccept(socket0)

/* Receive the first part of the request only */
rc = SockRecv(socket1,request,1024)

/* Send an error response */
rc = SockSend(socket1,″HTTP/1.0 401 Quo Vadis?″CRLF″″CRLF

/* Close */
rc = SockClose(socket1)

/* Close */
rc = SockClose(socket0)

Figure 193. A Basic REXX Server (SERVER.CMD).

To launch the basic server, simply enter SERVER at an OS/2 command prompt.

Appendix A. Two Simple Browsers and One Simple Server 303

304 A Guide to the Internet Connection Servers

Appendix B. Special Notices

This publication is intended to help Web site administrators and Internet
specialists to evaluate and implement the Internet Connection Servers. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by the IBM Internet Connection
Servers. See the PUBLICATIONS section of the IBM Programming
Announcement for the IBM Internet Connection Servers for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of

 Copyright IBM Corp. 1996 305

including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems Inc.

ACF/VTAM AIX
AnyNet AS/400
AT C/400
CICS DataJoiner
DB2 DB2/2
DFSMS IBM
IMS Language Environment
MQSeries MVS/ESA
OpenEdition OS/2
OS/390 OS/400
Power Series RACF
RISC System/6000 SP
Ult imedia VTAM
WebExplorer 400

ActiveX Microsoft Corporation
AltaVista Digital Equipment Corporation
Animator Micro Focus Limited
Apollo Apollo Computer, Incorporated
C + + American Telephone and Telegraph

Company, Incorporated
DCE The Open Software Foundation
DDS Sony Corporation
Digital Digital Equipment Corporation
Hercules Hercules Computer Technology
Lycos Carnegie Mellon University
Magellan Lotus Development Corporation
MS-DOS Microsoft Corporation
NDIS 3Com Corporation and Microsoft

Corporation
NET NCR Corporation
Netscape Netscape Communications Corporation
Network File System Sun Microsystems, Incorporated
NFS Sun Microsystems Incorporated
ORACLE Oracle Corporation
PC Magazine Ziff Communications Company
POSIX Institute of Electrical and Electronic

Engineers

306 A Guide to the Internet Connection Servers

Other trademarks are trademarks of their respective companies.

Sidekick Borland International, Incorporated
Sierra Trimble Navigation Limited
Solaris Sun Microsystems, Incorporated
Sun Sun Microsystems, Incorporated
Sun Microsystems Sun Microsystems, Incorporated
Sybase Sybase Corporation
Visual Basic Microsoft Corporation
Windows NT Microsoft Corporation
X Window System Massachusetts Institute of Technology

Appendix B. Special Notices 307

308 A Guide to the Internet Connection Servers

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

• TCP/IP Illustrated, Volume 1, SR28-5586 (ISBN 0-201-63346-9)

• TCP/IP Illustrated, Volume 2, SR28-5630 (ISBN 1-201-63354-X)

• Spinning the Web, SR28-5646 (ISBN 1-850-32141-8)

• Surfing the Internet with Netscape, SR28-5788 (ISBN 7821-1740-6)

• Marketing on the Internet, S246-0109 (ISBN 1-885068-01-8)

• HTML Sourcebook, ISBN 0-471-14242-5

• JAVA Sourcebook, ISBN 0-471-14859-8

• The Web Page Design Cookbook, ISBN 0-471-13039-7

• Creating Your Own Netscape Web Pages, ISBN 0-7897-0734-9

C.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 311.

• Using the Information Super Highway, GG24-2499

• TCP/IP Tutorial and Technical Overview, GG24-3376

• Building a Firewall with the IBM Internet Connection Secured Network
Gateway, SG24-2577

• Accessing the Internet, SG24-2597

• IBM TCP/IP V3R1 for MVS for MVS Implementation Guide, SG24-3687

• Practical TCP/IP for AIX V3.2/V4.1 Users, SG24-4381

• Accessing CICS Business Applications from the World Wide Web, SG24-4547

• Safe Surfing: How to Build a Secure WWW Connection, SG24-4564

• World Wide Web Access to DB2, SG24-4716

• Accessing OpenEdition from the Internet, SG24-4721

• TCP/IP Implementation in an OS/2 Warp Environment, SG24-4730

• How to Secure the Internet Connection Server for MVS/ESA, SG24-4803

• Cool Title about the AS/400 and Internet, SG24-4815

C.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

 Copyright IBM Corp. 1996 309

CD-ROM Title Subscription
Number

Collection Kit
Number

AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection (available soon) SBOF-7250 SK2T-8042

