
Marcus Bennett

Inside the IBM RISC System/6000

Marcus Bennett

Inside the IBM RISC
System/6000

McGRAW -HILL BOOK COMPANY

London • New York • St Louis • San Francisco -Auckland
Bogota • Caracas • Lisbon • Madrid • Mexico
Milan • Montreal • New Delhi • Panama • Paris • San Juan

Sao Paulo • Singapore • Sydney • Tokyo • Toronto

Published by
McGRAW-HILL Book Company Europe
Shoppenhangers Road , Maidenhead , Berkshire , SL6 2QL, England
Tel 0628 23432; Fax 0628 770224

British Library Cataloguing in Publication Data

Bennett, Marcus
Inside the IBM RISC System/6000
I. Title
004.2

ISBN 0-07-707688-5

Library of Congress Cataloging-in-Publication Data
Bennett, Marcus

Inside the IBM RISC System/6000 / Marcus Bennett.
p. cm.

Includes bibliographical references and index.
ISBN 0-07-707688-5
1. IBM RISC System/6000 computers. I. Title.

QA76.8.125975B45 1993
004.165-dc20 93-13494

CIP

Copyright © 1994 McGraw-Hill International (UK) Limited. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of McGraw-Hill International (UK) Limited, with the exception
of material entered and executed on a computer system for the reader's own use.

1234 CUP 9654

Typeset by Datix International Limited, Bungay, Suffolk
and printed and bound in Great Britain at the University Press, Cambridge

Contents

Acknowledgements ix

Preface xi

Trademarks xv

Conventions xvii

1 Introduction 1

1.1 Open systems 1

2 The IBM RISC System/6000 family 6

2.1 RISC system family outline 6

2.2 Ordering a complete system 10

3 AIX facilities 14

3.1 How does the IBM RISC System/6000 boot? 14

3.2 The object data manager 18

3.3 Printing 22

3.4 Real-time computing 26

3.5 International language support 30

4 RISC technology 37

4.1 Register model 38

4.2 Virtual memory addressing 40

4.3 Understanding caches 42

4.4 CPU walkthru 44

4.5 Virtual memory management 46

4.6 Compiler design 47

5 Programming environments 53

5.1 Program management 53

5.2 Computer-aided software engineering 55

5.3 Communication programming interfaces 58

5.4 Device drivers 61

5.5 Dynamic linking 67

5.6 Debuggers 73

5.7 Tracing 77

6 End user interfaces 81
6.1 X-Windows and Motif 81

6.2 Silicon Graphics GL 97

v

vi Contents

6.3
6.4
6.5
6.6
6.7

Display PostScript
graPHIGS and PEX
AlXwindows Desktop
Open Look and XView
Professional Graphics Tools

7 Information strategy
7.1

7.2

7.3

7.4

7.5

7.6

7.7

Documentation strategy

InfoExplorer

InfoCrafter

BookManager

IBM information sources

Electronic customer support

IBM training

8 New technology
8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

Serial link disk technology

The IBM X-station 150

IBM diskless workstations

Optical disk and digital tape technology

MicroChannel

Optical networking

High-performance graphics

The POWER visualization system

Parallel computing

9 Systems administration
9.1 Systems management interface tool
9.2 Software installation
9.3 Performance management

10 Storage
10.1 Benefits of the journalled filesystem

10.2 Filesystem organization

10.3 The traditional UNIX physical filesystem
10.4 The AIX physical filesystem

10.5 The persistent storage manager
10.6 Logical volume manager characteristics

11 DOS
11.1 DOS emulation on the IBM RISC System/6000
11.2 NetWare for AIX
11.3 AIX access for DOS users
11.4 TCP/IP for DOS
11.5 X-Windows servers for PC users

12 Networking
12.1 Basic networking utilities.

12.2 TCP/IP

12.3 Directory and file sharing
12.4 High availability

Contents VII

12.5 Network Computing System 216

12.6 Network management 222

12.7 The OSF distributed computing environment 225

13 The IBM bridge 228

13.1 Fundamentals 228

13.2 What is an IBM mainframe? 231

13.3 IBM mainframe communications 234

13.4 IBM mainframe terminal emulation 234

13.5 AIX to IBM mainframe programming interfaces 237

13.6 What is an IBM AS/400? 239

13.7 AIX SNA transaction programs 241

13.8 Network management 246

14 Security 249

14.1 Complying with security standards 249

14.2 Physical security 251

14.3 Identification and authentication 251

14.4 The trusted computer base 253

14.5 Modifications to password storage 253

14.6 Limiting user access 254

14.7 Discretionary access control 254

14.8 Trusted communication path 256

14.9 Mandatory access control 256

14.10 Accounting 256

14.11 Auditing 257

14.12 Checking programs 258

15 Diagnostics 260

15.1 Hardware diagnostics 261

15.2 Software diagnostics 261

15.3 Error logging 262

15.4 Dump and crash 263

15.5 The IBM support system 264

16 Standards and performance 269

16.1 Vendor standards 269

16.2 US government standards: FIPS and NIST 276

16.3 US standards bodies 276

16.4 Graphics bodies and standards 279

16.5 Performance standards 279

16.6 Competitive summary 284

17 A change of attitude 286

17.1 Market driven for customer satisfaction 287

17.2 IBM terms and conditions 287

17.3 The IBM value added reseller 290

17.4 IBM companies 290

17.5 Vendor alliances 291

17.6 OEM marketing 294

17.7 Future developments 295

17.8 Summary 295

viii Contents

Appendices 296

1 The history of UNIX and IBM's involvement 296

2 IBM hard disk interfaces 311

3 Bibliography and further information 316

4 Abbreviations 326

5 Glossary 333

Index 338

Acknowledgements

I am grateful to the following people without whose patience, help and contribu-

tions this book would not have been possible: Raymond Wordsworth Bennett, for

taking the trouble to proofread this work continually; Angela Christi, for help

with the proofreading and semantics ; Johnny Lauridsen , IBM Denmark, for

NCS programs and APPC sections; Liz Lewis , IBM UK, for accounting, auditing

and superusers sections ; Tim Hayashi, IBM Japan, for advice and guidance

regarding NLS; Nelson Strother, IBM Hawthorne, NY, USA, for technically

sharpening this work; Valerie Sangwine, IBM UK Press and Publicity for colour

slides; and Jim McArdle, IBM Test Equipment Engineering, USA, for his

continued proofreading.

The following figures require acknowledgement: Figs. 2.1, 2.2, 8.6, 8.7 and

Al.1-Valerie Sangwine, IBM Press and Publicity; Fig. 8.1-IBM Press and

Publicity; Fig. 12.7-Johnny Lauridsen and Marcus Bennett; Fig. 12.8, 12.9, 13.6

and 13.7-Johnny Lauridsen; Fig. 13.2-Ian Stimpson; Fig. 14.4-Liz Lewis. All

other figures provided by Marcus Bennett.

ix

Preface

Development of UNIX-based systems has come a long way in the last 10 years.

UNIX systems today are designed to be of use in ordinary offices in the world of

commerce and industry generally. IBM is committed to producing high-quality

UNIX computer systems such as the IBM RISC System/6000 to meet today's

needs.
In 1978 (about five years before IBM launched its first UNIX computer) I

remember putting the finishing touches to my very first personal UNIX computer

system. It was the result of a great amount of hard work. Although this system

still works today, it bears little similarity to the nineties generation of UNIX

workstation and is considerably removed from the IBM RISC System/6000

which is the subject of this text.
This book is intended to cover a wide audience. If you feel at one with any of

the categories listed below then I am confident that you will find it worthwhile

reading.
If you are part of a corporate computing department you will probably have

had experience of IBM's mainframe computing systems. This book will show

how and why IBM is embracing the open systems marketplace with the IBM
RISC System/6000. You will see how IBM has tried to ensure that the RISC

system integrates well into both traditional IBM and UNIX environments. To

this end we will discuss the range of IBM systems network architecture (SNA)

and UNIX TCP/IP communications options available for the IBM RISC

System/6000.
If you work within a computer vendor you may often be frustrated by the

inaccuracy of information sometimes reported by the media. What has been the

true picture of IBM's RISC system development to date? This publication

discusses the history behind IBM's involvement with UNIX to enable you to

understand the changing times at IBM that have culminated in the IBM RISC

System/6000.
Many users of today's computer systems are personal computer users. IBM

and Microsoft DOS have their place on over 40 million desktops worldwide.

DOS is, and will continue to be, a powerful force in the PC and workstation

market of the future. This book will show how IBM provides DOS integration

across its entire range of UNIX platforms and how close the RISC system

xi

xii Preface

comes to providing users with `a better DOS than DOS'. For the established
DOS user we will also cover tools that enable DOS to link to the RISC system.

If you are an established UNIX developer or architect you will be interested in

the many in-depth technical sections in this book. What is MicroChannel, how

good is it technically, is it IBM's future direction? Why does IBM refer to the

RISC system as second-generation RISC? How does the RISC system address

the challenges of the nineties generation of UNIX systems in terms of security or

usability? Does the RISC system provide the latest facilities such as optical

storage, reliable filesystems and networking? These topics are covered in depth.

For the consultant this book includes numerous references that provide an

insight into the design of the RISC system project and its future direction. How

should the RISC system be positioned in the open systems marketplace? Does it

conform to accepted UNIX or internationally agreed standards? What can be

expected of future RISC systems? These points are covered.

If you are an existing IBM RISC System/6000 or UNIX user note that this

book is not a hands-on guide or a technical reference manual. These topics are

worthy of publications in themselves and IBM already publishes a vast array of

such material. To this end we will be explaining how to obtain these texts in an

optimal manner, including demonstrations of the IBM electronic customer sup-

port system. We will also be discussing the facilities that stand out in IBM's

implementation of UNIX such as systems administration, hypertext help and
error recovery.

How this book is organized

Chapter 1 is the introduction. Chapter 2 outlines the current range of IBM RISC

systems and peripherals. For readers new to UNIX or AIX it should be read in

conjunction with Appendix 1, `The history of UNIX and IBM's involvement', on

page 296 which discusses the origins of the UNIX operating system and IBM's

long involvement with this technology.

AIX provides a significant number of enhancements to traditional UNIX.

Chapter 3 details the fundamental extensions made to UNIX System V that form

the basis of AIX. This includes a discussion of the pre-emptible and real-time

kernel, improved international language support for traditional IBM codepages

and ISO codesets and details of the object data manager, object-oriented

database.

IBM makes reference to reduced instruction set computing (RISC) as a

technology pioneered and patented by IBM. What are the origins of RISC

technology; why is the RISC system known as second-generation RISC technol-

ogy? Chapter 4 also discusses the XL series of compilers which are tailored

specifically to exploit the underlying hardware.

UNIX has always provided a strong programming environment. AIX has

extended the traditional UNIX environment to include support for advanced

Preface xiii

computer and software engineering tools. Chapter 5 discusses these tools. It also
discusses the changes made to the AIX kernel to support dynamic binding.

Graphical end user interfaces are an expected part of a modern UNIX system.

AIX is a strong performer in this area. Chapter 6 examines programming in

traditional character-based applications and describes the new challenges that

graphical user interface development brings. Also discussed is the range of

offerings that form the AlXwindows product, including the support for PHIGS,

PEX and Silicon Graphics GL.

UNIX systems have traditionally been provided with the man page help. AIX

version 3, however, provides a comprehensive hypertext help system called

InfoExplorer. We will examine InfoExplorer and take a closer look at IBM's

information strategy in general, including the move to the IBM electronic

customer support system in Chapter 7.

In order to provide a well-balanced and reliable environment AIX's enhanced

UNIX operating system needs to be matched with an enhanced hardware

environment. Chapter 8 focuses on some key hardware architectural advances.

This includes diskless workstations, X-stations, the MicroChannel peripherals

bus and high-performance graphics.

IBM provides a comprehensive and easy-to-use systems management interface

tool (SMIT). Chapter 9 explains the operation of this tool and also considers the

installation of AIX in large network environments.

Chapter 10 looks at storage. One of the highlights of AIX on the IBM RISC

System/6000 is the advanced journalled filesystem. What is it, and why did IBM

rework the traditional UNIX filesystem? What are the benefits to the business

user?

AIX includes the ability to work with DOS data files and executable programs

for users who have already made investments in DOS technology. We look at

what users can and cannot do with the DOS simulator and learn how to connect

existing personal computer networks into AIX in Chapter 11.

Chapter 12 considers the standard UNIX networking components of AIX. We

look at the elementary basic network utilities component of AIX as well as the

implementation of transmission control protocol/internet protocol (TCP/IP). We

also consider Sun's Network File System (NFS) and Apollo's Network Comput-

ing System (NCS) and their integration into AIX.

Chapter 13 examines ways of communicating from existing IBM personal

computers, minicomputers and mainframe computers to the IBM RISC System/

6000, using traditional IBM vendor communications protocols. This includes a

discussion of the advanced program-to-program communication protocol called

APPC.
We define and explain the de facto `Orange Book' security standards in

Chapter 14. We then look at how the IBM RISC System/6000 enforces physical

and software security policies.
IBM has traditionally been very strong in the area of diagnostics. AIX

xiv Preface

provides a complete range of standalone and online diagnostics. We examine

these facilities and also describe how the IBM hardware and software support

system operates in Chapter 15.

The UNIX world is driven by standards. But whose standards, and what do
they really mean? Chapter 16 takes a conciliatory look at various standards
bodies. It includes a discussion of both vendor, open systems and performance
standards and looks at how well the IBM RISC System/6000 meets them.

IBM is trying very hard to encourage customers and other computer vendors

to invest in IBM RISC System/6000 technology. In so doing IBM hopes to make

the RISC system a leading if not the leading architecture in the UNIX market-

place in the nineties. Chapter 17 examines this strategy and implementation

more closely.

Trademarks

AIX/6000 , AIX, AIX CASE, AIX Interface Composer, AlXwindows , AlXwindows

Desktop , Application System /400, BookMaster , ES/9000 , GDDM , graPHIGS,

High Availability Cluster Multi-Processing /6000 , IBM, InfoCrafter , InfoExplorer,

InfoTrainer, LoadLeveler MVS, MicroChannel, MVS/ESA, NetView, OS/2,

Operating System/2, PS/2, Personal System /2, Power PC , POWERserver,

POWERstation , Presentation Manager, RISC System /6000, SAA, Scalable

POWERparallel, SCLM, S/390 , 9076 SP1, VM , Xstation Manager are

trademarks or pending trademarks of International Business Machines Corpora-

tion.

1-2-3 is a trademark of Lotus Development Corporation.
AFS is a trademark of TransArc Corporation.
AlphaWindows is a trademark of the Display Industry Association.

Apple Laserwriter is a trademark of Apple Inc.

C + + is a trademark of AT&T.

DECnet is a trademark of Dec.

Display PostScript is a trademark of Adobe Corporation.

Ethernet is a trademark of Xerox Corporation.

FORGE 90 is a trademark of Applied Parallel Research Inc.

HP, NetWork Node Manager and SoftBench are trademarks of Hewlett-Packard

Inc.
Informix is a registered trademark of Informix Software, Inc.

Ingres and Sybase are trademarks of Sybase.

Intel 386 and Intel 486 are registered trademarks of the Intel Corporation.

Interleaf and Interleaf Desktop Publisher are registered trademarks of Interleaf,

Inc.
IXI is a trademark of IXI Inc.
Legato Networker and Networker Jukebox are trademarks of Legato Inc.

MIPS is a registered trademark of MIPS Computer Systems, Inc.

NCS is a trademark of Apollo Microsystems, Inc.
Netware, Netwire and Novell are registered trademarks of Novell, Inc.

NeWS, NFS, Sunsoft 's Tooltalk, are registered trademarks of Sun Microsystems,

Inc.

Oracle is a trademark of Oracle Inc.

xv

xvi Trademarks

OSF, OSF/1, OSF/Motif Window Manager and Motif are trademarks of the

Open Software Foundation.

PC/IX, INed are trademarks of Interactive Systems.

PEX, X11 .4, X11 .5, Andrew filesystem and X Window system are trademarks of

the Massachusetts Institute of Technology.

POSIX is a trademark of the Institute of Electrical and Electronics Engineers.

PostScript is a trademark of Adobe Systems, Inc.

PVCS is a trademark of Intersolv.
Silicon Graphics GL is a trademark of Silicon Graphics Inc.

SPEC, SPECint92 , SPECfp92 are trademarks of Standard Performance Evalua-

tion Corporation.

Sun, SPARC and SPARCstation 2 are trademarks of Sun Microsystems, Inc.

Tektronix 4014 is a trademark of Tektronix.

UIM/X is a trademark of Visual Edge.

Ultrix and VAX are trademarks of Digital Equipment Corporation.

Uniplex is a trademark of Uniplex Inc.

UniTree is a trademark of General Atomics / DISCOS

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Windows is a trademark of Microsoft Corporation.

WizDOM is a trademark of Tivoli Inc.

X/Open is a registered trademark of X/Open Ltd.
XPG3 is a trademark of X/Open Ltd.

Conventions

Considerable effort has been expended in using a consistent set of typefaces and
styles to make this book logical and easy to understand. The rules are:

• System programs or commands: in italics make, Is,

• Programming functions: in bold XtInitialize()
• Program code and command output: in monospace a = b + c

• Pathnames, files: in monospace /usr/1pp/X11/Xamples

• Emphasis: in italic This is important

Throughout this publication, numerous examples and opinions are put forward.

These opinions are the result of my personal experience and therefore I will

express them in the first person. Also note that unless otherwise specified:

• Generic UNIX facilities implemented in AIX are described as UNIX

facilities.
• The term AIX when used should be taken to mean features of AIX version 3

as implemented on the IBM RISC System/6000. The current level of AIX at

the time of writing is 3.2.4 (announced in June 1993).
• The term RISC system should be taken to mean the IBM RISC System/6000.

A full list of acronyms used in this publication is given in Appendix 4.

xvii

1
Introduction

I remember a radio report well from the spring of 1989: `We advise all residents to

take particular care and not to drive unless absolutely necessary.' The local radio

station was advising me and other inhabitants in Austin Texas that owing to the

extraordinary weather conditions (namely strong hailstorms) driving was to be

avoided. However, this was not the only unusual event that was taking place right
in the heart of Texas.

I had been sent to IBM Austin to co-write a programming guide for IBM on

the X Window System, the graphical user interface for AIX (AIX is the name for

IBM's implementation of UNIX), but one morning I and a number of colleagues

got a break from our gruelling schedule. We were ushered into a large windowless

room to speak to the developers of a new IBM UNIX computer system. The

machine we saw that day was of course a prepreproduction model. It had a

transparent plexiglass case so that curious systems engineers such as myself could

cluster round and marvel at the new technology. Even at that time the IBM

RISC System/6000 was fast. This model sat beside a model 135 RT personal

computer, at that time IBM's fastest workstation UNIX system. Running on

each machine was a looping compile and run benchmark, already showing the

RISC System/6000 at twice the speed of its parent. This was my first glimpse of

the IBM RISC System/6000, a computer that has redefined even IBM's competi-

tors' view of IBM's presence in and commitment to the UNIX and open systems
marketplace

1.1 Open systems

Open systems is one of the latest terms to enter the information technology (IT)

industry. Ignorance of open systems in today's marketplace is tantamount to

professional negligence. So exactly what is an open system? It is a computing

system whose components are not owned or controlled by any single vendor. It is

built upon a comprehensive and consistent set of information technology
standards and functional standards' profiles.

UNIX is an example, perhaps the principal example, of an open system, but it

1

2 Inside the IBM RISC System/6000

is by no means the only one . Many vendors ' operating systems and architectures

are open in the sense that their architectures and specifications are clearly

defined . IBM's Systems Network Architecture (SNA) is open in this respect but

the standard is controlled by a single vendor-IBM. Perhaps a better way to look
at open systems is to look at the requirements of today 's customer and how those

requirements are fulfilled by open systems.

1.1.1 Customer requirements and open systems solutions

Multivendor connectivity

The basis for interoperability is connectivity. Users need to make use of their
information on an enterprise-wide basis.

Transparent data access

Information needs to be accessible in a transparent and nondisruptive way.

Applications (usually) and users (certainly) should not be concerned about the

physical location of their data resources. Applications need to be able to move

through vendor and protocol barriers, a process made easier if open systems

fundamental protocols are the same.

Remote application access

Users must be able to access applications throughout the network. The physical

terminal screen to which the user is connected should be the gateway to and not

the jailer of the user's computing network.

Multivendor systems management

Tools and procedures must be defined to allow systems resources to be managed

effectively. A vendor's proprietary environment allows tighter control since

specifications are under the control of a single manufacturer allowing in principle

for more complete systems management. Open systems are controlled by many

vendors so the specification and adherence to systems management standards by

a multiplicity of vendors is crucially important in order to avoid systems manage-

ment chaos.

Transaction processing

Users now expect distributed computer applications that use cooperative process-

ing to solve customers' data processing needs. An effective open system needs to

support communication protocol standards and optionally support that vendor's

Introduction 3

previous protocol standards to enable integration and migration from existing

customer systems.

Multivendor security

As the user gains interoperability and interconnectivity between network-con-

nected systems, the user must ensure that security is not compromised. As many

vendors and large corporate computing departments begin to make electronic

links to other customers and clients over public telephone networks, open

systems must employ security standards to protect information from accidental

and intentional misuse or destruction.

Consistent look and feel

Users now expect a consistent user interface while operating in a multivendor

open systems environment . A common interface maximizes user productivity

because the behaviour of the application interface is consistent with a user's

expectations . A user has a correspondingly reduced learning time and makes

fewer mistakes.

Heterogeneous display and printing

Users expect to be able to access their applications from network-connected
workstations or terminals placed throughout the organization and to direct hard

copy output to their local printers.

Consistent programming look and feel

Application developers prefer a common set of programming interfaces , develop-

ment environments and tools to enable them to deliver the user 's expectations

discussed above.

1.1.2 The benefits of open systems

The move to open systems is driven by the perceived benefits of this form of IT.

It is interesting to note that the lowest cost provider is no longer the fundamental

driving force; it is usually customer independence. What are the benefits?

Interoperability

Interoperability means being able to interconnect systems from many different

manufacturers and have them integrated to solve a business need. Interoperability

is more than just network interconnection, it includes the ability for integrated

Inside the IBM RISC System/6000

messaging and mail, the sharing of data (preferably transparently to the user)
and also shared resources (for example printing).

Investment protection

By far the greatest cost to a user in a total IT environment is the investment
made in the applications to run that user 's business . By using open systems the
user is free to choose from a wide variety of computer systems from different
vendors and select the one which meets current and future total business needs.

Portability and scalability

Portability enables a customer to relocate system resources, for example to

relocate data and applications to platforms that best suit requirements. Portability

should also be applied to the professional staff whose skills should be useful

across varying systems. For example, professionals skilled with UNIX computer

systems can easily adapt to the minor differences in any one vendor's implementa-

tion of UNIX. This is true at the operational level and, even more importantly,

true at the more involved programming and application design level.

Price l performance

For customers purchasing open systems many hardware and software elements

of a computer system are designed to be interchangeable. Thus, the freedom to

choose between vendors for these items tends to lead to increased competition

and commodity pricing, so reducing the price.

Time to market

Time to market (TTM) and break-even after release (BEAR) are two critical

measurements that vendors use to measure the success of their products and

services. Open systems, which are based around portable and recognized software

standards, enable hardware and applications vendors to improve TTM and
BEAR.

1.1.3 Open systems driving factors

A recent study of over 80 leading companies, conducted by the Open Systems and
Workstations Consultancy (OSWC), concluded that:

• Seventy per cent believe that there is a general trend towards open systems in
their business environment.

Introduction 5

• Eighty-five per cent believe they will be moving to open systems within five

years.

Perhaps for all the reasons outlined above, IT and business professionals are now

insisting on open systems, and because of this paradigm shift it is likely to be a

self-fulfilling prophecy. In summary, open systems are not a threat; they are a

certainty.

2
The IBM RISC System/6000 family

The IBM RISC System/6000 was announced by IBM at 10.00 a.m., American

Eastern Standard time, on Thursday, 15 February 1990. Right from the day of

announcement, the IBM RISC System/6000 has represented a considerable

advance in technology over its forerunner the IBM RT PC system.

2.1 RISC system family outline

A variety of models exist, from the entry-level diskless workstation models M20

and 220 (discussed in more detail in Sec. 8.3), right up to the high-performance,

rack-mounted model 980B. All IBM RISC System/6000 computers are binary

compatible with one another and run the same Advanced Interactive eXecutive

(AIX) Operating System, IBM's name for its enhanced UNIX operating system.

Binary compatibility allows an applications developer to develop a product that

runs on all RISC systems, and correspondingly allows a user to move these

applications from the model M20 up to the model 980B, without recompilation,

as their needs develop.
Broadly speaking, the models divide into five power bands and three physical

sizes, as Table 2.1 shows. Figure 2.1 shows the family, including some members

of entry level, desktop and deskside RISC systems. Harris (1993) is an excellent

guide to all models, peripherals and software available in the IBM RISC System/

6000 family. The guide includes more comprehensive specifications than covered

here.

2.1.1 Entry-level RISC systems

The basic entry-level IBM RISC System/6000 is the model 220 diskless work-

station. This small form factor desktop workstation may also be configured with

a single floppy disk and hard disk drive, turning it into a basic level workstation,

with two I/O bus slots for future expansion.
An even lower cost RISC system entry workstation is the model M20. This

system can be regarded as a model 220 packaged inside a 17 inch colour screen.

6

The IBM RISC SystemI6000 family 7

Table 2.1. RISC system classification

Speed Desktop Deskside Rack

25 MHz 320H 520H 930
33 MHz M20 220 530H
41 MHz 340H 350 355 550 950
50 MHz 360 365 560 570 970B
62.5 MHz 370 375 580 980

Figure 2.1. The IBM System/6000 family. From left to right and top to bottom the
models are: 220, 350, 520H, 340H and 560.

Its typical application is as a nonexpandable diskless workstation, though it is

possible to use a locally attached SCSI port to attach external peripherals such as

disks and tapes.

2.1.2 Desktop RISC systems

The desktop RISC system family is the 300 series. The models are 320H,

340H, 350, 355, 360, 365, 370 and 375. Fully configured these desktop

machines can house at least 128 Mb of system memory, 2000 Mb of internal

disk (entry-level desktop model 32H is restricted to 800 Mb), an internal 3.5

inch diskette drive and external tape and CD-ROM drives. Large amounts

of external disk may also be attached using the IBM 9333 serial link disk

subsystem (see Sec. 8.1; a single MicroChannel card can attach 16 Gb of disk

storage). Processor speeds of the 300 series are listed in Table 2.1. The model

320H has three free bus slots; models 340H, 350, 360 and 370 have four

because their planar electronics include Ethernet networking adapters and

8 Inside the IBM RISC System/B000

integrated hard disk (actually an integrated small computer systems interface
(SCSI)-1 interface, which can interface hard disk and other peripherals; see
Appendix 2).

For customers who require the power of the 300 series at a lower cost, but who

are willing to accept a slightly less expandable series of machines, consider

models 355, 365 and 375. These have the power of their model 350, 360 and 370

counterparts but have two bus slots (instead of four) and one memory slot

(instead of two). This limits a configuration to 128 Mb of internal memory, 2 Gb

of internal hard disk and one free bus slot (assuming a graphics adapter is

installed).

2.1.3 Deskside RISC systems

The IBM RISC System/6000 500 models are the most popular RISC system

models and are packaged as deskside units with processors in five different

speeds. Models 520H, 530H, 550L, 560, 570 and 580 have the processor speeds 25,

33, 41, 50 and 62.5 MHz respectively. These deskside systems have seven free

MicroChannel bus slots (four for model 550L and eight for models 570 and 580)

for greater expandability. As with the model 300 series, external tape, CD-ROM

or serial link hard disk drives may be attached. However, most customer

requirements can usually be satisfied by using a fully internally configured model

500 machine. For example , a 500 series has eight system memory slots, seven free

MicroChannel bus slots, three full-height 5.25 inch hard disk bays, three half-

height 5.25 inch peripheral bays and a floppy diskette drive. So a fully configured

model 570 could have 1024 Mb of system memory, six 2 Gb hard disks (12 Gb),

a CD-ROM drive, an 8 mm digital tape drive, a 1.44 Mb diskette drive, a

graphics, SCSI disk and LAN adapters and still have five free MicroChannel

card slots.
The input and output bus used on the IBM RISC System/6000 is the IBM

MicroChannel for which a great variety of high-performance cards are available.

The list includes:

• Console graphics terminal adapters

• The Ethernet high-performance LAN adapter

• The Token Ring high-performance LAN adapter

• The 128-port asynchronous controller adapter

• The four-port multiprotocol communications controller

• The X.25 interface coprocessor

• The 3270 connection adapter

• The block multiplexor channel adapter

• The enterprise systems connection (ESCON) adapter

• The FDDI network adapter

The IBM RISC System/6000 family 9

Each model 500 series machine also has a special optical channel converter slot

which can form the basis of an extremely high speed (220 Mbit per second)

optical network. The optical channel converter is discussed in detail in Sec. 8.6.

2.1.4 Rack RISC systems

For greater expansion still, select the 900 series of systems. These comprise rack-

mounted systems in a range of processor speeds from 25 to 62.5 MHz. These

models, 930 and 950, have no more slots than their 500 series counterparts; their

principal advantage is rack mounting. As with models 570 and 580, the 970 and

980 have eight free MicroChannel slots because the native disk interfaces are

integrated onto the planar (i.e. already included in the non-removable circuit

cards of the systems). Further, Models 970 and 980 can attach a MicroChannel

expansion cage for a total of 16 free MicroChannel adapter card slots. The racks

are the same as those used on IBM's AS/400 minicomputer and even on entry-

level IBM mainframe computers. They allow customers with large disk or

peripheral requirements to order a complete system in one unit. For example, a

fully configured model 980B is capable of attaching over 400 Gb of disk storage.

Lastly, note that all RISC system systems contain integrated planar support
for basic devices including:

• A parallel port

• One or two serial ports

• One tablet port
• Keyboard and mouse ports

2.1.5 Peripherals

To complete this overview of the IBM RISC System/6000 family we will introduce

some of the peripheral devices that can be ordered with the IBM RISC System/

6000. First, consider internal hard disk drives. Model 220 has space for a single

3.25 inch hard disk, Model 300 has two 3.25 inch hard disk drives. The 500 series

of models has space for three 5.25 inch full-height (or six 3.5 inch) hard disk

drives. A customer has the choice of adding in the following drives:

• 160, 212, 320, 400, 1004, 2000 Mb 3.5 inch form factor hard disks
• 355, 670, 800, 857, 1370 or 2467 Mb 5.25 inch form factor hard disks

The portable disk option is shown in Fig. 2.2.
Removable disks are connected via the small computer systems interface

(SCSI). The portable disk unit consists of a power unit into which a single

removable disk of 355 Mb, 670 Mb or 1 Gb can be plugged. Also available is the

securable disk, comprising a smaller self-contained, removable disk with power

supply. It provides 320 Mb or 1 Gb of external disk storage.

10 Inside the IBM RISC System/6000

Figure 2.2. The RISC system portable disk drive.

Other removable media options are shown in Table 2.2. The ; inch streaming

tape drive is available in three models with formatted tape capacities of 150 or

525 Mb or 1.2 Gb. The 4 mm tape drive uses the audio industry standard 4 mm

digital audio tape (DAT) to store 2 Gb of data. The 8 mm high-capacity tape

drive has a capacity of 2.3 or 5.0 Gb (depending on the model) and is more fully

described in Sec. 8.4. The i inch tape drive accommodates standard 2450 feet

`mainframe' reel tapes and enables data interchange via these tapes with IBM

mainframes. The capacities are as for standard mainframe tapes, that is to say,

160 Mb when recorded at a density of 6250 bits per inch and 44 Mb at a

recording density of 1600 bits per inch.
Table 2.3 on page 13 summarizes machine specifications across the IBM RISC

System/ 6000 family.

2.2 Ordering a complete system

Ordering a system should start first by analysing the business needs for a RISC

system. Whatever the environment, business, applications development or

research, one should clearly work from these requirements. These typically

include the following interrelated issues:
• Software solution Does a readily available software package exist that

satisfies user needs? Or is it the intention to use RISC systems for bespoke

software development?
• User considerations How many users will need to use the system? Will they

require use of single or multiple applications? Are these applications to be

used from character-based ASCII screens or from graphics screens. For

graphics, will this be provided using local area network (LAN) connected

The IBM RISC System/6000 family

Table 2.2. Removable media options

Removable media Internal External

inch streaming tape N Y
4 mm. DAT tape N Y
8 mm high capacity tape Y Y
8 mm tape library N Y
inch 9-track tape N Y
CD-ROM Y Y
Rewritable optical disk drive N Y
5.25 inch 1.2 Mb diskette N Y

11

personal computers, or via an X-station? Or will each user have their own
IBM RISC System/6000?

• Timing and financing What allowance is to be made for upgrading of the

system? What are the expected growth rates in terms of expected users and

applications? In the long term it may be sensible to choose a RISC system

hardware platform that allows the current system to be upgraded rather than

be replaced by a newer IBM RISC System/6000 platform.

• Operational considerations How often will the business application be run:

24 hours a day, 7 days a week, or only during normal office hours? What

priorities do these applications have? Are there any corresponding require-

ments for high-availability components?

• Other considerations Are the applications and the resulting systems to be

standalone or do they need integrating into an existing IT network, perhaps

to allow users to run applications locally on the chosen RISC system and

connect into existing systems, for example an IBM mainframe. Perhaps
applications will be migrated from an existing computing platform, and in a

transition period a user will be expected to run their new local application

and `passthru' to their existing applications.

All these considerations and more need to be taken into account when choos-

ing a RISC system to meet the needs of the customer. Customers should be

clear what they need. When this has been established, a customer can normally

contact their IBM marketing office or IBM value added reseller who will be able

to size the system and select the software packages that meet all their require-
ments. Base system needs such as required memory and hard disk will be

governed by the choice of application solution or development requirement

needs. (As a guide any RISC system should be equipped with at least 16 Mb of

memory and 400 Mb of hard disk.) A basic solution may comprise one or more

desktop, deskside or rack-mounted RISC systems. Every system unit includes

two serial and parallel ports, a console, a mouse and a keyboard port. A tape

drive should be ordered to load the AIX operating system and probably the IBM

or third-party software solution. This tape drive is also necessary for systems

12 Inside the IBM RISC System/0000

backup. For systems which do not require graphics, a low-cost solution may

comprise a RISC system with only ASCII-attached terminals. (IBM markets two

principal ranges of terminals, the 3151 and 3152 series.) In this case multiport

asynchronous terminal adapters will need to be ordered. For a `workstation'

configuration, it would be more usual to include a graphics adapter, a graphics

screen, a console mouse and console keyboard. Further, `graphics' users can be

attached via an LAN using IBM X-station 150s or suitably configured PCs.

Other communications requirements will dictate the selection of cards such as the

3270 connection or the X.25 network adapters. Usually the number of adapter

cards and the size of hard disk will make the choice of a desktop, deskside or
rack-mounted RISC system clear.

The breadth of configurations that comprise the RISC system family is large,

with systems to cater from one to over a hundred users. To put this into

perspective, a single RISC system could cost from as little as £4000 to over
E300000.

2.2.1 POWERstations and POWERservers

IBM provides two families of popular configurations for the IBM RISC System/
6000:

• An IBM RISC System/6000 POWERstation consists of a RISC system with

a single native high-resolution graphics display attached via a graphics

adapter. This workstation also has a console keyboard and mouse. This

configuration is usually used as a single-user workstation by an applications

developer, a UNIX professional or engineering/ scientific user. Normally such

a user would maintain a LAN connection to a POWERserver to access
shared data.

• An IBM RISC System/6000 POWERserver is usually the basis for a multiuser

commercial RISC system solution or as a disk server for POWERstation

users. `Multiuser commercial' is taken to mean that users are connected by

ASCII displays to the serial ports on the system console or on multiport
asynchronous port adapter cards.

In fact, to use IBM terminology the IBM RISC System/6000 is an example of a

`build to order' computer system (as compared to a `build to plan' system like the

IBM PS/2 computer). This means that each computer system is built exactly to a

customer's requirements. So any customer can choose exactly the system that

meets their needs. This would normally be done by the IBM value added reseller,

IBM marketing personnel, or by the customers themselves should they have IBM
electronic customer support (described in detail in Sec. 7.6).

The IBM RISC System/B000 family

O
CM 00,^t "05000

^d00, - 0000

O

cd

0 00 -'0 S 00 C
0O

^

i - O O , 00

N h i-r

O
O0 U

rn
v1 5

OC

.n o

00

w
0

z O'00 ^oot^
00

pp O 001^
^

N

O ^00 OmN 0
O 7

h
NN

Q

^^}} p O
VO'^

0 0o en

C

N

COCO

Vj^^NB Nr*00't
A O G

N M

00 M N N 0 5 0 0 5

A M M h 00
0

0 h^N 8 N0005

AN ~^1C V

vi O O
[r N N 0 0 0 O..

n
A ^M N.h .-0

v O N
O N M

tS^l

A N N

d
O O

0
M ld

O N

00
A O p N N N M

}
O O OD

O

N

O N
A M N N N M

O N
A O N 7 N N M

O 00

Fr Vn^000 pp 000 NN

N !

A ^^O^ONON00 -+

Oq
QM' ONN00-+

O O
QM^^ 00 500 --^

13

3
AIX facilities

In one of its most forward looking decisions, IBM merged the two leading UNIX

technologies-UNIX System Laboratories (USL) UNIX System V and Berkeley

Software Distribution (BSD) UNIX version 4 to create AIX on the RISC

system. Entire publications exist on both of those operating systems and this

chapter does not attempt to review either. Instead it concentrates on some of the

most interesting changes made to produce AIX for the IBM RISC System/6000.

3.1 How does the IBM RISC System/6000 boot?

Starting AIX on the RISC system is an automatic process, but it differs dramati-

cally from the startup of many other UNIX systems. The RISC system boot

process is designed to be reliable, fast and flexible. Reliable, because the initial

machine startup does not depend on the RISC system processor at all but on a

hardcoded on-card sequencer (OCS). Flexible, because boot parameters are stored

in nonvolatile RAM (NVRAM) and the user therefore has a choice from which

device to boot. Fast, because the boot code is stored in a compressed format in a

reserved area of the hard disk. Also, the startup code is run from a RAM disk.

Let us look at this in more detail.

The overall boot process is shown in Fig. 3.1. Each on-planar processor

designed by IBM contains a small amount of test circuitry (about three per cent

of gates per chip) known as the common on-chip processor (COP). A serial bus

links COP areas to the OCS which is an Intel 8051 CPU with an internal 4 kb

ROM and 128 byte RAM. This also has access to 64 kb ROM and at least 16

kb of NVRAM for startup. On system startup the OCS gets control of the

system and performs the following built-in self-tests (BISTs):

• Embedded memory checking

• DC logic

• AC logic

It then resets the hardware registers in the processors to a known state and marks

14

AIX facilities 15

Power on

Built in self-test (BIST)

Power-on self-test (POST)

Read and execute bootstrap

Create RAMdisk

Configuration Manager phase 1

Init Load installation from media

Normal IPL Installation IPL

Figure 3 .1. The AIX boot process.

all software caches as invalid. The OCS program is an on-board version of the
engineering support processor (ESP) used in the design of the IBM RISC

System/6000. In fact every IBM RISC System/6000 still has an ESP connector

on the CPU planar which could, in principle, be used for extended
diagnostics.

Should the OCS detect an error it displays it on the three-digit LED front
panel and waits for human intervention. (See Chapter 15 for more details on
maintaining the IBM RISC System/6000.)

Once the processors have been error-checked they are started and they then

begin to execute instructions from the initial program load (IPL) ROM to

perform further power-on self-tests (POSTs). This includes checking all adapter

cards on the MicroChannel I/O bus and a full memory check.

After completing the POSTs the normal device list is read from NVRAM.

NVRAM contains an ordered list of devices, from which the RISC system

should boot with the keyswitch set to the `normal' position, and a service list of

devices that are used when the keyswitch is in `service' position. If the NVRAM is

invalid a default boot device is selected from the IPL ROM. (The NVRAM is

unpopulated for the first-ever RISC system boot. From experience though, if the

NVRAM battery is disconnected the contents are also lost, from which I can

only conclude that IBM's definition of NVRAM really means battery backed-up

16 Inside the IBM RISC Systenn6000

RAM!) The IPL file is now read from that device. This is a simple three-part file

containing:

• A bootstrap header
• The AIX kernel
• The boot filesystem image

The header contains a description of the IPL media in use, for example, the

number of sectors per track of the device, the position of the start of executable

boot code and where to place this code when running the kernel. The boot

filesystem is a special prototype filesystem containing programs, adapter descrip-

tion files and scripts needed to initialize the system.

Control is now passed to a ROM program that expands this IPL file, relocates

the kernel to real address 0 and then copies the header into the kernel for later

use. A C language environment is now set-up by creating a stack, and control is

passed to the IPL file at entry point mainO . Main initializes the virtual memory

hardware and data structures. It also defines a boot filesystem created in RAM.

At this stage in the boot process no real physical filesystems are available but a

filesystem environment is required to execute the initialization programs. The

RAMdisk is built for this purpose.

The RAMdisk stores essential information including the installation shell

scripts that will be executed, as well as the kernel, that is to say /unix itself.

This means that the /unix kernel file stored in the real physical filesystem is not

used for systems boot. It is there for compatibility reasons. If subsequently

relinked or altered it will automatically be copied into the boot file.

Next, the kernel debugger (if present) is initialized and process entries for the

processes swapperO , initO and waitO defined. Next, extended device-checking self-

test routines are run: for example, extended testing on the floating-point processor.

When all this is done initO gets control and all the kernel initialization routines

are run, for example, machine device driver, trace dump, filesystem, to name

but a few. initO then starts the swapper and frees up all that memory used up

to this point but no longer required. (The swapper is a program that allows

the RISC system to run concurrently more applications than will fit into the

real memory contained in a system. It places inactive or unused parts of an

application from real memory into a reserved disk area, called a swapspace,

until required.)

3.1.1 Running /etc/init and /etc/inittab

The RAMdisk binary file /etc/init is now executed. First this runs the phase

1 configuration manager to make available all base devices such as disk and

diskette drives, etc. The real root filesystem is then mounted onto /mnt of the

RAMdisk and configuration information thus far discovered is transferred to the

physical object data manager database on the real root filesystem. Phase 1

AIX facilities 17

@(#)inittab
Ident ifier :
init: 2:
brc:
rc:
srcmstr:
rctcpip:
rcnfs:
cons:
piobe:

2:
2:
2: wait: /etc/rc.tcpip >/dev/console 2>&1

Phase 2 of system boot
Multi-User checks
System Resource Controller
Start TCP/IP daemons

2: wait: /etc/rc.nfs >/dev/console 2>&l # Start
0123456789: respawn:/etc/petty/dev/console

1.22 com/cfg/etc,3.1,9021 4/6/90 17:18:07

Runlevel :action
initdefault:
sysinit: /etc/brc >/dev/console 2>&l
wait: /etc/rc >/dev/console 2>&l
respawn:/etc/srcrostr

:command

NFS Daemons

2: once: /bin/rm -f/usr/lpd/pio/flags/* # Clean up printer flags files

cron: 2:
qdaemon: 2:
writesrv: 2:
ttyl:
rcncs:
hcon:

2:
2:
2:

respawn:/etc/cron
once:
once:
off:
wait:
once:

/bin/startsrc -sqdaemon

/bin/startsrc -swritesrv

/etc/getty /dev/ttyl

sh /etc/rc.ncs
/bin/startsrc -s hcon

Figure 3.2. A sample /e t c/inittab startup file.

configuration is now complete and the root filesystem is overmounted onto

root.
Now that the real physical root filesystem is available the contents of the

/ e t c/inittab file are processed. A typical file is shown in Fig. 3.2. Running the

inittab file is part of the standard AT&T System V initialization procedure; a

BSD UNIX system finishes booting by running init and then enabling terminals

in /e t c / t t y s . By executing inittab, inetd, nfs, getty , piobe , cron , qdaemon

and other traditional UNIX processes are started. The system is now in operation

and users can log on.
To give an idea of the boot process time, using an IBM RISC System/6000

model 560 with about 2 Gb of disk and 48 Mb of memory the boot process was

timed at about 80 seconds. The RISC system can boot this quickly primarily

because the journalled filesystem (described in Sec. 10.1) overcomes the need to

run the fsck program at startup.

3.1.2 The systems resource controller

Entries in inittab include references to the startsrc program, that is the

systems resource controller (SRC). This is a facility carried over from AIX

version 2 used in the IBM RT PC system. A subsystem is defined as a set of

related programs that are started and stopped as a unit. The complex interaction

of modern UNIX tasks such as TCP/IP networking needs more than a set of raw

startup lines in a startup file like inittab. The SRC first requires a subsystem

to be defined by name. A subsystem contains a list or programs (called methods

or actions) that need to be executed when a subsystem is started, restarted or

stopped. Also included is a list of actions that need to be taken if part of the

18 Inside the IBM RISC System/6000

subsystem fails. All this information is stored in an object oriented database
supplied with AIX called the object data manager (ODM) and accessed through
standard ODM subroutine calls.

AIX provides a set of subroutines (in general src...0) to enable a systems
programmer to add user-defined subsystems into AIX. Examples of subsystems
that already use the SRC are AIX spooling, TCP/IP networking, error logging
and SNA communications.

It is interesting to compare the AIX SRC with the System V release 4 service

access facility (SAF). The SAF is a new feature of System V release 4 that pro-

vides a way to manage the connection of terminals (direct connect or network)

to a system. The SAF controls a number of monitors, each one being responsible

for the connection of terminals to a port type. Therefore in SAF terms the ttymon
process replaces the traditional UNIX getty program, in that it scans unused,

directly attached TTY ports waiting for a connection. The SAF talks via a named
pipe to the sacadm dedicated administrative command. The SAF typically stores

required information in flat files in /etc/saf. It therefore provides a consistent

way to add both directly attached and networked terminals to a system.

The AIX SRC by contrast is a more general-purpose facility that can be

concerned with terminal management but is not limited to it. Additionally, the

SRC stores its configuration information in the AIX object database ODM, not
in a flat ASCII file format.

3.2 The object data manager

The ODM is an object-oriented database supplied with AIX. The ODM however

is not intended to store vast applications databases but is optimized to store

system information. Within AIX itself the ODM is already used to store:

• Detailed technical characteristics of each adapter card or hardware subsystem.

For example, the name of the device to be placed in the /dev directory, the

unique programmable option select ID (POS-ID) identifying the MicroChan-

nel card adapter and the LED number to be displayed on the front panel as

this system is configured at AIX boot.

• The hardware and software configuration actually selected. For example, for

an available tape drive, that the name is rmt0, that the parent disk controller

is s c s i 0 and that the absolute physical location is 00-08-00-50 (drawer 0,
slot 8, connector 0, port 50).

• Vital product data (VPD) for installation and update procedures. For

example, that the SCSI controller card has firmware dated 13 Nov 1991 and
is at level 2.01.5.

• Communications configuration information. For example, the SNA peer and

host information required to communicate successfully using the SNA services
component of AIX.

• Systems management information. For example, the menu structures and

AIX facilities

class AIXers

{

char szName [20];

char szBirthday [10];

short nAge;

char szFirstMeet [60];

char location [90];

method connection;

AIXers:

szName

szBirthday =

nAge =

szFirstMeet =

location =

connection =

"Johnny"

"29 Aug"

28

"IBM Austin"

"Denmark"

/usr/bin/connect

AIXers:

szName = "Susan"

szBirthday = "09 Feb

nAge = 24

szFirstMeet = "IBM Southbank"

location = "England"

connection = /usr/bin/hcon

Figure 3.3. A sample ODM class and entries.

19

dialog panels used by the systems management interface tool (SMIT). Hence

dynamic modifications to the ODM are naturally reflected by the SMIT. For

example, after installing the network management product NetView/6000

users will find new menus added to the SMIT.

3.2.1 ODM objects and classes

ODM stores data by class and instance of that class, that is to say, a definition of
a datastructure and an example use of that datastructure. A user can add,
change, get, show, delete and drop objects and classes in three ways. Either using
command line ODM commands, and using the ODM API, or via the full-screen
ODM editor odme.

Figure 3.3 is an example of a fictional database class called AIXers that was

created with the odmcreate command and added to using the odmadd command.

It shows the database definition of the class AIXers and two database entries for

the individuals named Johnny and Susan. Notice from the database definition

that most of the entries are just C language style numbers or character arrays.

But there is also the definition of connection variable, an example of a method.

This is analogous to the ability to imbed functions within structures in the object

oriented language C + + . In this example the method is the name of the program

executed on my AIX system to send these colleagues electronic mail.

3.2.2 ODM and dynamically configurable device drivers

ODM plays an important role in providing AIX's ability to support dynamically

configurable device drivers. (In traditional UNIX systems device drivers cannot

be dynamically configured. For more information see Sec. 5.4.). There are nine

main ODM database classes interrelated as shown in Fig. 3.4. The definitions of these

classes are:

20

PdAt
CuAt

CuDep

PdCn
CuDv CuVPD

CuDvDr

PdDv

Figure 3.4 ODM class relationships.

Config_Rule

PdDv Predefined devices : lists the physical devices that could be supported
in the system , for example , tape drives, adapter cards . PdDv includes
pseudo-physical devices such as disk logical volumes.

PdCn Predefined connections: lists the devices that can be connected to
intermediate devices , for example, the devices that can be connected
to a 64-port asynchronous card.

PdAt Predefined attributes : a listing of attribute values for entries in the

PdDv class, for example , that an 8 mm tape drive has an attribute

called block size , which has a default value of 1024.

CuDv Customized devices : an entry for each device defined or installed in
the system.

CuAt Customized attributes : device-specific information for a defined or
installed device.

CuDep Customized dependencies : a list of the dependence links between

logical devices or from logical to physical devices , for example, that

the 'inetO' device is dependent on the token ring device 'trO'.

CuDvDr Customized device drivers : Information about critical resources
needed to ensure correct device serialization.

