
SG24-4712-00

Workflow and Image Library:
FlowMark and VisualInfo with Windows

August 1996

International Technical Support Organization

Workflow and Image Library:
FlowMark and VisualInfo with Windows

August 1996

SG24-4712-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 117.

First Edition (August 1996)

This edition applies to Version 2, Release 2 of IBM FlowMark, Program Number 5622-615 for use with the IBM
OS/2 Operating System and to Version 1, Release 2 of IBM ImagePlus VisualInfo, Program Numbers 5655-036,
5622-231 and 5621-326 for use with the IBM OS/2 Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . v

Tables . vii

Preface . ix
How This Redbook Is Organized . ix
The Team That Wrote This Redbook . x
Comments Welcome . x

Chapter 1. Workflow and Document Management 1
1.1 Integration of Workflow and Document Management 1

1.1.1 General Requirements . 1
1.1.2 Workflow Design and Definition . 2
1.1.3 Document Management Design and Definition 3

1.2 Setting Up a Workflow and Document Management Project 6
1.2.1 Defining the Project Goal . 6
1.2.2 Building the Project Team . 7
1.2.3 Technical Skills Required . 8
1.2.4 Planning the Project Phases . 10

Chapter 2. Customer Project Overview . 13
2.1 Project Overview . 13
2.2 Customer Requirements . 14
2.3 Project Goals and Objectives . 15
2.4 The Credit Process . 19

2.4.1 Logical View of the People and Roles 19
2.4.2 The Current Credit Process . 20
2.4.3 Problems in the Current Process . 21
2.4.4 The New Credit Process . 21

2.5 Solution Overview . 23
2.5.1 Project Members . 25
2.5.2 Current Project Status . 26

Chapter 3. FlowMark - the Workflow Manager 29
3.1 FlowMark Components . 30

3.1.1 FlowMark and ObjectStore Relationship 32
3.2 FlowMark V2R2 versus V2R1 . 32
3.3 FlowMark Outlook . 33

Chapter 4. VisualInfo - the Document Manager 35
4.1 The VisualInfo Client Application . 40

Chapter 5. Implementing an Integrated Solution 43
5.1 FlowMark Integration . 43

5.1.1 FlowMark Language APIs . 43
5.1.2 Workflow Client APIs . 44
5.1.3 Building Blocks . 47
5.1.4 Service Broker Architecture . 48

5.2 VisualInfo Integration . 50
5.2.1 VisualInfo Standard APIs . 50
5.2.2 User Exits . 51

 Copyright IBM Corp. 1996 iii

5.2.3 VisualInfo High Level API for OS/2 . 55
5.2.4 VisualInfo OLE Automation API for Windows 59

Chapter 6. Integration Techniques . 63
6.1 DDE . 63
6.2 OLE Automation . 65
6.3 HLLAPI . 69
6.4 Accessing C and C++ APIs from Visual Basic 73
6.5 Accessing C and C++ APIs from REXX . 76
6.6 User Interface . 80

Chapter 7. Hints and Tips . 87
7.1 FlowMark Configuration . 87

7.1.1 Bundle Server Setting . 88
7.1.2 Code Page Setting . 88
7.1.3 Database Name Setting . 88
7.1.4 Database Path Setting . 88
7.1.5 Working Directory Setting . 88
7.1.6 Database Server Setting . 88
7.1.7 Delivery Server Database Recheck Setting 89
7.1.8 Delivery Server Message Resend Setting 89
7.1.9 Language Setting . 89
7.1.10 Logon Details Setting . 89
7.1.11 Interval Setting for Overdue Notification and Process Cleaning . . . 90
7.1.12 TelePath Protocol Setting . 90
7.1.13 Runtime Server Setting . 90
7.1.14 Database Segment Size Setting . 91
7.1.15 Runtime Server Name Setting . 91
7.1.16 Logon Timeout Setting . 91
7.1.17 TelePath Keep Setting . 91
7.1.18 TelePath Connections Setting . 92

7.2 Compacting the ObjectStore Database . 92
7.3 FlowMark Design . 92
7.4 VisualInfo Hints . 93

Appendix A. FlowMark C++ API Sample . 95

Appendix B. Special Notices . 117

Appendix C. Related Publications . 119
C.1 International Technical Support Organization Publications 119
C.2 Other Publications . 119

C.2.1 FlowMark . 119
C.2.2 VisualInfo . 119
C.2.3 Other Publications . 120

How To Get ITSO Redbooks . 121
How IBM Employees Can Get ITSO Redbooks 121
How Customers Can Get ITSO Redbooks . 122
IBM Redbook Order Form . 123

List of Terms and Abbreviations . 125

Index . 137

iv FlowMark and VisualInfo with Windows

Figures

 1. Electronical Folders and Documents in a Document Management System 4
 2. Timeline for Project Steps . 14
 3. Logical View of the People and Roles . 19
 4. Credit Process . 23
 5. Solution Overview for Windows Prototype 24
 6. Solution Overview for OS/2 Prototype . 25
 7. Platforms for FlowMark Servers and Clients 29
 8. FlowMark Buildtime Folder . 30
 9. FlowMark Runtime Folder . 31
10. Platforms for VisualInfo Clients and Servers 36
11. VisualInfo Client/Server Architecture . 37
12. VisualInfo Search Folder . 38
13. A Search Results Folder . 40
14. VisualInfo Viewer for Windows . 41
15. OLE VisualInfo Client Application Client Objects 41
16. VisualInfo Client Application Interfaces . 42
17. Runtime Clients in the FlowMark Workflow System 45
18. Using the Service Broker Concept to Integrate FlowMark with Other

Applications . 49
19. FlowMark Program Registration . 56
20. FlowMark Program Registration . 64
21. Out-of-Process OLE Server . 66
22. Remote OLE Server . 67
23. Hierarchy of the EXTRA! OLE Objects . 68
24. Simplified HLLAPI PC Host Communication 70
25. Display Layout . 82
26. Interface: Dataflow and Communications 83

 Copyright IBM Corp. 1996 v

vi FlowMark and VisualInfo with Windows

Tables

 1. Project Members . 7
 2. Platforms: FlowMark Language APIs . 43
 3. Functions: FlowMark Language APIs . 44
 4. MQSeries Building Block . 48
 5. VHLPI Components . 55
 6. VHLPI Requester Functions . 58
 7. EXM_LOGON_DETAILS Values . 89

 Copyright IBM Corp. 1996 vii

viii FlowMark and VisualInfo with Windows

Preface

This redbook shows how a successful pilot in workflow and document
management led to a complete system project for a large bank. It provides
information about the integration of FlowMark, VisualInfo, and the Windows
client. It contains many examples of sample code, applicable to clients using
Windows or OS/2.

This book was written for consultants, system architects, solution architects and
programmers.

Some knowledge of FlowMark, VisualInfo and programming techniques is
assumed.

(150 pages)

How This Redbook Is Organized
This redbook is organized as follows:

• Chapter 1, “Workflow and Document Management”

This provides an overview of considerations when implementing a document
management and workflow system, and provides advice on managing a
project of this type.

• Chapter 2, “Customer Project Overview”

This describes a pilot system that was developed for three banks.

• Chapter 3, “FlowMark - the Workflow Manager”

This introduces you to the IBM FlowMark workflow software.

• Chapter 4, “VisualInfo - the Document Manager”

This introduces you to the VisualInfo document/imaging software.

• Chapter 5, “Implementing an Integrated Solution”

This provides tips on using FlowMark and VisualInfo in an integrated
solution.

• Chapter 6, “Integration Techniques”

This provides techniques to create a pilot system using the VisualBasic,
VisualREXX, and C languages.

• Chapter 7, “Hints and Tips”

This provides additional hints and tips for the solution.

• Appendix A, “F lowMark C++ API Sample”

This appendix includes sample code that describes how FlowMark WorkFlow
Client C++ APIs can be used to add more function to your workflow
application.

 Copyright IBM Corp. 1996 ix

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Rochester Center.

Guido Auberger is a technical image and workflow specialist in Germany. He has
two years of experience in the document and workflow management field. His
areas of expertise include design and implementation of document and workflow
management solutions in the OS/2 and OS/400 environments. He holds a
degree in Computer Science from the BA Mannheim. After working three years
at IBM in Mainz, Germany he joined SerCon in 1994.

Unae Choi is a technical workflow specialist in Austria. She has over two years
of experience in the workflow management field. She holds a degree in
Computer Science from the Technical University of Vienna. Her areas of
expertise include implementation of workflow, imaging, and document
management solutions in a client/server environment.

This redbook is published by the International Technical Support Organization.

Mike Ebbers is a Senior Product Support Representative at the International
Technical Support Organization, Rochester Center. He has 22 years with IBM.
He produces redbooks on workflow and image. Mike previously developed and
taught courses on imaging and printing.

Thanks to the following people for their invaluable contributions to this project:

Christian Arnoux
IBM Switzerland

Francois Baud
IBM Switzerland

Jean Francois Chavannes
IBM Switzerland

Serge Pilet
IBM Switzerland

Werner Ruppert
IBM Germany

Comments Welcome
We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the following
address:

redbook@vnet.ibm.com

Your comments are important to us!

x FlowMark and VisualInfo with Windows

Chapter 1. Workflow and Document Management

This redbook is based a project which successfully integrated document
management and workflow products into a cohesive solution. The pilot
described in this book has been subsequently approved by the client, resulting in
an order for a production system.

1.1 Integration of Workflow and Document Management
This section gives an overview of the considerations for implementing a
workflow and document management system, and references other books which
give valuable information in this area.

We will introduce the concept of workflow modeling as it relates to the design of
application programs for use with the IBM FlowMark workflow manager.

We will then discuss some points to consider when introducing a document
management system to your customer.

1.1.1 General Requirements
The main benefits of an integrated workflow and document management system
are:

• Eliminating paper dependence

• Improving the management of work processes

• Integrating seamless applications

• Using consistent and efficient processes

With a document management system, you are able to handle various forms of
information such as image, voice, fax, EDI, and word processing.

• Flexible capture, retrieval techniques, and user interfaces meet the
customers ′ varying business requirements.

• Users can always view document folders and images in the system,
independent of their physical location.

• Multiple users can work on the same document images, therefore no copies
are required.

• All users are able to view the latest version of a document.

• The search of documents is independent of the document′s main index, so
that any index field can be used to find a document.

• Images need less space for archiving than the original paper documents.

• The underlying workflow system allows graphical definition and consistent
documentation of business processes.

• Organizations can easily adapt the system to changes in their business
processes.

• Execution of processes can be controlled and monitored at all times.

• Eliminate entry and re-entry of the same data.

 Copyright IBM Corp. 1996 1

• The system assists the users in their daily work, by automating the flow and
providing all of the necessary information and tools.

1.1.2 Workflow Design and Definition
A workflow management system manages people, processes, programs, and
data according to user-defined rules, conditions and routing, and allows
management reporting and tracking of work-in-progress.

The need for workflow usually originates when searching for a technology that
improves customer service, responsiveness, and efficiency.

The IBM FlowMark program product provides a way to model a process, then
assign applications to activities in the resulting workflow model. This allows the
workflow manager to automate the control of activities and the flow of data.

Work is routed to the person who does the activity. A tool or application
program that is required to perform an activity can be designed to be started
automatically when a user starts an activity from a worklist.

In a typical workflow project, the solutions architect and the workflow specialist
define the workflow models, the application programs, and the data structures
needed to support activities. The workflow specialist not only is able to define
workflow models using the FlowMark buildtime components, but also has a
general knowledge of various programming and integration techniques and how
these pieces can fit together. The workflow specialist may take part in the actual
coding of the application integration parts, but this is usually done by the
programmers. The following sections apply to solution architects, workflow
specialists, and programmers of workflow systems.

Note: The word ″application″ is used interchangeably with the word ″program″.

Always remember to view the workflow system from the perspective of the
actual business processes and the work being performed as part of these
processes. A workflow system is designed to help users perform their part of
the work in processes involving several people or several departments in an
enterprise. That is, the purpose of the workflow system is to let users spend
most of their time performing activities that have add-on value to the business.
This is achieved by providing the users with all of the data and tools needed to
perform their work with an easy-to-use ″to do list″ interface called work list .

A workflow system not only takes away from end users the burden of searching
and starting the right applications to perform some work and re-entering the
same data multiple times in different applications, but also provides a way of
controlling and administering the status of complex and long lasting business
processes, and makes sure that business rules are being correctly followed.

The main advantage of workflow systems over large applications, where
business rules are hard-coded, is that you can quickly adapt to changes in
business processes without having to change, recompile, and reinstall your
entire application. This can be achieved because in workflow systems, control
and flow logic are separated from the applications, and the applications are
functionally decomposed in several reusable modules.

So in designing and implementing applications to be integrated with a workflow
manager such as FlowMark, you need to separate the control flow and data flow

2 FlowMark and VisualInfo with Windows

from the applications, and move the start and exit conditions to the workflow
model.

Most applications include many diverse functions can support several different
activities in different stages of a process. Output produced by one function of a
program can be used as input by another function of the same program.
Therefore, the same application can be used to support many different program
activities in a workflow model.

For detailed information on designing processes in FlowMark to meet
performance and capacity requirements, refer to the FlowMark V2.2 Design
Guidelines, SG24-4613.

For detailed information on FlowMark modeling concepts, refer to FlowMark V2.1
Modeling Workflow, SH19-8241-00.

For detailed information on FlowMark APIs and integration concepts, refer to IBM
FlowMark: V2.1 Programming Guide, SH19-8240 and IBM FlowMark Application
Integration V2R2, SH12-6267.

For hints and tips on installing and maintaining workflow systems based on
FlowMark and VisualInfo, refer to FlowMark Installation and Administration,
SG24-4614.

1.1.3 Document Management Design and Definition
A document management system allows documents to be electronically
captured, stored, retrieved, and displayed. A document management system
can handle various forms of enterprise information such as image, voice, fax,
EDI, word processing, and spreadsheets. This reduces the amount of paperwork
handled by businesses. It improves productivity by storing images of paper
documents and routing them electronically to where they are needed.

In a document management system, electronic documents are indexed, routed,
and added to business folders just the same as normal paper documents.
Unlike paper, the electronic documents can be accessed by multiple users at the
same time and can be stored and administered centrally.

Chapter 1. Workflow and Document Management 3

Figure 1. Electronical Folders and Documents in a Document Management System

To manage your documents with VisualInfo , you have to consider the following:

 1. Scanning and indexing (document capture process) of the archives with
folders and documents. Your main focus is the different types of documents,
but you also consider the daily occurrence of such document classes.

 2. Storage and retrieval in the VisualInfo system.

 3. Document management structures under VisualInfo Windows client.

The single most expensive part of the total pilot system is certainly the initial
capital investment of scanners, PCs, rooms, and environment that you need, and
the on-going labor cost of operating scanning and indexing stations
(approximately 80 percent of the total cost). This is the reason it is worthwhile to
invest a reasonable amount of time and money in the analysis and optimization
of the current and future document capture process in relationship to the total
business process. The document capture process is composed of five separate
modules:

 1. Preparation of document classes, batches, documents, and pages.

 2. Scan and rescan.

 3. Image processing with cleanup, OCR, bar code, and patch code.

 4. Indexing with key entries and index validation.

 5. Release, commit images, indexes, and full text to the permanent storage or
workflow.

The process of setting up document classes is the basis for the first step. The
following questions have to be answered:

• What type of information is going to be used for retrieving these imaged
documents? Which index fields are used in each document class?

4 FlowMark and VisualInfo with Windows

• How are documents of this type to be processed? Which queues are used
for each type?

• What type of physical documents are being dealt with?

• What are the volumes in total?

The more carefully the batch es in the document capture process are prepared,
the easier the following steps are going to be. Often scan tools have predefined
batch types. These batch types were created based on many different types of
processing that have been encountered. This allows you to quickly select a
batch definition that matches your requirements for processing the given
documents.

One of the difficult concepts of the document capture process is understanding
batch processing. The contents of a batch can vary from one business to
another based on its individual needs for paper handling and storage. A batch
can consist of several documents that make up a folder or just a unit of identical
forms that are processed together.

Batch preparation includes sorting the documents, identifying the types of forms
and documents, and removing the staples. With proper preparation
accomplished, scan operators do not need to know any of the characteristics you
defined for the batch; they just have to choose the right batch type by name.

Scanning is accomplished in two different ways: single document scanning and
batch scanning. In single scanning, the user manually specifies when the last
page of the document has been scanned. Batch scanning consists of loading a
stack of documents into an automatic document feeder and starting the scan
process, where the documents are separated by bar codes, patch codes, blank
pages, or a fixed count of pages per document. Post-scan activities would
include cleaning up the images and de-skewing them. The Kofax AscentCapture
product, for example, was created to help with the batch scanning process.

Scanning a document converts the information on the paper into pixels using a
raster scan process. If the image is not acceptable because the contrast or
brightness should be adjusted, then the document is rescanned after the
appropriate adjustments have been made to the scanner.

During the image processing , the skewing of the scanned documents is
corrected, and black borders and unnecessary parts of the layout are removed
(forms dropout). Then, optical character recognition (OCR), optical mark
recognition (OMR), and reading of patch codes and bar codes may be performed
in this step.

Each document or folder must be indexed into the system to ensure that it is
easily retrieved later. Indexing can be performed manually or automatically.
Manual indexing is needed when it is not possible to read the index data from
the scanned document (such as a formless letter or unstructured document):

 1. Index before scan:

Operators enter index information on their workstations when they view the
paper documents and receive a temporary ID. This ID is an alphanumerical
string or bar code; it is needed when the paper document is scanned later.

 2. Index after scan:

Chapter 1. Workflow and Document Management 5

Scanned documents are displayed on a workstation and operators have to
enter the index information that they can read on the image.

Automatic indexing is a fast way to index your images. To use automatic
indexing, your documents have to be well defined forms with areas on them
where the information can be retrieved from:

 1. OCR and OMR:

Using optical character or mark recognition, indexing information is read
from the image itself. If you use simple and monospaced fonts, you get
pretty good results. Advanced techniques such as forms dropout and skew
correction improve the OCR success rate. Misread information must be
corrected by operators viewing the image.

 2. Bar Code Recognition.

 3. Indexing Data provided with the object. This data can be checked against a
database before or after scanning, which allows verification of fields and
retrieval of data so that other fields can be filled in. Index verification is a
second index pass, so that the indexing information can be verified and
″bad″ pages can be rescanned.

OCR full text scan can be included in your processing. This results in a
character-based document which is machine-readable and can be used for
subsequent full-text searches.

Batch release is when all documents in a batch are imported into VisualInfo.

1.2 Setting Up a Workflow and Document Management Project
This section provides some general advice on managing a workflow and
document management project. We provide tips on how to build the project
team, the skills required and a few things to consider when planning and
implementing the various project phases.

1.2.1 Defining the Project Goal
General goals may be to:

• Decrease turnaround time.

• Increase productivity.

• Decrease cost.

• Improve quality.

However, when implementing a workflow and document management system to
be rolled out for a production environment, you should specify the goals more
precisely and make sure that they are measurable, achievable, and ranked.
Most of all, the goals should not be conflicting.

Examples of goals may then be to:

• Reduce the cycle-time of a process from 1 month to 2 weeks.

• Achieve 70% increase in rate of business processes completed.

• Achieve 20% decrease in cost.

• Achieve 20% decrease in customer complaints.

6 FlowMark and VisualInfo with Windows

1.2.2 Building the Project Team
To cover a workflow and document management project, your project team
should consist of members with at least the following roles:

Table 1. Project Members

Role Description

Project Manager Coordinate project team and contact to customer.

Solutions Marketing
Representative

Primary customer contact.

Solutions Architect Design overall solution; develop test scenarios.

Industry Advisor Interface to customer end-user requirements.

Technical Support Install and support HW/SW.

Workflow Specialist FlowMark technical support; verify business process model requirements.

Image Specialist Network and client/server support; help with network considerations such as
configuration, network load and accessing distributed resources. veri fy
requirements concerning document types and quality.

Network Specialist VisualInfo technical support; verify requirements concerning document types
and quality.

Programmer Code tools and programs assigned to the workflow activities.

Tester Test according to the test scenario.

This table lists the minimum requirements to execute and successfully complete
projects of this type.

The project manager is responsible for the coordination of the entire project
team and their communications. The manager also does the administrative work
such as creating and updating the project plan. Further, we recommend that the
manager keep in contact with a defined representative of the customer. The
project manager should make sure that all internal and external meetings and
their results are protocolled.

The first customer contact is usually established by a solutions marketing
representative . It is the representative′s job to convince the customer that your
solution is the best for this application. Thus the representative has to provide
the customer with all the information about products and services that would
satisfy the customer′s needs.

The solutions architect designs the overall solution and creates a design
document. The architect needs input from the workflow and image specialists,
the industry advisor and the technical support persons. The architect has to
make sure that the individual components and the complete system can cope
with the capacity requirements that were negotiated in the contract with the
customer. Therefore, the architect has to verify the feasibility of all single
requirements, such as, amount of documents (scanned, retrieved, and processed
in the workflow), texture and size of the documents, the different types of
documents, the number of process instances and their duration, number of
users, and general platform specific requirements.

Special industry knowledge is supplied by the industry advisor . The advisor
knows the terms the customer is talking in, and is able to ″translate″ them to the
other team members. Therefore, the industry advisor is an interface between a
representative of the customer′s end-users or experts and the project team. The

Chapter 1. Workflow and Document Management 7

advisor must also provide input relating to the customer′s needs for the project
plan.

Hardware and software installation and configuration according to the design
document is done by one or more technical support persons. It is recommended
that they coordinate and document all of their activities. The result of their work
must be a unified and reproducible environment.

The workflow specialist has two major jobs to do. First, the specialist has to
verify the business process model and assist the solutions architect in designing
the overall solution. Second, the specialist must help define the business
process model in FlowMark. The industry advisor gives the specialist input
about the customer′s organization, staff, roles, and their relationships.

The document′s type and quality is analyzed by image specialists and is
reported to the solutions architect. They have to check and customize the
hardware and software for image input and output. Therefore, they specify the
peripheral hardware (scanner, monitor, and printer) and VisualInfo definitions
such as volumes, storage groups, index classes, and access lists. To do so,
they have to understand the current customer business process, distinguish the
document classes (logical documents), and understand the components of a
document class. They need to be able to note the key lookup fields that need to
be included for indexing, and to determine the necessary processing
requirements for a document class.

Workflow activities receive processing, logic and decision-making ability from
programs attached to them. Therefore one or more programmers must be
involved. The information that is necessary for this job comes from the design
document. It is necessary that all programmers are able to ″understand″ and fix
the code of others; therefore a unified documentation of the code and a version
management is needed.

The testers have to verify that the system functions as described in the test
scenarios developed by the solutions architect. They are responsible for
documenting abnormal system behaviors in a detailed and reproducible way.

1.2.3 Technical Skills Required
To carry out a workflow and document management system using FlowMark and
VisualInfo, you need at least the following technical skills:

 1. Product Skills

• Target Operating System

It is very important to know the target platform. The success of the
solution depends on the operating system and on the applications used.

• Database

Database design skills will help you to optimize capacity and
performance. Distributed database programming skills are becoming
increasingly important in the client/server environment.

• Client/server

Advanced client/server design and programming skills (such as RPC,
APPN/APPC, and CICS) may be needed for your project.

• FlowMark and Service Broker

8 FlowMark and VisualInfo with Windows

You need to know the benefits of your workflow application. Questions
such as the following should be answered: What network protocols does
the workflow application support, and what tools or building blocks are
available to integrate desktop and host applications with it? Does the
workflow application always require a database or can you just use it
optionally to store huge amounts of data? Is it possible to document,
model,and backup your workflow models easily?

• VisualInfo

The document management system you choose, is as important for your
solution as the workflow application is. You need to know supported
environments, image and file formats and so on. Also it is interesting to
know how the document archive works. How do you define or change
index classes and what kind of search methods are supported? To be
sure of having no problems with storage, you should check the
availability of storage devices and their limits.

• VisualInfo Windows client

The Client Application is used to access VisualInfo from a
Windows-based environment. Not all of VisualInfo′s functions may be
accessible through the VisualInfo Windows client, VisualView, or other
client applications; therefore, you must check for conflicts with the
customer ′s requirements.

 2. Programming Skills

• C, C + +

C++ programming skil ls are needed to use the FlowMark Workflow
Client APIs and C programming skills to use the VisualInfo, VisualInfo
Client Application, and FlowMark C API functions.

• REXX

On the OS/2 platform, Visual REXX can be used to rapidly do the user
interface and the integration with FlowMark.

• Visual Basic

On Windows, the equivalent of REXX programs can be carried out with
Visual Basic.

• DDE, OLE

To integrate applications and exchange data between different
applications, DDE and OLE techniques can be used.

• HLLAPI

For the integration of existing host applications, HLLAPI programming
may be required.

 3. Document Management and Workflow Skills

To have a basis for sizing the entire project, data and facts have to be
collected and analyzed by persons with document management and
workflow skills.

The persons with document management skills should understand the
components of the scan queue and be able to set up its features (bar code
labels, OCR, patch code, batch totals, and acceleration cards). They also
have to know the components of the OCR index and zoning queue, the index
verification queue, and the release queue, and be able to set up the OCR

Chapter 1. Workflow and Document Management 9

index and zoning queue features (registration zone, manual zones, and OCR
zones). They also must know the features of the index verification and
release queues.

They need to understand the components of the scan module, know how to
set up its features, and create and modify batches (scanner selection,
scanner set up such as resolution, contrast, imprinting, and bar code).
Further, it is necessary to understand the components of the batch manager,
the OCR module, the index and index verification module, the rescan
module, and the release module.

The persons with document management skills need to know how to design
preprocessing and postprocessing scripts and macros (document class
validation scripts and index filed template macros). They have to know the
functions, capabilities, and features of viewers: What graphic formats are the
viewers able to display, and are they able to work with COLD data?

The workflow specialists have to understand the customer′s current business
processes in detail, and also be able to find areas of improvement. They
need to analyze the processes to identify the activities, their relationships
and dependencies. With their FlowMark modeling skills, they should know
which modeling concepts (bundles, manual checklists, subprocesses,
notifications, blocks, and support tools) can be used to carry out the
processes and activities. They have to decide which data is application
specific and which is for workflow control, then design the data flow
accordingly. The organizations, roles, people and their relationships also
need to be defined.

For the performance and capacity planning, the workflow specialists need to
gather information on the different types of processes (number of templates),
the number and frequency of process instances started, number of
concurrent and total users, and the usage of data containers.

1.2.4 Planning the Project Phases
Generally in a workflow and document management project, you should perform
the following steps to successfully develop a pilot application:

 1. Get customer requirements.

 2. Create design documents (prototype).

 3. Review prototype design.

 4. Implement and test the prototype.

 5. Update customer requirements.

 6. Create design documents (pilot).

 7. Review pilot design.

 8. Implement and test the pilot.

 9. Roll-out of pilot.

You should be aware that the preceding steps may overlap and contain several
iterations. The customer requirements can change continuously during your
project. You have to define from the start how the initial and additional
requirements are gathered and documented. This should always be documented
in agreement with the customer. For every requirement that is added, changed
or refined, you have make sure that the customer knows the impact it has on the

10 FlowMark and VisualInfo with Windows

complete project. Even a seemingly small requirement may lead to critical side
effects, which then results in unexpected time and resource problems. It is
essential that you and the customer have the same understanding of the scope
of the project.

From the beginning, you need to put a project review process in place internally
for your project team, and externally for the customer. For a successful
workflow project, you have to filter those business processes of the customer
that have the most added value and where the benefits are most visible. When
defining the solution concept, you have to consider how the solution fits into the
customer ′s Information Technology (IT) architecture.

The design documents define the implementation concept, the standard
applications used and integrated, and what needs to be developed. The purpose
of this step is to clarify the complexity and risks of the solution, and show the
feasibility of the solution in the given cost and time frames. The requirements
specifications and the design documents must ensure that your project team
understands the customer′s processes.

The design documents should be reviewed thoroughly by an internal team which
at least includes some of the authors of the design documents, someone with the
industry knowledge of the customer′s business area, and a quality assurer.
Following this, the customer must also review the documents . Any changes and
open points resulting from the reviews should be discussed and incorporated in
the design documents. This is an ongoing process that ends only when all of the
participants agree to the designed solution in its various levels of detail.

Before the implementation phase , you have to set up the development
environment, which includes acquiring and installing all of the required software
and hardware, and extending the project team with the appropriate technical
skills. During implementation, you should keep an ongoing contact with the
customer, hold regular project status meetings, verify that the defined project
check points are still on time, and document the project progress. To finish the
implementation phase in the planned time frame, it is essential to have a
reliable support structure to help you with hardware and software problems.
Parallel to the implementation of the prototype, you can start the testing
according to the test cases described in the design documents.

The finished prototype must fulfill the expectations of the customer concerning
the technical feasibility and benefits of the new technology in their business
processes. The solution not only must correspond to the customer′s needs, but
also should be presented in a way that is optically attractive and intuitive. Even
if the customer is satisfied with the prototype as is, it is most certain that they
will refine the requirements , which leads to an improvement of the prototype to
be suitable for productions environment. This then is the beginning of the pilot
project phase.

The pilot design documents are similar to the ones of the prototype, but they
also define the operational concept and are based on the refined customer
requirements. When designing the pilot workflow solution, it is vital to consider
the implications of the solution on the existing systems and applications, the
company ′s organizational structure, the security requirements, the scalability in
a distributed environment, and the system management. The pilot solution may
be far different from the prototype as you consider the production values such as
the peak and average number of concurrent users, workload, network traffic,
server load, time and place dependencies, usability, and performance.

Chapter 1. Workflow and Document Management 11

The review process of the pilot design documents is identical to the prototype
design documents, except that the end-users are more involved. We
recommended that you set up your pilot project team with members from the
prototyping phase. They are not only familiar with the environment, but know
the particular problems that may occur, understand the customer′s terms and
processes, and are already a well-adjusted team.

The implementation and test of the pilot system has to ensure a smooth porting
of the system to the customer′s production environment, and that the pilot meets
the stability criteria according to the design documents. Besides the normal test
cases, performance and stress tests with realistic scenarios and quantities have
to be performed. Once you have completed and tested the system, and provided
technical and user documentations to the customer, you are ready for the final
roll-out of the pilot system .

For details on roll-out and maintenance of such systems, refer to FlowMark
Installation and Administration, SG24-4614.

12 FlowMark and VisualInfo with Windows

Chapter 2. Customer Project Overview

This chapter covers the pilot workflow and document management system that
was developed by IBM and a service provider for several banks in Switzerland.
We describe the customer requirements and objectives, the IBM solution and the
current project status.