310 A Guide to the Internet Connection Servers

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• ITSO4USA category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1996 311

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

312 A Guide to the Internet Connection Servers

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

• Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 313

314 A Guide to the Internet Connection Servers

Index

A
ABC Corporation pages 192
access control 292
access control list 146
Access Log File Configuration - File Exclusions

form 122
Access Log File Configuration - Host Exclusions

form 123
Access Log File Configuration - Maintenance

form 120
Access Log File Configuration - Other 125, 126
Access Log File Configuration - Other Exclusions

form 124, 125
access log file format 149
Access Log Report Template form 129
accessory programs 175
ACL files 146
ActiveX 55
Add User form 107
Administration and Configuration form 100
Administration and Configuration Forms,

implementat ion 252
Administration and Configuration interface 249
Administrator ID 86
agent log file format 152
agent, basic 299
AIX

cleaning up user IDs 67
downloading code 66
getting the Internet Connection Server 65
hardware requirements 65
install ing the server 69
preparing for installation 69
printing documentation 66
removing unnecessary services 67
securing the server 67
setting up logs 67
setting up password rules 67
setting up user ID 67
software requirements 65

Aliweb 191
AltaVista 190
ANIMATE tag 208
animated GIFs 209
animated pages 205
API

applications 274
benefits 289
development rules 274
drawbacks 289
principles 288

APPLET tag 208
application layer 6

application model 292
application programming interfaces

choosing 46
Common Gateway Interface (CGI) 45
Proprietary Application Programming Interface

(API) 45
Server-Side Include (SSI) 45

application purpose 218
AS/400

hardware connectivity 77
Internet connection 78
TCP/IP 76

associated HTML 198, 207
audio file 24
Auto Start Server 86

B
backing up, MVS/ESA 74
backup 87
backup procedures 147
backup requirements 147
base version, IBM WebExplorer 56
basic agent 299
basic browser 300
Basic form 104
bibliography 309
browser

basic 300
basic Java 301
domain name 225
host name 225

building on-the-fly pages 234

C
cache log file format 149
CacheLocalFile 144
Canada export restrictions 61
CD-ROM, OS/2 Warp 81
certif icate management 133
CFGTCPHTTP display 166
CGI

principles 288
program designing 236
programming 253
support 59

 CGI scripts
designing 230
designing using Perl 242
Errors Log file 152
functions 217
linking 228
security considerations 244

 Copyright IBM Corp. 1996 315

changing the default home page, OS/2 Warp 89
checkbox 26
checking prerequisites, Windows NT 90
CHGHTTPA display 166
CICS Gateway 60
CICS Internet Gateway 42
cleaning up user IDs, AIX 67
clickable image map

configuring in HTTP 203
planning 202
referencing in HTML 203

clipart 35
Common Gateway Interface (CGI) 45
configuration
Configuration and Administration Forms 248
configuring a clickable image map, HTTP 203
cost cavings, Web pages 184
creating an HTML document 14
 Creating Forms 25
creating online information 31
customization, MVS/ESA 73
customizing the Internet Connection Server 232,

238, 248

D
DB2 Gateway 60
DB2 WWW connection 42

 gate.DB2 WWW connection 42
designing

CGI program 236
CGI script 230, 242
Web pages 184

Directory Icons - Directory form 114
Directory Icons - MIME Types form 115
Directory List Contents form 111
directory l istings 175
directory structure 86
diskettes, OS/2 Warp 81
Domain Name System (DNS) 9
downloading code, AIX 66

E
editing the HTTPD configuration file 96
editing tools 34
enhancing your Web server 196
environment variables, examples 262
environment variables, using 220, 225
Error Log File Configuration form 126
Error Log File format 151
Error Message Customization 60
establishing a presence, Internet 217
establishing, presence on the Internet 183
example of building a presence, Internet 192
examples for environment variables 262
export restrictions, Canada 61
export restrictions, U.S. 61

export version 61

F
features of CICS 88
features of DB2 88
File Transfer Protocol (FTP) 7
files, storing 231
Finger 9
firewalls 38
first time installation for OS/2 Warp 81
form Web pages 189
forms processing 239
 forms webpage 184
frntpage.html 89
front page 88
FTP 53