CuVPD Customized vital product data: a listing of the hardware, software

and microcode revision levels defined or installed in the system.

Config_ Configuration rules: a list of programs which need to be run as the

Rules system starts. The configuration rules class is ordered by phase and

sequence. Phase 1 describes the IPL and is followed by phase 2 (for

the keyswitch in normal position) or phase 3 (for the keyswitch in

service position). The sequence number, for example 1, 5 or 6,

would indicate what order to run that program in the particular

phase.

Inside the IBM RISC System/6000

AIX facilities 21

PdDv:

type = " 8mm"
CuDv:

name "rmtO"
class = "tape " status = 1
subclass = "scsi" ddins "tape"
prefix = "rmt" loc 00-08-00-50
devid = parent scsi0
detachable= 1 PdDvLn tape / scsi/8mm
led = 2418
DvDr

Define

"tape"

/ etc/methods / define

PdAt:

uniquetype = " tape / scsi/8mm"
Configure / etc/methods / cfgsctape attribute = "block-size"
Unconfigure = /etc/methods /ucfgdevice deflt = 1024

values = 0-245760,1

Figure 3.5. A sample ODM device.

Figure 3.5 is a simple example of some of these classes in action. Here the

predefined database is that of an 8mm tape drive. From this the customized
device /dev/rmtO is derived. The PdAt predefined attributes indicate that the
default tape block size is set to 1024 bytes but may have a range of values up to
245 760 bytes.

3.2.3 The vital product database

Another good example of the use of the ODM is to store vital product data

(VPD) in what AIX refers to as the vital product database. The database

comprises a set of ODM object classes and a function library API libvpd. a to

access the information. Software installation and update programs such as
installp store information in this database. For example, looking in the header
swvpd. h reveals that information like:

LPP_ The name of the licensed program product installed
NAME

INSTALL The level of the program being installed

VER The program version number

REL The release level of the program

MOD The modification level of the program

CHECKSUM The checksum of all files for this package

is stored in the ODM for each installed software product . This is an important
advance over many other implementations of UNIX that simply install a program
without any checks , and have no method of tracking program versions or fix

22 Inside the IBM RISC System/6000

levels once installed. It also allows postinstallation security checks via the

checksums in the inventory files to detect altered files.

3.3 Printing

AIX has a printer spooling subsystem which is derived in its most basic form

from the port of UNIX to IBM platforms by interactive systems. There have of

course been some major changes.

Let us first review the basics of printing via the standard device driver then
build on this knowledge to understand the AIX extensions.

3.3.1 Printing via the device driver

At the most fundamental level a real physical printer can be seen by a user as an

entry in the AIX filesystem. For example, consider a workstation with an Apple

Laserwriter PostScript printer configured as the device /dev/lpO. Without

using any print spooling facilities at all, the printer may be accessed directly. For

example, the following command:

cat /etc/passwd > /dev/lpO

sends a listing of the password file to the printer connected to /dev/1pO. The

file is sent via the device driver to the real physical printer. By passing through

the device driver the file undergoes some conversion according to the printer

driver characteristics. For example, an end-of-line character (ASCII line-feed) is

translated into two characters, an ASCII carriage-return character, followed by

an ASCII line-feed character.

The printer device driver's characteristics are modified using the standard

ioctlO function call. An applications developer may use this knowledge to

advantage. For example, assume that the /dev/lpO port was really connected

to the IBM graphics printer (this is actually a circa 1980 Epson graphics printer).

In order to print graphics an applications developer needs to send the printer the

correct device-specific Escape codes. That is to say:

I Tell /dev/lpO printer device driver to pass all subsequent characters to the

printer unaltered, and not to perform any page formatting, for example,

page numbering, headers or footers. Use ioctlO function.

2 Send data to the printer. For example:
a Send form feed character to position to top of new page.

b Send Escape, followed by character `L' to begin 960-bit image graphics

mode.
c Send correct number of data bits. Printer now automatically out of

graphics mode.

d Send Escape followed by character `J' followed by number of 0.1176 mm

increments to feed paper forward.

AIX facilities 23

e Send carriage-return character to reset print head to character position 0.
f Repeat the above 5 steps a-e until the full graphic is drawn.

3 Call ioctl0 again to restore printer driver state.

As you can observe, this is a fairly involved process and works only because the

exact characteristics of the printer are known. If the connected printer was not an

IBM graphics or compatible then the Escape sequences sent would be meaningless.

3.3.2 Print spooling

Usually output is not sent directly to the printer with the cat command. It is

much easier to use the printer spooling subsystem. Why? First, by printing

directly to the device driver the file being printed is inaccessible until after the

physical printer has finished printing it. Second, the results of many different
users, each sending their output to the printer, may result in a mix-up of

everyone's information. It is much more sensible to send files to a print spooler

which takes a copy of the file and then prints it in an orderly manner.
Under AIX, files are sent to a named queue, which is actually part of a three-

part hierarchy as shown in Fig. 3.6. A print queue has a name: laser or lineprt in

our example. Each print queue has a one-to-many mapping with one or more

virtual printers. For example, printout sent to the queue named lineprt can be

sent to one of two virtual printers. Virtual printers map many-to-one real
physical printers.

A queue is a named virtual device to which output is sent. A print queue can

have only a single datastream type. A virtual printer represents a particular

datastream and printer setting on a particular printer. Virtual printers are

required because modern printers can usually understand more than a single

datastream. For example, a Lexmark 4029 laser printer can understand ASCII,

Hewlett-Packard PCL4, and PostScript datastreams and so can be defined as
three different virtual printers.

ps:4029 Lexmark
Laser

4029
ascii:4029

hpgl:4029 Lexmark
Lineprt

ii 2390asc : 2390

Printer queue Virtual printer Physical printer

Figure 3.6. Queues, virtual printers and real printers.

24 Inside the IBM RISC System/6000

ascii:
discipline=fcfs # first come first served
device = lpd # matches stanza to come

acctfile = /var/adm/qacct

lpd:
backend=/usr/lpd/piobe # backend program
file=/dev/lpO # real printer device
header=always # printer a header
trailer=never # but never a trailer

Figure 3.7. Sample qconfig entries.

From our logical view of the printing process here is a view of how AIX

interprets user requests. First, note that configuring the real and virtual printers

and queues is done via the SMIT (see Sec. 9.1). Theoretically, it is possible to use

the numerous native AIX commands to create these entities. Unfortunately, I

have found that the time spent configuring them manually is a complex and error-

prone process-I recommend you use SMIT!
When a print request is submitted, the printer command copies the file and

places it in a queue of files to be processed. A program called qdaemon (an

example of an endless background process known as a `daemon' process) takes

files from this queue and consults the qconfig file to determine to what real

printer to send the output. The printfile is sent to the real printer after passing

through a program declared in the qconfig file called a backend. The backend

creates a datastream including any necessary printer initialization codes to set-up

the printer as the required virtual printer, then prints the file. For example, an

ASCII printer such as an IBM 4201 Proprinter may be capable of printing in

multiple fonts, e.g. Courier and Roman. Sending the output to the ASCII queue

means sending it via a particular virtual printer which will have a predetermined

font.

How does qdaemon know what to do? The answer is that the /etc/gconfig

file contains a list of parameters. Figure 3.7 shows the entries mapping the queue

named ascii to the physical /dev/lp0. To speed up the lookup, /etc/

qconfig is translated into a binary file /usr/lpd/gconfig. bin by a

program known as a digester.

3.3.3 Remote printing

Though local printing is sound, remote printing has a number of advantages:

• Someone else has the responsibility for software configuration and physical

maintenance of the printers.

• It is quieter.
• Your personal workstation processor is not loaded.
• It enables printer sharing among a group of workstations.

AIX facilities 25

Local
printer
queue

H
Local
qdaemon
program

Remote
printer
backend

Network

lpd
daemon
program

Figure 3.8. Remote printing.

i >^
Remote
queueing
system

T

Remote
physical
printer

Under AIX, remote printing is achieved by feeding the output from the qdaemon

to a special printer backend. This process is shown in Fig. 3.8, which shows the
special backend program rembak that sends the print file across the network to
the destination machine's lpd daemon program. From there it is sent to that

remote system's qdaemon program and then to the remote physical printer.

3.3.4 Printing limitations

Although AIX has done much to make the printing process both flexible and

reliable it has not until recently addressed the major shortcoming of device

dependence that still plagues UNIX printing. In plain terms, different printers

print text and graphics using different command sequences. UNIX does not solve

this problem. Here is an example.
A user creates some charts using AP/6000 (essentially an office automation

package for AIX based on UNIPLEX). The charts display graphically under X-

Windows. Using the standard X-Windows program xwd a user can dump the

screen image of the chart and send this to an IBM 3812 or PostScript printer. But

what if the user does not have one of these printers? Even a simple window

display cannot easily be printed!
Let us now consider an X-Windows applications developer, for example

Interleaf Corporation, and their product Interleaf Desktop Publisher. Interleaf

needs to be able to perform more than a program-initiated window print.

Users of this high-function desktop publishing package will clearly expect to

be able to print the document they have composed to any graphics capable

printer attached to their IBM RISC System/6000. However UNIX does not

provide a device-independent way to print. It is still the responsibility of the

application developer's program to generate the correct printer datastream and

send it to the printer driver directly (by suitable calls to ioctlO as outlined

before).
This implies that an application program needs to be able to generate PostScript

and a variety of other printer formats. How does the applications developer map

a colour screen output to greyscale printer? How do they compensate for the

26 Inside the IBM RISC System/6000

different aspect ratios of screen and printer? How do they test their resultant
printer drivers?

This is an important area since many other personal operating systems provide
these facilities with ease. For example, Microsoft Windows and IBM OS/2

Presentation Manager both allow the programmer to print to any operating

system supported printer. The application just says print. The operating system

transforms anything displayed on the graphics screen into a datastream suitable

for a printer (or spooler). AIX has also introduced some facilities to overcome

this problem (see Sec. 6.7). There are some other non-vendor-specific mechanisms

to enable device independent printing. Bristol Technologies market a product

that allows an X-windows program to write device independently to either the

screen or a Hewlett-Packard PCL (printer control language) or PostScript printer.

But there is no standard to date.

AIX does however provide the transcript utilities which enable output to be

manipulated to PostScript printers. For example:

enscript Converts text files to PostScript format

psc Converts troff format to PostScript format

psrev Reorders and selects pages in a PostScript file

psplot Converts files in plot format to PostScript format

ps4014 Converts a Tektronix 4014 file to PostScript format.

3.4 Real-time computing

A real-time application is different from a regular program in that it must
perform or respond to certain program actions within a strict timeframe.

3.4.1 Real-time UNIX systems

The initial design point for UNIX was as a multiuser, multitasking operating

system. However, real-time systems need facilities not provided by that traditional

environment. Let us look at some of the requirements.

Short interrupt latency

Interrupt latency is the maximum time a requesting interrupt may have to wait

before being serviced. Why need it wait at all? Well, a UNIX device driver may

need to disable interrupts during certain critical sections of code. For example,

consider a high-speed optical network link between two IBM RISC System/6000

computer systems. A packet is received by one system and is being processed

when another arrives. Unless interrupts are disabled while the packet is removed

AIX facilities 27

from the input queue the queue may be left in an indeterminate state destroying

its integrity.

Fast context switching

Context switching means stopping the currently executing task, saving its registers

(context), loading another task 's context , then setting it running . Under UNIX a

program runs in user mode until it needs to execute a system call, at which time

the processor will begin executing code in the kernel mode . Unfortunately the

standard UNIX kernel is not pre-emptible , so while executing a system call on

behalf of a user, UNIX cannot task switch . Some system calls like forkO, execO
are notorious for requiring a substantial time to execute, thus preventing a
UNIX system from responding in real time.

Pinning memory

This is the process of locking a program's code and/or data into real memory.
Why do this? If a user's UNIX system is loaded or has little real memory, then
their application program may be paged out to disk. When a real-time interrupt
arrives, the program needs to be paged back in and resumed; this will take time
which might be unacceptable for real-time applications.

Scheduling

In UNIX scheduling is via a policy that favours interactive programs over batch

programs: the smaller the priority number the more important is the process. The

priority number of a process is increased by UNIX if the process remains inactive

for a long time, and decreased if it uses large amounts of processor time. Many

real-time programs remain inactive for long periods but when awoken require

immediate attention. Using this scheduling policy real-time programs would not

fare well.

Timer services

In UNIX these are provided by the sleepO and selecto calls. sleepO allows only a

one-second resolution (useless for real time). selectO allows for microsecond

resolution in principle, however this is dependent upon the hardware implementa-

tion. There is also a limit of one interval timer per process, again useless for real-

time applications.

3.4.2 The AIX approach to real-time UNIX

Many vendors produce special versions of their UNIX operating system special-

izing in real time. AIX took a fundamentally different approach in that a policy

28 Inside the IBM RISC System/6000

decision was made to implement real-time facilities from the start . Developers
welcome this approach because regular AIX applications can include real-time
components as and when required. Also, specialized real-time applications can
use AIX instead of developing and executing on a specialized real-time (and
usually cut down) UNIX.

AIX kernel pre-emption

The fundamental traditional UNIX limitation is that processes running in kernel

mode may not be pre-empted at any time. That is to say, if a more favoured

priority process were blocked waiting for an event, it cannot be unblocked even if

that event arrives, and another process is executing a call in kernel mode. The

reason that UNIX was not initially designed to be pre-emptible was that all

kernel data structures were made globally accessible to any process executing in

kernel mode. This was for simplicity; to prevent contention (and deadlock)

between processes for the same kernel data structure system calls were made

atomic. That means, each system call must run to completion, or voluntarily give

up the processor, before another can be scheduled.
In UNIX System V Release 4, USL has tried to improve the real-time

characteristics by the introduction of pre-emption points into the kernel. A pre-

emption point is a section of code within a system call where the process does not

care if it is interrupted. If these pre-emption points are scattered extensively

throughout the kernel, then the worst case context switch is the duration of the

longest running section of code without pre-emption points.
Under AIX, however, all kernel code that accesses data has been modified

(this was not a trivial task). A process executing in kernel mode must protect any

shared data structure by locking. With this scheme the kernel is pre-emptible by

default and not by exception. Consequently, context switching time is now

reduced; real-time applications may now be executed as regular user (as opposed

to kernel) programs. AIX therefore provides numerous user facilities for real-

time programming and these are integrated into the base AIX operating system.

AIX also allows the real-time performance of an application to be improved

by coding critical parts of the application as a kernel extension. Since AIX has a

dynamically expandable kernel this may be done on the fly without recompiling

or relinking existing kernel code.
Now let us list a few of the real-time facilities that AIX provides.

Memory pinning

Some applications may not be able to afford page-in delays, but may benefit

from having their code, data and stack always resident in memory. In such

cases it is advisable to use the plockO system call to pin user memory. Since AIX

allocates a 32 Mb stack for each process, it is advisable to use the setrlimitQ call

AIX facilities 29

to reduce this to a sensible value. Developers writing (kernel) interrupt handlers
use separate kernel routines, including the ping, unpinO and pincodeO , unpincodeO
functions.

Timer services

The recommended timer services for real-time programs are based on those

specified by POSIX 1003.4. The functions enable per process interrupt timers

with a 10 millisecond resolution. The cost of each interrupt is about 300

microseconds. The main routines are:

gettimeridO Allocates the interval timer

incintervalO Changes the time to the next interval interrupt, or changes the
default interrupt interval after the next interrupt

absintervalO Sets the timer to an absolute value immediately

getintervalO Finds the time left before the next interrupt

Also available is a set of fine granularity kernel timer services which can be used
for sub 10 millisecond resolution timers. Of course these are executable in kernel
mode only, which means that a kernel extension needs to be written.

Real-time priorities

All processes in AIX have a priority between 0 and 127. A real-time process

should allocate a fixed priority value (by allocating between 0 and 40) using the

setpriO call. Such a process will run until it voluntarily gives up the processor by

sleeping, or until an interrupt occurs. Since the system timer interrupt is 10

milliseconds this will be every 10 milliseconds or less.

User processes run at variable priorities in the range 40 to 127. User processes

are scheduled using the traditional UNIX algorithm where priority increases with

more processor usage. The original priority of a process is inherited from its

parent. If however, niceO or setpriority() is called, AIX takes your priority (in the

range 0 to 40) and maps it into the range 40 to 127 based on your value and a

number of other factors.

Enhanced context switching

As described earlier, the traditional UNIX kernel is not pre-emptible, so the worst

case context switch is the time through the longest running system call. Since AIX

has a fully pre-emptible kernel any user or kernel process may be interrupted at

any time. If the process is not pre-empted it will run for a fixed amount of time

(usually 10 milliseconds). When it expires the scheduler will recalculate the priority

and the dispatcher will choose the runnable process with the most favoured

priority to be executed in the next time slice. Interrupt handlers are not time sliced

30 Inside the IBM RISC System/6000

and therefore run to completion except in the case where they become interrupted

by a higher priority handler. AIX also made changes to the kernel dispatcher

data structures (a common modification for USL UNIX System V.3 onward

also). The original structures were a simple but long queue. These have been

replaced by 128 process scheduling run queues as described in Fig. 3.9.

Each run queue corresponds to the fixed (real-time) and variable (user) priorities

supported by the dispatcher. Each run queue is a circularly linked list of runnable

processes. When choosing the process to be run next, a bit array is scanned to see if

the run queue contains any process, and if it contains one or more processes (bit set) it

indexes into the the list and dispatches the process at the head of the list. If this

process completes its time slice and is still runnable, it is placed at the tail of the queue.

Finally, note that the time to forkO a process in AIX is further reduced since

when forking, that is, copying the parent process, kernel data is global to the

virtual memory manager, so need not be copied.

3.5 International language support

Writing this book in the United Kingdom meant remembering that national

language support (NLS) involves more than translating dollar symbols to pounds

while reading American documentation. IBM has traditionally been very strong

in the area of NLS both for European and Asian languages, and the RISC

system is particuarly capable when it comes to NLS. However, since NLS is a

very confusing area, we will start with a few definitions that explain some of the

challenges which face an applications developer who wishes to provide

internationalized applications.

3.5.1 Single and multi-byte character sets

When using all eight bits of a byte there are 256 possible values for characters.
This is fine for alphabetic languages , that is, the ones in which phonetic symbols

are combined to form words, but inadequate for ideographic languages like

Japanese and Chinese. In these Asian languages each word is a unique ideographic

symbol (or rarely two or more symbols). Such languages require two or more

bytes per character to encode the language, and a graphics terminal to display

the several thousand different ideographs. IBM uses the acronym SBCS (single

byte character set) for character sets that require only a single byte; for characters

that need to be stored in two or more bytes IBM uses the acronym MBCS

(multibyte character set)-this is a replacement for the now obsolete IBM term

DBCS (double byte character set).

AIX facilities 31

Run queue
Bit array pointer array

NUL

NUL

PTR

NUL

PTR

Figure 3.9. AIX run queues.

3.5.2 Collation

proc_tab entry

proc_tab entry

proc_tab entry

proc_tab entry

proc_tab entry

proc_tab entry ...

English sorting rules are very simple, each letter sorts to one and only one place.

However in other languages this is not so. In French, for example, the letters e, e, e,

sort in that order even though they may not be arranged in this sequence in the

character set.
In German there may be a one-to-many character mapping, for example the

German `B' (scharfes S) is collated as if it were `ss'.
Some languages, for example Spanish, treat a sequence of characters as a

single sorting character. For example the `ch' and `11' sequences have their own
collating positions.

Classification and formatting

Many Asian languages have only one case so C programming functions like

islower() and isuppero become meaningless. Many countries have different date,

time and numeric formats. For example, date formats for Friday, 13 December

1991 are shown in Table 3.1 on page 33.

3.5.3 Program messages

A truly international program requires its program panels, help text and error

messages all to be translated into the local language. It is common to separate all

these messages , called machine-readable information (MRI), and put them into a

separate file, then when the language is changed only the messages file need be

changed.

32 Inside the IBM RISC System/6000

Mixing it all together

In today's environment one may naturally expect to work on computer systems

in the language of one's choice. For example, an English-speaking user can use

the native system in Belgium (where a Belgian-French keyboard is different to a

regular French keyboard). This user can use a set of keystrokes to get uniquely

English characters at the Belgian-French keyboard, and have them displayed on

the screen.

3.5.4 NLS support in AIX

IBM's strategy on NLS is to support existing industry standards as well as IBM's

international codepage standard. At the time of writing, AIX includes support

for the following SBCS and MBCS languages: Danish, Finnish, French, German,

Icelandic, Italian, Japanese, Korean, Norwegian, Spanish, Swiss, Swedish,

Traditional Chinese, Turkish, UK English and US English.

Of course, even though every copy of AIX that is shipped contains support for

all these languages, the user will often not be able to enter all of a country's

national language characters unless they have the correct keyboard. For example,

it is possible to display Japanese kanji on the screen of a US-based AIX system

but not enter Japanese characters.

3.5.5 Codepages and ISO character sets

IBM has standardized on codepage technology across its entire range of

traditional non-UNIX computer systems be they microcomputer, minicomputer

or mainframe based. For example, the codepages 437 and 850 are used by the

DOS operating system for US English and Western European character sets

respectively.

The UNIX world, however , uses ISO standard character sets. In Europe, for

example, ISO 8859/1 is known as Latin-1. ISO 8859 and codepage 850 are not

identical, but their intentions are the same, namely that a single codepage

provides all the necessary characters for Western European languages such as
French, German, Italian and Spanish. The traditional ASCII characters are

arranged in positions hexadecimal 0x00-0x7F and the `extra' characters for the

Western languages are in positions OxAO-OxFF.

While for ASCII the letters are arranged in alphabetical order, this is not true

for Latin-1 or codepage 850. This means that AIX has to build a collation table

independent of its encoded hex value. In fact AIX also has to know what country

is being collated. For example, in codepage 850 both Germany and Sweden have

the `a' character, but in Germany this sorts like an `a' character, and in Swedish

it sorts after lowercase z!

The other common ISO codesets are shown in Table 3.2 (on page 34).

AIX facilities 33

Table 3. 1. International date formats

Country Date Format

USA 12/13/91 month/day/year
UK 13/12/91 day/month/year
(ISO) 91/12/13 year/month/day
Japan 03/12/13 91-emp'/month/day

' The Japanese year is calculated as years since the last
emperor came to power.

One extremely important change made from past releases of AIX is the

support of ISO standard codesets for a user. Before AIX version 3.2, the AIX

operating system was shipped in two different object forms, one using the IBM

codepage 850 for Western Europe and the other using IBM codepage 932 for

Japan. Since most UNIX users use codeset standards, AIX 3.2 and later allows

the user the flexibility to use ISO codesets as their primary mode of international

operation. Correspondingly, AIX is now shipped worldwide in a single package.

In Western Europe the ISO 8859/1 codeset should be used and in Japan the

EUC-JP codeset (described later).

3.5.6 Setting up NLS

In order to use NLS a user simply needs to set a system locale. This is done

by setting the LANG variable at the shell prompt to the current country in the
form:

Language_territory.codeset-modifier

e. g export LANG=fr_CH.8859-1

AIX now supports ISO 8859 codesets 1, 7 and 9.

3.5.7 Multibyte character set support

The Asian-style languages currently supported are Traditional Chinese and

Japanese. The only requirement necessary to support these is that the customer

has a suitable keyboard. For example, for Japanese a keyboard includes a

multipart space bar and Japanese keytop engravings. The rest of this discussion

relates to Japanese support. Japanese kanji characters are stored in extended

UNIX codes Japanese (EUC JP, often named UJIS). Prior to AIX 3.2, Japanese

characters were stored in SJIS (shift JIS) format which, like its PC codepage 850

SBCS counterpart, was the standard for Japanese PCs. However, other Japanese

UNIX systems use EUC JP, so AIX now supports UJIS and SJIS.

34 Inside the IBM RISC System/6000

Table 3.2. ISO codeset standards

Language Formal ISO Informal ISO

Western European ISO 8859/ 1 Latin-I
Eastern European ISO 8859/2 Latin-2
Southeastern European ISO 8859/3 Latin-3
Northern European ISO 8859/4 Latin-4
English and Cyrillic ISO 8859/5 Latin-5
English and Arabic ISO 8859/6 Latin-6
English and Greek ISO 8859/7 Latin-7
English and Hebrew ISO 8859/8 Latin-8
Western European and Turkish ISO 8859/9 Latin-9

The format of UJIS characters under AIX is as follows:

#1 0 xxxxxxx

#2 lxxxxxxx lxxxxxxx

#2 ss2 lxxxxxxx

#3 ss3 lxxxxxxx lxxxxxxx

Each character is stored in one of four formats. First, all characters in the

form hex OxOO to Ox7F are straight ASCII. The second type of character

classification is a two-byte character pair, each byte having the most significant

bit set. The third classification begins with a byte called ss2 for single shift 2,

actually the hex character Ox8e. It is a two-byte pair whose second byte has the

most significant bit set. The fourth classification is a three-byte sequence, begin-

ning with the byte called ss3, called single shift 3, actually the hex character

Ox8F, followed by a two-byte pair, whose bytes are in the range 0x80 to OxFF. A

quick calculation, therefore, will show that this character encoding scheme can

currently accommodate over 30 000 different multibyte characters.

While we have discussed how Japanese characters are stored (as multibyte

characters), how does one enter a Japanese kanji character? First, we need to

understand that in addition to ideographic kanji characters, there are also two

phonetic language systems katakana and hiragana. Generally, katakana is

used for non-Japanese words and hiragana for native Japanese words. Together

the two systems are known as kana and constitute about 100 characters

(only!).
So, to enter a kanji character, either kana or English characters are entered

using a special Japanese keyboard. This has a special five-part spacebar as well as

kana and English keytop engravings. By using a special compose key, AIX is

instructed to convert the entered characters to kanji. However, several kanji

characters may have the same phonetic representation, and in that case a menu

of choices is presented at the bottom of the screen. If the translation is unambigu-

ous then no selection is necessary. Kana to kanji translation is now performed by

the AIX operating system, so regular character or OSF/Motif applications do

AIX facilities 35

not include special code to do this, though they must of course include code to

cope with these multibyte wide characters.

3.5.8 NLS setup and programming considerations

Actual NLS support may be coded in different ways. AIX 3.2 and later program-

ming guides recommend the Single Source Single Object (SSSO) approach. This

means that a single object supports both single and multibyte language support.

Alternatively the application may be packaged as Single Source Dual Object

(SSDO) meaning that although a single set of source code exists, conditional

compilation flags inside the code enable two different versions of the program to

be built. Less than ideally, AIX 3.2 is packaged as SSDO, although this does

have the advantage of providing two objects, one optimized for single byte

character set operation, while the second has generalized support for both multi-

and single byte character sets.

IBM advises that application writers should ideally strive towards delivering
SSSO applications. A checklist of producing such an application might read:

1 Assume the user has setup the LANG environment variable.

2 All machine readable information, that is to say, messages , should be stored
in message catalogues (explained below).

3 Use the setlocale0 function as the first statement in an application 's main0

function to inform the program of user's LANG preferences.

4 Convert all data read in from user or disk input from its storage form of file

code characters to a useful internal form of wide characters using supplied

AIX functions.

5 Manipulate the wide character information using wc.....0 functions.

NLS support in X-Windows

The standard X-Windows fonts use the ISO 8859 codeset standard . IBM also

supplies another set of fonts that provide support for the IBM codepage 850.
This is primarily of use in connecting from an AIX system to other systems using
IBM codepage standards . For example , under X-Windows, using the windowed
aixterm terminal emulator a user can use the telnet command to connect to a

remote IBM OS / 2 system running TCP/IP. The OS/ 2 system will be running

codepage 850 (in Western Europe) and the user can display the OS/2 session on

their X-Windows screen by using codepage 850 in the aixterm window.

Message catalogues

AIX uses the X/Open XPG3 message cataloguing system. This system has been

adopted by many other UNIX vendors, notably the Open Software Foundation.

36 Inside the IBM RISC System/6000

The idea behind a message catalogue is to remove all message text from the body

of an application and place it in a message catalogue. According to the run-time

environment variable LANG, the program should retrieve the correct country

message from the catalogue and display it in a suitable form, for example in a

popup message dialog within an OSF/Motif program.

Here is a sample message cataloguing program:

/* this is the message file example. msg */
/* process with the command runcmd example example. msg */

/* set MS SET1 */

MSG1 "Hello World \n"

/* this is the file example. c */

#include <locale.h>
#include <nl_types. h>
#include "example. h" /* machine generated with runcat */

nl_catd catd;

main()

(void) setlocale (LC_ALL, ""); /* check LANG environment */

catd = catopen (MF_EXAMPLE, 0);

printf (catgets (catd, MS_SET1, MSG1, "Default msg \n"));

catclose (catd);

}

4
RISC technology

The concept of RISC was due, at least in part, to the pioneering work done by

the IBM TJ Watson research centre, and in particular John Cocke, on the 801

reduced instruction set computer (RISC) project. The fundamental idea was to

produce a processor whose minimal or `reduced' instruction set was optimized to

satisfy the needs of the vast majority of any program code. More complex and

infrequently used instructions were to be simulated using the basic set.
Recall that the trend in microprocessors in the late seventies and early eighties

was to produce processors with complex instruction sets, hence the term CISC

(complex instruction set computer). Unfortunately, compiler design could not

and still can not easily produce code to take advantage of these increases in

complexity.

RISC can therefore be seen as a reaction to that trend, with the goal of

providing a smaller (in transistor circuits per processor) and more effective

processor. A processor with a smaller and simpler instruction set is easier to

design and debug. Hardware designers can therefore concentrate on deciding

what is the very best minimal instruction set and then focus on decreasing the

number of processor cycles required to load, decode and execute those instruc-

tions. One instruction per cycle was seen as the ultimate goal. The IBM RT PC

system (see Appendix 1) was IBM's first attempt at a commercial RISC-based

UNIX workstation and followed this goal.

In 1985, most of the original IBM 801 design team embarked on a new effort,

the `America project', to reconsider the issues of machine architecture. The team

performed studies on floating-point organization and performance, understanding

what hardware design features could really be used by state-of-the-art compilers,

and, most importantly, whether instruction-level parallelism techniques could be

employed to achieve an architecture called `superscalar' that would achieve what

had been previously thought impossible, less than one machine cycle per instruc-

tion executed. By 1986, the team had designed a second-generation RISC

architecture which embodied these principles, but now RISC became the acronym

for reduced instruction set cycles. By reading more than one instruction from

memory at a time and designing an architecture comprised of a number of

37

38 Inside the IBM RISC System/6000

Fixed point processor (FX)

TO -> r31

xer mq

dar dsisr

Floating point processor

Special registers

srO - > sr15

eimO eiml

eisO eisl

sdr0 sdrl

rtcu rtcl

tid dec

iar

T
fro -> fr31

fpscr

Branch processor

msr ctr

cr IT

srrO srrl

Figure 4.1. The IBM RISC System/ 6000 register programming model.

processor execution units, more than one instruction could be executed concur-

rently. In 1986, a group at IBM's Austin Texas laboratory accepted these ideas.

The result is the IBM RISC System/6000.

The overall architecture of the RISC system has been termed POWER-
performance optimization with enhanced RISC. The IBM POWER architecture

therefore describes a family of binary compatible processors used by IBM for the

AIX operating system. The goal of this chapter is first to explain the POWER

architecture in terms of the low-level programming and associated memory

management, and then to show how this is integrated with the XL family of

RISC system compilers.

4.1 Register model

Figure 4.1 shows the logical view of the IBM RISC System/6000 central processing

unit (CPU). From an assembler programming perspective, a programmer is made

explicitly aware that the CPU is divided into three areas (the branch, fixed and

floating-point units). This mirrors the physical design of the original hardware

chipset which was packaged into three physically separate units.' Any program

that uses data references to create instructions, for example, a program loader or

'Later RISC Systems, models 220 and 230, use a single chip implementation of the POWER
architecture and are discussed in Sec. 8.3.

RISC technology 39

debugger, must explicitly force instructions from the data cache into the instruction

cache (see Sec. 4.3). Of the 184 processor instructions, 18 are used in the branch

processor, 116 in the fixed-point processor and 42 in the floating-point processor.

The remaining 8 are used for cache manipulation.

Referring to Fig. 4.1:

Fixed point processor registers

r0-r31 General-purpose registers: main 32-bit register set used by the system.

xer Fixed-point exception register: this 32-bit register indicates the state of

the fixed-point operation, for example, that an overflow or carry has

occurred.

mq Multiply quotient register: this provides a 32-bit register extension to

store the results of a multiply or divide operation.

dar Data address register: contains the 32-bit address that caused a data

storage or alignment exception.

dsisr Data storage interrupt status register: defines the cause of the interrupt
whose address was placed in the dar.

Branch processor registers

msr Machine state register: defines the state of the processor, for example,

whether external interrupts are disabled, whether the floating-point pro-

cessor is available or whether an incorrectly aligned address was selected.

cr Condition register: a 32-bit register that reflects the result of certain

operations and provides a mechanism for testing and branching.

lr Link register: a 32-bit register that contains the destination address of

conditional branch instructions or the return address for subroutine

instructions.

ctr Count register: a 32-bit register that is automatically decremented with

branch and count instructions. It can also represent an address for

the branch to count register instruction. The count register is also used

as a fast save area for the msr register when a supervisor call occurs.

srrO Status save/restore register 0: this 32-bit register saves the machine state

on interrupt and restores the machine state on a return from interrupt

instruction. srrO contains the address that caused the interrupt.

srrl Status save/restore register 1: as srrO, but srrl contains specific informa-

tion on the interrupt cause as well as part of the msr register when the

interrupt occurs.

40 Inside the IBM RISC System/6000

Floating-point processor registers

fro-fr31 Floating-point registers: thirty-two, 64-bit floating-point registers.

fpscr Floating-point status and control register: controls the handling of

floating-point exceptions and results.

Special-purpose registers

dec Decrementer register: a counter that provides a mechanism for causing

an external interrupt. This is achieved by loading the register with a

number that is decremented at regular intervals until the register reaches

zero when an interrupt is made.

eimO, External interrupt mask low and high , 32 bits.

eiml

eisO, eis 1 External interrupt summary low and high, 32 bits.

iar Instruction address register (program counter).

rtcu Real-time clock upper register: the 32-bit time in seconds.

rtcl Real time clock lower register: the lower 32 bits of the time in

nanoseconds.

srO- Segment registers: sixteen, 32-bit registers used for virtual-to-real address

srl5 translation.

sdrO Storage description register 0: a pointer to the higher order bits of the

real address of the page frame table (PFT).

sdrl Storage description register 1: contains the high-order bits of the real

address of the hash anchor table (HAT) and a HAT mask used by

virtual-to-real address translation hardware to index into the PFT

pointed to by sdrO.

tid Transaction ID register: the 32-bit transaction ID of the executing process.

4.2 Virtual memory addressing

Figure 4.2 shows the translation from an effective address that programmers use

to a physical address used to access actual memory. The programming register

model is that of a 32-bit processor. Addresses are 32 bits in size allowing for a

per process address space of 4 Gb (but, by using and swapping shared segments

and mapped files, an applications developer can considerably expand the total

amount of data accessible should this be necessary). To generate a physical

address the effective address is divided into three parts: a 4-bit segment index, a

16-bit virtual page index, and a 12-bit offset as follows:

RISC technology 41

3

32-bit effective address

4 19 20 31

16
segment
registers

16 Virtual 12
page Offset
index

24 Virt page no.

Translation lookaside
buffers

Page frame table

Protection
and

locking

Figure 4.2. Virtual address translation.

32-bit real address

Stage 1 The index selects one of the segment registers from srO to srl5. Each

segment register is 32 bits in size. If the most significant bit is I then
the lowest 24 bits read and write from memory addresses on the

MicroChannel I/O bus. If the bit is 0, these 24 bits form the upper 24

bits of the virtual address which will lead to an address in system

memory.
Stage 2 The 24-bit segment ID is concatenated to the 16-bit virtual page

index to form a 40-bit virtual page number. The virtual page number

provides an index into the PFT to produce a 20-bit real page

number.
Stage 3 The real page number from the PFT lookup is combined with the 12

bits of the original effective address to form a physical 32-bit

address.
Stage 4 The physical 32-bit address is used to address real system memory.

By convention, certain segment registers are used for the same purposes systemwide.

This is shown in Fig. 4.3.
How exactly does a 40-bit virtual page number become translated into a 20-bit

physical address? This is explained in Fig. 4.4. The sdrl register points to a table

in real memory called a hash anchor table (HAT). The virtual page number

(VPN) indexes into the HAT and the HAT points to a linked list of entries in a

42 Inside the IBM RISC System16000

Segments

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Primary kernel segment

User text segment

Process private segment

Attached

data segments

and

mapped files

Reserved

Reserved

Shared library text segment

Secondary kernel segment

Shared data segment

Global

Shared

Private

Private

or

shared

Shared

Global

Shared

Figure 4.3. Virtual memory segments.

PFT. The PFT is addressed using the sdrO register. The linked list is traversed

(indexed) for a matching VPN. If a matching VPN is found, then the real 20-bit

address is determined in hardware by applying a simple equation based on the

HAT address and the number of traversals required to find the VPN. If,

however, there is no match (pointer to next PFT is zero), then the virtual

memory address is not in real memory. A page fault then occurs, requiring that

page of memory to be read from the hard disk into real memory. Note also from

Fig. 4.4 that the PFT entry stores the access rights for the page of memory.

4.3 Understanding caches

If any RISC system processor had to translate every effective address to a

physical address using the two large index tables (the HAT and the PFT) this would

be the performance-limiting part of the processor. Similarly, a processor's opera-

tion would also be slow if it had always to access system memory for program

data and instructions. Instead, frequently used effective address to physical

RISC technology

40-bit virtual page number

Hash anchor table

sdrl (mask) sdr0

Page frametable

Virtual page number (27 bits) l vf I p

i Reserved Pointer to next pft (20 bits)

32 page lock bits

1 w r a Transaction ID (16 bits)

A page frame table entry
Size

v valid virtual page number 1
f page referenced bit 1
c page changed bit 1
pp page protect bits 2
i invalid pointer bit 1
1 lock type bit 1
w grant lock bit 1
r grant read lock bit 1
a allow read bit 1

Figure 4.4. The hash index and page frame tables.

43

address translations are stored in a memory cache called a translation lookaside

buffer (TLB). The memory cache architecture provides a cache to system memory

throughput of up to 480 Mb per second depending on RISC system model.
Starting with the TLB, this contains two 64-entry tables that maintain the

effective address to physical address translations for 128 pages, that is to say, 512

kb of real memory. An additional two caches are also provided, a data cache
and an instruction cache. A 64 kb data cache stores the most recently accessed

data. The cache is organized as four, 16 kb set associative areas, that is to say,

each of the four areas is searched in parallel for a matching data address. The

search is made for an effective address and if any of the 128 addresses match,

44 Inside the IBM RISC System/6000

then the 128 byte data line is accessed instead of system memory. The instruction

cache unit is a 32 kb cache that fetches instructions, executes branch and

condition register logic and dispatches up to two instructions per cycle to the

fixed- and floating-point units. It is organized as a two-way set associative cache,

each set has 64 entries of 16 four-byte instructions. Lastly, an eight-instruction

buffer is used for normal instruction fetching. So to summarize the hierarchy of

the RISC system memory effective address access:

• If the information is in the data cache it is selected from there.

• The TLB is searched for a way to map the effective address into a physical
address.

• If the TLB does not contain the mapping, the HAT and PFT must be
searched for the physical address.

• Usually the physical address found is in system memory and read into the

processors.
• If the physical address is not present it is page faulted from hard disk into

physical memory.

The addition of numerous models into the RISC system family has meant a

variety of cache sizes are now utilized as shown in Table 4.1.

4.4 CPU walkthru

The reader can understand the operation of the RISC system processing units by

starting with the branch processor as follows. The branch processor fetches

instructions from cache memory (or from system memory for a cache miss) at

four bytes per cycle, executing all branch instructions it finds and dispatching the

remaining instructions to the fixed-point (FX) and floating-point (FP) processors.

This continues until either the queue of instructions waiting at the FX and FP

processors is full, or a conditional branch is encountered which depends upon the

result of a computation which has already been dispatched, but which has not yet

completed execution.
The condition register (cr) is a 32-bit register divided into eight condition

fields. The FP and FX processors each drive an individual field in the cr to

indicate the result of their operations. This design prevents conflicts of sharing a

common condition code in separate processors. (For example, comparing a

fixed-point register to 0 and simultaneously comparing a floating-point register
value with 0 might try and set the zero bit twice in a conventional architecture.)

To increase parallelism further, the results of an instruction only set condition

codes in the cr register if the record bit part of the instruction opcode is set.

Overall, branch processor instructions are defined so that all information and

resources needed to execute reside in the branch processor itself. For example,

information required for logical operations, conditional or absolute addressing is

contained in the branch processor.

RISC technology

Table 4.1. Data and instruction cache sizes

Model Data cache (kb) Instruction cache
(kb)

M20 220 8 Combined
340 520H 32 8
355 360 365 370 375 560 570 32 32
530H 540 550 930 950 64 8
580 970 980 64 32

45

For large sequences of real code, branch processor instructions are completely

overlapped giving rise to the term zero cycle branching. That is to say, the time

delays in branching from one part of a program to another in the branch

processor are totally hidden by the underlying concurrency of the other processing

units.

4.4.1 The fixed-point processor

The fixed-point (FX) processor handles all integer and string operations as well

as data address calculations for itself and the floating-point (FP) processor. It

also handles actual movement of data from the data cache to itself and the FP

processor.
Instructions support byte (8 bit), half-word (16 bit) and word (32 bit) data

types. The FX processor supports logical, shift and arithmetic instructions and
also a number of string manipulation instructions, and is thus particularly
suitable for C programs.

4.4.2 The floating-point processor

The FP processor was designed to perform ANSI/IEEE 754-1985 standard

arithmetic. It includes the usual facilities, for example, sign, absolute, multiply

and divide instructions. Importantly this processor also supports multiply and

add instructions of the form a = b * c + d. Research has indicated that many

real-life programs make use of this combination. Also, this single instruction

reduces the overall rounding error as compared to executing the two separate

multiply then add instructions.
A register renaming facility enables optimizations on the fly, by using the

internal 38 registers instead of the declared 32. For example, in the pseudo-code

segment:

Load ReglO with Reg9 + Reg8

Save ReglO
Load ReglO with new value

46 Inside the IBM RISC System/6000

For the purposes of the second Load instruction another unused register is used

instead of register 10. This enables Load to proceed without waiting for the

preceding store to complete. This is particularly effective for example, if this code

sequence is performed within a loop, effectively overlapping the register Save with

other instructions in the loop.

4.5 Virtual memory management

AIX virtual memory management is more complex than for traditional UNIX

systems because it is tightly integrated with the filesystem. When a file is opened,

the kernel maps the whole file into virtual memory. This means that the file is

now represented by an address range in the virtual memory space of the system.

System calls that read from and write to the file are translated into memory

addresses and a memory read or write is attempted at that virtual memory

address. If that memory address is not resident in real memory then a page fault

occurs, and the virtual memory management paging subsystem brings that page

into real memory for read/write. That is to say, under AIX, file I/O is done

through the virtual memory management paging subsystem, not via the

traditional UNIX buffer cache. This rationalization results in improved filesystem

performance, but complicates the process for the virtual memory management

algorithms. Why? Because UNIX (and in this case AIX) manages processes and

memory pages independently, so when running a process, AIX cannot tell what

memory pages belong to that process. Consider the case when users perform a

large amount of manipulation on files in the filesystem. When the requirements

for virtual memory pages exceed the physical memory available, AIX needs to

page out infrequently used or stale pages. However, AIX could (if not checked)

page out programs (even part of the process that was being executed) and page in

large parts of files users were working on. The real memory of the RISC system

would then be filled with mostly data, causing heavy page faulting to read in

executable program code, resulting in poor performance.

For sensible memory management AIX provides a memory load control

algorithm. The algorithm corrects a well-known UNIX problem by trying to

ensure that no matter how many new processes are started, AIX will not thrash.

(Thrashing occurs when the memory requirement of all processes wanting to run

greatly exceeds the amount of real physical memory available. In these circum-

stances most UNIX systems perform no useful work but spend all their time

moving memory pages between real memory and disk.)

AIX monitors the ratio between the number of memory pages written out to

paging spaces in the last second compared to the number of pages stolen from

other processes by the running process. If this ratio is close to 1.0 then thrashing
is guaranteed. The smaller the ratio the less chance of thrashing. AIX considers

the system to be thrashing if this ratio is 0.17 or greater. When this memory

overcommitment condition is detected any new processes are placed onto a

RISC technology 47

`suspend' queue, that is to say, a list of programs that will not be run. Additionally,

some existing processes are removed from the run queue and placed on a suspend

queue. How does AIX know which processes to suspend? By measuring for each

process its repaging rate. A repage represents the movement of a page from disk

into real memory of a page that was recently paged from memory to disk. If the

repaging rate is too high the process becomes eligible for suspension. Once

suspended a process may not be reactivated (that is to say placed back on the run

queue) for at least one second. The pages of the suspended process quickly

become stale, and the virtual memory management page replacement algorithm

pages them out to disk thus releasing enough real memory to stop thrashing. To

guarantee a recently reactivated process processor time, once reactivated a

process may not be suspended for two seconds. All the numbers quoted here are

defaults used in the scheduling algorithm. An experienced systems administrator

can alter these settings using the schedtune command.

4.6 Compiler design

The reverse side of developing a RISC instead of a CISC processor is that the

compiler designer has a much higher overall responsibility for the net performance

of the RISC-based computer system.

IBM is no stranger to advanced compiler development. IBM research division

had already produced the advanced optimizing C compiler for the first IBM

RISC computing platform-the IBM RT PC system. For the IBM RISC System/

6000, IBM Toronto and IBM Yorktown Research, established centres of excel-

lence in compiler design, were faced with a really challenging task. They had to

extract every last ounce of performance from the new hardware architecture.

Since superscalar architecture (see page 37) was new to the RISC system, the

design team was moving into uncharted waters. They did have some tough

objectives to meet, as follows:

• The compiler should include two modes of operation. A fast, non-optimizing

compilation mode for program development, and a reliable, optimizing mode

for code production.
• It should be designed in such a way as to support multiple languages,

including C, C + +, Fortran and Pascal.
• The C compiler needed to support the four programming standards:

-ANSI standard X3J11

-IBM systems application architecture C, level 2

-The IBM RT PC system C compiler

-The IBM RT PC system advanced optimizing C compiler

The result is the IBM XL series of compilers that support C, C + +, Fortran and

Pascal. The Fortran XL compiler accepts Fortran based on the Fortran 77

48 Inside the IBM RISC System/6000

standard as well as Fortran written for IBM mainframe VS Fortran. It also

accepts selected features of the Fortran 90 standard.

Additionally, IBM has available other languages:

• APL2/6000-an APL interpreter compatible with IBM's mainframe and

personal computer language APL2.
• COBOL-a COBOL compiler written by MicroFocus accepting ANSI, FIPS

and SAA COBOL programming dialects.
• Ada/6000-an Ada Validation Organization validated Ada compiler.

The remainder of this chapter discusses the XL series of compilers.

4.6.1 What is a compiler?

A compiler takes a programmer's input source code that (one would hope) the

programmer understands and translates it into machine code that a computer

can understand. Essentially a compiler is a two-step process.

The compiler first analyses the program to determine its net effect. The results

of this analysis are passed to a translator which generates the object code for the

target hardware. Unfortunately:

1 Programmers occasionally include errors in their programs. These errors

must be detected and reported to the programmer and compilation continued

by trying to find a point after the error from which analysis can continue.

2 Programmers expect to be able to compile parts of their program separately,

perhaps in separate languages, and use a linker to put the component parts

together.
3 At link time AIX allows for dynamic linking; as such the linker may not be

able to resolve all program references at link time and has to construct special

tables of `to be resolved' addresses. At program load, special `stub' code is

first executed to resolve these references before proceeding (see Sec. 5.5).

For all these reasons the internal design of the XL series of compilers is more

complicated and is shown in Fig. 4.5.

Each of the C, Fortran or Pascal compilers has a compiler-specific component

(the first four phases of the figure). From intermediate code optimization down-

ward, each compiler uses common routines to translate the intermediate code into

actual optimized object code for the RISC system branch, fixed- and floating-point

processing units, scheduling instructions to achieve maximum concurrency and

thus minimum execution time. For those who are less familiar with the terms

outlined, here is an explanation of the various stages used in the compiler before

we turn our attention to the optimization techniques used in the XL compliers.

The read phase simply reads characters from the source program to be

compiled. It can be a simple subroutine called from the lexical analyser phase.

For the C compiler it needs to implement the C macro preprocessor.

The lexical analyser receives characters from the read process and assembles

RISC technology 49

Read phase

Lexical analysis

Syntax analyser

Intermediate code generator

Compiler specific 1T

Common code I Back end

Code generator

Instruction scheduler

I
Object code for target computer

Figure 4.5. The structure of the XL family compilers.

them into legal tokens. For example, the tokens if, else and the floating-point

number 5.678. The results are stored in a symbol table accessible to later phases

of the compiler.

The syntax analyser performs pattern matching on the list of tokens generated

by the lexical analyser. It builds a hierarchical tree structure describing the net

effect of a program. For example, in the assignment a = b + c, a subtree may be

generated to indicate that the addition of variables b, c are of type integer, and

are of type automatic since they were declared on a stack frame, are to be added

together, and the result placed into static variable a whose visibility is only in the

environment of the file test . c.

The intermediate code generator generates an idealized extended intermediate

language which is assembler-like in character. The language assumes an infinite

register machine and is designed to retain enough structural information to be

amenable to optimization techniques. The intermediate code forms a stable and

documented interface between the front and back ends. So, for example, there is

no reason in principle why a future back end version of this compiler could not

be designed to produce code for AIX on IBM PS/2 platforms.

The intermediate code optimizer and scheduler optimizes the code that is

presented to them so that it executes more efficiently on the IBM RISC System/

6000 processors. This is described in some detail in the following section.