2.1 Project Overview
The project was initiated in August 1995 when the customer, a service provider
to several banks in Switzerland, listed requirements from the banks and sent a
request for information. A detailed response was sent back by an IBM
marketing specialist, containing precise facts on IBM′s standard workflow and
imaging products and their benefits to the customer′s needs.

Also, a series of demonstrations was held, where base products were shown
individually and in integrated scenarios. Through this, the customer was able to
see the entire range of IBM′s workgroup software solutions. So the number of
vendors was reduced to three.

IBM and the two other vendors were requested to design and carry out a
prototype for a credit management application. The customer′s expectations of
the prototype were presented by a specialist from one of the banks in meetings
with the project members. The result was a rough overview of the workflow
process with approximately ten activities and a few roles.

Based on this information, a design document for the prototype was written
during mid-October. It described the activities, programs, responsible people,
data structures and the flow in detail. The implementation of the prototype,
which integrated workflow, image, host, and desktop applications on the OS/2
platform, lasted less than a month.

The prototypes of the selected vendors were shown at end of November, of
which the IBM solution was preferred. However, IBM was expected to develop a
more specialized prototype on an alternative platform before a final decision
could be made. Following further discussions in January 1996, the project to do
the prototype system was started in February. IBM was given six weeks to do
the prototype.

At the end of March, a final decision was made whether to continue with IBM to
carry out and deploy the pilot system, or to return to the other two vendors on
the waiting list if IBM did not prove that it could provide the same solution on the
Windows platform.

The objective of the project being described in the following sections was to
provide a proof-of-concept workflow and document the management system,
whereby the workflow process to be implemented was a credit process for
financing of properties. If a final deployment of the system takes place, all banks
involved in the project will use the same system. However, the input for this
project (the description and requirements of the credit process), was provided by
one banks, which is referred to in the following chapters as Customer A (or Bank
A).

Here is a time line which shows the progession of steps for this project.

 Copyright IBM Corp. 1996 13

Figure 2. Timeline for Project Steps

The next section describes briefly the situation of Bank A and their requirements
for a workflow solution.

2.2 Customer Requirements
Customer A is a large bank in Switzerland which is the result of a merger of four
banks during the last two years. Since the merge, the bank faced several
problems because of the different information systems being used, and different
processes being followed. The most pressing business problems were identified
in the management of credits and loans. Although a unified credit management
process had been defined and enforced in all departments recently, it was still a
paper-intensive manual system which had not brought much improvement to the
process.

The customer faced problems such as:

• Critical workload in administrative tasks such as text processing and multiple
data entry.

• No consistency in current workflow.

• Business rules not being followed correctly by employees.

• No possibility to control and track the status of a credit request.

14 FlowMark and VisualInfo with Windows

To solve these problems and control processes more effectively, the bank
engaged their Information Technology service provider to find the right
technology innovation for their credit applications.

The service provider gathered the user requirements. They collaborated with
IBM to design and do a prototype system using workflow (WF) and electronic
document management (EDM).

Among others, the final workflow system had to fulfill the following requirements:

 1. Allow the users to enter data related to the credit request at any point and
time in the process.

 2. Allow the credit request process for a specific customer to be stopped and
all necessary data to be saved at any point and time in the process.

 3. Allow the user to continue with the process, even if all of the defined
conditions have not been met.

 4. Allow the asynchronous starting and interaction of subprocesses.

 5. Allow multiple authorized users to view the information concerning a specific
credit request, not just the user currently working on the request.

2.3 Project Goals and Objectives
The goal of this project was to prove that our solution was ″at least as good″ as
the major competitor, and to prove that the team of IBM and the service provider
was the best choice for the banks involved.

 The objective of this project was to implement a workflow and document
management system:

• Design and develop FlowMark processes for credit applications that integrate
host applications, document management, and common desktop
applications.

• Implement a tight integration of VisualInfo Client Application and IBM
FlowMark on the Windows platform, using IBM VisualInfo for OS/2 and IBM
FlowMark for OS/2 servers.

At the start of the project for the implementation of the prototype, a document
describing all of the conditions and terms, responsibilities, specifications,
acceptance criteria, milestones, and objectives was created by all parties
involved.

The following pages contain excerpts from these documents. This is just for
information only. Not all sections of the documents are included and many
details have been left out.

Project Document

Objectives
Electronic Document Management

For all end users of the electronic document management (EDM) system, we
provide a user-friendly and intuitive graphical interface that allows you to:

Chapter 2. Customer Project Overview 15

• Index documents according to defined rules.

• Search and retrieve a specific document, a folder, a part of a folder, a group
of folders, or documents of a specific document type.

• View a document and view the contents of a folder.

• Send electronically a document, a folder, a part of a folder, or a group of
folders containing documents of a specific document type to other users of
the system.

• Reproduce a document.

• Extract all or parts of a document to be used in other applications, always
guaranteeing that the original is not modified.

• Add a document (text, spreadsheet, graphic, image, or fax) in one or more
folders.

For all users who are in charge of administering the EDM system, we provide a
user-friendly and intuitive graphical user interface that allows you to:

• Organize the hierarchy of folders.

• Define the document types and their characteristics.

• Define the users of the system and their access privileges.

Document Capturing

For this, we provide a report on:

• The organization of work at a document capturing station and the processing
cycle.

− The profile of persons assigned to preparing documents, indexing,
controlling and validating.

− The specifications of an index before scan or an index after scan.

• The specifications of the scanners such as:

− Speed

− Single or double-sided

− Multi-papers

− Multi-formats

• The specifications of the automatic recognition of forms and OCR.

• The specifications for usage of bar codes and patch codes.

Electronic Workflow Management

For all users who are authorized to work at workplaces of the electronic
document management (EDM) and workflow (WF) system, we provide a user
friendly and intuitive graphical interface that allows you to:

• Initiate a flow of activities (process).

• Execute programs attached to an activity in a process.

• Call support tools provided for an activity in a process.

• View and start activities that need to be worked on (work list).

• Monitor and provide statistics of a process.

16 FlowMark and VisualInfo with Windows

For all users who are responsible for developing/modeling the workflow
processes, we provide a user-friendly and intuitive graphical user interface that
allows you to define the workflow for processing credit requests.:

• Subprocesses

• Activities

• Data flow between activities

• Programs called

• Data sent and received from programs

• Support tools provided

• Start and exit conditions of an activity

All controls of folders must conform to rules described in the ″Rules of control″.

Responsibilities
IBM

IBM must:

• Write an application to manage electronic folders of client documents that
will be deployed in the banks involved in the project, and that conforms to
the defined document classification rules.

• Carry out a process for credit requests that is based on the specifications of
Bank A.

• Produce a deployment plan for the banks.

• Coordinate all of the activities and resources provided by IBM with the
responsible project members of the service provider.

IBM provides the following software:

• OS/2 Warp Connect

• VisualInfo (server OS/2, client windows)

• FlowMark (server OS/2, client windows)

• DB2/2

• 3270 emulation for OS/2 (Communications Manager)

• TCP/IP for OS/2

IBM is responsible for the following installation and configuration:

• Transformation of Windows 3.11 workstations provided by the service
provider to OS/2 Warp workstations.

• Installation and configuration of VisualInfo and FlowMark.

Service Provider

The service provider must:

• Provide all of the hardware needed by IBM to develop the system.

• Provide the specifications for the system.

• Write the test scenario for the electronic folder management.

Chapter 2. Customer Project Overview 17

• Coordinate with the IBM project manager for all activities and resources
provided by the service provider.

• Coordinate with the end users of the banks.

• Coordinate the acceptance of the results.

The service provider must provide a project room with:

• Five working places.

• Access to the customer host information system.

• Development platform:

 1. Server: 1 OS/2 Warp Connect station

− Pentium 100, 48MB RAM, 2 x 1GB HD

− 17″ color monitor, Quadspeed CD-ROM Drive, Token-Ring card

 2. Clients:

− One Windows NT (32 MB memory)

− One Windows 95(16 MB memory)

− One Windows for Workgroups (16 MB memory)

Note: Hardware for client workstations is similar to server.

 3. One OS/2 Warp Connect station:

− Pentium 100, 32MB RAM, 1GB HD

− 17″ color monitor, Quadspeed CD-ROM Drive, Token-Ring card

 4. Scanner

A scanner of the characteristics: A4, tdpm, 200-300dpi, SCSI

 5. Juke-box

For the current project phase, this is not necessary. This is simulated by
using different partitions of one disk of the OS/2 server.

 6. Telephones

One international, One local, One fax-modem international

The following software is provided and installed by the service provider:

• Microsoft Office

• Lotus Smartsuite

• EXTRA! - a 3270 Emulation for Windows

The Banks

Bank A provides a user of ″credit″ and one organization who participates in the
definition of the processes for granting loans for financing properties.

Bank A writes a test scenario for the flow of activities performed in the
preceding process.

Bank A writes a framework of documents to be created in the activities in the
preceding process.

Acceptance Criteria
18 FlowMark and VisualInfo with Windows

The scenario for the presentation of this application conforms to the specification
defined in document X. The demonstration will be presented before the end of
March 1996.

At a minimum, the application to be presented consists of the following
elements:

• A complete definition of the workflow process.

• A complete user interface.

• At least one integration with the electronic document management system.

• At least one automatic creation of a document.

• At least one integration with the host system.

The following elements are not part of the acceptance criteria, but need to be
developed if time permits:

• Integration of the workflow with the electronic document management
system VisualInfo using OLE.

• Creation of all the generated documents automatically.

End of Project Document

2.4 The Credit Process
This section describes the workflow process for managing credit requests as it is
being handled today, and as it has been defined and modeled in the prototype
workflow application.

2.4.1 Logical View of the People and Roles
The following diagram illustrates the people involved in the credit process:

Figure 3. Logical View of the People and Roles

• Client

The client is the person or company that makes a request to the bank for a
loan.

• Front-Office

Chapter 2. Customer Project Overview 19

The front-office describes anyone in the branch office of a ″Credit″
organization who is responsible for collecting all of the necessary
information and documents from the client.

• Competence

The competence can be one person (for example, the team leader in the
front-office) or a group of people who can make the decisions to accept or
deny the credit.

• Back-Office

The back-office describes anyone in the branch office of a ″Credit″
organization who is in charge of managing the files.

• External Offices

External offices can be official organizations, notaries or anyone else who
has to provide the bank with information regarding a customer.

2.4.2 The Current Credit Process
The management of credit requests in Bank A was done with paper folders and
documents without any possibility of controlling the process. It was in the bank ′s
best interest to re-engineer their credit process so it is highly visible to their
customers.

However, there was no efficient way to control or track the status of credit
requests. The need to re-engineer the way the bank handles credits was not
only felt by the executives in the bank, but also by the employees. Although the
employees of the credit departments are aware of problems and feel the need
for change, there was still a feeling of distrust for electronic document
management.

The following gives a brief overview of the credit process as it was before the
new IBM solution was piloted:

 1. A client requesting credit contacted the front-office and provided all
documents to the front-office.

 2. The front-office made copies of the original documents and kept both the
original and the copies.

 3. The front-office sent a document to the back-office asking for further
information on the client, such as land register.

 4. The back-office routed this document to the appropriate external offices such
as the land registry.

 5. The external offices sent back the necessary information to the back-office.

 6. The back-office copied the received documents and sent the copies to the
front-office.

 7. Based on all of the information gathered, the front-office wrote a credit
proposal and presented this to the competence .

 8. The competence made the decision to approve or reject the credit based on
all of the information received from the front-office.

 9. After a positive decision from the competence, the front-office wrote a formal
offer for credit and sends the contract to the client .

20 FlowMark and VisualInfo with Windows

10. The front-office made copies of some documents in the client′s folder and
sends the folder with all of the original documents to the back-office . The
front-office kept the copies for other purposes.

11. The client signed and returned the contract to the back-office .

12. The back-office sent the contract to the front-office for checking the client′s
signature.

13. The front-office checked the signature and, if OK, added the signed contract
to the client′s folder.

14. When the client′s folder was received by the back-office , the back-office
controlled the protocols and documents with the bank rules.

15. If the back-office decided that the client′s folder was ″incomplete″, then the
folder was sent back to the front-office .

16. The front-office contacted the client for the missing documents.

17. When the front-office received all of the missing documents from the client,
the front-office added the documents to the client folder and sent the folder
back to the back-office .

The client folder may be sent back and forth between the front-office and
back-office several times before the back-office decided that the folder was
″complete″.

18. Completed client folders were archived by the back-office.

2.4.3 Problems in the Current Process
• Ideally, only original copies of the documents should exist. However, many

copies of the documents were generated and distributed during the entire
process.

• One quarter of all approved client folders arriving at the back-office were
″incomplete″.

• The controlling of the client folder was performed too late in the process
because the bank rules were not being followed by the employees.

• For ″incomplete″ folders, the folder was physically sent back and forth
between the front-office and the back-office. This resulted in unnecessary
loss of time as the front-office and the back-office are usually in different
locations.

• Whenever the back-office asked the front-office for missing documents from
the client, the front-office had to contact the client and ask for these missing
documents. This resulted in a loss of the bank′s image to the client, as it
was incomprehensible to the client why the bank did not require all of these
documents right at the beginning instead of asking for them after the credit
agreement had already been signed.

2.4.4 The New Credit Process
In the new Credit Process, activities with no added value have been eliminated
such as the routing of the signed contract from the back-office to the front-office
for checking the signature. This is now done by the back-office. Most
importantly, the control of whether the client folder is complete is now done by
the workflow system.

The process can be divided into four large phases:

Chapter 2. Customer Project Overview 21

• The collecting of input information from the client.

• The building of the client folder, its analysis, and the decision by the bank.

• The proposal phase where the contract is sent to the client and the notary
public.

• The signing of the contract by the client and the receiving of the letter from
the notary.

The new credit process will be executed in the following sequence:

 1. The process starts when a client contacts the front -office and requests
credit or a loan.

 2. The front-office needs to collect all of the information regarding the client to
estimate the financial stability of the client.

 3. To do this, the front-office contacts external offices (such as the land registry
office or real estate expert) for information

 4. Once all of the necessary information has been collected from the client and
the external offices, the front-office prepares the credit proposal consisting of
the terms and conditions and presents it to the competence for a decision.
This proposal includes, among others things. the client′s requested credit
and information on their financial situation.

 5. If the competence approves the credit, the front-office creates a formal offer
and sends the contract to the client and to the notary. Then the competence
sends the entire client folder to the back-office .

 6. If the client accepts the proposal, they sign and return the contract.

 7. The back-office receives the signed contract from the client and the notary,
and does the following:

• Checks the client′s signature.

• Adds the signed contract to the client′s folder.

• Controls that all other necessary documents are in the folder.

• Scans all of the documents.

• Archives the paper documents.

22 FlowMark and VisualInfo with Windows

Figure 4. Credit Process

2.5 Solution Overview
The solution for the new process consisted of a workflow manager (FlowMark)
for modeling and managing the workflow process, a document management
system (VisualInfo) for scanning paper documents and archiving them as images
in electronic folders, common desktop applications for text processing,
spreadsheet applications, and a terminal emulation software for retrieving from
or updating data on legacy systems. Additionally, you need interface programs
to integrate the single components using their API functions, DDE, OLE, or some
similar techniques.

In the new process, all the steps in the process are controlled by the workflow
system, so that end-users are provided a list of their ″to-do″ items in their work
lists. The work lists provide a single point of access to all the data and
applications the users need to start and complete the work items in the work list.
Double-clicking a work item from the work list opens an application dialog-box
where all necessary data concerning the specific process are presented in a
user-friendly notebook type form. Access to specific electronic documents and
folders needed to complete the step are also provided from this dialog-box.

This section discusses the products that were used or integrated in the pilot
system:

• Workflow system: FlowMark
• Document management system: VisualInfo, VisualInfo Client Application
• Desktop applications: Microsoft Office Standard and Lotus Smartsuite
• Terminal emulation: EXTRA! for Windows

The development environment for the prototype consisted of two OS/2
workstations and three Windows (3.11, 95, and NT) workstations. One OS/2

Chapter 2. Customer Project Overview 23

workstation was the FlowMark and VisualInfo server, and all of the other
workstations were FlowMark and VisualInfo clients. The server workstation had
the following software installed:

• FlowMark runtime and database server,
• FlowMark buildtime and runtime client,
• VisualInfo library and object server
• OS/2 Warp, DB2/2, CSet++

On the Windows workstations, the following software was installed:

• FlowMark Runtime Client
• VisualInfo VisualView Client
• VisualBasic 4.0
• MS Office Standard and Lotus Smartsuite
• 3270 emulation EXTRA!

The following diagram shows how these products were integrated on the
Windows platform:

Figure 5. Solution Overview for Windows Prototype

24 FlowMark and VisualInfo with Windows

The following diagram shows the solution that was developed in the first
prototype on the OS/2 platform:

Figure 6. Solution Overview for OS/2 Prototype

2.5.1 Project Members
During the project, there were 13 people involved in the project, including the
IBM and customer team members. The number on site at any one time varied
according to the project phase.

From IBM, the following people were involved:

• An IBM executive (member of steering committee)

• A project manager on the IBM side (member of steering committee)

This manager was the coordinator of the IBM project team, and was
responsible for the project planning, documentation, reviews, and contact to
the customer. The manager coordinated the weekly review of the project
status with the customer at the customer site, where the prototype was being
developed. Also, the weekly internal IBM project meetings were managed
and documented by the project manager.

• A solutions marketing representative (member of steering committee)

The representative initially offered the customer the IBM solution together
with the IBM marketing representative who was responsible for this
particular customer. The representative kept the communication with the
customer open, and had to control the political side of the project.

• A solutions architect

Chapter 2. Customer Project Overview 25

The architect was responsible for the technical design of the solution. The
architect was the one who contacted the right people to get the latest code
of the different software that was being used (where some was at ″beta″
state). The architect also designed and modeled the workflow process in
FlowMark.

• An industry advisor from the Banking vertical

This person was a valuable member of the team, since the advisor
understood the banking terms, and the way banks generally work in the
credit area. The advisor analyzed the requirements and made them
understood by the solutions architect and the other team members. The
advisor worked together with the solutions architect in the modeling of the
processes, and the design of the user interface of the applications.

• An image specialist

This person analyzed the bank′s existing customer folders, and wrote a
report on the requirements of the image capturing process that covered the
bank ′s needs to capture and file these documents into VisualInfo. This was a
project that ran in parallel to the prototype workflow system that was
developed.

• Three specialists for VisualInfo and FlowMark

They were responsible for the installation and configuration of FlowMark and
VisualInfo (or VisualView) on the development workstations (OS/2, Win 3.11,
95, and NT) and the OS/2 server workstation. They were also the
programmers in the project.

The project team of the customer (the service provider) consisted of the
following people:

• An executive (member of steering committee)

• A project manager on the customer side (member of steering committee)

• An application developer responsible for the design and implementation of
the Visual Basic applications.

• A specialist who worked together with the IBM VisualInfo specialist to define
the index classes in VisualInfo

The IBM and customer project members worked together in a team to
successfully do the prototype system in the given time frame of six weeks.

2.5.2 Current Project Status
What were our plus points against the competition in the eyes of Bank A and the
service provider?

• An external database is not a ″must″ for FlowMark. All other competitors
had as a prerequisite an external database, which in the eyes of the
customer was not acceptable for the first prototyping stage, as they did not
want the overload of having to manage this database system as well.

• More importantly, the Bank believes we know their problems. Our ″honest″
attitude is well accepted by the customer.

What is the scope of the project? The scope is not yet defined exactly as this
prototype is just to show the technical possibilities, but probably will not go into
production as is. However, currently there are around 350 credit requests per

26 FlowMark and VisualInfo with Windows

month for five groups (front-office). Each group has around six people. This
adds up to around 30 users for the front-office, 10 users for the back-office and
10 for all other type of users. The duration of these credit request processes
vary from less than two months, to two-to-three months, to over three months.

How stable are the requirements? Requirements are not clearly defined. During
the entire prototyping, requirements changed daily parallel to development
efforts. For the prototype system, a formal discussion with the end-users took
place, where the front-office, back-office, and the logistics (support) departments
for credit applications sat together for the first time. This led to completely new
requirements that differed from those for the first prototype.

What are the major problems in understanding the requirements and designing
the system? The problem is in clearly identifying what is the process logic and
what is the application logic. Currently, the banking specialist in the IBM project
team who acts as a business consultant is helping the service provider to
understand why the users have such requirements and how to present the
solution to the users so that it corresponds to their needs. The specialist is
helping the service provider to better understand the user requirements and to
clarify their view.

One of the problems we faced was that the end users were not our direct
customers. The information needed to understand and carry out the solution
was filtered by the service provider and routed to our solutions architect. This
resulted in inconsistent information when our team did have discussions directly
with the end users.

Another reason for this situation was that the service provider had to find a
unique solution for three banks and he was inexperienced in this application
area.

Did the customer decide to implement a solution involving FlowMark, VisualInfo
and IBM? Yes. They plan to build this solution using Windows NT for the clients.
They will begin with AIX or NT for the servers, with a possible migration to MVS
in the future. Reasons for this decision include:

• Strong IBM people involvement with high skills

• IBM openness (commitment to NT and UNIX)

• IBM commitment to robustness and globalness of our products

• Enterprise solution

• Strong support from development labs of both VisualInfo and FlowMark

• IBM ′s available skills in reengineering and technology

Chapter 2. Customer Project Overview 27

28 FlowMark and VisualInfo with Windows

Chapter 3. FlowMark - the Workflow Manager

Let′s take a closer look at the prototype by discussing the software components,
FlowMark (this chapter) and VisualInfo (next chapter).

FlowMark is an IBM solution for workflow management that helps organizations
define, document, test, control, and improve their business processes.
FlowMark ′s workflow management functions help organizations document their
business processes, control execution of those processes, and progressively
improve them.

FlowMark supports a heterogeneous client/server environment. A FlowMark
server running either OS/2 or AIX can be connected to FlowMark buildtime
clients on OS/2 and to FlowMark runtime clients on AIX, Windows, and OS/2
environments.

Figure 7. Platforms for FlowMark Servers and Clients

 Copyright IBM Corp. 1996 29

3.1 FlowMark Components
FlowMark consists of three components:

 Server Functions

• Object-Oriented Database Server

Stores the workflow information (process definitions and runtime data).

• Process Navigation Engine and Worklist Management

Controls the flow of processes.

• Audit and Notification Services

Creates the audit trail and notifies users of delays in the processes.

• Delivery Server

The FlowMark delivery server is used in a process environment with
distributed processes. For each database, you have one delivery server.
It ensures the communication between the FlowMark runtime servers.

 Buildtime Client Functions

Figure 8. FlowMark Buildt ime Folder

• Process Definition

The specification of process models as activity networks.

• Staff Definition

A definition of organizations, roles, people, and their relationships.

• Program Registration

The registration of programs attached to activities.

• Data Structure Definition

The definition of data structures used by the activities.

• Server Definition

The definition of FlowMark servers for remote execution of subprocesses.

• Process Animation

The verification of logical consistency and dynamic behavior of
processes.

• Model Import/Export

The backup and restore of buildtime definitions such as staff, programs,
categories or processes is done via FDL files. These files are also used
to migrate workflow models from old FlowMark releases to the current

30 FlowMark and VisualInfo with Windows

version, or to import data from business process modelling tools such as
Aeneis**.

• Runtime Data Import/Export

FlowMark Runtime Language (FRL) can be used as a report, to restore a
specified point in your automated tests, or to dump the current runtime
data for debugging purposes.

 Runtime Client Functions

Figure 9. FlowMark Runtime Folder

• Process Execution

Controls the execution of process instances by users.

• Worklist Manager

The processes and activities are shown in the process list and in the
worklist of the user. He is able to manipulate their state, monitor or
transfer them.

• Service Broker Manager

Makes it possible for the user to work with multiple applications invoked
as FlowMark activities.

The execution of business process models does not only remind the users that
there is work to do, it also simplifies their work by linking the users
automatically with the required applications. Searching and starting applications
is eliminated for the users. Therefore, FlowMark is able to handle jobs that
mainly consist of starting programs or tools without user interaction.

FlowMark plays a central role in the design and implementation of distributed
applications, consisting of component programs residing on workstations or on a
host computer. It controls the execution and cooperation of these programs that
may be new or may already exist, and that may run on workstations under OS/2,
AIX, Microsoft Windows, or on mid-range processing on other platforms.

You can integrate applications with FlowMark using the following programming
interfaces:

• C, C++, REXX, and COBOL for OS/2

• C, C++, and Visual Basic for Windows

• C and REXX for AIX

You can use the service broker concept for a higher level of integration. To use
the service broker concept, you need a service broker DLL that is responsible for
the connection, and a service DLL that provides the services you want to work
with. You can use this concept to do your own service brokers and service

Chapter 3. FlowMark - the Workflow Manager 31

DLLs, or you can use the ones that are shipped with FlowMark, such as the
Lotus Notes and FlowMark service brokers. Other brokers such as the VisualInfo
service broker are shipped with the products. The Service Broker Architecture
is described in more detail in section 5.1.4, “Service Broker Architecture” on
page 48.

The building block concept is another possibility to integrate applications. You
have to write programs that use the public interfaces of FlowMark and the
application. Sample building blocks for MQSeries, HLLAPI, and DDE are already
available. These are discussed in detail in chapter 5.1.3, “Building Blocks” on
page 47.

3.1.1 FlowMark and ObjectStore Relationship
Between FlowMark and ObjectStore, there is a client/server relationship. The
OS server belongs to the FlowMark database server. A FlowMark runtime
server is the link between the FlowMark database server and the runtime clients.
It acts as an OS client. Another OS client is the FlowMark buildtime client. On
each workstation containing an OS client, an OS cache manger has to handle
the OS client cache. Usually, the cache manager is started and stopped
automatically.

3.2 FlowMark V2R2 versus V2R1
The new FlowMark Version 2 Release 2, generally available since February 1996,
has the following improved features compared to the Version 2 Release 1:

• Capacity

− Increased number of runtime instances supported.

− Facility to pre-allocate database size.

− More efficient database usage.

• Performance improvements

− Faster runtime logon and refresh.

− Faster APIs.

• Server-to-server communication

− Subprocesses can be run from runtime servers that are attached to
different databases as the originating server.

• Scalability

− No more need for an acquaintance node.

• Profile

− All environment settings for FlowMark are held in one file. The default
profile name is exmpzcfg.prf.

• Worklist Manager APIs

− Allow you to implement a custom-made runtime client.

− Are available in C and C++ for OS/2, and in C from Microsoft Windows.

• New Process and Container APIs

− Start process instance with a unique name.

32 FlowMark and VisualInfo with Windows

− Delete a finished or terminated process instance.

− Query the user ID of activity starter.

− Container APIs in COBOL.

− New set of container APIs for faster container access.

• Service Broker Manager

− Establishes and maintains connections to applications.

− Available for OS/2 and Microsoft Windows.

− Significantly improves performance for repetitively executed applications.

− Common interface for frequently used API functions.

• Lotus Notes Integration

− Based on the Service Broker Manager architecture.

− Start, stop, suspend, and resume a FlowMark process from within a
Lotus Notes document.

− Check if a document is signed or encrypted.

− Logon to a specific database.

− Create, delete, read, update, and sign a Lotus Notes document from
FlowMark.

• FlowMark for MVS

− Enablement of FlowMark for MVS/ESA with the Application Integration
Feature (AIF).

− AIF participates as workflow initiator and as MVS Server for distributed
workflow activities.

• Runtime import/export of process instances

− Used as official migration utility.

• MQSeries Building Block

− Can be used to establish communication to diverse IBM and non-IBM
platforms.

• Realtime Notification

− Generated at the moment the duration period is passed.

− Tuning through an environment variable.

• Enhanced problem determination

• Installation verification

3.3 FlowMark Outlook
The following gives a brief overview of some of the new FlowMark features
which are in the development plan:

• FlowMark Lotus Notes Client - based on worklist manager APIs

• FlowMark NT Support - server and runtime client

• FlowMark HP Support - server

• Object Store 4.0 Support

Chapter 3. FlowMark - the Workflow Manager 33

• AIX 4.1.3 Support

• Windows 95 Support

• DB/2 Support - for FlowMark runtime server

• Simulation -

• Support for AS/400 FSIOP -

− Estimate resource requirements of a process.

− Find the optimized process behavior.

− Estimate the duration of a process.

− Estimate impact of process changes.

34 FlowMark and VisualInfo with Windows

Chapter 4. VisualInfo - the Document Manager

We have heard for a long time about the paperless society, but have not seen it.
Now, using an IBM ImagePlus VisualInfo system, you can reduce the amount of
paperwork handled by businesses and improve productivity by storing images of
paper documents, and routing them electronically to where they are needed.
The VisualInfo system can manage diverse types of information, such as images,
fax, spreadsheets, graphics, word processing, audio, and video.

VisualInfo provides the following features:

• Distributed information management.

• Comprehensive APIs to enable customized applications.

• Powerful security for the enterprise through assignment of privileges and
library items to users.

• Automatic migration of images (for instance, to magnetic or optical storage),
which is performed by the system totally transparent to the users and based
on rules you define.

• Easy to use on-line administration of data formats, fileroom, system
managed storage, workbaskets, users and privileges, and utilities.

• Search and retrieval of documents and folders using index values, wildcard,
Boolean logic, and full text search.

• Customizable Client Applications for OS/2 and Windows environments.

• Serial workflow through in and out workbaskets.

• Advanced workflow through a high level integration with IBM FlowMark.

• Sharing of large enterprise VisualInfo Archives with Lotus Notes Document
Imaging (LN:DI) applications, which enables users of Lotus Notes business
applications to archive, search, and retrieve documents to and from
VisualInfo.

IBM ImagePlus VisualInfo is part of IBM′s ImagePlus document management
family of products that are available on multiple platforms. Scalable servers on
PC, AIX, MVS, and also flexible clients on OS/2 and Windows can be mixed in a
distributed client/server environment allowing enterprise-wide document
management solutions.

 Copyright IBM Corp. 1996 35

Figure 10. Platforms for VisualInfo Clients and Servers

VisualInfo works like a public library system where books and other printed
material are stored and assigned unique locations. All stored information in the
library is located by using a catalog that indexes the printed material by author,
subject, publisher, and physical location.

36 FlowMark and VisualInfo with Windows

Figure 11. VisualInfo Client/Server Architecture

 1. VisualInfo Library Server

 2. VisualInfo Object Server (or servers)

 3. VisualInfo Client for OS/2

 4. VisualView Client for Windows

The VisualInfo catalog contains Index Classes , which are groups of key fields
that are used to search and locate documents or images. Each key field
represents a specific search criterion. To locate specific documents or images,
users select an Index Class and enter data in the key field. VisualInfo uses the
data entered to search for any document or image that matches the key field
criteria entered. On completion of the search function, VisualInfo provides a list
or Table of Contents (TOC) of the documents, images, or folders that meet the
search criteria.

