

AIX V4.3 and Windows 2000, Side by Side

Laurent Vanel, Leonardo Antonelli, Angela Keelan, Miha Music

International Technical Support Organization

www.redbooks.ibm.com

SG24-4784-01

International Technical Support Organization

AIX V4.3 and Windows 2000, Side by Side

April 2000

– Take Note! -

Before using this information and the product it supports, be sure to read the general information in Appendix A, "Special notices" on page 521.

Second Edition (April 2000)

This edition applies to AIX Version 4.3.3, Program Number 5765-C34.

This document was created or updated on April 14, 2000.

Comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. JN9B Building 003 Internal Zip 2834 11400 Burnet Road Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.

Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figuresix
Tablesxv
Preface xvii The team that wrote this redbook xvii Comments welcome xviii
Chapter 1. Introduction1
Chapter 2. Operating system concepts.32.1 Monolithic model32.2 Layered model42.3 Microkernel52.4 Client/server model6
Chapter 3. Operating system architecture93.1 AIX architecture93.1.1 History93.1.2 Architecture description103.2 Windows 2000 architecture233.2.1 History233.2.2 Architecture description26
Chapter 4. Open System Standards compliance354.1 Open standards groups/bodies/committees354.2 The Open Group example354.3 AIX V4.3 Open Systems Standards compliance364.4 Windows 2000 Open Systems Standard compliance37
Chapter 5. Packaging. 39 5.1 AIX Version 4.3 packaging. 39 5.1.1 AIX Version 4.3 Package 40 5.1.2 Processor groups. 41 5.1.3 AIX Version 4.3 Bonus Pack. 43 5.1.4 AIX options. 45 5.1.5 National Language Support 47 5.1.6 AIX Version 4.3 bus support. 48 5.1.7 AIX Licensed Program Products (LPPs) 49 5.2 Windows 2000 packaging. 49 5.2.1 Windows 2000 Professional package 50 5.2.2 Windows 2000 (Standard) Server Package. 51

 5.2.3 Windows 2000 Advanced Server Package	51 51 52
S.S. AIX V4.3 and Windows 2000 packaging Chapter 6. User interface/graphics support 6.1 AIX Version 4.3 user interface 6.1.1 Login Manager 6.1.2 Session Manager 6.1.3 Front Panel. 6.1.4 Style Manager 6.1.5 Workspace Manager 6.1.6 File Manager 6.1.7 Application Manager 6.1.8 Help Manager 6.2 Windows 2000 user interface 6.2.1 Logging on 6.2.2 Windows 2000 Active Desktop 6.3 Graphics Application Programming Interfaces (APIs) 6.3.1 AIX 6.3.2 Windows 2000	55 55 55 62 63 64 65 66 68 68 81 81 82
6.4.1 AIX shells6.4.2 Windows 2000 command line interface	
Chapter 7. Storage management. 7.1 AIX storage management. 7.1.1 Logical Volume Manager (LVM) 7.1.2 AIX Version 4.3 file systems. 1 7.1.3 AIX V4.3 and Redundant Array of Independent Disks support. 1 7.2 Windows 2000 storage management. 1 7.2.1 Volume management. 1 7.2.2 Windows 2000 file systems. 1 7.2.3 Windows 2000 RAID support 1 7.2.4 Security and the user model.	99 99 12 25 27 27 34 46
Chapter 8. Security 1 8.1 Security standards 1 8.1.1 Other security-related resources 1 8.2 AIX security 1 8.2.1 User management and authorization controls 1 8.2.2 Network security 1 8.2.3 Trusted Computing Base (TCB) 1	50 52 52 52 63

	iv	and Windows 2000, Side by Side
--	----	--------------------------------

8.2.4 Auditing	. 170
8.2.5 Additional protection tools	
8.2.6 Optional protection tools	. 176
8.3 Windows 2000 security.	
8.3.1 Security Configuration Manager	. 184
8.3.2 Active Directory	. 185
8.3.3 Logon process	. 188
8.3.4 User authentication and authorization	. 190
8.3.5 Auditing	
8.3.6 Additional protection tools	. 202
8.3.7 Optional protection tools	. 202
Chapter 0 System management	205
Chapter 9. System management 9.1 Installation	
9.1.1 AIX V4.3 installation methods	
9.1.2 Windows 2000 installation methods	
9.2 Boot process	
9.2.1 AIX boot process	
9.2.2 Windows 2000 boot process	
9.3 Configuration management	
9.3.1 AIX configuration management.	
9.3.2 Windows 2000 configuration management	
9.4 System administrator interface	
9.4.1 AIX system administrator interface	
9.4.2 Windows 2000 System Administration Interface	
9.5 Backup/restore	
9.5.1 AIX Backup/Restore	
9.5.2 Windows 2000 backup/restore	
9.6 Processes and subsystems management.	
9.6.1 AIX process management.	
9.6.2 Windows 2000 Process Management	
9.7 Reliability, availability and serviceability	
9.7.1 AIX Reliability, availability, and servicability	
9.7.2 Windows 2000 reliability, availability, and serviceability	
9.8 Printing.	. 321
9.8.1 AIX printing.	. 322
9.8.2 Windows 2000 printing	. 326
9.9 Terminal support	. 333
9.9.1 AIX terminal support	
9.9.2 Windows 2000 Terminal services	
9.10 Support for national languages	. 336
9.10.1 AIX support for national languages	. 336
9.10.2 Windows 2000 support for national languages	. 339

Chapter 10. Performance monitoring	347
10.1 AIX performance monitoring	347
10.1.1 Monitoring CPU	347
10.1.2 Monitoring I/O	348
10.1.3 Monitoring memory	350
10.1.4 Monitoring the network	352
10.1.5 Other tools	353
10.1.6 Performance Toolbox for AIX	356
10.2 Windows 2000 performance monitoring	368
10.2.1 System Monitor	368
10.2.2 Performance logs and alerts	372
Chapter 11. Networking	377
11.1 Protocols and concepts	
11.1.1 Quality of Service (QoS)	
11.1.2 Path MTU (PMTU)	
11.1.3 IP multicasting	
11.1.4 TCP selective acknowledgements	
11.1.5 Security over the network	
11.2 AIX networking	
11.2.1 TCP/IP V4	
11.2.2 TCP/IP V6	
11.2.3 GateD Version 6.0	
11.2.4 NFS version 2	
11.2.5 PMTU discovery	
11.2.6 NIS	
11.2.7 Open Network Computing (ONC+)	
11.2.8 WebNFS	
11.2.9 Name resolution	
11.2.10 Domain Naming System (DNS)	
11.2.11 Dynamic Host Configuration Protocol (DHCP)	
11.2.12 Dynamic Domain Name System (DDNS)	
11.2.13 Basic Network Utilities (BNU/UUCP)	
11.2.14 Mail	
11.2.15 X11 protocol support	
11.2.16 Network Time Protocol (NTP)	
11.2.17 License management	
11.2.18 Internet/intranet software	
11.2.19 AIX Network Programming Interfaces	
11.2.20 Distributed Computing Environment (DCE)	
11.2.21 Remote access	
11.2.22 X.25 for AIX	
11.2.23 ISDN	

11.2.24 ATM for AIX	. 436
11.2.25 System Network Architecture (SNA) for AIX	
11.2.26 AIX PC connectivity	. 444
11.2.27 Network security	. 448
11.2.28 AIX Stand-alone LDAP directory product	
11.2.29 Quality of service support	
11.2.30 Interface specific network options	
11.2.31 Cisco EtherChannel support	
11.3 Windows 2000 networking	
11.3.1 Windows 2000 network architecture	
11.3.2 TCP/IP V4	
11.3.3 DHCP	
11.3.4 Quality of service (QoS)	
11.3.5 Network security	
11.3.6 Name resolution	
11.3.7 Mail	
11.3.8 X11 protocol support	
11.3.9 Network Time Protocol (NTP)	
11.3.10 License management	
11.3.11 Internet/intranet software	
11.3.12 Telephony API (TAPI)	
11.3.13 Network API	
11.3.14 DCE for Windows NT	
11.3.15 RAS	
11.3.16 Interoperability with other platforms	
11.3.17 Windows 2000 networking model	
11.3.18 Active Directory	
· · · · · · · · · · · · · · · · · · ·	
Chapter 12. Scalability and high availability	. 497
12.1 Scalability	
12.1.1 AIX scalability	. 497
12.1.2 Windows 2000 scalability	. 503
12.2 High availability	. 508
12.2.1 AIX high availability	. 509
12.3 Windows 2000 high availability	. 518
12.3.1 Network Load Balancing (NLB)	. 519
12.3.2 Cluster Service	. 519
Appendix A. Special notices	. 521
Annendix P. Deleted nublications	FOF
Appendix B. Related publications	
B.1 IBM Redbooks B.2 IBM Redbooks collections.	
B.3 Other resources	. 525

B.4 Referenced Web sites	526
How to get IBM Redbooks	
Abbreviations and acronyms	531
Index	537
IBM Redbooks review	547

Figures

1.	Monolithic operating system	
2.	Layered operating system	
3.	Client/server operating system	7
4.	AIX V4.3 kernel architecture	. 15
5.	M:1 threads model in AIX V4.3	
6.	1:1 threads model in AIX V4.3	. 21
7.	M:N threads model in AIX V4.3	. 22
8.	Microsoft DOS/Windows product evolution	. 25
9.	Microsoft operating systems: Hardware enablement vs. time	. 26
10.	Windows 2000 reliability and availability improvements	. 27
11.	Windows 2000 Virtual Memory Manager	. 31
12.	AIX Version 4.3 and Windows 2000 packaging	. 53
13.	Login Manager user interface	. 56
14.	A sample CDE session	. 57
15.	Default front panel	. 58
16.	Main panel	. 60
17.	Front panel switch container	. 60
18.	Default Front Panel Help subpanel container	. 61
19.	Style Manager main user interface	. 62
20.	Graphical Workspace Manager	. 63
21.	File Manager	. 65
22.	Application Manager	. 66
23.	Help Manager interface	. 67
24.	Windows 2000 default desktop	. 69
25.	Taskbar	. 70
26.	Start button	. 70
27.	The Start button additional menus	. 71
28.	The default Windows 2000 workspace	. 72
29.	Adding a new desktop item	. 74
30.	Active desktop	. 75
31.	My Computer	. 76
32.	Viewing a drive using My Computer	. 77
33.	The Control Panel	. 78
34.	Administrative tools	. 79
35.	Windows Explorer	. 80
	Windows 2000 help system	
	Components of the Logical Volume Manager	
	Physical disk partition location - Intra-disk allocation policy	
39.	Striping example	109
40.	Striped and mirrored logical volume	110

41.	AIX Version 4.3 Journaled File System organization	. 113
42.	JFS physical organization on a logical volume	. 115
	Structure of an i-node	
44.	JFS geometry for large files	. 120
	Windows 2000 Volume Management Concept	
46.	Disk Management utility	. 130
47.	Selecting the volume type	. 131
	Selecting the disks	
49.	Selecting the path (mounting directory)	. 133
	Selecting the format type for the volume	
51.	Master File Table structure	. 136
52.	VCN to LCN mapping for large files	. 137
	Directory record structure in MFT	
54.	NTFS volume structure	. 139
55.	Compressed file structure	. 142
	Windows 2000 file namespaces	
57.	MS-DOS file name attribute	. 144
	Sparse file structure	
	Trusted computer system evaluation criteria - Rating scale	
	Console for security configuration and analysis.	
	Active Directory object storage	
	Managing network resources with the Active Directory	
	Active Directory security example	
	AIX installation process	
	AIX BOSboot screen	
	smit install command output	
	Configuration Assistant first screen	
	Configuration Assistant main menu	
	VSM Install and Update Manager	
	Web-based System Manager - Software installation	
	Web-based System Manager - Additional software installation	
	NIM in a typical LAN topology	
	Windows 2000 installation - Additional components installation	
	Windows 2000 installation - Final configuration of the server	
	AIX boot process	
	AIX boot process - Phase 1	
	AIX boot process - Phase 2	
	AIX boot process - Phase 3	
	Windows 2000 Registry Editor: regedt32.exe	
	Windows 2000 Registry Editor terminology	
	SMIT ASCII user interface	
	SMIT Motif-based user interface	
83.	VSM Device Manager	. 248

84. VSM Print Manager	
85. VSM Storage Manager	
86. VSM User and Group Manager	
87. VSM Install & Update Software Manager	252
88. Web-based System Manager	253
89. Web-based System Manager - Backups	254
90. Web-based System Manager - Devices	255
91. Web-based System Manager - File systems	256
92. Web-based System Manager - Software installation & maintenance :	257
93. Web-based System Manager - Storage management	258
94. Web-based System Manager - Network management	259
95. Web-based System Manager - Printing management	260
96. Web-based System Manager - Processes management	
97. Web-based System Manager - System Environment Management	262
98. Web-based System Manager - User Management	263
99. Web-based System Manager - Subsystems Management	
100.Windows 2000 Control Panel	
101.Windows 2000 - System properties tool	270
102.Windows 2000 Device Manager tool	271
103.Windows 2000 Administrative Tools window	
104.Windows 2000 Component Services management tool	
105.Windows 2000 Computer Management window	
106.Windows 2000 Configure Your Server tool	275
107.Windows 2000 ODBC tool	
108.Windows 2000 DHCP	277
109.Windows 2000 Distributed File System management tool	278
110.Windows 2000 DNS management tool	279
111.Windows 2000 Event Viewer tool	280
112.Windows 2000 Event Viewer - Event Properties	281
113.Windows 2000 Internet Authentication Services tool	282
114.Windows 2000 Internet Services Management tool	
115.Windows 2000 Licensing tool	284
116.Windows 2000 Local Security Policy tool	284
117.Windows 2000 Network Monitor tool	285
118.Windows 2000 Performance tool	286
119.Windows 2000 quality of service tool	287
120.Windows 2000 Remote Storage Setup Wizard	288
121.Windows 2000 Remote Storage Management tool	289
122. Windows 2000 Routing and Remote Access tool	290
123.Windows 2000 Services Management tool	291
124.Windows 2000 Windows Media concept	
125.Windows 2000 Media Services Tools	294
126.Windows 2000 WINS management tool	295

127.Windows 2000 MMC Default window	296
128.Windows 2000 Customized MMC	297
129.Windows 2000 Backup tool	302
130.Web-based System Manager - Workload Management	306
131.Windows 2000 Task Manager - Applications panel (default)	307
132.Web-based System Manager - Workload management	
133.Windows 2000 Task Manager - Priority warning message	308
134.Windows 2000 Task Manager Performance panel	
135.Generating an error report menu.	
136.The Results of error reporting	
137.Windows 2000 - Event viewer	
138.Concept of virtual printers	
139.AIX printing process	
140.Windows 2000 printer management in the control panel	
141.Windows 2000 printing process	
142.Windows 2000 - Adding a printer	
143.Windows 2000 - Printer job management	
144.Windows 2000 - Print job properties	
145.Windows 2000 Terminal Services in action	
146.Windows 2000 Terminal Services Manager	
147.xmperf main window	
148.The Monitor window	
149.Combo Style monitor window	
150.The dashboard style monitor window	
151.A tabular report example	
152.Selecting objects for 3dmon	
153.3dmon	
154.The azizo graph window	
155.Performance console	
156.Add Counters window	
157.Performance console with histograms	371
158.Performance console report view	
159.Performance logs and alerts	373
160.New log settings	374
161.Logs console general setting	374
162.Logs console schedule	
163.Alert console action	
164.SACK message flow	382
165.VPN	
166.TCP/IP architecture	
167.DCE architecture	
168.An example of a network that benefits from MPOA	437
169.Stand-alone LDAP directory server - Details	452

xii	AIX V4.3 and Windows 2000, Side by Side	

170.WIndows 2000 Networking Model
171.Windows Network Programming Interface
172.A domain tree
173.Domain forest
174.Relative performance of the RS/6000 PCI Enterprise Systems 499
175.Relative Performance of the RS/6000 SP nodes
176.Remote Disk Management console
177.Remote Computer Management console
178.HACMP disk takeover
179.HACMP event detection
180.High availability geographic cluster

Tables

1.	RS/6000 processor groups 42
2.	Maximum licenses required to make AIX unlimited
З.	Built-in shell commands
4.	Ulimit options
5.	AIX/Windows 2000 commands
6.	Batch commands
7.	Factor -t
8.	AIX V4.3 Journaled File System maximum size
9.	Windows NT and Windows 2000 terminology compared 129
10.	Relation between default cluster size and disk size
11.	Default file access modes
12.	Octal file access representation
	Default rights of built-in user groups 194
	File permissions
15.	Folder permissions
16.	AIX level and required file sets
17.	NIS and NIS+ differences 406
18.	NIS+ name space and UNX filesystem structural comparison 408
19.	LDAP-related RFCs 455
20.	RFCs supported by Windows 2000 467
21.	Maximum processors and memory in each Windows 2000 package 504

Preface

You may be an experienced UNIX system engineer who would like to have a better understanding of the Windows 2000 operating system. You may come from a PC environment and be interested in knowing more about one of the best UNIX business operating systems - AIX. You may be a consultant or an Information Technology architect who would like to technically position AIX and Windows 2000, or you may be a customer who needs to determine trends and directions in terms of operating system use within your own organization. In all of these cases, you will find this book useful.

This book describes AIX Version 4.3 alongside Windows 2000. All of the components that make up an operating system are analyzed: Operating system architecture, standards compliance, packaging, user interface and graphic support, storage management, security, performance monitoring, networking, scalability, and high availability. This redbook is not a technical comparison of the relative strengths and weaknesses of the products; it is, rather, more of a functional analysis.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Austin Center.

Laurent Vanel is an AIX and RS/6000 specialist at the International Technical Support Organization, Austin Center. Before joining the ITSO three years ago, Laurent worked in the French Risc System/6000 Technical Center in Paris, where he conducted benchmarks and presentations for AIX and RS/6000 solutions.

Leonardo Antonelli is an Advisory IT Specialist in IBM Italy. He has six years of experience in the AIX and RS/6000 fields. He holds a degree in Electronic engeneering from Politecnico of Milano. His areas of expertise include AIX OS, RS/6000, and PC integration with UNIX.

Angela Keelan is an Advisory IT Specialist in IBM Australia. She holds a Bachelor of Science degree in Computer Science and has worked at IBM for four years.

Miha Music is an Advisory IT specialist in IBM Slovenia. He has six years of experience in AIX and the RS/6000 field. He holds a BS degree in Mechanical engineering from the University of Ljubljana. His areas of expertise include AIX OS, RS/6000, and Storage hardware.

Thanks to the following people for their invaluable contributions to this project:

Jay Ashford AIX Architecture

Ed Ponzini AIX Architecture

We would also like to thank the authors of the original version of this publication:

Yves Bex

John Brantly

Rolf Berger

Dana Lloyd

Alberto Miglioli

Franz Kraemer

Zoran Gagic

Nobuhiko Watanabe

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your comments about this or other Redbooks in one of the following ways:

- Fax the evaluation form found in "IBM Redbooks review" on page 547 to the fax number shown on the form.
- Use the online evaluation form found at http://www.redbooks.ibm.com/
- Send your comments in an Internet note to redbook@us.ibm.com

Chapter 1. Introduction

The objective of this document is to help readers understand the differences between AIX Version 4.3 and Windows 2000. It is mainly aimed at AIX or UNIX people who have a technical background and want to understand Windows 2000. It provides a side-by-side objective description of both operating systems, which is designed to show how the same task is performed differently by each operating system.

This document is not designed to be a comparison that highlights the strengths and weaknesses of each product, merely their differences. By describing the different components of these two operating systems side-by-side, we expect that AIX or UNIX people will understand Windows 2000 and be able to determine the environment for which it is best suited. On the other hand, we think that people coming from the PC environment will be able to understand AIX and determine the environment for which it is best suited.

Although applications are extremely important in a decision-making process, the operating system on which these applications are running is not entirely transparent. Each operating system will require specific skills and knowledge, especially in terms of systems management. This is why we think it is very important to also consider the operating system's features and characteristics that are going to be deployed.

In this redbook, the main components of an operating system, such as its architecture design and features, packaging, open standards compliance, user interface and graphics support, security, storage management, base operating systems management, performance management, and networking features, are covered.

Functions are extremely important, but you should not forget that a function must also be tested in a real production environment. This redbook addresses reliability, performance, and scalability issues more from a theoretical perspective than from a production perspective. These issues are extremely critical in a production environment and should be carefully considered.

Note that this book relates to AIX Version 4.3, which is the latest version of AIX, and to Windows 2000, which is the new business operating system from Microsoft.

Chapter 2. Operating system concepts

The purpose of this chapter is to introduce some concepts in the operating system design area. There are several ways to structure and organize an operating system. A description of different operating system models will follow shortly.

All these operating systems have one thing in common: They all run tasks in user mode and kernel mode. Tasks that run in kernel mode can access system hardware and system data. Only specific codes are able to run in kernel mode. Applications usually run in user mode.

2.1 Monolithic model

When designing an operating system, one approach is to build a monolithic structure. This approach was used in MS-DOS or early UNIX systems. In this approach, the system consists of functions or procedures that can call any other procedure. The system is not modular enough to easily allow updating of one procedure without updating others. Also, since the bulk of the operating system code runs in the same memory space, it is possible for a component of the operating system to corrupt data being used by other components. Maintenance of such an operating system is also very difficult. Figure 1 on page 4 shows a monolithic operating system.

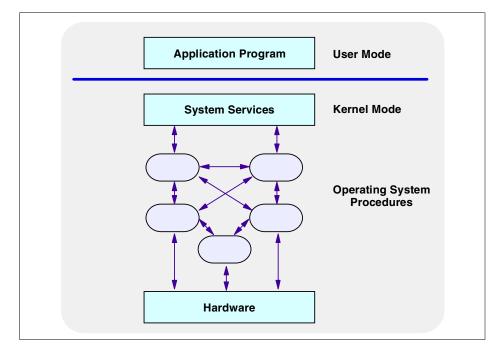


Figure 1. Monolithic operating system

2.2 Layered model

Another way of structuring an operating system is to organize it into layers of code. Code in any particular layer only calls code in lower layers. The higher layer of code only has access to the lower-level interfaces and data structures.

Commands are only passed down to the lower layers, not upward. The advantages of such a hierarchical structure are easy maintenance and debugging.

Maintenance is easier because one entire layer can be replaced without affecting the other layers. Also, each layer can be traced and debugged from the bottom up until the system works correctly. Figure 2 on page 5 shows a picture of a layered operating system:

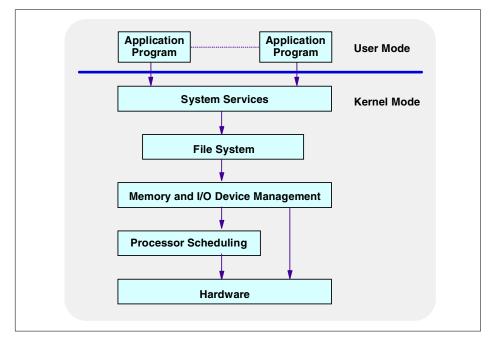


Figure 2. Layered operating system

2.3 Microkernel

In a traditional operating system, operating system services, such as process management, virtual memory management, network management, file system services, and device management, are built into the kernel. The result is that the operating system is difficult to enhance and difficult to port to a different hardware platform.

A microkernel provides only the basic operating system services, such as task and thread management, interprocess communication, virtual memory services, input/output (I/O) and interrupt services. These services are made available to the user-level tasks through a set of microkernel interface functions.

Services, such as file systems, network services, and device drivers, operate outside the microkernel as user-level servers. This makes the kernel smaller. A microkernel also provides a clean separation of machine-dependent and machine-independent code; it is easily portable to a different hardware platform.

Chapter 2. Operating system concepts 5

Machine-dependent and device-dependent code is located in the microkernel.

Also, in such a design, device drivers operate at the user process level above the kernel. This means device drivers can be developed and debugged just like user programs. This also increases portability to another hardware platform.

2.4 Client/server model

In this model, the operating system is divided into several processes. Each process implements a single set of services, such as memory services, process creation services, or processor scheduling services. These server processes run in user mode while waiting for client requests. Clients can be other operating system components or application programs. Clients request services by sending a message to the server. The operating system kernel running in kernel mode delivers the message to the server that performs the operation. Then, the kernel sends the results back to the client in another message.

In this approach, the operating system components can be small. Also, since each server runs in a separate user-mode process, a single server can fail without crashing the rest of the operating system. Figure 3 depicts the client/server operating system model:

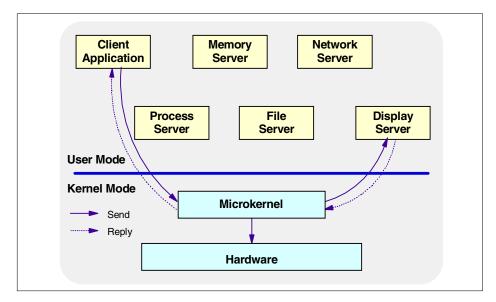


Figure 3. Client/server operating system

Chapter 2. Operating system concepts 7

Chapter 3. Operating system architecture

The purpose of this chapter is to give an overview of AIX Version 4.3 and Windows 2000 architecture and design. The history section of this introduction will help you understand the design choices of these operating systems.

3.1 AIX architecture

It is well beyond the scope of this book to completely explain the entire AIX architecture and kernel in great detail. Instead, the topic will be discussed at the component level.

3.1.1 History

AIX (Advanced Interactive eXecutive) can trace its roots to the early days of UNIX, as far back as the late 1960s. However, the first IBM venture into a UNIX-like operating system began in the early 1980s with IX (Interactive eXecutive). That was followed in 1985 by AIX on the RT (RISC Technology). While AIX on the RT was never considered a stellar success, it did provide many of the basic UNIX functions. Although originally based upon AT&T' s System V.2, AIX has evolved by adopting many characteristics from later versions of UNIX, such as the BSD (Berkeley Software Distribution) version, the OSF/1 version, and the Open Software Foundation (OSF, now Open Group), of which IBM was a founding member.

The other primary ancestor that AIX can claim is IBM experience in enterprise computing including PC, midrange, and even mainframe systems. IBM has integrated its collective experience in the business computing market and vast knowledge gained from its scientific research groups to produce a truly industrial-strength UNIX.

However, these ancestral roots are further enhanced by the IBM commitment to open standards. IBM has been an active participant in developing and adopting the latest open standards as they evolve from many standards bodies.

It has been said that UNIX was written by programmers for programmers. This accounts for why UNIX was slow to be accepted into mainstream business environments. While it was well suited to application development (whose users were sophisticated and knowledgeable programmers), it was difficult for more casual users to understand and control. UNIX systems required in-depth understanding and highly technical maintenance to install

and upgrade. IBM has been highly successful in maturing AIX into a reliable and robust operating system, not only for skilled programmers but also for demanding business tasks.

3.1.2 Architecture description

The AIX operating system is a layered operating system. In a layered operating system, particular system functions are thought of as belonging to a specific layer or level of the total system. Each layer can only communicate with an adjoining layer through a predefined mechanism. This layering simplifies the design process and allows for simplified debugging because you only concentrate your focus on one layer at a time. In addition, a specific layer of the operating system can be added, upgraded, or completely replaced with another layer without having to rewrite existing layers.

The addition of the Platform Abstraction Layer (PAL), added in AIX Version 4.2, is a good example of the ability to add layers to an existing operating system.

With the release of AIX Version 4.3 came 64-bit computing. With a number of models in the RS/6000 range now using 64-bit processors, AIX Version 4.3 is fully capable of running both 32-bit and 64-bit applications seamlessly.

3.1.2.1 64-bit computing

It is important to note that the 64-bit execution environment for application processes is an upward-compatible addition to AIX capability, not a replacement for the existing 32-bit function. The design IBM chose for 64-bit AIX allows existing 32-bit applications to run with 64-bit applications with no changes, thus, protecting the investment users have made in their current applications. Users can take advantage of the features of 64-bit AIX when business needs dictate.

Generally, the AIX 4.3 kernel remains 32-bit, and only selected parts, such as the Virtual Memory Manager, are upgraded to be aware of the 64-bit address space. This means that the number of AIX kernels remains two (uniprocessor and multiprocessor).

While there is no formal definition of 64-bit computing, it is distinguished from 32-bit computing by the following:

• Large file support - This ability to address data in fields larger than 2 GB requires that a program be able to specify file offsets larger than a 32-bit number. This capability is generally considered to be a 64-bit function, even though it does not require 64-bit hardware support. AIX Version 4.2 provided this capability for 32-bit programs, and AIX Version 4.3 provides

it for 64-bit programs as well. Since it does not depend on 64-bit hardware, this function can be used on any RS/6000 system running the appropriate release of AIX.

- Very large memory support The new dimension of scalability introduced by 64-bit technology is the opportunity for some programs to keep very large amounts of data in memory, both resident in physical memory and accessible in their 64-bit virtual memory address space.
- Large application virtual address space In 32-bit systems, an individual program, or process, may, typically, have between 2 GB and 4 GB of virtual address space for its own use to contain instructions and data. With 64-bit computing, applications may run in a 64-bit address space, where an individual program's addressability becomes measured in terabytes (TB).
- 64-bit integer computation, using hardware with 64-bit general purpose registers Native 64-bit integer computation is provided by 64-bit hardware and is utilized by programs computing on 64-bit data types. While there are some applications that need to do computation on integer numbers larger than 2³², the key benefits of this capability are in performing arithmetic operations on pointers in 64-bit programs. Floating point computation already includes 64-bit precision on all RS/6000 systems.

At this stage, it is not a requirement of 64-bit computing that 64-bit hardware be utilized.

For more information on the RS/6000 64-bit technology, see the white paper entitled *The RS/6000 64-bit Solution* online at:

http://www.rs6000.ibm.com/resource/technology/64bit6.html

Or, for a more detailed explanation of what has changed in AIX to enable 64-bit computing, see the chapter on 64-bit Enablement in the *AIX V4.3 Differences Guide*, SG24-2014, or *AIX 64-bit Performance in Focus*, SG24-5103.

3.1.2.2 The AIX Version 4 kernel

At the very heart of the AIX operating system is the AIX kernel. The AIX kernel provides the ability to share system resources simultaneously among many processes or threads and users. The most important resources that the kernel manages on the computer are the processor(s) (CPUs), memory, and devices. By careful design, the kernel is preemptable and pageable, yet it is also dynamic and extendable.

Chapter 3. Operating system architecture **11**

Preemptable

The kernel can be in the middle of a system call and be preempted. This preemption could cause a context switch that causes an entirely new thread of execution inside the kernel. Threads are assigned a priority by the kernel that the kernel can adjust based on certain factors, such as the length of time the thread has been running. Preemptability allows the kernel to respond to real-time processes much faster than other operating systems.

In a preemptable kernel, a higher-priority thread that becomes runnable may preempt a low-priority thread even though it is executing kernel code. Device drivers and other interrupts can preempt processes in kernel mode, but, upon its return from the interrupt, the preempted process retains control of the CPU. In contrast, processes in user mode are always preemptable. Upon its return from an interrupt, the kernel decides which process should run next, based on priority.

Pageable (demand paging)

A pageable kernel means that only those parts of the kernel that are actually being used or referenced are kept in physical memory. Kernel pages that have not been used recently can be paged out. Some parts of the kernel do not get paged out. Instead, they are pinned. An example of pinned kernel code is the interrupt processing section of the device drivers.

The kernel utilizes a pager daemon to keep a pool of physical pages free. It uses a Least Recently Used (LRU) algorithm. If the number of pages available goes below a high-watermark threshold, the pager frees the oldest LRU pages until a low-watermark threshold is reached.

In other operating systems, including some UNIX variants, the entire kernel must be loaded and pinned into memory. This feature acquires more significance when you consider that AIX functionality can be dynamically extended using kernel extensions. Therefore, while the AIX kernel may tend to be larger than other kernels, due in part to user-added functions through kernel extensions, it usually requires less physical memory to actually run.

Dynamic

In AIX, kernel extensions can be added and deleted to/from the kernel on-thefly, as needed. This allows an administrator to add new device drivers, file systems, and other kernel code at any time without having to recompile the kernel. Since recompiling the kernel is not required, rebooting the system is not normally required in order to make changes take effect.

Extendable

Kernel extensions are dynamically loadable in AIX. These extensions allow programs direct access to kernel resources for better performance. A system programmer can add new services in AIX by making use of the defined kernel extension types. These extension types, often referred to as hooks, can be divided into four categories:

- Device drivers
- · System calls
- · Virtual file systems
- · Kernel extension and device driver management routines

When properly coded, kernel extensions add extensibility, configurability, and ease of system administration to AIX.

This combination of features allows the AIX kernel to be highly scalable, from the smallest of the PowerPC processors to the largest Scalable POWERparallel (SP) systems. Yet, it also allows for the fine tuning of an operating environment.

On 64-bit systems, the AIX Version 4.3 kernel supports both 32-bit and 64-bit application virtual address spaces. An application address space is set up automatically, based on the type of program being run. The kernel also provides equal access to the system services from both types of processes. The default behavior favors 32-bit binary compatibility. In the few instances where new 64-bit applications may not coexist transparently, the kernel provides extended infrastructure to kernel extensions and device drivers. Kernel extensions that are part of AIX Version 4.3 support both 32-bit and 64-bit processes.

There have been enhancements to the most recent release of AIX Version 4.3 (Version 4.3.3 was released on September 13, 1999) that allow for 24-way SMP performance and 64 GB real memory support. This is in keeping with the RS/6000 model S80, which was released at the same time and is capable of both of these enhancements.

AIX Version 4.3 conforms to the Portable Operating System Interface for Computer Environments (POSIX) IEEE 1003.1-1996 and complies with the IBM Open Blueprint client/server computing model and several other open systems standards (for details, see Section 4.3, "AIX V4.3 Open Systems Standards compliance" on page 36). AIX Version 4.3 was the first to receive X/Open's UNIX 98 brand from the X/Open.

Chapter 3. Operating system architecture 13

3.1.2.3 Modes of operation (execution modes)

There are basically two modes of operation in the AIX operating system: Applications and user programs run in user mode. Kernel processes, on the other hand, operate in kernel mode.

In user mode, programs have limited access to kernel data and global structures, but kernel mode has unlimited access to these and other functions including additional instructions/commands. For example, kernel extensions run in the kernel mode, and user applications tend to run in the user mode.

The receipt of an interrupt can cause a process or thread running in user mode to change to the supervisor state in order to handle the exception. An interrupt can be caused by an external signal, program error, program request, or any other unusual condition. The receipt of an interrupt causes a switch to the supervisor state and an immediate branch to a specific memory location or vector. The operating system has code at that vector to save the machine state and branch to a handler routine.

- Note

Often, the terms *exception* and *interrupt* get confused. Generally, the correct term in AIX terminology is *interrupt*.

3.1.2.4 AIX Version 4 kernel subsystems

Figure 4 on page 15 describes the AIX kernel architecture.

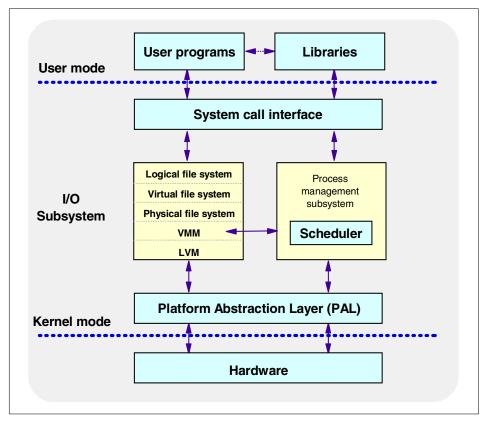


Figure 4. AIX V4.3 kernel architecture

Within the kernel, there are various subsystems that are dedicated to particular functions. These subsystems generally operate with a very high priority in the operating system, as do most kernel processes. The following sections list the major components of the kernel:

System call interface

The system call interface is the primary mechanism for user code and applications to access the kernel. This layer can be thought of as the Application Program Interface (API) to the kernel. Applications make system calls to get information, perform operations, and access resources through the kernel.

I/O subsystem

Access to files and directories is controlled by various layers within the I/O layer of the AIX kernel. There are many parts of this I/O layer, which would take volumes to describe. However, the major functions contained in the I/O

layer are meant to provide a consistent view to the user of any file within the operating system, whether it is a real physical file, a remote file, or even a logical file. The intent is to be able to deal with all file types via the same system calls, such as open(), close(), read (), write(), and so on.

The following is a listing of the major functions of this layer with a brief description of each:

- Logical File System (LFS) The LFS provides AIX and user applications with a consistent view of all file system implementations. Physical file system types are shielded by the logical file system.
- Virtual File System (VFS) The VFS provides a standard set of operations on entire file systems.
- **Physical File System (PFS)** There are different types of PFS, such as Journalled File System, CD-ROM file system, NFS file system, and so on.
- Virtual Memory Manager (VMM) The VMM provides the processes with a virtual address space allowing the creation of memory segments that are greater than the physical memory.
- Logical Volume Manager (LVM) The LVM provides the definition and management of volume groups, logical volumes and physical volumes. This creates a virtual disk environment that can be dynamically changed.

Process management (scheduler)

A thread is the smallest schedulable entity within AIX Version 4. A process, made with a single thread or a collection of threads, is a self-contained entity that consists of the information required to run a program. Process management allows many processes, or threads, to exist simultaneously and share the CPU. The scheduler decides which thread runs next and on which processor in a multiprocessor machine.

The AIX scheduler uses a time-sharing priority-based scheduling algorithm. The scheduler periodically scans the list of all active processes/threads and recalculates process priorities based on the initial priority and the amount of processor time used. It tends to favor processes that do not consume large amounts of the processor time because the amount of processor time used by the process is included in the priority recalculation equation.

Virtual memory manager (VMM)

Virtual memory is a mechanism by which the real memory available for use appears larger than its true size. The virtual memory system is composed of physical disk space where portions of a file that are not currently in use are stored, as well as the system's real memory. The physical disk part of virtual

memory is divided into three types of segments that reflect where the data is being stored:

- · Local persistent segments from a local file system
- · Working segments in the paging space
- · Client persistent segments from CDROM or remote file systems

One of the basic building blocks of the AIX memory system is the segment, which is a 256 MB (2^{28}) piece of the virtual address space. Each segment is further divided into 4096 byte pages of information. Each page sits in a 4 KB partition of the disk known as a slot. Similarly, real memory is divided into 4096 byte page frames. A frame (or page frame) usually means a physical memory page as opposed to a virtual page; the context of its use usually indicates which one is intended. When a page is needed from its disk location, it is loaded into a frame in real memory.

The Virtual Memory Manager (VMM) coordinates and manages all the activities associated with the virtual memory system. The VMM is responsible for allocating real memory page frames and resolving references to pages that are not currently in real memory.

Previous releases of AIX managed all of a system's real memory as one large resource that was available for the programs executing in one or more CPUs to address and use through the VMM. Thus, there was one list of free memory frames, and one page replacement daemon that would help ensure that the required pages actually could be located in system RAM.

Since systems continue to grow (for example, 64 GB is possible on an RS/6000 Model S80), AIX 4.3.3 has improved memory management through the use of multiple free frame lists and multiple page replacement daemons. This increases the VMM concurrency since contention has been reduced in the serialization mechanisms and processes with lower latencies can now service the memory requests.

A memory pool is a range of memory on which a single memory replacement operation operates; that is, only one LRU (Least Recently Used) manages this pool of memory frames. A memory frame (or page frame) appears in one, and only one, memory pool. A frame set is a set of memory frames; the frames in a set belong exclusively to that set.

Using this terminology, previous releases of AIX can be considered to consist of one memory pool and one frame set. Now, AIX 4.3.3 can have all of its system-wide memory frames managed with multiple memory pools. Each pool has roughly the same number of frames (so that the system is

balanced), and the frames in a pool are organized in multiple frame sets. The number of frame sets and the number of memory pools depend on the number of CPUs and the amount of real memory in the system. In the current implementation, for each memory pool, an LRU daemon called Irud (least recently used daemon) is created and started at the end of the VMM initialization.

As mentioned earlier, the number of memory pools depends on the number of CPUs and the amount of real memory on your system. For an MP kernel (packaged in the bos.mp fileset), there should be at least one Irud daemon, even if it is running on a single CPU system. With the UP kernel (in the bos.up fileset), there is only one memory pool and one frameset. There will never be an Irud when the UP kernel is active.

Now, if a thread needs some page frames, it is no longer constrained by having only one Irud available to check memory in an MP environment. Relevant VMM locks have also been enhanced.

Platform Abstraction Layer (PAL)

The PAL is a layer in the kernel that has been introduced with AIX Version 4. It is, ostensibly, the hardware-control layer. This is the layer in which device drivers are accessed by the kernel. All hardware-dependent code has been extracted from the kernel and placed in kernel extensions. This facilitates new hardware and device support.

3.1.2.5 Multitasking and multithreading support

AIX Version 4.3 is a multitasking system that uses processes and threads. A thread is an independent flow of control that operates within the same address space as other independent flows of control within a process. In previous versions of AIX and in most UNIX systems, thread and process characteristics are grouped into a single entity called a process. In other operating systems, threads are sometimes called *lightweight processes* or the meaning of the word *thread* is sometimes slightly different.

In traditional single-threaded process systems, a process has a set of properties. In multi-threaded systems, these properties are divided between processes and threads.

A process in a multi-threaded system is the changeable entity. It must be considered an execution frame. It has all traditional process attributes, such as process ID, process group ID, user ID, group ID, environment, and working directory.

A process also provides a common address space and common system resources for:

- File descriptors
- Signal actions
- Shared libraries
- Inter-process communication tools, such as message queues, pipes, semaphores, or shared memory.

A thread is the schedulable entity. It has only those properties that are required to ensure its independent flow of control. A kernel thread is a kernel entity, such as processes and interrupt handlers; it is the entity handled by the system scheduler. A kernel thread runs within a process but can be referenced by any other thread in the system. The programmer has no direct control over these threads unless he or she is writing kernel extensions or device drivers.

A user thread is an entity used by programmers to handle multiple flows of controls within a program. The API for handling user threads is provided by a library: The threads library. A user thread only exists within a process; a user thread in process A cannot reference a user thread in process B. The library uses a proprietary interface to handle kernel threads for executing user threads. The user threads API, unlike the kernel threads interface, is part of a portable programming model. Thus, a multi-threaded program developed on an AIX system can easily be ported to other systems.

User threads are mapped to kernel threads by the threads library. The way this mapping is done is called the thread model. There are three possible thread models corresponding to three different ways of mapping user threads to kernel threads:

- M:1 model
- 1:1 model
- M:N model.

The mapping of user threads to kernel threads is done using virtual processors. A virtual processor (VP) is a library entity that is usually implicit. For a user thread, the virtual processor behaves as a CPU for a kernel thread. In the library, the virtual processor is a kernel thread or a structure bound to a kernel thread.

In the M:1 model, all user threads are mapped to one kernel thread; all user threads run on one VP. The mapping is handled by a library scheduler. All

user threads programming facilities are completely handled by the library. This model can be used on any system, especially on traditional single-threaded systems. The following figure illustrates this model:

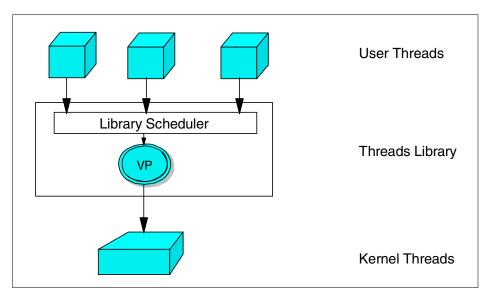


Figure 5. M:1 threads model in AIX V4.3

In the 1:1 model, each user thread is mapped to one kernel thread; each user thread runs on one VP. Most of the user threads programming facilities are handled directly by the kernel threads. Each thread can be separately and independently passed out to any processor on the system for execution . Figure 6 on page 21 illustrates this model.

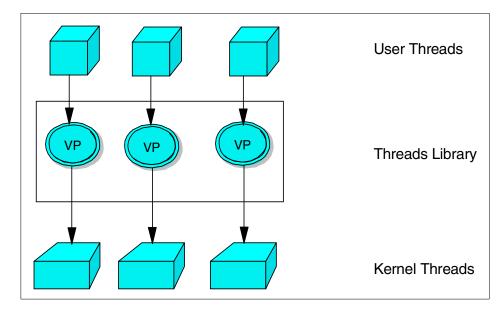


Figure 6. 1:1 threads model in AIX V4.3

In the M:N model, all user threads are mapped to a pool of kernel threads and run on a pool of virtual processors. A user thread may be bound to a specific VP, as in the 1:1 model. All unbound user threads share the remaining VPs. This is the most efficient and complex thread model; the user threads programming facilities are shared between the threads library and the kernel threads. Figure 7 on page 22 illustrates this model:

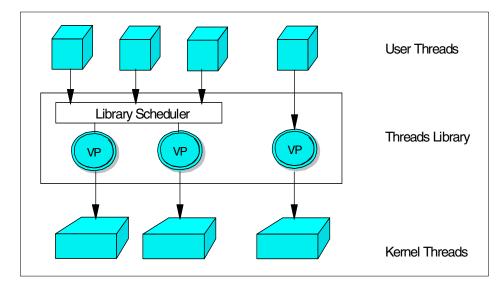


Figure 7. M:N threads model in AIX V4.3

By implementing a multithreaded kernel, AIX is well suited to run in a Symmetric Multiprocessor (SMP) system. AIX has been optimized to run on SMP systems, and scalability on these systems is very high.

3.1.2.6 Multiuser support

AIX has been a true multiuser system from the very beginning; that is, multiple concurrent users are supported.

A number of users can be logged into an AIX system at the same time from various types of devices, such as modems, ASCII terminals, and X-stations.

There is a master user, called root. The root user is basically the administrator of the system. This user can perform system-wide operations, such as installing or removing operating system software and configuring the operating environment. Generally, root is exempt from most system security checking. Therefore, only an experienced and trusted user should be granted access to the root user ID.

As an analogy, any user of a DOS-based system would be similar to the root user of a UNIX system in that he or she would be able to modify or delete any file on the system. Most other users on the system are considered regular users and are usually not able to modify system-related files.

22 AIX V4.3 and Windows 2000, Side by Side

Access to files and directories is controlled via file permissions. Files and directories are owned by a user. A user is also a member of a group or several groups. Groups are a collection of users that can be granted permissions easily. The owner of a directory or file can specify who may read, execute, and write to them. This is standard UNIX behavior.

3.2 Windows 2000 architecture

The following sections highlight the main features of Windows 2000 architecture and design.

3.2.1 History

While operating systems do provide an interface for applications and users, the key purpose of any operating system is to enable hardware. In the early 1980s, Microsoft entered the PC operating system arena with its DOS product to enable 8086 architecture hardware. Since then, as hardware has advanced, Microsoft has developed operating systems to enable this hardware with newer versions of DOS, and then Windows (not really an operating system, but a graphical user interface (GUI) shell over DOS), and, fairly recently, with Windows 95 and then Windows 98, which is geared to replace the earlier products. Over the course of this product evolution, it is an understatement to say that Microsoft has gathered a very large user base on these machines.

As hardware advanced over the next few years, it became apparent that a new family of operating systems would be needed to enable the powerful machines of today and tomorrow. It was also apparent that there must be a complete departure from the original design strategy of DOS and Windows, which only enabled the Intel family of processors. To put it simply, the result of this departure was Windows New Technology (Windows NT). In designing Windows NT, compatibility with existing operating systems was taken into account.

A newly formed group of operating system developers headed by David N. Cutler (formerly of DEC and a developer of VAX/VMS) were assembled by Microsoft to design Windows NT. Once the group developed a design strategy, Bill Gates and key Microsoft strategists reviewed the design, which identified these primary requirements for the new operating system:

- Architecture independence
- Multiprocessor support
- Multitasking and scalability

- Support for large memory space
- Distributed computing
- Compatibility with MS-DOS / 16-bit Windows / OS/2 / POSIX
- Government-certifiable security
- Highly-available operating system
- Ease of administration

Along with these requirements, the following design goals were defined:

- Extensibility The capability to add new features and functions to the operating system without the need to modify the original software. In other words, allowing new features to be plugged in.
- Architectural independence and support for SMP architectures The operating system should be easily moved from one processor architecture to another with as little recoding as possible.
- **Reliability and robustness** Reliability means that the OS should protect itself from error conditions, such as memory overlapping. Robustness is the idea that the OS should respond predictably to error conditions or even to hardware failure.
- **Performance** The OS must be tight, fast, and as efficient as possible on all hardware platforms.
- **Compatibility** Backwards compatibility with existing technology, such as MS-DOS and Windows, must be maintained.

One of the true assets of Windows NT 4.0 was that any non-skilled computer user who had ever used Windows 95 could sit in front of a Windows NT workstation and feel at home with a familiar GUI. Add to that Windows 95 and DOS emulation, NetWare and TCP/IP connectivity, Internet connectivity, the support for fast processors (including SMPs), and so on, and one begins to appreciate why it became such a popular product.

Also, most MS-DOS, Windows 16-bit and Windows 32-bit applications were compatible with NT 4.0, which enabled users to migrate from Windows 95 to Windows NT 4.0.

Windows NT was originally developed on MIPS RISC-based systems so that the developers would not stumble into the pitfall of including any non-portable Intel-optimized code.

Originally, Windows 2000 was to be the merger of the consumer products, Windows 98, and Windows NT. This plan has now changed with the July 1999

announcement from Microsoft of a new consumer product called Millennium. Windows 2000 is for business use, and it can run on a standalone workstation or on a business network, with different packages to suit differing businesses and hardware requirements.

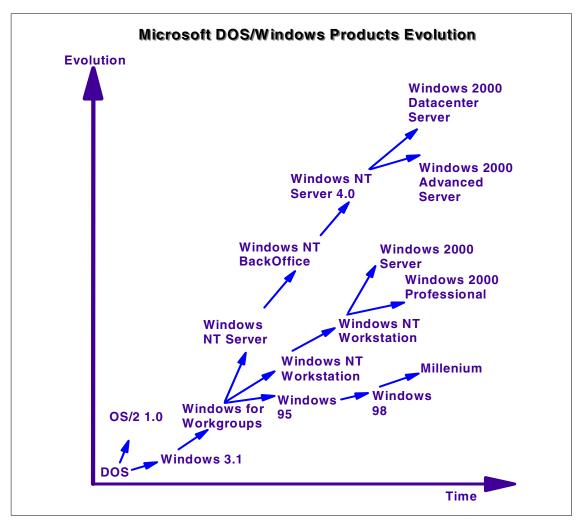


Figure 8 shows the evolution from DOS to today's range of operating systems from Microsoft.

Figure 8. Microsoft DOS/Windows product evolution

Still available on Intel and RISC platforms, Windows 2000 has been made more capable of dealing with the ever-increasing performance of hardware on

the market, with the high-end package designed to support a 16-way SMP box.

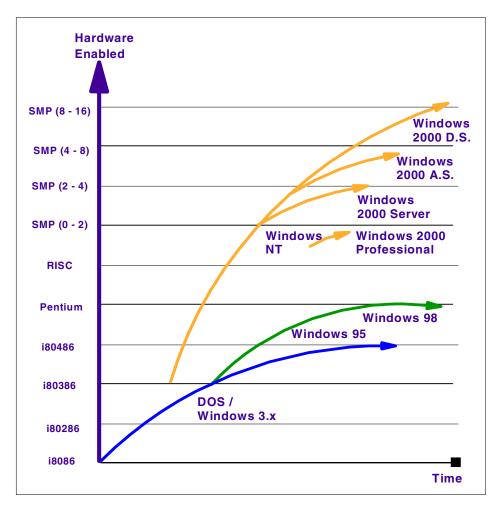


Figure 9 shows how Microsoft DOS, Windows, NT, and Windows 2000 products have evolved with increasing hardware performance.

Figure 9. Microsoft operating systems: Hardware enablement vs. time

3.2.2 Architecture description

The Windows 2000 operating system architecture is a hybrid architecture comprised of client/server, layered, object-oriented, and symmetric multiprocessing architecture principles. Although it uses objects to represent shared system resources, Windows 2000 is not a strictly object-oriented

26 AIX V4.3 and Windows 2000, Side by Side

operating system. The bulk of the code is written in C for both tool availability and portability, and C does not directly support object-oriented constructs. Windows 2000 borrows from the features of object-oriented languages. Its features include 32-bit addressing, virtual memory support, preemptive multitasking, multithreading, multiprocessing support, system security and enhanced system integrity, platform independence, and built-in modular networking. The following diagram, taken from the Microsoft white paper *Windows 2000 Reliability and Availability Improvements*, illustrates the Windows 2000 Server architecture:

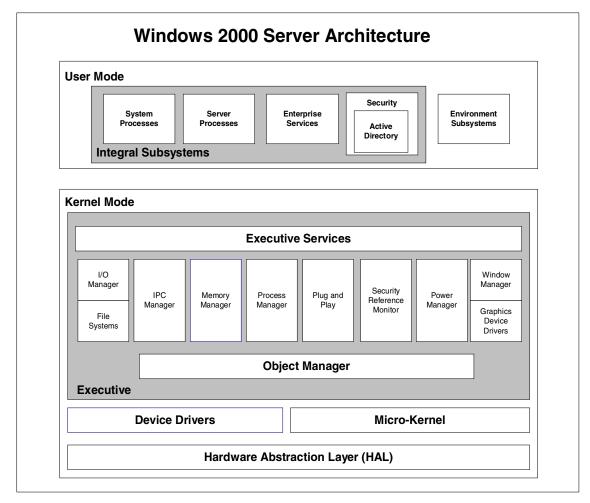


Figure 10. Windows 2000 reliability and availability improvements

A complete explanation of Windows 2000 architecture is beyond the scope of this redbook; in fact, entire books on this subject have already been written. If you require an in-depth explanation, see Appendix B, "Related publications" on page 525, for a suggested reading list. This chapter attempts to explain Windows 2000 architecture from a high-level *block diagram* approach and will try to give an overview of Windows 2000 architecture without over-simplifying it.

The operating system is built upon a layered approach similar to the UNIX operating system. One advantage of the layered operating structure is that each layer of code is only given access to the layer below it (interfaces and data-structures). This structure also allows the operating system to be debugged starting at the lowest layer and adding one layer at a time until the whole system works correctly. Layering also makes it easier to enhance the operating system; one entire layer can be replaced without affecting other parts of the operating system.

Windows 2000 is a portable operating system because of two design decisions: First, the operating system was written in ANSI C, a language that enables programs to be ported easily to other hardware architectures. Second, all parts of Windows 2000 that must be written for a specific hardware are isolated in an area called the Hardware Abstraction Layer (HAL). To move Windows 2000 to a new hardware platform, developers need to do little more than recompile the C code for the new hardware and create a new HAL. Designing an OS around a HAL means that a large portion of the code is exactly the same between hardware platforms. This also means that only a small slice of code that interfaces with the computer's hardware needs to be rewritten as Windows 2000 is ported between different processor architectures, thus, providing a high level of portability.

There are two modes that Windows 2000 operates in: Kernel mode and user mode.

3.2.2.1 Kernel mode

In this mode, the software is able to access the hardware and system data as well as all other system resources. The kernel mode has the following components:

• **Executive** - This contains components that implement memory management, process and thread management, security, I/O, interprocess communication, and other base operating system services. For the most part, these components interact with one another in a modular, layered fashion.

- **Microkernel** Its primary functions are to provide multiprocessor synchronization, thread and interrupt scheduling and dispatching, and trap handling and exception dispatching. During system startup, it extracts information from the registry, such as which device drivers to load and in what order.
- The Hardware Abstraction Layer (HAL) this is the code associated with Windows 2000 that changes with the hardware the operating system is being run on, thus, making it compatible with multiple processor platforms. The HAL manipulates the hardware directly.
- **Device drivers** They send and receive load parameters and configuration data from the registry.
- Windowing and graphics system This implements the graphical user interface (GUI).

3.2.2.2 User mode

Software in the user mode cannot access hardware directly. The user mode-protected subsystem has four primary responsibilities:

- Special system support processes, such as the logon process and the session manager.
- Windows 2000 services that are server processes, such as the Event Log and Schedule services.
- Environment subsystems that provide an operating system environment by exposing the native operating system services to user applications These are Win32, POSIX, and OS/2 subsystems.
- User applications Either Win32, Windows 3.1, MS-DOS, POSIX or OS/2.

User applications do not call the native Windows 2000 operating system services directly; instead, they go through subsystem dynamic link libraries (DLLs). This translates a documented function into the appropriate undocumented Windows 2000 system service calls. The protected subsystems are divided into two groups, which are described in the following sections.

Environment subsystem

The environment subsystems are services that provides application programming interfaces (APIs) that are specific to an operating system.

The three environment subsystems are the POSIX, OS/2, and Win32 subsystems. Applications and subsystems form a client/server relationship in which the applications are the clients, and the subsystems are the servers. One of the benefits of this type of architecture is that you can include support

for other types of applications to Windows 2000 simply by adding subsystems.

Applications cannot interfere with each other because they run in separate address spaces. Operating system code and data in the subsystems are protected from applications because subsystems also reside in their own address spaces. The Executive shares address space with running processes, but it is protected by the wall between kernel mode and user mode. It is impossible for an application to corrupt code or store data in the Executive because the processor notifies the operating system of invalid memory access before these things occur.

Integral subsystem

The integral subsystems are services that provide the APIs that Win32 applications call to perform important operating system functions, such as creating windows and opening files. It has five main components, which utilize four main support functions:

- **Process and thread manager** The process manager sees processes as objects. Its responsibility is to create and terminate processes and threads. It also suspends and resumes the execution of threads and stores and retrieves information about processes and threads.
- Virtual memory manager The Virtual Memory Manager (VMM) performs three essential functions: Managing the virtual address space of each process, sharing memory between processes, and protecting each process's virtual memory. It is also the underlying support for the cache manager. Each processor that Windows 2000 supports implements virtual memory through hardware differently; therefore, the portion of Windows 2000 that directly interfaces with virtual memory hardware is not portable and must be recoded when moving to another platform to minimize headaches. This code is small and well isolated in Windows 2000. Windows 2000 supports 4 GB of virtual memory. According to the Microsoft white paper *Windows 2000 Reliability and Availability Improvements*, "The upper 2 GB is reserved for kernel-mode processes". Figure 11 on page 31, also taken from the white paper, shows a graphical representation of the Virtual Memory Manager.

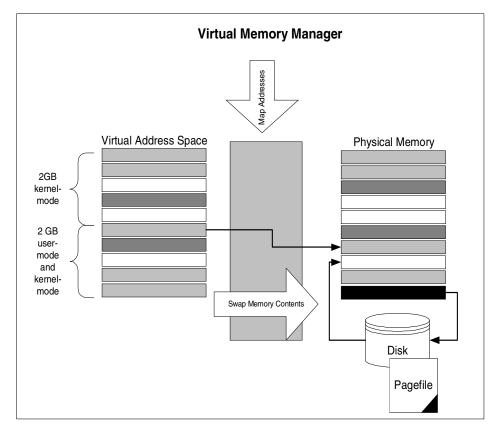


Figure 11. Windows 2000 Virtual Memory Manager

- Security reference monitor The security reference monitor is responsible for controlling which objects have permissions to which resources. Each object has an Access Control List (ACL) that is queried when the object makes a service request. Access to resources is allowed or disallowed according to the rights the module has in the ACL.
- I/O System manager The I/O manager is responsible for dispatching all system I/O requests. All I/O devices, network ports, printers, drives, and so on are mapped to virtual files. These virtual files are referred to as file objects and are managed by the object manager just like any other object.
- **Cache manager** The cache manager improves the performance of file-based I/O by causing recently-referenced disk data to reside in main memory for quick access. It also defers disk writing by holding the updates in memory for a short time before sending them to disk.

The support functions are:

- **Object manager** The object manager creates, manages, and deletes Executive objects. Executive objects are created in the Executive and are accessible to the Executive and protected subsystems. They can be thought of as message packets that represent things, such as processes, threads, semaphores, and other low-level objects.
- LPC facility Local Procedure Calls (LPCs) are used to pass messages between processes running on a single Windows 2000 system. Because LPC message passing requires quite a bit of overhead, the LPC facility is only utilized when an API must change global data. Otherwise, API routines can be implemented directly in a private Dynamic Link Library (DLL).
- **Run-time library functions** Similar to string processing, arithmetic operations, data type conversion, and security structure processing.
- Executive support routines Similar to system memory allocation and interlocked memory access.

3.2.2.3 Multitasking and multithreading support

Windows 2000 is a Symmetric Multiprocessing (SMP) operating system. This means that Windows 2000 is designed to always execute its instructions on any available processor in the system. When there are more threads to run than processors to run them on (this is always the case on a single processor system), an SMP operating system also performs multitasking, dividing each processor's time among all waiting threads.

User-mode processes, as is the case with many other system resources, are defined as objects in Windows 2000. A process is much more than just a program; it is a data structure that is comprised of the following parts:

- · An executable program that defines initial code and data
- A private address space that the VMM allocates for the process
- System resources that are allocated to the process
- At least one thread of execution

It is the goal of any multitasking system to make it appear to the user that it is accomplishing many tasks concurrently. Preemptive multitasking is accomplished in Windows 2000 by allowing threads to run only for a specified amount of time, called a time quantum. After a thread runs for the specified time quantum, it relinquishes control of the processor to the next waiting thread with the highest priority.

Threads are implemented in Windows 2000 in order to achieve this concurrency in a convenient and efficient way. Threads can be thought of as

scaled-down processes; they require less overhead and are faster to create than processes. A thread contains several components. In this discussion, the most important components are:

- A user-mode stack and a kernel-mode stack
- Register values representing the current state of the processor
- · Private storage for use by subsystems, runtime libraries, and DLLs

These components make up what is called the thread's context. Since a processor can only execute one thread at a time, in order to multitask the processor(s), it must switch between threads. This switching is called *context switching*. Basically, it involves running a thread for a specified amount of time, saving its context, loading another threads context, and then repeating this sequence as long as there are threads waiting to execute. This switching is accomplished within the context of Windows 2000's preemptive multitasking, as explained in the previous paragraph.

3.2.2.4 Multiuser support

Architecturally, Windows 2000 is a single-user operating system. Multiple users can be defined, but only one user at a time can interactively log in. Users in Windows 2000 have certain security privileges or rights to resources on the system. When Windows 2000 is installed, a user called Administrator, which is similar to the root user in AIX, is created. The Administrator has full control of all files and resources on the system. He or she may also create other users and give them lesser rights to resources on the system.

When connected to a network, Windows 2000 systems can interoperate in a peer-to-peer relationship called a workgroup or in a domain. In a workgroup model, each computer maintains its own user account database. Each user logs into a local account on a workstation. Computers can share resources over the network by using the concept of shares. Any user can create a share and set permissions to that share.

In a domain model, a Windows 2000 Server maintains a centralized user account database. In a domain, users log into the domain regardless of what computer they are using. Users can also log locally into any computer that is part of the domain because each computer can still maintain a local user account database.

Windows 2000 is actually designed to work in a client/server mode. To have access to a Windows 2000 Server's resources, you need your own personal computer running its own Windows license (for example, Windows 2000 Professional or older versions, such as 98/NT, that have not been upgraded).

There is no support for ASCII terminals and Xstations, but new to Windows 2000 is the support for Terminal Services. This provides remote access to a server desktop through *thin client* software serving as a terminal emulator. Client software can run on a number of client hardware devices, including computers and Windows-based Terminals. Other devices, such as Macintosh computers or UNIX-based workstations, can also connect to a Terminal server with additional third party software.

Chapter 4. Open System Standards compliance

At a very high level, Open System Standards are a means of ensuring portability of both applications and users, and a means of ensuring interoperability.

Application portability to any platform guarantees independence from the platform provider. User portability minimizes education and training through consistent user interfaces. All these features can be categorized as customer investment protection. Also providers/suppliers can expect an even larger market for their products due to the portability of their applications.

In the case of interoperability, Open System Standards become even more important. Customers that choose to purchase a product that conforms to Open Systems Standards can be reasonably assured that products from other providers will work with that product in a manner consistent with any other vendor that complies with the same standards.

4.1 Open standards groups/bodies/committees

The objective is for the leaders of a particular industry to get together with leaders from academia and other groups and define a set of rules, guidelines, and definitions for a systematic approach to portability and interoperability that suppliers agree to abide by.

These standards groups are also responsible for certifying that a product complies with a particular standard. There is also a forum to include comments from all interested parties at large known as the Request For Comments (RFC) process. The very act of participation by a wide range of people and groups is why these adopted standards are referred to as Open System Standards.

4.2 The Open Group example

The Open Group is vendor-neutral, international consortium of more than 200 members including leaders in government, academia, world-wide finance, health care, commerce and telecommunications, that have combined IT budgets in excess of \$55 billion annually. The Open Group's breakthrough IT DialTone initiative will ensure that the Internet remains open by collecting a core set of specifications, products, and technologies to create a common level of global security and reliability. The Open Group charter provides for research and development of non-proprietary technologies and specifications.

© Copyright IBM Corp. 2000

through collaborative development as well as a unique testing and branding process for guaranteed compatibility of commercial products.

The Open Group was formed in February 1996 by merging X/Open Company Ltd. and the Open Software Foundation. The nine sponsors of The Open Group are Digital Equipment Corporation, Hewlett-Packard Company, Siemens Nixdorf Informationssysteme AG, Fujitsu Limited, Inc., Hitachi Limited, International Business Machines Corporation, NCR Corporation, Novell, Inc., and Sun Microsystems, Inc. The Open Group can be reached online at:

http://www.opengroup.org/

4.3 AIX V4.3 Open Systems Standards compliance

There are a number of organizations that have a major impact on the direction of AIX. The AIX development organization is making a commitment of time and resources to support these groups and their efforts. Some of those groups are:

- IEEE (Institute of Electrical and Electronics Engineers) IEEE is an accredited standards organization. POSIX is a group of related standards that are being developed to support application portability.
- Open Group (Open Group Limited) Open Group produces specifications in support of application portability and interoperability. A branding program is in place that allows compliant products to obtain an Open Group brand.
- OMG (Object Management Group) The Object Management Group is defining specifications to support application portability and interoperability in a distributed object oriented environment.
- **Open Blueprint** The Open Blueprint is an IBM standards-based framework for a unified, open, distributed client/server environment. It is intended as a guide for IBM and other developers as they provide products and solutions that interoperate and integrate with other installed products.

AIX Version 4 conforms to several industry standards for compatibility with other UNIX systems based on review by established standards organizations. These include support for a range of specifications relating to items, such as:

- · Product standards
- · System calls and libraries
- Operating system interfaces and environments (API)

- Application portability at the source-code level (compilers)
- · Commands and utilities
- TCP/IP interoperability
- · Portability of users and programmers
- Distributed network-transparent window system
- Distributed filesystems
- Communication protocols
- Magnetic media
- · System security
- System administration

Here is a partial list of the standards that help define AIX Version 4.3:

- X/Open UNIX 98 Product Standard
- ANSI/IEEE 1003.1:1996 and 1003.2:1992
- XPG4 NFS and XPG5
- FIPS PUB 151-2 and 189
- BSD 4.3 Compatibility
- and many more

For a more detailed list of AIX Version 4.3 standards compliance, see the online reference at:

http://www.austin.ibm.com/software/Standards/

4.4 Windows 2000 Open Systems Standard compliance

Microsoft talks alot about their levels of interoperability. Their strategy is based on a four level framework that covers network, data, applications, and management integration.

They have many of the basic network interoperability standards, such as TCP/IP support, terminal emulation, ftp, http, and telnet support. There are also add-on products available for UNIX interoperability and file, print, and gateway services for Netware. DNS integration is based on RFC 2052 and RFC 2136.

Chapter 4. Open System Standards compliance 37

For data interoperability, Windows 2000 uses ODBC (Open Database Connectivity) allowing application developers to access data irrespective of the database or the operating system it is running on.

Management interoperability is achieved with SNMP-based system management. This is an optional service that may be installed once the TCP/IP protocol has been successfully configured. There is also one-way password synchronization that allows users to maintain a common password between their Windows 2000 and UNIX systems, and UNIX scripting commands and Korn shell support.

Perhaps, more important to Microsoft than Open Systems Standards compliance is user interoperability. Windows 2000 is aimed at a range of machines from the standalone desktop to an SMP machine capable of running a business. The similar look and feel from Windows 98 and Windows NT to the new Windows 2000 is quite important. Microsoft is more likely to be concerned about this portability and the *de facto* standards it has set than the Open System Standards.

For more information on Windows 2000 and its interoperability capabilities, go to:

http://www.microsoft.com/Windows/server/Overview/features/interop.asp

Microsoft has their own standards which they expect their partners and ISVs to meet to be able to obtain Windows 2000 certification, and details of those requirements can be found online at:

http://msdn.microsoft.com/certification/appspec.asp

Information on the Windows logo program is also available online at:

http://msdn.microsoft.com/winlogo/

Chapter 5. Packaging

The way an operating system is packaged may not seem the most important aspect when comparing several operating systems. However, it becomes very important when you start looking at which package/products you must buy to achieve a specific set of functions and support your hardware requirements. Questions, such as what functions are included in the base operating system and how many users are supported for a license, need to be clarified before a final decision can be made.

This chapter discusses how AIX Version 4.3 and Windows 2000 are packaged and what it is the customer actually receives. While AIX Version 4.3 offers one package that can run anything from a low-end graphics workstation to the high end parallel SP system, Windows 2000 offers four packages ranging from the Professional version, designed for the workgroup computer, to the Datacenter version that is designed for ISPs and can support up to 16 processors.

5.1 AIX Version 4.3 packaging

AIX uses a flexible packaging scheme. Behind the scenes, AIX is actually comprised of many filesets. A fileset is the smallest installable unit of AIX. The notion of "filesets" comes from the Open Group's specification for product packaging. This permits the customer to only install the filesets that are needed to accomplish the particular mission of the system. While this can be difficult to understand for a new AIX administrator, it is critically important to an experienced system administrator who wants to:

- · Craft or tailor a system to a specific mission
- · Use only as much disk space as is needed
- · Gain maximum system performance

For those who are new to AIX administration, AIX Version 4.3 has preconfigured offerings that are tuned for a generalized operating environment and installed with the minimum amount of administrator intervention straight out of the box. It is also possible to have AIX preinstalled on a new RS/6000. These, along with the manuals and publications included with any AIX license, simplify the installation process.

The base install (whether done before, as a pre install, or after the RS/6000 arrives) will only configure the device drivers for those devices that are connected at the time of installation. Others can be easily added at a later

© Copyright IBM Corp. 2000

date using either SMIT (as explained in Section 9.4.1.1, "SMIT" on page 245) or WebSM (explained in detail in Section 9.4.1.3, "Web-based system management" on page 252). Once the base install has been completed, you can opt to install filesets individually or choose from any or all of the following five bundles that AIX makes available:

- Server
- Client
- Application development
- · Personal productivity
- Media defined

Previous versions of AIX used the same packaging methods as Windows 2000 currently employs and had separate packages available for clients and servers. To simplify the matter, there is now one AIX package that can run any machine, and the pricing is completely dependent on the number of licensed users that are required. A base licence is one price, as is each individual user, no matter what system it is going on.

5.1.1 AIX Version 4.3 Package

The single AIX package that is available to run on all RS/6000s is broken down into the following components:

- AIX Version 4.3
- Base documentation
- Extended documentation
- AIX update CD
- · AIX Bonus pack
- · Oracle trial software

Along with the installation CDs, which include softcopy manuals, there are some hardcopy publications included to get you started. These publications are specific to AIX Version 4.3 and include some that are even more specific to the modification level you have received, such as AIX Version 4.3.3. The publications that are generally received are as follows:

- AIX Quick Installation and Startup Guide, SC23-4111
- AIX V4.3 Installation Guide, SC23-4112
- AIX V4.3 Network Installation Management Guide and Reference, SC23-4113

- AIX V4.3 Quick Beginnings, SC23-4114
- AIX V4.3.x Release Notes
- AIX V4.3.x Bonus Pack Release Notes
- Plus the license agreements and release notes for some separate items in the bonus pack

The only media that AIX is available on is CDROM. This is what will be received with AIX irrespective of whether it is running on a standalone graphics workstation, a 24-way S80 system, or an RS/6000 SP (Scalable POWERparallel) system.

5.1.2 Processor groups

All of the RS/6000s that have been produced by IBM are classified into processor groups. AIX was once priced according to processor groups, and, while this is no longer the case, some software is still differentiated in this way.

- D5 corresponds to entry workstations and workgroup servers.
- E5 corresponds to high-end technical workstations and low-end and midrange enterprise servers.
- F5 corresponds to some of the micro channel low end enterprise servers.
- G5 corresponds to the high-end enterprise servers.
- P5 corresponds to the RS/6000 SP systems.

Chapter 5. Packaging 41

Table 1 shows the different RS/6000 processor groups.

D5	E5	F5	G5	P5
7006 7008 7009 7011 7020 7024 7025-F30 7025-F40 7043-140 7043-150 7043-240 7046 7247 7248 7249	7012 7025-F50 7026 7030 7043-260 7596	7013 7016	7015 7051 7017	9076

The processor groups are used within AIX to determine the number of users that need to be purchased before the license is considered unlimited. Each AIX license automatically comes with two users. For some systems, such as a standalone workstation, this is enough, but, for systems that will have more than two concurrent users logged in, additional licenses are required.

An AIX user is defined as someone who logs in using any of the following commands:

- login
- rlogin
- dtlogin
- telnet
- ftp

If someone is logging into an application that is running on AIX, that is not considered a user, and licenses are not required for that purpose. Table 2

shows the numbers of licenses that need to be purchased before a license is considered unlimited.

D5	E5/F5/G5	P5
-AIX V4.3 base licence (two users) -38 additional licences required	-AIX V4.3 base licence (two users) -78 additional licences required	-AIX V4.3 base licence (two users) -158 additional licences required
40 users = unlimited	80 users = unlimited	160 users = unlimited

Table 2. Maximum licenses required to make AIX unlimited

5.1.3 AIX Version 4.3 Bonus Pack

The AIX Bonus Pack is a collection of extra software included at no additional charge with purchases of AIX Version 4.3 licenses when media is selected. It includes software from IBM and third-party providers. The AIX Bonus Pack is intended for customers who:

- Want to exploit Internet technologies
- Want to take advantage of the latest in Java development tools
- Need security enhancements at all levels of their operating, application, and network support
- Need help in reducing the cost of computing through improved systems and network management
- Want to evaluate products that address PC interoperability requirements
- Need to view AIX documentation in HTML format

AIX Version 4.3 Bonus Pack, shipped with AIX Version 4.3 contains:

- SCO Tarantella Version 1.4.0.0, Evaluation Software
- Chili!Soft ASP Version 3.0 Developer's Edition
- WebSphere Application Server Version 2.02, Standard Edition
- IBM HTTP Server Version 1.3.3, 128-bit encryption
- AIX Fast Connect Version 2.1.1, Evaluation Software
- GraphOn GO-Joe Version 2.2.0.0
- GraphOn GlobalHost Version 1.0.8.0
- Geodesic Great Circle Version 3.1.2, "Try and Buy"
- Java Media Framework Version 1.1.0.1

Chapter 5. Packaging 43

- The Kernel Group ZeroFault Dynamic Debugger Version 2.4, Evaluation Software
- DB2 Universal Database Version 6.1 for AIX, Evaluation Software
- VisualAge (R) for Java Entry Version 2.0.0.3
- Web-based System Manager Security Version 4.3.3, 40-bit and 128-bit encryption
- Tivoli Management Agent Version 3.2
- techexplorer Hypermedia Browser, Introductory Edition, Version 2.0 plug-in (packaged with Netscape Communicator)
- Ultimedia Services Version 2.2.1
- Adobe Acrobat Reader 3.01
- AIX Certificate and Security Support Version 4.0
- IP Security Version 4.3.3, 40-bit, 56-bit, or Triple DES encryption
- SecureWay-SSL Version 3.3 (for use with IBM SecureWay Directory Version 3.1.1), 56-bit encryption
- SecureWay Directory Server and Client Utilities for Maximum Encryption Version 3.1.1, 128-bit and Triple DES encryption
- SecureWay Directory Client Software Developer Kit (SDK) Encryption Version 3.1.1 (for use with SecureWay Directory Version 3.1.1 Software Developer Kit), 40-bit, 56-bit, and 128-bit encryption
- Novell Network Services 4.1 for AIX, Version 2.2.1, Evaluation Software
- Syntax TotalNET Advanced Server Version 5.3, Evaluation Software
- Netscape Communicator 4.51
 - Languages
 - U.S. English
 - Spanish
 - Italian
 - Korean
 - Polish
 - Catalan
 - Traditional Chinese
 - Hungarian
 - German
- 44 AIX V4.3 and Windows 2000, Side by Side

- French
- Brazilian Portuguese
- Japanese
- Russian
- Simplified Chinese
- Czechoslovakian
- Slovakian
- 128-bit encryption
- S/MIME

The Bonus Packs may differ with each release of AIX, and they are updated approximately four times a year. To get the latest information on the AIX Bonus Pack, go to the following Web site:

http://www.ibm.com/servers/aix/products/aixos/bonus/details.html

5.1.4 AIX options

In addition to AIX Version 4.3.3, there are a number of options that can be selected to extend the packages already available to you.

5.1.4.1 Infoexplorer

Infoexplorer is the updated Hypertext Libraries. This was used in previous versions of AIX to view the softcopy manuals. Since all the manuals are in html format for AIX Version 4.3, this product is not required unless Infoexplorer is required for other software product manuals.

5.1.4.2 AIX Fast Connect

AIX Fast Connect is available as an option for either Windows or OS/2. AIX Fast Connect for Windows Version 2.1.1 enables AIX to be a part of the Microsoft Network Neighborhood. Windows clients have AIX file and print capabilities without the need for additional software on the clients. Using Microsoft Common Internet File System (CIFS) and server message block (SMB) protocols over TCP/IP, Windows clients can access:

- AIX journaled file system (JFS)
- CD file system (CDFS)
- · Network file system (NFS) mounted subsystems
- AIX printing services

Chapter 5. Packaging 45

AIX Fast Connect for Windows includes:

- Support for Windows for Workgroups (WFW), Windows 95, Windows 98, and Windows NT 4.0 clients.
- CIFS client resource browsing, which enables users to view available shared AIX files and printing services.
- Support for CIFS long file names.
- NetBIOS request for comments (RFC) 1001/1002 allows programs written for a NetBIOS environment to run over TCP/IP. NetBIOS is only for use with the Fast Connect features and is not available for other applications on AIX.
- Use of the TCP/IP domain name system (DNS) to resolve NetBIOS machine names.
- Microsoft WINS server support.
- Opportunistic locking.
- Unicode user, file, and printer name support.
- AIX authentication/authorization with encrypted passwords using 56-bit encryption.
- Interaction with NT Server Version 4.0 to:
 - Provide PC user authentication and authorization
 - Work with the NT Server domain master browser to find and publish shared resources across TCP/IP subnets
 - Work with the NT Server Windows Name Server (WINS) to resolve NetBIOS machine names
- IBM service and support.
- HTML-based publications (English only).
- Command-line (NET command subset), SMIT, and Web-based System Management configuration.

AIX Fast Connect for Windows is based on AIX 4.3 and provides at least twice the performance of AIX Connections, its predecessor. AIX Fast Connect uses the TCP/IP sendfile API with an in-kernel network file cache to improve network TCP/IP performance. AIX Fast Connect for Windows also assumes the presence of at least one Windows NT server in the network environment to provide Microsoft Master Browser support.

With the latest release of AIX Fast Connect, Version 2.1.1, there have been the following enhancements:

- AIX Fast Connect Release 2.1.1 for Windows and OS/2 includes integration with DCE/DFS. This feature allows user authentication with the DCE security server. DFS directories can be shared with (exported to) PC clients. PC client access is controlled by the login context acquired as a result of DCE authentication. Fast Connect offers DCE authentication and DFS access without requiring DCE/DFS client software to be installed on each of the PC clients requiring DCE/DFS access. This allows centralized user/resource management for PC clients using DCE/DFS, avoiding cost, complexity, and extensive management overhead associated with installing a DCE/DFS client on every desktop.
- AIX Fast Connect supports Windows 95/98 logon. Windows NT clients are supported using IBM Network Client for Windows NT. This feature of AIX Fast Connect allows support of home directories, startup scripts, and roaming user profiles for PC clients without requiring Windows NT domain controllers. Windows NT client support requires the use of encrypted passwords and an AIX Fast Connect logon server located in the same IP subnet as the clients. IBM Network client software for Windows NT and Windows 95 is available for download at the following IBM Web sites:

http://service.boulder.ibm.com/asd-bin/doc/en_us/winntcl2/f-feat.htm

http://service.boulder.ibm.com/asd-bin/doc/en_us/win95cl/f-feat.htm

• AIX Fast Connect Release 2.1.1 supports AIX Access Controlled Lists (ACLs), including per-share default ACLs. This feature provides enhanced access control for PC clients.

AIX Fast Connect for OS/2 includes the complete function available with AIX Fast Connect for Windows plus support for OS/2 clients using LAN Server, DOS LAN Server 2.0, or DOS LAN Requester 3.0.

5.1.5 National Language Support

All AIX operating system packages can support over 60 languages. The language support is shipped on the installation media. Customers do not have to purchase separate media to get a particular language.

A unique aspect of the AIX language support is that multiple languages, or locales, can be supported at the same time. Many operating systems allow only one language at a time, and it must be the same for all users of the system.

However, an AIX user can interact with the system in one language in one window and, concurrently, with another language in another window. Also, different users of the same system can use different languages.

Chapter 5. Packaging 47

To accomplish this, the system administrator must load the appropriate language support from the installation media, and the user must specify which language to use by way of an environment variable called LANG.

AIX Version 4.3 is also EuroReady. This means that when used in accordance with its associated documentation, AIX is capable of correctly processing monetary data in the euro denomination and respecting the euro currency formatting conventions (including the euro sign). This is assuming that all other products used with AIX (including hardware) are also EuroReady.

Information on what languages are supported can be found in Section 9.10.1, "AIX support for national languages" on page 336. For more technical information on National Language Support and its implementation, access the redbook *AIX V4.3 Differences*, S24-2014, which contains a detailed chapter on National Language Support.

5.1.6 AIX Version 4.3 bus support

AIX Version 4.3 supports the microchannel, PCI and ISA buses. The RS/6000 systems have, over the years, been either microchannel, PCI and ISA, or just PCI.

The Microchannel Architecture (MCA) is a 32-bit bus designed by IBM that, for many years, was the standard bus in the RS/6000s. This was an IBM proprietary architecture and has all but been phased out of the product range. Only the model R50 remains in our current product line-up.

The PCI/ISA systems represent a major paradigm-shift for the RS/6000 product line. The RS/6000 division is moving from a line of specialised machines with custom-built components in fairly low volumes to a more generalised line of systems with common off-the-shelf components. There are advantages here for both the user and IBM. IBM can now design new systems and release them to the market faster than their competition. In addition, because of the use of fairly common high-volume parts from the Personal Computer line, such as power supplies, cables, disks, memory, and so on, prices continue to drop for the user. The PCI slots in the new machines are a mixture of 32-bit and 64-bit.

The most recent RS/6000 systems that have been released no longer have the combined PCI/ISA bus. These models are purely PCI and have a combination of both 32- and 64-bit buses.

AIX Version 4.3 supports all of these so that it can run on any machine in the RS/6000 range including those that are no longer sold. The universal serial

bus (USB) is not supported on AIX Version 4.3. This is currently being developed for future releases.

5.1.7 AIX Licensed Program Products (LPPs)

Any operating system will normally require additional software or middleware to accomplish specific tasks. While AIX is a very robust and utilitarian operating environment, specialized products are often needed to produce a complete solution for a particular end-user requirement. Applications, such as databases, graphics-rendering products, and personal-productivity applications, are available from IBM and other manufacturers. These additional software products, which are separately orderable, are referred to as Licensed Program Products (LPPs).

The AIX Application Availability Guide is a list of the software from IBM that is available to run on AIX. It also provides information on what version of AIX the software will run on as well as when it is being withdrawn from marketing and support and what its replacement product will be. There is also a guide for withdrawn software should you need to trace an upgrade path for existing products. These guides are available online at:

http://www.ibm.com/servers/aix/products/ibmsw/list/

5.2 Windows 2000 packaging

Windows NT V4.0 originally had two packages to offer: A workstation and a server. Microsoft has now expanded that range, and Windows 2000 comes in the following packages:

- Professional
- Server (also known as Standard)
- Advanced Server
- Datacenter Server

This is to cater to the increasing number of Intel-based systems that are increasing their SMP (symmetric multiprocessing) performance. While the Professional, Server, and Advanced packages of Windows 2000 are being released simultaneously, it is planned to release the Datacenter package approximately three to four months after that.

In most situations, upgrading to Windows 2000 will mean getting a box with the CD and a basic installation manual (as well as the license information). This will not differ for a new license on a new machine where it will be pre

Chapter 5. Packaging 49

installed, and only the basic information required to install is shipped with the box.

When you install any of the Windows 2000 Server packages, you must specify whether the product is to be licensed in Per Seat or Per Server mode. Microsoft suggests the following guidelines for selecting the licensing mode:

- If the box is to be the only server computer in your network that will run the server product, select the Per Server option, and specify the number of client access licenses (CAL) purchased for the product. This sets the maximum number of concurrent connections that can be made to the server product. As you purchase additional licenses, you can increase this number.
- If multiple server computers in your network will run the server product and the total number of CALs required to support Per Server mode for all the servers is equal to or greater than the number of client computers or workstations, select the **Per Seat** option for the product on all computers in your network.

Similarly to AIX, Windows 2000 will install only the device drivers for the installed hardware as the default setting. There is a check box in the installation process where you can opt to install everything to disk in case it is required at a later date.

At the core of all Windows 2000 offerings is the Active Directory structure. It is designed to simplify management, strengthen security, and extend interoperability. More detailed information is available on the Active Directory in Section 8.3.2, "Active Directory" on page 185.

5.2.1 Windows 2000 Professional package

There has been some discussion within Microsoft about what Windows 2000 Professional is the upgrade to. It was first touted as the upgrade from Windows 98, but, with the announcement from Microsoft on July 26, 1999, it would appear that the product code-named Millennium is the new and improved Windows 98. Given that, Windows 2000 Professional is the upgrade to or replacement for Windows NT Version 4.0 Workstation. It is the mainstream desktop and laptop operating system and supports up to two processors and 4 GB of physical memory. It was designed to incorporate the best business features of Windows 98 and build on the strengths of NT, thus, improving security and reliability.

5.2.2 Windows 2000 (Standard) Server Package

Windows 2000 Server is meant for departmental file and print, Web, and entry-level application servers and is the upgrade from Windows NT Version 4.0 Server. It supports up to 4-way SMP and 4 GB of physical memory. It is aimed at small to medium enterprise application deployments and organizations with numerous workgroups and branch offices. Windows 2000 Server has the following features:

- Windows management tools
- Kerberos and Public Key Infrastructure (PKI) Security
- Windows terminal Services
- Enhanced internet and Web services

5.2.3 Windows 2000 Advanced Server Package

This is the replacement for Windows NT Server 4.0, Enterprise Edition. It is aimed at providing a comprehensive clustering infrastructure for high availability and scalability. It supports up to 8-way SMP and 8 GB of physical memory. It is designed for database-intensive work and has a load-balancing component for system and application availability. The Windows 2000 Advanced Server builds on the existing features of the Standard package and also has the following features:

- Enhanced application fail-over clustering
- High-performance sort
- Cluster Services
- Network Load Balancing

5.2.4 Windows 2000 Datacenter Server Package

A new area for Windows 2000 is its Datacenter Server Package. It supports 16-way SMP (32-way through OEMs) and 64 GB of physical memory. It has the same high availability and clustering that the Advanced Server edition advertises and is aimed at large data warehouses, science and engineering simulations, econometric analysis, OLTP (online transaction processing), and large scale ISPs. The Windows 2000 Datacenter package builds on the existing features of the Advanced offering and offers more advanced clustering.

5.2.5 National Language Support

Multilingual editing and viewing features are standard on all Windows 2000 packages. This allows users to view and edit information in over 60

Chapter 5. Packaging **51**

languages. There are three versions of each of the packages available. The English and Localized packages of Windows 2000 are meant for those who have one primary language. This allows Windows 2000 to work in that primary language and still be able to view/edit in the 60 other available languages.

There is also a Windows 2000 Multilanguage Version that provides additional support that the standard versions of Windows 2000 do not. The Multilanguage version allows users to change the language of the operating user interface. This allows a user to log on to a workstation and use any of the 24 languages that are shipped with the localized versions. The language files must have already been installed by the administrator.

The Multilanguage version supports the 24 fully-localized languages with which Windows 2000 is shipped. This initial release is expected approximately six weeks after the English version of Windows 2000, and a refresh with additional language support is expected to ship around five months after that.

For more information on Windows 2000 Multilanguage Support, there is a white paper from Microsoft titled *International Support in Windows 2000*. This is available online at the Microsoft Developer Network. There is also more information in Section 9.10.2, "Windows 2000 support for national languages" on page 339.

5.2.6 Windows 2000 bus support

Windows 2000 continues to support both PCI and ISA buses, although, Windows 2000 Remote Installation Services does not fully support unattended installations on computers that contain ISA devices or those that are not Plug and Play aware. The universal serial bus (USB) is also supported. Windows 2000 has dropped support for the michrochannel bus.

5.3 AIX V4.3 and Windows 2000 packaging

Both AIX and the various Windows 2000 packages are designed to cover a large range of machines, from individual workstation scaling to high-end SMP servers. And, in the case of AIX, the highly-scalable SP systems.

Figure 12 on page 53 shows the range covered by these packages.

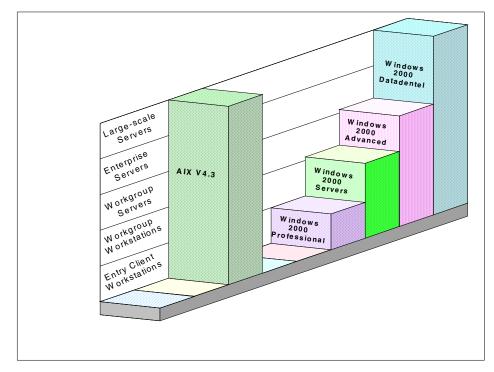


Figure 12. AIX Version 4.3 and Windows 2000 packaging

At this stage, AIX will only run on the RS/6000 range (POWER, PowerPC, POWER2, POWER3), whereas Windows 2000 runs on Intel and RISC platforms (although support for the Alpha has been dropped). The September 1999 release of AIX Version 4.3.3 is the first release of AIX to be influenced by Project Monterey. Project Monterey is an initiative led by IBM with SCO, Sequent, and Intel to deliver a single UNIX product line that spans RS/6000 systems, IA-32, and the upcoming IA-64 based systems. You can access more information on Project Monterey online at:

http://www.ibm.com/servers/monterey/

or

http://www.projectmonterey.com/

Chapter 5. Packaging 53

Chapter 6. User interface/graphics support

This chapter outlines the main features of the user interfaces and graphics support of both AIX and Windows 2000. This chapter does not intend to advocate the use of either of these products or to make a direct comparison between the two. The intention is to present readers with a neutral overview of both products and allow them to make their own decision as to the merits of each.

6.1 AIX Version 4.3 user interface

The default graphical user interface that is provided with AIX is the Common Desktop Environment (CDE 1.0). CDE was jointly developed by IBM, HP, SUN, and Novell to provide a standard user interface across all UNIX flavors and, thereby, create truly open systems. CDE is made up of various components that interact with each other to form the desktop environment. These components are:

- Login Manager
- Session Manager
- Front Panel
- Style Manager
- Workspace Manager
- File Manager
- Application Manager
- Help Manager

In the following sections, we will take a closer look at the individual components and how they fit together.

6.1.1 Login Manager

The Login Manager provides a graphical logon screen and manages user access to the system. The Login Manager is responsible for the following tasks:

- Reading initial configuration files
- · Starting the X server for local displays
- Displaying the login screen and validating user login IDs and passwords
- Invoking the CDE Session Manager

© Copyright IBM Corp. 2000

The graphical user interface presented by the Login Manager and shown in Figure 13 can be fully customized by the system administrator. See the IBM Redbook *RS/6000 Graphics Handbook*, SG24-5130, for more details.

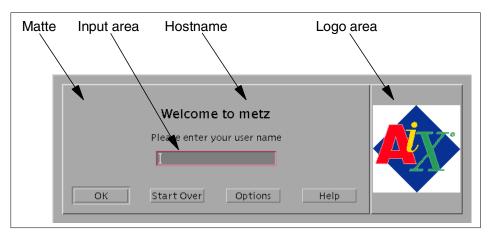


Figure 13. Login Manager user interface

An important feature of the CDE Login Manager is that it uses a Pluggable Authentication Modules (PAM) architecture. This enables the system administrator to use additional authentication methods to authenticate the user logon and, thereby, provide enhanced security.

It is possible to, if necessary, disable the Login Manager and use the standard AIX command line login. If this is required, once the user has logged into the system, the CDE desktop can be started manually using the command line by running the /etc/rc.dt shell script.

Once the user has terminated his or her CDE session, they will be returned to the login manager or the command line depending on the chosen implementation.

6.1.2 Session Manager

The Session Manager is the desktop software component responsible for initializing each user's desktop session after login. The Session Manager will automatically configure the desktop to reflect either the way the desktop was the last time the user logged out or a configuration that was previously saved by the user. These two automatic configuration possibilities are called the current session and the home session. These sessions are, in essence, snapshots of the desktop when the session was saved, and they contain information about:

56 AIX V4.3 and Windows 2000, Side by Side

- Applications running at the time the session was saved.
- Any desktop customization changes that were made by the user.
- The values of all of the X resources known to the X resource manager.

Each time a user logs out of CDE, the Session Manager takes a snapshot of the desktop just before logging the user off. This snapshot is saved as the current session and can be used the next time the user logs in to re-create the same desktop. Similarly, the user can, at any time, request that the Session Manager take a snapshot of the desktop and store it as the home session.

				Style N	lanager	•				-	
File									Hel	p	
<u></u>	Tr						-	r prover			
Color	Font	Backdrop	Keyboard	Mouse	Веер	Screen	Window	Startup	Works pac	es	
	(III) (III) (III)										
	۳۴ <u>R</u> ,	1-1		aixter	122				ī		
	Metz>			arxter				1			
		ſ	_			Applica	tion Mana	.ger			
		Ĩ	File Selected	d <u>V</u> iew						Hel	p
		Í			_		_	_			
			ACTIONS_PERS	ONELLES	Deskto	p_Apps		sktop_Tool	S		
			en_US		System	_Admin	Cu	stom			
	_		2								
		ĺ	9 Items 2 Hic	lden							
		<u>.</u>	'								
				Netscape		Maker					
								-3 - 6.54	- ?		(

Figure 14. A sample CDE session

The CDE Session Manager is Inter-Client Conventions Manual (ICCM) compliant. This means that if an ICCM-compliant application is running in the desktop, not only will the session manager restart this application when the user logs back in, but the application will be started where the user left off.

This means that the Session Manager is able to save the internal state of the application.

6.1.3 Front Panel

The Front Panel is the main desktop interface. As with all the components of CDE, it can be fully customized to meet the user's requirements. The default Front Panel pictured in Figure 15 includes, from left to right:

- A clock
- Access to the desktop calendar program
- Access to the File Manager
- · Access to personal applications
- · Access to the desktop mail program
- · A display lock
- Access to the Graphical Workspace Manager
- · Access to the various workspaces
- · A busy indicator
- An exit button
- Access to the printer queues and a printer information application
- · Access to the Style Manager
- Access to the Application Manager
- · Access to the Help Manager
- A trash can

					1			
		One	Тно			18/		
Sep 14		Three	Four	EXIT	ŤŤ.		?	
		,		l				

Figure 15. Default front panel

6.1.3.1 Front panel components

The Front Panel is made up of several different types of control components and four types of container components that group the controls. The available control components are:

• **Icon** - The icon control is the most common type of control used in the Front Panel. This type of control is actually a desktop object embedded

58 AIX V4.3 and Windows 2000, Side by Side

into the Front Panel. See Section 6.1.6.1, "Objects" on page 65, for an explanation of desktop objects. Each icon control is represented by the object's icon in the Front Panel. When an icon control is activated by either a single mouse click on the icon or by dropping another object onto it, the underlying object's action that corresponds with the activation method used (mouse click or dropped object) will be invoked. The icon of an object used in the Front Panel can either be static or animated, which changes and animates when you select it. The icon control also has facilities that extend the functionality of an object. These include the capability to have the object's icon change when an identified file is created or when mail arrives. Additionally, the icon control can be set up to allow only one instance of the object's action to be active at any given time. The controls are:

- **Busy** This control blinks to indicate that the Front Panel is actively processing your selection or drop request. This control only blinks when the Front Panel is processing a request. After the Front Panel finishes the request, the indicator will stop blinking.
- **Client** This type of control allows you to display the graphics of an X-Windows program directly in the Front Panel. Obviously, the X-Windows client should produce graphic output that is appropriately sized for display in the Front Panel.
- Clock This control is the clock in the default Front Panel.
- **Date** This control is the calendar in the default Front Panel. When selected, this control will bring up the desktop calendar program.
- File This type of control is used to represent a data file in the Front Panel. When a file control is selected, the action associated with the control is executed and is passed the file name of the file represented by the control.