The code generator translates the intermediate code into IBM RISC System/

Front end

50 Inside the IBM RISC System16000

6000 machine-specific code. It also has to make the translation from an unlimited

register machine to one of finite proportions, a process achieved using a technique

known as graph colouring.

4.6.2 XL compiler optimization

We will now consider the optimization techniques used by the XL compilers. For

simplicity, these will be explained as though they were performed upon the

program source, though the reader should note that optimizations are actually

carried out on an internal representation of a user's program.

Elementary optimizations

Like most `industry' optimizing compilers, the XL compilers use a range of well-

known techniques. Constant expression evaluation evaluates as much of an expres-

sion as is possible based on known values. Expression reordering rearranges the

sequence of evaluation while maintaining the overall net effect of the compilation

block. For example:

a=3;

if (a<b)

{ x=a;

else { x=a;

a=0;

X=O;

y=a-l; }

y=x+l; }

if (3<b)

y=2;
else y=3;

a=x=O;

Initial Code Optimized

Redundant code elimination identifies code that can never be executed and does

not compile it. Strength reduction replaces more difficult to execute operators

with easier ones. For example, multiplication of integer numbers by 2, 4, 8 etc.

... can be performed using a bit shift of the binary number. Raising any

number to the power of 2 (squaring it) can be replaced by multiplication by itself.

Straightening tries to analyse typically Fortran spaghetti code containing gotos

and rearranges it for efficiency. For example:

10 if (mean. eq. 10) goto 20 10 if (mean. eq. 10) goto 60

15 if (life. eq. 42) goto 30 15 if (life. eq. 42) goto 60

a=999.0 a=999.0

20 continue

30 goto60

60 do 100 i=1, 100 60 do lOO i=1, 100

Initially Straightened

RISC technology 51

Common subexpression elimination analyses code for sequences which are used
more than once in a basic block and can be assigned to a temporary register
variable without side effects. For example:

int a, b, c; int a, b, c;

int block (int d) int block (int d)

{ {

register int_tmp;

a = b + c; a = _tmp = b + c;

f= b + c - d f=_ tmp - d

} }

Initially Eliminated

Code motion moves statements from inner to outer loops wherever possible. For
example:

{ {

int i, perfect; int i, perfect;

long bench; long bench;

bench = time(); bench = time();

for (i = 0; i<10000; i++) perfect=496;

perfect =496; for (i=0; i<10000; i++);

printf("took %d \n", printf ("took %d \n",

time()-bench); time()-bench);

} }

Initially Rearranged

Rearranging the assignment of the perfect variable before the loop therefore
makes a nonsense of this program 's attempt to measure the time taken to
perform 10 000 assignments.

Restructuring

Restructuring uses a number of simple techniques that add object code into a

program to increase execution speed.

Inlining identifies calls to short, nonrecursive subroutines. Instead of executing

a subroutine call to that subroutine the code for that function is placed in line.

The XL compilers do this for functions which expand to less than 100 instructions

when the - Q flag is selected.

Unrolling involves copying the body of a loop's code one or more times and

52 Inside the IBM RISC System/6000

performing the loop a correspondingly fewer number of times. Since it is unusual

for the number of iterations to be able to be reduced exactly, it is also usually

necessary to keep an additional copy of the loop body to be executed to make up

the remaining total. For example, consider the statement a = a + (a/7) to be

executed in a loop 99 times. Placing two of these statements in a loop, and

executing this 49 times means the compiler still needs to execute this statement

once more (99 - (49 * 2) = 1) at the termination of the unrolled loop.

Recurrence recognition

A recurrence is an expression whose value depends upon the value of the same

expression in an earlier iteration. For example, in the code fragment:

void induction (int size , int source [], int sink[])

{

int i;

sink [0] = 1;

for (i=2, i<size; i++)

sink [i] = sink [i] - source [i]* sink [i-1];

}

The value of the i th iteration of sink depends on the value of sink calculated

in the previous iteration. If a previous iteration value is kept in a machine

register, then it can be used directly instead of having to gain addressability to

the sink array, calculate the address index of element (i -1) , form the absolute

address, and then load this value from real through virtual memory.

Instruction scheduling

Instruction scheduling rearranges the order of machine code instructions to

exploit the concurrent execution possibilities of the fixed-point, floating-point

and branch processors. Scheduling is performed twice, before and after register

allocation, using dependence graph techniques.

5
Programming environments

UNIX systems have always provided leading-edge programming tools. Early

versions of UNIX led the way and provided programs like make and SCCS as

tools to enhance programmer productivity and software management. AIX

continues this trend and provides an enhanced set of CASE tools in the form of

the AIX software development solution. This is designed to deliver a new

generation of professionally managed and developed applications. AIX also

provides state-of-the-art communications programming interfaces and debugging

tools. Finally, AIX encourages the design of modular applications using

its dynamic linking facility and ability to ship applications with embedded

performance tracing components. These aspects are covered in detail in this

chapter.

5.1 Program management

AIX provides the standard UNIX tools for program management . For example,

the following standard UNIX tools (and more) are available:

cb C beautifier (cb) reformats a C language source program into a

consistent format that uses indentation levels to show the structure of

the program. Unfortunately cb does not produce such beautiful code,

and it certainly does not measure up to the code formatting standards

used within IBM. My personal opinion is, do it yourself!

cflow The C flow diagram generator generates a diagram of the logical flow

of a C language source program.

ctage Builds a relationship matrix between the multiple source files and
library sources required for an application. This information can be

used by the vi editor to edit a multifile application more easily.

cxref C cross-reference list generates a list of all external references for each
source language program, including where each reference is resolved.

53

54 Inside the IBM RISC System/6000

indent Reformats a C language program by indenting it to the options

specified by a user.

lint Checks for syntax and data type errors in a C language source

program. It performs more detailed analysis than the IBM XL C

compiler with particular emphasis on producing portable, machine-

independent code.

make Allows an applications developer to specify a set of dependencies for a

program in terms of what object files need to be compiled and linked

to form an application. make looks at the dependency list typically

contained in the specification file make f i l e. It then rebuilds the

target application by just relinking and/or compiling the modules

that have changed to form the most current version of the application.

SCCS The source code control system allows the storage of historical versions

of source code in a library. Using simple creation (admin), storage

(delta), and retrieval (get) commands, particular revisions of modules

or projects can be accessed. For development projects shared by

several people, SCCS helps perform automatic source code control by

locking modules taken out of the library for modification and unlock-

ing them when they are returned. SCCS also maintains a history file

with comments, allowing the systems administrator or project coordina-

tor to view the history of changes to source files.

5.1.1 imake

A make f i l e is a file containing a list of programs and dependencies which

enable an applications developer to automatically compile an application from a

list or source modules. For example, a large project containing, say, 250 000 lines

of C program source code, split into 500 source files, needs to be compiled and

linked into an executable file. The make f i 1 e specifies the dependencies between

the various source modules and the compiler options required to translate the

source code into object code and to be linked into the executable application.
However when working in a multivendor environment, an applications

developer soon discovers that different UNIX systems need different compiler

options and hence a different make f i l e for each UNIX system. imake is a

program that works with a higher level, machine-independent i make f i 1 e that

is suitable for all environments. The applications developer can therefore write a

single i mak e f i l e that will build an application for all environments. imake

takes the i make f i 1 e, combines it with a machine-specific template file (usually

called imake. Template) and produces a make file. imake then runs the

generated make f i 1 e with the make utility and generates the application.

imake is supplied as a sample program with the AlXwindows component of

Programming environments 55

AIX, since it is an industry standard component of X-Windows (see Chapter 6).

A systems adminstrator is required to run imake at least once in order to build
executables from the /usr/lpp/X11/Xamp1es directory which contains the C

source code to the X-Windows system sample programs.

Although a little difficult to master initially, imake should be used by applica-
tions developers to generate machine-independent make f i 1 e s.

5.2 Computer-aided software engineering

Computer-aided software engineering (CASE) is the application of computerized

techniques and tools to automate software engineering. In today's environment

the design of any serious software product involves a number of well-defined

stages. This usually begins with the requirements and design analysis, proceeding

through to functional specification. The functional specification leads to high-

level then low-level design and then to the production of real code. As this code

is written it is unit tested in isolation, then assembled and system tested as a

complete product. The product can then be released, after which it must be
maintained.

Using CASE technology means the automation of some or all of these stages.

CASE tools are crafted in different ways. Some require rigorous (almost formally

mathematical) functional specifications and produce pseudo-code then real code
automatically. Others provide an enriched programming environment with tools to

automate each programming stage and integrate the application build process

electronically. AIX CASE falls into this latter category. In order for any CASE

tool to be a positive addition to an application development cycle, developers must:

1 Have an existing process defined for software development. It is the process

that the CASE tool will automate. Adding a CASE tool into a project that

has no existing process or structure is unlikely to create one.

2 Ensure that the CASE tool is flexible enough to take over the existing

methodology gradually. Developers do not like switching over en masse to a
completely new set of rules and techniques. The AIX CASE environment

allows the software professional to use existing UNIX-based tools and

integrate them using a software integrator.

3 Be allowed time for learning how to use the new tools and technology. Just

expecting the use of AIX CASE without allowing time for a development project

learning curve may mean that developers reject use of CASE tools indefinitely.

5.2.1 The software development solution

The AIX CASE offering is known as the AIX software development solution

(SDS). This is split into a number of constituent components which will be
discussed further. They are:

56 Inside the IBM RISC System/6000

• The software development environment (SDE) Workbench and Integrator

• The configuration management version control (CMVC) client and server.

• The library connector for the IBM RISC System/6000 and mainframe MVS

operating systems

SDS is designed around the European Computer Manufacturers' Association and
National Institute of Standards reference model.

Most of the Workbench and Integrator products are based on the Hewlett-

Packard CASE offerings which have been licensed by IBM.

5.2.2 The software development environment , Workbench

The most fundamental component of the SDS is the SDE Workbench. This

provides the basis for an integrated software development environment. The

applications developer can use the Workbench with any or all of the programming

languages C, C + +, Fortran and Cobol. Eight basic toolsets in the following list

can be used as they stand and applied to the development group's existing

manual software engineering process. Later, when these tools have been accepted,

the process itself can be automated.

• The program editor is the editor component, allowing the user to enter source

code into the computer. The editor is either the vi, GNU EMACS, or LPEX,

the live parsing editor. (Support for EMACS is included, but the editor

itself must be purchased separately.) LPEX is a context-sensitive editor that

understands the structure of high-level programming languages. It identifies

reserved words, parentheses and code in different colours and also visually

formats the source code that it edits.

• The build manager builds an executable program from a dependency file,

identifying actions required to compile and link an application. This can use

the traditional make tool if preferred.

• The program debugger provides the X-Windows development environment

editor to allow a user to visually debug code.

• The software static analyser provides the ability to search visually and

automatically through a series of source programs for function calls and

global variables.

• The development manager provides a graphical interface to the AIX filesystem

and allows the applications developer to assign actions to objects or classes of

graphic objects.

• The software configuration management tool provides a visual interface to the

source code control system. AIX, like any UNIX system, provides SCCS;

also provided is support for the IBM code management version control

system, described in Sec. 5.2.3.

• The tool manager allows developers to save the visual arrangement of their

Programming environments 57

programs on their `visual desktop' and to manage the above described tools.
• The integrated mail and transfer component provides a visual front end to the

AIX mail and TCP/IP file transfer facilities. For example, consider a 5-person

project with 500 source modules. An individual may make a modification to

a module and return it to the library. The build manager can rebuild the

application based on this change and send all the team members a mail

notification to say that the build has completed successfully.

The build manager, development manager, software configuration manager, tool

manager and mail facilities are ports of the Hewlett-Packard Softbench CASE

offering.

The software development environment integrator

The Integrator is a companion product to the Workbench and allows an applica-

tions developer to integrate existing tools so that they can use the Workbench

services. As such, users can generate an OSF/Motif wrapper around an existing

tool, without modifying that tool in any way. This is done by coding statements

to the Integrator using the encapsulation definition language, or using the C, C + +

languages.
The Integrator is also the tool required to build a basic process. For example,

a check process could be defined so that after any user has put back a module to

the source library, a test compile can be performed on that module. If the module

does not compile cleanly then a note could be sent to that user informing that the

module would break the `build' of the application if it were to be made.

Since the Integrator is a port of the Hewlett-Packard CASE Integrator product,

customers or vendors using the Hewlett-Packard Encapsulation format language

can easily transfer their product to the IBM RISC System/6000.

5.2.3 Configuration management and version control

An alternative to using the native AIX SCCS version control system is to move

up to the configuration management and version control (CMVC) component of

AIX CASE. Aside from version control, CMVC allows a user to integrate

problem-tracking and design changes into the software engineering cycle. Projects

involving tens or hundreds of development staff can be catered for.

Using an OSF/Motif interface a project hierarchy is defined in an Informix,

Sybase or Oracle database. This includes such elements as design drawings and

documentation. Source code is stored in either SCCS or Intersolv's professional

version control system (PVCS) revision control system with structure links to the

hierarchy database. For example, consider an application which contains an

error that is reported. Perhaps this is at a unit (module) testing phase, or while

testing the application before launch (System test). The fault is reported and the

58 Inside the IBM RISC System/6000

test case used to reproduce the fault is entered into CMVC database. CMVC

assigns a problem number to this report. For a coding and implementation error

CMVC makes a record of the source changes required to correct the error. If the

error is more involved and contained within the functional, or high- and low-level,

specifications then CMVS records changes made to that design documentation

and the corresponding source code changes. A customizable project-reporting

mechanism can produce summary change management statistics.

The library connector

In some projects it may be necessary to access software stored on an IBM

mainframe. The IBM mainframe version control system is called the software

configuration and library manager (SCLM) and runs under the IBM mainframe

operating system called MVS. The library connector provides an OSF/Motif

application that operates on SCLM library members.

For example, in an international project within many IBM corporate

customers, sites may be interlinked with high-speed IBM SNA communications

between IBM mainframes. Instead of developing an international TCP/IP

network it might be prudent to store internationally shared AIX source modules

on a central mainframe. International development groups can use the library

connector to retrieve and replace shared source modules into the host SCLM.

5.3 Communication programming interfaces

AIX provides a very full suite of intra- and intermachine communication program-
ming interfaces.

5.3.1 Pipes

Pipes are one of the earliest UNIX communication programming interfaces. The

concept of pipes has been adopted by other operating systems, for example OS/2

and DOS. A pipe provides a one-way flow of data between two programs

residing in a single AIX system. Pipes are unidirectional, so programs normally

open two pipes to enable a two-way conversation. Because these pipes are

unnamed they are used from a parent program to a child program.

5.3.2 Named pipes

A named pipe or first-in first-out (FIFO) is similar to a pipe except that it is

visible as a special file in the /dev directory. For example, a FIFO could be

created with the mkfifo command called /dev/common. By knowing the name

of the FIFO, two or more unrelated programs can exchange information by

reading from and writing to the FIFO.

Programming environments 59

5.3.3 System V interprocess communication

Message queues, semaphores, and shared memory are collectively referred to as

`System V IPC as AIX inherits them from USL System V. These three facilities

provide the applications developer with three further mechanisms for programs

within a single AIX system to exchange information. Again, many other operating

systems such as IBM Operating System/ 2 also provide many of these same facilities.

Message queues

A message queue allows two or more processes in a single AIX system to send

and receive arbitrary length data items to and from each other. Each participating

process must first open a message queue using a numeric `key'. The AIX kernel

matches up requests in different programs using the same key.

Shared memory

Shared memory, as the name indicates, allows two or more programs running in a

single AIX system to share a memory segment. This is considerably faster than other

mechanisms which first send the information to the AIX kernel (where the pipe of

FIFO, for example, is implemented) and then out to the program requesting the

data.

Semaphores

Semaphores are a synchronization primitive. As a form of IPC they are not used

for exchanging large amounts of data as are pipes, FIFOs or message queues. The

main use of semaphores is to control access to a shared resource, usually shared

memory. Two types of semaphore are common: exclusive (write lock) or shared

(read lock). To obtain a resource that is controlled by a semaphore, a process

needs to test its current value. If the value is greater than zero it decrements it by

one. If the value is then zero, the process must wait until the value is greater than

zero (that is, wait for some other process to release the resource). To release a

resource that is controlled by a semaphore, a process increments the semaphore

value. If some other process has been waiting for the semaphore value to become

greater than zero, that other process is now able to obtain the semaphore and use

the resource. That describes a write lock semaphore. A read lock semaphore works

in reverse, that is, it is locked when the count is greater than zero.

5.3.4 Sockets

Sockets provide an excellent uniform way of implementing process communica-

tions. Sockets allow interprogram communication but unlike other IPC described

so far, it can be between programs residing on separate AIX systems, or within a

60 Inside the IBM RISC System/6000

system. Once a socket() has been established between a client program and a

server program, the applications developer can regard the socket as just another

file. This is very convenient since programmers are used to dealing with files. To

provide both intra- and intermachine communications, AIX allows the program-

mer to uses sockets with any of the following three underlying protocols:

• UNIX domain

• Internet domain
• Xerox NS domain

UNIX domain is used for intramachine communications, Internet and Xerox NS

for intermachine communications. Sockets can use either connection-oriented

protocols (more reliable but slower), or connectionless-oriented protocols (less

reliable but faster). For Internet domain sockets AIX uses TCP or UDP protocols

for connection/connectionless sockets respectively. The equivalents using Xerox

protocols are the sequenced packet protocol (SPP) or internet datagram protocol

(IDP).

AIX provides a rich set of socket programming interfaces and protocols.

Recall that the socket interfaces were initially produced with the Berkeley 4.1c

BSD UNIX; many vendors may not completely implement the socket interface

and its three underlying protocols.

5.3.5 The transport layer interface

The transport layer interface (TLI) was introduced with USL Unix System V

release 3.0. AIX provides the TLI with release of AIX 3.2 and later. Before TLI,

sockets from Berkeley provided the main communications programming

interface. TLI provides the same facilities as sockets but it is modelled after the

ISO transport service definition standard. As with sockets, communications may

be connection- or connectionless-oriented.

5.3.6 Streams

AIX 3.2 and later support streams. Streams provide a full duplex connection between

a user program and a device driver. The intent is that streams replace the traditional

method of accessing the device driver using openO , closeO, readO , writeO and ioctlO

function calls. Instead, streams provide these calls and also the getmsgO, putmsgO

and poll() calls. The principal advantage of streams is that they allow an AIX systems

programmer to change the characteristics of a device driver dynamically. A user

program talks to the system call interface for a driver (also called the stream head).

The stream head then talks to the kernel device driver. Streams allow any number of

modules to be pushed into the stream. That is to say, between the stream head and the

kernel device driver, extra processing modules may be interposed. These `pushed'

modules make it considerably easier to write and modify network device drivers.

Programming environments 61

5.4 Device drivers

A device driver is a low-level component of AIX that forms the bridge between

the AIX kernel and the real-world devices it needs, for example disk drives,

terminals and printers.
Traditionally, when UNIX was ported from one machine architecture to

another a number of nontrivial operations were involved. A C language

compiler had to be written to generate code for the target machine

architecture. Then the UNIX operating system written in C was compiled for

the target platform. Finally, the low-level component of device drivers for the

target system, usually written in assembler, needed to be written to interface

the real-world devices.
On the RISC system there have been changes to device driver architecture and

it is these changes that are explained here. The sophisticated POWER architecture

of the RISC system makes it more difficult for a systems programmer to

program in native assembler efficiently. Wherever possible, it is better to write

drivers in C and leave the XL C compiler to schedule instructions for

maximum concurrency. This is good news for a prospective device driver

writer.
Changes to the overall structure of a device driver under AIX were made to

enable a driver to be dynamically installable and to link this with the MicroChan-

nel bus structure and the object data manager database.

5.4.1 Traditional UNIX device drivers

Under UNIX, special files are created by the mknod command. This creates a

special file with a given name, usually in the /dev directory. This file has three

special characteristics

• The major device number

• The minor device number
• A special file type: character or block device. (Actually the list command will

also show other types such as directories, Berkeley sockets, Berkeley symbolic

links or System V pipes.)

Here is a partial listing of typical devices in the /dev directory showing the entry

for a printer (/dev/lpO) and console (/dev/hft):

crw-rw-rwT 1 root system 19, 0 May 22 1992 hft

crw-rw-rw- 1 root system 29, 0 Dec 24 21:23 1p0

Application programs access the device by name : for example, to print a file an

applications developer could open /dev/lpO and write() data to it. Inside AIX

62 Inside the IBM RISC System/6000

this is translated to a request to open() and writeo to major device 29, minor

device 0.

The major number identifies the particular device driver for the device, the

minor number identifies particular characteristics of that device. For example,

consider a tape drive /dev/rmt0 which can also be accessed using other device

names:

crw-rw-rw- 1 root system 16, 0 Sep 22 20:55 rmt0

crw-rw-rw- 1 root system 16, 1 May 22 1992 rmt0.1

crw-rw-rw- 1 root system 16, 2 May 22 1992 rmt0.2

crw-rw-rw- 1 root system 16, 3 May 22 1992 rmt0.3

Using the /dev/rmt0. 1 device the tape in the drive would not automatically be
rewound after use, whereas if device /dev/rmt0 had been selected then the tape
would automatically be rewound after use.

Types of UNIX device driver

UNIX has two classes of device driver: character mode drivers and block mode

drivers.

The block mode driver is used for devices which deal in blocks of information.

For example, a floppy or hard disk drive where the smallest addressable element

is the disk sector. Another example would be a CD-ROM player. Block devices

are capable of random access. For example, they could accept a request to read

from block numbers 80 to block 100 in any order.

The character mode driver is used to access serial access devices a byte at a

time. Examples of a character driver access might be to terminals, printers or

networks devices. Usually a character mode interface is also provided for block.

This is known as a raw device and, not surprisingly, it allows the programmer or

operating system to perform raw unbuffered reads from and writes to that

device.

5.4.2 AIX device drivers overview

AIX divides a device driver into two parts : a device head and a device handler,
Fig. 5.1.

Device heads

A device head provides the link between the filesystem entry in the /dev

directory and the entry point in the device driver. For example executing the

open("/dev/IpO") tells AIX to call the openO entry point in the device driver for
the printer IpO.

Programming environments

• Device driver HEAD

- Predominantly pageable and pre-emptible
- Runs in kernel mode of system

• Device driver HANDLER

- Nonpageable

- Runs in kernel mode of system

Figure 5 .1. AIX device driver components.

63

Overall, the device head performs the following functions:

• Converts from the file I/O request to a format known to the kernel handler

• Performs appropriate blocking and buffering
• Performs device management, for example, error logging and recovery

Since these routines do work in the process environment most of the code and
data associated with the driver head is pageable.

Device handler

The device handler communicates with the actual physical device or adapter

card. The device handler accepts requests from the device head. This part of the

device driver executes in both the interrupt handler environment and in the

environment of the calling process. Both the code and data for the device handler

are pinned into real memory.

Table 5.1. UNIX device driver entry points

Driver type config open close ioctl dump read write select mpx strategy evoke

Early UNIX N Y Y Y N Y Y N N Y N
AIX char Y Y Y Y Y Y Y Y Y N Poss
AIX block Y Y Y Y Y Poss Poss N N Y Poss

AIX driver entry points

AIX has extended the number of device driver entry points that are defined. As

Table 5.1 shows, the additional entry points config , strategy and revoke have

been added.

• The configO entry point is an AIX extension to standard UNIX. When called

it creates the /dev special file in the device directory. If the device driver is a

block driver and supports a character interface to a block device then two

entries will be created. For example, calling the config routine for a driver to

hard disk 0 (hdiskO) creates /dev/hdi skO and /dev/rhdi skO.

• The openO entry point makes a link from the requestor to the real device. In

64 Inside the IBM RISC System/6000

so doing it verifies that the device is online and available.
• The close() entry point releases a user 's right to access the requested device,

flushing any associated buffers.
• The ioctl() entry point performs special I/O operations.

• The dump() entry point tells AIX that this device is the destination for system

dumps. Some time later if AIX has reason to dump (see Sec. 15.4), that

device will be sent the information.
• The read() entry point allows one or more bytes to be read sequentially.
• The write() entry point allows one or more bytes to be written sequentially.

• The select() entry point allows a user to poll a hardware device to discover

whether specific events or conditions have occurred.
• The mpx() entry point allows multiple users to share a resource on a single

device.
• The strategy() entry point is used to maximize I/O data transfer requests from

a user to and from a device. The request is normally asynchronous. For

example, consider a request for a read of 10 disk blocks. The request returns

immediately so the application may continue. When the read is complete a

callback function (one of the parameters passed via strategy()) is executed.

• The revoke() entry point is an AIX extension to support the AIX trusted

computing path (see Sec. 14.8). This routine is normally involved when the

secure attention key (SAK) sequence is detected to ensure that a secure path

to a user's terminal is provided.

The device switch table

Within the operating system, the device switch table stores the device entry

points for each device. Most UNIX systems allow kernel code direct access to

this switch table. Under AIX this is a global data structure and since AIX has a

pre-emptible operating system kernel (see Sec. 3.4.2) all global data structures

must be protected. AIX therefore allows access only once the resource has been

locked.

5.4.3 Dynamic device configuration

On traditional UNIX systems, device drivers are statically linked into the operat-

ing system. For example, consider the case when Ethernet network support needs

to be added to such a system. The systems programmer would typically edit the

make f i 1 e that tells the system how to rebuild the / Unix program, being careful

to include the . o object code files that represent the new driver to be added. A

configuration program would then be run to extend the size of the device switch

table, making sure that the entry points to the new driver such as open , close,

read and write from the new . o files were added successfully. Next, the

make f i 1 e would be run using the make command, finally invoking the linker to

Programming environments 85

Boot

Configuration
manager

SMIT

High-level
commands

Device methods

ODM
Low-level
commands

Figure 5.2. The structure of the configuration subsystem.

rebuild /unix. After rebooting, the new drivers would be available for use.
AIX, however, allows for dynamic device driver loading either at or after

system boot time. Device drivers are not statically linked to the /unix kernel. At

system boot time AIX examines the installed configuration of the system and

loads the required device drivers. In so doing it must first bring online installed
MicroChannel adapter cards, soft configuring the cards' I/O port addresses, IRQ

and DMA abilities so that there is no conflict. This is achieved via the configura-

tion subsystem as shown in Fig. 5.2.

Either a system boot (which starts the configuration manager) or running the

systems management interface tool generates high-level commands which in turn

invoke device methods. Device methods invoke low-level commands and/or

modify the object data manager database.
For example, at AIX boot time the configuration subsystem:

1 Scans each MicroChannel bus slot to determine the unique two-byte program-

mable option select (POS) adapter ID
2 Looks up the characteristics and capabilities of the adapter card via the ID in

the object data manager database
3 Reassigns on-card resources for maximum performance without conflict of

interrupt request (IRQ), buffer or I/O address, DMA levels, etc.

4 Calls the configuration method program for each device to be configured. The

configuration method loads and initializes the device driver.

Device methods

Below the high-level commands that can be used to modify the state of a device

are a set of methods (see Fig.5.3). AIX provides the following device methods:

define Creates a device instance and places the definition in the object

data manager (ODM). The state is set to defined.

66 Inside the IBM RISC System/6000

Undefine m

Unconfigurn
method

Figure 5.3. Device states.

ethod

Undefined

T W
Define method

Defined

Available

W

Configure
method

configure A method that performs all operations to make the device
usable then sets the state to available.

change A method to change the characteristics of a device.

unconfigure Stops the device from being usable but leaves the definition of

the device in the ODM, setting the state to defined

undefine Deletes the definition of this particular customized device from

the customized objects database leaving the device in the unde-

fined state. (For example the systems adminstrator could unde-

fine an 8 mm tape drive /dev/rmtO. AIX still stores the charac-

teristics of 8 mm tape drives and can redefine another 8 mm

drive at a later time without a problem.)

5.4.4 Dynamic kernel extension

Subsystems like TCP/IP and NFS are implemented in AIX as dynamic kernel

extensions to the operating system. That is to say, after they are loaded any user

program may call the additionally defined kernel functions that these subsystems

define.
Adding a kernel extension can be done in AIX dynamically, while AIX is

running. It does not require the AIX /unix kernel to be rebuilt or for the system

to be rebooted. Figure. 5.4 is a simple example of adding a kernel extension that

simply adds two numbers together when called.

The brevity of this example indicates how simple this is. First the program

comprising the kernel extension myadd. c is compiled making sure the entry

point myadd() is defined. Since AIX does not provide a command to load a

kernel extension, the above program myload. c loads it using the sysconfigO

system call.

Programming environments

/* --- myload.c --- */ /* --- myadd.c ---
#include <sys/sysconfig.h> int myInit (void)
main() f f
struct cfg_load cfg; /* initialization code here
strcpy (cfg.path, "./myadd"); return 1;
cfg.libpath = NULL; }

if (sysconfig (SYS_KLOAD, &cfg, sizeof(cfg))) int myadd (int a,

perror ("sysconfig error"); f

} return a+b;
}

/* --- makefile ---
all: myadd myload

int b)

myadd: myadd.c
cc -o myadd -e myInit -bE:./myadd.exp -bI:/bin/kernex.exp myadd.c

myload: myload.c
cc -o myload myload.c

/* --- myadd.exp ---
#!/unix
myadd syscall

Figure 5.4. Loading a kernel extension.

5.5 Dynamic linking

67

*/

Dynamic linking allows an application to be packaged as a main executable
module and a number of separate ` link-libraries' of functions required by that
application . When the application is executed it is loaded into virtual memory
and it is the loader's responsibility to find and resolve any undefined subroutine
references before the application starts . This is called dynamic binding . AIX also

allows for run- time binding when unresolved subroutines are resolved while the
program is executing, just before they are used . It is commonplace in both the
IBM Operating System / 2 and the Microsoft Windows operating systems to use
the term dynamic linking to describe dynamic binding . Most modern operating
systems including AIX use dynamic linking to their advantage as will be seen.

Traditional UNIX systems used static binding . Static binding or linking (Fig. 5.5)
has the primary advantage of simplicity . With static linking one or more source
C files are compiled to . o object modules using the cc compiler . The linker In

takes these files and if any external functions have been called, it resolves
references to them by adding in the code for those functions . These functions
may be defined in a development library , for example /usr/lib/ libmouse. a,

otherwise perhaps in one of the system libraries , for example 1 i b c . a. In the
case of a system library special code called a stub is added to the application
program to call a routine resident in the UNIX kernel. At run-time, the applica-
tion makes calls to routines in the loaded code or via the stub routines to
routines contained in the UNIX kernel.

68 Inside the IBM RISC System/6000

Source
files

I

C compiler

Object
files

Linker

Application

Figure 5.5. Static linking.

System
libraries
e.g. libc.a

Private user
libraries
libxxx.a

Before dynamic linking became commonplace some users became experienced

enough to extend their UNIX kernel to include common routines, so that no

matter how many programs they ran, each program did not have to include the

common routines, only a stub. The stub routine was simply a pointer to call to

the new shared routines contained in the kernel. This methodology had its

drawbacks. For example, taking such applications to a similar machine without

identical kernel extensions could cause the application or perhaps even UNIX

itself to crash.

Dynamic linking provides the advantages of kernel extensions without the

pain. With dynamic linking, applications are now composed of many modules

instead of just one statically linked executable. Typically, this is a small executable

file and subroutines located in dynamically loadable modules. Under AIX

individually loadable modules can be placed in one or more libraries, so you do

not have an application that comprises several hundreds or thousands of separate

executable modules.
With dynamic linking, applications are smaller because common functions are

placed in shared dynamic libraries and are not bound into each application.

Smaller applications require less disk space. For example, this became 'graphi-

cally' clear to me when I wrote an initial X-Windows OSF/Motif application

using the IBM RT PC system. The statically linked trivial `hello world' program

was over 650 kb in size. On the RISC system since the X-Windows library

functions are dynamically linked, the same executable program is only about

Programming environments 69

30 kb in size. Smaller applications are faster loading; under AIX a function is
usually brought into virtual memory only when it is used.

Finally, dynamic linking allows a user to upgrade applications more easily,
without a user needing to recompile or relink an application . If a component of

the application proves faulty, the application developer can send the user a new
dynamic link library to cure the problem or to provide updates and enhancements
to the product.

Of course , this increased flexibility involves a small and usually insignificant

performance penalty over static linking . Calling a function in a dynamic link

library costs in the region of an extra 10 clock cycles, to determine the address of

the next instruction to be executed. This means an applications developer would

be wise not to call a short function inside a dynamic link library from an
applications performance or timing critical loop.

If a program has unresolved references after compilation and linking, then this
must be stored in the object code format of the program. AIX uses an industry

standard format called XCOFF (extended common object file format) to save

this information . The breakdown of such a module is well defined . Some typical

sections include:

• Module header
• Code section
• Loader section
• Debugger section

AIX added to the contents of the loader section, including in it an application's

list of imports and exports of routines matched in dynamic link libraries. Here is

a short program that demonstrates dynamic linking:

/* A dynamically bound (linked) program, first.c

main()

{

printf ("In the routine main() \n");

printf ("Calling the routine shared() now \n");

shared ("Hello mouse");

printf ("Returned from shared() back in main() \n");

} /* main */

/* first.impexp, the import file for first.c */

#! execode

shared

70 Inside the IBM RISC System/6000

/* shared.c , the shared subroutine

#include <stdio.h>

void shared (char *string)

*/

{ (void) printf (" I got the argument **%s** \n", string);

}

Building the modules is a little more complex than for static linking:

1 Compile the first . c program with the unresolved reference to shared()
function:

cc -b I: first. impexp -o first first. c

2 Compile the shared routine and place it in a default path that will be found
by the first program at runtime:

cc -c shared. c

ld -b E:first.impexp -b M:SRE -o /usr/lib/execode

shared. o -ic

Typing first loads the program into memory and then before running the
program resolves the reference to sharedO by loading shared. o from /usr/
lib/execode.

This works well but references are still resolved before any of the application is

executed. If we had some functions that were infrequently executed, it would be

better to load them just before they were required. This is shown in the following
program second:

#include <stdio. h> /* program second, source second.c

extern int errno;

extern char sOverlay[];

extern int iOverlay;

extern int funcl(), func2();

char *libpath= /lib:/usr/lib::

int (*pfunct) (); /* pfunct is a pointer to an integer

function */

/* many lines of code not shown here */

pfunct = load ("overlay" , 0, libpath);

printf ("Overlay string was \t \t%s \n", sOverlay);

Programming environments 71

printf ("Overlay integer was \t \t %d-n ", iOverlay);

funcl(); /* call overlay function */

(*pfunct) (); /* set using ld -e option */

unload (pfunct); /* unload overlay */

} /* main*/

* *//
/* this is the overlay.c file */

char sOverlay = "Make my day";

int iOverlay = (-69);

int funcl() { printf ("Inside function 1 \n"); }

int func2() { printf ("Inside function 2 \n"); }

this is the second. imp file describing the imports to

second. c

#! overlay

sOverlay

iOverlay

funcl

this is the overlay.exp file describing exports from

overlay.c

#! overlay

sOverlay

iOverlay

funcl

func2

I In this example the program comes to a point where it needs to use

functions contained in the source file overlay. c which has been compiled

and placed in a shared object file /usr/lib/overlay using the com-

mand:

cc -c overlay. c

ld -b E: overlay.exp -b M:SRE -o /usr/lib/overlay

overlay. o - Ic -efunc2

2 The call load ("overlay" , 0, libpath) dynamically loads in this

module into virtual memory.

3 As proof of this the variables sOverlay and iOverlay can now be

displayed.

72 Inside the IBM RISC System/6000

4 Once the overlay has been loaded the func1 can be called
5 Even the function func2 can be found since it was made the default entry

point for the module using the - e func2 compiler option
6 As before an `imports' file second. imp is required to compile second. c

without error thus:

cc -b I: second. imp -o second second. c -lc

The current examples simply place an object into $LIBPATH which AIX will find

automatically at execution . Larger applications however would place all shared

objects into a library and place the library in $LIBPATH. The next example

demonstrates this:

/* file third. c, compile to the program third */

main()

{

printf ("About to call function sub() in library

mouse \n");

sub();

printf ("Returned from sub \n");

/* main */}

/* function sub, sourcefile sub.c */

/* compile with cc -c sub.c */

int sub() { printf ("I am in the function sub \n"); }

To explain what is happening here let us look at Fig. 5.6:

1 Initially programs third. c and sub. c are compiled.

2 The linker (invoked automatically by cc compiler) is informed that the

function sub() is stored in the object mouse. o contained in the library

house. a, by the third. imp file. This file contains the two lines #!

house.a(mouse.o)

sub

3 The sub. o object is made into a shared object mouse. o using the command

ld -b: third. exp -b M. SRE -o mouse. o sub. o -lc.
4 The export file (third. exp) telling the linker to export the function sub

contains the lines

#!mouse. o

sub. o
5 mouse. o is then placed into a shared library house. a using the ar archiver

command ar vq / usr / lib / house. a mouse. o.

6 The program third is now ready to run and when it does so it will

automatically reference the subroutine sub stored in the archive library

house. a.

Programming environments 73

third. imp sub. cthird.c

C compiler cc

sub .o third. exp

C
Loader ld

mouse.o

Archiver ar

1
third house.a

Figure 5.6. Creating a shared library.

5.6 Debuggers

AIX provides four debuggers and a trace facility:

adb From traditional UNIX

dbx From Berkeley UNIX

xde New to AIX

kdbg The kernel debugger

trace Low-level program trace

5.6.1 adb

adb is a very primitive debugger, so that it is now more commonly used just to

examine, debug and repair executable binary files and to examine non-ASCII

data files. As a debugger it suffers from the disadvantage of not having the ability

to debug source code. To use a program within this debugger, the applications

developer would need to compile a program with the assembly language listing

option and use this as a guide as to where to set program breakpoints.

74

5.6.2 dbx

Inside the IBM RISC System/B000

dbx is the principal debugger used with AIX. dbx is a capable yet simple to use

product, as are many of the other Berkeley UNIX facilities. A basic help screen

from the debugger shows some of the simple commands that will enable a

developer to debug a program quickly after having compiled it with debugging

information in the normal way (cc -g filename):

dbx version 3.3 for AIX.

(dbx) help

run

print <exp>

where

stop at <line>

stop in <proc>

cont

step

next

trace

trace

trace

trace

<line#>

<proc>

<var>

<exp> at

begin execution of the program

print the value of the expression

print currently active procedures

suspend execution at the line

suspend execution when <proc> is called

continue execution

single step one line

step to next line (skip over calls)

trace execution of the line

trace calls to the procedure

trace changes to the variable

<line#>

- print <exp> when <line> is reached

status - print trace/stop's in effect

delete <number> - remove trace or stop of given number

screen - switch dbx to another virtual terminal

call <proc> - call a procedure in program

whatis <name> - print the declaration of the name

list <line>, <line>

- list source lines

registers - display register set

quit - exit dbx

While still a line-oriented debugger, dbx provides source level debugging as the

norm. Besides being able to print and modify variables and structures, arbitrarily

call procedures in programs and set breakpoints, dbx also has a number of

advanced features. First, debugging can be carried out at assembler as well as

source level for finer control. Breakpoints can refer to conditions, for example

when variable a is equal to 10 in function mouseO stop execution. dbx also allows

debugging a program which starts multiple processes. Finally dbx can debug an

existing running program, not started under dbx, by `attaching' to it.

Programming environments 75

Overall dbx is an excellent line-oriented debugger useful for source-level

debugging regular characters as well as X-Windows programs.'

5.6.3 xde-the X-Windows debugging environment

X-Windows debugging environment (xde) is an X-Windows front end to the dbx

debugger already described. The intention is to provide a multiwindowed front

end to provide more effective debugging than under regular dbx. Figure 5.7

shows a typical xde session.

5.6.4 kdbg-the kernel debugger

The kernel debugger program helps locate errors in code running in the kernel.

One important practical use of the kernel debugger is to help IBM software

support resolve difficult AIX problems that you may have reported. In general, it

will be required to help debug IBM or a user developer's kernel code. Why would

an applications developer write kernel code? This may be part of a device driver,

perhaps to interface a custom MicroChannel card. Or kernel code may be
appropriate for some real-time software to avoid the context switch time of

moving from a user to a kernel process.
A systems programmer uses the kernel debugger to set program breakpoints or

to change processor memory and registers. Compare this with the crash program

which allows a user to look at these items but not change them.

Under AIX, kdbg must be built into /unix by using the bosboot -d hdiskO -a -I

command. After rebooting, the kernel debugger is made available, in fact AIX

will not boot to a login prompt without the user entering the go command at the

debugger prompt. Sensibly, AIX does not allow a systems programmer to enter

commands to the debugger on any high-function terminal console device. The

kernel debugger displays its output to and reads its input from an asynchronous

ASCII terminal attached to the planar serial port S1. It expects a fixed configura-

tion of 9600 baud, 8 bits and no parity.

Normally, a kernel programmer would set a static debug trap (SDT) instruction

at the code to be examined, or break into the debugger manually by pressing

CTRL + ALT + NUMPAD4 and set a breakpoint. To try this procedure, use

the ? command to display what help the debugger offers.

' Readers should perhaps also consider the gdb debugger available for AIX from Richard Stallman's
US Free Software Foundation.

76 Inside the IBM RISC System/6000

/* cbFile */

Widget w id

#ifdcf DEBUG

printf('Callback cbFilename invoked with ***,s*** data

#endif

#ifdef DEBUG
xprintf (t-p, FALSE): /* display selected filename

#endif

/* now destroy the Dialog box that gave us the name

Figure 5.7. A sample xde run.

5.6.5 Comparing debuggers

Of all the debugging facilities discussed I have to admit to being disappointed

with those on offer. This is in no way a criticism of AIX, but more a general

UNIX criticism.
With experience of PC-based platforms I realize how elementary UNIX debug-

ger technology is. Of all the debuggers, xde comes closest to IBM OS/2 cvw

(codeview) in terms of function, ease of use and reliability. But xde's

multiwindowed nature really requires a 19 inch or larger X-Windows screen

for effective use. This should be borne in mind when planning a development

environment.

Programming environments 77

5.7 Tracing

When developing an operating system it is common to implement a low-level

program tracing mechanism independent of any existing regular debugger or

kernel debugging mechanism. AIX, like other IBM products (OS/2 for example),

has a powerful, user-extensible trace facility that can be used as both a debugging

aid and a tuning tool. As shipped, AIX includes tracing code throughout every

kernel and program product. By turning on tracing, and selecting one or more

categories for recording, the systems adminstrator can understand how an applica-

tion interacts with AIX. An applications developer can add tracepoints into

applications, with application-specific categories.

Care was taken in the design and implementation of trace to make it as

noninvasive as possible so that switching on trace will not affect the performance

of typical program flow. (I measured the overhead of an active trace hook to be
about 15 microseconds.) Using trace is a two-part operation: collecting the data

and then analysing it. The complete process is shown in Fig. 5.8.

User
program

AIX

Trace hooks

Ll

Trace
program

I
Trace
driver

Figure 5.8. Trace collection and formatting.

5.7.1 Collecting trace data

Trace
format

file

Trace
formatter

Formatted

trace

file
Trace

log
file

Normally trace is started from the command line, the program of interest is run,
then trace stopped. For example:

$ trace -a ; start the trace

$ mycmd -argl -arg2 ; run command of interest

$ trcoff ; stop the trace

$ trcstop

78 Inside the IBM RISC System/6000

Initially the trace program saves the results into an 128 kb in memory buffer.

If this becomes full then a default log file is written to, usually /usr/adm/ras/

trcfile.

Before running the command , a user needs to edit the /etc/trcfmt file (or

specify options using the trace command itself) and uncomment the classes of

event that need to be traced . Uncommenting everything produces literally

thousands of lines of formatted information per second, so some discretion is

required.
There are alternative methods of starting the trace which include using the

trestart() subroutines within a program , though these have no advantages

over the method previously outlined.

ID PROCESS NAME-I ELAPSED_SEC DELTAMSEC

15B cp 0.23839842 24.409600

15B cp 0.00289384 13.433445

15B trestop 0.09958348 55.873436

15B trcstop 0.10498329 5.392358

15B trcstop 0.39504448 2.742352

Figure 5.9. Output from the trace command.

APPL SYSCALL KERNEL IRUPT

open /etc/trcfmt fd=3

open /tmp/mouse fd=4 RDONL

CREAT TRUNC mode=rw ---

open /usr/lpp/msg/En_UK/

cmdtrace.cat fd=5

open /usr/lpp/msg/En_UK/
lic.cat fd=6
open /tmp/lapin fd=7

5.7.2 Formatting a trace

Once the trace has been collected the trcrpt command formats the trace ready for

printing or viewing. The /etc/trcfmt file specifies formatting rules for each

event. Figure 5.9 is an example of a trace output.

5.7.3 Adding trace hooks

Adding trace hooks is simply a matter of placing macro statements in source

programs. If tracing is on, the macro writes a hook word (mandatory), 32-bit

timestamp (optional) and up to five 32-bit values to the trace file. If tracing is off,

the macro has no effect.

The format of the trace record is shown in Fig. 5.10. The corresponding

macros defined in <sys/trcmacros. h> (for timestamped events) are:

TRCHKLOT (HW)

TRCHKLOT (HW, D1)

Programming environments

12-bit
hook ID

4-bit
type

16-bit
data field

Dl Optional data word 1

D2 Optional data word 2

D3 Optional data word 3

D4 Optional data word 4

D5 Optional data word 5

Optional timestamp

Figure 5.10. The format of a trace record.

TRCHKL2T (HW, D1, D2)

TRCHKL3T (HW, D1, D2, D3)

TRCHKL4T (HW, Dl, D2, D3, D4)

TRCHKL5T (HW, D1, D2, D3, D4, D5)

79

The HW stands for the `hook word' and is usually an offset from the base

HKWD-USER defined in the file <sys/trchkid. h>. It is quite normal for a

single event ID to be used for an entire application; clearly for use within an

organization any event IDs may be used for testing. However, if an application is

shipped with tracing code (a good idea) then a hook word event ID should be

registered with IBM.

AIX also contains additional tracing tools. Here is a selection from an
extensive list:

traceson Turns tracing of a subsystem on. For example, to start tracing of the

SNA subsystem with the command traceson -1-d sna. The problem

is recreated with the tracing on, then turned off with the

complementary command tracesoff -s sna. Finally, the trace output

can be viewed with the command vi /var/sna/snalog.1.

iptrace Provides an interface level packet tracing for TCP/IP Internet

protocols. For example, to trace telnet traffic on a token ring LAN:

iptrace -i trO -p telnet /tmp/logfile.ip. Next, formatting the trace

ready for viewing: ipreport /tmp/logfile.ip > /tmp/logfilefmt.

trpt Performs protocol tracing on TCP sockets. The trpt command

queries the buffer for TCP trace records, which is created when a

socket is marked for debugging using setsockoptO . The trpt com-

mand prints out a description of these trace records.

80 Inside the IBM RISC System/6000

tprof Estimates where the processor spends its cycles of execution by
periodically sampling the profiled program 100 times a second.
Usage information can be generated on a global basis, for example,
time spent in the profiled program and any program or subroutine
referenced by that program. For more detail tprof will report
time spent within source lines of the profiled program.

6
End user interfaces

The X Window System is the de facto windowing environment under UNIX.'
AlXwindows is the graphical end user environment under AIX. AlXwindows,
however , provides much more than the traditional X-Windows windowing
system , OSF/Motif Window Manager and the IXI Desktop Manager combina-
tion . It includes capabilities to display concurrently Silicon Graphics GL, Display
PostScript , graPHIGS and PEX applications. And, of course , it provides program-

ming toolkits and libraries to write applications based on these interfaces. We
will start first by examining the history of X-Windows , then move on to
OSF/Motif and the Desktop Manager.

6.1 X-Windows and Motif

X-Windows began life as System W, a windowing system developed at Stanford

University. Bob Sheifier and Jim Gettys began development for the X-Windows

System at MIT in 1984 with Project Athena. Athena was a project mainly

sponsored by IBM and DEC.2 The first release of X-Windows was X10 , similar
to the Andrew Windowing system developed at Carnegie-Mellon University. X10

was originally developed for DEC VAX computers, and may have remained

relatively obscure had not Gettys and Sheifler ported it to a variety of Sun

workstations during their Christmas 1985 holidays.

From X10 came X11, making it a fully networked Windowing system using

TCP/IP (or Digital's DECnet) as the transport mechanism. At the time of

writing, the latest release of X-Windows is X11.5, a level which IBM has been

shipping since December 1992. Since 1988, the development of X-Windows has

been handed to the X Consortium. This is a nonprofit-making organization whose

members are most leading computer vendors and large corporate users. IBM is a

member of the X Consortium.

' The X Window System will be referred to by its more usual and readable name, X-Windows,
throughout this chapter.

: Many DEC employees were seconded to this project. Many of the research papers were therefore
written by DEC employees. IBM contributed AIX systems.

81

82 Inside the IBM RISC System16000

Large
minicomputer

Remote
application 1

Local
application

Figure 6.1. Running network programs.

application 2
Remote

Remote
application 3

Supercomputer
running UNIX

Remote AIX
workstation

server

A networked windowing system means being able to run programs on one

machine and display them on another. So at a local workstation a user can run

both local client programs and programs from remote systems. For example, in

Fig. 6.1 the X-Windows screen displays local programs as well as the output

from programs running on a personal computer, supercomputer and a large

minicomputer.
The development of a networked windowing system was only possible with the

prerequisite development of:

• Bit-mapped graphics screens with graphics hardware accelerators

• Mouse technology
• Local area network (LAN) technology to enable high-speed interworkstation

data highways
• Reliable high-speed protocols (TCP/IP and DECnet) to enable structured

communications across a LAN.

Even so, most other vendors chose to develop an integrated windowing system,

for example Microsoft Windows or IBM OS/2 Presentation Manager. Why is X-

Windows different, and how can it be networked? The answer is that X-Windows

is composed of three separate components, as shown in Fig. 6.2.

End user interfaces 83

System menu Minimize button

Client application

Figure 6.2. X-Windows architecture.

Maximize button

Border owned by
window manager

Resize handle

The X server The program that controls the display of the graphics

screen at which the user works. It interprets network

messages, for example to draw on screen graphics,
and acts on them. It passes keyboard and mouse
input events to the program that owns the window.