The following paragraphs describe the components in detail:

 1. VisualInfo Library Server

The library server contains the catalog. It acts as an interface between the
library client (part of the client) and object servers by directing the library
client′s requests to the suitable object server. Based on this, the user is
able to store, retrieve, and update documents that are stored in the object
server . Then you can update and query the indexes and descriptive
information stored in the library catalog.

To manage library data, maintain index information, and control access to
documents, the library server uses IBM DB2/2.

 2. VisualInfo Object Server

Chapter 4. VisualInfo - the Document Manager 37

An object server maintains the documents. It supports the attachment of
both direct access storage devices (DASD) and optical storage devices.
Further, it allows documents to move automatically from one storage
medium to another as defined in the management classes .

Management classes are defined within system-managed storage. They are
a collection of attributes describing backup, retention, and class transition
characteristics for a group of objects in a storage hierarchy.

 3. VisualInfo Client for OS/2

The Client for OS/2 consists of several components:

• Client Application

The Client Application is the end-user interface for the VisualInfo system
on the client workstation. It interacts with the other components of the
client and includes the following functions:

a. Scan and Capture, Import and Export

A document is captured by scanning a paper document, by receiving
a facsimile transmission, or by importing a document file. Scanning
is the process of digitizing a document and converting it to a
computer image. Existing image files can be included in the
VisualInfo system by importing them. Documents and folders in the
VisualInfo system can be exported to image files.

b. Search

To find specific documents and folders in the VisualInfo system, you
may use the basic search or the advanced search . The basic search
allows you to enter simple search criteria, while the advanced search
lets you create and modify existing search profiles.

Figure 12. VisualInfo Search Folder

 c. Display and Print

Display and print functions belong to the Image Services just the
same as the scan and capture functions.

d. Document and Folder Management

In VisualInfo, you can group documents within folders, folders within
folders, and documents and folders within folders, just as you do with
paper documents and folders.

e. Security

The actions of users (scan, import, export, and print) on documents
and folders are controlled by defining security levels. These are
defined at the user, user group, or index data class level.

38 FlowMark and VisualInfo with Windows

f. User Exits

The Client Application offers user exits where you can add your own
functions to the system.

• Image Services

Image Services are located on the client workstation. They enable the
handling of data object types such as MO:DCA, TIFF, IOCA, Bitmaps,
ASCII and PPDS, and AmiPro, Word, and so on.

• System Administration Program

System administrators use this program to define and configure the
system:

a. System-Managed Storage

b. Users and their access

 c. User Groups and their access

d. Workbaskets and Workflows

e. Index Classes and Data Formats

Note: The System Administration program must be installed and run on
an OS/2 workstation. It is not supported on a Windows
workstation.

• Folder Manager

The Folder Manager stores and organizes document images into
electronic file folders for convenient access and retrieval. The user can
index, process, and retrieve documents and folders, depending on the
level of access.

• Library Client

You can use the Library Client APIs to develop your own application that
performs functions similar to the folder manager. This allows you to
create an alternative data model to the folder manager. You can store,
retrieve, delete, and update the VisualInfo items (folders, documents,
workbaskets, and workflows).

 4. VisualInfo Client for Windows

The VisualInfo client for Windows (VisualView) that we used is described in
the next chapter.

Note: In the current release of VisualInfo, you can use the IBM VisualInfo
Windows Client in place of VIP VisualView.

A large set of APIs lets you customize or integrate VisualInfo with your solution.
The primary programming interfaces for VisualInfo are known as CAPIs. The
CAPIs consist of a subset of the VisualInfo folder manager APIs and the Images
Services APIs. These APIs are described in detail in section 5.2.1, “VisualInfo
Standard APIs” on page 50.

To enhance or replace VisualInfo functions, you can use the VisualInfo user exits .
You have to put your individual processing logic in a DLL file and register the
names of the functions and DLL file in VisualInfo. For example, you may replace
the search statements for a specified index class, or modify the store routine for
files of a specified type (for example, ASCII file or AmiPro text document).

Chapter 4. VisualInfo - the Document Manager 39

The VisualInfo High Level Programming Interface (VHLPI) allows you to easily
integrate FlowMark with VisualInfo without any coding required. These APIs are
described in detail in section 5.2.3, “VisualInfo High Level API for OS/2” on
page 55.

Note: The Windows client does not support the System Administration program.
You must have an OS/2 client workstation for this purpose.

4.1 The VisualInfo Client Application
The VisualInfo Client Application for the Windows environment provides a direct
connection to the ImagePlus VisualInfo system. It offers such functions as
retrieval of folders and documents, image display and manipulation, advanced
annotation, and indexing. The retrieval functions allow users to search and
retrieve folders and documents by full or partial key fields.

Retrieved and imported documents are found in the user′s workbasket, or can
be searched for and displayed in a Search Results folder:

Figure 13. A Search Results Folder

The VisualInfo Viewer is used to display the documents. With this window, the
user is able to add notes, texts, lines, arrows and free hand drawings to the
document, and also highlight areas and place stamps on it. The document can
also be rotated, zoomed, or printed.

40 FlowMark and VisualInfo with Windows

Figure 14. VisualInfo Viewer for Windows

VisualInfo Client Application uses the TCP/IP protocol to connect to ImagePlus
VisualInfo servers on OS/2, AIX or MVS platforms.

The VisualInfo Client Application developer′s toolkit is based on object oriented
development techniques and OLE automation . This provides you with a
development environment to create custom client applications. Using the OLE
2.0 automation, external Windows-based applications can to logon to VisualInfo,
and perform functions such as searching for documents and folders.

Figure 15. OLE VisualInfo Client Application Client Objects

The following OLE VisualInfo Client Application Client objects are provided (see
Figure 15):

• Application Object

Chapter 4. VisualInfo - the Document Manager 41

A program that is designed to control VisualInfo Client Application must first
create an Application object. The methods and properties of an Application
object apply to the application (here VisualInfo Client Application). With this
object, it is possible to perform VisualInfo functions.

• Documents Collection and Document Object

The Documents collection is a kind of queue that is able to hold Document
objects. Document objects represent VisualInfo folders and workbaskets.
They can be created from the Documents collections.

• Items Collection and Item Object

An Item object represents VisualInfo items (folders, documents, and
workbaskets). You can display an item, query its index class and key fields,
and perform other actions on it. The Items collection is a list of Item objects.

• Image Object

The currently visible document in VisualInfo is represented by the Image
object.

• Error Object

If an error occurs, an Error object is created that holds important information
about the error, including the VisualInfo return codes.

VisualInfo Client Application also offers VisualInfo user exits , where you can
specify your individual routines for processing. Therefore it is possible to
enhance or replace default functions. Your routines need to be in a DLL file and
you have to register them, so VisualInfo Client Application knows which routine
to take. Some sample code showing the use of user exits is included in section
5.2.2, “User Exits” on page 51.

The predecessor to the VisualInfo Client Application was an application called
VisualView by VIP. For further information on OLE and user exits, see the
Technical Reference Manual of the VIP VisualView Client.

Figure 16. VisualInfo Client Application Interfaces

42 FlowMark and VisualInfo with Windows

Chapter 5. Implementing an Integrated Solution

This chapter describes the integration techniques that we used to carry out the
pilot system. Visual Basic was used to create a graphical user interface on the
client workstations and to put some logic behind it. It was chosen because you
can develop user interfaces very rapidly with it in a Windows-based
environment. On an OS/2 platform, you may use Visual REXX or a similar
product for this.

Not all of the functions can be covered by using Visual Basic or REXX
programming. To do the remaining functions, it is necessary to use a more
flexible language such as C or C++. Therefore, many base functions for the
integration of different products in the Windows environment were written by
using the Borland C++ 4.5 compiler (with OS/2 you may use the IBM VisualAge
C + + c o m p i l e r) . It is possible to design these functions as an interface to
Visual Basic or REXX, so you can easily access them when developing your user
interface.

5.1 FlowMark Integration
This section describes the FlowMark programming interfaces:

• FlowMark Language APIs

• Workflow Client APIs

• Building Blocks

• Service Broker Architecture

5.1.1 FlowMark Language APIs
The FlowMark language APIs are designed to work with data, processes, and
activities in a program called by a FlowMark activity. You can get data from the
activity′s input container, work with it, and write it back to the activity′s output
container. It is possible to change the status of an activity, as well as to start,
stop, terminate, delete, suspend, resume, and restart processes.

You can work with the FlowMark language APIs using the following operating
systems and programming interfaces:

The next table lists the functions you can call from C, REXX, Visual Basic, and
COBOL.

Table 2. Platforms: FlowMark Language APIs

Language OS/2 Windows AIX

C X X X

REXX X X

Visual Basic X

COBOL X

 Copyright IBM Corp. 1996 43

Table 3. Functions: FlowMark Language APIs

Function C REXX VB COBOL

Initialize container API X X

Get a session id X X

Get user id of activity starter X X X

Query size of a container data structure X

Query a container data structure X X

Get a data item X X X X

Set a data item X X X X

Send container data back X X

Begin a process control session X X X

Begin a process control session extended X X X

Begin a process control session within a process X X X

End a process control session X X X

Clone a process template X X X

Start a process instance X X X

Fast start a process instance X X

Start a unique process instance X X X

Fast start a unique process instance X X

Delete a process instance X X X

Suspend a process instance X X X

Resume a process instance X X X

Terminate a process instance X X X

Restart a process instance X X X

Change the state of an activity X X X

If you choose to install the APIs when installing FlowMark, then sample code for
C, REXX, Visual Basic, and COBOL is added to the FlowMark API directory.

5.1.2 Workflow Client APIs
This section describes the workflow client APIs of IBM FlowMark workflow
manager that have been available since FlowMark version 2.2. With the
workflow client APIs, you are able to log on to or log off from the workflow
server, manipulate worklists and work items, and work with process instances
and container data. This allows you to build your own FlowMark Runtime client.
FlowMark offers two types of workflow client APIs:

 1. FlowMark C Coalition API

The FlowMark C coalition API is defined by the Workflow Management
Coalition (WFMC) and is independent from FlowMark. This API was
implemented using the functions of the FlowMark C++ workflow client API.

 2. FlowMark C + + Workflow Client API

The FlowMark C++ workflow client API is specific to FlowMark. So far,
there is a larger number of function calls available with the FlowMark C++
workflow client API than with the FlowMark C coalition API. See Figure 17
on page 45.

44 FlowMark and VisualInfo with Windows

Figure 17. Runtime Clients in the FlowMark Workflow System

The FlowMark C coalition API is available for OS/2 only. It provides
interchangeability of applications between different workflow engines. The
function calls are grouped as follows:

• Connection Functions

You need the connection functions to log on to or log off from a workflow
server.

• Process Control Functions

Using the process control functions enables you to change the operational
state of one or more process instances in your workflow.

• Activity Control Functions

The activity control functions work similar to the process control functions,
but here you can change the operational state of activities.

• Process Status Functions

Using the process status functions calls, you can work with process instance
lists and process instances.

• Activity Status Functions

The activity status function calls are used to work with activity lists and
activities.

• Worklist Functions

With the worklist function calls, you are able to work with work items; for
instance, read work item related data or transfer a work item to another
worklist.

Chapter 5. Implementing an Integrated Solution 45

• Administration Functions

The administration functions are needed to control processes and activities.

• Cleanup Functions

The cleanup functions are not defined in the Workflow Management Coalition
Application Programming Interface (WAPI) specification, but they are needed
to free memory you allocated in previous C coalition API function calls.

For more information, refer to IBM FlowMark: Programming Guide and Workflow
Management Coalition Application Programming Interface 2 (WAPI) Specification.

The FlowMark C++ API is available for the OS/2 and Windows platforms.
There are two things you have to remember:

 1. For Windows, the FlowMark C + + API must not be called before the
message loop in your application; this is, for example, in LibMain or
WinMain. Always call these APIs after the initialization of your program.

 2. The FlowMark C + + API uses the standard template library (STL) that
provides a vector template. You have to define the default constructor for all
classes that you want to construct a vector of. For al l FlowMark C++ API
classes, except for ExmServer, this default constructor is provided.

Three kinds of methods are provided by the FlowMark C++ API:

 1. Basic Methods

The basic methods are used in each FlowMark C++ API class. These
methods are needed to construct, destruct, copy, compare, and assign
objects.

 2. Accessor Methods

The accessor methods enable you to read data from transient objects. This
data can be read as long as the transient object exists, regardless of the
corresponding persistent object and the connection to the server. Methods
such as ″Name()″ or ″IsEmpty()″ are accessor methods.

 3. Action Methods

The action methods can be used to establish a server connection and to
create or update transient copies of persistent objects. Accessor methods
operate on these transient copies. Methods such as ″Logon()″,
″QueryWorkitems()″, or ″Delete()″ are action methods.

The following list is an overview of the FlowMark C++ API classes:

• ExmServer

You can establish a server connection, change the password for a user, and
query instances, templates, and worklists for the logged on user with the
methods provided by ExmServer.

• ExmProcessTemplate

The action methods of ExmProcessTemplate enable you to create instances
of process templates and delete or refresh templates. Using the accessor
methods, you can get information such as the description, name, or category
of a template.

• ExmProcessInstance

46 FlowMark and VisualInfo with Windows

It is possible to query and set the state of process instances, and query the
instance′s properties such as start time or starter.

• ExmProcessInstanceNotification

The ExmProcessInstanceNotification class allows you to work with
notifications related to process instances. For example, you can query if the
maximum duration time of a process instance is already expired.

• ExmWorklist

You can delete the worklist represented by your ExmWorklist object from the
runtime ′s database, or query work items (activities), or notifications related
to instances and workitems.

• ExmWorkitem

ExmWorkitem class provides methods to query the properties and containers
of an item, and delete or change the state of an item.

• ExmWorkitem Notification

The ExmProcessInstanceNotification class lets you work with notifications
related to work items. For instance, you can get the level of escalation (first
or second escalation).

• ExmContainer

The ExmContainer class is the superclass of ExmReadOnlyContainer class
and ExmReadWriteContainer class. Their methods enable you to work with
the input and output containers, such as reading a value from the input
container.

• ExmContainerElement

You can work with container elements (count the members and query the
type) and arrays of container elements using the ExmContainerElement
class.

• ExmFilter

The ExmFilter class is used to specify filter criteria, that you want to use
when, for example, querying work items.

• ExmDateTime

The ExmDateTime class provides methods to handle ExmDateTime objects,
for example, query minutes or seconds.

A sample program that uses the FlowMark workflow client C++ APIs is
included at the end of this book in Appendix A, “F lowMark C++ API Sample”
on page 95.

For more information about the FlowMark C++ API, refer to the IBM FlowMark:
V2.1 Programming Guide, SH19-8240.

5.1.3 Building Blocks
The building block concept provides the possibility to write separate programs
for the integration of FlowMark with another product, using their published
interfaces.

The building block for MQSeries support can be used with FlowMark to start,
suspend, resume, and terminate a FlowMark process on another FlowMark
system by using MQSeries. Usually, MQSeries makes it possible to

Chapter 5. Implementing an Integrated Solution 47

communicate between applications that run on the same or on a different
platform. The applications then use queues provided by MQSeries to exchange
data.

A sample on how to use the MQSeries building block with FlowMark is also
installed when you install FlowMark. This sample includes:

Table 4. MQSeries Building Block

File Description

exmp2abb.fdl FlowMark process model

exmp2abb.mqi MQSeries definit ion

exmp2asd.exe Start and execution control (restart, resume, terminate, suspend) of remote processes;
return data from a child process to the remote parent process.

exmp2asp.exe Suspend own or current process.

exmp2arm.exe Suspend FlowMark processes in OS/2 and AIX environment.

exmp2arv.exe Write data to output container.

exmp2asv.exe Start and execution control (restart, resume, terminate, and suspend) of local
processes.

For a detailed description of this sample, refer to IBM FlowMark Application
Integration V2R2, SH12-6267. For more information about MQSeries, refer to
MQSeries Distributed Queuing Guide, SC33-1139 or MQSeries Command
Reference, SC33-1369.

5.1.4 Service Broker Architecture
The Service Broker Architecture is designed to allow users of workflow systems
or other applications to work with multiple tools in multiple interactions without
the need to reload the tool each time or perform multiple logons to server
sessions. The aim is to allow all required sessions and tools to be available
during the work session without the users needing to be aware of the application
execution or logic.

The Service Broker Manager controls the operations of service broker sessions
and the interaction between the service requester and services . The Service
Broker Manager is part of the FlowMark product. The service brokers for
FlowMark and Lotus Notes are also included in FlowMark. The service broker
for VisualInfo (VHLPI) is provided with the VisualInfo product and is described in
detail in the next chapter.

For any other base product or application that you want to integrate in your
workflow system, you may write your own service broker for that product or
application using the Service Broker Architecture. For information on how to
write your own service broker, refer to the IBM FlowMark Application Integration
V2R2, SH12-6267.

Furthermore, you can implement a customized service requester to call service
functions of the already existing service brokers if they expect a special input or
output format.

The following diagram shows how you can integrate FlowMark with other
applications using the service broker concept. Service brokers for Lotus Notes
and VisualInfo on OS/2 are used as examples.

48 FlowMark and VisualInfo with Windows

Figure 18. Using the Service Broker Concept to Integrate FlowMark with Other Applications

To minimize the number of simultaneous connections to the server, connections
are established by a service broker. When this service broker DLL is started, it
establishes the connection to the server of the base product, and keeps the
connection open when the service broker is running.

The service broker can share this connection with several services through a
shared structure that is accessible from all registered services of this particular
service broker. Whenever a service functions is called, it can use the existing
connection and does not need to log on again.

A service function is a subroutine that provides a specific service. For a Lotus
Notes service function, this might be to create a document or to read a
document. Several related service functions can be stored within one service
DLL. Some standard functions are useful in a wide range of situations, while
others are specific to a certain environment. You may prefer to write your own
service DLL that carries out enhancements and extensions to the service
functions of an existing service broker. This is illustrated in the diagram with the

Chapter 5. Implementing an Integrated Solution 49

VisualInfo service broker (MYSERV.DLL). The Service Broker Manager can
simultaneously manage several services for a service broker.

A service requester is the interface to the user application. The user application
calls the service requester to request the product to perform some work. The
service requester formats the user data and issues a request to the Service
Broker Manager which sends the request to the appropriate service function.

For information on using the Service Broker Manager and how to program your
own service brokers, refer to the IBM FlowMark Application Integration V2R2,
SH12-6267.

5.2 VisualInfo Integration
This section discusses the programming interfaces of VisualInfo:

• VisualInfo Standard APIs

• User Exits

• VisualInfo High Level API for OS/2 (and for MS Visual Basic)

• VisualInfo OLE Automation API for Windows

5.2.1 VisualInfo Standard APIs
VisualInfo provides a rich set of API functions you can use in your programs.
The APIs are grouped as follows:

• Folder Manager, Application, and Library Interfaces

These interfaces include the Common APIs, Folder Manager APIs, Client
Application APIs, Interchange APIs, System Administration APIs, Library
Server APIs, Object Server APIs, List Manager APIs, and Device Manager
APIs. For example, you can use functions to index, store, or search
documents, and also use functions to manage access control.

• Image Services

 1. Environment Services

The environment services are used to initialize image services, describe
the current environment, and memory management (allocating and
deallocation).

 2. Working Set Services

You use working sets as a container for documents and other data
managed by your application. The working sets are the base building
blocks of the image services. Once you have created a working set, you
can add, view, manipulate, and store pages and documents using the
image services APIs.

 3. Display Services

The display services provide tools to present data to the end users. You
can create and manage display windows that enable the end users to
view and manipulate data objects in the working set.

 4. Scan Services

Scan services provide methods to scan documents into a working set.
You can use functions to set up and initiate the scan operation. Also the

50 FlowMark and VisualInfo with Windows

scan services offer an end user interface that allows you to have
operational control of the scanner. Note that the scan services are
device-independent.

 5. Print Services

With the print services, you can use a basic set of APIs to set up and
initiate the printing operation. The end user interface of the print
services provides the definition of a printing profile. Note, the print
services are device independent.

 6. Keystroke Routing Services

The keystroke routing services enable you to create accelerator keys to
route key operations between your application windows and any image
services window.

For a detailed description of VisualInfo′s programming interfaces, refer to the
IBM ImagePlus VisualInfo Application Programming Guides for Windows, OS/2
and MVS (SC31-9055, SC31-9059 and SC31-9060), and IBM ImagePlus VisualInfo
Application Programming Reference manuals (SC31-9061 through SC31-9063).

5.2.2 User Exits
To customize an existing application, you can often use user exits. A user exit is
a specific point in an application where your routines are called for processing.
Here we explain how you can work with user exits using a VisualInfo example.

The following user exits refer to the VisualInfo library server. You can use them
to specify your routines for access control, password encryption, definition of
static queries, and task priorities.

• Library Access Control

There are two user exits for access control: LibACUserExitOne and
LibACUserExitTwo. These user exits are used by the internal reference
monitor during the processing of access control. The first one is called when
the internal reference monitor makes a decision before processing the
access control lists, and the second one is called when the decision is made
after processing the access control lists.

• Password Encryption

Passwords are encrypted by the library client before they are transmitted to
the library server. If you want to replace the encryption with your own
algorithm, you have to use LibEncryptPassword. You can pass your own
encrypted string to LibEncryptPassword, and the library client sends your
string to the server, or you can use the default encryption by passing a null
pointer to LibEncryptPassword. If you do not want to have any encryption of
the password, you have to pass the non-encrypted password to
LibEncryptPassword.

• Static Query

Using LibUserQueryExit, you can start your application specific static
queries. You have to define tables that contain the host variables used in
your query and a column description of the columns returned by your select
statement. You also need to provide functions for handling the cursor
(declare, open and close) and fetching data.

• Task Priority

Chapter 5. Implementing an Integrated Solution 51

LibSelectLibraryTransPriority allows you to set the CICS transaction priority
for host library server requests.

The following list of user exits refers to the VisualInfo Client Application APIs:

• Alternate Search

Using the AlternateSearchUserExits, you are able to replace the Client
Application ′s default search routine. The type of search will determine when
your user exit is loaded. If you define the search against a particular view,
the Client Application loads your function when running a basic search
against that view. Your function is loaded for the base view of the NOINDEX
class if you run an advanced search, or a basic search if you have defined
the search against all views.

• Determine Next Workbasket

This exit is associated with an index class and it is called:

 1. Whenever the user chooses the option ″Route to″ from the ″Process″
menu for an item that has the exit defined in its index class.

 2. Before displaying the ″Route to″ dialog.

 3. When the user chooses the options ″Start workflow″ or ″Change
workflow″ from the ″Process″ menu.

 4. Before the actual routing of an item.

• Change System-Managed Storage

The user exit ChangeSMSUserExit can change the system-managed storage
for each part of an item. It is called if the index class is changed for an item
before the library object window is closed.

• Determine Workflow

If an index class is defined to automatically start items in a workflow when a
document or folder of that index class is saved, then the
DetWorkflowUserExit is called. If the item has been in any workflow before,
this user exit is not called.

• Overload Trigger

If the overload condition is triggered for a workbasket, the
OverloadTriggerUserExit is called. In the system administration program,
you can specify the maximum number of items allowed in a workbasket
before the exit is called. This number is the overload trigger.

• Query Sort

Using QuerySortUserExit, you are able to define a sort order other than the
default ascending or descending order. You may use this user exit also to
filter out documents and folders that you do not want to display.

• Save Record

The SaveRecordUserExit is called when you try to save changes to
user-defined attributes of a document or folder. You can validate the entered
data or change the user-defined attribute fields.

• Index a Document from Working Set

To index a document and optionally move it to a new workbasket, use the
Ip2ExitIndexDocument user exit. This exit is only called when you work with
advanced scan.

52 FlowMark and VisualInfo with Windows

• Perform Work on Document after Scan and Index

When a document is scanned and indexed into the NOINDEX class, the
Ip2ExitUseDocumentData user exit is invoked. You can re-index the
document or place it in a new workbasket. It is also possible to perform
some processing based on the item ID, the scanner data field data, or the
MGDS data.

Use the following object server user exit to influence the flow of the storing
process. We recommended that you write these user exits as reentrant and call
them at the process level.

• LAN-Based Object Server

Use Ip2LBOSExit to decide if a specific volume is used to store the data. It is
possible to reject a volume for only the current storage or for future ones.

You can use the interchange user exits to input documents and folders from
other platforms to your VisualInfo system.

• Match Import Attributes

Using the Ip2ImportAttrExit, you can specify which VisualInfo attribute name
is to be used instead of the attribute name found in the CIF header.

• Match Import Classes

Using the Ip2ImportClassExit, you can specify which VisualInfo index class
name is to be used instead of the index class name found in the CIF header.

• Set Up Import Attributes

Ip2ImportSetupAttrExit lets you map system attributes in the CIU file to
VisualInfo attributes, and permits you to convert attribute data specified in
the CIU file to a different type.

The following list of user exits refers to the System Administration Program:

• Privilege Set

The purpose of Ip2ExitChangeApplPriv is to manipulate the VisualInfo
privilege bytes.

• Object Sort

The Ip2ExitCompareStrings compares two null terminated strings. This
function is used when you select the ″Sort by name″ option from the ″View″
menu of the system administrator program′s secondary windows.

If you want to use your own code page conversion, you need to use the
language support user exit.

• Code Page Convert

Use IsoCpConvertString to translate a string from one code page to another.

If you plan to do your own error message processing, use the message
processing user exit.

• Alert User

The Ip2UtAlertExits lets you control the error logging and generation of
generic alerts by VisualInfo.

The following sample code demonstrates how you can work with user exits.

Chapter 5. Implementing an Integrated Solution 53

VisualInfo User Exit Sample

//--
// Sample of ″AlternateSearchUserExit()″
//--
int SIMENTRY AlternateSearchUserExit (HSESSION hSession,

HWND hWnd,
PSZ pszUserID,
USHORT usTypeFilter,
BITS fWipFilter,
USHORT usSuspendFilter,
USHORT usIndexClass,
USHORT usNumCriteria,
PLIBSEARCHCRITERIASTRUCT pCriteria,
PITEMID pItemIdResultFolder)

{
RCSTRUCT rcs; // Return data structure

// Set result empty
(*pItemIdResultFolder)[0] = 0;

// Perform search
SimLibSearch(hSession, // VisualInfo session handle

NULL, // Item filter (not supported)
NULL, // Link criteria (n. supp.)
SIM_SEARCH_DYNAMIC, // Use dynamic SQL query
usTypeFilter, // Type of items to search for
fWipFilter, // WIP status of items ″
usSuspendFilter, // Suspension status ″
usIndexClass, // Index class identifier
usNumCriteria, // Elements in pCriteria
pCriteria, // Search criteria for each view
SIM_SEARCH_MAKE_FOLDER, // Return results in a search folder
NULL, // Synchronous processing
&rcs); // Return data structure

// Unsuccessful operation ?
if (SIM_RC_OK != rcs.ulRC)
return 1;

// Successful, but no matches
if (NULL == rcs.usParam)
return 0;

// No pointer to PITEMID field (item id of search results folder)
if (NULL == rcs.ulParam1)
return 1;

// Copy result and free memory
memcpy(pItemIdResultFolder, (PVOID)rcs.ulParam1, sizeof(ITEMID));
SimLibFree(hSession, (PVOID)rcs.ulParam1, &rcs);

// Completed successfully
return 0;

}

54 FlowMark and VisualInfo with Windows

5.2.3 VisualInfo High Level API for OS/2
IBM ImagePlus VisualInfo supports the Service Broker Architecture by providing
the VisualInfo High Level Programming Interface (VHLPI). The VHLPI is used to
integrate VisualInfo with FlowMark or your own applications. It contains Broker,
Service, and Requester DLLs that provide functions using the VisualInfo Folder
Manager, Client Application, and Image Services capabilities, allowing you to
manipulate VisualInfo objects from your C or REXX programs.

The VisualInfo High Level Programming Interface allows multiple applications
within a client workstation to access VisualInfo, and eliminates the need for
these applications to repeatedly log on to VisualInfo. Furthermore, it simplifies
the access to VisualInfo, as the most commonly needed VisualInfo functions are
provided in simple APIs, thus reducing the time to create customer VisualInfo
applications. The VHLPI is part of the IBM ImagePlus VisualInfo for OS/2
product, and is composed of the following components:

The FRNOWFFM.CMD, which is a REXX command file, allows VHLPI REXX
functions to be called directly from FlowMark activities without having to create a
C or REXX program. This enhanced integration facility allows you to create
workflow models with FlowMark that access the VisualInfo functionality, without
coding customized programs.

All you need to do to quickly integrate FlowMark and VisualInfo on OS/2 is to
install and set up the IBM FlowMark and IBM ImagePlus VisualInfo products and
do the following:

 1. Design and model the workflow process with FlowMark.

 2. For FlowMark activities where you want to invoke VisualInfo functions such
as scanning a document and displaying the image, register the
FRNOWFFM.CMD as a program object and define the necessary parameters.

To register a program object in FlowMark Buildtime Client, you create a new
program object from the Programs folder, and specify the program attributes
in the Settings notebook as shown in Figure 19 on page 56.

Table 5. VHLPI Components

Name of file Description

FRNOWFFM.CMD Command file to call VHLPI functions from FlowMark

FRNOWFRX.DLL Requester module for REXX calls

FRNOWFRC.DLL Requester module for C calls

FRNOWFBK.DLL Broker module

FRNOWFSV.DLL Service module

FRNOWFUL.DLL Utility module for logging and INI files

FRNOWFSB.EXE Service Broker Manager replacement

Chapter 5. Implementing an Integrated Solution 55

Figure 19. FlowMark Program Registration

The following FDL extract illustrates what these settings on the OS/2 page of
the Settings notebook may look like when you export them:

FDL Extract of Program Registration

STRUCTURE ′ Default Data Structure′
END ′ Default Data Structure′

STRUCTURE ′ Doc_Info′
′ ItemId′ : STRING;

END ′ Doc_Info′

PROGRAM ′ Scan_Document′ (′Default Data Structure′ , ′ Doc_Info′)
DESCRIPTION ′ Scan a document into ′ ′ CreditRequest′ ′ index class with

the attribute ′ ′ Origin′ ′ set to ′ ′ Scan′ ′ .
Return the item id to output container.′

OS2 PATH_AND_FILENAME ′ FRNOWFFM.CMD′
OS2 PARAMETER ′ RxVhlScanDoc OUT.ItemId CreditRequest Origin Scan′

END ′ Scan_Document′

PROGRAM ′ Display_Document′ (′Doc_Info′ , ′ Default Data Structure′)
DESCRIPTION ′ Display a document image specified by item id

at position 0,0 and size 500,600.′

OS2 PATH_AND_FILENAME ′ FRNOWFFM.CMD′
OS2 PARAMETER ′ RxVhlDisplayDocView %ItemId% N 0 0 500 600′

END ′ Display_Document′

56 FlowMark and VisualInfo with Windows

 3. Translate and run the process.

The list of VisualInfo functions you can invoke from the FRNOWFFM.CMD are
listed in Table 6 on page 58.

