pOWER2 CPU-Intensive Workioag Performance

Sohel R. Saiyed, J. Michael O’Connor, and Maurice Franklin

tion) :
|ntr0P%l$ER2 processor provides industry-
e

nce across a broad range of

leading 'persf?r:f?:e workstation and server mar-
aPP"canonsi nificant market segment consists
S. O'.'eaﬁgns commonly characterized as
';:nsive workloads. The $ystems Per-
ce Evaluation Corporatlop’s (SPEC)

forman (CINT92) and floating-point (CFP92)
integ’ arks represent these workloads. The
be""hE";g processor has the highest perfor-
PO results on both benchmarks (as of the
meose cementof the POWER2 products). This
anno unment is possible due to the significant
acmeveance improvement of POWER2 overits
pe”°’2;sso,, POWER. The SPECfp92 and
'egéimgz ratings for POWER2 exceed those
gf’:he highest performing POWER implemgnta—
ion by factors of 1.9 and 1.7, regpectl\(ely.
nor}: n models are significant to the discussion,
we :se the IBM RS/6000 Model 990 to repre-
nt the POWER2 processor and the Model
;go to represent the high-end POWER imple-
mentation.) These speedups resultfroma com-
pination of compiler and hardware design

enhancements.

First, we describe the performance improve-
ments provided by the latest versions of the
compilers (C Set ++2.1 for C code and XLF 3.1
for Fortran code) that implement new optimiza-
fions to exploit the new features of the
POWER2. Next, we discuss the performanc_e
gains obtained from various POWER?2 archi-
tectural and implementation improvements.
These improvements include a faster clock,
additional functional units, improved caches,
and new instructions [1,2,3,4].

cPU-n

The SPEC Benchmark Suites

Throughout this paper, the SPEC integer aqd
floating-point benchmark suites are the ba_sns
for evaluating the POWER2 performance Im-

Provements. These S

PEC suites i :
cepted measures of are widely ac

Workstation performance,

: : - The integer suite (CINT92
consists of six programs: the floating-point suitg
(CFP92) has fourteen Programs. Tables 1 and 2

list some characteristics of these programs [5].

Compiler Improvements

To achieve the full potential of the POWER2
architectural features, new compilers include
enhancements such as performing more ag-
gressive high-order transformations, schedul-
ing instructions to take maximum advantage of
the dual integer (Fixed-Point Units, or FXUs)
and dual Floating-Point Units (FPUs), and ex-
ploiting the new POWER?2 instructions.

Loop Unrolling

Of the high-order transformations in the new
compilers, loop unrolling is the most important
optimization for the POWER2. Unrolling con-
sists of replicating the body of a loop by some
factor and reducing the iteration count by an
equivalent factor. For example, the following
simple loop is shown, both before and after
being unrolled by a factor of four:

Before Unrolling:
DO J=1,1000

SUM(J) = OFFSET + X(J) * Y(J)
ENDDO

After Unrolling:

DO J=1,1000,4
SUM(J) = OFFSET + X(J) * Y(J)
SUM(J+1) = OFFSET + X(T+1) * Y(J+1)

SUM(J+2) = OFFSET + X(J+2) * Y(J+2)
SUM(J+3) = OFFSET + X(J+3) * Y (J+3)
ENDDO

Description

Lang.
Z(r)c;?e::resso Cc |Logic optimizer
022.li Cc |Lisp interpreter

Truth table
023.eqntott C generator
Lempel-Ziv

< compression
072.sC C Spreadsheet
[085.9cC C | C compiler
Table 1 SPEC CINT92 Programs

architectures, unrolling aveids the
g'gni%n;?analty overhead aesociated with eech
loop iteration. This justification forloop unrolling
is not generally validon POWER and POWER?2
since both often achieve zero-cycle branches.