The X client The user's application program, for example, a

spreadsheet, database or office system program. This

application does not know that it is displaying its

output in a networked fashion.

The Window Manager A special client program that enables a user to move,

iconify and resize windows on the X server. In Fig. 6.2,

the Window Manager has surrounded the client appli-

cation with a border with a number of features. For

example, resize handles, maximize, minimize and

system menu buttons. In such interaction, communi-

cation is from the user to the Window Manager and

then to the user application. For example, in resizing

the size of the applications window, communication
is initially to the Window Manager which passes on

the request to the application. The Window Manager

can reject the request, for example, the user may

have previously indicated that the application should

not be smaller than a certain size, in which case the

request will not be passed on.

84 Inside the IBM RISC System/6000

6.1.1 Supplied utilities

Arguably the most useful client utility program supplied with AlXwindows is
aixterm, which is a terminal emulator for the X-Windows environment. Running

aixterm displays a rectangular window on the screen, which behaves like a
standard console display session to AIX. So the familiar command prompt ($) is
displayed and waits for the user's AIX commands to be entered.

With just aixterm and no specific X-Windows applications, a user can use

X-Windows as a way of viewing and executing multiple character-based appli-

cations on a single screen. aixterm is to X-Windows what the windowed DOS

prompt is to Microsoft Windows, or the windowed OS/2 session is to IBM OS/2

Presentation Manager. aixterm is based on the MIT sample program xterm,

but is enhanced to provide additional terminal emulations and also

internationalization.
AlXwindows also comes complete with a large set of sample X-Windows

games and utilities. It includes the entire OSF/Motif and UIL sample program

set. One of the first tasks an AIX systems administrator should perform after

installing AIX is to compile the sample programs. When compiled, these examples

will occupy about 20 Mb of space.

6.1.2 X-Windows security

Since the move to X-Windows version 11, release 4, X-Windows security has

been much improved. The key improvement is the use of the X-Windows Display

Management control protocol (XDMCP) and its associated cookie sample
program using the MIT-MAGIC-COOKIE-1. This replaces the now obsolete

xhost command which allowed any user on a named host to display programs on

an X-server screen. However, this was any user on the AIX system, enabling any

user on a given AIX system to start programs running on the X-Windows screen

of another user on the same system. The current magic cookie scheme actually

works well. While starting an X-Windows connection to an X-Windows display,

be it an X-station or console connection, the X-Windows Display Manager (see

Sec. 8.2.8) hands the X-server a hard-to-predict random number called a magic
cookie. Consider a single AIX system with two X-station users called Louie and

Douie. After Louie has logged on, a file in Louie's home directory called

. Xauthority is created. Any program that needs to display upon Louie's X-

server screen needs to pass the server Louie's magic cookie number. X-

Windows applications automatically reference the . Xauthority file and so
start correctly. If Douie wants to start an application running on Louie's

screen he needs access to Louie's . Xauthority file. For this to happen

Louie would have to make this file accessible to Douie explicitly, thus by

default Louie will be protected.

End user interfaces 85

6.1.3 Traditional character-based programming

Traditional UNIX character-based programming differs substantially from

AlXwindows graphical user interface (GUI) programming and this is often a

source of great confusion to programmers new to GUI environments.

The structure of a `regular' character-based program is called a straight-line

program. Such a program may typically display a menu, allow a user to select an

option and then act on the response. Complex applications have several menus

normally linked in a hierarchical fashion. Eventually the user selects a quit

option and the program terminates. In this scenario the program constrains the

user to a tight set of choices defined by the applications developer.

A GUI program works in a different way. Usually a window is generated with
a menu bar of options. A user selects options from the menu-bar by moving the
mouse pointer to the menu option and clicking on it. This reveals a pull-down list
of options. Here the user is driving the program, not the reverse. The internal
structure of such a program is internally more complex because the user can
select most options at any time.

The next difference the GUI programmer has to contend with is the change

from character-based to pixel-based coordinate systems. An ASCII terminal

normally displays 24 lines of 80 characters. X-Windows, however, deals with

pixels. Worse still, several different styles and sizes of font are available, and

fonts are usually proportionally spaced, so it is more difficult to know the width

and height in pixels which will be occupied by even a simple text string.

Traditional UNIX programs use a terminal-independent programming

interface called curses to display character, menus and line graphics on ASCII

screens. AIX of course provides curses via the terminfo terminal capability

database for character-based programming. But X-Windows deals only in pixels,

and even if an application deals only with character output it is up to the

applications developer to map the pixel coordinate system into one with lines of

characters.
Another change that confronts the potential X-Windows programmer is the

varying size of the program's display window (called the client area) which changes

as the user uses the OSF/Motif Window Manager to resize the window. X-

Windows responds by sending a message to an application indicating that the size

of its client area has changed, and the programmer's code must take appropriate

action. This may be to add scroll bars to the displayed area, or to adjust the size of

the displayed fonts so that the information still fits in the resized window.

Lastly, consider what happens when an application's window is iconified or

covered by another on screen window. What happens when that window is

uncovered? X-Windows sends the application a message indicating that a specified

region of the program's window needs repainting. The program must be able to

redraw the exposed region. That is to say, under X-Windows the programmer

must include code that is prepared to refresh any or all of an application's client

86 Inside the IBM RISC System/6000

User apps

UIL

I OSFIMotif

Xt Intrinsic

Xol

Xt+

X

)Gib

X protocol

X server

Heterogeneous network

Figure 6 .3. X-Windows programming interfaces.

view

NDE

NeWS

PostScript

X11/NeWS

area when requested. This implies that an intimate knowledge of the pixel

locations of all screen objects is required for each X-Windows screen panel.

All of these considerations make GUI programming an involved task. Depend-

ing on the programming interface, X-Windows may offer some degree of assistance

with the above challenges. Over the years, X-Windows has developed several
programming interfaces as shown in Fig. 6.3. The programming interfaces

supported by AIX are shaded in this figure and are now described in detail. For

completeness Fig. 6.3 also shows programming interfaces not supplied with AIX.

Components not available under AIX include the Sun-style components: the NDE

interface builder, the Network extensible Windowing System (NeWS), built upon

the Display PostScript protocol and the merged Sun X11 /NeWS display server.

6.1.4 The Xprotocol

The X protocol is the bottom protocol layer in the X-Windows system model. It

presents a set of primitives, for example, CreateWindow or GetKeyboardMapping.

These are used by all the higher X-Windows layers. The protocol specifies four

types of messages: requests, replies, events and errors. There are over 100

different protocol verbs.

6.1.5 Xlib programming

X library (Xlib) is the lowest available programming interface to AlXwindows.

The advantage of programming at this level is that Xlib software is compatible

across a vast range of machines. Any manufacturer that offers X-Windows, and

End user interfaces 87

either OSF/Motif or Open Look, must by definition offer the lower program-

ming layer Xlib. There have been very minor changes and extensions to the

Xlib programming interface between Xll release 3 and release 5 but these are

small compared to the differences at other API levels. There are over 200

function calls.

The best way to understand the level of programming is actually to look at a

simple working program, such as that shown in Fig. 6.4. This program simply

displays the message `hello world' on the screen in a window. When the mouse

button is clicked in the client area of the window the string changes to an

alternative greeting. This program demonstrates a number of important points

that are valid in the general AlXwindows programming environment:

Lines Description

1-75 Defines variables to the program and parses the command line entered

by the user.

76-81 Makes a network connection from this client program to the server

screen that the user is using. This is the only point where programmers

are explicitly aware that they are programming in a networked

environment.

95 Sets some global data that may be read by a participating Window

Manager program to decide where to place the program's window on

the screen. The Window Manager is at liberty to ignore these requests
however.

119 Once the program's window has been created and made visible, a
program enters the traditional Xlib event processing loop. This is a key
difference between traditional character-based programming and Xlib

programming. The program simply sits in a tight loop and looks for

three classes of events:

1 ButtonPress-according to the button pressed either change the
displayed string or exit.

2 ConfigureNotify-for a window size change, clear the window and

redisplay the `hello world' greeting centred in the window.

3 Expose-if the window is covered, then uncovered, redraw the text
on the window.

6.1.6 Widgets

To increase the speed of X-Windows' development MIT decided to provide a
higher level programming interface called widgets. A widget is, crudely speaking,
a subroutine that creates a user interface element, for example, a scrollbar, a
dialog box, or a pull-down menu. Instead of building the widget set directly on
top of Xlib, an intermediate library called the Xt intrinsics library was created.

88

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

Inside the IBM RISC System/6000

#include <Xll/Xlib.h> /* structure and C sub definitions */
#include <Xl1/Xutil.h> /* various Xll utility functions
#include <stdio.h> /* standard UNIX include file */
/* -- */

/* DEFINITIONS */

#define BORDER 1

#define HEIGHT 100
#define MAXLINE 132

#define STARTX 10 /* window start coord
#define STARTY 20

#define WIDTH 160

/* -- */

/* FUNCTION PROTOTYPES */

void DrawText();
/* --

/* GLOBALS
Bool bFirstTime = True;

{char* sent[] =

Hello World",

Bonjour le monde",

Hallo die Welt",

NULL

char

char

Display

GC

int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
Window
XColor
XEvent

XFontStruct

*string;

sFontName [MAXLINE];

*pDisplay;

gc;

nScreen;

ustringWidth;

ustringHeight;

uHeight = HEIGHT;

uLength;

uWidth = WIDTH;

window, winRoot;

foregroundColor, backgroundColor;

report;

*pFontlnfo = NULL;

int strindex = 0;

XSizeHints size;

/* ---------------------------------- */

void main (argc, argv)
int argc;
char **argv;
{

char
Colormap

*pDisplayName

cmap;

Font fontlD;

unsigned int uNewHeight;

unsigned int uNewWidth;

= NULL;

/* ------------ Parse command line width ---------------- */
if (argc >4)
{

(void) fprintf (stderr, "Syntax %s: %s width height\n",
argv[0], argv[0]);

Figure 6 .4. An elementary Xlib X-Windows program . Continues.

End user interfaces 89

58: (void) fprintf (stderr, "Syntax %s: width height are optional\n",
59: argv[0]);

60: exit (1);
61: }
62:
63: /* take window width from command line if specified

64: if (argc == 2)
65: uWidth = (unsigned int) atoi (argv[l]);
66: if (argc == 3)
67: {
68: uHeight = (unsigned int) atoi (argv[2]);
69: uWidth = (unsigned int) atoi (argv[l]);
70: }
71:

72: /* you change this next line if you want a non English greeting!

73: string = sent[0];

74:
75: --- Connect to X Server -

76: if ((pDisplay = XOpenDisplay (pDisplayName)) == NULL)

77: {

78: (void) fprintf (stderr , " %s: cannot connect to X server %s\n",
79: argv[0], XDisplayName (pDisplayName));

80: exit (2);
81: }
82:

83: nScreen = DefaultScreen (pDisplay); /* our screen number */

84: winRoot = XDefaultRootWindow (pDisplay); /* root window */

85: cmap = DefaultColormap (pDisplay , nScreen); /* default colormap

86:
87: /* ------------ Create top-level window ----- - *
88:
89: /* create a window with a black border and white background */

90: window = XCreateSimpleWindow (pDisplay , winRoot, STARTX, STARTY,

91: uWidth , uHeight , BORDER, BlackPixel (pDisplay , nScreen),

92: WhitePixel (pDisplay , nScreen));

93:
94: /* ---- Set hints to window manager - ------------

95: size.x = STARTX; /* set window manager hints */

96: size.y = STARTY;

97: size.width = uWidth;

98: size.height = uHeight;
99: size.flags = PSize PPosition;

100: XSetStandardProperties (pDisplay , window, argv [0], argv [0], None,

101: argv, argc, &size);

102: uLength = strlen (string) + 1; /* length of string to print */

103:
104: /* --- Setup Graphics Context ---------- --------
105: gc = DefaultGC (pDisplay , nScreen);
106:

107: strcpy (sFontName , " Rom10 . 500") ; /* font to display */

108: pFontlnfo = XLoadQueryFont (pDisplay , sFontName);

109: XSetFont (pDisplay , gc, pFontInfo -> fid);

110:

111: /* ------------ Select Input event types to monitor --------

112: XSelectlnput (pDisplay , window, StructureNotifyMask I

113: ExposureMask I ButtonPressMask);

114:
115: /* ---- Map Window ---------------------------
116: XMapWindow(pDisplay, window); /* make window visible */

Figure 6 .4. An elementary Xlib X-Windows program . Continues.

90 Inside the IBM RISC System/6000

117:
118: /* ------------ Event Loop ---------------------------

119: while (True)
120: {

121: XNextEvent (pDisplay, &report);

122: switch (report.type)
123: {
124:
125: case ButtonPress:
126: switch (report.xbutton.button)
127: {

128: case Buttonl:
129: if ((string = sent[++strindex]) NULL)
130: {

131: strindex = 0;
132: string = sent[0];
133: }

134: XClearWindow(pDisplay, window);
135: DrawText(argv);
136: break;
137:
138: case Button2:
139: XFreeFont(pDisplay, pFontlnfo);
140: XDestroyWindow(pDisplay, window);
141: exit(0);
142:
143: case Button3:
144: break;
145: }

146: break;
147:
148: case ConfigureNotify:
149: #ifdef DEBUG
150: printf("ConfigureNotify\n");
151: #endif
152: uNewHeight = report.xconfigure.height;
153: uNewWidth = report.xconfigure.width;
154: if ((uNewHeight != uHeight) II (uNewWidth uWidth))
155: {

156: uHeight = uNewHeight;
157: uWidth = uNewWidth;
158: XClearWindow(pDisplay, window);
159: DrawText(argv);
160: }

161 br ak:
162:

;e

163: case Expose: /* get rid of all other expose events
164: #ifdef DEBUG
165: printf("Expose\n");
166: #endif
167: while (XCheckTypedEvent(pDisplay, Expose, &report));
168: XClearWindow(pDisplay, window);
169: DrawText(argv);
170: break;
171 :
172: } /* switch */
173: } /* while
174: } /* main */

Figure 6.4. An elementary Xlib X-Windows program. Continues.

End user interfaces 91

176: void DrawText()

177: {
178: int n, nFontHeight, nLines, xpos, ypos;
179: short int ascent, descent;
180:
181: ascent = pFontInfo->max_bounds.ascent;
182: descent = pFontInfo->max_bounds.descent;
183: nFontHeight = ascent + descent;
184:
185: ustringWidth = XTextWidth(pFontlnfo, string, uLength);
186 :
187: nLines = uHeight / nFontHeight;

188: if (nLines == 0)
189: {

190: printf("Window too small to display any text\n");
191: return;
192: }

193:
194: xpos = (uWidth - ustringWidth) /2;

195: ypos = ascent;
196: for (n=0; n<nLines; n++)
197: {

198: XDrawString(pDisplay, window, gc, xpos, ypos, string, uLength);
199: ypos += nFontHeight;

200: }

201 :
202: } /* void DrawText */

203: 1 * ----------------------------------

Figure 6.4. An elementary Xlib X-Windows program. Concluded.

92 Inside the IBM RISC System/6000

The Xt toolkit instrinsics are used firstly by Widget writers to develop

their widget library and to a lesser extent by an applications developer. For

example, when OSF created MOTIF they used the Xt layer and the Xlib layer to

create the MOTIF widget layer. However, the applications programmer still

needs to access the Xt, Xlib and MOTIF layers to write a complete OSF/Motif

program.

Before the advent of the OSF/Motif widget library, vendors wrote their own.

Each vendor's widget library had a different programming interface and also a

different look and feel from the other. So for example, developers writing

applications to run on Hewlett-Packard and DEC platforms would use the H-P

or DEC widgets accordingly. IBM's RT PC system was shipped with the Athena

widgets which are the standard MIT widget library. Initially, Athena did not

include any graphics widgets but was otherwise quite capable.

The situation changed with the advent of OSF /Motif, which at last provided a
widget set that nearly all vendors were prepared to adopt as a standard.

6.1.7 OSF/Motif

OSF's first product (see Sec. 16.1.2) was OSF/Motif, a GUI interface for users of

X-Windows. As a result of OSF's vendor neutral selection process (see page 269),

MOTIF draws on GUI components from a number of vendors thus:

• Hewlett-Packard's 3D appearance

• Microsoft and IBM's look and feel

• DEC gadgets and user interface language (UIL)

• MIT based X-Windows and Xt Intrinsics

AlXwindows supplies the full MOTIF user interface package which contains
four main parts:

1 The style guide
2 The Motif Window Manager
3 The Motif programming toolkit

4 The user interface language (UIL)

The style guide describes how applications should be written . It describes the user
interface in terms of both appearance and user interaction . It is a guide for
application writers , for people writing extensions to the Motif toolkit and for
Window Manager writers . For all practical purposes the Motif style guide
conforms to the IBM systems application architecture, common user access

(CUA) definition. CUA is IBM's user interface standard for all new developments

on all micro -, mini- and mainframe computer platforms . Like the style guide,

CUA describes how applications should be written . For example, the style guide

recommends that an application should have a main window . The main window

should have a menu bar with a number of options . The help option , if present,

End user interfaces 93

should be placed on the right of the menu bar and be selected using the keyboard
accelerator ALT. + H.

The Motif Window Manager

The Motif Window Manager (mwm) is the default Window Manager under

AlXwindows. This is a particularly sophisticated product with many features.

First, it provides a Microsoft Windows (CUA) `look and feel' to existing

X-Windows applications by surrounding each client window with a border that

includes a system menu , minimize and maximize buttons and resizing borders. By

using the mouse the user can therefore change the size of an application window

or, using the system menu, move or dismiss the application.
A second important feature of the Motif Window Manager is the provision of

a keyboard interface to Window Manager functions. Thus a user who starts

AlXwindows without a mouse can still use an application using just the

keyboard.
The AlXwindows Motif Window Manager also provides a pop-up menu

system that is invoked when the mouse is clicked outside any application

window. This menu presents a list of programs that may be run, from which a

choice can be made.
The keyboard interface, the menuing system, and many other user preferences

are user customizable. This is another key difference between the configurable

architecture of X-Windows compared with the preset nature of, say, Microsoft

Windows.

Motif programming

Motif programming has the same aim as Xlib programming, that of producing

an X-Windows-based application. However, the higher level Motif toolkit is

designed to be easier to use and more productive than Xlib. The Motif toolkit

provides a library of 3D Motif widgets all consistent with each other, for

example, the main window, scrollbar and dialog widgets. By following the rules

outlined in the Motif style guide, Motif widget applications have a well-defined

`look and feel' which is immediately familiar to any existing user of MOTIF.

Additionally, since that look and feel conforms closely to SAA it will also be

familiar to Microsoft Windows and IBM OS/2 Presentation Manager users.
The best way to show the reduction in complexity of Motif programming over

Xlib is a simple example. The following program displays a pushbutton in a window

with a message. It is similar in output to the Xlib program shown before but much
simpler in concept. Fig. 6.5 shows how the program displays within AlXwindows.

Figure 6.6 (on page 95) is the source for the program. Notice how much

shorter it is than the equivalent Xlib X-Windows counterpart. Notice also how

the structure of the program has changed dramatically:

94 Inside the IBM RISC System/6000

hello

Welcome
To the World of Motif

Figure 6.5. Output from the simple Motif program.

1 X is now initialized using the XtInitializeO Xt intrinsics toolkit call. Already

we see that a Motif programmer needs to know not only Motif, but also the

Xt intrinsics programming layer! There are over 200 Motif-specific calls.

2 An argument array of properties is set and a pushbutton widget created with

these properties.

3 In line 30 the callback function cbCallbackO is associated with the created

pushbutton. When the user presses the pushbutton the function is called by

X-Windows.

4 The infinite while loop seen in Xlib is replaced by a call to XtMainLoop. This

automatically reads events from the queue and dispatches them to the correct

widget, in this case to the single pushbutton widget.

5 When the pushbutton is pressed the callback function is invoked which quits

the program.

If the user resizes the program's window, the text is automatically repositioned

and centred. If the user covers then uncovers the window, the text is automatically

repainted. For Motif, all text-based widgets are able to cope with exposure

events; most also handle resizing.

With Motif, programming is at a higher level than for Xlib or, for example,

End user interfaces 95

1 /* STANDARD EQUATES

2 #include <stdio.h>

3 #include <X11/Intrinsic.h>
4 #include <Xm/Xm.h>
5 #include <Xm/PushB.h>

6 /* --

7 /* FUNCTION PROTOTYPES */

8 void cbCallback O;
9 /* --
10
11 void main (unsigned int argc, char **argv)
12 (
13 XmString sButtonText;
14 widget widButton;
15 widget widRoot;
16
17 /* -------- Initialize Toolkit ---------------------------

18 widRoot = Xtlnitialize ("pbutton", "PButton", NULL, NULL, &argc, argv);

19

20 /* -------- Create compound string for the button text

21 sButtonText = XmStringLtoRCreate ("Push Here",

22 XmSTRING-DEFAULT-CHARSET)

23 /* -------- Create Button with Arguments ------------------

24 widButton = XmVaCreatePushButton (widRoot, "Pushbutton",

25 XmNlabelString, sButtonText,

26 XmNwidth, 200,

27 XmNheight, 200,

28 NULL);

29
30 XtAddCallback (widButton, XmNactivateCallback, cbCallback,"Button");
31 XtManageChild (widButton);
32 XmStringFree (sButtonText);

33

34 /* -------- Realize the widget and start mainloop -----------

35 XtRealizeWidget (widRoot);

36

37 XtMainLoop((;

38

39 } /* main
40 /* --
41 void cbCallback(wid, client_data, call_data)
42 Widget wid;
43 caddr_t client-data;
44 caddr_t call-data;
45 (
46 printf("Pushbutton was selected\n");
47 exit(0);
48 } /* cbCallback

Figure 6 . 6. A simple Motif program.

IBM OS /2 Presentation Manager or Microsoft Windows . These windowing

architectures make use of an explicit event-processing loop and a lesser concept

of widget object orientation.

96 Inside the IBM RISC System/6000

6.1.8 UIL

User interface language (UIL) is a high -level presentation language. UIL

originally comes from DEC-Windows , DEC's early implementation of X-

Windows.
UIL allows the applications developer to specify a list of widgets and their

characteristics in an ASCII file (. uil). A UIL compiler then takes this ASCII

definition and compresses it into a run -time binary file (. uid). As before, the

developer writes an OSF / Motif widget program but, instead of creating widgets

dynamically make a series of Mrm...0 calls to retrieve the widget hierarchy specified
in the UIL files. This may seem like extra work for the programmer , and the user is

left with two required binaries at run time instead of one . What are the advantages?

First , that the . u i 1 file stores the screen format , resources and messages for the

application . So if a screen 's panels size or attributes need to be changed all that is

required is a recompiled . u i l file and not a complete rebuild of the application.
Also, it is possible to have multiple-source UIL files. One would store the screen
design, and the other the internationalized strings used by different language

versions of the application.
Overall , UIL goes only part way to solving the fundamental problem of screen

design . None of the methods allow the developer to perform any sort of

interactive screen design of an application . This is a real shortfall for X-Windows

and MOTIF and is really only addressed by buying a separate component called

an interface builder.

6.1.9 The AIX Interface Composer

The AIX Interface Composer (AIC) is an interface builder. It is not part of

AlXwindows but a separate product. In fact, it is really the UIM/X interface

builder from Visual Edge Software Limited, specially packaged for the AIX

environment. This is a very flexible product and takes much of the pain out of

developing MOTIF applications. It provides improved productivity for both new

and experienced GUI developers.
The AIC first allows a developer to design an application's panels on screen

interactively. This is accomplished by a full-screen design tool that creates a top-

level shell widget and allows interactive placement of child and peer widgets. The

developer can use the property editor to edit widget resources. Next, the developer

uses the declaration editor to declare global variables and then the property editor

to add behaviour to the declared widgets.
At this point the visual interface is complete and the developer can select the

`test mode' to test the behaviour of the interface. The AIC includes a C

interpreter which can interactively test the visual interface of an application

together with developer-written program logic in C. Therefore, most aspects of

program development can be carried out from within the AIC en,, ironment.

End user interfaces 97

Once an application is developed it is saved as a project. The AIC offers a

flexible set of code generation options. With the Ux output option C code is

generated with calls to the Ux, Xt, Xlib and Xm (Motif) subroutine libraries. Ux

is the native AIC specific library. For portability, the Xt output option generates

C code using only the Xt, Xm and Xlib libraries. The AIC also supports the

import of UIL source files.

6.2 Silicon Graphics GL

AlXwindows provides the graphics library (GL) programming interface from

Silicon Graphics. This provides a simplified porting path enabling GL-based

applications to run in the X-Windows environment under AIX. In conjunction

with any RISC system 3D graphics adapter, GL can provide a high-performance,

high-function graphical interface for the 3D graphics applications developer. An

example of some of the facilities that are available include:

• Retained and nonretained mode interfaces
• Pick correlation-the ability to identify what object the user has clicked on or

near

• Gouraud and constant shading, anti-aliasing lines
• Hidden line surface removal
• Support for proportional fonts and also multibyte character sets

With the integrated AIXwindows interface it is possible to produce an integrated

OSF/Motif and GL application. X-Windows calls may be used to open a window

and drawn into using GL subroutine calls. This implies that X-Windows and GL

subroutines can be part of the same executable, which is not possible on many

other vendor systems.

6.3 Display PostScript

The Display PostScript (DPS) interpreter is an extension to the basic X-Windows

server program that the reader will recall drives the user's graphics screen, being

driven from commands sent from a client program. IBM extended the standard

X-server to include a PostScript level 13 interpreter. This ability is available only

on native AIX workstation X-Windows sessions, that is to say it is not available

on IBM X-stations for example.

The interpreter allows the definition of a DPS window to which PostScript

commands can be sent directly, enabling the same PostScript graphics to be used

for display and printing (upon a PostScript printer of course!). This is therefore

device and resolution independent. To write a device independent program, parts

of the X-Windows application are coded in PostScript. These wrap definitions

3 Adobe, the originator of PostScript, defines Levels 1 and 2.

98 Inside the IBM RISC System18000

Display PostScript wrap

PostScript wrap translator

C callable wrap

Display PostScript Jibs

Application C code

Compile

Link

Executable application

Figure 6.7. Using display PostScript in an X-Windows application.

and are translated to C language callable functions using the pswrap program.
The process is shown in Fig. 6.7.

6.4 graPHIGS and PEX

Although X-Windows is an industry standard end user interface, it starts to fall

short when the display of sophisticated 2D or 3D graphics images is required.

Recall that the lowest level of X is the X protocol and that this contains a

number of drawing and other commands to be sent from a program (the X
client) and performed at a workstation screen (X-server).

Even so, displaying 3D images is very graphics intensive and normally involves

representing the object under scrutiny by hundreds and probably thousands of

shaded triangles or simple polygons. Sending the drawing instructions to create

and move such an object simply takes too long; creating the image at the

workstation end and then sending it as a bitmap to the X-Windows screen would

take even longer since X-Windows sends each bitmap pixel by pixel.

A far better option is to identify the collections of drawn polygons as an object

and ask for operations on that object, e.g. rotation, enlargement, transformation.

Programmer's Hierarchical Interactive Graphics System (PHIGS) provides this

ability. IBM includes PHIGS support with AlXwindows with two components:
graPHIGS and PHIGS Extensions to X-Windows (PEX).

graPHIGS was IBM's first implementation of PHIGS, and predates PEX. It

includes the standard 2D graphics programming interface Graphical Kernel

System (GKS). Under graPHIGS, X is one of the many workstations supported

by the graPHIGS API. This implies that a graPHIGS application does not need

End user interfaces 99

to recognize that it is running within X-Windows, that is to say, it need not be
event driven in the X-Windows sense.

Currently, graPHIGS works best on a local workstation although graPHIGS
programs can be transmitted to a remote X-Windows server. A remote X-
Windows server, however, cannot display 3D capabilities because drawing instruc-
tions are converted to Xlib calls and sent to the remote X-Windows server. For
this reason remote performance will be very slow and perhaps unacceptable.

With the latest release of AlXwindows the preferred way to write and display
PHIGS applications is with PEX. Using PEX, an applications developer creates
and manipulates an object by calls to the PEX API to PHIGS. This is translated
down to an X protocol request and sent to the Xserver.

The X server on a workstation running AlXwindows has a special PEX
extension that enables it to recognize and act on these high-level commands.
PEX is MIT's PHIGS implementation and as such is a standardized and non-
proprietary protocol. This means that PEX is freely distributed with the X-
Windows system software. PEX therefore is not hardware vendor dependent and
supports mixed vendor environments. (The implementation of PEX specified by
MIT is an initial release and not complete. Some areas such as Z buffering and
lengthy operations have not been standardized yet.)

A graPHIGS application has to be ported to run under PEX. The porting

requires major recoding, although the logic of the program and the logical
structures in the graphics are the same. The calls are not portable and graPHIGS

calls need to be ported to PEX calls. Therefore, unless existing graPHIGS

applications are being enhanced, PHIGS applications should perhaps now be

written using PEX.

6.5 AlXwindows Desktop

AlXwindows Desktop is a port to AlXwindows of the X.desktop version 3, a

product from IXI Limited. IXI is a company founded by Ray Anderson, and is

based in Cambridge, England. AlXwindows Desktop provides an X-Windows,

graphical, and iconic view of files and programs on the filesystem. Fig. 6.8 shows

a sample of desktop session.

A user can run programs and carry out file management activities such as

deleting, copying, etc., without needing to know the AIX command language. At

the simplest level the AlXwindows Desktop provides the facilities of the Microsoft

Windows or the IBM Operating System/2 File Manager. The reason that

AlXwindows requires X.desktop is that the underlying windowing system X-

Windows has only a basic desktop metaphor. This is lacking in a number of

important respects and it is this shortfall which AlXwindows Desktop attempts

to make up. For example, using IBM OS/2 Presentation Manager version 2.1,

users may directly manipulate program icons on their desktops. Consider a

program that is represented as a printing icon. The user may drag an icon of a

100 Inside the IBM RISC System/6000

file Edit View Options

a

\D%

Figure 6.8. A typical AlXwindows Desktop.

I

Help

file and drop it on the printer icon. The printer icon is able to recognize this
action and print the file. Icon manipulation outside the AlXwindows desktop
window cannot be handled in this way and dropping the icon of an edited file on
top of another will have no effect!

6.5.1 Using the AlXwindows Desktop

The AlXwindows Desktop is started using the xdt3 command. The user is

presented with one or more OSF/Motif windows showing an iconic view of that

user's programs and files. The Desktop was written as a standard OSF/Motif 1.2

application and includes configurable menu bars, pull-down menus on all

windows and a single status line help at the bottom of each window. At the
simplest level a user can view and manipulate files: for example, opening two

directory windows from the Desktop and moving files from one directory to

another by first selecting the files with the mouse pointer, and then dragging the

selection to the destination window. This is known as direct manipulation.

Whereas the icons in X-Windows can only have two colours, a user can define

multicoloured icons to represent files or programs on the Desktop. An icon

editor is supplied for this purpose. By using a set of specification files based on

the extension name of the file, icons can automatically be recognized by type. For

example, C source programs can have their own special icon and are recognized

End user interfaces 101

because they have filenames ending with . c. The Desktop also supports

animated icons. For example, dropping a file onto the printer icon causes the file

to be printed. While printing, the printer icon shows a sheet of paper moving

through the printer.
The Desktop has a backdrop option, where it covers the background or

root window, allowing a user to work entirely from within Desktop. The

Desktop also provides a configurable help system. Aside from the status line at

the bottom of each Desktop window, the user may classify themselves as a

general, power or administrative user, receiving different levels of assistance

accordingly. The Desktop has links to InfoExplorer for full context-sensitive

hypertext help.

6.5.2 Programming AlXwindows Desktop

The Desktop includes a rule-based programming language called Deskshell. The

user or systems administrator can associate actions to icons. For example, an icon

named `compress' could be created and a set of rules written so that when a file

icon is dropped onto the compress icon, the initial file is replaced by a compressed

version of the file, generated by using the AIX compress program. Deskshell can

be described as the command interpreter for the Desktop. It provides the same

basic functions as the Bourne shell but with a simplified syntax and more

consistent semantics. Internally, Deskshell scripts execute as `threads' within the

AlXwindows Desktop process avoiding the cost of starting separate processes for

each task. IXI, who owns the Desktop product, has published the definition of its

drag-and-drop protocol as well as the source code for its drag-and-drop handlers

and donated its work to the X consortium in the hope that they can promote a

standard in this area.

6.6 Open Look and XView

AlXwindows is not supplied with XView or any Open Look tools or products

but an appreciation of Open Look is still very useful. The controversy over GUI

superiority and eventual dominance is not easily resolved, but an appreciation of

both the MOTIF and Open Look standards should enable the reader to at least

express a considered opinion.
In 1987, Jon Kannegaard, Tony Hober and user interface experts from Sun,

Xerox and AT&T began work on Open Look, a graphical user interface designed

by Sun for AT&T. Open Look is independent of hardware, operating systems,

and windowing systems. It standardizes the visual user interface but does not

specify the programming interface. Open Look is therefore a functional specifica-

tion, not a user interface with an assigned programming interface.

The designers of Open Look indicated that they wanted to create an open

standard that could be implemented across many vendor systems, including

102 Inside the IBM RISC System/6000

Title

Menu -
buttons

Application
area

or V Sentimental Education

File Edit

Resize
handle

T
A Vertical

scrollbar

V

` Edrtmg master rage 8

Status and message area

Figure 6.9. A top-level Open Look window.

Horizontal scrollbar

UNIX and non-UNIX platforms. A typical Open Look application has one main

window and several pop-up windows for manipulating data. Like OSF/Motif the

main window has some characteristic features. Figure 6.9 shows a typical top-
level window.

The UNIX world has traditionally strongly supported high-quality, public

domain software (for example X-Windows), and Sun decided to make their
implementation of Open Look for X-Windows called XView freely available. By
donating it to MIT, it is automatically packaged with MIT's X-Windows tape
containing the X-Windows server, sample clients and free widget sets. By making
XView public domain, Sun hoped to make XView the widget set of choice for
GUI developers.

XView comprises an X-Windows object-oriented set of packages. Internally,
XView is implemented directly on top of the Xlib and X protocol layers of

X-Windows. That is to say, it does not require the Xt toolkit layer used by most

other object-oriented widget sets. This makes the programming interface cleaner,

though different in some ways from most widget sets. Because the Xt toolkit
layer is required by some government customers, the Xol widget set and Xt +
intrinsics can be used as an alternative to the regular XView programming

interface. Sun designed the programming interface of XView (which you will

recall is not specified by Open Look) to be close to that of one of its former

End user interfaces 103

windowing systems called SunView. This allows previous SunView applications
to be ported to XView with minimal difficulty.

6.6.1 The future of Open Look

Open Look is a good product. Visually I do not see that it offers any advantages

over OSF/Motif but I admit that the XView programming interface to Open

Look is certainly cleaner than that of OSF/Motif. This is achieved, however, by

not implementing the Xt intrinsics compatibility layer, which makes it

nonstandard.

However as an applications developer I would prefer a single, common

programming interface to develop a GUI-based application. Consider the case of

the IBM CUA standard with which, for the most part, OSF/Motif is compliant.

To produce such a CUA standard program that looks and feels the same in OSF/

Motif, Microsoft Windows and IBM OS/2 Presentation Manager is certainly

possible. Unfortunately, programmers and designers would have to be familiar

with three totally different programming environments, which is extremely dif-

ficult. Open Look compounds this problem and provides the ability to produce

an Open Look application for a single hardware architecture in several different

ways. Programmers such as myself want both a programming and look and feel

standard, not just the latter.

In the summer of 1993 significant developments took place to rationalize GUI

standards under X-Windows. This was under the guise of the common open

software environment (COSE), described in more detail in Sec. 16.1.5.

6.7 Professional Graphics Tools

AlXwindows now includes a component called the Professional Graphics Tools

collection. This comprises three products, namely:

1 The AIX Computer Graphics Interface toolkit.

2 The Graphics File translator which allows computer graphics metafile (CGM)

files to be viewed, manipulated or output to a printer or plotter.

3 The Graphics Plotting system provides a programming interface to enable

programmers to create applications which display business graphics that can

be displayed on X-Windows or on a hard copy device.

6.7.1 The computer graphics interface toolkit

This is not part of AlXwindows but a separate program that provides an

applications developer with a set of primitives allowing C (or Fortran/Pascal)

programs to create device-independent graphics code. This provides a migration

path for users of the IBM RT PC system graphics development toolkit.

104 Inside the IBM RISC System/6000

IBM has extended Xlib with routines to allow device-independent graphics and

therefore to allow the developer to draw metafiles on the screen and then

translate them to another CGI device, such as a printer, automatically.

7
Information strategy

This chapter examines the IBM information strategy for the IBM RISC System/

6000 . Information strategy means a lot more than online help text available at
the touch of a button. It means giving full customer support on all aspects of

IBM's products . In addition , IBM is committed to providing relevant information

in paper and electronic form to enable customers to facilitate smooth implementa-

tion of their computer systems.
The IBM systems engineer has traditionally been responsible for making

customers fully aware of IBM 's products and services . In recent times, this has

been assisted by new methods of information retrieval and distribution. In fact,
IBM's overall position as an information provider has been greatly enhanced

through its sophisticated electronically based help system . For example , with the

purchase of an IBM RISC System / 6000 comes a complete package of information

called InfoExplorer. InfoExplorer is a hypertext help system with online copies of

IBM RISC system commands , user and programming manuals . We will look at

the principal features of InfoExplorer and then describe Info Crafter which allows

applications developers to create their own hypertext databases . An electronic

publications strategy is matched by an equally effective way for customers to

communicate with IBM. Electronic customer support (ECS) allows a customer

electronic access to IBM personnel and worldwide IBM databases . We will look

at what the customer stands to gain from ECS . For instance , how does ECS help

customers to run their businesses more effectively? Lastly, IBM offers a broad

range of training and customized education for the RISC system . We will look at

a range of solutions that IBM provides , from self-study education to bespoke,

onsite customer courses.

7.1 Documentation strategy

The new documentation strategy for the RISC system is very simple. All publica-

tions are shipped in the form of electronic books readable by the InfoExplorer

help system. The only exception to this environmentally friendly policy is a small

number of paper manuals shipped to enable basic hardware and software

105

106 Inside the IBM RISC System/6000

installation. To exploit this strategy fully a user needs a RISC system workstation

with local or LAN access to a database stored on a CD-ROM disk. The CD-

ROM version of the help system contains not just command-specific text but full

copies of RISC system publications including artwork. The CD-ROM is updated
quarterly.

Why is this the publications strategy for the IBM RISC System/6000? First,

the RISC system is designed to be a production UNIX system. Many RISC

system customers will be office professionals running standard applications. They

do not want to accommodate the approximately 12 feet plus of shelf space

required to hold the major publications for the RISC system. Users or administra-

tors of such systems can use the hypertext help systems for general-purpose help.

Applications developers have different requirements, but again there are clear

advantages in using an online command and programming reference. UNIX has

always been supplied with the traditional manual or man pages. AIX does not
have a duplicate man pages database but extracts the man information from

the InfoExplorer manuals for programming commands and subroutines and

displays it in the traditional format. As with man pages, InfoExplorer is accessible

from ASCII or X-Windows graphics terminals by any user. The electronic search

facility of InfoExplorer is much more comprehensive than a paper index. Even

with these and other advantages many developers still want some paper

documentation. Paper copies of online books are therefore available as a charge-

able item from the IBM Technical Publications department.

7.2 InfoExplorer

InfoExplorer is the hypertext help system supplied with the RISC system. Before
describing this in more detail let us review exactly what is hypertext. Within a
displayed article keywords are highlighted visually. By clicking the mouse pointer
on this text (or using the text cursor on ASCII screens) the document window

changes to information on the selected hypertext link. This new document can

have embedded links too and a user can follow links recursively as required.

InfoExplorer operates best under X-Windows and the rest of this discussion

concentrates on this version. Readers only familiar with InfoExplorer in an

ASCII environment are strongly encouraged to move up to X-Windows for all
of the following advantages.

As InfoExplorer loads a Welcome to InfoExplorer screen appears. As this logo
suggests, InfoExplorer is a product written by KnowledgeSet Corporation. The

main InfoExplorer screen is then displayed. At the bottom of this navigation
window (Fig. 7.1) is a set of 11 buttons which indicate the top-level functions

available to the user. Pressing one of these buttons replaces the information in

the navigation window with information on that topic, for example the list of

commands. Although the InfoExplorer application is surrounded by an OSF/

Motif Window Manager border, the reader should deduce from the style of the

Information strategy 107

info Help Load Save Delete Customize

- Task Index for IBM RISC System/6000

This index is designed to help you locate a specific piece of

information to do a task . Start by choosing one of the categories

below . Within each category you can make choices to hel narrow

your search . There is more information about the task index if

you would like to read it . If
y
ou are trying to et help for a

system message , go to Accessing Message Information

Everyday tasks

Communicating with other systems and users

Periodic and system management tasks

Communications system management tasks

Application and system programming

Installing software or hardware

Customizing RISC System /6000 Operations

Investigating system problems

Learning about Risc System 6000 concepts

List of Tasks List of Commands List of Book, Education

Path
List of List of

SearchHiato Bookmarks Notes Show

Figure 7.1. The navigation window.

buttons that InfoExplorer was not written using OSF /Motif. In fact it was

written using the IBM and Carnegie-Mellon developed , Andrew Toolkit (ATK)

widget library. This accounts for some slight differences in user interface

behaviour as compared to regular OSF/Motif applications.

7.2.1 Listing commands

The list of commands button leads to an alphabetical list of commands. This is

the preferred replacement to the traditional UNIX man command. Information

is presented on each command with the same sections as for the man command,

but with the advantage of hypertext links. Users can still use the man command

from a full screen or windowed character session, but it does not present as much

information as InfoExplorer.

108 Inside the IBM RISC System/8000

info Help

Query
Words must appear...

Find : PC Simulator
O Within article

^d mouse
O Within paragraph

And
i i i hi hProx m ty w t n paragrap

And Q Exact order

^d Q 1 - 10 words apart

Q 1 - 50 words apart

And

Q 1 - 100 words apart

And

Search Fields

O All fields

Search Categories Q Article text

Search in Databases O Current selection
Q Article titles

Select ...
0 Navigation Article

Q Titles and Headings
Q Current History

Q Open Articles Q Literals and Examples

Q Current Utility List Q Glossary

Enter Clear Qua Save Query Load Query Simple
Search

Cancel

Figure 7.2. The compound search window.

7.2.2 Searching for information

The search button allows a user to search part or all of the online databases for

one or more phrases. The compound search screen is shown in Fig. 7.2. This

shows how flexible the search can be, since it can be made for combination of

terms in a sentence, paragraph or in a complete document or book.

Figure 7.3 shows the results of a search on the words 'PC simulator' and
`mouse'. The result is an example of a reading window. InfoExplorer by default
allows only one reading window unless a user clicks on the hold button at the top

of the client area. This pins this reading window to the screen and InfoExplorer

automatically creates another reading window when presenting additional

information. Using this method a user can perform complex searches (or indeed

any InfoExplorer function) and pin a variety of related pages on an X-Windows

screen.

Information strategy

I

info Help Functions Customize

Mouse Emulation

Hide
Links

Hold Close

-mouse Port Specifies which serial port to present mouse

data and which method is used for mouse attachment.

The port variable can be either free mode or grab mode.
To specify free mode enter coral or oam2. To specify grab

mode enter comi or come . Free mode reports mouse motion and

the press /release action of the mouse button to the PC
Simulator session only while the AIXwindows pointer is inside

the PC Simulator window . Grab mode attaches the mouse

and does not release it until the mouse is detached by
holding down the center mouse button and clicking on the

left mouse button.

Note : The only difference in the free mode and grab mode
variable is that the C in co. is capitalized for grab

mode.

Extended Memory

-xemmory Integer Provides extended memory in the address range of

IN-byte to 15875M-byte. A integer value of up to 15232

in SK-byte units , can be specified.

Your system configuration and any processes running at the
same time can effect system performance when you specify

Note

1

Make

Figure 7.3. The results window.

Path

V Show

Bookmark

Make

109

7.2.3 Browsing a book

The list of books command presents a list of online AIX hardware and software

manuals that are available. Unless the online CD-ROM database is being

consulted this list will be almost empty. (In a network of AIX systems it is typical

for the entire contents of the CD-ROM to be copied onto the hard disk of a

dedicated help server RISC system. This requires about 200 Mb of space.

Since the access time to hard disk is considerably faster than for CD-ROM this is

the recommended configuration for a network help server.)

7.2.4 Retracing a path

InfoExplorer automatically keeps a record of the articles which have been

selected and viewed during that session. Users wishing to view information

110 Inside the IBM RISC System/6000

previously selected may retrace their paths using the history button at the bottom
of the navigation window.

7.2.5 Artwork

Articles can have links to other text or illustrations. Using the optional CD-

ROM, these artwork diagrams will be presented in the artwork window. Since the

diagrams are stored in a high-resolution graphics format they may be resized on

screen without loss of resolution and even printed, typically on a PostScript
printer.

7.2.6 Bookmarks and notes

The bookmarks function allows users to save the current state of information so

that they can retrace the set of articles that was being viewed and come back to it

at a later time. Bookmarks are often set to create learning paths for new users.

Individual bookmark lists may be constructed to guide new users through a

particular task. A bookmark is created simply by marking text and then selecting
the make button at the bottom of the reading window.

Additionally, InfoExplorer allows a user to create private and public notes

which add information to the InfoExplorer database. Since InfoExplorer uses an

encrypted and read-only set of files, these notes are in files in a writable /us r/
lpp/info directory.

7.2.7 Printing

InfoExplorer allows a user to print sections of articles of displayed help text.

Artwork too may be printed although usually only to a PostScript printer. It is

possible to print out an entire book by selecting the print references option while
browsing a book, though this option is not recommended, because much of the

formatting and all of the artwork and diagrams will not be printed, and the cost

of the manual from IBM publications is probably cheaper than using a local

printer.

7.3 InfoCrafter

InfoCrafter allows an information developer to create an InfoExplorer hypertext

help database. It does so with much less effort than if the developer had to design

their own system from scratch.

Traditional UNIX led the field early with the concept of the man online

documentation. This was of course a document with a number of well-known

Information strategy 111

ASCII tagged
file

Interleaf
DTP file

InfoCrafterk -

Other
.srf

Figure 7.4. Generating InfoExplorer files with InfoCrafter.

ROM
component

Key
component

sections, for example purpose, synopsis, description etc. The document was

usually written with the native UNIX typesetting utility nroff and formatted on

the fly for a user's ASCII terminal when required. Unfortunately the `early lead'

that UNIX systems showed with online help fell far behind in the age of

graphical user interfaces. Since X-Windows does not have a standard way of

displaying help text, InfoCrafter fills that gap. AIX is thus one UNIX system

that can compete against workstation operating systems such as Microsoft

Windows which have offered hypertext help for years now!

The fundamental process of converting a text to an InfoExplorer ready format is

shown in Fig. 7.4. To generate InfoExplorer documents, text is generated using

either Interleaf 5.0, Framemaker 3, maker interchange format (MIF) or any ASCII

text editor in the SGML tagged format. This is combined with artwork in Interleaf,

tagged image file format (TIFF) or computer graphics metafile formats. The icft

program takes these raw files and produces special . Sr f files. (Standard record

format (SRF) is a KnowledgeSet Corp. vendor format.) The separate preprocessed

files are then combined into a single database . s r f file and then into the traditional

pair of InfoExplorer database files. That is to say, a single databasename. rom

file containing the encrypted readable database, and a databasename. key

paired key file. Several databases (that is filename pairs) can be combined to

form a library.

Hypertext links are represented by anchors and targets. Each anchor, that is, a

source hypertext link, can have at most one target. Using Interleaf, anchors and

targets are represented by special index entries which are translated by the icft

program. Links may be from one position to another in the same article, from

one article to another in the same database, or from one database to another in

the same library.

7.3.1 Available CD-ROM databases

Aside from the CD-ROM containing the InfoExplorer hypertext help system,

112 Inside the IBM RISC System/6000

IBM also offers the Technical Library/6000.' This is a repository of

comprehensive AIX documentation and service/support information on CD-

ROM. Some examples of the contents of this library include: `How-to' items,

technical articles, sample programs, fix information on closed software problems

and InfoExplorer system documentation. The technical library is updated
quarterly.

7.4 BookManager

IBM vendor operating systems such as VM or MVS have traditionally provided a

`tag' and `format' based document preparation system. In this scheme of things a

document is prepared using a standard text editor. Text is `tagged' with formatting

codes, for example the code :p. for a paragraph, or :hl. for a Level 1 heading.

After tagging the text is input to a formatter and output to a suitable printer.

The original versions of this formatter were called script or generalized markup
language (GML), these have now been superseded by a product called
BookMaster. BookMaster provides a superset of script facilities and the product

is well suited to the production of entire publications (as opposed to short

documents). This book was originally produced as a manuscript using this

product. Within IBM, practically all publications are written using BookMaster.

IBM now provides an almost painless way to transform a document written in

BookMaster into a soft copy publication that may be viewed and browsed on
line. The result is BookManager. BookManager Read/6000 allows you to read

publications composed with BookMaster.2

BookManager provides hypertext links to information through user-selectable

cross-references found in tables of contents, indexes, lists, figures or glossaries.

Because information is presented electronically, BookManager is able to offer the

user sophisticated linguistic search capabilities which are considerably more

effective than for a paper publication. Lastly, as with InfoExplorer, users may

append margin notes to topics or lines in the soft copy book, or view the notes of

others.

For users with large libraries of documents written in BookMaster, or

BookManager versions of IBM publications, BookManager Read/6000 is a

powerful and cost-effective assistant.

At the time of writing this database was not available worldwide. Check with your IBM Marketing
Representative for details.

2 At the time of writing the RISC system product allows reading not composition of BookManager
documents . BookManager documents must be prepared using VM, MVS or OS /2 hosts.
Alternatively, a BookManager document can be created using WordPerfect or Microsoft Word as
input to IBM SAA BookManager BUILD/ 2 under DOS.