The steps previously described may be enough for quick results, however you
probably want to create a customized application with a full user interface. This
may be done with tools such as VisualREXX or VisualAge. The following gives a
brief outline on how to create a fully-customized workflow and document
management application on OS/2, using FlowMark for OS/2, VisualInfo for OS/2,
and the VisualInfo High Level Programming Interface:

 1. Define the workflow process that you want to carry out, where VisualInfo
objects are manipulated from activities in the FlowMark process.

 2. Model your workflow process with FlowMark Buildtime Client

A workflow model is a complete representation of a process, containing a
process diagram and the settings that define the logic behind the
components of the diagram.

a. Draw a diagram of your process showing each activity and block and the
control and data connectors. Specify the settings of the process such as
name, duration, category the process belongs to, and the process
description.

This provides you with an overview of the complete process to work with.

b. Define the data structures to be used by the activities in your process.

 c. Define the people, roles, and organization as well as levels.

d. Register the programs that are to be used for the activities in the
process. For each program, define the input and output data structures,
the path and filename, and the command-line parameters. The following
program types are supported for OS/2: EXE, CMD, DLL, BAT, COM, or
PIF.

e. Define, in detail, the logic behind your process diagram.

• For each activity, specify the start and exit conditions, the people,
data structures, and programs required to perform the activity.

• For each control connector, optionally specify a transition condition
that must evaluate to True for control to flow that way.

• For each data connector, specify how the data in the output container
of one activity is mapped to the input container of another.

• Check the definitions in your process diagram using the Check
facility. This checks the logical expressions of all the conditions you
have defined (start, end, exit, transition), the settings for the
activities, the data mappings, and the consistency between the
program registrations and the program activities.

f. Test and verify the workflow model using the FlowMark animation facility.

g. Translate the workflow model into a runtime process template.

 3. Write your application programs that you have registered in FlowMark (in
step 2.d.). The VHLPI requester functions are available in C and REXX, thus
for all programs where you need to manipulate VisualInfo objects, you need
to first decide which interface to use. Depending on this, you need to write C
programs or REXX command files.

Chapter 5. Implementing an Integrated Solution 57

Your application programs may consist of the following parts:

• Definition of user interface, if user interaction is required.

• Calls to the standard FlowMark API functions to read and write the input
and output container variables of the current program activity.

• Calls to one or more VHLPI functions, where the FlowMark container
variables are used for input or output. Table 6 lists the VHLPI requester
functions that are provided.

 4. If you have many programs to write, it may be a good idea to have dummy
programs that have the same file name as those you want to write. This
allows you to test the FlowMark process in Runtime. These dummy
programs are just empty or very simple EXEs or CMDs. As you complete
your programs one after the other, you just need to replace these dummy
programs with the real programs and test your runtime process.

 5. Once you have finished implementing and testing your programs, you are
ready to test run the entire application. Here you need to verify that the
process runs as you expect and that all of the necessary data is passed on
correctly between the activities.

Table 6 (Page 1 of 2). VHLPI Requester Functions

C Function Purpose

VhlAddFolderItem Adds an Item to a folder.

VhlAdminItemNoteLog Reads, appends, replaces or deletes Note Logs.

VhlChangeItemIndex Changes the index class of an Item to another index
class.

VhlCheckInItem Checks-in the Item.

VhlCheckOutItem Checks-out the Item for exclusive update access.

VhlCloseDocViews Closes all document image view windows.

VhlCopyDoc Creates a document and copies the contents of an
existing document into it.

VhlCreateFolder Creates a new folder.

VhlCreateFolderAddItem Creates a folder and adds the specified Item into it.

VhlDeleteItem Deletes the Item from IBM ImagePlus VisualInfo.

VhlDisplayDocView Displays a document image using Image Services.

VhlDisplayVIItem Displays a document, folder, or workbasket in a Library
Object Window

VhlExportDocObj Creates an external file from a document base object.

VhlGetVIUserID Returns the UserID logged onto IBM ImagePlus
VisualInfo.

VhlImportDocObj Creates a document base object from an external file
image.

VhlListContClasses Lists all Content Classes.

VhlListFolderItems Lists all folder Items (of specified index classes).

VhlListFolderItemsAttr Lists all folder Items and their attribute values.

VhlListFolderXrefItem Lists all folders which contain the specified Item.

VhlListIndexClassAttr Lists all properties and attributes of a specified Index
Class.

58 FlowMark and VisualInfo with Windows

For a complete description of the VHLPI functions and syntax, refer to the
VisualInfo High Level Programming Guide and Reference. For information on
defining your workflow with FlowMark, refer to the FlowMark V2.1 Modeling
Workflow, SH19-8241-00.

Table 6 (Page 2 of 2). VHLPI Requester Functions

C Function Purpose

VhlListIndexClasses Lists all Index Class names.

VhlListItemCC Lists the Content Class of an Item′s base object.

VhlListItemInfo Lists an Item′s type index class name, index attributes
and values.

VhlListWBItems Lists all Items in a specified workbasket.

VhlListWorkBaskets Lists all workbasket names and Item IDs.

VhlRemoveFolderItem Deletes the Item only from the specified folder.

VhlScanDoc Invokes the IBM ImagePlus VisualInfo Scan facility.

VhlSearchAdv Returns all Items which match the advanced Search
Criteria.

VhlSearchItem Returns all Items which match the index class and
index attribute specification.

5.2.4 VisualInfo OLE Automation API for Windows
With the VisualInfo OLE Automation API for Windows, you can manage a single
logon to the VisualInfo system for a Client Workstation. These APIs are available
with the VisualInfo Client Application and provide equivalent function to the
VisualInfo OS/2 High Level API.

The VisualInfo Client Application OLE Automation objects are manipulated by
4GL tools such as Visual Basic, Visual C++, and PowerBuilder.

The following Visual Basic code extracts show how you can use OLE automation
to control VisualInfo Client Application from your application.

First you have to connect to the VisualInfo Client Application OLE server, and
this is done in the Form_Load sub. VisualViewApp is the VisualInfo Client
Application OLE application object, and it is global.

VisualViewApp Declaration

Global VisualViewApp As Object

 Form_Load

Private Sub Form_Load()

′ Get connection to VisualInfo Client Application OLE server
Set VisualViewApp = CreateObject(″Vic.Application″)

End Sub

The following sub is designed to perform a VisualInfo Client Application logon.
The Visual Basic form contains buttons called ″Logon″ and ″Cancel″, and entry

Chapter 5. Implementing an Integrated Solution 59

fields called ″UserID″, ″Password″ and ″Server″. VILogon is a global variable
(flag) that shows whether the logon was successful or not.

 Logon_Click

Private Sub Logon_Click()

′ Data declaration
Dim Rc As Integer

′ Set logon information from the entryfields
VisualViewApp.User = UserID.Text
VisualViewApp.Password = Password.Text
VisualViewApp.Server = Server.Text

′ Perform logon to VisualInfo
Rc = VisualViewApp.Logon
If Rc = 1 Then

MsgBox ″An error occurred while logging on to VisualInfo.″
Else

VILogon = 1
Unload Logon

End If

End Sub

On another form, you have a button called ″GetNext″. If you press it, the next
item (document or folder) from the ″To be indexed″ workbasket is displayed.

 GetNext_Click

Private Sub GetNext_Click()

′ Data declarations
Dim Workbasket As Object
Dim Item As Object

′ Get the item from the workbasket
Set Workbasket = VisualViewApp.GetWorkbasket(″To be indexed″)

′ Get next item from workbasket
Set Item = Workbasket.NextWorkbasketItem

′ Find out if the item is a folder or a document
If (Item.Type = 1) Then

′ Document! Display it.
VisualViewApp.Image.OpenDocument Item

Else
′ Must be a folder. Display it.
VisualViewApp.Documents.OpenTOC Item

End If

End Sub

You can create a new customer folder by pressing the button called
″CreateCustFold″. First, a new folder with the NOINDEX class is created, and
then it is re-indexed with the data from the form′s entryfields. Finally, it is
displayed.

60 FlowMark and VisualInfo with Windows

 CreateCustFold_Click

Private Sub CreateCustFold_Click()

′ Data declaration
Dim Docs As Object

′ Create a new folder with the NOINDEX class
Set Item = VisualViewApp.CreateFolder(″CREDIT″)

′ reindex the folder with the data from the entryfields
Item.Class = ″Form C″
Item.KeyFields(″Name″) = Name.Text
Item.KeyFields(″Number″) = Number.Text
Item.KeyFields(″Date″) = Date.Text
Item.UpdateIndex

′ Display it
Set Docs = VisualViewApp.Documents
Docs.OpenTOC Item

End Sub

Chapter 5. Implementing an Integrated Solution 61

62 FlowMark and VisualInfo with Windows

Chapter 6. Integration Techniques

The way you can integrate applications into your system depends on the
interfaces they offer. Desktop applications generally offer DDE, user exits or
OLE. Host applications can be accessed through remote procedure calls or
HLLAPI. Some products have a product specific interface for integration. To use
EXTRA! functions, you may use the EXTRA! Basic. These specific interfaces
cause problems when you decide to substitute the product with a similar one.
Therefore, you should try to use standard interfaces whenever possible.

This chapter discusses these integration concepts in detail.

6.1 DDE
Dynamic Data Exchange allows applications to communicate with each other. A
DDE client application queries data from a DDE server application according to a
defined protocol. First, the client has to specify which DDE server application
(AmiPro, Excel) it wants to communicate with. Second, the topic of the
communication is defined. The operating system routes the client′s request for
communication to all possible DDE servers. It is up to them to respond to the
client. They have to decide if they are the right server (matching of server
name), and if they are able to talk about the defined topic.

Note: The server name is not case-sensitive.

Usually, DDE server applications support a topic called ″System″. This topic
offers information about other topics the DDE server is able to talk about, and
often some application version specific data. Topics can also be file names, for
instance, TABLE.XLW, if you use Excel as your DDE server.

The link between a DDE client and DDE server is established if the client decides
to talk to a server that answered the request for communication. Now the client
can query information about items related to the defined topic. An item can be
the position of a specified cell in Excel or the name of an entry field in your DDE
server application. There are three kinds of links, distinguished by how the
server updates the client when data changes.

• Automatic Link

The DDE server is forced to supply data to the DDE client whenever data
defined by the item changes. The DDE client should establish an automatic
link, if the transferred data is small and each update of that data is needed.

• Manual Link

The DDE client has to request each update of data defined by an item. A
manual link can be established to query data only one time or in a
client-defined interval.

• Notify Link

If data related to an item changes, the DDE server has to notify the DDE
client of that change. It is up to the DDE client to request the changed data.
The DDE client should establish a ″notify″ link if it needs to know when data
changes (but is too large to be transferred each time).

 Copyright IBM Corp. 1996 63

The flow of information is usually from the DDE server to the DDE client.
However, sometimes the client needs to transfer data to the server. To solve
this problem, DDE allows you to ″poke″ data to your server.

The benefit of DDE is that you can use it on various platforms such as OS/2,
Windows 3.x, 95, or NT. It is possible to implement a DDE server or client
application with different programming languages such as C/C++ or Visual
Basic. There are also some tools that help you to use DDE communications
without programming, such as the FlowMark DDE Building Block
(EXMPDDEI.EXE). You may use this building block in activities of your workflow
to load documents in a word processor (such as AmiPro) and execute a macro.

The following screen shot shows how the DDE building block can be registered
as a FlowMark program:

Figure 20. FlowMark Program Registration

The following FDL extract illustrates the exported program registration:

FDL Extract of Program Registration

PROGRAM ′ Write_Accept_Doc′ (′ Credit_Info′ , ′ Default Data Structure′)

DESCRIPTION ′ DDE AmiPro′

OS2 PATH_AND_FILENAME ′ C:\CREDIT\BIN\EXMPDDEI.EXE′
OS2 PARAMETER ′ / P C:\LOTSUITE\AMIPRO\AMIPRO.EXE C:\TEMPLATE\PROTOCOL.SAM′
OS2 WORKING_DIRECTORY ′ C:\CREDIT\DATA′
OS2 STYLE MINIMIZED

END ′ Write_Accept_Doc′

For more information about FDL, refer to FlowMark V2.1 Modeling Workflow,
SH19-8241-00.

64 FlowMark and VisualInfo with Windows

If you want to develop a DDE client with Visual Basic, you will find the following
sample useful.

Establish a manual link between a textbox and Excel, when the user first clicks
″ButtonStart″. All of the following clicks update the data. It is assumed that
ddesrv is a string containing ″EXCEL″, ddepath ″C:\MSOFFICE\EXCEL″, and
ddefile ″CREDIT.XLW″. The row and column of the worksheet are specified
through row and col.

Visual Basic Code Extract

Private Sub ButtonStart_Click ()

If MyText.LinkMode = vbLinkNone Then

MyText.LinkTopic = ddesrv & ″″ & ddepath & ″\[″ & ddefile & ″]Sheet1″
MyText.LinkItem = ″R″ & row & ″C″ & col
MyText.LinkMode = vbLinkManual

else
MyText.LinkRequest

End Sub

For more information about how you can use DDE communication with Visual
Basic, refer to Microsoft ′s Visual Basic Programmer′s Guide ″Dynamic Data
Exchange (DDE)″.

6.2 OLE Automation
OLE Automation servers are a mechanism for providing services in a Windows
environment. Once a service has been implemented as an OLE server, it can be
used by your application. You can carry out these services using Visual Basic or
a Windows C++ compi ler such as Microsof t V isual C++ or Bor land C++.

To speak in client/server terms, your application is the client that requests
services from the OLE server. Both client and server may be contained on a
single computer, or they may run on different computers that are connected
through a network. In the first case the OLE server is called a local server, and
in the second case, it is called a remote server. Local OLE servers may be
implemented as an executable file (EXE) or as a dynamic link library (DLL). An
executable file runs in a separate address space, therefore OLE servers such as
Excel are called out-of-process servers. The in-process servers are dynamic link
libraries that run in the same process as the client. This client and the called
dynamic link library share one address space. Therefore calls to routines of the
OLE server can use the client′s stack and the server routines can access the
client′s data directly by using the same address. No pointer conversion is
necessary.

An external process is not able to use pointers to an OLE client′s address space.
This problem is solved by copying the data in the out-of-process server′s
address space and replacing the original pointers with new pointers to the
copied data. The new pointers are needed by the server to modify the data.
When the server routine ends, the data of the call by reference parameter is
copied back into the client′s address space. This procedure is called marshaling

Chapter 6. Integration Techniques 65

and it is completely transparent to the client. Note that marshaling is limited in
several ways. First it is slower than passing parameters in a single address
space, and second you cannot pass pointers to another address space, you have
to use a copy of this data. The benefit of an out-of-process server is that its
services can be used by several clients, while each client needs its own copy of
an in-process server when calling its routines.

The following figure shows an OLE client and an out-of-process OLE server:

Figure 21. Out-of-Process OLE Server

When using remote OLE automation, a program is needed to establish and
control the communication between the client and the server process. This
program is called Automation Manager. The Automation Manager also takes
part in the process of marshaling and unmarshaling. To communicate across
the network, remote procedure calls (RPC) are needed. Therefore, the proxy
and stub used by local OLE automation are replaced with modules that are able
to use RPC.

66 FlowMark and VisualInfo with Windows

Figure 22. Remote OLE Server

Remote OLE automation requires that the Automation Manager be running on
the server before any client calls are started. Also, you have to use Windows 95
or NT. Any earlier version of Windows does not support remote OLE automation.
Remote servers should not display errors by using message boxes or a similar
output on the remote computer; they should always return errors to the client.
Also remote servers must not be put in a state in which they are waiting for user
input. Waiting for user input may hang this remote server until an operator is
able to enter data on the remote computer.

You can find more information about OLE and implementing your own OLE
server in Inside OLE 2 and OLE 2 Programmer′s Reference published by
Microsoft Press.

To integrate existing applications in your workflow, the programming of OLE
clients is more important than the programming of the servers. The following
sample demonstrates how to access and use OLE objects within your
application.

Sample code demonstrating the use of the VIP VisualView (or VisualInfo Client
Application) OLE server to integrate a Visual Basic application with the
document management features of VisualInfo on the Windows platform has been
included in Chapter 4, “VisualInfo - the Document Manager” on page 35.

The following section describes the OLE automation supported by EXTRA!
MAINFRAME for Windows application. The EXTRA! Personal Client supports OLE
automation for a smooth integration of host applications in your solution. As is
usual in OLE, you can control the OLE objects by properties and methods. In the
hierarchical OLE object model of EXTRA!, the session object is the top level
object. It provides access to all EXTRA! OLE objects.

The sessions collection manages the open session objects. They enable you to
access host data, and work with EXTRA! functions. The quick pad, toolbar, and
display are part of the session. They provide access to the session′s quick pad,

Chapter 6. Integration Techniques 67

toolbar, and the host display′s presentation space. Quick pads and toolbars are
managed by quick pad collection and toolbar collection.

The area object provides access to a defined area of the display.

Figure 23. Hierarchy of the EXTRA! OLE Objects

To work with the EXTRA! OLE objects, you must use a macro or programming
language that supports OLE automation such as EXTRA! Basic or Visual Basic.

The following Visual Basic extract illustrates a sample EXTRA! OLE integration,
where data is exchanged between the application and the host display.

68 FlowMark and VisualInfo with Windows

EXTRA! OLE Code Extract

Global gvSess As Object ′ Extra Session object
Global gvScreen As Object ′ Extra Screen Object
Global gvArea As Object ′ Extra Area Object

Public Function mySearchExtraString(pStr As String) As Boolean

′ Search string
Set gvArea = gvScreen.Search(pStr)

′ Read position of string; ″-1″ -> not found
If gvArea.Left = -1 Then

′ String not found
mySearchExtraString = False

Else
′ String found
mySearchExtraString = True

End If

End Function

Public Function IsListEmpty() As Boolean

′ Init return value
IsListEmpty = False

′ Correct screen displayed?
If Not mySearchExtraString(″CREDIT A02″) Then

′ Wrong screen
MsgBox(″Wrong screen″ , vbOk)
Exit Function

End If

′ Choose option 4 and press enter
gvScreen.SendKeys (″4<Enter>″)
gvScreen.WaitForString(″entries″)

′ Any entries found?
If mySearchExtraString(″no entries″) Then IsListEmpty = True

End Function

6.3 HLLAPI
The High-Level Language Application Programming Interface (HLLAPI) is an
application programming interface that allows PC programs to interact with a
host using 3270 or 5250 emulation. IBM ′s implementation of this programming
interface in the Communications Manager application is called a Emulator
High-Level Language Application Programming Interface (EHLLAPI).

A program using HLLAPI acts similar to a programmed operator, which means
that the HLLAPI program carries out and monitors activities that are usually
done by a human operator. As you can see, with HLLAPI programs, you can
automate data exchange, and integrate existing host applications.

Chapter 6. Integration Techniques 69

HLLAPI programs can be coded in several programming languages listed here
along with an IBM example:

• BASIC (IBM BASIC Compiler/2)

• COBOL (IBM COBOL/2)

• C (IBM Visual Age C/C++)

• REXX (DOS Restructured Extended Executor)

• Macro Assembler (IBM Macro Assembler/2)

The simplified figure illustrates how a HLLAPI program interacts with a host
application:

Figure 24. Simplified HLLAPI PC Host Communication

The communication services receive data from the network, and send data to the
network. This data is passed to the emulator software, which is able to put it in
a readable format on its presentation space. The HLLAPI works with these
presentation spaces, therefore a HLLAPI application can exchange strings with a
host application.

HLLAPI programs generally work in the following way:

 1. Connect

In your HLLAPI program, you first have to connect to the presentation space
of the emulator session, where your host program is shown. A presentation
space is a region in computer memory that can be displayed on the display
of 3270 or 5250 emulation.

Note: The communications services and the emulator sessions have to be
started before you can run your HLLAPI program. For example, on an OS/2
platform with Communications Manager/2, you must perform a CMSTART,
and start at least one of your emulator sessions before you can run your
EHLLAPI program.

 2. Read and Write Data

There are several ways to exchange data with the emulator′s presentation
space. You can simply read and write characters or strings, or you can
search a defined string in the presentation space, and then read or write

70 FlowMark and VisualInfo with Windows

characters or strings. It is also possible to wait for the occurrence of a
defined string, and then read or write anything. If you are working with a
3270 emulation, you can access structured fields. Therefore, you can design
your program in a more comfortable way.

 3. Disconnect

At the end of your HLLAPI program, you have to disconnect from the
emulator ′s presentation space. Once you are disconnected, you can stop
the emulator session and the communication services as you normally do.

HLLAPI can also be used to send files to the host, or receive files from the host.
It is possible to specify what kind of file you want to transfer: binary or text. For
file transfer, you have to use ″send.exe″ and ″receive.exe″ which are located in
your communication services directory

The HLLAPI is very easy to use, but it is not a fast interface. When high
performance is not your priority, you can use it to navigate through host
applications and exchange data with them.

The following REXX HLLAPI sample illustrates how you can use HLLAPI calls to
query keystrokes from your emulator session, and how you can write characters
and strings to your emulator session.

REXX HLAPPI -- Keystrokes in an Emulator Session

/*--*/
/* Keystroke Recorder - Record and play back keystrokes */
/* */
/* Input: Emulator session (A, B, C, etc.) */
/*--*/

/*--*/
/* Read only first argument ″session″ */
/*--*/
parse arg session .

/*--*/
/* If no session name entered, use session ″A″ */
/*--*/
if session = ″″ then session = ″A″

/*--*/
/* Define control keys for ″toggle″, ″play back″ and ″quit″ */
/*--*/
toggle_key = ″@rt″ /* CTRL-T toggle recording mode */
play_key = ″@rp″ /* CTRL-P Play back keystrokes */
quit_key = ″@rq″ /* CTRL-Q Quit the program */

/*--*/
/* Display control keys */
/*--*/
say ″Toggle recoding mode: Ctrl-T″
say ″Play back: Ctrl-P″
say ″Quit: Ctrl-Q″

/*--*/
/* Load HLLAPI functions, if not loaded before */

Chapter 6. Integration Techniques 71

/*--*/
if rxfuncquery(″hllapi″) then

call rxfuncadd ″hllapi″ , ″saahlapi″ , ″hllapisrv″

/*--*/
/* Show session on OS/2′ s presentation space and connect to it */
/*--*/
rc = hllapi(″Set_session_parms″ , ″CONPHYS″)
if rc<>0 then do

signal quit
end

rc = hllapi(″Connect″ ,session)
if rc<>0 then do

signal quit
end

/*--*/
/* Filter all keystrokes from the specified session */
/*--*/
rc = hllapi(″Start_keystroke_intercept″ ,session,″L″)
if rc<>0 then do

signal quit
end

/*--*/
/* Initialize flags for ″quit″ and ″record mode″ */
/*--*/
quitprog = 0
record = 0

do while quitprog<>0
/*---*/
/* Wait for a keystroke */
/*---*/
key = hllapi(″Get_key″ ,session)
select

/* Quit program */
when (key = quit_key) then do

quitprog = 1
end

/* Stop recording */
when (key = toggle_key) & record then do

say ″STOP″
record = 0

end

/* Clear ″keystroke memory″ and start recording */
when (key = toggle_key) & ¬record then do

say ″START″
record = 1; string = ″″

end

/* Play back string */
when (key = play_key) then

say ″PLAY BACK″
rc = hllapi(″Sendkey″ ,string)

72 FlowMark and VisualInfo with Windows

/* Save keystroke in string and send it to emulator′ s ps */
when record then do

string = string ││ key
rc = hllapi(″Sendkey″ ,key)

end

/* Send keystroke to emulator′ s ps without saving it */
when record<>0 then

rc = hllapi(″Sendkey″ ,key)

/* Do nothing */
otherwise nop

 end /* select statement */
end /* do statement */

/*--*/
/* Stop filtering all keystrokes from the specified session */
/*--*/
rc = hllapi(″Stop_keystroke_intercept″ ,session)

/*--*/
/* Disconnect and exit */
/*--*/
quit:
call hllapi (″Disconnect″)

exit

End of REXX HLAPPI -- Keystrokes in an Emulator Session

The sample above allows you to save all of the keystrokes that you type in your
emulator session. You can start and stop the recording of keystrokes with Ctrl-T.
By pressing Ctrl-P, you can play back the saved keystrokes. To quit the
program, press Ctrl-Q.

For more REXX samples (cmmacro.cmd: Keyboard macro facility, similar to the
preceding sample; qtime.cmd: Set PC time to host time) and further information
about EHLLAPI programming, refer to IBM Communications Manager/2 V1.11
EHLLAPI Programming Reference, SC31-6163.

6.4 Accessing C and C++ APIs from Visual Basic
If you are integrating applications with Visual Basic that do not provide Visual
Basic APIs, you need to find a way to access these APIs from Visual Basic.

To use C APIs from VisualBasic, you have to know in which dynamic link library
(DLL) they are located. For C++ cal ls, i t may be necessary to wr i te a C++
program that encapsulates the C++ interface and exports the functionality you
need in a DLL as normal C functions.

These DLLs have entry points (the exported C functions of the DLL) that you can
register in Visual Basic. Once an entry point is registered, you can call it just as
you call a Visual Basic function.

Note: Visual Basic is not able to verify if you pass the right arguments in the
correct order to the functions in your DLL.

Chapter 6. Integration Techniques 73

If you pass anything wrong, your application may crash.

To access your C or C++ calls from Visual Basic, follow these steps:

 1. C or C + + Coding

Code all functions you want to access from Visual Basic in your C or C++
files. Generate a LIB and a DLL file. The LIB file contains the entry point
definitions. You need them to translate programs that use your DLL. The
DLL file contains your translated code.

All of the functions in your DLL that you want to access from other DLLs or
EXEs, have to be declared as exportable functions. With Bor land C++ 4.5,
you have to enter:

Exportable Function

#define APIENTRY far pascal _export

char APIENTRY func1(char chMyChar);
void APIENTRY func2(long lMyLong);

Note: It is possible to create OLE 2.0 objects or OCX controls (or even
ActiveX controls) in the Windows world and OpenDoc objects for
OS/2, Windows and AIX platforms which can be compatible with OLE
on Windows platforms using IBM VisualAge C++.

Instead of defining APIENTRY yourself, you can include EXMWJAPC.H,
located in your EXMWIN\API directory. You can use a makefile such as
MYDLL.MAK to compile and link your programs:

74 FlowMark and VisualInfo with Windows

 MYDLL.MAK

#---
MAKEFILE: ″MYDLL.LIB″ and ″MYDLL.DLL″
COMPILER: Borland C++ 4.5
#---

#---
Tools
#---
IMPLIB = Implib
BCC = Bcc
TLINK = TLink

#---
Debug flags
#---
CDEBUG = -v
LDEBUG = /v

#---
Compiler and linker flags
#---
CFLAGS = -ml -c -3 -tWDE $(CDEBUG)
LFLAGS = /d /Twd $(LDEBUG)

#---
Path information
#---
PATHBC = C:\APPL\WIN\BC45

#---
File information
#---
FILE = MyDll

#---
Target LIB
#---
$(FILE).lib : $(FILE).dll
$(IMPLIB) $@ $(FILE).dll

#---
Target DLL
#---
$(FILE).dll : $(FILE).obj
$(TLINK) -L$(PATHBC)\LIB $(LFLAGS) \

 c0dl.obj+$(FILE).obj, $(FILE).dll,, @$(FILE).cfg, $(FILE).def

#---
Target OBJ
#---
$(FILE).obj : $(FILE).cpp $(FILE).mak
$(BCC) $(CFLAGS) -I$(PATHBC)\INCLUDE \

 -D_RTLDLL;_BIDSDLL; $(FILE).cpp

Chapter 6. Integration Techniques 75

 2. Entry point registration

You can register the entry points as a Visual Basic function in the
declaration section of a form, standard, or class module. Use the Declare
statement such as:

Declare Sample

Declare Function func1 Lib ″MyDll″ (ByVal chMyChar As Byte) As Byte
Declare Sub func2 Lib ″MyDll″ (ByVal lMyLong As Long)

As you can see in the sample, you have to declare functions that have a
return value as Function . Functions without a return value (void) have to be
declared as Sub . If you declare your DLL functions in the standard module,
they can be called by code anywhere in your Visual Basic program because
they are public. To declare a DLL function in the declaration section of a
form or class module, you have to include the Private keyword in the
declaration.

The library name specified after the keyword Lib is not case sensitive for
16-bit versions of Visual Basic, but is case sensitive for 32-bit ones. The
search order is:

a. Directory of executable file

b. Current directory

 c. Windows 32-bit and 16-bit system directory

d. Windows directory

e. Directories stored in the PATH environment variable

If you want to use different function names in Visual Basic than you used in
C or C++, you have to use the Alias keyword. To work with ″f2″ instead of
″func2″, you should enter:

Alias Sample

Declare Sub f2 Lib ″MyDll″ Alias ″func2″ (ByVal lMyLong As Long)

Refer to appendix Appendix A, “FlowMark C++ API Sample” on page 95 to
find a sample including the full source code, a definition file and make file. That
sample shows how it is possible to use the FlowMark C++ APIs from Visual
Basic.

For more information on how to access DLL functions in Visual Basic, refer to
Microsoft ′s Visual Basic Programmer′s Guide. You also find information about
how to pass your specific data (user defined types, flexible types) to your
functions. Also, you get information about calling DLL functions in 16 and 32-bit
environment.

6.5 Accessing C and C++ APIs from REXX
Using REXX, you can develop your programs very rapidly. However, some
applications you want to integrate may not offer REXX APIs, but C or C++ APIs
instead. This section describes how you make these APIs available for your
REXX programs.

First let′s have a look at typical REXX and C function calls:

76 FlowMark and VisualInfo with Windows

Typical REXX Calls

call Func1 ′ some Text′ , 2
myVal = Func1(myText)

Typical C Calls

myFunc1(″some Text″, 2);
rc = myFunc1(pszText, sShort);

As you can easily see, REXX and C calls differ in several ways. Therefore, you
cannot just register any C function in REXX and call it.