Unrolling does provide several otr)er benefits
on POWER2. First, unrolling pro_wdes an op-
portunity to expose the parallelism between
successive loop iterations by creating a sub-
stantially larger basic block (the sequence of
nonbranch instructions between branches) for

026.compress

the body of the loop. The larger
permits the compiler’s instruction
make more efficient use of the myy

tional units because there are more IPle fyne.
ties to schedule instructionsin oth em?ppgnuni.
cycles. In the preceding code exa r:e deag"
independent floating-point mu|tip|y_ag|e, four
instructions will keep both FPUs bys d (fma)
unrolling enables the compiler to engg Hence,
er instruction-level parallelism to the pg great-
hardware. WER2

basic bl
o¢
SCheduyle, tk

Second, unrolling often creates .
utilize quad-word storage refe)r‘:a‘:\?:reu?mes 20
tions. These new POWER2 operations ISStruc.
store) two 64-bit floating-point operand:d' :
registers in a single memory access. In camto
where successive iterations of a loop accses
sequential elements of an array, unrollin ?;s
loop by a factor of two or more aIlowsg twe
instances of a Load Double instruction (64-b(')
load) from successive iterations to be replac 'é
by a single Load Quad (128-bit load). For ﬂo:t
ing-point codes dominated by storage reter-
ence instructions, this canresultina substantia-|
performance improvement.

Program Language | Precision Description

013.spice2g6 | Fortran Double |Analog circuit simulation

015.doduc Fortran Double |Monte-Carlo simulation of nuclear reactor
034.mdljdp2 | Fortran Double | Atomic motion equation solver

039.wave5 | Fortran Single | Solves particle and Maxwell's equations
047.tomcatv | Fortran Double |Vectorized mesh generation

048.ora Fortran Double |Ray tracing

052.alvinn C Single |Neural network training

056.ear C Single | Simulation of the human ear using FFTs
077.mdljsp2 | Fortran Single | Single-precision version of 034.mdljdp2
078.swm256 | Fortran Single | Solves shallow water equations
089.su2cor | Fortran Double |Computes Quark Gluon theory particle masses
090.hydro2d | Fortran Double |Solves hydrodynamical Navier Stokes equations
093.nasa7 | Fortran Double |Seven kemels often used in NASA applications
094.fpppp [Fortran | Double |Calculates multi-electron integral derivatives

Table 2 SPEC CFP92 Programs

: e of unrolling is that it exposes
third adr\n/agt;gveen long-latency instructions

i :nd square-root) across loop iterations.
(divide ams dominated by long-latency instruc-
In pm%e parallelism among such instructions
ﬁons-"cantly affects performance [6]. For
signifi ¢, in a floating-point loop where a scalar
inst_af‘(;’ec’j by each element of an array, the loop
is dlv:j most of its time performing the 17-cycle
spen sunrolling often makes it easier for the
dee‘ier to expose parallelism of two indepen-
comp('j ivide (or square root) operations. In this
dent 'unrouing can result in effectively 8.5
case, per floating-point divide. In loops with
I‘;’;‘cﬁztency instructions, unrolling is a particu-

larly useful technique.

loop unrolling increases code size,
A'.t:%l;gel; notpgreatly impact the SPEC perfor-
thiS e on POWER2 because the POWER2 in-
maf:: tion cache is large with respect to the
st’r’uEC programs, which have small code foot-
Srints (the set of unique instruction cache lines
t%uched during a program’s execution). The

more serious drawback to unrolling is an in-
crease in register use-..A.n. u.n..fo!!e.d loop has
more unique variables, increasing the nymber
of registers needed to retain these variables.
This increased register usage mlght increase
the amount of spill code — lnstructloqs that save
and later restore the values of regustgrs to or
from memory, making the registers'avallable for
other variables. Because this spill code can
often adversely affect perform;ance, the compil-
erapplies heuristics to determine how much un-
rolling should be applied to a given Ioop. For a
more thorough discussion of loop unrolling and

other high-order transforms, see [7].

aralleli

Toillustrate the importance of loop unrolling on
actual code, consider an inner loop frc_>m the
SPEC floating-point benchmark 052.alvinn:

for (hu = 0; hu < (30+1); hu++)
{
psum_array [hu] += delta[ou] *
h_o_weights[ou] [hu] ;
h_o_w_ch_sum_array[ou] [hu] +=
delta[ou] * hidden_act [hu];

oad Double (Ifd)

ok hthe successive
_O0_w_c _Sum_array and
psum_arrayarrays while the Store Double with