Information strategy 113

7.5 IBM information sources

One of the first things that any new IBM employee learns is that very probably

someone, somewhere, has already written a similar report, or carried out a similar

study to that about to be undertaken. Instead of repeating work that has already

been carried out it is more efficient to consult IBM's global database to make use

of existing information. To enable IBM customers to become more productive,

IBM makes a subset of this information available. Customers access this informa-

tion using electronic links to IBM.

The rest of this chapter details the major service offerings that IBM provides.

The list is not of course exhaustive, the message is that the reader should ask

their IBM marketing representative or value added reseller first. IBM often has

the service or can provide the information you need.

7.6 Electronic customer support

To improve its level of support to customers, IBM now makes available a

sophisticated electronic bulletin board service. In the United States and Canada

this is known as IBMLink. In other national areas it is known by other names,

for example in the United Kingdom it is called DIAL IBM. This section will refer

to facilities provided under the generic name-electronic customer support (ECS).

ECS benefits both the RISC system customer and IBM. The customer gains

free access to a 24-hours-a-day, 7-days-a-week link to one of the largest and most

sophisticated international databases. As will be demonstrated using actual

screen captures of it in action, the service enables a user to find out detailed

product specifications and pricing. It can determine the status of software orders

with IBM and even order publications, and has the capability in the future to be

used by customers even for software and hardware ordering.

In a real attempt to be open to the customer, ECS is in fact a subset of the

actual internal IBM information systems used by IBM worldwide marketing and

technical professionals. IBM gains when the customer uses the database facilities,

since customers' questions and answers are recorded in databases, which build up

a repository of useful information for future reference. ECS electronic mail

facilities enable IBM and customers to communicate efficiently. The ECS service

can be divided into five areas of operation:

• InfoLink-enquires of IBM hardware and software product information and

price databases. Uses electronic tools to build valid IBM RISC System/6000

configurations ready to order.
• Orderlink-enquires of the IBM hardware and software customer databases

for installed and ordered equipment.
• SupportLink-searches the international IBM database of questions and

answers of known technical bulletins or announcements.

114 Inside the IBM RISC System/6000

DIAL-IBM - A component of IBMLink

Enter a selection or any Fastpath Name (LOGOFF will exit DIAL-IBM)

1. PRODUCTS - Product, publications and education information

2. ORDERING - Prepare, submit or query an order

3. SUPPORT - Technical support for an IBM product

4. CONTACTIBM - Communicate with IBM other than to ORDER

5. NEWS - News and general information from IBM

6. USERTOOLS - Guidance and tools for the DIAL-IBM system

7. CONTENTS - List of applications available on Dial-IBM

8. EDITPERSONAL - Edit your own personal menu

PF 1=HELP

Figure 7.5. The ECS top- level signon screen.

• ServiceLink-communicates with IBM customer service to resolve software

and hardware problems. Allows for software test cases to be uploaded to

customer service and software fixes to be downloaded.

• UserLink-allows a user to send electronic mail to known IBM personnel.

The ECS main menu is shown in Fig. 7.5.

7.6.1 Configuring software

The software configurators are a set of programs written in the language APL

and they allow a user to generate an order for IBM software. Although the

example that follows focuses on AIX, as one would expect, any software product

from IBM DOS to IBM's mainframe operating system MVS can be configured

in this manner. In the following pages some intermediate screen captures are not

shown for brevity.
IBM allows the customer to order software in two ways (Fig. 7.6), through

either a full BASIC licence or a distributed systems licence option (DSLO). The

DSLO is a reduced cost option for customers on second and subsequent system

orders, and does not ship any documentation. For a RISC system of course this

does not have much effect since little paper documentation is shipped with a full

order. Notice that a valid customer and system number is usually entered. In this
way the internal IBM database containing current customer information is

consulted and helps to form a valid order. For example, consider trying to order

the 3D component of AlXwindows which provides GL and PEX programming

interfaces. The configurator could warn a user that base AlXwindows would also

be necessary if it detected that it was not currently ordered.

Information strategy 115

Customer Inventory Specification
EXEC

Specify desired licences for this configuration and the designated

customer system for which the selected software is to be ordered and

checked against and press Enter.

Prepare configuration for 1. BASIC licences

2. Derived licences (e.g. DSLO)

Customer inventory 1 1. Take customer inventory into account

(country, customer and system number needed)

2. Do not take customer inventory into account

Country 866

Customer number . 123456

System number . . FZP97 (leave blank if you want to select from list)

Force display of customer or system details : N (Y=Yes, N=No)

PF 1=HELP 2= 3=END 4= 5= 6=RETURN

PF 7= 8= 9= 10=EXEC 11=STEP 12=EXIT

Figure 7.6. Specifying customer details.

Language Selection

EXEC

Program 5750-AET RISC SYSTEM/6000

Confirm or correct the language selection and press Enter.

Type S=Select next to the desired language:

More:

S US English - German - French

Italian - Spanish - Norwegian - Bokmal
Swedish _ Hebrew _ Belgian Dutch
Arabic

Type DEFAULTS to view or change your language defaults

Invalid input. Select one of the listed language codes.

PF 1=HELP 2=CHANGE 3=END 4= 5= 6=RETURN

PF 7= 8= 9= 10=EXEC 11=STEP 12=EXIT

Figure 7.7. Selecting the primary language.

Once this panel is completed the user answers some more screens (not shown)
to select the particular version of the program to be configured.

Next the desired language needs to be specified (Fig. 7.7). An international

116 Inside the IBM RISC System/6000

customer may have RISC systems in many different locations, hence this panel

enables a truly international order to be built. The language code will, for

example, determine the language of any shipped installation and `readme'

instructions.
The next stage involves selecting the software components to be ordered (Fig.

7.8). Since the customer number was entered, notice that the orders database

recognizes that the base AIX system and some programs have already been

installed (marked with a `P' in the left-hand column). This order adds the

AlXwindows and PC/ AT simulator programs to the existing installation.

Now the software media is specified (Fig. 7.9). We chose 8 mm data cartridge

in this example.
To generate a configuration successfully, the configurator has determined that

it needs extra information from the user (Fig. 7.10). In particular whether the

DOS simulator will be used within X-Windows and whether DOS programs will

be run on the PC hardware simulator (of course-what else!). Using this informa-

tion the configurator realizes that this will require the customer to purchase the

IBM DOS operating system too. Therefore another screen (not shown) will ask

whether the customer wants to order IBM DOS also. The user can (I)gnore the

relation, indicating that they already have a spare copy of DOS that can be used,

or they can (R)emove the conflict by cancelling the order for the AT simulator.

The configurator will not proceed until the conflict is resolved. This shows the

ability of the configurator to suggest helpfully software that the user might not

have considered. Clearly both IBM and the customer would be embarrassed if

only part of the software needed for the job was ordered.

Next the size of the processor running the software is entered. Figure 7.11 is an

example for a RISC system model 560. The cost of IBM software varies

according to the size of the machine on which it is running. Additionally the

software may be purchased outright (a `one time charge'), or using a small

`initial' charge and a recurring `monthly' rental charge. If the customer's cash

flow could benefit from a series of monthly payments instead of an initial total

charge then the `monthly' payment option may be preferable. (Note that in some

countries the monthly rental may not be offered, the reader should check with

their IBM marketing representative.)
All questions are now answered, the program continues execution and produces

a report of all the software that needs to be ordered, software part numbers,

subpart numbers called `feature codes' and, most importantly, pricing informa-

tion. This is not shown here, since actual prices are liable to change and are

expressed in local currency.
Using the software configurator a valid and tailored software order is gener-

ated. The user can play what if games at any time and alter any of the input

options by pressing the change, function key 2. So for example, if at this late

stage the user remembers that they had also wanted to order the mainframe

communications program HCON, they would press the PF2 key and go back to

Information strategy 117

Component Selection
EXEC

Program 5750-AET RISC SYSTEM/6000

Type an action code next to the desired component(s) and press Enter.

Valid action codes : S=Select.

Possible indicators : S=Selected before, C=Custom built, P=Installed,

L=Language conflict. You cannot select components with code P and L.

Available Announced
Act Component description Rel. End date Rel. CA date

AIX V3 MUST BE SELECTED

P AIX V3.2.1 5756-030 02.01

P

P

P

P

S

S

P

S
P

PRELOAD

PRELOAD 02.01

MAINT. SUBSCRIPTION - ONE MUST BE SELECTED

MAINT: ON DEMAND ONLY 02.01

MAINT: AUTO SHIP NEW REL 02.01

MAINT: NEW REL AND PTFS 02.01

MAINT: NEW REL/PTFS URGENT 02.01

TOOLS TO MIGRATE FROM 3.1.5 TIL 3.2

TOOL TO MIGRATE FROM AIX 3.1.5 02.01

OPTIONAL COMPONENTS TO BE SELECTED

AIX V3.2.0 DES 5756-030

AIX V3.2.0 INFOEXP 5756-030

AIX V3.2.0 HANFS 5756-030

AIX V3.2.0 FDDI 5756-030

AIX V3.2.0 BLK. MPX. 5756-030

ESSL/6000 2.1.0 5765-042

PASCAL RUNTIME 1.1.1 5601-251

NETWORK MGT 1.2.0 5601-253

PASCAL COMP. 1.1.1 5601-254

3270 EMULAT. 1.2.0 5601-256

AIXWINDOWS

AIXWINDOWS 3D

COBOL COMPILER

COBOL RUNTIME

3270 HOST CON

PC/AT SIM.

SNA SERVICES

GRAPHIC TLKT

XSTATION MGR

INFOCRAFTER

NET WARE

ADA COMPILER

ADA RUNTIME

AIXW INTF COMP

GRAPHIC PLOT

GRAPHIC FT

FORTRAN COMP.

1.2.1 5601-257
1.2.0 5601-257
1.1.1 5601-258
1.1.1 5601-259
1.3.0 5601-260
1.2.0 5601-263
1.2.0 5601-287
1.2.0 5601-386
1.3.0 5601-457
1.1.0 5696-108
1.1.0 5696-236
1.3.0 5706-291
1.3.0 5706-294
1.1.0 5756-027
1.1.0 5765-004
1.1.0 5765-005
2.2.1 5765-018

02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01
02.01

FORTRAN RTE 2.2.1 5765-019 02.01

OPTIONAL DOCUMENTATION

AIXWINDOWS GRAPHIGS PUBS 02.01

AIXWINDOWS GKS PUBS 02.01

AIXWINDOWS PEX SI PUBS 02.01

ADD COPY OF CLIENT KIT 02.01

HEBREW AND ARABIC SUPPORT FROM APRIL 92

Figure 7 . 8. Selecting software components . Continues.

118 Inside the IBM RISC System/B000

SECONDARY LANGUAGE ARABIC 02.01

SECONDARY LANGUAGE HEBREW 02.01

SECONDARY

SECONDARY

LANGUAGE

LANGUAGE

SUPPORT

US ENGLISH 02.01

SECONDARY LANGUAGE FRENCH 02.01

SECONDARY LANGUAGE GERMAN 02.01

SECONDARY LANGUAGE SPANISH 02.01

SECONDARY LANGUAGE ITALIAN 02.01

SECONDARY LANGUAGE NORWEGIAN 02.01

SECONDARY LANGUAGE SWEDISH 02.01

SECONDARY LANGUAGE BELGIAN DUTCH 02.01

PF 1=HELP 2=CHANGE 3=END 4=TOP 5= 6=RETURN

PF 7=BACK 8= 9= 10=EXEC ll=STEP 12=EXIT

Figure 7. 8. Selecting software components . Concluded.

EXEC

Program

General Medium Selection

5750-AET RISC SYSTEM/6000

Confirm or correct the medium selection and press Enter.
Type S=Select next to the desired medium:

S 8mm Data Cartr 1/4" DC QIC120

More:

If one or more components of this program are not available on the
General Medium selected, you can specify an Individual Medium later.

Type DEFAULTS to view or change your medium defaults

PF 1=HELP 2=CHANGE 3=END 4=TOP 5= 6=RETURN

PF 7=BACK 8= 9= lO=EXEC 11=STEP 12=EXIT

Figure 7.9. Specifying output media.

the panel shown in Fig . 7.8 and enter an `S' in the HCON column then press the

PF 10 to re -execute the configurator . The customer can of course save the
configuration questions and answers in a named response file for later reference.

Information strategy 119

Technical Relations - Questions

EXEC

Program 5750-AET RISC SYSTEM/6000

The following selected program component has triggered (a) question(s).

Component : PC/AT SIM. 1.2.0 5601-263 02.01

Please resolve the question(s), type Y=Yes or N=No and press Enter.

Page _1 of 1
Question

y RUN AIX PC SIMULATOR/6000 WITHIN WINDOW?

y EXECUTING THE PC APPLICATION?

PF 1=HELP 2=CHANGE 3=END 4= 5= 6=RETURN

PF 7= 8= 9= 10=EXEC 11=STEP 12=EXIT

Figure 7.10. Software relations.

Terms and Condition Defaults

EXEC

Complete following fields and press Enter.

Save option 2 1.

2.

Keep across configuration

Keep for current configuration only

Machine type / model . . 7013 / 560 OR Processor group . .

More:

Preferred charge options:

(type 1,2,3 for priority) 1 Monthly (and Initial)

One Time Charge
Primary/Recurring

Offer upgrade possibilities for selection . . . N (Y=Yes, N=No)

Update marketing offerings defaults N (Y=Yes, N=No)

Machine type / model or processor group must be specified

PF 1=HELP 2=CHANGE 3=END 4= 5= 6=RETURN

PF 7= 8= 9= 10=EXEC 11=STEP 12=EXIT

Figure 7.11. Software terms and conditions.

If a customer, for example, performed the above configuration and was happy
with the result, they could send the configuration file electronically to the IBM
representative asking them to confirm that it was suitable. They could indicate
that if it was, the IBM representative should call on the customer's manager to

120 Inside the IBM RISC System/6000

discuss the upgrade, perhaps sending the manager an electronic note beforehand
to schedule the meeting. Of course, the IBM representative could be based in
London and the customer and manager in Kowloon but the mail system will
handle the routing automatically.

7.6.2 Configuring hardware

The easiest way to configure an IBM RISC System/6000 reliably is to use a
character-based program called the visual configurator. This DOS program, vc
was written by Jim Bishop of IBM Austin Development using object-oriented

Turbo Pascal. The program may be obtained from the IBM customer' s local IBM
marketing representative. Four principal windows are generated by the program:

• Physical layout of cards and disks in the machine

• Dollar priced output including hardware feature numbers
• Cabling information

• Configuration errors

vc has the advantage of being free, with the only pre-requisite a DOS personal
computer on which to run.

A more sophisticated way to configure hardware is to use the ECS hardware
configurator called CFRS6000, see Fig. 7.12. Again some screen captures have
been removed for brevity.

CFRS6000 (Execute)

7855) Set configurator default values for all products

DEFAULTS 0 Select default values to be CHANGED.

O=No change 1=Power(1-phase) 2=Power(3-phase)

3=Languages 4=Nomenclatures 9=All

Separate entries with blanks or slashes (/)
Press the HELP PF key for additional information.

The country default values are:

ORGANIZATION: EMEA

POWER: (1-PHASE) - 50HZ/240V

(3-PHASE) - 50HZ/415V

LANGUAGES: 1ST OPTION- ENGLISH (U.K.)

2ND OPTION- ENGLISH (U.K.)

NOMENCLATURES: 1ST OPTION- ENGLISH (U.K.)

2ND OPTION- ENGLISH (U.K.)

If zero is selected, country default values will be used. For all other
selections, a question will offer available values. U.S. English will
be configured if the selected language or nomenclatures are not
available on a particular device.

PF 2=EDIT 10 =EXEC 11 = STEP 12 =MGR

Figure 7.12. Country hardware defaults.

Information strategy 121

CFRS6000 (Execute)

5A)*
SEL

Type an 'X' in the SEL column to select a model

MACH.MOD STD.MEM MAX.MEM STD.DISK MAX.DISK SLOTS MHZ

1) _ 7013-52H 16 512 400 6000 8 25
2) _ 7013-53H 32 512 400 6000 8 33
3) _ 7013-550 64 512 800 6000 8 41
4) X 7013-560 64 512 800 6000 8 50
5) _ 7013-540 64 256 640 2571 8 30
6) _ 7016-730 16 512 355 2571 8 25

Press HELP PF KEY for field descriptions.

PF 1=HELP 2=EDIT 10 =EXEC 11 =STEP 12 =MGR

Figure 7.13. Selecting the hardware system.

After the initial application signon screen which allows the user to restore a
previously saved configuration, an initial series of screens need to be completed
to specify the user's environment. This includes information such as:

• Voltage and power requirements

• Country information

• Default cabling lengths

This flexibility enables international customers to configure systems for worldwide

use. These defaults determine the choice of keyboard, and national language

instructions.
The next stage is to select the type of IBM RISC System/6000 that is to be

ordered (screen not shown), that is a diskless workstation, desktop, deskside or

rack-mounted model. Based on the choice of deskside, Fig. 7.13 displays the

selected choice as model 560. At a glance the user can determine that this has 64

Mb standard memory, expandable to 512 Mb, is categorized as a high-perform-

ance machine and can have up to 6000 Mb hard disk (DASD) installed in the

system unit.
The aim of the hardware configurator is to generate a valid hardware order

based on the features and cards that the customer requires. As with the software

configurator the user can play a what-if game and rerun the configurator until a

suitable configuration is produced. This may be a configuration with the exact

features required, a configuration at a price that is within budget, or a configura-

tion that tests the ability to add a new card to the user's existing configuration

(for upgrade). This panel also shows that it is possible to configure older RISC

systems that are no longer marketed, for example, configuring a model 530 to

determine how to upgrade it to a model 560 class of machine.

The configurator contains a number of rules on the valid cards that can be

placed in each RISC system. The user can use this facility to see if a desired

configuration is possible.

122 Inside the IBM RISC System/6000

CFRS6000 (Execute)

*** Selections for attachment to the 7013 Model 560 ***
2102) (Enter 'X' beside one or more categories)

System Memory and SCSI Devices

MEMORY X Additional Memory

DASD _ Internal Fixed Disk Drives

INTERNAL X Internal Devices

Includes SCSI tape drives and other media.
EXTERNAL X External Devices

Includes 9333 and 9334 drawers, fixed disk
drives, tape drives, and other media.

CONT.CABLE _ SCSI I/O Controllers and Internal Cables

PF 2=EDIT 10 =EXEC 11 =STEP 12 =MGR

Figure 7.14. Selecting hardware devices.

Once the base model has been specified additional features may be added by

selecting one or more categories from Fig. 7.14. Figure 7.15 shows an example of

the selection of the internal and external devices categories. In Fig. 7.15 the user

has selected an internal 3.5 inch drive, CD-ROM and 8 mm tape drives. Also an
external 51 inch disk drive. The configurator checks all relations automatically,

so for example the external diskette drive could not be ordered without the

necessary cable.
For multiuser commercial systems it may not be necessary for users to work at

individual RISC systems, or using X-Windows terminals. The screen in Fig.
7.16 allows the user to configure ASCII terminal devices and other asynchronous
communications devices.

After this screen is completed the configurator checks and cross-checks the

configuration. An important part of the checking verifies that there are enough

slots in the machine for all the cards selected. The configurator makes this

decision based on the cards selected and using a screen (not shown) that allows
the user to reserve space for your own IBM or OEM vendor MicroChannel cards

for the RISC system.
Should an error occur the user is returned to it and is required to enter a

correction. If the user needs assistance at this, or indeed at any time, it is available
by pressing the function key Fl for context-sensitive help. When the configuration

is complete a series of output screens shows the precise cost of the total order

broken down by each part ordered, and the cost of maintenance. As before

this configuration may be saved or forwarded to interested parties for

comments.

Information strategy 123

CFRS6000 (Execute)

*** Selections for attachment to the 7013 Model 560 ***
2216A)* Internal Devices and Attachments

FEATURES QTY MAX DESCRIPTION

1) 9221 1_ 1 Standard 3.5-Inch Diskette Drive
2) 2600 1_ 1 Internal CD-ROM Drive
3) 6146 1_ 1 2.3 GB Internal 8mm Tape Drive

1) 4869-502 1_ 1 External 5.25-Inch 1.2 MB Diskette Drive
2) 7203-001 0_ External Portable Disk Drive
3) 7204-320 0_ External Disk Drive Model 320
4) 7207-001 0_ 150 MB External 1/4-Inch Cartridge Tape Drive
5) 7207-011 0_ 525 MB External 1/4-Inch Cartridge Tape Drive
6) 7208-001 0_ 2.3 GB External 8mm Tape Drive
7) 7210-001 0_ External CD-ROM Drive
8) 9348-012 0_ Magnetic Tape Unit (1/2-Inch 9-Track)
9) 9333-500 0_ 4 Deskside High-Performance Subsystem
10) 9334-500 0_ 3 Deskside Expansion Unit

1) 9220 1_ 1 Standard SCSI I/O Controller
2) 2615 1_ 1 External 5.25-Inch Diskette Drive Cable
3) 2835 0_ 4 SCSI External I/O Controller
4) 2915 0_ SCSI Controller Passthrough Terminator Cable
5) 2829 0_ 1 SCSI Internal I/O Controller
6) 2832 0_ SCSI Controller Cable
7) 3130 0_ SCSI Device-to-Device Cable
8) 6210 0_ 1 Disk Drive Subsystem Adapter

PF 1=HELP 2=EDIT 3=END 10=EXEC 11=STEP 12=MGR

Figure 7 . 15. Selecting input / output devices.

*** Selections for attachment to the 7013 Model 560 ***
2104) (Enter 'X' beside one or more categories)

Asynchronous Communications

ASCII

PRINTERS

PLOTTERS

DIGITIZERS

ASYNC.ADAPT

ASYNC.CABLE

ASCII Display

Printers

Plotters

Digitizers

Async Communication Adapters

Async Communication Cables

Stations (Terminals)

The adapter and cable selection screens will be presented automatically
if any async devices are ordered. Wide-area network adapters and cables
appear on a following menu. Categories that are pre-selected with N (if

any) are not available in your country.

PF 2=EDIT 10=EXEC 11=STEP 12=MGR

Figure 7 . 16. Completing a hardware configuration.

124 Inside the IBM RISC System/6000

Publication Enquiry System Main Menu

Type an option number , complete related fields as desired and press Enter.

Option 1 1. Free format search (also type search words)

2. Direct search (also type form number)

3. SLSS (also type product number)
4. Translation (also type form number)

5. Ordering information (also type form

number)

Search words aixwindows and aix

Form number

Product number -

For descriptive information; select the data base to be searched.
Data base 1 1. International 2. United Kingdom 3. Germany

4. Italy 5. Netherlands

PF 1=HELP 3=END 12 =EXIT

Figure 7.17. Searching for a publication.

7.6.3 Publications

IBM publications are shipped and sold by the IBM Technical Publications

Centre (TPC). Each country normally has a separate TPC, though actual publica-

tions are shipped from a centralized store. For example, in Europe all manuals

are shipped from Copenhagen. Anyone can have an account with TPC though

IBM customers automatically become account holders.

There are two ways of ordering AIX manuals, on a once-off basis and by
subscription. The latter means that TPC automatically ships updates (technical
newsletters) to any subscribed manuals.

The recommended procedure for ordering an IBM manual is thus:

1 Find the telephone number of the reader's country TPC. Contact the local

IBM marketing branch if unsure.
2 If the manual number, known as the form number, is unknown, use ECS to

find the correct manual and price.

3 Choose to order manual on subscription or on a once-off basis.

Figure 7.17 shows an example screen from the ECS publication support

system. The user selects the most appropriate search method from the five

Information strategy 125

Announcement Letters

Type your search words or dates and press the ENTER key. ENTER with no

search words or dates will list all documents added in the last month.

SEARCH WORDS AIX_AND_NCS

DATE FROM 910201

(Search words can be connected with 'and , 'or' etc.

Hit PF1=Help for more information.)

(documents added to database since yymmdd)

DATE UNTIL (documents added to database before yymmdd)

TITLE ONLY N y = search only the title of the document

n = search entire document
HITLIST SORT Y y = sort the hitlist by date

(Only first 800 hitlist documents will be sorted)

PF 1=HELP 3=END 8=NEXT 12=EXIT

Figure 7. 18. Searching for an announcement.

options. A variety of databases is available to international users. After the

search category is entered one or more document hits are displayed as one-line

title entries. In this example, there were 14 document hits. Further screens show

more detail such as the publication abstract and the publication price.

7.6.4 IBM products and services

Every time IBM announces an AIX product or service, IBM development

produces a customer document, called an announcement letter, describing the

offering. For large announcements this may be accompanied by a summary
overview announcement document. An IBM customer can use the announcement

letter to appreciate more fully the relevance of the announcement to their

business. For example, an announcement letter may specify a new hardware

product allowing cost-effective expansion of the customer's existing RISC system

installation. The letter includes hardware and software prerequisites and avail-

ability information.
Figure 7.18 shows a search for the announcement letters relating the network

computing system (NCS) and its availability under AIX. The results of this

search (not shown) found seven documents, including the one being searched for,

that of NCS under the mainframe AIX/ESA platform.

7.6.5 Technical queries

AIX, like any UNIX computer system, is a complex operating system. There

128 Inside the IBM RISC System/6000

Question and Answer Main Menu

Type an option number and press Enter.

also type search file or search words.

If you choose option 1 you must

1 1. Find an Answer / Ask a Question.
2. View and maintain your Questions.
3. Maintain your search files.
4. View Question and Answer Guide.

Search file

Search words AIX AND NCS

For HELP with searching, move cursor to Search words and press PF1.
Search words can be connected with AND (default), OR, etc.

Specify period OR date fields if you want to limit your search.
Period _ 0-99 DAYs
Start date DDMMYY

End date DDMMYY

PF 1=HELP 2= 3=END 4= 5= 6=

PF 7= 8= 9= 10= 11= 12=EXIT

Figure 7.19. Searching the answers database.

will be times when RISC system customers need technical help or configuration

assistance. The function of the AIX Support Centre is not only to support

hardware and software defects, but also to answer questions.

These questions and answers are stored in an online database and it is

usually more efficient for the customer to search this database directly for the

answer. For example, Fig. 7.19 is the panel from ECS, searching for informa-

tion on the NCS component of AIX. A list of documents containing these

keywords is displayed and may be browsed for the answer to the query. If no

answer can be found, a question may be entered into the database and this is

processed in turn by IBM staff at the AIX support centre, or, for more

challenging problems by the IBM Field or Technical Support Centre.

7.7 IBM training

To help users get the most from the RISC system, IBM offers five principal

sources of education. These are online electronic education, in-depth education

broadcast by satellite, learning centre courses, classroom courses and bespoke

education.

Information strategy 127

7.7.1 System-delivered education

Every AIX system is shipped with a set of hands-on training exercises as part of

InfoExplorer. The exercises are known collectively as InfoTrainer. These should

be the first point of reference for users new to AIX or to end user computing in

general. Here are some of the topics available:

• Working with AIX-a multistep course designed for users new to UNIX or AIX

• Using AlXdesktop-using the IXI X.desktop product

7.7.2 The field television network

Many larger IBM marketing and development locations participate in the IBM

field television network (FTN) programme. Each participating site receives a live

satellite transmission of a talk, usually presented by an IBM development group.

For example, in early 1992 there was an FTN programme regarding issues in

converting from the then current level of AIX version 3.1.5 to version 3.2.

Telephone links to the presenter allow two-way communication with the at-

tendees. IBM marketing staff are responsible for making known the dates and

venues of FTN sessions and distributing a paper copy of the foils shown to

interested parties. FTN sessions are free.

7.7.3 Learning Centre education

Most IBM marketing branches have dedicated self-study courses available to

customers which are performed in the IBM Learning Centre. Their courses

usually rely on multimedia and software simulation exercises.

7.7.4 Classroom courses

IBM has a number of internal education centres throughout the world that work

just to provide IBM internal and customer education. In the AIX world, many of

the courses originate from Dallas, Texas, and are then replicated and distributed

throughout the world. Some countries may be too small to have their own IBM

education facilities, in which case two options exist. If the customer has the IBM

AIX systems required, an IBM education professional can teach this course at

the customer site directly. Alternatively, students can journey to the most appropri-

ate IBM education location, for example, many customers of IBM Turkey use

IBM UK education for AIX.
For a listing of course times and prices IBM customers need to receive and

consult the IBM education catalogue, or preferably use ECS. Figure 7.20 shows

the online education catalogue search screen. In this example eight courses were

found that matched this description (screen not shown).

128 Inside the IBM RISC System16000

ECAT

Type your search words and press the ENTER key. ENTER with no

search words will list the last 40 documents added.

SEARCH WORDS AIX_AND_(_'TCP/IP'_OR_ADMINISTRATION_)

(Search words can be connected with 'and , or, etc.

Hit PF1=Help for more information.)

TITLE ONLY N y = search only the title of the document
n = search entire document

PF 1=HELP 3=END 12=EXIT

Figure 7.20. Searching for an education course.

7.7.5 Bespoke education

IBM offers customized courses to meet special customer requirements. An IBM

marketing representative usually calls to discuss these requirements and then

searches internationally for the most suitable people to deliver the education. At

the simplest level this can take the form of a one-company course. This is a

rework of an existing IBM classroom course taught at a customer site, for

example, systems administration, with the focus on high availability in the

financial dealing systems environment. Occasionally, there is no existing

classroom course which covers a customer's requirement so IBM will (for a fee)

design a completely new course. For example, IBM could work with your

computer staff to produce executive-level education aimed at showing the real

benefits of implementing a distributed UNIX workstation environment in your
organization.

8
New technology

The release of one vendor's technology is invariably superseded by a release from

another vendor claiming greater sophistication, speed and precision. This chapter

examines some of the high-technology components that establish the IBM RISC

System/6000 as state-of-the-art minicomputer system. If you have been in the

computing industry for more than a decade you probably recall the days of the

punched card and core memory; I am sure you will be impressed by the new

technology that we will discuss in this chapter. But if your first experience of

computers was the IBM PC or perhaps a UNIX workstation will you still be

impressed? I think so. A well-equipped IBM RISC System/6000 may well support

10 Gb of disk, have at least 256 Mb of memory, use several gigabytes of tape

storage and run several hundred times faster than the original IBM PC. This is

surely impressive!

We will examine some of the key technology changes that demonstrate the

technological leadership that IBM has employed with the IBM RISC System/

6000. The topics covered are:

The 9333 serial link disk drive

The IBM X-station 150

Diskless workstations

Optical disk and digital tape technology

MicroChannel

Optical networking

High-performance graphics

The POWER visualization system

Parallel processing

8.1 Serial link disk technology

The IBM 9333 serial link disk family allows the external expansion of disk

storage on an IBM RISC System/6000 to over 50000 Mb (50 Gb). Although the

9333 subsystem uses fewer MicroChannel slots or interconnecting cables it is

129

130 Inside the IBM RISC System/6000

IIIIIIIIIIIIIIIIIII ...
IIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIII

Figure 8 . 1. The deskside IBM 9333 model 500.

significantly faster and more reliable than previous disk technologies . (A discus-
sion of earlier hard disk interfaces is presented in Appendix 2. This includes a
discussion about SCSI , the entry level disk interface for the RISC system.)

Figure 8.1 shows 8 Gb of external storage housed by a single 9333-501

subsystem . Rack-mounted enclosures are available to store over 100 Gb of serial

link disk.

8.1.1 Connecting a serial link disk subsystem

Figure 8.2 shows how a serial link disk subsystem connects to a RISC system. A

MicroChannel adapter card plugs into any available MicroChannel slot on the

planar board. Each adapter card has four serial link sockets. Each socket

connects to a 9333 subsystem, and each subsystem contains up to 8 Gb of disk

storage (4, 2 Gb drives).
Within each subsystem each hard disk drive is housed in a removable (and

lockable) self-docking package. This allows for individual disks to be quickly

removed (without powering down) for security storage or replacement purposes.

The serial link disks may be attached to any model 300, 500 or 900 series RISC

system.

New technology 131

MicroChannel 9333
adapter card

11 C I

0I

Four deskside 9333 housings , each containing four 2.0 Gb drives
and a deskside subcontroller electronics board

Figure 8.2. Attaching the serial link disk subsystem.

8.1.2 What is serial link technology?

Serial link technology is simply the conversion of a set of parallel command and

data signals (found on other hard disk interfaces) into a serial data stream. This

is passed onto an 8 Mb per second full duplex interface from the RISC system

controller to the 9333 subsystem. Each link uses only five physical wires,

comprising two differential pairs and an earth wire. The AIX operating system

commands read and write data from system processor memory to the MicroChan-

ne19333 controller card. The data or control information (e.g. write block, select

drive) is serialized over the link. Each packet contains addressing information

allowing a single serial link to support concurrent operations of the four hard

disks it manages without any of the overheads for selection, disconnection or

reconnection.

The commands sent from the MicroChannel controller conform to the SCSI-2

(see Appendix 2) standard. The SCSI commands are passed from the serial link

to an inboard microprocessor controller card in the 9333 subsystem. From there

the command is passed to the correct serial link disk drive. It is important to

understand that a serial link disk drive does not understand SCSI commands,

though it is the same drive mechanism that is used in the SCSI bus interface

version of the drive.

8.1.3 Designing for performance

Performance of the 9333 easily meets and exceeds previous external disk technol-

ogies for the IBM AIX family of computers. A single 32-bit MicroChannel

adapter can control up to 4 disk subsystems, that is 16 drives. Oncard electronics

include an IBM RISC processor, 4 full duplex serial links and 32 DMA channels.

Because the card operates the data streaming mode of the MicroChannel, it can

132 Inside the IBM RISC System/6000

sustain a bus transfer rate of 28 Mb per second (per adapter) with a burst rate of
80 Mb per second in full MicroChannel BusMaster mode.

The hard disks used are high-performance 3.5 inch drives. The disks have a

latency of just 6 ms and an average seek time of only 11 ms. The drives are

capable of a maximum burst data transfer rate of 3 Mb per second and, when

used in this subsystem, are able to deliver a sustained average transfer rate of 2.1

Mb per second taking account of latency and other delays.

The read-ahead buffer

The 9333 subsystem contains its own controller which receives serialized SCSI
commands from the MicroChannel controller in the RISC system. The subsystem
controller contains a dedicated processor and over 1 Mb of track cache memory.
When data is read from a device, subsequent sectors to those requested are stored in a
read-ahead buffer. Subsequent sequential reads that request data can usually be
satisfied by returning data from this cache (a cache hit), cache data being transferred
at an average rate of 7.7 Mb per second (over three times the speed of the hard disk).

If a cache hit occurs as a result of a read ahead, the subsystem controller

automatically initiates a further device read ahead command to repopulate the cache.

Back-to-back reads and writes

Reads and writes for a contiguous set of blocks are aggregated wherever possible.

For example in Fig. 8.3 the multiple reads for sectors 10 to 35 are aggregated

into a single read as an extend order command and a single acknowledgement is

sent back to the MicroChannel controller.

Split reads and writes

The latency of a disk is the average time spent waiting to read or write the requested

data. Consider a hypothetical case, where a track on a hard disk contains 36 sectors

and a request is made to read sectors 10 to 30. If the disk head is positioned at sector

5 when the request is actioned then reading begins immediately when the disk head

passes over sector 10. However, if the disk head is currently over sector 14 then

traditional disk subsystems would wait nearly an entire rotation until the head is

over sector 10. Using the 9333 subsystem, however, in this example sectors 14 to 30

would be transferred immediately and then in the next revolution sectors 10 to 13.

8.1.4 Reliability

One of the key design goals of the 9333 subsystem was to maximize reliability.

This rationale is clearly supported by serial link technology because only five

wires (one serial link) are required to support four disk drives. Fewer wires

New technology 133

Back-to-back reads/writes

Operating system command 9333

9333
Write (10, 20) -+ 01 buffers

Write (20 30) -m- 02 T,

Write (30, 35) --m- 03
0

A k I d T _
c now a ge do write (10, 35)
(10-35) with extend order

Split reads/writes

Read (10, 30) -r

Figure 8.3. Maximizing disk performance.

Q +-- sectors (14, 30)

t sectors (10, 14)

means much greater reliability, so in a 64-drive configuration there are still a

sensible number of interconnects. Disks can be separated from the MicroChannel

controller by up to 10 metres.
Information is transmitted on the link in packets of 128 bytes. Should electrical

noise corrupt packet information, subsystem controller microcode automatically

retransmits packets without having to inform AIX or the user.
Media errors are reduced using error correction code (ECC) technology. Each

disk sector is accompanied by a six-byte ECC capable of correcting a double byte

error. Additionally, should sector framing information become corrupted, this is

automatically interpolated. For example, every sector has a sector preamble

containing the sector number. If the sector ID becomes corrupted, because the

sector CRC does not match, the controller will read the ID of the previous and

next sectors and determine the ID that way.

The subsystem uses sector reassignment to provide AIX with a disk that is

logically free of errors even though some sectors may be defective. Owing to the

nature of their manufacture, hard disk platters are not expected to be always

error free. Usually defective sectors are listed at the head of a hard disk or maybe

found during low-level formatting. In the 9333 subsystem one per cent of the disk

134 Inside the IBM RISC System/6000

sectors are allocated as spares at manufacture. They are allocated across the

surface of the disk so that in operation, should a sector become unrecoverable,

only a one sector time loss will occur in accessing the replacement sector.

8.2 The IBM X-station 150

Broadly speaking, an X-station is a graphics terminal that displays X-Windows

programs running on a remote computer system.

8.2.1 Running multiple clients

As explained in Chapter 6, X-Windows is a networked windowing system. This

enables an X-station to display multiple programs running on one or more RISC

systems. In fact, the X-station will display X-Windows programs running on any

remote TCP/IP connected system. This includes IBM mainframe computers

running VM or MVS and most other UNIX vendors' systems if they use

X-Windows.

8.2.2 X-stations vs. PCs vs. diskless workstations

It is important to understand the distinction between an X-station and a diskless
workstation . An X-station has a dedicated graphics processor enabling it to run

an X-Windows server program . The processor is used to display the program

running on a remote machine but not to run that program itself locally.
A diskless workstation is a machine with local computing capabilities , a screen

and an operating system . Such a workstation will typically provide an X server

display just like an X-station but also has the capability of running programs
locally. A diskless workstation is thus more expensive than an X-station.

A PC X-station is a computer, typically running the DOS or OS/2 operating

systems . To provide an X server display the PC runs an X server emulator
program, either on top of the native operating system or more usually integrat-
ing X-Windows into the native windowing system (for example , integrating

X-Windows into Microsoft Windows or IBM Operating System /2 Presentation

Manager). At first glance this would appear to be an ideal solution , that is, to be
able to run from a single PC, Microsoft Windows and X-Windows applications
and have them all appear together upon a single screen . However, there are

disadvantages:

• Poor graphics performance of PCs
• Limited support for 19 inch or larger screens

as well as advantages:

• Able to access native operating system
• Workstation useful when network down

New technology 135

Table 8.1. Choosing an X-station

Graphics Cost Applications processing

PC X-station low-med low-med No
X-station med-high low No
Diskless workstation med-high med Yes
Workstation med-high high Yes

A dedicated workstation is the ultimate platform to run and display X-Windows

programs. It does not have the complex boot requirements of a diskless work-

station and can operate standalone. However, a personal workstation requires the

personal systems management and maintenance not required for an X-station.

The characteristics of the various machines are summarized in Table 8.1.

8.2.3 When to choose an X-station

An X-station should be chosen for the user whose needs can be satisfied by
running remote X-Windows applications. Therefore users who need to transfer
data from other AIX or DOS systems on diskette would not be good candidate
X-stations users. The case for X-stations over ASCII or A1phaWindows terminals
is more difficult to argue, but as the desire to use a graphical end user interface
grows and the cost of X-stations falls, the gap is certainly narrowing.

8.2.4 Inside the X-station model 150

X-stations have been in production from IBM since 1990. Improvements and

enhancements have been made on IBM's earlier X-stations, models 120 and

130, resulting in model 150. The IBM X-station 150 is IBM's third-generation

X-station. The key asset of this X-station is not only performance, but also price

and flexibility in areas useful to the customer. In this discusssion the features and

facilities of model 150 will be compared against the earlier members of the IBM

X-station family to emphasize these points.

Using industry standard benchmarks, the IBM X-station 150 is now a fast

performer, functioning at over 115 000 Xstones on the Xbench benchmark test.

Figure 8.4 represents a schematic view of the X-station. The key to the
significantly higher performance of the IBM X-station 150 over earlier X-stations

is the use of a 64-bit reduced instruction set Motorola 88110 processor combined

with a high-performance planar.

System memory between 6 Mb and 22 Mb is used to run the X server.

Additional memory is used for backing store and save under areas. Two

megabytes of double-ported video memory is used to support displays with a

resolution up to 1280 pixels wide, by 1024 pixels high, with each pixel displaying

any one of 256 colours.

136 Inside the IBM RISC System/6000

2-6 Mb
writable

flash memory

6-22 Mb
X-server
DRAM
memory

IBM X-station 150
incorporating Motorola

88110 processor

Keyboard, mouse
4 serial ports
Parallel port
Thick and thin,
twisted-pair Ethernet

<- Token Ring (optional)

Figure 8.4. Inside the IBM X-station 150.

8.2.5 X-station networking

The initial IBM X-stations, models 120 and 130, were designed with integrated

Ethernet LAN adapters on the planar board with the option to support Token

Ring networking via the MicroChannel planar slot. This provided the flexibility

of sitting on two LAN networks concurrently. Unfortunately, this option was

not cost-effective in terms of design and packaging costs and was rarely used.

Therefore the IBM X-station 150 has rationalized networking support. It now

provides either Ethernet or Token Ring network support. The Ethernet support

provided is IEEE 802.3 or Ethernet version 2. The IBM X-station 150 does not

have a MicroChannel bus. In addition to the four serial ports, a single Centronics

parallel port is provided. AIX supports the IBM X-station using the Xstation

Manager program and, using this software, AIX printer and plotter queues may

be defined to any RISC systems that are physically rerouted to the printer or

plotter connected to the X-station.

8.2.6 Attaching screens

The IBM X-station model 130 provided an impressive list of supported screens,

from interlaced PS/2 style screens to large workstation noninterlaced displays.

Table 8.2 summarizes the characteristics of many IBM screens. The IBM

X-station 150 supports any screen capable of displaying 1024 x 768 pixels or

greater operating in a noninterlaced display mode.'

' Interlaced displays take two passes to draw a screen image. In each pass they fill in every alternate
line. For example, scan lines 1, 3, 5, ... on the first pass, and 2, 4, 6, ... on the second. This can
give rise to more perceived flicker than for noninterlaced displays, hence the preference for the
latter.

New technology 137

Table 8.2. IBM graphics screens

Model Type Resolution Noninterlaced

1091-051 16" Colour 1280 x 1024 Y
6091-16 16" Colour 1280 x 1024 Y
6091-19i 19" Colour 1280 x 1024 Y
6091-23 23" Colour 1280 x 1024 Y
8503 12" Greyscale 640 x 480 N
8507 19" Greyscale 1024 x 768 N
8508 19" Greyscale 1280 x 1024 Y
8512 14" Colour 640 x 480 N
8514 16" Colour 1024 x 768 N
8518 12" Colour 640 x 480 N
9515 14" Colour 1024 x 768 N
9517 17" Colour 1024 x 768 Y
9518 14" Colour 640 x 480 N

The reduction in flexibility is to support only those screens useful to the

workstation user. The IBM X-station 150 supports large graphics screens only;

this results from the (im)practicalities of using a 640 x 480 pixel screen under

X-Windows which is so small as to be quite frustrating. The support for only

noninterlaced displays is also in line with the move to comply with the ISO 9241

ergonomic standard.

8.2.7 Booting the IBM X-station 150

When the IBM X-station 150 is powered on for the first time, it does not know

its Internet address for TCP/IP communications, nor the address of the machine

from where a login window will be displayed. Yet it needs both these items to be

able to display X-Windows programs. Let us take a closer look at the boot

process. It follows this sequence of events:

1 Power on the IBM X-station 150.

2 Execute diagnostics.
3 Request Internet addresses of host and self.
4 Start X-Windows server contained in flash memory.
5 Wait for host to start up log in window.

When the IBM X-station 150 is powered on it executes a power-on self-test

(POST) which verifies that all the installed memory (up to 22 Mb) is working

correctly.
Next a progress screen appears.2 This shows the progress of an X-station

booting request specified by the TCP/IP protocol BOOTP. BOOTP enables the

X-station to determine the primary host's network address, its own network

2 The IBM X-station 150 can also operate over a dedicated serial line using the Serial Line Interface
Protocol (SLIP).

138 Inside the IBM RISC System/6000

address and the gateway address if any. On second and subsequent boots the
X-station knows the host network Internet number because it is saved in flash

memory . If this fails , or if this is the first ever X-station boot , then a broadcast

BOOTP will be attempted again . Now the X-station knows the Internet address

of the host it can communicate with it using the TCP / IP networking support

stored in flash memory.
Also stored in flash memory is the X server . The IBM X-station 150 is the first

IBM X-station to store the X server locally in this manner. Models 120 and 130

had used a version of the TCP / IP trivial file transfer program (tftp) stored in a

local ROM to retrieve the X server from the AIX host and store it in volatile

X-station DRAM memory . However this was not a good idea for the following

reasons:

• It precluded customers who did not have AIX from purchasing the X-station

since the X-station needed to download the X server to boot.

• Each time the X-station was powered on it had to download the X server

again, which was unnecessary.
• At times when large communities of users began to power up their

X-stations, perhaps at the beginning of the day, or after a power failure,

significant network X server download traffic was created. This could lead to

erratic response times for the user which did not create a very favourable

impression.

8.2.8 X-Windows display management

When an ASCII, serial port attached terminal is defined, AIX initiates the gettyO

process to look for activity on each terminal port. In the X-Windows world the

equivalent program is called xdm (X-Windows Display Manager). xdm needs to

run on at least one AIX system in a network to which the X-station is connected.

The objective is for the X-station to receive a login window on its X server

screen; this login window is produced from an xdm program running on a RISC

system and from then on the user is able to log on. The sequence of events is as

follows.
For the process to work, at least one AIX system is running the XDM daemon

waiting for requests, and the X-station has successfully booted its X server from

this or any other AIX server. The X-station sends out a broadcast request to the

network using the X display manager control protocol (XDMCP). At this point

all interested hosts return a willing response. If more than one response is

returned, the X-station displays a list of hosts and the user chooses from the list.

That host is then sent a request packet to indicate that a conversation is desired.

xdm receives the request packet and needs to send back to the X-station either an

accept or a decline packet. One reason for the latter is that the system may not be

able to cope with any new logins. Otherwise, the X-station receives an accept

New technology 139

packet and in response the X-station sends back a manage request. When xdm

receives the manage request it switches from the XDMCP protocol to the X

protocol and attempts to use the Xlib programming call XOpenDisplayO to
connect to the X-station's X server and open a window, usually with the request

to enter a login name and password. The user answers the prompts and thence

logs in.
One last point is that normally xdm checks that the X-station is alive every

couple of seconds by issuing an XSyncO call to the terminal. Additionally, the

X-station sends keepalive XDMCP requests to xdm to indicate that it has not

hung. This enables an AIX host to terminate session programs if an X-station

fails.

8.2.9 The Alpha Windows terminal

Positioned midway between a traditional ASCII terminal and an X-station is the

AlphaWindows terminal. This terminal enables a user to display up to six

character-based sessions running on an AIX host. Like a traditional ASCII

terminal it displays character-based sessions and communicates to the RISC

system using a serial interface. But like an X-station it supports a colour screen

and a mouse, and enables the user to display and interact with multiple terminal

sessions. In fact, the AlphaWindows terminal has many components in common

with an IBM PS/2, including its IBM PS/2 8518 colour display, its IBM PS/2

keyboard and its two-button IBM PS/2 mouse. Software support for the

AlphaWindows terminal is via JSB Multiview Mascot, the product that

multiplexes the concurrent terminal sessions and displays them in movable and

sizable windows on the terminal screen.

The AlphaWindows terminal is a low-cost alternative to the X-station for users

who require concurrent, windowed terminal sessions which are character-based

only.

8.3 IBM diskless workstations

The traditional diskless workstation is a computer without a hard disk drive that

loads its operating system from a LAN server computer and has a filesystem on

that or another remote server. Other than that it behaves as a typical personal

workstation and, using X-Windows, it is able to display local and remote

programs. The concept of diskless workstations is not new; Sun Microsystems,

the pioneers and leaders in that field, have had diskless workstation technology

for years. So why include it in this chapter on new technology?

From an IBM viewpoint, diskless workstation technology is new. Though the

concept is well understood, until recently within IBM the idea of the diskless

workstation has not been popular. The IBM RISC System/6000 model 220

represents IBM's first diskless AIX workstation, announced in early 1992, about

140 Inside the IBM RISC Systemt0000

two years after the very first IBM RISC System/6000 announcement.3 A diskless

workstation is, however, a sensible idea. The dedicated RISC system processor

gives the user good applications performance, providing the workstation has

enough local workstation memory to avoid having to perform paging across the

network. As a diskless workstation, all filesystem backup and maintenance is

handled by the systems administrator who maintains the IBM RISC System/6000

server. Also, since the workstation has no moving parts (save possibly a cooling

fan and the keyboard) it should be very reliable and quiet. The rest of this section

describes model 220 in more detail.
Operationally, the IBM RISC System/6000 model 220 can operate in one of

three modes:

• As a workstation it behaves as a standalone, entry-level computer system. It

runs and displays programs locally. It is distinct from the IBM X-station 150

which, although it has two onboard processors, only uses them to display

programs running on machines elsewhere in the network.

• As a diskless workstation it can behave as a workstation with no disk

drive. Boot images, paging space and all filesystems reside on one or more

remote servers. Programs run locally and display locally or remotely using

X-Windows.

• As a dataless workstation it is a machine with both local and remote file
systems. The local disk may be used for boot images, paging and some local
filesystems, relieving the burden placed on remote server machines. However,
a dataless workstation cannot boot without the help of one or more remote
servers and is thus not a true workstation.