It is possible to extend the REXX language with new functions, or to extend an
application with REXX. This is done by creating handlers for subcommands,
external functions, and system exits. A subcommand is a command that is
issued from a REXX program. It runs as an application macro. External
functions extend the native set of REXX functions. With system exits, you can
customize the REXX interpreter′s behavior by replacing the default routines for
REXX system requests. Also, applications can manipulate the variables in REXX
programs by using the variable pool interface and execute REXX routines
directly from memory by using the macrospace interface.

Subcommands, external functions and system exits are coded, compiled, and
packed similarly. The following sections focus on the external functions.
External functions can be categorized in two parts:

• Routines written in REXX:

External functions written in REXX need not be registered with REXX; they
are found by a disk search for a REXX procedure file that matches the
function name.

• Routines written in other languages:

External functions written in languages other than REXX must be registered
with the REXX interpreter.

To register external functions, you can use the RexxRegisterFunctionExe or
RexxRegisterFunctionDll calls:

• RexxRegisterFunctionExe:

If the function resides within application code (EXE file), use
RexxRegisterFunctionExe to register the function.

• RexxRegisterFunctionDll:

If the function resides within dynamic link library (DLL file), use
RexxRegisterFunctionDll to register the function.

The following code shows how you can register your functions with the REXX
interpreter. MyLoadFuncs must be called from the REXX program. It registers
all of your functions.

Chapter 6. Integration Techniques 77

Register Functions

ULONG MyLoadFuncs(CHAR *pszName, /* Name of the function */
ULONG ulNumArgs, /* Number of args passed */
RXSTRING args[], /* Array of arguments */
CHAR *queuename, /* Current queue name */
RXSTRING *retstr) /* Return value */

{
INT iEntries; /* Num of entries */
INT iCount; /* Counter */

retstr->strlength = 0; /* Set return value */

if (ulNumArgs > 0) /* Check arguments */
return INVALID_ROUTINE;

/* Calculate number of funcs */
iEntries = sizeof(aRxFncTable) / sizeof(PSZ);

for (iCount = 0; iCount < iEntries; iCount++)
{

RexxRegisterFunctionDll(aRxFncTable[iCount], /* Function name */
pszDllName, /* DLL name */
aRxFncTable[iCount]); /* DLL func. name */

}

return VALID_ROUTINE; /* Successful */
}

The variables pszDllName (name of the DLL file containing the external
functions) and aRxFncTable (array of the names of the external functions) may to
be set to the following values:

Global Variables

static PSZ pszDllName = ″MYDLL″ ; /* DLL name */
static PSZ aRxFncTable[] = { ″MyFunc″ , /* Array of funcs */

″MyLoadFuncs″ ,
″MyDropFuncs″ };

You should use the array aRxFncTable for deregistering the functions at the end
of the program also. You can name the function for deregistering MyDropFuncs.
It works the same as MyLoadFuncs, but uses RexxDeregisterFunction instead of
RexxRegisterFunctionDll.

RexxDeregisterFunction Syntax

RexxDeregisterFunction(pszFunctionName);

All functions you want to export from the DLL or EXE file, have to be defined in
the same way, such as MyLoadFuncs:

78 FlowMark and VisualInfo with Windows

Prototype and Implementation

RexxFunctionHandler MyFunc;

ULONG MyFunc(CHAR *pszName, /* Name of the function */
ULONG ulNumArgs, /* Number of args passed */
RXSTRING args[], /* Array of arguments */
CHAR *queuename, /* Current queue name */
RXSTRING *retstr) /* Return value */

{
}

RexxFunctionHandler and RXSTRING are defined in ″rexxsaa.h″. To translate
your C program, you can use a definition file (DEF) and make file (MAK) the
same as the following:

 MYDLL.DEF

LIBRARY MYDLL INITINSTANCE LONGNAMES
PROTMODE
DESCRIPTION ′ MYDLL can export REXX functions...′
DATA MULTIPLE NONSHARED
STACKSIZE 32768
EXPORTS

MYFUNC = MyFunc @1
SYSLOADFUNCS = MyLoadFuncs @2
SYSDROPFUNCS = MyDropFuncs @3

 MYDLL.MAK

#---
IBM Visual Age C++ compiler and linker
#---
COMP = ICC
LINK = ILINK
#---
Compiler and linker flags
#---

 CFLAGS = -c -Ge-
 LFLAGS = /NOFREE
 #---
File information
#---
FILE = MYDLL
#---
Target DLL
#---
$(FILE).dll: $(FILE).obj $(FILE).def
$(LINK) $(LFLAGS) $(FILE).obj,$(FILE).dll,,REXX,$(FILE).def;

#---
Target OBJ
#---
$(FILE).obj: $(FILE).c
$(COMP) $(CFLAGS) $(FILE).c

Chapter 6. Integration Techniques 79

MYDLL.CFG defines some additional libraries which are linked to MYDLL.DLL:

 MYDLL.CFG

exmpjapi.lib+
exmcjapc.lib+
bidsi.lib+
import.lib+
crtldll.lib

″CallC.CMD″ is a small REXX program that illustrates how you load, use, and
unload the external functions from your REXX code:

 CALLC.CMD

/*--*/
/* */
/* CALLC.CMD loads the external functions from MyDll and */
/* calls one of them. */
/* */
/*--*/

/*--*/
/* Load ″MyLoadFuncs″ and execute it. */
/*--*/
call RxFuncAdd ′ MyLoadFuncs′ , ′ MYDLL′ , ′ MyLoadFuncs′
call MyLoadFuncs

/*--*/
/* Call a function, loaded by MyLoadFuncs. */
/*--*/
call MyFunc
rc = MyFunc(′ any Text′)

/*--*/
/* Unload the functions. */
/*--*/
call MyDropFuncs

For more information about using and programming REXX code, refer to the
on-line help of OS/2 (OS/2 Procedures Language 2/REXX) and Visual Age C++
(REXX Program Reference).

6.6 User Interface
An important factor for the success of your project is the front end of your
application. This is the first thing in your application that the customer and the
user will see. Therefore, you have to think about how to present your
information on the display, and which controls (buttons, entryfields, and
listboxes) you use in the dialogs.

Especially in a workflow and document management project, you always have to
keep one thing in mind: The user is accustomed to the manual work
environment, which means, for example, the user has an idea how a workbasket
or folder is organized. The users will accept your solution more easily if fewer

80 FlowMark and VisualInfo with Windows

changes are made in the way the data is presented to them. Therefore, ask the
users about their daily work and their habits. Never try just to represent your
data in the same way you keep it in your data structures.

There are some rules to create a user interface that you should remember:

 1. Keep the dialogs simple and use a clear layout.

 2. Always use customer ′s terms. Only use computer specific terms when
necessary.

 3. Group your input and output controls in a way that makes sense, and not in
the structure you use them in your code.

 4. If you use icons, try to use unambiguous ones.

 5. Never use many different fonts in your dialogs.

 6. Try to use standard dialogs, where possible.

 7. Use standard menus, icons, and controls when you design your dialogs.

 8. Unify your dialogs and controls.

 9. Provide default values in your entryfields, combo boxes, and so on.

10. Never force the user to type the same data several times.

11. Do not pop up too many overlaying dialogs.

12. Provide simple and logical navigation paths through your application.

13. Make sure that you support all of the input devices (keyboard, mouse, and so
on) that the customer wants to use. Each control must be accessible with all
of the devices.

14. Decide whether your user interface is designed for:

• Graphics or character display

• Fixed or various resolutions

• Monochrome or color displays

• Small (14″) or large (21″) displays

• Multiple languages

15. Provide help for your dialogs and controls.

16. Discuss your display layout and all of your dialogs as often as necessary
with your customer.

Also, you can refer to guidelines that describe how you have to design a user
interface according to standards such as CUA.

When designing user interfaces in a workflow project with products such as
FlowMark, there are additional points to think about. FlowMark and all the
standard applications you want to integrate have their own specific user
interface. If each application just pops up anywhere on the display, your desktop
looks very untidy. Even worse, some applications that the user needs may be
hidden by others that were started. For example, parts of the document viewer
are hidden by a word processor that was started to create a letter according to
the contents of the displayed document. The user first has to arrange the
application windows manually before the user is able to start writing the letter.
This lowers productivity, and the user may not like your solution.

Chapter 6. Integration Techniques 81

There are several ways to solve these kinds of problems. The easiest one is to
arrange the components of FlowMark (worklist, process list), then arrange the
other applications′ windows and save their position in each application. This
only works if the applications restore their old window positions when they are
started again. For each new client workstation you install your solution on, you
have to repeat the procedure of arranging windows. From the programmer ′s
view, this way is less difficult because no code is needed for it. On the other
hand, you have nearly no control of the applications running, which may lead to
other problems.

Therefore, you may try another way. With techniques such as OLE, you are able
to integrate applications on a very high level. You need more code, but you
have control of the applications. This permits you to do data exchange in a
more simple fashion. If you also use the FlowMark C++ workflow client APIs,
you are able to implement your own FlowMark runtime client with all of your
needs. In summary, there are several ways that lead to a solution with good
usability. You may choose a way with almost no coding and a low level of
integration, a way with a high level of integration, or anything between.

The following scenario illustrates an ideal solution. On the client workstation,
you have installed your workflow application, your document management
system, and other necessary applications. The display is split vertically: on the
right side is the document viewer′s window, and on the left you have the
integrated runtime client. This runtime client′s window contains a worklist, a
simple launch pad for processes, and some dialogs that pop up when needed.
This is all that users see when they log on to the system.

Figure 25. Display Layout

The logon process is designed as a single logon , which means that the user
enters an ID and password just one time, which will give access to all necessary
applications. To design a single logon, you have to know how the needed
applications can be started without prompting for logon information. Then you
have to know how you can change passwords for a given user ID in the
applications. It is also necessary to know the different rules for passwords that

82 FlowMark and VisualInfo with Windows

the applications use. You have to decide whether you want to use unified
passwords for all applications or use different passwords.

Note: The different passwords have to be stored somewhere, or must be
derivable from the single logon password.

It is necessary for the system to control the logon to the applications. It must be
able to report errors, in case of a logon failure or an abnormal application
termination. The system has to ensure that all needed applications run
correctly. In case of a fatal error, the system has to log off and close all other
applications normally.

The user can perform all actions in the window of the integrated runtime client,
except some actions related to the displayed document, such as zoom or print.
The integrated runtime client is composed of three parts: the runtime client
itself, the user interface to all needed applications, and the message router. The
following sections describe the functions of each part.

Figure 26. Interface: Dataflow and Communications

 1. Runtime Client

The runtime client provides all workflow runtime functions. It has to update
and display the work list and the process launch pad. The worklist may be
similar to the one used in FlowMark. The process launch pad is a toolbar
with icons on it, and a fly-over text with the process name or description.

Chapter 6. Integration Techniques 83

Both the work list and the process launch pad can be carried out with
FlowMark C and C++ APIs and some GUI programming.

It is good to design a highly customizable client, which means that you
should use parameters instead of hard-coded values where possible. Store
these parameters (color, font, size, position, default user id, timeout, and
refresh time in a separate INI file. Do not abuse the system INI file for your
data; just store a pointer to your INI file in the system′s INI.

 2. User Interface

The application integration part of your system is located here. This part
presents data to the user, and is also the link to other applications you use.
Once the user is logged on, it has to make sure that all of the required
applications are running and available. The central error handling has also
to be coded in the integration part. It is a good idea to map the error codes
of other applications to a central error code list. Good error handling
(message display, error logging) not only helps your users, but also helps in
locating errors while testing.

The interface part has to ensure that just one interactive activity is running
on a workstation. An interactive activity is an activity that presents data to
the users, or queries data from the user. For batch processing activities
such as print or fax jobs, you should define separate user IDs (PRINT1 or
FAX1). These non-human users should work on separate workstations, and
not on any FlowMark or VisualInfo server, or any workstation for human
users.

Do not code your strings and dialogs in the program; use resource files
instead. This simplifies corrections to your layout and texts. To store
messages and errors, use predefined file formats.

 3. Message Router

The message router is a very small communications program. It is the link
between the FlowMark activities and the user interface of the integrated
runtime client. In the FlowMark model, you specify the message router as
the executable file of an activity.

The parameter for the message router is just a list of commands, that should
be executed by the user interface part. The commands can be plain text
such as ″scan″ or ″print″, or coded information such as ″1″, ″a2″, or ″c34″.
The message router reads these parameters, and sends it together with
some FlowMark activity information to the user interface part. The FlowMark
information is the name of the process, the name of the activity, and the
FlowMark session ID (needed to read data from the input container or write
data to the output container).

It is up to the interface part to do the right things, when it receives the
information: query data items from FlowMark, communicate with other
applications, display data, read user input, and write data back to FlowMark.
The last thing in an activity is that the user interface part has to inform the
message router that all actions have been performed for this activity.
Therefore, the message router receives a ″finished″ message and a return
code from the user interface part. Once this message is received, the
message router sets the return value in the FlowMark container and
terminates; the FlowMark activity is finished.

The message router can communicate in several ways. It can use shared
memory, queues, DDE, or messages. A protocol must be defined for the

84 FlowMark and VisualInfo with Windows

communication. It is used in the message router and in the interface part.
Therefore, it is a good idea to do the functions for communication in one DLL
file. This DLL can be used by both the message router and the interface
part.

If you would like to develop a more document-centric application, you may
implement the code of the runtime client and the user interface in the
document viewer. In such a solution, the user has only one (VisualInfo) to
work with, which may simplify the execution of tasks. To code this
integration, use VisualInfo functions such as: SimDspCreateWin,
SimDspSetWin, SimDspCreateMenu, SimDspSetMenu. For detailed
information, refer to the chapter on ″Display Services Programming
Interfaces″ in the IBM VisualInfo Application Programming Reference.

Chapter 6. Integration Techniques 85

86 FlowMark and VisualInfo with Windows

Chapter 7. Hints and Tips

7.1 FlowMark Configuration
FlowMark V2.2 allows you to tailor your FlowMark system by editing the
FlowMark profile. All environment settings for FlowMark are held in this one flat
file. Thus there is no need to change the config.sys or to re-boot the system if
you need to change your FlowMark configuration.

The default profile is a file called EXMPZCFG.PRF, and it is located in \EXM\BIN
on OS/2, in \EXMWIN\BIN on Windows, and in /usr/lpp/exm/bin on AIX.

FlowMark searches its profile in the current directory first and, if it cannot be
found there, the PATH environment variable is searched. Other profiles can be
used by coding the ″/ f″ option. This option is recognized by all FlowMark
components and works similar to this:

START component /f=C:\mydir\myprof.prf

First, all FlowMark variables are searched in the profile and, if they cannot be
found there, they are taken from the operating system′s environment.

The following gives a sample profile.

EXM_LANG=EU
EXM_FILES=D:\EXM
EXM_PROTOCOL=TCI,LOC
EXM_TIMEOUT=30000
EXM_HOST=VSL293
EXM_DB_PATH=D:\EXM
EXM_DB_NAME=CREDITDB
EXM_SERVER_NAME=EXMSRV
EXM_RUNTIME_SERVER=CREDITDB,EXMSRV,9.244.70.223,TCI,\

TESTDB,TESTSRV,9.244.71.221,TCI

You can verify your FlowMark installation using the FlowMark Installation
Verification Utility. We recommend that you run this verification utility after
installation and after any change to the FlowMark configuration. This helps you
find and correct any installation errors and inconsistencies and verifies that:

• Environment variables are set correctly.

• Network drivers are installed properly.

• Network configuration files have been updated.

• The FlowMark profile contains consistent settings.

• Connections between client and server machines can be established.

On OS/2, the executable for the Installation Verification Utility is EXMPZIVT.EXE.
On AIX, it is EXMAZIVT, and on Windows 3.x, it is EXMWZIVT.EXE.

 Copyright IBM Corp. 1996 87

7.1.1 Bundle Server Setting
For each database, you can specify one bundle server. Use the
EXM_BUNDLE_SERVER setting to define the name of the FlowMark database, the
node, and the protocol you want to use. Syntax:

EXM_BUNDLE_SERVER = databasename, node, protocol

The type of ″node″ is dependent on the protocol you choose. If you have
installed a FlowMark stand-alone system (LOC), the node is ′LOCAL′. Using
APPC protocol (SNA), you have to enter a fully-qualified CP (Control Point) name.
Finally, when working with TCP/IP (TCI), ″node″ is a valid IP (Internet Protocol)
address. According to this, ″protocol″ can be one of ″LOC″, ″SNA″, or ″TCI″.
The following is an example for one local bundle server:

EXM_BUNDLE_SERVER = EXMDB, LOCAL, LOC

7.1.2 Code Page Setting
For a Windows environment, use EXM_CCSID to set the needed code page
conversion. Syntax:

EXM_CCSID = number

7.1.3 Database Name Setting
The default FlowMark database name is defined by EXM_DB_NAME. It is used
as a default for the Buildtime or Runtime logon dialog, or if no database name is
specified when you start from the command line. Syntax:

EXM_DB_NAME = databasename

If, for example, you use TESTDB as your default database, you have to enter:

EXM_DB_NAME = TESTDB

7.1.4 Database Path Setting
The path for your database is set in EXM_DB_PATH. The directory you specify
has to contain the database schema. If your database is located on an OS/2
server, the extension of the schema file is ″.ADB″; on AIX, it is ″.adb″. The
syntax is:

EXM_DB_PATH = path

Working with ″testdb″ in an AIX environment, the statement looks similar to this:

EXM_DB_PATH = /var/exm/db/testdb.adb

7.1.5 Working Directory Setting
The FlowMark working directory is specified in the same way, except use
EXM_FILES instead of EXM_DB_PATH. FlowMark places files such as message
and debug monitor profiles and display services profile into the working
directory, It must be located on the local machine.

7.1.6 Database Server Setting
The variable EXM_HOST defines the name of the machine where your database
is located.

Note: For a stand-alone installation and for a database machine, EXM_HOST
must be blank.

Syntax:

88 FlowMark and VisualInfo with Windows

EXM_HOST = machinename

The value of ″machine name″ is case-sensitive. If your database is located on
DBHOST, you have to enter:

EXM_HOST = DBHOST

The variable EXM_HOST is only needed for ObjectStore clients, but not for other
FlowMark components, such as a TelePath server or Runtime client. Buildtime
client, Runtime server, and Bundle server are examples of ObjectStore clients.
The value of EXM_HOST can be a host name or an IP address if you use the
TCP/IP protocol.

7.1.7 Delivery Server Database Recheck Setting
The recheck interval used by the delivery server is set in EXM_RECHECK_INT.
The recheck interval is the period when the delivery server starts to scan the
database for undelivered messages and retries their delivery. Syntax:

EXM_RECHECK_INT = seconds

To set the recheck interval to 10 minutes, the profile has to contain:

EXM_RECHECK_INT = 600

7.1.8 Delivery Server Message Resend Setting
If the delivery server has sent a message to a target but has not received an
acknowledgement, the server waits at least the time specified in
EXM_RESEND_INT until the message is resent. Syntax:

EXM_RESEND_INT = seconds

To set the resend interval to 2 minutes, use:

EXM_RESEND_INT=120

7.1.9 Language Setting
The variable EXM_LANG sets the language version for FlowMark. The default is
U.S. English (EU). Syntax:

EXM_LANG = languagecode

For all available languages codes, refer to IBM FlowMark Installation V2.2,
SH12-6260. The following line sets the language version of FlowMark to Korean:

EXM_LANG = KO

7.1.10 Logon Details Setting
The amount of detail downloaded to the FlowMark runtime client during the
logon process is set in EXM_LOGON_DETAILS. Syntax:

EXM_LOGON_DETAILS = number

If EXM_LOGON_DETAILS is not set, everything is downloaded. You can use the
following values:

Table 7 (Page 1 of 2). EXM_LOGON_DETAILS Values

Value Description

0 Nothing is downloaded.

Chapter 7. Hints and Tips 89

The total amount of time needed to download the information to the client
workstation cannot be tuned by the EXM_LOGON_DETAILS setting. This means,
logging on with EXM_LOGON_DETAILS = 0 and an explicit refresh to get all
processes and workitems displayed afterwards takes the same amount of time
as downloading everything at logon. To download only worklists at logon time,
set:

EXM_LOGON_DETAILS = 2

Table 7 (Page 2 of 2). EXM_LOGON_DETAILS Values

Value Description

1 Download processes only.

2 Download worklists only.

3 Download worklists and processes.

4 Download work items plus worklists.

5 Download processes and work items plus worklists.

7.1.11 Interval Setting for Overdue Notification and Process Cleaning
The intervals between the server checks for overdue activities and processes
and finished process instances that can be deleted from worklists are set in
EXM_NOTIF_INT and EXM_CLEAN_INT. Syntax:

EXM_NOTIF_INT = numberofdays EXM_CLEAN_INT = numberofdays

Assuming the interval for overdue checks is two days, and the one for delete is
one day, your profile has to contain the following statements:

EXM_NOTIF_INT = 2 EXM_CLEAN_INT = 1

7.1.12 TelePath Protocol Setting
All supported protocols that the TelePath services should be able to run on, are
listed in EXM_PROTOCOL. Syntax:

EXM_PROTOCOL = listofprotocols

• Local mode: LOC

• APPC communication: SNA

• TCP/IP communication: TCI

If local mode and APPC communications are supported in your environment,
specify the following:

EXM_PROTOCOL = LOC, SNA

7.1.13 Runtime Server Setting
The runtime servers that should be accessible from a client machine are listed
in EXM_RUNTIME_SERVER. You have to specify four values for each entry in the
list.

EXM_RUNTIME_SERVER = databasename, servername, node, protocol

To work with the database TESTDB on the FlowMark server EXMSRV (IP address
153.45.236.23), or with CREDIT on BANKSRV (IP address 153.45.236.20) the profile
must contain this statement:

90 FlowMark and VisualInfo with Windows

EXM_RUNTIME_SERVER = TESTDB, EXMSRV, 153.45.236.23, TCI,\
CREDIT, BANKSRV, 153.45.236.20, TCI

The name of the Server must be supplied in capital letters (only Version 2.2
without any CSDs). The name of the database must be unique if you use more
than one database. Using the TCP/IP protocol, you have to use the IP address
instead of the hostname. Currently, host names are not supported for this
setting.

7.1.14 Database Segment Size Setting
The size of a FlowMark segment in the FlowMark database is defined in
EXM_SEGMENT_SIZE. The default value is 200KB. Syntax:

EXM_SEGMENT_SIZE = numberofbytes

The value depends on the average size of a process and the number of process
instances.

7.1.15 Runtime Server Name Setting
The default name for the FlowMark runtime server is defined in
EXM_SERVER_NAME. Syntax:

EXM_SERVER_NAME = servername

If BANKSRV should be your default name for the FlowMark server, the statement
must be the same as this:

EXM_SERVER_NAME = BANKSRV

7.1.16 Logon Timeout Setting
EXM_TIMEOUT defines the timeout value for a FlowMark logon. The default
value is three minutes (180000 milliseconds), but when working with large
databases, this value should be increased. If the timeout value is too low, you
cannot log on to FlowMark. Syntax:

EXM_TIMEOUT = milliseconds

For example, a timeout value of four minutes:

EXM_TIMEOUT = 240000

7.1.17 TelePath Keep Setting
Whether TelePath communication services is kept or shut down after the last
local application that uses it at this node is stopped is defined in EXM_TP_KEEP.
Syntax:

EXM_TIMEOUT = yesorno

To keep TelePath communication services (YES) is the AIX default value, and
services are shut down (NO) is default in an OS/2 or Windows environment.

Chapter 7. Hints and Tips 91

7.1.18 TelePath Connections Setting
The number of concurrently opened connections by TelePath server is set in
EXM_TP_MAX_CONN. The default is 25. Syntax:

EXM_TP_MAX_CONN = count

The term connection refers to one OS/2 thread (plus resources needed by the
communications subsystem for one connection). When you reach the amount of
connections specified in EXM_TP_MAX_CONN, the TelePath server closes the
connection that was open the longest time and used the least. For example, to
increase the number of connections to 30, use:

EXM_TP_MAX_CONN = 30

7.2 Compacting the ObjectStore Database
The segments in an ObjectStore database consist of extents, which are allocated
in the space provided for the database. When there are no free extents left and
growth of an ObjectStore segment is required, the ObjectStore server extends
the database file to provide the additional space. When you compact a
database, you actually free the space that consists of holes in segments for use
by other segments in the database.

Note that when you compact a database, it is possible that each segment of the
database is modified. Consider this when you back up a compacted database.

To compact the ObjectStore database, invoke the ObjectStore compact utility:

Replace database_name with the name of the database you want to compact.

File System Command

AIX, OS/2 HPFS oscompact -dbs_to_compact
database_name

OS/2 FAT oscompac -dbs_to_compact
database_name

7.3 FlowMark Design
Always remember that FlowMark is designed to control the flow of work
between different users, and not simply to automate the launching of
programs for a single user.

When modeling in FlowMark, you should try to minimize the number of
activities per process. All tasks that are performed without an interruption in
time by the same user on a workstation should be implemented in only one
FlowMark activity. This not only simplifies your model, but also increases
performance.

92 FlowMark and VisualInfo with Windows

Keep your application data in a database and not in the FlowMark data
containers. Instead, place your workflow control data and references to your
application data there. Often it is not easy to differentiate between pure
application data and workflow control data. Therefore, you should ask for
each data item if it directly influences the workflow.

If you do this, then multiple users can access the data generated in the
process, and not only the single person who is currently working on an
activity in the process.

If a process consists of several parts where only a few are used each time,
you should divide the process in subprocesses. This avoids having a large
process running even though only a part of it is used.

When choosing the right hardware for your solution, remember that you not
only need to satisfy the FlowMark requirements, but also the requirements of
all tools and applications you use in your workflow.

You have to consider all these requirements, and check the limitations of the
operating system you are using.

7.4 VisualInfo Hints
Plan how to use index classes to represent your filing system. How do you
want to fill in the documents in your system? Do you need folders; if yes,
which ones? Should each folder be a different index class or not?

View Folder content:

• Index class (represented by tabs)
• Attribute names __

Problem: When searching, you can only search one index class (one tab) or
all classes. It is not possible to search several index classes at once.

There is no nested search (search for a document which is in multiple
subfolders).

Chapter 7. Hints and Tips 93

94 FlowMark and VisualInfo with Windows

Appendix A. FlowMark C++ API Sample

The following sample code shows how the FlowMark Workflow Client C++ APIs can be used to add
more functionality to your workflow application. The FlowMark C++ APIs are available for OS/2 and
Windows. The sample code listed below has been written for the Windows platform.

Note: Be sure to research the latest fixes for FlowMark (e.g. C++ API under Windows).

Some of the functionality offered by C++ APIs have been used and exported as native C functions in
the CLIENT.DLL. This allows you to access these functions easily from Visual Basic or C programs.

Note: The following sample code is not intended to be demonstrate how to write C++ programs. It
shows simple usage of the FlowMark C++ API functions.

A.1.1.1 CLIENT.CPP: Sample code CLIENT.CPP uses FlowMark Workflow Client C++ API.