Update (stfdu) instructions store back the
results._ The floating-point multiply-add (fma)
lnst(uctlons perform the required arithmetic op-
erations. Because storage references domi-

nate this loop, the FXU’s ability to process loads
and stores will limit performance:

CL.54.

lfdu fps5, gr3=hidden_act (gr3, 8)

1fd fpa =h_o_w_ch_sum_array (gxr7,8)

1£fdu fp3,gr6=h_o_weights (gré6, 8)

1fd fp2=psum_array (gr4,8)

fma fpd=fp4, fp1, fp5, fer

fma fp2=£fp2, fp1, fp3, fcr

stfdu gr7, h_o_w_ch_sum_array (gr7,8)=fp4
stfdu gr4, psum_array (gr4, 8) =£p2

bec CEYX=CERNSY

Invoked with an appropriate optimization level,
the compiler might unroll the loop by a factor of
two and generate the code that follows. (In
reality, the compiler or preprocessors will
typically unroll by a factor of four or more. For
the sake of simplicity, this example used human
unrolling.)

CL.54:

lfqu fp4,fp5,gré=hidden_act (gr6,16)

lfq £p8,fp9=h_o_w_ch_sum_array(gr4,8)

lfqu f£p2,fp3,gr7=h_o_weights(gr7,16)

l1fqg fp6,fp7=psum_array(gr3,16)

fma fpd=£fp8, £p0, fp4, fcr

fma fp5=£fp9,£fp0, £p5, fcxr

fma fp2=£fp6, fp0, £p2, fcr

fma fp3=£fp7,£fp0, £fp3, fcr

stfqu grd,h_o_w_ch_sum_array(gr4,16)=
fpd, £fp5

stfqu gr3,psum_array (gr3,16) =fp2Ep3

bc ctr=CL.54

instruction loads two
oad Quad (Ifg) ins
:Sgcel;sive array elements from each of the

array arrays,

rrayand h_o_w_ch_sum_a '

tﬁr’;,ugtsfe Q}lllad with Update (stfqu) |2§trtlllc):lt|ct>tr112
ts. Finally,

ite back these array elemen j
Iv-v::; Quad with Update (Ifqu) msttrucftrlgrr:f Ic:ﬁg
ssive pairs of elements

;U(;ceweights and the hidden_act arrays. The

u;l_rcﬁled loop requires three cycles for _ever;l/" two

iterations while the original loop requireés t ree

cycles foronly a single iteration. Thus, unrolling

improves the performance of this storage

reference limited loop by a factor of two.

Dual Instruction Unit Scheduling
Integer programs typically haye less exploitable
parallelism than floating-point programs [8].
Short basic blocks with frequent branches qhar—
acterize integer programs. For the SPEC inte-
ger benchmarks on POWER2, the average
number of instructions between brapches
ranges from 2.6 to 4.0 per benchmark with an
overall average of 3.4 for the suite. These fre-
quent branches tend to limit the exploitable par-
allelism. Often the compiler can not reo.rc_ier
instructions around branches, severely limiting
its ability to find independent instructions that
fully utilize POWER2’s dual integer units.

In contrast, the floating-point benchmarks have
many instructions between branches. In the
SPEC CFP92 suite, compiled for POWER2,
the average number of instructions between
branches ranges from 5.1 to 34.7 per bench-
mark with an overall average of 12.3 for the
suite. Many of the branches in these bench-
marks are loop-closing branch-on-count in-
structions, which behave like unconditional
branches, rarely limiting hardware parallelism.
As shown earlier, work from adjacent iterations
often provides independent operations after un-
rolling. Furthermore, because these bench-
marks consist of both fixed-point and floating-
point instructions, it is possible to keep all
functional units busy. Thus, floating-point ben-
chmarks provide more opportunity to exploit
instruction-level parallelism. Therefore, one ex-
pects gains from compiler improvements to be
greater on POWER2 for the floating-point

programs than for the integer
described in the following se?:tio: fograms, 5

Performance Enhancements

We define the performance L

vided by compiler enhancerﬁ::tglt::"t’r’]‘ Pro-
provement in the execution times of pr € im-
compiled with the new POWER2 op?_grgms
compilers versus programs compileq inft’f'llzed
older compilers (XLC 1.2.1/XLF 2.3) that t the
the POWER implementation. The Dras arge
measuring the contributions consists ofess‘ of
both the new and old compilers to com “Usm
benchmark programs and then ’Unninp ebthe
executables on a POWER2 system, A Co?n oth
son of run times highlights the imprOVemenliap.
the new compilers, as the effects of the h Sin
ware are minimized by running the test onatrt?-
same hardware platform. e