Model 220 is the diskless workstation in the IBM RISC System/6000 family or, if

configured with floppy and hard disk drives, an entry-level traditional

workstation.

8.3.1 Model 220 hardware specifications

Model 220 represents a significant advance in RISC system technology. It uses

the first single-chip implementation of the RISC system POWER architecture

which, as we saw in Chapter 4, was based on a three-processor design on three

separate chips. This POWER architecture processor is implemented in CMOS

technology and runs at a clock rate of 33 MHz. The processor has a combined 8

kb data and instruction cache. In order to produce this single-chip POWER

implementation certain other compromises were necessary. For example, certain

instruction times are extended: the multiply and add instruction executes in two

cycles on this processor, compared with a single cycle for the three-chip

3 IBM has had a range of diskless PC products that can boot IBM DOS or IBM Operating System/2
from a remote server , but not AIX, until now.

New technology 141

processor implementation. As a result of this, model 220 achieves a performance

of 16.3 SPECint92 and 26.7 SPECfp92. (See Sec. 16.5.1 for more performance

details.)

The planar board includes all of the following components:

• IBM PS/2 keyboard port

• Mouse port

• SCSI disk interface
• Thick Ethernet LAN
• Parallel port
• Two serial ports
• Graphics tablet input port

NVRAM
• Eight single inline memory module (SIMM) system memory slots

• Video RAM slots

• Video graphics slot
• Two MicroChannel bus slots

Memory is installed in pairs of IBM PS /2, 85 nanosecond memory SIMMs. The

choice of this technology allows the customer to expand the default 8 Mb

configuration to the maximum of 64 Mb memory inexpensively, using the 8

available SIMM slots. There is room for a single 3.5 inch hard diskette drive and

therefore up to a 2 Gb hard disk drive may be installed. In addition, a single 2.88

Mb, 3.5 inch floppy drive can also be accommodated.

The 1/0 bus is MicroChannel, as with the rest of the RISC system family.

However, because of space limitations inside the 16 inch square case, only the

smaller IBM PS/2, type 3 cards can be accommodated.

A special slot on the planar board allows the addition of an entry-level

graphics card called the Gtl that will drive any noninterlaced monitor from 1024

x 768 pixels to 1280 x 1024 pixels in size . The list of attachable screens is

therefore a subset shown in Table 8. 2 (see page 137). Like the X-stations, models
120 and 130, video RAM may be plugged into the planar board to take the

default mono screen output (1 bit per pixel) right up to 8 bits per pixel for a 256

colours per pixel display. The performance of this graphics card is good, being

driven directly from the RISC system processor, achieving performance of 50K

characters per second, 184K vectors per second. Customers can achieve higher

graphics performance by installing a standard Gt3i graphics card in a MicroChan-

nel I/O bus slot.

8.3.2 Model 220 software support

AIX 3.2 or later supports diskless workstations such as the IBM RISC System/

6000 model 220 or the Sun Sparcstation 2. On a server AIX system is a set of

directories under /export called the shared product object tree (SPOT), that

142 Inside the IBM RISC System/B000

F
dump

RiscAIX3.2

exec

OEM

home

/export
root

r share

swap

Figure 8 . 5. A shared project object tree.

maintains the necessary files for each diskless workstation. A typical SPOT is

shown in Fig. 8.5.
The /export directory is used as a common point for systems administrators

to set up the directory tree for their diskless clients. A diskless server can export
six kinds of disk space:

/export/exec This contains directories that each client mounts

over its own /usr directory. If all diskless work

stations are AIX then some simplification of

/export/exec is possible. Additional savings can

be made if the diskless AIX workstation simply

mounts a server's filesystem (for example /usr)

instead of allocating a SPOT resource for it.

/export/swap For a diskless client the paging space is located as a

file, named after the client's host name, in /export/

swap on the server.
/export/share This contains data that can be shared across AIX

architectures.

/export/home This contains user directories grouped by client host

names.
/export/root This contains the root directories for diskless clients.

Each diskless workstation must have its own copy of

the root file tree, it cannot be shared among

machines.
/export/dump Where a diskless workstation will dump to in the

case of an operating system error.

The boot process for model 220 is similar to the IBM X-station 150 except that

instead of loading a local X server from flash memory, the RISC system model

220 must use the trivial file transfer program to download a bootfile into its

memory. This contains a network bootstrap that then requests the full AIX

operating system from an AIX host. Once the workstation boots the AIX kernel

it follows a boot process similar to a regular IBM RISC System/6000. That is to

say, it configures devices using the cfgmgr command, varies on the root volume

New technology 143

group, paging space and merges the temporary RAM filesystem with the remote

NFS shared client's root directory. The init process executes the inittab file

and allows the user to log in.

It is worth noting however that the model 220 read-only storage (ROS) which

begins the boot process is an enhanced version of that found on the rest of the

original RISC system family. Extra code in this ROS allows for diskless boot,

and in fact this updated ROS is also present in the later members of the RISC

system family, namely models 340 to 375. This means that although models 340

to 375 are normally operated as standalone or network-connected workstations,

they may also be configured to use a remote SPOT for dump /usr/share

filesystems as necessary. This configuration can save disk space on these worksta-

tions and leave more room for applications and user data. It is especially

beneficial if users spend most of their time in locally resident applications, not

using system applications on the shared /us r.

8.4 Optical disk and digital tape technology

These two peripheral categories complement the high-capacity disk subsystems

already described.

8.4.1 The optical disk

The CD-ROM player is quite simply an SCSI-connectable CD-ROM drive update.

It is available in two forms, internal and external; the latter is shown in Fig. 8.6.

Operationally, a disk is put into a caddy then placed into the player. (The

caddy is just like those used in Blaupunkt car CD-ROM players and helps keep

the disk protected from surface damage and dust.) The player has a 380 ms access

time and a 150 kb per second data transfer rate. This may not seem particularly

Figure 8.6. External CD-ROM drive.

144 Inside the IBM RISC System/6000

fast when compared to a hard disk (II ms access time and, say, 2 Mb per second

transfer rate), but this is a limitation of CD-ROM media rather than gross

inefficiency of the player. The reader may know that some PC CD-ROM players

offer average access time figures well below 380 ms; this is achieved via a large

on-player cache. The RISC system CD-ROM player has a 64 kb cache and

further caches the data read from the CD-ROM in virtual memory.

The capacity of the CD-ROM player is 600 Mb of data. The player' s large

capacity and moderate access time lends itself to accessing large read-only

databases of information. Currently, customers are encouraged to order the

SC23-2163 part comprising the InfoExplorer help text (described in more detail

in Chapter 7) on a CD-ROM disk.
Aside from data storage there is an audio jack and volume control on the front

of the player. IBM does not supply a CD player program; however, it is

relatively easy for applications developers to write their own player programs. Of

course, when the CD player is set to play audio disks it does not require

supervision from the RISC system and thus does not take any processor cycles.

Clearly, if the user makes significant use of the CD player then two may have to

be installed on a single system.
For customers who require read/write optical storage, IBM markets a 595 Mb

rewritable optical disk drive. Available as in an external package only, this drive

attaches to the external SCSI port. The drive has an average access time of 70 ms

and a data transfer rate of 612 kb per second.

8.4.2 Digital tape products

To meet the needs of backup for high-capacity workstations, IBM offers two

types of digital tape storage. The entry-level digital tape drive connects to RISC

systems models 200, 300 and 500. It comprises an external digital audio tape

(DAT) cartridge tape drive, sometimes called the 4 mm tape drive, since this is

the width of the tape in a DAT cartridge. The native data capacity of this system

is 2.0 Gb written to the 90m tape cartridge at 183 kb per second. However, the

unit includes inbuilt data compression, increasing the capacity to between 4.0 Gb

and 8.0 Gb written at a rate of up to 732 kb per second.
The next drive to consider is the 8 mm digital tape drive. This is an SCSI

connected device, available as an internal or external package. The internal

device is cheaper, more compact and has the advantage that it cannot be

removed unexpectedly. Alternatively, a portable 8 mm tape drive can be connected

to any machine in a group of systems for emergency backup and restore. Figure

8.7 shows the external 8 mm drive. This is considered the backup medium of

choice. Two models are available, with native data capacities of 2.3 Gb or 5 Gb

on a single 8 mm tape cartridge. The latter model includes improved data

recording capability (IDRC) data compression hardware in the tape unit,

boosting the typical data capacity to between 10 Gb and 20 Gb.

New technology 145

Figure 8.7. The external 8 mm tape drive.

Data is transferred to the tape at 245 kb per second for the 2.3 Gb model

which is significantly faster than the entry-level I inch tape drives which transfer

data at 90 kb per second. The data compression model achieves significantly

better, achieving 500 kb per second without compression, or between 1 Mb and

2 Mb per second with compression. The data transfer rate enables users to

perform nightly backups of their personal workstation /home user file tree, say

of about 500 Mb nightly. The 8 mm cassette is simply a computer-certified

version of a standard 8 mm. video cassette, as used in a standard 8 mm video

camera. This user-friendly medium means that nightly offsite backups can be

delegated to the user. An 8 mm drive enables the user to practise sensible backup
procedures with convenience.

8.4.3 The data wheel tape library system

An individual workstation user is unlikely to require more than 10 Gb of disk
space, but a large RISC system, model 980B for example, serving as a compute
server could have attached over 160 Gb of hard disk storage. How can this easily

be managed? The answer is to use the LAGO Systems 8 mm tape library system.

This is an SCSI-2 attached, 8 mm tape carousel available from IBM, with a
270 Gb tape capacity. The drive comprises an autoloader with a 54-cartridge
carousel together with two 5 Gb capacity, 8 mm cartridge tape drives. Two

drives are supplied for better performance and availability; if one drive or loader
mechanism fails, the other will continue to function without operator interven-
tion. Since the carousel is removable (though it is electronically lockable), the
entire 270 Gb storage can easily form part of an organization's centralized

offsite backup strategy.

The recommended software to support the tape library is Legato Networker,

from Legato Systems. This is a client-server companion product, that is, it

148 Inside the IBM RISC System/6000

supports not only a single machine with hundreds of gigabytes of disk storage,

but also backup for a network of AIX workstations, each of which would run the

client component of Networker. Individual AIX clients talk to the Networker

server (and thence to the LAGO systems tape library) using the remote procedure

calls programming interface (see Sec. 12.3.1). Some of the facilities provided by

the Networker and LAGO combination include:

1 Automatic media handling-media is automatically labelled by the Networker

Jukebox component. User-requested file recovery is automatic if the file is

contained within any one of the loaded cartridges or with prompted operator

assistance if not.
2 High-performance operation-the concurrent devices component of

Networker is optimized for performance without compromising reliability.

This component allows both tape mechanisms to perform independently of

each other, allowing for simultaneous file recovery and backup. Backups are

typically performed significantly faster than when using traditional remote

dump utilities, for example the Berkeley UNIX command rdump.

3 Convenience-users can take advantage of the tape library's large 270 Gb

capacity to make backups for them without the effort of media handling.

Alternatively a systems administrator can set up a network backup strategy.

For example, daily at midnight, an automatic, incremental network backup

of the 100 workstations connected to the network can be performed. When

each backup has completed a summary report can be produced and emailed

to the systems administrator.

8.5 MicroChannel

The forerunner of the IBM RISC System/6000, the IBM RT PC system, used an

IBM PC AT bus for I/O and so it was a small logical step for the IBM RISC

System/6000 to use MicroChannel as its I/O bus. MicroChannel is IBM's strategic

bus for its current and future micro-, mini- and even low-end mainframe

computers. In plain terms, IBM wanted to create a general-purpose bus that was

powerful enough to extend beyond the PC marketplace. Using a common bus

across a variety of IBM computer systems rationalizes the design effort required

to produce cards for these systems, thus reducing cost and time to market.
Designers of systems software benefit too, because low-level driver software can

be reduced to supporting the same or similar cards in systems with different

system processors. Indeed, if some of the driver software is written in a high-level

language such as C then it may be possible to share or reuse code across the

different platforms. That was the theory, but is MicroChannel up to the task of

covering these different environments? Let us take a closer look at MicroChannel

and its implementation on the IBM RISC System/6000.

New technology 147

8.5.1 What is a computer bus?

A computer bus is crudely speaking, a printed circuit board called a backplane,

with a number of connectors upon it. (A more precise definition is a connection

highway interconnecting data, control, timing, power or other signals. A bus may

be externalized with explicit cards and connectors, or internalized on the tracks

of a PCB or even within an IC. Most people use the word `bus' in the external/

explicit case.) The connectors are called `bus slots' in IBM terminology since they

allow expansion cards to be slotted into the bus. Early bus designs were `passive'

and the backplane contained no electronics. All computer components such as

the processor, memory and I/O control circuitry needed to be plugged into bus

slots. This was an expensive design because all computers require at least a

processor and some memory. Later designs therefore put this and other common

features onto the backplane, which was renamed `motherboard', or to use the
IBM term, planar. The next stage of development was to move from a passive
bus, which is just a series of connectors, to a bus which was active. The
MicroChannel is an example of an active bus. The planar contains electronics

dedicated to regulating and controlling the bus, for example, selecting and

deselecting individual cards, or deciding (that is, arbitrating) which card should
control the bus.

Overall, deciding how much electronics, if any, to place on the planar, depends

on a balance between expandability, functionality, performance and cost. At the

most basic level, any bus provides a way for the component parts of a computer

to talk to each other. Defining the pins, voltage levels and agreed procedures
enables different manufacturers to compete for a customer's business as the

supplier of option cards for a given system. Designing a bus well should take into

account today's needs and allow for growth tomorrow. The design should

include features that make the total operation of the bus-based computer as
reliable as a hardwired system.

The IBM RISC System/6000 is a good example of a balanced design, using
explicit buses where appropriate, but also integrating electronics on a planar to

reduce costs and enhance reliability. The basic design consists of three planars:

1 A CPU planar with the POWER architecture processor(s) on it, base cache

and timing circuitry, slots for the optical connection, the engineering support

processor connection and explicit memory bus slots. It makes sense to put the

memory on the planar rather than to use a general-purpose I/O bus for

system memory. This allows a very short and wide connection between the

system processor and memory and reduces traffic on the remaining busses.

The RISC system memory architecture is arranged so that each 32-bit

memory word is represented by 40 bits in real memory. This is composed of

32 bits of data, 7 check bits and 1 spare bit. This, combined with hardware bit

remapping, can detect and correct any single bit per word memory error and
detect any double bit error.

148 Inside the IBM RISC System/6000

Address Address

S(0,1)

ADL

CMD

Read data

Write data

Figure 8 .8. MicroChannel basic bus cycle.

2 An I/O planar connecting to the CPU planar, comprising a MicroChannel

I/O bus and MicroChannel support circuitry. As the name suggests, the

MicroChannel bus is used for I/O devices, so for example a Token Ring or

Ethernet LAN card would plug into the MicroChannel bus. An SCSI disk

controller card would also plug into the MicroChannel bus.

3 A standard 1/0 planar connecting to the 1/0 planar, with support for

standard I/O devices, including the parallel printer, diskette drives and serial,

tablet, mouse and keyboard ports.

The rest of this discussion concentrates more closely on MicroChannel. Figure

8.8 is a short example of a typical basic bus cycle. The lines represent the activity

of various signal lines on a MicroChannel bus. This example shows a basic write

cycle where the master (the RISC system processor) is writing something into the

slave memory stored on an option card (let us say, a buffer in the Token Ring

adapter card):

1 The master places the 32-bit address on the address bus.

2 Line - SO is lowered and line - S1 is raised to indicate a memory write cycle.

3 The master lowers - ADL (address decode latch) to indicate that the slave

should read the address now.

4 The master places the 32 bits of data on the data bus.
5 The master raises - ADL and lowers - CMD to indicate data signals are

available and stable on the bus.
6 The slave reads the data.

7 The master raises - CMD to end the cycle.

This basic data transfer cycle is capable of transmitting (that is, it has a

`bandwidth' of) 20 Mb per second. The IBM RISC System/6000, however, was

the first IBM computer system to make use of the 32-bit streaming data transfer

cycle, transferring data at 40 Mb per second. For the RISC system models 580,

970 or 980, this has been enhanced to 80 Mb per second. This is usually known

as MicroChannel XIO. The data transfer modes are shown in Fig. 8.9.

New technology 149

32-bit basic MicroChannel data transfer cycle-20 Mb per second

200 ns 200 ns 200 ns

Address bus

Data bus

Address

Data

Address

Data

Address

Data

32-bit streaming data transfer cycle-40 Mb per second

200 ns 100 ns 100 ns 100 ns 100 ns

Address bus

Data bus

Address

Data

64-bit streaming data transfer cycle-80 Mb per second

200 ns 100 ns 100 ns 100 ns 100 ns

Address bus

Data bus

Address

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Figure 8.9. MicroChannel data transfer modes.

8.5.2 Physical bus

Figure 8.10 shows a plan view of the five types of bus connector for
MicroChannel.

• 16 bit (58-way edge connector)

• 16 bit with video extension (58-way edge connector and 10 connection video
extension)

• 32 bit (89-way edge connector)

• 32 bit with matched memory extension (89-way edge connector plus 4
connections for matched memory)

• 32 bit with video extension (89-way edge connector plus 10 connections for
video extension)

The RISC System uses only 32-bit slot connectors since it does not need to

support the video or matched memory extensions. (The matched memory exten-

sion enables a bus-connected processor to access bus connected memory more

quickly. The system processor on the IBM RISC System/6000 stores its programs

in system memory on a separate system bus and not on MicroChannel and so

does not need matched memory. The video extension is used to attach higher

than VGA resolution cards such as XGA-2 to the PS/2 bus. The IBM RISC

System/6000 has its own series of graphics adapter cards that do not require this
extension.)

150 Inside the IBM RISC System/6000

01
vl
01I0 01

M4
Ml
01

vl(^

vo i
01

58

L_

89 89 89

Figure 8.10. MicroChannel card connectors.

32 bit with matched memory
32 bit
16 bit with video extension
16 bit

However, RISC systems have slots equipped with extended MicroChannel

physical connectors with appropriate signal terminators so that cards equipped

with these features can be used at a reduced functional level.

Each connector position has two contacts, to connect with each side of the

MicroChannel card. Thus RISC system cards have 178 connections per card.

The entry-level 220 series has two free MicroChannel slots. The desktop model

320H has three free MicroChannel slots, and other 300 series machines four,

whereas the 500 series deskside systems have seven free MicroChannel slots.

Physically, IBM calls MicroChannel cards for the RISC system type 5. A type 5

card is 13.1 inches in length and 4.825 inches in height. The smaller type 3 cards

may be used on the RISC system too, and must be used in model 220. A type 3

card is 11.5 inches in length and 3.475 inches in height. Initially, the Micro-

Channel design was to be type 3 only, but a type 3 card's reduced surface area

(known as `real estate') makes it difficult to accommodate the necessary circuitry,

so type 5 design was devised.

8.5.3 Active logic

MicroChannel uses an active logic design which means that certain functions are

provided on the RISC system I/O board and are available for use by any

MicroChannel card. These functions are provided by the 1/0 channel converter

(IOCC).
The IOCC is a single-chip device that links the RISC system branch, FX and FP

processors to the MicroChannel. The IOCC provides a set of facilities including:

New technology 151

• The direct memory access controller
• Dynamic random access memory (DRAM) refresh circuitry

• Programmed I/O mapping

• Endian mode conversion

The DMA controller

Direct memory access (DMA) is used in the traditional sense to mean the

transfer of data between MicroChannel devices or between MicroChannel and

system memory. DMA is accomplished without the utilization or intervention of

the system processor or any processors on MicroChannel.

The DMA controller is programmed by an IOCC program comprising a

number of tags. Readers familiar with IBM system/370 mainframe technology

will realize that these are similar in concept to the channel control words (CCWs)

used there. Each tag contains information such as real source and destination

addresses, control information and a pointer to the next tag. Tags are sent to the

IOCC from the system processor and executed by the DMA controller in the

IOCC.

The IOCC is also responsible for allowing the bus master DMA facility of
MicroChannel. On an IBM PS/2, a transfer from one MicroChannel card to

system memory would be performed by MicroChannel cards themselves, that is,

the card is mastering the bus. However, in the RISC system, MicroChannel to

system memory bus mastering must clearly pass through the IOCC. In order to

send from MicroChannel-based memory to system memory (one of the channel

status) registers in the IOCC must be set. As data passes through the IOCC, it

goes through one of the sixteen 64-byte buffers then across the 8-byte-wide

system bus to real system memory. Unlike DMA transfers, bus master transfers

are made to system virtual addresses and need to be transferred to real addresses

to reach actual system memory. This is achieved by the translation control

Words (TCWs) translate table stored in the IOCC.

Programmed I/O

Most computer systems have two distinct address spaces, that is, the system

processor can read from and write to, two quite different areas. The first area is

regular processor memory used to store programs and data. (Actually some

designs create separate address spaces for data and programs. This is not the case

for the RISC system.) Secondly, there are ports which, when written to or read

from, cause certain actions on a particular card. For example, the 16-terminal

serial I/O card may support 16 attached ASCII terminals. Each terminal attaches

via an RS232 interface and may be seen by the IBM RISC System/6000 to be

three ports: a write data to terminal port, a read data from terminal port and a

152 Inside the IBM RISC System/6000

control / status port. Other typical uses of ports may be, for example, the hardware

that interfaces a floppy disk controller or SCSI port. Floppy disk commands to

seek to a certain track or read a sector may be sent to particular ports. The

controller performs the function sent on the command port then, when it has

completed the operation, it generates an interrupt to the RISC system and

transfers the data to system memory using DMA.
As discussed in Sec. 4.2, a programmer uses a 32-bit address in an AIX

program. The upper four bits of this address represent a segment which is

mapped to either an I/O port request or a system memory address. An I/O port

request is translated into a request to send/receive information to/from a

MicroChannel card. If the I/O request is for an address in the hexadecimal range

Ox0000 to OxFFFF then this is taken to be a request to a MicroChannel port. If

the request is above this 64kb area then this is translated into a read from or write

to MicroChannel bus memory. This leads to the restriction that MicroChannel

cards should not enable any on card ROM or RAM at the lowest 64kb area if

they want it to be accessible from the RISC system.
In the current design the system processor may transfer up to 128 bytes of

programmed I/O (PIO) at a time. To protect invalid PIO transfers from writing

into unauthorized memory, each PIO transfer may only write into system

memory between two bound registers previously loaded into the IOCC. If a

system memory address outside of these bounds is specified, an error is set in a

channel status register within the IOCC.

Endian modes

Like most IBM systems (save the IBM PC) the IBM RISC System/6000 uses the

big-endian° mode of data storage. However, MicroChannel uses the little-endian

mode. This means that the ordering of bytes within a 32-bit word is different:

• In a little-endian format, the least significant digit has the lowest number and
is stored at the lowest address.

• In a big-endian format, the most significant digit has the lowest number and

is stored at the lowest address.

The IOCC then needs to reorder bytes correctly so that memory transferred
between system memory and MicroChannel memory is in the correct format.

8.5.4 The future of MicroChannel

IBM initially designed MicroChannel as much more than a replacement to the

system bus in its range of microcomputers. It was to be an active bus structure,

The term `endian' comes from Jonathan Swift's Gulliver's Travels. Gulliver found that in Lilliput
inhabitants were required to eat eggs by breaking them at their little ends. Some rebels of course
broke eggs at the big ends resulting in civil war.

New technology 153

first destined for volume production in the personal computer market with the

IBM PS/2, but also to permeate IBM's other families of computers including

minicomputers and workstations. Hence its use in the IBM RISC System/6000

and small mainframe systems, for example the 9370.

However, unlike the introduction of the PC bus, IBM has not had an easy task

in the market second time around. When IBM introduced the IBM PC in 1981,

the then S100 or IEEE-696 standard bus for microcomputers was soon displaced

and rendered obsolete. The market had a new standard, that of the PC-XT bus

now often referred to as the ISA (industry standard architecture). When IBM

announced the IBM Personal Computer Advanced Technology (AT), again the

industry enthusiastically welcomed the new technology. In April 1987, however,

when IBM introduced MicroChannel, the vendor marketplace was less en-

thusiastic because initially IBM wanted royalties for any vendor who designed

MicroChannel machines. Other vendors, it seemed, would be quite happy to use

MicroChannel but only if it was free. For the most part, PC users have decided

to reject the preferred IBM strategy of replacing their typically AT bus system

with MicroChannel ones. Non-IBM vendors believed that most customers would

select a gradual upgrade strategy, something allowing them to use old cards in a

new machine. This attitude led to the development of the extended ISA (EISA)

bus architecture which is physically a superset of the AT bus architecture. (In

fact, today most PC users are staying firmly put with their ISA architecture

machines, rejecting both EISA and MicroChannel.)
The considerations of card reusability are less important to minicomputer

users who benefit more from the reduced space, higher performance and reliability

factors of MicroChannel over its predecessors than saving a few pounds on card

reusability. In fact, MicroChannel is more up-to-date in most respects to many

other minicomputer bus architectures having the advantage of being one of the

youngest.
The bottom line to all this is that internally the IBM RISC System/6000 design

is modular. A deskside system comprises of three related boards as shown in

Fig. 8.11:

1 CPU planar-containing processing chips, read only storage, system memory

slots, optical slots
2 I/O planar-containing MicroChannel bus slots
3 Standard I/O planar-containing keyboard, mouse, table, serial and parallel

circuitry

Should it be necessary to replace the MicroChannel bus structure with another,

then from a technology viewpoint this is feasible, although politically this would

be a tough decision. In response to customer demand, in late 1992 IBM an-

nounced its family of ValuePoint (VP) personal computers based on the ISA and

not on the MicroChannel bus, so MicroChannel is by no means the only IBM

bus standard for workstation format computers.

154 Inside the IBM RISC System/6000

CPU planar

I/O planar n I'

Standard I/O
planar

Figure 8.11. Internal MicroChannel layout.

8.6 Optical networking

Widespread LAN technology currently interconnects IBM RISC System/6000

computers together at 16 megabits per second for Token Ring and 10 megabits

per second for Ethernet. Though this is some 10 000 times faster than most

asynchronous RS232 communications used in early UNIX systems, network

congestion is an increasingly common occurrence. A partial solution is to divide

a LAN into smaller independent segments, and even to add multiple LAN routes

where appropriate.
A more forward-looking solution would be to use a much faster LAN. Optical

LAN technologies can provide an effective LAN data transport speed of hundreds

of megabits per second compared to the tens achieved to date.
The IBM RISC System/6000 offers two different optical network facilities: the

serial optical channel converter (SOCC) and the fibre distributed data interface

(FDDI).

8.6.1 Serial optical channel converter

All deskside and larger IBM RISC System/6000 computers have at least one

SOCC slot. That is to say, the RISC system models 220 and 300 series have no

optical slots, the deskside 500 series has one optical channel slot, and the 900
rack series two. Because of the speed of this interface it is necessary to locate

optical slots on the CPU planar rather than on the I/O planar where MicroChan-

nel slots are located. This design also ensures that large amounts of optical

network traffic do not swamp the bandwidth of the MicroChannel I/O bus. Into

each slot plugs an SOCC card. Each card has four unidirectional links (half

duplex), with two links working together to form a port. Each port can be

connected to a router manufactured by Network Systems.
The Network Systems router can be viewed as an optical junction box intercon-

New technology 155

necting the SOCC-connected RISC systems. The router also has an FDDI

network output and, optionally, an IBM mainframe channel connection. Using

the SOCC configuration actual RISC system to RISC system raw transfer rates

of 220 megabits per second are possible. Architecturally, speeds of up to 400

megabits per second could be driven through the optical channel.

The software interface that sits on top of the physical SOCC is TCP/IP and

provides the full range of TCP/IP commands and programming interfaces avail-

able to the user and programmer.

8.6.2 Fibre distributed data interface

The IBM RISC System / 6000 can also attach directly to a fibre distributed data
interface (FDDI) ring network . A RISC system requires a MicroChannel FDDI
interface card to attach the workstation to the 100 megabits per second (125
megabits per second raw speed, with 1 error correction bit per 5 bits of data)
optical network . The number of FDDI cards that may be installed in a single
RISC system is only limited by the number of free MicroChannel slots available.
The software support is by TCP /IP and supports the usual standard facilities
such as network file system file-sharing . Also available is a `dual attach station'
(DAS) option for attachment to both a primary and a secondary ring. In the
event of failure , the primary ring may be wrapped to the secondary ring for
advanced network availability and problem isolation.

8.7 High-performance graphics

As with traditional UNIX computer systems, an IBM RISC System/6000 may be

configured with only ASCII terminals, that is to say, with no graphics or LAN-

attached graphics screens. These configurations may be appropriate in some low-

cost, multiuser configurations; however most users today expect to work in a

GUI environment. It is certainly more difficult to cost justify a business solution

comprising only ASCII displays in terms of function delivered; such systems

today are competing against low-cost PC-based network solutions which can

offer multiuser shared business solutions working in a user-friendly GUI environ-

ment such as Microsoft Windows or IBM OS/2 Presentation Manager. Therefore

IBM provides a comprehensive set of graphics facilities across its family of RISC

system products. These divide into three areas:

• Standalone graphics terminals-the IBM X-station 150

• Mid to high-end MicroChannel graphics adapter cards

• A high-end dedicated graphics engine

The first of these options, the IBM X-station 150, has already been discussed in

this chapter. Recall that the IBM X-station 150 has built-in graphics hardware

156 Inside the IBM RISC System/6000

integrated onto its planar board. The entry-level IBM RISC System/6000 model

220 provides a dedicated planar slot for the Gtl graphics processor.

Most IBM RISC System/6000 systems purchased today will use one of four

graphics adapter cards: the IBM Gt3i, Gt4, Gt4e or Gt4x. These form a family of

increasingly higher performance graphics cards. Note that IBM's strategy is

wherever possible to place graphics functionality on a plug-in MicroChannel

card. This contrasts with many vendors who offer graphics hardware integrated

onto the system planar. IBM's strategy is designed to allow a customer to choose

exactly the right graphics hardware for the required application; this also allows

upgradability should needs change. This results in slightly slower performance

and a higher cost than placing the equivalent technology on the planar, because

graphics must be routed via the MicroChannel bus, and this is more expensive

due to card rather than planar packaging costs.

The high-end graphics subsystem, the IBM 7235 POWERgraphics Graphics
Terminal Option (GTO), is described later in this section.

8.7.1 The Gt3i, Gt4 and Gt4e range of graphics cards

The Gt3i graphics card is implemented as a single MicroChannel card and is the

lowest cost adapter in the Gt family. The card drives a screen of up to 1280 x

1024 pixels. Each screen pixel is stored as an 8-bit colour number, allowing for

any one of 256 colours to be displayed. The colours are selected from a table of

colours, called a colourmap. The colourmap is 256 entries long and 24 bits wide:

this allows for any pixel on the screen to be one of a set of 256 colours, that set

being any of 256 colours from a palette of 16 million (21). In fact, the Gt3i card

contains two hardware colourmaps. One is shared by all running X-Windows

applications, the other is free for use by other applications, for example

graPHIGS. This means that both types of application can be simultaneously

displaying colours without conflict.

The card is also known as a `2D' card because it has hardware support for the

following two-dimensional graphics primitives/features:

• Depth cueing and anti-aliasing

• Ellipse, spline and triangle primitives

• Polyhedron and line grid primitives

Like all Gt series cards, the output drives any 60 Hz noninterlaced screen. This

card can be used in the IBM RISC System/6000 Model 220 for better graphics

performance than the planar in entry graphics Gtl hardware.

The Gt4 graphics card provides all Gt3i facilities and more. It is packaged as

two MicroChannel cards, and uses two Texas Instrument TMS320C30 digital

signal processors and a custom high-speed VLSI MicroChannel bus interface

chip. The Gt4x provides hardware support for three-dimensional graphics and is

thus known as the 3D card. This is achieved using a 24-bit Z buffer. Each bit that

New technology 157

is written to the screen has not only a colour but a depth (Z) value. Consider an

example where a blue triangle is drawn onto the screen where there is already

displayed a yellow square. The blue triangle will only overlay the existing square

if the Z values of all the pixels indicate it is in front of the square. The Gt4 also

provides a dual-screen frame buffer. Therefore the system processor can be

writing to one buffer while the Gt4 card displays the contents of the other. By

switching buffers and by the system processor writing to the buffer that is not

displayed, animation effects can be achieved. The Gt4 also includes:

• Five hardware colourmaps
• Hardware assist for Gouraud and flat shading and lighting effects

The Gt4 graphics card is suitable for many diverse applications requiring
medium-level graphics performance, for example, design automation,
architectural design, visualization and animation.

A space saving alternative to the Gt4 card is the Gt4e adapter. This provides

the facilities of the Gt4 card, but in a nonupgradable, single-card format. This

may be important when adding this adapter to RISC system models with fewer

available slots, such as the model 220.
The last member of the Gt family is the Gt4x, which is an extension of the Gt4

cardset. This is implemented as three MicroChannel cards which include an extra

six Texas TMS320C30 signal processing chips. The Gt4x has a 24-bit screen

frame buffer. This means that each screen pixel can be any of 16 million (21)

colours. Users can start with the Gt4 card and upgrade to the Gt4x card.

8.7.2 The IBM 7235 POWERgraphics GTO

The POWERgraphics Graphics Terminal Option (GTO) is the highest performing

graphics adapter available for the RISC system. Physically, the GTO comprises

two components, a single MicroChannel card and an externally boxed graphics

accelerator. Prior to the availability of the GTO alternative, for customers with

high end graphics requirements IBM sold a special version of the IBM RISC

System/6000 called the model 730. This was housed in a special wide-bodied

deskside case which incorporated not only the traditional planar and I/O boards,

but also an additional card cage containing the graphics accelerator. However,

this combination was inflexible and the GTO option allows any model of the

IBM RISC System/6000 family (save the entry-level workstation model M20) to

be upgraded to the very highest graphics performance levels. The GTO is

available in two versions, one using an 8 bit colour frame buffer, the second

using a 24-bit buffer. This gives the ability to display either 256 or 16.7 million

colours simultaneously, for the 8-bit and 24-bit models respectively. The 24-bit

GTO also includes a shading processor. This is utilized by writing GL programs

which automatically take advantage of features such as constant and smooth

colour shading, line removal and depth cueing.

158 Inside the IBM RISC System/6000

Table 8.3. Graphic card specifications summary

Gtlx Gt3i Gt4e GTO

10 pixel line (K lines/second) 622 702 708 948
10 x 10 rectangle (K rect/second) 331 275 278 96
Char in 80 char line 6 x 13 (K char/second) 402 95 125 102
77 Hz noninterlaced output' Yes Yes Yes Yes

' In this mode cards comply with ISO 9241 Part 3, Ergonomic Display Standard for reduced flicker
displays, an important standard in Europe.

Table 8.3 is a summary of the Xllperf benchmarks for the different graphics
cards discussed so far.

8.8 The POWER visualization system

The POWER visualization system is a response to the needs of many professional

engineers and scientists, who analyse and extract meaning from vast quantities of

raw data. For example, in the oil industry large quantities of geophysical data

have traditionally been fed as batch jobs to large mainframe or supercomputer

systems. With the POWER visualization system IBM has designed a cluster

processor with ANSI standard interfaces to the RISC system and supercomputer,

together with a software package called Visualization Data Explorer/6000. Data

Explorer contains a number of realization and rendering techniques which can be

applied in isolation or in sequence to produce results in real time. There are

facilities to add user-coded programming techniques into the system.

The processor technology that forms the heart of the visualization system is a

significant advance in technology. Figure 8.12 shows a typical visualization

system. The heart of the visualization server is a paired set of 40 Mhz Intel i860

processors. Two, four or eight processing cards can be accommodated in the

visualization server. Each processor card contains 4 processors and 16 Mb per

processor local memory. The processors also have access to between 128 Mb and

256 Mb of global memory. The server is connected to the IBM RISC system/

6000 by a MicroChannel visualization video controller card. This has a single

bidirectional high-performance parallel interface (HIPPI) port. The output from

the controller is an RGB output to a standard RGB colour monitor. This

monitor can be displaying regular X-Windows program output as well as visual

data and real-time images from the visualization server. The video controller has

up to 32 Mb of memory and can display animation of up to 15 frames per second

from the visualization server without data compression. Using compression, up

to 100 frames per second can be displayed.

Compression is important because instead of the RISC system HIPPI port just

connecting with one server, the server can feed several RISC systems, daisy-

New technology 159

I

Visualization card within
RISC system

Supercomputer

I
Visualization

server

Link in

RGB

monitor

Figure 8 .12. The IBM POWER visualization system.

HIPPI
disk array
subsystem

Link out to
next RISC system

chained from a single visualization server. Here the HIPPI output from the server

connects to the HIPPI input of the RISC system video controller. The HIPPI

output of the video controller is fed to the HIPPI input of the next RISC system

until finally the HIPPI out of the last video controller connects back to the

visualization server.

The visualization server has two bidirectional HIPPI ports. One is used to

connect to the IBM RISC System/6000, the other typically connects to an IBM

supercomputer such as an IBM ES/9000 with vector processing facilities. To

provide data storage for the visualization server, up to 230 Gb of IBM disk array

can be connected.
The hardware technology used in the visualization server is state of the art by

most objective standards. The sheer processing power and high-speed interfaces

(100 Mb per second for HIPPI, 640 Mb per second memory to processor) enable

real-time visualization of problems that could previously take hours on multiuser

mainframe computers. Combined with the IBM RISC System/6000 and the Data

Explorer/ 6000 software, it provides a rich environment for professional engineers

and scientists to work within.

8.9 Parallel computing

While the current individual IBM RISC System/6000 processors represent a very

powerful range of computers, with individual processor ratings of over 100

million floating-point operations per second (MFLOPS) there is still an increasing

marketplace for yet more powerful computers, for example:

• Financial institutions and investment houses for arbitrage, stock pricing and

opportunity calculations

160 Inside the IBM RISC System/6000

• Engineers and scientists working with large scale nonlinear modelling, fluid

interaction, chemical modelling and various types of simulation

• Corporate clients requiring a centralized computer-intensive resource for
general business computing

• Traditional UNIX workstation users requiring vastly more powerful and

parallel computational facilities without recourse to traditional mainframes

Many of these types of user will be attracted to IBM's range of POWER-

parallel computer systems, systems based upon the IBM RISC System/6000

POWER processor family, systems which run an unmodified version of IBM's
AIX.

8.9.1 POWERparallel hardware platforms

The POWERparallel system comprises from eight to sixty-four 62.5 MHz IBM

RISC System/6000 rack-mounted processors in up to four physical cabinets. This
provides a parallel processing environment with a peak processor performance of

up to eight gigaFLOPS for a 64 processor configuration.

By convention, all processor nodes should have the same memory and disk

storage as their peers. Hard disk capacity is to 2 Gb per processor. In the case of a

0 Gb disk (that is, diskless) a processor would require an external network-

attached disk for environment, temporary and paging storage. A Network

Dataserver (see Sec. 12.3.3) is an example of a suitable network-accessible disk
subsystem.

The POWERparallel uses a distributed memory architecture to provide

memory for each processor. In fact, two memory architectures are commonly
used in parallel processing. In a distributed memory architecture such as
POWERparallel, each processor has its own local memory. That is to say, there

is no shared memory. Interprocessor communication is using an interconnection

mechanism. This could be via a LAN or via a custom point-to-point link often

known as a switch. Distributed memory systems can be easily expanded in terms

of numbers of processor nodes.

The alternative architecture uses shared memory between multiple processors.
This has the advantage of using memory very efficiently, and allows faster

interprocessor communication using shared memory. However, complexities

(known as `cache coherency') begin to dominate these designs for anything more

than a small set of multiprocessor nodes. This design is best for multiprocessor
systems with, say, less than 10 nodes.

Since POWERparallel systems are designed to be scalable to 64 nodes today

and more in the future, a distributed memory architecture was chosen. Currently,

each processor may have between 64 Mb and 256 Mb of storage.

By definition, parallel processing involves running a task on multiple proces-

sors, and, for any nontrivial application, information will be exchanged between

New technology 161

concurrently executing program components. Parallel applications are therefore
classified into one of two categories:

• Coarse grain-where each parallel application component executes with little

or no communication from another.
• Fine grain-where each parallel application component requires frequent

data interchange between executing elements.

The optional high-performance switch forms a point-to-point, any processor-to-

processor communications path with a 40 Mb per second bandwidth. In most

environments where the POWERparallel processor is more than lightly loaded,

and running a variety of coarse- and fine-grain applications, a significant number

of simultaneous and statistically random interprocessor communications will be

required. In such an environment, the POWERparallel system will be most

effective when the switch is installed.
POWERparallel has two Ethernet LANs. The first Ethernet is used by each

processor for initial system booting, and, if the processor node is diskless, for

paging when AIX has loaded. The second Ethernet is used as a TCP/IP connec-

tion between workstation users and other individual POWERparallel processors.

Just as a traditional IBM mainframe makes use of a system console,

POWERparallel systems require a control workstation. This can be any IBM

RISC System/6000 model 220 or larger. A RISC system model 220 is normally
included with the POWERparallel order unless customers elect to provide their

own systems. The control workstation is required for POWERparallel initializa-

tion, hardware monitoring, maintenance and administration. For example, a

serial RS232 connection connects the control workstation with each

POWERparallel's rack environmental status electronics. An OSF/Motif program

displays the information, for example: the status of the individual AC and DC

power supplies, the hardware and software logging status, and the per processor

keyswitch position (normal, secure or service).

8.9.2 The POWERparallel operating system

Each of the 64 POWERparallel processor nodes runs a full version of AIX

version 3.2.3 or later, just like any other regular RISC system. This was a

conscious design decision for the POWERparallel series of computers. By utilizing

standard AIX, POWERparallel customers have access to the large existing

domain of AIX applications and applications development tools. This enables

users at the simplest level to take existing binary applications unchanged and run

them on the POWERparallel systems and, using the power of X-Windows, to

display them through the network on their LAN-connected workstation.

162 Inside the IBM RISC System/6000

8.9.3 Using POWERparallel

The POWERparallel systems do not represent a series of specialized parallel
processing computer systems . Rather, they can be used in a number of ways to
appeal to a very wide variety of users.

Cluster-based processing

Using the POWERparallel system support program users can regard the entire

POWERparallel system as a single processing resource. This program gives the

user a single account on whatever processor they log on to, automatically

mounting their normal home directory and file systems as appropriate (see Sec.

12.3). The system support program also takes care to route printing and other

service requests transparently to the devices normally used by that user.

In this way a user community can use the POWERparallel system as a

centralized yet `personal' high-performance computing resource.

Batch processing resource

The POWERparallel system may also be used as a high performance batch proces-
sor by using the IBM LoadLeveler program. This provides a job-scheduling service

to users by means of resources divided into classes. Users submit their program

for execution and LoadLeveler matches the users' stated requirements for the jobs

against the available resources in the POWERparallel system. Users have the

normal batch-scheduling abilities, being able to query, submit, resubmit and

otherwise manipulate their current and prospective jobs.

Parallel applications enablement

The easiest way to benefit from parallelized applications on the POWERparallel

systems is to purchase POWERparallel enabled applications. Some of the enablers

who have announced intentions of support include the Livermore Software

Technology Corporation, Fluid Dynamics International and Transvalor. Other

products, for example the FORGE 90 product from Applied Parallel Research,

provide tools to assist with the parallelization of currently serial programs, in
this case written in Fortran.

Parallel development environment

To realize the full potential of the POWERparallel environment , the applications
developer should consider developing applications using the AIX Parallel Environ-
ment . This product comprises components to develop , debug and analyse parallel
applications. Applications are coded in the languages Fortran, C or C + +,

New technology 163

making calls to the `Parallel API'. They are debugged using the parallel debugger

pdbx, and profiled using modified versions of the UNIX execution profilers prof

and gprof. Applications are monitored using the `graphical visualization tool'.

Moreover, an applications developer can start a parallel applications develop-

ment on a single, TCP/IP networked cluster of RISC systems. Then when the

applications have been developed sufficiently, move them without effort to run in

the POWERparallel environment.

8.9.4 Typical costs

To give the reader an idea of the cost of the POWERparallel series of systems I

configured several POWERparallel systems using the IBM ECS link. The costs

of POWERparallel systems ranged from around £275 000 to £5 million.

9
Systems administration

Sophisticated graphical end user interfaces, distributed file systems and access to

several thousand megabytes of data all increase the need for capable systems

management tools. So exactly what does an AIX systems administrator do? Here
are a few examples:

• Software ordering and installation

• Error logging, tracking and resolution

• Regular backup/ restore

• End user administration
• Machine, network configuration and housekeeping

• Performance monitoring

Do any of these concern you? Well, the chances are, yes. In the world of

workstations it is now unusual for systems administration and management to be

solely the concern of a `datacentre glasshouse'. It is more likely that the user's

workstation is part of a group, which is partly or wholly managed and maintained

by staff from within that user group. Any sceptic who believes that any computer

system `just runs' without any maintenance should talk to those individuals who

have to administer their personal workstations. They know only too well that

systems administration is vitally necessary, although traditionally a time-consum-

ing business.

The design point for AIX therefore was not only ease of use, but also

installability and manageability. AIX supplies several tools and techniques to

ease the traditional administration tasks. The main systems management interface

tool (SMIT) provides a user-friendly, menu-driven interface to all aspects of

administration. Accountable software installation, update and maintenance allow

the systems administrator to install software components selectively and, most

importantly, to track an installation, update and fix history. The rest of this
chapter concentrates on these issues.

164

Systems administration 165

9.1 Systems management interface tool

On most traditional UNIX systems, systems management tasks are performed

with a combination of editing flat ASCII format files and executing one or more

UNIX commands at the command line prompt. This method is not very effective,

for a number of reasons:

• In a manual process there is little opportunity for automatic checking. If a

menu-driven system were in operation it could attempt to provide a degree of

checking on the actions of the systems administrator.

• Simple systems administration tasks are mundane and tend to become

automated by writing dedicated shell command scripts. If this happens in a

large community of machines it can easily result in a varying and inconsistent

environment with many nonstandard commands valid only at particular
sites.

• In a complex administration task it is all too easy to miss out a step. For

example, adding a new device driver into the kernel of the operating system is

a procedure which, if bungled, could cause a UNIX system not to reboot at
all.

The systems management interface tool (SMIT) is a menu-driven, task-oriented

interface to AIX systems management. SMIT is available in two versions: smitty,

a version suitable for ASCII terminals (and thus also a windowed command

session under X-Windows); and msmit, which provides an OSF/Motif version of

the same program. The two programs are functionally the same, and since the

character-based version is considerably faster than the OSF/Motif version it is

used by most systems administrators.

SMIT presents complex system management tasks in an organized manner and

leads the user through the desired task using a series of menus and dialogs. The

principal functions of SMIT are many, the major ones include:

• Installation, update and maintenance of software

• Backup and restore

• Physical and logical filesystem maintenance

• Management of users and groups

• Configuration of hardware devices

• Configuration of communications devices and subsystems

• Printing devices and spooling

• Problem determination and diagnostics

• Management of system environments

Here is an example of an actual SMIT panel arrived at by selecting SMIT, using

the up and down cursor keys to traverse the hierarchy of menus: devices,

communication devices, Token Ring adapter, adapter, change characteristics of

adapter. Finally, the panel of Fig. 9.1 is displayed.

166 Inside the IBM RISC System/6000

Change/Show Characteristics of a Token Ring Adapter

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[Entry Fields]

Token Ring Adapter tokO

Description Token-Ring High-Perfor>

Status Available

Location 00-07

RECEIVE DATA TRANSFER OFFSET [24] +#
TRANSMIT queue size [20] +#
RECEIVE queue size [10] +#
STATUS BLOCK queue size [05] +#
RING speed 4 +
Receive ATTENTION MAC frame no +

Receive BEACON MAC frame no +
Enable ALTERNATE TOKEN RING address no +
ALTERNATE TOKEN RING address [Ox] +
Apply change to DATABASE only no +

Fl=Help F2=Refresh F3=Cancel F4=List

FS=Undo F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 9.1. A sample SMIT panel.

The general format of a panel is a full-screen display, with function keys
support as indicated at the bottom of the panel. Certain fields of a dialog need to

be completed and a visual key is displayed on the rightmost column of the
display to help the user. The symbol meanings are:

[J A field to be completed

< There is more text to the left of the field

> There is more text to the right of the displayed field

A numeric field

X A hexadecimal field

/ A valid pathname needs to be entered

* The field needs a value (cannot be left blank)

+ The systems administrator can select from a list of choices which is
displayed by pressing the F4 key

These visual guide characters are helpful in guiding the systems administrator in

the correct choice of values for a panel. If the systems administrator is at all

unsure, help can be requested by pressing the F1 key. Dialog panels normally

have context-sensitive help on all fields. This can be found for each panel from

Systems administration 167

CONTEXTUAL HELP

Press Enter or Cancel to return to the application.

Indicates the ring speed of the token-ring network to which the adapter
is attached. This attribute must be set to match the speed at which the
network is currently running. An incorrect value can cause the network
to become inoperable. Valid values are 4 for a 4-megabit ring and 16 for
a 16-megabit ring. The default value is 4.

Fl=Help F2=Refresh F3=Cancel

F8=Image F10=Exit Enter=Do

Figure 9 .2. A sample SMIT contextual help panel.

SHOW COMMAND STRING

Press Enter or Cancel to return to the application.

chdev -1 'tok0' -a rdto='24' -a xmt_que_size='20'
-a rec_que_size='10' -a sta-que-size=1051 -a ring-speed='4'

Fl=Help F2=Refresh F3=Cancel

F8=Image FlO=Exit Enter=Do

Figure 9.3. A sample SMIT command string panel.

the associated byte value index in the hypertext help database. When the F1 key

is pressed the database is searched to the referenced point and the help text is

displayed in a pop-up on the screen. In Fig. 9.1 pressing F1 in the `RING speed'

question field caused the pop-up of Fig. 9.2 to be displayed.