There are four types of container components that are used to hold these controls in the Front Panel:

- Main Panel The main panel, shown in Figure 16 on page 60, is the outermost container of the Front Panel. It holds the other containers and has the following special controls of its own:
 - Menu button
 - Iconify button
 - Position handle

There can only be one main panel container in the Front Panel.

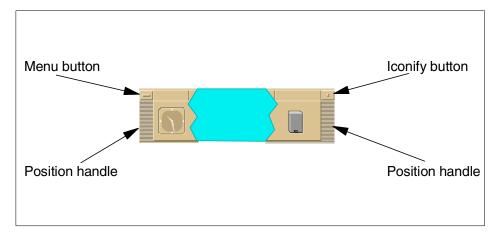


Figure 16. Main panel

- **Boxes** Boxes are containers that reside in the main panel container and actually hold the controls that make up the Front Panel. The default Front Panel contains one box that holds all of the controls (except for the above-mentioned controls in the main panel container) in the Front Panel. Boxes lay out their contents in a horizontal fashion. If more than one box is used in the Front Panel, the boxes are stacked on top of each other.
- Switch The switch, such as the one pictured in Figure 17 on page 60, is a specialized container that can contain controls that are positioned around the workspace buttons in the center. The workspace buttons are special controls that, when selected, switch the user between their various workspaces. There can only be one switch container in the Front Panel.

One	Тно	
Three	Four	

Figure 17. Front panel switch container

• **Subpanels** - A subpanel, such as the one shown in Figure 18 on page 61, is a slide-up container that can be attached to any of the controls in the Front Panel. If a Front Panel control has a subpanel attached to it, an upwards-pointing triangle will appear in the rectangle just above the control. When this rectangle is selected with a mouse click, the associated

60 AIX V4.3 and Windows 2000, Side by Side

subpanel will slide up revealing its contents. The subpanel container is, generally, used to hold controls that you want to have easily available but do not have to be displayed all the time.

Figure 18. Default Front Panel Help subpanel container

6.1.3.2 Customizing an existing Front Panel

The Front Panel can be fully customized; you can:

- Add and remove controls in a Front Panel
- Add and remove subpanels in a Front Panel
- Add and remove controls in a subpanel
- · Add, remove, and rename workspaces in a Front Panel
- · Prevent users from changing controls and subpanels
- · Create a new subpanel

There are two available methods for customizing an existing Front Panel:

- Interactive This method uses the built-in customization facilities of the desktop to interactively make changes to the Front Panel.
- Manual This method customizes the Front Panel by either:
 - Altering or overriding the Front Panel component definitions that are used to build the Front Panel

- Changing X-Windows resources that specify front-panel parameters.

6.1.4 Style Manager

The Style Manager component of the desktop allows the user to interactively customize the look and operation of their desktop environment. The Style Manager's main user interface is a graphical menu, pictured in Figure 19, that consists of icons that represent the available customization tools. These tools allow the user to customize the following characteristics:

- Color Sets the color palette and the color usage for all desktop windows and supporting applications
- Font Sets the font size used by text and labels in the desktop and supporting applications
- Backdrop Sets the backdrops used by the available workspaces
- **Keyboard** Sets keyboard characteristics for key click volume and key repeat rates
- **Mouse** Sets the mouse characteristics for acceleration, double click, and handedness
- **Beep** Sets the system speaker characteristics for beep volume, tone, and duration
- Screen Sets the use and operation of a screen saver and screen lock
- **Window** Sets window management characteristics for focus, window dragging visuals, and icon placement
- **Start-up** Sets the characteristics of the Session Manager, for example, creating home sessions and which session to start by default
- Workspaces Allows you to hide the workspace buttons in the Front Panel

Figure 19. Style Manager main user interface

6.1.5 Workspace Manager

The Workspace Manager manages the different workspaces available within CDE. Every time users create, delete, or change windows within CDE, they are interacting with the Workspace Manager. It is the Workspace Manager that defines how windows look and feel and also how the desktop responds to user inputs, such as mouse and keyboard actions.

In CDE, it is possible to have many (by default, four) workspaces. This allows the user to have separate applications running in separate workspaces without cluttering up the desktop. The Workspace Manager allows the user to easily switch between these workspaces.

For example, if a user wants to run three applications, such as Performance Toolbox, Framemaker, and Netscape, in the same workspace, it would soon become cluttered and hard to manage. With CDE, the user is able to put each application in a separate workspace and switch between them using either the Front Panel or the Graphical Workspace Manager (see Figure 20).

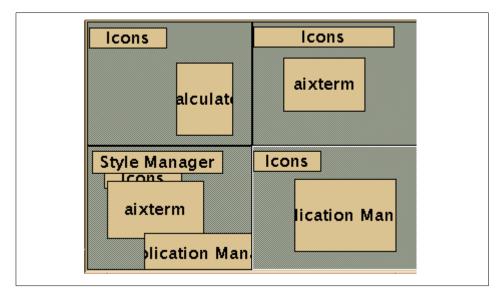


Figure 20. Graphical Workspace Manager

As with all CDE components, the features of the Workspace Manager can be customized by both the system administrator and individual users. This includes:

- The number of workspaces and their appearance
- The appearance of windows and icons in the workspace

- · The actions associated with mouse buttons
- · The actions associated with particular key stroke combinations
- Workspace and window pop-up or pull-down menu entries

The Graphical Workspace Manager can be called from the Front Panel or mouse menu. It shows a window with as many subwindows as you have workspaces on your screen. In each subwindow, you have rectangles associated with active application windows. These subwindows can be moved from one workspace to another.

- Note -

Only currently-running applications or programs can exist within a CDE workspace. You cannot, for example, have an icon to execute a program residing in a workspace; this icon would have to form part of the Front Panel. Applications can only be executed from the Front Panel or from other running applications. While this may be appear obvious, this is a fundamental difference between the CDE user interface and many other non-UNIX user interfaces.

6.1.6 File Manager

The CDE File Manager, shown in Figure 21 on page 65, is a tool that provides a graphical representation of the AIX file system. Since the various file types, such as directories, executables, graphical images, and so on, can have actions associated with them, they are known as objects. The File Manager can display a different icon for different types of files. For instance, a directory is represented by a folder, and a graphical image is represented by an icon of the Mona Lisa with a tag to indicate the graphic type (GIF, JPEG, and so on). This allows the user to browse the file system in a friendly and intuitive fashion.

Within the File Manager, certain file types can have applications associated with them. For example, a text file can be associated with an editor so that, when the user clicks on the text file, the File Manager will automatically open the editor with the selected file loaded.

File Selected View		Help
		<u></u>
/ home vanel		
/home/vanel		
-K (go up)	ACTIONS	Ê
atlanta	bin	
DOCUMENTS	expect-5,31	
100 Items 25 Hidder	1	

Figure 21. File Manager

6.1.6.1 Objects

Within CDE, an object is merely a file with several properties associated with it. For example, if you consider a directory, it will have the following properties attached:

- An icon By default, the image of a folder.
- A name.
- A set of associated actions For example, if it is clicked, the directory will be opened, or, if a file is dropped on it, the file will be copied into the directory.

These properties can either be system defaults or user specified. The system administrator can also create additional default object types as required.

6.1.7 Application Manager

The Application Manager component of CDE, shown in Figure 22 on page 66, is a graphical menu system similar in appearance to the File Manager. It allows users to execute their applications without the need to know where in the file system the application is located or even which machine the application is on. The user simply clicks on the required application, and it is loaded.

The Application Manager is actually a special instance of the File Manager with the restriction that you cannot move outside its directory. For example,

changing the visual representation of objects or executing an object is the same in the Application Manager as it is in the File Manager.

ACTIONS_PERSONELLES	Desktop_Apps	Desktop_Tools	
en_US	System_Admin	Custom	
2			

Figure 22. Application Manager

As mentioned earlier, the Application Manager provides a repository of various applications and tools. These applications and tools are arranged similarly to the File Manager. Applications and tools are stored in groups similar to directories, which, in turn, can hold other groups or the icons for the applications themselves. The main difference between the File Manager and the Application Manager is that applications and tools are organized by functionality and not by filesystem location. Applications and tools can easily be added to the Application Manager.

6.1.8 Help Manager

The Help Manager component of CDE, shown in Figure 23 on page 67, is the system through which the user can seek assistance for using the desktop or one of its components. Information is in a hypertext format. This provides users with a friendly and intuitive way of either answering particular queries on CDE or teaching themselves more about CDE.

The information is organized hierarchically by:

- 1. **Volume** A help volume consists of groups of related help topics usually covering a particular product, tool, or task.
- 2. **Topic** A help topic can be either a subgrouping of information pertinent to a particular topic in the help volume or the entry containing information on the topic itself. Help topics are arranged hierarchically. The first topic in a help volume is called the *home* topic.

The Help Manager allows you to navigate through the different topics and volumes via hyperlinks in the help information.

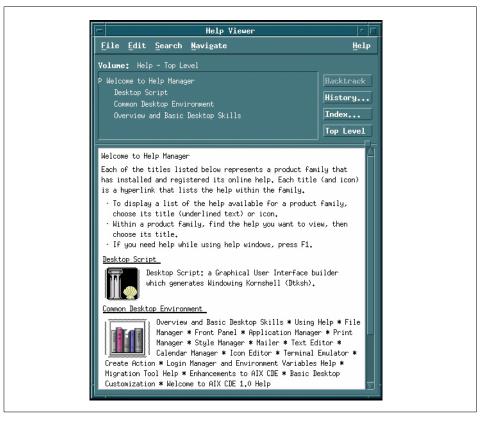


Figure 23. Help Manager interface

6.2 Windows 2000 user interface

The Windows 2000 user interface is similar to the Windows 98 and Windows NT user interfaces. This section gives an overview of this user interface and highlights its main features.

Windows 2000 uses the concept of objects in its desktop; every item on the desktop is an object. For example, a word processor document is an object, and, as such, it has a name, an associated icon, and a series of actions or reactions to user input. If you clicked on such a document, the associated word processor would be opened with the selected document loaded.

Because all items under Windows 2000 are objects, they all have properties that can be changed to affect the way they appear, where they appear, and how they respond to user input. To change an object's properties, simply

place the mouse cursor on the object and click the right mouse button. This will display the Properties menu for that particular object.

6.2.1 Logging on

To log on to a workstation or server running Windows 2000, you have to simultaneously press the **Ctrl**, **Alt**, and **Delete** keys. By pressing this key sequence, you are ensuring that the login prompt displayed is authentic and not a virus. For more details on this and other Windows 2000 security features, see Chapter 8, "Security" on page 149. Having pressed these keys, you will be shown the login screen. Once you have entered your login name and password, you will be presented with the Windows 2000 desktop.

6.2.2 Windows 2000 Active Desktop

Each user under Windows 2000 may tailor the Windows 2000 desktop (see Figure 24 on page 69) to his or her own requirements including such changes as the color scheme, the backdrop, what sounds are associated with what actions, and so on.

Under Windows 2000, when a user changes a particular setting, that setting is saved in a profile for the user. When the user logs back in at a later date, his or her desktop will be restored using the user's profile.

Windows 2000 does not save the status of running applications when you log out; therefore, it cannot automatically start applications that you were previously running when you log back in. However, if you have unsaved data in an application, you will be prompted to save it.

Nevertheless, you can specify to automatically start certain applications. For example, if you always use a Web browser and a word processor, you could have them automatically started when you log in.

<u></u>					
My Documents					
My Computer					
My Network Places					
8					
Recycle Bin					
Ø					
Internet Explorer					
Connect to the Internet					
Start 🛛 🚮	🎯 🗊 🗍 🔜 Search	Control 🗄	🖞 Window 🛛 🔌 Pa	aint Sh	10:12 AM

Figure 24. Windows 2000 default desktop

The Windows 2000 desktop consists of two main components: The taskbar and the workspace.

The new functionality in Windows 2000 enables you to add your favorite Internet Web pages directly to your desktop's workspace and browse through them in the same way as they would be opened in the Microsoft Internet Explorer. You can enable manually or automatically scheduled synchronization of these pages with their original location depending on whether you are working connected or disconnected to the Internet.

6.2.2.1 Taskbar

The Taskbar, shown in Figure 25 on page 70, is a dynamic menu that contains an icon or button for every active application or open document in the system. You can switch between open applications or documents very easily by simply clicking on the appropriate icon in the Taskbar. If an

application or document has been minimized, it can be maximized by clicking its *Taskbar* icon.

4:23 AM

🏽 🕄 🎯 🕄

Figure 25. Taskbar

The Taskbar contains the Start button, Quick Launch bar, and status area with volume control and clock display.

6.2.2.2 Start button

As its name implies, the Start button, shown in Figure 26, is one of the fundamental controls of the Windows 2000 user interface. From here, the user can start any application on the system, log out, or even shut down the system. By pressing the *Start* button, the user can intuitively navigate through the entire Windows 2000 system and select the application, document, or resource of his or her choice.



Figure 26. Start button

When you press the Start button, the first menu, or root menu, gives the user several options:

- Windows Update This starts Microsoft Internet Explorer, and, if you are connected to the Internet, takes you to the URL, http://windowsupdate.microsoft.com, from where you can download the latest Windows updates
- **Programs** This takes the user through a series of program menus that allows them to execute the program of their choice.
- **Documents** This allows the user to select from a submenu of icons for the documents that he or she has worked on recently.

70 AIX V4.3 and Windows 2000, Side by Side

- **Settings** This allows the user to change almost any aspect of the system, provided that they have sufficient privileges.
- **Search** This allows the user to search for a file on the system, search on the Internet (if connected to it), and search for people either in the user's local address book, active directory database, or on the Internet.
- Help This starts the help system.
- Run This allows the user to run a command by entering its name.
- Log Off Administrator After the confirmation question, this closes your desktop session and logs you off as the Administrator.
- **Shutdown** This allows the user to (if authorized) shut down the system, restart the system, or log off.

7.0 My Docur _ 🗆 × Calculato Edit View Help 0. My Com Backspace CE C Accessibility Wizard MC 7 8 9 sart 👼 Accessibility Windows Update 6 % 💼 Communications (in Entertainment 👼 Accessories Programs . Games Þ Freecell Administrative Tools , 👼 Microsoft Script Debugger -Minesweeper Documents . Startup 👼 System Tools 0 Pinball Internet Explorer Settings 👔 Solitaire Address Book 5 Outlook Express Calculator 👼 Paint Shop Pro 5 Search C:/ Command Prompt Help Imaging 7 Notepad 724 Run... 響 Paint 🧐 Synchronize Shut Down... * 🔍 Windows Explorer 🔰 WordPad 🖸 ၉ 🗊 Search ... 🐼 Control ... Calculator 10:11 AM Start

Figure 27 shows the Start button additional menus.

Figure 27. The Start button additional menus

The menu system under the Start button can be customized by the user or by the system administrator if required. Figure 27 shows the Start menu and several submenus; notice how applications are grouped together under menu options.

6.2.2.3 The Quick Launch bar

This is the area on the Taskbar just to the right of the Start button. You can start any application that has the icon in the Quick Launch bar by clicking it once with the left mouse button. You can add other application icons to the Quick Launch bar by simply dragging and dropping its icons onto it.

6.2.2.4 The Workspace

The Windows 2000 Workspace, shown in Figure 28, is, basically, everything other than the Taskbar. The Workspace can contain icons or shortcuts to applications. For instance, if you had an application that you used regularly, instead of always going through the Start menu to access it, you could create a shortcut in the workspace and then just click on the shortcut.

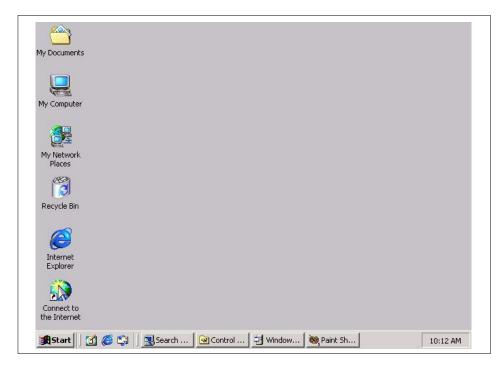


Figure 28. The default Windows 2000 workspace

By default, the Windows 2000 workspace contains five objects:

- **My Documents** This application opens a window from which you can access your documents.
- My Computer This application opens a window from which you can access your storage devices, such as local or remote disk drives, and access the control panel.
- My Network Places This provides a window into your network environment. From here, you can browse your LAN or WAN and share files or printers with all compatible services on the network.
- **Recycle Bin** The recycle bin contains deleted files or objects. This enables you to salvage items that may have been deleted by mistake.
- Internet Explorer- This starts Microsoft Internet Explorer.

The workspace also contains any active application windows, unless they have been minimized. Under Windows 2000, there is no facility to support multiple workspaces, which can sometimes lead to an overcrowded desktop.

6.2.2.5 Active workspace

You can add your favorite Web pages to the active workspace by clicking the right mouse button on the empty space in the workplace and choosing the options **Active Desktop => New Desktop Item**. As shown in Figure 29 on page 74, the window will open, and you will add your favorite URL to the Location: input field.

	You can add new Desktop Items, live Web content, or pictures to your Active Desktop.
×	To add new Desktop Items, visit Microsoft's Active Desktop Gallery on the Internet. Click Visit Gallery to connect to the gallery now.
	Visit Gallery
	To add a Web page or picture from the Internet, type or paste its Web address (URL) below.
	Location: http://w3.ibm.com
	Click Browse to find a picture or HTML document.
	Browse

Figure 29. Adding a new desktop item

After positioning the window on the screen, your desktop will look like the one displayed in Figure 30 on page 75. The displayed Web page is active and you can browse through it the same way as if it was displayed in Microsoft Internet Explorer.

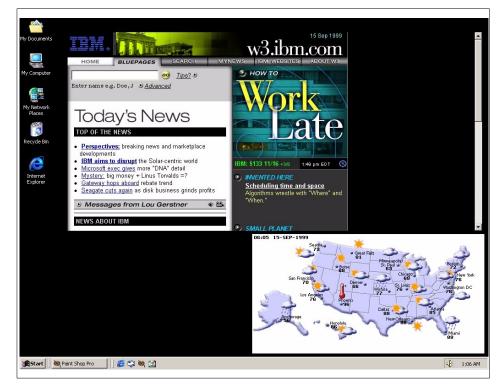


Figure 30. Active desktop

6.2.2.6 My Computer

By selecting the **My Computer** application from the workspace, you can manipulate all the objects on your system. You can access disk drives and the Control Panel. My Computer offers you an intuitive method of exploring your system. When you start My Computer, you are shown an iconic representation of your system's disk drives and a folder labeled Control Panel (see Figure 31 on page 76).

Chapter 6. User interface/graphics support **75**

Figure 31. My Computer

If you then select the **D**: icon, the window will clear and display the contents of the D drive root directory (see Figure 32 on page 77).

File Edit View Favorites	Tools Help				1
🗘 Back 🔹 🔿 👻 🔯 Sear	ch 强 Folders 🤅	History	昭昭×S田	 +	
Address 🚍 Local Disk (D:)				•	<i>è</i> G
Local Disk (D:)	Documents and Settings	Inetpub	Program Files		
Select an item to view its description.	WINNT	miha			
Capacity: 1.46 GB					
See also: <u>My Documents</u> <u>My Network Places</u> <u>My Computer</u>					

Figure 32. Viewing a drive using My Computer

By selecting and clicking objects, the user can navigate through the Windows 2000 system. With the Back and -> buttons, the user can display previous windows in the same way as in Microsoft Internet Explorer.

6.2.2.7 Control Panel

The Windows 2000 Control Panel allows you to configure the system you are using. From it, you can configure the system's hardware and software. The Control Panel presents a user-friendly menu allowing you to select the object that you want to examine or change (see Figure 33 on page 78).

Address 🐼 Control Panel						• 🖓 😡
2-1-1	E.		***	ন্দ্রি	112	
Control Panel	Accessibility Options	Add/Remove Hardware	Add/Remove Programs	Administrative Tools	Date/Time	
Control Panel			Programs	- TOOIS		
Use the settings in Control Panel to personalize your computer.		-A	Aa	(Person	ŧ.	
Select an item to view its	Display	Folder Options	Fonts	Game Controllers	GSNW	
description.					c	
Windows Update	- The second sec			a start a star	O .	
Windows 2000 Support	Internet Options	Keyboard	Licensing	Message Queuing	Mouse	
	F	2	ų,	3	3	
	Network and Dial-up Co…	Phone and Modem	Power Options	Printers	Regional Options	
		0				
	Scanners and Cameras	Scheduled Tasks	Sounds and Multimedia	System		

Figure 33. The Control Panel

Additional system management tasks can be accomplished by choosing **Administrative Tools** in the Control Panel window (see Figure 34 on page 79).

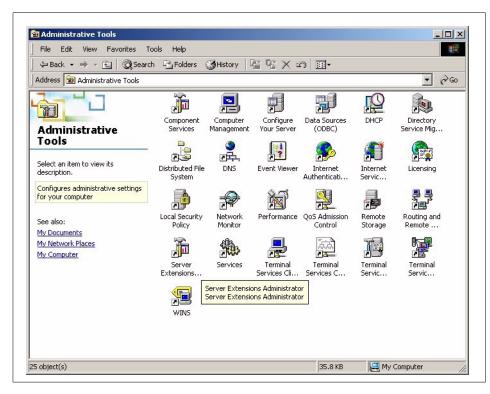


Figure 34. Administrative tools

– Note

For more information on the Windows NT system management interface, refer to Section 9.4.2, "Windows 2000 System Administration Interface" on page 265.

6.2.2.8 The Windows 2000 Explorer

The Windows Explorer allows you to access the same programs, files, and resources as My Computer, but it does so using a different user interface. If you look at Figure 35 on page 80, you can see, in the left-hand window, the folder hierarchy of your system. Notice that the level up from Desktop (displayed in the right-hand window) shows all the icons that appear in the default workspace. This demonstrates how the Windows 2000 menu structure relates to objects within the Windows 2000 file system.

The Windows Explorer allows the user to map a network drive. This consists of accessing a remote Logical Drive or shared directory and seeing it as a

Local Logical Drive. This means that Windows Explorer allows the user to manage local and remote files easily.

File Edit View Favorites Too Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Address Image: Addres<	Als Help Folders History R P My Documents Select an item to view its description. Stores and manages documents See also: My Network Places	X X III	test	testdir
Entire Network	Mv Computer			

Figure 35. Windows Explorer

6.2.2.9 Windows 2000 Help

Windows 2000 contains a help system, shown in Figure 36 on page 81, that is much improved, compared to Windows NT. Besides the standard help functions, such as the ability to search for a topic, the Windows 2000 help system can also guide the user, by pointing and clicking, through most tasks on his or her system. Particularly useful for Windows NT users are the *New features* and *New ways to do familiar tasks* topics.

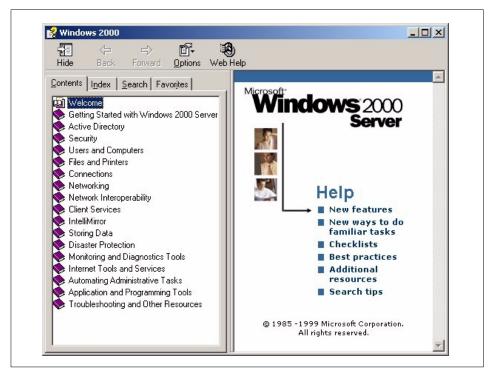


Figure 36. Windows 2000 help system

6.3 Graphics Application Programming Interfaces (APIs)

This section examines the graphics APIs available to both AIX and Windows 2000. There may be additional third-party APIs available, but these are beyond the scope of this section.

6.3.1 AIX

The following graphic APIs are available on AIX 4.3:

OpenGL

OpenGL (Version 1.2) is a vendor-neutral application programming interface that provides advanced 2D and 3D graphics functions. It provides a hardware- and operating system-independent interface to graphics software. OpenGL is, typically, used for engineering, visualization, simulation, and other graphics-intensive applications. OpenGL is available on AIX V4.3.3 installation CDs as a separate installable lpp. The AIX OpenGL package

consists of a rendering library, utility toolkit, and network protocol. The OpenGL package also includes the GL 3.2 API.

PHIGS and PEX

PHIGS (Programmers Hierarchical Interactive Graphics System) and PEX (PHIGS Extension to X) Version 4.3 for AIX provides 3D rendering capabilities for AIX workstations. This software contains a suite of advanced graphics functions for developing complex 3D applications in technical and commercial areas and is also included on AIX installation CDs.

6.3.2 Windows 2000

OpenGL

Windows 2000 provides native support for OpenGL as part of the base part of the operating system.

6.4 Command line Interface

This section describes the AIX and Windows 2000 command line interfaces.

6.4.1 AIX shells

One of the main features of any UNIX operating system (and, as such, of AIX also) is the shell. It is both a command interpreter and a command programming language. The following section describes and highlights the main characteristics of AIX shells.

6.4.1.1 Shell overview

The shell is the outermost layer of the operating system. Shells incorporate a command programming language to control processes and files and to start and control other programs. The shell manages the interaction between you and the operating system by prompting you for input, interpreting that input for the operating system, and then handling any resulting output from the operating system.

Shells provide a way for you to communicate with the operating system. This communication is carried out either interactively (input from the keyboard is acted upon immediately) or as a shell script. A shell script is a sequence of shell and operating system commands that is stored in a file.

When you log in to the system, the system locates the name of a shell program to execute as specified by the system administrator. Once executed, the shell displays a command prompt. This prompt is, by default, a \$ (dollar sign), but it is usually changed by the system administrator to something that

is less financially oriented. When you type a command at the prompt and press the **Enter** key, the shell evaluates the command and attempts to execute it. Depending on your command instructions, the shell writes the command output to the screen or redirects it elsewhere. It then returns to the command prompt and waits for you to type another command. A command line is the line on which you type. It contains the shell prompt. The basic format for each line is:

\$ command [argument]

Please note that UNIX operating systems are case sensitive.

The shell considers the first word of a command line (up to the first blank space) as the command and all words after that as arguments. This section discusses:

- Shell features
- · Available shells
- · Shells terms
- · Creating and running a shell script
- Korn shell or POSIX shell
- Bourne shell
- C shell

6.4.1.2 Shell features

The primary advantages of interfacing to the system through a shell are:

Wildcard substitution in file names (pattern matching)

This carries out commands on a group of files by specifying a pattern to match rather than an actual file name.

Background processing

This sets up lengthy tasks to run in the background, freeing the terminal for concurrent interactive processing.

Command aliasing

This gives an alias name to a command or phrase. When the shell encounters an alias on the command line or in a shell script, it substitutes the text to which the alias refers.

Command history

This records the commands you enter in a history file. You can use this file to easily access, modify, and reissue any listed command.

Command line editing

The shell allows you to specify your favorite editor to be used when editing the command line. This allows you to recall any command from the command history (see *Command history*) and edit or change it. By using an advanced editor, such a vi or emacs, you can also search for previous commands.

File name substitution

This automatically produces a list of file names on a command line using pattern-matching characters.

Input and output redirection

This redirects input away from the keyboard and redirects output to a file or device other than the terminal. For example, input to a program can be provided from a file and redirected to another file or to a device.

Piping

This links any number of commands together to form a complex program. The standard output of one program becomes the standard input of the next.

Shell variable substitution

This stores data in user-defined variables and predefined shell variables.

Functions

This increases programmability and allows storing shell code in memory.

Integrated programming features

Several AIX programs are available for text manipulations, and some of this functionality has been included in the shell itself. Debugging primitives have also been added.

Advanced I/O features

This includes the ability to have two-way communication with a concurrent process. For further details, see Section 6.4.1.7, "Process handling" on page 91.

---- Note

Not all of the features are available in all different shells. For example, in the Bourne shell, there is no Command History.

The following shells are provided with AIX V4.3:

- Korn shell (started with the ksh command)
- Bourne shell (started with the bsh command)
- Restricted shell (a restricted version of the Bourne shell started with the Rsh command)
- C shell (started with the csh command)
- Trusted shell (a limited version of the Korn shell started with the \mathtt{tsh} command
- Remote shell (started with the rsh command)

The login shell refers to the shell loaded when you log in to the computer system and is specified by your system administrator. The Korn shell is the standard AIX system login shell and is backwardly compatible with the Bourne shell.

The default or standard shell refers to the shell linked to and started with the /usr/bin/sh command. The Korn shell, also known as the POSIX shell, is set up as the default shell. The POSIX shell is called by the /usr/bin/psh command and is actually a link to the /usr/bin/ksh command.

6.4.1.3 Shell terms

The following definitions are helpful in understanding shells:

Built-in command

This is a command that the shell executes without searching for it and creating a new process.

Command

This is a sequence of characters in the syntax of the shell language. The shell reads each command and carries out the desired action either directly or by invoking separate utilities.

List

This is a sequence of one or more pipelines separated by one of these four symbols: ; (semicolon), & (ampersand), && (double ampersand), or II (double bar). Optionally, the list is ended by one of the following symbols: ; (semicolon), & (ampersand), or I& (bar and ampersand).

&

This asynchronously processes the preceding pipeline. The shell carries out each command in turn, processing the pipeline in the background without waiting for it to complete.

1&

This asynchronously processes the preceding pipeline and establishes a two-way pipe to the parent shell. The shell carries out each command in turn, processing the pipeline in the background without waiting for it to complete. The parent shell can read from and write to the standard input and output of the spawned command by using the read -p and print -p commands. Only one such command can be active at any given time.

- Note

The $|_{\&}$ symbol is valid only in the Korn shell.

&&

This processes the list that follows this symbol only if the preceding pipeline returns an exit value of 0 (zero), that is, if it completes successfully.

H

This processes the list that follows this symbol only if the preceding pipeline returns a nonzero exit value, that is, if the command fails.

Metacharacter

Each metacharacter has a special meaning for the shell and causes termination of a word unless it is quoted. Metacharacters are: I (pipe), & (ampersand), ; (semicolon), < (less-than sign), > (greater-than sign), ((left parenthesis),) (right parenthesis), \$ (dollar sign), ' (backquote), (backslash), ' (right quote), " (double quotation marks), new-line character, space character, and tab character. All characters enclosed between single quotation marks are considered quoted and are interpreted literally by the shell. The special meaning of metacharacters is retained only if they are not quoted. (Metacharacters are also known as parser metacharacters in the C shell.)

Pipeline

This is a sequence of one or more commands separated by a I (pipe). Each command in the pipeline, except possibly the last command, is run as a separate process. However, the standard output of each command that is connected by a pipe becomes the standard input of the next command in the sequence. If a list is enclosed with parentheses, it is carried out as a simple command that operates in a separate subshell. If the reserved word ! (exclamation point) does not precede the pipeline, the exit status will be the exit status of the last command specified in the pipeline. Otherwise, the exit status is the logical NOT of the exit status of the last command. In other words, if the last command returns zero, the exit status will be 1. If the last command returns greater than zero, the exit status will be zero.

Redirection

This redirects input away from the keyboard and redirects output to a file or device other than the terminal. For example, input to a program can be provided from a file and redirected to the printer or to another file.

Shell variable

This is a name or parameter to which a value is assigned. You can assign a variable by typing the variable name, an = (equal sign), and then the value ($MY_VAR=5$). The variable name can be substituted for the assigned value by preceding the variable name with a \$ (dollar sign). Variables are particularly useful for creating a short notation for a long path name, such as HOME for the home directory. A predefined variable is one whose value is assigned by the shell. A user-defined variable is one whose value is assigned by a user.

Simple command

This is a sequence of optional parameter assignment lists and redirections, in any sequence. They are optionally followed by commands, words, and redirections. They are terminated by;, |, &, |, &, |, or a by newline character. The command name is passed as parameter o (as defined by the exec subroutine). The value of a simple command is its exit status, that is, zero if it exits normally or nonzero if it exits abnormally.

Subshell

This is a shell that is running as a child of the login shell or the current shell.

Wildcard characters

These are Iso known as pattern-matching characters. The shell associates them with assigned values. The basic wildcards are ?, *, [set], and [!set]. Wildcard characters are particularly useful when performing file name substitution.

6.4.1.4 Shell scripts

Shell scripts provide an easy way to carry out tedious commands, large or complicated sequences of commands, and routine tasks. A shell script is a file that contains one or more commands. When you type the name of a shell script file, the system executes the command sequence contained by the file.

You can create a shell script using a text editor. Your script can contain both operating system commands and built-in shell commands.

6.4.1.5 Commands and Buit-in Commands

- Note -

In the following sections, the shell refers to the Korn shell.

Command history

The shell saves commands entered from your terminal device to a history file. The shell accesses the commands of all interactive shells by using the same-named history file with the appropriate permissions. By default, the Korn shell or POSIX shell saves the text of the last 128 commands entered from a terminal device. Use the f_c built-in command to list or edit portions of the history file. To select a portion of the file to edit or list, specify the number or the first character or characters of the command. You can specify a single command or a range of commands.

Commands

A shell command is one of the following:

- Simple or built-in command
- Pipeline
- List
- Compound command
- Function

When you issue a command in the Korn shell or POSIX shell, the shell evaluates the command and acts in the following way:

- 1. It makes all indicated substitutions and determines whether the command is a special built-in command, and, if it is, the shell runs the command within the current shell process.
- 2. It compares the command to user-defined functions. If the command matches a user-defined function, the positional parameters are saved and then reset to the arguments of the function call. When the function completes or issues a return, the positional parameter list is restored, and any trap set on EXIT within the function is carried out. The value of a function is the value of the last command executed. A function is carried out in the current shell process. If the command name matches the name of a regular built-in command, that regular built-in command will be invoked.

3. It creates a process and attempts to carry out the command by using the exec command (if the command is neither a built-in command nor a user-defined function).

Korn shell compound commands

A compound command is a list of simple commands, a pipeline, or it can begin with a reserved word. Most of the time, you will use compound commands, such as if, while, and for, when you are writing shell scripts.

Functions

The reserved word function defines shell functions. The shell reads and stores functions internally. Alias names are resolved when the function is read. The shell executes functions in the same manner as commands, with the arguments passed as positional parameters. The Korn shell or POSIX shell executes functions in the environment from which functions are invoked by sharing variable values and attributes, working directories, aliases, function definitions, special parameters, and open files. The exit status of a function definition is zero if the function was not successfully declared. Otherwise, it will be greater than zero. The exit status of a function invocation is the exit status of the last command executed by the function.

List of available shell commands

Table 3 contains a list of available shell commands and their actions.

Command	Action
eval, exec, command, times	Script execution and monitoring
break, exit, continue, return, trap, wait,test	Flow control
set, typeset, unset, export, shift, readonly, let, getopts	Variables and parameter manipulation
newgroup, umask, ulimit	User attributes and security
print, read, echo	I/O operations
fg, bg, kill,jobs	Job management
alias, unalias, pwd, cd, fc	Utility

Table 3. Built-in shell commands

6.4.1.6 The shell as a system programming environment

The shell has as many advanced programming capabilities as any command interpreter and can be used as a complete software environment. It is

Chapter 6. User interface/graphics support 89

specially suited for writing programs to manage or automate system administrator tasks. A script or file that contains shell commands is a shell program. The shell has all the pieces you need:

Variables and arrays

You can define variables or arrays as in any programming language, but the shell places heavy emphasis on character strings.

String operators

These allow you to manipulate values of variables without having to write full-blown programs. For example, <\${ varname: +letter} >. If varname exists and it is not null, return its value; otherwise, set it to letter and then return its value.

Pattern and regular expressions

Patterns are strings of characters that contain wildcard characters. The shell adds a set of operators, called regular-expressions, to manage them.

Flow controls

Flow controls give a programmer the power to specify that only one part of a program should run based on conditional values or that it should run repeatedly. The shell supports the following constructs, similar to a complete programming language:

- if/else
- for
- while
- until
- case
- select
- exit/return
- conditional expressions

I/O

The shell supports 16 I/O redirections, from > (redirect standard output), < (redirect standard input), and > > (append) to |& (background process with I/O from parent shell) and several I/O-level functions, such as read or print.

Debugging

Debugging programs is often closer to an art than an engineering process, and the AIX shell gives you some of the instruments you need to perform

⁹⁰ AIX V4.3 and Windows 2000, Side by Side

debugging operations, such as trace support (xtrace), fake signals (to simulate signals), or some debugging option with the set command.

6.4.1.7 Process handling

When a process is created, AIX assigns it a special number called a process ID (PID). The shell commands use the process ID to control processes. A process can be moved onto the background or foreground, and it can be suspended or monitored. You can also send signals or kill a process. A very important shell feature is the built-in trap command. A process within a shell script can be tailored to react to specific signals and to process them in their own way. A trap is like an interrupt routine that will be called by AIX when a specific signal has been sent to a process. For example:

```
trap ' echo "A Termination signal has been received"' INT
while true
do
  echo "I am running ....."
  sleep 3
done
```

This shell script prints the phrase *I am running...* every three seconds, but it reacts with the message *A termination signal...* if someone tries to kill it. There is also a way to make sure that a script does not finish before a background command completes; this can be assured by using the wait built-in command. For example:

```
Program1 &
Program2
wait
```

where, if Program2 finishes first, the script will wait until program completion. The execution of processes in parallel becomes very important when more than one processor is available and running time is a concern. In the previous example, the script's running time is, essentially, equal to that of the longest-running job plus some overhead. The AIX shell provides several features to help programmers handling these issues. Two-way pipes, $|_{\&}$ (command), and subshells are examples. See Section 6.4.1.3, "Shell terms" on page 85.

6.4.1.8 Shell administration

The shell has some unique features for system customization other than the usual /etc/profile.

Chapter 6. User interface/graphics support 91

umask

This command lets you specify the default permissions that files have when users create them, and it contains the permissions that are turned off by default whenever a process creates a file.

ulimit

With this command, you can have fine grain control to avoid memory thrashing or infinite loop programs that result in poor utilization of system resources.

Parameter	Resource
-a	Lists all of the current resource limits.
-C	Specifies the size of core dumps in number of 512-byte blocks.
-d	Specifies the size of the data area in number of kilobytes.
-f	Sets the file size limit in blocks when the Limit parameter is used, or reports the file size limit if no parameter is specified. This is the default flag.
-Н	Specifies that the hard limit for the given resource is set. If you have root user authority, you can increase the hard limit. Anyone can decrease it.
-m	Specifies the size of physical memory in kilobytes.
-s	Specifies the stack size in kilobytes.
-S	Specifies that the soft limit for the given resource is set. A soft limit can be increased up to the value of the hard limit. If neither the -H nor -s flags are specified, the limit applies to both.
-t	Specifies the number of seconds to be used by each process.

Table 4. Ulimit options

Security

Security is always a problem, and the AIX shell provides a couple of features that help to solve it:

• **Restricted shell** - The restricted shell is used to set up login names and execution environments whose capabilities are more controlled than those of the regular shell. The Rsh or bsh -r command opens the restricted

shell. The behavior of these commands is identical to those of the bsh command, except that the following actions are not allowed:

- Changing the directory (with the cd command)
- Setting the value of PATH or other variables
- Specifying path or command names containing a / (slash)
- Redirecting output

If the restricted shell determines that a command to be run is a shell procedure, it uses the Bourne shell to run the command. In this way, it is possible to provide an end-user with shell procedures that access the full power of the Bourne shell while imposing a limited menu of commands. This scheme assumes that the end-user does not have write and execute permissions in the same directory.

• **Tracked aliases** - Frequently, aliases are used as shorthand for full path names. One aliasing facility option allows you to automatically set the value of an alias to the full path name of a corresponding command. This special type of alias is a tracked alias. Tracked aliases speed execution by eliminating the need for the shell to search the PATH variable for a full path name. The set -h command turns on command tracking so that, each time a command is referenced, the shell defines the value of a tracked alias. Since aliases take priority over executable files, the alias will always be run before any Trojan horse viruses that may exist on the system.

6.4.2 Windows 2000 command line interface

The Windows 2000 command line interface referred to in this document corresponds to the Windows 2000 command prompt.

6.4.2.1 Overview

The Windows 2000 command prompt is a character-based interface in which you enter a command from the keyboard. The command prompt is able to discriminate if you enter a DOS, OS/2, Windows 3.1, or POSIX character-based command. It spawns an instance of the appropriate environment subsystem and launches the application.

The Windows 2000 command prompt is mainly a superset of the DOS command prompt, but not all DOS commands have been ported to Windows 2000. For example, ASSIGN is no longer available since you can do the same thing in the File Manager, and some other commands, such as MIRROR or FASTOPEN, have been removed because their functionality is available through other Windows 2000 services. Some UNIX-like functionality, such as && and II, has been added to make UNIX users feel more comfortable.

Chapter 6. User interface/graphics support 93

The Windows 2000 command prompt also allows you to scroll through a list of your previous commands and edit them using the standard DOS editing keys, such as Insert, Delete, and the arrow keys.

- Note -

The Windows 2000 command prompt has been implemented as an executable program called CMD.EXE.

6.4.2.2 Commands

The Windows NT command prompt supports several categories of commands:

- Native
- Subsystem
- Configuration
- Network
- Utility

Note

It is possible to retrieve the exact command syntax with the HELP command. For example, $D:\HELP$ AT displays all the parameters for the AT command.

Native

These commands are built around the Windows 2000 command interpreter; some of them run external programs, and others are built-in commands. For example, DIR is a built-in command; so, the code that will be executed is part of the Windows 2000 command prompt. Other commands, such as FORMAT, are external programs; so, a FORMAT.COM executable is available in the system directory. These commands allow the user to perform file system operations, such as COPY, MOVE, ERASE, FORMAT, DIR, COMP, REN, and RECOVER, start a new instance of the command interpreter, or simply search for a string by using the FIND command.

Configuration

These commands are used to customize the DOS environment and are useful when Windows 2000 runs the DOS subsystem.

Subsystem

These are old DOS commands no longer needed in Windows 2000 but retained for backward compatibility with existing DOS applications. For

example, EDLIN, EXE2BIN, GRAPHICS, MEM, SETVER, and SHARE are subsystem commands.

Network

There are several network-related commands that can be executed from the command line, and most of them begin with NET plus a specific argument. Most of them allow network management, such as NET SESSION, NET SHARE, NET START, or NET GROUP, and others allow you to send messages, such as NET SEND, or issue print jobs, such as NET PRINT.

6.4.2.3 AIX equivalents

Table 5 offers a basic comparison between some Windows NT commands and similar AIX commands.

AIX	Windows 2000
at	AT
alias	DOSKEY
cat	TYPE
cd	CD
chmod	ATTRIB
cp	СОРУ
date	DATE
grep	FIND
ls	DIR
echo	ECHO
man	HELP
mkdir	MKDIR/MD
more	MORE
rm	DEL
set	SET
&	START

Table 5. AIX/Windows 2000 commands

Chapter 6. User interface/graphics support 95

6.4.2.4 I/O redirection

Some I/O capabilities are available within the command prompt interface, such as the possibility to redirect the input/output of a command to a file or a device by using the characters >, <, and >>. For example:

```
TYPE TEMP.TXT > LPT1
```

will transfer the file, TEMP.TXT, to the line printer, LPT1. The pipe, |, is also supported; so, the output can be used as the input of the trailing command.

6.4.2.5 Batch files

Windows 2000 supports the concepts of batch files (shell scripts in UNIX jargon) to gather several commands into one and create simple automated procedures. Batch files must have the .BAT or .CMD extensions to be executed, and they can contain any Windows 2000 command or program file. For example:

```
COPY *.C C:\TEMP\ /* copy all files with C extension in current */
	/* directory to C:\temp directory */
ERASE *.EXE /* erase all files with EXE extension from */
	/* current directory */
```

A batch file accepts up to nine parameters. These parameters can be resolved with the % keyword. For example, a file called DELFILE.BAT can be created:

```
ERASE %1.OBJ
ERASE %1.EXE
ERASE %1.LNK
```

and can be executed by entering the C:>DELFILE PROJECT command; so, the PROJECT.OBJ, PROJECT.EXE, and PROJECT.LNK files will be deleted. Inside a batch file, it is possible to read or write a system variable, such as PATH or create a local one. For example:

These variables exist only in the sessions where they are created, and system variable values affect applications running within the same session. If the default value of a system variable has to be changed, the System Control Panel Menu must be selected.

Batch files allow also you to control the execution flow with specific commands. These commands are listed in Table 6.

Table 6. Batch commands

Table 6. Batch commands	
Command	Action
CALL	Calls a batch file like subroutine
FOR	Repeats a command
GOTO	Jumps to a label.
IF	Executes the next command if the condition is TRUE
SHIFT	Shift positional parameters
START	Starts another program in the background

Chapter 6. User interface/graphics support 97

Chapter 7. Storage management

Storage management is the way disk space is managed by the operating system and how information is physically organized, written to, and read from the storage media. The way data is stored on disk is transparent to the end-user. However, it is probably the most critical aspect of an operating system. When information stored on disks is no longer available after a system malfunction or operator error, it is not at all transparent for the end-user. The reliability and performance of storage management is one of the keys to the success of an operating system.

This chapter describes how AIX and Windows 2000 manage their storage. Both the AIX file system and the Windows NT file system are described.

7.1 AIX storage management

AIX V4.3 storage management is based on the Logical Volume Manager (LVM).

7.1.1 Logical Volume Manager (LVM)

The Logical Volume concept defines a higher-level interface that is transparent to applications and users and allows the flexible division, allocation, and management of fixed-disk storage space. This concept is implemented as a set of operating system commands, subroutines, device drivers, and tools that are collectively known as the Logical Volume Manager.

7.1.1.1 Logical Volume Manager terminology

The basic LVM components and their relations are shown in Figure 37 on page 100.

© Copyright IBM Corp. 2000

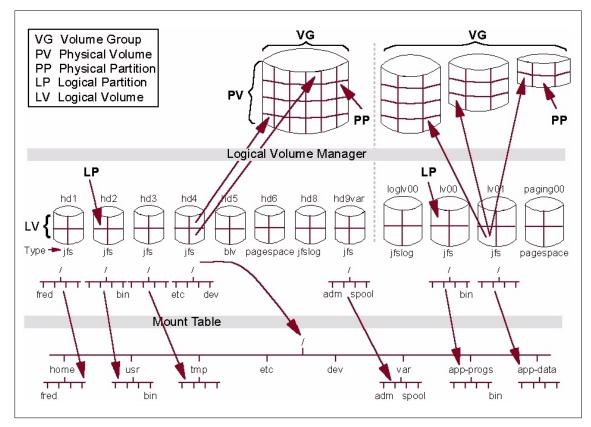


Figure 37. Components of the Logical Volume Manager

The basic components are:

Physical Volume

The Physical volume is the physical disk drive. Its forms the basis of Logical Volume management. Before a physical disk can be used, it must be defined by the system. Each physical disk is assigned certain configuration and identification information that, together, define the disk as a Physical Volume (PV). This information is physically recorded on the disk and includes a Physical Volume Identifier (PVID) that uniquely identifies the disk. The disk is also assigned a Physical Volume name, typically, hdiskx, where x is a system unique number starting at 0. This Physical Volume name is also used for the low-level device driver interface to the disk, such as /dev/hdisk0.

Volume Group

A Volume Group (VG) is a collection of between 1 and 32 Physical Volumes. In AIX 4.3.2, a new volume group format is added, which increases the

100 AIX V4.3 and Windows 2000, Side by Side

maximum number of disks in Volume Group to 128 (1024 in the future). Such a Volume Group is called Big Volume Group and cannot be imported to the systems with AIX versions below 4.3.2. Before Physical Volumes can be used by the system, they must be added to a Volume Group. A Physical Volume can only be a member of one Volume Group, but we can define up to 255 Volume Groups in our system.

Volume Group information includes a unique Volume Group Identifier (VGID), the PVIDs of all Physical Volumes in the Volume Group, and various kinds of status information. Each disk in the Volume Group has an area on disk known as the Volume Group Descriptor Area (VGDA) where this information is stored. The VGDA also contains information describing all of the Logical Volumes (discussed later in this section) that exist in the Volume Group. The size of the VGDA area limited the maximum numbers of disks to 32 in AIX prior to release 4.3.2. From this release on, the system administrator is able to configure Big Volume Group, which can contain up to 128 disks. A special utility is provided to change a normal Volume Group to Big Volume Group. The limitations of Big Volume Groups are that rootyg cannot be converted to Big Volume Group; Big VG cannot be accessed in Concurrent mode, and BigVG cannot be imported in systems with AIX releases lower than 4.3.2. If more than 128 Physical Volumes are attached to a system, more than one Volume Group will be required. It is usually appropriate to design the system in such a way that different types of information are stored in different Volume Groups anyway. For example, operating system information contained in one Volume Group and user information contained in another can assist in management and, in particular, recovery; should a disk fault occur in a Physical Volume from one Volume Group, only information from that Volume Group will be affected. Up to 255 Volume Groups can be defined in one system.

When you install AIX, one Volume Group is created by the installation process and is called rootvg. On this Volume Group, all System software is installed; primary Paging Space is defined, and the Boot Logical Volume created.

Physical Partition

When a Physical Volume is added to a Volume Group, the space on the Physical Volume is divided up into equal chunks known as Physical Partitions (PPs). The Physical Partition size is set when a Volume Group is created, and all Physical Volumes that are added to the Volume Group inherit the same value. The Physical Partition size can range from 1 MB to 1024 MB and must be a power of 2, the AIX default being 4 MB. If you select 512 MB or 1024 MB for the size of PP, the Volume Group cannot be imported on systems with an AIX release prior to 4.3.1.

By default, up to 1016 Physical Partitions can be defined per Physical Volume. From AIX release 4.3.1 on, when you create a Volume Group, you can specify the factor t, which enables more then 1016 PP per Physical Volume, but fewer PV per Volume Group (see Table 7). You can only specify factor t (with the option -t factor) from the command line (with the mkvg or chvg command), not when using SMIT.

Factor t	max.PP per PV	max. PVs in VG	max. PVs in VG - Big VG
1	1016	32	128
2	2032	16	64
3	3048	10	42
4	4064	8	32
5	5080	6	25
6	6096	5	21
7	7112	4	18
8	8128	4	16
16	16256	2	8

Table 7. Factor -t

The Physical Partition is the smallest unit of disk space allocation in the Logical Volume paradigm. The Logical Volumes and Filesystems created on them can be defined in increments of the size of the Physical Partition. Smaller units increase allocation flexibility at the cost of increased management overhead.

Logical Partition

A Logical Partition (LP) is a pointer to 1, 2, or 3 Physical Partitions. The number of PPs the LP is mapped to is specified when a Logical Volume is created but can be changed later (increased or decreased). Information written to a Logical Partition will be physically written to the Physical Partitions pointed to. The number of Physical Partitions mapped to a Logical Partition defines the number of copies of that partition or the level of mirroring. Mirroring is usually done to two or three different PVs in order to increase the data availability. This means one LP is mapped to 2 or 3 PPs, each located on separate PVs (see Figure 37 on page 100).

Up to 32512 Logical Partitions can be defined per Logical Volume.

Logical Volume

Once a Volume Group has been created and Physical Volumes added to it, Logical Volumes can be created. A Logical Volume (LV) consists of a number of Logical Partitions and is an area of disk that can be used to store information.

The maximum number of user-definable Logical Volumes in a Volume Group is 256 for a normal Volume Group and 511 for a Big Volume Group.

Logical volumes are used to store such things as file systems, log volumes, paging space, boot data (Boot Logical Volume), and dump storage or can be used in Raw mode by databases, such as DB2 or Oracle. The section on Logical Partitions explained that a Logical Partition can be mapped to up to three Physical Partitions, which means that up to three copies of the information contained in a Logical Volume can be maintained. This is called mirroring.

A Logical Volume can have its size dynamically increased by adding Logical Partitions, the number of copies can be increased or reduced, and even the physical location of the Logical Volume on disk can be changed while the LV is in use. Figure 37 on page 100 shows the relationship between these components.

Since a Logical Volume can have up to 32512 Logical Partitions and since a Logical Partition size can be up to 1024 MB, the theoretical maximum size of a Logical Volume is 32512 GB or 31 TB (Terabytes). Because of the flexibility of system administration, the LVs are usual created with much smaller size.

7.1.1.2 Logical Volume Manager operation

This section describes the operation of the LVM.

General operation

As discussed previously, the Logical Volume Manager implementation consists of a set of operating system commands, library subroutines, and other tools that allow Logical Volumes to be established and controlled. These commands use the library subroutines to perform management and control tasks for the Logical Volumes, Physical Volumes, and Volume Groups in a system.

The interface to the Logical Volumes is called the Logical Volume Device Driver (LVDD), which is a pseudo device driver that manages and processes all I/O to Logical Volumes. The Logical Volume Device Driver is designed and utilized the same way as any other device driver in the system and consists of two halves.

The lower half is responsible for mapping logical addresses to actual physical disk addresses, handling any mirroring, and maintaining Mirror Write Consistency (MWC). Mirror Write Consistency uses a cache in the device driver where blocks to be mirrored are stored until all copies have been updated. This ensures data consistency between mirrors. The lower half also manages bad block detection and relocation. If the physical disk is capable of this function, the Logical Volume Device Driver will make use of the hardware support; otherwise, it will be done in software. Both Mirror Write Consistency and bad block relocation can be disabled on a Logical Volume basis.

The list of data blocks to be written (or read) is finally passed by the Logical Volume Device Driver to the physical disk device drivers, which interact directly with the disks. In order for the Logical Volume Manager to work with a disk device driver, it must adhere to a number of criteria, the most significant of which is a fixed disk block size of 512 bytes.

The first 512 byte large block is reserved for the Logical Volume Control Block (LVCB). LVCB contains information about the creation date of the Logical Volume, information about mirrored copies of Logical Partitions, and information about the mount point, if there is a Journaled File System created on the Logical Volume. This is important to remember because a database application, such as DB2 or Oracle, using Raw Logical Volumes must not use the first 512 bytes because that is the LVCB! If we do not do this, we will receive warning and error messages whenever AIX tries to read or update LVCB, which is, basically, every time we make some changes on the Logical Volume. In AIX 4.3.3, a copy of LVCB is also held in the Volume Group Descriptor Area (VGDA).

Quorum

In order for a Volume Group to be accessible to the system, it must be *varied on*. During this process, the Logical Volume Manager reads management information from the Physical Volumes in the Volume Group. This information includes the Volume Group descriptor area already mentioned in Section 7.1.1.1, "Logical Volume Manager terminology" on page 99, and another on-disk information repository known as the Volume Group Status Area (VGSA), which is also stored on all Physical Volumes in the Volume Group. The VGSA contains information regarding the state of Physical Partitions and volumes in the Volume Group, such as whether Physical Partitions are *stale* (used for mirroring, but not reflecting the latest information) and whether Physical Volumes are accessible. The VGDA is managed by the subroutine library, and the VGSA is maintained by the LVDD. If the varyonvg command cannot access a Physical Volume in the Volume Group, it will mark it as missing in the VGDA. For the command to succeed, a quorum of Physical Volumes must be available. A quorum is defined as a majority of VGDAs and

VGSAs (more than 50 percent of the total number available). The only situation in which this is different is when there are only one or two Physical Volumes in a Volume Group. In this case, two VGDAs and VGSAs will be written to one disk and one (or none if there is only one disk) to the other. If the disk with two sets is inaccessible, a quorum will not be achieved, and the vary on will fail. In this case, the system administrator will still be able to varyon VG with a -f flag (force flag). The Logical Volumes that reside completely or partially on missing Physical Volumes will not be accessible, but the ones on available Physical Volumes will, and backup of this data can be performed.

--- Note -

If you want the Volume Group to stay varied on, even if it looses quorum, you must disable quorum. This is a common scenario, when you are implementing mirroring of rootvg. You configure one copy of LVs on first PV and the other copy of LVs on the second PV. In the case of one disk failure, you would usually want that rootvg will be still varied on and thus available for operating system. In this case, you must disable quorum by issuing the chvg -Q n rootvg command.

7.1.1.3 Logical Volume Manager policies

When Logical Volumes are created, there are a number of attributes that can be defined for them. These attributes govern the Logical Volume's operation regarding performance and availability. Attributes are policies that the LVM enforces for the Logical Volume. These policies are:

Intra-Physical Volume Allocation Policy

As shown in Figure 38 on page 106, the Logical Volume Manager defines five concentric areas on a disk where physical partitions can be located. When creating a logical volume, the system administrator can choose a preferred disk location on which the physical partitions and, consequently, the logical partition that will make this logical volume, should be created. This can be used to optimize overall logical volume (and file system if created on it) performance. The characteristics of these regions are described below:

- Edge and Inner Edge These regions, generally, have the longest disk arm seek times resulting in the slowest average access times. Logical Volumes containing least frequently accessed data are best located here.
- **Middle** and **Inner Middle** These regions provide better average seek times than Edge and Inner Edge and, consequently, lower average access times. Reasonably frequently accessed data should be positioned here.

• **Center** - This region provides the lowest average seek times and, thus, the best response times. Information that is accessed regularly and needs high performance should be situated here.

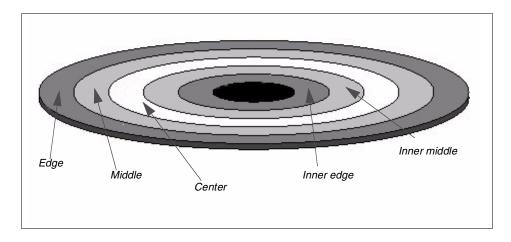


Figure 38. Physical disk partition location - Intra-disk allocation policy

The different average seek times are based upon the supposition that there is a uniform distribution of disk I/O, meaning the disk head will spend more time crossing the center section of the disk than any of the other regions.

When creating a logical volume, the Logical Volume Manager will do its best to locate the logical volume as closely as possible to the required position. If, however, there is no space available in the required area, LVM will create LV on another position with no warning message returned to the system administrator. To confirm that LV was created in a designated area, the system administrator can issue the following command:

lslv -l hd2

The result would be similar to the following:

hd2:/usr			
PV	COPIES	IN BAND	DISTRIBUTION
hdisk0	154:000:000	61%	000:033:095:026:000

In this example, 95 PPs of Logical Volume, hd2, are located in the Center region; 33 PPs are located in the Inner Middle, and 26 PPs are located in the Middle region.

Mirroring

A logical volume is made of logical partitions. The Logical Volume Manager allows each logical partition in a logical volume to be mapped to one, two, or three physical partitions. This means that up to two copies of a logical volume can be transparently maintained for performance and availability purposes. This is how mirroring is achieved in AIX.

The scheduling policy explained below determines how information is actually written to disk when mirroring is used. Should a disk with one of the copies of the logical volume fail, or should some of the physical partitions in the copy become damaged, another copy can be transparently used while repairs are effected. Furthermore, the copy that has the required partitions closest to a read/write head will be used for reading, thus, improving performance. The benefits here are somewhat dependent upon the inter-physical volume allocation policy, which is explained next.

When mirroring is being used, there are two ways in which the Logical Volume Manager can schedule I/O for the physical volumes:

• Sequential-write copy - When this option is selected for a logical volume, write requests are performed for each copy successively in the following order: Primary, secondary, and tertiary. A write to a copy must complete before the next copy can be updated, thus, ensuring maximum availability in the event of failure.

Read requests will be initially directed to the primary copy. If this fails, they will be directed to the secondary, and then to the tertiary if necessary (and defined). While the data is being read from the next copy, the failing copy (or copies) is/are repaired by turning the read into a write with bad-block relocation switched on.

• **Parallel-write copy** - In this case, write requests are scheduled for each of the copies simultaneously. The write request returns when the copy that takes the longest to update completes. This method provides the best performance.

Read requests are scheduled to the copy that can be most rapidly accessed, thereby minimizing response time. If the read fails, repairs are accomplished using the same mechanism as for sequential-write copy.

If required, there is a great deal of additional information, in the form of online documentation, about all aspects of the Logical Volume Manager.

Inter-disk physical volume allocation policy

When the Logical Volume Manager allocates partitions for a logical volume, the partitions can be spread across multiple disks. The inter-physical volume

allocation policy governs how this will actually be implemented in terms of numbers of physical volumes. There are two options:

- **Minimum** The minimum option indicates that, if mirroring is being used, the minimum number of physical volumes should be used per copy, and each copy should use separate physical volumes. If mirroring is not being used, just the minimum number of physical volumes necessary to hold all of the required physical partitions should be used.
- **Maximum** The maximum option, predictably enough, attempts to spread the required physical partitions over as many physical volumes as possible, thereby, improving performance. if mirroring is not used here, this approach is highly-sensitive to physical volume failure. The loss of any physical disk will result in the loss of the logical volume.

Striping

When creating a logical volume, it is also possible to define a stripe size if you want the logical volume to be striped. The stripe size can be 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, or 128 KB.

AIX V4.3 allows the placement of logical volumes on a specific area of one or more physical volumes. For example, the center of the disk may be chosen for the placement of logical volumes when rapid access to data is required. Even though this placement strategy can provide fast access to data, it is still restricted by the fact that a disk I/O operation is performed to retrieve each data block.

In Part 1 of Figure 39 on page 109, the numbered disk blocks for the file represent the sequence of data in the file. To read the entire file sequentially involves reading each disk block in turn.

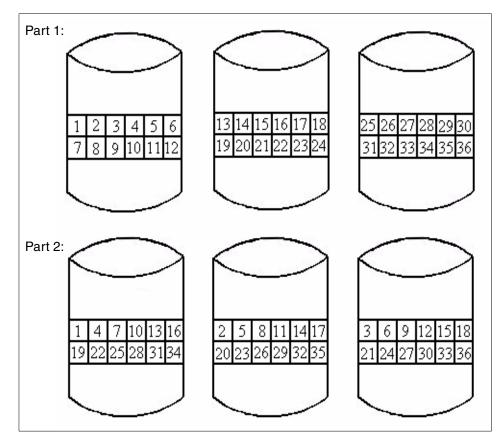


Figure 39. Striping example

However, if we place the data in a logical volume over all available disks, in a specific manner, to enable parallel access to that data, this would further improve sequential access to that data (see Figure 39).

In user environments where sequential access to large data files is very frequent, this technique proves to be extremely efficient. In fact, AIX V4.3 provides this technique with a mechanism known as striping. In non-striped logical volumes, data is accessed using addresses to data blocks within physical partitions. In a striped logical volume, data is accessed using addresses to stripe units. Consecutive stripe units are created on different physical volumes.

A single stripe consists of a stripe unit on each physical volume. The size of a stripe unit must be specified at creation time and can be any power of 2 in the range 4 KB to 128 KB. Because data in a striped logical volume is no longer

accessed using data block addresses, the LVM will track which blocks on which physical drives actually hold the data being accessed. If the data being accessed resides on more than one physical volume, the appropriate number of simultaneous disk I/O operations will be scheduled for all drives concerned.

7.1.1.4 Mirroring and striping support

In AIX 4.3.3, you have the ability to create striped and mirrored logical volumes, which provides you with high-performance striped logical volumes and high availability of mirrored logical volumes, see Figure 40.

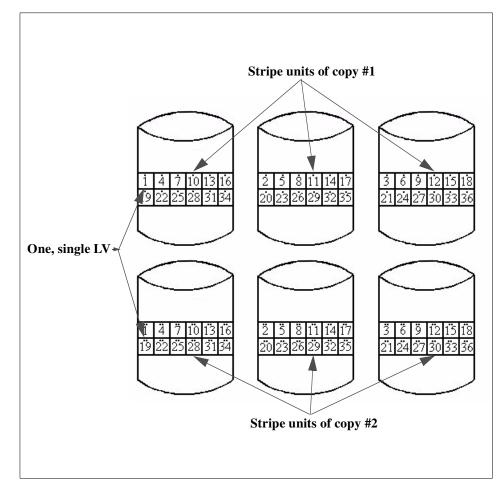


Figure 40. Striped and mirrored logical volume

For striped and mirrored logical volumes, a new allocation policy is introduced: *Super strict*. This allocation policy ensures that the partitions allocated for one mirror cannot share a physical volume with the partitions from another mirror. If you are creating a striped and mirrored logical volume with SMIT, this policy will be selected automatically, but, if you are creating a logical volume with the mklv command, you should specify the super strict allocation policy with the -s flag.

7.1.1.5 Bad-block relocation

As was mentioned in "General operation" on page 103, the Logical Volume Manager will perform bad-block relocation if required. This is the process of redirecting read/write requests from a disk block that has become damaged to one that is functional; this happens transparently to an application.

7.1.1.6 Concurrent online mirror backup

AIX 4.3 provides support for online backup mechanism for a mirrored logical volumes. The idea is to make one copy of the logical volume temporarily inactive for applications; it means that any updates of LV will take place only on one copy, and, in this time, perform a backup of the logical volume from the non-active copy.

7.1.1.7 Logical Volume Manager benefits

The LVM provides the following benefits:

- Transparent control of physical storage data contained in a logical volume appears to be contiguous, but it can, in fact, be located on disk partitions that are not side-by-side or even on the same physical disk. This allows efficient use of available disk space, particularly when logical volumes require expansion.
- Mirrored copies of logical volumes, by being able to assign multiple physical partitions to each logical partition, enable copies of vital information to be transparently maintained (even on separate physical disks) for additional security.
- Striped logical volumes enable many simultaneous reads from many physical volumes for applications with high-performance sequential read requirements. In AIX 4.3.3, striped logical volumes can also be mirrored.
- Capacity greater than physical disk sizes The logical partitions comprising a logical volume can span multiple disks, which means that logical volumes are not limited to the sizes of the individual physical disks attached to the system.
- **Physical partition flexibility** The sizes of physical partitions can be defined when a volume group is created. This gives flexibility in the use of

disk resources. For example, logical volumes can be increased in size by smaller increments, thereby, utilizing the available disk space more effectively.

7.1.2 AIX Version 4.3 file systems

One further level of abstraction is provided at the operating system level, and this is the file system. A file system is, essentially, a hierarchical structure of directories, each directory containing files or further directories (subdirectories). The diagram in Figure 41 on page 113, shows the standard AIX V4.3 Journaled File System organization. The main purpose of a file system is to provide for improved management of data by allowing different types of information to be organized and maintained separately. However, as will be shown later in this section, file systems also provide many more facilities.

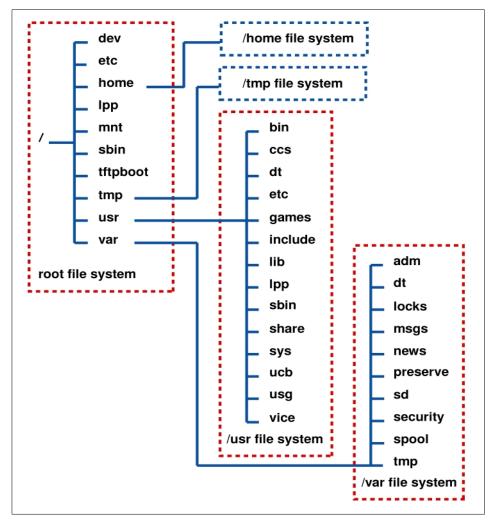


Figure 41. AIX Version 4.3 Journaled File System organization

There many different types of file systems in existence, including the following:

AIX Journaled File System (JFS)

This is the native AIX file system providing the full range of supported file system operations for organizing and managing physical files. The JFS is explored in more detail later in this section. The JFS is created within a logical volume.

Network File System (NFS)

This type of file system allows a remote file system (or part of a file system) to be accessed as if it were part of a local file system.

CD-ROM File System (CDFS)

This type of file system allows the contents of a CD-ROM to be accessed as if they were part of a local file system.

Andrew File System (AFS)

Provides services similar to NFS.

OSF Distributed File System (DFS)

This file system provides a very high level of security and availability.

On all UNIX systems, there must be at least one file system, called the root file system or /, within which the other file systems can be accessed on the local system. In AIX, several other filesystems are created at installation time: /usr, /var, /tmp, /home.

7.1.2.1 AIX 4.3 Standard Journaled File System

The AIX Journaled File System (JFS) is implemented through a set of operating system commands that allow the creation, management, and deletion of files and a set of subroutines that allow lower-level access, such as open, read, write, and close, to files in the file system.

A JFS is created on a logical volume and organized as shown in Figure 42 on page 115.

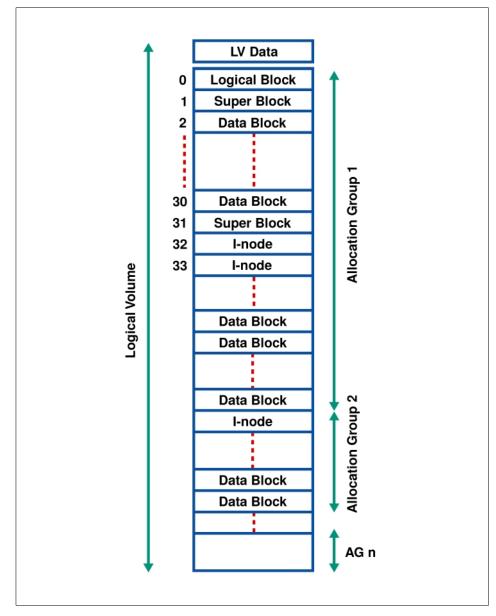


Figure 42. JFS physical organization on a logical volume

As can be seen, the JFS divides the logical volume into a number of units or logical blocks of fixed size. Before AIX V4, these logical blocks had a fixed-size of 4096 corresponding to the memory page size.

While, generally, efficient from the point of view of loading the file into memory and preventing physical disk fragmentation, having a fixed logical block size can have drawbacks. If the majority of files stored in the file system are small (less than one logical block in size), there will be a great deal of wasted disk space in the accumulation of those portions of the logical blocks that remain unused by the smaller files. If all files are less than half of a logical block in size, for example, then half of the total file system space will be unused, even though the file system is full.

AIX V4 has introduced fragments in the structure of a file system. A fragment is the smallest unit of file system disk space allocation. The fragment size can be set at the creation of the file system and is stored in the superblock. The size can be 512, 1024, 2048, or 4096 bytes. This fragment size is used for I/O at the file system interface. This means that the file system passes data to be written to the LVM or receives data that has been read from the LVM using blocks of data having the fragment size set at file system creation.

The logical blocks in the file system are organized as follows:

Logical Block 0

The first logical block in the file system is reserved and available for a bootstrap program or any other required information; this block is unused by the file system.

Superblock

The first and thirty-first logical blocks are reserved for the superblock (logical block 31 is a backup copy). The superblock contains information, such as the overall size of the file system in 512-byte blocks, file system name, file system log device (logs will be covered later in this section), version number, and file system state.

Allocation Groups

The rest of the logical blocks in the file system are divided into a number of allocation groups. An allocation group consists of data blocks and i-nodes to reference those data blocks when they are allocated to directories or files. The reasons for this extra level of abstraction are:

- To improve locality of reference Files created within a directory will be maintained in an allocation group with that directory. Since allocation groups consist of contiguous logical blocks, this should assist in maintaining locality of reference for the disk head.
- To make file system extension easier Extending a file system is easier because a new allocation group of i-nodes and data blocks can be added maintaining the relationship between i-nodes and file system size simply.

Without allocation groups, the file system would either have to be reorganized to increase the number of i-nodes, or the extension could only increase the number of data blocks available, thereby, conceivably, limiting the number of files and directories in the file system.

I-nodes are explained next. For a better representation of this organization, refer to Figure 42 on page 115.

i-nodes

Basically, an i-node is a pointer to a file. An i-node contains information about the file, such as the type of file, the size in bytes, the owner, access permissions for the user ID (UID) and the group ID (GID), the number of blocks allocated to the file, the creation date, last modification date, last access date, and pointers to the blocks that actually contain the file.

When the file system is created, a certain number of blocks are reserved for storing the i-nodes. The number of i-nodes determines the number of files or directories that can be created on that file system. By default, the number of i-nodes is such that each 4096 byte block of the file system can be addressed and contain a file.

This is not the most efficient way of using the space in the file system; so, in AIX V4, we have the possibility of specifying the number of bytes per i-node (NBPI). This number specifies the ratio of the file system size (in bytes) to the number of i-nodes. For example, if the NBPI is set to 16384, in a file system of size 32 MB, 2000 i-nodes will be created. This means it will be possible to create 2000 files and directories in that file system. The NBPI can be from 512 to 131072, and the default is 4096.

These i-nodes will be divided between the allocation groups.

The structure of an i-node is described in Figure 43 on page 118, where an NBPI of 4 KB is assumed. The first part contains information, such as the owner, creation and modification dates, and permissions for the directory or file. The second part contains an array of eight pointers to the actual disk addresses of the 4 KB logical blocks that make up the file or directory.

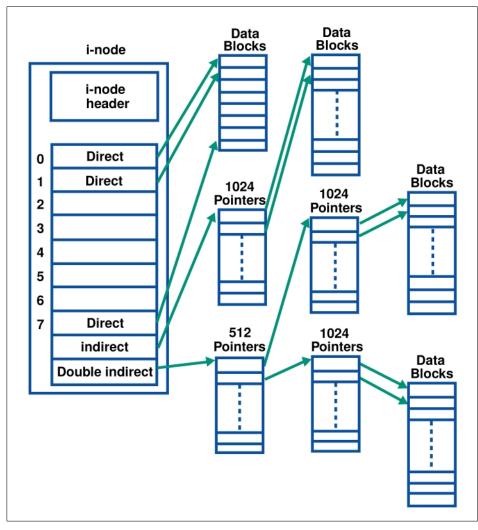


Figure 43. Structure of an i-node

For files that can fit within the array storage area, such as most links, the file is actually stored in the i-node itself, thus, saving disk space.

For a file of up to 32 KB (8 x 4 KB) in size, each i-node pointer will directly reference a logical block on the disk. For example, if the file has a 27 KB size, the first seven pointers will be required, the last pointer referencing a 4 KB logical block containing the last 3 KB of the file.

For files up to 4 MB, the i-node points to a logical block that contains 1024 pointers to logical blocks that will contain the files data; This gives a file size of up to 1024 x 4096 or 4 MB.

For files greater in size than this, the i-node points to a logical block that contains 512 pointers to logical blocks each containing 1024 pointers to the logical blocks that will actually contain the file's data. This gives a maximum file size of 512 x 1024 x 4096 or 2 GB.

7.1.2.2 Large-file-enabled Journaled File System

If files bigger than 2 GB are required, a large-file-enabled Journaled File System must be created.

The geometry for a large-file-enabled JFS allows some of the indirect blocks to contain disk addresses that refer to larger blocks. Specifically, the entries in the first indirect block point to normal 4 KB data blocks, and all of the entries in other indirect blocks point to larger (128 KB) data blocks (see Figure 44 on page 120)

In file systems enabled for large files, file data stored before the 4 MB file offset is allocated in 4096-byte blocks. File data stored beyond the 4 MB file offset is allocated with large disk blocks 128 KB in size. The large disk blocks are actually 32 contiguous 4096-byte blocks.

For example, a 132 MB file in a file system enabled for large files uses two single indirect blocks (one with 1024 x 4 KB data blocks and one with 1024 x 128 KB data blocks). In a regular file system, the 132 MB file would require 33 single indirect blocks (each filled with 1024 x 4 KB disk blocks).

The maximum file size for this geometry is: $(1 \times 1024 \times 4 \text{ K}) + (511 \times 1024 \times 128 \text{ K})$ or 68589453312 Bytes (or around 64 GB).

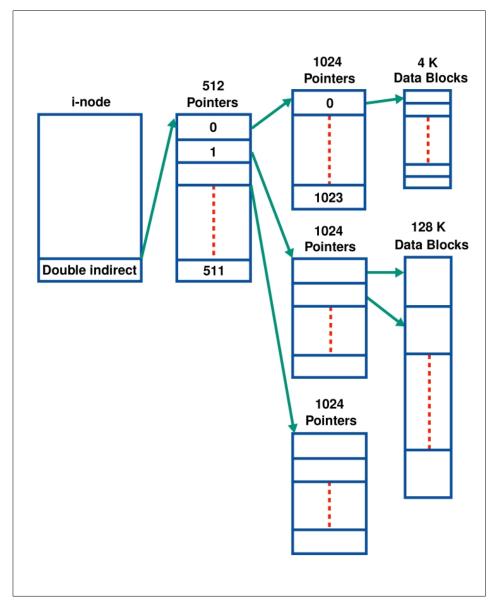


Figure 44. JFS geometry for large files

7.1.2.3 Compressed Journaled File System

AIX V4.3 allows the system administrator to create a compressed file system. This facility provides compression of regular files (as opposed to directories or links). The compression is implemented on a logical block basis, which

means that when a logical block of file data is to be written, an entire logical block is allocated for it; the logical block is then compressed, and the number of fragments now required as a result of the compression is actually allocated. Thus, in contrast to a fragment file system, which only allocates fragments for the final logical blocks of files less than 32 KB in size, compressed file systems allocate fragments for every logical block in every file.

Compression is done block-by-block in order to fulfill the requirements for efficient random I/O. The algorithm used is LZ1.

If compressed filesystem are used, there is the potential for file system fragmentation. Although enough free fragments are available for writing a new file, they are not in contiguous space and cannot be used. In order to solve this problem, there is a utility called defragfs, which can be used for defragmenting a filesystem.

- Note

The / (root) and /usr file systems must not be compressed!

7.1.2.4 Journaled File System recoverability

Since it has been available with AIX V3.1 in 1990, the AIX JFS is a recoverable file system. All transactions issued on the file system structure (file system meta data) are logged into a JFS log logical volume. This transaction log provides file system recovery in case the system abnormally terminates.

By default, one JFS log, with a default size of one logical partition, maintains log data for all the file systems within a volume group. The default log size may be increased for file systems that are larger than 2 GB. The maximum size for a JFS log is 256 MB.

It is also possible to create a separate JFS log logical volume for a specific file system. Since the JFS log is a logical volume, the physical location of the log can be set at log logical volume creation. This is very important in terms of performance. Having the log on a physical volume other than the file system might improve write access to this file system.

7.1.2.5 Journaled Flle System limitations

The JFS is designed to support up to 2^{24} i-nodes or 16 million i-nodes. With an NBPI (Number of Bytes Per i-node) of 512, this leads to 512 x 16 M = 8 GB.

The theoretical file system size limit is reached with an NBPI of 131072, which gives a maximum file system size of 131072 x 16 M = 2097152 MB, that is, 2 TB (2 Terabytes). Since this size requires very large hard drives, it was not possible to test such a size; therefore, IBM announced a maximum supported file size of 1024 GB. See Table 8.

NBPI	Minimum Allocation Group Size (MB)	Fragment Size (Bytes)	Maximum File System Size (GB)
512	8	512,1024,2048,4096	8
1024	8	512,1024,2048,4096	16
2048	8	512,1024,2048,4096	32
4096	8	512,1024,2048,4096	64
8192	8	512,1024,2048,4096	128
16384	8	512,1024,2048,4096	256
32768	16	1024,2048,4096	512
65536	32	2048,4096	1024
131072	64	4096	1024

Table 8. AIX V4.3 Journaled File System maximum size

7.1.2.6 Journaled File System Long File Name Support

The AIX JFS has supported long filenames since AIX became available in 1990. File names can have up to 255 characters.

7.1.2.7 On-line Journaled File System backup

In AIX 4.3.3, you also have the ability to make an online backup of JFS, not just raw logical volumes. In order to do this, the logical volume on which JFS resides must be mirrored as must its JFS log. When doing an online backup of JFS, LVM creates a snapshot of the logical volume on which JFS resides. However, because of asynchronous file writes, the snapshot may not contain all the data that was written immediately before the snapshot was taken. Therefore, it is recommended that file system activity be minimal while the snapshot (the splitting of logical volume copies) is taking place. After the backup is finished, the copy of the LV (JFS) that was used for backup is reintegrated and synchronized with the primary copy.

7.1.2.8 Other file systems

As has been explained in this section, file systems provide an interface that simplifies management and access to information. The native file system under AIX is the JFS, but there are other types:

CD-ROM File System (CDFS)

This file system provides access to information stored on a CD-ROM, such as the On-line System Documentation information. Once created, a CD-ROM file system can be mounted and accessed the same as any other file system.

The following standard CD-ROM formats are supported:

- The ISO 9660:1988(E) standard The CDRFS supports ISO 9660 level 3 of interchange and level 1 of implementation.
- The High Sierra Group Specification Precedes the ISO 9660 and provides backward compatibility with previous CD-ROMs.
- The Rock Ridge Group Protocol Specifies extensions to the ISO 9660 that are fully-compliant with the ISO 9660 standard and provide full POSIX file system semantics based on the System Use Sharing Protocol (SUSP) and the Rock Ridge Interchange Protocol (RRIP) enabling mount/access CD-ROM as with any other UNIX file system.
- The CD-ROM eXtended Architecture File Format (in Mode 2 Form 1 sector format only) This file format specifies extensions to the ISO 9660 that are used in CD-ROM-based multimedia applications, such as Photo CD.

Network File System (NFS)

NFS allows files and directories located on other systems to be incorporated into a local file system and accessed as though they were a part of that file system. NFS provides its services on a client/server basis. Server systems can make selected files and directories available for access by client systems.

NFS provides a number of services including the following:

- **Mount Service** This service allows clients to mount into a local file system the portion of the remote file system that they wish to access. Mounting is discussed in more detail later in this section.
- **Remote File Access** This service fulfills requests for file activity from the client to server (such as opens, reads, and writes).
- **Remote Execution Service** This service allows authorized clients to execute commands on the server.

- **Remote System Statistics Service** This service provides statistics on the recent availability of the server.
- **Remote User Listing Service** This service provides information to clients about users of the server system.

NFS installation, configuration, and management are covered in detail in the online documentation.

NFS operation is stateless, which means that the server does not maintain any transaction information on behalf of clients. Each file operation is atomic, which means that ,once complete, no information on the operation is retained. Thus, if a connection should fail, it is up to the client to maintain any synchronization or transaction logging to ensure consistency.

Andrew File System (AFS)

The Andrew File System, or AFS, provides a similar basic service to NFS in that it allows machines to access remote file systems as though they were local. The major difference is that AFS defines its own hierarchy, one where many machines can participate in mounting sections of their local file systems into the hierarchy. Client machines that are authorized can then mount the entire AFS hierarchy into their local file system structure and, thereby, access information on a wide range of machines and file systems as though it were local.

OSF Distributed File System (DFS)

This file system is part of the OSF Distributed Computing Environment (OSF DCE). It provides file-sharing capabilities with a high level of availability and security. Refer to Section 11.2.20.7, "Distributed File System (DFS)" on page 430, in this document for more information on DFS.

7.1.2.9 Accessing file systems

Once a file system of whatever type has been created, it must be mounted in order to access the information within it. The process of mounting creates the connection between an existing and accessible local file system mount point and the root directory of the directory structure to be accessed. A mount point can be either a directory or a file in the local file system. If a new local file system or remote directory structure (using NFS for example) is to be accessed, it must be mounted over a directory. If only a single file is to be accessed, it must be mounted over a local file. The AIX operating system starts with a root file system into which the /usr, /var, /tmp, and /home file systems are mounted at boot time. Any other required file systems can then be mounted wherever they are needed (assuming relevant permissions).

7.1.3 AIX V4.3 and Redundant Array of Independent Disks support

In order to improve the availability of data, several different concepts of configuring disks are used by many vendors of storage products. Apart from disk, these configurations usually use special disk controller and/or special controller software. Different configurations of disks are called RAID levels. AIX supports RAID levels 0, 0+1, and 1 as part of Logical Volume Manager. If the customer wants to implement RAID level 5, a special disk controller should be used, such as IBM Ultra SCSI RAID controllers (2493, 2494) or IBM SSA RAID controllers (6225).

RAID 0

RAID 0 is also known as data striping. Conventionally, a file is written out to (or read from) a disk in blocks of data. With striping, the information is split into chunks (a fixed amount of data), and the chunks are written to (or read from) a series of disks in parallel.

RAID 0 is well suited for program libraries requiring rapid loading of large tables or, more generally, for applications requiring fast access to read-only data or for fast writing. RAID 0 is only designed to increase performance; there is no redundancy. Therefore, any disk failures will require reloading from backups.

AIX JFS supports RAID 0 with the creation of a striped logical volume.

RAID 1

RAID 1 is also known as disk mirroring. In this implementation, duplicate copies of each chunk of data are kept on separate disks or, more commonly, each disk has a twin that contains an exact replica (or mirror image) of the information. If any disk in the array fails, the mirrored twin can take over. Read performance can be enhanced because the disk with its actuator closest to the required data is always used, thereby, minimizing seek times. RAID 1 is best suited to applications requiring high data availability and good read response times and where cost is a secondary issue.

AIX JFS supports RAID 1 with the possibility of having up to two copies of the logical volume on separate physical volumes.

RAID 0+1

This is the combination of data striping and disk mirroring described above.

AIX 4.3.3 supports RAID 0+1. See Section 7.1.1.4, "Mirroring and striping support" on page 110, for more details.

RAID 2/RAID 3

These are parallel process arrays where all drives in the array operate in unison. Similar to data striping, information to be written to disk is split into chunks, and each chunk is written out to the same physical position on separate disks (in parallel). When a read occurs, simultaneous requests for the data can be sent to each disk. Then, each request retrieves the data from the same place and returns it for assembly and presentation to the requesting application. More advanced versions of RAID 2 and 3 synchronize the disk spindles so that the reads and writes can truly occur simultaneously (minimizing rotational latency buildups between disks). This architecture requires parity information to be written for each stripe of data. The difference between RAID 2 and RAID 3 is that RAID 2 can utilize multiple disk drives for parity, while RAID 3 uses only one. RAID 2 is rarely used, but RAID 3 is well suited for large data objects, such as CAD/CAM or image files or for applications requiring sequential access to large data files.

AIX JFS needs specific hardware to support RAID 2/3.

RAID 4

RAID 4 addresses some of the disadvantages of RAID 3 by using larger chunks of data and striping the data across all of the drives except the one reserved for parity. Using disk striping means that I/O requests need only reference the drive on which the required data actually resides. This means that simultaneous, as well as independent, reads are possible. Write requests, however, require a read/modify/update cycle that creates a bottleneck at the single parity drive. This bottleneck means that RAID 4 is not used as often as RAID 5, which implements the same process but without the bottleneck.

AIX JFS needs specific hardware to support RAID 4.

RAID 5

As has been mentioned, RAID 5 is very similar to RAID 4. The difference is that the parity information is distributed across the same disks used for the data, thereby, eliminating the bottleneck. Parity data is never stored on the same drive as the chunk that it protects. This means that concurrent read and write operations can now be performed, and there are performance increases due to the availability of an extra disk (the disk previously used for parity). There are other enhancements possible to further increase data transfer rates, such as caching simultaneous reads from the disks, and then transferring that information while reading the next blocks. This can generate data transfer rates at up to the adapter speed. Similar to RAID 3, in the event of disk failure, the information can be rebuilt from the remaining drives. RAID

5 is best used in environments requiring high availability and fewer writes than reads.

AIX JFS needs specific hardware to support RAID 5.

7.2 Windows 2000 storage management

This section describes how Windows 2000 manages its disk space and which fault-tolerant functions are provided. The basic entity in Windows 2000 storage management is called a *Volume*.

7.2.1 Volume management

In Windows 2000, there are two types of disks: Basic disks and Dynamic disks. Basic disks are configured using the partitions inherited from Windows NT and earlier releases of Windows. Dynamic disks can be used with the new part of the operating system called the Logical Disk Manager (LDM), which is shown in Figure 45.

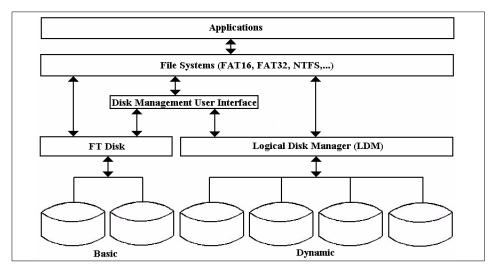


Figure 45. Windows 2000 Volume Management Concept

7.2.1.1 Volume management terminology

The following sections describe the volume management terminology.

Basic disk

Basic disks have the same structure as on Windows NT. They store their configuration information in the Master Boot Record (MBR), where all

information about partitions and partition sets is stored. Some additional information, added by Windows 2000, is stored on the first track of the disk.

Disk group

A disk group is a collection of dynamic disks that are managed as a collection. Each disk in a disk group has a special area (1 MB in size) that stores the configuration data about this disk group (similar to VGDA in AIX).

Dynamic disk

Dynamic disks are part of the disk group. Dynamic disks are managed by the Logical Disk Manager, and simple, spanned, stripped, or distributed parity (RAID-5) volumes can be created on them. After upgrading from Windows NT to Windows 2000, all existing disks are recognized as basic disks. They can be converted to dynamic disks.

Partition

Partition is part of the disk on which logical volumes are created. Each basic disk can be divided into several partitions. They can be of two types: Primary and extended. Primary partition is marked as bootable, and at least one must be available in the system. A logical drive is associated when the partition is created and is identified with a letter, such as C.

Volume

Volume is part of the disk that is formatted and on which a file system is created. It can also be used directly by database programs, such as Oracle.

On Basic disks, you can still use simple partitions, extended partitions, or fault-tolerant sets. These partitions are managed by the ftdisk device driver in the same way as in Windows NT. There are several different kinds of volumes:

- **Simple volume** It is configured on the free area of a single disk. It can occupy one contiguous area or consist of more concatenated areas of the disk. It can be extended on other disks, and then it becomes a *spanned volume*.
- Striped volume (RAID 0) Consecutive stripes of data are written to different disks (interleaved) in order to increase read and write performance.
- Mirrored volume (RAID 1) this is a fault tolerant volume where two copies of the data exist on two different disks. If one of the disks fails, the data can still be read and written to the copy of the volume on the other disk.
- Spanned volume This volume can be configured to span up to 32 disks.

• **RAID 5 (distributed parity) volume** - This is a fault tolerant volume whose data is striped across an array of three or more physical disks. A special chunks of data, called *Parity* (the calculated value of the chunk of data made with logical XOR operation), are also striped across disks. If one of the disks fails, the original data can still be recreated from other disks and parity information.

Similar to partitions, volumes can be associated with a letter, but, similar to AIX, they can also be mounted over a directory. This new functionality is enabled with the concept of *reparse points*. A reparse point is a special tag that is applied to a file system or directory and passed back to the driver stack each time a particular filesystem or directory is accessed.

The simple volumes and spanned volumes can be dynamically increased during operation.

Logical Disk Manager (LDM)

LDM is a part of the operating system responsible for managing dynamic disks. It manages them as a *disk group*. Each disk in a group contains information about all other disks and the volumes configured on these disks in a replicated transactional database written in an area (1MB - 8MB in size) at the beginning of the disk. In Windows 2000, the volume configuration information is no longer stored in the registry.

For users who are familiar with Windows NT terminology, Table 9 compares Windows NT and Windows 2000 terminology.

Windows NT	Windows 2000
Partition	Volume
System and Boot Partitions	System and Boot Volumes
Active Partition	Active Volume
Extended Partition	Volumes and Unallocated space
Logical Drive	Simple Volume
Volume Set	Spanned Volume
Stripe Set	Stripped Volume
Mirror Set	Mirrored Volume

Table 9. Windows NT and Windows 2000 terminology compared

7.2.1.2 Configuring and managing disks and volumes

A utility called Disk Management is used to create, change, or delete volumes and disks (see Figure 46).

Action ⊻iew ← → 1 🔁 💽 Tree	Volume	Layout	Туре	File System	Status	Capacity	Free Space	% Free	Faul
			Dynamic	NTFS	Healthy	499 MB	495 MB	99 %	yes
Scomputer Management (Local)	2 PSP5 (D:)	Partition	Basic	CDFS	Healthy	199 MB	0 MB	0%	no
🗄 🌇 System Tools 🕀 🗑 Event Viewer	Simple Volume		Dynamic	NTFS	Healthy	49 MB	47 MB	95 %	no
	Striped Volum	2010 B (100 B)	Dynamic	NTFS	Healthy	399 MB	395 MB	98 %	по
Shared Folders Device Manager Coal Users and Groups	System Disk (Basic	NTFS	Healthy (Boot)	16.94 GB	15.41 GB	90 %	no
 Storage Storage Isk Management Isk Defragmenter 	· [
I ogical Drives									
Logical Drives Logical	Contraction Disk 0 Basic 16.94 GB Online	System Disl 16.94 GB NTF Healthy (Boot	S						
🗄 🔗 Removable Storage	Basic 16.94 GB	16.94 GB NTF	5) 29 MB 5	iimple 0 MB N iealthy Una	MB 500	rrored ¥ol) MB NTFS althy	15.48 GB Unallocated		
🗄 🔗 Removable Storage	Basic 16.94 GB Online Coline Coline Disk 1 Dynamic 16.94 GB	16.94 GB NTF Healthy (Boot Striped Vo 200 MB NTF	S) 29 MB Unalloi	0 MB N 721 lealthy Una	MB 500) MB NTFS	Unallocated		

Figure 46. Disk Management utility

If you right mouse click on the Unallocated Space area and select **Crate Volume**, the Create Volume Wizard will be started, and you will be guided through several steps as shown in figures 47 through 50 on the following pages (in this example, we created a Mirrored Volume).

Select Volume Type What type of volume do you want	to create?
┌─ Volume type	
C Simple volume	 Mirrored volume
C Spanned volume	C RAID-5 volume
C Striped volume	
Description	
	ur data on two dynamic disks. Create a mirrored seperate copies of all your information to prevent

Figure 47. Selecting the volume type

Note that the RAID-5 option is not active because we had only two available Dynamic disks, and you need at least three for RAID-5 type volumes. Select the disks as shown in Figure 48 on page 132.

Select two disks.	
All available dynamic disks:	Selected dynamic disks:
	Add >> Disk 1 Disk 2
<	< Remove
<u>~</u>	Remove All
	Total volume size: 8321 MB
For all selected disks: 8321	HB Maximum: 8321 MB
For all selected disks: [832]	➡MB Maximum: 8321 MB

Figure 48. Selecting the disks

The next step is to assign a letter to the drive or create a mount point as shown in Figure 49.

Assign Drive Letter or Path You can assign a drive letter or drive path to	to this volume.
· · · · · · · · · · · · · · · · · · ·	S.
You can access your volume though the dri	ive letter or path you assign to it.
C Assign a drive letter:	
Mount this volume at an empty folder the	
C:\mnt_test\	Browse
${igsim}$ Do not assign a drive letter or drive path	n

Figure 49. Selecting the path (mounting directory)

The last step is to format the newly-created drive as shown in Figure 50.

Format Volume You can customize the formatti	ing of the partition
Specify whether you want to fo	rmat this volume.
O Do not format this volum	e
Format this volume as format	illows:
Formatting	
File system to use:	NTFS
Allocation unit size:	Default
Volume label:	New Volume
Perform a Quick F	ormat 🔲 Enable file and folder compression

Figure 50. Selecting the format type for the volume

7.2.2 Windows 2000 file systems

Windows 2000 support all the file systems from previous versions of Windows and adds support for several new ones.

The following file systems are supported:

- FAT or (FAT16) This filesystem was part of the Microsoft DOS operating system. In Windows 2000, it is supported on the top of the FtDisk device driver and has the support of long filenames. The maximum volume size for a FAT16 partition is 4 GB.
- FAT32 Windows 2000 also supports the FAT32 file system, which was introduced with the Windows 95 operating system and implemented on the OSR2 and Windows 98 operating systems. The reduced cluster size in this filesystem results ina 20 to 30 percent increase in disk space efficiency compared to FAT file systems. The maximum file size and volume size for FAT32 is 32 GB.
- Compact Disk File System (CDFS) This type of file system allows Windows 2000 to read data from CD-ROM devices. It is implemented in accordance with the ISO 9660 standard with additional support for Joliet disks.
- Universal Disk Format (UDF) This is a file system defined by the Optical Storage Technology Association (OSTA) and is compliant with the ISO 13346 standard. This is the next generation of CDFS and supports media, such as DVD, WORM, and CD-R. It supports long and Unicode filenames, Access Control Lists, streams, and sparse files.
- NT File System (NTFS) NTFS is the native Windows 2000 file system. It was designed to provide greater reliability and recoverability of the data and to address several limitations of FAT file systems. The current version of NTFS is Version 5. It has several enhancments and new functionalities over NTFS Version 4. The NTFS Version 4 filesystems are upgraded to NTFS version 5 at the time of the first mount of the volumes. The main characteristics of NTFS are:
 - **Reliability** NTFS logs transaction to its structure (similar to FIX's JFS log), so in case of failure, utilities like CHDISK can roll-back the activity on the file system and ensures it's integrity.
 - Large disk and large file support NTFS allocates clusters of up to 4 KB in size and uses 64-bit addresses to number them; so, 2⁶⁴x 4 KB is the maximum manageable space, and each file could, theoretically, be 2⁶⁴ bytes long (16384 Petabytes). However, since a spanned volume can use a maximum of 32 disks, the actual maximum size of a file is

limited by the size of the hard drives. With 18 GB hard drives, the maximum size of a volume set and a file is $32 \times 18.2 = 582.4$ GB.