Some sample functions that have been implemented are to:

• Logon to a FlowMark server

• Count all process instances in the current worklist

• Create a list of all process instances and their status in the current work list

• Set or query the state of a process instance

• Query properties of a process instance

• Count all work items in the current work list

• Create a list of all work items and their state in the current work list

• Set or query the state of a work item

• Get the input data container of a work item

• Transfer a work item to another user

• Query properties of a work item

• Logoff from a FlowMark server

These functions can be called from an external application to implement a customized FlowMark work
list other than the standard work list provided, or to query a list of process instances according to
specific criteria, and display these processes and their status in a self-defined format. By fully using
these and other functionalities provided by the C++ APIs, you can design and build your own
workflow client to FlowMark

//---
//
// Sample code for using
// FlowMark 2.2 C++ Client API
// with C or VisualBasic
//
//---
//
// C++ functions --> LIB & DLL file --> C or VB functions
//
//---
//
// File: CLIENT.CPP
//
// Date: Feb. 1996

 Copyright IBM Corp. 1996 95

// Authors: Unae Choi, Guido Auberger
//
//---

//***
// Includes
//***

#include ″Client.h″ // public defs
#include ″ClientSl.h″ // server list defs
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

//***
// Globals
//***

ServerAndHandle *vServers=NULL;
long ServerVectorSize=0;

//***
// Server functions
//***

//---
// Logon to FM server (default)
//---
APIRET APIENTRY ServerLogon(ExmApiBegin * pexmUserStruct,

ServerHandle * phServer)
{
short sCountLogin = 10;
long lTime = 2000;

return ServerLogon2(pexmUserStruct, phServer, sCountLogin, lTime);
}
//---
// Logon to FM server (spec. sec & tries)
//---
APIRET APIENTRY ServerLogon2(ExmApiBegin * pexmUserStruct,

ServerHandle * phServer,
short sCountLogin,
long lSec)

{
APIRET rc;
ServerAndHandle *pServerAndHandle;

// Create a server object
ExmServer *pServer;
pServer = new ExmServer(pexmUserStruct->Server,

pexmUserStruct->Database);
pServer->SetTimeout(lSec);

96 FlowMark and VisualInfo with Windows

// logon to flowmark
do
{
rc = pServer->Logon(pexmUserStruct->UserID,

pexmUserStruct->Password);

if(EXM_API_OK != rc)
{
lSec += 3000;
pServer->SetTimeout(lSec);

}
}
while((EXM_API_OK != rc) && (sCountLogin--));

// logon successful?
if(EXM_API_OK == rc)
{
ServerAdd(pServer, phServer);

}
else
{
*phServer = 0;
pServer->Logoff();
delete pServer;

}

return rc;
}
//---
// Logoff from FM server
//---
APIRET APIENTRY ServerLogoff(ServerHandle hServer)
{
APIRET rc;
ExmServer *pServer;

// Delete ExmServer object from list
pServer = ServerFind(hServer);
if(NULL == pServer)
return EXM_API_ERROR;

// Logoff
rc = pServer->Logoff();
delete pServer;

// delete server from list
ServerDelete(hServer);

return rc;
}

//***
// Instance functions
//***

Appendix A. F lowMark C++ API Sample 97

//---
// Count instances in default worklist
//---
APIRET APIENTRY InstancesCount(ServerHandle hServer,

FmStates exmState,
long * plCount)

{
APIRET rc;
ExmServer *pServer;
vector<ExmProcessInstance> vInstances;
ExmFilter exmFilter(ExmFilter::ProcessInstance);

// Init
*plCount = 0;

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query process instances
if(STATE_PRO_QUERY != exmState)
exmFilter.SpecifyCriterion(ExmFilter::State, exmState);

rc = pServer->QueryProcessInstances(exmFilter, vInstances);

if(EXM_API_OK != rc)
return rc;

// Prepare output values
*plCount = vInstances.size();

return EXM_API_OK;
}
//---
// Create a list of all instances and their status in the
// default worklist
//---
APIRET APIENTRY InstancesList(ServerHandle hServer,

InstanceStruct * pInstances,
long * plCount)

{
APIRET rc;
ExmServer *pServer;
vector<ExmProcessInstance> vInstances;
ExmFilter exmFilter(ExmFilter::ProcessInstance);
long lCount;

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query process instances
rc = pServer->QueryProcessInstances(exmFilter, vInstances);
if(EXM_API_OK != rc)
return rc;

// Check size
if(*plCount < vInstances.size())
{
*plCount = vInstances.size();

98 FlowMark and VisualInfo with Windows

return EXMPJ_RETURN_BUFFER_TOO_SMALL;
}

for(lCount = 0; lCount < vInstances.size(); lCount++)
{
pInstances• lCount “.pszInstanceName = strdup(vInstances• lCount “.Name().c_str());
pInstances• lCount “.exmInstanceState = vInstances• lCount “.State();

}

return EXM_API_OK;
}

//---
// Set and query state of an instance
//---
APIRET APIENTRY InstanceState(ServerHandle hServer,

InstanceStruct * pInstance)
{
APIRET rc;
ExmServer *pServer;
vector<ExmProcessInstance> vInstances;
ExmFilter exmFilter(ExmFilter::ProcessInstance);
long lCount;

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query process instances
rc = pServer->QueryProcessInstances(exmFilter, vInstances);
if(EXM_API_OK != rc)
return rc;

for(lCount = 0; lCount < vInstances.size(); lCount++)
{
if(vInstances• lCount “.Name() == pInstance->pszInstanceName)
{
switch(pInstance->exmInstanceState)
{
case STATE_PRO_QUERY:
pInstance->exmInstanceState = vInstances• lCount “.State();
return EXM_API_OK;

case STATE_PRO_READY:
return vInstances• lCount “.Restart();

case STATE_PRO_RUNNING:
return vInstances• lCount “.Start();

case STATE_PRO_FINISHED:
return vInstances• lCount “.Terminate();

case STATE_PRO_TERMINATED:
return vInstances• lCount “.Terminate();

}

}

Appendix A. F lowMark C++ API Sample 99

}

return EXM_API_ERROR;
}

//---
// Query properties of an instance
//---
APIRET APIENTRY InstanceProperties(ServerHandle hServer,

char * pszInstance,
PropInstStruct * pProperties)

{
APIRET rc;
ExmServer *pServer;
vector<ExmProcessInstance> vInstances;
ExmFilter exmFilter(ExmFilter::ProcessInstance);
long lCount;

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query process instances
rc = pServer->QueryProcessInstances(exmFilter, vInstances);
if(EXM_API_OK != rc)
return rc;

for(lCount = 0; lCount < vInstances.size(); lCount++)
{
if(vInstances• lCount “.Name() == pszInstance)
{
pProperties->StartTime = strdup(((string) vInstances• lCount “.StartTime()).c_str());
pProperties->EndTime = strdup(((string) vInstances• lCount “.EndTime()).c_str());
pProperties->NotificationTime = strdup(((string) vInstances• lCount “.NotificationTime()).c_str());
pProperties->pszStarter = strdup(vInstances• lCount “.Starter().c_str());
pProperties->pszCategory = strdup(vInstances• lCount “.Category().c_str());
pProperties->pszDescription = strdup(vInstances• lCount “.Description().c_str());

return EXM_API_OK;
}

}

return EXM_API_ERROR;
}
//***
// WorkItem functions
//***

//---
// Count all workitems in the default worklist
//---
APIRET APIENTRY WorkItemsCount(ServerHandle hServer,

FmStates exmState,
long * plCount)

{
APIRET rc;

100 FlowMark and VisualInfo with Windows

long lCount;
ExmServer *pServer;
vector<ExmWorklist> vWorklists;
ExmWorklist WorkList;
vector<ExmWorkitem> vWorkitems;
ExmFilter exmFilter(ExmFilter::Workitem);

// Init
*plCount = 0;

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query Worklists
rc = pServer->QueryWorklists(vWorklists);
if (EXM_API_OK != rc)
{
return rc;

}

// Find the default Work List
for (lCount = 0; lCount < vWorklists.size(); lCount++)
{
if (0 == vWorklists•lCount“.IsDefault())
{
WorkList = vWorklists•lCount“;
break;

}
}

// Retrieve Work items
if(STATE_ACT_QUERY != exmState)
exmFilter.SpecifyCriterion(ExmFilter::State, exmState);

rc = WorkList.QueryWorkitems(exmFilter, vWorkitems);

if (EXM_API_OK != rc)
return rc;

// Prepare output
*plCount = vWorkitems.size();

return EXM_API_OK;
}
//---
// Create a list of all workitems and their state in the
// default worklist
//---
APIRET APIENTRY WorkItemsList(ServerHandle hServer,

WorkItemStruct * pWorkItems,
long * plCount)

{
APIRET rc;
long lCount;
ExmServer *pServer;
vector<ExmWorklist> vWorklists;
ExmWorklist WorkList;
vector<ExmWorkitem> vWorkitems;
ExmProcessInstance Instance;

Appendix A. F lowMark C++ API Sample 101

ExmFilter exmFilter(ExmFilter::Workitem);

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query Worklists
rc = pServer->QueryWorklists(vWorklists);
if (EXM_API_OK != rc)
{
return rc;

}

// Find the default Work List
for (lCount = 0; lCount < vWorklists.size(); lCount++)
{
if (0 == vWorklists•lCount“.IsDefault())
{
WorkList = vWorklists•lCount“;
break;

}
}

// Retrieve all Work items
rc = WorkList.QueryWorkitems(exmFilter, vWorkitems);

if (EXM_API_OK != rc)
return rc;

// Check size
if(*plCount < vWorkitems.size())
{
*plCount = vWorkitems.size();
return EXMPJ_RETURN_BUFFER_TOO_SMALL;

}

// Prepare output
for(lCount = 0; lCount < vWorkitems.size(); lCount++)
{
pWorkItems• lCount “.pszWorkItemName = strdup(vWorkitems• lCount “.Name().c_str());
pWorkItems• lCount “.exmWorkItemState = vWorkitems• lCount “.State();
vWorkitems• lCount “.GetProcessInstance(Instance);
pWorkItems• lCount “.pszInstanceName = strdup(Instance.Name().c_str());

}

return EXM_API_OK;
}
//---
// Set and Query status of a workitem
//---
APIRET APIENTRY WorkItemState(ServerHandle hServer,

WorkItemStruct * pWorkItem)
{
APIRET rc;
long lCount;
ExmServer *pServer;
vector<ExmWorklist> vWorklists;
ExmWorklist WorkList;
vector<ExmWorkitem> vWorkitems;

102 FlowMark and VisualInfo with Windows

ExmProcessInstance Instance;
ExmFilter exmFilter(ExmFilter::Workitem);

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query Worklists
rc = pServer->QueryWorklists(vWorklists);
if (EXM_API_OK != rc)
{
return rc;

}

// Find the default Work List
for (lCount = 0; lCount < vWorklists.size(); lCount++)
{
if (0 == vWorklists•lCount“.IsDefault())
{
WorkList = vWorklists•lCount“;
break;

}
}

// Retrieve all Work items
rc = WorkList.QueryWorkitems(exmFilter, vWorkitems);

if (EXM_API_OK != rc)
return rc;

// Prepare output
for (lCount = 0; lCount < vWorkitems.size(); lCount++)
{
if (vWorkitems•lCount“.Name() == pWorkItem->pszWorkItemName)
{

switch(pWorkItem->exmWorkItemState)
{
case STATE_ACT_QUERY:
pWorkItem->exmWorkItemState = vWorkitems• lCount “.State();
return EXM_API_OK;

case STATE_ACT_READY:
return vWorkitems• lCount “.Restart();

case STATE_ACT_RUNNING:
return vWorkitems• lCount “.Start();

case STATE_ACT_FINISHED:
return vWorkitems• lCount “.Terminate();

case STATE_ACT_SUSPENDED:
// return vWorkitems• lCount “.Suspend();
return EXM_API_ERROR;

case STATE_ACT_TERMINATED:
return vWorkitems• lCount “.Terminate();

}
}

Appendix A. F lowMark C++ API Sample 103

}

return EXM_API_ERROR;
}

//---
// Get Data of a workitem
//---
APIRET APIENTRY WorkItemData(ServerHandle hServer,

WorkItemStruct * pWorkItem,
ExmApiStructureData2 * pData)

{
APIRET rc;
long lCount;
long lVar;
long lSize = (long) pData->Number - 1;
ExmServer *pServer;
vector<ExmWorklist> vWorklists;
ExmWorklist WorkList;
vector<ExmWorkitem> vWorkitems;
ExmProcessInstance Instance;
ExmReadOnlyContainer InContainer;
vector<ExmContainerElement> vElements;
ExmFilter exmFilter(ExmFilter::Workitem);

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query Worklists
rc = pServer->QueryWorklists(vWorklists);
if (EXM_API_OK != rc)
{
return rc;

}

// Find the default Work List
for (lCount = 0; lCount < vWorklists.size(); lCount++)
{
if (0 == vWorklists•lCount“.IsDefault())
{
WorkList = vWorklists•lCount“;
break;

}
}

// Retrieve all Workitems
rc = WorkList.QueryWorkitems(exmFilter, vWorkitems);

if (EXM_API_OK != rc)
return rc;

// Prepare output
for (lCount = 0; lCount < vWorkitems.size(); lCount++)
{
if (vWorkitems•lCount“.Name() == pWorkItem->pszWorkItemName)
{
// Workitem found

104 FlowMark and VisualInfo with Windows

ExmReadOnlyContainer InContainer;
vector <ExmContainerElement> vElements;
string strValue;
long lValue;
float fValue;
char *pchHelp;

// Get input container of workitem
vWorkitems•lCount“.GetInContainer(InContainer);
// Get data from input conatiner
InContainer.Leaves(vElements);

do
{
for(lVar = 0; lVar < vElements.size(); lVar++)
{
if(vElements• lVar “.Name() == pData->MemberData• lSize “.Name)
{
// String values
if(vElements• lVar “.Type() == ″STRING″)
{
vElements• lVar “.GetValue(strValue);
pData->MemberData• lSize “.DataArea = strdup(strValue.c_str());
continue;

}
else
// Long Values
if(vElements• lVar “.Type() == ″LONG″)
{
vElements• lVar “.GetValue(lValue);
pchHelp = (char *) malloc(sizeof(long));
*pchHelp = lValue;
pData->MemberData• lSize “.DataArea = pchHelp;
continue;

}
else
// Double Values
if(vElements• lVar “.Type() == ″FLOAT″)
{
vElements• lVar “.GetValue(fValue);
pchHelp = (char *) malloc(sizeof(float));
*pchHelp = fValue;
pData->MemberData• lSize “.DataArea = pchHelp;
continue;

}

} // end if names equal

} // end for elements.count

}
while(lSize--);

return EXM_API_OK;
}

}

return EXM_API_ERROR;
}

Appendix A. F lowMark C++ API Sample 105

//---
// Transfer a workitem to another user
//---
APIRET APIENTRY WorkItemTransfer(ServerHandle hServer,

WorkItemStruct * pWorkItem,
char * pszTargetUser)

{
APIRET rc;
long lCount;
ExmServer *pServer;
vector<ExmWorklist> vWorklists;
ExmWorklist WorkList;
vector<ExmWorkitem> vWorkitems;
ExmProcessInstance Instance;
ExmFilter exmFilter(ExmFilter::Workitem);

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query Worklists
rc = pServer->QueryWorklists(vWorklists);
if (EXM_API_OK != rc)
{
return rc;

}

// Find the default Work List
for (lCount = 0; lCount < vWorklists.size(); lCount++)
{
if (0 == vWorklists•lCount“.IsDefault())
{
WorkList = vWorklists•lCount“;
break;

}
}

// Retrieve all Workitems
rc = WorkList.QueryWorkitems(exmFilter, vWorkitems);

if (EXM_API_OK != rc)
return rc;

// Transfer Workitem
for (lCount = 0; lCount < vWorkitems.size(); lCount++)
{
if (vWorkitems•lCount“.Name() == pWorkItem->pszWorkItemName)
{
return vWorkitems•lCount“.Transfer(pszTargetUser);

}
}

return EXM_API_ERROR;
}

//---
// Query properties of a workitem

106 FlowMark and VisualInfo with Windows

//---
APIRET APIENTRY WorkItemProperties(ServerHandle hServer,

WorkItemStruct * pWorkItem,
PropWorkItemStruct * pProperties)

{
APIRET rc;
long lCount;
ExmServer *pServer;
vector<ExmWorklist> vWorklists;
ExmWorklist WorkList;
vector<ExmWorkitem> vWorkitems;
ExmProcessInstance Instance;
ExmFilter exmFilter(ExmFilter::Workitem);

// Query ExmServer object from list
if(NULL == (pServer = ServerFind(hServer)))
return EXM_API_ERROR;

// Query Worklists
rc = pServer->QueryWorklists(vWorklists);
if (EXM_API_OK != rc)
{
return rc;

}

// Find the default Work List
for (lCount = 0; lCount < vWorklists.size(); lCount++)
{
if (0 == vWorklists•lCount“.IsDefault())
{
WorkList = vWorklists•lCount“;
break;

}
}

// Retrieve all Workitems
rc = WorkList.QueryWorkitems(exmFilter, vWorkitems);

if (EXM_API_OK != rc)
return rc;

// Prepare output
for (lCount = 0; lCount < vWorkitems.size(); lCount++)
{
if (vWorkitems•lCount“.Name() == pWorkItem->pszWorkItemName)
{
pProperties->StartTime = strdup(((string) vWorkitems• lCount “.StartTime()).c_str());
pProperties->EndTime = strdup(((string) vWorkitems• lCount “.EndTime()).c_str());
pProperties->NotificationTime = strdup(((string) vWorkitems• lCount “.NotificationTime()).c_str());
pProperties->pszOwner = strdup(((string) vWorkitems• lCount “.Owner()).c_str());
pProperties->pszCategory = strdup(((string) vWorkitems• lCount “.Category()).c_str());
pProperties->pszDescription = strdup(((string) vWorkitems• lCount “.Description()).c_str());
pProperties->pszDocumentation = strdup(((string) vWorkitems• lCount “.Documentation()).c_str());
pProperties->ulPriority = vWorkitems• lCount “.Priority();

return EXM_API_OK;
}

}

Appendix A. F lowMark C++ API Sample 107

return EXM_API_ERROR;
}

//***
// Serverlist functions
//***

//---
// Find a server in the serverlist
//---
ExmServer * ServerFind(ServerHandle hServer)
{
unsigned long ulCount;

// walk through list of servers
for(ulCount = 0; ulCount < ServerVectorSize; ulCount++)
{
if(vServers• ulCount “.hServer == hServer)
return(vServers• ulCount “.pServer);

}

return(NULL);
}

//---
// Delete a server from the serverlist
//---
APIRET ServerDelete(ServerHandle hServer)
{
unsigned ulCount;

// walk through list of servers
for(ulCount = 0; ulCount < ServerVectorSize; ulCount++)
{
if(vServers• ulCount “.hServer == hServer)
{
// delete reference to server
vServers• ulCount “.pServer = NULL;
vServers• ulCount “.hServer = 0;
return EXM_API_OK;

}
}

return EXM_API_ERROR;
}

//---
// Add a server to the serverlist
//---
APIRET ServerAdd(ExmServer *pServer, ServerHandle *phServer)
{
static long lServerCount = 0;
unsigned long ulCount;
char chFound = 0;

108 FlowMark and VisualInfo with Windows

// walk through list of servers
for(ulCount = 0; ulCount < ServerVectorSize; ulCount++)
{
if(NULL == vServers• ulCount “.pServer)
{

// free entry found, use it
chFound = 1;
break;

}
}

if(!chFound)
{
// expand list of servers
vServers = (ServerAndHandle *) realloc(vServers, sizeof(ServerAndHandle) * (ulCount + 1));
ServerVectorSize++;

}

// storage valid
if(vServers)
{
// store server reference
vServers• ulCount “.hServer = lServerCount++;
*phServer = vServers• ulCount “.hServer;
vServers• ulCount “.pServer = pServer;

return EXM_API_OK;
}

return EXM_API_ERROR;
}

A.1.1.2 CLIENT.H: CLIENT.H has the definitions and includes for CLIENT.CPP for the workflow
client APIs:

//---
//
// Sample code for using
// FlowMark 2.2 C++ Client API
// with C or VisualBasic
//
//---
//
// File: CLIENT.H
//
// Date: Feb. 1996
// Authors: Unae Choi, Guido Auberger
//
//---

//---
// For FlowMark C/C++ API′ s
//---
#define EXM_WIN16 // use 16bit Windows code
#define __MINMAX_DEFINED // do not use FM min,max defines

Appendix A. F lowMark C++ API Sample 109

#include <exmwjapc.h> // FM includes
#include <exmpjapi.h>
#include <exmpjstr.h>
#include <exmpjapi.hxx>

//---
// Structure defines
//---
typedef short FmStates;
#define STATE_ACT_QUERY 0
#define STATE_ACT_READY ExmWorkitem::ready
#define STATE_ACT_RUNNING ExmWorkitem::running
#define STATE_ACT_FINISHED ExmWorkitem::finished
#define STATE_ACT_SUSPENDED ExmWorkitem::suspended
#define STATE_ACT_TERMINATED ExmWorkitem::terminated
#define STATE_ACT_DISABLED ExmWorkitem::disabled
#define STATE_PRO_QUERY 0
#define STATE_PRO_READY ExmProcessInstance::ready
#define STATE_PRO_RUNNING ExmProcessInstance::running
#define STATE_PRO_FINISHED ExmProcessInstance::finished
#define STATE_PRO_SUSPENDED ExmProcessInstance::suspended
#define STATE_PRO_TERMINATED ExmProcessInstance::terminated

//---
// Handle to manage servers
//---
typedef long ServerHandle;

//---
// State of workitem
//---
typedef struct _WorkItemStruct
{
char *pszWorkItemName;
FmStates exmWorkItemState;
char *pszInstanceName;

} WorkItemStruct;

//---
// State of instance
//---
typedef struct _InstanceStruct
{
char *pszInstanceName;
FmStates exmInstanceState;

} InstanceStruct;

//---
// Properties of instance
//---
typedef struct _PropInstStruct
{
char * StartTime;
char * EndTime;
char * NotificationTime;
char * pszStarter;
char * pszCategory;

110 FlowMark and VisualInfo with Windows

char * pszDescription;
} PropInstStruct;

//---
// Properties of workitem
//---
typedef struct _PropWorkItemStruct
{
char * StartTime;
char * EndTime;
char * NotificationTime;
char * pszOwner;
char * pszCategory;
char * pszDescription;
char * pszDocumentation;
unsigned long ulPriority;

} PropWorkItemStruct;

//---
// Prototypes of the functions
//---

//---
// Server functions
//---
APIRET APIENTRY ServerLogon(ExmApiBegin * pexmUserStruct,

ServerHandle * phServer);

APIRET APIENTRY ServerLogon2(ExmApiBegin * pexmUserStruct,
ServerHandle * phServer,
short sCountLogin,
long lSec);

APIRET APIENTRY ServerLogoff(ServerHandle hServer);

//---
// Instance functions
//---
APIRET APIENTRY InstancesCount(ServerHandle hServer,

FmStates exmState,
long * plCount);

APIRET APIENTRY InstancesList(ServerHandle hServer,
InstanceStruct * pInstances,
long * plCount);

APIRET APIENTRY InstanceState(ServerHandle hServer,
InstanceStruct * pInstance);

APIRET APIENTRY InstanceProperties(ServerHandle hServer,
char * pszInstance,
PropInstStruct * pProperties);

//---
// WorkItem functions
//---
APIRET APIENTRY WorkItemsCount(ServerHandle hServer,

FmStates exmState,

Appendix A. F lowMark C++ API Sample 111

long * plCount);

APIRET APIENTRY WorkItemsList(ServerHandle hServer,
WorkItemStruct * pWorkItems,
long * plCount);

APIRET APIENTRY WorkItemState(ServerHandle hServer,
WorkItemStruct * pWorkItem);

APIRET APIENTRY WorkItemData(ServerHandle hServer,
WorkItemStruct * pWorkItem,
ExmApiStructureData2 * pData);

APIRET APIENTRY WorkItemTransfer(ServerHandle hServer,
WorkItemStruct * pWorkItem,
char * pszTargetUser);

APIRET APIENTRY WorkItemProperties(ServerHandle hServer,
WorkItemStruct * pWorkItem,
PropWorkItemStruct * pProperties);

112 FlowMark and VisualInfo with Windows

A.1.1.3 CLIENTSL.H: This code has the remaining definitions and includes for CLIENT.CPP:

//---
//
// Sample code for using
// FlowMark 2.2 C++ Client API
// with C or VisualBasic
//
//---
//
// File: CLIENTSL.H
//
// Date: Feb. 1996
// Authors: Unae Choi, Guido Auberger
//
//---

//---
// Type defs
//---
typedef struct _ServerAndHandle
{
ExmServer *pServer;

 ServerHandle hServer;
} ServerAndHandle;

//---
// Prototypes
//---
ExmServer * ServerFind(ServerHandle hServer);
APIRET ServerDelete(ServerHandle hServer);
APIRET ServerAdd(ExmServer *pServer, ServerHandle *hServer);

A.1.1.4 CLIENT.DEF: CLIENT.DEF is the definition file for CLIENT.CPP used in CLIENT.MAK:

LIBRARY CLIENT

DESCRIPTION ′ FlowMark Workflow Client API sample code′

HEAPSIZE 16384

Appendix A. F lowMark C++ API Sample 113

A.1.1.5 CLIENT.MAK: CLIENT.MAK is the makefile for CLIENT.DLL:

#---
#
Sample code for using
FlowMark 2.2 C++ Client API
with C or VisualBasic
#
#---
#
File: CLIENT.MAK
#
Date: Feb. 1996
Authors: Unae Choi, Guido Auberger
#
#---

#---
Borland C++ 4.5 compiler and linker
#---
IMPLIB = Implib
BCC = Bcc
TLINK = TLink

#---
Debug flags
#---
CDEBUG = -v
LDEBUG = /v

#---
Compiler flags
#---
CFLAGS16 = -ml
CFLAGS = $(CFLAGS16) -c $(CDEBUG) -3 -tWDE

#---
Linker flags
#---
LFLAGS = /d /Twd

#---
Path information
#---
PATHBC = C:\APPL\WIN\BC45
PATHFM = C:\APPL\WIN\EXMWIN\API

#---
File information
#---
FILE = Client

#---
Target LIB
#---
$(FILE).lib : $(FILE).dll
$(IMPLIB) $@ $(FILE).dll

114 FlowMark and VisualInfo with Windows

#---
Target DLL
#---
$(FILE).dll : $(FILE).obj
$(TLINK) $(LDEBUG) -L$(PATHBC)\LIB;$(PATHFM) $(LFLAGS) \

 c0dl.obj+$(FILE).obj, $(FILE).dll,, @$(FILE).cfg, $(FILE).def

#---
Target OBJ
#---
$(FILE).obj : $(FILE).cpp $(FILE).mak
$(BCC) $(CFLAGS) -I$(PATHBC)\INCLUDE;$(PATHFM) -D_RTLDLL;_BIDSDLL; $(FILE).cpp

A.1.1.6 CLIENT.CFG: CLIENT.CFG defines some additional libraries which are linked to
CLIENT.DLL:

exmpjapi.lib+
exmcjapc.lib+
bidsi.lib+
import.lib+
crtldll.lib

Appendix A. F lowMark C++ API Sample 115

116 FlowMark and VisualInfo with Windows

Appendix B. Special Notices

This publication is intended to help technical people from IBM, customers and business partners with
the planning and implementation of a workflow and document management system based on FlowMark
and VisualInfo by providing the steps that were taken in an actual IBM services project at a customer
site. The information in this publication is not intended as the specification of any programming
interfaces that are provided by IBM FlowMark and IBM VisualInfo. See the PUBLICATIONS section of
the IBM Programming Announcement for FlowMark and VisualInfo for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product,
program, or service is not intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of IBM′s intellectual property
rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is
limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is
distributed AS IS. The information about non-IBM (″vendor″) products in this manual has been
supplied by the vendor and IBM assumes no responsibility for its accuracy or completeness. The use
of this information or the implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the customer′s operational
environment. While each item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

Reference to PTF numbers that have not been released through the normal distribution process does
not imply general availability. The purpose of including these reference numbers is to alert IBM
customers to specific information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines Corporation in the United
States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

IBM

 Copyright IBM Corp. 1996 117

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Aeneis is copyrighted by Guido Langer and the Institut f-r
Wirtschafts-informatik, Uni Hannover

Other trademarks are trademarks of their respective companies.

118 FlowMark and VisualInfo with Windows

Appendix C. Rel ated Publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

C.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO Redbooks” on page 121.

• FlowMark V2.2 Design Guidelines, SG24-4613

• FlowMark Installation and Administration, SG24-4614

• A Simple Approach to VisualInfo, GG24-4444

• VisualInfo Sample Code for Client, GG24-4369

• VisualInfo: CID Installation, GG24-4415

A complete list of International Technical Support Organization publications, known as redbooks, with a
brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks, GG24-3070.

C.2 Other Publications

C.2.1 FlowMark

These publications are also relevant as further information sources.

• IBM FlowMark: Modeling Workflow, SH19-8241, describes the concepts of workflow modeling and
how you can use FlowMark to define your model.

• IBM FlowMark: Managing Your Workflow, SH19-8243, introduces the FlowMark Runtime Client and
shows how you can use it.

• IBM FlowMark: Programming Guide, SH19-8240, explains the FlowMark APIs for C, C++, REXX,
Visual Basic and Cobol

• IBM FlowMark: Installation V2 R2, SH12-6260, shows how you install, administrate and maintain
your FlowMark system.

• IBM FlowMark: Diagnosis Guide, SH19-8239, contains information on how you can correct
problems when you install or use FlowMark.

• IBM FlowMark: Application Integration V2R2, SH12-6267, explains the service broker and building
blocks concepts.

C.2.2 VisualInfo
• IBM ImagePlus VisualInfo General Information and Planning Guide, GK2T-1709, a overview of the

VisualInfo system and information about planning your system.

• IBM ImagePlus VisualInfo Installation Guide, GK2T-1710, shows how you can install VisualInfo on
your system.

• IBM ImagePlus VisualInfo Administration Guide, SC31-7661, explains how to administrate your
VisualInfo system.

 Copyright IBM Corp. 1996 119

• IBM ImagePlus VisualInfo User′s Guide, SC31-7670

• IBM ImagePlus VisualInfo Application Programming Guide, Volume 1: Folder Manager, Application,
and Library Interfaces, SC31-7662

• IBM ImagePlus VisualInfo Application Programming Guide, Volume 2: Image Services Interface,
SC31-7664

• IBM ImagePlus VisualInfo Application Programming Reference, Volume 1: Folder Manager and
Application Interfaces, SC31-7663

• IBM ImagePlus VisualInfo Application Programming Reference, Volume 2: Image Services Interface,
SC31-7682

• IBM ImagePlus VisualInfo Application Programming Reference, Volume 3: Common Data Structures
and Database Tables, SC31-7665

• IBM ImagePlus VisualInfo Application Programming Reference, Volume 4: Library Interfaces,
SC31-7667

C.2.3 Other Publications
• VisualView Image Client: User′s Guide

• VisualView Image Client: Technical Reference Manual

• Workflow Management Coalition Application Programming Interface 2 (WAPI) Specification,
document number WFMC-TC-1009

• IBM Communications Manager/2: V1.11 EHLLAPI Programming Reference, document number
SC31-6163

120 FlowMark and VisualInfo with Windows

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1996 121

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

122 FlowMark and VisualInfo with Windows

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

• Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 123

124 FlowMark and VisualInfo with Windows

List of Terms and Abbreviations

Note: For more information about terms, refer to the
product publications found in Appendix C, “Related
Publications” on page 119.

A
activity . A unit of work that is performed by one
person in one place and at one time. An activity
consumes time and resources and has a defined
duration with an explicit start and end time.
In LOVEM-ProModeler: on a PLOVC or JLOVC, an
activity is a manual process path component that
receives input from an upstream component, acts
upon it, and sends output to a downstream
component. Activities can be added to manual bands.
In FlowMark: an activity is one of the steps that make
up a process. See also program activity and process
activity.

activity block . In FlowMark: a modeling construct
that enables the grouping of related activities into a
lower-level diagram. It also enables the modeling of
loops and bundles. See also activity bundle.

activity bundle . In FlowMark: a type of activity block
that supports multiple instances of a single program
or process activity during runtime. The number of
instances of an activity is determined during runtime
by a special program activity called the planning
activity. See also planning activity.

AIF . Application Integration Features: a CIC/ESA
product which helps you integrate your existing
applications without writing any code. Applications
communicate across platforms using MQSeries for
MVS/ESA, which keeps them insulated from network
complexities.

AIR . See assumptions/issues/recommendations.

ALOVC . See architecture line of visibility chart.

animation . A facility for dynamically verifying
workflow models. Animating a workflow model lets
the user simulate the flow of work through its
activit ies.

API . See application program interface.

APPC . Advanced program-to-program
communication. A commonly used protocol for
various network environments, such as Internet, Host
communications, and LANs. FlowMark uses either
APPC or TCP/IP. See also TCP/IP.

application development models . Process and data
models required for application systems development.

application program interface (API) . An interface
provided by the workflow manager that enables
programs to be started, processes to be controlled,
and operators to work with data containers.

architecture line of visibility chart (ALOVC) . The
graphical representation of the essential customer
and enterprise processes and key data needs and
their main characteristics arranged in sequence. See
also enterprise architecture.

As Is . The current state of a process or process
path. See also To Be.

As Is view . A chart or diagram showing the current
state of a process or process path. See also To Be
view.

assumptions/issues/recommendations (AIR) . In
LOVEM-ProModeler: a business control parameter
that can contain assumptions, issues, and
recommendations.

attribute . The characteristic or property that defines
an entity, such as the attribute of a unit of
information. See also representative attribute.

audit trail . A facility for recording events that occur
when process instances are run. The FlowMark Audit
Trail server logs events that occur for each database
tha contains process models and is started. These
events are recorded throughout the day in an audit
trail.

automation band . The horizontal section on a PLOVC
or JLOVC that contains systems, system functions, or
computer data stores.

Automation Manager . The Automation Manager is
responsible for connection of remote clients to OLE
servers.

B
band . The horizontal sections of an LOVC. Examples
of bands:

• Customer band
• Internal/external organization band
• Internal business area or department and job

bands
• Manual/automation band
• Automation band.

bar code . Industry standard pattern of vertical lines;
You can use bar codes to indicate the beginning of a
new folder, the beginning of a new document, or to
provide a value to be used in indexing the folder or
the document.