When the main dialog panel has been completed the systems administrator can

press function key 6 (F6) and display the command that will be executed as a

result of this panel. Figure 9.3 shows the result of our example. Notice how

involved this command is. Clearly, executing it from the command line would be

prone to error. In most cases it is best to execute functions from SMIT. There are

some cases, though, where specific commands can just as usefully be entered

from the command line. The suggested learning procedure for the new systems

administrator is to use SMIT to perform the function and use the F6 key to

display the command prior to execution. Thus SMIT can be used as a learning

tool by the systems administrator, since if the command generated was a simple

one it can be remembered and entered manually in future.

SMIT also keeps a log of the panels selected, command strings executed, date

and time of execution and any output produced. A log of commands executed is
stored in the file sm i t . script and a log of the menus and dialogs visited

stored in the file sm i t. log.
SMIT is a program that makes frequent use of the object data manager

168 Inside the IBM RISC System/6000

(described in Sec. 3.2). All SMIT panels are stored in the ODM, and SMIT is

written in such a way that option lists and selection values are, whenever

possible, dynamically created from entries in the ODM database. For example, a

hardware vendor who supplies a printer and associated software printer driver

for AIX would include entries in the ODM for various device classes. When

using SMIT to add a printer to a particular port the new printer type would

automatically be detected and presented as a choice.

So SMIT significantly eases the task of systems management. It is invaluable

to users with their own workstations who can now perform systems management

quickly and in an error-free manner. This leaves the user more time to perform

business-related work.

AIX stanza format

/usr/lpp/info:

dev = /usr/lpp/info
vfs = nfs
nodename = superx

mount = false

check = false

type = nfs

options = ro, bg, soft, intr, retry=6, rsize=32384, wsize=33284

UNIX format

/usr/lpp/info@superx:/usr/lpp/info:fo:0:0:nfs:bg,soft,nosuid:

Figure 9.4. AIX stanza file formats.

9.1.1 Stanza formats

The initial port of UNIX Systems III to IBM PC/IX changed the format of

configuration files within the system. AIX version 2 and AIX version 3 maintain

this change of style. Consider Fig. 9.4. This shows the differences between the

/etc/filesystems of AIX and the /etc/fstab of another typical UNIX

system, in this case, DEC Ultrix.

In most UNIX systems, a configuration file contains a number of lines, each

line containing information separated by colons. Colons are field separators and

a line feed is a record separator. Under AIX, a stanza format is used, whereby a

heading line is followed by one or more lines of the format tag = value. Blank

lines are allowed, as are comments which begin with the (hash) character.

The AIX format has several advantages:

• Each entry is spaced over several lines and is therefore more readable. The

colon format becomes difficult to read and edit as the lines get longer.

• Errors in a configuration entry, for example a bad tag name or value, will not

affect other tag names or values.

• The tag/value format is forward and backward compatible. This is not true in

Systems administration

Table 9.1. Filesystem locations

Description

Root filesystem
Devices
Configuration files
Password information
Client files
User file
Programs for booting
Temporary files
System information
System binaries
Configuration binaries
BSD conflicting commands
SV conflicting commands
Fonts
Libraries
Program products
Help
X-Windows and samples
Arch. independent files
Opsys images
Variable per machine files

AIX Early UNIX

/ /
/dev /dev
/etc /etc
/etc/security /etc/passwd
/export
/home /u
/sbin
/tmp /tmp
/usr
/usr/bin /bin /usr/bin
/usr/sbin /etc
/usr/ucb
/usr/usg
/usr/lpp/fonts
/usr/lib
/usr/lpp/*
/usr/lpp/info
/usr/lpp/X11
/usr/share
/usr/sys/preload
/var

/lib /usr/lib

169

the traditional colon format. For example, should the meaning of the second

field in Fig. 9.4 no longer be the mount point of the filesystem, then old

configuration files would be incompatible. When AIX parses the tag/value

format it discards unrecognized lines, so preserving compatibility.

9.1.2 The AIX file tree

AIX has a considerably different file tree structure from early UNIX systems.

This is to be expected; these changes were made from AIX version 3.2 and later,

to provide compatibility with the Open Software Foundation OSF/l file tree.

OSF/ 1 was changed to be similar to System V release 4.

In previous versions of AIX and other vendors' UNIX there had been much

debate as to the correct place for some files to be located. This led to the

placement of the same file in different places on different vendor UNIX systems;

this was a problem. Another problem was that many different types of file were

contained in the same directory. A remote AIX system could not share a server's

/e t c directory because although many of the files could be shared, this directory

contained many machine-specific files, for example /et c /file systems. The

reorganized filesystem avoids these problems and is one unifying standard for the

new generation of UNIX systems. See Table 9.1.

170 Inside the IBM RISC System/6000

The root filesystem

The root file tree contains all of the information that needs to be present for AIX

to start. It contains a device directory /dev and empty directories where other

filesystems may be mounted,' that is /usr, /var and /home. The root file tree

is as small as possible and contains information specific to that system. The

/sbin directory in the root file tree contains system utilities needed to mount
these other filesystems.

The /usr file tree

The /us r file tree contains commands, libraries and data that is not modified by

users. Thus the /usr directory is sharable among IBM RISC System/6000

systems. Some notable directories in /us r include:

/usr/bin

/usr/ccs

/usr/include

/usr/mbin

/usr/sbin

/usr/share

/usr/ucb

Executable commands and scripts

C compiler directory

Programmers include h files

Multibyte character set (MBCS) versions of /us r/b in

Systems administration commands

Machine independent sharables, e.g. manual pages

BSD specific commands with the same names as in /u sr/bin

The / var file tree

The machine variable /var file tree contains files that tend to grow. Some of the
directories in /var include:

/var/adm Accounting result files

/var/spool Print and mail spooler files

9.2 Software installation

IBM pre-installs the base AIX operating system on the hard disks of the IBM

RISC system/6000 so that after unpacking a RISC system and cabling it together,

AIX comes up just by switching on the RISC system. IBM has recognized that

the IBM RISC System/6000 will be sold into environments where detailed UNIX

' Under UNIX a filesystem containing one or more directories and subdirectories may be mounted
over an existing (and usually empty) directory . For an example see Sec. 12.3.1.

Systems administration 171

expertise may not be available. So can the user really just power up and go, or
are there other installation considerations?

The ordered AIX system should arrive with all the necessary boxes and cables.

One box contains an installation guide, a service guide, some diagnostics disks,

and, for US customers, a VHS video tape. The video tape shows a systems

administrator how to unpack, cable and start a system. For European customers

(without the benefit of video recorders), the procedure is outlined on paper only.
AIX comes with the base AIX operating system already installed, that is,

loaded and configured for a customer's personally ordered and built machine.

However, optional components are pre-loaded not pre-installed. This means that

compressed binary disk files, each containing an image of a licensed program

product (such as the C compiler, the SNA services and so forth), are placed on

the user's hard disk. This has two consequences. First, the user is required to

install some or all of the selected components using SMIT. Secondly, the user

will need more disk space during installation, since, as the images are unpacked and

installed there will briefly be two copies of a licensed program on the hard disk.

9.2.1 Manually installing software

AIX may be installed in any one of five ways:

• From diskettes

• From tape

• From CD-ROM

• From a network

• From image

Since the AIX base is part pre-installed, is there ever a need to re-install? Of

course! There are many environments where re-installation is the norm rather

than the exception, for example, vendor application developers, where people use

many different computer systems for short periods, the services department of
most large AIX financial dealing rooms, where continuously available AIX

systems are at a premium. In these and other environments it is important to

provide a machine in a known state for a new user. When a workstation changes

ownership, it is normally a better policy to clean all software from the machine

completely, reformat the hard disks, and re-install the machine at the latest

software levels to a known configuration.
Whatever the motivation for re-installation it is a practical process, so how

straightforward is an AIX installation?

Diskette installation

Early RISC system customers may have noticed that the AIX operating system

may be ordered on diskette. It costs no more (than for tape) and since the

172 Inside the IBM RISC System/6000

operating system is actually pre-installed, the diskettes are only needed for a re-
install.

There are a number of drawbacks to this approach. First, a fully loaded AIX

system may occupy in excess of 350 Mb of hard disk-over 200 diskettes.

Creating, storage, indexing and, very possibly, reliability problems-not to men-

tion the time required to insert all those diskettes-mean that IBM has withdrawn

the option to order new AIX systems on diskettes. Even preventative or corrective
service is now formally only shipped on tape.

Tape
start

Bootstrap Installation
and maintenance

Table
contents

Base
OS

Extensions COBOL Ada Net View

----------------- Base AIX ----------------- -- Optional products

Figure 9.5. The SIPO tape format.

Tape installation

Tape installation is now the standard method of re-installing AIX. Either two or

three 150 Mb tape cartridges or a single 8 mm digital tape cartridge is required.

As supplied, the AIX software tape is supplied in the system installation

productivity option (SIPO) format. This name, and indeed the format of the

tape, is borrowed from IBM mainframe technology. The format of a SIPO tape
is shown in Fig. 9.5.

To re-install AIX, the systems administrator turns the front keyswitch to the

service position and reboots the system with the installation media inserted.

Because the keyswitch is set to `service', the RISC system uses the NVRAM

service list of devices to boot from, in sequence. Unless changed, this will be from

first the diskette drive, then from any attached and powered-up tape drive.

The built-in IPL ROM begins to read the bootstrap header on the tape. AIX

then needs to determine what screen will be used for the installation so a message

is displayed on all detected and available screens. The screen at which the

administrator replies is used for the rest of the installation.

At this point the installer could change the installation settings. However this

is not normally necessary, unless a change to the previous configuration is
desired. This is because certain vital information, such as the hard disk that

contains the root filesystem or the time zone and keyboard language information,
will be available from the system NVRAM configuration.

So, after selecting a new install, or one that preserves the user (/home)

directories, the base operating system will be installed. Once the base is installed

it is then a simple matter to use SMIT with the install fastpath to install the
remaining products stored on the SIPO tape. Overall, installing a full AIX

Systems administration 173

system with over 300 Mb of licensed programs from I inch tape cartridges takes

about three hours with one tape change. That is a big improvement over previous

AIX systems, and this time is reduced considerably if the installation uses a faster

tape drive, for example an 8 mm tape, or installs using a faster processor, for

example a RISC system model 970.
Installation from CD-ROM follows a similar process to tape. A better way of

installing groups of AIX systems is using network installation.

Network installation

AIX now allows the systems administrator to install machines via a LAN, that is,

via either a Token Ring or Ethernet connection to a specially prepared server

machine. The server machines must have image files of the basic operating

system (BOS) and licensed program products (LPPs) that the systems administra-

tor wishes to install. A special network install user ID is set up on the server

called netinst and a file /home/netinst/db/choices is created containing a

list of directories in which the server image files reside.
It is now a simple matter to create some boot diskettes using the bosboot

command and insert these into the target machine that is to be installed. With

the front keyswitch set to the service position the target RISC system will boot

from the inserted diskettes and the systems administrator simply selects the

installation device as `network'. Then, after entering the Internet network address

of the installation server, the boot program retrieves a list of installable images.

In the simplest case, the systems administrator then needs to transfer each of the

required images across to the destination system and individually install each

one. However, AIX provides a way to automate this procedure. It is possible to

build up packages of files on the server in two ways:

• By a named class, where a class consists of a base operating system and

named licensed program products. In this case the systems administrator

selects the appropriate class, for example sysprog, novice, poweruser etc, and

the desired group of programs is transferred.
• By a named client description file. This ties a particular installation set to a

given Internet address, making it specific to a particular machine.

Typically, network installations can be further automated by also transferring all

the image files and a special class or client package file. The package file is a shell

script designed to perform all but the base operating system installation auto-

matically. After installing the base operating system the systems administrator

runs the package script file which installs the remaining products and then tailors

configuration of the various systems like networking, mail and local hardware

terminal configurations. In this way customers with large populations of IBM

RISC System/6000 can perform effective and managed installations.

174 Inside the IBM RISC System/6000

9.2.2 Software update strategy

An IBM RISC System/6000 customer purchases their system from either IBM or

an accredited value added reseller (VAR). The VAR may be responsible for the

user's software updates. Please bear this in mind in the following explanation.

IBM provides its customers with four classes of software update:

I The selective fix package

2 The selective enhancement package
3 The preventative maintenance package
4 The selective subsystem update

All these packages are composed of one of more program temporary fixes
(PTFs). PTFs are supplied in two forms . First, a single code PTF contains
program code and data that add function or resolve a problem with AIX. Larger
problems use packaging PTFs. A packaging PTF contains no code, only a
description of the several dependent code PTFs, the order in which they must be
applied , and to what software products they must be supplied in order to
perform the update successfully . PTFs are built in IBM Advanced Workstations
Division , Austin, Texas and distributed by IBM Software Publications Centre
(SPC). For example, in Europe this means distribution by IBM Copenhagen.

A selective fix is a PTF that will correct a reported AIX problem. If more than
a single PTF is required to solve the problem then a packaging PTF will be
shipped. A systems administrator receives a selective fix in response to a software
problem report to the Systems Support Centre . For example , a systems administra-
tor may find a security-related problem regarding the automatic timed program
execution facility named cron . The problem is reported and the Systems Support
Centre and a customer- and system -specific selective fix tape is generated and
sent to the customer . The customer applies the cron fix and if it resolves the
problem , closes the problem with the Systems Support Centre. The Support
Centre then tclose or temporarily closes the problem , and if after 30 further days
no further problems are reported, the matter is finally laid to rest.

The selective enhancement package is a collection of PTFs that, when applied,
provides a new function to AIX. For example , in April 1992 , a selective enhance-
ment package was released that provided support for the then new 1 Gb capacity
3.5 inch hard disk drives . A selective enhancement may require a selective fix to
operate correctly . In this case the required selective fix is included automatically
in the enhancement package.

The selective subsystem update (SSU) provides an update to an area of AIX,
for example printer device drivers , raising that subsystem to the latest fix level.
There are about 100 categories of SSU. The SSU was formed in response to
customer suggestions that selective fix tapes were beginning to contain too many

fixes, and that this could take an excessive amount of time to install . This is
because before the SSU concept , the AIX Systems Support Centre could only

Systems administration 175

assume that a customer had installed the most basic level of AIX at level 3.2, so a

selective fix tape would contain tens or possibly hundreds of particular fixes to

bring the RISC system to the correct software level. The position before SSU

was:

Required AIX level = initial AIX level + selective fix

Each SSU contains a cumulative set of fixes for that entire subsystem. Not

only do SSUs install very quickly, they (and PMPs described later) establish a

new base level of code known to be resident on that RISC system by IBM. This

means that once a SSU is installed, and known to be installed, subsequent fix

tapes will be much more compact since:

Required AIX level = Initial AIX level + PMP level + SSUs level
+ selective fix

The preventative maintenance package (PMP) is, as the acronym suggests, a

preventative software update. It contains those selective fixes which are used by

the majority of AIX customers. It is shipped automatically from the Systems

Support Centre and contains those selective fixes that are the highest priority and

the most pervasive.
Let us assume that a selective enhancement package arrives from IBM. How

easy is software updating? For a single or small set of systems then it is a simple

matter to insert the update package tape and use SMIT to update an individual

machine. The procedure works well and has many facilities, for example:

• Fixes can be applied in whole or in part. Normally, a selective enhancement

package comprises a number of packaging PTFs. Systems administrators are

normally instructed to apply just those selective enhancement PTFs or selec-
tive fixes that they require. For example, if the enhancement package contains
five packaging PTFs, four of which relate to diskless workstations, of which

the user has none, then normally only a single PTF is installed.
• The update can automatically extend the size of a filesystem if this falls short

of space as the update proceeds.
• The update can be applied but not committed. This means that if the update

causes problems it may be selectively backed out.
• The update stores information in the vital product database part of the object

data manager; a precise log of what components of AIX were updated and

when.

In my experience updates are fast and rarely fail if installed with care.

9.2.3 Enterprise software updates

Medium- and large-scale users of AIX need some way of automatically packaging,

distributing and updating software packages installed on their AIX systems. In

small or moderately sized companies this may not be an issue, but for a customer

176 Inside the IBM RISC System/6000

with a 100 strong community of RISC systems then updating all systems from,

say, AIX 3.2 to AIX 3.3 may be an involved process.

Consider a countrywide supermarket chain installing a new version of their

vendor Sybase database in each of 350 stores. How would this be achieved in an

orderly, controlled and timely fashion? UNIX certainly has the basic tools to do

this. This usually involves the use of the cron timer program in each remote

system checking to see if any new updates have been applied to a master system.

If they have, then they are shipped to relevant network machines using the BSD
rdist command. Next, a sample update installation script program is sent to each

machine to be updated, and, using TCP/IP remote command execution, the

scripts are executed, thereby updating all the remote systems.

AIX could also use this method, but customers would be better advised to

consider the licensed program AIX Software and Data Distribution/6000

(SoftDist/6000). SoftDist allows RISC system users to electronically ship the AIX

base operating system, IBM licensed program products, OEM products or

indeed any customer packaged software or data. Selected items may be checked

for prerequisite software requirements, required filesystem space and requisite

operating system level. If these criteria are met, the selected items can be

electronically transferred and installed. A SoftDist user typically interacts via a

user-friendly Motif graphics program, though an ASCII terminal interface is

provided as an alternative.
SoftDist contains three main components as shown in Fig. 9.6:

Server: the RISC system containing the repository of available packages.

This is the focal point for SoftDist and all client transactions are processed

on this machine. Logically, therefore, it also contains a list of authorized end

users, machines and corresponding authorizations.

A special user ID is known to SoftDist for server administration. The Server

administrator is responsible for building and testing distribution packages. Once

validated, the server administrator needs to authorize access rights on a per

package basis.

Install

Server
package repository

Request
Customer

Client
destination machine

Figure 9.6. AIX SoftDist/6000 components.

Systems administration 177

• End user : requests the software distribution.
• Client : the target of selections made by a customer . All selected packages will

be installed on the client machine . SoftDist allows a customer to be the owner
of several clients and to select a target for each transaction.

In the simplest of scenarios the server and client are the same physical machine;
also, the server administrator and customer are users on that same machine.

A more typical scenario is that the server is one physical machine, and one

or more client machines exist on an interconnected LAN. The server administra-

tor is typically a user on the server machine ; customers are users on client

machines . For convenience (for example , you are not at your personal machine)

a customer can perform their function from any machine in the administrative

domain.
In a large user community SoftDist allows master and subservers. An

example may make this clearer . A large AIX development site may be split

across several physical sites . It may be convenient to have an individual

subserver system at each site . Individual build, research and development and

test groups may request software packages from their building subserver. Each
subserver receives its packages from a single centrally maintained master

server.

9.3 Performance management

Performance management is the art of configuring and tuning the RISC system

so that it provides the very best response to the computing load presented to it.

This is certainly a nontrivial process even if the RISC system is being used as a

single user workstation, since by definition the nature of AIX means that several

concurrent tasks will always be executing. Of course the task is made several

times more complex if the RISC system is being used in a multiuser and/or real-

time environment.
Performance management of course has an obvious prerequisite, that of

performance monitoring. UNIX has always provided a traditional set of monitor-

ing tools that have been used as the foundation for performance management of

a complex multiuser, multitasking, virtual-memory-oriented computer system.

But AIX also provides some monitoring tools that aim to provide more meaning-

ful information, since they are specific to the RISC system and not just UNIX

generic tools. For example, tools are provided to help determine bottlenecks in

logical as well as physical resources, code bottlenecks, virtual memory and

scheduling contention. So, every RISC system running AIX 3.2 or later comes

complete with both the traditional and the extended AIX monitoring tools.

Clearly, this is an involved area, but we shall consider the fundamental tools

available to the systems administrator.

178 Inside the IBM RISC System/6000

9.3.1 Traditional performance monitoring tools

AIX provides the standard UNIX performance monitoring programs:

gprof Produces a call graph profile of CPU usage

iostat Reports CPU and I/O statistics for terminal, disk and other media

devices

netstat Displays network traffic

nfsstat Displays network file system and remote procedure call activity

ps Lists the processes and their state

sar Collects, reports and saves systems activity information

timex Reports in seconds, the elapsed, system and user time for a program

vmstat Reports on virtual memory usage

9.3.2 AIX performance monitoring tools

In addition to the AIX programming performance tools such as trace discussed

in Sec. 5.7, the RISC system comes complete with the following AIX-specific

tools:

svmon Virtual memory: shows the pages allocated, locked in memory and

allocated to paging space by program name.

rmss Reduce memory system simulator: simulates the effect of a reduction

of real memory to a RISC system without having to go to the

trouble of physically removing memory cards. While rmss is running

the systems administrator or applications developer can run applica-

tions as normal in conjunction with other performance monitoring

tools such as svmon or trace to determine the effect of the memory

reduction.

filemon Filesystem activity monitor: reports filesystem performance statistics

for logical volume and physical volume input/output. It can also

report on paging and logical file I/O.

fileplace File placement display: shows the sequentiality of filesystems.

lvmake Logical volume creation

lvextend Logical volume extension

lvedit Logical volume display

These three programs allow more precise creation, modification and

Systems administration 179

display of logical volumes under the logical volume manager than
via regular AIX commands.

netpmon Network performance monitor: sometimes also known as netmon,

runs as a background program while applicationsare executed.

netpmon monitors a trace of system events and network activity and

performance during the monitored interval.

If, as a workstation owner or systems administrator, you believe there is a

performance problem, where do you start? The first point of call is to contact

IBM's team of technical professionals and marketing staff. Their systems consult-

ants are skilled in analysing current RISC system configurations, working hand-

in-hand with real users and the systems administrator to determine the source of

the bottleneck. Is there too much work on too small a machine, is it a resource

bottleneck in one area of the system, or perhaps a particular application software

bottleneck? The consultant will probably follow an action plan similar to that

shown in Fig. 9.7.
As systems administrators become more accomplished they will be able to

perform most of these tasks themselves and perform regular capacity planning to

spot the trend of resource exhaustion before it becomes critical, or will be able to

identify bottlenecks deriving from errant or consuming applications.

Problem

CPU Local disk
bound? NO bound?

Yes

tprof
nice
renice
setpri
Faster CPU?

Pacing
bound?

Yes

No

svmon
mkps
Ivedit

Add physical cols
Add memory (rmss)

Remote
disk bound?

Yes

Sequentialize
filesystem

Add physical
volumes

Add memory

--

No
Trace

program

Make files
local

Action

Add memory

Figure 9.7. Performance monitoring strategy.

10
Storage

The traditional UNIX filesystem suffers from a number of shortcomings that

limit its flexibility , reliability and recovery . The AIX journalled filesystem was

designed to overcome these while maintaining compatibility with the original

filesystem at the user and programmer level.
Many UNIX systems (including IBM's forerunner to the RISC system the

IBM RT PC system) divided the systems' hard disks into a number of logical

partitions . This had a number of consequences . An individual partition or

minidisk could be up to the size of a physical disk, meaning that a single file
could not be larger than the physical disk (the case where a single file resides in a

single filesystem which is the size of a single physical disk). Moreover, the
number of files that could be stored in a minidisk was governed by the number of
inodes of filesystem, a parameter permanently set at the filesystem 's format time.

In addition , a partition usually needed to be contiguous ; if there was space

elsewhere on the same physical disk it could not be used . Lastly , filesystem

maintenance was via the program fsck , a program that was time consuming for

systems with large hard disks. Worse still, some users now using UNIX worksta-
tions retain the expectation, usually gained by working under DOS on PCs, of
being able simply to power off the computer without regard to an orderly

shutdown . On early UNIX workstations (for example an IBM PC / XT running

PC / IX) this behaviour was normally guaranteed to corrupt the data the user had

been working with , and if the user was unlucky , a few critical files of the

operating system too.

10.1 Benefits of the journalled filesystem

The journalled filesystem (JFS) is a new class of filesystem available for AIX

hard disks (that is, not CD-ROM drives or diskettes). At the highest level of

abstraction, this is handled by a logical filesystem, mapping onto a physical

filesystem and at a lower level to the logical volume manager (LVM) layer.

Using the LVM layer, a filesystem (for example, a volume mounted onto the

directory /home/voltaire) or even a single file (for example, /home/

180

Storage 181

voltaire/candide) may extend across more than one physical disk up to a

maximum file size of 2 Gb. The size of a filesystem is also dynamically expandable,

so that as the filesystem becomes full the systems adminstrator can use the chfs

command to expand the filesystem on the fly,' and without even the need for an

unmount. To enhance reliability, a filesystem may be mirrored, or double mir-

rored. Mirrored copies may be kept on separate physical disks for extra

reliability.
Aside from mirroring, AIX includes a persistent storage manager (PSM) to

enhance reliability. Key parts of a filesystem are journalled, for example, changes

to directories, or disk block allocation maps. At system startup if fsck detects the

filesystem is in an inconsistent state, it needs only to replay the journal log of

changes to make good the filesystem's integrity. The recovery time in this

instance is related to the number of changes made, rather than the filesystem

size.
Let us first define some of the terms used by journalled filesystem technology

and present the logical view of the old UNIX and new filesystems to the systems

administrator, then discover how the JFS is implemented.

Figure 10.1. AIX filesystem organization.

10.2 Filesystem organization

VG volume group
LV logical volume
LP logical partition
PP physical partition
PV physical volume

Refer to Fig.10.1 for a set-like description of the following terms. A volume group

is a storage pool comprised of up to 32 physical disks. A volume group contains

' By comparison, a traditional UNIX filesystem cannot be enlarged. The systems administrator
would have to bring the system down to maintenance mode, back up the the filesystem to be
modified, unmount the filesystem, delete the filesystem, create a new larger partition and filesystem,
and finally restore the data and bring back the system to multiuser mode.

182 Inside the IBM RISC System/6000

up to 256 filesystems . The maximum size of a file within a filesystem is 2 Gb. In
AIX terminology a filesystem is a logical volume . (Strictly, a filesystem is always
contained in a single logical volume . However , the reverse is not always true. For
example, some database packages prefer to work with a raw logical volume, e.g.
/dev/lv0l, rather than by placing files in a filesystem within a created logical
volume .) A logical volume is composed of one or more 4 Mb (by default) logical
partitions (LPs). A logical partition is made from one or more physical partitions
(PPs). If mirroring is not used, then a LP maps exactly to a single PP; for single

mirroring an LP maps to two PPs; for double mirroring an LP to three PPs. Let
us look at a simple example to illustrate this.

A user wishes to create a filesystem called /home/sheela and needs it to be
80 Mb in size. Mirroring is not required, that is to say, 20 PPs of 4 Mb will
suffice:

wkly -y'patra' rootvg 20

This creates the logical volume patra in the Volume Group rootvg.

crfs -v jfs -d'patra' -m'/home/sheela' -A'yes' -p'rw'

This command shows us that the file will be automounted and the entry in the

/etc/filesystems file is now:

/home/sheela:

dev = /dev/patra

vfs = jfs

log = /dev/hd8

mount = true

check = true

options = rw

To give a user more flexibility the systems administrator has control over not

only the degree of mirroring, but also its characteristics. From zero (no mirroring)

to double mirroring may be selected. Additionally, the systems administrator may
select sequential or parallel write policies. A sequential write policy means that a
program that issues the write request is suspended until all mirrored writes have

completed. For a parallel write policy the first successful write will allow the
controlling program to continue. When reading from a mirrored system, the first

successful read is returned to the program. Therefore, on average, a mirrored

filesystem with a parallel write policy is at least as fast as a nonmirrored system

for writing and reading data.

10.3 The traditional UNIX physical filesystem

In order to understand and appreciate the JFS it is necessary to understand the

Storage 183

Bad track table

Boot block

Superblock

mode list

User data

Figure 10.2. Physical disk format.

traditional UNIX filesystem. Consider a physical hard disk drive . This is divided
into a number of components as shown in Fig. 10.2.

The boot block occupies the first addressable sector of the disk and contains
the bootstrap machine code read into the computer that boots the system.
Although only one boot block is required (on the booting disk) typically every
UNIX filesystem has a (possibly empty) boot block.

The superblock describes the rest of the disk , for example how large the
inode area is, how large the filesystem is, etc . The inode list follows the
superblock . Its size is fixed as listed in superblock and is decided when the
filesystem is initially created with the mk f s command . Each inode contains a
list of data blocks that make up a file. Data blocks start after the inode list
and contain the data in the filesystem , including not only regular user data
but also directories.

10.3.1 modes in more detail

The inode is the key storage element in the UNIX filesystem. It stores the list of
blocks that constitute a file. An inode typically contains the following
information:

• entries referring to this file

• Filetype (file, pipe, socket, ...)

• permission (read, write, execute)
• User ID of owner

• Group ID of owner

• Size of file

• Number of blocks
• Time last modified
• Time last read
• Disk address 01
• Disk address 02

• Disk address 03

• Disk address 04

184 Inside the IBM RISC System/6000

• Disk address 05

• Disk address 06

• Disk address 07

• Disk address 08

• Disk address 09

• Disk address 10

• Disk address 11

• Disk address 12

• Disk address 13

The disk addresses field is interesting. If a file is nine blocks or smaller (assume a

disk blocksize of 4 kb) then these pointers give us the physical disk block

addresses that make up the file. So, in this example, to find any file 36 kb or

smaller, only a single inode entry need be read. For a file greater than 36 kb in

size, the tenth inode pointer references a block containing block pointers as
shown in Fig. 10.3.

Pointer to a 4 kb block

Block pointer 10

1024, four-byte
pointers

Single indirect

Pointer to a 4 kb block

Block pointer 11

Pointer to a 4 kb block

1024, four-byte
pointer to single
indirect blocks

Doubly indirect

Figure 10.3. Allocating space to files.

In our example, let us assume that the block addresses are 4 bytes (32 bits) in

length. (This means block numbers can range from 0 to 232 - 1. This gives up to

4 G blocks.) If each block is 4 kb in size then the maximum size of a filesystem is

total number of blocks x block size = 4G x 4 kb = 16 000 Gb. Since the block

size is 4 kb we have room for 4096/4 = 1024 block pointers. And 1024 block

pointers would point to 4096 kb of file. Add to this the original 36 kb to give

Storage 185

4132 kb, so files between 36 kb and upto 4132 kb are referenced by the first

nine block pointers in the inode or the blocks pointed to by the pointers

contained in the block, pointed to by the tenth block pointer. The tenth block

pointer is known as the single indirect block. Files larger than 4132 kb are stored

by a pointer stored in the eleventh block pointer. This is an extension known as

double indirect. Here the eleventh pointer points to a block, whose contents are

the pointers to 1024 single indirect blocks. As before, each indirect block is a

block containing 1024 pointers to datablocks. This scheme caters for files up to

36 kb + 4096 kb + 1024 x 4096 kb = approx. 4 Gb. Larger files than this

would be handled by the twelfth inode that had a further level of indirection

called triple indirect. (Since single file sizes of 4 Gb are pretty academic, triple

indirect may not need to be implemented. For example, under AIX the maximum

size of a single file is 2 Gb.)
But how does UNIX find a particular file by name? Looking back at the

contents of the inode, notice that the filename is missing . Each file has an inode

number but this is not stored in the inode itself. Why?
Under UNIX any number of filenames may point to a single physical file. For

example /usr/bin/vi and /usr/bin/vedit are both names referring to the

vi screen editor. (The first thing the editor program does when loaded is detect its

name : argv[0] in programming terms. It then changes its behaviour according to

the name under which it was invoked.) If the filename was stored in the inode then

a link would only be possible by replicating the inode entries for each filename.

This would not be very efficient and would be error prone too. Instead, the first

inode in the filesystem points to a directory file called root. In this directory there

is an association between filenames (or indeed other directories) and inode

numbers. So for example, to load /u s r/b i n/v i UNIX would read the top-level

directory to find the inode that corresponded to the directory /usr. From

that inode it would read the directory file for /usr to find the inode number

for the directory file /usr/bin. Finally, it would read the contents of the

/u s r/b i n directory file to determine the inode number for the vi which it would

then load.

10.4 The AIX physical filesystem

The hierarchy of the AIX filesystem is as follows:

• Virtual filesystem

• AIX physical filesystem

• Virtual memory management

• Logical volume management

• Physical device driver

• Physical device

The AIX physical filesystem replaces the traditional UNIX physical filesystem

186 Inside the IBM RISC System/6000

described previously. From the hierarchy diagram notice that this layer sits
directly below the virtual filesystem that allows for transparent access to local
and remote files. For AIX however, the physical filesystem is shown as follows:

Superblock
Disk block allocation map
Inodes
Inode allocation map
mode extensions
Inode extension allocation map
Indirect blocks
Directory segments

User file segments

The superblock is a file located at block zero of the filesystem . The disk block
allocation map is a bitmap used to indicate the use of each block in the filesystem
logical volume . (Remember that a single logical volume may span more than a
single physical disk .) This is stored as a file called . dis kmap.

The inodes are stored in a file called . inodes . This file begins at block two of
the filesystem . The mode allocation map is a bitmap maintaining the allocation
map of inodes . It is stored in a file called . inodexmap . The mode extensions
area stores additional information such as access control list (ACL) data. This is
stored in a file called . inodex . ACLs are described in more detail in Chapter
14. The mode extension allocation map is a bitmap describing which entries in the
mode extensions area are allocated . This is stored in the file 16 . inodexmap.

The indirect blocks area stores indirect blocks used for storing files that are too
large to be stored in just the mode (that is , files larger than 32 kb). The directory
segments area stores all files (or objects) by name (Table 10 . 1). The first page of
the root directory is stored at block number three of the filesystem.

The fundamental difference then between the traditional UNIX filesystem and
the one outlined is that traditionally fixed sized and fixed placed entities like the
mode table are now stored in . (hidden) files at a predefined mode number. (Note
that these files cannot be seen using the is -a command .) This means for example
that the file . inodes can grow as required , and also that it can be spread out
across the physical surface of the disk.

Another difference is the contents of an mode as a file grows from disk mode
to single indirect . If a file uses more than eight disk blocks then it becomes single
indirect . At this point the first eight block values become the first eight values in
the single indirect block . The first eight disk mode values are maintained but not
used again unless the file contracts to eight disk blocks or less . When a file grows
from single to double indirect the first index of the doubly indirect block is the
only singly indexed root . This ensures that if AIX knows the size of the file it
need not read the disk mode for files greater than 32 kb to find the logical
volume address contained in the mode.

Storage 187

Table 10.1. AIX file systems

Inode # Description

0 Not allocated
1 Superblock
2 Root directory
3 inodes
4 indirect
5 inodemap
6 . diskmap
7 inodesx
8 inodexmap
9
10

10.5 The persistent storage manager

The AIX physical filesystem talks through the AIX virtual memory management

(VMM) layer to the logical volume manager device driver. For filesystems this

means talking to the persistent storage manager (PSM).

10.5.1 Mapped files

AIX does not use the traditional UNIX buffer cache to store frequently used

parts of files. In traditional UNIX an application reading or writing data makes
a request to the UNIX kernel. For a read, the kernel reads part of the file from

disk, then places this information in the kernel buffer cache. It then passes the

requested data to the application. On subsequent reads if the part of the file

requiring access is still in the buffer cache, a real physical disk read is not

required and information is transferred directly from the cache to the application.

A similar process operates for disk writes. However, AIX does not need this

intermediate buffer and required bytes of files are read or written directly from

the disk to the application buffer. This results in an average 300 per cent (or

better) improvement in disk-to-application data transfer, clearly a very large

performance advantage for AIX. How is this achieved? With AIX, access to files

is done via the virtual memory management subsystem (as though a memory

access) because all files are mapped.

When a file is opened, the kernel maps the whole file into virtual memory. This

means that the file is now represented by an address range in the virtual memory

space of the system. When a program issues a readO system call to access data

from the file, the kernel converts this into a request for one or more pages from

virtual memory. If the page is not in real memory then a page fault occurs. At

this point the virtual memory management part of the kernel reads the required

part of the file into real memory. The page remains resident subject to the normal

rules governing reuse of real memory pages.

Currently the default memory page and disk block size is 4 kb.

188 Inside the IBM RISC System/6000

Step Userlsystem action

0 Write ()

Results in

Data in
memory

1 fsync ()

2 Write necessary
actions that will
be performed to log

3 Write
commit/record

4 Perform
actions in log

5 Write log sync

Figure 10.4. Filesystem journalling.

10.5.2 Operation of the PSM

Prepare to
do steps
2,3,4,5

/delete inode 15
modify inode 16

delete 15,'
modify 16 3
COMMIT

LOG SYNC

The purpose of the PSM is to pass on data blocks to be written via the logical

volume manager. It is also instrumental in logging certain critical filesystem

entities that need to be journalled (for example, changes to inodes).
Each filesystem component, that is directory, file and superblock, is mapped to a

persistent storage segment (PSS). A PSS may be journalled, in fact all but the

file's data is journalled by the PSM component called the log manager. The log

manager writes out changes to a noncached log file. Let us look at this in more

detail by referring to Fig. 10.4:

Storage 189

• The user works on a file.
• A background process called syncd (synchronization daemon) or a user

causes a fsync() system call to flush out the changed data blocks from in-

memory cache to the logical partitions (LPs) that form the filesystem in the

volume group.
• The persistent storage manager instructs the device driver to write out

changed and newly allocated data blocks to disk (step 1).
• A record of changes needed to be made to the critical filesystem structures

such as the inodes is made in a log (step 2).
• A commit record is written (step 3).
• The actual changes to the inodes, indirect blocks, etc. are made (step 4).
• A log sync record is written to the log, indicating that changes written to the

log have been carried out (step 5).

This process is designed to be atomic in nature and the reader should be
convinced as to its reliability by considering the possibility of an instantaneous
power failure between steps 1 and 4.

Step 1 A power failure after step 1 means that blocks have been written

through the logical volume manager but no changes made to the

critical filesystem entities (that is, inodes, directories, indirect

blocks,. ..). Because of the latter, although the data is lost the

filesystem is in a consistent state.

Step 2 When AIX boots it checks the consistency of filesystems. In particular

it looks at the log records and rejects any changes that have not been

committed. If no log records need be actioned then all data written

before the crash would be lost, but again note that the filesystem is

still in a consistent form since no critical filesystem entities have been

altered.

Step 3 In this case the reboot of the AIX system would detect that a commit
record had been written but not completed. AIX simply continues

with step 4 and step 5 as outlined below to make good the changes to

the filesystem. In this way no data is lost and the filesystem is consistent.

Step 4 Here is the very rare case that the commit actions were carried out
but the log sync record not written. In this case AIX attempts to

replay the log of changes as in the previous case. However, it will find

that all changes have been made, so although the replay will succeed,

the net effect will be zero since the filesystem was completely up to

date as the system rebooted. In this case, as above, no data is lost and

the filesystem is consistent.

Step 5 If a power failure were to occur after step 5 then upon reboot the
system would find that there were no changes to be applied since the

190 Inside the IBM RISC System/6000

last log sync record, so it would be as though the filesystem had shut

down gracefully. No recovery processing needs to be performed.

In all cases a consistent filesystem is maintained but the user may have lost

data. This can only be improved on in the traditional way, that is by using an
uninterruptable power supply.

10.5.3 Physical volume recovery

Because a single AIX file or filesystem may extend over one or more physical

disks, and may even be mirrored, special considerations are necessary to

recognize, tolerate and even recover from physical volume failure.

Consider the case where a user volume group is comprised of two physical

volumes. In the volume group there is one filesystem, that is, a single logical

volume. Suppose that when the system starts one of the disks has a catastrophic

failure (for example, a motor burns out). If the filesystem is spread across the

two drives it would be nice to be able to work with files that exist wholly on the
remaining good drive. Now consider the case where we have another two drives

in this volume group. Let us assume that we have a single mirroring set and

again a single drive has a catastrophic failure. This time any file will be contained

in its entirety on physical volumes that are still operational. So while IBM

customer service engineers are bringing the replacement drive parts, users can

continue to work on the mirrored copy of the file. The system is powered down,

the new hard disk motor is installed and upon reboot AIX will automatically
resynchronize the stale physical volume.

The key to recovery is the physical structure contained at the head of each

physical volume as shown in Fig. 10.5. Each physical volume contains four areas:

• 128 sector with DASD configuration information
• Area for boot IPL code
• Space for one or more volume group descriptor areas (VGDAs)
• Space for the user's data

Bootstrap

Bootable code

IPL record

The AIX/UNIX

One or more
VGDAs

User data

A timestamp
Which LVs in a VG
Which PVs in a VG

The user's data

Figure 10 .5. The AIX volume group descriptor area.

Storage 191

The VGDA contains a complete description of how physical partitions of every

physical volume in the volume group are allocated. It describes every logical

volume, and the physical partitions allocated to every logical partition in that

logical volume. Each volume group is bounded by a header and trailer timestamp.

If the timestamps match then the volume group is considered valid.

If a physical volume becomes unavailable within a volume group then, for a

mirrored disk, accesses to other good physical volumes will continue. On the disks

that are still operational, physical partition entries referring to the offline disk are

marked as stale. If, as in the previous example, the system is powered down and

the disk fixed then, when the system is started, AIX will attempt to vary on this

volume group. In this mirrored example the system would:

1 Find the most up-to-date volume group descriptor area in the volume group.

(latest matching timestamps).
2 Update that VGDA with the repaired physical volume and the physical

partitions contained in it.
3 Overwrite all other VGDA in the volume group with this VGDA.
4 Perform mirroring update to resynchronize the stale physical volume.

Even in the case when mirroring is not used, the VGDA gives the user the ability
to work with files wholly contained on operational disks in a volume group, even
when some of the disks in that volume group are temporarily unavailable.

10.6 Logical volume manager characteristics

The logical volume manager is in software terms directly above the physical

device driver and uses this knowledge to try and optimize its disk operations. The

LVM attempts to improve average access time for the filesystems based on

parameters set by the systems administrator.

Consider the characteristics of a physical disk drive as shown in Fig. 10.6. The

closer a given physical partition is to the centre of a disk platter, the lower the

average seek time, assuming a uniform distribution of disk seeks. So it makes

sense to position information that will be most frequently accessed close to this

centre and to place less frequently used data towards the edge of the physical

platter. The LVM defines a number of intraphysical volume allocation policies.

These are edge, middle, centre, inner middle and inner edge. When logical

volumes are defined within a volume group one of the options is to specify the

allocation policy.
Not to be confused with this is the inter-physical volume allocation policy.

This is a parameter that may be specified when creating a logical volume (instead
of taking the default), telling AIX across how many disks to spread the logical

volume. Currently choices are maximum or minimum. Clearly, if the destination

volume group comprises a single physical volume (physical disk) then this choice

is meaningless since the logical volume must be located on a single disk.

192 Inside the IBM RISC System/6000

Figure 10.6. Physical disk layout strategies.

Choosing `minimum' tells AIX to create the logical volume on as few disks as

possible. Maximum lets AIX place the logical volume on as many physical disks

as possible. Maximum will be faster because disk writes are spread over more

disk arms; however, if any disk becomes unavailable the logical volume is

incomplete. It is a traditional tradeoff of speed versus reliability!

11
DOS

Recently I received a flyer announcing `the extension of DOS into the 21st
century'. This was a bit of a surprise because most PC software developers or
hardware architects acknowledge that the microcomputer industry can move on
from DOS to something better. To UNIX? To OS/2? To NT? There are many
more choices, however indications are that the 40 million and growing worldwide
base of DOS users will be staying with the DOS with which they have become
familiar.

Ironically, in the UNIX world DOS is particularly relevant; over 80 per cent of

UNIX sites make significant use of DOS. DOS is here, and here to stay.

Certainly, we need to take account of users who want to run both DOS and

UNIX programs from a single workstation, or who wish to migrate existing DOS

applications to an AIX platform.

IBM has always had a close linkage between its DOS and AIX platforms.

Indeed, recall that one of IBM's first UNIX platforms (described in Appendix 1)

was the humble IBM PC/XT running PC/IX. When IBM announced its first

minicomputer UNIX workstation its name-IBM RT PC system-gave the clue

to its linkage with DOS. The IBM RT PC system enabled the workstation user to

run DOS and AIX tasks simultaneously. Initially, an IBM PC AT form factor

card performed the emulation. This plugged into the I/O bus of the IBM RT PC
system. This card contained Intel 80286 and 80287 microprocessors and the

necessary timer and interrupt support circuitry to provide a PC on a card. Using

a program written by IBM and Microsoft called the PC Simulator, this card then

became a hardware implementation of an IBM PC. Since there was no memory

on this emulator, system memory from the IBM RT PC system was accessed by

special circuitry built into the I/O channel controller (IOCC) on the planar of the

IBM RT PC System. Accessing this system memory was a slow process since

memory reads and writes had to be translated from real DOS addresses to virtual

system memory addresses. Therefore the user had the option of installing regular

IBM PC AT bus memory on the I/O bus which brought the real-time performance

of the emulation to about that of an 8 MHz IBM PC AT. The user could also

install AT graphics adapters and dedicate them to DOS. With all these options

193

194 Inside the IBM RISC System/6000

installed, a user could simultaneously run a DOS session on a physically separate

EGA screen with little or no performance degradation to AIX. Within IBM this

configuration was very popular with people who worked with AIX. IBM staff

would run DOS-based IBM mainframe terminal emulators to enable connection

to the IBM worldwide office system, and on the other native AIX screens run

regular character- and graphics-based applications under X-Windows.

As the IBM RT PC system design developed, alternate methods of DOS

emulation were considered; the results provided the basis for today's DOS

emulation product on the IBM RISC System/6000. AIX software designers no

longer considered a hardware emulation card necessary. Why not provide the

entire IBM PC emulation in software, giving the user an extra bus slot and

obviating the need for the purchase of an additional hardware processor and

memory card? It sounds simple, however emulating an entire IBM PC in

software was an extremely nontrivial task. It involved not only the fundamental

emulation of the Intel 8086 processor in software, but also the emulation of the

characteristics of the IBM PC, such as the programmable logic of the communica-

tions ports, the memory-mapped screen, the software BIOS and other standard

ROMs. Nevertheless, the design went forward, and the first incarnation of the

PC simulator (PCSIM), developed by Microsoft and IBM, yielded an entire

software emulation of the IBM PC.

11.1 DOS emulation on the IBM RISC System/6000

On the RISC system PCSIM has been enhanced and is supplied as a standard

part of AIX. PCSIM allows the RISC system to emulate an IBM PC AT running

in real mode. On a performance test of PCSIM on a RISC system model 340, I

measured the processor performance at about 30 times the speed of the IBM PC/

XT using the Norton SI (systems information) utility. This is certainly faster than
a 20 MHz Intel 80386DX based IBM PS/2. IBM officially rates the performance

as good as or better than a 10 MHz Intel 80286 based IBM PS/2. As can be seen,

in practice I achieved significantly better on what is now certainly only a modest

RISC system (33 MHz clock speed) in performance terms. Of course, if multiple

PCSIM sessions are started at the same workstation, or if significant AIX tasks

are being executed, this performance metric will decrease.

Running DOS on the IBM RISC System/6000 has a number of advantages

over running on a real PC hardware platform. First, it enables centralized

storage of all DOS and UNIX software. This saves on the maintenance, cost and

desk space required for the two separate machines (and associated screens)

required to run both operating systems. Furthermore, both the external 5.25 inch

and the internal 3.5 inch floppy drives are supported simultaneously by DOS and

AIX.
In the process of installing PCSIM, the installation program copies the heart

of the DOS kernel from the original licensed DOS disks (that needs to be

DOS 195

purchased separately) and creates a bootable DOS kernel in a regular file in the

AIX filesystem. This image is used subsequently on invocations of PCSIM.

PCSIM has two ways of emulating DOS hard disk drives. The first method
creates a single, perhaps large (say 20 Mb), AIX file and dedicates it to PCSIM.
In this example, PCSIM sees the file as a hard disk of size 20 Mb. While
running, PCSIM owns the file completely and there is less interaction with the
native AIX filesystem improving performance. The second method tells PCSIM
that one or more AIX directories are to be mapped to DOS, for example, that
the /home/dos/d file be mapped to the D drive. This is significant, because this
AIX file can be local on the user's personal workstation or, perhaps, remote.
That is to say, the directory could be imported to the local system executing
PCSIM from another AIX system using NFS. If the AIX filesystem is used for
files, file-sharing between multiple users or PCSIM sessions using files in the
native AIX filesystem would be the preferred method of operation, because each
PCSIM session can read from and write to the DOS filesystem simultaneously,
based on the underlying AIX file permissions set on individual files and
directories. If, however, a single AIX file is used to represent an entire DOS disk,
second and subsequent users of this disk receive a read-only hard disk. This is
the best that can be done in this mode because DOS has control of all the data
within the file.

Executable files may be run from either the single file or mapped AIX

filesystems.

A helpful modification made by PCSIM is to redirect the printed output sent

to the DOS printer port to the AIX spooling subsystem. This can of course even

include remote printer queues.

The screen resolution emulated using PCSIM varies according to the available

hardware. Full VGA graphics are emulated when running in a window on an X-

Windows display (local workstation or remote) or at an X-station. Monochrome

display is possible in all other cases, that is:

• On a local console display (full screen)
• On a local console display in a window under AlXwindows
• On a remote X-Windows server display
• On an ASCII terminal display
• On a character-based telnet emulation

This flexibility is an advance over many competitive vendors ', attempts to offer

DOS emulation , which is normally limited to a high-function workstation graph-

ics screen . True, this is the preferred environment but many IBM RISC System/

6000 systems are destined for multiuser commercial use and occasional multiuser
use of DOS from ASCII terminals.

Overall , PCSIM emulation is complete . For example , some of the simulated

facilities include:

196 Inside the IBM RISC System/6000

• I/O emulation on a per device basis. Devices included are IBM PC AT

interrupt control, the interval timer, CMOS RAM, the real-time clock and

speaker hardware.

• VGA graphics on local or remote graphics workstations.

• The Intel 8259A interrupt controllers as used on the IBM PC AT.

To test compatibility I made extensive tests using two very demanding DOS

programs by running two instances of PCSIM simultaneously on the same X-

Windows screen. The first program was Microsoft Flight Simulator. The second

was Microsoft Windows (version 3.0 was used because PCSIM supports only real

mode processor emulation).

PCSIM includes special drivers to emulate the Microsoft mouse when the

mouse pointer enters the PCSIM window (outside the window it is controlled by

X-Windows).