On the SPEC integer benchmarks, the ne
compilers provide up to 15.7% improvemen\:
and the geometric mean of the improvementsi '
5.3%. These gains are small because only lims:
ited opportunities exist in which to Schedule the
fixed-point instructions to specifically take ad-
vantage of the second FXU. There are ng new
integer instructions for the compiler to gener-
ate, and the integer benchmarks are not typical-
ly good candidates for improvements through
high-order loop transformations. Due to these
factors, the SPEC CINT92 suite and other ine-
ger workloads show only minor gains from
POWER2 compiler enhancements; rather, the
SPECint92 gain for POWER2 is largely due to
hardware improvements, discussed in the
following section.

The performance improvement seen by using
the latest compilers on the floating-point suite is
much larger than the gain seen on the integer
suite, providing a 53.5% maximum improve-
ment while the geometric mean is 17.6%. This
improvement is partially explained by the fact
that the compilers can take advantage of the
new floating-point instructions, such as quad-
word storage references and Square Root.
Also, the high-order loop transformations, such
as loop unrolling, are generally much more ef-
fective on the highly regular and repetitive code

programs common in the SPEC
“” oint suite. Finally, the compiler is able
floating” le the code sO that the second FPU
0 sched“d FXU can be efficiently exploited, in
and secondue to the long basic blocks inherent
arge P nﬁng-point benchmarks. These factors
i e'ﬂoato give the latest compilers a substan.-
mbineé mance advantage on POWER2 over
tial Pegi‘:; versions of the compilers for floating-

the etac ode, such as the CFP92 benchmarks.
poln /

Improvements

qudv‘;aljree to I::1ardware improvements in
Gains r2 account for another large portion of
POWErforma"Ce improvements. These im-
fhe e primarily come from a combination
mve"}:stef clock, more functional units,
pf a d caches, and new instructions. In this
|mprovethe POWER2 performance monitor
apl_ef' [9] provided the measurements to evalu-
fac'&ye impact of the various POWER2 hard-
;t:re features. Special-purpose hardware [9]

provided the data for a POWER system.

Clock

%component of the performa.nce
improvement in POWER2 over POWER is a
raster clock rate. The fastest POWER system,
a Model 980, operates at 62.5 MHz; the POW-
ER2 used in our discussion, a Model 990, oper-
ates at 71.5 MHz, a 14% gain. However, this
contributes only a small portion of the overall
performance improvement realized by PQW-
ER2, as other architectural and implementation
improvements provide the bulk of the gains.

More Functional Units

POWER2's additional functional units provide
significant benefits. POWER2 has twice as
many functional units as POWER; two integer
units and two floating-point wunits. Thus,
POWER2 hardware is able to exploit the
instruction-level parallelism exposed by the
compiler to a substantially greater degree.

One measure of the exploited instruction-level
parallelism is the instructions-per-cycle (IPC)
fatio. This is the average number of instructions
that are executed per clock cycle. To examine

wee iegffects of additiona| fu
nore the pena| i
Caeh Usin;yt(r:\ydes associated with
get?d €xecutables, Tap
exploited Parallelism of
el the Models
22(?h b?;eq On Infinite-cache IPC. (The? ?noﬁr:tr:
‘ €1PCisthe IPQ t.he_e Workload would exhibit

nctional units alone

Square root operation in roughly 50-55 cycles.
In contrast, on POWER?2, a single hardware
Square Root instruction requires about 26
cycles. Thus, a single instruction executing in
26 cycles replaces 54 instructions executing in
S0-55 cycles. This causes a substantial drop in
IPC while boosting net performance. To a less-
er degree, a similar effect results from replacing
two Load Double operations with a single Load
Quad, causing the IPC to slightly underesti-
mate the overall performance gain.