- **Multiple data streams** NTFS has the structure of a relational database. All information associated with a file, such as the file name, owner, permissions, and the file's data blocks themselves, are implemented as file attributes. Each attribute is a stream, a simple sequence of bytes. Because file data is just another attribute, new attributes can be added to make the file system flexible. You will find a more detailed description of NTFS in Section 7.2.2.1, "NTFS organization" on page 135.
- **Encryption** If implemented on NTFS, the Encrypting File System (EFS) enables the user to transparently use the file, although it is encrypted on the disk and cannot be read by any low-level disk examination utility.
- POSIX compliance The NTFS file naming convention is POSIX.1-compliant and supports case-sensitive naming, additional time stamp, and hard links.
- **Sparse files** Sparse files are very large files that are written in such a way as to occupy minimum disk space.
- **Remote storage** In Windows 2000, remote media, such as tapes or optical drives, can be integrated transparently (for the user) into NTFS.
- **Disk quotas** If configured, disk quotas enable the system administrator to monitor and control the disk space used by individual users.

7.2.2.1 NTFS organization

The core of the NTFS structure is the file called the Master File Table (MTF). An entry for each file in the NTFS volume is stored in a record (or a row) of the MTF and consists of all file attributes, such as file size, time and date stamps, permissions, and so on. In order to keep MTF as contiguous as possible, because of performance considerations, an area of the volume is reserved for MTF when NTFS is created. The schematic structure of MTF is shown in Figure 51 on page 136.

	Standard Information	File Name	Security Descriptor	Data	
File 1					
File 2					
	I	I	1	1	1
	i	i	i	i	i

Figure 51. Master File Table structure

The basic attributes of a file are Standard Information, File Name, Security Descriptor, and Data. each attribute can grow independently of the others. Writing a file using NTFS terminology means writing bytes into the file Data attribute. Changing a file name means writing into its File Name attribute. When the value of an attribute is directly stored in the MFT, this attribute is called a resident attribute. File attributes that are smaller than the cluster size will be resident. This means that small files will have their data attributes stored in the MFT itself.

For bigger files, NTFS will allocate additional clusters called runs (or extents) on disk to store the data attributes. These attributes are called nonresident attributes because they are not directly in the MFT.

When nonresident attributes are used for large files, NTFS keeps track of the location of these attributes. NTFS uses Virtual Cluster Numbers (VCNs) to number clusters belonging to a file using characters from 0 to m. Clusters within a volume are numbered from 0 to n. Thus, to retrieve the data blocks (clusters) that are not stored in the MFT, NTFS maps VCN to LCN and stores that information in the data file attribute in the MFT. Figure 52 on page 137 depicts how VCN-to-LCN mapping works for nonresident attributes used by large files.

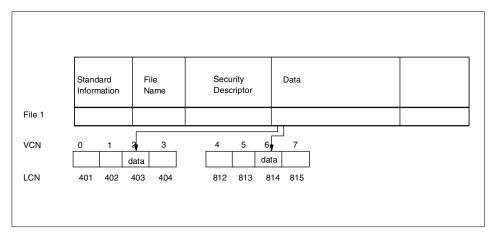


Figure 52. VCN to LCN mapping for large files

NTFS handles directories as well as files (see Figure 53). A directory is actually a file whose data attributes are pointers (or indexes) to files that belong to that directory. If the directory is large, that is, if it contains a very high number of files, NTFS will also use nonresident attributes to store the index of files.

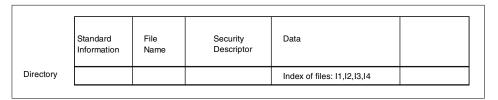


Figure 53. Directory record structure in MFT

7.2.2.2 NTFS cluster

A cluster is the adjustable unit of disk allocation for NTFS, and it is similar to the AIX fragment. A cluster is the smallest amount of disk space that can be allocated to contain a file. The cluster size is defined when a volume is formatted to NTFS. NTFS uses a cluster size of 512 bytes on small disks and a maximum of 4 KB on large disks. The cluster size or cluster factor has a default value to optimize disk fragmentation. That default value varies with the size of the physical volume and is a power of two of the physical sector (one sector, two sectors, four sectors, eight sectors, and so on). It is also manually

assignable in a range of 512 bytes to 4 KB. The default cluster size doubles every 512 MB as shown in Table 10.

Table 10. Relation between de	efault cluster size and disk size
-------------------------------	-----------------------------------

Cluster size in bytes	Sectors	Disk drive size
512	1	<=512MB
1024	2	512MB <= 1GB
2048	4	1GB <= 2GB
4096	8	< 2GB

A volume (logical drive) is physically divided into clusters that can be seen as logical blocks or fragments. NTFS only allocated clusters without being aware of the physical sectors.

NTFS refers to physical locations inside the hard disk by means of a Logical Cluster Number (LCN). The LCNs number the clusters inside a volume from 0 to n. If a cluster has an LCN equal to 0, this means that this is the first cluster in a volume. To convert an LCN to a physical disk address, NTFS multiplies the LCN by the cluster factor to obtain the physical byte offset on the volume.

The clusters are logically organized in files. NTFS keeps track of single file clusters by means of Virtual Cluster Numbers (VCN) that number the clusters belonging to a particular file using characters from 0 through m.

NTFS relies on a device driver called FtDisk to provide volume management features and for Basic disks and Logical Disk Manager to provide volume management features and fault tolerant features, such as mirroring or RAID-5 for dynamic disks.

7.2.2.3 NTFS volume structure

A volume formatted with NTFS is organized as shown in Figure 54 on page 139.

138 AIX V4.3 and Windows 2000, Side by Side

0	MFT	A
0	MFT Partial copy	A
2		
3	Log file Volume file	
4	Attribute definition table	
5	Root directory	
6	Bitmap file	Metadata
7	Boot file	
8	Bad cluster file	Files
0 ├──	Bad cluster life	
16	User file or directory User file or directory	
		User
		files or
		directories
		🔟
		▼

Figure 54. NTFS volume structure

The MFT contains one row for each file or directory. However, there are some specific files called metadata files that are also part of the NTFS volume.

The first file in the volume is actually the MFT itself; the second file is a partial copy of the MFT that contains the first 16 rows of the MFT that is all the metadata files. This is used in case one of the metadata files is corrupted and cannot be accessed.

The third file is the log file. The log file is used to log all transactions issued on the NTFS file system. It is used to recover a file system after an abnormal shutdown.

The volume file contains the volume name, the NTFS version, and integrity information.

The root directory file contains an index of the files and directories stored in the root of the NTFS directory structure.

An important file in the NTFS volume structure is the boot file. This boot file contains the Windows NT bootstrap code. This code has to be at a specific disk address. When NTFS accesses a volume, it must mount the volume by reading the physical address of the MFT table in the boot file.

Then, NTFS first looks for the first MFT entry. Reading the Data attribute, NTFS can retrieve the VCN-to-LCN list and store it in memory. NTFS then retrieves the metadata file called Log to record all operations. It then retrieves the Root Directory file and is ready to work with that volume.

Another important metadata file is the Bitmap file that stores the allocation state of a volume.

Last but not least, the Bad Cluster file contains a map of unavailable clusters in a volume.

7.2.2.4 NTFS recoverability

NTFS implements a model based on transaction processing techniques to assure recoverability. It uses a log file saved as a metadata file and a log service called LFS (Log File Service). NTFS works with transaction orientation: Every change on a file or directory is seen as a transaction, and the changes of the file system are logged. After a transaction is successfully completed, a confirmation will be received. This approach ensures that a volume will never be lost because of a crashed file system.

- Note

Only file system metadata is fully recoverable; user data is not guaranteed against volume. This is similar to the AIX JFS file system.

Several techniques have been implemented to assure that a single transaction that has been committed will appear on the volume even if the operating system fails immediately thereafter. So if a transaction doesn't reach the committed state, every operation will be rolled back to guarantee file system consistency.

These functions are needed to fix the problems that could appear using a Lazy-Write algorithm, as NTFS does. This algorithm allows the filesystem to raise its performance with timely delayed write-back processes. This means an application could already have received a confirmation that a file is successfully written without the real writing on the disk. The time delay has another effect: When a file cannot be written, there must be an emergency procedure to avoid a data loss. Also, there must be a way, in case of a power loss, to re-create the volume and the file structure and recover the data.

The log file holds all information to redo the transactions when it fails because of a writing error.

— Note –

The logfile is part of the volume structure. It is not a separate volume; so, it cannot be created on a different physical disk in order to increase the file system performance during write access.

After every reboot, NTFS performs a disk recovery using a transaction table and a dirty page. The transaction table maintains all operations already started but not yet committed, and the dirty page keeps track of all file system modifications not written to disk. With these tables, NTFS is able to rebuild the corrupted volume. This operation will also be performed the first time a disk is accessed by a program.

There are some corruptions that NTFS is not able to handle; so, an external program called CHKDSK is provided. It runs in a command-prompt session of Windows 2000 and could restore broken chains or disagreements between the file table and physical disk sectors by dumping lost clusters into files in the root directory.

7.2.2.5 Bad-cluster remapping

Usually, if a program tries to read data from a bad disk sector, the read operation fails, and the data in the allocated cluster becomes inaccessible.

However, in the Windows 2000 environment, if a volume on a Dynamic disk disk is formatted as a fault-tolerant NTFS volume, such as RAID-1 (mirrored volume) or RAID-5 (distributed parity volume), the Windows 2000 Logical Disk manager driver dynamically retrieves a good copy of the data that was stored on the bad sector and then sends NTFS a warning that the sector is bad. NTFS allocates a new cluster, replacing the cluster in which the bad sector resides, and copies the data to the new cluster. It flags the bad cluster and no longer uses it. This operation is transparent to the user.

7.2.2.6 Data compression

Another feature is compression. This facility provides for compression of regular files or directories. The compression is implemented on a compression-unit basis (16 clusters long), which means that when a file has to be written, it will be divided into blocks of 16 clusters called *compression units*. The compression unit is then compressed, and NTFS determines the new length (measured in clusters) of the compression unit. If the length is less than 16 clusters, indicating some space has been saved, the

compression unit will be written to disk; otherwise, the data will be written uncompressed. For example, in Figure 55 on page 142, the file that was 43 clusters long has been compressed into 25 clusters.

Compression is enabled when we are formatting the volume. A spanned volume cannot have enabled compression.

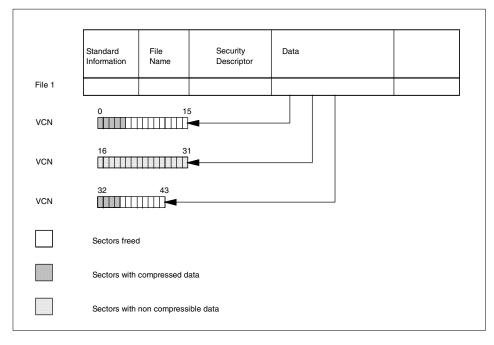


Figure 55. Compressed file structure

7.2.2.7 Encryption

In the Windows 2000 TFS file system, you can encrypt your files and directories. Once encrypted, you can use them in the same way as the normal files or directories; you do not have to decrypt them before use. If the other user tries to access your file or directory, they would receive an *Access denied* message.

There are certain considerations when you are using encryption:

- Only files and volumes on NTFS can be encrypted.
- You cannot encrypt compressed files or directories.
- You cannot share encrypted files.

142 AIX V4.3 and Windows 2000, Side by Side

- Encrypted files become decrypted if you move them to the non-NTFS filesystem.
- System files cannot be encrypted.

7.2.2.8 Long file name support

The Windows 2000 file system supports long UNICODE file names. In theory, an NTFS file can have its name in Chinese or Hebrew characters. At the same time, NTFS maintains an 8.3 name for the file so that it can be used by a DOS program or an old 16-Bit Windows program, but only within a Windows 2000 session. NTFS also supports case-sensitive file access for UNIX programs and case-insensitive file access for DOS, OS/2, and Windows programs (see Figure 56).

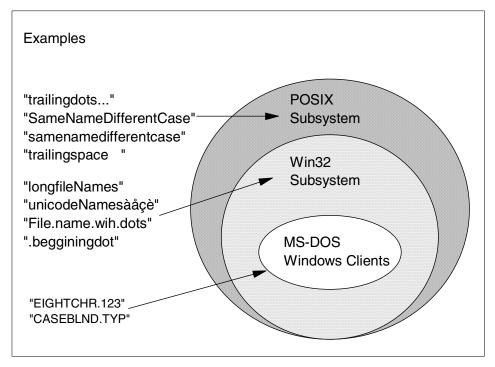


Figure 56. Windows 2000 file namespaces

The MS-DOS file names are fully-functional aliases for the NTFS files and are stored in the same directory as the long file names. The Master File Table (MFT) record for a file with its auto-generated MS-DOS file name is shown in Figure 57 on page 144.

	Standard Information	File Name	Security Descriptor	Data	MS-DOS File Name
File 1					

Figure 57. MS-DOS file name attribute

The NTFS name and the generated MS-DOS name are stored in the same record and, therefore, refer to the same file. The MS-DOS name can be used to open, read from, write to, or copy the file. If a user renames the file using either the long name or the short file name, the new name replaces both existing names. If the name is not a valid MS-DOS name, NTFS generates another MS-DOS name for the file.

The POSIX subsystem is supported and requires the biggest monospacing of all the application execution environments that Windows NT supports. The POSIX subsystem can create names that are not visible to the Win32 and MS-DOS applications including names with trailing periods and trailing spaces. POSIX hard links are supported; POSIX symbolic links are not supported, but it is expected that they will be in a future release (however, Softway's OpenNT supports symbolic links).

7.2.2.9 Sparse files

A sparse file is a file with regions of unallocated data in it. For example, a large matrix has only one column and one row set; all the others are equal to 0. Such a matrix (if it is large) can allocate a large amount of disk space, but the majority of its contents would only be consecutive 0s.

In Windows 2000, you can have a special *Sparse File Attribute* set for such a file. With this attribute, only the allocated data and range data for 0s will actually allocate space on the disk as shown in Figure 58 on page 145.

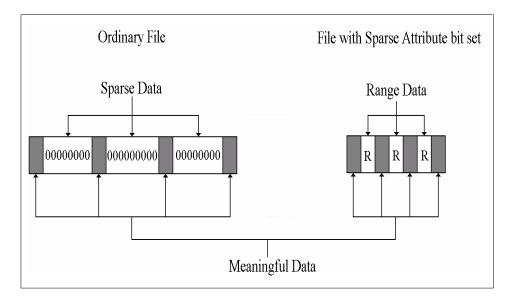


Figure 58. Sparse file structure

7.2.2.10 Removable and remote storage

In Windows 2000, removable media, such as tapes or optical disks, are managed by set of APIs known as Removable Storage Management (RSM). RSM is installed by default and manages all removable media, such as CD-ROM, DVD, MO, Jaz, Zip, tapes, changers, and juke-boxes, except floppy drives. Different clients use RSM and do not interact directly with particular device drivers; so, they have an *abstract* view of the storage device.

Remote Storage is a service that enables Hierarchical Storage Management (HSM), similar to ADSM HSM. It is based on RSM and on *reparse points* of NTFS. If configured, it enables automatic migration of less-used files from disk volumes to tapes or optical disks. This is transparent to the user and he or she still sees the file as if it is located on the local disk. When the file is accessed by a user, it is automatically migrated back to local disk.

7.2.2.11 Distributed File System (DFS)

DFS enables the system administrator to configure the storage (volumes, directories, files) that resides on many systems so that it is accessible by users as if they were resident on only one system. DFS has functionality similar to NFS. The basic features of DFS are:

• Easy access to files - Users can only go to one location (the server) on the network, and they are able to access all the files as if they were local

on that location, regardless of their actual physical locations on many servers.

- Availability If the system administrator configures domain-based DFS, all the information about it is stored in the active directory and, therefore, automatically distributed to all servers in the domain; so, the user can be sure to access information about DFS from any server in that domain. The system administrator also has the ability to replicate the DFS shared folders on other servers in the domain so that the data is available to users even if one server is down.
- Load balancing If the actual file resides on many servers (replication), the DFS service will balance the load on the network and servers by letting the different users access the file on different servers, although, for them, the file will appear to be located on just one server.

7.2.3 Windows 2000 RAID support

The following sections describe the various levels of RAID supported by Windows 2000.

RAID 0

RAID 0 is also known as data striping. Conventionally, a file is written out to (or read from) a disk in blocks of data. With striping, the information is split into chunks (a fixed amount of data), and the chunks are written to (or read from) a series of disks in parallel.

RAID 0 is well suited to program libraries requiring rapid loading of large tables or, more generally, for applications requiring fast access to read-only data or for fast writing. RAID 0 is only designed to increase performance; there is no redundancy; so, any disk failures will require reloading from backups.

Windows 2000 supports RAID 0 with striped volumes created on dynamic disks.

RAID 1

RAID 1 is also known as disk mirroring. In this implementation, duplicate copies of each chunk of data are kept on separate disks, or, more often, each disk has a twin that contains an exact replica (or mirror image) of the information. If any disk in the array fails, the mirrored twin can take over. Read performance can be enhanced because the disk with its actuator closest to the required data is always used, thereby, minimizing seek times. RAID 1 is best suited to applications that require high data availability, good read response times, and where cost is a secondary issue.

Windows 2000 supports RAID 1 with mirrored volumes created on dynamic disks.

RAID 2/ RAID 3

They are parallel process arrays in which all drives in the array operate in unison. Similar to data striping, information to be written to disk is split into chunks, and each chunk is written out to the same physical position on separate disks (in parallel). When a read occurs, simultaneous requests for the data can be sent to each disk. Each request then retrieves the data from the same place and returns it for assembly and presentation to the requesting application. More advanced versions of RAID 2 and 3 synchronize the disk spindles so that the reads and writes can truly occur simultaneously (minimizing rotational latency buildups between disks). This architecture requires parity information to be written for each stripe of data. The difference between RAID 2 and RAID 3 is that RAID 2 can utilize multiple disk drives for parity, but RAID 3 uses only one. RAID 2 is rarely used, but RAID 3 is well suited for large data objects, such as CAD/CAM or image files or for applications requiring sequential access to large data files.

Windows 2000 needs specific hardware to support RAID 2/3.

RAID 4

RAID 4 addresses some of the disadvantages of RAID 3 by using larger chunks of data and striping the data across all of the drives except the one reserved for parity. Using disk striping means that I/O requests need only reference the drive that the required data is actually on. This means that simultaneous and independent reads are possible. Write requests, however, require a read/modify/update cycle that creates a bottleneck at the single parity drive. This bottleneck means that RAID 4 is not used as often as RAID 5, which implements the same process except without the bottleneck.

Windows 2000 needs specific hardware to support RAID 4.

RAID 5

RAID 5 is, as has been mentioned, very similar to RAID 4. The difference is that the parity information is distributed across the same disks used for the data, thereby, eliminating the bottleneck. Parity data is never stored on the same drive as the chunk that it protects. This means that concurrent read and write operations can now be performed, and there are performance increases due to the availability of an extra disk (the disk previously used for parity). There are other enhancements possible to further increase data transfer rates, such as caching simultaneous reads from the disks and transferring that information while reading the next blocks. This can generate data transfer rates at up to the adapter speed. Similar to RAID 3, in the event of disk

failure, the information can be rebuilt from the remaining drives. RAID 5 is best used in environments requiring high availability and fewer writes than reads.

Windows 2000 supports RAID 5 with RAID 5 volumes.

7.2.4 Security and the user model

Windows 2000 and NTFS data security are based on several layers. The first layer has two parts called *User Authentication* and *Access Control*, and both are based on the use of the active directory (see Chapter 8, "Security" on page 149, for more details). The second layer of security is data encryption with Encrypting File Systems (EFS) and Digital Signatures, which signs and protects software components.

Windows 2000 Server also supports a Macintosh security model that simulates an Apple File Server. UNIX applications will see security that conforms to the POSIX model.

Chapter 8. Security

System security is becoming more and more important, especially in a network environment where resources are shared among computers and users. While it is relatively easy to ensure a high level of security on stand-alone systems, it is not so easy to guarantee the same level of security when dealing with a large number of systems on a network.

System security is as much an art as it is a philosophy. The philosophy of system security is based on a realistic understanding of what one needs to be protected from whom and how much effort/resources to expend to accomplish the task.

The art of securing a system revolves around the following:

- Threat assessment, that is to say, the likelihood of being attacked maliciously compared to accidental damage assessment
- · Detection of security-related incidents
- Available tools (those native to the operating system as well as third-party tools)
- · The amount of time to devote to security
- Knowledge about security practices including configuration, design, and monitoring.
- The proper role of system backups for disaster recovery

System security takes on an even more important role in the distributed environment. In the mainframe paradigm, there is only one machine that can be locked up easily and protected: The one where all resources are centralized.

With systems spread across departments, buildings, and even miles, managing security consistently becomes more difficult. Besides being distributed, systems today are connected to other systems via LANs and WANs.

While both AIX and Windows 2000 employ many levels of security to protect the systems and the network, no amount of protection on the operating system, network, or even the firewall can guard against employees or insiders misusing the operational trust that has been given to them to function in their job. Both operating systems, however, can provide a high level of protection from outsiders.

© Copyright IBM Corp. 2000

8.1 Security standards

Requirements for secure systems are defined by the U.S Department of Defense National Computer Security Center (NCSC) in a publication called Trusted Computer System Evaluation Criteria (TCSEC), also known as the Orange Book. A network version of these security criteria, called the Trusted Network Interpretation, has been developed and is known as the Red Book.

Basically, the Orange Book defines four divisions (A, B, C, and D) of secure components. Each division is associated with a level of security and is divided into one or more classes. For a system to adhere to a level of security, it must meet all the criteria defined in that level. These criteria concern four domains: Security, Policy, Accountability, and Assurance and Documentation.

These are the different divisions and their classes as defined in the Orange Book:

- Division D No protection
 - Class D1 No security
- Division C Discretionary protection
 - Class C1 Discretionary protection
 - Class C2 Controlled access
- Division B Mandatory protection
 - Class B1 Labeled protection
 - Class B2 Structured protection
 - Class B3 Security domain
- Division A Verified protection
 - Class A1 Verified design

The C2 certification level is characterized by:

- **Discretionary Access Controls (DAC)** These access controls must be able to grant or deny access to the resource at the user level (user granularity). Defined groups must specify individuals. Only authorized users can give a user access to a resource that has no access permissions.
- **Object Reuse Protection** The operating system must protect data stored in memory for one process so that it cannot be used by another process. Another important feature is that, when a file is deleted, it can no longer be accessed by another user or process.

- Identification and Authentication Each user must be identified uniquely. The system should be able to track all user activity by associating the user's unique ID with actions taken by that user.
- Audit System administrators must be able to audit security-related events and the actions of individual users. Access to audit data must be limited to authorized administrators.

Figure 59 is from the article *Trusted Products Evaluation*, by Dr. Santosh Chokhani, from the July 1992 Communications of the ACM, and it shows the features of each division:

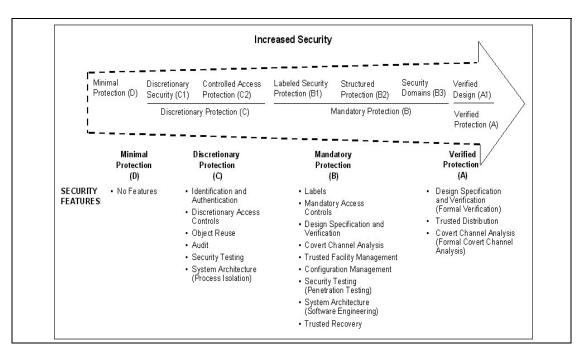


Figure 59. Trusted computer system evaluation criteria - Rating scale

Note that, outside the U.S., other countries developed their own criteria. For example, France, Germany, the Netherlands, and the UK developed a unified evaluation criteria document called the Initial Technology Security Evaluation Criteria (ITSEC). In order to simplify the evaluation of system security, a common criteria is under development. Its purpose is to merge the U.S. criteria with the Canadian and European criteria to create a unique set of evaluation criteria. It is not the purpose of this book to cover all the different security criteria flavors.

Chapter 8. Security 151

8.1.1 Other security-related resources

There are many resources available, either through books, service providers, or on the Internet. Here are a few well-known sources from the Internet:

• Computer Emergency Response Team (CERT) - Originally developed in 1988 by the Defense Advanced Research Projects Agency or DARPA, CERT houses a repository of security-related bulletins and security-related tools. CERT can be found at:

http://www.cert.org/

• Forum of Incident Response and Security Teams (FIRST) - Since 1988, FIRST has brought together over 30 different security incidence response teams from government, academic, and commercial sectors. The Internet page for FIRST can be found at:

http://www.first.org/

• **The Phrack Magazine** - Since its inception in 1985, Phrack has been somewhat controversial. Its purported audience is the hackers of the world. As such, it becomes a good resource for people wanting to know more about system security in general. Phrack can be found at

http://www.phrack.com/

Of course, there are many more sources of quality security-related information available. Many countries have their own CERT affiliates or clearing houses. The sources mentioned above are good starting points and will each point the reader to several other sources of information.

8.2 AIX security

This section describes the components that make up the AIX security model.

8.2.1 User management and authorization controls

Hackers will first attempt to penetrate a system by logging in to that system. Before a user can log into an AIX system, the administrator (known as root) must set up an account for that person. It is possible to set up the account so that it expires on a certain date, if necessary. The administrator sets the initial password, and, on the first login, the user must change it.

AIX can also be configured to force users to select passwords with certain characteristics. By doing this, it reduces the likelihood of a hacker guessing a password or using a dictionary search to match the password and being able to access the users account. This can be configured on an individual basis. The following rules can be set by the administrator:

152 AIX V4.3 and Windows 2000, Side by Side

- Minimum number of alpha characters
- · Minimum number of non-alpha characters
- Maximum repeated characters
- · Minimum time between changes
- · Words not in a specified dictionary
- Minimum time or number of password changes before a password can be reused

It is also possible for the administrator to limit when and how individual users can access the system. Users may be restricted to a certain terminal or time of day and day of the week to log in on.

At the time of user creation, a home directory must be specified. This is usually /home/username. All the user's personal data will be stored in this directory by default. This directory is local to the system on which the user logs in, but it can be remote if accessed through networked file systems (NFS) or a distributed computing environment/distributed file system (DCE/DFS). There will be more information on these in later chapters.

A profile is also created in the user's home directory (.profile file) and is executed every time the user logs in. Variables can be set in this file and specific applications started.

Once this has been completed by the administrator, a user is able to log in to the AIX system.

8.2.1.1 Logon process

A user must be authenticated to the AIX operating system by entering a valid user name and, optionally, a valid password that is never echoed in clear text when the user authenticates. On a secure system, all accounts either have passwords or are invalidated. The user ID is checked against entries in the /etc/passwd file, and the password is checked against the /etc/security/passwd file on the local system.

However, AIX allows authentication via remote databases, such as NIS and DCE, which will be further explained later. Additionally, an administrator can create an authentication method of his or her own. Each user may use one or more authentication methods during the login process.

Once a login session is granted, the user's environment is created. The system sets up a global environment and then proceeds to set up the user's private environment. The global environment is usually created from the

Chapter 8. Security 153

/etc/profile and the /etc/environment files that are system-wide files. These files are used to set environment variables for most users on the system. They can also be used to set read-only environment variables that a user cannot modify or remove.

A user's private environment comes from the user's .profile file and other files usually contained in the user's home directory.

8.2.1.2 Login session tracking

Each time a user successfully logs onto the system or unsuccessfully attempts to log into the system, an entry is logged into one or more files. Some of these files may need to be pruned from time to time to keep their sizes manageable. Often, system administrators will manage these files on a daily or weekly basis by copying them to a safe place to analyze them for abusive login patterns or simply to preserve the information contained in them. Either way, these tasks can be automated with the crontab facility.

These files are:

- /etc/utmp This file lists all users currently logged onto the system. It is a
 formatted ASCII file and cannot be edited or viewed directly. Reading it
 requires use of the /usr/bin/who -a command. If this file is corrupted or
 missing, no output is generated from that command.
- /var/adm/wtmp This is another formatted ASCII file that keeps track of users who have successfully logged onto the system historically. The who command is used to examine this file, which contains connect-time accounting records.
- /etc/security/failedlogin This formatted ASCII file keeps track of all failed login attempts. This is the one to watch if you suspect that unauthorized persons are attempting to gain access to the system.
- **/etc/security/lastlog** This flat ASCII file keeps track of the most recent login status for each user. It is a stanza-based file that contains a stanza for each defined user of the system. Information regarding both the last successful and last unsuccessful logins is kept in this file.
- /var/adm/sulog This is a flat ASCII file that keeps an historical record of all users that have *su-ed* (switched to another user account by using the *su* command) or attempted to su to another user's account. The *su* command can be used by any user on the system to become any other user including the root user. However, for the su to be successful, any non-root user will have to enter the password of the user that they want to switch into. A plus sign (+) indicates the su was successful, and a minus sign (-) indicates the attempt was not successful.

8.2.1.3 User identification and authentication

Each user on an AIX system is identified by a unique user identifier number (UID) and a primary group identifier (GID). These numbers are set automatically by the system but can also be set manually by the system administrator.

Users typically use their user name even though the system tracks all ownerships and access rights by the UID. The translation is performed by way of the /etc/passwd file because people tend to remember names while the system tends to work with numbers or UIDs.

After a successful login, AIX assigns to the user: A Login User ID (LUID), which, for audit reasons, never changes, an Effective and Real User ID (EUID and RUID), and an Effective and Real Group ID (EGID and RGID) as well as secondary groups.

A user can switch to another user with the su command. This command cannot change the LUID to keep track of the original user that logged into the system.

The ability of another user to *su* to a user can be disabled by the system administrator or the security administrator.

Once the user has been authenticated, there are controls available so that the user can only access information and data that he or she is authorized to access.

Administrative roles

As mentioned previously, AIX has a root user that is the administrator of the system. This ID is needed for the installation and setup of AIX and to create additional users. To protect anyone other than the administrator from having to use the root ID and to divide the administrative tasks among 'trusted' users, AIX Version 4.2.1 and above have separated these roles and privileges. Users can now have one or more of the following administrative roles:

- ManageBasicUsers/ManageAllUsers This role allows any user to act as root, add and remove users, change a users information, modify audit classes, manage groups, and change passwords.
- ManageBasicPasswds/ManageAllPasswds This role allows a user to alter the passwords of other users.
- ManageRoles This role allows a user to create, change, remove, and list roles.

- **ManageBackupRestore** This role allows a user to archive and restore file systems and directories.
- ManageBackup This role allows a user to archive file systems and directories.
- ManageShutdown This role allows a user to shut down, reboot, and halt a system.
- RunDiagnostics This role allows a user to run diagnostics on a system.

Pre-defined users

AIX has some predefined users. These users are already members of the predefined groups that come standard with AIX. The predefined groups are explained later in this chapter. The predefined users are:

• root - This is the owner of all resources.

The system administrator, commonly referred to as root or the super user, is the master user of the system. This is the person who has the responsibility of securing the system. For the most part, the root user is not screened from issuing any commands or operations. When hackers try to access a UNIX system, their aim is to become the root user so that their actions remain hidden. This is why securing the system is so important.

One of the first access-permission-related checks is to see if the user issuing a command or request is the root user. If they are, no further permission checking is performed. The command is performed no matter how adverse it may be to the overall health and safety of the system, although some commands do have the occasional verification steps included. For the most part, it is assumed that the root user knows what he or she is doing. For this reason, it is often wise to never log in as the root user; rather, log in as a user and switch to root using the su command. This leaves a log of what is being done in the /etc/security/sulog file.

- **daemon** This owns the system daemons, such as the printer and scheduling daemons (printq and cron).
- bin This owns the system executable files.
- sys This owns the system devices.
- adm This owns the system utilities.
- imnadm This owns the documentation subsystem.
- netinst This owns the network installation utilities.
- uucp This owns the uucp program.
- **nuucp** This is the default account for uucp connections.

- guest This is the guest account.
- **nobody** This is used by, for example, NFS when a root user tries to access a file mounted via NFS. It has the same rights as others.
- Ipd This is the owner of the printer spool utilities.

Access Control Lists (ACLs)

Once a user has been authenticated, authorization must be granted to a single object resource (file or directory) by the subjects (users or processes). AIX provides standard UNIX permissions for owner, group, and others that are read (r), write (w), and execute (x). This is mentioned in more detail in the next section.

In addition, AIX also allows for the use of a B3 security feature (the Access Control Lists or ACLs) to further define access permissions to files and directories. In general, these ACLs are used to specify individual users in a more granular way. ACLs allow a user to define specific permissions to a list of discrete users, beyond that provided by the regular User-Group-Others permissions methodology.

The commands to deal with ACLs are included in the AIX operating system. These commands are aclget, to get the ACL of a file, aclput to set the ACL, and acledit to get and set the ACL. However, the use of ACLs is strictly optional and is not global in nature. That is to say, one directory can use ACLs while another may use the standard Owner-Group-Other permissions. By default, the base AIX operating system does not use ACLs to control access to system files.

File and directory permissions

Whether or not a user can access a file or directory is controlled by the file permissions. Every file and directory has an owner. For new files/directories, the user who creates the file/directory is the owner. The owner assigns an access mode to the file/directory. Access modes grant other system users permission to read, modify, or execute the file or directory. Only the owner or users with root authority can change the access mode of a file or directory.

There are three classes of users: User/owner, group, and all others. Access is granted to these groups in some combination of three modes: Read, write, or execute. When a new file is created, the default permissions are read, write, and execute for the user who created the file. The other two groups have read

Chapter 8. Security 157

and execute permission. Table 11 illustrates the default file access modes for the three sets of user groups:

Table 11. Default file access modes

	Read	Write	Execute
Owner	Yes	Yes	Yes
Group	Yes	No	Yes
Others	Yes	No	Yes

Files can be read (r), written (w), or executed (x). The system determines who has permission and the level of permission they have for each of these activities. Access modes are represented in two ways in the operating system: Symbolically and numerically.

Access modes are represented symbolically as follows:

- **r** Indicates read permission, which allows users to view the contents of a file.
- w Indicates write permission, which allows users to modify the contents of a file.
- x Indicates execute permission. For executable files (ordinary files that contain programs), execute permission means that the program can be run. For directories, execute permission means that the contents of the directory can be searched.

For example, a file with the access modes set to rwxr-xr-x gives read and execute permission to all three groups, but write permission only to the owner of the file. This is the symbolic representation of the default setting.

Numerically, read access is represented by a value of 4, write permission is represented by a value of 2, and execute permission is represented by a value of 1. The total value between 1 and 7 represents the access mode for each group (user, group, and other). Table 12 illustrates how to determine the numerical values for each level of access:

Total Value	Read	Write	Execute
0	-	-	-
1	-	-	1
2	-	2	-

Table 12. Octal file access representation

Total Value	Read	Write	Execute
3	-	2	1
4	4	-	-
5	4	-	1
6	4	2	-
7	4	2	1

When a file is created, the default file access mode is 755. This means that the user has read, write, and execute permission (4+2+1=7), the group has read and execute permission (4+1=5), and all others have read and execute permission (4+1=5).

There are also special permissions that can be set for even greater flexibility. They are the SUID (set UID), the SGID (set GID), and the tacky bit.

- Set UID (or suid) bit: s This set-on-execution-bit causes the program to run under the user ID of the program owner rather than the user ID of the user running the program.
- Set GID bit (or sgid) bit: s The file owner and root user have the authority to change the permissions for any/all file system objects of which he or she is the designated owner. This bit is used to force ownership of newly-created files to the current owner of the directory in which the file resides.
- Tacky bit (t bit) When this bit is set on a directory, only the file owner can link or unlink a file in that directory. In the case of a file, the t-bit sets the save-text attribute (the file is not unmapped after usage and is kept in memory). When used as the save-text attribute, this bit is known as the sticky bit.

--- Note

Creating a file is analogous to linking, and deleting a file is similar to unlinking, from a UNIX perspective.

The basic search order used to allow or deny access to a file is:

- 1. User
- 2. Group
- 3. Others

Chapter 8. Security 159

If a user is granted read access by group permissions, the permissions for *others* are not checked.

8.2.1.4 Groups

Each user on the system is a member of at least one group. These groups are comprised of users that require similar access rights and permissions. By using the group permissions, access to a file or directory can be granted to a group of users so that many people can access that file with ease. The default group used for most users is called the staff group. System administrators can create groups and assign users to groups as needed. An individual user can be a member of several groups simultaneously.

The following groups are predefined in AIX:

- **system** This group is used by system administrators. The root user is a member of this group by default.
- **staff** This is the default user group. The users daemon and netinst are members of this group by default.
- **bin** This is a system group. The users root and bin are members of this group by default.
- **sys** This is a system group. The users root, bin, and sys are members of this group by default.
- **adm** This is a system group. The users bin and adm are members of this group by default.
- **uucp** This group contains the uucp and nuucp users.
- **mail** Members of this group are able to use the mail commands. There are no default members.
- **security** This group is used by security users. The root user is a member of this group by default.
- **cron** This group is used for scheduling activities. The root user is a member of this group by default.
- **printq** This group is used for printer administration. There are no default members.
- **audit** This group is used for auditing the system. The root user is a member of this group by default.
- **ecs** This group is used for IBM connection facilities and has no default users.
- **nobody** The users, nobody and lpd, are members of this group by default.

- perf No default members.
- shutdown No default members.
- imnadm The user, imnadm, is a member of this group by default.

8.2.1.5 Security-related files

AIX uses several files to manage and maintain security aspects of the operating system and the user accounts. Most security-related files can only be accessed by the operating system or by the administrative user. Descriptions of the most frequently used files follow.

/etc/passwd

This is the master users list. This file can normally be viewed by any user on the system, but it cannot be modified by non-privileged users. It contains one line for each user of the system. A sample line might look like this:

joeuser:!:200:200:Joe the User:/u/joeuser:/bin/ksh

Each line is a list of attributes separated by colons:

- The user ID (joeuser) is limited to eight characters.
- The password attribute can be an asterisk, which indicates that the password is invalid, or, as in this case, an exclamation point, which indicates that the password is in the /etc/security/passwd file.
- The UID of the user.
- The primary group ID (GID) of which the user is a member. The primary group is the default group for newly-created files and directories.
- The Gecos field is a free-form field that usually contains identifying information, such as the user's full name.
- The home directory for this user is the user's private directory.
- The user's default shell, although the user can normally execute other shells if so desired.

/etc/security/passwd

This is the password file. It is a stanza-based file that contains one stanza per user. A sample entry might look like this:

joeuser: password = DD1cQ1OctBCn. lastupdate = 818269778 flags = ADMCHG

• password is the encrypted password for that user.

- lastupdate is the last time the password was changed. This is used in cases where password aging has been enabled.
- flags are additional flags turned on by the system. In this case, the ADMCHG flag is on indicating that the system administrator has set the user's password. The user will be automatically prompted to change it the first time he or she logs onto the system.

- Note -

The user may be prevented from issuing certain commands on that system until the ADMCHG flag is removed by changing the password.

/etc/security/user

This is the main user attribute file on an AIX system. It is a stanza-based file that contains a stanza for each user. Additionally, it contains a special stanza called default. The default stanza applies to all users of the system, but the user's own stanza entries will override settings from the default stanza.

There are far too many entries to go into any detail about this file. It is well documented in the header of the file and InfoExplorer. It can be easily modified with an editor or through the SMIT interface by the administrative user only.

/etc/security/login.cfg

Although similar in nature to the /etc/security/user file, this file manages or defines the system resources. This file defines which shells are available on the system and things, such as which ports can be used as well as the default banner that will be displayed when a user logs on to the system.

/etc/security/limits

This is another stanza-based file that uses a default stanza. This file controls how much of the system resources a user can consume. These resources are mainly CPU and memory resources as opposed to disk resources. There are other files in the /etc/security directory that control what the default attributes of a new user will be and how they are created. In addition, certain files that track invalid login attempts are stored in the /etc/security directory as well as backup copies of important files, such as /etc/password and so on.

- Note

Passwords stored in the /etc/security/passwd file are encrypted.

Access to the /etc/security directory is limited to the administrative user and to the security user only.

8.2.2 Network security

The security policy for networking is an extension of the security policy for the operating system, and it consists of the following major components:

- User authentication
- Connection authentication
- · Data import and export security

User authentication is provided at the remote host by a user name and password, the same as when a user logs in to the local system. Trusted TCP/IP commands, such as ftp, rexec, and telnet, have the same requirements and go through the same verification process as trusted commands in the operating system.

Connection authentication is provided to ensure that the remote host has the expected Internet Protocol (IP) address and name. This prevents a remote host from masquerading as another remote host.

Data import and export security permits data at a specified security level to flow to and from network interface adapters at the same security and authority levels. For example, top secret data can flow only between adapters that are set to the top secret security level.

8.2.2.1 TCP/IP

When using TCP/IP, standard TCP/IP security mechanisms can be used. General TCP/IP security rules apply. Some commands in TCP/IP provide a secure environment during operation. These commands are ftp, rexec, and telnet. The ftp function provides security during file transfer. The rexec command provides a secure environment for executing commands on a foreign host. The telnet function provides security for login to a foreign host. These commands provide security during their operation only. That is, they do not set up a secure environment for use with other commands. For securing your system for other operations, use the securetcpip command. This command gives you the ability to secure your system by disabling the

nontrusted daemons and applications and by giving you the option of securing your IP layer network protocol as well.

AIX provides all the remote commands and mechanisms of other UNIX systems, such as telnet and rlogin for virtual terminal. The only security hole for both commands is that the password flows in clear text over the network. The commands rcp, ftp, and tftp (for file transfer), rsh and rexec (for remote execution), and rdist (as distribution utility) refer to various files in the user's home directory and system, such as .rhosts, .netrc, and /etc/host.equiv files. Note that if the system administrator disables the corresponding daemons for these commands in the /etc/inetd.conf file, \$HOME/.rhost, /etc/host.equiv, and \$HOME/.netrc are automatically disabled.

The system administrator is provided with the capability to disable non-trusted commands and daemons, such as rcp, rlogin, rlogind, rsh, rshd, tftp, and tftpd by using the securetcpip command. To prevent users from accessing the system with the ftp command, the file /etc/ftpuser includes the list of users that do not have access to the system with ftp. Other potentially dangerous daemons are fingerd, rwhod, uucpd, and sendmail. If not used, such daemons should be removed from the system or allowed only locally.

In case an attack is detected, the commands killall or shutdown -m can be used to kill all the running processes and bring the system into single user or maintenance mode. From there, these commands assess the damage through a review of the log files and audit trail.

For X-Windows, the only security feature available with the current release of X11/Motif is the xhost command that allows users to add or delete host names on the list of machines from which the X server accepts connections.

The netstat command allows the system administrator to check the currently-active TCP connections as well as the listening TCP and UPD daemons. netstat -a as well as netstat -f inet can be used.

The tcpdump command allows promiscuous snooping on Ethernet, not only the recording of packets going to and from the machine but also any other packet on the Ethernet. This does not apply to token-ring.

Trusted processes

A trusted program, or trusted process, is a shell script, a daemon, or a program that meets a particular standard of security. These security standards are set and maintained by the U.S. Department of Defense, which also certifies some trusted programs.

Trusted programs are trusted at different levels. Security levels include A1, B1, B2, B3, C1, C2, and D, with level A1 providing the highest level of security. Each security level must meet certain requirements. For example, the C2 level of security incorporates the following standards:

- **Program integrity** ensures that the process will do what it is supposed to do no more, no less.
- **Modularity** means that the process source code is broken down into modules that cannot be directly affected or accessed by other modules.
- The principle of least privilege states that, at all times, a user is operating at the lowest level of privilege authorized. That is, if a user only has access to view a certain file, the user does not inadvertently also have access to alter that file.
- The limitation of object reuse keeps a user from, for example, accidentally stumbling across a section of memory that has been flagged for overwriting but not yet cleared and may contain sensitive material.

TCP/IP contains several trusted daemons and many nontrusted daemons. The trusted daemons have been tested to ensure that they operate within particular security standards.

With the latest release of AIX Version 4.3.3, there have been some TCP/IP enhancements. TCP/IP network interfaces support the thread mode on SMP systems, which:

- Allows IP incoming packets to be queued and picked up by threads, thus, shortening interrupt time.
- When turned on, allows the processing of incoming IP packets to be shared among multiple processors.
- Works best with high bandwidth adapters, such as 1 GB Ethernet or ATM 155 MB.
- In streaming scenarios, it can help increase the throughput of high-speed network interfaces on the receiving machine.
- TCP has been changed to inherit TCP/IP socket options on new connections between TCP/IP clients and servers. This enhancement allows server programs to set the TCP/IP level socket options once on the listening socket and avoid setting options on the sockets associated with new connections, thus, reducing path length (instruction) overhead
- Path Maximum Transmission Unit (PMTU) discovery is now the default. This feature helps AIX systems determine the best way to deliver maximum packet without fragmentation. As a result, it helps optimize

throughput and increase network performance across any Internet affected by the packet size used.

- TCP Selective Acknowledgements (SACK) helps TCP recover from multiple packet losses within the TCP window.
- When SACK is enabled, TCP attaches SACK options to TCP acknowledgements informing the sender that data has been received but cannot be acknowledged by TCP due to missing data.
- The sending TCP can then retransmit only the missing data segments, thus, reducing the number of packets transmitted and allowing TCP to recover more quickly than traditional retransmission methods.
- With SACK, TCP can also avoid dropping back into slow start when packets are lost allowing TCP to continue to send data at near network capacity.

8.2.2.2 NFS

The Network File System (NFS) is a distributed file system that allows users to access files and directories located on remote computers and treat those files and directories as if they were local. For example, users can use operating system commands to create, remove, read, write, and set file attributes for remote files and directories.

AIX supports the latest NFS protocol update, NFS Version 3. AIX also provides an NFS Version 2 client and server and is, therefore, backward compatible with an existing install base of NFS clients and servers.

NFS provides its services through a client-server relationship. The computers that make their file systems or directories and other resources available for remote access are called servers. The act of making file systems available is called exporting. The computers, or the processes they run, that use a server's resources are considered clients. Once a client mounts a file system that a server exports, the client can access the individual server files (access to exported directories can be restricted to specific clients).

The Network File System (NFS) is shipped with AIX. Standard NFS security rules apply here with the use of the /etc/exports file. This file allows the system administrator to export directories in order to share information over the network. It also specifies which client systems can have access to the exported directories and with which permissions (Read-Only or Read/Write). Also, root access can only be given to root users of specific systems.

In addition, AIX provides ACLs between AIX systems. It also offers the possibility of using Secure RPC for integrity and authentication, but this is

restricted outside the U.S. because it contains the Data Encryption Standard (DES).

8.2.2.3 DCE

The Distributed Computing Environment (DCE) is the best standard solution for creating secure client/server applications. DCE provides security built into the RPC mechanism, security services, and tools to be used when creating, using, and maintaining distributed applications.

The security services are:

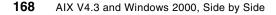
- **Registry Service** This security service maintains a database of accounts, principals, groups, and organizations and embodies administrative policies.
- Authentication Service This security service allows two principals/users to authenticate or verify each other's identities by being considered trusted third parties for the authentication process.
- **Privilege Service** This security service certifies a principal's credentials and allows principals to access resources.
- **Login Service** This security service initializes a user's DCE security profile and provides a single identity across the distributed environment.
- Authorization through Access Control List This security service compares entries in the file's or directory's ACL and determines the requester's rights to get access to the resource.
- Secure RPC This security service provides authenticated and secure communication between client and server principals.

8.2.2.4 NIS+

AIX Version 4.3.3 includes a port of the Sun Solaris Version 2.5 NIS+ implementation. This function is provided in addition to the current NIS support, which remains unchanged (and was considered weak). This new naming service provides enhanced capabilities for security management in a distributed system environment.

Security can be managed for a set of systems using a single management point. NIS+ was designed to meet the demanding requirements of networks, which typically range from 100 to 10,000 multivendor clients supported by 10 to 100 specialized servers located at various sites.

NIS+ enables system administrators to store information about client addresses, security information, mail information, network interfaces, and network services in central locations where all the clients on a network can


access it. Information is incrementally updated and propagated immediately, allowing information to be changed rapidly.

The NIS+ namespace was designed with hierarchical domains to accommodate more distributed networks requiring scalability and decentralized administration. The NIS+ implementation is optimized to support up to 10 replicas per domain. Such a domain may typically have 10,000 table entries. Scalability beyond 1,000 NIS+ clients is best achieved by dividing NIS+ name spaces into different domains to create a hierarchy.

8.2.2.5 Network protocol security

IP Security enhancements with AIX Version 4.3.3 include:

- Improvements to serviceability Logic has been added to allow better tracing of the IP Security and Internet Key Exchange (IKE) messages. The output of logging is now formatted in a readable format, and AIX auditing has been implemented. Users can now pinpoint configuration failures and view audit logs to determine security attacks.
- **On-demand tunneling** Dynamic tunnels only need to be defined one time and will be activated only when traffic matching the criteria set out in the policy was sent or received. This feature is beneficial to users because the functions for negotiating, computing, and refreshing session keys will only be performed when necessary.
- Web-based System Manager to configure filters A GUI-based tool can now be used to configure and manage manual tunnels, static and dynamic filter rules, and the importation and export of tunnel definitions. The tool is now consistent across IP Security and is NLS-enabled; however, SMIT is not available for this option.
- Filters based on IP address ranges IKE Tunnels can be created that specify a range of IP addresses (starting and ending IP address range endpoints) that allow tunneling over multiple IP addresses. It allows users to easily define tunnels for ranges of addresses.
- Certificate-based use of Digital Signature for IKE Authentication IKE tunnels (dynamically negotiated secure tunnels) have been enhanced to use digital certificates for authentication. Authentication is accomplished by signing IKE messages using X.509 certificates. Certificates may be stored locally. This enhancement enables the deployment of Virtual Private Networks (VPNs) with a large number of endpoints. Such network configurations may present a savings in cost and administration of typical leased line installations.
- AIX SOCKS API allows generic TCP/IP applications to connect to hosts through a generic TCP/IP proxy using SOCKS protocol Version

5 - Any application that only makes outgoing TCP connections can take advantage of this API without any code modification because the library will automatically handle the tunnel creation with a configured SOCKS5 server. Furthermore, the network administrators can configure the API to accept and route workload across multiple SOCKS5 servers. This library enables network administrators to allow limited access to external sites while maintaining network boundary controls.

8.2.3 Trusted Computing Base (TCB)

The Trusted Computing Base (TCB) consists of a database and tools for checking system integrity. It comes standard with AIX but it can only be enabled at installation time. It cannot be added to an existing system.

The TCB is the part of the system that is responsible for enforcing the information security policies of the system. All of the computer's hardware is included in the TCB, but a person administering the system should be concerned primarily with the software components of the TCB.

Many of the TCB functions are now optionally enabled at installation time. Selecting **yes** for the Install Trusted Computing Base option on the Installation and Settings menu enables the trusted path, trusted shell, and system integrity checking (tcbck command). Selecting **no** disables these features. As mentioned previously, these features can only be enabled at installation time.

The TCB software consists of:

- The kernel (operating system)
- The configuration files that control system operation
- Any program that is run with the privilege or access rights to alter the kernel or the configuration files

Most system files are accessible only by the root user; however, some can also be accessed by members of an administrative group. Only the root user can alter the operating system kernel. The TCB contains the following trusted programs:

- All setuid root programs
- All setgid programs to administrative groups
- Any program that is exclusively run by the root user or by a member of the system group

• Any program that must be run by the administrator while on the trusted communication path (for example, the 1s command)

In the operating system, the person who administers the system can mark trusted files as part of the Trusted Computing Base (the chtcb command) so that they can be clearly distinguished.

The person who administers the system must be careful to only add to the TCB software that can be fully trusted. Consider trusting software if, for example:

- You have fully tested the program.
- You have examined the program's code.
- The program is from a trusted source that has tested or examined the program.

The system administrator must determine how much trust can be given to a particular program. This determination should include considering the value of the information resources on the system in deciding how much trust is required for a program to be installed with privilege.

Trusted communication path

The operating system trusted communication path allows for secure communication between users and the Trusted Computing Base. Users start the trusted communication path by pressing the secure attention key (SAK). This allows only trusted processes to access the user's terminal. A trusted communication path is used whenever the user must enter data that must not be compromised (a password, for example). A trusted communication path can also be used by the person who administers the system to establish a secure environment for administration.

The trusted communication path is based on the following:

- A trusted command interpreter (tsh command) that only executes commands that are marked as being a member of the Trusted Computing Base
- · Restricting access to a terminal to trusted programs
- A reserved key sequence, called the secure attention key (SAK), which allows the user to request a trusted communication path

8.2.4 Auditing

The object-oriented auditing subsystem provides the system administrator with a means of recording security-relevant information, which can be

170 AIX V4.3 and Windows 2000, Side by Side

analyzed to detect potential and actual violations of the system security policy. The auditing subsystem has three functions, each of which can be configured by the system administrator.

8.2.4.1 Event detection

Event detection is distributed throughout the Trusted Computing Base (TCB), both in the kernel (supervisor state code) and the trusted programs (user state code). An auditable event is any security-relevant occurrence in the system. A security-relevant occurrence is any change to the security state of the system, any attempted or actual violation of the system access control or accountability security policies, or both. The programs and kernel modules that detect auditable events are responsible for reporting these events to the system audit logger, which runs as part of the kernel and can be accessed either with a subroutine (for trusted program auditing) or within a kernel procedure call (for supervisor state auditing). The information reported should include the name of the auditable event, the success or failure of the event, and any additional event-specific information that would be relevant to security auditing.

Event detection configuration consists of turning event detection on or off, either at the global (system) level or at the local (process) level. To control event detection at the global level, use the audit command to enable or disable the audit subsystem. To control event detection at the local level, you can audit selected users for groups of audit events (audit classes).

8.2.4.2 Information collection

Information collection involves logging the selected auditable events. This function is performed by the kernel audit logger, which provides both an SVC (subroutine) and an intra-kernel procedure call interface that records auditable events.

The audit logger is responsible for constructing the complete audit record consisting of the audit header, which contains information common to all events, such as the name of the event, the user responsible, and the time and return status of the event, and the audit trail, which contains event-specific information. The audit logger appends each successive record to the kernel audit trail, which can be written in either (or both) of the following two modes:

- **BIN mode** The trail is written into alternating files providing for safety and long-term storage.
- **STREAM mode** The trail is written to a circular buffer that is read synchronously through an audit pseudo-device. STREAM mode offers immediate response.

Information collection can be configured at both the front end (event recording) and at the back end (kernel trail processing). Event recording is selectable on a per-user basis. Each user has a defined set of audit events that are actually logged in the kernel trail when they occur. At the back end, the modes are individually configurable so that the administrator can employ the back-end processing best suited to a particular environment. In addition, BIN mode auditing can be configured to shut down the system in the event of failure.

8.2.4.3 Information processing

The operating system provides several options for processing the kernel audit trail. The BIN mode trail can be compressed, filtered, or formatted for output or any reasonable combination of these prior to archival storage of the audit trail, if any. Compression is done through Huffman encoding. Filtering is done with a standard query language (SQL)-like audit record selection (using the auditselect command) and provides for both selective viewing and selective retention of the audit trail. Formatting of audit trail records can be used to examine the audit trail, generate periodic security reports, and print a paper audit trail. The STREAM mode audit trail can be monitored in real time to provide immediate threat monitoring capability. Configuration of these options is handled by separate programs that can be invoked as daemon processes to filter either BIN or STREAM mode trails, although some of the filter programs are more naturally suited to one mode or the other.

8.2.4.4 Event selection

The set of auditable events on the system defines which occurrences can actually be audited and the granularity of the auditing provided. The auditable events must cover the security-relevant events on the system as defined previously. The level of detail you use for auditable event definition must tread a fine line between insufficient detail, which leads to excessive information collection, and too much detail, which makes it difficult for the administrator to logically understand the selected information. The definition of events takes advantage of similarities in detected events. For the purpose of this discussion, a detected event is any single instance of an auditable event; for instance, a given event may be detected in various places. The underlying principle is that detected events with similar security properties are selected as the same auditable event.

8.2.4.5 Configuration

The auditing subsystem has a global state variable that indicates whether the auditing subsystem is on or off. In addition, each process has a local state variable that indicates whether the auditing subsystem should record information about this process. Both of these variables determine whether

events are detected by the Trusted Computing Base (TCB) modules and programs. Turning TCB auditing off for a specific process allows that process to do its own auditing and not to bypass the system accountability policy. Permitting a trusted program to audit itself allows for more efficient and effective collection of information.

8.2.4.6 Information collection

Information collection addresses event selection and kernel audit trail modes. It is done by a kernel routine that provides interfaces to log information, used by the TCB components that detect auditable events and configuration interfaces, and used by the auditing subsystem to control the audit logger routine.

8.2.4.7 Audit logging

Auditable events are logged with one of two interfaces: The user state or the supervisor state. The user state part of the TCB uses the auditlog or auditwrite subroutine while the supervisor state portion of the TCB uses a set of kernel procedure calls.

For each record, the audit event logger prefixes an audit header to the event-specific information. This header identifies the user and process for which this event is being audited as well as the time of the event. The code that detects the event supplies the event type and return code or status and, optionally, additional event-specific information (the event tail). Event-specific information consists of object names (for example, files refused access or tty used in failed login attempts), subroutine parameters, and other modified information.

Events are defined symbolically rather than numerically. This lessens the chances of name collisions without using an event registration scheme. Also, since subroutines are auditable, the extendable kernel definition, with no fixed SVC numbers, makes it difficult to record events by number since the number mapping would have to be revised and logged every time the kernel interface was extended or redefined.

8.2.4.8 Audit record format

The audit records consist of a common header followed by audit trails peculiar to the audit event of the record. The structures for the headers are defined in the /usr/include/sys/audit.h file. The format of the information in the audit trails is peculiar to each base event and is shown in the /etc/security/audit/events file.

The information in the audit header is generally collected by the logging routine to ensure its accuracy while the information in the audit trails is supplied by the code that detects the event. The audit logger has no knowledge of the structure or semantics of the audit trails. For example, when the login command detects a failed login, it records the specific event with the terminal on which it occurred and writes the record into the audit trail using the auditlog subroutine. The audit logger kernel component records the subject-specific information (user IDs, process IDs, and time) in a header and appends this to the other information. The caller supplies only the event name and result fields in the header.

8.2.4.9 Logger configuration

The audit logger is responsible for constructing the complete audit record. You must select the audit events that you want to be logged.

8.2.4.10 Kernel audit trail modes

Kernel logging can be set to BIN or STREAM modes to define where the kernel audit trail is to be written. If BIN mode is used, the kernel audit logger must be given (prior to audit startup) at least one file descriptor to which records are to be appended.

BIN mode consists of writing the audit records into alternating files. At the start of auditing, the kernel is passed two file descriptors and an advisory maximum bin size. It suspends the calling process and starts writing audit records into the first file descriptor. When the size of the first bin reaches the maximum bin size and if the second file descriptor is valid, it switches to the second bin and reactivates the calling process. It keeps writing into the second bin until it is called again with another valid file descriptor. If, at that point, the second bin is full, it switches back to the first bin, and the calling process returns immediately. Otherwise, the calling process is suspended, and the kernel continues writing records into the second bin until it is full. Processing continues this way until auditing is turned off.

STREAM mode is much simpler than BIN mode. The kernel writes records into a circular buffer. When the kernel reaches the end of the buffer, it simply wraps to the beginning. Processes read the information through a pseudo-device called /dev/audit. When a process opens this device, a new channel is created for that process. Optionally, the events to be read on the channel can be specified as a list of audit classes.

The main purpose of this mode is to allow for timely reading of the audit trail, which is desirable for real-time threat monitoring. Another use is to create a

paper trail that is written immediately preventing any possible tampering with the audit trail (as is possible if the trail is stored on some writable media).

8.2.5 Additional protection tools

There are additional tools that come standard with AIX Version 4.3 that can be used to make AIX and your applications more secure.

8.2.5.1 Physical locking

Although it may sound obvious, it is wise to remove the keys from the RS/6000. The older microchannel systems had three keylock positions that had specific security features. The normal position was just that. The secure position meant that the machine could not be rebooted while the key was in that position, and the service position allowed the machine to be brought into maintenance mode. The newer models do not have this same keylock system, but the keys should, nonetheless, be removed, at least to protect the hardware.

8.2.5.2 Software locking

Most people are familiar with the screen saver. It is enabled with a password and prevents anyone else from being able to use the user ID or the terminal. This comes standard with AIX in the Common Desktop Environment, which was previously explained in detail. If CDE is not installed, there can be no screen saver.

8.2.5.3 Anti-spamming feature

With the new release of AIX Version 4.3.3, Sendmail has been upgraded to Version 8.9.3, which, among other things, features anti-spamming. AIX includes the necessary files to generate custom configuration files for the anti-spamming feature. While the default, /etc/sendmail.cf, does not include the anti-spamming configuration, the /usr/samples directory contains custom anti-spamming configuration files to illustrate how to configure the feature.

8.2.5.4 Console logging

AIX treats system console messages as critical system information. Previously, these messages were simply displayed on the current console device. If that screen or window was in use, the messages could be lost. Now, in addition to displaying them on the console, these messages are also logged to a file along with the originating user and the time the message was written. Now, it is possible to easily retrieve these messages, thus, improving the ability to diagnose problems and monitor system status.

In addition to this enhancement, the file system and system dump processor have also been improved so that it is easier to diagnose problems when they occur.

8.2.6 Optional protection tools

IBM and third parties have a range of software available to make an RS/6000 system even more secure than what AIX provides as standard.

8.2.6.1 IBM SecureWay Communications Server for AIX

AIX 4.3.3 offers new directory exploitation of AIX users and groups. It provides a facility, which allows AIX user and group information to be optionally stored, replicated, and retrieved in an IBM SecureWay Directory for fast access (local or remote), expandability, and reliability. When an AIX system is configured, user and group-related queries are sent to and responses received from the SecureWay Directory. All AIX user data is securely stored, replicated, and managed by the SecureWay Directory server. For a collection of AIX systems that need to share a common view of user security information, this function can significantly reduce the number of administrative operations.

IBM SecureWay Directory is an open cross-platform server optimized to support Lightweight Directory Access Protocol (LDAP)-enabled applications that integrate enterprise systems. Providing a unified architecture that allows users to share data with people, applications, and network resources, the SecureWay Directory helps improve communication, speed development and deployment of Web applications, and increase the security of the network. Utilizing the power of the IBM DB2 Universal Database (UDB) and its transactional data store, the directory extends the performance and availability of DB2 to an enterprise directory service.

– Note

You may only use the DB2 UDB component in association with your licensed use of the SecureWay Directory.

The SecureWay Directory (formerly, the eNetwork LDAP Directory) has been rebranded and renamed under the IBM SecureWay brand to more closely align with the IBM eBusiness portfolio for SecureWay Software. These products provide an integrated solution and a secure network platform for our customers to implement an e-business.

The new version of the SecureWay Directory steps up to the Internet Engineering Task Force (IETF) LDAP V3 support based on RFC 2251, 2252,

2253, 2254, and 2256. Many new features are provided over the eNetwork LDAP Directory, which was based on LDAP V2. LDAP V3 provides enhancements to both the LDAP protocol and the supported schema.

The new LDAP V3 protocol features include:

- **Referrals** A list of server URL addresses are returned to a client whose request cannot be serviced. The client can use the returned server locations to continue the operation.
- **Controls** Extension information can be added to a request for an LDAP operation.
- Extended operation plugin support Additional operations can be defined for services not available elsewhere in the V3 protocol. Clients can request and receive responses with predefined syntax and semantics.

The SecureWay Directory server uses attribute-type definitions, object-class definitions, and other information called schema to determine how to match a filter or attribute value against an attribute of a directory entry. The schema matching also determines whether or not add or modify operations are permitted. The breadth of supported schema definitions has grown to support not only the schema defined by LDAP V3 but also IBM common schema and Directory-Enabled Network (DEN) schema.

Subclassing enables new object classes to be defined that inherit the object class definitions and attributes of its parent class. The new object may be defined with additional or changed attributes. Schema update operations are checked against the schema class hierarchy for consistency before being processed. Additionally, the directory permits authorized users to dynamically define new attributes and object classes to enhance the predefined directory schema.

SecureWay Directory has provided a migration utility to convert your eNetwork LDAP Directory V2.1 schema definitions to LDAP V3 format. No migration is required for the directory data. eNetwork LDAP Directory V2.1 data will work with the SecureWay Directory V3.1.1 server.

Server-specific information, such as Directory System Agent (DSA)-Specific Entry (DSE), is contained in a read-only repository, RootDSE, which contains the following information:

- · Suffixes supported by the local directory server
- Distinguished Name (DN) of the subschema entries known by the server
- · List of alternative (replica) servers

- LDAP version implemented by the server
- · List of supported extended operations
- List of supported controls
- List of supported Simple Authentication and Security Layer (SASL) security features
- Server configuration information

SASL, which is defined in RPC 2222, is a framework for adding plugable authentication support for connection-based protocols. The directory server invokes the SASL plugin functions to perform authentication following a bind request from a client and returns the results to the client. Two methods of authentication are supported:

- Challenge/Response Authentication Mechanism Message Digest 5 (CRAM-MD5)
- Secure Socket Layer (SSL)

Several new features have been added to address security. In addition to certificate authentication for the server, which was available with Version 2.1, the directory now supports SSL client certificate authentication based on public keys, which provides the means to set up a protected communication channel between the client and the server. A user with a public key certificate signed by a certificate authority can use the certificate to authenticate himself or herself to the directory server:

- Full SSL Java Naming and Directory Interface (JNDI) support
- Encryption of passwords in the directory prevents passwords from being compromised via database queries or file lookup

The SecureWay Directory allows users to write server and client plugins, which contain additional functions that the user would like the server or client to perform. A plugin is a dynamic link library (DLL) that can be dynamically linked with the server. The directory plugin APIs are compatible with the Netscape Directory Server (NDS)-published APIs.

Directory clients can locate directory servers via the domain name. SecureWay Directory server addresses are published through Service Resource Records in the Domain Name Service (DNS) manually. A list of servers will be returned to the client from the DNS.

This release includes a Change Log, which logs add, delete, and modify operations to the directory server as well as changes to the change log itself.

A client can access the Change Log and update its own replicated copy of the directory data by applying the changes.

Greater performance and data availability are achieved though client-side caching and server ACL Caching.

Data can be stored, retrieved, and managed in the directory using a native language code page for either single-byte or double-byte languages. Data is converted to the Universal Code Set (UCS) Transformation Format (UTF-8) character strings before being sent to and from the server. The data can be stored as either UTF-8 or as local codepage strings depending on the database configuration. This version has translated messages for Group 1 languages and Czech, Polish, Hungarian, Russian, Catalan, and Slovakian.

SecureWay Directory can be administered and configured from a Web browser-based GUI. The administrator can:

- Perform initial setup of the directory.
- Change configuration options.
- Manage the daily operations of the directory.
- User access control is provided for information stored in the directory and can be defined by an administrator. From a Web browser, users can search for or add to information in the directory. In addition, the Java-based Directory Management Tool is provided to allow a user to perform the following tasks:
 - Connect to one or many directory servers via secure or unsecure network connects
 - Browse the directory tree or directory schema
 - Add, Edit, Modify, and Delete objects, object classes, and attributes in the directory

Client access to the SecureWay Directory is supported using LDAP or HTTP protocols. AIX client applications can be developed using the enhanced elements provided for supporting LDAP V3 protocols and APIs. These elements are provided by the SecureWay Client SDK, which consists of:

- Client libraries that provide a set of C-language APIs.
- C header files.
- Documentation (in the form of HTML files).
- · Sample programs.
- Executable versions of the sample programs.

- Additionally, the following components are provided for developing Java applications that use Sun's JNDI. This permits Java applications to access the following LDAP-compliant directory servers:
 - JNDI class files
 - A set of class files for the LDAP service provider
 - Documentation

The LDAP libraries and utilities provided with the SDK utilize the SSL libraries, if present. The SSL libraries are provided as part of the IBM Global Security Kit (GSKit). When GSKit is installed, the LDAP library will dynamically load the SSL libraries and use them to enable support of SSL. The LDAP library is fully functional regardless of the presence of SSL. GSKit Version 3.0.1 is available on the AIX Bonus Pack 4.3.

The U.S. government's regulations regarding the export of SDKs, which provide support for strong encryption, continue to evolve. This has resulted in changes in the way IBM packages the SecureWay Directory Client SDK and the manner in which LDAP applications gain access to the strongest SSL encryption algorithms, which include 128-bit and triple DES encryption. The point of control, with respect to available levels of encryption, is now the application.

Any LDAP application that uses the SecureWay Directory Client SDK Version 3.1.1 with the required level of GSKit 3.0.1.84 (or higher) has default access to 56-bit DES encryption (over SSL). This is the case for LDAP applications (both new and existing ones) that use either the domestic or general export versions of SecureWay Client SDK Version 3.1.1.

For an LDAP application to access the stronger SSL cryptographic encryption algorithms, the application must use a new function that sets the cipher support to 128-bit/triple-DES and registers the application for the stronger cryptographic encryption algorithms. Without this function, LDAP applications have default access to a maximum of 56-bit DES encryption for SSL connections. To invoke the new function, your application must be linked with the appropriate static library that exports it. These static libraries are distributed via the IBM SecureWay Directory Security Enabler V3.1.1 package (5648-D14). For users within the U.S. and Canada, this package can be download from the following URL:

http://www-4.ibm.com/software/network/directory/

These static libraries, which provide unrestricted cipher support, and applications developed with these libraries, may be exported outside the U.S.

and Canada only with the appropriate export license as provided by the U.S. government. The SecureWay Directory is Tivoli-ready.

8.2.6.2 IBM eNetwork Firewall for AIX and Windows NT

The IBM eNetwork Firewall, a SecureWay Software offering, enables safe and secure e-business by controlling all communications to and from the Internet. This firewall technology was developed by IBM research in 1985 and has been protecting IBM and global corporation assets for more than 10 years. Unlike most other firewalls, the IBM firewall contains all three critical firewall architectures, filtering, proxy, and circuit level gateway, to provide customers with flexibility and a high level of security. Its features include:

- Three firewalls in one allow you to optimize security and performance through the choice of filtering, circuit gateway, or application gateway.
- Network Security Auditor proactively scans the firewall and other hosts to find potential security exposures.
- Includes VPN support based on the IPSec standard.
- Provides the Security Dynamics ACE Server with a two-user license at no additional charge. It is SecurID Protected.
- Reduces cost through predefined services for fast setup.
- Disables unsafe applications to ensure a secure platform for the firewall.
- Provides seamless Internet access using standard client software.
- Supports TCP and UDP applications through SOCKS Version 5.
- Provides real-time performance statistics and log monitoring.
- Provides easy and secure administration and centrally manages and configures multiple firewalls.
- Eliminates the need for expensive leased lines by using the Internet as a virtual private network.

8.2.6.3 Checkpoint Firewall-1

Another firewall product that runs on AIX V4.3 is Checkpoint's Firewall-1. It is the market leader in firewall technology and has the following features:

- Patented Stateful Inspection
- OPSEC Partner Alliances
- Encryption (3DES, DES, FWZ1, 40-bit)
- Virtual Private Networks (VPNs)
- Enhanced SMP performance

- Multiple firewall synchronization
- · Centralized graphical security management
- LDAP user management

More information, including a technical overview of their firewall product, can be found on the Checkpoint Firewall-1 at the following Web site:

http://www.checkpoint.com/

8.2.6.4 Tivoli Security Management

Tivoli Security Management is designed to allow a consistent security policy over multiple platforms. It is a centralized role-based security administration for platforms, such as UNIX, Windows NT, AS/400, and OS/390 Security Server for RACF. It also has flexible auditing capabilities that allow you to focus on particular groups or resources.

In addition to its normal functions and productivity tools, Tivoli also offers a security engine for UNIX servers. The Tivoli Access Control Facility is an architecture that is consistent with the IBM RACF solution for OS/390.

It enables you to focus your attention on security priorities, such as enterprise security policy and the protection of business resources, rather than the detailed activity of protecting specific IT assets for various platforms, applications, and databases.

Tivoli Security Management ensures that security policy is enforced consistently across both geographic and platform boundaries and also improves productivity by providing a consistent user interface and by using the Tivoli method of subscribing endpoints to a Security Profile Manager. Productivity is further enhanced by using Tivoli software to automate security tasks and allows the secure delegation of maintenance tasks to junior administrators without OS security expertise.

Tivoli Security Management is installed on the Tivoli Management Framework and exploits the Tivoli Enterprise Console for security event correlation, Tivoli Distributed Monitoring for effective security alarming, and Tivoli User Administration for efficient user account management.

For more information, visit the following Web site:

http://www.tivoli.com/

8.2.6.5 TCP Wrappers

Originally written by Wietse Venema, a consultant at Eindhoven University of Technology in Holland, it is estimated to be installed on as many as a million UNIX machines worldwide. TCP Wrappers keeps track of invalid access attempts and can be programmed to deny access to persons deemed suspicious (based on a history of invalid access attempts). The current version supports the System V.4 TLI network programming interface (Solaris, DG/UX) in addition to the traditional BSD sockets.

TCP Wrappers is available for free on the Internet at:

ftp://ftp.porcupine.org/pub/security/tcp_wrappers_7.6.tar.gz

8.2.6.6 Computer Oracle and Password System (COPS)

This tool is a security policy checker originally created by Dan Farmer as his final project for his undergraduate work at Purdue University. The administrator defines selected security aspects or rules to check. COPS is not a network-based checker. It must be run separately on each system.

One potential drawback to COPS is that it can be run by any user of the system. It will report on any security weaknesses it finds, and it comes with a large documentation package that explains how to set up, run, and interpret the results. Therefore, if it does exist on a system, the system administrator should be the first to run it, and he or she should do so regularly before the other users do. COPS is available for free on the Internet at:

http://www.fish.com/cops/

8.2.6.7 Security Analysis Tool for Auditing Networks (SATAN)

This highly popular tool, originally created by Wietse Venema and Dan Farmer, is a network-based security checker. It is more or less a following product to COPS with a network-based implementation. It has received much attention recently for its ability to quickly spot security flaws across a network.

Since SATAN is network-based, it basically attacks systems by trying to exploit security holes and weaknesses. Of course, SATAN's aim is to report what it finds versus actually exploiting a vulnerability. One system running SATAN can monitor security for thousands of systems on a network.

SATAN is available for free on the Internet at:

ftp://ftp.porcupine.org/pub/security/satan-1.1.1.tar.Z

8.2.6.8 Stalker

Haystack Labs has a tool, known as Stalker, that can be purchased from them. It is designed to detect and respond to system misuse by comparing logs of system events against a database of known ways to break into a UNIX system. If it finds that tampering has occurred, it sends an alarm via email, page, SNMP, or to a printed report identifying who did what, when, where, and how.

In 1996 at the Information Security Award Event, Stalker won *Best Unix Security Product*. More information can be found at the following Web site:

http://www.haystack.com/

8.3 Windows 2000 security

There have been many improvements to Windows security with the latest release of Windows 2000. The primary features of the Windows 2000 security model are user authentication and access control, but there are many new parts that make up the workings for these. Most noteworthy is the introduction of the new directory service, the Active Directory. This is the new foundation of Windows 2000 and affects the way many components of Windows NT Version 4.0 work.

8.3.1 Security Configuration Manager

The Security Configuration Manager is designed to be the one-stop security configuration and analysis tool. It allows network administrators to set up a template that can set security-sensitive registry settings, access controls on files and registry keys, and define security settings for system services. Once this has been done, the template can be applied to many computers in one operation.

This tool also allows the setup of security policies (account and local). Other operations include access control, group membership, event log, Internet Protocol Security (IPSec), and Public Key policies.

To start the Security Configuration and Analysis tool, it must be added to a console. A console has the .msc file extension. The Microsoft Management Console (MMC) has the tools and snap-ins that can be used to administer either a local or remote system.

Adding the Security snap-in requires that the MMC be started. To do this, choose the Run command from the Start menu, type in mmc, and then click **OK**. From the console menu, choose **File->Add/Remove Snap-In**, click on

184 AIX V4.3 and Windows 2000, Side by Side

Add, and then choose the Security Configuration and Analysis and Security Templates snap-ins. Save that console, and, from then on, it will appear in the My Documents folder. Figure 60 shows the console for Security Configuration and Analysis:

Action View Eavorites 🛛 🖨 🔿	🖻 🔟 🗙 🖳 😫			
ree Favorites	Policy 🛆	Database Setting	Computer Setting	
Console Root Console Root Security Configuration and Analysis Account Policies Account Policies Cocal Policies Local Policies Security Options Security Options Security Options Security Options Security Options Security Options Security Options Security Options Comparison Restricted Groups System Services System Services System Services System Services System Services System Services System Services System Services System Services Security Options Comparison System Services Security Options Comparison System Services System Services System Services System Services Security Options Comparison System Services Comparison System Services System Service	Enforce password history Maximum password age Minimum password length Password smust meet complexity r Store password using reversible e User must log on to change the pa	Disabled	0 passwords remem 42 days 0 days 0 characters Disabled Disabled Disabled	

Figure 60. Console for security configuration and analysis

8.3.2 Active Directory

This is the new major development in Windows 2000. It is the directory service that comes standard with all Windows 2000 packages and, essentially, is the repository for all account information and domain security policies. It is an improvement over the previous technology with new additions and enhancements that allows an object on a network to be tracked and located.

The Active Directory allows administrators to manage user accounts and access rights from a central location, grant or deny access rights, and delegate security administration. According to the Microsoft white paper, *Active Directory Technical Summary*, the Active Directory "is secure, distributed, partitioned and replicated. It is designed to work well in any size

installation, from a single server with a few hundred objects to thousands of servers and millions of objects".

The data model for the Active Directory is derived from the X.500 model. There are some protocols in the X.500 model that the Active Directory has intentionally chosen not to follow. Some protocols it does follow are LDAP MAPI-RPC. The Active Directory is part of the Windows 2000 Trusted Computing Base and is a full participant in Windows 2000 security.

Objects are stored in a hierarchial object-oriented manner, and the Active Directory provides multi-master replication to support distributed network environments. Figure 61, from Microsoft's *Active Directory Overview*, shows a graphical representation of how the Active Directory stores objects.

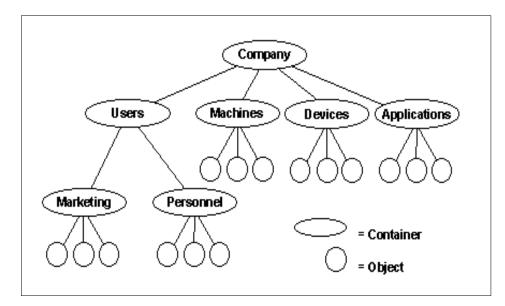
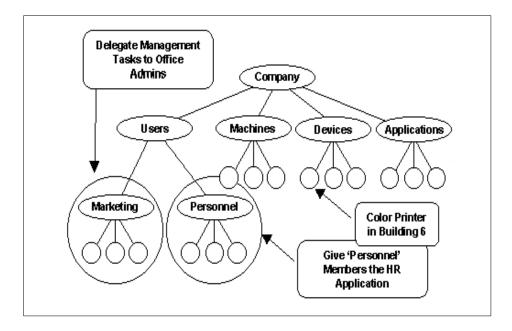


Figure 61. Active Directory object storage

Containers are used to represent a collection of related objects.

Given that a domain is a single security boundary of a computer network, the Active Directory could be considered to be made up of one or more domains. On a standalone workstation, the domain is that single computer, whereas, in a network, a domain can span physical locations.

One or more directory partitions make up the Active Directory. Directory partitions are contiguous subtrees of the directory that form a unit of


186 AIX V4.3 and Windows 2000, Side by Side

replication. This means that any given replica is always a replica of some directory partition.

The Global Catalog (GC) holds a replica of every object in the Active Directory but only a scaled down version with a small number of each object's attributes (those most often searched for). This allows users and applications to find objects in an Active Directory domain tree without knowing what domain holds them. This Global Catalog is built automatically by the Active Directory replication system.

One of the most important security features of the Active Directory is delegation. Rather than have domain administrators with complete authority over large segments of the user population, delegation allows a higher administrative authority to grant specific administration rights to highly-trusted individuals or groups. Windows 2000 defines many specific permissions and user rights for this purpose. Using a combination of organizational units, groups, and permissions, the most appropriate role for a person can be defined.

Figure 62 shows an example of the management of network resources with the Active Directory.

Figure 62. Managing network resources with the Active Directory

Examples of specific permissions that might be delegated by the administrator are things, such as resetting users passwords or creating a new user.

With a number of different authentication methods, Active Directory provides an increased level of security for Windows 2000 systems. Once a user is logged on, all of the system resources are protected through a single authorization model. Figure 63 shows an example of how a system might be set up with different authentication methods.

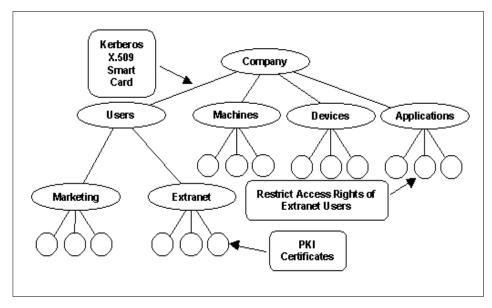


Figure 63. Active Directory security example

8.3.3 Logon process

In order to log into a system or a domain for the Windows 2000 Server packages, the user must press the **Ctrl+Alt+Del** key sequence to display the Logon Information dialog box. This key sequence prevents against any application running in the background, such as a Trojan Horse, that attempts to capture the user's logon information.

The user must then enter the username and password and specify whether to log on locally or on a particular domain.

- Note

At logon, a domain can be selected only if the computer participates in a domain.

The system will check in the Active Directory to see if the user exists and if the password is valid. It will reject the connection if one of the entries is invalid without saying if the user exists or if the password is correct (this is done intentionally).

Windows 2000 determines if the user has an account and if the password is valid and then checks what groups the user is a member of. The security subsystem creates an access token that represents the user. It contains information, such as the user's Security ID (SID), the username, and the groups to which the user belongs. This token is sent to any computer that the user accesses.

This access token (or a copy of it) is associated with each process started by the user. The access token and process association are called a subject. When accessing a resource (file, directory, and so on), the content of the subject is checked against the Access Control List of the object being accessed by an access validation routine. This determines whether that user has any rights or permissions on that computer.

8.3.3.1 User profile and home directory

Like AIX, Windows 2000 can set up a profile for each user and a home directory in which to store personal files.

A user profile is a file or directory with a collection of files containing information about the user's environment. The user profile is loaded each time the user logs on. Modifications to the environment made by the user are saved in that profile when the user logs off.

There are actually different types of profiles: Mandatory user profiles, personal user profiles, user default profiles, and system default profiles. A mandatory user profile can be set by the system administrator to users in a domain. This profile defines which environment settings must be set when a user logs on as well as which application must be started and which network drive must be connected. If a user makes any changes to the environment, these changes will not be saved when the user logs off.

A personal user profile (when assigned to a user) can be modified by the user, and changes are saved when the user logs off. The user will retrieve the previous environment after login.

The user default profile is the standard Windows 2000 Server default profile that is used when a user account has not been assigned a profile or when a user has never logged onto the system. Also, if a user profile cannot be accessed when a user logs in, the user default profile is assigned.

The system default profile is the one that appears when nobody is logged in (when the Ctrl+Alt+Del dialog box is displayed).

It is also possible for a user to set up a logon script that executes when he or she logs in. It may be to start a network connection, configure the environment, or start up a specific application. This will run after the user has logged in.

8.3.4 User authentication and authorization

There are two types of user authentication with the Windows 2000 security model. The interactive logon confirms the user's identification to the Active Directory or the user's local computer. Network authentication confirms the user's identification to any network service that the user is attempting to access. These authentications can be via Kerberos V5 authentication, Secure Sockets Layer/Transport Layer Security (SSL/TLS), and, to remain backward compatible with Windows NT Version 4.0, NTLM (Windows NT LAN Manager) authentication. Kerberos is the replacement for NTLM as the primary security protocol in Windows 2000.

The model for implementing access control is through authorization. Once the authentication has been received for a user account, that user can access an object according to the access granted via the user's rights or the permission of the object. The owner of that object (by default, the creator) should set the permissions for an object.

Each user account in Windows 2000 has a number of security-related options that determine how someone logging on with that ID is authenticated on the network. There are password options that can be set. They are:

- · User must change password at next logon.
- User cannot change password.
- Password never expires.
- Store passwords using reversible encryption (used for users logging on from Apple computers).

- Enforce password history (how many passwords are remembered).
- Minimum/maximum password age.
- Complexity requirements.

Other security options include:

- Smartcard required for interactive logon
- Account trusted for delegation
- Account is sensitive and cannot be delegated
- · Use DES encryption types for this account
- Do not require Kerberos pre-authentication

In the Active Directory Users and Computers application, there are built-in groups that Windows 2000 provides as well as predefined users and groups. The predefined users are the Administrator and Guest users. These are designed primarily for the initial logon and configuration of a local computer. ACLs, Access Control Entries (ACEs) and file and folder permissions are also used to maintain security levels.

The Active Directory Users and Computers application is designed to allow user accounts, computer accounts, security and distribution groups, and published resources to be added, deleted, and modified within an organization's directory. For Windows 2000 Professional, this comes as an optional administration tool package that enables you to administer Active Directory from a computer that is not a domain controller.

8.3.4.1 Built-in groups

The following groups are built-in to Windows 2000 Server packages:

- Account Operators Members can administer domain user and group accounts. There are no default users.
- Administrators They have full access to the computer/domain. The Administrator user is a member of this group by default.
- **Backup Operators** They can only use a backup program to backup files and folders on to the computer. There are no default users.
- **Guests** They can operate the computer and save documents but cannot install programs or make potentially damaging changes to the system files. The Guest user is a member of this group by default.
- **Print Operators** They administer printer domains. There are no default users.

- **Power Users** They share directories and printers. There are no default users.
- **Replicator** This supports file replication in a domain. There are no default users.
- Server Operators They administer domain servers. There are no default users.
- **Users** They can operate the computer and save documents but cannot install programs or make potentially damaging changes to the system files. There are no default users.

These built-in groups are all of the Security Group Built-in Local type. This means they have domain local scope and are used to assign default sets of permissions to users who will have some administrative control over that domain.

If the machine is a stand-alone machine, only local user accounts can belong to a local group. If the machine is a member of a domain, the local group can contain local user accounts, domain user accounts, trusted domain user accounts, and global groups from the domain or from a trusted domain.

Global groups are defined at the domain level and can be exported to remote domains. Members of global groups are domain user accounts or trusted domain user accounts. A local group cannot be a member of a global group.

8.3.4.2 Predefined groups

The following groups are predefined in Windows 2000 Server packages and placed in the Users folder for Active Directory Users and Computers:

- Group name Referring to the system.
- Cert Publishers Enterprise certification and renewal agents.
- Domain Admins Designated administrators of the domain.
- Domain Computers All workstations/servers joined to the domain.
- Domain Controllers All domain controllers in the domain.
- Domain Guests All domain guests.
- Domain Users All domain users.
- Enterprise Admins Designated administrators of the enterprise.
- **Group Policy Creator Owners** Members in this group can modify group policy for the domain.
- Schema Administrators Designated administrators of the schema.

These predefined groups are all of the Security Group Global type and can be used to collect the various types of user accounts in that domain into groups. From there, it is possible to put these groups in groups with domain local scope in both that domain and in others.

8.3.4.3 Special identities

The Windows 2000 Server packages include three special identities in addition to the built-in and predefined groups. They do not have any specific memberships that can be modified or viewed, but they can represent different users at different times. Users are automatically assigned to these special identities whenever they log on or access a particular resource. The following identities are, generally, referred to as groups:

- **Everyone** This means all current network users, including guests and users from other domains. Users are automatically added to this group when they log on to the network.
- **Network** This is all users accessing a given resource over the network (rather than locally where the resource is located). Users are automatically added to this group when they access a given resource over a network.
- Interactive This is all users currently logged on to a particular computer and accessing a given resource located on that computer (opposite to network). Users are automatically added to this group when accessing a given resource on the computer on which they are logged in.

8.3.4.4 User rights and privileges

Administrators can assign specific rights to either group accounts or individual accounts. User rights apply to user accounts, and privileges apply to objects. The following is a list, taken from the *Windows 2000 Server Help Guide* product documentation of the privileges available to be granted to a user:

- · Act as Part of the Operating System
- · Add Workstations to a Domain
- Back Up Files and Directories
- Bypass Traverse Checking
- Change the System Time
- Create a Token Object
- Create Permanent Shared Objects
- Create a Pagefile
- Debug Programs

- Enable Trusted for Delegation on User and Computer Accounts
- Force Shutdown from a Remote System
- Generate Security Audits
- Increase Quotas
- Increase Scheduling Priority
- Load and Unload Device Drivers
- Lock Pages in Memory
- Manage Auditing and Security Log
- Modify Firmware Environment Values
- Profile a Single Process
- Profile System Performance
- Replace a Process-Level Token
- Restore Files and Directories
- Shut Down the System
- Take Ownership of Files or Other Objects
- · Unlock a Laptop

The following list shows the logon rights that can be assigned to a user.

- Access This Computer from Network
- Log On Locally
- Log On as a Batch Job
- Log On as a Service
- Deny Access to This Computer from the Network
- Deny Logon as a Batch Job
- Deny Logon as a Service
- Deny Local Logon

Table 13 shows the default rights for the built-in groups discussed previously and the groups assigned those rights by default:

Table 13. Default rights of built-in user groups

User right	Groups assigned by default
Access this computer from the network	Administrators, Everyone, Power Users

User right	Groups assigned by default
Back up files and folders	Administrators, Backup Operators
Bypass traverse checking	Everyone
Change the system time	Administrators, Power Users
Create a pagefile	Administrators
Debug programs	Administrators
Force shutdown from a remote system	Administrators
Increase scheduling priority	Administrators, Power Users
Load and unload device drivers	Administrators
Log on locally	Administrators, Backup Operators, Everyone, Guests, Power Users and Users
Manage auditing and security log	Administrators
Modify firmware environment variables	Administrators
Profile single process	Administrators, Power Users
Profile system performance	Administrators
Restore files and folders	Administrators, Backup Operators
Shut down the system	Administrators, Backup Operators, Everyone, Power Users and Users
Take ownership of files and other objects	Administrators

8.3.4.5 Access control entries and lists

Similarly to AIX, Windows 2000 has Access Control Lists (ACLs). An ACL is a list of Access Control Entries (ACEs) that allow or deny access rights to individuals or groups. It is stored as a binary value called a security descriptor.

ACLs protect all objects in the Active Directory by determining who can see an object and what actions each user can perform on it. A user who does not have access to a particular object will not even know that it is there. It is not revealed to those without privileges to access it.

There is a Security Identifier (SID) in each ACE. Its purpose is to identify the principal (user or group) to which the ACE applies and information about what access the ACE will either allow or deny.

Directory object ACLs contain two lots of ACEs. There are ACEs that apply to the whole object and others that apply to the individual attributes of that object. The purpose of this is to allow the administrator to control which users can see an object and what properties of that object they can see.

8.3.4.6 File and folder permissions

Access to network files and folders is controlled with permissions. With the Windows 2000 security system, you specify which users can use which files, folders, and shares and how they can be used.

Each permission for either a file or a folder consists of a logical group of special permissions. Those special permissions are as follows:

- **Traverse Folder/Execute File** This grants or denies permission to move through folders and to reach other files or folders, even if the user has no permissions for the traversed folders (this applies to folders only). Traverse Folder takes effect only when the group or user is not granted the Bypass traverse checking user right in the Group Policy snap-in. (By default, the Everyone group is given the Bypass traverse checking user right.)
- Execute File This grants or denies permission to run program files (this applies to files only).
- List Folder/Read Data This grants or denies permission to view file names and subfolder names within the folder (this applies to folders only).
- Read Data This grants or denies permission to view data in files (this applies to files only).
- **Read Attributes** This grants or denies permission to view the attributes of a file or folder, such as read-only and hidden. Attributes are defined by NTFS.
- **Read Extended Attributes** This grants or denies permission to view the extended attributes of a file or folder. Extended attributes are defined by programs and may vary by program.
- Create Files/Write Data This grants or denies permission to create files within the folder (applies to folders only).
- Write Data This grants or denies permission to make changes to the file and overwriting existing content (applies to files only).
- **Create Folders/Append Data** This grants or denies permission to create folders within the folder (this applies to folders only).
- **Append Data** This grants or denies permission to make changes to the end of the file but not changing, deleting, or overwriting existing data (this applies to files only).

- Write Attributes This grants or denies permission to change the attributes of a file or folder, such as read-only or hidden. Attributes are defined by NTFS.
- Write Extended Attributes This grants or denies permission to change the extended attributes of a file or folder. Extended attributes are defined by programs and may vary by program.
- Delete Subfolders and Files This grants or denies permission to delete subfolders and files, even if the Delete permission has not been granted on the subfolder or file.
- **Delete** This grants or denies permission to delete the file or folder. If you do not have Delete permission on a file or folder, you can still delete it if you have been granted Delete Subfolders and Files on the parent folder.
- **Read Permissions** This grants or denies reading permissions of the file or folder, such as Full Control, Read, and Write.
- **Change Permissions** This grants or denies changing permissions of the file or folder, such as Full Control, Read, and Write.
- **Take Ownership** This grants or denies permission to take ownership of the file or folder. The owner of a file or folder can always change permissions on it, regardless of any existing permissions that protect the file or folder.
- **Synchronize** This grants or denies permission for different threads to wait on the handle for the file or folder and synchronize with another thread that may signal it. This permission applies only to multithreaded, multiprocess programs.

The permissions for files are:

- Full Control
- Modify
- Read & Execute
- Read
- Write

Chapter 8. Security **197**

Table 14 shows which file permission is associated with each special permission:

Table 14. File permissions

Special Permissions	Full Control	Modify	Read & Execute	Read	Write
Traverse Folder / Execute File	Х	Х	Х		
List Folder / Read Data	х	х	x	х	
Read Attributes	х	x	x	х	
Read Extended Attributes	Х	Х	х	Х	
Create Files / Write Data	х	Х			Х
Create Folders / Append Data	Х	Х			x
Write Attributes	х	х			Х
Write Extended Attributes	х	Х			X
Delete Subfolders and Files	Х				
Delete	Х	х			
Read Permissions	х	х	x	х	х
Change Permissions	х				
Take Ownership	х				
Synchronize	Х	Х	Х	Х	Х

¹⁹⁸ AIX V4.3 and Windows 2000, Side by Side

Folders have the same permissions as files, with one additional permission to allow a user to list folder contents. Table 15 shows which folder permission is associated with each special permission:

Table 15. Folder permissions

Special Permissions	Full Control	Modify	Read & Execute	List Folder Content	Read	Write
Traverse Folder / Execute File	х	х	х	х		
Traverse Folder / Execute File	х	х	х	х	х	
List Folder / Read Data	х	х	х	х	х	
Read Attributes	х	х	х	х	х	
Read Extended Attributes	х	х				х
Create Files / Write Data	x	х				х
Create Folders / Append Data	х	х				х
Write Attributes	x	х				х
Write Extended Attributes	x					
Delete Subfolders and Files	х	х				
Delete	х	Х	х		х	х
Read Permissions	х			х		
Change Permissions	x					

Chapter 8. Security 199

Special Permissions	Full Control	Modify	Read & Execute	List Folder Content	Read	Write
Take Ownership	х	х	х		х	х
Synchronize	х	Х	х	Х	Х	Х

8.3.5 Auditing

Windows 2000 allows the monitoring of security-related events. A security log is generated so that the events can be reported. It is possible to also generate an audit trail to track the security administration events on the system.

Before auditing is implemented, an auditing policy must be decided upon. This is to identify what you want to audit. You can choose to audit the success or failure of the following catergories:

- Audit account logon events
- Audit account management
- Audit directory service access
- Audit logon events
- · Audit object access
- Audit policy change
- Audit privilege use
- Audit process tracking
- · Audit system events

By default, these are all turned off when Windows 2000 is first installed.

Auditing a local object will create an entry in the security log. The entries that appear on this log will depend on the auditing categories (listed above) selected for your auditing policy. Although setting up the auditing policy has changed since Windows NT Version 4.0, the security log is still viewed via the Event Viewer. The following events can be audited:

- · System restart
- · System shutdown
- Authentication package loading
- Registered logon process
- 200 AIX V4.3 and Windows 2000, Side by Side

- · Audit log cleared
- Number of audits discarded
- Logon successful
- Unknown user name or password
- Time restricted logon failure
- Account disabled
- Account expired
- · Invalid workstation
- Logon type restricted
- Password expired
- Failed logon
- Logoff
- Open object
- Close handle
- Assign special privilege
- Privileged service
- Privileged object access
- · Process created
- · Process exit
- Duplicate handle
- Indirect reference
- Privilege assigned
- Audit policy change
- Domain changed
- User changed
- User created
- User deleted
- Global group member removed
- Global group member added
- Domain local group changed
- Domain local group created

Chapter 8. Security 201

- Domain local group member removed
- Domain local group member added
- Domain local group member deleted

8.3.6 Additional protection tools

Windows 2000 has a security menu that a logged on user can access by pressing **Ctrl+Alt+Del**. From this menu, a user can select the following buttons:

- Lock Workstation This function is actually part of Windows 2000, not an applet running on top of the operating system. Once the workstation is locked, the username and password of the user who began the session must be entered to unlock it. The Administrator can also unlock the workstation. After a specified time-out, the system screen saver is invoked.
- **Logoff** This option closes all open applications, logs off the user, and displays the logon dialog box. Server services are not stopped and continue to run even if the user has logged off (for example, network resources are still being shared).
- Shut Down This option prepares the machine to be turned off or reset.
- **Change Password** This option changes the current user password, verifying it first.
- **Task Manager** This option starts the Windows Task Manager, which allows the user to display all currently-running tasks and all running processes and performs actions on these tasks or processes.