 Copyright IBM Corp. 1996 125

base product . The product that provides the
functionality required for the operation, for example,
VisualInfo, Lotus Notes. This is the product called via
the Service Broker Manager. Synonym for cprtner
product and companion product.

benchmarking . Comparing something with a
standard such as comparing the performance of a
business process with another process of the same
kind.

best of breed (BOB) . A company that offers the
same or similar products and services as other
companies in that category, but at higher levels of
performance in one or more area of competition (for
example, price, quality, competence, customer
service, and so on).

block . See activity block.

blueprint . The exact graphical representation of As
Is business processes or To Be designs. A blueprint
can be created at the architecture, logical, physical,
or job level. It can be used for implementing new
processes and for ongoing process management.

blueprinting . The procedure used to document a
company ′s process design in graphical form using
ALOVCs, LLOVCs, PLOVCs, or JLOVCs.

BOB . See best of breed.

bottom-up . Starting the modeling or design of
business processes from their lowest level of
abstraction and detail and then integrating lower-level
models or designs into a higher-level whole. See also
top-down.

BPM . See business process management and
business process modeler.

BPR . See business process re-engineering.

Buildtime . In FlowMark: the component used to
define processes. See also Runtime.

bundle . In FlowMark: a type of block that supports
multiple instances of a single program or process
activity at runtime. The number of instances of the
activity is determined at runtime by a special
program activity called the planning activity. See
also bundle activity, pattern activity, and planning
activity.

bundle activity . In FlowMark: one of the multiple
instances of the pattern activity created for an activity
bundle during Runtime. The number of instances is
determined by the input to the planning activity. See
also planning activity and pattern activity.

bus . A term borrowed from electrical engineering (or
computer design) that signifies a continuum with
concrete contact (start and exit) points. In this

manual, it represents a continuum of repetitive and
unpredictable processes, a set of sequential data
stores, or a continuum for capturing critical process
quality measurement points.

business . An entity that engages in commerce. A
business produces or sells goods and services, has
goals, processes, and personnel.

business area . Part of an enterprise implementing a
group or processes that support one aspect of
furthering the mission of the enterprise. Business
area is part of the logical model (LLOVC).

business control parameter . Goals, predictions,
targets, observations, and measurements, of the
enterprise or individual organization units, such as
CSFs, AIRs, and CMPs. These business objects are of
primary importance to the purpose of the enterprise
and an can be assigned to processes and activities in
logical and physical models and blueprints.

business process . See process.

business process management (BPM) . The ongoing
management of business processes, from day-to-day
operational process management to radical business
process re-engineering.

business process modeler (BPM) . An IBM business
modeling tool that is based on IBM LOVEM. Short
name: ProModeler.

business process re-engineering (BPR) . A disciplined
approach to radically changing business processes.

C
CABE . Computer Aided Business Engineering.

call flow management . The automated management
of telephone calls; especially applicable for call center
applications, where phone calls are treated as units of
work and are tracked and measured.

CAPI . The VisualInfo primary programming
interfaces are called Common Application
Programming Interface.

cardinality . In data modeling: an attribute of a
relationship that describes the membership quantity.
There are four types of cardinality:

 1. One-to-one
 2. One-to-many
 3. Many-to-many
 4. Many-to-one.

CASE . Computer Aided Software Engineering.

change management bus . On the ALOVC, a
continuum of repetitive and unpredictable processes
for enabling customers to request and affect changes

126 FlowMark and VisualInfo with Windows

(for example, a proposal, a contract, or an order at
any time during the relationship).

child organization . In FlowMark: an organization
within the hierarchy of administrative units of an
enterprise that has a parent organization. Each child
organization can have one parent organization and
several child organizations. The parent is one level
above in the hierarchy. See also parent organization.

CIF. Common Interchange File; The CIF file specifies
attribute names needed to import documents and
folders to the VisualInfo system from other platforms.

CIU file . Common Interchange Unit File

client . Clients access shared network resources or
functionality provided by a server.

COLD . Computer Output to Laser Disc

common specification language . A means of
communicating across various functions,
organizational units, or levels of management in a
precise language using graphical representations,
such as the four types of LOVCs.

computer data store . A business object representing
computer files, databases, or other media that store
information.

condition . In FlowMark: an expression that
determines the flow of control through a process
instance. See also start condition, exit condition, and
transition condition.

connector . An arrow drawn between two nodes in a
process diagram to signify the flow of control or data.
See also data flow, information flow, material flow,
control flow, control connector, data connector, and
default connector.

constrained . Pertaining to, or characteristic of, the
PLOVC and JLOVC. Representative of the factors that
define how a process path or job is performed and by
whom (for example, time, money, organization, and
technology are constraining factors).

container . See data container.

control connector . In FlowMark: the graphical
representation of the flow of control from one activity
or block to another. See also control flow, data
connector, and default connector and transition
condit ion.

control flow . In LOVEM: on PLOVCs and JLOVCs, a
trigger that is generated by an activity. It shows the
flow of control from one activity or task to another,
provided the transition condition, if specified, is true.
See also information f low and material f low.

In process-based applications: a control flow can
consist of a workflow, a task flow, and an event flow.
See also workflow, task flow, and event f low.

critical measurement point . Any point on the process
path or within a job that is of critical importance, and
where a measurement should be taken.
Measurements can be in units of time or quantity, for
example, time to answer a customer inquiry, cycle
time, number of invoices per unit of time, error rate,
and so on.

critical path . Taking into account all the
dependencies and processing requirements for
achieving a major goal or target, the critical path is
that sequence of events that takes the longest time to
reach the final goal.

critical success factor (CSF) . A qualitative or
quantitative measure that defines the quality or
performance of an enterprise, a process path, or a
job, such as the required skills of employees to
perform a certain task. A measurable internal or
external business result that has a major influence on
whether or not an enterprise achieves its goals. CSFs
can be assigned at the following levels:

• The entire industry
• The enterprise
• An organizational unit, such as a business area,

department, or job
• Individuals, such as managers or employees.

CUA . Common User Access

customer . A person or business that acquires
products or services from an enterprise.

customer activity . In physical models or blueprints, it
depicts the activities performed by customers. A
customer activity can start or end a chain of
activit ies.

customer expectation . A description of what a
customer needs or wants. This can be in terms of
products, services, or the performance of an activity
or a system.

customer process . On logical models or blueprints, it
depicts the actions or processes carried out by
customers.

customer satisfaction . The goal of a
customer-oriented business. Customer satisfaction
occurs when a customer receives as much as, or
more than, expected from a product or service. It is
usually measured as the number of satisfied
customers as a percentage of the total number of
customers. Customer satisfaction can be graphically
shown on LOVCs by an icon indicating whether a
customer is happy or unhappy with the operations
and results of an activity.

List of Terms and Abbreviations 127

cycle time . The time it takes to complete a process
path. For example, for the order fulfil lment process,
the cycle time is the time it takes to fulfill an order
(from when a customer places an order to when the
customer receives the product).

D
DASD . Direct Access Storage Device; A device in
which access time is effectively independent of the
location of the data

data bus . On an ALOVC or a LLOVC, a logical set of
data. A logical, dynamic data store. It starts at the
beginning of a logical model, such as ALOVC and
LLOVC and continues until the end of the model. It
reflects the most current data at any point in a
relationship with a customer. Examples of data
buses:

• Contact or customer data bus
• Offering or products and services data bus
• Promise or order and contract data bus

data component . A packet of data with which a
process deals.

data connector . In FlowMark: the graphical
representation of the flow of data in a process
diagram. See also data flow, information flow, control
connector, and default connector.

data container . In FlowMark: storage for the input
and output of an activity, a block, or a process. See
also input container and output container.

data dependency . Data that a process requires to
proceed. An upstream data dependency is data
required from the preceding process. A downstream
data dependency is data required by the next process.

data entity . See entity.

data flow . A packet of data in motion. It can consist
of data groups, data entities, and data elements. A
data flow identifies the data that is either generated
from or required by, the customer or internal
processes to which it is connected. See also
information f low.

data store . A logical set of data or a physical place
where you can keep information (desks, filing
cabinets, databases, and personal computer files are
examples of physical data stores).

DB2/2 . IBM Database 2 for OS/2, a relation database
manager.

DDE. Dynamic data exchange. A OS/2 or MS
Windows feature that enables data exchange between
applications.

decomposition . The process of breaking a large
entity into smaller components. For example, a
process can be decomposed into sub-processes, or an
activity into tasks.

default connector . In FlowMark: the graphical
representation of a special kind of control connector,
shown as in a process diagram. Control flows along
this connector if no other control path is valid. See
also connector, control connector, and transition
condit ion.

department . A subdivision of an enterprise that
shows reporting lines and performs one or more
activities. Department is part of the physical models,
such as PLOVC or HSD.

design point . The primary focus of a design; for
example, the customer, or a workflow solution.

designing . The creative process used to plan, sketch,
and model the new business processes, process
paths, and jobs in order to create a set of detailed
blueprints from which the new design can be
implemented.

DLL . Dynamic link library. A module containing a
routine that is linked at load time or runtime.
FlowMark uses the *.DLL filetype under OS/2 as well
as under MS Windows.

document . A transmission medium for, or depository
of, information, such as a report or an invoice. A
VisualInfo document consists of a base part and the
item information, notes with content class, annotation
with content class, history and MGDS data (used with
OCR). It is indexed by system-defined and
user-defined attributes. A document can be contained
in one or more folders.

document flow . The flow of documents through an
organizations. This can be through a document
management system in digitized form or in hardcopy
form.

document storage . A physical data store where
hard-copy documents are stored. Can be part of the
physical models or blueprints, such as PLOVC and
JLOVC. See also data store.

downstream . Subsequent processes or activities, for
example the distribute process is downstream from
the order process. See also data dependency and
upstream.

E
EDI. See electronic data interchange.

EDM. electronic document management.

electronic data interchange (EDI) . A
computer-to-computer connection between two

128 FlowMark and VisualInfo with Windows

companies. The transaction flow for EDI transaction
is regulated through international protocol.

empower . To provide employees with the authority
to make decisions.

enterprise . An organization, usually comprised of
several lines of business, whose purpose it is to
perform a mission and to achieve goals by working
with customers and suppliers.

enterprise architecture . A business process
architecture at the enterprise level as expressed
through an ALOVC. It is at the logical, unconstrained
level and shows the essential process and data needs
in sequential form. See also architecture line of
visibility chart (ALOVC).

enterprise process . The actions or processes
performed by the enterprise.

entity . A thing or object of importance to a business
about which the business wants to keep information,
such as customer or product.

event flow . In process-based applications, including
FlowMark, an event flow is part of the control flow. It
triggers the continuation of activities that are in a
wait status. See also control f low, workflow, and task
f low.

exit condition . A control setting for an activity of a
PLOVC or JLOVC that determines when an activity is
complete and control is passed to the next activity. It
also determines when a process path or workflow is
completed. See also start condition, start criteria, and
exit criteria.

exit criteria . The conditions that determine when an
activity has completed its actions. See also start
criteria.

external organization . In a PLOVC or JLOVC, an
organization unit, such as a government agency, a
bank, or a supplier, that is part of a process path, but
outside the organization of the enterprise.

F
FAT . OS/2 or DOS file allocation table.

FDL . See FlowMark Definition Language.

FlowMark . An IBM program product that manages
and controls the execution of a process path or
workflow.

FlowMark Definition Language (FDL) . An external
format for defining staff, programs, data structures,

and workflow models in a flat file. The definitions in
the FDL file can then be imported into a FlowMark
database.

FRL . FlowMark Runtime Language; An external
format for templates, instances, and work items in a
flat file. The export utility program EXMPFREX.EXE
located on the FlowMark database server exports the
runtime database to a FRL file. Using the import
utility program EXMPFRIM.EXE, a FRL file can be
imported into a FlowMark runtime database.

folder . An item that can contain other folders or
documents. In the VisualInfo system, a folder can be
indexed by system-defined and user-defined
attributes.

formalism . The strict attention to rules and symbols
(for example, the LOVC rules and symbols).

G
goal . The statement of an enterprise′s medium or
long-range objectives or direction. A business target
that is to be met within a given time. Goals can be
qualitative, such as to become the best-of-breed , or
quantitative, such as to increase revenue by 20%
over the next 12 months . Goals exist at the following
organizational levels:

• The enterprise
• An organizational unit, such as a business area,

department, or job
• Individuals, such as managers or employees.

GUI. Graphical User Interface

H
hand-off . The passing of a product, information, or
other materials from one department or workstation
to another.

hierarchical structure diagram (HSD) . A graphical
modeling technique, which shows the hierarchical
structure of organizations, processes, activities, goals,
CSFs, and systems. Its major use is the systematic
refinement of objects.

HLLAPI . High-level language application program
interface. HLLAPI is used by application programs for
host communication, such as 3270 or 5250 screen
formats. FlowMark makes use of the HLLAPI building
block under OS/2 or MS Windows.

HPFS. OS/2 high performance file system

HSD. See hierarchical structure diagram.

List of Terms and Abbreviations 129

I
IBM . International Business Machines Corporation

icon . A picture that represents the actual image of
information flow media or means of transportation,
such as a telephone, truck, or computer terminal.

index class . A user-defined group of information
used to store and retrieve an item or set of items. An
index class identifies the type of key fields, automatic
processing requirements, and storage requirement for
a document or folder.

information . Facts or objects that have meaning to
human beings; as opposed to data, which requires
context and interpretation in order to become
information. Information is formatted data. Business
objects that are produced by or moved between
activities and systems using information flows.

information flow . An ordered packet of data. Input
to, or output from, any object on a PLOVC, or JLOVC,
such as an order, a shipping document, or an invoice.
Information flows can use various media, such as FAX
machines, telephones, or electronic mail, which can
be represented on the LOVCs by icons . See also
data flow, material f low, and control f low.

information system . See system.

input container . In FlowMark: storage for data used
as an input for activities, processes, or blocks. See
also output container.

in-process server . A OLE server that is implemented
as a dynamic link library is called in-process server, it
runs in the client′s adress space.

inquiry management bus . On the ALOVC, a
continuum of repetitive and unpredictable processes
for enabling customers to request information on
anything about the company, its products and
services, or a past service encounter (for example, an
inquiry about a proposal, a contract, or an order).
See also bus and change management bus.

internal interface . An interface between two internal
business functions, departments, or jobs where a
dependency exists or a transfer takes place.

IOCA . Image Object Content Architecture; A
collection of constructs used to interchange and
present images.

issue . A controversial matter that needs to be
discussed and resolved.

IT. Information Technology. The hardware, software,
services and facilities which a company uses to store,
process and retrieve data and information.

ITSO. International Technical Support Organization.

J
JLOVC . See job line of visibility chart.

job . The physical implementation of business
processes, as expressed through manual activities
and interfaces with customers, systems, and internal
or external organizations. A series of one or more
activities in a department that are performed by one
employee. A job is represented by the JLOVC and
can be part of a PLOVC. Examples of a job: marketing
representative or customer service representative.

job line of visibility chart (JLOVC) . A physical
modeling and blueprinting technique that shows the
effectiveness and efficiency of one particular job.
Using the JLOVC, you focus on how an individual job
is or will be implemented, and who is or will be
executing the manual activities. It also shows the
relationship of each activity to customer activities,
systems, and internal or external organizations. See
also line of visibility chart.

L
line of business (LOB) . A family of either, or both,
products and services, having common
characteristics.

line of visibility (LOV) . On a LOVC, the line between
your customer and internal processes or activities
where all points of contact (service encounters) are
shown. See also service encounter.

line of visibility chart (LOVC) . The graphical
representation of all aspects of your business
processes that are required to provide your customer
with a specific product or service. It shows all points
of contact with your customer. The LOVC is
implemented in four different types of charts:

• ALOVC. See architecture line of visibility chart.
• LLOVC. See logical line of visibility chart.
• PLOVC. See physical line of visibility chart.
• JLOVC. See job line of visibility chart.

Line of Visibility Engineering Methodology (LOVEM) .
See IBM LOVEM.

Line of Visibility Enterprise Modeling (LOVEM) . See
IBM LOVEM.

LLOVC . See logical line of visibility chart.

LOB . See line of business.

location . A physical place where activities are
performed or where information or materials are
stored.

130 FlowMark and VisualInfo with Windows

logical . The abstract or generic nature of business
processes or data before any physical constraints are
applied. Logical defines what process or data is
required not how it is implemented. See also
unconstrained.

logical line of visibility chart (LLOVC) . A logical
modeling or blueprinting technique that shows the
effectiveness of the process path that you are
studying. Using this technique, you focus on what
needs to be done, not how it is done. See also line of
visibility chart.

logical model or blueprint . The depiction of the
effectiveness of a process: doing the right thing. See
also logical, model, and blueprint.

logical-to-physical transformation . The translation of
a logical process into its physical implementation
components, such as manual activities or systems
functions. See also logical transformation list.

logical transformation list (LTL) . A technique for
transforming logical processes into physical
implementation scenarios. For example, a logical
process can be transformed into any number of
manual activities, any number of systems functions,
or both.

loop . A loop is an iteration of activities on a PLOVC
or JLOVC. There are two sets of exit criteria for a
loop:

 1. One set contains the criteria for exit ing the loop
through the normal flow when the exit conditions
are met.

 2. The other set contains the criteria for how often
the flow can go through the loop before
terminating it if the first criteria are not met. This
set also has to describe, where the flow continues
in case of an abnormal termination.

loop connector . A symbol on a PLOVC or JLOVC,
which points back to the starting point of a loop. The
loop connector contains the short and long names of
the activity, where the loop starts.

LOV . See line of visibility.

LOVC . See line of visibility chart.

IBM LOVEM . An IBM business process engineering
or re-engineering methodology, which can be applied
at the following levels:

• Enterprise architecture
• Logical process path model or blueprint
• Physical process path model or blueprint
• Job model or blueprint.

Note: There are two levels of IBM LOVEM:

 1. Line of Visibil ity Engineering Methodology

This level contains the full methodology, which is
documented in the IBM LOVEM Consultant′s
Guide, and which is only available to IBM
consultants.

 2. Line of Visibil ity Enterprise Modeling

This level contains the graphics and applications
of the methodology that are implemented in
ProModeler. This level is documented in the IBM
LOVEM User′s Guide and is available to the
general public.

LOVEM . See IBM LOVEM.

LTL . See logical transformation list.

M
manual/automation interface . The manual-automation
line on a PLOVC or JLOVC between manual activities
and systems. Systems placed on this lines show user
interactions with the systems. Systems placed below
this line are batch systems with no direct user
interaction.

material . A commodity that is of value for the
business process. Materials are used or worked on
by an activity or system and are transported between
activities and systems. See also material f low.

material flow . Any tangible product or document that
is generated by an activity or system.

In LOVEM: input to, or output from, an activity or
system on a PLOVC or JLOVC; for example, a car, a
mortgage document, or a consultant′s report. The
mode of transportation, such as person, airplane, or
truck, can also be shown on the diagram as icons.
See also information flow, data flow, document flow,
and control f low.

measurement . The extent, quality, or size of an
object. For example, the measurements of the object
box can be expressed by volume, height, weight, and
the measurement of the object process can be
expressed by effectiveness, cost, duration, or maturity.
Measurements can be used for benchmarking. See
also benchmarking.

measurement point . A designated point in a process
path where measurements are to be taken. See also
critical measurement point.

methodology . A collection of related techniques and
notations based on a common philosophy to solve a
series of major tasks. See also IBM LOVEM.

metrics . The definition and description of a
procedure for taking measurements. Metrics can be
assigned to activities as actual, target, or ultimate
values.

MGDS . Machine Generated Data Stream

List of Terms and Abbreviations 131

mission . A general statement of the purpose and
nature of an enterprise.

MO:DCA . Mixed Object Document Content
Architecture. An IBM architecture developed to allow
the interchange of object data among applications
within the interchange environment and among
environments.

model . The graphical and written representation of
observations and predictions of how a design could or
should be implemented. Models are usually built at
various levels of abstraction and detail. For example,
a business model depicts a defined business area that
is important to the enterprise; it can be shown as
different views of the same business area, such as:

• Process or process path
• Organization
• Performance.

modeling . Part of the design process used to create
alternatives or what if scenarios before committing to
the final design. See also model .

moment of truth . Your customer ′s perception
resulting from any contact that your company has
with that customer either in person or through a
document, product, or system. See also service
encounter.

MQSeries . Message Queue Series: a
communications layer, which establishes connection
between two systems. With MQSeries, messages can
be sent and received through queues.

N
navigation . The movement from a completed activity
to downstream activit ies. The paths followed are
determined by control parameters, their associated
transition conditions, and by the start conditions of
activit ies. See also control connector, start condition,
exit condition, and transition condition.

node . A point at which one or more functional units
connect. In a process diagram, nodes are the
symbols or objects that can be joined by connectors
or flows, such as activities, systems, blocks, sources,
and sinks.

O
OCR. Optical Character Recognition

OLE. Object Linking and Embedding

opportunity area (OA) . A point in a process or
process path where possibilities, advantages, or other
positive factors can help an enterprise to meet its
goals.

ObjectStore . The database manager for FlowMark
V2.2 and previous releases.

organization . An administrative unit of an enterprise.
In FlowMark: organization is one of the criteria that
can be used to dynamically assign activities to
people. See also role, child organization and parent
organization.

organization unit . An administrative subdivision with
reporting lines that implement processes, for
example, a department.

OS. ObjectStore.

out-of-process server . An OLE server running in its
own process space is called out-of-process server.
This kind of OLE server is implemented as an
executable file.

output container . In FlowMark: storage for data
produced by an activity, process, or block for use by
other activit ies. It can also be used for evaluation of
conditions. See also sink.

P
parent organization . In FlowMark: an organization
within the hierarchy of administrative units of an
enterprise that has one or more child organizations.
A child is one level below its parent in the hierarchy.
See also child organization.

patch code . Industry standard pattern of horizontal
lines; You can use patch codes to indicate the
beginning of a new folder or document.

pattern activity . In FlowMark: the single program or
process activity in a bundle from which multiple
instances, called bundle activities, are created. See
also bundle activity.

physical . The concrete, specific, or constrained
nature of business processes and data. Physical
defines the how, where, when, or by whom a process
is performed or data is used. See also constrained.

physical constraints . See constrained.

physical line of visibility chart (PLOVC) . A business
process modeling or blueprinting technique that
shows the effectiveness and efficiency of a process
path. A PLOVC is a sequence of physical business
objects, such as activities and systems. See also
physical and line of visibility chart.

physical model or blueprint . The depiction of the
efficiency of a process: doing the thing right. The
physical model or blueprint shows the how, where,
when, or by whom aspects of an enterprise, such as
the resources required to perform a process or
process path. See also model, blueprint, and
physical.

132 FlowMark and VisualInfo with Windows

planning activity . In FlowMark: a special program
activity that creates, at runtime, the required number
of bundle activities for a specific bundle. The
planning activity must use a program that refers, in
its registration, to the bundle-planning tool supplied
with the FlowMark product. See also program activity,
program registration, and bundle activity.

platform . The operating system environment in
which a program runs. FlowMark is a distributed,
cross-platform application, which can run on OS/2,
AIX, and Windows.

PLOVC . See physical line of visibility chart.

PPDS. Page Printer Data Stream

policy . A principle, plan, or course of action pursued
by an enterprise.

problem . An obstacle to meeting a goal or fulfilling a
CSF. A problem can also be a situation or issue that
is uncertain, complicated, or difficult to deal with.

problem area (PA) . A point in a process or process
path where difficulties, constraints, or other negative
factors prevent the enterprise from meeting its goals
or CSFs.

procedure . A series of steps or activities required to
perform a process.

process . A business function or operation that
achieves results for customers with input from
suppliers. A process transforms the nature, status, or
composition of input to produce output according to
business rules and policies. A process is a means to
achieving the goals and strategies of an enterprise.
See also sub-process.
In LOVEM-ProModeler: a process is a logical
component on an ALOVC or LLOVC.
In FlowMark: a process is a a set of activities that
must be completed to accomplish a given task.

process activity . In FlowMark: an activity to which a
separate process is assigned. Starting this activity
creates an instance of the referenced process and
starts it. See also program activity.

process administrator . In FlowMark: the person
responsible for the execution of a process instance.
A process administrator can be specified in the
workflow model; otherwise it is the person who starts
the process.

process category . In FlowMark: an attribute that a
process modeler specify for a process. Only users,
who are authorized for this category can start and
control instances of the process as top-level. See
also top-level process.

process cycle time . The elapsed time required to
receive, process, and forward a transaction.

process diagram . A graphical representation of a
process or process path that shows all its
components.

process instance . In FlowMark: an executable copy
of a process template in Runtime.

process management . In FlowMark: the Runtime
tasks associated with process instances, such as
creating, starting, suspending, resuming, terminating,
restarting, and deleting process instances. See also
business process management (BPM) and process
path management.

process manager . A manager, who has the
delegated responsibility from a process owner to
manage the day-to-day operations of a process or
process path. See also process owner.

process owner . A senior manager, who is
responsible for managing all aspects of a business
process or process path. A process owner usually
delegates the operational management to process
managers. See also process manager.

process path . A sequence of processes or activities
and flows of data or information that produce a
specific product or service. A process path usually
starts and ends with a customer service encounter.
See also service encounter.

process path management . The management of a
business across the traditional vertical processes or
organizations; for example, in a traditional order
fulfi l lment company, the vertical processes are sell,
order, supply, distribute, settle.

process quality management bus . On the ALOVC, a
continuum across the enterprise process path to
capture any process quality parameters, such as
CMPs, CSFs, goals, strategies, or policies in relation
to customer service encounters. See also bus.

process status . In FlowMark: the status of a process
instance. The status can be one of the following:

• Ready
• Pending
• Running
• Suspended
• Terminated
• Finished.

process template . In FlowMark: the translated form
of a workflow model in Runtime.

PROFS. Professional Office System. Predecessor to
IBM OfficeVision.

program . In FlowMark: a computer-based application
that supports the work to be done in an activity.
Program activit ies reference executable programs
using the logical names associated with the programs

List of Terms and Abbreviations 133

in FlowMark program registrations. See also program
registration.

program activity . In FlowMark: an activity to which a
registered program is assigned. Starting this activity
invokes the program. See also process activity.

program registration . In FlowMark: identification of a
program to a FlowMark database, so that it can be
assigned to a program activity in a workflow model.
See also program activity.

proxy . A proxy is an interface specific object, that is
able to package parameters for an interface to
prepare for a remote method call. It runs in the
address space of the caller and communicates with
the corresponding stub on the remote computer.

Q

R
recommendation . Advice or suggestion on how to
meet a goal, solve a problem, evaluate a CSF, or
carry out a strategy or policy.

refinement . A standard modeling technique used to
view the parts of a whole in increasing amounts of
detail. See also hierarchical structure diagram (HSD).

relationship . A descriptive association between two
data entities or relationships in a data model.

report . Formatted text and graphics, usually
generated by a system.

report layout . The design and specifications for the
format of a printed report. See also screen layout.

repository . An organized, shared collection of data
or information that supports business process
re-engineering, application development, or business
or systems management. It is usually automated and
is implemented as a database.

REXX. Restructured extended executor language. A
procedures language.

role . In FlowMark: a responsibility that is defined for
staff members. Role is one of the criteria that can be
used to dynamically assign activities to people. See
also organization.

root cause analysis . The analytical determination of
the cause of the symptom of a problem.

RPC. Remote Procedure Call; Using RPC, an
application is able to call routines belonging to an
application hosted on another computer that is
connected via a network.

runtime . In FlowMark: the component, used to
execute process instances. The Runtime component
consists of:

• Runtime server
• Program execution client
• Bundle server
• Notification service
• Delivery server
• Runtime client.

See also Bui ldt ime and Runtime client.

runtime client . In FlowMark: the user interface for
working with process templates, process instances,
work lists, and work items. See also Runtime.

S
SB . service broker

SBM . Service Broker Manager

screen layout . The design and specifications of the
image that the user sees on the screen of a system.
See also report layout.

server . A server is a system that is designed to
share data with client applications. Servers and
clients are often connected via a network or may be
simply located on the same computer.

service . A collection of related features that respond
to requests for specific activities or yield information,
is called service. The services are accessed through
a consistent and published interface of the service
that encapsulates its implementation.

In the Service Broker Architecture, a service DLL
contains service functions which interface with the
base product. A service function receives the user
data from the Service Broker Manager and calls the
appropriate product APIs to perform the work. The
results are returned via the Service Broker Manager
to the service requester and then back to the user
application. a base product that is integrated. Logon
session data is passed to the service via the Service
Broker Manager. The services use this logon session
data when invoking the product APIs.

Service Broker Architecture . The Service Broker
Architecture is designed to allow users of workflow
systems or other applications to work with multiple
tools in multiple interactions without the need to
reload the tool each time or perform multiple logons
to server sessions. The aim is to allow all required
sessions and tools to be available during the work
session without the users needing to be aware of the
application execution or logic.

Service Broker Manager . A FlowMark component
that controls the operation of service broker sessions.
This includes the interaction between service
requester and services, between service broker and

134 FlowMark and VisualInfo with Windows

services, and also the intialization of the service
brokers and services.

service encounter . Any point of contact with your
customer. See also moment of truth.

service requester . A service requester is the
interface to the user application. The user application
calls the service requester APIs to request the base
product to perform some work. The service requester
formats the user data and issues a request to the
service broker which invokes the appropriate service
function via service threads.

service thread . One or more service threads are
started for each service. Each thread receives
information from the service requester to call the
respective service function. When the function has
been called, the thread returns information to the
service requester.

shredder . A machine for the destruction of
documents.

simulation . A mock-up version or prototype of the
new process and job design used to test assumptions
before final implementation.

sink . In FlowMark: the symbol that represents the
output container of an activity, process, or block. See
also output container and source.

skill . An ability, proficiency, expertness of a person
that comes from training, practice, and experience.

source . In FlowMark: the symbol that represents the
input container of an activity, process, or block. See
also input container and sink.

staff . In FlowMark: the people and their roles,
organizations, and levels, who execute the process
instances. Staff is defined in a FlowMark database.
See also role and organization.

start activity . In FlowMark: an activity that has no
incoming control connector. A start activity becomes
ready when the process or block that contains it
starts. There can be more than one start activity in a
process or block.

start condition . A control setting that determines
when an activity with incoming control connectors can
start. It also determines when a process path or
workflow can start. See also condition, exit condition,
and transition condition.

start criteria . A control setting for activities on
PLOVCs or JLOVCs that determines when an activity
or a process path can start. See also exit criteria.

strategy . A pattern of goals, policies, and plans that
specify how an enterprise is to function over a given
period of time. A strategy can specify areas for

product development and marketing as well as
techniques for responding to competition.

subject expert . A specialist in a particular area of
expertise, such as workflow management.

sub-process . A lower level process. Processes can
be refined into sub-processes through the HSD
modeling techniques. See also hierarchical structure
diagram (HSD) and process.
In FlowMark: a process instance that is started by a
process activity.

substitute . In FlowMark: the person to whom an
activity is automatically transferred if the person to
whom the activity is assigned is flagged as absent.

symbol . A graphical representation of an object or
thing, which may be abstract in nature; for example,
a line with an arrow is the symbol for a data or
information flow.

system . A set of processes with a common aim that
act on data or information using input and producing
output. Usually used in the context of information
system or data processing system.

system development . The design, code, test,
implementation, and maintenance of an information
system. Can also denote a business function, which
performs systems development.

system function . A component or module of a
system. A system can be refined into system
functions using the HSD modeling technique. See
also hierarchical structure diagram (HSD) and system.