Another way to assess the benefit of the addi-
tional functional units is to examine how often a
given functional unit is busy. Tables 5 and 6
show the percentage of cycles that a given
functional unit was busy. The tables also con-
tain the percentage of time that the second
functional unit was busy when there were
instructions of the appropriate type (fixed-point
or floating-point) available to execute. This uti-
lization number is a good indicator of how much
parallelism is exploited. Ideally, if the utilization
was 100%, then the second unit would be busy
whenever the first functional unit is busy. I-!ow-
ever, dependencies among the instructions
make this an unlikely prospect.

' i f the
Although 013.spice2g6 Is a member of t
floating-point suite, itis includedin the F)o(U-hm-
ited table because it consists of only 5.9% float-

ing-point instructions; thus, FXU utilization pri-

i i i nce. This data
marily determines its gerforma

show); that the FXU-limited benchrparks makg
efficient use of the two integer units. FXU1 Is

busy between 48% and 64% gf the time thal:
fixed-point instructions aré avallgblg. Althoug:1
not shown in Table 6, the FPU-limited bench-
marks also take advantage of the second FXU,
often keeping it utilized as much as the FXU-

limited benchmarks.

chmarks generally make

U-limited ben
The FP ond FPU. For instance,

good use of the sec

Model | Model Percent

lBrg?\%f\:nark 980 | 990 Change
008.espresso | 1 .00 | 1.27 35%
022.li 0.85 | 1.26 48%
023.eqgntott 1.19 | 1.89 59%
026.compress | 0.91 1.32 45%
072.sc 0.84 | 1.21 44%
085.gcc 0.83 | 1.13 36%

Table 3 SPEC CINT92 Infinite Cache IPC

Floating-Point Model | Model | Percent
Benchmark 980 | 990 Change

013.spice2g6 | 0.89 1.23 38%

015.doduc 0.83 | 1.08 30%

03amdidp2 | 0.81 [0.96 | 19%

039.waveb 1.04 | 1.62 56%

047.tomcatv 1.21 | 266 | 120%

048.ora 0.85 | 0.54 | -37%
052.alvinn 144 | 460 | 219%
056.ear 1.15 | 1.68 46%

077.mdljsp2 0.69 | 0.83 20%

078.swm256 123 | 292 | 137%

089.su2cor 1.19 | 1.70 43%

090.hydro2d 0.84 | 1.09 30%

093.nasa7 0.92 | 243 164%

094.fpppp 0:938181.57 69%

Table 4 SPEC CFP92 Infinite Cache IPC

078.swm256 makes the best use of

tional floating-point unit, keeping it buStCZ ;oddi.
the time that floating-point instruction 7 of
available for execution. S are

048.ora exhibits the unusual behavi

utilization being significantly higug\r"t?w;?,f;: U1
One explanation of this involves 048 U?'
heavy usage (about 30% of CPU tim.eo b
Square Root instructions. If, during the ﬁr) i
several iterations, a single long-running insts ot
}?on ((m :rr:-is case ggltjare Root) enters one p'i'gz.
ine (in this case 1),itm el
lines to drain. IS UG

If the other pipelines drain while this i :
executes, there is an effective syn:r:?:;?zjg'-m
of subsequent instructions and pipe"nl:r!
instruction issuance beyond the square root wsn
occur in a deterministic manner. If the samI
instruction again goes to the same pipeline oe
the second iteration, then the synchronization
repeats and the same pipeline should proces';
the square root operation each iteration. Appar-
ently in the case of 048.ora, FPU1 always
executes the square root. Adding one instru);-
tion between instances of the Square Root
instruction may cause it to shift to FPUO or even
to alternate between pipelines.

Increased Data Cache Capacity
The POWER2 data cache is four times larger

than that on high-end POWER implementa-
tions, while the instruction cache is the same
size. In addition, the POWER2 data and
instruction caches have longer lines (the unit of
transfer between memory and the cache).
Table 7 summarizes these changes. (Sizes are
in bytes). Finally, the width of the bus from
cache to main memory is 32 bytes on
POWER2, twice that of POWER systems.