As with most systems available these days, Windows 2000 also has a screen saver function that can be activated after a specified period of idle time. Optionally, it can also be password protected to provide an additional level of security.

8.3.7 Optional protection tools

There are tools that are made available from third parties that allow the security levels on the Windows 2000 systems to be increased above what is provided as standard.

8.3.7.1 Smart cards

Smart cards are already supported as part of the public key infrastructure (PKI) that has been integrated into Windows 2000. They provide portable and tamper-resistant storage for protecting private keys, account numbers,

passwords, and other forms of personal information. They also enhance software-only solutions, such as client authentication, logging on to a Windows 2000 domain, system administration, secure storage, code signing, and securing email.

A public key infrastructure (PKI) is a method of using digital certificates, certification authorities (CAs), and other registration authorities that verify/authenticate each user involved in an electronic transaction through the use of public key cryptography. The PKI in Windows 2000 is based on X.509 and lets organizations issue public-key certificates for user authentication without depending on CA services.

By using smart cards, a user must log in with the card and personal identification number (PIN). If the PIN is entered incorrectly a few times in a row, the smart card is locked. For someone to try to hack into that person's account, they would need to obtain the actual card and the PIN. This makes it more secure than a user name and password, which is open to more attacks.

8.3.7.2 IBM eNetwork Firewall for AIX and Windows NT

As mentioned previously in the same section for AIX, the eNetwork firewall software is also available on Windows NT. While this has not been ported to Windows 2000 at this time, it is expected to be done in the not-too-distant future.

8.3.7.3 WebTrends Corporation

WebTrends offers two security products on the Windows 2000 platform. The first is WebTrends for Firewalls and VPNs V1.2. This product manages, monitors, and reports on firewall activity in real time and is compatible with most firewall software available on the market. There is also the WebTrends Security Analyzer, which is designed to help discover and fix the latest known security vulnerabilities on your Internet, intranet, or extranet systems. Analysis can be on-demand or scheduled, and custom scripts can be created for vulnerability tests.

For more information on these products, visit the WebTrends Web site at:

http://www.webtrends.com/

8.3.7.4 Cyberguard Firewall for Windows NT

This product has not yet been ported to Windows 2000, but the Cyberguard company has committed to having an upgrade path available in the first quarter of 2000.

Chapter 8. Security 203

The CyberGuard Firewall for Windows NT is designed to be scalable and flexible enough to offer this government-certified level of security protection to commercial and government organizations of all sizes. The CyberGuard Firewall for Windows NT features new Proxy Framework™ technology, which serves as the foundation for all proxies in Release 4.2. Proxy Framework provides CyberGuard with the capability to easily add new application proxies to the firewall to meet customer requirements, while offering users the benefit of an application proxy level of security at a packet filter level of performance.

Also, CyberGuard's new virus protection option utilizes the Content Vectoring Protocol (CVP). This allows users to integrate any of the leading antivirus solutions, including the Norton AntiVirus product, into the CyberGuard Firewall. The CyberGuard Firewall for Windows NT now also features Secure Sockets Layer (SSL) capability and Static Network Address Translation (NAT) and is the only Windows NT firewall to feature Split Domain Name System (DNS). The CyberGuard Firewall for Windows NT also features the unique SecureGuard OS wrapper. SecureGuard protects against both known and unknown Windows NT security vulnerabilities hardening the Windows NT environment by disabling at-risk features. For more information, visit Cyberguard at:

http://www.cybg.com/

Chapter 9. System management

This chapter covers the base operating system management functions included in AIX V4.3 and Windows 2000.

9.1 Installation

Installation involves not only installation of the operating system on one machine but also network installation, product installation, product maintenance, and operating system maintenance. This chapter focuses on utilities and tools that come with the system. It does not cover systems management products, such as TME 10 for AIX or Microsoft System Management Server (SMS) for Windows 2000.

9.1.1 AIX V4.3 installation methods

This section explores the basic methods available for installing the AIX Version 4.3 operating system as well as for upgrading and managing levels of the operating system. These methods range from a completely new installation to upgrading an existing installation on one or more systems, automatically, throughout a network. This is not a "how-to" chapter by any means. Instead, the basic installation and management concepts are only introduced. For more information on how to install AIX V4.3, you can refer to the following books:

- AIX Version 4.3 Quick Installation and Startup Guide, SC23-4111
- AIX Version 4.3 Installation Guide, SC23-4112
- AIX Version 4.3 Network Installation Management Guide and Reference, SC23-4113

These manuals are shipped with AIX 4.3 in hardcopy format and in softcopy format as a part of Base Documentation CD.

AIX provides a rich set of installation and management options. This comes partly from its heritage; AIX was, traditionally, a server or a highly-technical workstation. In this market, system administrators tend to tailor a system for a specialized environment, installing only software that is actually needed to perform the required task for each system. By default, the AIX installation process installs only the minimum portion of the operating system needed for system operation. The system administrator can then install additional parts of the operating system depending on the system in use. In order to simplify the procedure, several typical configurations are pre-prepared for typical use of the system: Server, Application Development platform, Personal

© Copyright IBM Corp. 2000

Productivity workstation or Client workstation. These packages are called bundles in AIX terminology and will be described in Section 9.1.1.5, "Language Support During Installation" on page 220.

On the other hand, an administrator may want to remove selected software or parts of a software package. AIX allows for clean deinstallation of software as well. This is not to say that AIX is difficult to install or maintain in any way. What it means is that you have choices. These choices, along with many other facilities, are a direct response to customer requirements and feedback.

9.1.1.1 AIX 4.3 installation choices

AIX 4.3 can be installed from CD-ROM, tape or, if you already have one AIX system configured as NIM Server, from the network. The NIM (Network Installation Manager) will be described in Section 9.1.1.3, "Product installation interfaces" on page 210.

The basic installation choices are described in the following sections.

New and complete overwrite installation

This is a typical Base Operating System (BOS) installation in which all the default options are selected. This is the option users will select when installing a completely new system or when they want to overwrite an existing operating system and start from scratch.

If you are overwriting an existing AIX installation, and if AIX is installed on disks containing the existing root volume group (rootvg), user-defined volume groups are preserved and are still there after the installation. These volume groups need to be imported and the file systems mounted in order to access the data on them.

The system will reboot at the end of the BOS installation, and the user will be presented with the Installation Assistant to perform basic customizing and to continue installing additional software if desired.

Preservation installation

This installation method is used when a version of BOS is installed on your system and you only want to preserve the user data in the root volume group. This method overwrites the /usr, /tmp, /var, and / (root) file systems by default; so, any user data in these directories is lost. However, there is a file named /etc/preserve list, which is a simple ASCII file that can be used to preserve additional files if so desired.

User-defined volume groups (other than rootvg) will be preserved and activated automatically after the Preservation Install. System configuration

needs to be done after a Preservation Install because, if not explicitly preserved, all files in the /etc directory, which resides in / file system will be overwritten. The Installation Assistant screen will appear at the completion of the Preservation Install.

Migration installation

This installation method is used to upgrade AIX Version 3.2, AIX Version 4.1, or AIX Version 4.2 to AIX Version 4.3 and preserve all system configuration. This method preserves all file systems except /tmp, as well as the configuration of the root volume group, all logical volumes, and system configuration files. Migration is the default installation method for already-installed systems (with AIX Version 3.2 or AIX Version 4.x).

In most cases, user configuration files from the previous version of a product are saved when the new version is installed during a Migration Installation. Additionally, any AIX Version 3.2 or AIX Version 4.x software that exists on both the current system and the installation media will be upgraded to the latest level automatically.

Installation made from system backup media (mksysb)

The mksysb command allows the system administrator to entirely back up the root volume group and create a bootable tape or CD-ROM. The system can then be restored by booting from this media and restoring rootvg. This is known as a mksysb installation or *cloning* the system.

__ Note __

If we create a bootable system image (mksysb) on one system and want to install (restore) it on the other system, great attention must be paid to the type of both systems (single processor/symmetrical multi processors), the adapters installed, and the external devices installed on both systems!

Network installation

A system administrator can use any of the above methods to install a system from the network by using a facility called Network Installation Management (NIM), which will be described in "Network Installation manager (NIM)" on page 217.

9.1.1.2 AIX 4.3 installation process

A key design goal for AIX product packaging was to break AIX into small installable units. In AIX, the smallest installable unit is called a fileset and is, basically, a collection of files. Note that, in AIX, we cannot install or uninstall one particular file. This allows the installation process to install a minimum operating system environment and then allows the system administrator to install additional required parts of the operating system's software.

The installation process automatically detects what type of system we are installing, either Uni-Processor or Symmetrical Multi Processor, and installs the appropriate operating system Kernel that is the core of any Unix operating system. Note that a uniprocessor system can work with a multi processor kernel, although it is slightly slower, but a Symmetrical Multi Processor Systems cannot work with a uni-processor kernel.

The installation process also detects all installed adapters in your system (if they are Micro Channel or PCI architecture) and installs all the required device drivers for them.

- Note

If we have external devices, such as external tape drives, and they are not powered on, during installation, the installation process cannot detect them and will not automatically install the required device drivers (in this example, the tape device driver).

In this case, the system administrator must later manually install the required filesets with particular device drivers.

In the first stage of installation, the installation process sends a message to the *system console* attached to serial port S1 (if connected) and to all terminals/monitors attached to graphical cards (if installed). The system administrator has the ability to choose one of these devices to be configured as a system console.

If the installation process detects a graphic adapter installed in the system, it will also install X-windows and CDE (Common Desktop Environment) SW.

AIX install process

The BOSboot process is used when booting the system from a bootable media, usually tape or CD-ROM. The menus are optimized to provide a very quick installation process when default values are accepted. However, the user can modify many of the options with only a few simple selections from prompted menus. A typical AIX installation only takes 20 minutes, depending on the performance of your system. If we are using NIM for installation, there is even a no-keystroke option available. Figure 64 on page 209 describes the installation process.

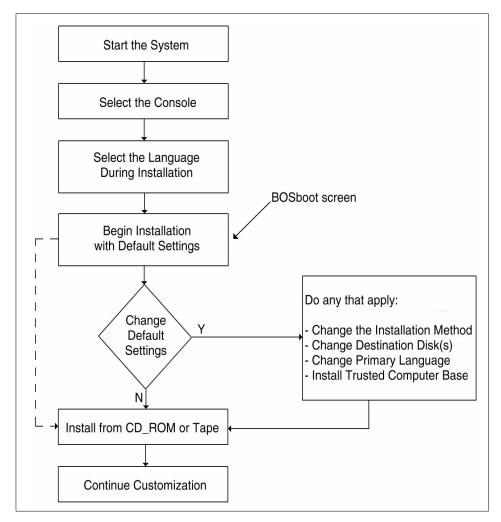


Figure 64. AIX installation process

The AIX BOSboot screen, shown in Figure 65 on page 210, also contains an option that allows the administrator to get into a maintenance shell and perform isolated repairs in AIX. The use of this maintenance shell is somewhat restricted. However, if it is possible to activate the root volume group, full AIX functionality can be achieved. The maintenance shell is, typically, used as an emergency repair path for resolving some serious system problems. Normal or routine system maintenance does not require the use of this maintenance shell.

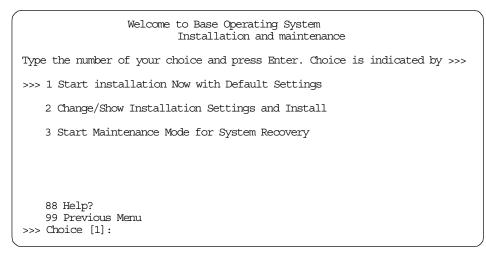


Figure 65. AIX BOSboot screen

9.1.1.3 Product installation interfaces

Once the basic (minimum) installation is done, there are six user interfaces available to install or update AIX: Command line user interface, System Management Interface Tool (SMIT), Configuration assistant, Visual system management, Web-based System Manager and Network Installation Management (NIM).

The most useful ones are the command line interface and SMIT.

From all five user interfaces, we can also use the Network Installation Manager (NIM) to install our system through the network (from the NIM server).

Command line user interface

The AIX command line is probably the most powerful interface on an AIX system. It is the original system interface on any UNIX system. In fact, most GUI-based interfaces are more or less just a front-end to the command line. The ability to perform actions with point-and-click GUIs and also from the command line is what makes AIX system management flexible. By having a good command line interface, an administrator can program commands via the shell to automate or repeat desired actions.

The most important/used command for software installation is the $\tt installp$ command.

SMIT

The System Management Interface Tool (SMIT) is the system management interface workhorse of AIX. One of the many subfunctions of SMIT is software maintenance. The SMIT panels are very simple to follow and use. SMIT has both a graphical version called with the smit command and an ASCII (streams) version called with smitty. Both commands provide identical functionality.

- Note -

In the UNIX market, there are a lot of commercial applications that only use ASCII terminals making the ASCII (streams) user interface necessary. Also, many RS/6000 systems do not have graphical adapters and terminals for system management. Even on a graphical user interface, such as CDE, ASCII-based SMIT has the advantage of being faster (user interface part); so, a majority of system administrators are using SMIT in this way.

SMIT allows the use of fastpaths. This is a way to jump directly to a given SMIT menu. For example, the smit tcpip fastpath goes directly to the TCP/IP configuration menu.

Here are some other examples of SMIT fastpaths:

- To get directly to the installation screens, you can enter smit install. This will display the panel shown in Figure 66 on page 212.
- To get directly to the update software screen, you can enter smit update.
- To get directly to the update ALL software screen, you can enter smit update all.

Exit Show		Help
Return To:		
Software Install	ation and Maintenance	
Install and U	Jpdate Software	
List Software	e and Related Informatio	on
Software Ma	intenance and Utilities	
Network Ins	tallation Management	
System Back	up Manager	

Figure 66. smit install command output

Configuration Assistant screen

The Configuration Assistant screen (see Figure 67 on page 213) is what a system administrator would see immediately after doing an overwrite or new installation. Its purpose is to simplify the initial configuration of a newly-installed system after the BOS installation. This interface is a simple straightforward interface whether it is run from an ASCII or graphics console.

Figure 67. Configuration Assistant first screen

If the system administrator clicks the **Next** button, he or she will see the menu with basic tasks that he or she should perform first to configure the system (see Figure 68 on page 214).

return	illowing tasks may be optional you can select only the tasks that you need to complete now. You will be ed to this window when each task is completed. When you have completed all the tasks that you want to perform, the Exit Configuration Assistant task.
	To complete your migration installation from CD_ROM, you must update additional installed software. Select te installed software after a migration installation."
Which	task would you like to do next?
	€ Set or verify system date and time.
	Set password for administrator (root user).
	Manage system storage and paging space.
	Configure network communications (TCP/IP).
	Update installed software after a migration installation.
	Configure Web-based System Manager to run in a web browser (applet mode).
	Configure Online Documentation and Search
	Exit the Configuration Assistant.
	Next > Cancel

Figure 68. Configuration Assistant main menu

Visual system management

The Install and Update Software Manager (xinstallm) utility is part of the IBM Visual System Management (VSM) interface. VSM is an object-oriented interface. Objects can be dragged, in either direction, onto another object to activate an action. We can also customize this user interface (see Figure 69 on page 215).For more details about VSM, see Section 9.4.1.2, "Visual System Management (VSM)" on page 247.



Figure 69. VSM Install and Update Manager

Web-based System Manager (WebSM)

Web-based System Manager is an application with which a system administrator can manage his or her system localy or over the WWW. The part of it with which we can install additional SW or update the one installed is shown in Figure 70 on page 216.

- Software : lv3020a Software Selected View Options	Help
• 	Heip
<i>₽ </i>	
🗸 Reinstall Base Operating System	
⊡	
IMNSearch	
ter	
⊕ 🯹 perl	
⊕ 🧃 pkg_gd	
⊕ 🧃 printers	
⊕ 🛐 sysmgt	

Figure 70. Web-based System Manager - Software installation

If the system administrator chooses **Software => New Software => Install Additional Software**, he or she can choose the software from installation media and install it (see Figure 71 on page 217).

Y			
SCSI Multimedia CI	D-ROM Drive	(cd0)	
Specify or select soft	vare to install		
🔿 Install all softwar	e (latest level)	from source	
Install specific so	iftware from so	urce	
Ĭ		_	Add Entry
			Browse
Selected software:			
IMNSearch Java.adt.docs 1.1.8.0	n		Reviewe Entr
	,		
Preview	1	Adu	anced

Figure 71. Web-based System Manager - Additional software installation

Network Installation manager (NIM)

NIM enables a system administrator to easily manage software installation and software updates in his or her network (LAN). In NIM configuration, you can group the systems you wish to install and that have the same or similar requirements, or you can tailor the installation for each separate system. For a picture of typical NIM topology, see Figure 72 on page 218.

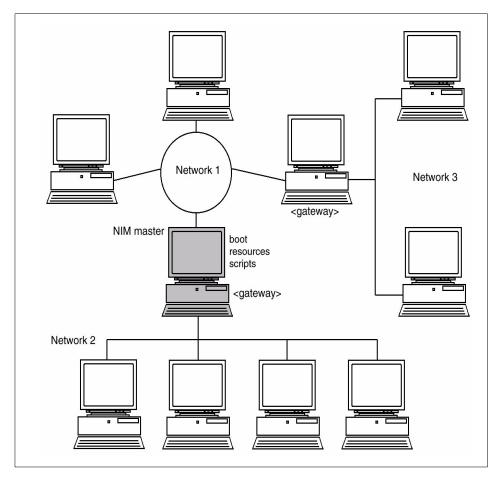


Figure 72. NIM in a typical LAN topology

More than one machine can be installed at the same time. The number of machines you can install simultaneously depends on the throughput of your network, the disk access throughput of the installation servers, and the platform type of your servers.

The NIM environment is comprised of client and server machines. A server provides resources, such as files and programs required for installation, to another machine. On the other hand, a machine that is dependent on a server to provide resources is known as a client.

The machines to be managed in the NIM environment, their resources, and the networks through which the machines communicate are all represented as objects within a central database that resides on the master server. Each

218 AIX V4.3 and Windows 2000, Side by Side

of these objects has attributes that give it a unique identity, such as the network address of a machine or the location of a file or directory. With this information, you can install the base operating system and optional software on multiple machines managed from a central location.

NIM manages three types of clients:

- **Stand-alone** This is a typical AIX machine. It has all of its own resources including the AIX operating system and user data resident on hard disk.
- **Diskless** Diskless systems have no disk drive. A diskless client system can only boot from the network or from a boot master machine that supplies its operating system.
- **Dataless** Dataless systems have a local disk drive, but they cannot boot from it. These clients rely on a master machine in much the same way as a diskless client. Usually, the paging space is installed on the local hard drive to avoid paging over the network.

NIM is also called *Bidirectional*. The NIM client can pull software from the NIM master. However, the NIM master can also be programmed to push software to clients throughout the network without any physical intervention on the client.

The push method can be scheduled and tailored for individual groups. This is an excellent way to upgrade software on multiple machines automatically, any time, day or night. These features make NIM a very powerful help tool for a system administrator in a large computer environment.

9.1.1.4 AIX 4.3 bundles

Generally, bundles are a mechanism used to easily install a predetermined set of software. A bundle is a list of software components (AIX License Program Products (LPPs)) specified in a flat ASCII file. System administrators can create bundles to use for systematic installation of multiple hosts/clients. The Web-based System Manager interface for software installation makes good use of software bundles.

Bundles on AIX 4.3.3 Installation media are:

Client

A collection of software products for single user systems running in a stand-alone or networked-client environment.

Server

A collection of software products, such as NFS Server, Print Server, and so on, for multiuser systems running in a stand-alone or networked environment.

Personal Productivity:

A collection of software products for graphical desktop systems running AIX and PC applications.

Application Development:

This bundle is the same as the client, with the addition of the development tools and utilities such as a linker, debugger and so on.

9.1.1.5 Language Support During Installation

When installing AIX, it is possible to determine which language will be used during the installation (in which language the installation menus are displayed) and also which language will be installed on the system.

Command installp deals with multiple language support, especially during first-time installation. In the case of a new installation, only language filesets of the selected language are installed for each software product. Additional language support can be added later from the install media. In the case of an upgrade or a migration, the install process will automatically update all applicable languages that are already on the system.

– Note -

All AIX-supported languages are provided with the AIX product media. There is no need to purchase a specific package of AIX to get the desired language(s).

9.1.1.6 Apply, Commit, Reject, Remove Software

Since AIX installs filesets as entities, it can also remove them as such. In the course of a normal installation, software is applied. Often, it is committed at the same time, especially in the case where the software is a first-time installation.

When applying software, AIX will move or preserve any existing version of the same software it finds on the system. This allows for the rejection of the software and the return of the system to its original state, that is, configured as it was before applying the software. Once an administrator is satisfied with the newly-applied software, he or she will commit the software. In essence, this removes the preserved copy of the software, thus, freeing disk space.

Software can also be totally removed from the system. Each software package from IBM contains an inventory list stored in ODM. This list is used to determine which files to remove from the system. In general, a correctly packaged product can be completely removed from a system. As a minimum,

information regarding the software package is removed from the Vital Product Database (VPD).

All of these functions can be managed through the command line interface, through the SMIT interface, and through NIM. Applying and updating software can also be accomplished with the Web-based System Manager.

9.1.1.7 Installation on alternate disk

In AIX 4.3, the system administrator has the ability to install AIX on additional physical disk, apart from the one already installed. The new rootvg will be created (but is not active), and the system will be able to boot from this *alternate* disk if so desired. This functionality is very convenient when testing new versions of operating systems, updates, or other additional software products. It reduces the downtime to a considerable extent and avoids the need to restore system backup in case the new installation is rejected.

The Alternate Disk installation can be done in two ways:

mksysb image

Installing a mksysb, which is a system backup image, requires a 4.3 mksysb image or 4.3 mksysb tape. The alt_disk_install command is called, specifying a disk or disks that are installed in the system but are not currently in use. The mksysb is restored to those disks so that, if the user chooses, the next reboot will boot the system on a new 4.3 system.

- Note

If needed, the bootlist command can be run after the new disk has been booted, and the bootlist can be changed to boot back to the older version of AIX.

Cloning

Cloning allows the user to create a backup copy of the root volume group. Once created, the copy may be used as a backup, or it can be modified by installing additional updates. One possible use might be to clone a running production system and then install updates to bring the cloned rootvg to a later maintenance level. This would update the cloned rootvg while the system was still in production. Rebooting from the new rootvg would then bring the level of the running system up to the newly-installed maintenance level. If there was a problem with this level, simply changing the bootlist back to the original disk and rebooting would bring the system back to the old level.

Currently, you can run the alt_disk_install command on AIX 4.1.4 and higher systems for both of these functions. The bos.alt_disk_install.rte fileset

must be installed on the system to do cloning to an alternate disk, and the bos.alt_disk_install.boot_images fileset must be installed to allow a mksysb install to an alternate disk.

The mksysb image that is used must be created before installation and must include all the necessary device and kernel support required for the system on which it is installed. No new device or kernel support can be installed before the system is rebooted from the newly-installed disk.

- Note -

The level of mksysb that you are installing must match the level of the bos.alt_disk_install.boot_images fileset. At this time, 4.3.3, 4.3.2, 4.3.1, and 4.3.0 mksysb images are supported. AIX 4.3.1 boot images are available only on the 4.3.1 installation media.

When cloning the rootvg volume group, a new boot image is created with the bosboot command. When installing a mksysb image, a boot image for the level of mksysb and platform type is copied to the boot logical volume for the new alternate rootvg. When the system is rebooted, the bosboot command is run in the early stage of boot, and the system will be rebooted again. This is to synchronize the boot image with the mksysb that was just restored. The system will then boot in normal mode.

At the end of the installation, a volume group, altinst_rootvg, is left on the target disks in the varied off state as a place holder. If varied on, it will show as owning no logical volumes, but it does, in fact, contain logical volumes. Their definitions have been removed from the ODM because their names now conflict with the names of the logical volumes on the running system. It is recommended that you do not vary on the altinst_rootvg volume group but just leave the definition there as a place holder.

When the system reboots from the new disk, the former rootvg will not show up in an lspv listing. The disks that were occupied by the rootvg will show up as not having a volume group. However, you can still use the bootlist command to change the bootlist to reboot from the old rootvg if necessary.

When the system is rebooted from the new altinst_rootvg, lspv will show the old rootvg as old_rootvg; so, you will know which disk or disks your previous rootvg was on. There is also a -q option in alt_disk_install that will allow you to query to see which disk has the boot logical volume so you can set your bootlist correctly for cases when old_rootvg has more than one disk.

9.1.2 Windows 2000 installation methods

Windows 2000 installation, or setup, is designed in such a way that a simple installation can be accomplished by a user with little experience, yet it still offers some advanced features to allow customizing for more advanced users.

Windows 2000 allows a system administrator to install a new system, upgrade a system to a newer version of Windows 2000, or install Windows 2000 on an existing Windows NT system on a separate partition and then have the ability to boot either Windows NT or Windows 2000. In the latter case, the system administrator should consider the compatibility of NTFS Version 4 used in Windows NT and NTFS Version 5 used in Windows 2000. For more details about Windows 2000 NTFS, see Section 7.2.2, "Windows 2000 file systems" on page 134.

An upgrade to Windows 2000 Server can be done from the following:

- Windows NT version 3.51 Server
- Windows NT version 4.0 Server
- Windows NT version 4.0 Terminal Server
- Windows 2000 Server Beta 3 or final-release candidates

If you are using Windows NT Version 4.0 Server Enterprise Edition, you can upgrade to Windows 2000 Advanced Server but not to Windows 2000 Server.

An upgrade to Windows 2000 Professional can be done from the following:

- Windows 95
- Windows 98
- Windows NT Workstation 3.51
- Windows NT Workstation 4.0

A new installation or an upgrade can be performed from CD-ROM or from the network. There is no support for installation from tape.

Windows NT installation consists of a text portion, where files are copied from the install media to the hard disk, and a GUI portion, where the installation is customized and completed.

9.1.2.1 Text portion of Windows 2000 installation

A system administrator can boot his or her system from CD-ROM if the PC Bios supports it or from the accompanying floppy disks (four of them).

After the boot, the following screen is displayed:

ĺ	Windows 2000 Server Setup
	Welcome to Setup. This portion of the Setup program prepares Microsoft(R) Windows 2000(TM) to run on your computer.
	- To set up Windows 2000 now, press ENTER.
	- To repair a Windows 2000 installation, press R.
	To quit Setup without installing Windows 2000, press F3.
l	ENTER=Continue R=Repair F3=Quit

After the license agreement screen, the system administrator has to format the system partition on which Windows 2000 will be installed:

Windows 2000 Server Setup
The following list shows the existing partitions and unpartitioned space on this comput
Use the UP and DOWN ARROW keys to select an item in the list.
- To set up Windows 2000 on the selected item, press ENTER.
- To create a partition in the unpartitioned space, press C.
- To delete the selected partition, press D.
6150 MB Disk 0 at Id 0 on bus 0 on atapi
Unpartitioned space6150 MB

If the partition is not already created, as in our example, the system administrator will have to make it. It is recommended that this partition should be at least 950 MB in size, but 2 to 4 GB is recommended.

After creating the partition, we must format it. It is strongly recommended to format it with the NTFS filesystem, although Fat32 is also available as an option.

After formatting the primary partition, Windows 2000 installation files are copied to installation folders (directories), and the system automatically reboots.

9.1.2.2 GUI portion of Windows 2000 Installation

After booting from disk drive for the first time, the installation continues, and the user interface is now GUI. All necessary files for basic Windows 2000 Server functionality are copied to the disk.

At that point, the system administrator can configure system locales (the way currency symbols, time, and date are represented) and keyboard layout. See Section 9.10.2, "Windows 2000 support for national languages" on page 339, for details about which locales and languages are supported in Windows 2000.

The system administrator must then enter the name and the organization for which the Windows 2000 is licensed. Licences can be *Per Server* or *Per Seat*.

The computer name and the password for Administrator (similar to root user on AIX) must be entered on the next screen, and then the window with the list of Windows 2000 software components to be installed appears as shown in Figure 73 on page 226. If the system administrator chooses not to install any additional component at this time, he or she can always install it later. If the computer is connected to the network with the existing Microsoft Domain, the name of the Domain can be entered, and the system will be configured to that Domain automatically (if the Network Administrator added its name to the Domain before).

Vindows Components You can add or remove components of Window	ws 2000.
To add or remove a component, click the chec part of the component will be installed. To see Details.	
Components:	
🗹 🔚 Accessories and Utilities	12.4 MB 🔼
🔲 🝺 Certificate Services	1.6 MB
🗹 💬 Indexing Service	0.0 MB
Internet Information Services (IIS)	23.2 MB
Management and Monitoring Tools	6.3 MB 🗾
Description: Includes Windows Accessories a	nd Utilities for your computer.
Total disk space required: 0.9 MB	Details

Figure 73. Windows 2000 installation - Additional components installation

After installing any additional component, the system reboots for the last time, and the utility for final configuration of the Server is started (see Figure 74 on page 227).

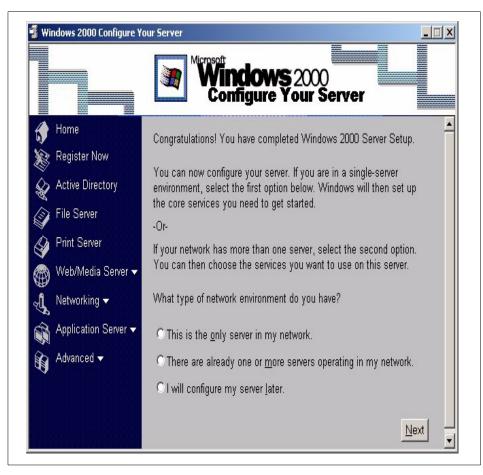


Figure 74. Windows 2000 installation - Final configuration of the server

The system administrator can now perform all basic system configuration tasks, such as connecting to the network and configuring file and print servers, Web servers, or application servers. The detailed description of these tasks would be beyond the scope of this book. See the Windows 2000 Server documentation for details.

9.1.2.3 Windows 2000 remote installation

It is also possible to install or upgrade a Windows 2000 system over the network (LAN). There are two possibilities:

• We already have the system installed with the previous version of the Windows operating system. In this case, installation can be started by mapping a network drive containing the Windows 2000 product and

starting the winnt.exe installation program. The installation must be started from the client system.

• Our existing client systems are not installed. In this case, we can use Windows 2000's RIS (Remote Installation Services). We install RIS (if it is not already installed) on our Windows 2000 Server and configure them. If this is the only server in our environment, we must configure the DNS Server Service and the DHCP Server Service. The next step is authorizing RIS server within the Active Directory. Then, we specify the directory on the server where the installation images for Windows 2000 are located and specify which client would be able to install Windows 2000 from this server (this is based on computer names, similar to the older NetBIOS names). In order to boot from the RIS Server, the clients must support DHCP PXE-based remote boot or a network adapter card supported by remote installation boot floppy. After the successful booting over the network, the user on the client is prompted with the Client Installation.

9.2 Boot process

This following sections describe the AIX and Windows 2000 boot processes.

9.2.1 AIX boot process

An RS/6000 system installed with AIX can be booted from:

- Hard Disk
- Tape
- CD-ROM
- Network

During boot up, the system tests the hardware, loads and executes the operating system, and configures devices. The AIX boot process is a multiple-phase process that provides the initial operating environment required to support the automatic configuration scheme for base devices. The base devices for a particular configuration of hardware are those required to boot the complete set of root file systems, disks, tapes, console devices, and other devices found in the system. The boot process is divided into three major phases as shown on Figure 76 on page 231.

There is a special type of boot called a *Service Mode Boot*. If the system administrator wants to use it, he or she must boot the system from installation CD-ROM or system backup tape (or CD-ROM). Then, he or she chooses the

228 AIX V4.3 and Windows 2000, Side by Side

Start Maintenance Mode for System Recovery option (see Figure 75). This option is used for low-level system maintenance and problem determination.

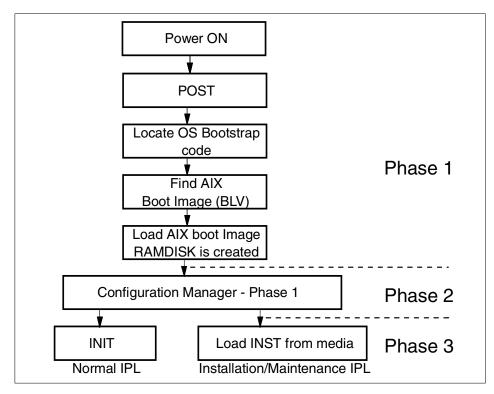


Figure 75. AIX boot process

The boot process differs slightly on different RS/6000 systems, but the major steps for all of them are listed below.

The first boot phase is called the ROS kernel initialization and consists of the following steps (see Figure 76 on page 231):

- The On-Chip Sequencer (OCS) bring-up microprocessor (BUMP) checks to see if there are any problems with the system planar. Control is then passed to the Read-Only Storage (ROS), which performs Power-On Self Tests (POST). The ROS contains firmware stored in an EPROM.
- 2. The ROS initial program load (IPL) checks the user boot list, which is a list of bootable devices in a specific order. This list is contained in the Non-Volatile RAM (NVRAM). If this boot list is empty or points to an invalid boot device, the ROS firmware uses a default bootlist. The first valid boot device found in the boot list is used for system startup.

- 3. The first record or Program Sector Number (PSN) is checked on the boot device. If it is a valid boot record, it is read into memory and added to the initial program load (IPL) control block in memory.
- 4. The boot image is read sequentially from the boot device into memory starting at the location specified in the boot record. The disk boot image consists of the kernel, a RAM file system, and base-customized device information. The RAM file system is part of the boot image, is totally memory-resident, and contains all programs that allow the boot process to continue. The files in the RAM file system used during boot is actually the simple shell (ssh) program. The ssh program controls the boot process by calling the rc.boot script.
- 5. Control is passed to the kernel, which begins system initialization.
- 6. Process 1 executes init, which executes phase 1 of the rc.boot script. The first step for rc.boot is to determine from which device the machine was booted. The boot device determines which devices should be configured on the RAM file system. If the machine is booted over the network, the network devices need to be configured so that the client's file systems can be remotely mounted. In the case of a tape or CD-ROM boot, the console is configured to display the BOS installation menus. After the rc.boot script finds the boot device, the appropriate configuration routines are called from the RAM file system.

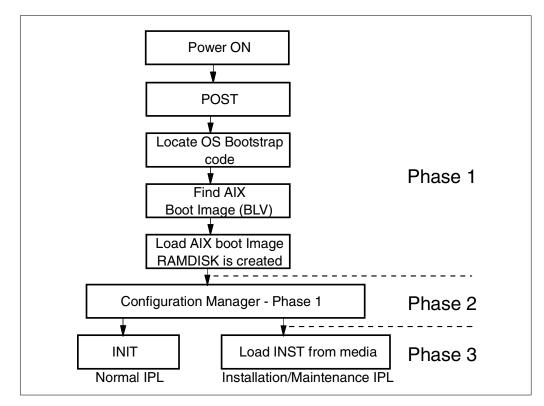


Figure 76. AIX boot process - Phase 1

The steps of the second phase, base device configuration, are described below (see Figure 77 on page 232):

- 1. The boot script calls the restbase program to build the customized Object Database Manager (ODM) database in the RAM file system from the compressed customized data.
- 2. The boot script starts the configuration manager, which accesses phase 1 configuration rules to configure the base devices.
- 3. The configuration manager starts the sys, bus, disk, SCSI, and the Logical Volume Manager (LVM) and rootvg volume group configuration methods.
- 4. The configuration methods load the device drivers, create special files, and update the customized data in the ODM database.

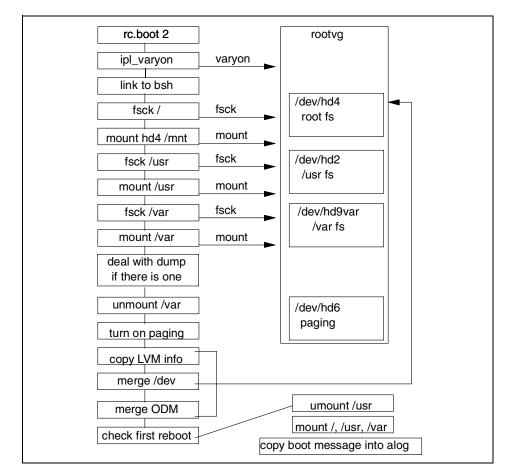


Figure 77. AIX boot process - Phase 2

The steps of the third phase, system boot, are described below (see Figure 78 on page 234):

- 1. The init process starts phase 2 execution of the rc.boot script. Phase 2 of rc.boot includes the following steps:
 - a. Call the ipl_varyon program to vary on the rootvg volume group.
 - b. Mount the hard disk file systems onto the RAM file system.
 - c. Run swapon to start paging.
 - d. Copy the customized data from the ODM database in the RAM file system to the ODM database in the hard disk file system.

AIX V4.3 and Windows 2000, Side by Side

- e. Unmount temporary mounts of hard disk filesystems and then perform permanent mounts of / (root), /usr, and /var filesystems.
- f. Exit the rc.boot script.
- 2. After phase 2 of rc.boot, the boot process switches from the RAM file system to the hard disk root file system.
- 3. Then, the init process executes the processes defined by records in the /etc/inittab file. One of the instructions in the /etc/inittab file executes phase 3 of the rc.boot script, which includes the following steps:
 - a. Mount the /tmp hard disk file system.
 - b. Start configuration manager phase 2 to configure all remaining devices.
 - c. Use the savebase command to save the customized data to the boot logical volume.
 - d. Exit the rc.boot script.

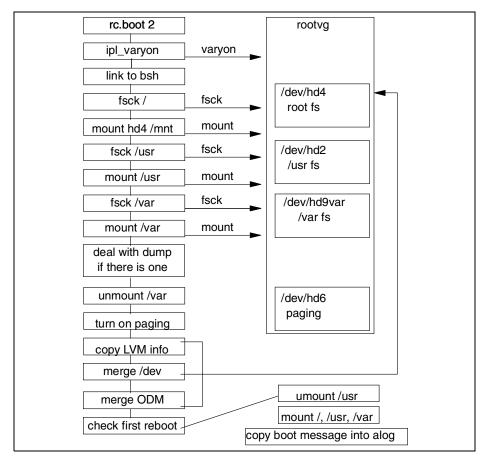


Figure 78. AIX boot process - Phase 3

After this phase, the system is up and running and ready for use.

9.2.2 Windows 2000 boot process

The Windows 2000 boot process differs slightly between the Intel and RISC platforms. The following is a description of the Windows 2000 boot process.

9.2.2.1 Preboot and boot sequences

On Intel based systems, the boot process is made up of a preboot sequence and a boot sequence. The preboot sequence comprises the following steps:

- Power-On Self Tests (POST) are run.
- The boot device is found, the Master Boot Record (MBR) is loaded into memory, and its program is run.

234 AIX V4.3 and Windows 2000, Side by Side

- The active partition is located, and the boot sector is loaded.
- The Windows 2000 loader (NTLDR) is then loaded.

The boot sequence executes the following:

- The Windows 2000 loader switches the processor to the 32-bit flat memory model.
- The Windows 2000 loader starts a mini file system.
- The Windows 2000 loader reads the BOOT.INI file and displays the operating system selections (boot loader menu).
- The Windows 2000 loader loads the operating system selected by the user. If Windows 2000 is selected, NTLDR runs NTDETECT.COM. For other operating systems, NTLDR loads BOOTSECT.DOS and gives it control.
- NTDETECT.COM scans the hardware installed in the computer and reports the list to NTLDR for inclusion in the Registry under the HKEY_LOCAL_MACHINE_HARDWARE hive.
- NTLDR then loads the NTOSKRNL.EXE and gives it the hardware information collected by NTDETECT.COM. Windows NT enters the Windows 2000 load phases.

9.2.2.2 Windows 2000 load phases

When the Windows 2000 loader gives control to the Windows 2000 kernel, the Windows 2000 load phases are started. These phases are the kernel load phase, the kernel initialization phase, the services load phase, and the Windows subsystem start phase.

Kernel load phase

The Hardware Abstraction Layer (HAL) is loaded, and then the system hive is loaded and scanned for device driver services that should be loaded at this step.

Kernel initialization phase

This phase initializes the kernel and the drivers that were loaded in the previous phase. The system hive is again scanned to determine which high-level drivers should be loaded. These drivers are then initialized and loaded once the kernel has been initialized. The Registry hardware list is then created by using the information collected by NTDETECT.COM (on Intel-based systems) and OSLOADER.EXE (on RISC systems).

Services Load Phases

This phase starts the session manager (SMSS.EXE), which reads the list of programs that must be started. Usually, programs such as CHKDSK are executed at this step. Then, the paging file is set up, and the Win32 subsystem is started.

Windows subsystem start phase

When the Win32 subsystem starts, it automatically starts WINLOGON.EXE, which starts the Local Security Authority (LSASS.EXE) and displays the Ctrl+Alt+Del logon dialog box. Then, the Service Controller (SCREG.EXE) is run. It goes through the Registry and looks for services that must be loaded automatically. The boot is considered finished when a user can log on.

9.2.2.3 Booting in Windows 2000 Safe Mode

In Windows 2000 a new possibility that enables the system to boot in *Safe Mode* is added. In this sort of boot, only the minimum number of device drivers is loaded. This is useful when one of the later installed drivers prevents booting the system.

To enter safe mode, press <F8> when Windows 2000 starts to boot. There are four different safe mode variations:

- Standard safe mode This contains only the minimum number of drivers necessary for booting.
- **Networking-enabled** Unlike standard mode, this also contains the drivers that enable networking.
- **safe mode with command prompt** This is identical to standard mode except that the installation program runs the command prompt applications instead of Windows Explorer as the shell when the system is in the GUI installation phase.
- Directory services repair mode This is valid only for Windows 2000 Domain Controllers and enables restoration of the Active Directory of a Domain Controller from backup media. In this mode, all of the device drivers are loaded; so, you cannot use it if one of the drivers prevents booting of the system; it is only for Directory services repair.

9.3 Configuration management

Configuration management is the way system information can be stored and retrieved by the system. AIX uses the Object Database Manager (ODM) database, and Windows 2000 uses the Registry.

236 AIX V4.3 and Windows 2000, Side by Side

In this section, we will look at how devices are automatically detected, configured by the system, and stored on the system.

9.3.1 AIX configuration management

The following section will describe configuration management in an AIX environment.

9.3.1.1 AIX Object Data Manager (ODM)

The Object Data Manager (ODM) is an object-oriented database that contains AIX system data. ODM provides a more robust, secure, shareable resource than what previously existed in the UNIX environment (ASCII stanza and colon files). Information is stored and maintained as objects with associated characteristics. The ODM can also be used to manage data for application programs. Access to information stored in the ODM and the ability to add, delete, or change information can be accomplished through the SMIT interface, the command line, or C language subroutines.

The basic components of ODM are object classes and objects. An object class is a group of objects with the same definition. The object class is conceptually similar to an array of structures, with each object being a structure that is an element of the array. An object, a member of a defined object class, is an entity that requires storage and management of data. The object is the equivalent of the record in the object class. This record is further divided in fields in which a particular attribute is stored.

System data managed by the ODM includes:

- Device configuration information
- Display information for SMIT (menus, selectors, and dialogs)
- Vital Product Database (VPD) for installation and update procedures
- Communications configuration information
- System resource information

System data not managed by the ODM includes the following (for compatibility reasons with other UNIX systems):

- Information about filesystems (stored in /etc/filesystems)
- Information about printer queues (stored in /etc/qconfig file)
- Information about users and groups (stored in /etc and /etc/security directories)

System configuration

A primary function of the ODM is to manage the system resource information or system configuration. The system configuration information is divided into three categories:

- **Predefined information** This database contains configuration information related to all devices that can be installed on the system. On AIX Version 4, the user can make the Predefined Database contain information about devices not present on the system by choosing to install additional device support. This database is comprised of the following object classes:
 - Predefined Devices Object Class (PdDv)
 - Predefined Connections Class (PdCn)
 - Predefined Attributes Object Class (PdAt)
- **Customized Information** This database contains configuration information related about actual devices installed (configured) on the system. This database is comprised of the following object classes:
 - Customized Devices Object Class (CuDv)
 - Customized Dependency Class (CuDep)
 - Customized Attribute Object Class (CuAt)
 - Customized Device Driver Class (CuDvDr)
 - Customized Vital Product Data Object Class (CuVPD)
- **Boot Information** This boot ODM contains the bare minimum predefined and customized databases required to perform a system boot. Thus, only devices considered necessary for boot are included in this object class.

- Note -

All predefined object classes (files) are stored in the /usr/lib/objrepos directory. By default, all customized object classes (files) are stored in the /etc/objrepos directory. If the system administrator wants to keep them somewhere else, he or she could change the value of the system variable, ODMDIR. For example:

export ODMDIR=/etc/objrepos_modified

ODM commands

In general, system administrator would not have to deal directly with the ODM database. Most interactions with the ODM are handled through SMIT sessions or by AIX device management commands. However, the ODM

database can be manipulated directly from the command line with high-level commands. These commands can also be used by applications that run on the AIX operating system.

Some of the most often used commands are:

- odmshow Displays an object class definition on the screen.
- odmget Retrieves objects from an object class in stanza format. This command accepts wildcards for SQL-like queries.
- odmadd This command is used to add a new object to an object class.
- odmcreate Creates object classes required for applications that will use the ODM database. Produces the .c and .h files necessary for ODM application development.
- odmchange This command changes all objects within an object class that meets specified criteria.
- odmdelete This command deletes all objects that meet a specific criteria from the object class. If no criteria is specified, all objects in that object class are deleted.
- odmdrop This will remove an entire object class.

These and other functions are available as an API subroutine as defined in /usr/lib/libodm.a file.

9.3.1.2 AIX Device Configuration Management

In AIX, we can work with devices via three different user interfaces: Command line, SMIT, and Web-based System Manager.

AIX command line device configuration

Often, an experienced administrator will perform device configuration and management from the AIX command line. This allows for automation of repetitive tasks. Often, complete device configuration can be performed with just one AIX command. The cfgmgr command detects all devices installed on the system and configures them based upon information contained in the ODM. This command is also run by the system during the boot process.

Many of the command line commands are quite simple to use but also allow for a great deal of flexibility by way of command line flags:

- List These commands, in the form of Isxxx, are used to list currently defined or configured devices, for example, lsdev, lsattr, and lscfg.
- Make These commands, in the form of mkxxx, are used to create or define a new device, for example, mkdev and mknotify.

- **Change** These commands, in the form of chxxx, change or modify an existing device, for example, chdev and chdisp.
- **Remove** These commands, in the form of rmxxx, remove previously defined devices from the ODM, for example, rmdev and rmserver.
- **Define** These commands, in the form of defxxx, define new devices to the ODM, for example, defif, and definet.
- **Undefine** These commands, in the form of undefxxx, undefine devices in ODM but leave the configuration intact, for example, undefif and undefinet.
- **Configure** These commands, in the form of cfgxxx, configure devices that have previously been defined, for example, cfgmgr and cfginet.
- **Unconfigure** These commands, in the form of ucfgxxx, unconfigure previously-defined devices, for example, usfgif and ucfginet.

Here are some examples:

 Configuring a 4mm tape device connected to SCSI adapter scsi0, at SCSI address 3, with a block size of 512 bytes:

mkdev -c tape -t'4mm4gb' -s'scsi' -p'scsi0' -w '3,0' -a block_size='512'

• Changing the SCSI address of SCSI adapter scsi0 to 5:

chdev -l 'scsi0' -a id='5'

• Removing the CD-ROM device:

rmdev -1 cd0 -d

· Listing all disks configured on your system:

lsdev -C -c disk

9.3.2 Windows 2000 configuration management

This section describes Windows configuration management mechanisms.

9.3.2.1 Windows 2000 Registry

The Windows 2000 Registry is a hierarchical centralized database containing configuration information, such as device driver settings, startup services, initialization files, and so on. The administrator adds, changes, and removes information in the registry indirectly by using tools from the Control Panel and Administrative Tools (see Section 9.4.2.1, "Windows 2000 Control Panel" on page 265 and Section 9.4.2.2, "Windows 2000 administrative tools" on page 271). There are also tools called Registry Editors (regedit.exe and regedt32.exe) that allow the system administrator to access the registry data directly if necessary.

In most cases, system changes to registry values can be accomplished by other means, but there are some settings that can only be altered via the Registry Editor; so, a Windows 2000 expert must have some knowledge about dealing directly with the Registry.

The Registry editors can be started by Start/Run regedit.exe or regedt32.exe (see Figure 79).

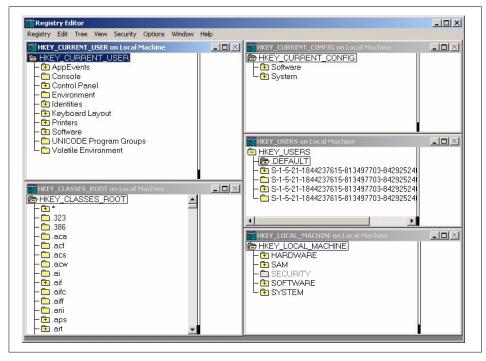


Figure 79. Windows 2000 Registry Editor: regedt32.exe

Registry information

The registry divides all information about a computer and its users into several subtrees (see Figure 80 on page 242):

HKEY_LOCAL_MACHINE

This subtree is where most system configuration information is stored, such as information about hardware and software currently installed on the machine.

HKEY_CLASSES_ROOT

This subtree stores file association information (for example, a text file invoking Notepad) and information used by OLE (Object Linking and Embedding) technologies.

HKEY_USERS

This subtree contains user information. Default user and current user (listed by their security ID number) information is kept here.

HKEY_CURRENT_USER

This is the user profile of the user currently logged on interactively (not remotely).

HKEY_CURRENT_CONFIG

Information about the hardware profile used by the local computer at system startup.

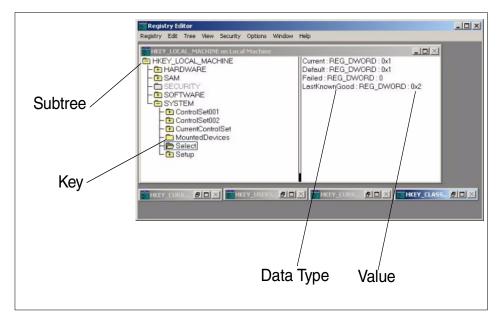


Figure 80. Windows 2000 Registry Editor terminology

Keys are names of subsections of subtrees. They, in turn, contain other keys and/or values along with the values' data types. They can be hierarchically nested, much like a disk drive file system directory structure. As a matter of fact, Microsoft' s naming convention has keys separated by backslashes as if they were directories or files in a file system. To use the file system analogy,

subtrees are root drives; keys are directories, subdirectories, or files, which, in turn, contain the data (data type and value).

Just as the name implies, data type specifies what type of data is in the value for a given key. The data types are:

- REG_BINARY Raw binary data
- REG_DWORD 4 bytes
- REG_EXPAND_SZ Character string that can be expanded
- REG_MULTI_SZ Multiple strings separated by nulls
- REG_SZ String

The registry physically consists of several files associated with hives. A hive is a body of keys, subkeys and values that is rooted at the top of the registry hierarchy. These files reside in the "*systemroot*\System32\Config" folder (the *systemroot* string is a placeholder for the directory name that contains Windows 2000 system files).

The registry has built-in fault tolerance because every hive file has a file with the same name, but with a.LOG extension. Whenever a hive file is changed, the change is first written into its log file. In this way, the log file is not actually a backup file, but a journal of changes to the primary file. Once the description of the change to the hive file is complete, the log file is written immediately to disk, bypassing the disk cache. Once the file has successfully written to the disk, the system makes the appropriate changes to the hive file. If the system were to crash during the hive write operation, there is enough information in the journal file to roll back the hive to its previous position. The one exception to this procedure is with the SYSTEM hive. The SYSTEM hive contains very important information that needs to be fully backed up. If the original file is damaged, the system can use the backup to boot.

Registry editing tools

There are two tools used to interact with Windows 2000's Registry information. Because the administrator does not usually use these tools to change system configuration, these tools are not located on Windows 2000's Start menu. If you want to use them, you need to execute them from the Run menu, which is part of the Start menu, or from the command prompt.

regedit.exe

This program has the same interface as Windows 95's Registry Editor. The interface is also similar to Windows Explorer. This program provides a search function so that you can easily find the registry information you need.

regedt32.exe

This program provides some functions that regedit.exe does not have. For example, the program can load individual hives and set user security permissions and audit to each registry information. It is similar to the previous Windows File Manager. However, File Manager (and Explorer) can set the security permissions to files only on NTFS; regedt32.exe can set permissions on FAT as well as on NTFS.

9.3.2.2 Windows 2000 Device Configuration Management

During installation, Windows 2000 detects devices that are installed in the system and installs the appropriate device driver. However, not all devices are detected. For example, some network adapter cards need to be manually added to the system during installation setup so that the device driver (if available on the Windows 2000 CD-ROM) is installed.

At boot time, all devices are configured, and the appropriate device drivers are loaded to the system.

Once the system is running, devices can be managed using specific icons available in the Control Panel, usually one per type of device. Devices cannot be controlled by using the Windows 2000 command prompt.

The following icons can be displayed in the Control Panel if the devices are installed:

- Display
- Game Controllers
- Modems
- Mouse
- Sound and Multimedia
- PCMCIA
- Keyboard
- Printers
- SCSI Adapter
- Tape devices
- UPS

For a description of the functions associated with each icon, see Section 9.4.2.1, "Windows 2000 Control Panel" on page 265. Adding or removing a

device or changing the status of a device can be handled through the appropriate icon.

9.4 System administrator interface

In this chapter, we will cover different user interfaces available for system administrators to perform common system administration tasks, such as storage management, user management, device management, network management and so on, on AIX and Windows 2000.

9.4.1 AIX system administrator interface

Traditionally, in UNIX operating systems, system administration tasks were done by UNIX commands and by editing so-called stanza files (plain ASCII files). This was and still is a very powerful method, but it requires a knowledge about many system commands with a very large number of parameters and careful editing of plain ASCII files. To help system administrators perform their tasks, there are two powerful tools available on AIX: SMIT and Web-based System Manager.

9.4.1.1 SMIT

The System Management Interface Tool (SMIT) is an interactive interface designed to simplify system management tasks. The smit command displays a hierarchy of menus that can lead to interactive dialogues. SMIT builds and runs commands as directed by the user. Because SMIT runs commands, you need the appropriate authority to execute the commands that SMIT runs.

The smit command takes you to the top level of the menu hierarchy. To directly enter into a lower menu level, a fastpath parameter can be used. The fastpath parameter assists you as you become familiar with the commands. For example, you can enter smit chuser to go directly to the dialog in which you can change the characteristics of the user.

SMIT creates two files, smit.script and smit.log, when it is executed. The smit.script file automatically records the commands with the command flags and parameters used. The smit.script file can be used as an executable shell script to repeat administration tasks on the same or other systems. This is extremely useful when dealing with a large number of systems. There is information in the smit.log file about the history of using the smit. All menus and commands that the system administrator issues are logged. These two files are growing without limitation and can become quiet large over the time; so, it is one of the responsibilities of the system administrator to monitor them and, eventually, archive or delete them.

With SMIT, it is also possible to log a SMIT command without executing it by using the -xs option when starting smit (smit -xs). The command can then be read from the smit.script file and executed directly later or within a shell script.

SMIT provides two interfaces: An ASCII interface and a Motif based user interface. When you execute SMIT on an ASCII console or on the Low Function Terminal (LFT), the ASCII interface will appear as shown in Figure 81.

	Syst	tem Management						
Move cursor to (lesired item and pro	ess Enter.						
	Software Installation and Maintenance Software License Management							
		cal & Logical Storag	e)					
Security & Use Communications Print Spooline	s Applications and §	Services						
Problem Deteri		9						
System Environ Processes & Su								
Applications Using SMIT (in	nformation only)							
F1=Help Esc+9=Shell	F2=Refresh Esc+O=Exit	F3=Cancel Enter=Do	Esc+8=Image					
ESC+S-SHELL	ESCHO-EXIC	Encer-D0						

Figure 81. SMIT ASCII user interface

If you issue the smit command in an X-windows environment, the Motif SMIT user interface will be displayed as shown in Figure 82 on page 247. In this case, if the system administrator prefers to use the ASCII SMIT user interface, he or she must issue the smit -c command or the smitty command.

Return To:
System Management
Software Installation and Maintenance
Software License Management
Devices
System Storage Management (Physical & Logical Storage)
Security & Users
Communications Applications and Services
Print Spooling
Problem Determination
Performance & Resource Scheduling System Environments
Processes & Subsystems
Applications
Using SMIT (information only)
·
Cancel

Figure 82. SMIT Motif-based user interface

9.4.1.2 Visual System Management (VSM)

Visual System Management (VSM) is a graphical interface that enables you to perform installation and system management tasks through direct manipulation of objects (icons). With VSM, you no longer need to remember complex command syntax or search through SMIT menus to complete a task. For instance, deleting a user is as simple as dragging and dropping the user object on the trash can. Everyone from the novice user to the technical expert can benefit from VSM. This easy-to-use interface openly displays system objects and actions (tasks). In addition to basic tasks, you can create new objects from system or user-defined templates, sort, filter, and find objects, and display the objects in a variety of views. Note that, with VSM, you cannot do all system administration tasks as with SMIT or the command line.

The following VSM applications are available:

Device Manager

Device Manager is used for adding, configuring, changing, and deleting devices (see Figure 83). It is started by the xdevicem command.

	Disk	
Actions	Work Area	
? 📑	Devices	2 Objects
<u>}</u>		
	View Controls	
Inform	ation Area	
device, cho	us) — A system device. To view the actions you ca ose its pop—up menu (press the right mouse buttor ci, Type: isa, Location Code: O4—AO, State: Avail). Class: bus,
ر التينية الفرط ما	Devices Automatically Add Device So	fturano Appian

Figure 83. VSM Device Manager

Print Manager

Print Manager is used for managing printers, queues, and print jobs (see Figure 84 on page 249). It is started wiht the xprintm command.

 Printer Printer New Que 	& Queue Templates	2 Objects
Actions	Work Area	M
? 📑	Queues	4 Objects
· · · ·	پ ps texte draft2 finalbig	
	Printers	0 Objects
	View Controls Display Controls	
Inform	ation Area	
New Queue Te template in	mplate — Contains predefined attributes. To create a new queue, dr the Queues pane.	ag and drop this
Exit Insta	ll Printer Software	Help

Figure 84. VSM Print Manager

Storage Manager

Storage Manager is for managing physical volumes, volume groups, logical volumes, and file systems (see Figure 85 on page 250). It is started with the xlvm command.

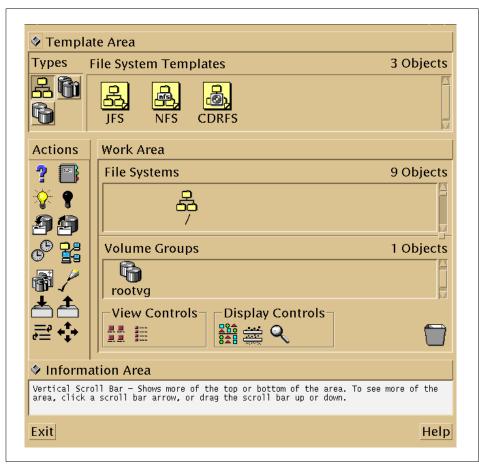


Figure 85. VSM Storage Manager

Users and Groups Management

Users and Groups Management is for managing users and groups (see Figure 86 on page 251). It is started with the xuserm command.

	er Template				1 Objects
Actions	Work Area				
? 📳	Users				22 Objects
<u>्रि</u> र्ह्र	root	n daemon	n bin	n sys	adm
	View Con	trols Dis	splay Cont 픑 옥	rols	
Inform	ation Area				

Figure 86. VSM User and Group Manager

Install & Update Software Manager

Install & Update Software Manager is for installing and managing installed software (see Figure 87 on page 252). It is started with the xinstallm command.

Which software source would you like to use? Choose one:	
Cd0 (SCSI Multimedia CD-ROM Drive) 🚌 rmt0 (4.0 GB 4mm Tape Drive)	
🖙 fd0 (Diskette Drive) 🧰 Directory	
Which bundle of software would you like to install? Choose one:	
Application Development	
Media Defined	
Actions Work Area	
? I View Controls Display Controls	
■ 2 2 11 目 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Information Area	
Exit Show Settings Show Schedule	Help

Figure 87. VSM Install & Update Software Manager

9.4.1.3 Web-based system management

Web-based System Manager enables a system administrator to manage an AIX system either locally from a graphics terminal or remotely from a PC or RS/6000 client. Information is entered through the use of GUI components on the client side. The information is then sent over the network to the Web-based System Manager server, which runs the commands necessary to perform the required action.

Web-based System Manager is implemented using the Java programming language. The implementation of Web-based System Manager in Java provides:

- **Cross-platform portability** Any client platform with a Java 1.1-enabled Web browser is able to run a Web-based System Manager client object.
- **Remote administration** A Web-based System Manager client is able to administer an AIX machine remotely through the Internet.
- A richer and more flexible GUI environment than is available with either HTML forms or Java Script.

Web-based System Manager is started with the wsm command (see Figure 88 on page 253).

252 AIX V4.3 and Windows 2000, Side by Side

Figure 88. Web-based System Manager

A system administrator can navigate through Web-based System Manager and administer his or her system in the following areas:

Backup

The system can be backed up on tape drive or on CD-ROM drive. By clicking on the **CD-R** icon, the system administrator is guided through all the necessary steps in order to create a bootable backup of the system (rootvg) to the CD_ROM. See Figure 89 on page 254.

Backups : Iv3020a	•
Backup Selected View Options	Help
₽ < ■ < ■ ?	0
System Backup to CD-R	
2 Objects 0 Hidden	

Figure 89. Web-based System Manager - Backups

Devices

In this plane, the list of all devices configured on the system is displayed. By highlighting the specific device, the system administrator can unconfigure (put into a *Defined* state), configure (put into an *Available* state), delete, or change the properties of a device. See Figure 90 on page 255.

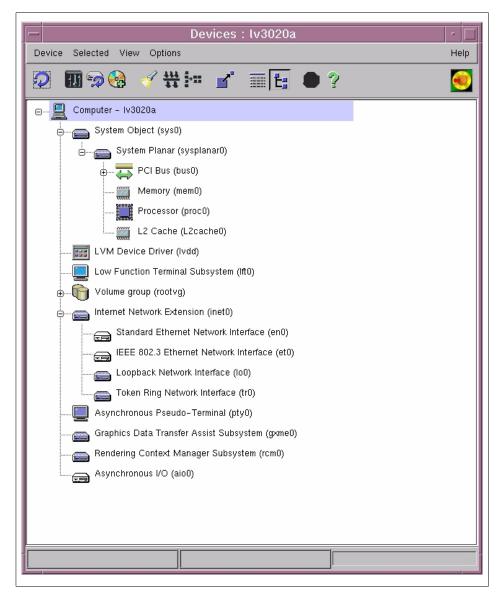


Figure 90. Web-based System Manager - Devices

File systems

A system administrator can create new file systems (JFS, CD-ROM, NFS, Cached), mount/unmount filesystems, back up filesystems, restore file systems from backup, change the properties of a file system, such as size, mount options, and read-write or read-only permissions, and defragment

filesystems. Figure 91 shows the File Systems screen of the Web-based System Manager.

File Systems : Lv3020a							
🤉 🔟 🚣 📥 🕾	b 🎸 🗹	' t: 🔃 🌘	?				
Mount Point	Name	Size (blocks/MB)	%Used	Permissions			
🖃 🛶 🕘 Journaled File System							
	/dev/hd4	163840 (80)	17%	rw			
/home	/dev/hd1	8192 (4)	6%	rw			
/usr	/dev/hd2	917504 (448)	99%	rw			
/var	/dev/hd9var	8192 (4)	41%	rw			
/tmp	/dev/hd3	24576 (12)	8%	rw			
Network File System							
CD-ROM File Systems							
Cached File Systems							

Figure 91. Web-based System Manager - File systems

Software installation and maintenance

The system administrator can list all of the installed SW, install new software products (LPPs), and commit, reject, or verify installed SW. He or she can also manage the NIM client (for more information about NIM, see "Network Installation manager (NIM)" on page 217). Figure 92 on page 257 shows the - Software Installation and Maintenance screen of the Web-based System Manager.

Software : lv3020a	· [
Software Selected View Options	Help
🥺 🍕 🖬 🔍 ?	
are install Base Operating System	
⊡	
⊕ 🟹 IMNSearch	
⊕ 💽 Java	
⊕	
⊕	
ter	
tevices devices	
ifor_Is	
n perfagent	
∎ im perl	
⊕ [] pkg_gd	
num printers	
∎	

Figure 92. Web-based System Manager - Software installation & maintenance

Storage management

In this pane, the system administrator can define, configure, and manage volume groups, logical volumes, and paging space. For more details about storage management in AIX, see Section 7.1, "AIX storage management" on page 99.

- Volume S	Selected Viev		Volumes : lv3020a				Help
	166.	P 🔤 🧹 🛛	🖌 t: t: 👘	?			
escription		Name	State	Used (ME	3) Free (MB)	Total Size (MB)	% Used
5 /	dd Volume Gro	oup				,	
5 4	dd Logical Vol	lume					
3 /	dd Paging Spa	ace					
ا 🐌	ncrease Paging	Space					
⊕ ē	vailable Disks						
⊡ <mark>(</mark>)	ootvg		active	688	1372	2060	33
	Logical Vo	lumes					
			closed/syncd			8	
			open/syncd			4	
	hd4	()	open/syncd	13	67	80	17
		(/usr)	open/syncd	443	5	448	99
		ar (/var)	open/syncd	1	3	4	41
		(/tmp)	open/syncd	0	12	12	8
	🛱 hd1	(/home)	open/syncd	0	4	4	6
	hd6		active	23	105	128	18
	Physical V	olumes					
	🛄 🛅 hdisk	0	active	688	1372	2060	33
		1					

Figure 93. Web-based System Manager - Storage management

Network management

A system administrator can configure and manage the network environment from this pane. All defined network protocols (if installed), such as TCP/IP, SNA or X.25, and NFS and NIS, can be defined and configured from here. For more details about Network management, see Chapter 11, "Networking" on page 377. The Network Management screen is shown in Figure 94 on page 259.

Network : lv3020a	
Network Selected View Options	lelp
Set Up TCP/IP	
Add New NFS Export	
🚲 Add New NFS Mount	
⊡ @ TCP/IP (IPv4 and IPv6)	
🔁 TCP/IP Configuration	
🥞 Subsystems and Services	
Access Control	
⊡∰ Network File System (NFS)	
⊕ ⊚ Exported Directories	
🛓 a Mounted Directories	
Network Information Service (NIS)	
NIS Server	
Performing taskplease wait	

Figure 94. Web-based System Manager - Network management

Printing management

The system administrator can install support for new printers, define and configure printers, and manage a print spooling system from this pane. He or she can also change the properties of existing devices and queues. See Figure 95 on page 260.

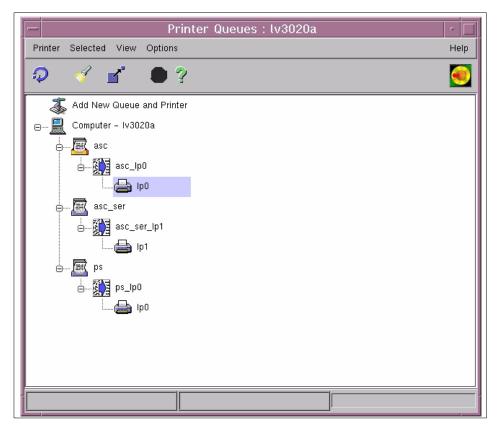


Figure 95. Web-based System Manager - Printing management

Processes management

The system administrator can list all existing processes on the system and sort them by their names, ids, or use of system resources. He or she can also stop (kill) the processes or re-prioritize them. See Figure 96 on page 261.

260 AIX V4.3 and Windows 2000, Side by Side

Pro	cess :	Selected '	View Optio		cesses :	lv3020a			r He
ຸ ວ					/		?		
	<u> </u>		। 🗸 म			•=•••	3		
om	mand	Owner	Process ID	Parent ID	Started	Current CPI	Total CPU	ΠΥ	Class
۲	init	root	1	0	16:01:37	0	00:00:02		Unclassified
	dtlogir	root	2150	1	16:02:13	0	00:00:00	-	Unclassified
•	х	root	2618	2150	16:02:14	11	00:02:48	- 1	Unclassified
•	srcmst	root	2906	1	16:02:33	0	00:00:00	-	Unclassified
•	dtsess	root	3128	3928	16:26:24	0	00:00:00		Unclassified
•	imqsmi	root	3390	1	16:03:24	0	00:00:00	-	Unclassified
•	ksh	root	3684	11872	16:26:48	0	00:00:00	pts/0	Unclassified
	dtlogir	root	3928	2150	16:02:15	0	00:00:00	-	Unclassified
	syncd	root	4156	1	16:02:28	0	00:00:01		Unclassified
Ś	orrdorr		4392	1	16-02-28	0	00.00.00		Uncloseifind
7 C)bjects	0 Hidden							

Figure 96. Web-based System Manager - Processes management

System Environment Management

The system administrator can define different system consoles, change the date and time of the system, change characteristics of the operating system, such as the maximum number of processes allowed per user, maintaining I/O history, and so on, change the default user interface (CDE or command line user interface), manage system dump (location, start), manage the licenses of the operating system, broadcast messages to users, configure the Internet environment, manage the language environment, and stop (shut down) the system. See Figure 97 on page 262.

Chapter 9. System management 261

_		System	ı : lv3020a			•
System Selec	cted View Opti	ons				Help
n 🕁	Ø ∛ ₩ I			?		0
System Console	Date and Time	Operating System	User Interface	System Dump	AIX User Licenses	
Shutdown	Froadcast Message	Internet Environment	Cultural Environment	Language Utilities		
11 Objects 0 Hi	dden					

Figure 97. Web-based System Manager - System Environment Management

Users Management

In this pane, the system administrator can define users and groups and manage the existing ones, for example, adding the user to another group. Disk quotas are also managed from here. See Figure 98 on page 263.

262 AIX V4.3 and Windows 2000, Side by Side

-	Users : lv3020a	- [
User Selected View Opt	ions	Help
🤉 🗂 🔟 🔔 🐂 i	6661 - # # # # 	?; 🦲
Jame .	△ Description	
Add New Group	TaskGuide for assistance in adding new group	-
🗗 Add New User	TaskGuide for assistance in adding new user	
👔 adm		
🗿 adm		
🙀 Administrative Roles	Assignable rights for performing management tasks	
🦺 angela		
🔐 audit		
🔐 bin		
🚉 bin		
🔐 cron		
👔 daemon		
🗿 ecs		
🦞 guest		
🜔 imnadm		
🦺 imnadm		
👔 lpd		
🗿 mail		
🦞 miha		
🧜 netinst		
nobody		
🦺 nobody		
nuucp	uucp login user	
1) perf		
🗿 printq		
noot		
🗿 security		
-	TaskGuide for assistance in configuring disk quotas	
🗿 shutdown		
🐧 staff		
35 Objects 0 Hidden		

Figure 98. Web-based System Manager - User Management

Subsystems Management

AIX subsystems, such as iforls (licensing), inetd (TCP/IP), and spooler (printing), are managed from here. They can be started or stopped and traced for problem determination. See Figure 99 on page 264.

Subsystem Selec	cted View Option	ns				He
₽ ♦●	0 🧹 🗹	' 0 ?				
Group	Subsystem	Subserver	Status	PID	Protocol	Command
🖃 🐣 mail						
L	sendmail		active	5424		
🖃 🍓 nfs						
🍄	biod		active	7486		
	rpc.statd		active	7748		
	rpc.lockd		active	8006		
- 🖗	nfsd		inoperativ	e		
Ŀ®	rpc.mountd		inoperativ	e		
🖃 🛶 🍓 portmap						
Ì	portmap		active	5678		
⊡ 🖗 qos						
-0	rsvpd		inoperativ	e		
	policyd		inoperativ	e		
🖃 🍓 ras						
Ĭ	syslogd		active	5182		
🖃 🛶 🍓 spooler						
<u> </u>			ootiuo			

Figure 99. Web-based System Manager - Subsystems Management

- Note -

Web-based System Manager allows remote administration sessions to be carried out using the Secure Socket Layer (SSL) protocol. This allows all data transmitted on the network between the Web-based System Manager client and the system being managed to be encrypted and, thereby, prevent unauthorized systems from viewing the data.

9.4.2 Windows 2000 System Administration Interface

The Windows 2000 system administration interface(s) is/are located primarily in the Control Panel and in the Administrative Tools.

The Control Panel is the main interface for device management as well as for controlling other aspects of the system. Non-administrative users can change some settings in the control panel as well. Administrative tools, as the name implies, provides tools for the administrator to monitor system events, manage hardware devices, users, Services, licensing, security policies, and some other tasks.

The number of tools that appear in these two interfaces depends on what kind of network module, application, or services have been installed; so, you may not find the following tools on your desktop, or you may find other modules that are not described in this document. The new tool for system management, called Microsoft Management Console was added to Windows 2000 (see Section 9.4.2.3, "Windows 2000 Microsoft Management Console" on page 295), which enables the system administrator to manage local or remote systems.

9.4.2.1 Windows 2000 Control Panel

The Control Panel looks very similar to its Windows 3.x, Windows 9x, and Windows NT predecessors (see Figure 100 on page 266). However, there are some new functions that have been added to Windows 2000's Control Panel. All of the Control Panel settings are stored in a centralized hierarchical database called the Registry, which is described in Section 9.3.2.1, "Windows 2000 Registry" on page 240. This database is similar to the AIX ODM. While any values that can be changed in the Control Panel can be changed directly via the Registry Editor (regedt32.exe), the Control Panel provides an intuitive level of abstraction and serves to protect the user from incorrectly changing registry values.

Figure 100. Windows 2000 Control Panel

Items that can be controlled in the Control Panel range from setting workplace color to configuring networking adapters and protocols. Many of the Control Panel settings are stored on a per-user basis so that each user can customize his or her own desktop. There are some settings, however, that are only stored on a per-machine basis (for example Network). Each Control Panel icon invokes an applet to control that item. Brief descriptions of the Control Panel applets and a discussion of the features they offer follow.

Accessibility options

These options help people with disabilities manage their keyboard, mouse, and visual and audio outputs of their system. For example, enabling a tone whenever you press the key, enabling the pressing of one key at a time for sequences such as <Ctrl><Alt> (StickyKeys), generating visual warnings when a sound is emitted, using colors and fonts for easy reading, and so on.

266 AIX V4.3 and Windows 2000, Side by Side

Add/remove programs

This controls installation and deinstallation for Windows 2000 applications and Windows 2000 setup. You can easily add or remove an application or a Windows 2000 component.

Add/remove hardware

This starts the Add/Remove Hardware Wizard, which lets you install, unplug, troubleshoot, or remove hardware components.

Administrative Tools

This opens a new window with options described in Section 9.4.2.2, "Windows 2000 administrative tools" on page 271.

Date/time

This allows the setting of date and time. Also, the time zone is selected here, and an automatic adjustment for daylight savings time can be enabled or disabled.

Display

Display drivers, along with color palette depth, screen resolution, font size, and screen refresh frequency, are controlled with the display applet. After display settings are chosen, there is a test button that will display a test pattern with the new settings for five seconds.

Windows 2000 is sensitive to display changes. It is very important that before the system administrator allows Windows 2000 to shut down, the test be passed, or Windows 2000 will restart with no video. To circumvent this problem, there is an option at startup called *Last known good*, which will restore the previous driver information so that the system can be restarted.

You can also change the system color scheme and adjust the color palette here. These settings are stored on a per-user basis.

Folder options

The configuration of the appearance of files in folders and of folders themselves can be set in this applet. The system administrator can also enable the appearance of Web contents on the desktop and/or in the folders. He or she can set the association of filename extensions with applications.

Fonts

This manages installed Windows 2000 fonts. It allows the installation and removal of TrueType, OpenType (such as Adobe type 1 fonts), Raster fonts, and Vector fonts. This information is stored on a machine-wide basis. Fonts are available to both 16-bit and 32-bit Windows applications.

Game controllers

Joysticks and similar devices can be configured here.

Internet options

The system administrator can configure Microsoft Internet Explorer, for example, home page, security, dial-up connections and mail programs used.

Keyboard

This allows fine-tuning of keyboard key repeat rate and delay before key repeat.

Licensing

This manipulates the Licensing Mode. The administrator selects the proper mode from Per Server (concurrent mode) and Per Seat (fixed license on one machine).

Mouse

Mouse preferences, such as tracking speed and double-click speed, are set here. There are also options for left- and right-handed users. There is no system support for three-button mouses, but some applications may support the third button with additional software.

Cursors, such as arrows, busy pointers, application pointers, and drag pointers, can also be selected here. There is a selection of static and animated pointers included with Windows 2000.

Network and dial-up connections

The system administrator can manage existing network adapters and protocols or use the Wizard to create new ones.

Phone and modem

Configures phone dialing and modem setting.

Power options

This controls the configuration of power saving modes and the Uninterruptable Power Supply (UPS). If the system is attached to UPS and UPS is connected to one of the serial ports, it can be configured to notify the system administrator or to gracefully shut down the system (after a specified amount of time) in case of power failure.

Printers

The system administrator can manage existing printers or use a Wizard to add new printers to the system.

Regional options

This allows control and configuration of country, language, and keyboard layout. These settings are per-machine, not per-user. NLS versions of Windows 2000 provide complete non-English language solutions.

Scanners and cameras

The system administrator can manage the properties of installed scanners and video cameras or use a Wizard to add new ones.

Scheduled tasks

The system administrator can configure a task (start of a script or an application) to be performed at a later time. He or she can use a Wizard to add new tasks, such as backup or disk cleanup, when the system does not have a heavy workload.

Sounds and multimedia

The system administrator can configure different sounds that can be produced by different events on the server and perform installed audio HW configuration.

System

The system administrator can change system properties here (see Figure 101 on page 270).

General	Network Identification Hardware User Profiles Advanced	
acticidi [
- Hardw	vare Wizard	_
	 The Hardware wizard helps you install, uninstall, repair, unplug, eject, and configure your hardware. 	
	Hardware Wizard	
-Devic	e Manager	
	The Device Manager lists all the hardware devices installed on your computer. Use the Device Manager to change the properties of any device.	
	Driver Signing Device Manager	
- Hardw		
Hardw	Driver Signing Device Manager	
Hardw	Driver Signing Device Manager ware Profiles Hardware profiles provide a way for you to set up and store	
Hardw	Driver Signing Device Manager vare Profiles Hardware profiles provide a way for you to set up and store different hardware configurations.	

Figure 101. Windows 2000 - System properties tool

The system administrator can start the Hardware Wizard to add new hardware or start the Device Manager to configure existing devices (see Figure 102 on page 271).

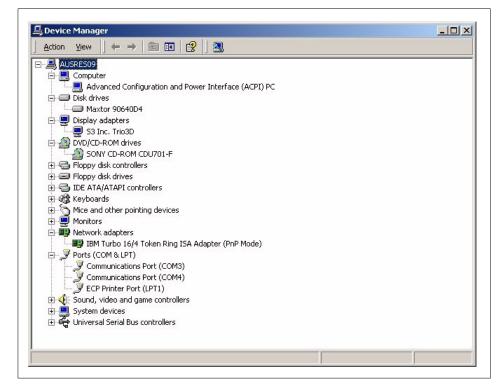


Figure 102. Windows 2000 Device Manager tool

9.4.2.2 Windows 2000 administrative tools

The following applets are included in the Administrative Tools (see Figure 103 on page 272) to provide an interface for the administrator to monitor and control his or her local system and/or other systems on the network. Note that the number of applets will depend on the number of installed software components, and you may not see exactly the same window content on your system.

← Back → → → 🔁 🛛 🔕 Sea	arch 🔁 Folders 🗉	History	e e x 🛛	n 📰 -		
Address 🗃 Administrative Tools						▼ @Go
			F	8	P	Q
Administrative	Component Services	Computer Management	Configure Your Server	Connection Manager A	Data Sources (ODBC)	DHCP
Tools	-		2		a	
Select an item to view its description.	Distributed File System	DNS	Event Viewer	Internet Authenticati	Internet Servic	Licensing
Configures administrative settings for your computer			1			
See also: <u>My Documents</u>	Local Security Policy	Network Monitor	Performance	QoS Admission Control	Remote Storage	Routing and Remote
<u>My Network Places</u> <u>My Computer</u>						
	Server Extensions	Services	Terminal Services Cli	Terminal Services C	Terminal Servic	Terminal Servic
	M		1			
	Windows Media Per	Windows Media	WINS			

Figure 103. Windows 2000 Administrative Tools window

Component services

This section covers the configuration and management of COM+ applications (see Figure 104 on page 273). COM application is a term that describes a group of components developed to work together, such as Microsoft Word or Microsoft Excel. These applications consist of executable files and several DLLs (application extensions) for additional functionality.

COM+ applications are a group of COM components developed and configured together with additional functionality, such as queueing and role-based security.

272 AIX V4.3 and Windows 2000, Side by Side

🚡 Console Window H	elp				_8
Action View	E 🖪 🖀	🚯 🗟 😫			
Tree	System 35 eve	ent(s)			
Console Root	Туре	Date	Time	Source	Category
🗄 🧑 Component Services	\Lambda Warning	10/7/1999	8:20:04 AM	Browser	None
Component Services Component Viewer (Local) Application Application Security System Services (Local)	\Lambda Warning	10/7/1999	8:08:53 AM	RSVP	None
	Information	10/7/1999	8:08:52 AM	SMTPSVC	None
	Error	10/7/1999	8:08:49 AM	DHCPServer	None
	Information	10/7/1999	8:08:29 AM	SMTPSVC	None
	Information	10/7/1999	8:08:28 AM	SMTPSVC	None
		10/7/1999	8:08:22 AM	TermServLicensing	None
	\Lambda Warning	10/7/1999	8:08:21 AM	TermServLicensing	None
	Information	10/7/1999	8:08:21 AM	TermServLicensing	None
	Information	10/7/1999	8:08:14 AM	SNMP	None
	Information	10/7/1999	8:08:11 AM	WINS	None
	\Lambda Warning	10/7/1999	8:08:00 AM	RSVP	None
	Information	10/7/1999	8:07:37 AM	LPDSVC	None
	(Information	10/7/1999	8:07:37 AM	AppleTalk	None
	Information	10/7/1999	8:07:20 AM	eventlog	None
	Information	10/7/1999	8:07:20 AM	eventlog	None
	Information	10/6/1999	5:41:17 PM	eventlog	None
	•				•

Figure 104. Windows 2000 Component Services management tool

Computer management

This is the primary tool for the management of disks, logical drives, remote storage, users, and groups (see Figure 105 on page 274). There are also links to other tools for managing local and remote systems, such as Event Viewer, Performance Logs, Device Manager, and so on, which will be covered later in this chapter.

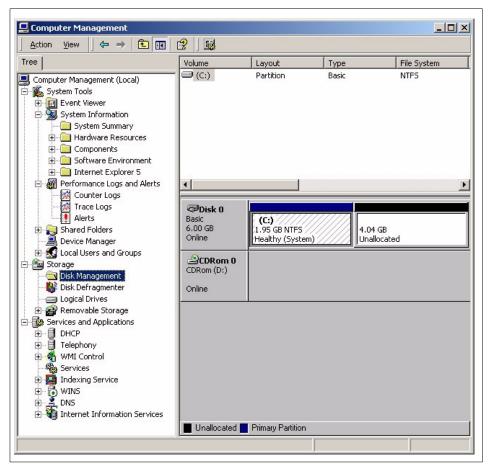


Figure 105. Windows 2000 Computer Management window

Configure Your Server

This is the tool that is started automatically after a new Windows 2000 installation (see Figure 106 on page 275). The system administrator can also start it at a later time to perform tasks, such as configuring Active directory, Networking (DHCP, DNS, Remote Access, Routing), and configuring the system to act as a File server, Print server, Web/Media server, and Application server. These tasks can also be accessed directly from the Control Panel or Administrative Tools menu.

Figure 106. Windows 2000 Configure Your Server tool

Connection Manager administration kit

A Wizard guides the system administrator through tasks needed to configure dial-up connections for users of the system. There is also a support for VPN (Virtual private Network).

Data sources ODBC

Data Source Open Database Connectivity (ODBC) is used to access the data from other database management systems, such as SQL databases and Visual FoxPro database. For example, data in ADSM's (Adstar Distributed Storage Manager is an IBM product for enterprise storage management, such as backup/archive and hierarchical storage management) database can also be accessed and analyzed using the ODBC tool.

The system administrator can configure access to the data with this tool (see Figure 107 on page 276).

Name	Driver	Add
		Remove
		Configure
-	An ODBC User data source stores information a	bout how to connect to

Figure 107. Windows 2000 ODBC tool

Dynamic Host Configuration Protocol (DHCP)

This tool enables the system administrator to configure and manage the DHCP (see). For more details about DHCP, see Chapter 11, "Networking" on page 377).

C DHCP	
Action ⊻iew	1 🖸 😫 🛛 🥔
Tree	Server Options
DHCP - ausres09n [9.3.240.133] Server Options	Server Options Server options are additional configuration parameters that a DHCP server can assign to DHCP clients. For example, some commonly used options include IP addresses for default gateways (routers), WINS servers, and DNS servers. Server options act as defaults for all scopes. You can override each of these server options by defining the option in Scope Options. To set the server options, on the Action menu, click Configure Options. For more information about server options, see online Help.
,	

Figure 108. Windows 2000 DHCP

Distributed File System (DFS)

This is a tool for managing DFS that enables you to organize logical shared disks on multiple systems to act as one logical structure (see Figure 109 on page 278). For more details about DFS, see Section 7.2.2.11, "Distributed File System (DFS)" on page 145.

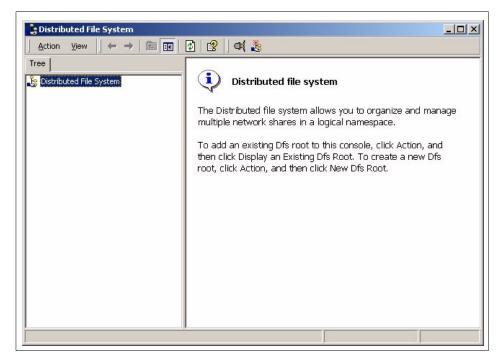


Figure 109. Windows 2000 Distributed File System management tool

Domain Name System (DNS)

This tool is used for configuring and managing DNS, which is a hierarchical naming system for computer systems connected to an IP network (see Figure 110 on page 279). For more information about DNS, see Chapter 11, "Networking" on page 377.

278 AIX V4.3 and Windows 2000, Side by Side

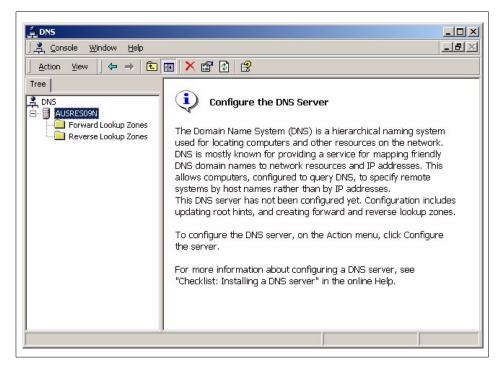


Figure 110. Windows 2000 DNS management tool

Event Viewer

Event Viewer can be used to monitor system events (logs) in four categories:

- · Application log (events logged by user applications)
- Security log (events about valid and invalid login attempts and resource use)
- System log (events logged by system components, such as device drivers)
- DNS Server (events related to DNS)

The tool is shown in Figure 111 on page 280.

Action View 😓 🔿 🔁									-
Action view	📧 🖻 🖬 🖬	12							
Tree	Application Log	34 event(s))						
Event Viewer (Local)	Туре	Date	Time	Source	Category	Event	User	Computer	
Application Log	Information	10/7/1999	9:49:07 AM	MSDTC Client	CM	4156	N/A	AUSRES09N	
- B Security Log	Information	10/7/1999	9:49:07 AM	MSDTC	CM	4156	N/A	AUSRES09N	
	Information	10/7/1999	8:08:53 AM	Oakley	None	542	N/A	AUSRES09N	
DNS Server	Information	10/7/1999	8:08:23 AM	Remote Storage	Engine	1000	N/A	AUSRES09N	
	Information	10/7/1999	8:08:18 AM	ESENT	General	100	N/A	AUSRES09N	
	Information	10/7/1999	8:08:09 AM	NSUnicast	None	300	N/A	AUSRES09N	
	Information	10/7/1999	8:08:05 AM	EvntAgnt	None	2018	N/A	AUSRES09N	
	Information	10/7/1999	8:08:05 AM	ESENT	General	100	N/A	AUSRES09N	
	Information	10/7/1999	8:08:02 AM	Remote Storage	Agent	1000	N/A	AUSRES09N	
	Information	10/7/1999	8:08:01 AM	ESENT	General	100	N/A	AUSRES09N	
	Information	10/7/1999	8:07:55 AM	Remote Storage	Subsystem	1000	N/A	AUSRES09N	_
	Information		8:07:53 AM	ESENT	Logging/Recovery	302	N/A	AUSRES09N	
	Information	10/7/1999	8:07:51 AM	ESENT	Logging/Recovery	301	N/A	AUSRES09N	
	Information	10/7/1999	8:07:50 AM	ESENT	Logging/Recovery	300	N/A	AUSRES09N	
	Information	10/7/1999	8:07:49 AM	ESENT	General	100	N/A	AUSRES09N	
	Information	10/7/1999	8:07:42 AM	NSSTATION	None	300	N/A	AUSRES09N	
	Information	10/7/1999	8:07:39 AM	ESENT	General	100	N/A	AUSRES09N	
	Information		8:07:37 AM	NSMONITOR	None	400	N/A	AUSRES09N	
	Information	10/7/1999	8:07:31 AM	MSDTC	SVC	4097	N/A	AUSRES09N	
	Information	10/6/1999	4:15:09 PM	MsiInstaller	None	1000	N/A	AUSRES09N	-

Figure 111. Windows 2000 Event Viewer tool

If the particular event is double-clicked with the mouse, the event properties are displayed with detailed information about the event and, sometimes, the possible corrective actions needed (see Figure 112 on page 281).

Date:	10/7/1999	Source:	DhcpServer	
	8:08	Category:		
Туре:		Event ID:		+
	N/A			
Compute	r: AUSRES09	N		
network	CP service is n		any clients because noi onfigured IP addresses	
The DHI network no active	CP service is n interfaces hav e interfaces.	e statically c		
The DHI network no active Data: (CP service is n interfaces hav e interfaces. • Bytes 🔿 W	e statically c 'ords		
The DHI network no active Data: (CP service is n interfaces hav e interfaces.	e statically c 'ords		
The DHI network no active Data: (CP service is n interfaces hav e interfaces. • Bytes 🔿 W	e statically c 'ords		
The DHI network no active Data: (CP service is n interfaces hav e interfaces. • Bytes 🔿 W	e statically c 'ords		

Figure 112. Windows 2000 Event Viewer - Event Properties

Internet Authentication Service (IAS)

With IAS system administrator can perform authentication, equalization, and accounting of dial-up and VPN (Virtual Private Network) users (see Figure 113 on page 282).

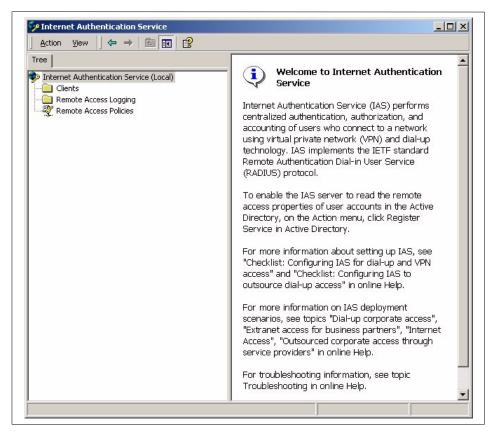


Figure 113. Windows 2000 Internet Authentication Services tool

Internet Services Manager

With this tool, system administrator can manage the Web server for Internet or intranet Web side and also IIS (Internet Information Services) (see). IIS is a Microsoft tool (Web Service) that helps you publish information on your Web pages.

282 AIX V4.3 and Windows 2000, Side by Side

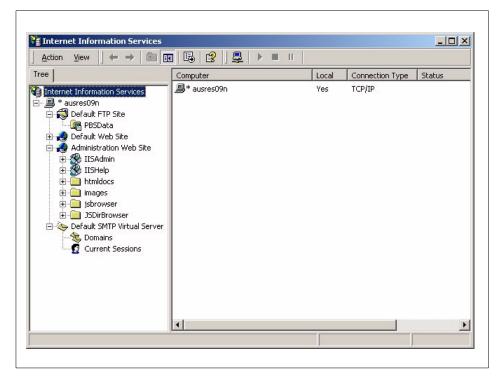


Figure 114. Windows 2000 Internet Services Management tool

Licensing

This tool enables managing licences in Windows 2000 (see Figure 115 on page 284).

Administrator Administrator Administrator	Comment	
A desiring to be		
Administrator		

Figure 115. Windows 2000 Licensing tool

Local Security Policy

With this tool, the system administrator can modify user rights and permissions and auditing policies (see Figure 116).

	₽ 2		1
Tree	Policy 🛆	Local Setting	Effective Setting
Security Settings	Enforce password history	0 passwords remembered	0 passwords remembered
Account Policies	Maximum password age	43 days	43 days
- 📴 Password Policy	Minimum password age	0 days	0 days
🕀 🧰 Account Lockout Policy	👪 Minimum password length	0 characters	0 characters
🗄 🤷 Local Policies	Basswords must meet complexity r	Disabled	Disabled
🗄 🧰 Public Key Policies	Store password using reversible e	Disabled	Disabled
	BO User must log on to change the pa	Disabled	Disabled

Figure 116. Windows 2000 Local Security Policy tool

Network Monitor

This tool enables the system administrator to capture frames of network data. This can help the system administrator analyze network traffic and/or analyze and detect network problems (see Figure 117).

		■ 6¢	68 ?			
TOKENRING\NET 002	0358998B4 Captur					\times
% Network Utilization:			Fime Elapsed: 00:00:1 —Network Statistics			-
0	n	100	# Frames: 18			
Frames Per Second:	0	100	# Broadcasts: 13			
			# Multicasts: 0			
0	2	100	# Bytes: 2786			
Bytes Per Second:			# Frames Dropped			
0	184	1728	Network Status: N	lormal		
Broadcasts Per Second:						
			Captured Statistic: # Frames: 18	s		1
0	2	100	# Frames in Buffe	r 19		
Multicasts Per Second:			# Frames lost whe		d 0	
0	0	100	# Bytes: 2786			
			# Bytes in Buffer:	2786		
			% Buffer Utilized: (D		
			# Frames Droppe	d: 0		
						-
Network Address 1 1>2 1	<2 Network Address	2	Per Second Statis			
8004AC948033 2	*BROADCAST		# Frames/second			
8004ACF31356 1	*BROADCAST		# Bytes/second: "	6		_
				- 1 2		-
Network Address Frames S				and the second	Sent Broadcasts S	e
*BROADCAST 0 8004AC948033 2	12 0 0 120	2071 0 0	0	0	0	-
8004AC948033 2	0 120	-		0	2	-

Figure 117. Windows 2000 Network Monitor tool

Performance

This tool can be used for monitoring performance and resource utilization of the system. First, you must specify which resources you would like to monitor, and then start the capturing and, afterwards, observe and analyze the results (see Chapter 10, "Performance monitoring" on page 347).

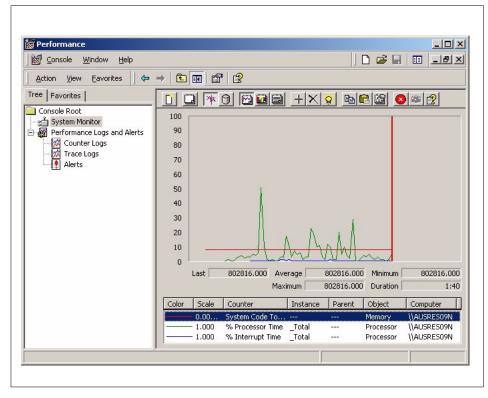


Figure 118. Windows 2000 Performance tool

Quality of Service (QoS)

With this tool, the system administrator can configure and manage the QoS Admission control service, which provide end-to-end resource and bandwidth management for network traffic and guarantees a defined network bandwidth for users (see Figure 119 on page 287).