G
gateways

CICS Internet Gateway 42
IMS Internet Gateway 43
MQSeries Internet Gateway 43

GET methods 244
getting a copy of the Internet Connection Server,

Windows NT 92
GIFs, animated 209
Global Log File Configuration Settings form 118
Gopher 8
graphics Web pages 184

H
hardware connectivity, AS/400 77
hardware requirements, OS/2 Warp 80
HFS 72
 hidden 27
Home Page Repository 59
Host name 86
HotJava 44
hotspots, mapping 202
HTML

associated 198, 207
characteristics 14
clipart 35
creating a document 14
creating online information 31
editing tools 34
icons 35
Microsoft Internet-specific extensions 31
Netscape-specific extensions 30
referencing a clickable image map 203
sample document 29
tags 14
Web browser 53, 54

HTTP 53
accessory programs 175
configuring a clickable image map 203

316 A Guide to the Internet Connection Servers

HTTP (continued)
directory listings 175
mapping directive descriptions 172
mapping directive examples 172
mapping rules 172
overview 12
server configuration 165
server directives 169
server operation 165
support 59
timeouts 179
updates to TCP/IP commands 180
URI interpretation 180
URL mapping overview 172

HTTP/S-HTTP port 86

I
I/NET′s Web Server/400 78
IBM ICAPI API 60
ICAPI log sample 276
ICAPI samples 275
ICAPI service sample 280
IdleThreadTimeout 144
 image 27
image maps 196
IMS Internet Gateway 43
index.html 89
infomarket 190
initial configuration, OS/2 Warp 85
Initial Page - Directory List Viewing form 110
Initial Page - Welcome Page 108
inspecting logs, MVS/ESA 75
installation

Internet Connection Server 63, 92
MVS/ESA 72
planning for MVS/ESA 72
server for AIX 69

installed folders, OS/2 Warp 87
integrating, random images in a page 235
Internet Connection Family 1
Internet Connection Family Web site 91
Internet connection, AS/400 78
Internet layer 6, 10
Internet searching 190
Internet Security 60
invoking a script 229
ITSO company demonstrations 266

J
Java

applications 291
basic browser 301
configuration 292
considerations 292
HotJava 44
Java Beans 44
Java Virtual Machine (JVM) 44

Java (continued)
JavaOS 44
JavaScript 43, 54
using the application 293
Web browser 54
WebExplorer 56

Jpeg file 24

K
key management 133
Key ring file 86

L
LE/370 72
legacy systems 292
linking to a CGI script 228
log analysis administration 165
log files

administrat ion 153
analysis 154
format 148
location 148

log tools 158
Logging 59, 61
logging access facilities 150
logging procedures 148
logging, OS/400 129
lycos 190

M
magellan 190
mapping

directive descriptions 172
directive examples 172
hotspots in a map file 202
rules 172

MaxActiveThreads 144
mechanisms, security 62
meta fi les 146
migration, OS/2 81
MinActiveThreads 144
mpeg file 24
MQSeries Internet Gateway 43
Mult imedia Serving 59
Multiple IP Address Support 61
Multipurpose Internet Mail Extensions (MIME) 52
MVS/ESA

backing up 74
considerations 73
customization 73
getting software 72
hardware requirements 71
HFS 72
inspecting logs 75
installation 72
installation planning 72

Index 317

MVS/ESA (continued)
LE/370 72
OpenEdition 72
RACF 72
setup 73
software requirements 71
TCP/IP 72
testing 74
tuning 74
Web Browser 72

N
Netscape 190
Netscape API 60
Netscape Navigator 56
Network File System (NFS) 8
network layer 6, 11
network security 55
new functions 60
NNTP 53
non-export version 61

O
online information, creating 31
OpenEdition 72
OS/2 80
OS/2 Warp

CD-ROM 81
changing the default home page 89
diskettes 81
features of CICS 88
features of DB2 88
first t ime installation 81
getting your copy of the Internet Connection

Server 81
hardware requirements 80
initial configuration 85
installation 80
installed folders 87
migrat ion 81
reinstallation 81
remote code server 81
software requirements 80
types of installation 81
viewing the front page 88