Based upon measurement alone, itis difficult to
separate the impact of line-size and cache-size
improvements. Because the instruction cache
miss rates for the workloads under study are
very small (generally less than 0.1%), the im-
pact of these misses is negligible. (See “POW-
ER2 Commercial Workload Performance” [10]
for a discussion of the effects of longer I-cache

TP _
FXU-Limited P(?;gﬁanst aé:]uesyc/) f Utg.xind
genchma™® FEXU0 | FXUT
008.espf955° 64% | 31% 49%
01 3.5pi09296 61% 29% 48%
022l 65% | 33% 51%
023,eqntott 66% | 55% 83%
026.compress 53% | 29% 55%
072.5C 54% | 31% 58%
085.9¢C 51% | 27% 53%
—able 5 Utilization of FXUs
— | Percentage of _
epu-Limited | Cycles Busy | Util. 2nd

genchmak Fpyo [FPUT | | -

S5doduc | 73% | 25% | 29%

Samdidp2 | 72% | 52% | 44%

039.waved 69% 47% 63%

o47tomcaty | 81% | €8% 84%

048.ora 52% 91% 45%
052.alvinn 66% 58% 88%
056.ear 75% 50% 66%

077.mdljsp2 76% 16% 20%

078.swm256 | 91% 87% 92%

089.su2cor 73% 43% 53%

090.hydro2d 71% 39% 49%

093.nasa7 63% 37% 58%

094.fpppp 66% | 33% 46%

Table 6 Utilization of FPUs

lines on other workloads.) As for the D-cache,
its twice-as-long cache lines will dramatically
reduce the miss rates of programs that have a
high frequency of stride-one storage accesses
(such as tomcatv, alvinn, and compress). Pro-
grams sequentially accessing successive
memory locations will only cause a cache miss
due to “striding off the end” of a cache line once
every 64 words rather than once every 32
words. (Since POWER2 also doubles the bus

bandwidth, the memo
cache line as fast on p
despite POWER2’s Io
Programs also shoul

the quadrupled cap
cach

ry subsystem refills a
OWER2 as on POWER,
nger lines.) Most of these
d benefit significantly from

acity of the POWER2 D-
e. Tables 8 and 9 show that D-cache miss

per refe(engg rates of the various SPEC bench-
marks S|gn!f|cantly decrease (improve) due to
Increased line length and cache capacity.

Note that the data presented here is for the first-
level (L1) _data cache. None of the performance
numbers in this paper include the effects of a
second-level (L2) cache. Many other worksta-
pon vendors include large L2 caches. For
Instance, the DEC AXP 10000 Model 610 in-
cludes a 4MB L2 cache. Because POWER?2
has a large L1 cache, the performance gain
from an L2 cache is small for many workloads.
An L2 cache can be more beneficial for pro-
grams that have relatively high data cache miss
rates, such as compress, spice2g6, tomcatv, or
nasa7, and workloads with large instruction
footprints (and high instruction cache miss
rates), such as database applications.

New Instructions

POWER2 adds several new instructions. For
performance on the SPEC benchmarks, the
most important are quad-word storage refer-
ences and Square Root. The 048.ora bench-
mark clearly shows the dramatic impact the
POWER2'’s hardware square root can provide
for square root intensive code. The execution
time of 048.ora drops by 25% when this new
instruction is generated by the compiler.

Evaluating the effect of quad-word storage
instructions (with a prototype compiler that pre-
vents Load Quad instructions from being gen-
erated) shows a modest overall gain of 2.2 per-
cent. As the preceding unrolling example
shows, the Load Quad instruction provides the
greatest improvements on programs that per-
form many stride-one accesses. Such a
program, 052.alvinn, has a gain of 23%, t.he
largest Load Quad gainseenin thp SPEC suite.
Other benchmarks, such as Linpack, show
even greater gains from Load Quad. lfurther-
more, compiler technology should continue to

provide additional quad-word storage refer-
ence improvements.