] <u>A</u> ction ⊻iew] ← → ∰	•	
Tree	Name	
QoS Admission Control -		

Figure 119. Windows 2000 quality of service tool

Remote Storage

The Remote Storage tools allow the system administrator to enable hierarchical storage management on his or her system. This is functionality that automatically moves less frequently used files (directories) from fast but expensive media, such as disk drives, to slower but cheaper media, such as tape drives. After starting this tool, the configuration Wizard, which helps you configure any external or internal tape drive, appears (see Figure 120 on page 288).

Figure 120. Windows 2000 Remote Storage Setup Wizard

After configuring it, you can manage your remote storage with the panel shown in Figure 121 on page 289.

Figure 121. Windows 2000 Remote Storage Management tool

Routing and Remote Access

The routing and remote access service provides multi-protocol routing, remote access, and VPN (Virtual Private Network) capabilities. This service can route IP, IPX or AppleTalk protocols using RIP, OSPF or SAP routing protocols over LAN or WAN (see). Access can be managed on a user basis or on a Windows 2000 native-mode or mixed-mode domain base.

Chapter 9. System management 289

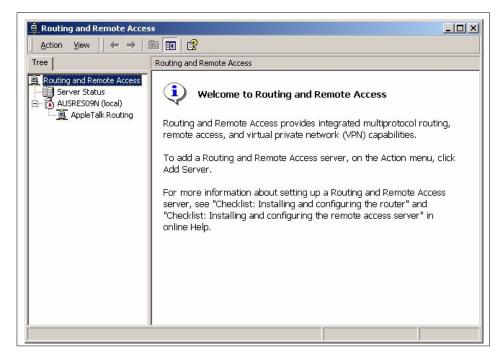


Figure 122. Windows 2000 Routing and Remote Access tool

Server Extension Administration

This tool helps Web authors include and manage the following functionalities:

- · Collaboration on creating and maintaining Web sites
- Support for hit counters, full-text searches, e-mail form handling natively and without separate CGIs.
- Work on multiple server platforms (Windows 2000, UNIX) and on multiple Web servers (IIS, WebSite, Netscape).
- Integration with Microsoft Office, Visual SourceSafe, and Index Server files.

Services

This tool enables the system administrator to manage Windows 2000 Services. A Service is a program, routine, or process that performs a specific system function and usually supports some other program (very similar to daemons in UNIX operating systems). With this tool, the system administrator can display all services and can start, stop, pause, resume, restart or change properties, such as the type of start and the startup parameters of the particular service (see Figure 123 on page 291).

Action View	← → 🖿 🖪 🛃 😫 🗍					
Tree	Name A	Description	Status	Startup Type	Log On As	Ŀ
Services (Local)	Alerter 🖏	Notifies selected users and computers	Started	Automatic	LocalSystem	
aga oon noor (eerooy	Application Management	Provides software installation services		Manual	LocalSystem	
	Boot Information Negotiation Layer	Provides the ability to install Windows		Manual	LocalSystem	
	🖏 ClipBook	Supports ClipBook Viewer, which allow		Manual	LocalSystem	
	COM+ Event System	Provides automatic distribution of eve	Started	Manual	LocalSystem	
	Computer Browser	Maintains an up-to-date list of comput	Started	Automatic	LocalSystem	
	DHCP Client	Manages network configuration by re	Started	Automatic	LocalSystem	
	DHCP Server	Provides dynamic IP address assignm	Started	Automatic	LocalSystem	
	Distributed File System	Manages logical volumes distributed a	Started	Automatic	LocalSystem	
	Distributed Link Tracking Client	Sends notifications of files moving bet	Started	Automatic	LocalSystem	
	Distributed Link Tracking Server	Stores information so that files moved		Manual	LocalSystem	
	Distributed Transaction Coordinator	Coordinates transactions that are dist	Started	Automatic	LocalSystem	
	DNS Client	Resolves and caches Domain Name Sy	Started	Automatic	LocalSystem	
	DNS Server	Answers query and update requests f	Started	Automatic	LocalSystem	
	Event Log	Logs event messages issued by progr	Started	Automatic	LocalSystem	
	Fax Service	Helps you send and receive faxes		Manual	LocalSystem	
	File Replication	Maintains file synchronization of file di		Manual	LocalSystem	
	File Server for Macintosh	Enables Macintosh users to store and	Started	Automatic	LocalSystem	
	FTP Publishing Service	Provides FTP connectivity and adminis	Started	Automatic	LocalSystem	
	IIS Admin Service	Allows administration of Web and FTP	Started	Automatic	LocalSystem	
	Ma IMDB Server	Provides high-speed access to cached		Disabled	LocalSystem	

Figure 123. Windows 2000 Services Management tool

Terminal Services

With the set of these four tools:

- Terminal Services Clint Creator
- Terminal Services Configuration
- Terminal Services Licensing
- Terminal Services Manager

the system administrator can configure and manage Windows 2000 Terminal Services. Terminal Services provides access to Windows 2000 Server from other clients on the network through *thin client* SW, similar to terminal emulation. For more details about Terminal Services, see Section 9.9.2, "Windows 2000 Terminal services" on page 334.

Windows Media

This tool enables you to configure *Windows Media*. Windows Media is an application that is similar to Web server. It can add to your Web site capabilities, such as radio and television programs, slide show presentations, file transfers, movies, and multimedia shows. The concept of Windows Media

is shown in Figure 124 on page 293, which is a picture copied from Windows 2000 Help Documentation.

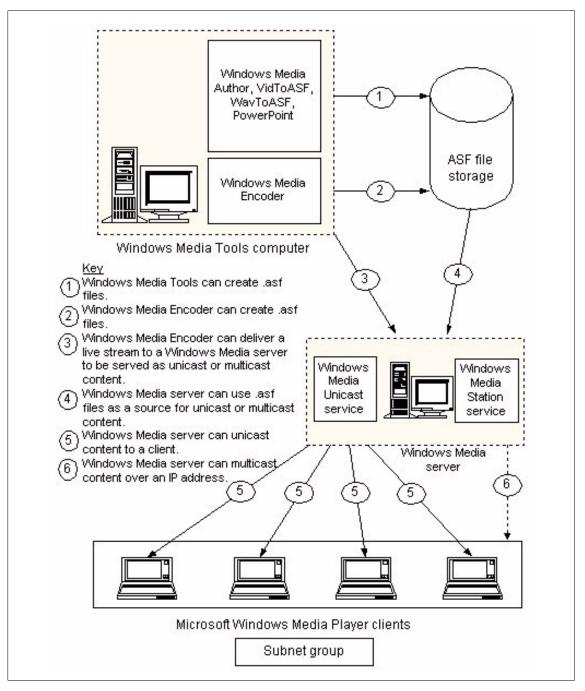


Figure 124. Windows 2000 Windows Media concept

The system administrator must first configure the server and enable access to it for users (see Figure 125).

Figure 125. Windows 2000 Media Services Tools

WINS

With this tool, the system administrator can manage the Windows Internet Name Service. This service is used for translation of NetBIOS computer names to IP addresses (see Figure 126 on page 295).

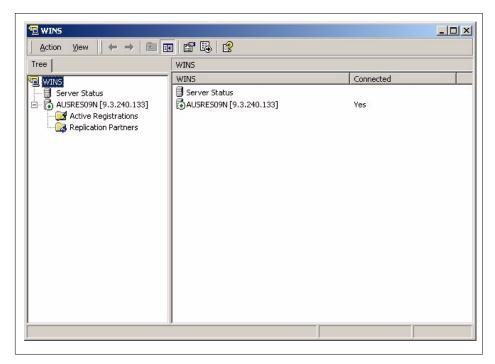


Figure 126. Windows 2000 WINS management tool

9.4.2.3 Windows 2000 Microsoft Management Console

The new tool that helps the system administrator administer Windows 2000 is called the Microsoft Management Console (MMC). MMC is a tool with which the system administrator can create a collection of other administrative tools in so-called console(s). Each console can contain monitor controls, task controls, wizards, and documentation used to manage HW, SW, or networking components on a local or remote computer.

The system administrator can start MMC by entering mmc in a Start/Run window (see Figure 127 on page 296).

≱ → ■ ■ ■	<u> </u>

Figure 127. Windows 2000 MMC Default window

In the next step, the system administrator adds administrator tools that he or she will use to administer the local or remote Windows 2000 system. For an example, see Figure 128 on page 297.

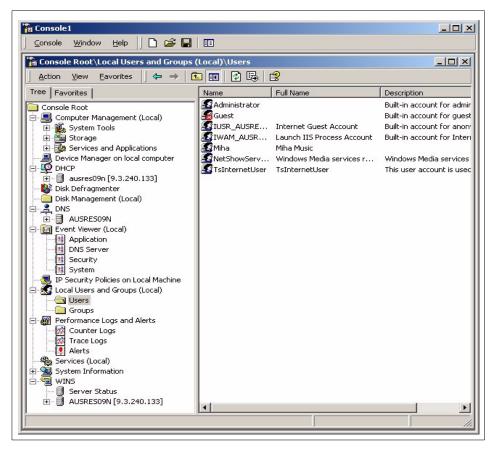


Figure 128. Windows 2000 Customized MMC

9.4.2.4 Windows 2000 Remote Management

The system administrator has several choices for managing a remote system in his or her Windows 2000 environment:

• Managing a remote system through Terminal Services

The system administrator can remotely log on to and manage any Windows 2000 system on the network providing he has the access permission. In order to effectively use this service, he or she should have at least a 28.8 Kbps or higher modem connection to the managed system. For more details about Terminal Services, see Section 9.9.2, "Windows 2000 Terminal services" on page 334.

• Manage the remote systems through the Microsoft Management Console.

When the system administrator configures their MMC, he or she can choose each tool, whether it will be used for a local or remote system. For more details about MMC, see Section 9.4.2.3, "Windows 2000 Microsoft Management Console" on page 295.

• Mange the remote systems through Administration Tools

Most of the tools in Administration Tools panel can be used for administration of the remote system. For details about the Administration Tool panel, see. Section 9.4.2.2, "Windows 2000 administrative tools" on page 271.

• Scripting with Windows Script Host

The system administrator can use WSH (Windows Script Host) and automate administrative actions on the remote system, such as creating shortcuts, mapping network drives, configuring printers, and so on. WHS is language-independent, and scripts can be written in Visual Basic Scripting Edition, JScript, or a similar language.

• Remote Installation Services (RIS)

With these services, the system administrator can remotely install Windows 2000 Professional on any client that can be started remotely.For more details about RIS, see Section 9.1.2.3, "Windows 2000 remote installation" on page 227.

9.5 Backup/restore

Backup and restore is one of the most important system administration tasks. In understanding the importance of system backup and recovery on AIX, one must keep four items in perspective:

- One backup method does not fit all needs.
- All data on a system may not need to be backed up.
- Being able to back up data from many systems is very important.
- The ability to restore that data is even more important.

9.5.1 AIX Backup/Restore

AIX provides several tools to assist a system administrator with the task of backup and recovery. Even though AIX does provide some simple-to-use tools for a system backup, including a bootable backup, the administrator must design and implement a backup strategy to suit the needs of his or her IT environment.

Careful consideration has to be given to classifying data, data retention, and levels of protection. This is not to imply that backup and recovery are difficult to perform. On the contrary, it is rather simple to perform. The more difficult part is the coherent design, implementation, and management of the overall strategy.

To help the administrator perform this set of tasks, AIX provides many UNIX standard tools as well as a few tools unique to AIX. When properly used, these tools can provide a very strong level of enterprise-wide data protection.

9.5.1.1 AIX backup tools

AIX provides several tools that can be used for backup/recovery. However, most of these commands are contained in a fileset, bos.sysmgt.sysbr, that may not be installed on all systems. This fileset is shipped with all AIX packages, but an administrator may have chosen not to install it on all systems on the network:

 tar - This is one of the traditional UNIX command line-oriented backup commands. The tar command manipulates archives by writing files to or retrieving files from an archive storage medium, such as disk, tape, or other removable media. Although this command has some limitations, (ACLs cannot be backed up with tar!), it is still widely used for quick and portable backups.

- Note -

The tar command is not enabled for files larger than 2 GB due to limitations imposed by XPG/4 and POSIX.2 standards.

• cpio - The cpio command copies files into and out of archive storage and directories. This is another traditional UNIX command. It is a rather flexible tool that works well with special character devices as output devices. The cpio command can also work with input/output redirection and provides a good set of pattern-matching facilities. The cpio command is, generally, very portable between UNIX systems.

— Note

The $_{\rm cpio}$ command is not enabled for files greater than 2 GB in size due to limitations imposed by XPG/4 and POSIX.2 standards.

 dd - This is another very powerful and versatile traditional UNIX command. It is commonly used to convert and copy data to and from non-AIX systems and from one media type to another. dd does not group multiple files into one archive. It is used to manipulate and move raw data. The input and output block size can be specified to take advantage of raw devices.

- rdump This is a network command that backs up files by file system onto a remote machine's device. Using the backup command format, the files are copied to a device on the remote machine. rdump can perform nine different levels of backups ranging from a *full complete* to selected *increments*. The /etc/dumpdates file is used to keep track of the last time the command was run and what level of backup was performed.
- pax pax is a POSIX-compliant archive utility that can read and write tar and cpio archives. The pax command extracts and writes member files of archive files, writes lists of the member files of archives, and copies directory hierarchies.

-Note

The pax command is not enabled for files greater than 2 GB in size due to limitations imposed by XPG/4 and POSIX.2 standards.

- backup This is the most useful command for performing backups in AIX. It is used as a part of the mksysb script, which performs System Backup on AIX and savevg script, which is used to back up other non-rootvg volume groups. It backs up files by name or by file system. This command is unique to AIX. backup can perform multiple levels of backups and has its own file-compression scheme. A nice feature of backup is its ability to allow the backup to span multiple volumes, such as tapes or CD-ROM-s.
- mksysb This is a shell script which creates a bootable system image of rootvg. The image can be created on a file, or, more commonly, on a tape or CD-ROM.This command is unique to AIX. It is a very powerful yet simple-to-use command. mksysb can utilize an exclude file to help filter which files to skip over or exclude particular files from the backup.
- savevg This command is similar to mksysb, but is used for creating non-bootable images of volume groups other than rootvg.

Thye system administrator has several options for backing up all the files in his or her system. It can be done in one step using the tar or backup command, but, in this case, only the files themselves would be backed up. If the system has to be restored, the system administrator must first configure all volume groups, all logical volumes, and all filesystems and only then restore the files from tape or CD-ROM. The more appropriate and convenient way is to use <code>mksysb</code> to back up the <code>rootvg</code>. It will store all information about this volume group, such as which logical volumes are configured, how large

they are, which filesystems are created, their mounting points, and so on. In the restore operation, the volume group will be recreated exactly as before, and all files will be restored. For other data, which resides outside rootvg, the savevg command is recommended.

9.5.1.2 On-line backup of mirrored logical volumes

In AIX 4.3, the system administrator can back up one copy of a mirrored logical volume while the other copy of logical volumes is still in use by applications and users. After backup, only the physical partitions that changed during backup must be synchronized.

9.5.1.3 On-line Backup of Journaled File System

In AIX 4.3.3, the system administrator can also make an on-line backup of a file system created on a mirrored logical volume in the same sense as described in Section 9.5.1.2, "On-line backup of mirrored logical volumes" on page 301. For more details see also Section 7.1.2.7, "On-line Journaled File System backup" on page 122.

9.5.1.4 Other backup packages

IBM offers two other separately-orderable backup packages. These packages provide functionality beyond what is already supplied on the AIX operating system. Both of these packages are designed to work in a networked environment.

AIX System-backup and recovery (Sysback/6000)

This product makes extensive use of the mksysb command as well as backing up other non-rootvg, volumes. It also contains some features for the restore part of the process that can be valuable to an administrator, such as changing the file system size and composition during the restore phase as well as restoring non-rootvg data. It even has features to assist with the network configuration.

ADSM/6000

ADSM is an IBM client/server product for enterprise storage management. It contains modules for backup/restore, archive/retrieve, hierarchical storage management and disaster recovery. This product is meant for enterprise-wide backup and recovery. It can handle data from a wide variety of clients, such as DOS, OS/2 and Windows, VM, OS/400, OS/390, as well as AIX and other non-IBM operating systems. The server can reside on several IBM and non-IBM platforms as well. It is a central backup-oriented server. All backups go to the server for safe keeping and tape management.

9.5.2 Windows 2000 backup/restore

The system administrator can use the Backup tool to back up user and system files on the Windows 2000 System (see Figure 129).

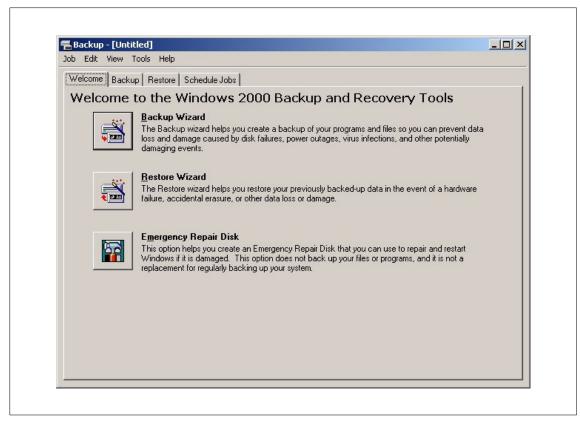


Figure 129. Windows 2000 Backup tool

The system administrator can use the *Backup Wizard* to back up the data or they can select what to back up manually. If the backup is to be made on a tape device, this should be configured first. This can be done with the Remote Storage tool.

With the Backup tool, the system administrator can:

- 1. Archive the complete volume, selected folders, or selected files.
- 2. Restore the complete volume, selected folders, or selected files.
- 3. Create an Emergency Repair Disk (ERD), with which to repair system files, if they get corrupted.

302 AIX V4.3 and Windows 2000, Side by Side

- 4. Make a backup of remote storage data located on mounted drives.
- 5. Make a backup of system Registry, Active Directory files, COM+ Registration database, Certificate Services database, SYSVOL directory and Cluster service information. All of which are also known as *System Data*.
- 6. Create a schedule for automating the backup procedure.

When files from NTFS file systems are backed up, they should be restored on an NTFS filesystem (not on FAT filesystems) in order to preserve permissions, encryption of files or folders (Encrypted File System - EFS), disk quota information, mounted drive information and remote storage information.

Types of backup

There are five different types of backup in Windows 2000:

- **Normal Backup** It copies all selected files and clears the *Archive attribute* of a file (in this way, it is marked as being backed up).
- Incremental Backup This copies only the files that were changed since the last normal or incremental backup (only the files with the Archive attribute set) and clear their Archive attribute. If you want to restore the complete disk or folder, you must have the media with the first Normal backup (complete backup) and then all media with consecutive Incremental backups. If you only want to install one file, it is sufficient to have the media on which this file was backed up last time. As can be seen, this procedure can be quiet challenging to implement.
- **Differential Backup** This is the same as incremental but does not clear the Archive attribute.
- **Copy Backup** This is the same as Normal backup but does not clear the Archive attribute.
- **Daily Backup** This copies all files that were changed that day and does not clear the Archive attribute.

9.5.2.1 Other backup packages

For Windows NT, there are several backup tools that are provided by third-party vendors. At the time of this writing, Windows 2000 was not announced yet, and the mentioned products were not officially supporting Windows 2000; so, checking before use is necessary.

For example, you can find the following products:

ADSM/6000

ADSM is an IBM client/server product for enterprise storage management. It contains modules for backup/restore, archive/retrieve, hierarchical storage management, and disaster recovery. This product is meant for enterprise-wide backup and recovery. It can handle data from a wide variety of clients, such as DOS, OS/2 and Windows, VM, OS/400, OS/390, as well as AIX and other non-IBM operating systems. The server can reside on several IBM and non-IBM platforms as well. It is a central, backup-oriented server. All backups go to the server for safe keeping and tape management.

ARCserve

Vendor name: Cheyenne Software URL: http://support.cai.com/arcservesupp.html

Legato Backup Utility

Vendor name: Legato Systems Inc. URL: http://www.legato.com/Products/index.html

Veritas Backup Exec

Vendor name: Seagate Software Inc. URL: http://www.veritas.com/products/bent/

9.6 Processes and subsystems management

In this chapter, we will describe how the processes (tasks or jobs) are managed in the AIX 4.3 and Windows 2000 operating systems.

9.6.1 AIX process management

When a user starts an application on AIX, he or she is actually starting one or more processes. Management of the processes can be done via the command line (the usual method), SMIT, or Web-based System Manager.

After starting a process, the user can do several things with it:

- List all the processes he or she is running (jobs or ps command)
- · Stop the process

If the user does not want the process to finish by itself or if he or she wants to interrupt the process for whatever reason, he or she can send a special signal (interrupt) to the process, and the process will stop the execution. This is done with the kill command. The user can only stop his or her processes, but the system administrator can stop all the user's processes and system processes.

304 AIX V4.3 and Windows 2000, Side by Side

• Put the process in the background

If the user starts a process and later realizes that it will take a long time to finish it, and he or she wants to do some other tasks on their system, he or she can put the process in the background where it will execute until completion (with a slightly lower priority). This can be done with the bg command.

Prioritize the process

The process is always started with one initial priority for all users. If the user wants to prioritize his or her processes, he or she can decrease the priority of certain processes so that the others will receive more system resources and finish in a shorter time. The system administrator (root user) can also increase the priority of the processes above the initial level. The commands nice and renice are used for this task.

9.6.1.1 AIX Workload Management

In order to better manage the system resources, the new concept of Workload Management was introduced in AIX 4.3.3. The idea is to define a set of rules and limits to a group of processes and define what amount of resources they should and can use.

Workload management concepts and terminology

The processes are grouped in *classes* on the basis of user ID (all processes of a particular user), group ID (all processes of a particular group) or on process names (for example, /opt/lotus/bin/notes process - application).

Each class is then assigned its *resource limits*. Currently, only the limits for CPU usage and memory usage are available, but, in future releases, the system administrator will also be able to set the I/O limits and paging space limits.

The limits are:

• minimum

This determines the minimum percentage of CPU and Memory resources a certain class should receive. If it does not receive them, its processes will receive the higher system priority and, therefore, more system resources.

• maximum

This determines the maximum percentage of CPU and Memory resources a certain class should receive.

target

This determines the optimum percentage of CPU and Memory resources. The Workload Manager tries to keep all classes between minimum and target percentage in order to optimize the workload of the system.

shares

This is an additional value that can be specified. The class with share 15 will receive five times more system resources then a class with a share value of 3.

Workload Management configuration

We can manage the Workload Management subsystem with a command line user interface, SMIT, or Web-based System Manager (see Figure 130 on page 306):

Q) 🛷 👯 🎥	_	• ?	
Class	·	Description	Tier	CPU	Memory
*	Default		0	0	0
	System		0	53	59
*	test_class_1	description of test_cl	1	0	0
*	test_class_2	description of test_cl	2	0	0
*	Unclassified			2	10

Figure 130. Web-based System Manager - Workload Management

Workload Management is not started by default on the system, and the system administrator must start it manually (with the startwlm command) or add an entry in /etc/inittab file (this can be done via SMIT or Web-based System manager).

All information about classes, limits, shares, and so on is in the /etc/wlm directory in flat ASCII files in stanza format. We can have multiple sets of configurations and start Workload Management each time with a different configuration, which is very useful in testing periods.

9.6.2 Windows 2000 Process Management

In Windows 2000, processes (or tasks as they are called in Windows) are managed by Task manager. Task Manager can be started by pressing <**Ctrl**><**Alt**><**Del**> simultaneously (see Figure 131 on page 307).

oplications Processes Performance		
Task	Status	
📽 Windows 2000	Running	
Administrative Tools	Running	
Somputer Management	Running	
🕙 Welcome to MSN.COM - Microsoft Internet Expl	orer Running	
💐 Paint Shop Pro	Running	

Figure 131. Windows 2000 Task Manager - Applications panel (default)

By clicking with the right mouse button on the **Application Task**, the system administrator can find out which process was run by this application, bring the application into the foreground (bring the Window into the foreground (do not confuse this terminology with UNIX *foreground*)), or end/stop the application.

In the Process pane (see Figure 132 on page 308), the system administrator can see the list of all processes, the amount of CPU usage, memory usage, I/O rate, priorities and many other parameters. The parameters shown can be customized, and the data can be sorted by any parameter, which is a convenient way to find out which processes use the most system resources.

Image Name	PID	Username	CPU	CPU Time	Mem Usage	Page Faults	VM Size	Base Pri	I/O Reads	I/O Read	I/O Write	
System Idle	0	SYSTEM	85	7:23:25	16 K	1	OK	N/A	0	0	0	
System	8	SYSTEM	00	0:00:06	240 K	2,676	88 K	Normal	10	75,462	681,076	
smss.exe	180	SYSTEM	00	0:00:00	344 K	618	276 K	Normal	158	9,865,728	50,176	
winlogon.exe	200	SYSTEM	00	0:00:02	672 K	4,796	4,820 K	High	312	1,202,701	13,236	
csrss.exe	204	SYSTEM	00	0:00:07	1,744 K	1,067	1,036 K	High	16,876	402,147	0	
services.exe	256	SYSTEM	00	0:00:03	6,108 K	2,049	2,624 K	Normal	20,579	3,652,755	2,665,852	
lsass.exe	268	SYSTEM	00	0:00:00	5,232 K	1,519	2,044 K	High	2,205	659,180	215,022	
svchost.exe	444		00	0:00:00	3,024 K	827	1,096 K	Normal	160	269,072	7,848	
SPOOLSV.EXE	472	SYSTEM	00	0:00:00	3,812 K	1,216	1,580 K	Normal	211	271,744	11,736	
msdtc.exe	500	SYSTEM	00	0:00:00	4,092 K	1,139	1,360 K	Normal	17	1,056	7,998	
tcpsvcs.exe	608	SYSTEM	00	0:00:00	4,316 K	2,901	2,132 K	Normal	173	6,387,368	6,941,044	
svchost.exe	624	SYSTEM	00	0:00:01	8,860 K	9,138	5,556 K	Normal	13,112	7,258,540	156,962	
llssrv.exe	648	SYSTEM	00	0:00:00	1,980 K	499	704 K	Normal	397	6,496	7,099	
sfmprint.exe	684	SYSTEM	00	0:00:00	1,168 K	291	444 K	Normal	3	110	84	
NSPMON.exe	756	NetShowServices	00	0:00:00	1,476 K	368	476 K	Normal	4	180	156	
NSCM.exe	804	NetShowServices	00	0:00:00	3,024 K	756	1,036 K	Normal	14	457,600	732	
regsvc.exe	900	SYSTEM	00	0:00:00	840 K	215	232 K	Normal	56	6,970	3,628	
RsFsa.exe	936	SYSTEM	00	0:00:01	6,940 K	7,700	5,220 K	Normal	262	37,656	196,677	
winhlp32.exe	956	Administrator	00	0:00:00	1,208 K	312	304 K	Normal	41	31,442	0	
RsSub.exe	1008	SYSTEM	00	0:00:00	2,928 K	761	768 K	Normal	72	1,216	1,311	-
mstask.exe	1092	SYSTEM	00	0:00:00	1.800 K	481	516 K	Normal	21	1.958	1.402	-

Figure 132. Web-based System Manager - Workload management

By pressing the right mouse button on the process, the system administrator can end the process, end the whole process tree (the process and all of it child processes), or set the priority of this process in the range of (Real-time, High, Above Normal, Normal (default), Below Normal, or Low). However, after changing the priority, the message shown in Figure 133 appears; so, the system administrator should take care when doing this.

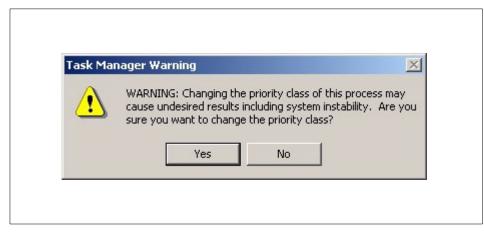


Figure 133. Windows 2000 Task Manager - Priority warning message

The last panel of Task Manager is used to display system resource usage in the time domain as shown in Figure 134.

e Options View								
pplications Process	es Performanc	e						
CPU Usage	CPU Usage H	listory						
								A
20%	Dave A	A MARY WALL	1 ml				A MA M	the market have
				erion ten dia	a teteration de	neran takerar		
MEM Usage	Memory Usa	ge History						
125336K			ي و و و و و				و و و و و و	د و و و و و و و و
Totals		- Physical Memory (K)						
Handles	7141		80596					
Threads	472		0452					
Processes	38	System Cache	27412					
Commit Charge (K)	Kernel Memory (K)						
Total	125336		19756					
Limit	310628		4252					
Peak	126788	Nonpaged	5504					

Figure 134. Windows 2000 Task Manager Performance panel

9.7 Reliability, availability and serviceability

This section looks at what is implemented in AIX as well as in Windows 2000 to ensure a high level of system reliability, availability, and serviceability.

9.7.1 AIX Reliability, availability, and servicability

AIX offers customers the convenience of purchasing a complete solution from IBM (hardware, operating system, and software products). The AIX operating system is intensively tested with the RS/6000 platform. Hardware and software are extremely integrated. This results in very high reliability availability of the total solution.

AIX and the RS/6000 are tightly integrated because both products come from a single source - IBM. Integration does not need to be done by the customer. There is only one contact point for the entire solution. The following sections describe the RAS features provided by AIX and the RS/6000 platform.

9.7.1.1 Protected subsystems

In AIX, all user programs run in the user mode, which is totally separate from the kernel mode. User programs are executed in a separate address space

and cannot interfere with each other or with the kernel or kernel extensions in other way as with regular system calls.

9.7.1.2 Dynamic Kernel

Adding a device driver to the system does not require any recompilation of the kernel as in traditional UNIX systems. Device drivers and any kernel extensions can be added on the fly without rebooting the system. Also, updates to the kernel can be applied dynamically, and kernel parameters can be changed dynamically. Kernel itself needs never to be recompiled. This is also the reason why a C compiler is not shipped with AIX as it is with traditional UNIX systems.

9.7.1.3 Logical Volume Manager

AIX's LVM allows for dynamic extension to the size of an active file system without any reboot and while the filesystem is in normal use. Doing so is totally transparent to active users of the system. LVM also offers the possibility of mirroring for extended data protection.

9.7.1.4 Journaled File System

The AIX Journaled File System, available since 1990, is a stable and recoverable file system. All transactions operated in the file system structure are logged in a log Logical Volume. In case of a system crash, all non-committed transactions are rolled back so the file system is always consistent.

9.7.1.5 AIX Backup

In AIX, the system administrator can create bootable and installable system backup of the rootvg on tape or CD-ROM. In case of a total disk drive failure, the system can be booted from the backup media and reinstalled. No additional configuration is necessary.

The online backup possibility of logical volumes and the journaled filesystem additionally increases high availability of the system.

9.7.1.6 AIX surveillance

On system equipped with a *Service Processor*, it is possible to enable a surveillance daemon (survd). This daemon runs a heartbeat with the service processor. If the AIX system hangs up for any reason, the service processor will shut down the system and reboot.

9.7.1.7 Auto Restart

In case of a system crash, the system can be automatically rebooted using the autostart=true kernel option. After the dump of system memory to disk, the system is automatically rebooted.

9.7.1.8 Remote reboot

All AIX systems can be rebooted remotely by using the shutdown -r command or the reboot command. These commands can be executed on the system through a telnet or an rlogin connection if the machine is connected to a TCP/IP network.

On RS/6000 SMP servers, the system can be booted remotely even if the power is off. This is possible because the service processor is always powered on, and remote access to the service processor is possible from a dumb terminal or via modem (if enabled).

9.7.1.9 Remote diagnostics

Most of the AIX diagnostics are online. This means that diagnostics can be executed from AIX using the diag command while the system is operational. However, some diagnostics dealing with network adapters require you to boot in service mode. On RS/6000 servers equipped with a service processor, hardware diagnostics can be run remotely from an ASCII terminal after a system shutdown.

9.7.1.10 Maintenance Mode

AIX allows the system administrator to boot the system in maintenance mode. A bootable tape or CD-ROM is required. A maintenance menu allows the administrator to access the root volume group and mount the file systems belonging to that volume group in order to access all system files. Editing files that might cause a problem is possible in this maintenance mode. This is a way to troubleshoot the system, if necessary, on severe system problems.

9.7.1.11 Service Director/6000

IBM offers Service Director free of charge for systems that are under a maintenance contract or under warranty. It monitors the system and sends all severe errors that could occur on the system to IBM via modem connection.

9.7.1.12 AIX Error Logging Subsystem

AIX contains an extensive error logging and reporting facility. The error-logging subsystem records hardware and software failures in the error log for information purposes or for fault detection and corrective action.

The AIX operating system makes extensive use of the error-logging subsystem to warn the system administrator of serious or potentially serious hardware and software problems. Application programs can also utilize this facility by using specialized system calls within the code.

The error logging subsystem consists of three main components:

- Error Logging This component is used to create the files containing error templates, to create error messages, and to insert error logging code into programs.
- Error Processing This component handles the actual logging of an error when it occurs. These entries are written, in binary format, to /var/adm/ras/errlog and include a fine-grained time stamp. The error logging daemon, errdemon, reads error records from the /dev/error file and creates error log entries in the system error log. Besides writing an entry to the system error log each time an error is logged, the error-logging daemon performs error notification as specified in the error notification database.
- Error Log File Processing This component is used by system administrators or IBM service personnel while diagnosing system problems. SMIT or the AIX command line can be used to perform error log file processing.

Error Logging Functions

The error log provides the following functions:

- It allows user or kernel functions to log errors or messages.
- It provides categories and classifications for different errors. This allows the administrator to quickly decide if an error is serious or only informational.

The four main categories are:

- **Hardware** This includes device failures, such as disk drives and adapters.
- **Software** This includes application program failures, system program failures, and kernel problems.
- **Operator** This includes notification errors that get logged when the errorlogger command is issued.
- **Undetermined** This is the basic *other* category for errors that the system cannot classify into another existing category.

The six main classifications are:

- Permanent (PERM) An error from which there is no recovery
- Impending (PEND) Impending loss of availability of a device or component
- Temporary (TEMP) An error that was recovered
- Informational (INFO) An informational error log entry that may have been put there from a user's program
- **Performance (PERF)** Indicates that the performance of a device or a component has degraded below an acceptable level
- Unknown (UNKN) Severity could not be determined
- It allows a custom template for each error log type. The format of each error log entry is different depending on the type of error.
- It provides automatic notification for selected errors. A notification method allows an executable to be run when certain errors are detected. For example, this might be to send an e-mail to the administrator when a user application core dumps.
- It provides a formatter to browse the error log. The errpt command allows the user to format and browse the log entries.
- It provides analysis of error logs by diagnostics. Diagnostics can read and analyze the error log and perform diagnostics on offending items.

Reading the error log

In AIX, there are several methods available to view the contents of the error log. Any user on the system may view the error log content. Only the system administrator can remove entries from the error log.

The error log is circular, meaning it has a finite length before overwriting the oldest messages. The administrator can change the total length of the log or clear it out from time to time.

The error log can be interrogated from the AIX command line with the errpt command. The errpt command has many flags or switches to allow the user to filter data or expand the level of detail shown. Most commonly, it is used in the form, errpt -a, which shows the complete error log, all entries in expended format.

The SMIT interface can also be used to query the error log. The smit errpt fastpath can be used to access the error log menu directly. For example, to show all information messages, the system administrator would enter parameters as shown in Figure 135 on page 314, and, if there were such

errors on his o	or her s	system,	receive	results	similar	to those	shown	in Figure
136 on page 3	315.							

CONCURRENT error reporting?	yes	
SUMMARY or DETAILED error report	detailed	List 🔺
Error CLASSES (default is all)	D	List
Error TYPES (default is all)	INFQ	List
Error LABELS (default is all)	¥	List
Error ID's (default is all)	y	List
Resource CLASSES (default is all)	¥	
Resource TYPES (default is all)	¥	
Resource NAMES (default is all)	¥	
SEQUENCE numbers (default is all)	¥	
STARTING time interval	¥	
ENDING time interval	¥	
LOGFILE]/var/adm/ras/errlog	
TEMPLATE file]/var/adm/ras/errtmpl	
MESSAGE file	¥	
FILENAME to send report to (default is stdout)	¥	
		Þ
OK Command Reset	Cancel	?

Figure 135. Generating an error report menu

Exit Show			<u>H</u> elp
	Ok	¥	Stop
Command:		л	
errpt '-a' -d'0' -T'INFO'			
4			
Output:			
I LABEL: JFS_FS_FULL IDENTIFIER: 369D049B			- 1
Date/Time: Tue Mar 14 12:01:33 Sequence Number: 51 Machine Id: 003826444C00 Node Id: metz Class: 0 Type: INFO Resource Name: SYSPFS			
Description UNABLE TO ALLOCATE SPACE IN FILE SYSTEM			
Probable Causes			
4			
Done Find		Find	d Next

Figure 136. The Results of error reporting

9.7.1.13 The syslog daemon

Another error-logging facility that exists in AIX is called syslog. The syslog facility comes from the BSD style of UNIX. One highly-valued feature is the ability to easily reroute messages to another system via mail or files. The syslogd daemon reads a datagram socket and sends each message line to a destination described by the /etc/syslog.conf configuration file. The syslogd daemon reads the configuration file when it is activated and when it receives a hang-up signal. Messages can be rerouted to the error logging facility and vice versa.

Like the error-logging subsystem, the syslog facility classifies events in the form Facility, Level, Destination.

A *Facility* is a subsystem that sends a message to be logged. Although there are many *Facilities*, the major ones are:

- kern The kernel
- mail The mail subsystem
- **Ipr** The printing subsystem
- auth The login authentication systemg facility
- user User level
- * All facilities

The *Level* is the relative severity of the message. Typical severity levels are, in order of decreasing seriousness:

- emerg Emergency. Usually a system panic or other fatal disaster
- alert A serious error needing immediate attention
- crit Critical errors. Typically hardware errors
- err General errors from user programs
- warning A warning, not likely to be fatal
- info Informational messages

In addition, there is a special level called debug that can be used to help debug an application or subsystem. Debug should only be used for temporary problem determination because it tends to generate a lot of data in a short amount of time.

The Destination is used to determine where to route or log this error. This could be a log file on the local machine, a remote machine, another program, or an e-mail message.

9.7.1.14 System dump facility

When a severe error occurs and the system cannot guarantee the consistency of its state, it stops all activity on the system and initiates a system dump. System dumps can also be initiated by users with root authority. A system dump creates a picture of your system's memory contents. System administrators and programmers can generate a dump and analyze its contents when debugging new applications.

After the system dump occurs, there is a flashing 888 on the display, or the system reboots automatically if it is so configured. By default, the dump file is created on a logical volume dedicated for paging space, but the system administrator can create a separate logical volume and configure it as a dump

device. If the dump is created on /dev/hd6 (paging space) while the system is booting, the dump is copied to the /var/adm/ras/vmcore.x file. If there is not enough space in the /var filesystem (note that the dump can be quiet large), the system operator is prompted on console for inserting tape into the tape drive and copying the dump to tape. It is very important that the system administrator do so at that time because the dump cannot be collected later, once the paging space is initialized and used by the system for paging. After collecting the dump, the system administrator should collect all information about his/hers system with the snap -a command and send the tape to the IBM support center to determine the reason for the dump.

The system dump can also be initiated via the command line (with the sysdumpstart command) or via SMIT if the system administrator or support center wants to analyze it. On older RS/6000 systems, it is possible to turn the key to the *Service* position and press the yellow **Reset** button once to initiate a dump. If the system is not responding normally (the administrator cannot log on to it), but interrupts are still enabled (keyboard interrupt), it is possible to initiate a dump by pressing <Ctrl><Alt><NumPad 1> on the graphical console.

The dump can by analyzed by the *crash* interactive tool.

9.7.1.15 Tape Backup/restore support

AIX includes a system backup facility (accessible via SMIT) that allows the system administrator to create a bootable image of the root volume group. In case of a system crash and if the system cannot be recovered in other ways, it is always possible to boot the system on the backup tape and restore the entire root volume group. Non-root volume groups will be preserved and accessible after the restore process is completed.

The AIX backup utility allows different kinds of backups. Refer to Section 9.5.1.1, "AIX backup tools" on page 299, for more information on AIX backup processes.

9.7.1.16 UPS support

Uninterruptable Power Supplies (UPS) are supported on AIX. On a rack system, the UPS is a feature that can be purchased directly from IBM.

UPS can be connected to one of the serial ports of an RS/6000 system and the special software that comes with most UPSs can be configured to initiate a shutdown command after the main power is lost in order to stop the applications and halt the system in a regular way. If the UPS is large enough, the RS/6000 can continue operation until the main power comes back.

9.7.1.17 RAID support

As explained in Section 7.1.3, "AIX V4.3 and Redundant Array of Independent Disks support" on page 125, AIX supports mirroring and striping. In addition, IBM provides a large range of disk units and controllers to enable RAID 5.

9.7.2 Windows 2000 reliability, availability, and serviceability

Windows 2000 provides high availability in three ways: By uniformly handling hardware and software system faults by protecting the system from user programs, and providing data and system recovery mechanisms. Windows 2000 includes a variety of reliability and fault-tolerance capabilities that are covered in the following sections.

9.7.2.1 Operating system protection

In order to increase the Reliability and Availability of Windows 2000, Microsoft implemented or enhanced (compared to Windows NT) the following concepts:

Protected subsystems

Windows 2000 employs protected subsystems in its design and forms a separation of user and kernel modes. This protects the Windows 2000 kernel from misbehaved applications (or any user mode program). Each protected subsystem resides in its own protected memory space, as does each Windows 2000 application. This architecture provides a stable environment.

Kernel-mode write protection

Windows 2000 *Memory Manager* provides write protection for parts of the kernel, such as kernel code, read-only subsections and device drivers. This protection is implemented in such a way that even parts of the kernel cannot overwrite other (protected) parts of the kernel.

System File Protection (SFP)

SFP enables the protection of system files so that they cannot be overwritten by application installations.

9.7.2.2 Recoverable File System

Windows 2000 also provides handling of hardware faults, such as disk and disk-related failures. Much of this disk fault tolerance is related to NTFS, the Windows 2000 file system. NTFS is a comprehensive recoverable file system that provides virtually instant recovery from a disk failure. The file system logs each disk I/O operation as a unique transaction. When a user updates a file, the Log File Service (LFS) logs redo and undo information for that transaction. Redo is the information that tells NTFS how to repeat the transaction. Undo tells NTFS how to roll back the transaction. If a transaction completes successfully, the file update is committed. If the transaction is

incomplete, NTFS ends or rolls back the transaction by following the instructions in the undo information. If NTFS detects an error in the transaction, the transaction is also rolled back.

File system recovery is straightforward with NTFS. If the disk fails but is not destroyed (for example, due to a power outage), NTFS performs three passes: An analysis pass, a redo pass, and an undo pass. During the analysis pass, NTFS appraises the damage and determines exactly which clusters must now be updated per the information in the log file. The redo pass performs all transaction steps logged from the last checkpoint. The undo pass backs out any incomplete (uncommitted) transactions.

In addition to virtually instant recovery, NTFS supports hot-fixing. If an error occurs due to a bad sector, NTFS moves the information to a different sector and marks the original sector as bad. This process is completely transparent to an application performing disk I/O.

For more details about the NTFS filesystem, see Section 7.2.2, "Windows 2000 file systems" on page 134.

9.7.2.3 Auto restart

In the event of a system failure, Windows 2000 can be configured to automatically restart itself. There is also an option to write a memory dump file to disk before restarting for later analysis. In systems with a lot of system memory (RAM) the Kernel dump can be quiet a large structure (slightly larger than the amount of RAM). In Windows 2000, there is a new option with which we can enable Small Kernel Dump (64 KB). In this case, only Kernel Information (Kernel Structures) are written to the disk and not the whole amount of physical memory.

9.7.2.4 Tape backup/restore support

Tape backup is included with the Windows 2000 product. Refer to Section 9.5.2, "Windows 2000 backup/restore" on page 302, for a detailed description.

9.7.2.5 UPS support

An Uninterruptable Power Supply (UPS) is a battery-operated power supply connected to a computer that keeps the system running during a power failure. The UPS service for Windows 2000 detects and warns users of power failures and manages a safe system shutdown when the backup power supply is about to fail. For more information, refer to Section 9.4.2.1, "Windows 2000 Control Panel" on page 265.

9.7.2.6 RAID support

Fault-tolerant disk systems are standardized and categorized in six levels known as Redundant Arrays of Independent Disks (RAID). Each level offers various mixes of performance, reliability, and cost. See: Section 7.2.3, "Windows 2000 RAID support" on page 146, for more information about RAID.

9.7.2.7 Diagnostic, recovery, and repair tools

The following diagnostic, recovery, and repair tools are available in Windows 2000.

System information

The system administrator can use system information to check for resource conflicts, hardware details, memory (paging, DMA) configuration, driver status, interrupt configurations (usage), port information, network information, and printer information.

Total operating system failure procedure

The system administrator can configure how the system reacts in case of a total failure (dump).

Last known good configuration

In the event that the system administrator makes a mistake in changing configuration information, there is a feature known as the Last Known Good Menu. Last known good information from the last reboot is stored on the system until a user logs in. Every time Windows 2000 boots, the user is prompted to press the spacebar to enter the Last Known Good Menu. From this menu, as long as the system has not yet been logged on to since the errant configuration change, the administrator can restore the previous, or *last known good*, configuration.

Safe mode boot

Windows 2000 provides this functionality to help the system administrator solve the booting problems of the operating system. For a detailed description of Safe Mode Boot, see Section 9.2.2.3, "Booting in Windows 2000 Safe Mode" on page 236.

Recovery console

This is a recovery and repair tool integrated in windows setup. The system can be booted from installation CD-ROM or bootable floppies and the recovery console can be started by choosing the *Repair option* from the *Welcome screen*. From the Recovery console, the system administrator can run several commands, such as FixMBR (for fixing master boot record), fdisk,

format, copy, delete, dir, type, and he/she can enable and disable Windows 2000 Services.

Emergency Repair Process (ERP) and Emergency Repair Disk (ERD) It is highly recommended that the system administrator create Emergency Repair Disk(s) (ERDs) that are bootable and that enable him or her to boot the system and repair system files, the startup environment in multiboot systems, and the partitions information.

Note

The emergency repair disk is system-dependent and cannot be used to recover other systems. It can only help recovering the system on which it was created.

9.7.2.8 Event logging and error logging

Windows 2000 defines an event as any significant occurrence in the system or in an application that users should be aware of and perhaps be notified about interactively. Windows 2000 provides a tool called the Event Viewer for reading and managing these events (see Figure 137). There are three different logs within the Event Viewer: For more details about Event Viewer, see Section 9.4.2.2, "Windows 2000 administrative tools" on page 271.

Action ⊻iew	🗗 🗗 🗟 😭							
Tree Type	Date	Time	Source	Category	Event	User	Computer	
💻 Computer Management 🔺 🔔 Warning	10/11/1999	2:58:38 PM	RSVP	None	10	N/A	AUSRES09N	
🖻 🌇 System Tools 🛛 🗌 🔔 Warning	10/11/1999	2:58:05 PM	RSVP	None	10	N/A	AUSRES09N	
Event Viewer Informal	ion 10/11/1999	2:58:03 PM	SMTPSVC	None	561	N/A	AUSRES09N	
Application SError	10/11/1999	2:58:00 PM	DHCPServer	None	1041	N/A	AUSRES09N	
	ion 10/11/1999	2:57:40 PM	SMTPSVC	None	554	N/A	AUSRES09N	
- 👪 Security 🛛 🔍 Informal	ion 10/11/1999	2:57:38 PM	SMTPSVC	None	531	N/A	AUSRES09N	
🕖 System 🛛 🚯 Informal	ion 10/11/1999	2:57:35 PM	TermServLicensing	None	0	N/A	AUSRES09N	
🗄 😼 System Informal 🛛 🔥 Warning	10/11/1999	2:57:35 PM	TermServLicensing	None	18	N/A	AUSRES09N	
🕀 🎆 Performance Loc 🛛 🚺 Informat	ion 10/11/1999	2:57:35 PM	TermServLicensing	None	5	N/A	AUSRES09N	
🗄 🛃 Shared Folders 🛛 🚯 Informal	ion 10/11/1999	2:57:29 PM	SNMP	None	1001	N/A	AUSRES09N	
- Bovice Manager Device Manager	ion 10/11/1999	2:57:22 PM	WINS	None	4097	N/A	AUSRES09N	
🗄 🔣 Local Users and	10/11/1999	2:57:15 PM	Browser	None	8021	N/A	AUSRES09N	
E-Storage	10/11/1999	2:57:14 PM	RSVP	None	10	N/A	AUSRES09N	
Disk Managemer Disk Defragment	ion 10/11/1999	2:56:47 PM	LPDSVC	None	4000	N/A	AUSRES09N	
Logical Drives	ion 10/11/1999	2:56:47 PM	AppleTalk	None	5	N/A	AUSRES09N	
Bernovable Stor. Arrow Information	ion 10/11/1999	2:56:30 PM	eventlog	None	6005	N/A	AUSRES09N	
Information Information	ion 10/11/1999	2:56:30 PM	eventiog	None	6009	N/A	AUSRES09N	

Figure 137. Windows 2000 - Event viewer

9.8 Printing

In this chapter, we will cover the printing subsystem of AIX 4.3 and Windows 2000. Regardless of the concept of paperless offices, the printing is still a

very important issue in modern IT environments. Both operating systems covered here directly support large number of different printers, from matrix and ink-jet to laser ones.

9.8.1 AIX printing

From AIX, we can print to printers attached to a local RS/6000 system, to printers attached to other UNIX or other operating systems, or to Network Printers (Printers attached directly to the LAN).

9.8.1.1 AIX printing terminology

When configuring a printing subsystem on AIX, the system administrator must be familiar with the following terms:

Printer

This is an actual physical device for printing.

Queue

Users submits their jobs (files) to queues. The print spooler subsystem then sends the data to the printer. For more details, see Section 9.8.1.2, "AIX printing process" on page 323.

Virtual printer

A virtual printer is a single logical view of the components that make up a printer from a user's perspective. A virtual printer describes the combination of a printer device, a data stream that a printer supports, and the specific configuration of the queue and queue device that serves the virtual printer. The virtual printer is associated with a print queue. It is possible to define a print queue for each data stream that the printer supports so that several queues point to one physical printer. It is also possible to configure one print queue to points to many physical printers (see Figure 138 on page 323).

Spooling

This is the concept of submitting the jobs for processing and handling them in a controlled predefined way. They are two basic methods: FCFS (First Come First Serve) or SJN (Shortest Job Next).

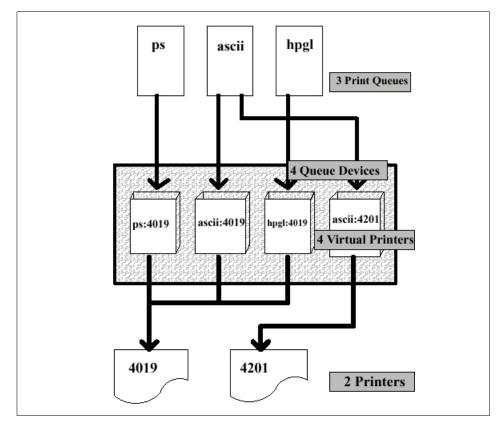


Figure 138. Concept of virtual printers

9.8.1.2 AIX printing process

Figure 139 on page 324 depicts the AIX printing process.

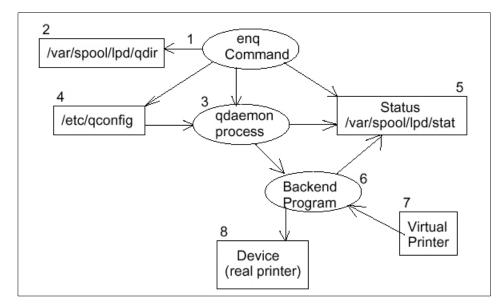


Figure 139. AIX printing process

The following steps are performed by the AIX operating system:

- 1. The user submits a job with one of many AIX commands, such as lpr, qprt, enq, or lp. All of them are actually only front-ends for the enq command.
- 2. The particular command translates its options into enq's options and calls the enq command.
- 3. The enq command checks to see if the queue name desired is a valid queue in the /etc/qconfig file. If so, it continues; if it is not valid, an error message is given to the user.
- 4. The enq command puts an entry in the /var/spool/lpd/qdir directory identifying the job to be run. Note that the original file is used. To copy the file to the spool directory for printing, you need to supply an option to the command you use to submit the print job.
- 5. The qdaemon is notified of a new job in its /var/spool/lpd/qdir directory.
- 6. When the queue is ready for the job, the qdaemon picks up the information from the /etc/qconfig file describing the queue.
- 7. The qdaemon updates the stat file for the appropriate queue to show that the queue is now working on a new job.

324 AIX V4.3 and Windows 2000, Side by Side

- 8. The qdaemon starts the backend program (usually piobe), passing the file names and appropriate options on the command line. Information on the job status is stored and updated in the /var/spool/lpd/stat file for use by the qdaemon and backend program.
- 9. The back end figures out the appropriate virtual printer and merges it with the actual file.
- 10. The back end program sends its data stream to the device driver for the appropriate printer.

It is also possible to bypass the spooling subsystem completely and send the file directly to the special device file, /dev/lp0, and, therefore, to printer. This option is, however, not recommended in multiuser environments because, if several users would do this at the same time, the result could be unpredictable. Also, we would loose all the formatting and configuration functionality of Virtual printers. But, sending the file directly to printer can be very useful in performing problem determination on a printing subsystem, when this step determines if we have a problem with the physical printer and cable connection or we have a problem with the spooling subsystem.

9.8.1.3 AIX printing management

This chapter describes the necessary steps for using a printing subsystem on AIX.

This step is usually done via SMIT, VSM or Web-based System Manager.

Defining the printers

In the first step, we choose if the printer is attached to our local RS/6000 system, a to remote UNIX system or is a Network Printer.

The second step is to choose the type of the printer. Support for several IBM and HP printers is part of the Server Bundle package and is installed by default. If we would like to define other supported printers we must install additional filesets from installation CD or tape. If we would like to use unsupported printers, we have two options:

- We can use one of the emulation modes of the printer (many printers emulate one IBM or HP printer).
- We can choose a similar kind of printer from supported printer types and change its definitions in the Virtual Printer definition file.

The third step is to choose to which port the printer is connected (parallel or serial), if we have local attached printer or IP hostname or address, and the

name of the queue on the remote system if we have a printer attached to the remote host or Network Printer.

Defining the queues

In this step, we define the names of the queues. The number of queues depends of our specific needs, but, in general, each printer will have as many queues pointing to it, as different data streams it supports, such as ascii, PostScript, PCL, HPGL, IPDS, and so on. For each data stream, we must define its own queue (if we want to use it).

After this we can start using the printer(s). The management of an existing Printing subsystem consists of:

Queue management

This can be done by any AIX user interfaces (command line, SMIT, VSM, Web-based System management). We can stop and start the queues and add or delete the queues.

Print job management

This can also be done by any of the AIX user interfaces. The system administrator can see the status of print jobs, hold printing job on queue, cancel a printer job or transfer the job to another printing queue. He or she can also increase or decrease the priority of printing jobs.

Print server

If we want other systems (users) to be able to print to a printer attached locally to our RS/6000, we must start Print Server Subsystem (via command line or SMIT) and then explicitly allow each client to print to our printer.

9.8.2 Windows 2000 printing

From Windows 2000, we can print on printers attached on a local system or to the printers attached to other systems. We can also manage the printers attached to other systems if we have the appropriate permissions and authorization. One of the advantages of the Windows 2000 printing susbsystem is that you do not need to install a printer driver on a client computer, but this can be downloaded automatically from a print server the first time the printer is configured.

9.8.2.1 Windows 2000 printing terminology

Each operating system has its own terminology to describe internal processes, and Windows 2000 uses the following terminology:

Printer

The physical device that does the actual printing.

Logical Printer

This is the software interface on the print server. Each printer appears as a separate panel and is managed by using the Windows 2000 Control Panel option Printers (see Figure 140 on page 327).

😼 Printers	<u>-0×</u>
File Edit View Favorites Tools Help	
] ← Back • → • 🔂 @ Search 🖓 Folders ③History 😤 🧏 🗙 🕫 頭•	
Address 3 Printers	▼ ∂°60
Add Printer Printers	
Add Printer The Add Printer wizard gives you step-by-step instructions for installing a printer. To install a new printer, double-click the Add Printer icon.	
Windows 2000 Support	
1 object(s) selected	

Figure 140. Windows 2000 printer management in the control panel

Print Spooler

This is part of the operating system software that accepts a document sent for printing and stores it temporary in the system memory or on the disk until the printer is ready to print it. The term Spool (Spooler) is an acronym for "Simultaneous Print Operations On Line".

Printer Driver

This is a program that allows other programs to work with the actual physical printer without knowing its hardware specifics and internal control software specifics.

Printer Pool

Two or more printers can be pointed to by one Logical printer and act like one printer. The document will be printed on the first available free printer.

Printer Queue

This is a list of printer jobs (documents sent for printing) awaiting execution by *Print spooler*.

Printer Server

This is a computer that is designated and configured to manage one or more printers.

9.8.2.2 Windows 2000 printing process

The printing process is presented in Figure 141.

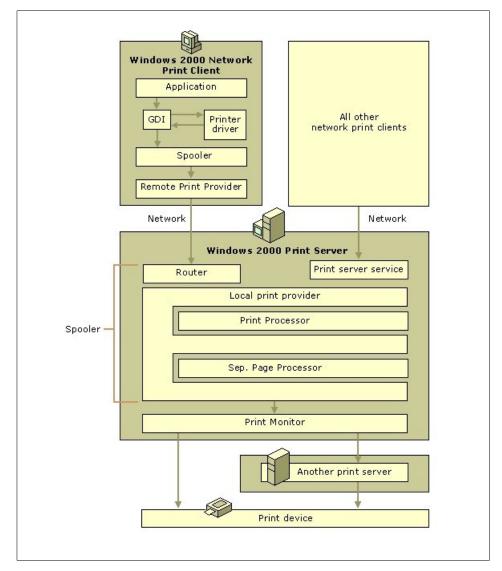


Figure 141. Windows 2000 printing process

When a user submits a document for printing the following procedure is performed:

1. In case that a user prints from Windows application, this application first calls *Graphics Device Interface* (GDI) which then calls the printer driver associated with the printer. Depending on information contained in a submitted document, GDI and printer driver exchange information and

translate the data to the form appropriate for the printer. The print job is then passed to client-side spooler. If the user is printing the document from other Non-Windows operating systems, other parts of system software are responsible for formatting data (for example *Virtual Printer* on AIX).

- The client computer sends the print job to the print server. In Windows environment (Windows 9x or NT clients) the *Remote Procedure Call* (RPC) functionality is used between client and print server to negotiate and send and receive print job.
 If the clients use Windows 2000 or Windows NT operating system, the job is in Enhanced Metafile Format (EMF) data format. Most other clients use RAW data type.
- 3. The print router on the server sends the print job to the local print provider on the server, which actually spools the print job (temporarily writes it to the disk).
- 4. The local print provider polls the print processor. The print processor receives the print job, checks its data format, and converts it according to data type.

If the target physical printer is defined on the client computer, the print server decides whether the print spooler should change the print jobs data type or assign it a different data type. The print job then passes to the local print provider, which writes it temporarily to the disk.

- 5. The control of the print job is then passed to the separator page processor, which adds a separator page (if so specified) as the first page of the document (job).
- 6. The print job is then send to print monitors. If we are using bi-directional printers, a monitor handles two-way communication between the sender and the printer and then passes the job to port monitor. If the printer is not bi-directional, the print jobs go directly to the port monitor.

Port monitor sends the job to the target, the actual physical printer.

7. The printer receives the job, converts it internally to the appropriate format (a bitmap for laser and ink-jet printers), and prints it on the print media (paper, transparencies, labels, and so on)

9.8.2.3 Windows 2000 printing management

This chapter describes some common print manager tasks in Windows 2000 environment.

Adding a new printer

To add a new printer attached to the local system, the system administrator clicks on the **Add Printer** icon, displayed in the printer panel of the Windows 2000 Control Panel (see Figure 140 on page 327). The *Add Printer* wizard is started, and, after answering several question, the final confirmation screen similar to the one displayed in Figure 142, is shown.

Compl Wizar	leting the Add Printer d
You have s	successfully completed the Add Printer wizard.
You specifi	ed the following printer settings:
Name:	IBM 4029 LaserPrinter
Shared as:	IBM4029L
Port:	LPT1:
Model:	IBM 4029 LaserPrinter
Default:	Yes
Test page:	No
Location:	Located in AUSRES09's cubicle
Comment:	No comment!
To close th	is wizard, click Finish.

Figure 142. Windows 2000 - Adding a printer

Managing print jobs

Print jobs can be managed before they are actually sent to a physical printer. The jobs can be stopped, canceled, or prioritized. The system administrator can start a print job management window by clicking on the particular printer in the printer panel of the Windows 2000 Control Panel (see Figure 100 on page 266).

Depending on the number of jobs in his/hers print queue, the window will look similar to one shown in Figure 143 on page 332.

-	1	1.	1-	[[- 1 - 1 - 1
Document Name	Status	Owner	Pages	Size	Submitted
) w2k_control_panel	Printing	Administrator	1	1.04 MB/1.04 MB	3:25:50 PM 10/1

Figure 143. Windows 2000 - Printer job management

By clicking on the job with the right mouse button, a new window is opened in which the system administrator can change properties of the print job (see Figure 144).

w2k_co	ontrol_panel
Size:	16 bytes
Pages:	1
Datatype:	NT EMF 1.008
Processor:	WinPrint
Owner:	Administrator
Submitted:	3:25:50 PM 10/13/1999
Notify:	Administrator
- Priority:	
Lowest	Highest
Current priority:	40
Schedule:	
O No time re	striction
Only from	12:00 AM 🕂 To 12:00 AM 📫

Figure 144. Windows 2000 - Print job properties

9.9 Terminal support

In this chapter, we will cover how terminal access is supported on AIX and Windows 2000 platforms.

9.9.1 AIX terminal support

Terminal (ASCII terminal) access has been supported on AIX right from the beginning of the AIX operating system. Actually, even today, the largest RS/6000 servers are often not installed with graphical adapters and graphical terminals and use a plain ASCII terminal as the system console.

9.9.1.1 Physical connection of terminals

Each RS/6000 has at least two serial ports (some have three) on which we can connect ASCII terminals. One of the ports is usually used as a system console.

If we would like to use more ASCII terminals, we can install an 8-port or 128-port Async adapter/controller in RS/6000 system. Note that a 128-port controller uses an additional 16-port RANs (Remote Async Node); so, we can configure it as a 16, 32, 48, (and so on) subsystem.

9.9.1.2 Configuration of terminals

After we physically install the terminals, we must define them to AIX. It is strongly recommended that you use the SMIT or Web-based System management tool for this task because of the large number of parameters that can be used for this task.

The main parameters to define are:

- Physical connection address (port)
- Baud rate (default is 9600)
- · Login characteristics (login enabled/disabled)
- Type of the terminal (emulation, ibm3153, vt100, vt220 and so on)
- Serial line characteristics (parity, bits per character, stop bits, and so on)

After this step, the users, if they have valid user account, will be able to log on on the system.

- Note

The system administrator can configure the user account in such a way that the AIX shell (ksh) will be started each time the user logs on (this is default), or the system administrator can define some other application to be started immediately after logon. In this way, the user will never actually *see* the AIX user interface on his or her terminal.

This is sometimes done for security reasons and sometimes for convenience reasons, that is, ease of use.

9.9.2 Windows 2000 Terminal services

Terminal services enables remote computers to access Windows 2000 programs running on the Windows 2000 Server. 16-bit and 32-bit Windows based clients are supported. Basically, it is terminal emulation; so, the user part of the program is sent to the client which, in return, sends keyboard and mouse input to the program that runs on the server.

One of the main advantages of Terminal services is that Windows 2000 applications can be used on a computer that itself does not have or could not have a Windows 2000 operating system installed. Other platforms clients, such as UNIX and Macintosh, can also connect to Terminal services via additional third-party software.

Terminal services can be used in two different modes:

Application mode

This is the mode to use Windows applications on other computers.The Terminal services should be running on the server, and then the system administrator creates installation disks for either 16-bit Windows (four floppies) or 32-bit Windows environments (two floppies). After installation on client nodes, the user specifies which host is the Terminal services server and his logon name and password. He can also specify to either run the Windows desktop or just one application.

After the connection from the client system (in our case Windows NT 4) to a Windows 2000 server, if the user specified Windows desktop as an environment, he or she will receive a screen like the one shown in Figure 145 on page 335. From this point on, Windows 2000 can be used in the same way as the console.

Figure 145. Windows 2000 Terminal Services in action

Remote administration mode

In this mode, Terminal services provides access for administrating the server from other systems on the network.

On the Windows 2000 Server, the system administrator can run Terminal services Manger and observe the status of the connection. He or she can also suspend the connection (Disconnect), send the message to the user, or completely stop the connection (see Figure 146 on page 336).

Actions View Tools Help							
· · · · · · · · · · · · · · · · · · ·	Users Session	l n					
AUSRESO9N	Users Session						
RDP-Tcp (listener)	User	Session	ID	State	Idle Time	Logon Time	÷
	Administrator	Console	0	Active		10/12/1999 1:57 PM	
	administrator	RDP-Tcp#2	2	Active	12	10/12/1999 2:00 PM	
Console (Administrator) (Idle) (Idle)	😰 miha	RDP-Tcp#1	1	Active	2	10/12/1999 1:58 PM	

Figure 146. Windows 2000 Terminal Services Manager

9.10 Support for national languages

In this chapter, we will cover the support for languages other than English on the AIX and Windows 2000 operating systems.

Support for national languages consists of:

- Translation of operating system user interface, menus, system applications, system tools, and help files.
- Translation of hardcopy and softcopy documentation.
- Support for code-pages.
- Support for keyboards.
- Support for formatting the way the time, date, and currency symbols are represented in a particular country.

9.10.1 AIX support for national languages

The AIX operating system is translated (system messages, user interfaces, help files) into the following languages:

- Brazilian Portuguese
- Catalan
- Czech
- French (Universal)
- German (Universal)
- Hungarian
- Italian
- Japanese-Kanji

- Korean
- Polish
- Russian
- Spanish
- Swedish
- Simplified Chinese
- Traditional Chinese
- U.S. English

9.10.1.1 AIX locales

Support for Locales is the way characters and time, date, and currency symbols are represented by the operating system and is provided additionally for the following countries/regions:

- Albanian
- Arabic
- Belgian Dutch
- Belgian French
- Brazilian Portuguese
- Bulgarian
- Canadian French
- Catalan
- Croatian
- Czech
- Danish
- Dutch (Netherlands)
- English Australia
- English Belgium
- English South Africa
- English U.K.
- English U.S.
- Estonian
- Finish
- French
- German
- Greek
- Hebrew
- Hungarian
- Icelandic
- Italian
- Italian Switzerland
- Japanese (Kanji)
- Korean

- Latvian
- Latvian
- Lithuanian
- Lithuanian
- Macedonian
- Norwegian
- Polish
- Portuguese
- Romanian
- Russian
- Serbian Cyrillic
- Serbian Latin
- Simplified Chinese
- Simplified Chinese
- Slovak
- Slovene
- Spanish
- Swedish
- Swiss French
- Swiss German
- Traditional Chinese
- Turkish

9.10.1.2 AIX Supported Code Pages

AIX Version 4 is capable of concurrently handling on a per-process basis any one of the following:

- ISO 8859-1 (Latin 1 Western European)
- ISO 8859-2 (Latin 2 Eastern European)
- ISO 8859-3 (Latin 3)
- ISO 8859-4 (Latin 4)
- ISO 8859-5 (Latin/Cyrillic)
- ISO 8859-6 (Latin/Arabic)
- ISO 8859-7 (Latin/Greek)
- ISO 8859-8 (Latin/Hebrew)
- ISO 8859-9 (Turkish)
- Extended UNIX Code for Japanese
- Extended UNIX Code for Korean
- Extended UNIX Code for Traditional Chinese
- IBM PC Code Set 850 (Latin 1)
- IBM PC Code Set 932 (Japanese)
- IBM PC Code Set 1046 (Arabic)
- IBM PC Code Set 856 (Hebrew)
- 338 AIX V4.3 and Windows 2000, Side by Side

AIX supports the Euro symbol for following *Locales*:

- Catalan
- Dutch (Belgium)
- Dutch
- Finnish
- French (Belgium)
- French
- German
- Italian
- Portuguese
- Spanish

9.10.2 Windows 2000 support for national languages

The Windows 2000 operating system is localized and translated in the following languages:

- Arabic
- Brazilian
- Chinese Simplified
- Chinese Traditional
- Czech
- Danish
- Dutch
- English
- Finnish
- French
- German
- Greek
- Hebrew
- Hungarian
- Italian
- Japanese
- Korean
- Norwegian
- Polish
- Portuguese
- Russian
- Spanish
- Swedish
- Turkish

Localized versions of Windows 2000 consist of appropriate Locales and:

- Additional fonts
- Additional Input Method Editors (IMEs)
- Special tools
- Addition local device drivers (modems, printers)
- · Legacy BIOS and DOS support
- Fully-localized user interface
- Localized documentation (Help files, readme files, release notes)

9.10.2.1 Windows 2000 Locales

In Windows 2000, a Locale is defined as a set of user preferences related to the user's language environment and cultural conventions. A Locale consist of a keyboard layout, sorting order, format for representing dates, time, and currency symbols. In order to use one of the Locales, the appropriate Language Group must be installed on the system.

A Language Group is a set of keyboard layouts IMEs, fonts, and codepages necessary to support the given group of languages. The following Language Groups exists on Windows 2000:

- Arabic
- Armenian
- Baltic
- Central Europe
- Chinese Simplified
- Chinese Traditional
- Cyrillic
- Georgian
- Greek
- Hebrew
- Indic
- Japanese
- Korean
- Thai
- Turkish
- Vietnamese
- Western Europe (installed by default and cannot be removed)
- USA (installed by default and cannot be removed)

The list of all supported locales and the IDs of the Language Groups to which they belong is listed below:

- Western Europe and USA (Language Group 1):
 - Afrikaans
 - Basque
- 340 AIX V4.3 and Windows 2000, Side by Side

- Catalan
- Danish
- Dutch_Standard
- Dutch_Belgian
- English_United_States
- English_United_Kingdom
- English_Australian
- English_Canadian
- English_New_Zealand
- English_Irish
- English_South_Africa
- English_Jamaica
- English_Caribbean
- English_Belize
- English_Trinidad
- English_Zimbabwe
- English_Philippines
- Faeroese
- Finnish
- French_Standard
- French_Belgian
- French_Canadian
- French_Swiss
- French_Luxembourg
- French_Monaco
- German_Standard
- German_Swiss
- German_Austrian
- German_Luxembourg
- German_Liechtenstein
- Icelandic
- Indonesian
- Italian_Standard
- Italian_Swiss
- Malay_Malaysia
- Malay_Brunei_Darussalam
- Norwegian_Bokmal
- Norwegian_Nynorsk
- Portuguese_Brazilian
- Portuguese_Standard
- Spanish_Traditional_Sort
- Spanish_Mexican
- Spanish_Modern_Sort

Chapter 9. System management 341

- Spanish_Guatemala
- Spanish_Costa_Rica
- Spanish_Panama
- Spanish_Dominican_Republic
- Spanish_Venezuela
- Spanish_Colombia
- Spanish_Peru
- Spanish_Argentina
- Spanish_Ecuador
- Spanish_Chile
- Spanish_Uruguay
- Spanish_Paraguay
- Spanish_Bolivia
- Spanish_El_Salvador
- Spanish_Honduras
- Spanish_Nicaragua
- Spanish_Puerto_Rico
- Swahili
- Swedish
- Swedish_Finland
- Central Europe (Language Group 2):
 - Albanian
 - Croatian
 - Czech
 - Hungarian
 - Polish
 - Romanian
 - Serbian_Latin
 - Slovak
 - Slovenian
- Baltic (Language Group 3):
 - Estonian
 - Latvian
 - Lithuanian
- Greek (Language Group 4):
 - Greek
- Cyrillic (Language Group 5):
 - Azeri_Cyrillic
 - Belarusian
 - Bulgarian
- 342 AIX V4.3 and Windows 2000, Side by Side

- Kazakh
- Macedonian
- Russian
- Serbian_Cyrillic
- Tatar
- Ukrainian
- Uzbek_Cyrillic
- Turkish (Language Group 6):
 - Azeri_Latin
 - Turkish
 - Uzbek_Latin
- Japanese (Language Group 7):
 - Japanese
- Korean (Language Group 8):
 - Korean
- Traditional Chinese (Language Group 9):
 - Chinese_Taiwan
 - Chinese_Hong_Kong
 - Chinese_Macau
- Simplified Chinese (Language Group 10):
 - Chinese_PRC
 - Chinese_Singapore
- Thai (Language Group 11):
 - Thai
- Hebrew (Language Group 12):
 - Hebrew
- Arabic (Language Group 13):
 - Arabic_Saudi_Arabia
 - Arabic_Iraq
 - Arabic_Egypt
 - Arabic_Libya
 - Arabic_Algeria
 - Arabic_Morocco
 - Arabic_Tunisia
 - Arabic_Oman
 - Arabic_Yemen
 - Arabic_Syria

Chapter 9. System management 343

- Arabic_Jordan
- Arabic_Lebanon
- Arabic_Kuwait
- Arabic_UAE
- Arabic_Bahrain
- Arabic_Qatar
- Farsi
- Urdu
- Vitnamese (Language Group 14):
 - Vietnamese
- Indic (Language Group 15):
 - Hindi
 - Konkani
 - Marathi
 - Sanskrit
 - Tamil
- Georgian (Language Group 16):
 - Georgian
- Armenian (Language Group 17):
 - Armenian

Windows 2000 differentiate about different Locales:

User Locale

This is a Locale specified for each and every user on the system. This however is not a *language* setting and has nothing to do with input languages, keyboard layouts, codepages, and user interface languages. It is used only to format dates, time, currency, numbers, and sorting order.

Default User Locale

This is the Locale applied by default when a new user (account) is created on the system.

Input Locales

This Locale is a pairing of an *input language* and an *input method*. It describes the language being entered and the way it is entered (Keyboard, IME, speech-to-text converter).

System Locale

This Locale determines which ANSI, OEM, and MAC codepages and associated bitmap font files are used as a default for the system. These

codepages and fonts enable non-Unicode applications to run as they would on a system localized to the language of system locale. The System Locales are supported for all supported Locales on all language versions. The setting of System Locale is valid for all users on the system.

9.10.2.2 Windows 2000 code pages

The following code pages are supported on Windows 2000:

- SBCS (single byte character set) codepages:
 - 1250 (Central Europe)
 - 1251 (Cyrillic)
 - 1252 (Latin I)
 - 1253 (Greek)
 - 1254 (Turkish)
 - 1255 (Hebrew)
 - 1256 (Arabic)
 - 1257 (Baltic)
 - 1258 (Vietnam Am)
 - 874 (Thai)
- DBCS (double byte character set) codepages:
 - 932 (Japanese Shift-JIS)
 - 936 (Simplified Chinese GBK)
 - 949 (Korean)
 - 950 (Traditional Chinese Big5)

Chapter 9. System management 345

Chapter 10. Performance monitoring

Optimizing performance and finding performance bottlenecks is one of the major concerns of a system administrator. In particular, the following areas are very important for keeping a system well-tuned and performing properly:

- Load Monitoring Resource load must be monitored so performance problems can be detected as they occur or (preferably) predicted well before they do.
- Analysis and Control Once a performance problem is encountered, the proper tools must be selected and applied so that the nature of the problem can be understood and corrective action taken.
- **Capacity Planning** Long-term capacity requirements must be analyzed so that sufficient resources can be acquired well before they are required.

AIX and Windows 2000 offer a set of tools and utilities that help a system administrator face and resolve these kinds of issues. In this chapter, we are going to discuss and present the solutions provided by both operating systems.

10.1 AIX performance monitoring

Due to its UNIX heritage, AIX provides several performance monitoring and tuning tools. These tools give you information on the performance of various aspects of the system and on the parameters that affect performance. For reader convenience, these tools have been grouped into five categories: CPU, I/O, Memory, Network, and Others.

10.1.1 Monitoring CPU

The following is a list of standard UNIX tools that allow CPU performance analysis.

ps

The ps command displays statistics and status information about the processes in the system, such as Process ID, I/O activity, and CPU utilization.

vmstat

The vmstat command reports statistics about kernel threads, virtual memory, disks, traps, and CPU activity. The activity is a percentage breakdown of user mode, system mode, idle, and waiting for disk I/O.

© Copyright IBM Corp. 2000

sar

The sar command writes the contents of selected cumulative activity counters in the operating system to standard output. The accounting system, based on the values in the number and interval parameters, writes information the specified number of times spaced at the specified intervals in seconds. The sar command reports either systemwide (global among all processors) statistics, which are calculated as averages for values expressed as percentages and as sums, or it reports statistics for each individual processor.

The sar command only reports on local activities.

The following values are reported by the sar command:

- The number of kernel processes terminating per second
- The number of times kernel processes could not be created because of enforcement of the process threshold limit
- · The number of kernel processes assigned to tasks per second
- The number of IPC message primitives and semaphore primitives
- Queue, paging, cpu, and tty statistics

10.1.2 Monitoring I/O

The following is a list of UNIX tools that allow I/O performance monitoring.

filemon

This tool monitors the performance of the file system and reports the I/O activity on behalf of logical files, virtual memory segments, Logical Volumes, and Physical Volumes. The filemon command monitors a trace of file system and I/O system events and reports on the file and I/O access performance during that period. To provide a more complete understanding of file system performance for an application, the filemon command monitors file and I/O activity at four levels:

• Logical File System - The filemon command monitors logical I/O operations on logical files. The monitored operations include all read, write, open, and lseek system calls, which may or may not result in actual physical I/O, depending on whether or not the files are already buffered in memory. I/O statistics are kept on a per-file basis.

- Virtual memory system The filemon command monitors physical I/O operations (that is, paging) between segments and their images on disk. I/O statistics are kept on a per-segment basis.
- Logical Volumes The filemon command monitors I/O operations on Logical Volumes. I/O statistics are kept on a per-logical-volume basis.
- **Physical Volumes** The filemon command monitors I/O operations on Physical Volumes. At this level, physical resource utilizations are obtained. I/O statistics and kept on a per-Physical Volume basis.

Any combination of the four levels can be monitored. Some of the fields report a single value. Others report statistics that characterize a distribution of many values. For example, response time statistics are kept for all read or write requests that were monitored. The average, minimum, and maximum response times are reported, as well as the standard deviation of the response times.

iostat

The iostat command is used for monitoring system input/output device loading by observing the time the physical disks are active in relation to their average transfer rates. The iostat command generates reports that can be used to change system configuration to better balance the input/output load between physical disks. The iostat command is useful in determining whether a Physical Volume is becoming a performance bottleneck and if there is potential to improve the situation. Since the CPU utilization statistics are also available with the iostat report, the percentage of time the CPU is in I/O wait can be determined at the same time. For multiprocessor systems, the CPU values are global averages among all processors. Also, the I/O wait state is defined systemwide and not per processor. The report shows several parameters:

- The total number of characters read/written by the system for all ttys.
- The percentage of CPU utilization that occurred while executing at the user/system level (application/kernel).
- The percentage of time that the CPU or CPUs were idle and the system did not have an outstanding disk I/O request.
- The percentage of time that the CPU or CPUs were idle during which the system had an outstanding disk I/O request. This value may be slightly inflated if several processors are idling at the same time (an unusual occurrence).
- The percentage of time the physical disk was active (bandwidth utilization for the drive).

- The amount of data transferred (read or written) to the drive in KB per second.
- Indicates the number of transfers per second that were issued to the physical disk. A transfer is an I/O request to the physical disk
- The total number of KB read/written.
- Statistics for CD-ROM devices.

This information is updated at regular intervals by the kernel (typically sixty times per second).

10.1.3 Monitoring memory

The following is a list of UNIX tools that allow memory monitoring.

svmon

The symon command displays information about the current state of memory. The displayed information does not constitute a true snapshot of the memory because the symon command runs at user level with interrupts enabled. The symon command creates four types of reports: Global, process, segment, and detailed segment. The reports are:

- · Global statistics describing the use of real memory
- · Statistics on the subset of real memory in use
- · Statistics on the subset of real memory containing pinned pages
- Statistics describing the use of paging space

vmstat

The vmstat command reports statistics about kernel threads, virtual memory, disks, traps, and CPU activity. Reports generated by the vmstat command can be used to balance system load activity. These systemwide statistics (among all processors) are calculated as averages for values expressed as percentages, or, otherwise, as sums. The vmstat command accesses statistics maintained by the kernel, such as kernel threads, paging, interrupt activity, and statistics maintained by the device drivers, such as disk input/output. For example the average disk transfer rate is determined by using the active time and number of transfers information. The percent active time is computed from the amount of time the drive is busy during the report. Some statistics are:

- Kernel thread state changes per second over the sampling interval
- Number of kernel threads placed in the run or wait queue (awaiting resource, awaiting input/output)
- 350 AIX V4.3 and Windows 2000, Side by Side

- Active virtual pages
- · Size of the free list
- Pager input/output list
- · Pages paged in/out from paging space or freed
- · Pages scanned by page-replacement algorithm
- · Clock cycles by page-replacement algorithm
- · Device interrupts and system calls
- · Kernel thread context switches
- User/System/CPU_idle time
- CPU cycles to determine that the current process is waiting and there is a pending disk input/output

ps

The ps command can be used to monitor the memory usage of an individual process. The ps v [pid] command provides reports on memory-related statistics for an individual process, such as page faults, the size of working segments that have been touched, the size of working segments and code segments in memory, the size of text segments, the size of the resident set, and the percentage of real memory used by this process.

rmss

rmss is an acronym for Reduced-Memory System Simulator. rmss provides you with a means of simulating RISC System/6000s with different sizes of real memories that are smaller than your actual machine without having to extract and replace memory boards. Moreover, rmss provides a facility to run an application over a range of memory sizes, displaying, for each memory size, performance statistics such as the response time of the application and the amount of paging. In short, rmss helps answer how many megabytes of real memory are needed to run AIX on a given application or how many users can run this application simultaneously in a machine with X megabytes of real memory. It is important to keep in mind that the memory size simulated by rmss is the total size of the machine's real memory, including the memory used by AIX and any other programs that may be running. It is not the amount of memory used specifically by the application itself. Because of the performance degradation it can cause, rmss can be used only by root or a member of the system group.

10.1.4 Monitoring the network

The following is a list of UNIX tools that allow network performance monitoring.

netstat

The ${\tt netstat}$ command displays information regarding traffic on the configured network interfaces, such as:

- The address of any protocol control blocks associated with the sockets and the state of all sockets
- The number of packets received, transmitted, and dropped in the communications subsystem
- Cumulative statistics for Error Collision Packets transferred
- Routes and their statuses

nfsstat

The nfsstat command displays statistics on Network File System (NFS) and Remote Procedure Call (RPC) server and client activity, such as:

- NFS server information The NFS server displays the number of NFS calls received (calls) and rejected (badcalls), as well as the counts and percentages for the various kinds of calls made.
- NFS client information The NFS client displays the number of calls sent and rejected, as well as the number of times a client handle was received (nclget), the number of times a call had to sleep while awaiting a handle (nclsleep), and a count of the various kinds of calls and their respective percentages.
- **RPC statistics** The nfsstat command displays statistical information pertaining to the ability of a client or server to receive calls, including:
 - The total number of RPC calls received or rejected
 - The number of times no RPC packet was available when trying to receive
 - The number of packets that were too short or had a malformed header
 - The total number of RPC calls sent or rejected by a server
 - The number of times a call had to be transmitted again
 - The number of times a reply did not match the call
 - The number of times a call timed out
 - The number of times a call had to wait on a busy client handle
 - The number of times authentication information had to be refreshed

10.1.5 Other tools

The following is a list of additional useful performance monitoring tools.

trace

The AIX trace facility is useful for observing a running device driver and system. The trace facility captures a sequential flow of time-stamped system events, providing a fine level of detail on system activity. Events are shown in time sequence and in the context of other events. The trace facility is useful in expanding the trace event information to understand who, when, how, and even why the event happened. The operating system is shipped with permanent trace event points. These events provide general visibility to system execution. You can extend the visibility into applications by inserting additional events and providing formatting rules with low overhead. Because of this, the facility is useful as a performance-analysis tool and as a problem-determination tool.

The trace facility is more flexible than traditional system monitor services that access and present statistics maintained by the system. With traditional monitor services, data reduction (conversion of system events to statistics) is largely coupled to the system instrumentation. For example, the system can maintain the minimum, maximum, and average elapsed time observed for runs of a task and permit this information to be extracted. The trace facility does not strongly couple data reduction to instrumentation, but provides a stream of system events. It is not required to presuppose what statistics are needed. The statistics or data reduction are, to a large degree, separated from the instrumentation. You can choose to develop the minimum, maximum, and average time for task A from the flow of events, but it is also possible to extract the average time for task A when called by process B, extract the average time for task A when conditions XYZ are met, or even decide that some other task, recognized by a stream of events, is more meaningful to summarize. This flexibility is important for diagnosing performance or functional problems. For example, netpmon uses the trace to report on network activity, including CPU consumption, data rates, and response time. tprof uses the trace to report the CPU consumption of kernel services, library subroutines, application-program modules, and individual lines of source code in the application program.

PDT

The Performance Diagnostic Tool (PDT) collects configuration and performance information and attempts to identify potential problems that may arise currently or in the future. In assessing the configuration and the historical record of performance measurements, PDT attempts to identify:

- Imbalanced use of resources or asymmetrical aspects of configuration or device utilization. In general, if there are several resources of the same type, the balanced use of those resources produces better performance:
 - Comparable numbers of Physical Volumes (disks) on each disk adapter
 - Paging space distributed across multiple Physical Volumes
 - Roughly equal measured load on different Physical Volumes
- Trends in usage levels that will lead to saturation. Resources have limits to their use. Trends that would attempt to exceed those limits should be detected and reported. A disk drive cannot be utilized more than 100 percent of the time. File and file system sizes cannot exceed the allocated space.
- New consumers of resource-expensive processes that have not been observed before. Trends can indicate a change in the nature of the workload as well as increases in the amount of resources used, such as the number of users logged on, the total number of processes, and the CPU-idle percentage.
- Inappropriate system parameter value settings that may cause problems.
- Errors in hardware or software may lead to performance problems; so, it checks the hardware and software error logs and reports bad VMM pages.

Other commands are available for tuning your system resources. The system administrator can, for example, change the values of VMM memory load control parameters, the CPU-time-slice duration, and the paging-space-low retry interval with the schedtune command. Also, the system administrator can change the Virtual Memory Manager page-replacement algorithm parameters with the vmtune command, optimize executable files for a specific workload with the fdpr command, change the values of network options with the no command, change the priority of running processes with the renice command, display information about kernel lock contention with the lockstat command, count the system calls, and so on.

FDPR

Feedback Directed Program Restructuring (FDPR) is an optimization tool that improves program code locality. The tool receives input files in XCOFF format, instruments them, executes them for profiling information and then reorders them in order to get a better cache ratio. More information about this tool can be found in the AIX documentation, such as the article Restructuring Executables with fdpr in the book *AIX Versions 3.2 and 4 Performance Tuning Guide*, SC23-2365.

pprof

This is a lightweight, trace-based tool that collects a system's process and thread information. Reports are generated in several formats, including a family view. The family view displays all parent-child relationships for all processes and threads. This tool is especially helpful in pinpointing system degradation when caused by multiple processes.

tprof

The tprof command reports CPU usage for individual programs and the system as a whole. This command is a useful tool for anyone with a C or C++ or FORTRAN program that might be CPU-bound and who wants to know which sections of this program are most heavily using the CPU. The tprof command also reports the fraction of time the CPU is idle. These reports can be useful in determining CPU usage in a global sense. The tprof command specifies the user program to be profiled, executes the user program, and then produces a set of files containing reports. tprof operates in two modes. The first is called the online mode, which has tprof execute the system trace command and a specific program, if specified, that is to be profiled. After the trace has completed, tprof processes the trace data and produces report files. In the offline mode, the trace data has already been gathered, and tprof simply reads from this file and, as before, processes the trace data and produces report files. If multiple trace files exist from multiple CPUs, tprof can also provide you with CPU-specific data.

Topas

A new performance monitoring program based on libspmi.a shared library is introduced with AIX 4.3.3. The program, topas, is the curses-based application that displays top processes and disk and memory usage. As its name implies, the topas program is a clone of the freeware program *top*. The following screen output shows screen images of topas.

Tomag Ma	nitor fo	m hogt	: 1v30	202			T TEC		
Topas Mo						EVENTS/QUE		FILE/TTY	0.00
Mon Oct	18 09:23	3:55 195	99 Inte	rval: 2		Cswitch	23	Readch	866
						Syscall		Writech	39
Kernel	0.5					Reads	3	Rawin	0
User	0.5					Writes	0	Ttyout	39
Wait	0.0					Forks	0	Igets	0
Idle	99.0	#####	+########	########	######	Execs	0	Namei	0
						Runqueue	0.0	Dirblk	0
Interf	KBPS	I-Pack	0-Pack	KB-In	KB-Out	Waitqueue	0.0		
tr0	0.0	0.5	0.5	0.0	0.0				
100	0.0	0.0	0.0	0.0	0.0	PAGING		MEMORY	
						Faults	0	Real,MB	63
Disk	Busy%	KBPS	TPS	KB-Read	KB-Writ	Steals	0	% Comp	68.0
hdisk0	0.0	0.0	0.0	0.0	0.0	PgspIn	0	% Noncomp	31.0
						PgspOut	0	% Client	0.0
gil	(1032)	0.5%	PgSp: 0.	0mb root		PageIn	0		
topas	(10858)	0.5%	PqSp: 0.	4mb root		PageOut	0	PAGING SPA	CE
x	(2618)	0.0%	PgSp: 2.	4mb root		Sios	0	Size,MB	128
init	(1)	0.0%	PqSp: 0.	6mb root				% Used	1.8
dtgreet	(2870)	0.0%	PgSp: 1.	1mb root				% Free	98.1
ksh	(3164)	0.0%	PqSp: 0.	2mb root					
dtlogin	(2150)	0.0%	PgSp: 0.	2mb root					
telnetd	(7226)	0.0%	PqSp: 0.	5mb root		Press "	'h" for	help scree	en.
snmpd	(6192)	0.0%	PqSp: 0.	7mb root				quit progra	
			51				-		
\sim									

10.1.6 Performance Toolbox for AIX

Performance Toolbox for AIX is a Licensed Program Product (not included in AIX) that offers a wide range of performance tools within a versatile framework for both stand-alone and networked systems. It includes a Motif-based toolbox, a 3D color graphic performance monitor application, and a data consumer applications program interface. The major features of PTX are:

- Concurrent high bandwidth monitoring of real-time local and remote statistics in configurable color graphic display format
- Extensive record/playback/analysis and data filter/alarm facilities for long term performance analysis and exception monitoring
- Separately installable Manager and Agent components that allow a Manager to monitor multiple Agents and an Agent to supply data to multiple Managers
- HP-UX (V9.03), SunOS (V4.1.3) and Solaris (V2.4) Agents to allow monitoring of performance data
- Application Programming Interfaces (APIs) that allow programmers to access local or remote data as well as to register custom data with the local Agent

356 AIX V4.3 and Windows 2000, Side by Side

• Ability to respond to SNMP "get" and "get next" requests and to send traps to an SNMP manager (AIX agents only)

10.1.6.1 PTX components

The Performance Toolbox for AIX is divided into two components:

- Performance Toolbox Agent
- Performance Toolbox Manager

The two components constitute the server (Agent) and the client (Manager) sides of a set of performance management tools, which allow performance monitoring and analysis in a networked environment.

The four main programs of the Manager component are all X Window System based programs developed with the OSF/Motif Toolkit. One program, xmperf, is at the same time a graphical monitor, a tool for analyzing system load, and an umbrella for other tools, performance related or not. Another monitoring program is 3dmon, which allows the monitoring of a large number of statistics in a single window. The program exmon is designed to work with the filtd daemon. It monitors alarms generated by filtd. The fourth main program is the azizo program to analyze recordings of performance data.

The Performance Toolbox Manager has three packages:

- **perfmgr.local** This package contains the commands and utilities that allow monitoring of only the local system.
- **perfmgr.network** This package contains the commands and utilities that allow monitoring of remote systems as well as the local system.
- **perfmgr.common** This package contains the commands and utilities that are common between the network support and the local support.

The main program in the Agent component is the daemon xmservd, which acts as a networked supplier of performance statistics and, optionally, as a supplier of performance statistics to Simple Network Management Protocol (SNMP) managers.

The Performance Toolbox Agent has one package:

• **perfagent.server** This package contains the performance agent component required by Performance Toolbox as well as some local AIX analysis and control tools.

Finally there is a tool package, called perfagent.tools, which collects those pieces that are required to be built with the AIX kernel. The perfagent.tools

contains the following utilities (for more details on these utilities, refer to previous paragraphs in this chapter):

- **bf** traces the memory access patterns of running programs (32-bit applications only).
- fdpr restructures programs based on observed execution.
- filemon traces detailed disk I/O activity.
- fileplace displays file block placement within a logical or physical volume.
- lockstat reports of contention for locks
- netpmon traces detailed network I/O activity
- rmss simulates smaller real memory to assess the memory requirements of programs
- **stem** traces the control flow and CPU use of programs, without access to their source code (32-bit applications only)
- svmon reports the current use of real and virtual memory
- tprof reports the CPU use of individual programs, subroutines, and system components

The perfagent tools fileset is shipped with the AIX 4.3.2 base.

--- Note -

The on-line PTX Guide and Reference for AIX 4.3 (perfagent.html.en_US) is available by ordering APAR IX80484 (PTF U458736). In AIX Version 4.3.0, this document is shipped with the Performance Aide CD. In AIX Version 4.3.2, it is included in the base AIX documentation.

Table 16 lists the various minimum file set levels required with particular AIX levels.

AIX Version	File set
AIX 4.1.5	perfagent.tools 2.1.6.* perfagent.server 2.1.6.*
AIX 4.2.1	perfagent.tools 2.2.1.* perfagent.server 2.2.1.*
AIX 4.3.1	perfagent.tools 2.2.31.* perfagent.server 2.2.31.* (replaced by 32)

Table 16. AIX level and required file sets

AIX Version	File set
AIX 4.3.0	perfagent.tool 2.2.32.0 perfagent.server 2.2.32.0 (prereqs 3.3.32.0 perfagent.tools)

10.1.6.2 Monitoring features

The client/server environment allows any program, whether it is part of Performance Toolbox for AIX or custom-developed applications, to monitor the local host as well as multiple remote hosts. This ability is fully explored in the Manager component program, xmperf, whose *monitors* are graphical windows, referred to as consoles, that can be customized on the fly or kept as preconfigured consoles that can be invoked with a few mouse clicks. Consoles can be generic; so, the actual resource to monitor, whether it is a remote host, a disk drive, or a LAN interface, is chosen when the console is opened. Consoles can be told to do a recording to disk files of the data they monitor, and such recordings can be played back with xmperf and analyzed with the azizo program. Figure 147 shows the main window of the xmperf tool.

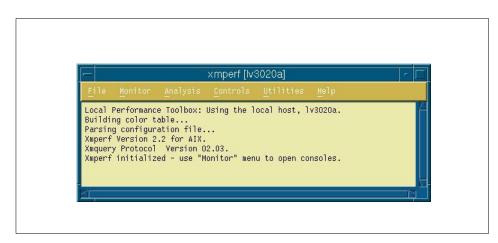


Figure 147. xmperf main window

One of the things that makes xmperf unique is that it is not hardcoded to monitor a fixed set of resources. It is dynamic in the sense that a system administrator can customize it to focus on exactly the resources that are critical for each host that must be monitored.

From the main menu bar of this window, it is possible to:

• Monitor some selected resources from the local or remote systems and display them in graphical windows

- Run analysis tools, such as tprofs, svmon, vmstat, rmss, PDT, filemon, iostat, or trace, just to list some of them
- From the Controls menu, interact with the processes running on the system and have easy control over them. In particular, it is possible to:
 - View all the process sorted in different ways
 - Execute some operations on them, such as generating an symon report, killing one or more processes, or changing the priority of one or more process
 - Tune networking parameters
 - Verify and tune executables
- Access some utilities, such as 3dmon and azizo, have easy access to the system tables, and have control over the xmperfd daemon.

Figure 148 gives an example of the System Monitor Window.

Figure 148. The Monitor window

 Using the System Monitor utility, it is possible to have a visual image of multiple resources of the local or a remote system. The resources that are monitored may be easily selected and customized. It is also possible to create multiple System Monitor Consoles to accommodate different selections of resources and machines to be monitored. For example, a system administrator could decide to have one console for monitoring memory on a group of machines that he knows usually run memory bound programs and have another console for monitoring process activity on other machines.

It is also possible to track and record the resources while monitoring for a deferred analysis. Figure 149 shows the Combo Style Monitor window.