OS/400 CGI 253
OS/400 logging 129

P
PARSECGIP 272
password 27, 86
planning for installation, Windows NT 91
planning the clickable image map 202
portabil i ty 292
POST methods 244

Post Office Protocol (POP) 8
preparing your IP network, Windows NT 92
printing documentation, AIX 66
processing forms 239
programming

CGI 253
languages 219
selecting languages 218
skills 218

Proprietary Application Programming Interface
(API) 45

proxies 55
proxy servers 40
proxy support 59

R
RACF 72
radio 27
READ.ME file 92
reading the documentation, Windows NT 91
README Text form 117
referencing a clickable image map 203
referer log fi le format 152
reinstallation, OS/2 Warp 81
remote code server, OS/2 Warp 81
Remote Execution (RSH/REXEC) 8
Remote Printing (LPR/LPD) 8
removing unnecessary services, AIX 67
report ing 61
reporting feature 155
Request for Comments (RFC) 6
reset 27
response time 219
REXX basic browser 299
REXX server, basic 302
robots 191
Routing Information Protocol (RIP) 10

S
S-HTTP 55
script, invoking from a link 229
search 190
search engines 190
searching the Internet 190
Secure HyperText Transport Protocol (S-HTTP) 37
Secure Sockets Layer (SSL) 37
secure version, WebExporer 56
Security Configuration form 131
security considerations, CGI scripts 244
security mechanisms 62
security, Internet 36
selecting a programming language 218
server platform 218
server tuning 144
Server-Side Include (SSI) 45
Server-Side Includes 60, 209

318 A Guide to the Internet Connection Servers

server, REXX basic 302
 serverpriori ty 146
setting up logs, AIX 67
setting up password rules, AIX 67
setting up user ID, AIX 67
setup, MVS/ESA 73
shapes 196
Simple Mail Transfer Protocol (SMTP) 8
Simple Network Management Protocol (SNMP) 9
SMTP 53
Sockets Application Programming Interface (API) 10
SOCKS servers 40, 55
software requirements, OS/2 Warp 80
source-code C program PARSECGIP 272
spiders 191
SSL 56
SSL Port 86
storing files 231
submit 27
swish 191

T
Talk 9
TCP/IP

applications 7
AS/400 76
for MVS/ESA 72
Internet layer 10
layers 6
network layer 11
operation 6
transport layer 10
updates to existing commands 180

Telnet 7
testing, MVS/ESA 74
text 28
text Web pages 184
timeouts 179
transport layer 6, 10
tuning 74
tuning, server 144
types of installation, OS/2 Warp 81

U
U.S export restrictions 61
updates to TCP/IP commands 180
URI interpretation 180
URL mapping overview 172
user administration 107
User Directories form 117
using administration form, example 101
using administration form, example using 101
using APIs 288
using CGIs 288
using configuration form, example 101
using environment variables, switch 225

using environment variables, welcome 220
using URLs 192

V
video 24
viewing the front page, OS/2 Warp 88

W
wais 191
wave fi le 24
Web browsers

ActiveX 55
available browsers 56
features 53
FTP 53
HTML 53, 54
HTTP 53
Hypertext Transfer Protocol (HTTP) 47
IBM WebExplorer 56
Java 54
JavaScript 54
Multipurpose Internet Mail Extensions (MIME) 52
MVS/ESA 72
Netscape Navigator 56
network security 55
NNTP 53
principles 47
protocols 54
proxies 55
S-HTTP 55
security 55
SMTP 53
SOCKS Servers 55
SSL 56
ways to surf the Net 56
WebExplorer Base Version 56
WebExplorer Java technology 56
WebExplorer secure version 56

Web pages
building pages 234
cost cavings 184
designing pages 184
establishing 183
form pages 189
graphics pages 184
integrating random images 235
text pages 184

Web Server 63
Web Server enhancement 196
Web, best of 35
WebCrawler 190
WebExplorer 56
Welcome.html 89
Windows NT

checking prerequisites 90
getting a copy of the Internet Connection

Server 92

Index 319

Windows NT (continued)
install ing your Internet Connection Server 92
planning for installation 91
preparing your IP network 92
reading the documentation 91

worms 191
WRKHTTPCFG display 167

X
X Window System 10

Y
Yahoo 190

320 A Guide to the Internet Connection Servers

IBML

Printed in U.S.A.

SG24-4805-00