Cache [Cache | Line | Agsoc.
Model Type | Size Size
Model Instr. 32k 64 2-way
980 |Data 64k | 128 4-way
Vo] L il i
990 [pata [256k |256 4-way

Table 7 980 and 990 Cache Attributes

Integer Miss Rate
Benchmark POWER | POWER2
008.espresso 0.26% 0.06%
022.li 0.13% 0.004%
023.eqntott 3.33% 1.05%
026.compress 7.28% 1.96%
072.sc 1.31% 0.19%
085.gcc 0.61% 0.07%
Table 8 SPEC CINT92 D-Cache Miss Rates
Floating-Point Miss Rate
Benchmark POWER |POWER2
013.spice2g6 6.66% 1.49%
015.doduc 0.43% 0.00%
034.mdljdp2 0.55% 0.01%
039.waveb 0.34% 0.09%
047.tomcatv 2.44% 1.39%
048.ora 0.01% 0.002%
052.alvinn 1.30% 2.30%
056.ear 0.01% 0.007%
077.mdljsp2 0.78% 0.02%
078.swm256 1.79% 1.01%
089.su2cor 2.11% 0.51%
090.hydro2d 3.85% 0.61%
093.nasa7 4.21% 2.86%
094.fpppp 0.06% 0.00%

Table 9 SPEC CFP92 D-Cache Miss Rates

Conclusions

The architectural, implementation, ang Compi
er improvements of POWER2 systems coplL
bine to provide industry-leading pe"formanm'
At 71.5 MHz, POWER2 has a SPECings -
126.0 and a SPECfp92 of 260.4. This g;\,:’
POWER?2 the best SPECint92 and SPECfpgg
in the industry at the time of its announcement

Acknowledgements

We would like to thank Da-Gung Lu for his help
with compiler option selection and Kate Stewart
for answering compiler related questions. We
would like to particularly thank Ed Welbon and
Chris Chan-Nui for their invaluable assistance
in making hardware measurements.

References

1. Steven W. White and Sudhir Dhawan, “POWER2: Next
Generationofthe RISC System/6000 Family,” PowerPC
and POWER2: Technical Aspects ofthe New IBMRISC
System/6000, pp. 8—18.

2. BabaArimilli, Jama Barreh, Robert Golla, and Paul Jor-
dan, “POWER2 Instruction Cache Unit,” PowerPC ang
POWER2: Technical Aspects ofthe New IBM RISC Sys-
tem/6000, pp. 19-28.

3. D. J. Shippy, T. W. Griffith, and Geordie Braceras,
“POWER2 Fixed Point, Data Cache, and Storage Con-
trol Units,” PowerPC and POWER2: Technical Aspects
of the New IBM RISC System/6000, pp. 29-44.

4. Troy N. Hicks, Richard E. Fry, and Paul E. Harvey,
“POWER2 Floating-Point Unit: Architecture and Imple-
mentation,” PowerPCand POWER2: Technical Aspects
of the New IBM RISC System/6000, pp. 45-54.

5. “CINT92 & CFP92 Benchmark Descriptions," SPEC
Newsletter, Volume 4, Issue 4, December 1992; Stan-
dard Performance Evaluation Corporation, p. 9.

6. Norman P. Jouppi, “The Nonuniform Distribution of
Instruction-Leveland Machine Parallelism and Its Effect
on Performance,” IEEE Transactions on Computers,
Vol. C-38, No. 12, December 1989, pp. 1645-1658.

7. AlIX Version3.2for RISC System/6000 Optimizationand
Tuning Guide for XL Fortran, XL C, and XL C ++
SC09-1705, IBM Corporation.

8. MonicaS. Lam and Robert P. Wilson, “Limits of Control
Flow on Parallelism,” Proc. of the 19th Annual Intema-
tional Symposiumon ComputerArchitecture, May 1992,
pp. 46-57.

9. E.H. Welbon, C.C. Chan-Nui, D.J. Shippy, and D.A.
Hicks, “POWER2 Performance Monitor,” PowerPCand
POWER2: Technical Aspects of the New IBMRISC Sys-
term/6000, pp. 55-63.

10. Maurice Franklin, Willlam Alexander, Ra]ivJauha_ﬂ. Ann
Marie Grizzaffi Maynard, and Bret Olszewski, POW-
ER2 Commercial Workload Performance,” Powe
and POWER?2: Technical Aspects ofthe New IBMRISC
System/6000, pp. 137—144.