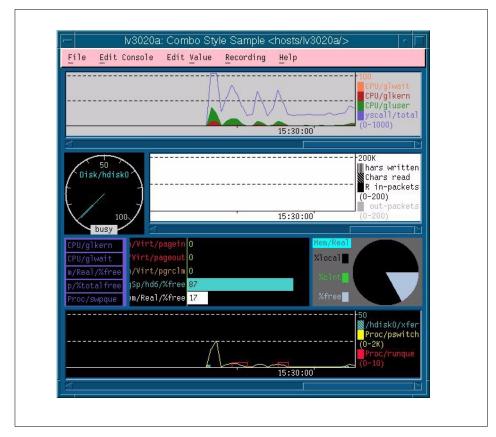


Figure 149. Combo Style monitor window

Other ways to show the selectable system parameters are using the Combo Style Monitor Window, shown in Figure 149 on page 361, and the Dashboard

Style Monitor Window shown in Figure 150. In both cases, it is possible to create and customize monitor windows in the same way described for the Monitor Window shown in Figure 148 on page 360.



Figure 150. The dashboard style monitor window

With the three Style Monitors just described, it is also possible to select one particular resource from the window and generate a tabular report, as shown in Figure 151 on page 363.

host: 1v3020a	CPU glkern	CPU glwait		Syscalls
"Avg"	2	0	7	539
15:26:10	2	0	2	316
15:26:08	3	0	14	805
15:26:06	3 3	0	8	694
15:26:04	4	0	12	887
15:26:02	4	0	5	665
15:26:00	4	0	3	419
15:25:58	2	0	10	684
15:25:56	3	0	8	609
15:25:54	2	0	6	412
15:25:52	3	0	10	631
15:25:50	2	0	16	820
15:25:48	4	0	12	820
15:25:46	2	0	10	680

Figure 151. A tabular report example

With the tabular report it is easier to have detailed information regarding the selected variable.

One very useful tool for displaying several variables and having them under constant control is the 3dmon tool, which can be accessed from the *Utilities* item on the main menu bar of the xmperf main window.

Figure 152 on page 364 shows the window that allows you to choose which object to display for monitoring with 3dmon.

	3Dmon	on host lv	3020a						
	Click here	when select	ion comp	lete					
osts/1v3020a/Proc/516~wait	Proce	ss wait	(516)	%сри	45.1,	PgSp:	0.2mb,	uid:	root
osts/lv3020a/Proc/13006~3dmon	Proce	ss 3dmon	(13006)	%сри	20.0,	PgSp:	0.6mb,	uid:	root
osts/lv3020a/Proc/2154~X	Proce	ISS X	(2154)	%сри	17.5,	PgSp:	4.3mb,	uid:	root
osts/lv3020a/Proc/14762 [~] xmperf	Proce	ss xmperf	(14762)	%cpu	4.6,	PgSp:	1.8mb,	uid:	root
osts/lv3020a/Proc/1032~gil	Proce	ss gil	(1032)	%cpu	1.8,	PgSp:	0.3mb,	uid:	root
osts/1v3020a/Proc/11738~xmservd	Proce	ss xmservd	(11738)	%сри	1.8,	PgSp:	0.7mb,	uid:	root
osts/lv3020a/Proc/14538~dtwm	Proce	ss dtwm	(14538)	%cpu	0.0,	PgSp:	1.7mb,	uid:	root
osts/1v3020a/Proc/12084~xv	Proce	ISS XV	(12084)	%cpu	0.0,	PgSp:	6.6mb,	uid:	root
osts/1v3020a/Proc/2886~syncd	Proce	ss syncd	(2886)	%сри	0.0,	PgSp:	0.3mb,	uid:	root
osts/1v3020a/Proc/9034~PM	Proce	ISS PM	(9034)	%сри	0.0,	PgSp:	0.2mb,	uid:	root
osts/lv3020a/Proc/1~init	Proce	ss init	(1)	%cpu	0.0,	PgSp:	0.9mb,	uid:	root
osts/1v3020a/Proc/0~P	rocess		%сри О	.O, Pg	jSp: O	.Omb,	uid: ro	ot	
osts/1v3020a/Proc/6192~snmpd	Proce	ss snmpd	(6192)	%сри	0.0,	PgSp:	0.9mb,	uid:	root
osts/1v3020a/Proc/7334~aixterm	Proce	ss aixterm	(7334)	%сри	0.0,	PgSp:	0.7mb,	uid:	root
osts/lv3020a/Proc/774~netm	Proce	ss netm	(774)	%cpu	0.0,	PgSp:	0.2mb,	uid:	root

Figure 152. Selecting objects for 3dmon

In our example, we are going to monitor some processes on the local machine; so, we have to select the processes to be monitored. Figure 153 on page 365 gives an example of the 3dmon display, where the processes selected in Figure 152 are displayed.

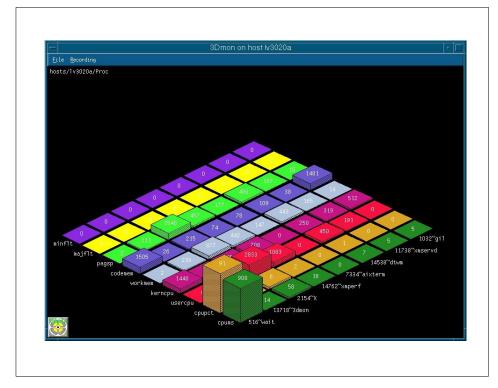


Figure 153. 3dmon

10.1.6.3 Analysis and control

By providing an umbrella for tools that can be used to analyze performance data and control system resources, the Manager program, xmperf, assists the system administrator in keeping track of available tools and applying them in appropriate ways. This is done through a customizable menu interface. Tools can be added to menus, either with fixed sets of command line arguments to match specific situations or such that the system administrator has an easy way to remember and enter command line arguments in a dialog window. The menus of xmperf are preconfigured to include most of the performance tools shipped as part of the tools option of the Agent component.

Properly customized, xmperf becomes an indispensable repository for tools to analyze and control an AIX system. In addition, the ability to record load scenarios and play them back in graphical windows at any desired speed gives new and improved ways of analyzing performance problems.

Outstanding features for analyzing a recording of performance data are provided by the azizo program and its support programs. Recordings can be produced from the monitoring programs xmperf and 3dmon during monitoring, or they can be created by the xmservd daemon. The xmservd daemon allows for recording with a minimum of overhead. This makes constant recording possible so that you can analyze performance problems after they occur. The 3dplay program is provided to play back recordings created by 3dmon in the same style in which the data was originally displayed. The azizo program creates two window types: Main Window and Main Graph.

Figure 154 gives an example of the Main Graph window.

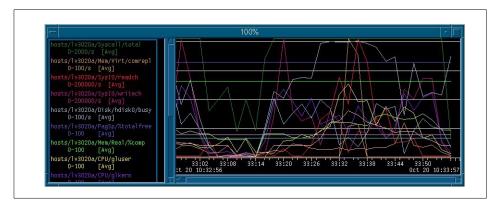


Figure 154. The azizo graph window

In the example, we monitored and recorded the system activity using xmperf. Then, we used the azizo program to analyze the output. When azizo reads a recording file, it always displays a top level main graph that covers the entire time interval covered by the recording file. The user can create additional main graphs by zooming in on the top level graph or any zoomed-in main graph. As Figure 154 shows, main graphs contain two sections. To the left is a list of metrics that are included in the graph. The metric names are displayed using the same color that is used to draw the data. To the right is the actual graphical display of the metric data for the time period covered by the graph.

10.1.6.4 Capacity planning

If you can make your system simulate a future load scenario, xmperf can be used to visualize the resulting performance of your system. By simulating the load scenario on systems with more resources, such as more memory or more disks, the result of increasing the resources can be demonstrated

366 AIX V4.3 and Windows 2000, Side by Side

10.1.6.5 Networked operation

The xmservd data-supplier daemon can provide consumers of performance statistics with a stream of data. The frequency and contents of each packet of performance data are determined by the consumer program. Any consumer program can access performance data from the local host and one or more remote hosts; any data-supplier daemon can supply data to multiple hosts.

In addition to its ability to monitor across a network, PTX also allows for the monitoring of response time to and from nodes in the network itself.

10.1.6.6 Application programming interfaces

Each component comes with its own application programming interface (API). In addition, an API is available for instrumentation of application programs:

• Agent API - This is called the System Performance Measurement Interface (SPMI) API. It allows an application program to register custom performance statistics about its own performance or that of some other system component. Once registered, the custom statistics become available to any consumer of statistics, local or remote. Programs that supply custom statistics are called dynamic data-supplier programs.

The Agent API also permits applications to access statistics on the local system without using the network interface. Such applications are called local data-consumer programs.

- Manager API This is called the Remote Statistics Interface (RSi) API. It allows an application program to access statistics from remote nodes (or the local host) through a network interface.
- Application Monitoring API This is called the Application Response Management (ARM). This API permits application programs to be instrumented in such a way that the application activity and response time can be monitored from any of the PTX manager programs.

10.1.6.7 SNMP interface

By entering a single keyword in a configuration file, the data-supplier daemon can be told to export all its statistics to a local snmpd SNMP agent. Users of an SNMP manager, such as IBM NetView, see the exported statistical data as an extension of the set of data already available from snmpd.

--- Note

The SNMP multiplex interface is only available on IBM RISC System/6000 Agents.

10.2 Windows 2000 performance monitoring

As discussed in previous chapters, optimizing system performance means finding the current system bottleneck and then alleviating it. Windows 2000 uses the Microsoft Management Consol (MMC) to help the user create, save, and open administrative tools (called MMC consoles) that manage the hardware, software, and network components of the Windows system. MMC is a feature of the Windows 2000 operating system, but it can also be run on Windows NT, Windows 95, and Windows 98 operating systems. MMC does not perform administrative functions but hosts tools that do. For more information about the MMC, you may refer to Section 9.4.2.3, "Windows 2000 Microsoft Management Console" on page 295.

Inside MMC Windows 2000 is a Performance Console that can be used to look at Windows 2000 system performance and help detect bottlenecks.

The Performance Console consists of two subtrees: System Monitor and Performance Logs and Alerts. It helps resolve bottlenecks by:

- Providing a view of resource usage (local and remote)
- · Logging critical system values
- · Sending alerts when important events occur

The following sections give an overview of Performance Console.

10.2.1 System Monitor

The Windows 2000 System Monitor tracks system resources, or objects, by assigning counters and timers to each resource to be tracked. An object's counter or timer records the activity level of the object. A counter is expressed as a rate per second, while timers are expressed as the fraction of time that a device is used (shown as a percentage). Figure 155 on page 369 displays the Performance Console. In the example, three objects are tracked: %User, which is the percentage of non-idle processor time spent in user mode, Pages/Sec, which is the number of pages read from or written to disk to resolve page fault, and Bytes Total/Sec, which is the rate at which bytes are sent and received on the interface.

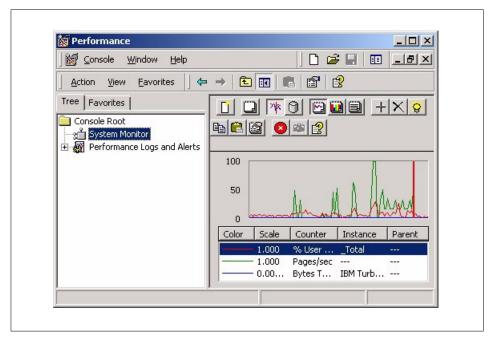


Figure 155. Performance console

Figure 156 on page 370 shows the Add Counters window, which allows you to decide which objects to trace. The components are organized into a hierarchy inside the window. At the top of the hierarchy is the computer within a domain. Each computer is further broken down into physical components, such as processors, physical disks, and memory. It is possible to browse the performance objects and choose what to monitor simply by selecting the item and pushing the **Add** button.

Add Counters	
Use local computer counters Select counters from computer: VAUSRES11-A Performance object:	Add Close Explain
Processor C All counters Select counters from list	All instances Select instances from list;
DPC Time A Drect Time Privileged Time Viser Time APC Bypasses/sec DPC Bypasses/sec	Total 0

Figure 156. Add Counters window

A simple help can be obtained by pressing the **Explain** push button when the description of the counter is selected.

Disk performance counters are not ordinarily active because they typically reduce disk performance (less than 1 percent). Although any user can run Performance Monitor, only the administrator can turn on disk performance counters.

- Note -

To activate or deactivate disk performance counters, the ${\tt diskperf}$ command must be used, followed by a reboot of the system.

In general, objects are only enabled for system resources that are installed on the machine. For example, if you do not have TCP/IP, you will not be allowed to select counters for collecting TCP/IP statistics on your network.

It is your choice to have collected data shown organized as a histogram. Figure 157 on page 371 gives an example of the Performance Console window with histograms. If you have many instances of a counter, the histogram selection makes them easier to view. With a histogram, you do not have the history of counter values, but you can see how they are changing in real time.

ig Performance	_ <u> </u>
∫ 🗑 ⊆onsole <u>W</u> indow <u>H</u> elp	🗅 🖆 🔲 💷 💶 🗵
🛛 Action View Eavorites 🗍 🗲	→ 🗈 🖬 💼 🗳 😫
Tree Favorites	
Console Root	+× 🔉 🖻 🖻 🗃 🖉 🛎 🔮
E Performance Logs and Alerts	100
	50
	Color Scale Counter Instance P 1.000 % Proce Total
	0.00 Bytes T IBM Turb

Figure 157. Performance console with histograms

In general, the system monitor may be used to show values for selected objects both in real time and from collected data. Section 10.2.2, "Performance logs and alerts" on page 372, explains how to collect data do be shown with the System Monitor Console.

10.2.1.1 Report view

The report view is useful for monitoring many counters at the same time. This technique can be used to narrow down the number of variables that might be causing a problem. You can then view the problems most likely to occur using the chart view.

You can select multiple counters and multiple instances of the same counter. The counter values are displayed in a scrollable window, and they change in real time as the system is functioning. You can change the time interval over which the values are updated from the default of five seconds to whatever is appropriate for your problem. Figure 158 on page 372 show an example of a report.

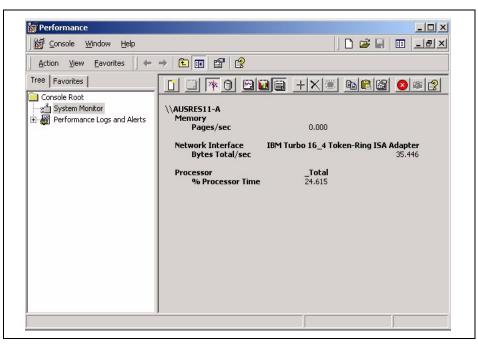


Figure 158. Performance console report view

10.2.2 Performance logs and alerts

With Performance Logs and Alerts, it is possible to collect performance data automatically from local or remote computers and then view logged counter data using System Monitor or export the data to spreadsheet programs or databases for analysis and report generation.

Performance Logs and Alerts offer the following capabilities:

- Performance Logs and Alerts collect data in a comma-separated or tab-separated format for easy import to spreadsheet programs. A binary log-file format is also provided for circular logging or for logging instances, such as threads or processes that may begin after the log starts collecting data. (Circular logging is the process of continuously logging data to a single file and overwriting previous data with new data.)
- Counter data collected by Performance Logs and Alerts can be viewed during collection as well as after collection has stopped.
- Because logging runs as a service, data collection occurs regardless of whether any user is logged on to the computer being monitored.

372 AIX V4.3 and Windows 2000, Side by Side

- It is possible to define start and stop times, file names, file sizes, and other parameters for automatic log generation.
- It is possible to set an alert on a counter, thereby, defining that a message be sent, a program run, or a log started when the selected counter's value exceeds or falls below a specified setting.

Similar to System Monitor, Performance Logs and Alerts supports defining performance objects, performance counters and object instances, and setting sampling intervals for monitoring data about hardware resources and system services. Figure 159 shows the Performance Logs and Alerts window. This is the same window as in Figure 155 on page 369 with the Performance Logs and Alerts subtree expanded.

Performance		
∭ <u>C</u> onsole <u>W</u> indow <u>H</u> elp		D 🗃 🖬 💷 🗷
Action View Eavorites	1	l 🕄
Tree Favorites	Name	Description
Console Root System Monitor Performance Logs and Alerts Counter Logs Trace Logs Alerts	Counter Logs	Configures performance data counter logs Configures trace event logs Configures performance alerts
	•	[]

Figure 159. Performance logs and alerts

As you can notice, the subtree contains three choices: Counter Logs, Trace Logs, and Alert Logs. We are only going to give examples here of the Counter Logs and Alert Logs. Trace logs are used to send collected data to the Performance Logs and Alert service only when a particular activity takes place, such as a disk I/O operation or a page fault, and not at fixed intervals they way Counter Logs and Trace Logs do. Besides, to interpret the trace log output, a parcing tool is required. The developer can create such a tool using

APIs provided from Microsoft on the URL:

http://www.microsoft.com/isapi/redir.dll?prd=msdn&pver=6.0&ar=library

Figure 160 shows the New Log Settings window.

New Log Settings		?	×
Name:			
Log Ekample			
	ОК	Cancel	
	UK		-

Figure 161 shows the Logs Console general setting window.

ogs Example	<u>? ×</u>
General Log Files Schedule	
Current log file name:	
F:\PerfLogs\Logs_Example_000001.blg	
This log begins immediately after you apply changes.	
Counters: \\\\USRES11-\\\Memory\Pages/sec \\\USRES11-\\Processor[_Total}\\% Processor Time	
	<u>R</u> emove
Add	<u>R</u> emove
	<u>R</u> emove

Figure 161. Logs console general setting

The New Log Setting Panel of Figure 160 on page 374 is shown when you select **Counter Logs** from the Performance Logs and Alert subtree and then

374 AIX V4.3 and Windows	s 2000, Side by Side
	3 2000. Side by Side

choose **New Log Setting** from the Action Menu (see Figure 159 on page 373). In this way, you may define new Counter Logs. After you entered the name as required, the window displayed in Figure 161 is presented: Use the General Setting subwindow to define the objects to be traced. Then, you may further select the Log Files subwindows to define additional information regarding the directory where you want the log file to be saved and the format (binary, binary circular, or text to be imported into a spreadsheet), and, eventually, a maximum size for the file itself.

The Schedule subwindow, shown in Figure 162, allows you to schedule the data collection at a given time. It is also possible to choose to run a command when the log file closes.

General Log Files Schedule
Start log C Manually (using the shortcut menu)
C At: 2:56:54 PM
Stop log
C Manually (using the shortcut menu)
🔿 After: 1 🕂 Units: days 💌
C At 2:56:54 PM 😴 on 10/19/1939 💌
C When the log file is full.
When a log file closes:
🗖 Start a new log file
Run this command: Browse

Figure 162. Logs console schedule

The procedure to follow in order to define and set up an Alert is conceptually equivalent to the one we just described for the log. The only major difference is that, in this case, you are required not only to specify the objects to monitor, but also to define a threshold for each object. When the value of this threshold goes over (or under) the specified value, an action (see Figure 163 on page 376) is triggered as specified.

Ge	eneral Action Schedule	1
×	Vhen an alert is triggered:	
F	Log an entry in the application event log	
Γ	Send a network message to:	
Γ	Start performance data log:	
	System Overview	
Γ	Bun this program:	
	Bro	AVSE
	Command Line Arguments	
	ixample command line arguments: 'Alert Example,1999/10/18-15:01:19.171,\Object\Counter,20.0,o	ver 10.0
1	Alen Example, 1999/10/10/13:01.13.171, 100/echoodinter,20.0,0	Ver 10.0
	OK Cancel	

Figure 163. Alert console action

Logs and Alerts may also be started and stopped manually by simply selecting the proper action (start or stop) from the main menu.

The data collected with Performance Logs and Alerts may be displayed from the System Monitor Console by selecting **view log file data** from the tool bar.

Chapter 11. Networking

Networking is probably one of the most important aspects of an operating system, especially when dealing with a large number of heterogeneous systems. This is often the case in large customer environments. Both AIX 4.3.3 and Windows 2000 have introduced major improvements into their networking models. For each product, this chapter describes the network architecture, the network protocols supported, and the communication products.

11.1 Protocols and concepts

In this chapter, we are going to introduce some protocols and concepts that are common to both AIX and Windows 2000, and which have recently been introduced in one or both of these operating systems.

11.1.1 Quality of Service (QoS)

In this chapter, we will introduce Quality of Service, which has recently been added to both AIX 4.3.3 and WIndows 2000.

11.1.1.1 Introduction

QoS is a mechanism to improve application response time over the network, and allocate resources, such as bandwidth, to applications. This allocation is determined by giving some applications priority over others. QoS gives administrators control over their networks and, consequently, the ability to provide better service to their customers. For example, a mission-critical application can be guaranteed the resources to complete its transactions within an acceptable period of time

QoS allows network administrators to use their existing resources efficiently and to guarantee that critical applications receive high-quality service without having to expand as quickly or even over-provision their networks. Deploying QoS means that network administrators can have better control over their networks, reduce costs, and improve customer satisfaction.

There are two QoS models currently under standardization by IETF: Integrated Service (IS) and Differentiated Service (DS).

Integrated Services

Integrated Services (IS) is a dynamic resource reservation model for the Internet defined in RFC1633. Hosts use a signaling protocol called a resource reservation protocol (RSVP) to dynamically request a specific quality of

© Copyright IBM Corp. 2000

service from the network. An important characteristic of IS is that this signaling is per-flow and reservations are installed per-hop. This means that a host requests resource reservations per logical connection and resource on each hop (routers and hosts) are reserved. Each router reserves resources to classify packets on multiple flows, schedule output of packets based on classes, and so on. This model is well-suited to meeting the dynamically changing needs of applications, but it has significant scaling issues; so, it cannot be deployed on routers on backbone networks.

Differentiated Services

Differentiated Services defined in RFC 2474 removes the per-flow and per-hop scalability issues, replacing them with a simplified mechanism of classifying packets. Rather than a dynamic signaling approach, DS uses six bits in the IP type of service (TOS) byte to separate packets into classes. The particular bit pattern in the IP TOS byte is called the DS codepoint and is used by routers to define the quality of service delivered at that particular hop in much the same way routers do IP forwarding via routing table lookups. The treatment given to a packet with a particular DS codepoint is called a per-hop behavior (PHB) and is administered independently at each network node. When the effects of these individual independent PHBs are concatenated, this results in an end-to-end service. The above two models can be viewed as competing technologies. However, the recent trend is for these two to complement each other. IS is likely to be used in stub networks, and DS is likely to be used in core networks.

11.1.1.2 RSVP

RSVP is an end-to-end layer-3 signaling protocol. RSVP communicates QoS requirements and capabilities to peer-applications and network elements on the data path. RSVP messages also include information about policy, which, typically, identifies the user requesting resources and the application for which the request is being made.

Traditionally, RSVP signaling was associated with per-flow traffic handling (this is equivalent to each flow having its own queue on the router), but it can also be used with a variety of aggregate traffic-handling mechanisms, such as Diffserv, which takes separate flows and aggregates them into classes. Using RSVP in conjunction with a mechanism, such as Diffserv, should relieve administrators of any concerns they have about scaling problems associated with RSVP.

11.1.1.3 Traffic-handling mechanisms

Traffic-handling mechanisms are a key component of QoS, and they reside in the network's routers and switches. Traffic-handling mechanisms can work in partnership with RSVP, which is a signaling mechanism based in the host.

Diffserv

Diffserv is a layer 3 technology that aggregates different flows of traffic into specific classes of service. This is as if a router had, for example, five queues with different priorities and all traffic had to belong to one of them. A tag in the IP header specifies a packet's priority, and the routers treat it accordingly. Diffserv can work alone or in concert with RSVP. For example, RSVP can be used with Diffserv to enforce admission control into a Diffserv queue and apply policies that determine which users and/or applications are entitled to use resources in the provider's network.

802.1/p

802.1/p is a layer-2 mechanism that allows QoS to be implemented in IEEE 802 technologies, such as Ethernet, FDDI, and token ring. 802.1p defines a field in the layer-2 header of 802 packets that can carry one of eight priority values. Typically, hosts or routers sending traffic into a LAN will mark each transmitted packet with the appropriate priority value. LAN devices, such as switches, bridges, and hubs, are expected to treat the packets accordingly (by making use of underlying queuing mechanisms). The scope of the 802.1p priority mark is limited to the LAN. Once packets are carried off the LAN through a layer-3 device, the 802.1p priority is removed.

ISSLOW

ISSLOW is a technique for improving performance on slow links, such as dialup lines. It is particularly useful when these links carry audio along with video and data. Large data or video packets can cause latency problems for any audio packets that follow them. For example, a 1,500-byte data packet on a 28.8 Kbps modem connection will occupy the link for almost 0.5 seconds. ISSLOW fragments the lower-priority data or video packets so that they never occupy the link for longer than some specified period of time. They are reassembled at the remote end.

Policy and the admission control service

Policy is a set of general rules for handling traffic. For example, a policy might be that SAP traffic should always be given priority over other forms of traffic.

In order for network equipment that provides QoS features from various vendors to interoperate correctly, it is necessary to standardize the policy scheme for QoS. An Internet Draft, <draft-rajan-policy-qosschema-01.txt>, addresses this issue. A policy condition is the characteristics of a packet, and

a policy action is an action the packet receives when it meets a policy condition.

A policy condition is defined by five characteristics of a packet. They are: Source IP address, source port number, destination IP address, destination port, and protocol type (TCP or UDP). A policy action includes:

- Permission (accept or deny)
- · Token bucket parameters defining in-profile traffic
- TOS byte value for in-profile traffic
- TOS byte value for out-of-profile traffic

From an administrator's point of view, a policy is, essentially, configuration parameters to regulate certain types of traffic flow. Policy-based networking applies both IS and DS QoS models.

11.1.2 Path MTU (PMTU)

When one IP host has a large amount of data to send to another host, the data is transmitted as a series of IP datagrams. It is usually preferable for these datagrams to be of the largest size that does not require fragmentation anywhere along the path from the source to the destination. This datagram size is referred to as the Path MTU (PMTU), and it is equal to the minimum of the MTU of each hop in the path.

The routing table grows as new PMTU are discovered with very little performance impact on the system. The new route expires after a period of inactivity.

11.1.3 IP multicasting

Both AIX and NT provide Level 2 support for IGMP multicasting (IGMP Version 2), as described in RFC 1112 and RFC 2236. The introduction to RFC 1112 provides a good overall summary of IP multicasting. The text reads:

"IP multicasting is the transmission of an IP datagram to a "host group"-a set of zero or more hosts identified by a single IP destination address. A multicast datagram is delivered to all members of its destination host group with the same *best-effort* reliability as regular unicast IP datagrams; that is, the datagram is not guaranteed to arrive intact to all members of the destination group or in the same order relative to other datagrams.

The membership of a host group is dynamic; that is, hosts may join and leave groups at any time. There is no restriction on the location or number of members in a host group. A host may be a member of more than one group at a time. A host need not be a member of a group to send datagrams to it.

A host group may be permanent or transient. A permanent group has a well-known administratively-assigned IP address. It is the address, not the membership of the group, that is permanent; at any time, a permanent group may have any number of members, even zero. Those IP multicast addresses that are not reserved for permanent groups are available for dynamic assignment to transient groups that exist only as long as they have members.

Internetwork forwarding of IP multicast datagrams is handled by multicast routers that may be co-resident with, or separate from, Internet gateways. A host transmits an IP multicast datagram as a local network multicast that reaches all immediately-neighboring members of the destination host group. If the datagram has an IP time-to-live greater than 1, the multicast router(s) attached to the local network take responsibility for forwarding it towards all other networks that have members of the destination group. On those other member networks that are reachable within the IP time-to-live, an attached multicast router completes delivery by transmitting the datagram as a local multicast."

11.1.4 TCP selective acknowledgements

Both AIX 4.3.3 and Windows 2000 introduce support for TCP Selective Acknowledgements (SACK). Although TCP has a mechanism to recover from the loss of a single segment in a window, in case of multiple segments loss, the sender, generally, has to retransmit not only the lost segments but also the segments received normally.

This causes significant impact on throughput especially when the network is unreliable or congested. To avoid these unnecessary retransmissions, another mechanism called selective acknowledgements (SACK) has been defined in RFC 2018. By enabling SACK, the sender only has to retransmit segments that have really been lost during the transmission.

11.1.4.1 How SACK works

Figure 164 on page 382 illustrates how SACK works.

SYN with Sack-Permitted Option SYN/ACK ACK SEGI I-100 ACK 100	
ACK SEGI - 00 ACK 00	
SEGI - 00 ACK 00	
ACK 00	
SEG2 0 - 200 (Lost)	
SEG3 201 - 300	
ACK 00, SACK 20 - 300 SEG4 30 - 400 (Lost)	
SEG5 401 - 500	
ACK 00, SACK 20 - 300, 40 - 500	
SEG2 0 - 200 (RETRANSMISSION)	
ACK 300, SACK 401 - 500 SEG4 301 - 400 (RETRANSMISSION)	
ACK 500	

Figure 164. SACK message flow

When establishing the TCP connection, one or both sides of the connection (in this case, only the sender) sends a SYN packet with Sack-Permitted Option. The option means that the sender is ready to receive TCP packets with the SACK Option in the TCP header if the receiver side has implemented the option. The receiver can also send SYNIACK packets with the Sack-Permitted Option. In this case, the sender also sends its packets with SACK information.

After the connection establishment, the sender begins data transmission. In Figure 164, segment 1 is successfully sent, but segment 2 is lost. Because the TCP window on the sender's side is not filled up yet, the sender sends segment 3, and it is received. At this point, the ACK value sent from the receiver is 100 (segment 1 only) because of the cumulative nature of TCP acknowledgements. But, the packet also includes SACK information indicating that the data within segment 3 (201-300) has been received. Then, the sender knows that it only has to retransmit segment 2 after retransmission time-out.

The above situation (one lost segment) is also resolved by TCP's fast retransmit/fast recovery mechanism. But, in case of a multiple drop, the

sender has no way of knowing the fact and has to wait for the retransmission timer to expire. For example, when segment 4 is lost and segment 5 is received, the ACK value sent back to the sender is still 100. The sender will wait for the retransmission timer to expire and retransmit segments 2, 3, 4, and 5. With SACK, the sender knows that only segments 2 and 4 have been lost and then retransmit these segments.

11.1.5 Security over the network

In this chapter, we will discuss some common concepts regarding security over a public network. In particular, we will introduce the concept of the Virtual Private Network, and we will also focus on a different layer of security mechanisms. Both AIX and Windows 2000 provide support for security over the network, but the protocols supported by them are not exactly the same.

11.1.5.1 Virtual Private Network

The term Virtual Private Network (VPN) is used to indicate the connections of components of one network over another network. The way it allows this is through the use of tunnelling in a manner that provides the same security and features formerly available only in private networks.

Tunneling is a method of using an internetwork infrastructure to transfer data for one network over another network. Instead of sending a frame as it is produced by the originating node, the tunneling protocol encapsulates the frame in an additional header. The additional header provides routing information so that the encapsulated payload can traverse the intermediate internetwork.

There are mainly two reasons for defining a VPN:

- VPNs allow users working at home or on the road to connect in a secure fashion to a remote corporate server using the routing infrastructure provided by a public internetwork, such as the Internet. Rather than making a long distance call to a corporate or outsourced Network Access Server (NAS), the user calls a local ISP. From the user's perspective, the VPN is a point-to-point connection between the user's computer and a corporate server. The nature of the intermediate internetwork is irrelevant to the user because it appears as if the data is being sent over a dedicated private link.
- VPN technology also allows a corporation to connect to branch offices or to other companies over a public internetwork, such as the Internet, while maintaining secure communications. The VPN connection across the Internet logically operates as a Wide Area Network (WAN) link between the sites.

Figure 165 shows an example of a Virtual Private Network. The IP packets that flow through the IPSec tunnel are authenticated and, typically, encrypted so that any two entities in intranet A and intranet B can communicate securely.

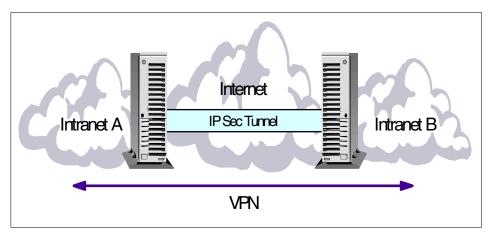



Figure 165. VPN

11.1.5.2 Basic VPN requirements

Typically, when deploying a remote networking solution, an enterprise needs to facilitate controlled access to corporate resources and information. The solution must allow roaming or remote clients to connect to LAN resources, and the solution must allow remote offices to connect to each other to share resources and information (LAN-to-LAN connections). In addition, the solution must ensure the privacy and integrity of data as it traverses the Internet. The same concerns apply in the case of sensitive data traversing a corporate internetwork.

Therefore, a VPN solution should provide at least all of the following:

- User Authentication The solution must verify the user's identity and restrict VPN access to authorized users only. It must also provide audit and accounting records to show who accessed what information and when.
- Address Management The solution must assign a client's address on the private net and ensure that private addresses are kept private.
- **Data Encryption** Data carried on the public network must be rendered unreadable to unauthorized clients on the network.
- **Key Management** The solution must generate and refresh encryption keys for the client and the server.

• **Multiprotocol Support** - The solution must handle common protocols used in the public network. These include IP, Internet Packet Exchange (IPX), and so on.

11.1.5.3 Tunneling protocols

Basically, we can divide tunneling protocols into two major categories: Layer 2 tunneling protocols and layer 3 tunneling protocols. Layer 2 protocols correspond to the data-link layer and use frames as their unit of exchange. PPTP and L2TP and Layer 2 Forwarding (L2F) are Layer 2 tunneling protocols; both encapsulate the payload in a PPP frame to be sent across an internetwork. Layer 3 protocols correspond to the Network layer, and use packets. IP-over-IP and IP Security (IPSec) Tunnel Mode are examples of Layer 3 tunneling protocols. These protocols encapsulate IP packets in an additional IP header before sending them across an IP internetwork.

Point-to-Point Protocol (PPP)

Because the Layer 2 protocols depend heavily on the features originally specified for PPP, it is worth examining this protocol more closely. PPP was designed to send data across dial-up or dedicated point-to-point connections. PPP encapsulates IP, IPX, and NetBEUI packets within PPP frames and then transmits the PPP-encapsulated packets across a point-to-point link. PPP is used between a dial-up client and an NAS. PPP standard provides two different mechanisms for user authentication to choose from:

- Password Authentication Protocol (PAP) is a simple clear-text authentication scheme
- Challenge-Handshake Authentication Protocol (CHAP). CHAP is an encrypted authentication mechanism that avoids transmission of the actual password on the connection.

Point-to-Point Tunneling Protocol (PPTP)

PPTP is a Layer 2 protocol that encapsulates PPP frames in IP datagrams for transmission over an IP internetwork, such as the Internet. PPTP can also be used in private LAN-to-LAN networking.

PPTP is documented in the draft RFC, "Point-to-Point Tunneling Protocol" (pptp-draft-ietf - ppext - pptp - 02.txt). It uses a TCP connection for tunnel maintenance and generic routing encapsulation (GRE) encapsulated PPP frames for tunneled data. The payloads of the encapsulated PPP frames can be encrypted and/or compressed.

Layer 2 Forwarding (L2F)

L2F, a technology proposed by Cisco, is a transmission protocol that allows dial-up access servers to frame dial-up traffic in PPP and transmit it over

WAN links to an L2F server (a router). The L2F server then unwraps the packets and injects them into the network. Unlike PPTP and L2TP, L2F has no defined client: In this case, the tunnel is created by a tunnel enabled NAS as soon as the client tries to establish a connection. Such a tunnel, also known as a compulsory tunnel, can be shared by a multiple dial-up client. When a second client dials into the access server (FEP) to reach a destination for which a tunnel already exists, there is no need to create a new instance of the tunnel between the FEP and tunnel server. Instead, the data traffic for the new client is carried over the existing tunnel.

Layer 2 Tunneling Protocol (L2TP)

L2TP is a combination of PPTP and L2F. It is a network protocol that encapsulates PPP frames to be sent over IP, X.25, Frame Relay, or Asynchronous Transfer Mode (ATM) networks. When configured to use IP as its datagram transport, L2TP can be used as a tunneling protocol over the Internet. L2TP can also be used directly over various WAN media, such as Frame Relay, without an IP transport layer.

L2TP is documented in the draft RFC, Layer 2 Tunneling Protocol L2TP (draft-ietf-pppext-l2tp-09.txt). This document was submitted to the IETF in January 1998.

11.1.5.4 Transport layer security

Besides the layer 2 and layer 3 tunneling protocols, many applications today use transport layer security technologies. The most widely-used layer 4 protocols to access secure information over public networks are:

- HTTPS
- SOCKS
- SSL

Transport layer security as provided by SSL/TLS requires that TCP-based applications are written specifically to use these security services.

11.1.5.5 IP Security

In the simplest meaning, IPSec provides ways to authenticate peers and encrypt IP packets along with filtering capabilities. The IP protocol did not have any security mechanisms before IPSec was introduced. Typically, security mechanisms were provided through the use of other transport/application level protocols, such as SSL and Kerberos, or the use of firewalls for packet filtering. By adding robust security mechanisms to the IP protocol layer, most applications can benefit from it without any costs

because IP is the most widely used and only network layer protocol in TCP/IP world.

Basic security services provided by IPSec are similar to those that are provided by other security protocols. They are:

- Authentication IPSec provides a way of authenticating peers. This means that the data originator is really the one the receiver believes they are communicating with.
- **Data integrity** By using hash functions, IPSec ensures that the data in a packet has not been modified.
- Encryption By encrypting data in a packet, the message in a packet is protected from malicious eavesdroppers.
- Robustness against replay attacks IPSec implements robustness against replay attacks by having sequence number filed in its headers.
- Access Control IPSec provides a packet filter mechanism based on various criteria.

Another important feature of IPSec is that it is independent from any algorithms although it defines a standard set of algorithms initially. IPSec is designed to work with different kinds of encryption and authentication algorithms. By allowing the selection and replacement of the algorithms, it is possible to change the authentication and encryption methods in the future when better and stronger methods are developed.

There are two security protocols defined for IPsec:

- Authentication Header The purpose of AH is to provide authentication and integrity to IP packets, adding headers to both IPV4 and IPV6 packets. Optionally, it can provide anti-replay attack capability. AH does not have any encryption capabilities; so, it is often used when no encryption requirements are necessary or where encryption is prohibited.
- Encapsulating Security Payload (ESP) ESP provides authentication, integrity, encryption, and anti-replay attack capability to IP packets. Unlike AH, ESP does not authenticate IP header, and the encryption does not cover IP header and ESP header. In tunnel mode, the IP header is also authenticated and encrypted because the IP header is inside the payload for the new encapsulating IP packet. ESP is designed for use with symmetric encryption algorithms.

AH and ESP can be used at the same time to increase security.

11.2 AIX networking

This section introduces AIX networking components.

11.2.1 TCP/IP V4

The AIX TCP/IP implementation is based on the BSD 4.3 Reno and BSD 4.4 software release. Figure 166 shows some of the components:

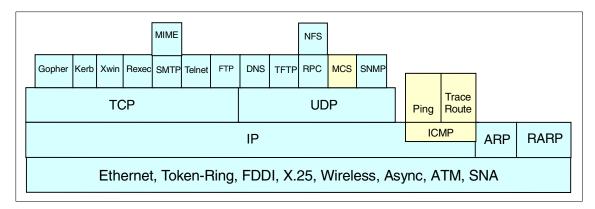


Figure 166. TCP/IP architecture

11.2.1.1 General

Transmission Control Protocol/Internet Protocol (TCP/IP) is a suite of protocols originally developed by the Defense Advanced Research Projects Agency (DARPA). TCP/IP gives the user many commands and facilities with which to transfer files between systems connected to the TCP/IP network, log in to remote systems, print files on remote systems, send electronic mail to remote users, and converse interactively with remote users.

TCP/IP is a protocol that can run on a Local Area Network (LAN) as well as a Wide Area Network (WAN) network. It has routing capabilities.

11.2.1.2 Supported standards

The AIX for RS/6000 TCP/IP implementation is branded XPG4 (X/Open Portability Guide) and includes the following:

- IEEE POSIX(TM)
 - POSIX 1003.1-1996, includes support for threads option
 - POSIX 1003.2-1993
- X/OPEN(TM)
- **388** AIX V4.3 and Windows 2000, Side by Side

- UNIX98 Profile Brand
- XPG4 Network File Systems (NFS) RFC 1094
- XPG5 Transport Service (XTI) V2
- XPG5 Sockets V2
- Terminal Access (TELNET), RFC 856 Binary transmission, RFC 857 Echo OPT, RFC 858 Suppress Go Ahead, RFC 860 Timing Mark, RFC 1073 Window size, RFC 1091 Terminal type, RFC 1123 Internet Hosts Application Support, RFC 974 Mail Routing, RFC 1032 Administrative Guide
- Network Computing System (NCS) 1.5.1
- Domain Name Server, RFC 1033 Administrative Operating Guide, RFC 1034, RFC 1035 Implementation Specification
- Network Management, RFC 1155 MIB (TCP/IP), RFC 1156 MIB (TCP/IP), RFC 1157 SNMP, RFC 1227 (SMUX), RFC 1213 MIB II, RFC 1123 Internet Hosts Application Support, MIL STD
- File Transfer, RFC 1780 FTP, RFC 1350 TFTP, RFC 959 FTP, RFC 822 Message Format
- Name/Finger, RFC 1288
- Time, RFC 868 Time
- Mail, RFC 1123 (SMTP), MIL STD 1781 (SMTP), RFC 821 SMTP, RFC 974 Mail routing
- Service Protocol, MIL STD 1777 TCP, RFC 1122, RFC 793 TCP, RFC 1323, RFC768 UDP, RFC 1122MIL STD 1778 IP, IEEE 802.2 Link, RFC 791 IP, RFC 792 IC Message protocol, RFC 826 Ethernet ARP
- Routing, RFC 888 Stub EGP, RFC 1042 Internet protocol over 802 network, RFC 877 Internet protocol over X.25, RFC 904 EGP format, RFC 950 Subneting, RFC 1122, RFC 1058 Routing

11.2.1.3 Supported physical layers

AIX TCP/IP supports the following physical layers. For some of the different network types, various adapter cards are available and supported. PCI bus, ISA bus, and Microchannel bus configurations are available.

- Token-Ring (TR)
- Ethernet V2 and IEEE 802.3 (EN)
- Fiber Distributed Data Interface (FDDI)
- Asynchronous Transfer Mode (ATM)

- SP2 High Performance Switch (HiPS)
- Fiber Channel Standard (FCS)
- High Performance Parallel Interface (HIPPI)
- Integrated Services Digital Network (ISDN)
- X.25
- Async (by using SLIP or PPP)

In addition, TCP/IP on AIX can also communicate to a mainframe through an S/370, an S/390 Block Multiplexer Channel connection, or an Enterprise System Connection (ESCON) connection.

11.2.1.4 TCP/IP on AIX supported protocols

The following is a list of TCP/IP protocols supported by AIX:

- · Core protocols
 - Transport Control Protocol (TCP)
 - User Datagram Protocol (UDP)
 - Internet Control Message Protocol (ICMP)
 - Address Resolution Protocol (ARP)
- TCP/IP connectivity applications
 - TELNET (client and server)
 - FTP (client and server)
 - TFTP (client and server)
 - REXEC (client and server)
 - RSH (client and server)
 - R commands (client and server)
- Network tools
 - finger/fingerd
 - arp
 - netstat
 - hostname
 - host
 - ifconfig
 - ping
- **390** AIX V4.3 and Windows 2000, Side by Side

- route
- rwho/rwhod
- traceroute
- tcpdump
- iptrace
- Network management protocol: Simple Network Management Protocol (SNMP)

11.2.1.5 TCP/IP on AIX additional services

The following is a list of the additional services supported by AIX:

- Network Time Protocol (NTP) Version 3 RFC 1305
- PPP/SLIP
- Simple Mail Transfer Protocol (SMTP)
- Sendmail 8.9.3
- Hyper Text Transfer Protocol (HTTP)
- Network File System (NFS V2 e NFS V3)
- Network Information System (NIS e NIS+)
- NFS Automounter
- WEBNFS
- Distributed File System (DFS)
- DCE Core Services
- Network Computing System (NCS) 1.5.1
- Network Installation Management (NIM)
- License Use Manager (LUM)
- Dynamic Host Configuration Protocol (DHCP)
- Domain Name System (DNS) based on bind 8.1.2
- Dynamic Domain Name System (DDNS)
- X Window (X11R6.3)
- XDMCP (X Window Display Manager Control Protocol)
- routed that implements the Routing Information Protocol (RIP)
- · GateD that implements RIP, Exterior Gateway Protocol (EGP), Border
- Gateway Protocol (BGP), the Defense Communications Network

- Local-Network (HELLO) and Open Shortest Path First (OSPF) routing protocol. In addition, the gated daemon supports SNMP.
- Boot Protocol (BOOTP) client and server (bootpd daemon)
- timed that helps synchronizing machines¢ time on a TCP/IP network
- · lpr/lpd that allows printing on remote printer

11.2.1.6 Summary of TCP/IP commands

The following is a summary of TCP/IP commands:

- File transfer commands
 - ftp
 - rcp
 - tftp
- Remote login commands
 - rexec
 - rlogin
 - rsh and remsh
 - telnet, tn and tn3270
- Status commands
 - finger **Or** f
 - host
 - ping
 - rwho
 - ruptime
 - whois
- Remote communication commands
 - talk
- Print commands
 - enq
 - lpr

11.2.1.7 Additional commands provided in SP environments

The following are additional commands provided in SP environments:

• distributed shell dsh

- sysctl/sysctld
- Kerberos
- parallel p* commands
- software update protocol (SUP)
- AMD Automounter

11.2.1.8 Popular Internet protocols available on AIX

The following is a list of most popular public domain protocols available on AIX:

- Network News Transfer Protocol (NNTP) RFC 977
- Internet Relay Chat (IRC)
- Gopher
- Wide Area Information Servers (WAIS) RFC 1625

11.2.2 TCP/IP V6

IP next generation (IPng) is a new version of the Internet Protocol designed as a successor to IP version 4. IPng is assigned IP version number 6 and is formally called IPv6. The next version of TCP/IP is also called IPng (Next Generation) and will be fully supported on AIX. For more information, see RFC 1883 and RFC 1885.

11.2.2.1 IPV6 introduction

IPng was designed to take an evolutionary step from IPv4. It was not a design goal to take a radical step away from IPv4. Functions that work in IPv4 were kept in IPng. Functions that didn't work were removed. The changes from IPv4 to IPng fall primarily into the following categories:

- Header Format Simplification Some IPv4 header fields have been dropped or made optional to reduce the common-case processing cost of packet handling and to keep the bandwidth cost of the IPng header as low as possible despite the increased size of the addresses. Even though the IPng addresses are four times longer than the IPv4 addresses, the IPng header is only twice the size of the IPv4 header.
- Improved Support for Options Changes in the way IP header options are encoded allows for more efficient forwarding, less stringent limits on the length of options, and greater flexibility for introducing new options in the future.
- Quality-of-Service Capabilities A new capability is added to enable the labeling of packets belonging to particular traffic *flows* for which the sender

requests special handling, such as non-default quality of service or *real-time* service.

• Authentication and Privacy Capabilities - IPng includes the definition of extensions that provide support for authentication, data integrity, and confidentiality. This is included as a basic element of IPng and will be included in all implementations.

IPng solves the Internet scaling problem, provides a flexible transition mechanism for the current Internet, and was designed to meet the needs of new markets, such as nomadic personal computing devices, networked entertainment, and device control. It does this in an evolutionary way that reduces the risk of architectural problems.

IPng supports large hierarchical addresses that will allow the Internet to continue to grow and provide new routing capabilities not built into IPv4. It has anycast addresses that can be used for policy route selection and scoped multicast addresses that provide improved scalability over IPv4 multicast. It also has local use address mechanisms that provide capability for *plug and play* installation.

Internet Protocol Version 6 (IPv6) was first introduced in AIX version 4.3.0, with support of the host function only. This means that no gateway support is included; so, IPv6 packets cannot be forwarded from one interface to another on the same RS/6000. In AIX version 4.3.2, IPV6 routing is supported.

11.2.2.2 IPV6 128-bit addressing

Here, we are going to provide a brief introduction to the IPV6 addressing mechanism.

As shown in the following example, an IPv6 address is represented by hexadecimal digits separated by colons, where IPv4 addresses are represented by decimal digits separated by dots or full-stops. IPv6 is, therefore, also known as colon-hex addressing, compared to IPv4's dotted-decimal notation.

IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces. Note that IPv6 refers to interfaces and not to hosts as with IPv4.

There are three conventional forms for representing IPv6 addresses as text strings:

• The preferred form is x:x:x:x:x:x:x: where the x's are the hexadecimal values of the eight 16-bit pieces of the address, each separated by a colon.

394 AIX V4.3 and Windows 2000, Side by Side

Examples are:

```
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
1080:0:0:0:8:800:200C:417A
```

Note that it is not necessary to write the leading zeros in an individual field, but there must be at least one numeral in every field (except for the case described next).

• Due to the method used to allocate certain styles of IPv6 addresses, it will be common for addresses to contain long strings of zero bits. To make writing addresses containing zero bits easier, a special syntax is available to compress the zeros. The use of :: (two colons) indicates multiple groups of 16-bits of zeros. Note that the :: can only appear once in an address. The :: can also be used to compress the leading and/or trailing zeros in an address.

For example, the following addresses:

1080:0:0:0:8:800:200C:417A a unicast address FF01:0:0:0:0:0:0:43 a multicast address 0:0:0:0:0:0:0:1 the loopback address 0:0:0:0:0:0:0:0:0 the unspecified addresses

may be represented as:

1080::8:800:200C:417A a unicast address
FF01::43 a multicast address
::1 the loopback address
:: the unspecified addresses

• An alternative form that is sometimes more convenient when dealing with a mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:d.d.d.d, where x is the hexadecimal values of the six high-order 16-bit pieces of the address, and d is the decimal values of the four low-order 8-bit pieces of the address (standard IPv4 representation).

Examples:

```
0:0:0:0:0:0:13.1.68.3
0:0:0:0:0:0:FFFF:129.144.52.38
```

or in compressed form:

```
::13.1.68.3
::FFFF:129.144.52.38
```

– Note

FFFF is used to represent addresses of IPv4-only nodes (those that do not support IPv6).

11.2.2.3 Types of IPV6 address

In IPv6, there are three types of addresses:

Unicast

This is an identifier for a single interface. A packet sent to a unicast address is delivered to the interface identified by that address. A unicast address has a particular scope as shown in the following lists:

- link-local
 - Valid only on the local link (that is, only one hop away).
 - Prefix is fe80::/16.
- site-local
 - Valid only at the local site (for example, inside IBM Austin).
 - Prefix is fec0::/16.
- global
 - Valid anywhere in the Internet.
 - Prefix may be allocated from unassigned unicast space.

There are also two special unicast addresses:

- ::/128 (unspecified address).
- ::1/128 (loopback address Note that, in IPv6, this is only one address, not an entire network).

Multicast

An identifier for a set of interfaces (typically belonging to different nodes). A packet sent to a multicast address is delivered to all interfaces identified by that address. A multicast address is identified by the prefix ff::/8. As with unicast addresses, multicast addresses have a similar scope. This is shown in the following lists:

- Node-local
 - Valid only on the source node (for example, multiple processes listening on a port).
 - Prefix is ff01::/16 or ff11::/16.
- Link-local
 - Valid only on hosts sharing a link with the source node (for example, Neighbor Discovery Protocol [NDP] data).
 - Prefix is ff02::/16 or ff12::/16.

- Site-local
 - Valid only on hosts sharing a site with the source node (for example, multicasts within IBM Austin).
 - Prefix is ff05::/16 or ff15::/16.
- Organization-local
 - Valid only on hosts sharing organization with the source node (for example, multicasts to all of IBM).
 - Prefix is ff08::/16 or ff18::/16.

The 0 or 1 part in these prefixes indicates whether the address is permanently assigned (1) or temporarily assigned (0).

Anycast

This is an identifier for a set of interfaces (typically belonging to different nodes). An anycast address is an address that has a single sender, multiple listeners, and only one responder (normally, the nearest one, according to the routing protocols' measure of distance). An example may be several Web servers listening on an anycast address. When a request is sent to the anycast address, only one responds.

Anycast addresses are indistinguishable from unicast addresses. A unicast address becomes an anycast address when more than one interface is configured with that address.

- Note

There are no broadcast addresses in IPv6, their function is superseded by multicast addresses.

11.2.2.4 Additional protocols and functions related to IPV6

There are some additional features that are strictly related to IPng and that are available with AIX; we will now introduce only the most important of these:

- Internet Control Message Protocol (ICMPv6) While IP V4 uses ICMP V4, ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets and to perform other Internet-layer functions, such as diagnostics (ICMPv6 ping) and multicast membership reporting.
- **Neighbor Discovery** The Neighbor Discovery (ND) protocol for IPv6 is used by nodes (hosts and routers) to determine the link-layer addresses for neighbors known to reside on attached links and maintain per-destination routing tables for active connections. Hosts also use Neighbor Discovery to find neighboring routers that forward packets on

their behalf and detect changed link-layer addresses. Neighbor Discovery protocol (NDP) uses the ICMPv6 protocol with a unique message type to achieve the above function. In general terms, the IPv6 Neighbor Discovery protocol corresponds to a combination of the IPv4 protocols Address Resolution Protocol (ARP), ICMP Router Discovery (RDISC), and ICMP Redirect (ICMPv4), but with many improvements over these IPv4 protocols.

- Stateless Address Autoconfiguration IPv6 defines both a stateful and stateless address autoconfiguration mechanism. Stateless autoconfiguration requires no manual configuration of hosts, minimal (if any) configuration of routers, and no additional servers. The stateless mechanism allows a host to generate its own addresses using a combination of locally-available information and information advertised by routers. Routers advertise prefixes that identify the subnet(s) associated with a link while hosts generate an interface-token that uniquely identifies an interface on a subnet. An address is formed by combining the two. In the absence of routers, a host can only generate link-local addresses. However, link-local addresses are sufficient to allow communication among nodes attached to the same link.
- **Tunneling over IP** The key to a successful IPv6 transition is compatibility with the existing installed base of IPv4 hosts and routers. Maintaining compatibility with IPv4 while deploying IPv6 streamlines the task of transitioning the Internet to IPv6. In most deployment scenarios, the IPv6 routing infrastructure will be built-up over time. While the IPv6 infrastructure is being deployed, the existing IPv4 routing infrastructure can remain functional and can be used to carry IPv6 traffic. Tunneling provides a way to use an existing IPv4 routing infrastructure to carry IPv6 traffic.

11.2.3 GateD Version 6.0

GateD is designed to handle dynamic routing with a routing database built from information exchanged by routing protocols. GateD is a modular software program produced by the Merit GateDaemon Project. It consists of core services, a routing database, and protocol modules supporting multiple routing protocols:

- Routing Information Protocol (RIP)
- Routing Information Protocol Next Generation (RIPng)
- Exterior Gateway Protocol (EGP)
- Border Gateway Protocol (BGP) and BGP4+
- Defense Communications Network Local-Network Protocol (HELLO)
- 398 AIX V4.3 and Windows 2000, Side by Side

- Open Shortest Path First (OSPF)
- Intermediate System to Intermediate System (IS-IS)
- Internet Control Message Protocol (ICMP) / Router Discovery routing protocols
- Simple Network Management Protocol (SNMP)

GateD was first used to interconnect the NSFNET and emerging regional networks and implement filtered routing based on policy. GateD allows the network administrator to control the import and export of routing information by individual protocol, source and destination autonomous system, source and destination interface, previous hop router, and specific destination address. The network administrator can specify a preference level for each combination of routing information being imported by using a flexible masking capability. Once the preference levels are assigned, GateD decides which route to use independently of the protocols involved. The GateDaemon Consortium presents a formal structure to support and expand the current successful collaborations already in place to develop GateD functionality. Membership is open to all organizations interested in supporting and participating in the development of internetwork routing protocols. Membership is not a prerequisite for licensing of GateD source code. IBM is a member of the GateD consortium. Version 6.0 of GateD from INRIA (Institut National de Recherche en Informatique et en Automatique) is ported from INRIA to AIX 4.3.2 with IPV6 support so that GateD and some of its routing protocols can manipulate IPv6 addresses.

There are three new commands delivered along with the new GateD supporting IPv6 routing.

- The gdc command provides an operational user interface for gated. The interface is user-oriented for the operation of the GateD routing daemon. It provides supports for:
 - Starting and stopping a GateD daemon
 - Delivering signals to manipulate the GateD daemon
 - Maintenance and syntax checking of configuration files
 - Removal of state dumps and core dumps

The gdc command can reliably determine the running state of GateD and produces a reliable exit status when errors occur making it advantageous for use in shell scripts that manipulate GateD.

• The ospf_monitor command queries OSPF routers to provide the detailed statistics. It monitors the OSPF gateways.

• The ripquery command sends a RIP request or POLL command, to a RIP gateway to request all the routes known by the gateway. It queries the RIP gateways. This command is used as a tool for debugging gateways.

For more information about the GateD protocol, see the Web site at http://www.gated.merit.edu

11.2.3.1 IPv6 routing functions

The changes for IPv6 routing in Institut National de Recherche en Informatique et en Automatique (INRIA) are merged into the AIX netinet and kernel. Also, some of the routing applications are ported to AIX, specifically, ndpd-router and updates to ndpd-host and ndp. AIX 4.3.2 adds the following IPv6 functions:

- IPv6 unicast routing support This is the normal way a packet is sent to a unicast address and delivered to the interface identified by that address.
- **IPv6 multicast routing support** This is the way a message is delivered to multiple hosts participating to a multicast group: instead of being routed to only one final destination interface, the packet is routed to several interfaces which declared to join the multicast group
- IPv6 anycast address support In AIX 4.3, the anycast is similar to INRIA. This method involved creating anycast addresses and associating them with a specific interface. This is acceptable because, on incoming packet reception, AIX would talk to all the addresses on the address lists, but, to modify these addresses, a user would have to remember the associated interface. INRIA has moved anycast addresses on to a private list.
- **IPv6 multi-homed link local and site local support** The reason for adding multi-homed host support is because most routers are multi-homed and need the ability to reference different hosts on different links at the link local and site local levels.

The AIX IPv6 will support the host requirements from the following RFCs:

- RFC 1883 Internet Protocol, Version 6 (IPv6) Specification
- RFC 1884 IP Version 6 Addressing Architecture
- **RFC 1885** Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
- RFC 1886 DNS Extensions to support IP Version 6
- RFC 1887 An Architecture for IPv6 Unicast Address Allocation
- RFC 1970 Neighbor Discovery for IP Version 6 (IPv6)

- RFC 1971 IPv6 Stateless Address Autoconfiguration
- RFC 1972 A Method for the Transmission of IPv6 Packets over Ethernet networks
- RFC 1981 Path MTU Discovery for IP Version 6
- RFC 2019 A Method for the Transmission of IPv6 Packets over FDDI networks

For a complete list of all RFCs and Internet drafts pertaining to IPv6, refer to the Web site: http://www.ietf.org/html.charters/ipngwg-charter.html. This is an evolving list, and AIX conforms to a subset of these.

11.2.4 NFS version 2

Network File System (NFS) support in AIX complies with RFC 1094 developed by Sun Microsystems, Inc. in the late 80s. This version of NFS is also referred to as NFS Version 2. In AIX, NFS includes:

- Network Information System (NIS)
- Remote Procedure Call (RPC) API
- eXternal Data Representation (XDR)

NFS provides the ability to read and write to files that are located physically on another computer system. NFS allows a directory that is in a file system on a remote system to be accessed from the local system as if it was local. To a user, the remote directory and the files in the remote directory appear to be local files. The process of making a remote directory accessible locally involves mounting the directory in a similar way to mounting a local file system.

With NFS, any system can be both a client and a server. A server is a system that is set up to provide access to its local directories and files. A client is a system that is accessing the directories and files on another system. One system can access the files and directories on another system and, at the same time, export its own directories and files to make them available to other systems.

These functions are provided by a combination of the AIX kernel and NFS daemon processes. Multiple NFS daemons are used to service multiple requests at once.

11.2.5 PMTU discovery

RFC1191 provides the mechanism to discover the best PMTU and is supported by AIX. It was introduced with AIX 4.2.1, but, before Version 4.3.3, it was not active by default. For a more detailed discussion of the PMTU protocol, you may refer to Section 11.1.2, "Path MTU (PMTU)" on page 380.

11.2.6 NIS

Network Information System (NIS) is a useful tool for administering a large number of systems. The main purpose of NIS is to distribute up-to-date information from AIX files used for user management, system management, and network management. NIS can also be used to distribute information from your own files.

NIS is most commonly used to keep user names, user IDs, passwords, group names, and group IDs consistent across many systems. It provides a means of centrally administrating users, groups, and passwords on a network of machines.

11.2.6.1 NIS domain

An NIS domain is a set of machines that have the same NIS domain name. This domain name is not related to the TCP/IP domain used for address resolution with the DNS/bind protocol. Of course, the NIS domain name can be set to the DNS/bind domain name, but, in general, there will be more systems in the DNS/bind domain than systems sharing the same NIS definitions and having a common NIS master server.

11.2.6.2 NIS maps

NIS does not distribute the actual files containing the data. It uses the information in the files to build an NIS map, which is really a database file created and accessed by NIS clients via remote procedure calls (RPC). NIS uses a database called DBM (Database Management) supplied as standard with AIX.

11.2.6.3 NIS master and slave servers

The information in the NIS maps is kept on a master server, which controls the information. There is only one master server in a single NIS domain. Additional slave servers can hold copies of the information controlled by the NIS master server. The master server automatically updates its slave servers. Slave servers improve performance and availability.

11.2.6.4 NIS security

In general, NIS security is considered weak.

11.2.6.5 NIS Netgroups

In order to assist in managing groups of users and hosts, NIS supports netgroups. Netgroups are definitions that consist of defined users, hosts, and domains.

Netgroup entries have the form:

netgroup_name (host_name,user_name,domain_name) (host_name,....)

Netgroups are used as a shorthand way of including host, user, and domain information into NIS maps. Each NIS map only uses the information applicable to it.

11.2.7 Open Network Computing (ONC+)

The ONC+ technology has been licensed from SunSoft and is being included within AIX to meet customer requirements. This technology contains many different functional components; the main ones are: NFS Version 3, NIS+, CacheFS, TIRPC, and AutoFS. Not all of these components are included with this release of AIX. NFS V3 was introduced in AIX Version 4.2.1. CacheFS was introduced in AIX Version 4.3.0; AutoFS was included in AIX 4.3.1, and NIS+ was introduced in AIX 4.3.3.

11.2.7.1 CacheFS

CacheFS is a local disk cache mechanism for NFS clients. It provides the ability for an NFS client to cache file system data on its local disk, thereby, avoiding use of the network and the NFS server when the data is accessed and is not in physical memory. This improves NFS server performance and scalability by reducing server and network load. Designed as a layered file system, CacheFS provides the ability to cache one file system on another. In an NFS environment, CacheFS increases the clients per server ratio, reduces server and network loads, and improves performance for clients, particularly on slow links.

CacheFS is contained in the bos.net.cachefs fileset, which is not automatically installed when installing AIX.

How CacheFS works

After creating a CacheFS file system on a client system, the system administrator specifies which file systems are to be mounted in the cache. When a user on that client attempts to access files that are part of the back file system, those files are placed in the cache. Note that the cache does not get filled until a user requests access to a file or files. Therefore, the initial request to access a file will be at normal NFS speeds, but subsequent accesses to the same file will be at local JFS file system speeds.

11.2.7.2 AutoFS

AutoFS is the component of ONC+ that provides automatic mounting of NFS file systems. It has been included in AIX since AIX 4.3.1. The automounting file system, autofs, mounts file systems when access is requested and unmounts the file system after a few minutes of inactivity, thus, saving the network overhead traffic required to maintain the NFS connection. AutoFS allows you to break the connection when the file system is not being used and restart it again automatically the next time access is desired.

How AutoFS Works

AutoFS is a client-side service. It is implemented using three components to accomplish automatic mounts. The components are:

- The automount command
- The autofs kernel extension
- The automountd daemon

The automount command is called at system startup time from /etc/rc.tcpip. It loads the autofs kernel extension if it is not already loaded and reads the master map information from the file /etc/auto_master. The automount command then passes the information it read from the master map to the autofs kernel extension. It then starts the automount daemon and terminates.

The autofs kernel extension reads the information passed to it from the automount command and maintains an internal table of the autofs mounts. These autofs mounts are not automatically mounted at startup time. They are points under which file systems can be mounted in the future.

When a client attempts to access a file system that is not presently mounted, the autofs kernel extension intercepts the request and gets the automountd daemon to mount the requested directory. The automountd daemon locates the directory, mounts it within autofs, and replies. Upon receiving the reply, autofs allows the waiting request to proceed. Subsequent references to the mount are redirected by the autofs. No further participation is required by automountd.

With this implementation of automatic mounting, the automountd daemon is completely independent of the automount command. Because of this separation, it is possible to add, delete, or change map information without first having to stop and start the automountd daemon process. Once the filesystem is mounted, further access does not require any action from automountd.

11.2.7.3 NFS server performance enhancement

The NFS server performance of AIX 4.3.2 is enhanced with the implementation of a vnode cache in the JFS component of the kernel. The cache enables the NFS server code to translate an NFS file handle to a local vnode structure more efficiently than previous versions of AIX. As a result, the NFS server code spends less time holding a VFS lock word, which, in turn, increases the available throughput of the NFS server.

11.2.7.4 NIS+

NIS+ is a new feature of AIX 4.3.3, which is a part of SUN's NIS+ version 3 software.

NIS+ expands the network name service provided by NIS. NIS+ enables the storage of information about workstation addresses, security information, mail information, ethernet interfaces, and network services in central locations where all workstations on a network can access it. This configuration of network information is referred to as the NIS+ name space.

The NIS+ name space is hierarchical and can be configured to conform to the logical hierarchy of an organization. An NIS+ name space can be divided into multiple domains, each of which can be administered autonomously. Clients may have access to information in other domains as well as their own if they have the appropriate permissions.

NIS+ uses a client-server model to store and have access to the information contained in an NIS+ name space. Each domain is supported by a set of servers. The principal server is called the master server and the backup servers are called replicas. The network information is stored in standard NIS+ tables in an internal NIS+ database. Both master and replica servers run NIS+ server software and both maintain copies of NIS+ tables. Changes made to the NIS+ data on the master server are incrementally and automatically propagated to the replicas.

NIS+ includes a sophisticated security system to protect the structure of the name space and its information. It uses authentication and authorization to verify whether a client's request for information should be filled. Authentication determines whether the information requester is a valid user on the network. Authorization determines whether a particular user is allowed to have or modify the requested information.

Differences between NIS and NIS+

NIS+ differs from NIS in several ways. It has many new features, and the terminology for similar concepts is different. Table 17 gives an overview of the major differences between NIS and NIS+.

Table 17. NIS and NIS+ differences

NIS	NIS+	
Machine name and user's name can be the same	Machine name and user names must be unique. Furthermore, you cannot have a dot (.) in your machine or user name.	
Domains are flat; there is no hierarchy.	Domains are hierarchical; data is stored in different levels in the name space.	
Names and commands are case sensitive	Names and commands are not case-sensitive	
Data is stored in two-column maps.	Data is stored in multi-column tables.	
Uses no authentication.	Uses DES authentication.	
An NIS record has a maximum size of 1024 bytes. This limitation applies to all NIS map files. For example, a list of users in a group can contain a maximum of 1024 characters in single-byte character set file format.	The NIS+ record has no limit.	
Provides single choice of network information source.	Client chooses information source: NIS, NIS+, DNS, or local /etc files	
Updates are delayed for batch propagation	Incremental updates are propagated immediately	

NIS+ is designed to replace NIS, not enhance it. NIS was intended to address the administration requirements of smaller client-server computing networks. Typically, NIS works best in environments with no more than a few hundred clients, a few multipurpose servers, only a few remote sites, and trusted users.

The size and complexity of modern client-server networks require new autonomous administration practices. NIS+ was designed to meet the requirements of networks that typically range from 100-10,000 multi-vendor clients supported by 10-100 specialized servers located in sites throughout the world. In addition, the information they store can change rapidly.

Because more distributed networks require scalability and decentralized administration, the NIS+ name space was designed with hierarchical domains that may be administered independently.

Although this division into domains makes administration more autonomous and growth easier to manage, it does not make information harder to access. Clients have the same access to information in other domains as they would have had under one umbrella domain. A domain can even be administered from within another domain.

NIS compatibility mode

NIS-compatibility mode enables an NIS+ server to answer requests from NIS clients while continuing to answer requests from NIS+ clients. NIS+ does this by providing two service interfaces. One responds to NIS+ client requests, while the other responds to NIS client requests.

This mode does not require any additional setup or changes to NIS clients that are not even aware that the server that is responding is not an NIS server. However, there are some differences including the fact that the NIS+ server running in NIS-compatibility mode does not support the ypupdate and ypxfr protocols and, thus, it cannot be used as a replica or master NIS server. Instructions for setting up a server in NIS-compatibility mode are slightly different than those used to set up a standard NIS+ server, and NIS-compatibility mode has security implications for tables in the NIS+ name space. Since the NIS client software does not have the ability to provide the credentials that NIS+ servers expect from NIS+ clients, all their requests end up classified as unauthenticated. Therefore, to allow NIS clients to access information in NIS+ tables, those tables must provide access rights to unauthenticated requests. This is handled automatically by the utilities used to set up a server in NIS-compatibility mode.

NIS+ structure and concepts

The NIS+ name space is the way information is stored by NIS+. The name space can be arranged in a variety of ways to suit the needs of an organization. For example, if an organization had three divisions, its NIS+ name space would likely be divided into three parts, one for each division. Each part would store information about the users, workstations, and network services in its division, but the parts could easily communicate with each other. Such an arrangement would make information easier for users to access and for administrators to maintain. Without entering too deeply into details, let us simply assume that the three basic components that are used by NIS+ to structure this information are called directories (they represent the skeleton of the name space), tables (the objects that contain information),

and groups (collections of NIS+ principals used to allow access to NIS+ tables).

To aid help you understand what an NIS+ name space is, let us say that it may resemble a traditional UNIX file system but with some important differences as described in Table 18.

NIM name space	UNIX file system
Uses tables and groups	Uses files
Administered only through NIS+ commands	Administered with UNIX standard file system commands
the names of NIS+ name space objects are separated by dots (wiz.com.)	The names of AIX file system components are separated by slashes (/usr/bin)
The root of NIM+ name space is reached by stepping from left to right (sales.witz.com.)	The root of AIX filesystem is reached by stepping from right to left (/usr/src/file1)
Because NIS+ object names are structured from left to right, a fully qualified name always ends in a dot. Any NIS+ object ending in a dot is assumed to be a fully qualified name. NIS+ object names that do not end in a dot are assumed to be relative names.	A fully qualified AIX object start with a slash (root) and ends with the name of the object itself

Table 18. NIS+ name space and UNX filesystem structural comparison

A fully-qualified NIS+ domain name is formed from left to right starting with the local domain and ending with the root domain:

wiz.com. sales.wiz.com. intl.sales.wiz.com.

The first line shows the name of the root domain. The root domain must always have at least two labels and must end in a dot.

NIS+ domain's components

Every NIS+ domain is supported by a set of NIS+ servers. The servers store the domain's directories, groups, and tables and answer requests for access from users.

Two types of servers support an NIS+ domain: A master and its replicas. The master server of the root domain is called the root master server. A name space has only one root master server. The master servers of other domains

are simply called master servers. Likewise, there are root replica servers and regular replica servers.

Both master and replica servers store NIS+ tables and answer client requests. The master, however, stores the master copy of a domain's tables. The replicas store only duplicates. The administrator loads information into the tables in the master server, and the master server propagates it to the replica servers.

This arrangement has two benefits. First, it avoids conflicts between tables because only one set of master tables exists; the tables stored by the replicas are only copies of the masters. Second, it makes the NIS+ service much more available. If either the master or a replica is down, another server can act as a backup and handle the requests for service.

Similarly, an NIS+ client is a workstation that has been set up to receive NIS+ service. Setting up an NIS+ client consists of establishing security credentials, making it a member of the proper NIS+ groups, verifying its home domain, and, finally, running the NIS+ initialization script. An NIS+ client can access any part of the name space if it has been authenticated and granted the proper permissions. Anyway, a client belongs to only one domain, which is referred to as its home domain.

11.2.7.5 NFS V3

NFS V3 has been included in AIX since Version 4.2.1 and brings many improvements for both the NFS client and server. The most notable of those improvements is that it allows the NFS client to request an asynchronous write and commit sequence for writing file data. This new feature allows for faster file writes to the NFS server. With the NFS Version 2 protocol, the NFS server must write file data to disk before responding to the NFS client. With the use of the NFS Version 3 asynchronous write request, this is not required.

NFS Version 2 limited the size of READ and WRITE requests to 8 KB. The NFS Version 3 protocol relaxes the transfer size for READs and WRITEs. The AIX implementation, such as most in the industry, offers a 32 KB READ and WRITE size for both client and server. For example, with NFS Version 2, the reading of a file 128 KB in size would require the NFS client to send 16 individual remote procedure calls to the NFS server. With NFS Version 3, the same file could be read with four remote procedure calls.

• The NFS Version 3 protocol was developed with the ability to access files larger than 2 GB in size. The AIX NFS client and server take advantage of this ability and provide access to files greater than 2 GB in size.

Besides these major enhancements, at least two other functional changes have been introduced into AIX since its 4.2.1 version, both in the NFS client and server:

- NFS over TCP The NFS client and server can use tcp instead of udp for communication
- Multithreaded NFS server NFS client and server daemons are implemented in AIX 4.2.1 with the use of AIX multithreading support. The NFS server daemon, nfsd, has been a multiprocess implementation in the past. With the new multithreaded NFS server load, balancing the server becomes much easier. NFS server threads are created and destroyed on demand as the incoming NFS client requests increase and decrease. The NFS client also takes advantage of the multithreaded approach to provide a well-balanced resource approach to reading and writing files.

11.2.8 WebNFS

WebNFS is an extension of NFS V3 to the Internet. WebNFS allows users to access files and images from a WebNFS server through Internet connections (modem, slow speed lines) as if they were local. When accessing a file, the file is automatically mounted over the network. WebNFS is able to recover from the drop of a line. WebNFS is faster than HTTP when displaying files and graphics.

It also supports the URL NFS (for example, nfs://servername/filename). With WebNFS, Web editors can work directly with the original files without downloading, editing, and sending the file back to the Web server..

11.2.9 Name resolution

This section covers the different mechanisms existing in AIX to resolve names of systems on the TCP/IP network to IP addresses and vice versa.

11.2.9.1 Hosts file

The first way to resolve host names to IP addresses in a TCP/IP network is to maintain an /etc/hosts file on each machine participating in the network. This file contains a list of IP addresses and their corresponding host names. While the mechanism is relatively simple, it is a burden on large networks because the /etc/hosts file must be updated on each machine every time a machine is added to or removed from the network. It is, however, fine for small networks.

11.2.9.2 NIS

NIS allows one to maintain a centralized copy of the hosts file. This simplifies the update of the hosts file since only one copy needs to be maintained.

When the network becomes quite large, managing a large number of systems via NIS is not very elegant. If hosts are added to the name space at various locations, NIS and the hosts file is an unmanageable solution. NIS+ or DNS are a better choice.

For a more complete discussion of NIS, see Section 11.2.6, "NIS" on page 402.

11.2.9.3 NIS+

Like NIS, NIS+ allows the central administration of the host database. Unlike NIS, NIS+ is much more scalable, given its hierarchical structure, and may be used for more distributed environments than NIS.

Besides NIS+ not only allows central management of IP addresses of machines in the network, but it enables system administrators to store information about client addresses, security information, mail information, network interfaces, and network services in central locations where all the clients on a network can access it. For further details about NIS+, see Section 11.2.7.4, "NIS+" on page 405.

11.2.9.4 DNS and DDNS

The Domain Name System (DNS) is the way that host names are organized in a TCP/IP network. If you have a site with many systems, DNS is used to delegate the responsibility for naming systems to other people or sites. This reduces your administration workload by only having to update one server if you want to change the address of a system.

The domain system is not limited to finding Internet addresses. Each domain name is a node in a database. The node can have records that define a number of different properties. Examples are Internet address, computer type, and a list of services provided by a computer. A program can ask for a specific piece of information or for all information about a given name. It is possible for a node in the database to be marked as an *alias* (or nickname) for another node. It is also possible to use the domain system to store information about users, mailing lists, or other objects.

Besides, DNS is strictly integrated with DHCP, allowing, in this way, automatic registration of ip addresses into the DNS of clients as soon as they are provided by the DHCP server (DDNS). For more details about DNS, see Section 11.2.10, "Domain Naming System (DNS)" on page 412, and, for a more complete discussion of DDNS, refer to Section 11.2.12, "Dynamic Domain Name System (DDNS)" on page 417.

11.2.10 Domain Naming System (DNS)

The Domain Naming System (DNS) is a method for distribution of a large database of IP addresses, hostnames, and other record data across administrative areas. The end result is a distributed database maintained in sections by authorized administrators per domain.

Similar to other UNIX platforms, AIX offers the BIND DNS server. BIND, or the Berkeley Internet Name Daemon, is a DNS server implementation provided by the Internet Software Consortium. It has become the standard for DNS server implementations and a benchmark for DNS server intercompatibility.

11.2.10.1 Domain structure

A host name is the name of a machine. The host name is usually attached to the left of the domain name. The result is a host's domain name. Domain names reflect the domain hierarchy. Domain names are written from the most specific (a host name) to the least specific (a top-level domain), from left to right, with each part of the domain name separated by a dot. A fully-qualified domain name (FQDN) starts with a specific host and ends with a top-level domain followed by the root domain (the dot, "."). www.xyx.com. is the FQDN of workstation www in the xyz domain of the com top level domain. A domain is part of the name space, and it may cover several zones.

11.2.10.2 DNS zone

A zone is part of the name space. If a nameserver is listed at the InterNIC or at a higher level nameserver as authoritative for part of the name space, and it has full data on that part of the name space, it is authoritative for that zone.

11.2.10.3 Types of Domain name servers

Servers do not really have types. A server can be primary for some zones and secondary for others. It can be only primary or only secondary. It may serve no zones and just answer queries via its cache.

11.2.10.4 Primary Domain Server

There is only one primary server per zone. The data is always loaded from a file.

11.2.10.5 Secondary Domain Server

On the secondary domain server, the data is always transferred from a primary domain server and stored in a local file. It checks every refresh period with the primary, looking for changes. There is an unlimited number of secondaries per zone. In general, there are one or two on each subnet to split the load and provide the availability of the service.

11.2.10.6 Caching only Domain Server

All servers are caching servers. This means that the server caches the information that it receives for use until the data expires. A Caching Only Server is a server that is not authoritative for any zone. This server services queries and asks other servers, which have the authority, for the necessary information. Al I servers keep data in their caches until the data expires, based on a TTL (Time To Live) field that is maintained for all resource records.

11.2.10.7 Forwarder server

Any server can make use of forwarders. A forwarder is another server, capable of processing recursive queries, that is willing to try to resolve queries on behalf of other systems.

11.2.10.8 Slave servers

Slave mode is used if the use of forwarders is the only possible way to resolve queries due to a lack of full net access or if you wish to prevent the name server from using other than the listed forwarders.

11.2.10.9 AIX 4.3.3 implementation of DNS and BIND

AIX 4.3.2 incorporates IBM DNS value-added functions to the latest level of BIND, Version 8.1.2. This involves adding IBM secure dynamic DNS update protocol and incremental zone transfers to BIND 8.1.2 as well as extending this BIND's NOTIFY ability and parameter configuration.

The following are the new functions provided by Bind Version 8.1.2:

- Secure dynamic DNS updates Currently, BIND offers only the unsecured RFC 2136 update protocol. This is an insufficient offering for customers desiring to implement a dynamic DNS environment in their networks. The secure update protocol is added as the solution for RFC 2136's insecure shortcomings and to provide backward compatibility with current AIX dynamic DNS customers.
- Incremental zone transfer Implement the RFC 1995 Incremental Zone Transfer protocol. This protocol defines a method through which secondary DNS servers can update their existing zone data to incorporate all the cumulative changes to the primary zone since the last transfer. This protocol supersedes the performance of ordinary zone transfers by limiting the amount of network traffic between primary and secondary DNS servers and the subsequent computation time of incorporating an entirely new zone. The protocol ensures that incremental zone transfers can be sent to indicate changes from both dynamic updates and zones changed on disk (those reincorporated through a refresh signal or server restart).

- Notify Implementing the RFC 1996 Notify process. This is a method by which the primary DNS server can indicate to its secondary nameservers that zone data has been updated. This decreases the time periods in which a secondary DNS server will have data out of synchronization with its primary DNS server.
- File Conversion Utility Extending the configuration file conversion utility to support IBM functional additions to previous BIND releases. This involves mapping the dynamic keywords of previous named.boot files to a functional equivalent in the named.conf configuration file.
- Proprietary protocol for secure updates of dynamic notify dynamic zones.

Bind 4.9.3 is available using named4. Bind 8.1.2 uses named8.

11.2.10.10 DNS Support for Load Balancing

Around 1986, a number of different schemes started surfacing as hacks to the Berkeley Internet Name Domain server (BIND) distribution. Probably the most widely distributed of these were the "Shuffle Address" (SA) modifications by Bryan Beecher, or possibly Marshall Rose's "Round Robin" code. RFC 1794 contains more detailed information on this topic.

IBM offers SecureWay Network Dispatcher, which is included in IBM WebSphere Performance Pack V3 (5639-I29), which supports load balancing for DNS server.

11.2.10.11 MX - Mail eXchange

The domain system is particularly important for handling computer mail. There are entry types to define what computer handles mail for a given name, to specify where an individual is to receive mail, and to define mailing lists. Mail eXchange records, MX, are used to specify a list of hosts that are configured to receive mail sent to this domain name. Every host name that receives mail should have an MX since, if one is not found at the time mail is being delivered, an MX will be *imputed* with a cost of 0 and a destination of the host itself. If you want a host to receive its own mail, you should create an MX for your host's name pointing at your host's name. It is better to have this be explicit than to let it be imputed by remote mailers.

11.2.10.12 DCE intercell communication

The domain system is also used for Distributed Computing Environment (DCE) intercell communication. A DCE sub-type of record is usually accompanied by a TXT record for other information specifying other details to be used in accessing the DCE cell. RFC 1183 contains more detailed information on the use of this record type.

11.2.11 Dynamic Host Configuration Protocol (DHCP)

The Dynamic Host Configuration Protocol is an IETF-approved standard. DHCP implementation in AIX adheres to IETF RFC 1533, RFC 1534, RFC 1541, and RFC 1542 and is a full implementation of these standards. DHCP is an application-layer protocol that allows a machine on the network to automatically query an IP address and other network configuration parameters, such as host name, domain name, DNS servers, subnet mask, default gateways, and so on. The DHCP server can dynamically assign all the information needed to the client. That information does not need to be entered on the DHCP client. All network information is assigned when the client boots up for the first time.

11.2.11.1 DHCP is based on BOOTP

The DHCP protocol is actually based on the BOOTP protocol. The BOOTP protocol is the protocol used by diskless workstations, routers, and terminal concentrators to obtain their network information from a boot server. These BOOTP clients usually do not know their IP addresses (they only know their physical network address), and, if they do not know the BOOTP server address, they temporarily use the IP address 0.0.0.0 to contact the BOOTP server by issuing a limited broadcast. The BOOTP server will then send the required network information back to the client.

11.2.11.2 DHCP Simplifies Network Management

The DHCP mechanism can greatly simplify network administration since a user does not have to request an IP address and associated network information from the network administrator. Also, the administrator does not have to manage addresses each time a user requests one. DHCP has some other interesting advantages. For example, if you have a limited number of IP addresses for a higher number of systems that are not always used at the same time, you can use DHCP to automatically assign addresses to systems that are actually running.

Another example is the use of mobile computers, such as laptops. These computers often go from one location to another location having different network parameters. DHCP allows dynamic assignment of an address to these temporary hosts very easily. As with any other TCP/IP protocol, DHCP is a client/server protocol. In AIX, the DHCP client daemon is called dhcpcd, and the DHCP server daemon is called dhcpsd.

11.2.11.3 Starting a DHCP client system

When you start a DCHP client for the first time, it searches for a DCHP server by using the 0.0.0.0 IP address and sends a DHCP discover packet (UDP packet).

All the DHCP servers defined in the local network (the broadcast does not cross IP routers) will check if they have an IP address available for that client, offer that address plus associated network information, and temporarily reserve the address. The DHCP client responds by broadcasting a DHCP request packet after selecting the first address it received. The other DHCP servers that reserved an IP address which has not been selected, unreserve that address.

The DHCP server whose offered address has been selected sends an acknowledgment by broadcast to the DHCP client. The client then has all the information it needs to fully work on the TCP/IP network. The network information is cached on the local client system and can be reused after a reboot.

If the DHCP server is on a different network, in order for the broadcast to cross the router, the router must support the BOOTP/DHCP relay (RFC 1542).

11.2.11.4 DHCP automatic allocation

DHCP can assign a permanent address to the client host.

11.2.11.5 DHCP dynamic allocation

DHCP can assign an address for a limited period of time. This kind of address is called a lease. Associated with the lease is a lease period. After the expiration of that period, the lease is returned to the pool of addresses to which it belongs.

The client must renew its lease after 50 percent of the lease time has been used. The network administrator can define a pool of addresses called scopes. A lease period can be determined for each scope.

11.2.11.6 DHCP manual allocation

The network administrator sets a specific IP address to a specific host known by its hardware address.

11.2.11.7 DHCP on AIX features

In AIX, the DHCP server allows the network administrator to do the following:

- Create network and subnet addresses.
- Create scopes (or pools) of addresses for each network and/or each subnet.
- Modify pools of addresses by adding or removing addresses in the pool.
- Exclude addresses from a pool of addresses.

- Reserve an address for a specific client by using its MAC address, its host name, or its client ID. This is a way of guaranteeing that a system will always get the same address. This mechanism is known as the client reservation.
- Client ID is a string of characters that allows the grouping of machines with similar network characteristics. For example, all machines sharing the same resources can be grouped by the same client ID. It is a way of grouping machines differently than the traditional network, subnet.
- Define a list of routers and their preferences.
- Define a list of DNS servers and their preferences.
- Reserve addresses to specific clients.

Besides, with AIX 4.3.3, some enhancements are added to the DHCP server program. They include:

- **Dynamic DNS update daemon** the program that update the DNS server now runs as a daemon and results in a performance improvement.
- User defined extension The AIX 4.3.3 DHCP server provides a way to extend the DHCP server using user-defined extension. The extension, also called DHCP server API, is provided primarily for integrating DHCP server with IP management software packages.

11.2.12 Dynamic Domain Name System (DDNS)

While DHCP dynamically assigns IP addresses, the DHCP client host name still needs to be manually registered by the network administrator to the domain system.

11.2.12.1 Design

The Domain Name System was originally designed to support queries of a statically-configured database. While the data was expected to change, the frequency of those changes was expected to be fairly low, and all updates were made as external edits to a zone's Master File.

The Dynamic Domain Name System (DDNS) protocol defines extensions to the Domain Name System to enable DNS servers to accept requests to update the DNS database dynamically.

11.2.12.2 Update operation

When a zone is modified by an UPDATE operation, the server must commit the change to non-volatile storage before sending a response to the requester or answering any queries or transfers for the modified zone.

11.2.12.3 Client point of view

From a requester's point of view, any authoritative server for the zone can appear to be able to process update requests, even though only the primary master server is actually able to modify the zone's master file. Requestors are expected to know the name of the zone they intend to update and to know or be able to determine the name servers for that zone.

DHCP can be used in conjunction with DDNS. When the DHCP server offers an IP address to a DHCP client, it can issue an inverse domain name query to a DDNS server to check if there is an existing mapping of a name to the IP address that the DHCP server is about to offer. If yes, the DHCP server will include this hostname in its offer, and the DDNS client can use it to update the DDNS server accordingly.

11.2.12.4 Limitations

It is not possible to create a zone using this protocol since there is no provision for a slave server to be told who its master servers are. It is expected that this protocol will be extended in the future to cover this case.

11.2.12.5 Security

The DNS server's integrity is critical to the smooth operation of the network. Therefore, IBM has provided security extensions to the DNS protocol as defined by the IETF DNS Security Working Group. The customer must decide to activate the security extensions. Once the security extensions are activated, RSA public-key digital signature technology is used to help secure the DNS updates.

11.2.13 Basic Network Utilities (BNU/UUCP)

AIX supports Basic Network Utilities (BNU/UUCP). These utilities have been very common in the UNIX community in the past. They provide tools and commands to connect to a remote system, copy files from one system to another, encode and decode binary data, queue jobs, execute commands on remote systems, and so on.

11.2.14 Mail

AIX includes the sendmail program and the Rand Corporation Message Handler (MH) application, which allow users to generate, process, send, and receive messages across a TCP/IP network.

11.2.14.1 Sendmail

The latest release of sendmail, Version 8.9.3, is ported to AIX 4.3.3. Compared with version 8.8.8, which is shipped with AIX 4.3.2, Version 8.9.3

contains bug fixes, several new configuration options, and anti-spam features. On AIX 4.3.3, anti-spam features are not activated by default; so, it is necessary to generate or modify the sendmail.cf file with anti-spam features.

What is spam?

e-mail spam is copies of the same message sent to people who do not want the message. Typically, it contains commercial advertisements or malicious messages. It wastes the CPU time and disk space of mail servers, the bandwidth of network lines, and readers' time and money. Sometimes, spammers use mail servers to relay their messages to numerous destination addresses. They send only one message to mail servers, and mail servers broadcast the message to the destination addresses listed in the RCPT TO: field. This method is called third party relay. In some cases, spammers hide their original e-mail addresses or original host addresses by changing some fields in their messages to non-existent ones or those of other organizations, especially when the messages are malicious.

Enhancements added by IBM

The following enhancements are added by IBM against sendmail 8.9.3.

- Name Resolution Order Sendmail uses the AIX host resolution ordering mechanism. First, the NSORDER environment variable is queried. If it is not defined, sendmail searches /etc/netsvc.conf and then /etc/irs.conf. Sendmail's /etc/services.switch file is searched last. If none of them are found or host entry is not defined, the system-wide default ordering is used.
- IP v6 Support IP v6 is supported as an underlying protocol.

11.2.14.2 POP3 and IMAP4 support

AIX provides support for Post Office Protocol Version 3 (POP3) and Internet Message Access Protocol Version 4 (IMAP4). POP3 conforms to RFC 1725, and IMAP4 conforms to RFC 1730.

The POP server performs Message Transfer Agent (MTA) for a disconnected end user. The POP server holds messages, and, when the POP client (mail user agent) connects and requests messages, the POP server downloads all pending messages to the client machine. Most of the mail clients today operate using the POP protocol.

IMAP server performs online and disconnected access.

11.2.15 X11 protocol support

The following sections deal with X11 protocol support.

11.2.15.1 Xstation manager

AIX supports multiple concurrently logged users. This allows several Xstation users to simultaneously work on the same system. AIX provides a program called Xstation Manager to manage multiple Xstation connections.

11.2.15.2 X Display Manager Support (XDM)

The X Display Manager, XDM, runs as a daemon on a host machine. It provides a way for users to log on and start initial clients, regardless of what X Server they use. The xdm program is simply an X client that manages the first and last points of connection, control, and coordination of the user session. XDM incorporates the X session startup process into the login process. When set up properly, XDM enables users to walk up to a display and log in by typing their usernames and passwords just as they would on an ASCII terminal. XDM then runs their setup scripts automatically, setting up customized environments and enabling users to begin work immediately. When users finish their X sessions, XDM resets each display for the next user.

11.2.15.3 Common Desktop Environment Support (CDE)

AIX CDE, the graphical user interface to AIX Version 4, provides an easy-to-use, intuitive way to manage the user environment. AIX CDE is the default desktop for AIX. CDE is X/Open branded. The CDE login manager is responsible for providing a user login facility that authenticates and then initiates a desktop session for a given user.

The Login Manager manages a collection of X displays, both local and remote.

The emergence of X terminals guided the design of several parts of this system along with the development of the X Consortium standard XDMCP (X Display Manager Control Protocol). The Login Manager provides services similar to those provided by init, getty, and login on character terminals. This includes prompting for login ID and password, authenticating the user, and starting a session.

11.2.15.4 X11R6.3

The new release of X11 supported by AIX 4.3.3 is R6.3, also known as *Broadway*. X11R6.3 is ported from X consortium to AIX4.3.3. X11R6.3 is upward compatible to X11R6, and X11R6.1. X11R6/6.1 clients can communicate with X11R6.3 servers. The major new functionality in X11R6.3 is support for the World Wide Web. It addresses secure and browser-oriented communication between X servers and clients through a low bandwidth network. Broadway allows X applications to be distributed via Web protocols,

that is, a user may browse a corporate intranet (or the Internet) and click on a link within an HTML page to launch an X client. The application will then display within the Web-browser. X11R6.3 contains the following new functionalities:

- Low Bandwidth X (LBX) Low Bandwidth X, formerly known as X.fast, is an extension to X server. It accelerates interactions between X clients and servers by using compression and caching techniques. By utilizing LBX, you can run X applications on a remote server that are displayed on your local X server at moderate response time even if the remote server is connected through WAN or dial-up modems.
- **Remote Execution (RX)** The remote execution (RX) service of X11R6.3 defines a MIME format for invoking X applications remotely. By specifying application/x-rx as MIME type, an application, such as Web browser, can display X application on its window or local X server typically using plug-ins or helper applications.
- **Universal access** UA is provided by integrating X11R6.3 with HTTP protocols making it platform-independent, thus, widely available.
- Security extension X11R6.3 provides security extension that contains new protocols to enhance X server security. Clients issue a SecurityGenerateAuthorization request to X servers, and, if the request is successfully accepted by the servers, the clients are trusted; otherwise, they are untrusted. Untrusted clients have limited functionalities and some restrictions.
- Application group extension By using application group extension, applications other than window managers can manage other applications' windows. The primary purpose of this extension is for applications, such as Web browsers, to embed or insert other applications' windows into their windows.

Who needs Broadway?

Anyone who wishes to deliver access to corporate applications via an intranet or the Internet is a candidate for X WEB. The alternative method available today for launching graphical UNIX applications via a Web browser include Java. The Java method involves recoding applications and employing less than acceptable graphics widgets. The investment protection of X Web makes it an ideal solution for enterprise deployment via Web protocols. Java requires a rewrite of existing code to Web-enable applications. X11R6.3 (BROADWAY) was designed to be transparent to applications and requires no recoding. Both Java and X11R6.3 (BROADWAY) have a future in the Web-delivery of applications. X11R6.3, however, has the advantage of protecting existing technology investments.

11.2.16 Network Time Protocol (NTP)

NTP provides a mechanism for synchronizing time and coordinating time distribution in large Internet networks. The xntpd daemon is a complete implementation of the Network Time Protocol (NTP) Version 3 standard, as defined by RFC 1305, and also retains compatibility with Version 1 and 2 servers as defined by RFC 1059 and RFC 1119, respectively.

11.2.17 License management

The License Use Management function is provided by the License Use Manager Runtime. It consists of the server and client components required for controlling the license-enabled products that operate in a network. Any number of license-enabled products can be supported once the environment has been set up and configured. More than one license server can operate simultaneously in a network. The license passwords are entered into one or more license servers depending on the configuration. When a license-enabled product (a license client) requests a license, one of the license servers containing a license satisfies the request.

11.2.18 Internet/intranet software

This section describes some Internet/Intranet software available on AIX.

11.2.18.1 Netscape browser

AIX 4.2 and 4.3 bonus pack includes Netscape Communicator 4.51. The Web browser allows Web pages to be accessed from the Internet or intranet and viewed locally on the client desktop. It also allows access to e-mail and News. The built-in scripting language, called JavaScript, is supported in Netscape Communicator. JavaScript extends and enhances the capabilities of HTML documents. Java applets are also supported.

For more information about this and other versions of Netscape browsers, refer to http://home.netscape.com/communicator/v4.5/index.html.

Techexplorer Hypermedia Browser, Introductory Edition, Version 2.0 Plug-in is packaged with Netscape Communicator . It helps extend your Web browser and turn it into an interactive scientific and technical document viewer using TeX or MathML (XML) markup. Additional product information can be found at:

http://www.software.ibm.com/enetwork/techexplorer

11.2.18.2 Java

The AIX Version 4.2 and 4.3 Bonus Pack includes IBM's implementation for AIX of Sun's Java programming environment, based on Sun's Java Developer's Kit, Version 1.1.8 with Just-in-Time 3.1.