T
task . The lowest level of activity or unit of work.
Tasks belong to the physical business models. There
is no implied sequence or order in performing tasks
within an activity. Activities can be refined into tasks
using the HSD modeling technique. See also
hierarchical structure diagram (HSD) and activity.

task flow . In process-based applications, a task flow
is part of of a control flow. See also control f low,
workflow, event f low, and document flow.

TCP/IP. Transmission control protocol / Internet
protocol. A commonly used protocol for various
network environments, such as Internet, Host
communications, and LANs. FlowMark uses either
TCP/IP or APPC. See also APPC.

technique . A procedure for doing anything in an
orderly way; a method.

TIFF. Tag Image File Format

time line . A notation on the PLOVC and the JLOVC
that shows the time between individual activities as

List of Terms and Abbreviations 135

well as for the entire process path or job; for
example, the order cycle time. The time line shows
both actual (As Is) and target (To Be) times.

To Be . The desired state of a process or process
path: how it could be or should be. See also As Is.

To Be view . A chart or diagram showing the desired
state of a process or process path. See also As Is
view.

TOC. Table Of Contents

top-down . Modeling or designing business processes
from their most abstract level down to their most
concrete and constrained levels of detail. See also
bottom-up.

top-level process . In FlowMark: a process that is
started from a user ′s process list or from an
application program.

transition condition . In FlowMark: a logical
expression associated with a control connector. If
specified, it must be true for control to flow along the
associated control connector. See also control
connector, default connector, condition, start
condit ion, and exit condition.

trigger . An event or condition that start or ends an
activity, a process, or process path. See also start
condit ion and exit condition.

U
unconstrained . Pertaining to, or characteristic of, the
ALOVC and LLOVC techniques, or representative of
the factors that define what a process is doing not
how it is being done. See also logical.

unit of measure . A standard dimension, extent, or
quantity, such as days, hours, or minutes, dollars of
cents, or meters or centimeters. A unit of measure is
used for measurement purposes.

upstream . Preceding processes or activities, for
example the order process is upstream from the
distribute process. See also downstream.

V
VHLPI . VisualInfo high-level programming interface.
The service broker for VisualInfo. It can be used to
integrate FlowMark with VisualInfo for document
management connectivity and services.

VisualBasic . A programming language under MS
Windows.

VisualInfo . An IBM product for document
management.

W
WISDDM. World-wide integrated solution design and
delivery methodology. WISDDM is a set of I/T
methodologies, such as:

• The application development methodology, which
is based on:
− Solution/2000
− End-to-End
− Full Life-Cycle Testing
− Redevelopment
− Package Selection.

• The project management methodology, which is
based on:
− Managing Implementation of the Total Project
− Project Management for Project Executives
− Other IBM project management approaches.

WF. workflow

workflow . A sequence of activities (units of work). A
movement of units of work through a process. In
process-based applications, it can be part of a control
flow. See also control flow, task flow, and event f low.

workflow management . The art of controlling or
administering a sequence of activities.

WFMC. Workflow Management Coalition.

workflow model . In FlowMark: a complete
representation of a process. It consists of the
process diagram and settings and the definition of
staff, programs, and data structures that are
associated with the activities of a process.

work list . In FlowMark: a list of work items assigned
to a staff member.

136 FlowMark and VisualInfo with Windows

Index

Numerics
3270 emulation 17, 69
4GL tools 59
5250 emulation 69

A
accelerator keys 51
acceptance criteria 15
access control 51
accessing C and C++ APIs from REXX 76
accessing C and C++ APIs from Visual Basic 73
accessing data, multiple users 93
accessor methods 46
acquaintance node 32
action methods 46
ActiveX controls 74
activit ies 2, 10, 16, 17, 18, 21, 31, 43, 57

batch processing 84
distributed 33
with no added value 21

activi ty 84
control functions 45
interactive 84
start and exit 17
starter 33, 44
status functions 45

adapting 1, 2
adding 16
address space 65
administering 3

central ly 3
administrat ion 35, 39
advanced annotation 40
advanced scan 52
advanced search 38
advanced workflow 35
AIF 33
AIX 27, 31, 35, 41, 43, 48, 74
alert user 53
Alias keyword 76
alternate search 52
AlternateSearchUserExits 52
AmiPro 39
animation facil i ty 57
APIENTRY 74
APIs 9, 23, 32, 35, 40, 43, 50, 55, 58, 59, 73, 82, 83, 95

application 50
container 32
folder manager 50
language 43
library client 39
library interfaces 50
process 32

APIs (continued)
standard 50
workflow client 44

APPC 90
application 50

arranging windows 81
customized 57
data 93
developer 26
front end 80
integration
logic 27
programs 57
workflow 95

Application Integration Feature 33
applications 1, 2, 9, 11, 15, 23, 35, 51, 80, 82, 85

communicating between 47, 63
customized 35
distributed 31
document-centric 85
host 63, 67
integrating 31, 48, 73
interchangeabil i ty 45
restoring window positions 82
user interface 80

archiving 1, 22, 23, 35
arranging application windows 81
array 78
ASCII 39
asynchronous 15
attribute data 53
audio 35
audit trail 30
automated 31
automatic 19

link 63
recognit ion 16

automating 2
data exchange 69

automation 59
OLE 59

B
back-office 20
backup 30

retention 38
banks 13, 18
bar coding 5, 6, 16
BASIC 70
basic methods 46
basic search 38
batch manager 10
batch processing 5, 84

 Copyright IBM Corp. 1996 137

batch scanning 5
bibliography 119
bitmaps 39
block 57
Boolean logic 35
Bor land C++ 4.5 compi ler 43
Bor land C++ 4.5compi ler 74
Bor land C++4.5 compi ler 65
Broker, Service Request 55
building block 32
building blocks 9, 47
buildtime client 29, 57, 89
bundle server 89

setting 88
business processes 1, 10, 29
business rules 14

C
C 9, 31, 43, 55, 57, 70, 73, 83, 95

 FlowMark Workflow Client APIs
C coalition API 44
C + + 9, 31, 43, 64, 65, 73, 83
C + + A P I 46

FlowMark 46
C++ APIs f rom Visual Basic 76

modeling 92
specialist 26

cache manger 32
capacity 7, 10
CAPIs 39
capital investment 4
capturing 1, 3, 16, 38
case sensitivity 76
catalog 36
CD-ROM 18
central error code list 84
central error handling
change workflow 52
changes 1
ChangeSMSUserExit 52
changing system managed storage 52
child process 48
CICS transaction priority 52
CIF header 53
CIU file 53
class 8

transition characteristics 38
cleanup functions 46
client application 38, 39, 55

APIs 52
client, customizable 84
client, VisualInfo 37
client, workflow 95
cl ient/server 29, 35
CLIENT.DLL 95
COBOL 31, 33, 43, 70
code page 88

conversion 53, 88

COLD 10
column description 51
communicating across the network 66
communicating with other applications 84
communication protocol
Communications Manager 69
compacting the ObjectStore database 92
competence 20
conditions 2, 57
configuration 17, 26

FlowMark 87
hardware and software 8

connection 70, 92
functions 45

container 47
data structure 44
input 47, 57
output 47, 57

control 21
connectors 57

controll ing 14, 20
controls 17, 80
conversion 53
counting 95
crash 73
create instances 46
CreateCustFold 60
credit management application 13
credit process 19
credit request 15
credit requests 17
C S e t + + 24
CUA 81
cursor, handling the 51
customer 7, 10, 13, 14, 26, 80

requirements 13
service 2

customizable client 84
customized applications 35, 57

D
daily work 80
DASD 38
data 2, 9, 57

connectors 57
entry, elimination 1
entry, multiple 2, 14
exchange 69

automating 9
DDE 9
HLLAPI 9
OLE 9

flow 17
formats 35
items 44

querying
mappings 57
model 39

138 FlowMark and VisualInfo with Windows

data (continued)
processes 43
structures 2, 57

definit ion 30
database 9, 30, 88

external 26
name setting 88
path setting 88
schema 88
segment size 91
server sett ing 88
size 32
usage 32

databasename 90
DB2/2 17, 24
DDE 9, 23, 32, 63

Building Block 64
debug monitor 88
debugging 31
decision 22
decision-making 8
declare statement 76
declaring 76
default constructor 46
default values, providing 81
delete 33

templates 46
delivery server 30, 89

database 89
recheck interval 89

message resend setting 89
deregistering 78
design 7, 11, 13
desktop 15
determine next workbasket 52
DetermineNextWorkbasket 52
determining workflow 52
DetWorkflowUserExit 52
development 11, 17, 26, 27

planning 33
dialog-box 23
dialogs 80, 81, 82
digitizing 38
directory 76
disconnect 71
display 3, 38, 67, 80

and manipulate 40
data 84
errors 67
layout 81
services 50, 88

distributed applications 31
distributed information management 35
distributed workflow activit ies 33
document 1, 4, 35, 93

capture 4, 5
analysis and optimization 4
batch 5
scan tools 5

document (continued)
classes 4
finding 1
management 1, 3, 6, 13, 15, 19, 23, 35, 80

definit ion 3
design 3
project 6
user acceptance 80

missing 21
paper 22
viewer 85

document class validation scripts 10
document-centric application 85
documentation 8
dummy programs 58
dump 31
Dynamic Data Exchange (see DDE) 63

E
EDI 1, 3
EDM 15, 16
efficiency 2
electronic folder management 17
emulator 70

3270 69
5250 69
terminal 23

encryption, password 51
end condition 57
enterprise-wide solutions 35
entry point registration 76
environment services 50
environment settings, FlowMark 32
environment variables 87
error 42, 83

codes 84
displaying 67
generation 53
handling 84

central
logging 53, 84

message display 84
message processing 53
report ing 83

escalation 47
Excel 63
exchanging data 9

DDE 9
HLLAPI 9
OLE 9

execution 1
executive 25, 26
exit 57
exit conditions 2
EXM_BUNDLE_SERVER 88
EXM_CCSID 88
EXM_CLEAN_INT 90

Index 139

EXM_DB_NAME 88
EXM_DB_PATH 88
EXM_FILES 88
EXM_HOST 88
EXM_LANG 89
EXM_LOGON_DETAILS 89, 90
EXM_NOTIF_INT 90
EXM_PROTOCOL 90
EXM_RECHECK_INT 89
EXM_RESEND_INT 89
EXM_RUNTIME_SERVER 90
EXM_SEGMENT_SIZE 91
EXM_SERVER_NAME 91
EXM_TIMEOUT 91
EXM_TP_MAX_CONN 92
EXMAZIVT 87
ExmContainer 47
ExmContainerElement 47
ExmDateTime 47
ExmFilter 47
EXMPDDEI.EXE 64
ExmProcessInstance 46
ExmProcessInstanceNotification 47
ExmProcessTemplate 46
EXMPZCFG.PRF 32, 87
EXMPZIVT.EXE 87
ExmReadOnlyContainer 47
ExmReadWriteContainer 47
ExmServer 46
EXMWJAPC.H 74
ExmWorkitem 47
ExmWorkitem notif ication 47
ExmWorklist 47
EXMWZIVT.EXE 87
exporting 38
extents 92
external function 77
external offices 20
external process 65
Extra! 18
EXTRA! MAINFRAME 67
EXTRA! Personal Client 67
extracting 16

F
facsimile 1, 3, 35
facsimile (see also faxing) 38
faxing (see also facsimile) 84
FDL 30

sample 56, 64
file formats, predefined 84
fi leroom 35
files, receiving 71
files, sending 71
fil ing system 93
filter criteria 47
fi l tering 52

fixes 95
flow 2, 16

automating 2
logic 2

FlowMark 2, 9, 17, 27, 84, 92
accessor methods 46
action methods 46
basic methods 46
buildt ime 2
definition language (FDL) — definition of 129
definition of 129
session ID 84

FlowMark Administration 92
FlowMark and service broker 8
FlowMark environment settings 32
FlowMark for MVS 33
FlowMark Installation Verification Util ity 87
FlowMark Runtime Language 31
FlowMark server 29
FlowMark Workf low Cl ient C++ APIs 82, 95

FlowMark Workf low Cl ient C++ API 46
fly-over

text 83
folder manager 39, 50, 55
folders 4, 16, 23, 93

electronic 23
incomplete 21

fonts 6, 81
forms dropout 6
free memory 46
FRNOWFBK.DLL 55
FRNOWFFM.CMD 55
FRNOWFRC.DLL 55
FRNOWFRX.DLL 55
FRNOWFSB.EXE 55
FRNOWFSV.DLL 55
FRNOWFUL.DLL 55
front-office 20
full text 4

search 35

G
get template information 46
GetNext 60
glossary 125
goals 6
graphic formats 10
graphical user interface 16, 43
graphics 35
GUI

programming 83

H
handlers 77
hang, remote server 67
hard-coded values 84

140 FlowMark and VisualInfo with Windows

hardware 8, 93
installation 8
peripheral 8

help, providing 81
HLLAPI 9, 32, 63, 69
host 15, 19

applications 63, 67
integrating 69

variables 51
hostname 91

I
IBM 13, 17, 20, 25, 26, 27, 29, 35, 43
icons, unambiguous 81
identifying 27
image 1, 3

processing 4
Image Services 38, 50, 55
image specialist 7, 26
images 1, 23, 35
implementat ion 6, 11
import ing 6, 38

model 30
process instances 33

in-process server 65
index 1, 9

class 37, 52, 93
name 53
NOINDEX 52

field template macros 10
validation 4, 6
verif ication queue 9

indexing 4, 5, 6, 8, 16, 35, 40
a document 52
automatic 6
manual 5

industry advisor 7, 26
industry knowledge 7, 11
information 2
Information Technology 11
INI file 84
input container 43, 57, 95
input controls 81
input devices 81
installation 17, 26
installation verif ication 33
Installation Verification Util ity, FlowMark 87
installation, hardware and software 8
instance 44
instances 32
integrated runtime client 83
integrating 43

applications 31, 48, 55, 73
host 69

integration 19, 47
techniques 63

internal reference monitor 51

IOCA 39
IP address 91
Ip2ExitChangeApplPriv 53
Ip2ExitCompareStrings 53
Ip2ExitIndexDocument 52
Ip2ExitUseDocumentData 53
Ip2ImportAttrExit 53
Ip2ImportClassExit 53
Ip2ImportSetupAttrExit 53
Ip2LBOSExit 53
Ip2UtAlertExits 53
IsoCpConvertString 53
IT 11
i tem ID 53

J
juke-box 18

K
key 8
keystroke routing services 51
Kofax 5

AscentCapture 5

L
labor cost 4
LAN-Based Object Server 53
language APIs 43
language setting 89
language support user exit 53
launch pad 82, 83
LBOS 53
levels 57
LibACUserExitOne 51
LibACUserExitTwo 51
LibEncryptPassword 51
LibMain 46
l ibrary

client 37, 39
passwords 51

interfaces 50
items 35
server 37, 51

passwords 51
Library Access Control 51
LibSelectLibraryTransPriority 52
LibUserQueryExit 51
links 63

automatic 63
manual 63
notify 63

LN:DI 35
local 90

server 65
logic 8, 43, 57

Index 141

logoff 95
logon 95

details setting 89
single 82
t imeout 91

loss of time 21
Lotus Notes 48

integration 33
Lotus Notes Document Imaging 35
Lotus Smartsuite 18

M
Macro Assembler 70
macrospace interface 77
magnetic storage 35
makefi le 74
management classes 38
management report ing 2
manipulating VisualInfo objects 55
manual l ink 63
marshaling 65
match import attr ibutes 53
match import classes 53
maximum duration t ime 47
meetings 7
memory, freeing 46
message 46

boxes 67
display 84
monitor 88
router 83, 84

MGDS data 53
Microsoft Office 18
migrating workflow models 30
migrat ion 33, 35

automatic 35
of images 35

milestones 15
minutes, querying 47
MO:DCA 39
model import/export 30
modeling 10, 17, 57, 92

FlowMark 92
process 2

monitor 8
MQSeries 32, 33, 47
multiple logons, not needed 48
multiple users 1

accessing data 93
MVS 27, 33, 35, 41
MYSERV.DLL 49

N
navigation paths 81
network

connections 87
drivers 87

network (continued)
protocols 9
specialist 7

node 88, 90
NOINDEX class 52, 53, 60
notif ications 47
notify link 63
NT 27

O
object 41

application 41
document 42
image 42
item 42

object server 37
object sort 53
objectives 15
Objectstore 32, 89, 92

compacting the database 92
ObjectStore database, compacting 92
ObjectStore database, extents 92
OCR 5, 6, 9, 16

full text scan 6
index and zoning queue 9

OCX controls 74
OLE 9, 23, 41, 59, 63, 82
OLE automation 41, 59, 65, 67

API for Windows 59
OLE objects 74
OLE server 65
OMR 5
open session objects 67
OpenDoc objects 74
operating cost 4
operational state, changing 45
optical storage 35, 38
organization 8, 30, 57
OS/2 9, 17, 18, 23, 24, 25, 26, 31, 33, 35, 39, 41, 43,

46, 48, 55, 56, 57, 64, 74
High Level API 59

out-of-process server 65
output container 43, 48, 57
output controls 81
overdue notification and process cleaning 90
overlaying dialogs 81
overload tr igger 52
OverloadTriggerUserExit 52
overview 1, 13

P
paper-intensive 14
paperless society 35
paperwork, reducing 3
parameters 84
password

changing 46, 82

142 FlowMark and VisualInfo with Windows

password (continued)
encryption 51
rules 82
unified

patch codes 5, 16
patch preparation 5
Pentium 18
people 2, 19, 30, 57
performance 10, 32, 33, 71, 92
persistent objects 46
personnel 2, 7

image specialist 7
industry advisor 7
network specialist 7
programmer 2, 7
project manager 7
solutions architect 2, 7
solutions marketing representative 7
technical support 7
tester 7
workflow specialist 2, 7

pilot 1, 4, 10, 12, 13, 43
successful 1
test 12
using an integrated solution 43

pixels 5
planning 6
pointer 84
pop up dialogs 82
post-scan 5
postprocessing 10
PowerBuilder 59
PPDS 39
preprocessing 10
presentation spaces 70
print 38

services 51
printer 8
printing 84
private 76
privi lege set 53
privi leges 35
problem determination 33
process 1, 2, 10, 16, 33, 82, 84, 90

animation 30
business 1, 2, 8, 10, 29
control 1
control functions 45
control session 44
definit ion 30
diagram 57
execution 31
instance 10, 32, 44, 95

deleting 33
import/export 33

logic 27
model 2
navigation engine 30

process (continued)
resume 33
start 33
statistics 16
status functions 45
stop 33
suspend 33

processing 8
productivi ty 3, 35
program registration 30, 39
programmed operator 69
programmers 2, 7, 8, 26
programming 9, 43, 58

testing 58
programs 2, 17

dummy 58
translating 74

project 7, 10, 26
manager 7, 18, 25, 26
members 26
minimum requirements 7
scope 10
sizing 9
team 6

protocol 88, 90
prototype 11, 13, 19, 25

desktop applications 13
host 13
image 13
workflow 13

proxy 66
public 76

Q
quality 11
query sort 52
querying 37, 46, 95

data items 84
keystrokes 71
minutes 47
static 51
work items 47

QuerySortUserExit 52
queues
quick pad 67
quick results 57

R
raster scan 5
re-engineering 20
read and write data 70
read data
reading user input 84
realtime notif ication 33
receiving

files 71
information 84

Index 143

recheck interval 89
reengineering 27
refresh templates 46
refresh, explicit 90
registering 77

entry points 73, 76
external functions 77
functions 39
program objects 55
programs 57

relationships 8, 30
release queue 9
remote parent process 48
remote procedure calls 63, 66
remote server 65

hang 67
report ing 16

errors
management 2

reproducing 16
requirements 15, 27

gathering 10
responsibil i t ies 15
responsiveness 2
restoring 30

window positions 82
results, quick 57
resume 33
retr ieving 1, 3, 16, 35, 40
return codes 42
REXX 31, 55, 57, 70, 76
roles 8, 19, 30, 57
roll-out 12
route to 52
router, message
routing 2, 3, 21, 35
rules 2, 17

of control 17
runt ime

client 24, 29, 82, 83, 85, 89
build your own 44
custom-made 32
integrated 83

data import/export 31
instances 32
process template 57
server 32, 89

name 91
setting 90

S
sample code 42, 47, 48, 53, 59, 65, 67, 74, 76, 95

REXX 73
REXX HLLAPI 71
Visual Basic 59, 68

save record 52
SaveRecordUserExit 52

scalabil ity 32
scan 4, 9, 16, 23, 38

advanced 52
batch 5
queue 9

acceleration cards 9
bar code labels 9
batch totals 9
OCR 9
patch code 9

raster 5
services 50
tools 5

scanner 8, 16, 18
data 53
specifications 16

scenario 12, 18
SCSI 18
search 16, 35, 37, 38, 93

advanced 38
basic 38
Boolean logic 35
full text 35
wildcard 35

security 35, 38
sending 16

files 71
serial workflow 35
server 24, 63

connection 46
database 24
definit ion 30
FlowMark 29
in-process 65
l ibrary 24
local 65
object 24
OLE 65
out-of-process 65
remote 65
runt ime 32

servername 90
Service Broker Architecture 48, 55
Service Broker Manager 31, 33
service brokers 50

how to program 50
service function 49
service provider 13, 17, 18, 26
service requester 50
session ID 44, 84
sessions collection 67
set up import attributes 53
setting 95
shared memory
sharing between VisualInfo and Lotus Notes 35
signature 22
SimDspCreateMenu 85

144 FlowMark and VisualInfo with Windows

SimDspCreateWin 85
SimDspSetMenu 85
SimDspSetWin 85
simplifying 92
simultaneous connections, minimizing 49
single logon 82
sizing 9, 44
skewing 5
skills 6
society, paperless 35
software 8, 17

configuration 8
solution 7, 13, 23, 43

ideal 82
solutions architect 2, 7, 25
solutions marketing representative 7, 25
space 1
specialist 26
specifications 15
spreadsheet 3, 23, 35
stabil i ty criteria 12
staff 8
staff definition 30
stand-alone system 88
standard APIs 50
standard template l ibrary 46
start 33, 57

and execution control 48
and exit conditions 57
condition 2
workflow 52

static queries 51
definition of 51

statistics 16
status, changing 43
steering committee 25, 26
stop 33
storage 4
storage hierarchy 38
storing 3, 9

central ly 3
stub 66
subcommand 77
subprocesses 17, 32, 93

asynchronous 15
support tools 16, 17
suspend 33, 48
system administration 39, 52, 53
system exit 77
system INI file 84
system managed storage 35

changing 52

T
table of contents 37
tai loring 87
task priorit ies 51

TCP/IP 17, 41, 90
team 26
technical skills 8, 11

cl ient/server 8
database 8
operating system 8
product 8

technical support 7
telepath server 89

communication services 91
connections setting 92
protocol setting 90

telephones 18
test 12

automated 31
tester 7
testing 57, 58
text processing 14, 23
thread 92
TIFF 39
token-ring 18
toolbar 67, 83
tools 2, 9
tracking 14, 20

management 2
transfer a work item 45
transient copies 46
transit ion 57
transition condition 57
translating programs 74
tuning 33

U
undelivered messages 89
unmarshaling 66
update 37
user exits 39, 51, 63

language support 53
user ID 44
user interfaces 1, 57, 80, 81, 83, 85
users, end 2, 16, 35, 80

acceptance 80
access privileges 16
linking with applications 31
mult iple 1, 15

uti l i t ies 35

V
validating 16

data 52
values 78

hard-coded 84
variable pool interface 77
variables 78
vector template 46
verification, installation 33

Index 145

verifying 6, 57, 58
FlowMark 87

version, latest 1
version, management 8
VhlAddFolderItem 58
VhlAdminItemNoteLog 58
VhlChangeItemIndex 58
VhlCheckInItem 58
VhlCheckOutItem 58
VhlCloseDocViews 58
VhlCopyDoc 58
VhlCreateFolder 58
VhlCreateFolderAddItem 58
VhlDeleteItem 58
VhlDisplayDocView 58
VhlDisplayVIItem 58
VhlExportDocObj 58
VhlGetVIUserID 58
VhlImportDocObj 58
VhlListContClasses 58
VhlListFolderItems 58
VhlListFolderItemsAttr 58
VhlListFolderXrefItem 58
VhlListIndexClassAttr 58
VhlListIndexClasses 59
VhlListItemCC 59
VhlListItemInfo 59
VhlListWBItems 59
VhlListWorkBaskets 59
VHLPI 40, 48, 55, 57, 58
VhlRemoveFolderItem 59
VhlScanDoc 59
VhlSearchAdv 59
VhlSearchItem 59
video 35
view 1
viewers 10
viewing 16
VIP 39
Visual Basic 59, 64, 65, 95

accessing C and C++ APIs 73, 76
code extract 59
sample code 68

V i s u a l C + + 59, 65
Visual REXX 9, 43
VisualAge 43, 57

V i s u a l A g e C + + 43
V i s u a l A g e C + + 74
VisualBasic 9, 24, 31, 43
VisualInfo 4, 17, 27, 48

client application 40
definition of 136
definitions 8
specialist 26
Windows client 4, 9

VisualInfo High Level Programming Interface 40, 55
VisualInfo OLE Automation API for Windows 59

VisualInfo OS/2 High Level API 59
VisualREXX 57
VisualView Client for Windows 37, 39
voice 1, 3
void 76
volumes 5, 7

rejecting 53

W
WAPI 46
Warp 17, 18, 24
WF 15, 16
WFMC 44
wildcard 35
Windows 17, 18, 23, 26, 27, 31, 33, 35, 43, 46, 59, 64,

65, 74, 95
client 9
conversion to OS/2 Warp 17
platform 13

windows, arranging application 81
WinMain 46
Word 39
word processing 1, 3, 35
work 2
work items 44, 90

querying 47
work-in-progress 2
workbaskets 35, 52
workflow 1, 2, 6, 8, 10, 13, 15, 21, 23, 57, 80, 81

activit ies 8
decision-making 8
distributed 33
logic 8
processing 8

advanced 35
application 95
client 95

APIs 44
control 10, 21
control data 93
definit ion 2
design 2
determining 52
management 29
management system 2
manager 1, 2, 23
model 2
modeling 1
models 57

migrat ing 30
need 2
process 57
project 6
serial 35
server, logging on or off 45
specialist 2, 7
systems 2

adapting 2

146 FlowMark and VisualInfo with Windows

workflow (continued)
testing 57
user acceptance 80
verifying 57

Workflow Management Coalit ion 44
Application Programming Interface 46

working directory setting 88
working set services 50
worklists 2, 16, 23, 44, 45, 82, 90, 95

functions 45
manager 30, 31, 32

writ ing data 84

Index 147

IBML

Printed in U.S.A.

SG24-4712-00

	Workflow and Image Library:
	FlowMark and VisualInfo with Windows
	Workflow and Image Library:
	FlowMark and VisualInfo with Windows
	Contents
	Figures
	Tables
	Preface
	How This Redbook Is Organized
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Workflow and Document Management
	Integration of Workflow and Document Management
	General Requirements
	Workflow Design and Definition
	Document Management Design and Definition
	Setting Up a Workflow and Document Management Project
	Defining the Project Goal
	Building the Project Team
	Technical Skills Required
	Planning the Project Phases

	Chapter 2. Customer Project Overview
	Project Overview
	Customer Requirements
	Project Goals and Objectives
	The Credit Process
	Logical View of the People and Roles
	The Current Credit Process
	Problems in the Current Process
	The New Credit Process
	Solution Overview
	Project Members
	Current Project Status

	Chapter 3. FlowMark - the Workflow Manager
	FlowMark Components
	FlowMark and ObjectStore Relationship
	FlowMark V2R2 versus V2R1
	FlowMark Outlook

	Chapter 4. VisualInfo - the Document Manager
	The VisualInfo Client Application

	Chapter 5. Implementing an Integrated Solution
	FlowMark Integration
	FlowMark Language APIs
	Workflow Client APIs
	Building Blocks
	Service Broker Architecture
	VisualInfo Integration
	VisualInfo Standard APIs
	User Exits
	VisualInfo High Level API for OS/ 2
	VisualInfo OLE Automation API for Windows

	Chapter 6. Integration Techniques
	DDE
	OLE Automation
	HLLAPI
	Accessing C and C++ APIs from Visual Basic
	Accessing C and C++ APIs from REXX
	User Interface

	Chapter 7. Hints and Tips
	FlowMark Configuration
	Bundle Server Setting
	Code Page Setting
	Database Name Setting
	Database Path Setting
	Working Directory Setting
	Database Server Setting
	Delivery Server Database Recheck Setting
	Delivery Server Message Resend Setting
	Language Setting
	Logon Details Setting
	Interval Setting for Overdue Notification and Process Cleaning
	TelePath Protocol Setting
	Runtime Server Setting
	Database Segment Size Setting
	Runtime Server Name Setting
	Logon Timeout Setting
	TelePath Keep Setting
	TelePath Connections Setting
	Compacting the ObjectStore Database
	FlowMark Design
	VisualInfo Hints

	Appendix A. FlowMark C++ API Sample
	Appendix B. Special Notices
	Appendix C. Related Publications
	C. 1 International Technical Support Organization Publications
	C. 2 Other Publications
	C. 2.1 FlowMark
	C. 2.2 VisualInfo
	C. 2.3 Other Publications

	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Terms and Abbreviations
	A
	B
	C
	D
	E
	G
	H
	F
	I
	J
	L
	M
	P
	N
	O
	S
	Q
	R
	T
	V
	W
	U
	Index
	Numerics
	A
	B
	C
	D
	E
	G
	F
	H
	I
	J
	K
	L
	O
	M
	P
	N
	Q
	R
	S
	U
	V
	T
	W