Java is an object-oriented programming environment that operates independently of any operating system or microprocessor. Java programs, called applications or applets, can be entirely developed using the compiler, debugger, and applet-viewer tools provided in the IBM implementation for AIX of the Java programming environment (C and C++ compilers and tools are not needed to create and run Java-based applets). Applets can be dynamically transmitted over a network and can run on any client that has been enabled for Java. Since application and applet execution is platform-independent, an applet developed with the AIX tools can be executed on any Java-enabled platform. A set of sample applets is included with AIX to demonstrate a number of features of Java. For more information, see http://www.ibm.com/java/jdk/index.html and

http://www.ibm.com/java/jdk/118/index.html

Besides the basic JDK, AIX provides the following additional Java-based products:

- The Just-in-Time (JIT) compiler takes bytecode and turns it into native code on the fly. The Java bytecode is usually interpreted, but if you are using a JIT, this bytecode is turned into native code and executed directly instead of being interpreted. This results in a substantial performance boost.
- VisualAge for Java Entry Version 2.0.0.3 is an award-winning Java application development environment for building Java applications, applets, servlets, and JavaBean components.
- IBM Java Media Framework (JMF) Version 1.1.0.1 is a cross-platform application programming interface for developing rich media applications, applets, and JavaBeans that runs on all Java-enabled platforms. JMF extends Java's core programming capabilities. Additional product information can be found at http://java.sun.com/products/java-media/jmf
- GraphOn GO-Joe Version 2.2.0.0 allows Java- enabled devices or browsers to access X applications running on AIX host computers. GO-Joe does not require an X Server to run at the desktop. Instead, GO-Joe's thin server-based architecture permits even the lowest-end Java device to run your X applications, as if they were located directly on your desktop. For additional informations refer to the Web site http://www.graphon.com/index.html.

11.2.18.3 Adobe Acrobat Reader

AlX Version 4.2 and 4.3 includes the Adobe Acrobat Reader 3.01. The Acrobat Reader is part of the Adobe Acrobat family of software, which lets you view, distribute, print, and save documents in Portable Document Format (PDF) regardless of the computer, operating system, fonts, or application used to create the original file. PDF files retain all the formatting, fonts, and graphics of the original document, and virtually any PostScript document can be converted into a PDF file.

For more information, see http://www.adobe.com/acrobat/.

11.2.18.4 Ultimedia Services for AIX

This program provides an object-oriented productivity tool for creating multimedia applications. Ultimedia Services for AIX Version 2.2.1 also provides an object-oriented interface to multimedia devices to increase usability and productivity. With Ultimedia Services for AIX, you can enhance interfaces and applications using audio and video facilities. You can play, edit, and record audio and video clips, and develop new applications.

11.2.18.5 Chili!Soft ASP(TM) Version 3.0 Developer's Edition

Chili!Soft ASP(TM) Version 3.0 Developer's Edition has been added to the AIX 4.3 bonus pack.

This software enables the development and deployment of Active Server Pages (ASP) applications on AIX and supports ASP applications originally developed for Windows NT.

Chili!Soft ASP supports Web servers from Netscape, Lotus, and Apache, including the IBM HTTP Server included with WebSphere.

For more information, visit the Chili!Soft Web site at http://www.chilisoft.com/

11.2.18.6 SCO TARANTELLA VERSION 1.4.0.0

SCO TARANTELLA Version 1.4.0.0, evaluation software is shipped with AIX 4.3 bonus pack. It enables applications so that you can publish them on the Web without rewriting them. Tarantella uses a three-tier architecture that integrates diverse application servers and diverse client types. Applications continue to run on the servers they are on today. Existing clients, such as PCs and UNIX workstations, as well as the new breed of network computers and hand-held devices, are given access to any type of mainframe, Windows, or UNIX applications.

For more information, visit the Tarantella Solution Zone at http://tarantella.sco.com/tsz

11.2.18.7 WEB servers

With the AIX 4.2 and 4.3 bonus pack, the following products are provided:

- WebSphere Application Server Version 2.02, Standard Edition
- IBM HTTP Server Version 1.3.3, 56-bit encryption (except France)

The same product is provided for France with only 40 bit encryption

IBM WebSphere Application Server Version 2.02 Standard Edition is a Java servlet-based Web server environment for Web-based applications. The Standard Edition, Version 2.02 focuses on a servlet runtime engine, high-performance database connections, and application services for session and state management.

The Standard Edition includes the new IBM HTTP Server Version 1.3.3, based on the Apache HTTP Server, which is the most popular server on the Web. IBM has enhanced the server. For example, IBM has added SSL for secure transactions. This product includes software developed by the Apache Group for use in the Apache HTTP server project (http://www.apache.org/). Additional product information can be found at:

http://www.software.ibm.com/websphere/appserv

http://www.software.ibm.com/websphere/httpservers/

11.2.19 AIX Network Programming Interfaces

This section highlights some network APIs available in AIX.

11.2.19.1 AIX streams

STREAMS is a framework for the implementation of byte-oriented (vs. block-oriented) communications services.

- This framework consists of kernel resources and routines that can be used for:
 - Device driver creation
 - Terminal handlers
 - Networking protocol suites
 - Other networking facilities
- STREAMS was designed to unify the disparate (and often ad-hoc) mechanisms that previously existed in the UNIX operating system to

support various types of character-based I/O. In particular, it was intended to replace the clist mechanism that provided support for terminal I/O.

- AIX Version 4 STREAMS is based on the OSF/1.2 Portable Streams Environment (PSE).
- STREAMS allows users to add (push) and remove (pop) intermediate processing elements, called modules, to and from the data stream at will.
- Because functions can be coded into separate STREAMS modules, developers can write kernel and applications programs that are highly-portable and easily integrated into other STREAMS-based systems.
- The major components of AIX (OSF/1) STREAMS are:
 - Data structures, declared constants, macros, and other kernel resources that developers use for constructing STREAMS modules and drivers.
 - The stream head, a set of functions and data structures that provide an interface between user processes and the streams constituting communications paths. In AIX Version 4 MP environments, the stream head also contains a special set of data structures and synchronization functions that enable streams to operate in a multithreaded environment.
 - Utilities that perform functions, such as stream queue scheduling and flow control, memory allocation, and callback requests.
- AIX Version 4 STREAMS (OSF/1) is source-code compatible with the AT&T System V Release 4.

11.2.19.2 AIX sockets

AIX is based on BSD 4.3 Reno and BSD 4.4 software. The Berkeley socket interface provides generalized functions that support network communication using many possible protocols. Socket calls refer to all TCP/IP protocols as a single protocol family. The interface allows the programmer to specify the type of service required rather than the name of a specific protocol.

11.2.19.3 AIX pipes

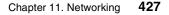
Pipes are implemented as streams in AIX Version 4. There are two kinds of pipes:

- **Unnamed pipe** An unnamed pipe (also called an "anonymous pipe") is so called because it has no entry in the file system name space.
- Named pipe A named pipe is also called a FIFO because data are received in a first-in-first-out manner. A named pipe is created via the

mknod() system call. It has a name in the file system and can be accessed with the open() system call.

11.2.20 Distributed Computing Environment (DCE)

This section gives an overview of OSF DCE.


11.2.20.1 OSF DCE

The OSF Distributed Computing Environment (DCE) is a set of integrated services designed to support the development and use of distributed applications. OSF DCE is operating system-independent and provides a solution to the problem of sharing resources in a heterogeneous networked environment. This is accomplished by providing the services necessary to create an environment where a group of networked machines can share and manage resources. This allows for efficient use of present technology and for new technology to be incorporated as it becomes available.

DCE provides interoperability and portability across diverse operating systems and hardware platforms. DCE is a complete framework on which you can develop and maintain your distributed applications and services in an environment that you can scale to address the changing requirements of your enterprise.

11.2.20.2 DCE architecture

DCE is a layer of services that allows distributed applications to communicate with a collection of computers, operating systems, and networks. This collection of machines, operating systems, and networks, when managed by a single set of DCE services, is referred to as a DCE cell. Figure 167 on page 428 illustrates the DCE architecture by showing the different components of DCE.

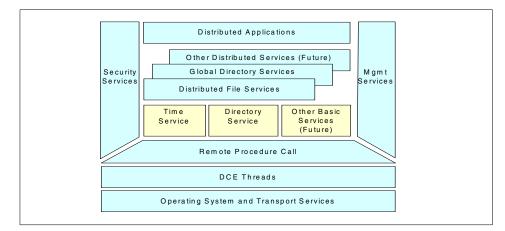


Figure 167. DCE architecture

DCE components use three distributed computing models:

- **client/server model** In this model, a distributed application is divided into two parts: The client and the server. In simple terms, the client is the entity that initiates the request for a service. The server is the entity that handles the request for a service. Note that the client and the server part can run on the same machine or on different machines.
- Remote Procedure Call model (RPC) In this model, the client calls a remote procedure that appears as local. The procedure call is translated, and network communications are handled by the RPC mechanism. The server receives a request and executes the procedure, returning the results to the client. DCE RPC is an implementation of this model and is used by most of the other DCE technology components for their network communications.
- Data Sharing model While client/server and RPC are focused on distributed execution, data sharing is concerned with how data is distributed among several clients and servers. Data sharing must address such needs as multiple copies of data, data consistency, and managing simultaneous access to data. In DCE, data sharing is built upon the RPCs, which are used as the means of transferring data.

11.2.20.3 DCE Cell

A collection of machines that are managed together as a DCE unit is referred to as a cell in DCE terminology. At a minimum, a cell must contain a Security Server and a Cell Directory Server. All of these services may run on one machine, or the servers can be spread among the machines that are to be

428 AIX V4.3 and Windows 2000, Side by Side

part of the cell. The Security, Directory, and Time Services are collectively known as the DCE core services.

11.2.20.4 DCE security service

Most multiuser operating systems provide some method of verifying the identity of a user (authentication) and determining whether a user should be granted access to a resource (authorization). In a distributed environment, a way has to be provided to authenticate requests made across the network and to authorize access to the network's resources. There must also be a mechanism to protect network communications from attack. The challenge in a distributed environment is to provide these services transparently to both users and programs. For example, a user should not have to authenticate to each server in the network. The DCE Security Service can provide this level of functionality because of how it has been integrated with the other DCE services.

The DCE security specification was submitted by MIT. It is based on Kerberos Version 5.1. Kerberos is an authentication service that validates the identity of a user or service. The DCE Security Service is made up of several parts.

- The Authentication Service that allows processes on different machines to determine each other's identity (authenticate).
- The Privilege Service that determines if an authenticated user is authorized to access a server resource. The Privilege Service provides information that servers need to determine the access that should be granted to the user.
- The Registry Service that manages a security database used to hold entries for all principals. A principal is a user, an application server, or a computer.
- The Registry Service is also used by administrators to maintain the list of principals known to DCE.
- The Audit Service that detects and records security operations performed by DCE servers.
- The Login Facility that performs the initialization of the DCE environment for a user. It uses the Security Service to authenticate a user and returns credentials to the user. These credentials are then used to authenticate to other services in the DCE cell. The credentials expire after a set period of time and need to be refreshed when they are needed beyond the preset time.

11.2.20.5 DCE Directory Service

The Directory Service provides a naming model that allows users to identify, by name, network resources, such as servers, users, files, disks, or print queues.

The DCE Directory Service includes:

- Cell Directory Service (CDS)
- Global Directory Service (GDS)
- Global Directory Agent (GDA)
- Application Programming Interface (API)

The CDS manages information within a cell.The GDS is based on the CCITT X.500 name schema and provides the basis for a global name space. The GDA is the CDS gateway to intercell communication. The GDA supports both Internet addresses and X.500 addresses. If the address passed to the GDA is an X.500 address, the GDA contacts the GDS. If the address passed to the GDA is an Internet address, the GDA uses the Internet Domain Name System (DNS) to locate the foreign cell. Both CDS and GDS use the X/Open Directory Service (XDS) API as a programming interface.

11.2.20.6 DCE Distributed Time Service

Distributed Time Service (DTS) provides precise, fault-tolerant clock synchronization for the computers participating in a Distributed Computing Environment, both over LANs and WANs. The synchronized clocks enable DCE applications to determine event sequencing, duration and scheduling. DTS is based on Universal Coordinated Time (UTC) time, an international time standard.

11.2.20.7 Distributed File System (DFS)

The Distributed File System (DFS) presents directories and files in a global name space that can be accessed from any DFS client. Caching on DFS clients reduces access time and network traffic and results in high performance.

DFS includes support for both Journaled File System (JFS) and Local File System (LFS) formats. LFS is a fast-restarting, log-based physical file system that supports file replication for high availability.

DFS files and directories can be protected by using Access Control Lists (ACL). You can define an ACL for each file or directory to restrict or authorize access. With DFS ACLs, you have the granularity to control access for users

and groups of the local or any foreign cell. DFS ACLs are different than the access control list support provided through the AIX operating system.

The DFS is built on top of the core technologies: Security Service, Cell Directory Service, and Distributed Time Service. DFS also makes use of threads and DCE RPCs. It implements a superset of the POSIX 1003.1 file system semantic standard submitted by Transarc Corporation and is based on the Andrew File System. In addition, DFS:

- Builds on the fundamental features of DCE: Security, threads, RPC, directory, and time services
- Allows transparent access to files anywhere on the network, including AIX CD-ROM file systems
- · Improves administration through file sets
- Boosts reliability through a log-based physical file system and through the data replication feature
- Provides authenticated access from any Network File System (NFS) client through the DCE NFS to DFS Authenticating Gateway

11.2.20.8 Threads

Threads support the creation, management, and synchronization of multiple paths of control within a single process. The threads programming facility is also POSIX 1003.4a Draft 4 compliant. If threads are already available on the operating system, DCE can use them.

11.2.20.9 Remote Procedure Call (RPC)

This is a complete environment to help develop client/server applications. A development tool, consisting of an Interface Definition Language (IDL), is provided. The RPC runtime service facilitates the implementation of the network protocols used by the client and server applications to communicate. One component of the RPC is the uuidgen, a program that generates a Universally Unique Identifier (UUID, a 32-digit number) to uniquely identify resources, services, and users in DCE independently of time and space. The RPC specification is based on Network Computing System architecture (NCS) Release 2.

11.2.20.10 IBM added value

IBM has added several components to the base OSF DCE offering on AIX to provide the following functions:

• DFS access from NFS clients with the NFS to DFS Authentication Gateway for AIX The NFS to DFS Authentication Gateway is a product on the AIX platform that allows NFS client systems to access the DFS file space. The NFS client is typically run on a system that is not part of the DCE cell or one that has no DFS code installed.

The gateway is installed on a DFS client system that exports its DFS file system into NFS, thus, acting as an NFS server. The gateway provides a bridge between the authentication methods of DFS and NFS. This is accomplished by connecting an NFS client with a DCE principal. The NFS to DFS Authentication Gateway allows the NFS client to obtain authenticated access to the DFS file space.

• Exportable data encryption - The RPC communication provides different security levels, the highest being full data encryption. However, the DES algorithm (Data Encryption Standard) internally used by DCE cannot be exported outside the U.S. in a user accessible form. This means it cannot be used for data encryption.

On the AIX platform, there is a User Data Masking Facility, which is still referred to as a Common Data Masking Facility or CDMF. CDMF allows you to encrypt user data in RPCs using DES with a 40-bit key instead of the standard 56-bit key. Since this makes the encryption weaker, it has no export restrictions from the U.S. It is a good solution for non-U.S. customers who want increased privacy but cannot have an export license for full DES.

• **Online documentation** - All DCE manuals are provided in softcopy form to be accessed with a graphical viewer.

The IBM DCE Version 2.1 for AIX Version 4 provides an IPF viewer for X-Windows (IPF/X). The xview command that starts IPF/X provides hypertext linking, search, and print facilities, inline graphics display, a bookmark function, and online help. Its startup is integrated into InfoExplorer. IBM DCE 2.1 for AIX also provides the documentation in ASCII that can be viewed from ASCII terminals with an ASCII browser. The dceman command emulates MAN pages for DCE commands.

• Update procedure - DCE for AIX uses the same update procedures as AIX with the support of the installp command. Version - Release -Modification - Fix (VRMF) is the strategy for the fixes applied to the system. System maintenance and release level verification is extremely powerful and easy to use for the system administrator.

11.2.20.11 DCE enablement of applications

DCE is a framework and a basis for distributed computing; the enablement of applications is a very important factor for the success of this great piece of

technology. IBM is currently looking at how to integrate DCE with other products:

- DCE integration with ADSM The ADSM client and server software will be enhanced to provide integration with DCE/DFS. ADSM will be able to backup and restore DFS files and access list control information. In addition to that, the DFS fileset backup facility can use ADSM as a backend storage provider.
- DCE integration with AIX Fast Connect AIX Fast Connect Release 2.1.1 for Windows and OS/2 includes integration with DCE/DFS. This feature allows user authentication with the DCE security server. DFS directories can be shared with (exported to) PC clients. PC client access is controlled by the login context acquired as a result of DCE authentication. Fast Connect offers DCE authentication and DFS access without requiring DCE/DFS client software to be installed on each of the PC clients requiring DCE/DFS access.
- DCE Event Management Service (EMS) The DCE Event Management Service (EMS) supports asynchronous event management for use by system-management applications. EMS uses the concepts of event suppliers and event consumers and sets up an event channel between them to support asynchronous communication. In the context of DCE, event suppliers are any DCE core service or DCE-based application (client or server), and event consumers can be any application with an interest in receiving asynchronous events from one or more DCE processes. The transmission of events between suppliers and consumers is uncoupled by routing events via EMS, which is the implementation of an event channel. EMS also provides a filtering mechanism to allow administrators and consumers control over which events EMS will send. EMS provides integration for DCE clients and servers using the DCE Serviceability (SVC) interface. DCE applications can use the APIs offered in SVC to become event suppliers.

11.2.21 Remote access

This section describes two main protocols supported on AIX for accessing an AIX system remotely.

11.2.21.1 Point-to-Point Protocol (PPP)

The Point-to-Point Protocol (PPP) is an Internet Engineering Task Force (IETF)-defined protocol for both synchronous and asynchronous connectivity. It has become popular for asynchronous TCP/IP access of servers. This connectivity is very popular for applications, such as those used for Internet access. The AIX PPP in AIX implementation adheres to IETF Request for

Comments (RFCs) 1661, 1332, and 1662. It is a streams-based kernel implementation, in contrast to the daemon implementation of some commercially available packages. The kernel implementation prevents the performance overhead of having part of the protocol in application space. It was designed to provide a robust TCP/IP server attachment.

The Point-to-Point Protocol (PPP) has been enhanced to include PAP (Password Authentication Protocols) and CHAP (Challenge Handshake Authentication Protocol) to provide authentication of remote users. It conforms to the RFC 1334 PPP Authentication.

11.2.21.2 Serial Line Internet Protocol (SLIP)

SLIP has its origins in the 3COM UNET TCP/IP implementation from the early 1980s. It is merely a packet-framing protocol: SLIP defines a sequence of characters that frame IP packets on a serial line, and nothing more. It provides no addressing, packet-type identification, error detection/correction, or compression mechanisms. Because the protocol does so little, though, it is usually very easy to implement. SLIP is part of AIX and adheres to the RFC 1055.

11.2.22 X.25 for AIX

This section describes the X.25 support on AIX.

11.2.22.1 General

X.25 networks have the ability to store and forward data. That is, they can receive an entire sequence of data and then route it to its destination based upon usage of the possible routes. Due to the nature of the X.25 protocol, it is possible that two individual data packets may take different routes through the same network and still arrive in the correct sequence. While there are many possible reasons for this, it is important to understand that X.25 preserves the data transmission order at the destination. X.25 virtual circuits allow the user to have multiple applications that communicate independently running between multiple machines.

11.2.22.2 Supported standards

The X.25 software supports the 1980, 1984, and 1988 CCITT standards.

11.2.22.3 X.25 software features

The X.25 software on AIX offers the following features:

- Three programming interfaces (NPI, DLPI, and COMIO)
- TCP/IP and SNA support
- Triple-X PAD including PAD printing
- 434 AIX V4.3 and Windows 2000, Side by Side

- SNMP support
- · Increased throughput
- Power Management support on PCI/ISA bus systems

11.2.23 ISDN

This section describes Integrated Services Digital Networks (ISDN) support on AIX.

11.2.23.1 General

ISDN stands for "Integrated Services Digital Networks", and it is an ITU-T (formerly CCITT) term for a relatively new telecommunications service package. ISDN is, basically, the telephone network turned all-digital, end-to-end, and using existing switches and wiring (for the most part) upgraded so that the basic "call" is a 64 Kbps end-to-end channel, with bit-diddling as needed (but not when not needed!).

Packet and maybe frame modes are also thrown in for good measure in some places. It is offered by local telephone companies, but most readily in Australia, Western Europe, Japan, Singapore, and some portions of the USA. In France, ISDN is known as RNIS.

11.2.23.2 Basic Rate Interface

A Basic Rate Interface (BRI) is two 64 Kb bearer ("B") channels and a single delta ("D") channel. The B channels are used for voice or data, and the D channel is used for signaling and/or X.25 packet networking. This is the variety most likely to be found in residential service.

Equipment known as a Terminal Adapter (TA) can be used to adapt these channels to existing terminal equipment standards, such as RS-232 and V.35.

Typically, this equipment is packaged in a similar fashion to modems, either as stand-alone units or as interface cards that plug into a computer or various kinds of communications equipment, such as routers or PBXs. TAs do not interoperate with the modem; they replace the modem.

11.2.23.3 Primary Rate Interface

Another flavor of ISDN is the Primary Rate Interface (PRI). In North America and Japan, this consists of 24 channels, usually divided into 23 B channels and 1 D channel, and runs over the same physical interface as T1. Outside these areas, the PRI has 31 user channels, usually divided into 30 B channels and 1 D channel and is based on the E1 interface. It is typically used for connections, such as one between a PBX (private branch exchange -

a telephone exchange operated by the customer of a telephone company) and a CO (central office of the telephone company) or IXC (inter-exchange carrier - a long distance telephone company).

11.2.23.4 Data encapsulation for IP over ISDN

A decision was made at the Amsterdam IETF to state that all systems wishing to guarantee IP interoperability should implement PPP. Such systems may also implement the Frame Relay or X.25 encapsulations, and an RFC will be published delineating how, when it is known that the encapsulations are limited to that set of three, they may be distinguished by an examination of the first correctly checksummed and HDLC bit-stuffed packet.

Many implementations are using PPP so that they can negotiate compression and/or multilink operation. A common practice in most European countries is to use raw IP packets delimited by HDLC flags. Another common practice is an encapsulation using simple HDLC in layer 1, X.75 (LAPB, usually I-frames) in layer 2, and, sometimes, T.70 in layer 3. PPP is used instead of HDLC/X.75/T.70 when the network does not provide the caller's telephone number (for example, when emulating a modem or the caller's number is lost on telephone company borders). In this case, caller authentication is done via PAP/CHAP instead.

11.2.23.5 AIX ISDN Device Driver via netISDN

netISDN, from the German company NetCS, is a high-end ISDN solution for AIX. IBM resells the netISDN and netGW software for AIX. For more information, point your Web browser to http://www.netcs.com

11.2.24 ATM for AIX

Asynchronous Transfer Mode (ATM) is a switching/transmission technique in which data is transmitted in small cells of fixed-size (5-byte header, 48-byte payload). The cells lend themselves both to the time-division-multiplexing characteristics of the transmission media and to the packet switching characteristics desired of data networks. At each switching node, the ATM header identifies a *virtual path* or *virtual circuit*, for which the cell contains data, enabling the switch to forward the cell to the correct next-hop trunk. The virtual path is set up through the involved switches when two endpoints wish to communicate. This type of switching can be implemented in hardware, which is almost essential when trunk speed ranges from 45 Mbps to 1 Gbps.

There is a new feature with AIX 4.3.2 that helps increase performance when using the PCI ATM 155 adapter. The PCI ATM 155 adapter has a hardware TCP/UDP checksum capability. In AIX 4.3.2, the ATM network device driver is modified to use this feature. In the new ATM 155 adapter device driver, the

workload of TCP data checksum processing is offloaded from the AIX TCP/IP protocol stack to the adapter itself. A related enhancement automatically remembers the mapping of virtual addresses to physical addresses for the entire networking buffer pool to save address translation during networking I/O operations. TCP checksum offload for ATM reduces the amount of time spent on the main CPU computing checksums, thereby, reducing latency and allowing the system to handle more work, in particular, to handle more packets in the same amount of time. This results in performance improvements.

11.2.24.1 Multi-protocol Over ATM

A new feature of AIX 4.3.3 is the support for Multiple-protocol over ATM (MPOA). Asynchronous Transfer Mode (ATM) networks provide a high bandwidth network infrastructure. However, to help protect the investment of existing Local Area Network (LAN) clients, such as those that use traditional Ethernet connections, ATM offers LAN Emulation, or LANE clients, so that an ATM adapter can provide a traditional network interface. AIX Version 4.3.3 provides improved management and performance of an ATM LAN Emulation network. Device-specific configurations are minimized with auto-discovery and device discovery protocol, while data paths are reduced from many hops between routers to a single hop between end clients. In AIX Version 4.3.3, Multi-Protocol Over ATM (MPOA) supports both Standard Ethernet and IEEE 802.3 Ethernet.

To understand what MPOA does for you, an example from the AIX documentation is reproduced in Figure 168, along with a related discussion.

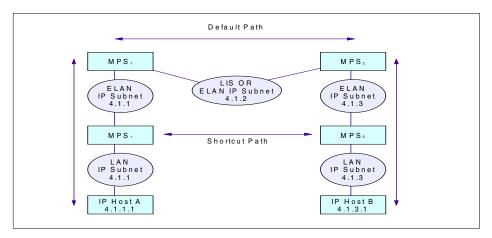


Figure 168. An example of a network that benefits from MPOA

In Figure 168 on page 437, the devices on the Emulated LAN (ELAN) network can be described as edge devices since they are an example of a device that can bridge packets between one or more LAN interfaces, such as Host A, and one or more LANE clients. The MPOA enhancement allows these edge devices to perform internetwork layer forwarding and establish direct communications without requiring that the LANE edge devices be full function routers.

So, using IP, packets from IP host A would usually have to travel through the 4.1.2 subnet to be routed through to IP host B. However, using MPOA, the 4.1.2 subnet can be bypassed. The MPC is the MPOA client that performs internetwork layer forwarding. The MPC obtains its forwarding information from the MPOA Server (MPS). The MPC detects the flow of packets being forwarded over an ELAN to a router that contains an MPS. When it recognizes a flow that could benefit from a shortcut by a bypass, such as from Host A to B, it uses a Next Hop Resolution Protocol (NHRP)-based query-response protocol to request the information required to establish a shortcut to the destination. If a shortcut is available, the MPC caches the information, sets up a shortcut VCC, and forwards frames for the destination over the shortcut that bypasses the router. Note that IP is the only protocol stack supported. That is, SNA, IPX, Netbios directly over ATM are not supported.

11.2.25 System Network Architecture (SNA) for AIX

The following section describes how AIX supports SNA.

11.2.25.1 General

In the early 1970s, IBM discovered that large customers were reluctant to trust unreliable communications networks to properly automate important transactions. In response, IBM developed Systems Network Architecture (SNA). *Anything that can go wrong, will go wrong*, and SNA may be unique in trying to identify literally everything that could possibly go wrong in order to specify the proper response. Certain types of expected errors, such as a phone line or modem failure, are handled automatically. Other errors, such as software problems, configuration tables, and so forth, are isolated, logged, and reported to the central technical staff for analysis and response. This SNA design worked well as long as communications equipment was formally installed by a professional staff. It became less useful in environments when any PC simply plugs in and joins the LAN. Two forms of SNA developed: Subareas (SNA Classic) managed by mainframes and APPN (New SNA) based on networks of minicomputers.

In the original design of SNA, a network is built out of expensive, dedicated, switching minicomputers managed by a central mainframe. The dedicated minicomputers run a special system called NCP. No user programs run on these machines. Each NCP manages communications on behalf of all the terminals, workstations, and PCs connected to it. In a banking network, the NCP might manage all the terminals and machines in branch offices in a particular metropolitan area. Traffic is routed between the NCP machines and, eventually, into the central mainframe.

The mainframe runs an IBM product called VTAM, which controls the network. Although individual messages will flow from one NCP to another over a phone line, VTAM maintains a table of all the machines and phone links in the network. It selects the routes and the alternate paths that messages can take between different NCP nodes.

A subarea is the collection of terminals, workstations, and phone lines managed by an NCP. Generally, the NCP is responsible for managing ordinary traffic flow within the subarea, and VTAM manages the connections and links between subareas. Any subarea network must have a mainframe.

The rapid growth in minicomputers, workstations, and personal computers forced IBM to develop a second kind of SNA. Customers were building networks using AS/400 and RS/6000 computers that had no mainframe or VTAM to provide control. The new SNA is called APPN (Advanced Peer-to-Peer Networking).

APPN and subarea SNA have entirely different strategies for routing and network management. Their only common characteristic is support for applications or devices using the APPC (LU 6.2) protocol.

11.2.25.2 SNA vs. TCP/IP

It is difficult to understand something unless you have an alternative with which to compare it. SNA is not TCP/IP. This applies at every level in the design of the two network architectures. Whenever the SNA designers went right, the TCP/IP designers went left. Ironically, instead of the two network protocols being incompatible, they turn out to be complimentary. An organization running both SNA and TCP/IP can probably solve any type of communications problem.

An IP network routes individual packets of data. The network delivers each packed based on an address number that identifies the destination machine. TCP is responsible for reassembling the pieces after they have been received.

In the SNA network, a client and server cannot exchange messages unless they first establish a session. In a Subarea network, the VTAM program on the mainframe gets involved in creating every session. Furthermore, there are control blocks describing the session in the NCP to which the client talks and the NCP to which the server talks. Intermediate NCPs have no control blocks for the session. In APPN SNA, there are control blocks for the session in all of the intermediate nodes through which the message passes. Control blocks describe the session in the NCP to which the client talks.

The APPN architecture was designed originally for minicomputers. APPN has two kinds of nodes. An End Node (EN) contains client and server programs.

Data flows in or out of an End Node, but does not go through it. A Network Node (NN) also contains clients and servers, but it also provides routing and network management. When an End Node starts up, it connects to one Network Node that will provide its access to the rest of the network. It transmits a list of the LUNAMEs that the End Node contains to that NN. The NN ends up with a table of its own LUNAMEs and those of all the ENs that it manages. Most of APPN is the set of queries and replies that manage names, routes, and sessions. Like the rest of SNA, it is a fairly complicated and exhaustively documented body of code.

Obviously workstations cannot maintain a dynamic table that spans massive networks or long distances. The solution to this problem is to break the APPN network into smaller local units each with a Network ID (NETID). In common use, a NETID identifies a cluster of workstations that are close to each other (in a building, on a campus, or in the same city). The dynamic exchange of LUNAMEs does not occur between clusters with different NETIDs. Instead, traffic to a remote network is routed based on the NETID, and traffic within the local cluster is routed based on the LUNAME. The combination of NETID and LUNAME uniquely identifies any server in the system, but the same LUNAME may appear in different NETID groups associated with different local machines.

11.2.25.3 CPI-C

The native programming interface for modern SNA networks is the Common Programming Interface for Communications (CPI-C). This provides a common set of subroutines, services, and return codes for programs written in COBOL, C, or REXX. It is widely available in softcopy on CD-ROM.

11.2.25.4 IBM eNetwork Communication Server for AIX

The IBM eNetwork Communications Server for AIX, Version 5.0, responds to enterprises' needs for interconnecting diverse networks. With this product,

workstation users and applications can communicate with other workstations and central computer applications regardless of the networking protocols used in each system. Communications Server provides a powerful, multiprotocol, full-function gateway to clients on SNA and TCP/IP networks, plus support for a broad range of industry-standard networking protocols.

The eNetwork Communications Server for AIX provides the following characteristics to support business needs, such as:

- Integrated TN3720E Server support
- Includes Host On-Demand V1, which provides easy 3270 SNA application access from any Java-enabled Web browser
- APPC over TCP/IP and Sockets over SNA network communications
- Advanced peer-to-peer networking (APPN) network node and end node support including high-performance routing (HPR) and dependent LU requester (DLUR)
- Rich set of APIs to develop applications for distributed computing including eNetwork Host Access Class Library (Host Access API)
- · Broad range of LAN and WAN connectivity options
- Web-based 3270 access with Host On-Demand Version 1
- Motif Administration tool for improved configuration and administration

Due to the features described above, eNetwork Communication Server for AIX is a good solution for the customer who needs to:

- · Connect to existing SNA networks
- Establish new SNA networks
- Integrate TCP/IP and SNA networks
- Connect over WAN using SDLC or X.25 or over LANs using IBM Token-Ring, Ethernet, FDDI, Frame Relay, ATM LAN Emulation, or channel protocols
- Take advantage of the peer-to-peer distributed networking capabilities of advanced peer-to-peer networking (APPN) in existing SNA networks

For additional information about the product, you may refer to the following URL: http://www.software.ibm.com/enetwork/commserver/

11.2.25.5 APPC over TCP/IP

The IBM AnyNet family, based on Multiprotocol Transport Networking (MPTN) technology, an open industry standard architecture, is designed to allow any

application to run over any network protocol. This means you can add applications designed to run over different protocols without changing applications or modifying hardware.

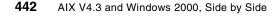
With AnyNet APPC over TCP/IP, you can extend advanced program-to-program communication (APPC) or Common Programming Interface for Communications (CPI-C) applications to TCP/IP users without adding a separate SNA network. This allows AIX, APPC, or CPI-C applications, such as CICS/6000 or DB2/6000, to communicate between a centralized computer and workstations or between workstations across a TCP/IP network, without changing the applications.

11.2.25.6 Sockets over SNA

With AnyNet Sockets over SNA, you can add Berkeley Software Distribution (BSD) Sockets applications to existing SNA networks without adding a separate TCP/IP network. This allows users of AIX platforms to access Sockets applications, such as File Transfer Protocol (FTP), SNMP, Lotus Notes, and the NetView program, across an SNA network.

11.2.25.7 TN3270E

IBM SNA Client Access provides access to SNA networks for a wide range of TCP/IP clients. It is the software solution best suited for allowing easy access to S/390 and AS/400 computers. Running in conjunction with Communications Server, SNA Client Access works as a TCP/IP Telnet server, providing SNA network access service to client applications running anywhere in the TCP/IP network.


11.2.25.8 Gateway

The SNA Gateway function of the eNetwork Communications Server allows many SNA clients to go through a single communication server to one or more centralized computers. It also allows clients to access, on the fly, a backup host that shares the workload and improves resource availability. SNA Gateway allows you to preset and manage sessions, automatically logging off unattended workstations to open up access for other users. You can also channel the gateway function to concentrate thousands of sessions into the centralized computer using only one physical connection.

11.2.25.9 Communications Server for AIX features

The following are the features of Communications Server for AIX:

• **Complete connectivity** - Whether you want to connect networks over a Wide Area Network (WAN) using SDLC or X.25 or over a Local Area Network (LAN) using token-ring, Ethernet, Fiber Distributed Data Interface

(FDDI), or direct-attached Channel, Communications Server is the solution for you.

You can also use eNetwork Communications Server to connect multiple physical units (PUs) across a single physical adapter for token-ring, Ethernet, X.25, SDLC, FDDI, and Channel. Support for multiple PUs extends the number of supported LUs per adapter port available for all link types.

- **3270 Emulation** Included with eNetwork Communications Server for AIX is a license for the IBM 3270 Host Connection Program.
- **Simplified configuration** The eNetwork Communications Server has a streamlined organization of configuration profiles that helps you drastically reduce configuration time. You can update the configuration database even when the eNetwork Communications Server is running, and the new configuration information does not become part of the database until you verify that it is correct.
- **High Availability** When problems occur, you can find and fix them quickly using the new SNA format utility. This utility formats complex link traces into easy-to-understand, fully-deciphered output files. Trace facilities for SNA flows, events, and first-failure data capture are also provided to help you resolve problems quickly.
- Systems management You can use the Xsna graphical interface tool to display and manage your SNA resources easily. Based on X-Windows and Motif, the Xsna tool provides a familiar look and feel. Using the Xsna tool, you can display link and session information, start and stop resources, and turn on traces all with the click of a mouse button. System Management Interface Tool (SMIT) is also available for easy management in the AIX environment.
- **Power programming** eNetwork Communications Server is not just a powerful stand-alone network server; its sophisticated programming interfaces make it an excellent platform for programming and application integration. Communications Server provides a number of application programming interfaces (APIs) ranging from platform to device level, including LUs 0, 1, 2, 3, and 6.2 (CPI-C and APPC), Generic SNA (for device-level programming), and SNA Management Services.
- **Tools** eNetwork Communications Server includes an SNA interactive transaction program generator (SNAPI) that provides help for developing APPC and CPI-C transaction programs. You can use this tool to quickly develop programs that interact with existing programs on any remote system that supports LU 6.2 including AIX, CICS, IMS, OS/400, Communications Manager/2, and Communications Server for OS/2 Warp.

• **High performance** - eNetwork Communications Server takes advantage of the Symmetrical Multiprocessor (SMP) technology by exploiting the parallel processing capabilities of this new technology.

11.2.26 AIX PC connectivity

There are several products available for AIX to provide PC integration solutions. Some of these products are provided and supported by IBM, and others are not. One of the most popular non-IBM products that runs very well on AIX is SAMBA, a free product developed and supported by the Internet Community. If you are require information about SAMBA, you may refer to the official SAMBA URL at: http://www.samba.org/

Anyway, we are not going to have a discussion about SAMBA here, but we will just give a presentation of two IBM products that provide integration for NetBIOS and Netware environments: AIX Fats Connect and Novell Network Services for AIX.

Besides, we are not going to discuss AIX Connection and Totalnet Advanced Server, which are available on AIX and provide multi-protocol integration, here. For more information about these products and on the subject of AIX interoperability with PC, you may refer to the redbook *AIX and Windows NT: Solutions for Interoperability*, SG24-5102

11.2.26.1 AIX Fast Connect

AIX Fast Connect is an IBM product that enables file and printer services on AIX systems for Windows and OS/2 clients. The AIX Fast Connect server provides these services by implementing the Server Message Block (SMB) protocol. SMB uses Network Basic Input/Output System (NetBIOS) over Transmission Control Protocol/Internet Protocol (TCP/IP). AIX Fast Connect neither provides NetBIOS over NetBEUI nor NetBIOS over IPX/SPX.

An evaluation version of the AIX Fast Connect product is included in the Bonus Pack for AIX version 4.3, announced June 8, 1999. The new release of AIX Fast Connect is shipped with AIX 4.3.3. bonus pack.

AIX Fast Connect offers the following functionalities:

- Tight integration with AIX and use of features, such as threads, kernel I/O, file system, and security.
- SMB-based file and printer services. This allows centralized administration, backup, and so forth for common data, such as user data and applications.
- Maintenance and administration is integrated into standard AIX tools.

- Web-based System Manager and System Management.
- Interface Tool (SMIT). It is also possible to use the command line (net command).
- IBM World-wide service and support.
- Client authentication can be done on a local machine or with passthrough authentication to the NT domain. Guest users are supported.
- Supports the resource browsing protocol. The server can announce its resources, but it cannot be a master browser.
- Supports WINS client and proxy and implements NetBios Name Server (NBNS).
- Traces and log capabilities.
- Documentation is an integral part of the AIX Version 4.3 Base Documentation.
- Support for Unicode.
- AIX long file name to DOS file name mapping support.

AIX Fast Connect Version 2.1.1

AIX Fast Connect Version 2.1.1 provides the following new functionalities:

- DCE/DFS access AIX Fast Connect Release 2 supports DCE/DFS integration. It uses DCE APIs to authenticate incoming SMB session requests. Once a session is authenticated, Fast Connect acquires login context for the DCE principal. The acquired login context is set in the process servicing the connection. This allows the filesystem requests to be made under the acquired login context. This feature allows:
 - PC client authentication using DCE security server
 - Access to DFS under the login context of the PC client logged in as DCE principal
- CIFS Logon (NetLogon) Support Network logon support allows centralization of user accounts, startup scripts, home directories, and configuration policy of Windows systems participating in a workgroup to a single AIX system running AIX Fast Connect Server. This support does not allow an AIX Fast Connect Server to act as a Windows NT Domain Controller.
- AIX Access Control Lists (ACLs) support AIX Fast Connect Release 2 supports AIX ACLs. Access to files and directories are in effect when a PC client is accessing the files. Access controls are enforced by making file system calls from a process that has setuid, which is same as the user who is accessing the filesystem resource.

- HACMP Support AIX Fast Connect release 2 included enhancements to support HACMP mutual takeover and rotating standby modes in addition to support of the standby mode. To support mutual takeover and rotating standby modes, the following enhancements are added to AIX Fast Connect.
 - Multiple server names (aliases) support
 - Ability to add and delete resources while the server is stopped or running.
- National Language Support AIX Fast Connect Release 2 supports the following locales:

Ca_ES, De_DE, En_US, Es_ES, Fr_FR, It_IT, Ja_JP, ZH_CN, Zh_CN, Zh_TW, ca_ES, cs_CZ, de_DE, en_US, es_ES, fr_FR, hu_HU, it_IT, ja_JP, ko_KR, pl_PL, pt_BR, ru_RU, sk_SK, zh_CN, zh_TW

CIFS Logon Client considerations

AIX Fast Connect currently supports Windows 95, Windows 98, and NT 4.0 as CIFS logon clients. The following considerations apply to each client:

- Windows NT 4.0 clients Windows NT 4.0 clients must use IBM Primary Logon Client for NT. It can be downloaded from: http://techsupport.services.ibm.com/asd-bin/doc/en_us/winntcl2/f-feat.htm
- Windows 95/98 clients They may use IBM Network Client for Windows 95 or use their native logon capability. IBM Network Client for Windows 95 can be downloaded from:
 - http://techsupport.services.ibm.com/asd-bin/doc/en_us/win95cl/f-feat.htm
- Plain text password support To enable plain text password support, you must change Windows clients' registry entry.

For more information about CIFS logon feature, see the /etc/cifs/README file.

11.2.26.2 Novell network services for AIX

Novell Network Services 4.1 for AIX (also referred as NNS) brings Novell Network Services to the RS/6000 system. With these services, RS/6000 systems running AIX Version 4.2.1 and AIX Version 4.3 can act as servers for products running Novell NetWare on LANs.

Novell Network Services 4.1 for AIX allows NetWare clients to access and use RS/6000 resources as if they were NetWare resources. NNS places NetWare services on the RS/6000 turning the RS/6000 into a non-dedicated NetWare server that provides both host operating and application services and NetWare services. This means that an RS/6000 can continue to run AIX

and perform all its former tasks, and simultaneously offer NetWare clients all the services associated with a NetWare server in a typical NetWare environment.

The AIX bonus pack comes with two user licence evaluation software of Novell Network Services (NNS) 4.1 for AIX Version 2.2.1

Additional product information can be found at: http://www.novell.com/press/archive/1997/07/pr97109.html

NNS features

NNS provides the following basic networking services:

- Novell Directory Services NDS is a global distributed database that maintains network information and provides access to information across a network. NDS provides access to all network resources regardless of where they are physically located. Therefore, NetWare users log into the directory tree and, with appropriate rights, have access to any resource on the network.
- File system services File system services permits you to store data in files and organize these files into directories. The users on the network can access and share the same information. In addition to these basic services, NNS provides the following file system services:
 - **Synchronized access** When more than one client tries to access the same file at the same time, synchronized access prevents file corruption.
 - **Name space** This allows NetWare clients to create file names according to the rules of their workstation's operating system, such as DOS, OS/2, UNIX, Windows NT, Window 95, and Macintosh.
 - Volumes NetWare uses a modified hierarchical file system with multiple root nodes called volumes. NNS allows the file system on AIX to be configured as one volume or up to 64 volumes
- **Print services** One of the most important benefits of networking is the ability to share printers. NNS allows the NetWare clients on the network to access printing resources on both NetWare and AIX printers.
- Security services To ensure protection from unauthorized access, NNS offers different types of security services:
 - User account NNS ensures secure passwords. Secure password features include encryption and encryption keys that ensure passwords are never sent unencrypted in plain text over the wire.

- File system NNS controls who can access, modify, delete, or create files and directories.
- NDS object NNS controls who can manipulate attributes in the NDS database.
- **Print security** NNS allows you to decide who can use the printers on your network.
- Network management Network management includes the services that allow system administrators to manage servers, clients, and network resources. NNS offers the following types of network management services:
 - Instrumentation for Simple Network Management Protocol (SNMP) SNMP management consoles can display statistics about the network services.
 - **Support for the IPX/SPX diagnostic protocol** Network management applications can draw physical location maps of the network.
 - **Delegation of administrative tasks** NNS allows you to delegate management responsibilities. For example, the system administrator can make a Novell user an account manager.
- **Communication protocols** Protocols are part of the networking infrastructure that allow computers to share and exchange information. NSS uses a set of protocols for transmitting information from one computer to another. IPX, IP, and SPX are some of these protocols
- Application Programming Interfaces The NetWare API for C is the interface to the C programming libraries for workstation applications. These libraries enable applications to interact with the NetWare server and access NDS.

11.2.27 Network security

AIX is built to strongly support security when connected to a public network.

11.2.27.1 IP security

AIX comes standard with IPsec included.

The RFC 1826 AH and the RFC 1829 ESP can be used together or alone. The Keyed MD5 algorithm is available for RFC 1826 AH, and the DES CBC 4, DES CBC 8, and CDMF algorithms can be used with RFC 1829 ESP.

The new 96-bit HMAC AH format and the new combined ESP with Authentication format can be used. These formats currently exist as IETF drafts. The HMAC MD5 and HMAC SHA1 algorithms can be used with this

⁴⁴⁸ AIX V4.3 and Windows 2000, Side by Side

new AH format, and the DES CBC 4, DES CBC 8, CDMF, and the DES CBC MD5 combination algorithms can be used with the new ESP format. Replay protection can also be used with either of these new formats.

IPsec supported standards

AIX supports the following security standards:

- RFC 1825 Security Architecture for the Internet Protocol
- RFC 1826 IP Authentication Header
- RFC 1827 IP Encapsulating Security Payload (ESP)
- RFC 1828 IP Authentication Using Keyed MD5
- RFC 1829 The ESP DES-CBC Transform
- RFC 2104 HMAC: Keyed-Hashing for Message Authentication
- RFC 2085 HMAC-MD5 IP Authentication with Replay Prevention

11.2.27.2 Additional security protocols

AIX provides support for Socks Libraries. AIX Socks API allows generic TCP/IP applications to connect to hosts through a generic TCP/IP proxy using SOCKS protocol Version 5.

PPP is supported in AIX since AIX 4.2.1

11.2.28 AIX Stand-alone LDAP directory product

The AIX Stand-alone Lightweight Directory Access Protocol (LDAP) product provides client access to directory data on a server using standard Internet protocols (LDAP and HTTP). LDAP V3.1 is provided with AIX 4.3.3. Previous releases of AIX come with LDAP V2.1

11.2.28.1 What is LDAP?

A directory is a listing of information about objects arranged in some order. It is suitable for storing such information as lists of books, e-mail addresses of people, and so on. A user or a program can search the directory to locate a book or email-address for a specific person. It is, actually, a database, but the differences between general purpose databases and directories are:

• Directories are read-mostly whereas databases tend to change rapidly. Because of the nature of directories that store such static information as phone numbers, the contents do not change very often. On the other hand, the information stored in databases, such as the order quantity of an item, changes rapidly.

• The data consistency requirement to directories is not strict. Because directories store static information, they might not have transaction support for data integrity. Duplicates and out of date data are acceptable.

LDAP itself is a protocol for a client to communicate with LDAP servers that implement an X.500-like directory. LDAP has its origin in the directory access protocol (DAP) of X.500. Because DAP depends on OSI, it has not been adopted widely by commercial environments. LDAP has been developed as a lightweight alternative to DAP. Compared with DAP, LDAP has the following advantages: It runs over TCP/IP; its function model is simpler, and it uses string representation rather than ASN.1.

The following are the basic characteristics of LDAP:

- Client-server model LDAP adopts a client-server model. An LDAP client performs protocol operations, such as query or modify, using LDAP API against an LDAP server, and the server returns a response after completing these operations.
- **Distributed directories** Although this is not a characteristic of LDAP but of LDAP servers that implement directory, a directory can be distributed. A distributed directory can be partitioned or replicated. When partitioned, an LDAP client can access information not stored in the local directory through the use of a kind of link stored in the local directory. The link points to the location of the information stored in the remote directory. This link is called a referral. When replicated, a client can access information stored in the nearest directory server. LDAP itself has some mechanisms for accessing distributed directories efficiently. LDAP, as its name implies, is essentially optimized for high speed access to the information and the use of the URL as a resource locator helps a human or a program locate information it needs more easily.
- Security LDAP incorporates a security model in its specification. The model, SASL, will be described later. On the LDAP server's side, typically, some kind of ACL mechanisms are implemented although they are not standardized at the time of this writing. Also, some transport level security mechanisms are incorporated. Mechanisms, such as SSL and TLS, are used to authenticate the client or server or both and encrypt data transferred between the client and server.

The LDAP naming model defines how entries are identified and organized. Although this model is just one aspect of LDAP architecture, understanding this model gives you a conceptual view of LDAP and directory. Entries are organized in a tree-like structure called the directory information tree (DIT).

11.2.28.2 LDAP protocol support

AIX Stand-alone LDAP supports Version 3 of the LDAP protocol. There is, currently, no LDAP Version 3 RFC that is approved. This product has been developed using Internet Draft "Lightweight Directory Access Protocol (v3) <draft-ietf-asid-Idapv3-protocol-04.txt>", which replaces LDAP (v2) RFC 1777.

Both V2 and V3 LDAP clients and servers are supported. The following combinations of clients and servers have been tested:

- AIX Stand-alone LDAP Version 3 client with Netscape Version 2 server
- A University of Michigan Version 2 client with AIX Stand-alone LDAP server
- Netscape Version 2 client with AIX Stand-alone LDAP server

11.2.28.3 Stand-alone LDAP directory server

The key distinguishing feature between the AIX Stand-alone LDAP server implementation and other LDAP server implementations is the use of DB2 as the back-end data store. See Figure 169 on page 452 for the major components included in the server package.

The features included in the AIX stand-alone LDAP product are:

- DB2 back-end
- ODBC Driver Manager and DB2 driver
- RDB Glue
- SLAPD
- Server replication
- Administration utilities
- Administration GUI
- HTTP gateway

- Note -

The references to Oracle and Oracle driver in Figure 169 on page 452 are merely an example of future possibilities. DB2 is the only supported database in this release.

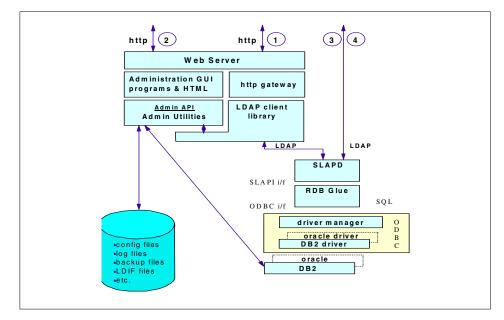


Figure 169. Stand-alone LDAP directory server - Details

DB2 back end

DB2 provides a robust, scalable, industry-tested basis for storage of the directory data. It includes support of Binary Large Objects (BLOBs) that facilitates use of the directory as an efficient object store. The Open DataBase Connectivity (ODBC) interface is used to connect DB2 as the directory back end. Using ODBC as the interface allows for the future inclusion of other relational databases as back-ends.

ODBC

This includes ODBC Driver Manager and the DB2 (ODBC) Driver. The ODBC Driver Manager provides the ODBC API to the LDAP directory server. The DB2 driver plugs into the ODBC framework and connects with the DB2 interfaces. Both of these components of ODBC are provided with the single-user version of DB2 that is shipped with the AIX Stand-alone LDAP Directory product.

RDB Glue

The Relational DataBase (RDB) Glue code ties together two architected interfaces to provide the data store for the directory. The SLAPD component handles incoming LDAP requests and generates calls to a set of APIs defined as the SLAPI interface. RDB Glue provides a matching set of routines that plug into this API, take the previously mentioned API calls, and generate SQL

statements in the form required by the ODBC interface to read or write information to DB2.

SLAPD

SLAPD is the portion of the directory server that understands LDAP. It is a multithreaded daemon that receives client requests, works with the DB2 back-end to process them, and returns the results.

Server replication

SLAPD process threads also monitor the replication log file and pass the corresponding update requests on to the replica server(s).

No shutdown of LDAP server is necessary to copy directory data to initialize a replica server.

HTTP access to directory

An HTTP gateway is provided to allow Web browsers that are not LDAP-enabled to do searches on the directory. The gateway is a cgi-bin program that presents a form to the user, through the browser, to gather the parameters for the search (such as a search base, scope, search filter, and so on). Once the search information has been passed to the gateway program, it acts as an LDAP client generating the requests to do the search and then receiving the results and passing them back to the browser for display to the end-user.

11.2.28.4 Security

The AIX Stand-alone LDAP client and server implementation support SSL (Version 2.0 or higher), an emerging standard for World Wide Web security. SSL provides encryption of data and transport of X.509v3 public-key certificates and revocation lists. The server may be configured to run with or without the SSL support. When the server is configured to support SSL (accepting connections over a secure port - defaults to 636), it still accepts connections from clients that choose not to use SSL (these clients still specify the standard unsecure port - defaults to 389). The LDAP either flows directly over TCP/IP (using the standard sockets interfaces) or over the SSL.

Authentication

The following authentication options are supported:

- No authentication
- Simple authentication (password)
- X.509v3 public-key certificate at the SSL

- Note

Kerberos authentication is not supported.

11.2.28.5 LDAP-related RFCs and Internet drafts implemented

The following lists contain Internet drafts and RFCs for LDAP and X.500 implemented in the AIX Stand alone LDAP Directory product.

11.10.1 Internet drafts

Internet drafts may be viewed at the following Web site: http://www.internic.net/internet-drafts

The following are Internet drafts:

- Protocol Definition (March 25, 1997)
- <draft-ietf-asid-ldapv3-protocol-04.txt>
- Standard and Pilot Attribute Definitions (March 1997)
- <draft-ietf-asid-ldapv3-attributes-04.txt>
- A String Representation of LDAP Search Filters (March 1997)
- <draft-ietf-asid-ldapv3-filter-00.txt> (obsolete)
- Replaced by <draft-ietf-asid-ldapv3-filter-02.txt> (May 1997)
- Extensions for Dynamic Directory Services (March 25, 1996)
- <draft-ietf-asid-ldapv3ext-03.txt> (obsolete)
- Replaced by <draft-ietf-asid-ldapv3ext-04.txt> (May 1997)
- A UTF-8 String Representation of Distinguished Names (March 1997)
- <draft-ietf-asid-ldapv3-dn-02.txt> (obsolete)
- Replaced by <draft-ietf-asid-ldapv3-dn-03.txt> (April 1997)
- The LDAP Application Program Interface (October 1996)
- <draft-howes-ldap-api-00.txt>
- Use of Language Codes in LDAP V3 (March 1997)
- <draft-ietf-asid-ldapv3-lang-01.txt>
- Definition of an Object Class to Hold LDAP Change (March 25 1997)
- <draft-ietf-asid-changelog-00.txt>
- LDAP Multi-master Replication Protocol (March 20, 1997)
- <draft-ietf-asid-ldap-mult-mast-rep-00.txt>

- The LDAP Data Interchange Format(LDIF) (Nov 25, 1996)(March 24 1997)
- <draft-ietf-asid-ldif-00.txt>

LDAP-Related RFCs

For more information on LDAP and its associated components please refer to the RFCs shown in

Table 19. LDAP-related RFCs

RFC Number	RFC Title
1558	A String Representation of LDAP Search Filters
1738	Uniform Resource Locators
1777 l	Lightweight Directory Access Protocol
1778	The String Representation of Standard Attribute Syntaxes
1779	A String Representation of Distinguished Names
1798	Connectionless LDAP
1823	The LDAP Application Program Interface
1959	An LDAP URL Format
1960	String format of LDAP search filter

11.2.29 Quality of service support

AIX 4.3.3 introduces QoS support. The demand for QoS arises from such applications as digital audio/video applications or real time applications. For more detailed information about QoS, you may refer to Section 11.1.1, "Quality of Service (QoS)" on page 377.

11.2.29.1 AIX implementation of QoS

AIX QoS implementation is based on the Internet Engineering Task Force (IETF) standards, Integrated Services (IntServ), and Differentiated Services (DiffServ). IntServ utilizes the Resource ReSerVation Protocol (RSVP) available to applications via the RSVP API (RAPI). DiffServ support includes IP packet marking for IP packets selected via filtering. The AIX QoS also offers bandwidth management functions, such as Traffic Shaping and Policing. The AIX QoS scope covers both QoS and policy-based networking. This enhancement to AIX provides System Administrators with the benefits of

both QoS support and policy-based networking in meeting the challenges of QoS offerings across complex networks.

11.2.30 Interface specific network options

AIX implements a set of system-wide network parameters, and some of them can impact the performance of TCP/IP. AIX supports a wide range of physical media on a single system (SLIP, PPP, ISDN, 10 Mbps Ethernet, gigabit ethernet and others) and using the same network parameter for each interface may not be optimal since some of them may have unique characteristics that require special values.

In AIX 4.3.3, the concept of interface-specific network options (ISNO) has been introduced. The user has the ability to activate or deactivate ISNO using the no command. A new global option, use_isno, is available, and its default value is 1 (enabled). The intended use of this option is for service-related issues - to allow for a diagnostic tool to eliminate potential tuning errors.

This design allows the definition of adapter-specific defaults that are shipped in the predefined attribute ODM database, PdAt. The global network options are still maintained via the no command, but the value of the ISNO takes precedence over the global values assuming that the TCP/IP traffic flows over an interface that has ISNO set.

11.2.31 Cisco EtherChannel support

Etherchannel is an aggregation technology that allows you to combine multiple Ethernet adapters together to form a larger pipe. Etherchannel allows a server-to-switch connection throughput of between 40 and 800 Mbps, depending on the settings for the adapters, and, thus, helps address what may be a throughput bottleneck for you. This throughput would be an aggregate over many connections to different machines.

AIX 4.3.3 introduces the support of Cisco EtherChannel, helping to solve network bandwidth problems in an Ethernet environment.

11.2.31.1 How Etherchannel works

The Etherchannel should look exactly like an Ethernet adapter to the upper layers. Any upper layer (IP, SNA, DLPI, to name a few) that can connect to an Ethernet adapter through network services should work over an Etherchannel without any code changes.

The Etherchannel works by having all of the device drivers that are a part of the channel connected to the same switch, as long as it is a switch that support's Cisco's Etherchannel. Traffic sent to the channel is sent on the

network over one of the devices that are part of the channel. Which one is used should not make a difference as to whether the packet makes it to its destination; so, the adapter to use is decided by hashing the lower bits of the destination MAC address of the outgoing packet for non-IP traffic. For IP traffic, the lower bits of the destination IP address are used to decide the adapter. Hashing of the addresses provides for the traffic between a particular source and destination to use the same interface or adapter. This is to avoid packets reaching the destination out of order since some higher layer protocols have problems handling out of order packets.

Likewise, any packet received by one of the drivers should be sent to the user regardless of which device it was received on. It has one MAC address, and, for IP, it has one IP address.

When an adapter of an Etherchannel is down, traffic is rerouted through one of the other adapters, and this is transparent to the upper layers. For the incoming traffic, the packet can be received over any of the adapters. Etherchannel provides a scalable server-to-switch bandwidth without having to move to new technology, such as Gigabit Ethernet. In the future, the Etherchannel technology could possibly be used for multiple Gigabit Ethernets. Etherchannel operates at layer 2 below the protocol stack. The Etherchannel is implemented as a kernel extension. It is a pseudo device that attaches itself to the network services (of CDLI) like the other real Ethernet device drivers.

The existing Ethernet adapters can be used to form a channel without any changes to the existing device drivers. The Etherchannel driver does not maintain any statistics. It uses the statistics maintained by the adapters.

11.3 Windows 2000 networking

This chapter introduces Windows 2000 networking components that make Windows 2000 a highly communicative operating system. An overview of the Windows 2000 network architecture is given in this section as well as details on the implementation of some network components.

11.3.1 Windows 2000 network architecture

Windows 2000 networking components can be organized into three main categories: file system drivers, transport protocols, and network adapter card drivers. These components communicate with each other through programming interfaces called boundary layers. Figure 170 on page 458 is a picture of the Windows NT networking model. It shows the different network layers as well as the boundary layers available in Windows NT. The OSI

networking model is also shown in order to position the Windows NT network architecture with the OSI model.

Figure 170. WIndows 2000 Networking Model

In the following sections, you will find descriptions of the different Windows NT network layers starting from the lower layers and proceeding to the upper layers.

11.3.1.1 The NDIS interface

Microsoft networking protocols use the Network Device Interface Specification (NDIS) to communicate with network card drivers. Much of the OSI model link layer functionality is implemented in the protocol stack. The current level of NDIS is 5.0.

NDIS can power down network adapters when the system requests a power level change. Either the user or the system can initiate this request. For example, the user may want to put the computer in sleep mode, or the system may request a power level change based on keyboard or mouse inactivity. In addition, disconnecting the network cable can initiate a power-down request, provided that the network interface card (NIC) supports this functionality. In this case, the system waits for a configurable time period before powering down the NIC because the disconnect could be the result of temporary wiring

changes on the network rather than the disconnection of a cable from the network device itself.

NDIS power management policy is not network activity-based. This means that all overlying network components must agree to the request before the NIC can be powered down. If there are any active sessions or open files over the network, the power-down request can be refused by any or all of the components involved.

The computer can also be awakened from a lower power state, based on network events.

Windows 2000 TCP/IP provides support for:

- Ethernet (and 802.3 SNAP)
- FDDI
- Token Ring (802.5)
- ATM
- ARCNET
- WAN (switched virtual circuit wide area media, such as ISDN, X.25, and dial-up or dedicated asynchronous lines)

In addition, there are some ATM adapters available for Windows that support LAN emulation and appear to the protocol stack as a media type, such as Ethernet.

Media Sense

Media Sense support was added in NDIS 5.0. It provides a mechanism for the Network Interface Card (NIC) to notify the protocol stack of media connect and media disconnect events. Windows 2000 TCP/IP utilizes these notifications to assist in automatic configuration. For instance, in Windows NT 4.0, when a portable computer was located and DHCP-configured on an Ethernet subnet and then moved to another subnet without rebooting, the protocol stack received no indication of the move. This meant that the configuration parameters became stale and not relevant to the new network. Additionally, if the computer was shut off, carried home, and rebooted, the protocol stack was not aware that the NIC was no longer connected to a network, and, again, stale configuration parameters remained. This could be problematic because subnet routes, default gateways, and so on, could conflict with dial-up parameters. Media Sense support allows the protocol stack to react to events and invalidate stale parameters. For instance, if a computer running Windows 2000 is unplugged from the network (assuming the NIC supports Media Sense), after a damping period implemented in the

stack (currently 20 seconds), TCP/IP will invalidate the parameters associated with the network that has been disconnected. The IP address(es) will no longer allow sends, and any routes associated with the interface are invalidated.

11.3.1.2 Transport protocols

In the Windows NT and 2000 networking models, transport protocols are located above the NDIS wrapper, and there are four sets of them:

- NBF (NetBEUI Frame) A protocol derived from NetBEUI that provides compatibility with existing LAN Manager, LAN Server, and MS-Net installations.
- **TCP/IP** A widely used, routable protocol for Local Area Networks as well as Wide Area Networks.
- NWLink Microsoft's implementation of Novell's IPX/SPX protocols for communicating across NetWare networks and with NetWare file servers.
- **DLC (Data Link Control)** DLC provides an interface to access mainframes and printers attached to networks.

In addition, the AppleTalk protocol stack is included to provide support to Macintosh's networks.

NetBEUI and NBF

NetBEUI stands for NetBIOS Extended User Interface. This is the protocol used by LAN Manager and Windows for Workgroups. It is a very efficient protocol for small networks (a small number of systems on the network) but not very efficient for large networks. There are several reasons for this.

First of all, NetBEUI will not operate properly if two computers have the same name. This is because NetBEUI uses the computer's name as the network address. This can easily happen in a large network.

Second, since NetBEUI does not map the computer name to a network address, it is not routable. This means that you cannot use routers. All computers need to be on the same network by using bridges. Since NetBEUI uses broadcasts to find a computer on the network, when the network gets very large, NetBEUI generates very high traffic on the network.

---- Note

NetBEUI is the transport protocol, and NetBIOS is a programming interface.

NetBIOS was developed by IBM. In Windows NT, NetBIOS is independent of the transport protocol.

The Windows NT and Windows 2000 implementation of NetBIOS over TCP/IP is referred to as NetBT. NetBT uses the following TCP and UDP ports:

- UDP port 137 (name services).
- UDP port 138 (datagram services).
- TCP port 139 (session services).

NetBIOS over TCP/IP is specified by RFC 1001 and RFC 1002. The NetBT.sys driver is a kernel-mode component that supports the Transport Driver Interface (TDI) interface. Services, such as Windows NT Workstation and Windows NT Server, use the TDI interface directly, but traditional NetBIOS applications have their calls mapped to TDI calls by the Netbios.sys driver. Using TDI to make calls to NetBT is a more difficult programming task, but it can provide higher performance and freedom from historical NetBIOS limitations.

The Windows NT Workstation service, Server service, Browser, Messenger, and NetLogon services are all (direct) NetBT clients. They use TDI to communicate with NetBT. Windows NT and Windows 2000 also include a NetBIOS emulator. The emulator takes standard NetBIOS requests from NetBIOS applications and translates them to equivalent TDI primitives.

Windows 2000 still uses NetBIOS over TCP/IP to communicate with prior versions of Windows NT and other clients, such as Windows 95.

However, Windows 2000 is now able to use direct hosting for communication with other Windows 2000 machines.

Direct hosting uses the DNS for name resolution. No NetBIOS name resolution (WINS or broadcast) is used, and the protocol is simpler. Direct Host TCP uses port 445, instead of the NetBIOS TCP port 139.

By default, both NetBIOS and direct hosting are enabled, and both are tried in parallel when a new connection is established. The first to succeed in connecting is used for any attempt. NetBIOS support can be disabled to force all traffic to use direct hosting.

Netbios names

The NetBIOS name space is flat, meaning that all names within the name space must be unique. NetBIOS names are 16 characters in length. Resources are identified by NetBIOS names, which are registered

dynamically when computers boot, when services or applications start, or when users log on. Names can be registered as unique names (one owner) or as group names (multiple owners). A NetBIOS Name Query is used to locate a resource by resolving the name to an IP address.

Microsoft networking components, such as Windows NT Workstation and Windows NT Server services, allow the first 15 characters of a NetBIOS name to be specified by the user or administrator, but they reserve the sixteenth character of the NetBIOS name to indicate a resource type (workstation service, server service, master browser, and so on)

NetBIOS name registration and resolution

Windows TCP/IP systems use several methods of locating NetBIOS resources:

- NetBIOS name cache.
- NetBIOS name server.
- IP subnet broadcasts.
- Static Lmhosts file.
- Static Hosts file.
- DNS servers.

NetBIOS name-resolution order depends upon the node type and system configuration. The following node types are supported:

- The B-node uses broadcasts for name registration and resolution.
- The P-node uses a NetBIOS Name Server for name registration and resolution.
- The M-node uses broadcasts for name registration. For name resolution, it tries broadcasts first, but switches to p-node if it receives no answer.
- The H-node uses NetBIOS name server for both registration and resolution. However, if no name server can be located, it switches to b-node. It continues to poll for name server and switches back to p-node when one becomes available.
- Microsoft-enhanced uses the local Lmhosts file or WINS proxies plus Windows Sockets gethostbyname calls (using standard DNS and/or local Hosts files) in addition to standard node types.

Microsoft ships a NetBIOS name server known as the Windows Internet Name Service (WINS). Most WINS clients are set up as h-nodes; that is, they first attempt to register and resolve names using WINS, and, if that fails, they

462 AIX V4.3 and Windows 2000, Side by Side

try local subnet broadcasts. Using a name server to locate resources is generally preferable to broadcasting for two reasons:

- Broadcasts are not usually forwarded over routers.
- Broadcasts are received by all computers on a subnet, requiring processing time at each computer.

TCP/IP

TCP/IP (Transmission Control Protocol/Internet Protocol) refers to a suite of protocols first developed for the U.S. Department of Defense. It is a widely used, routable transport protocol. It provides connectivity across a wide range of operating systems, such as UNIX systems, and it is a protocol that is very suitable for use in large network LANs or WANs that are linked by routers.

Windows 2000 implements the core of TCP/IP protocols plus a subset of TCP/IP application services. It also provides NetBT (NetBIOS over TCP/IP), which allows use of TCP/IP as a transport layer for NetBIOS and takes advantage of TCP/IP routing capability. NetBIOS over TCP/IP is based on the RFCs 1001/1002.

Routing support is added to Windows 2000. By default, Windows NT-based systems do not behave as routers and do not forward IP datagrams between interfaces. However, the Routing and Remote Access Service is included in Windows 2000 Server. It can be enabled and configured to provide full multiprotocol routing services.

NWLink

NWLink is Microsoft's implementation of Novell's IPX (Internetwork Packet eXchange) network layer and SPX (Sequenced Packet eXchange) transport layer protocol. It is NDIS-compliant.

It is a transport protocol. This means that it does not allow a Windows NT computer to directly access files or printers located on a NetWare server or to act as a file or print server. In order to access files and printers on a NetWare server, you need to use a redirector, such as the Microsoft Client Service for NetWare (CSNW).

Data Link Control (DLC)

DLC is not used to communicate between Windows 2000 computers. It is provided for accessing IBM mainframes through 3270 emulation software and for printing to HP printers connected directly to the network.

DLC needs to be installed on the computers requiring these types of access routes.

Transport Driver Interface (TDI)

The TDI is similar in concept to NDIS for the device drivers. It provides a common interface for file systems and I/O manager processes to communicate with the various network transport layers.

The TDI specification describes the set of primitive functions by which transport drivers and TDI clients communicate and the call mechanisms used for accessing them. Currently, TDI is kernel-mode only.

The Windows 2000 redirector and server both use TDI directly instead of going through the NetBIOS mapping layer. By doing so, they are not subject to many of the restrictions imposed by NetBIOS

Other protocols

Other transport protocols are provided by third-party vendors, such as DECnet for supporting Digital networks, or the XNS (XEROX Network Systems) transport layer.

11.3.1.3 Session, presentation, and application layers

Above the TDI, you can find the file system drivers, redirectors, and network APIs. Their descriptions follow:

- File Systems Drivers On top of the TDI are the file system drivers. File system drivers allow an application to read and write information to a logical drive. Each type of local file system available in Windows 2000 (FAT and NTFS) has its own file system driver to access local partitions. Remote resources, such as network drives, can be accessed in a transparent way by using redirectors. (HPFS support has been dropped from Windows NT since the 4.0 release).
- **Redirectors** Windows 2000 provides facilities to share files and printers on the network. These facilities are called the Workstation Service (RDR) and the Server Service (SVR).

A redirector takes requests from applications, formats the request into a message using an appropriate protocol, such as the Server Message Block (SMB) protocol, and sends it to the server through the network. The server accepts the message, gets the requested data, and sends it back to the requesting computer. Redirectors are implemented as file system drivers and are managed by the I/O Manager. For the I/O Manager, there is no difference between accessing a local file or a remote file.

In order to access a resource (disk drive, directory, or printer) through the network, you need to specify the name of the resource. There is a Universal Naming Convention (UNC) for resources (servers or sharepoints). UNC names start by following by the name of the server and

then the name of the shared directory and subdirectories. The syntax of the UNC is:

computer_nameshare_namesubdirectoryfilename

 Network Application Programming Interfaces - Several APIs are available in Windows NT for communicating over the network. Windows NT supports NetBIOS, Windows Sockets, Remote Procedure Calls, and Network Dynamic Data Exchange (NetDDE). Named Pipes and Mailslot are also supported and have been incorporated as an extension into the Windows NT operating system.

11.3.2 TCP/IP V4

The following sections describe TCP/IP support in Windows 2000.

11.3.2.1 Support for standard features

Windows 2000 supports the following standard features:

- The ability to bind to multiple network adapters with different media types
- · Logical and physical multihoming
- Internal IP routing capability
- Internet Group Management Protocol (IGMP) version 2 (IP Multicasting)
- Duplicate IP address detection
- Multiple default gateways
- Dead gateway detection
- Automatic Path Maximum Transmission Unit (PMTU) discovery
- IP Security (IPSec)
- Quality of Service (QoS)
- ATM Services
- Virtual Private Networks (VPNs)
- Layer 2 Tunneling Protocol (L2TP)
- Performance Enhancements

In addition, Windows 2000 has the following performance enhancements:

- Protocol stack tuning, including increased default window sizes
- TCP scalable window sizes (RFC 1323 support, off by default)
- Selective acknowledgments (SACK)
- TCP Fast Retransmit

- Round Trip Time (RTT) and Retransmission Timeout (RTO) calculation improvements
- Improved performance for management of large numbers of connections

Available services

Windows 2000 provides the following services:

- Dynamic Host Configuration Protocol (DHCP) client and service
- Windows Internet Name Service (WINS), a NetBIOS name client and server
- Dynamic Domain Name Server (DDNS)
- Dial-up (PPP/SLIP) support
- Point-to-Point Tunneling Protocol (PPTP) and Layer 2 Tunneling Protocol (L2TP), used for virtual private remote networks
- TCP/IP network printing (lpr/lpd)
- SNMP agent
- NetBIOS interface
- Windows Sockets Version 2 (Winsock2) interface
- Remote Procedure Call (RPC) support
- Network Dynamic Data Exchange (NetDDE)
- Wide Area Network (WAN) browsing support
- High-performance Microsoft Internet Information Server
- Basic TCP/IP connectivity utilities including: finger, FTP, rcp, rexec, rsh, Telnet, and tftp
- Server software for simple network protocols including: Character Generator, Daytime, Discard, Echo, and Quote of the Day
- TCP/IP management and diagnostic tools including: arp, hostname, ipconfig, lpq, nbtstat, netstat, ping, route, nslookup, and tracert

11.3.2.2 RFCs supported by Microsoft Windows 2000 TCP/IP

Requests for Comments (RFCs) are a constantly evolving series of reports, proposals for protocols, and protocol standards used by the Internet community. You can use FTP to obtain RFCs from any of the following:

- nis.nsf.net
- nisc.jvnc.net
- wuarchive.wustl.edu
- 466 AIX V4.3 and Windows 2000, Side by Side

- src.doc.ic.ac.uk
- ds.internic.net
- nic.ddn.mil

RFCs supported by this version of Microsoft TCP/IP include those listed in Table 20.

Table 20. RFCs supported by Windows 2000

RFC	Title
768	User Datagram Protocol (UDP)
783	Trivial File Transfer Protocol (TFTP)
791	Internet Protocol (IP)
792	Internet Control Message Protocol (ICMP)
793	Transmission Control Protocol (TCP)
816	Fault Isolation and Recovery
826	Address Resolution Protocol (ARP)
854	Telnet Protocol (TELNET)
862	Echo Protocol (ECHO)
863	Discard Protocol (DISCARD)
864	Character Generator Protocol (CHARGEN)
865	Quote of the Day Protocol (QUOTE)
867	Daytime Protocol (DAYTIME)
894	IP over Ethernet
919, 922	IP Broadcast Datagrams (broadcasting with subnets)
950	Internet Standard Subnetting Procedure
959	File Transfer Protocol (FTP)
1001, 1002	NetBIOS Service Protocols
1034, 1035	Domain Name System (DNS)
1042	A Standard for the Transmission of IP Datagrams over IEEE 802 Networks
1055	Transmission of IP over Serial Lines (IP-SLIP)

RFC	Title
1112	Internet Group Management Protocol (IGMP)
1122, 1123	Host Requirements (communications and applications)
1144	Compressing TCP/IP Headers for Low-Speed Serial Links
1157	Simple Network Management Protocol (SNMP)
1179	Line Printer Daemon Protocol
1188	IP over FDDI
1191	Path MTU Discovery
1201	IP over ARCNET
1256	ICMP Router Discovery Messages
1323	TCP Extensions for High Performance (see the TCP1323opts registry parameter)
1332	PPP Internet Protocol Control Protocol (IPCP)
1518	Architecture for IP Address Allocation with CIDR
1519	Classless Inter-Domain Routing (CIDR): An Address Assignment and Aggregation Strategy
1534	Interoperation Between DHCP and BOOTP
1542	Clarifications and Extensions for the Bootstrap Protocol
1552	PPP Internetwork Packet Exchange Control Protocol (IPXCP)
1661	The Point-to-Point Protocol (PPP)
1662	PPP in HDLC-like Framing
1748	IEEE 802.5 MIB using SMIv2
1749	IEEE 802.5 Station Source Routing MIB using SMIv2
1812	Requirements for IP Version 4 Routers
1825	Security Architecture for the Internet Protocol
1826	IP Authentication Header (AH)
1827	IP Encapsulating Security Payload (ESP)

468 AIX V4.3 and Windows 2000,	Side by Side
---------------------------------------	--------------

RFC	Title
1828	IP Authentication using Keyed MD5
1829	ESP DES-CBC Transform
1851	ESP Triple DES-CBC Transform
1852	IP Authentication using Keyed SHA
1994	PPP Challenge Handshake Authentication Protocol (CHAP)
2018	TCP Selective Acknowledgment Options
2085	HMAC-MD5 IP Authentication with Replay Prevention
2104	HMAC: Keyed Hashing for Message Authentication
2131	Dynamic Host Configuration Protocol
2132	DHCP Options and BOOTP Vendor Extensions
2136	Dynamic Updates in the Domain Name System (DNS UPDATE)
2132	DHCP Options and BOOTP Vendor Extensions
2205	Resource ReSerVation Protocol (RSVP) Version 1 Functional Specification
2236	Internet Group Management Protocol, Version 2
Draft RFCs	PPP over ISDN; PPP over X.25; Compression Control Protocol

11.3.2.3 PMTU discovery

Windows 2000 introduces the support of PMTU for the Windows operating system. For a more detailed discussion about the PMTU topic, you may refer to Section 11.1.2, "Path MTU (PMTU)" on page 380.

11.3.3 DHCP

DHCP is open and standards-based as defined by IETF Requests for Comments (RFCs) 2131 and 2132. DHCP can automatically configure a host while it is booting on a TCP/IP network as well as change settings while the host is attached. This allows all available IP addresses to be stored in a central database along with associated configuration information, such as the subnet mask, gateways, and address of DNS servers.

11.3.3.1 DHCP enhancements for Windows 2000

For Windows 2000 Server, the Microsoft DHCP server has been enhanced with powerful new features, including:

- Integration of DHCP with DNS
- · Enhanced monitoring and statistical reporting for DHCP servers
- · New vendor-specific and class ID option support
- Multicast address allocation
- Rogue DHCP server detection
- Windows Clustering for high availability (after IETF release of the server-to-server communications protocol)
- Automatic client configuration

Integration of DHCP with DNS: DDNS

Domain name system (DNS) servers provide name resolution for network resources and are closely related to DHCP services. For Windows 2000, DHCP servers and DHCP clients may register with DNS. In this way DNS server is dynamically updated. Of course, this makes life easier for system administrators, who no longer have to manually maintain DNS server configuration files.

Enhanced monitoring and statistical reporting for DHCP servers

Enhanced monitoring and statistical reporting have been added to the DHCP server for Windows 2000. This new feature provides notification when IP addresses are running below a user-defined threshold. For example, an alert could be triggered when 90 percent of IP addresses assigned for a particular scope have been assigned. A second alert can be triggered when the pool of IP addresses is exhausted. To alert network managers, the icon is changed to yellow on the remaining addresses falling below the defined level. The icon is changed to red if the addresses are completely depleted.

The DHCP manager, which supports the Simple Network Management Protocol (SNMP) and Management Information Bases (MIBs), provides a graphical display of statistical data. This helps administrators monitor system status factors, such as the number of available versus depleted addresses or the number of leases being processed per second. Additional statistical information includes the number of messages and offers processed, as well as the number of requests, acknowledgements, declines, negative status acknowledgment messages (Nacks), and releases received.

The total number of scopes and addresses on the server, the number used, and the number available are also viewable. These statistics can be provided

for a particular scope or at the server level, which shows the aggregate of all scopes managed by that server.

New vendor-specific and class ID option support

DHCP server for Windows 2000 provides the powerful functionality of allowing vendor-specific options to be defined. These vendor classes are defined by specific vendors and are triggered by data bits that determine whether a given option class is standard or vendor-specific. Once identified as vendor-specific, DHCP looks up the configuration as specified for the specific vendor. This feature enables compelling custom applications for enterprise networks to be introduced quickly. The vendor class and vendor options are described in RFC 2132.

Today, all DHCP clients are treated equally, and the server is unaware of the specific type of clients. This means that the configuration issued by the server must be one that can be common to any DHCP client. User classes allow DHCP clients to differentiate themselves by specifying what type of client they are, such as a desktop or laptop, for example. An administrator can then configure the DHCP server to assign different options, depending on the type of client receiving them.

Multicast address allocation

The Microsoft DHCP server has been extended to allow the assignment of multicast addresses, in addition to unicast addresses. A proposed IETF standard defines multicast address allocation. The proposed standard benefits network administrators by allowing multicast addresses to be assigned in the same fashion as unicast addresses, thus, allowing complete utilization of the existing infrastructure.

Typical applications for multicast are conferencing or audio, which usually require users to specially configure multicast addresses. Unlike IP broadcasts, which must be readable by all computers on the network, a multicast address is a group of computers using the concept of a group membership to identify those to whom the message is to be sent.

Unauthorized DHCP Server Detection

The Microsoft DHCP server for Windows 2000 is designed to prevent unauthorized DHCP servers from creating address assignment conflicts. This solves problems that might otherwise occur if inexperienced users created unauthorized DHCP servers that could assign improper or unintended IP addresses to clients elsewhere on the network.

The way in which this prevention does work is by the integration of a DHCP server definition with Active Directory. In fact, Active Directory is now used to

store records of authorized DHCP servers. When a DHCP server comes up, the directory is used to verify the status of that server. If that server is unauthorized, no response is returned to DHCP requests.

Windows Clustering for high availability

Windows Clustering allows two servers to be managed as a single system and can be used for DHCP servers to provide higher availability. It can automatically detect the failure of an application or server and restart it on a surviving server; users would only experience a momentary pause in service.

Automatic client configuration

A compelling new feature of the DHCP client in Windows 2000 is the ability to automatically configure an IP address and subnet mask when the client is started on a small private network where no DHCP server is available to assign addresses.

If a Microsoft TCP/IP client is installed and set to dynamically obtain TCP/IP protocol configuration information from a DHCP server, rather than being manually configured with an IP address and other parameters, the DHCP client service is engaged each time the computer is restarted.

The DHCP client service now uses a two-step process to configure the client with an IP address and other configuration information:

- 1. When the client is installed, it attempts to locate a DHCP server and obtain a configuration from it. Many TCP/IP networks use DHCP servers that are administratively configured to hand out information to clients on the network.
- 2. If this attempt to locate a DHCP server fails, the Windows 2000 DHCP client autoconfigures its stack with a selected IP address from the IANA-reserved class B network 169.254.0.0. with the subnet mask 255.255.0.0. The DHCP client tests (using an ARP) to make sure that the IP address that it has chosen is not already in use. If it is in use, it selects another IP address (it does this for up to 10 addresses). Once the DHCP client has selected an address that is really not in use, it configures the interface with this address. It continues to check for a DHCP server in the background every five minutes. If a DHCP server is found, the autoconfiguration information is abandoned, and the configuration offered by the DHCP server is used instead.

If the DHCP client has previously obtained a lease from a DHCP server, the following modified sequence of events occurs:

1. If the client's lease is still valid (not expired) at boot time, the client tries to renew its lease with the DHCP server. If the client fails to locate a DHCP

server during the renewal attempt, it tries to ping the default gateway that is listed in the lease. If pinging the default gateway succeeds, the DHCP client assumes that it is still located on the same network where it obtained its current lease and continues to use the lease. By default, the client attempts to renew its lease in the background when half of its assigned lease time has expired.

2. If the attempt to ping the default gateway fails, the client assumes that it has been moved to a network that has no DHCP services currently available (such as a home network) and autoconfigures itself as just described. Once autoconfigured, it continues to try (in the background) to locate a DHCP server every five minutes.

11.3.4 Quality of service (QoS)

With Windows 2000, Microsoft introduces support for QoS. For more detailed information about QoS, you may refer to Section 11.1.1, "Quality of Service (QoS)" on page 377. The following QoS components are currently included with the Windows 2000 operating system:

- The Generic Quality of Service (GQoS) API, which is a subset of the Winsock 2 API, allows applications to invoke QoS services from the operating system without the need to understand the underlying mechanisms.
- The QoS service provider (SP) responds to requests from the GQoS API. It provides RSVP signaling and QoS policy support.
- The ACS service and SBM protocol for admission control service on shared media with Kerberos also invoke the traffic control mechanisms.

ACS is a policy service that runs on top of the Windows 2000 Server. It works in conjunction with the Subnet Bandwidth Manager (SBM). Because LANs are layer 2 technologies, they cannot directly participate in RSVP signaling, which is a layer 3 technology. The SBM solves this problem by enabling intelligent devices that reside on the shared network to volunteer their services as a *broker* for the shared network's resources.

The ACS combines the resource-based admission control functionality of an SBM with policy-based admission control using Active Directory. The ACS leverages the fact that the SBM (by advertisement of its presence on a shared subnet) is able to insert itself into the RSVP reservation path and can, therefore, affect admission control.

• A traffic control infrastructure includes a packet scheduler and marker for providing traffic control over drivers and network cards that have no packet scheduling features of their own. It also marks packets for diffserv and

802.1p. Windows 2000 traffic control also includes additional mechanisms, such as ISSLOW and ATM.

11.3.5 Network security

Windows 2000 supports the following security protocols:

- **IPSec** IPSec provides integrity protection, authentication, and (optional) privacy and replay protection services for IP traffic. IPSec can be used in two modes; transport mode which secures an existing IP packet from source to destination, and tunnel mode which puts an existing IP packet inside a new IP packet that is sent to a tunnel end point in the IPSec format. Both transport and tunnel mode can be encapsulated in ESP or AH headers.
 - IP protocol 50 called the Encapsulating Security Payload (ESP) format, which provides privacy, authenticity, and integrity.
 - IP protocol 51 called the Authentication Header (AH) format, which only provides integrity and authenticity for packets, but not privacy
- **PPP** PPP encapsulates IP, IPX, and NetBEUI packets within PPP frames and then transmits the PPP-encapsulated packets across a point-to-point link. Typically, most implementations of PPP provide limited authentication methods, such as Password Authentication Protocol (PAP), Challenge Handshake Authentication Protocol (CHAP), and Microsoft Challenge Handshake Authentication Protocol (MSCHAP).
- **PPTP** PPP provides authenticated and encrypted communications between a client and a gateway or between two gateways (without requiring a public key infrastructure) by using a user ID and password.
- L2TP/IPsec This protocol places L2TP as payload within an IPSec packet. L2TP encapsulates Point-to-Point Protocol (PPP) frames to be sent over IP, X.25, frame relay, or asynchronous transfer mode (ATM) networks. When configured to use IP as its transport, L2TP can be used as a VPN tunneling protocol over the Internet. L2TP over IP uses UDP port 1701 for tunneling communication.

For a more detailed description of these protocols and security over the network, you may refer to Section 11.1.5, "Security over the network" on page 383.

11.3.6 Name resolution

In addition to the RFCs 1001/1002, other mechanisms can be used in Windows NT to resolve host names to IP addresses.

⁴⁷⁴ AIX V4.3 and Windows 2000, Side by Side

11.3.6.1 TCP/IP Hosts File

TCP/IP uses a flat file called HOSTS to map TCP/IP host names to IP addresses and vice versa. This file is %SystemRoot%\system32\drivers\etc\hosts.

Although this works well on small networks, it is not suitable in large networks. In a large network, using a name server facilitates IP address administration.

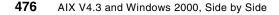
11.3.6.2 LMHOSTS

This file is similar in concept to the /etc/hosts file. However, its purpose is to explicitly map NetBIOS names with IP addresses. Usually, this file contains a list of computers that cannot directly be reached via NetBIOS (usually remote computers located on a different network).

This file can be found at %SystemRoot%\system32\drivers\etc\Imhosts.

The format of the LMHOSTS file is very similar to the format of the HOSTS file. This file is strictly reserved for mapping NetBIOS names to IP addresses. It cannot be used instead of the HOSTS file, which is a TCP/IP host database.

As with the HOSTS file, each computer must maintain its own LMHOSTS file. In a large network, administrating LMHOSTS files can be tedious work. In order to limit the number of files maintained over the network, it is possible to share LMOSTS files at, for example, a department level.


Another solution to the LMHOSTS files administration issue is using a name service called Windows Internet Name Service (WINS), which is provided by Windows NT Server.

11.3.6.3 Windows Internet Name Service (WINS)

WINS provides a distributed database for registering and querying dynamic computer name-to-IP address mapping in a routed network environment. This support for dynamic registering of NetBIOS computer names means that WINS can be used with Dynamic Host Configuration Protocol (DHCP) services to provide easy configuration and administration of Windows-based TCP/IP networks. The WINS server solves the problems inherent in resolving NetBIOS names through IP broadcasts and frees network administrators from the demands of updating static mapping files, such as LMHOST files.

Widows 2000 server is shipped with an enhanced version of WINS. The new implementation of WINS provides a number of features including:

- **Persistent connections** This configurable feature allows each WINS server to maintain a persistent connection with one or more replication partners to eliminate the overhead of opening and terminating connections and to increase the speed of replication.
- Manual tombstoning Use of the Manual tombstoning feature marks a record for deletion so that the tombstone state for the record is replicated across all WINS servers, thus, preventing an undeleted copy of the record on a different server database from being repropagated. In earlier versions of WINS, the removal of unwanted records could be difficult. Records were marked for removal on only one server, and that information is replicated to other WINS replication partners. Depending upon replication configuration, record removal might not occur correctly
- Improved management tools The WINS Manager is fully integrated with the Microsoft Management Console (MMC) providing a more user-friendly and powerful environment for viewing and managing WINS information.
- Enhanced filtering and record searching These functions help locate records of interest by showing only those that fit a specific criteria. This is particularly useful for analyzing very large WINS databases.
- Dynamic record deletion and multi-select Managing the WINS database is made easier with dynamic record deletion and multi-select. Dynamic and static records can be deleted, and the point-and-click interface makes it possible to delete files with non-alphanumeric characters that could not be handled from the command line.
- Record verification and version number validation Two tools for quickly checking the consistency between various WINS servers are available. The tests are done by comparing the IP addresses of a NetBIOS name query returned from different WINS servers or by examining owner address to version-number mapping tables.
- Export function The Export command can be used to place WINS data into a comma-delimited text file that can be imported into Microsoft Excel, reporting tools, scripting applications, and so on for analysis and reporting.
- Increased fault tolerance Windows 2000 and Windows 98 allow a client to specify more than two WINS servers (up to a maximum of 12 addresses) per interface. The extra WINS server addresses are used only if the primary and secondary WINS servers fail to respond.
- **Dynamic re-registration** WINS clients can now reregister their NetBIOS name-to- IP address mapping without rebooting the server.

- Note

Windows 2000 clients (and Windows 95 clients with the Active Directory upgrade installed) no longer need to use the NETBIOS name space. WINS is still required for downlevel clients to find servers and vice versa. When there are no more downlevel clients in the enterprise, the WINS servers can be turned off

11.3.6.4 Domain Name System (DNS)

Name resolution via Domain Name System (DNS) is a service provided by Windows 2000. DNS servers provide the ability to centrally manage the host-name resolution to an ip-address. This is very useful for system administrators who, in this way, do not have to maintain configuration host files on each client workstation manually.

11.3.6.5 Dynamic Domain Name System (DDNS)

Windows 2000 introduces support to DDNS, which means that, now, DNS server may be automatically updated by DHCP servers when assigning ip-addresses to clients. This feature, along with DHCP support, makes ip network administration very easy.

11.3.7 Mail

This section provides an overview of mail support in Windows NT.

11.3.7.1 Microsoft Windows Messaging

Windows NT includes the Microsoft Windows Messaging System, which enables you to send and receive e-mail through Microsoft's e-mail client, which is also included with Windows NT. Messaging supports various service providers that enable it to communicate with a variety of message servers. Included with Windows NT are service providers for Internet Mail and Microsoft Mail.

Microsoft Mail has been replaced by a product called Microsoft Exchange. Microsoft Exchange is the product that competes with Lotus Notes. The Microsoft Messaging Client is a light-weight version of the Microsoft Exchange client.

11.3.7.2 Microsoft Exchange Client

Microsoft Exchange Client can use existing network transport protocols to communicate with Microsoft Exchange Server. Designed to integrate fully and transparently with existing networks, Microsoft Exchange Server requires no

changes to the client software, routers, or other applications. It fully supports IPX/SPX, NetBIOS, TCP/IP, or AppleTalk for Apple Macintosh networks.

11.3.7.3 Microsoft Exchange Server

Microsoft Exchange Server features client/server architecture with scalable, intelligent server processes running on one or more Windows NT Server-based computers. It provides a powerful communications infrastructure and a set of tightly-integrated components that enable users to easily locate, share, and communicate information within and between teams and even between organizations.

11.3.7.4 Lotus Notes on Windows NT

An alternate solution is Lotus Notes for Mail and Messaging on Windows NT. Notes is a client/server environment that allows users (or clients) to communicate securely over a Local Area Network or telecommunications link with a document residing on a shared computer (or server). Notes combines an application development environment, a document database, and a sophisticated messaging system, giving you the power to create custom applications for improving the quality of everyday business processes in areas, such as product development, customer service, sales, and account management.

At present, Lotus Notes 5.0.1 is available for the Windows platform

11.3.8 X11 protocol support

There is no native support for X-Windows in Windows NT. There are a number of third party products available.

11.3.9 Network Time Protocol (NTP)

Windows NT does not provide support for NTP.

11.3.10 License management

Windows NT offers a License Wizard. This tool is useful for administrators to keep track of the software licenses they use for servers and clients.

11.3.11 Internet/intranet software

This section provides an overview of Internet/intranet software available in Windows 2000.

11.3.11.1 Microsoft Internet Explorer

Microsoft Internet Explorer is a Web browser. Internet Explorer is part of Windows 2000 and can also be downloaded from the Internet. It provides the following features:

• ActiveX Controls - ActiveX Controls is made of software components that run in Web pages and provide interactive and user-controllable functions. This enables users to view and interact with animation, audio, and video without opening separate programs. Also, ActiveX Controls can be used in applications and written in many popular programming languages including Java, Visual Basic, and Visual C++. Anyway, keep in mind that you must take care when enabling ActiveX on your browser because it might have some Internet security weakness.

ActiveX Control Pad is a utility that makes it easier to create Web pages that incorporate ActiveX Controls and ActiveX Scripting.

- ActiveX Scripting ActiveX Scripting supports any popular scripting language including VBScript and JScript. Scripts can be used to integrate the behavior of several ActiveX Controls and/or Java applets from the browser or server, thus, extending their functionality.
- ActiveX Documents ActiveX Documents enable you to open a program, complete with its own toolbars and menus, in Internet Explorer. This means you can open non-HTML documents, such as Microsoft Excel or Microsoft Word files, through a Web browser.
- Dynamic Data Exchange (DDE) Support
- HTML and Stylesheet Support
- Internet Mail and News Internet Mail and News lets you send and receive mail quickly on the Internet and subscribe to your favorite newsgroups with its newsreader. Its complete integration with Internet Explorer lets you check your favorite newsgroups or send mail while you are running Internet Explorer. It provides full support for Internet standards including SMTP/POP3 and MIME Spell-checking of mail, and it provides full support for Internet NNTP standards.
- Java Support Java Virtual Machine enables any ActiveX-supported browser, such as Internet Explorer, to run Java applets and integrate Java applets with ActiveX Controls.
- **Multimedia** Internet Explorer comes fully loaded with support for all standard video and audio formats including Audio-Video Interleaved (AVI), QuickTime, MPEG video, WAV, AU, AIFF, and MPEG audio using the Microsoft ActiveMovie technology. You no longer need to download other helper applications to enjoy multimedia on the Internet.

ActiveMovie provides a universal playback mechanism for video or audio streams through an architecture that exposes all elements of the media stream.

• **NetMeeting** - NetMeeting adheres to major international standards from both the International Telecommunications Union (ITU) and the Internet Engineering Task Force to guarantee broad interoperability between applications and across platforms. For example, you can share a whiteboard between different applications on different platforms thanks to support for standard protocols, such as the ITU's T.120.

Additional standards supported by Internet Explorer include G.723, H.323, POP3, HTML, and MIME; so, unlike proprietary competitive solutions, NetMeeting can interoperate with solutions from Intel, Ptel, Vtel, Confertech, MCI, ATT, Apple, and other vendor solutions.

NetMeeting also supports *multipoint* connections, which allow more than two people to join in conversations. Voice conferencing is currently limited to connections between two points, but data conferencing can ocurr between up to five points, and even more simultaneous users can conference through network-based conferencing services. It includes a tool for connecting to and scheduling the use of network-based conferencing services.

- **Microsoft Chat** Microsoft Chat is one of the most popular IRC tools available today. With Microsoft Chat, you may see all the available rooms, choose to join even more than one at the same time, and easily chat with the whole room or talk privately with only one partner.
- Netscape Plug-in Support
- Personalization
- Security

Internet Explorer supports Secure Sockets Layer 2.0/3.0 (SSL) and Private Communication Technology 1.0 (PCT). Support for SSL 2.0/3.0 and PCT 1.0 Client authentication lets you present your personal certificates to Web servers that request it. Personal certificates also make it easier to connect to Web services. Server authentication, "Cookie" Privacy, SOCKS Firewall Support and CryptoAPI, the foundation of the Microsoft Internet Security Framework, provide the underlying security services for secure channels and code signing.

11.3.11.2 Microsoft FrontPage

Microsoft FrontPage is an integrated visual authoring environment for WorldWide Web sites on the Internet or for intranets within organizations. Using FrontPage, any experienced user of typical Windows applications can create, deploy, maintain, and administer a Web site. Microsoft FrontPage makes creating professional-quality Web sites effortless with powerful new functionality, support for the latest Web technologies, and seamless integration with Microsoft Office.

11.3.11.3 Microsoft Internet Information Server (IIS)

Microsoft Windows 2000 Server includes an updated version of Internet Information Services (IIS), called IIS 5.0. Internet Information Services runs as an enterprise service within Windows 2000. It uses other services provided by Windows 2000, such as security and the Active Directory directory service. Microsoft claims this release of ISS improves reliability, performance, management, security, and application services.

11.3.12 Telephony API (TAPI)

TAPI 3.0 is an evolutionary API providing convergence of both traditional PSTN telephony and IP telephony. IP telephony is an emerging set of technologies that enable voice, data, and video collaboration over existing LANs, WANs, and the Internet. TAPI 3.0 enables IP telephony on Microsoft Windows operating systems by providing simple and generic methods for making connections between two or more computers and accessing any media streams involved in the connection.

TAPI 3.0 supports standards-based H.323 conferencing and IP multicast conferencing. It uses the Windows 2000 operating system's Active Directory service to simplify deployment within an organization and includes quality-of-service (QoS) support to improve conference quality and network manageability.

In the past, organizations have deployed separate networks to handle traditional voice, data, and video traffic. Each had different transport requirements, and these networks were expensive to install, maintain, and reconfigure. Furthermore, since these networks were physically distinct, integration was difficult, if not impossible, thus, limiting their potential usefulness.

IP telephony blends voice, video, and data by specifying a common transport, IP, for each, effectively collapsing three networks into one. The result is increased manageability, lower support costs, a new breed of collaboration tools, and increased productivity.

Possible applications for IP telephony include telecommuting, real-time document collaboration, distance learning, employee training, video conferencing, video mail, and video on demand.

TAPI requires some QoS mechanisms in order to guarantee appropriate end-to-end communication in real time. These mechanisms include:

- The Resource Reservation Protocol (RSVP)
- Local Traffic Control:
- Packet Scheduling
- 802.1p
- Appropriate Layer 2 signaling mechanisms
- IP Type of Service and DTR header settings

11.3.13 Network API

Windows NT provides a set of services and APIs that allow one to use or develop client/server applications. In Windows NT, these utilities are referred to as Interprocess Communication (IPC) mechanisms. These mechanisms act at the presentation or application level in the layered network model. As shown in Figure 171 on page 483, the main IPCs provided by Windows NT are:

- NetBIOS interface
- · Windows sockets
- Named Pipes (NPFS)
- Mailslots (MSFS)
- Remote Procedure Calls (RPCs)
- Network Dynamic Data Exchange (NetDDE)

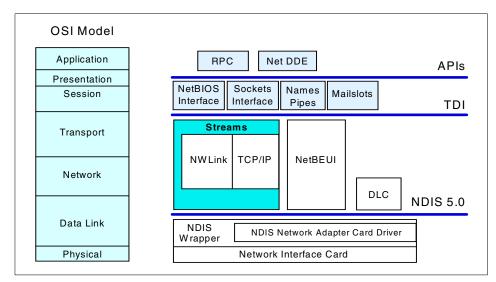


Figure 171. Windows Network Programming Interface

The following sections briefly describe these mechanisms.

11.3.13.1 NetBIOS

The NetBIOS interface provides the NetBIOS mapping layer between NetBIOS applications and the TDI protocol. A NetBIOS client/server application can communicate over NetBEUI, NWLink, and NetBIOS over TCP/IP. Because NetBIOS has been used as a network API since the early 1980s, this interface is available in Windows 2000 for compatibility reasons.

11.3.13.2 Windows Sockets

Sockets are a standard networking mechanism originally developed at the University of California, Berkeley. The Windows Sockets is an extension of the sockets for the Windows environment. Windows NT implements a 32-bit version of Windows Sockets. The Windows Sockets interface in Windows 2000 supports both NWLink and TCP/IP transport protocols. Windows NT accepts standard Windows Sockets calls from applications and translates them into equivalent TDI calls.

11.3.13.3 Named Pipes

Named Pipes provides messaging services allowing applications to share memory over the network. These services are connection-oriented, which means that the sender and receiver require acknowledgment of successful and unsuccessful receipts.

Named Pipes are used when reliability is required over the network. They are implemented as a file system in Windows NT.

11.3.13.4 Mailslots

Mailslots provide connectionless messaging services on a Local Area Network (no acknowledgment of successful or unsuccessful receipts is required). Windows 2000 uses mailslots for the registration of computers, workgroups, or domains, user names on the network, for the Browser service, and for sending broadcast messages to computers or users. Note that mailslots do not work in Win32s.

As with the Named Pipes, mailslots are implemented in Windows 2000 as file systems. As with all the file systems, remote access to named pipes and mailslots is done through the redirector.

11.3.13.5 NetDDE

Network Dynamic Data Exchange (NetDDE) is a network extension of Dynamic Data Exchange (DDE). DDE allows one application to communicate with another application and exchange and share data. NetDDE allows communication between applications across the network. NetDDE uses the NetBIOS API to communicate with the underlying network components.

11.3.14 DCE for Windows NT

Microsoft does not provide native OSF DCE support with Windows NT. Several third-party products are available for this very important area. We must remember that IBM offers IBM DCE for Windows NT to provide DCE support to NT.

11.3.15 RAS

Remote Access Service (RAS) is a Windows NT service that allows Windows 2000, Windows NT, Windows, Windows for Workgroups, and DOS workstations to access Windows RAS servers across standard telephone lines, X.25 packet switched networks or ISDN lines. Once connected to the RAS server, the user can access resources of the network to which the RAS server is connected as if the user was working at the office. The RAS server acts as a gateway between the RAS client and the network.

RAS supports the following methods for establishing a connection between the RAS client and the RAS server:

- Standard phone lines
- X.25

ISDN

Microsoft Remote Access Service is designed to work with per-user information stored in the domain controller or on a RADIUS server. Using a domain controller simplifies system administration because dial-up permissions are a subset of the per-user information that the administrator is already managing in a single database.

Microsoft RAS was originally designed as an access server for dial-up users. RAS is also a tunnel server for PPTP and L2TP connections. Consequently, these Layer 2 VPN solutions inherit all of the management infrastructure already in place for dial-up networking.

In Windows 2000, RAS takes advantage of the new Active Directory, an enterprise-wide, replicated database based on the Lightweight Directory Access Protocol (LDAP). LDAP is an industry-standard protocol for accessing directory services and was developed as a simpler alternative to the X.500 DAP protocol. LDAP is extensible, vendor-independent, and standards-based. This integration with the Active Directory allows an administrator to assign a variety of connection properties for dial-up or VPN sessions to individual users or groups. These properties can define per-user filters, required authentication or encryption methods, time-of-day limitations, and so on.

11.3.16 Interoperability with other platforms

The following sections discuss interoperability with various other platforms.

11.3.16.1 Interoperability with Netware

Included with both Windows 2000 Server and Windows 2000 Professional, NWLink supports connectivity between computers running Windows 2000 and those running NetWare and compatible systems. IPX support preserves investments in legacy NetWare networks by making it easy to integrate them with Windows 2000 Server.

Included with Windows 2000 Server, GSNW enables a computer running Windows 2000 Server to connect to computers running NetWare 3.x or 4.x server software. Logon script support is also included. In addition, administrators can use GSNW to create gateways to NetWare resources, allowing computers running only Microsoft client software to gain access to NetWare resources.

A separate product, FPNW enables a computer running Windows 2000 Server to provide file and print services directly to NetWare and compatible client computers. The server appears just like any other NetWare server to the NetWare clients, and the clients can gain access to volumes, files, and printers at the server. No changes or additions to the NetWare client software are necessary.

11.3.16.2 Interoperability in a UNIX environment

Microsoft offers an optional software called Services for UNIX Add-On Pack that delivers both NFS Server and NFS Client software. The NFS client allows clients to gain access to files and printers that exist on UNIX servers, and the NFS server allows UNIX workstations and servers to gain access to files and printers on systems running Windows 2000.

In addition, there also exist lots of third party solutions for interoperability with a UNIX environment.

Running the SMB protocol on UNIX servers and workstations, UNIX systems can gain access to files managed by Windows 2000 Server. However, using Windows-based clients to gain access to files held on UNIX servers is more common. Windows-oriented networking on UNIX ranges from a freeware port known as "Samba," AIX Fast Connect on RS/6000, to the Microsoft-licensed Advanced Server for UNIX and independent software products, such as Syntax Corporation's TotaINET Advanced Server and SCO's VisionFS product.

11.3.16.3 Interoperability with Machintosh

Services for Macintosh lets Intel-based and Apple Macintosh clients share files and printers and remotely connect to a Microsoft network.

File Server for Macintosh (MacFile) lets administrators designate a directory as a Macintosh-accessible volume and ensures Macintosh filenames are legal NTFS names and handles permissions.

Print Server for Macintosh (MacPrint) lets all network users send print jobs to a spooler on the Windows 2000 Server and continue working, they do not have to wait for their print jobs to complete.

11.3.17 Windows 2000 networking model

Windows 2000 supports two networking models: The Workgroup model and the Domain model. The Windows 2000 domain model has been completely redesigned since its previous version (the one available with Windows NT). In this chapter, we are going to deal with Windows 2000 networking models providing an introduction to its architecture and functionalities.

486 AIX V4.3 and Windows 2000, Side by Side

11.3.17.1 Workgroup model

A workgroup is simply a collection of computers that are grouped together. These computers can share files or printers in a peer-to-peer relationship. Each computer can share its own resources, but no computer is the sole resource sharer. Each computer maintains its own user account and security database. There is no centralized user account administration for these systems. A stand-alone system is just a special case of a workgroup consisting of one computer. Similar to UNIX, this model is a collection of stand-alone systems without NIS or DCE and with NFS to get access to shared file systems via the automount facility.

11.3.17.2 Domain model

A domain is a collection of computers that share a common user account database and common security policy. This greatly facilitates the administration of all the systems. In a domain, the system administrator needs to create one account per user for the whole domain. Whatever the physical computer the user wants to work on, he or she will be able to log into the computer if this computer is part of the domain.

When a user logs on to a domain, he or she gains access to all resources (directories, files, printers, plotters) that are shared within the domain. These resources can be located on any server in the domain. To the user, it appears as though they are connected to a single server.

Similar to UNIX, this model is similar to a DCE cell and to the DFS filespace concept.

In a Windows NT 3.51 or 4.0 domain environment, you find different types of servers:

- Primary Domain Controller (PDC) The computer in the domain that maintains the security database is called the primary domain controller (PDC). Each domain can have only one primary controller. The primary domain controller can propagate crucial user and security information to one or several backup domain controllers (BDC). This propagation service is known as the replicator service. This protects against a single point of failure for the network. The domain controller maintains a master copy of the Security Account Manager (SAM) database. All account modifications are made to this master copy. The domain controller processes user logon requests and may also share its own resources.
- Backup Domain Controller (BDC) Every Windows NT Server in the domain can potentially serve as a backup controller. A server that is defined as a backup domain controller can be promoted as a primary domain controller. Having backup domain controllers improves availability

and performance when a large number of users tries to log on to the domain at the same time. The BDC can help the PDC in handling user logon requests because it provides read-only access to the SAM database. The BDC can also share its own resources.

• Stand-alone Servers (or Server Members) - A Windows NT Server system can also act as a regular server serving resources for other computers in the network without being a PDC or a BDC.

11.3.18 Active Directory

A directory is an information source used to store information about objects. In a distributed computing system or a public computer network, such as the Internet, there are many objects, such as printers, fax servers, applications, databases, and other users. Users want to find and use these objects. Administrators want to manage how these objects are used.

The Active Directory is the directory service included with Windows 2000 Server. It extends the features of previous Windows-based directory services and adds entirely new features. The Active Directory is secure, distributed, partitioned, and replicated. It is designed to work well in any size installation, from a single server with a few hundred objects to thousands of servers and millions of objects.

The Active Directory is not an X.500 directory. Instead, it uses LDAP as the access protocol and supports the X.500 information model without requiring systems to host the entire X.500 overhead.

11.3.18.1 Terms and definitions

Here, we are going to introduce the main terms and definitions that are typical of an Active Directory.

name space

As is any directory service, the Active Directory is, primarily, a name space. A telephone directory is a name space. A name space is any bounded area in which a given name can be resolved. Name resolution is the process of translating a name into some object or information that the name represents. The UNIX file system forms a name space in which the name of a file can be resolved to the file itself.

The Active Directory forms a name space in which the name of an object in the directory can be resolved to the object itself.

Object

An object is a distinct named set of attributes that represents something concrete, such as a user, printer, or application. The attributes hold data describing the subject that is identified by the directory object. Attributes of a user might include the user's given name, surname, and e-mail address.

Domains

A domain is a single security boundary of a Windows NT or Windows 2000 computer network. The Active Directory is made up of one or more domains. On a stand-alone workstation, the domain is the computer itself. A domain can span more than one physical location. Every domain has its own security policies and security relationships with other domains.

Domain Trees

A domain tree (a tree) is comprised of several domains that share a common schema and configuration forming a contiguous name space. Domains in a tree are also linked by trust relationships. The Active Directory is a set of one or more trees. A Windows 2000 domain tree is a hierarchy of Windows 2000 domains, each consisting of a partition of the Active Directory. The shape of the tree and the relationship of the tree members to each other are determined by the DNS names of the domains. The domains in a tree must form a contiguous name space so that a.myco.com is a child of myco.com, b.myco.com is a child of a.myco.com, and so forth.

The Windows 2000 domain tree is the enterprise-wide Active Directory. All Windows 2000 domains in a given enterprise should belong to the enterprise domain tree. Enterprises that need to support disjointed DNS names for their domains will need to form a forest.

Figure 172 on page 490 shows an example of a domain tree. Looking at this example, you may note how the domain tree is strictly related to DNS name space.

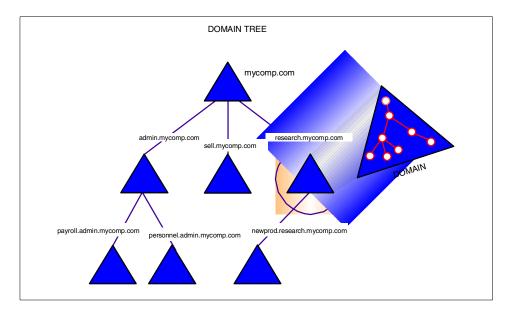


Figure 172. A domain tree

Forests

A forest is a set of one or more trees that do not form a contiguous name space. All trees in a forest share a common schema, configuration, and Global Catalog. All trees in a given forest trust each other via transitive hierarchical Kerberos trust relationships.

Figure 173 on page 491 shows an example of a forest domain. Note how the forest is composed of disjoined trees and how the DNS name space in the example is disjoined as well.

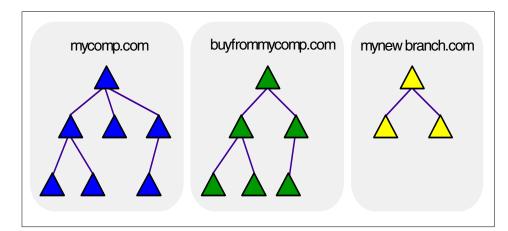


Figure 173. Domain forest

11.3.18.2 Active Directory features

This section describes some of the major features and components of the Active Directory.

DNS Integration

The Active Directory is tightly integrated with the Domain Name System (DNS). DNS is the distributed name space used on the Internet to resolve computer and service names to TCP/IP addresses. Most enterprises with intranets use DNS as the name resolution service. The Active Directory uses DNS as the location service.

Windows 2000 domain names are DNS domain names. For example, "mycompany.com" is a valid DNS domain name and could also be the name of a Windows 2000 domain.

Active Directory servers are published via Service Resource Records (SRV RRs) in DNS. The SRV RR is a DNS record used to map the name of a service to the address of a server offering that service. The name of a SRV RR is in this form:

<service>.<protocol>.<domain>

Active Directory servers offer the LDAP service over the TCP protocol so that published names are in the form:

ldap.tcp.<domain>

Supported standard protocols

The Active Directory supports the following standard protocols:

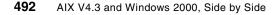
Chapter 11. Networking **491**

- **LDAP** The Active Directory core protocol is the Lightweight Directory Access Protocol (LDAP). LDAP Version 2 and Version 3 are supported.
- **MAPI-RPC** The Active Directory supports the remote procedure call (RPC) interfaces supporting the MAPI interfaces.
- **X.500** The Active Directory information model is derived from the X.500 information model.

Application Programming Interfaces (APIs)

The Active Directory supports the following APIs:

- ADSI Active Directory Service Interfaces (ADSI) provide a simple, powerful, object-oriented interface to the Active Directory. Developers can use many different programming languages, including Java, the Visual Basic programming system, C, C++, and others. ADSI is fully scriptable for ease of use by system administrators. ADSI hides the details of LDAP communications from users.
- LDAP API The LDAP C API, defined in RFC 1823, is a lower-level interface available to C programmers.
- **MAPI** The Active Directory supports MAPI for backward compatibility. New applications should use ADSI or the LDAP C API.


11.3.18.3 Security

This is only an overview of security in the Active Directory. For more information about the Windows 2000 security model, refer to Section 8.3, "Windows 2000 security" on page 184. The main aspects related to security in Windows 2000 are:

• **Object Protection** - All objects in the Active Directory are protected by Access Control Lists (ACLs). ACLs determine who can see the object and what actions each user can perform on the object. The existence of an object is never revealed to a user who is not allowed to see it.

An ACL is a list of Access Control Entries (ACEs) stored with the object it protects. In Windows 2000, an ACL is stored as a binary value called a Security Descriptor. Each ACE contains a Security Identifier (SID), which identifies the principal (user or group) to whom the ACE applies and information on what type of access the ACE grants or denies.

• **Delegation** - Delegation is one of the most important security features of the Active Directory. Delegation allows a higher administrative authority to grant specific administrative rights for containers and subtrees to individuals and groups. This eliminates the need for *domain administrators* with sweeping authority over large segments of the user population.

ACEs can grant specific administrative rights on the objects in a container to a user or group. Rights are granted for specific operations on specific object classes via ACEs in the container's ACL.

- **Inheritance** Inheritance lets a given ACE propagate from the container where it was applied to all children of the container. Inheritance can be combined with delegation to grant administrative rights to a whole subtree of the directory in a single operation.
- **Private Key Security** Along with the Active Directory, the next release of Windows 2000 Server will implement a distributed security model. This distributed security model is based on the MIT Kerberos authentication protocol. Kerberos authentication is used for distributed security within a tree and accommodates both public and private key security using the same Access Control List (ACL) support model of the underlying Windows 2000 operating system. The Active Directory replaces the registry account database and is a trusted component within the Local Security Authority (LSA).

A single sign-on to the Windows 2000 domain tree allows user access to resources anywhere in the corporate network.

• **Public Key Security** - The Active Directory also supports the use of X.509 v3 Public Key Certificates for granting access to resources for subjects (for example, users) that do not have Kerberos credentials. This type of user is most often someone from outside an organization who needs access to resources within the organization.

11.3.18.4 Domain Controllers

Domain Controllers keep a copy of the directory. In Windows NT 3.51 and 4.0, there are two kinds of Domain Controllers: Primary Domain Controllers (PDCs) and Backup Domain Controllers (BDCs). Primary Domain Controllers hold a read/write copy while Backup Domain Controllers hold a read-only copy.

In Windows 2000, all Domain Controllers for a given domain hold a writeable copy of the directory. There is no distinction between primary and backup; all domain controllers are equal. For this reason, administration is further simplified because there is no notion of a primary domain controller (PDC) or backup domain controller (BDC) as in previous NT versions. The Active Directory only uses domain controllers (DCs), and all DCs are peers. An administrator can make changes to any DC, and the updates will be replicated on all other DCs.

The Active Directory provides multi-master replication. Multi-master replication means that all replicas of a given partition are writeable. This

Chapter 11. Networking 493

allows updates to be applied to any replica of a given partition. The Active Directory replication system propagates the changes from a given replica to all other replicas. Replication is automatic and transparent.

The multi-master synchronization mechanism relies on Update Sequence Numbers to maintain up-to-dated all the replicas. Some directory services use timestamps to detect and propagate changes. In these systems, it is very important to keep the clocks on all synchronized directory servers. Time synchronization in a network is very difficult. Even with very good network time synchronization, it is possible for the time at a given directory server to be incorrectly set. This can lead to lost updates.

Windows 2000 provides distributed time synchronization, but the Active Directory replication system does not depend on time for update propagation. Instead, the Active Directory replication system uses Update Sequence Numbers (USNs). A USN is a 64-bit number maintained by each Active Directory server. When the server writes any property to the Active Directory, the USN is advanced and stored with the property written. This operation is performed atomically.

11.3.18.5 Global catalog

The Active Directory can consist of many partitions or naming contexts. The distinguished name (DN) of an object includes enough information to locate a replica of the partition that holds the object. Many times, however, the user or application does not know the DN of the target object or which partition might contain the object. The Global Catalog (GC) enables users and applications to find objects in an Active Directory domain tree if the user or application knows one or more attributes of the target object.

The Global Catalog contains a partial replica of every user-naming context in the directory. It contains the schema and configuration naming contexts as well.

11.3.18.6 Scalability

The Active Directory scales by creating one copy of the directory store for each domain. This copy of the directory store holds the objects that apply to that domain only. If multiple domains are related, they can be built into a tree. Within this tree, each domain has its own copy of the directory store, with its own objects and the ability to find all the other copies in the directory store tree.

Rather than creating a single copy of the directory that gets larger and larger, the Active Directory creates a tree made up of small pieces of the directory, each containing information that allows it to find all the other pieces. The

Active Directory breaks the directory into pieces so that the most-often-used part of the directory is closest to them. Other users in other locations may want to use that same part of the directory, and they would also have a copy close to them. All replicas of that part of the directory are kept synchronized. If a record in any copy is modified, the change is propagated to the other copy. This allows the Active Directory to scale up to many millions of users in a tree.

Using domain trees and forests

The key to the scalability of Active Directory is the domain tree. Unlike directory services that consist of a single tree structure and require a complex top-down partitioning process, the Active Directory provides a simple and intuitive bottom-up method for building a large tree. In the Active Directory, a single domain is a complete partition of the directory.

A single domain can start very small and grow to contain over 10 million objects. When a more complex organizational structure is required or a very large number of objects must be stored, multiple Windows NT domains can be easily joined together to form a tree. Multiple trees can form a forest. Forests allow an enterprise to include Windows NT Domains with disjoint DNS names, for example, MyCo.com and MyCoResearch.com

11.3.18.7 Backward compatibility

A critical need for customers who have installed Windows NT Server versions 3.51 or 4.0 is backward compatibility. From the start, the Active Directory was designed with backward compatibility built-in. The Active Directory provides complete emulation of the Windows NT 3.51 and 4.0 directory services.

Chapter 11. Networking 495

Chapter 12. Scalability and high availability

The importance of both hardware and software scalability has increased dramatically over the past decade or so as businesses have placed more dependence on their computing systems. The same can be said of the need for high availability of hardware and software. While hardware improvements have been moving ahead at a fast pace, software, in particular, operating systems, have needed to be able to deal with increased processor speed and memory while ensuring that performance is always at an optimum.

With companies relying so heavily on their systems and expanding, the ability of the systems to grow with the business and remain at an acceptable performance level has never been more important.

12.1 Scalability

This section looks at the increasing need for operating systems to be able to perform with an increased number of processors and memory while utilizing these resources in the best possible way.

12.1.1 AIX scalability

This section gives an overview of AIX scalability.

12.1.1.1 SMP support

AIX Version 4.3 can run on anything from a standalone graphics workstation used for CAD/CAM applications to a 512-node SP (scalable parallel) system used to gather geophysical details or defeat a world chess champion.

On SMP systems, AIX has been extremely well tuned and optimized to exploit the RS/6000 SMP architecture, and, with the latest release, AIX Version 4.3.3, the introduction of the Workload Manager means there is now a tool for managing the system workload and resources. We will cover Workload Manager in more detail in Section 12.1.1.2, "AIX Workload Manager (WLM)" on page 500.

AIX 4.3.3 boasts superior kernel scalability enhancements. These enhancements nearly triple online transaction processing throughput while only requiring a doubling of the number of CPUs (12 to 24), memory (32 GB to 64 GB), and increasing processor speed. This increased throughput is especially meaningful in Enterprise Resource Planning (ERP) and OnLine Transaction Processing (OLTP) applications. Individual results may vary due to different applications and workload combinations.

© Copyright IBM Corp. 2000

Memory management has been improved in AIX 4.3.3 to allow higher concurrence with multiple frame lists and multiple page replacement daemons. This reduces contention in the serialization mechanisms and allows processes with lower latencies to service the memory requests.

AIX 4.3.3 organizes the runnable threads into per-cpu local run queues. This simplifies the process of determining which thread to run next and eliminates the costly logic that was necessary to promote good cache affinity when scheduling from a single global run queue. It also virtually eliminates locking contention in this performance-critical subsystem.

With local run queues, the dispatchers' affinity algorithms have been strengthened resulting in greatly improved throughput on busy SMP systems. User mode threads generate less cache interference as a result of their increased affinity. These reductions in system overhead translate directly into increased application throughput.

Figure 174 on page 499 shows the ROLTP (relative online transaction processing) comparisons between the RS/6000 PCI enterprise server range. ROLTP is an estimate of commercial processing performance derived from an IBM analytical model that simulates some of the system's operations, such as CPU, cache, and memory. Figure 174 on page 499 shows the improvement in performance, by machine, as the number of processors increases. In particular, the last four columns on the far right of the graph show the model S80 differing in ROLTP with 6, 12, 18, and 24 processors.

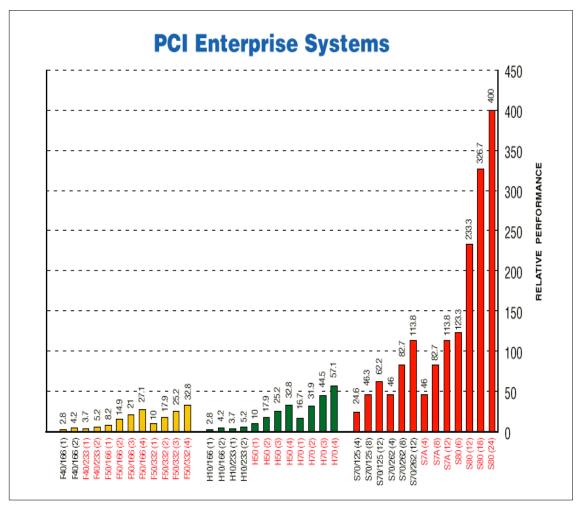


Figure 174. Relative performance of the RS/6000 PCI Enterprise Systems

Similarly, Figure 175 on page 500 shows the comparison of ROLTP for SP nodes. Once again, the last four columns to the right show the performance increase in the new model T70 that occurs just by increasing the number of processors.

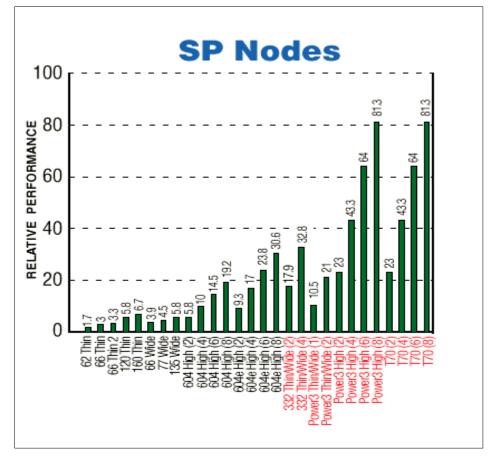


Figure 175. Relative Performance of the RS/6000 SP nodes

12.1.1.2 AIX Workload Manager (WLM)

The AIX Workload Management system introduced with AIX 4.3.3 provides a policy-based method for managing system workload and system resources. AIX Workload Management includes the following capabilities:

- It defines system resource allocations that can be applied towards specific jobs or job classes. The operating system allocates CPU and memory resources to jobs or job classes in accordance with defined resource allocation policies.
- It helps ensure that critical applications are not impacted by less important jobs in the system during peak demand.
- It allows logical job separation on the server.

500 AIX V4.3 and Windows 2000, Side by Side

- It permits applications to remain in memory for more predictable performance.
- It helps provide greater convenience and control by using both resource targets and resource limits.
- It allows policies to be set by the system administrator once with no further interaction required. The system will automatically apply the specified policies and adjust for changing conditions.
- It permits the creation and management of 29 classes of jobs, each with different resource policies and system administrator-specified names.
- It allows the creation of automatic classification rules to assign processes to classes.
- It permits usage of nine tiers of jobs where each tier's resource needs are satisfied before resources are provided to jobs in the next tier.
- Provides control options that include minimum and maximum percentage limits, shares, or a combination of both.

These capabilities can be easily managed through Web-based System Manager (WebSM), SMIT, shell scripts, or command line interfaces. WebSM enables management of AIX systems on the Internet from "anywhere" via an intuitive, object-oriented, easy-to-use GUI. WebSM will automatically show the current resource utilization by class whenever the top level of WLM management is shown in WebSM.

12.1.1.3 Parallel systems support

AIX also supports the RS/6000 SP (Scalable POWERparallel). The RS/6000 SP is a massively parallel system that uses RS/6000 systems as nodes. Up to 512 nodes can be installed in a given SP system. Each node is an RS/6000 that can be a uniprocessor system or an SMP system (two to eight-way). All the nodes can be interconnected to other nodes via a high-speed switch (150 MB/s) that allows any node to communicate with any other node. The SP brings scalable parallel performance to the top of the RS/6000 server range. It delivers a major leap forward in cost-effective, high-performance, parallel computing that was once considered too expensive or too complex to pursue.

The SP is a shared-nothing system architecture, meaning that memory is not shared (distributed memory); I/O resources are not physically shared between the processors, and each node runs its own operating system (AIX). This type of architecture allows an extremely high scalability since there is no hardware resource contention due to sharing of memory, I/O, and so on.

The scalable capabilities of the SP system allow customers to scale their applications, both in computation and data, beyond what is possible with conventional uniprocessor systems or SMP systems.

From a system management perspective, the SP can be considered one system. The Parallel System Support Program (PSSP) that comes with the SP systems helps manage the SP as one system and hides the complexity of a high number of individual systems. SP system management is performed from a single place, the control workstation.

The SP is particularly well-suited for database query, decision support, and business management.

The SP initial focus was on high-performance scientific and technical computing in areas, such as computational chemistry, petroleum exploration and production, engineering analysis, research, and "grand challenge" problems (those important to the national interest). Today, SP systems address those areas and are also being used for commercial computing – primarily complex query, decision support, data mining, data warehousing, business-management applications, and online transaction processing. It has also been extensively used for LAN consolidation.

12.1.1.4 Web server scalability

In both the e-business and Web arenas, AIX is very successful. A Web server can be a low-end workgroup server hosting a firewall up to the SP system; so, scalability is also excellent. With the introduction of the model B50, the RS/6000 brand has tailored a solution specifically for the Internet Service and Application Service Providers (ISPs/ASPs). The B50 is a low-cost, high-density, rack-mounted server ideally suited for Web hosting, caching, email, messaging, firewalls, directory services, and e-commerce. The performance-tuned AIX Version 4.3.3 operating system enhances the performance of the B50.

The high-density RS/6000 Model B50 is designed to meet the height and width requirements of industry-standard racks for Internet service provider (ISP) and application service provider (ASP) companies. You can also install the B50 in an IBM 7014-S00 rack if you need additional frame depth.

In an industry-standard, two-meter, 19-inch rack enclosure, you can package up to:

• Twenty servers (the number of servers that may be operated in a rack depends on individual customer environment).

⁵⁰² AIX V4.3 and Windows 2000, Side by Side

- Sixty discrete network connections based on three 10/100 Ethernet connections for each Model B50 and 20 B50's in a rack
- Over 700 GB of online storage based on 36.4 GB for each Model B50 and 20 B50s in a rack

Some of the features of the model B50 are:

- Up to 1 GB of SDRAM memory
- Ethernet and Ultra SCSI controllers integrated on the planar
- Two PCI slots and four bays
- Space-saving size (3.5-in x 24.1-in)

AIX Version 4.3.3 is available as a no-charge feature with the same network computing features associated with the RS/6000 Enterprise and SP server platforms.

12.1.1.5 Remote System Management

A significant consideration in an enterprise environment with numerous systems is administration of systems. With AIX Version 4.3, it is equally easy to administer local and remote systems, even over low-speed modem lines or networks. This is because AIX includes all TCP/IP daemons (telnetd, rlogind) and utilities, such as ATE (Asynchronous Terminal Emulation), BNU, and so on, which allow the administrator to connect to any system and access the command line interface of the remote system as well as the ASCII version of SMIT. It is also possible to monitor the system remotely with the WebSM (Web-based System Management) tool.

Once connected to the remote system, many tasks can be performed, such as software update, fix installation, diagnostics online, reboot of the system, and user/group creation. In fact, all tasks that do not absolutely require physical access to the system can be performed remotely.

This is a standard facility in AIX. It is also possible to use system-management products, such as TME 10, to perform more complex tasks, such as software distribution, user administration, security management, systems monitoring, network management, and so on.

12.1.2 Windows 2000 scalability

This section gives an overview of Windows 2000 scalability.

12.1.2.1 SMP support

The four packages in Windows 2000 are designed to meet different business needs, and, therefore, they support different numbers of processors. Table 21 shows the number of processors and physical memory that each Windows 2000 package supports:

Windows 2000 Package	Max. Processors	Max. Memory
Professional	2	4GB
Server	4	4GB
Advanced	8	8GB
Datacenter	16	64GB

Table 21. Maximum processors and memory in each Windows 2000 package

Microsoft provides higher levels of scalability than Windows NT Version 4.0 did. This is achieved by improvements to memory allocation and locking to remove contention across processors.

12.1.2.2 Web Server scalability

With the increased SMP support within Windows 2000, the scalability of its Web servers has also improved. According to Microsoft, the most important Web technology that is integrated with the Windows 2000 Server package is the Internet Information Services 5.0 (IIS). This is designed to allow users to share information as well as host and manage sites on the Web. It is meant to deliver higher levels of Web server uptime as well as provide advanced crash protection for the Web applications based on the server. It also takes advantage of up to eight-way SMP by scaling to the large workloads on the Internet.

Another feature of Windows 2000 Server and Web server scalability is the ability to host multiple sites on a single IP address.

The only drawback to the scalability of the Windows 2000 range is that they are separate packages. Should a machine need to grow outside of what the current package supports, an upgrade to Windows 2000 will also be necessary in order to support the processing power of the upgraded/new machine. This will become a limitation for rapidly growing businesses unless preplanning is done, growth anticipated, and a larger machine and licence are purchased up front.

12.1.2.3 Remote system management

There have been many updates with Windows 2000 and new remote management tools have been made available. New to the Windows 2000 Server is the ability to:

- Manage remotely through Terminal Services.
- Organize and delegate through the Microsoft Management Console (MMC).
- Manage remotely with the Administration tool.
- Script with Windows Script Host (WSH).
- Perform remote installation services.

Terminal services

Terminal services allow remote administration of the Windows 2000 Server packages. Terminal services are integrated terminal emulation services in Windows 2000 Server and allow client devices to access Windows-based applications running on a centralized server. It requires a 28.8 Kb or faster connection. More detailed information about Terminal Services is available in Section 9.9.2, "Windows 2000 Terminal services" on page 334.

Microsoft Management Console (MMC)

Using the MMC, it is now possible to manage disks on a remote computer as well as the remote computer itself. For disk management, select **Start->Run**, and type mmc. This will bring up a console. From that window, click on **File->Add/Remove Snap-in** and then click on **Add**. Choose the **Disk Management** option, and then select **Another Computer**. Once you have selected the computer whose disks you want managed, click on and save the console. Figure 176 on page 506 is an example of the console that will appear once these steps have been completed.

Action View Eavorit	es │ 🗢 ⇒ │	🔁 💽 🗎 🖆	2 🛛 👪							
Tree Favorites	Volume	Layout	Туре	File System	Status	Capacity	Free Space	% Free	Fault Tolerance	Overt
Console Root	Mirrored Volun	e Mirror	Dynamic	NTFS	Healthy	499 MB	495 MB	99 %	yes	50%
🗄 🔄 Disk Management (Simple Volume	Simple	Dynamic	NTFS	Healthy	49 MB	47 MB	95 %	no	0%
	Striped Volume	Striped	Dynamic	NTFS	Healthy	399 MB	395 MB	98 %	no	0%
	🖃 System Disk (0	:) Partition	Basic	NTES	Healthy (Boot)	16.94 GB	15.41 GB	90 %	no	0%
	Disk 0 Basic	Custom D	i							
	CDisk 0 Basic 16.94 GB Online	System D 16.94 GB N Healthy (Bo	TFS							
	Disk 0 Basic 16.94 GB	16.94 GB N	TFS ot)			50	rored Volu) MB NTFS	15.48 Unallo		
	CPDisk 0 Basic 16.94 GB Online CPDisk 1 Dynamic 16.94 GB Online	16.94 GB N Healthy (Bo Striped Vo 200 MB NTF	TFS ot)	B 50 MB N	T 721 MB	50	MB NTFS	15.48		
	CPDisk 0 Basic 16.94 GB Online CPDisk 1 Dynamic 16.94 GB	16.94 GB N Healthy (Bo Striped Vo 200 MB NTF	TFS ot) S 29 MI Unali- Unali- S 81	B 50 MB N	T 721 MB Unallocated	For He red Volum) MB NTFS	15.48 Unallo		
	Disk 0 Basic 16.94 GB Online Online Online Online Online Online Online Online Online Solution Solution	16.94 GB N Healthy (Bo 200 MB NTF Healthy Striped Vo 200 MB NTF	TFS ot) S 29 MI Unali- Unali- S 81	B 50 MB N oca Healthy	T 721 MB Unallocated Mirro 500 MI	For He red Volum	MB NTFS	15.48 Unallo		

Figure 176. Remote Disk Management console

From here, it is possible to create striped volumes, spanned volumes, simple volumes, RAID-5 volumes, mirrored volumes, and partitions. More detail on disk management can be found in Section 7.2.1.2, "Configuring and managing disks and volumes" on page 130.

The same steps can be followed for the Computer Management console to be created. This allows the complete administration of a remote computer if necessary. Figure 177 on page 507 shows the remote computer management console.

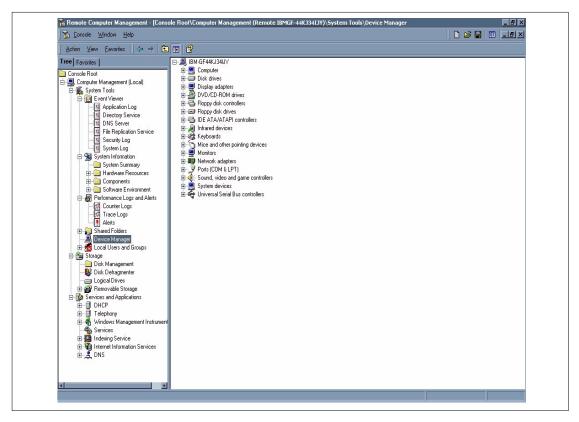


Figure 177. Remote Computer Management console

All tasks can be separated out and delegated to specific users to spread out the administrative workload. As can be seen by the first Disk Management diagram, that console alone can be created, or the entire Computer Management Console can be created as shown in Figure 177. More details about MMC and its use in systems management can be found in Section 9.4.2.3, "Windows 2000 Microsoft Management Console" on page 295.

Administration Tool

The Administration Tool comes with the Windows 2000 Server CD and is a set of snap-ins available in the MMC that are not available on Windows 2000 Professional (unless purchased separately). Using this tool, it is possible to manage a server remotely from any computer running Windows 2000, including a computer running Windows 2000 Professional.

Windows Scripting Host (WSH)

Using WSH allows automation of actions, such as the creation of shortcuts or connecting and disconnecting from a network server. This can be achieved by either clicking on the shortcut icon or by typing the name of the script at the command prompt. There are windows-based and command-based versions, and either can be run from the command line by typing either <code>wscript.exe</code> or <code>cscript.exe</code>. The languages it supports are Visual Basic Scripting Edition (VBScript) or JScript.

Remote installation services

The remote installation services allow Windows 2000 Professional to be remotely installed on any client computer that can be started remotely.

Along with these tools, telnet is now available to connect to a computer for remote access. This can be accessed by either typing telnet on a command line or by selecting **Start->Run** and typing telnet.

12.2 High availability

Increasingly, enterprise systems are relied upon to provide services that are mission-critical to organizations. Applications and databases are outgrowing even the largest single systems and introducing new complexities and costs to data management, and companies are looking for greater flexibility in system configuration and upgrades to deal with rapid workload changes. Until recently, most organizations overcame these challenges by using SMP machines, but, as processing requirements continue to grow, many are finding that they must move towards clusters.

The availability of data and applications is of paramount importance. Planned and unplanned outages need to be minimized or even eliminated. Unplanned outages are caused by hardware failure, software errors, operator errors, and environmental problems. Planned outages are availability interruptions required during hardware or software administration. These outages are further reduced by building in redundancy. Selecting the right method of improving availability is influenced by the business impact of downtime and hours of operation. Two methods that are used to improve availability are Fault Tolerance and High Availability.

"Fault tolerance relies on specialized hardware to detect a hardware fault and instantaneously switch to a redundant hardware component. Since the component is not actually used until that time, this is a very expensive model to use. This model generally doesn't address software failures either, and this can be the most common reason for down-time.

High Availability views availability as a set of system-wide shared resources that cooperate to guarantee essential services. This eliminates a single point of failure. A popular method of high availability is clustering. This is a group of independent processors networked together to share critical resources. By clustering two or more servers to back up critical applications, a business can utilize more of its resources; this is a definite advantage over the fault tolerance model.

With the improvements that have been made to hardware, hardware is not a major reason for computer system unavailability. Instead, application software failure, software maintenance, network failure, and planned upgrades are the major sources of downtime.

High availability is a combination of many components including:

- Hardware
- Network
- Operating System
- · Applications
- Clustering

A good combination of all components enables systems to be highly-available. A failure in any single component can compromise the overall availability of the system.

12.2.1 AIX high availability

IBM provides two high availability solutions that run on AIX and are based on the clustering concept. High Availability Cluster Multiprocessing (HACMP) for AIX Version 4.3 is a control application that, when using the Enhanced Scalability feature, can link up to 32 RS/6000 servers or SP nodes into highlyavailable clusters. Clustering servers or nodes enables parallel access to their data, which can help provide the redundancy and fault resilience required for business-critical applications. Clustering also offers gradual, scalable growth. Upgrading a machine or just adding a processor is a simple task. HACMP includes graphical user interface-based tools to help install, configure, and manage your clusters in a highly-productive manner.

The other product is designed to work over a wide geographic area and enhances HACMP. This product is called High Availability Geographic Cluster (HAGEO).

12.2.1.1 HACMP Version 4.3 overview

HACMP is flexible in configuration and use. Uniprocessors, SMPs, and SP nodes can all participate in highly-available clusters. You can mix and match system sizes and performance levels as well as network adapters and disk subsystems to satisfy your application, network, and disk performance needs. It is also simple to use because installation and management can be done from a single console.

Planned downtime can account for a large part of total system downtime. HACMP allows planned downtime to be minimized by concurrently performing hardware, software, and other maintenance activity while applications continue to run on other nodes. The Dynamic Reconfiguration utility allows cluster resources to be added or removed without cluster disruption, enabling continuous operation in the light of maintenance. Service may be moved from one cluster node to another and then returned after the maintenance activity is complete.

Unplanned downtime can have one of two causes: Hardware or software. Together with facilities provided by thr AIX operating system, HACMP can protect your operation from hardware failures by automatically moving services from a failing node to other cluster nodes. Figure 178 on page 511 is an example of a disk takeover when a machine fails.

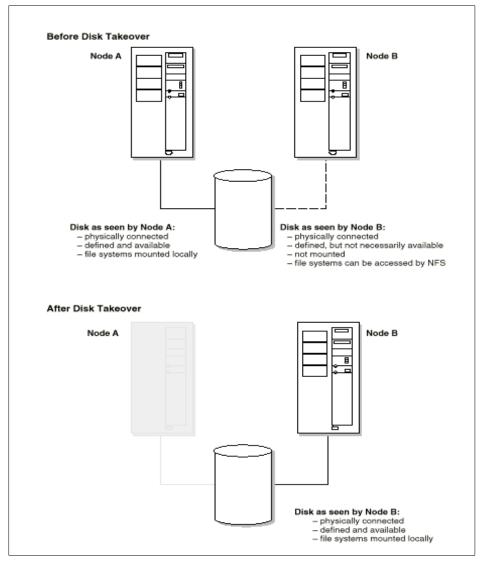


Figure 178. HACMP disk takeover

The HACMP Cluster Manager monitors the processors and the network interfaces using a heartbeat protocol. When a configurable number of failed Keepalive Packets is reached, the Cluster Manager assumes failure and takes action. Failure is not recognized until all active Cluster Managers agree that a failure has occurred. It is essential that all processors within the cluster agree the reason for failure. This is why IBM HACMP does not rely on a single route to carry the heartbeats between cluster processors. Heartbeats

(keepalive packets) operate across TCP/IP adapters, RS232 serial link, and SCSI twin tailed chain. For example, should the TCP/IP software stack fail, this could be viewed as a complete node failure if the heartbeat only operates across TCP/IP adapters.

Figure 179 demonstrates how HACMP monitors the processors with keepalive packets between different processors (nodes) on the cluster:

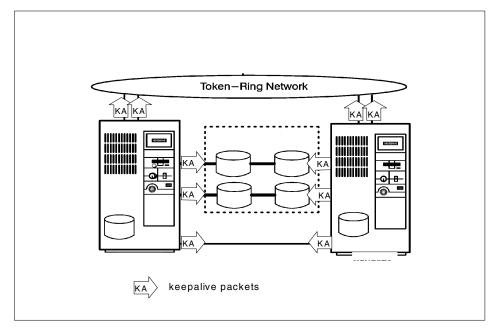


Figure 179. HACMP event detection

HACMP also provides an API to allow client applications to communicate with the Cluster Manager services. Other features of HACMP include Cluster Quick Configuration, Cluster Node Snapshot, and Failure Emulation. Cluster Quick Configuration provides predefined cluster configuration options for automatic cluster configuration. It is also possible to add customized configurations to this. Cluster Node Snapshot tracks configuration and facilitates the cloning of additional users. Failure Emulation allows continuous availability by providing emulation utilities to test failover scenarios without actually taking the systems down.

Software failures that cause a node failure can be detected by HACMP, but software failures that interrupt system operation and do not result in a system failure or hang require the next step in availability technology, which is represented by RS/6000 Cluster Technology (RSCT).

512 AIX V4.3 and Windows 2000, Side by Side

Utilizing the Event Management component of RSCT, problems with the operation of software, such as process failures or exhaustion of system resources, can be detected and reacted to before they result in a critical failure. HACMP/ES can monitor, detect, and react to random software failures, thus, allowing your system to remain operational. HACMP/ES can be configured to react to hundreds of system events. In addition to this advanced protection, RSCT allows HACMP/ES to support up to 32 nodes.

HACMP/ES also allows you to define additional cluster events. This allows unrivaled levels of availability using standard components while providing protection against hardware failures and capabilities to perform concurrent maintenance.

HACMP provides a choice of tools for installation, configuration, and system administration tasks: Use either AIX System Management Interface Tool (SMIT) or the Visual System Manager (VSM) GUI.

To help automate the configuration process, you can replicate existing clusters, first by using the information captured by the Cluster Node Snapshot utility and then by using the Quick Configuration utility to replicate the configuration at other sites. With the Dynamic Reconfiguration facility, you can add and remove cluster resources, such as processors, adapters, disk subsystems, and application software, without stopping cluster operations.

In addition, HACMP supports rolling upgrades. This allows the cluster to be upgraded to a new version of HACMP or the operating system without taking your applications down.

With the Cluster Single-Point-of-Control (C-SPOC) facility, common cluster administration tasks can be performed from any node in the cluste, and, with the HAView function, you can use the Tivoli TME 10 NetView for AIX graphical network management interface to monitor clusters and their components across the network from a single node.

The Concurrent Resource Manager of HACMP provides up to eight-way concurrent access to shared disks in a highly-available cluster allowing you to tailor the actions taken during a takeover to suit your business needs.

HACMP works well in conjunction with parallel database products, such as IBM DB2 Universal Database (UDB), to build loosely-coupled parallel clusters that provide high levels of system availability. Data can be split or partitioned on up to 32 nodes for exceptionally scalable cluster performance and high availability.

For NFS environments, HACMP provides the HANFS for AIX feature, which defines two AIX systems as a single highly-available NFS server, eliminating single points of failure. This server can survive hardware and software outages as well as many planned outages that could make a single system NFS server unavailable.

In SP clusters, your data is protected with the highly-regarded Kerberos security protocol from the Massachusetts Institute of Technology/Open Software Foundation (MIT/OSF).

The latest release of HACMP is Version 4.3.1, and this is even more closely integrated with AIX Version 4.3. It has added support for the AIX Fast Connect application as a highly-available resource and an automated AIX error notification facility. This allows automatic detection of what configured resources can be associated with an AIX error log event. The default action is to log these events in the hacmp.out file, but it is possible to create your own scripts to associate with these events.

HACMP cluster configurations

An HACMP cluster can operate with up to eight nodes in numerous configurations. The following examples describe some configuration possibilities using the simplest two-node cluster, but larger numbers of nodes can readily be clustered:

- Idle Standby is the simplest of the HACMP scenarios. It allows for one system to be a backup for another's resources. The backup is idle, running AIX and the HACMP software but not any applications.
- Simple Fallover is the second of the HACMP scenarios. It allows for one system to act as backup for another's resources. The primary difference between this scenario and the Idle Standby is that the backup system is running an application. However, the application is not mission-critical and is stopped when a failure of the primary server is detected. It is common for the backup server in this scenario to act as a software development/test platform.
- Mutual Takeover allows each system to run its own mission-critical workload, and each acts as backup to the other. This can cause problems with the sizing of the servers because, in the event of a server failure, the remaining server will have to run both workloads. Solutions to this problem are to:
 - Oversize the servers
 - Accept lower response times after failure
 - Prioritize one workload or set of users after a failure
- 514 AIX V4.3 and Windows 2000, Side by Side

• Concurrent Access allows multiple servers to provide application service to commonly shared data resource. It is important in this shared environment that data is not damaged inadvertently. Two locking models are supplied to control access to the data.

With clusters of up to eight nodes, the inherent configuration flexibility is tremendous:

- For cost-effective resilience, one node can back up seven nodes.
- Eight nodes can operate during peak operations and drop back to fewer nodes during non-peak hours with minimal interruption of service.
- All resources could go to one node upon failure or be split between several nodes.

A subset of the above modes is Rotating Fallover. Rotating Fallover addresses the problem of reintegrating the failed host once the problem has been rectified.

Instead of the failed host reentering the cluster as the primary server, causing another application outage while users are swapped back, the system simply reenters the cluster as the backup server.

In an HACMP environment, shared disks are physically connected to multiple nodes. SCSI-2 Differential and Serial Storage Architecture (SSA), together with the appropriate cabling, support multiple attachments to external disk subsystems.

There are two main shared disk configurations: Non-concurrent and concurrent. In non-concurrent environments, only one connection is active at any given time, and the node with the active connection owns the disk. Disk takeover occurs when the node that currently owns the disk fails and a surviving node assumes control of the shared disk so that the disk remains available.

In concurrent mode, the shared disks are actively connected to more than one node at the same time. Therefore, disk takeover is not required when a node fails. An additional product called the Concurrent Resource Manager is necessary to provide this functionality.

HACMP monitors and performs IP address takeover for the following TCP/IP-based communications adapters on cluster nodes: Ethernet, FDDI, and token-ring. IP address takeover occurs when a node assumes the IP address of a node that has failed. The takeover node can then provide the same network service that the failed node was providing to the cluster's

clients. Additionally, it is possible for the MAC address of the adapter card to also fail-over to the standby adapter. This removes the necessity for the client population to flush and repopulate their ARP cache. The ARP cache contains the mapping of IP addresses to MAC addresses.

12.2.1.2 HAGEO overview

The RS/6000 High Availability Geographic Cluster (HAGEO) system helps keep mission-critical systems and applications operational in the event of disasters, such as power outages or hardware and software failures. It does this by eliminating the system and the site as points of failure.

A HAGEO cluster consists of two geographically-separated sites, each capable of supporting up to four high-availability cluster system nodes. There are three modes of disaster protection and one mode of recovery: Remote hot backup, remote mutual takeover, concurrent access, and remote system recovery.

- **Remote hot backup** A remote geographic site and system are designated as the hot backup site and system. The backup system includes hardware, system and application software, and application data and files. In the event of a failure, the failed system's application workload automatically transfers to the remote hot backup system.
- **Remote mutual takeover** Geographically separated sites and systems can be designated as hot backups for each other. Mutual takeover allows each to operate as an independent system or as part of a distributed system. Should either experience a failure, the other acts as a hot backup and automatically takes over the designated application workload of the failed system.
- **Concurrent access** Nodes at geographically-separated sites can have simultaneous access to the concurrent volume group and the same disk resources. If a node fails, the availability of the resource is not affected.
- Remote system recovery After a failed information system site has been restored to operation, HAGEO can resynchronize and reintegrate the failed system with the remote hot backup system. HAGEO updates the remote failed system with a current up-to-date mirror of application data and files processed by the backup system after the failed system ceased operations. Upon completing restoration of an up-to-date data and file mirror, the HAGEO cluster will resume synchronized system operations, including the mirroring of real-time data and files between the system sites.

HAGEO components

Figure 180 on page 517 shows a HAGEO scenario.

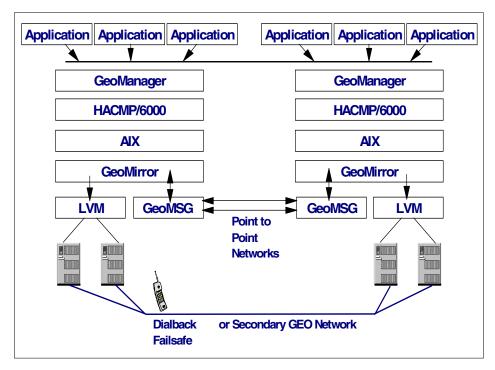


Figure 180. High availability geographic cluster

The GeoManager supervises the distributed cluster and adjusts the *heart beat* on long-distance communication links to detect site failure, control failover, and avoid making the incorrect conclusion that the site has failed.

GeoMessage provides reliable communications and better performance by choosing the fastest path. It also provides load balancing across the links.

GeoMirror replicates data and coordinates updates removing the AIX limitation of three mirror copies of a disk and allowing three copies at each geographic site. It provides real-time data and file mirroring in three modes:

- **Synchronous mode** helps ensure that the same data exists at both sites at the completion of every write.
- Synchronous with mirror write consistency helps ensure that both sites can be restored with identical data, even in the event of a site failure in mid-transaction.
- **Asynchronous mode** writes on the local disk without waiting for the remote write to complete. This mode offers the best performance of the three on the local system node.

12.2.1.3 High-availability solutions

IBM now has packaged RS/6000 High Availability packages with some of their enterprise server range. Each package has two highly-scalable RS/6000 servers that are rack mounted in a 19 inch S00 rack with an external Serial Storage Architecture (SSA) subsystem with eight SSA disks. Also included is AIX Version 4.3, HACMP Version 4.3, and the equipment required for the servers to be connected in a high-availability solution.

The following are the hardware choices for the solution:

- HAH50 each H50 is capable of 4-way 332 MHz SMP (PowerPC 604e) processing and 3 GB of memory.
- HAH70 each H70 is capable of 4-way 340 MHz SMP (PowerPC RS64 II) processing and 8 GB of memory.
- HAS7A each S7A is capable of 12-way 262 MHz (PowerPC RS64 II) processing and 32 GB of memory.
- HAS80 each S80 is capable of 24-way 450 MHz (PowerPC RS64 II) processing and 64 GB of memory.

These high-availability solutions from IBM have an estimated 99.999 percent availability, that is, less than six minutes of annual unplanned system hardware and software downtime.

Optional applications and middleware with pretested high-availability scripts for:

- Collaborative
- Database
- Enterprise availability management
- Enterprise resource planning
- Transaction monitor

12.3 Windows 2000 high availability

In 1998 Microsoft purchased Valence Research Inc., and, with it, came Windows NT Load Balancing Service (WLBS). The Component Load Balancing (CLB or COM+) technology based on WLBS was originally going to be a part of the base operating system for the Windows 2000 Advanced Server and Windows 2000 Datacenter Server packages. This is no longer the case and it will now be available as a downloadable option for Windows 2000 Advanced and Datacenter Server packages. According to Pankaj Chowdhry

⁵¹⁸ AIX V4.3 and Windows 2000, Side by Side

in his article in PCWeek *Win 2000 RC2: Insidiously Important*, he says that this "...won't affect the deployment of Windows 2000, but it will affect Windows 2000's effectiveness as a Web platform for distributed applications." CLB is a feature that distributes workload across multiple CPUs at the middle-tier of a multi-tiered network.

While CLB has been redeployed to the upcoming Microsoft AppCenter, Network Load Balancing (NLB) and Cluster Service will remain part of the base operating system for the Windows 2000 Advanced Server and Windows 2000 Datacenter Server packages. According to Microsoft, the AppCenter Server is going to be the high-availability deployment and management solution for Web applications. CLB will be included in this AppCenter Server product.

12.3.1 Network Load Balancing (NLB)

NLB acts as a front-end cluster to a multi-tiered network. It distributes traffic across a cluster of up to 32 servers (running Windows 2000 Advanced Server), thus, providing a single system image to the client. By distributing the traffic, it allows the redirection of requests to other servers if one is down due to failure or maintenance.

Some of the benefits of NLB are:

- Automatic detection of failed or offline computer
- · Automatic network load redistribution if cluster set changes
- · Workload recovery and redistribution within 10 seconds
- · Handles inadvertent subnetting and rejoining of the cluster network
- · Can be remotely started, stopped, or controlled
- No specialized hardware is required

12.3.2 Cluster Service

Because the NLB acts as the front-end cluster, the Cluster Service acts as the back-end cluster. It is there to monitor the health and provide high availability for standard applications and services, such as databases and file and print servers. It can automatically recover data and applications from many of the common types of failures.

Through the MMC, there is a graphical management console that allows administrators to visually monitor the status of all the resources in the cluster and to move workloads around by pointing and clicking.

The clustering service that is a part of Windows 2000 Advanced and Datacenter Server packages allows the Advanced package to connect two servers into a cluster, and four servers can be connected with the Datacenter package.

Other features of the Cluster Service are:

- **Support for rolling upgrades** This means shorter service outages and no need to rebuild the cluster configuration.
- Network failure recovery It detects different states for network failures and uses the appropriate failover policy to determine whether or not to failover the resource group.
- Use of Plug and Play technology This automatically detects the removal or addition of network adapters, TCP/IP network stacks, and shared physical disks.
- WINS, DFS, and DHCP support.

Appendix A. Special notices

This publication is intended to help systems engineers, I/T architects, consultants in understanding AIX and/or Windows 2000 from an operating system perpective. It provides a functional analysis of AIX and Windows 2000. The information in this publication is not intended as the specification of any programming interfaces that are provided by AIX Version 4.3 and/or Windows 2000. See the PUBLICATIONS section of the IBM Programming Announcement for AIX Version 4.3 for more information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent program that does not infringe any of IBM's intellectual property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is distributed AS IS. The information about non-IBM ("vendor") products in this manual has been supplied by the vendor and IBM assumes no responsibility for its accuracy or completeness. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate

them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and do not in any manner serve as an endorsement of these Web sites.

The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries:

IBM	SecureWay
Service Director	SP2
System/390	TCS
VisualAge	VTAM
WebSphere	Xstation Manager

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere., The Power To Manage., Anything. Anywhere., TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems Inc., an IBM company, in the United States, other countries, or both. In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries

licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Lotus Notes is a registered trademark of Lotus Development Corporation.

Other company, product, and service names may be trademarks or service marks of others.

Special notices 523

Appendix B. Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

B.1 IBM Redbooks

For information on ordering these publications, see "How to get IBM Redbooks" on page 529.

- AIX and Windows NT: Solutions for Interoperability, SG24-5102
- AIX V4.3 Differences Guide, SG24-2014
- AIX 64-bit Performance in Focus, SG24-5103
- RS/6000 Graphics Handbook, SG24-5130

B.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs offered, updates, and formats.

CD-ROM Title	Collection Kit Number
System/390 Redbooks Collection	SK2T-2177
Networking and Systems Management Redbooks Collection	SK2T-6022
Transaction Processing and Data Management Redbooks Collection	SK2T-8038
Lotus Redbooks Collection	SK2T-8039
Tivoli Redbooks Collection	SK2T-8044
AS/400 Redbooks Collection	SK2T-2849
Netfinity Hardware and Software Redbooks Collection	SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format)	SK2T-8040
RS/6000 Redbooks Collection (PDF Format)	SK2T-8043
Application Development Redbooks Collection	SK2T-8037
IBM Enterprise Storage and Systems Management Solutions	SK3T-3694

B.3 Other resources

These publications are also relevant as further information sources:

 Inside Windows NT, Second Edition, by David A. Soloman based on the original edition by Helen Custer. ISBN: 1-5723-1677-2

- *Trusted Products Evaluation*, by Dr. Santosh Chokhani. July 1992 edition of Communications of the ACM.
- *Win 2000 RC2: Insidiously Important*, by Pankaj Chowdhry of the PC Week Labs. September 30, 1999 edition of PC Week.
- The RS/6000 64-bit Solution, IBM White Paper
- Microsoft's Active Directory Overview, Microsoft White Paper
- Active Directory Technical Summary, Microsoft White Paper
- Secure Networking Using Windows 2000 Distributed Security Services, Microsoft White Paper
- *Windows 2000 Reliability and Availability Improvements*, Microsoft White Paper
- Active DirectoryTechnical Summary, Microsoft White Paper
- International Support in Windows 2000, Microsoft White Paper
- *Win2000 RC2: Insidiously Important*, by Pankaj Chowdhry, PCWeek Labs, September 30, 1999.
- AIX Versions 3.2 and V4 Performance Monitoring and Tuning, SC23-2365

The following manuals are shipped with AIX 4.3 in hardcopy format and in softcopy format as part of the Base Documentation CD:

- AIX Version 4.3 Quick Installation and Startup Guide, SC23-4111
- AIX Version 4.3 Installation Guide, SC23-4111
- AIX Version 4.3 Network Installation Management Guide and Reference, SC23-4113

The following is also product documentation and can only be purchased with the software product:

Windows 2000 Server documentation

B.4 Referenced Web sites

These Web sites are also relevant as further information sources:

- ftp://ftp.porcupine.org/pub/security/tcp_wrappers_7.6.tar.gz
- ftp://ftp.porcupine.org/pub/security/satan-1.1.1.tar.Z
- http://www.rs6000.ibm.com/resource/technology/64bit6.html
- http://www.opengroup.org/

- http://www.austin.ibm.com/software/Standards/
- http://www.microsoft.com/Windows/server/Overview/features/interop.asp
- http://msdn.microsoft.com/certification/appspec.asp
- http://msdn.microsoft.com/winlogo/
- http://www.ibm.com/servers/aix/products/aixos/bonus/details.html
- http://service.boulder.ibm.com/asd-bin/doc/en_us/winntcl2/f-feat.htm
- http://service.boulder.ibm.com/asd-bin/doc/en_us/win95cl/f-feat.htm
- http://www.ibm.com/servers/aix/products/ibmsw/list/
- http://www.ibm.com/servers/monterey/
- http://www.projectmonterey.com/
- http://windowsupdate.microsoft.com
- http://www.cert.org/
- http://www.first.org/
- http://www.phrack.com/
- http://www-4.ibm.com/software/network/directory/
- http://www.checkpoint.com/
- http://www.tivoli.com/
- http://www.fish.com/cops/
- http://www.webtrends.com/
- http://www.cybg.com/
- http://support.cai.com/arcservesupp.html
- http://www.legato.com/Products/index.html
- http://www.veritas.com/us/products/bent2000/index.shtml
- http://www.microsoft.com/isapi/redir.dll?prd=msdn&pver=6.0&ar=library
- http://www.gated.merit.edu
- http://www.ietf.org/html.charters/ipngwg-charter.html
- http://home.netscape.com/communicator/v4.5/index.html
- http://www.software.ibm.com/enetwork/techexplorer
- http://www.ibm.com/java/jdk/index.html
- http://www.ibm.com/java/jdk/118/index.html
- http://java.sun.com/products/java-media/jmf

Related publications 527

- http://www.graphon.com/index.html
- http://www.adobe.com/acrobat/
- http://www.chilisoft.com/
- http://tarantella.sco.com/tsz
- http://www.apache.org/
- http://www.software.ibm.com/websphere/appserv
- http://www.software.ibm.com/websphere/httpservers/
- http://www.netcs.com
- http://www.software.ibm.com/enetwork/commserver/
- http://www.samba.org/
- http://www.novell.com/press/archive/1997/07/pr97109.html
- http://www.internic.net

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will be published this way. The intent is to get the information out much quicker than the formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

In United States or Can Outside North America	e-mail address ada pubscan@us.ibm.com Contact information is in the "How to Order" section at this site: http://www.elink.ibmlink.ibm.com/pbl/pbl
Telephone Orders	
United States (toll free) Canada (toll free) Outside North America	1-800-879-2755 1-800-IBM-4YOU Country coordinator phone number is in the "How to Order" section at this site: http://www.elink.ibmlink.ibm.com/pbl/pbl
Fax Orders	
United States (toll free) Canada Outside North America	1-800-445-9269 1-403-267-4455 Fax phone number is in the "How to Order" section at this site: http://www.elink.ibmlink.ibm.com/pbl/pbl

This information was current at the time of publication, but is continually subject to change. The latest information may be found at the Redbooks Web site.

IBM intranet for employees

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Redbooks fa	x order form
-----------------	--------------

Please send me the following:

Title	Ord	der Number	Quantity
First name	Last name		
Company			
Address			
City	Postal code	Country	
Telephone number	Telefax number	VAT number	
Invoice to customer number			
Credit card number			
Credit card expiration date	Card issued to	Signature	

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not available in all countries. Signature mandatory for credit card payment.

Abbreviations and acronyms

ACE	Access Control Entries	BUMP	Bring-Up Microprocessor
ACL	Access Control List	C-SPOC	Microprocessor
ADSM	ADSTAR Distributed Storage Manager	C-SPOC	Cluster single point of control
AFS	Andrew File System	CDE	Common Desktop Environment
AIX	Advanced Interactive eXecutive	CDMF	Commercial Data Masking Facility
APA	All Points Addressable	CDS	Cell Directory Service
API	Application Programming Interface	CERT	Computer Emergency Response Team
APPC	Advanced Program-to-Program	CGI	Common Gateway Interface
APPN	Advanced Peer-to-Peer Networking	СНАР	Challenge Handshake Authentication
ARC	Advanced RISC Computer	CIDR	Classless InterDomain Routing
ARPA	Advanced Research Projects Agency	СМА	Concert Multithreaded Architecture
ASCII	American National	со	Central Office
	Standard Code for Information Interchange	COPS	Computer Oracle and Password System
ATE	Asynchronous Terminal Emulation	CPI-C	Common Programming Interface for Communications
ATM	Asynchronous Transfer Mode	CSNW	Client Service for NetWare
AVI	Audio Video Interleaved	CSR	Client/server Runtime
BDC	Backup Domain Controller	DAC	Discretionary Access Controls
BIND	Berkeley Internet Name Domain	DARPA	Defense Advanced Research Projects
BNU	Basic Network Utilities		Agency
BOS	Base Operating System	DASD	Direct Access Storage
BRI	Basic Rate Interface		Device
BSD	Berkeley Software	DBM	Database Management
	Distribution	DCE	Distibuted Computing Environment

DCOM	Distributed Component	FTP	File Transfer Protocol
	Object Model	FtDisk	Fault-Tolerant Disk
DDE	Dynamic Data Exchange	GDA	Global Directory Agent
DDNS	Dynamic Domain Name System	GDI	Graphical Device Interface
DES	Data Encryption Standard	GDS	Global Directory Service
DFS	Distributed File System	GID	Group Identifier
DHCP	Dynamic Host Configuration Protocol	GSNW	Gateway Service for NetWare
DLC	Data Link Control	GUI	Graphical User Interface
DLL	Dynamic Load Library	НАСМР	High Availability Cluster
DNS	Domain Name System		Multiprocessing
DTS	Distributed Time Service	HAL	Hardware Abstraction Layer
EGID	Effective Group Identifier	HCL	Hardware Compatibility List
EMS	Event Management Services	IBM	International Business Machines
EPROM	Erasable Programmable	ICCM	Inter-Client Conventions Manual
	Read-Only	IDE	Integrated Drive
ERP	Enterprise Resources Planning		Electronics
ESCON	Enterprise System Connection	IDL	Interface Definition Language
ESP	Encapsulating Security Payload	IEEE	Institute of Electrical and Electronic Engineers
EUID	Effective User Identifier	IETF	Internet Engineering
FAT	File Allocation Table		Task Force
FDDI	Fiber Distributed Data Interface	IGMP	Internet Group Management Protocol
FIFO	First In/First Out	IIS	Internet Information Server
FIRST	Forum of Incident Response and Security	ІМАР	Internet Message
FQDN	Fully Qualified Domain Name	IPC	Access Protocol Interprocess
FSF	File Storage Facility		Communication

⁵³² AIX V4.3 and Windows 2000, Side by Side

IPL	Initial Program Load	LRU	Least Recently Used
IPX	Internetwork Packet	LSA	Local Security Authority
	eXchange	LUID	Login User Identifier
ISA	Industry Standard Architecture	LV	Logical Volume
ISDN	Integrated Services Digital Network	LVDD	Logical Volume Device Driver
ISO	International Organization for	LVM	Logical Volume Manager
	Standardization	MBR	Master Boot Record
ISS	Interactive Session	MFT	Master File Table
ITSEC	Support Initial Technology	ММС	Microsoft Management Console
ITSO	Security Evaluation	MOCL	Managed Object Class Library
	Support Organization	MPTN	Multiprotocol Transport
ITU	International Telecommunications Union	MSS	Network Maximum Segment Size
IXC	Inter Exchange Carrier	MWC	Mirror Write
JFS	Journaled File System	-	Consistency
JIT	Just-In-Time	NBF	NetBEUI Frame
LAN	Local Area Network	NBPI	Number of Bytes per
LCN	Logical Cluster Number	NOD	I-node
LDAP	Lightweight Directory Access Protocol	NCP NCS	NetWare Core Protocol Network Computing
LFS	Log File Service		System
LFS	(Windows NT)	NCSC	National Computer Security Center
LF3	Logical File System (AIX)	NDIS	Network Device Interface Specification
LFT	Low Function Terminal	NDS	NetWare Directory
LOS	Layered Operating System		Service
LP	Logical Partition	NETID	Network Identifier
LPC	Local Procedure Call	NFS	Network File System
LPD	Line Printer Daemon	NIM	Network Installation Management
LPP	Licensed Program Product	NIS	Network Information System

Abbreviations and acronyms 533

NIST	National Institute of Standards and	PCI	Peripheral Component Interconnect
NLS	Technology National Language	PCMCIA	Personal Computer Memory Card
NNS	Support Novell Network	PDC	Primary Domain Controller
NSAPI	Services Netscape Commerce	PDF	Portable Document Format
NTFS	Server's Application NT File System	PDT	Performance Diagnostic Tool
NTLDR	NT Loader	PEX	PHIGS Extension to X
NTP	Network Time Protocol	PFS	Physical File System
NTVDM	NT Virtual DOS Machine	PHIGS	Programmer's Hierarchical Interactive
NVRAM	Non-Volatile Random Access Memory	РМТИ	Graphics System Path Maximum Transfer Unit
NetBEUI	NetBIOS Extended User Interface	POP	Post Office Protocol
NetDDE	Network Dynamic Data Exchange	POSIX	Portable Operating System Interface for
OCS	On-Chip Sequencer	DOCT	Computer Environment
ODBC	Open Database Connectivity	POST PP	Power-On Self Test Physical Partition
ODM	Object Data Manager	PPP	Point-to-Point Protocol
OLTP	OnLine Transaction Processing	РРТР	Point-to-Point Tunneling Protocol
ONC	Open Network Computing	PReP	PowerPC Reference Platform
OS OSF	Operating System Open Software	PSN	Program Sector Number
	Foundation	PSSP	Parallel System Support Program
PAL	Platform Abstract Layer	PV	Physical Volume
PAM	Pluggable Authentication Module	PVid	Physical Volume Identifier
PAP	Password Authentication Protocol	QoS	Quality of Service
PBX	Private Branch Exchange	RACF	Resource Access Control Facility

RAID	Redundant Array of	SP	System Parallel
RAS	Independent Disks	SPX	Sequenced Packet
-	Remote Access Service	SRM	eXchange Security Reference
RFC	Request for Comments		Monitor
RGID	Real Group Identifier	SSA	Serial Storage Architecture
RMSS	Reduced-Memory System Simulator	SSL	Secure Sockets Layer
ROLTP	Relative OnLine	SVC	Serviceability
	Transaction Processing	SWS	Silly Window Syndrome
ROS	Read-Only Storage	ΤΑΡΙ	Telephone Application
RPC	Remote Procedure Call		Program Interface
SAK	Secure Attention Key	тсв	Trusted Computing
SAM	Security Account		Base
	Manager	TCSEC	Trusted Computer System Evaluation
SATAN	Security Analysis Tool for Auditing	TDI	Transport Data
SCSI	C C		Interface
3031	Small Computer System Interface	TTL	Time to Live
SDK	Software Developer's Kit	UDP	User Datagram Protocol
SFG	Shared Folders	UID	User Identifier
	Gateway	UMS	Ultimedia Services
SID	Security Identifier	UNC	Universal Naming
SLIP	Serial Line Internet		Convention
	Protocol	UPS	Uninterruptable Power
SMB	Server Message Block		Supply
SMIT	System Management Interface Tool	UTC	Universal Time Coordinated
SMP	Symmetric Multiprocessor	UUCP	UNIX to UNIX Communication
SMS	Systems Management		Protocol
	Server	UUID	Universally Unique Identifier
SNA	Systems Network Architecture	VAX	Virtual Address
SNAPI	SNA Interactive		eXtension
JIMEI	Transaction Program	VCN	Virtual Cluster Name
SNMP	Simple Network Management Protocol	VFS	Virtual File System

Abbreviations and acronyms 535

VG	Volume Group
VGDA	Volume Group Descriptor Area
VGSA	Volume Group Status Area
VGid	Volume Group Identifier
VMM	Virtual Memory Manager
VPD	Vital Product Data
VPN	Virtual Private Network
VRMF	Version, Release, Modification, Fix
VSM	Virtual System Management
W3C	World Wide Web Consortium
WAN	Wide Area Network
WINS	Windows Internet Name Service
WOW	Windows-16 on Win32
WWW	World Wide Web
WYSIWYG	What You See Is What You Get
WinMSD	Windows Microsoft Diagnostics
XCMF	X/Open Common Management Framework
XDM	X Display Manager
XDMCP	X Display Manager Control Protocol
XDR	eXternal Data Representation
XNS	XEROX Network Systems
XPG4	X/Open Portability Guide

Index

Symbols

1 model" 20 "M 1 model" 19 N model" 21 /etc/passwd 161 /etc/security/failedlogin 154 /etc/security/lastlog 154 /etc/security/login.cfg 162 /etc/security/passwd 161 /etc/security/user 162 /etc/utmp 154 /var/adm/sulog 154 /var/adm/wtmp 154

Numerics

32-bit 10, 11, 13, 27, 48 64-bit 10, 13, 48

Α

Access Control Entries (ACEs) 191, 195 Access Control Lists (ACLs) 31, 157, 189, 191, 195 ACL 299 Active Desktop 68 Active Directory 50, 228, 236, 303 Active directory 274 Active Workspace 73 Administration Tools 298 administrative roles 155 Administrative Tools 240, 265, 267, 271, 274 Admission control service 286 ADSM 301, 304 ADSM (Adstar Distributed Storage Manager) 275 ADSM/6000 301 AIX Fast Connect 45 AIX user 42 Alternate Disk 221 Alternate Disk installation 221 Andrew File System (AFS) 114, 124 ANSI 344 AppleTalk 289 Application 205

Application Development 220 Application log 279 Application Manager 65 Application Mode 334 Application Program Interface (API) 15 Application Programming Interface (API) 81 Application server, configuring 274 Application Task 307 Archive 302 archive 301 Archive attribute 303 ARCserve 304 ASCII 206, 211, 212, 219, 246 ASCII files 245 ASCII interface 246 ASCII terminal 311, 333 auditing 170, 200 auditing policy 284 authentication 153, 155, 188, 190 Available state 254 azizo 359, 360, 366

В

backend 325 backend program 325 background 305 Backup 298, 310, 319 backup 298, 301, 303, 317 backup strategy 298 Backup Tools 299 baud rate 333 Bidirectional 219 bi-directional printers 330 BIOS 340 bonus pack 43 boot image 222, 230 Boot Logical Volume 103 boot record 230 boot sector 235 bootable backup 298 bootlist 229 BOS 206 BOSboot 208, 209 BSD 315 built-in groups 191 **BUMP 229** Bundles 219

bundles 206

С

C compiler 310 Cached 255 CDE 261 CD-ROM File System (CDFS) 114, 123 Certificate Services 303 Checkpoint Firewall-1 181 classes 307 client access licenses (CAL) 50 Client Installation Wizard 228 client/server 13, 26, 33 Cloning 221 cluster 137 remapping 141 Cluster Manager 511, 512 Cluster Node Snapshot 512, 513 Cluster Quick Configuration 512 Cluster Service 519 Code Pages 338, 345 code-page 336 colon files 237 color palette 267 color palette depth 267 color scheme 267 COM+ 272, 303 command line 317 command line user interface 261 command prompt 244 Common Desktop Environment (CDE) 55, 208 Compact Disk File System (CDFS) 134 Component Load Balancing (CLB) 518 composition 301 Computer Emergency Response Team (CERT) 152 Computer Management 273 computer name 225 Computer Oracle and Password System (COPS) 183 concurrent access 515, 516 concurrent mode 268 Configuration Assistant 210, 212 configuration manager 233 console logging 175 context switching 12, 33 Control Panel 77, 240, 244, 265, 266, 274, 327, 331

Copy Backup 303 CPU and Memory resources 305 CPU usage 307 currency symbols 225 Customized Attribute Object Class (CuAt) 238 Customized Dependency Class (CuDep) 238 Customized Device Driver Class (CuDvDr) 238 Customized Devices Object Class (CuDv) 238 Customized Information 238 Customized Vital Product Data Object Class (Cu-VPD) 238 Cyberguard Firewall for Windows NT 203

D

Daily Backu 303 data retention 299 Data Source Open Database Connectivity (ODBC) 275 data stream 322, 325, 326 data type 330 Dataless 219 daylight savings time 267 DBCS (double byte character set) 345 Default User Locale 344 Defined state 254 delegation 187 device driver 310, 325 device driver settings 240 device drivers 5, 6, 12, 29, 39, 50, 244 device management 5, 245, 265 commands 238 Device Manager 273 DFS 277 DHCP 228, 274, 276 diagnostic 320 diagnostics 311 Dial-up Connection 268 dial-up connections 275 Differential Backup 303 directory partitions 186 Directory services 236 Discretionary Access Controls (DAC) 150 Diskless 219 Distributed Computing Environment (DCE) 167 Distributed File System (DFS) 114, 124, 145, 277 DLL 272 DMA 320 DNS 228, 274, 278

DNS Server 279 domain 186 Domain Controller 236 Domain Name System (DNS) 278 DOS 301, 340 dumb terminal 311 dump 261, 317 dump device 316 Dynamic Host Configuration Protocol (DHCP) 276 Dynamic Kernel 310 Dynamic Reconfiguration 510, 513

Ε

EFS 303 Emergency Repair Disk (ERD) 302, 321 Emergency Repair Process (ERP) 321 EMF 330 Encrypted File System - EFS 303 encryption 135, 142 Enhanced Metafile Format (EMF) 330 enterprise storage management 301 environment subsystem 29 EPROM 229 ERD 302, 321 ERP 321 error log 313 Error Logging 311, 321 Error Processing 312 EuroReady 48 Event Logging 321 Event Viewer 273, 279, 321 Executive 28, 30

F

Failure Emulation 512 fastpath 245 FAT 303 FAT16 134 FAT32 134 fault tolerance 243, 508 fault-tolerance 318 FCFS (First Come First Serve) 322 field 237 File Manager 64 file permissions 23, 157, 198 File server 274 filemon 348, 349, 358, 360 fileset 39, 299 filesystem 237, 249 filesystems 255 firmware 229 fixed license 268 flashing 888 316 font size 267 Forum of Incident Response and Security Teams (FIRST) 152 frame 17 Front Panel 58

G

GeoManager 517 GeoMessage 517 GeoMirror 517 Global Catalog (GC) 187 Graphics Device Interface (GDI) 329 group ID (GID) 117 group identifier (GID) 117, 155 groups 237 groups management 273 GUI 225, 236, 252

Η

Hardware Abstraction Layer (HAL) 28, 29, 235 heartbeat 310 Help Manager 66 hierarchical storage management 275, 287, 301 high availability 508 High Availability Cluster Multiprocessing (HACMP) 509 High Availability Geographic Cluster (HAGEO) 509, 516 hive 243 home directory 153, 189 HPGL 326 HTML 252

I

I/O operation 318 I/O rate 307 IAS 281 IBM eNetwork Firewall 181, 203 IBM SecureWay Communications Server for AIX 176 IBM support center 317 icon 65

Index 539

idle standby 514 IEEE 13, 36 iforls 263 IIS (Internet Information Services) 282 IME 340, 344 IMEs (Input Method Editors) 340 Incremental Backup 303 Index Server 290 Infoexplorer 45 Initial Program Load (IPL) 229 initialization files 240 ink-jet 322 i-nodes 117 Input Locales 344 Installation Assistant 206 Intel based systems 234 Internet 261, 282 Internet Authentication Service (IAS) 281 Internet Information Services 282 Internet Information Services (IIS) 504 interrupt 14 interrupts 317 Intranet 282 iostat 349, 360 IP 289, 294, 325 IP hostname 325 IP network 278 IPDS 326 IPL 230 IPX 289

J

ISA 48, 52

Java 252 Java programming language 252 Java Script 252 JFS 255 Journaled File System 301, 310 Journaled File System (JFS large files enabled 119 Journaled File System (JFS) limitations 121 Journaled File System (JFS) 113 compressed 120 long file name support 122 online backup 122 recoverability 121 Journaled File System (JFS), online backup 122 JScript 298

Κ

Keepalive Packets 511 keepalive packets 512 kernel 174, 208 AIX 11, 15 Kernel dump 319 kernel extensions 310 Kernel Information 319 kernel mode 3, 6, 14, 28, 309 kernel parameter 310 Kernel Structures 319 Key 242 keyboard layout 225, 340

L

LAN 217, 227, 289, 322 language environment 261 Language Group 340 laser 322 Last known good 267 Last Known Good Configuration 320 Last Known Good Menu 320 layered operating system 4, 10, 26, 28 Least Recently Used (LRU) 12, 17, 18 Legato Backup Utility 304 LFS 318 license 42, 43, 49 License Program Products (LPP) 219 Licensed Program Products (LPP) 49 Licensing Mode 268 Lightweight Directory Access Protocol (LDAP) 176 limits 307 Local Security Authority 236 Locales 337, 339, 340 Log File Service (LFS) 318 Logical Cluster Number (LCN) 138 Logical Disk Manager 129 logical drive 273 Logical File System (LFS) 16 Logical Printer 327 Logical Volume 310 logical volume 249, 257, 316 Logical Volume Device Driver (LVDD) 103 Logical Volume Manager 310 Logical Volume Manager (LVM) 16, 231 benefits 111

policies 105 Logical Volume Manager (LVM), policies 105 Login Manager 55 logon process 153, 188 Low Function Terminal (LFT) 246 LPP 256 LVM 231, 310

M

Μ N model 21 MAC 344 Macintosh 334 maintenance contract 311 Maintenance Mode 229, 311 maintenance shell 209 Master Boot Record (MBR) 234 matrix 322 MBR 234 memory management 28, 498 Memory Manager 318 memory usage 307 Micro Channel 208 Microchannel Architecture (MCA) 48 microkernel 5, 29 Microsoft AppCenter 519 Microsoft Domain 225 Microsoft Excel 272 Microsoft Internet Explorer 268 Microsoft Management Console 295 Microsoft Management Console (MMC) 184, 295, 505, 519 Microsoft Office 290 Microsoft Word 272 Migration Installation 207 Millennium 25, 50 Mirror Write Consistency (MWC) 104 Mirrored Logical Volumes 301 mirroring 107 MMC 295, 298 modem 311 modem connection 297 monolithic 3 Motif 246 Motif based user interface 246 multi protocol routing 289 multiboot system 321 Multimedia 269

multitasking 18, 27, 32 multithreading 18, 27, 32 multiuser environment 325 mutual takeover 514 My Computer 75

Ν

National Computer Security Center (NCSC) 150 National Language Support 47, 51 National Languages 336 NetBIOS 228, 294 netstat 352 Network File System (NFS) 114, 123, 166 Network Installation manager 217 Network Load Balancing (NLB) 519 network management 5, 245, 258 Network Printer 325 Network Printers 322 NFS 255, 258 NFS Server 219 nfsstat 352 NIM 206, 207, 208, 210, 217, 218, 219, 256 NIM master 219 NIM topology 217 NIS 258 NIS+ 167 NLS 269 Non-Volatile RAM (NVRAM) 229 NT File System (NTFS) 134, 135 recoverability 140 version 4 223 version 5 223 NTFS 303, 318, 319 NTLDR 235 NVRAM 229

0

object class 237 Object Database Manager (ODM) 222, 231, 236, 237, 238 Object Linking and Embedding 242 object-oriented 26, 186 ODBC 275 OEM 344 OLE (Object Linking and Embedding) 242 On-Chip Sequencer (OCS) 229 Open Blueprint 13, 36 Open Database Connectivity 275

Index 541

Open Database Connectivity (ODBC) 38 Open Group 35, 36, 39 open standards 9, 35 OpenGL 81, 82 OpenType 267 OS/2 29, 301 OS/390 301 OS/400 301 OSPF 289

Ρ

paging file 236 paging space 257, 316, 317 Parallel System Support Program (PSSP) 502 partition 224, 225 passwords 152, 190 PC Bios 223 PCI 48, 52, 208 PCL 326 PDT 353, 360 Per Seat 50, 225, 268 Per Server 50, 225, 268 performance 285 Performance Logs 273 Performance Logs and Alerts 368, 372, 373, 376 Performance Toolbox 356, 357, 358, 359 Personal 205 Personal Productivity 220 PHIGS and PEX 82 Phrack Magazine 152 Physical File Systems (PFS) 16 physical volume 249 Platform Abstraction Layer (PAL) 10, 18 Plug and Play 52, 520 Port monitor 330 POSIX 13, 29, 135, 148, 300 POSIX.2 299 POST 234 PostScript 326 Power-On Self Tests (POST) 229, 234 pprof 355 Predefined Attributes Object Class (PdAt) 238 Predefined Connections Class (PdCn) 238 Predefined Database 238 Predefined Devices Object Class (PdDv) 238 predefined groups 192 Predefined Information 238 pre-defined users 156

print job 332 Print Jobs 331 print processor 330 print queue 322, 331 print router 330 Print Server 219, 326 Print server 274 Print Spooler 327 print spooler 322, 330 print spooling 259 printer device 322 Printer Driver 327 Printer Pool 327 Printer Queue 328 printer queues 237 Printer Server 328 Printing Management 325, 330 printing subsystem 321 priorities 307 problem determination 229, 263 Process Management 16, 304 process management 5, 16, 28 process manager 30 process tree 308 processor groups 41 profile 153 Program Sector Number (PSN) 230 ps 347, 351 PSN 230 public key infrastructure (PKI) 202 push method 219

Preservation Install 206, 207

Q

QoS 286 Quality of Service (QoS) 286 Queue 322, 326 queue 259, 324 queue device 322 Queue Management 326 Quick Configuration 513 Quick Launch 72 quorum 104

R

RAID 318, 320 RAID 0 125, 128, 146 RAID 0+1 125

RAID 1 125, 128, 146 RAID 2 126, 147 RAID 3 126, 147 RAID 4 126, 147 RAID 5 126, 129, 147 RAM file system 230, 233 RAN (Remote Async Node) 333 RAS 309 Raster fonts 267 raw devices 300 Read-Only Storage (ROS) 229 record 237 Recoverable File System 318 recovery 298 Recovery Console 320 Redundant Arrays of Independent Disks (RAID) 320 Registry 235, 236, 240, 265, 303 Editing 243 Editor 240, 243 values 241 Registry Editor 240 relative online transaction processing (ROLTP) 498 Remote Access 274, 289 Remote Administration Mode 335 remote hot backup 516 Remote Installation Services 52 Remote Installation Services (RIS) 298 Remote Management 297 remote mutual takeover 516 Remote Procedure Call (RPC) 330 Remote Reboot 311 Remote Storage 287, 302 Remote storage 288 remote storage 273 remote system management 503, 505 remote system recovery 516 remote systems 273 Reset button 317 resource limits 305 resource utilization 285 resources 285 Restore 302, 317, 319 restore 298, 301 retrieve 301 **RIP 289** RIS 228, 298 RIS (Remote Installation Services) 228

rmss 351, 358, 360 rolling upgrades 513, 520 ROS kernel initialization 229 Routing 274, 289 routing protocols 289

S

Safe Mode 236 Safe Mode Boot 320 SAP 289 sar 348 SBCS (single byte character set) 345 scalability 497 screen refresh frequency 267 screen resolution 267 Seagate Software Inc. 304 secure attention key (SAK) 170 Secure Socket Layer (SSL) 264 Security Analysis Tool for Auditing Networks (SA-TAN) 183 Security Configuration Manager 184 Security Identifier (SID) 189, 195 Security log 279 security standards 150 serial port 317 Server Bundle 325 Service Controller 236 Service Director/6000 311 Service Mode Boot 228 Service Processor 310 service processor 311 Services 290 Session Manager 56 Set GID bit 159 Set UID bit 159 SFP 318 shares 306, 307 shell 82 Bourne 85 C 85 Korn 85 remote 85 restricted 85 trusted 85 simple fallover 514 Simultaneous Print Operations On Line (spool) 327 SJN (Shortest Job Next) 322 Small Kernel Dump 319

Index 543

smart cards 202 SMIT 40, 210, 211, 237, 239, 245, 246, 247, 248, 304, 306, 313, 317, 325, 326, 333, 501 SMIT fastpath 211 SMP 311 SNA 258 sorting order 340 SP (Scalable POWERparallel) 501 special device file 325 Spooler 327 spooler 263 Spooling 322 spooling subsystem 325 SQL database 275 SQL-like queries 239 SSL 264 Stalker 184 stanza files 237, 245 Start 70 Start menu 243 startup services 240 storage management 245 striping 108 Style Manager 62 subsystem 263 subtree 241, 242 svmon 350, 358, 360 Symmetric Multiprocessing (SMP) 22, 26, 32, 51, 497, 504 symmetric multiprocessing (SMP) 208 Sysback/6000) 301 System 368 System Backup 300 system backup 298 system console 208, 261, 333 System Data 303 System Dump 316 system dump 261 system events 265, 279 System File Protection (SFP) 318 system hive 235 System Information 320 system initialization 230 System Locale 344 system locales 225 System log 279 system maintenance 229 System Management Interface Tool 245 System Monitor within Performance Toolbox 360, 371, 372, 376 System Monitor within Windows 2000 368 System Recovery 229 system resources 305 System-Backup and Recovery 301

Т

Tacky bit 159 target 305 Task Manager 309 Task manager 307 Taskbar 69 TCP Wrappers 183 TCP/IP 163, 211, 258, 263, 311 terminal emulation 291, 334 Terminal Services 291, 297, 334, 505 Terminal services 334, 335 Terminal Support 333 test pattern 267 thin client 291 thread management 5, 28 thread manager 30 threads 12, 18, 19, 32, 498 time zone 267 Tivoli Security Management 182 topas 355 tprof 353, 355, 358 trace 263, 353, 355, 360 TrueType 267 Trusted Computer System Evaluation Criteria (TC-SEC) 150 Trusted Computing Base (TCB) 169 trusted processes 164

U

Uninterruptable Power Supplies (UPS) 317 Uninterruptable Power Supply (UPS) 268, 319 Uni-Processor 208 Universal Disk Format (UDF) 134 universal serial bus (USB) 48, 52 unplanned downtime 510 UPS 317, 319 user identifier (UID) 117, 155 User Locale 344 user management 245 user mode 3, 6, 14, 29, 309 user profile 189 user rights 193

users 237 users management 273

۷

Vector fonts 267 Veritas Backup Exec 304 Virtual File System (VFS) 16 virtual memory 5, 11, 16, 27 Virtual Memory Manager (VMM) 16, 30 Virtual Printer 322, 325, 330 Virtual printers 325 Virtual Private Network 281, 289 Virtual private Network 275 virtual processors 19 Visual Basic Scripting Edition 298 Visual FoxPro database 275 Visual SourceSafe 290 Visual System Management (VSM) 210, 214, 247, 248 Vital Product Database (VPD) 221, 237 VM 301 vmstat 347, 350, 360 volume group 249, 257 Volume Group Descriptor Area (VGDA) 101 Volume Management 127 VPN (Virtual Private Network) 281, 289 VPN (Virtual private Network) 275 VSM 325, 326

W

WAN 289 Web server 282, 291 web server 502, 504 Web/Media server 274 Web-based System management 326, 333 Web-based System Management (WebSM) 503 Web-based System Manager 215, 304, 306, 325 Web-based System manager 306 Web-based System Manager (WebSM) 210, 215, 219, 221, 239, 245, 252, 253, 264, 501 WebSM 40 Win32 29 Windows 2000 Advanced Server 51, 519, 520 Windows 2000 Datacenter Server 51, 519, 520 Windows 2000 Explorer 79 Windows 2000 Help 80 Windows 2000 loader (NTLDR) 235 Windows 2000 Professional 50, 191

Windows 2000 Server 51 Windows 2000 Server Beta 3 or final-release candidates 223 Windows 95 223 Windows 98 223 Windows desktop 334 Windows Explorer 236, 243 Windows File Manager 244 Windows Internet Name Service 294 Windows Media 291 Windows NT Load Balancing Service (WLBS) 518 Windows NT version 3.51 Server 223 Windows NT version 4.0 Server 223 Windows NT version 4.0 Terminal Server 223 Windows NT Workstation 3.51 223 Windows NT Workstation 4.0 223 Windows Script Host 298 Windows Scripting Host (WSH 508 **WINS 294** Workload Management 305, 306 Workload Manager (WLM) 500 workspace 72 Workspace Manager 63 WSH (Windows Script Host) 298

Х

X.25 258 X/Open 13, 36 XPG/4 299 X-windows 208, 246

Index 545

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook "made the difference" in a task or problem you encountered. Using one of the following methods, please review the Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

- Use the online Contact us review redbook form found at http://www.redbooks.ibm.com/
- Fax this form to: USA International Access Code + 1 914 432 8264
- Send your comments in an Internet note to redbook@us.ibm.com

Document Number Redbook Title	SG24-4784-01 AIX V4.3 and Windows 2000, Side by Side	
Review		
What other subjects would you like to see IBM Redbooks		
address?		
Please rate your overall satisfaction:	O Very Good O Good O Average O Poor	
Please identify yourself as belonging to one of the following groups:	O Customer O Business Partner O Solution Developer O IBM, Lotus or Tivoli Employee O None of the above	
Your email address:		
The data you provide here may	O Please do not use the information collected here for future	
be used to provide you with information from IBM or our	marketing or promotional contacts or other communications beyond	
business partners about our products, services or activities.	the scope of this transaction.	
Questions about IBM's privacy policy?	The following link explains how we protect your personal information. http://www.ibm.com/privacy/yourprivacy/	

SG24-4784-01 Printed in the U.S.A.

SG24-4784-01