11.1.1 Supporting ASCII terminals

As indicated, users connected to the RISC system with only ASCII terminals can

also make use of PCSIM. In general, PCSIM allows DOS applications running

in monochrome display mode to be mapped onto an ASCII terminal screen.

Even `misbehaving' applications like Lotus 1-2-3 can be mapped to an ASCII

terminal gracefully because machine code instructions that write directly to the

PC hardware screen buffer are caught, batched and sent as a sequence of cursor

positioning and write movements to the attached ASCII terminal.

Since up to 129 DOS sessions can, in principle, be started on each RISC

system workstation, it is easy to understand how multiple occasional DOS users

connecting via even simple ASCII terminals can run their screen-based, mono-

chrome, character applications. To perform this and other character mapping,

PCSIM needs to know the exact characteristics of the user's terminal. IBM

supplies configuration files for its own and other popular terminals. Since the

IBM PC screen is 25 rows by 80 columns in size, allowance is made to view

output on a normal ASCII terminal whose screen size is typically only 24 rows

by 80 columns. Allowance has also been made for the fact that while on a PC a

program may write to the last character on the bottom line of the screen without

side-effects, on an ASCII terminal this causes the whole display to scroll upward

one line. A variety of other user-configurable features help users run unmodified

DOS applications from an ASCII screen. To help diagnose character translation

and configuration file problems, PCSIM is supplied with a ttylog utility to

monitor all key-sequences passed to PCSIM and all data written from PCSIM to
an ASCII terminal screen. By running this command the differences between the

actual and expected data streams can be detected and appropriate diagnostic

action taken.

DOS 197

BIOS duplicate

Memory Address

16 Mb

15.875 Mb

. Extended memory

BIOS and BASIC

Not supported

Screen buffers

1024 kb

896 kb

768 kb

640 kb

DOS programs and
data

0 kb

Figure 11.1. The emulated DOS memory map.

11.1.2 Memory capabilities

For its operation each PCSIM DOS session has allocated to it a 2 Mb virtual

memory space. For users new to DOS the real-world PC memory map needs a

historical explanation. The emulated DOS memory map is shown in Fig. 11.1.

When the IBM PC was first sold with 64 kb of RAM memory it seemed

reasonable to locate the BASIC and low-level operating system read-only memory

chips, such as the low-level machine-dependent drivers (called the BIOS), at 896

kb and above in the memory map. Similarly, it seemed that locating the screen

buffers in the region 640 kb-768 kb in the memory map would also not present a

conflict. After all, the previous standard of microcomputers used the control

program for microcomputers (CP/M) operating system, and that had only a 64

kb space for programs-this new architecture allowed for 640 kb. Unfortunately,

a ten-fold increase was not enough. Although the IBM PC AT used an Intel

80286 processor capable of addressing 16 Mb of contiguous program, compat-

ibility dictated that the locations of the ROMs and screen buffers between 640 kb

and 1 Mb could not be changed. The AT architecture did make one change,

which was to shadow the BIOS and BASIC ROMs just below the 16 Mb line;

this is of course accounted for by PCSIM.

Although PCSIM emulates the Intel 80286 processor, emulation is for real

mode instructions only, that is generating addresses in the range 0 kb-1024 kb.

However, there is BIOS support for up to 15 232 kb of extended memory.

11.1.3 DOS to AIX communications

The PCSIM provides a way for DOS and AIX programs to talk to each other.
This enables an application developer to create a hybrid application that is part
DOS and part AIX. This may be either from choice or, for example, while

198 Inside the IBM RISC System16000

migrating a DOS application to AIX. Assuming an application is modular, parts

of the application can be migrated to AIX, communicating with the remaining

parts running under DOS. Of course, since potentially up to 129 separate DOS

sessions may be running, there is a way of sending information to a particular

DOS session, or for a DOS program to determine which invocation of DOS it is.

Facilities also exist for a DOS program to invoke any AIX system call or to

send any known signal to a running AIX program. Conversely, an AIX program

can send a software interrupt to a DOS session. An AIX program can also

determine the global memory segment that represents the DOS session of interest

and, if it has the appropriate authority, read its contents.

11.1.4 Device specific support

PCSIM (unlike AIX PS/2) does not provide any way to support dedicated

hardware cards. This is a technical limitation due to the fact that PCSIM does

not own the real hardware machine and is simply another program executing

under AIX. Responses to interrupts cannot be guaranteed to be within a regular

PC timeframe, for example, the PCSIM program may have been paged out to
disk because of inactivity.

Conversely, AIX PS/2 uses the hardware virtual mode 86 (VM86) mode of the

Intel 80386 (or better) processor required to run AIX PS/2 to enable device-

specific cards to be supported. Under AIX PS/2 the exact interrupt level, on-

board ROM and RAM of any particular card can be specified in the file called

/etc/dosdev. A simulated DOS session can then be started and may own one

or more of the specified cards with declared characteristics.

11.1.5 PCSIM performance

As previously indicated, running Norton SI gave me a CPU performance rating

equivalent to faster than a 20 MHz powered Intel 80386 computer. However,

there are many factors that need to be accessed if one is to contemplate regular

use of PCSIM to replace an existing DOS computer. First, the responsiveness of

the emulated DOS session. Real DOS computers are very attentive because,

while waiting for input, the entire processor's attention is usually polling the

keyboard. On the PCSIM emulation, PCSIM competes for RISC processor time

with all the other running AIX tasks. A user can obtain the described perform-

ance, but running multiple DOS tasks will noticeably degrade the performance of

a system. PCSIM attempts to improve overall performance of AIX by sleeping

DOS sessions that it detects are idly waiting for input.

Another consideration is the screen update speed. When running in VGA
emulation mode on an X-Windows screen , DOS software usually writes directly
to the DOS screen buffer located above the 640 kb user area in the DOS memory

map. The RISC system needs to catch such a memory write, determine what

VGA screen mode the session is in , then translate this to an X-Windows screen
write. This is not a trivial process and the current strategy is to study the state of
the DOS screen buffer every 20 milliseconds and make changes to the windowed
X-Windows screen at these intervals. Thus the screen update speed is noticeably
slower than for a real PC.

Overall, the software emulation of the IBM PC AT is a processor-intensive

task. However, I still believe it would be more efficient to have a hardware

emulation, but that would require the design of another MicroChannel card that

would be useful only to RISC system customers. Under AIX PS/2 the DOS

emulation is provided using DOS Merge, a product that was written in conjunc-

tion with the Locus Computing Corp. By using the VM86 mode of the native

Intel 80386 (or better) processor, almost 100 per cent real DOS performance is

achieved without impacting the AIX performance to any noticeable degree.

If a user's need is primarily to run DOS programs with occasional AIX, it may

be more appropriate to use a personal PS/2 running AIX PS/2 rather than the

IBM RISC System/6000.

11.2 NetWare for AIX

Novell NetWare is the dominant operating system for PC LANs today, with an

estimated 60 per cent plus market share. Initially, NetWare was a family of

networking products running entirely on Intel-based computers. Today, NetWare

can run on dedicated Intel PCs or on UNIX systems which support the Novell

Portable NetWare system. The functions provided by NetWare include file- and

printer-sharing among different types of computers on a network. Network

connectivity is accomplished by client software residing on an individual user's

DOS or OS/2 workstation, connecting to one or more NetWare servers. NetWare

for AIX interoperates with:

• Other Netware for UNIX workstations

• Native PC Netware workstations

• DOS Windows Netware computers

• OS/2 Netware computers

• LAN attached print servers

AIX NetWare is based on Novell Portable NetWare, version 3.11. It allows the

IBM RISC System/6000 to become a NetWare server that is accessible by DOS,

DOS Windows or OS/2 NetWare clients attached via either Token Ring or

Ethernet LAN networks. The product was ported to AIX by IBM working in

conjunction with Novell. It runs as an application on top of the native AIX

operating system and uses native AIX facilities to access the AIX server filesystem

and perform memory management and scheduling.

200 Inside the IBM RISC System/6000

11.2.1 NetWare file sharing

The principal use of NetWare is to enable DOS, DOS Windows or OS/2

NetWare clients to share files stored remotely on the AIX NetWare server. The

AIX NetWare server stores its data in the AIX filesystem. Files residing on the

AIX system appear as DOS or OS/2 files to the NetWare client user. Therefore

the NetWare client users can manipulate regular DOS, OS2 or AIX files transpar-

ently. Because client files are stored simply as AIX files, centralized backup and

management can be performed on a user's files using regular AIX commands.

This also allows the NetWare client user to take advantage of the AIX logical

volume management capabilities, such as mirroring, for enhanced availability

and performance.

11.2.2 Access to AIX applications

AIX character-based applications can be accessed by DOS and DOS Windows

NetWare clients using the Novell virtual terminal (NVT) protocol and a

compatibile DOS terminal emulator. Using NVT the NetWare client can establish

a logon session with the RISC system and log on as a standard user. This allows

a user to run standard AIX applications from a remote workstation and take

advantage of the superior processing power available at the RISC system.

Furthermore, once logged on the user can make use of AIX connectivity

facilities, for example, IBM mainframe emulation using the HCON terminal

emulator, or file transfer and mail to other AIX users using TCP/IP.

11.2.3 NetWare printing

NetWare print services allow printers to be shared by users throughout the

network. To NetWare clients, printing from a network station seems the same as

standalone printing. However, NetWare redirects this printer output to a number

of destinations, for example, to the AIX printer on the AIX NetWare server, or

to a printer on a remote AIX machine (which need not be running NetWare).

The output can even be directed to another NetWare client's printer, enabling a

small user department with NetWare clients to share the printer resources of a

particular NetWare client with a printer.

11.2.4 When to use NetWare

NetWare client and server functions were initially written in Intel assembly

language and optimized for PC networks. In a PC-only environment my experi-

ence is that a dedicated high-performance IBM PS/2 (for example a 33 MHz Intel

486 model 95) will outperform the AIX NetWare server. The message therefore is

that AIX NetWare should not be purchased purely for perceived performance

DOS 201

reasons. It is an open, interoperable, network server allowing users to interoperate

with the AIX environment. IBM also markets and services the full range of

Novell products, so if a regular IBM PS/2 based NetWare server is more

appropriate, this can be obtained from IBM.

11.3 AIX access for DOS users

AIX Access for DOS Users (AADU) allows DOS systems to have access to

RISC system resources. It provides the same types of facilities as the Novell

NetWare client and server technology but is more suitable for customers who do

not already have NetWare or who have only small numbers of workstations that

need AIX access. The product is comprised of two parts: some server code that is

always included with AIX, and some client code that resides on the DOS PC. It

includes specific support for IBM PCs, PS/2s and compatibles. AADU is available

from IBM or from Locus Corporation, since AADU is simply a licensed version

of the Locus PC interface product.

Several services are provided. First, terminal logon to the IBM RISC System/

6000. AADU users can log on and emulate either a DEC VT100 or DEC VT220

terminal. Secondly, users can view some or all of the AIX filesystem under DOS

(depending on the standard AIX file access permissions). For example, users in a

workstation group running DOS computers with DOS 3.3 have access to `virtual'

hard disks physically located on the IBM RISC System/6000, in excess of

hundreds of megabytes in size. The on command allows the AADU user to

execute AIX commands while not specifically logged on to AIX, and return the

results to the PC screen. Output from an AIX command may even be intermixed

and sent to a DOS process. Lastly, AADU enables a DOS user to share AIX

printer facilities, remapping a user's local LPT1: device and other ports to the

AIX spooling subsystem.

Overall, AADU is a low-cost yet flexible package. PCs can connect via Ethernet,

Token Ring or even async connections and share the resources of the AIX host

and/or run AIX applications using the built-in terminal emulation.

AADU competes in the marketplace with various other TCP/IP based products

enabling the same facilities such as AIX logon and disk sharing using NFS. The

user should find, however, that AADU provides a higher level of integration in a

lower cost and easier to use package.

11.4 TCP/IP for DOS

TCP/IP for DOS is an excellent implementation of TCP/IP for Personal Comput-

ers (see Sec. 12.2) using the DOS 3.3 operating system or later. The latest version

was part written by the University of Maryland, located in Washington DC.

Within the limits of the DOS operating system this product provides many

facilities. Users can log on to remote TCP/IP systems using the telnet command

202 Inside the IBM RISC SystemI6000

and transfer files using ftp. Remote command execution and printing are also

supported. Disk-sharing to a remote NFS server is made possible using the

provided NFS client support. Physical connections to remote systems can be

made using Token Ring, Ethernet, IBM PC network or RS232 asynchronous

connections. Finally, this product can operate concurrently with Microsoft

Windows.

11.5 X-Windows servers for PC users

The whole rationale for providing good DOS support under the IBM RISC

System/6000 was so that users did not have to resort to using a separate DOS

workstation to perform DOS tasks, fragmenting their data, practically taking up

more desk space, and reducing the user's overall productivity. However, some

users turn the solution to the interoperability problem around. They see it like

this: Why can't I access AIX from my DOS system rather then access DOS from

my AIX system? There are a number of cases where the user is not being

awkward, but where the facilities provided by the RISC system DOS emulation

simply do not meet their needs. Some examples might be the need to run

Microsoft Windows 3.1 or later, or the need to run OS/2 full-screen or OS/2

Presentation Manager programs.
In these cases the user's solution would be to make a link from the AIX,-ystem

to their native DOS or OS/2 PC-based workstation. The usual requirement is

normally more than can be satisfied by a straight character-based AIX host

emulation. What the user typically requests is the ability to concurrently run

DOS Windows or OS/2 Presentation Manager software and their X-Windows

AIX applications.
The only way to do this, currently, is to run an X-Windows server under the

DOS or OS/2 operating system. This is a fairly thankless task made difficult by

the following limitations of the PC architecture:

• Users will require significant processing power if they expect to run X-

Windows concurrently with other DOS or OS/2 applications. Practically, this

means an Intel 80386 based computer or better.
• X-Windows makes great demands of a workstation's graphics hardware. A

VGA display and adapter card are acceptable practical minimums. But

beware, many specialized `go faster' PC graphics accelerator cards may not
be supported at all nor run to their full potential with the X-Windows server

emulator.
• Under DOS, running X-Windows is particularly painful due to the limitations

of the DOS operating system. Most X-Windows for DOS emulators run

under the Microsoft Windows environment which, in principle, allows the use

of Windows and X-Windows applications simultaneously from the same

workstation. However, maintaining communications links under Microsoft

DOS 203

Windows is difficult for a software designer and almost inevitably leads to

the utilization of a dedicated terminate and stay resident (TSR) program.

Recall that X-Windows needs underlying TCP/IP networking software, and

the user may find their DOS Windows and X-Windows server enabling TSR

programs monopolizing low DOS memory. This will leave a user running

Microsoft Windows unable to run anything but Microsoft Windows and X-

Windows programs concurrently (that is, no separate DOS programs for

example).

Overall I do not recommend running X-Windows on a DOS system. Although
acceptable for demonstration purposes, I find response too slow if DOS,
Microsoft Windows and X-Windows are mixed together.

X-Windows and IBM Operating System/2 is a usable combination however,

since although the underlying hardware may be identical to that used with DOS,

OS/2 is able to make significantly better use of resources. Additionally, for some

time now, a number of enthusiasts working at IBM in Cambridge, Massachusetts,

have been working very hard to produce a workable X-Windows environment

under OS/2. The product that IBM retails is called simply TCP/IP for OS/2 and

represents one of the most complete and value-for-money packages I have seen.

It includes all of the following:

TCP/IP

Network driver interface support (NDIS)

NFS

X-Windows server

Kerberos security
Simple mail transfer, remote printing

NCS, NFS and both RPC programming interfaces

Optional source code

The implementation of X-Windows here is usable; I use it daily from my OS/2

systems desk to my AIX systems desk. Since these are in physically different

places it is convenient for me to be able to log on to AIX from my OS/2 system

or vice versa, share disks from AIX to OS/2 or vice versa, and run the X-

Windows program on my OS/2 workstation.

Architecturally, the product makes use of NDIS, which allows this product to

co-exist with other network protocol stacks such as SNA or NETBIOS, on the

same card. Although the display of X-Windows is still slower than I would like,

it is robust and usable.

12
Networking

This chapter deals with UNIX-to-UNIX networking as implemented by AIX.

Traditional UNIX systems have always provided a set of utilities that are used to

interconnect UNIX computers using asynchronous RS232 connections. This

connection is only normally used today (if at all) to connect AIX systems

between different sites using slow-speed analogue telephone circuits.

The traditional utilities have been superseded by transmission control

protocol/internet protocol (TCP/IP). This allows a set of computers, each running

TCP/IP and usually physically connected on a LAN, to send files, mail and log

on to each other's systems.
IBM's open systems connectivity strategy is TCP/IP. For example, to enable

file transfer between an IBM RISC System/6000 to an HP, Sun or MIPS

workstation, the answer would be TCP/IP. It would also be the preferred

connectivity product to link AIX systems to IBM's traditional range of comput-

ers. Because of this, IBM now sells TCP/IP for DOS, OS/2, AS/400, VM and

MVS platforms.

12.1 Basic networking utilities

UNIX-to-UNIX copy program (UUCP), is a facility built into UNIX systems

particularly suited for dial-up lines. It can be used to send automated, person-to-

person electronic mail messages using wide area networks (WANs), peer-to-peer

file transfer and remote execution.
Before the advent of LANs, the basic networking utilities (BNU) were the

traditional form of inter UNIX-system communication. This could be between

systems separated by only a few metres, or systems in different countries linked

by a dial-up telephone line. The physical intermachine connection can be just a

three-wire (transmit, receive and ground) RS232, serial port connection. Setting

the software component of BNU is, however, nontrivial. In most systems

administrators' experience it either works first time, or only works with a lot of

effort. AIX UUCP is no better and no worse than other UUCP implementations

in the marketplace. With high-speed LAN connections now in existence, BNU is

204

Networking 205

now rarely used; TCP/IP (described shortly) is now the favoured communications

mechanism. A strong contributory factor is that it is easier to set up.

AIX offers the HoneyDanBer version of UUCP. The name comes from the

three logons of the original authors: Peter Honeyman, David Nowitz and Brian

Redman.

BNU has a number of commands intended primarily for users, although

systems administrators can use these commands to perform basic systems manage-

ment in a WAN environment. Some of the important ones are:

Ct Instructs the local computer to call a modem attached to the remote

system and then allows a remote user to log on to the local system to

perform tasks.

cu Connects a local user to a remote system and executes commands and
transfers files interactively.

uucp Copies a file from one system to another. uucp creates command and

data files then calls the uucico daemon to do the work.

uulog Displays the activity log for transfers.

uustat Displays the status of uucp transfers.

AIX has extended the basic BNU communications protocols to accommodate

the TCP/IP networking protocol (described shortly). Therefore, with BNU the

systems administrator can use the following communications mechanisms:

• Dial-up WAN
• Leased line WAN connection

• Ethernet LAN

• Token Ring LAN
• X.25 WAN

12.2 TCP/IP

Transmission control protocol/internet protocol (TCP/IP) is the primary means

of allowing AIX systems to talk to other UNIX systems or to any other vendor

system running TCP/IP, for example, talking from an IBM RISC System/6000

to a SUN Sparcstation or to an IBM mainframe running TCP/IP. Physically,

participating TCP/IP systems are normally interconnected via a LAN; for the

IBM RISC System/6000 this means Ethernet or Token Ring. TCP/IP also

provides for point-to-point TCP/IP communications using asynchronous serial

lines using alternative protocols.

What really differentiates TCP/IP from many other networking protocols

(including IBM's Systems Network Architecture, SNA) is that TCP/IP includes

numerous actual programs built on top of the protocols that allow the user to

208 Inside the IBM RISC System/6000

named Andrea believes that she has /usr, /home/andrea and /home/

netnews directories. User Andrea sitting at her personal workstation can cd

(change directory) into these parts of the file tree, execute programs in /home/

andrea or read network news stored in /home/netnews. In practice though,

these directories are not local but shared from the machine Zoe. The NFS server

simply marks these directories as exportable and machine Andrea imports these

directories to user-defined places on her own filesystem. This is done by user

Andrea using the mount command to `mount over' an existing (and usually

blank) directory. (If the local directory that is mounted over contains any files,

these will not be visible to any user while the mount is active. This is the

traditional way of hiding selected files with AIX.)

12.3.1 Network File System

NFS is the de facto standard system for sharing of files and directories for

machines in the TCP/IP and thus AIX environment. Developed by Sun

Microsystems, NFS is now implemented by all major suppliers of UNIX-based

systems. In addition, NFS is available on IBM vendor operating system platforms

such as VM and MVS.
NFS is based upon the remote procedure call (RPC) package which allows

communications between programs on different machines and the external data

representation (XDR) standard, which describes protocols that allow dissimilar

machines to exchange data via RPC. NFS itself is merely an application that

defines the NFS protocol on top of RPC and XDR and uses these programming

interfaces to provide its functions. The NFS protocol is used by the daemons and

programs supplied with the NFS product.
NFS on AIX is an implementation of Sun NFS version 4.0 plus. NFS provides

transparent remote access to remote directories in networks of heterogeneous

machines. Remote directories can be mounted over local directories or empty

local directory stubs and accessed by local programs as if they were local

directories. Hosts that mount directories from other machines are called client

hosts; hosts that allow other hosts to mount their directories are called server

hosts. A host may be a server for one or more clients and at the same time be a

client for one or more servers.
Early implementations of NFS used a stateless protocol. This was designed to

avoid complex crash recovery-a client would just send requests until a response

was received.
Today the design of NFS is not stateless, though some of the design points

have been carried over. For example, whenever a service is required (for example,

reading the next bytes from a remote file), the RPC issued from NFS carries all

information required to identify the function requested and the data required.

This goes well with the connectionless UDP which NFS uses for transport

services.

Networking 209

Today's NFS implementation includes a duplicate server cache. This stores the

last several hundred, nonidempotent' requests made to the server. If a

nonidempotent request fails at the server, the server checks its duplicate cache,

and if it finds it is a duplicate request, returns a success. For example, if a client

sends a request to erase a file, and the server receives the request, acts upon it,

and sends a response, but the response gets lost, the client will timeout and retry.

The server gets the second request, finds the entry in the cache and returns a

success to the client.

NFS depends on the use of virtual filesystem inodes called vnodes. Whenever a

directory is mounted the inode defining that directory is linked to a vnode, and

every request belonging to the mounted directory is directed over the network to

the remote host. Before a given directory on a server can be mounted on a client,

the filesystem or directory where that directory belongs must be exported by the

server. Since AIX uses version 4.0 of NFS, exports are allowed at the directory

level. An exported directory allows a client to access that directory and any

subdirectories.

One important aspect of the AIX implementation of NFS is support for

remote file locking. AIX supports remote locking using the system V function

advisory locking functions lockfO and fcntlO. NFS lock requests go to the NFS

lock daemon process lockd. They are also registered in the kernel.

12.3.2 File-sharing comparisons

Many other computer architectures allow file resource sharing. Under IBM PC

DOS or IBM Operating System/2 a family of client/server file-sharing products

are available, for example, the IBM DOS LAN Requestor and the Microsoft or

IBM OS/2 LAN server programs. With these products a PC fileserver has one or

more hard disks to be shared. This physical disk is divided into a number of

resources within a named domain. A user workstation uses the net use command

to assign a LAN resource to a local hard disk drive letter. For example, the

command NET USE V.• PVCSFILES would assign the drive V: to the LAN

resource named PVCSFILES on the client machine. The client machine auto-

matically contacts the network domain controller to determine which server

provides the P VCSFILES resource. On the LAN server the resource PVCSFILES

may be a subdirectory on an existing drive, for example C: \SOURCES.

IBM mainframes allow resource-sharing too, though usually only between

users of the same centralized mainframe. Under the IBM VM CMS operating

system a user has a number of named disks from A to Z (rather like IBM PC

DOS in fact!). When a user logs on, some of these disks are reserved for the CMS

' `Idempotent' means that a request can be executed one or more times without error: for example,
asking a server the network address for another user. An example of a nonidempotent request could
be erasing a file.

210 Inside the IBM RISC System/0000

system files, the user also has an A disk where personal files are stored. The

system defines other disks by server user names and a command in a user startup

profile file links to these files. So for example, the command cp link internet 191

555 rr in the user startup file PROFILE EXEC A allocates the server user called

internets disk number 191 to be seen by the client as disk number 555, read only.

The disk is then accessed as a specified letter, for example, access 555 i would

allocate the disk number 555 as the I filemode. In this way the mainframe

allocates special server user IDs which have disks containing shared information.

Users or groups of users then share these disks as required.

Overall, the AIX or UNIX ability to mount directories over waiting stub

directories is more flexible than for the DOS or VM equivalents, since the AIX

view of the filesystem is a single file tree. Under IBM PC DOS or VM, a user can

share disks from remote systems or server users respectively, but ends up with a

set of disks from A to Z, each of which contains a complete hierarchical set of

files and directories.

12.3.3 The POWER Network Dataserver

Using NFS, many large corporate businesses are evolving large distributed

networks of interconnnected PCs and workstations. In the earliest days of

distributed computing, the trend was very much for individual workstations to

have purely local data, with building, country or corporate-wide network links

the exception rather than the rule. Today, while it is recognized that without

personal data your workstation may be but a terminal, there are distinct

advantages to holding some, or perhaps the majority of a workstation's data in

one place. For example:

• Easier file-sharing
• Delegated backup/recovery (from workstation owner to shared data

administrator)
• Easier and cheaper upgrading

The POWER Network Dataserver provides such a high-performance, high-capac-

ity file server that individual workstations access using NFS. Up to 144 Gb of
disk storage can be provided, communicating via up to 8 Ethernet LANs to up to

200 NFS attached workstations.

Network Dataserver design

Figure 12.3 shows a schematic of the Network Dataserver. It is organized as a set

of independently functioning units working together to provide performance with

reliability. As Fig. 12.3 indicates, the Dataserver contains:

Networking 211

Storage CPU

4-20 disks

16-384 Mb cache

1-2 file CPU

1-4 Ethernet CPU

RISC model 340R

Power supplies

Figure 12.3 The POWER Network Dataserver.

• A storage processor

• A memory cache

• A file processor
• An Ethernet subsystem

• A control processor

Following the dataflow of a typical NFS request from a client workstation will

explain how these various parts interact.
Consider a client workstation connected via an Ethernet LAN to the

Dataserver. The user of the client workstation makes a request for data contained

on the Dataserver. This request enters via the Ethernet subsystem, which performs

the NFS protocol processing. Up to four Ethernet subsystems can be contained

in a single Dataserver, and, with two Ethernet connections per subsystem, this

gives a connectivity to up to eight Ethernet networks. The user's request is

analysed by the Ethernet subsystem based on destination address. If it is for the

Dataserver the request is passed to the file processor.

The file processor consults the disk cache of up to 384 Mb contained on one or

two storage cards. If the data requested is in the cache, the cache location is

passed to the Ethernet subsystem which retrieves the data and sends it to client re-

questor. If the data is not in the cache, the request is passed to the storage processor.

The storage processor can be viewed as a highly parallel disk controller. Each

storage processor contains 10 parallel SCSI buses, each of which connects one

or two physical SCSI devices. A single Dataserver can contain up to three

storage processors. Hence, the maximum disk capacity that can be handled,

using 5.25 inch form factor 2.4 Gb hard disks, is 2.4 x 20 x 3 = 144 Gb. (The

2.4 Gb `drive' is actually two 3.5 inch 1.2 Gb hard disk drives, contained in a

212 Inside the IBM RISC System/6000

close-fitting frame.) To house this maximum amount of disk storage, the main

Dataserver cabinet (containing 48 Gb) is attached to a single expansion cabinet

containing the remaining 96 Gb. In our example the read request is retrieved

from the hard disk and sent to the Ethernet subsystem for transmission to the

requesting workstation.

When a client workstation writes data to the Dataserver, the Dataserver

should not return a `successfully written' indication to the client until it has

physically stored the information on a reliable medium, for example hard disk

(rather than into cache memory). Otherwise, should there be a power failure after

a successful write status is returned to the client caller, but before the data has

been flushed from cache onto the disk, data loss will occur. In order to combat

this problem, the Dataserver can be fitted with up to 1 Mb of nonvolatile

memory. Writes to the dataserver are buffered through this memory, and a

successful write may be returned to the caller as soon as the data is stored in

nonvolatile memory. Subsequent power loss will not lose data as automatic

recovery is initiated when power is restored.

Lastly, the functionality of the Dataserver is enhanced by the integrated IBM

RISC System/6000 model 340R. This is, as the name suggests, a rack-mounted

version of the standard RISC System model 340. It therefore runs a standard,

unmodified copy of the AIX operating system. This system is responsible for

initializing the Ethernet, file and storage processors at power up. Additionally it

is in an ideal position to run supervisory Dataserver care applications such as

network administration and storage management.

12.4 High availability

High availability computers improve upon the reliability of regular computers,

which fail if just a single subsystem fails, by employing replicated hardware and

software. The IBM RISC System/6000 has two high availability offerings that

could be classified as mid-range, fault-tolerant solutions. IBM already offers the

System/88 nonstop computing system. This strives to achieve 100 per cent

continuous availability by duplicating all hardware components. It is discussed in

Appendix 1. The solutions provided by AIX cannot compete with System/88

availability, but they cost correspondingly less.

The two high availability options for the IBM RISC System/6000 comprise:

• Highly available NFS (HA/NFS): this is a system that uses two RISC

systems to provide access to shared and mirrored disk storage. Should one

server computer fail, the backup system will take over the role of server

automatically.

• High Availability Cluster Multi-Processing/6000: this is a software and

hardware solution that enables a database application to continue, even

though perhaps the machine on which it was initially running, fails.

Networking 213

enO enl enl enO

SCSI 1

Machine
Sleepy

SCSI 2

Volume group vgOO

Volume group vgO1

Figure 12.4. Highly available NFS.

12.4.1 Highly available NFS

Machine
Happy

SCSI 1 SCSI 2

Figure 12.4 shows a typical configuration. A pair of RISC systems form an NFS

server to other RISC systems on the network (not shown). If machine Happy

fails then Happy's server disk vgOO will automatically be taken over by the

backup machine Sleepy. A single RISC system may be a backup and a server, so

after Happy fails, machine Sleepy automatically begins to export the vgOO disk.

HA/NFS does not require any special hardware components, only that the

participating RISC systems be suitably configured to include redundancy. As

such, each RISC system needs two network adapters and two SCSI controller

cards controlling two sets of external disks.

Consider a situation where a user executes an application on a local RISC

system connected to machines Happy and Sleepy. An application is reading from

and writing to files within volume group vgOO served from machine Happy
which suddenly fails. Server and backup machines communicate with each other

each second using a `heartbeat' message. After 30 missed heartbeats Happy's

backup machine Sleepy becomes suspicious and attempts to contact Happy with

the TCP/IP network command ping. If it determines that Happy is unavailable,

Sleepy reconfigures its second LAN adapter (enl) to the Happy's primary

network address and then uses the varyon command to access the shared disk

volume vgOO of Happy which will then be exported.

12.4.2 High Availability Cluster Multi-Processing/6000

High Availability Cluster Multi-Processing /6000 (HACMP) is an implementation

of loosely coupled multiprocessing for the IBM RISC System/6000. This is

similar in concept and operation to the DEC VAX Cluster. Figure 12.5 shows a

typical HACMP configuration. This shows a number of user workstations

214 Inside the IBM RISC System/6000

Workstation
1

enO

Workstation
n

9333
Shared
disk
subsystem

Figure 12.5. High availability cluster multi-processing.

enO

connected to two IBM RISC System/6000s that form the highly available cluster
system. HACMP offers three levels of fault tolerance:

1 Mode 1 is a traditional redundant hardware configuration. Here a standby

system stands idle waiting for the server to fail. If the server fails, the standby

takes control of the shared resource, then restarts the highly available applica-

tions. This configuration is also known as the hot standby configuration.

2 Mode 2 is also known as the partitioned workload mode. Here there are

two server machines, each running applications. The shared disks are

divided between the servers. If one processor fails, the other one takes over

the disks and restarts the highly available applications belonging to the

failed server.

3 The third mode of operation is the third party takeover configuration. It

provides the highest level of fault tolerence. It allows a cluster to balance its

workload between two processors and not suffer undue performance degrada-

tion should a single processor fail. Here an idle standby system sits between

two active server RISC systems. Should either server fail it can take over the
failing machine's resources. In an emergency situation it can take over both

servers' resources should both servers fail.

The hardware requirements for HACMP are more demanding than for HA/

NFS. Participating workstations must be connected to two separate networks.

Each RISC system has two network cards (enO and enl in Fig. 12.5). This

configuration ensures that any single network card or cable problem cannot

provide a single point of failure. The RISC systems in the availability cluster

must have at least one point-to-point connection. This must be at least an

enl

9333 card

S1 S1 enl

9333 card

Networking 215

RS232 serial line (shown in Fig. 12.5 as SI to represent the planar serial

port), and at best this and a serial optical network connection.

Furthermore the shared filesystem ought to reside on external serial optical

link disk drives (the 9333 subsystem) which are connected using a special twin

tailed cable ('twin tailed' means a single disk subsystem connects to two RISC

systems). The choice of the 9333 enables both systems to concurrently access

information on the shared disk, whereas a valid but not as robust configuration

using multiple external SCSI disk subsystems shared between two systems would

not.

An applications developer may choose to develop highly available applications

in the traditional manner, making allowances for the use of shared resources as

described in the next section (the cluster lock manager). However, it would be

more usual to make use of special multiprocessor versions of vendor data base

management systems (DBMSs). Currently supported DBMSs include Oracle,

Sybase, Ingres and Informix.

The cluster lock manager

In the simplest scenario (Mode 1, hot standby configuration) the `shared' external

disk is used by at most one RISC system at a time. That is to say, it may be used

by different machines, though not concurrently.

For partitioned workload and third-party takeover modes the situation is

more complex. The external shared disks may be accessed concurrently by two

computer systems. Consider the result of individual applications both writing to

the same named file on the external shared disk. The result will be data

corruption if both applications write to the same parts of the file.

This problem is resolved using the cluster lock manager (CLM). This provides

advisory locking services allowing concurrent applications running on multiple

nodes to coordinate the use of shared resources. Advisory locking means that the

system does not enforce locking. Instead, applications running on the cluster

must cooperate for locking to work. An application wanting to use a shared

resource is responsible for first obtaining a lock from the CLM before attempting
to access it. To the applications developer CLM provides two programming

interfaces, each representing a locking model. They are either the CLM lock

model, or the UNIX System V lock model. The two locking models are

implemented separately and an application could therefore use both types of

locks concurrently. In practice, the CLM locking model is superior in terms of

granularity, for example, it provides six increasingly restrictive locking modes,

compared with UNIX System V's two. And, since even the Unix System V

locking needs to be accessed through an HACMP programming interface, the

CLM locking model and associated API would be recommended for applications

developers.

216 Inside the IBM RISC System/6000

12.4.3 UniTree

Designed to operate on either a single RISC system or more usually under

workstations running HACMP file system manager, UniTree provides system-

transparent, file archival and retrieval facilities. UniTree copies automatically

modified user data onto lower level backup media, for example 8 mm digital

cassette tape, then recalls the file from the storage device automatically when the

file is requested. By specifying site-specific parameters, UniTree provides the user

with an apparently unlimited amount of online storage. When used with

HACMP UniTree allows concurrent access to shared data in a cluster of

processors. In this scenario, UniTree maintains multiple copies of the data, and

each processor has access to at least one copy of any file that a user on that client

machine may try to access. Whenever data is modified, modifications are

propagated automatically through the cluster, either instantaneously or when the

copies are made available on line (some time later, in the event of a failure for

example).

12.4.4 Other high availability considerations

It is important to realize that simply using either HA/NFS or HACMP will not

just magically increase total system availability. Other factors must be considered,

for example:

• Separate power supplies to server and backup machines and also to disk

subsystems
• The effect of the loss of air conditioning

• Network failure for LAN-connected users

• Switching of ASCII terminals for direct connect users

12.5 Network Computing System

NFS enables a user to share disk resources between computers. Network Comput-

ing System (NCS) is oriented to share application services between participating

computer systems. NCS is a fundamental building block of the OSF/ 1 distributed

communications environment and as such IBM sees NCS as the preferred

method for sharing processor resources between its RISC systems.

12.5.1 NCS users ' and administrators ' perspectives

Users should not need to know or care that their applications use NCS. Users

may of course benefit from the advantages of a distributed application, for

example, performance and reliability may be vastly improved. The user may be

working from a very small workstation, yet processing vast databases or perform-

ing highly numeric-intensive calculations, which an intelligent user can sensibly

Networking 217

deduce is more than the capability of the local RISC system. Reliability may be
enhanced because if there are several providers of a remote service that is needed
(for example high-speed mathematical matrix manipulation) then only a single
remote matrix provider machine need be working for the user's application to
succeed.

The administrator's perspective is that the NCS environment is significantly

more complex than the traditional one. In the NCS environment an application

running on a user's workstation may make calls to programs on other machines.

This implies that network connections between these machines are available and

that the service provider machines are also available. Additionally, two programs

(described in the next section) called the local location broker and the global

location broker need to be running on other machines in the network. Recall

from Sec. 3.1.2 that NCS is one of the subsystem components that is started

automatically by the systems resource controller at AIX startup.

12.5.2 The NCS programmer's perspective

An applications developer wishing to create an NCS application divides an

application into a main program called a client and a set of remote subroutines

that will execute on one or more servers. Calling a remote subroutine is the

process of making a remote procedure call (RPC). One of the fundamental
concepts of RPC is that RPC functions are called in exactly the same way as

local functions. Exactly how is outlined soon, but for example suppose the

following C language is defined:

Boolean invert (int input [5] [5], int output [5] [5]);

That is to say, a function called invertO with two array parameters each of

which is a 5 x 5 array, one of input values, the other of output values. The

powerful facility that RPC provides is that there is practically no difference in the

programmer's code for calling a remote subroutine as for calling a local

subroutine. For example:

result = invert (inarray, outarray);

/*local call*/

result = invert (handle, inarray, outarray);

/*RPC call*/

This is important because existing applications can be analysed for bottlenecks,

and if these occur in areas which can be distributed, these areas can be migrated

to faster remote systems. The application can be distributed gradually and the

original C source code to the application will require only minimal changes. This

is in contrast to many other program-to-program communications methods. For

example, applications using IBM's advanced program-to-program communica-

tion (APPC) protocol know very intimately that they are running in a distributed

218 Inside the IBM RISC System/6000

%c

uuid (48ela3fcce4a.02.09.03.01.39.00.00.00.00),
version(1)

I
interface product {
[idempotent]
void multiply
handle_t [in] h,
unsigned long [in] numl,
unsigned long [in] num2,
unsigned long [out] *result

}

Figure 12.6. A simple NIDL definition.

environment; this makes gradual distribution possible only with many source
code changes. This is not the case with NCS.

How is an application distributed?

Within an NCS application the user benefits, the programmer's code is practically

unaltered and the systems administrator has tools to help them. How is this

possible? A good way to prove how easy it is to write an NCS application is to

work through a small but complete example. This example also describes local

and global location brokers.

The first step in writing a distributed NCS application is to define the name

and parameters of the remote function that will be called. This is done using the

network interface definition language (NIDL). The language has a C-like syntax.

Figure 12.6 is an example of . i dl definition file describing the function multiplyO
that multiplies two numbers together and returns the result in third integer

pointer. The rather long number after the letters uuid is the universal unique

identifier and is created by the uuid_gen program automatically (actually from the

name of the machine and the time of creation, among other values). The

interface is idempotent, because the multiply request can be requested any

number of times and the same result will be returned without error. After

running this definition (file multiply. idl) through the nidl compiler, four files

are generated. The basename of the file is taken from the basename of the source

idl file thus:

• multiply . h-a common header file

• multiply_ cstub . c-the local client stub
• multiply_ cswitch. c-the local client switch code
• multiply _ s s t ub . c-the remote server stub

To write a complete application, the programmer needs simply to write a

program that makes a call to the multiplyO function. This call is intercepted by

Networking 219

Client
program

Client stub
source

Interface definition

NIDL compiler

Server stub
source

C compiler

LClient
^^ stub RPC

run
time

RPC
run
timeC

Figure 12 .7. NCS stub relationships.

C compiler

Server
stub Server

Progra

the local client stub, sent across the network to the server stub and then to the
server program. The whole procedure looks something like Fig. 12.7.

For completeness, here are the client and server programs that are actually used.

For brevity, the error-checking has been removed; real programs need to check

the return codes on the calls to the NCS RPC library. Figure 12.8 shows the

client calling program; Figure 12.9 on page 221 shows the server program.
In this example a user runs the client program by simply typing ncsmult 3 4.

If all goes well the request is transmitted across the network to the server

program and the number 12 is returned to the user. But how does the client

know where to send the request? The answer is that NCS defines two special

programs called the local location broker and the global location broker. Each

AIX computer that runs one or more server programs needs to run a local
location broker. When the server program is started it registers its service by

class, object and type with the global location broker and/or the local location

broker. When the local client application runs, it makes a call to a known broker
to find the location of the named service it requires. In our example, there is only

one server, but in a large network it would be possible to choose from a number

of servers and the global location broker would return a list of services that

match the class, object and type requested by the client program. Once the client

has the location of the server it corresponds directly with the server machine. In

future correspondence the client program can contact the server directly or ask

the global location broker again for the location of the best service (which may

have changed). That is all it takes to generate a very simple NCS program. NCS,

like AIX in general, has great appeal to real applications developers, principally

because it is simple and effective.

220 Inside the IBM RISC System/6000

/* Client program 'ncsmult'. Calls server program 'ncsmultd'
/* via NCS. Syntax: ncsmult number number (Ex. ncsmult 12 32)
/* 'ncsmultd' returns the product of the two numbers to 'ncsmult'.
/* Johnny Lauridsen, Mar 1991
/* Compile with -I/usr/include/ifl/c -lnck
#include <stdio.h>
#include <base.h>
#include <ncsrpc.h>
#include <lb.h>
#include "multiply.h"

extern uuid_$t uuid_$nil;

main(argc, argv)

int argc;

char *argv[];
{

handle_t rhnd;
lb_$entry_t lbentry, *lbentryl; /* Broker entry
lb_$lookup_handle_t lh = lb_$default_lookuphandle; /* Start search

socket_$addr_t loc; /* Socket address */
status_$t st; /* Return status */

unsigned long numberl;
unsigned long number2;
unsigned long end_res;
unsigned long num_res;
unsigned long max_res = 1;

numberl = atoi(argv[l]);
number2 = atoi(argv[2]);

lb_$lookup_interface (&product$ if_spec .id, &lh, max_res , &num_res
&lbentry, &st);

lbentryl = &lbentry;

rhnd = rpc_$bind(&uuid_$nil,&lbentryl->saddr,lbentryl->saddr_len,&st);

multiply (rhnd, numberl, number2, &end_res);

printf("Result: %ld * %ld = %ld\n",numberl,number2,end_res);
}

Figure 12.8. A sample client NCS program.

Network licensing

Besides enabling developers to write distributed applications, NCS has a

component called the network licence server. This provides control of software

product licenses in a LAN environment. For example, a business could purchase

Networking 221

/* NCS server program 'ncsmultd'. It receives two numbers from a client */
/* calculates the product of the numbers and sends the result back to

/* the client. Syntax: ncsmultd&
/* Johnny Lauridsen, Mar. 1991

#include
#include

<stdio.h>
<lb.h> /* location broker functions */

#include <signal.h> /* signalling functions

#include "multiply.h" /* header file created with NIDL

uuid_$t uuid_$nil;
lb_$entry_t entry;

main()
{

/* Declarations
void cleanitup();
lb_$lookup_handle_t lh = lb_$ default_lookup_handle;

socket_$addr_t loc;

status-$t st;
char name[256];
unsigned long family;
unsigned long llen , port , namelen = sizeof (name);

unsigned long num_res;
unsigned long max_res = 1;

/* signals that will invoke cleanitup function */

signal(SIGHUP, cleanitup);

signal(SIGINT, cleanitup);

signal(SIGTERM, cleanitup);

signal(SIGQUIT, cleanitup);

family = socket_$family_from_name ("ip", (long) strlen("ip"), &st);

rpc_$use_family(family, &loc, &llen, &st);

rpc_$register (&multiply$ if_spec, multiply$ server_epv, &st);

lb_$lookup_interface(&multiply$if_spec.id, &lh, max_res, &num_res,\

&entry, &st);

if (num_res != 0)

lb_$unregister(&entry, &st);

lb_$register(&uuid_$nil, &uuid_$nil, &multiply$if_spec.id, (long) 0,\
"multiply interface\O", &loc, llen, &entry, &st);

rpc_$sockaddr_to_name(&loc, lien, name, &namelen, &port, &st);

printf("Registered with LB.

rpc_$listen((long) 5, &st);

Name='$s', Port=%ld\n", name, port);

}

/* Multiplying function */

void multiply (handle_t h, unsigned long numl,

Figure 12.9. A sample server NCS program . Continues.

222 Inside the IBM RISC System/6000

unsigned long num2, unsigned long *resl

{ *resl = (numl * num2); }

/* cleanitup routine - Unregisters interface from LB and RPC */
void cleanitup()
{

status_$t st;

lb_$unregister(&entry, &st);

rpc_$unregister(&multiply$if_spec, &st);
}

Figure 12.9 A sample server NCS program. Concluded.

a five-user CADAM computer-aided design application . This allows for any five
users to run CADAM and display the output on their machines . This is a so-
called `floating licence ' since this could be any five LAN-connected users. When
a user starts the application it registers it with the licence server . If it succeeds,
the application continues , otherwise it fails , printing a message that the maximum
number of licensed users are already using the application . This is a good
security facility and prevents users from unintentionally breaking their software
agreements . In IBM , the acronym NLS, however, is synonymous with national
language support , so IBM renamed network licence server as the resource licence
manager (RLM) to avoid acronym confusion!

12.6 Network management

Network management is the process of monitoring network activity. It involves

detecting, responding to and correcting user problems caused by network situa-

tions. Here are some examples of typical user problems which could be solved
using network management tools:

• `My remote printer queue is not emptying. Has the printer jammed or run out
of paper?'

• `I can't reach my remote AIX systems for logon or file transfer. Are the links

to that system down?'

• `When I telnet to my remote AIX system the logon prompt appears but it is

not responding to my keystrokes to it. What's wrong?'

• `I've lost access to some of the files in my /home/joseph directory, though

they can be displayed with the is command. Is this a network problem?'

12.6.1 AIX Net View/6000

The primary tool for network management in the AIX or UNIX environment is

AIX NetView/6000. This provides network management configuration manage-

ment, fault detection and performance monitoring using a set of X-Windows

applications. In addition to standalone distributed network management, AIX

Networking 223

NetView/6000 also provides a bidirectional connection to IBM's mainframe-

based NetView product to enable central management of the enterprise from the

IBM System 370 and 390 mainframes running mainframe NetView.

The ability to perform this level of network management rests on the use of the

TCP/IP network management protocol called SNMP.

Simple network management protocol

The simple network management protocol (SNMP) is a protocol used by AIX

and other TCP/IP network hosts to exchange information used in the manage-
ment of networks, such as line up or down, number of packets received or

number of packets in error. SNMP network management is based on the familiar

client/server model used in TCP/IP-based network applications. Each host that

is to be managed runs a program called an agent. The agent is a server that

maintains a database of network information (such as packets sent, received, in

error, etc.) for that host in a management information base (MIB). The host that

is to manage the network also runs a program called a monitor . A monitor is a

client application that periodically requests information from the MIB database
of other machines on the network running the SNMP agent. In addition, a

monitor may send requests to agent servers to modify MIB information (for

example, reboot machine, bring line up or down, etc.) of other machines.

12.6.2 Configuration management

The configuration section of AIX NetView comprises a graphical display of the

network connections. This display is produced automatically using a discovery

process which generates and maintains a network topology database. Discovery

need not be completely automatic; the systems administrator can create known

topology files containing lists of connected nodes if desired. Clearly this aids in

the reduction of total network discovery time.

Once a database of managed network elements is established, AIX NetView is

ready to detect, determine and, if possible, recover automatically from problems

with network devices.

12.6.3 Problem detection

Problem detection is handled in two ways, interrupt notification or response from

polling. Interrupt notification is defined as an asynchronous event, for example

an SNA alert or an SNMP trap sent from a managed device to AIX NetView.

SNMP defines generic trap conditions for all device types and allows new classes

to be added. AIX NetView can also monitor the AIX system hardware and

software error log using an SNMP subagent. The subagent and other trap

conditions result in messages being sent to the status window of the AIX NetView

224 Inside the IBM RISC System/6000

main window . Polling involves AIX NetView sending out requests for status to
known network devices . Since clearly a totally failed device will not be sending
interrupt notifications to anyone , a degree of polling is always necessary . Polling
is accomplished by using the ICMP protocol to send ping requests to network
devices.

12.6.4 Problem determination

After an error has been detected the NetView operator will be notified and this

individual must use their experience and a number of AIX NetView tools and

techniques to determine the exact source of the problem and finally correct it.

The first tool that the operator may use is selective polling of the failing device

using IP, TCP or SNMP. In some cases AIX NetView can be used to obtain

detailed network information about a device, for example for remote AIX

workstations, the TCP/IP physical addresses, routeing tables or the TCP/IP

services supported by the workstation.

Additionally, the operator can use the MIB browser. For example, by selecting

a particular network device by TCP/IP address, the operator can query the MIB

values from a list of discovered MIB object IDs. By using the MIB graphing tool

these values can be compared against historically `good' data to discover any
anomalies.

If the cause and necessary corrective action are still unclear, the operator will

probably attempt to log on to the troubled device. This normally involves using

SMIT on the remote AIX workstation and running online diagnostics/ tracing as

appropriate. (For non-AIX workstations, the NetView operator would probably

use the remote TCP/IP logon command telnet and use the equivalent UNIX
family systems management or diagnostics tool.)

The initial release of AIX NetView does not attempt to perform automatic

error recovery. However, AIX NetView is extensible so that user-written shell

script programs can be incorporated into AIX NetView. When NetView operators

detect the error they can trigger the execution of the required script to automate
recovery.

12.6.5 Performance management

The key to good performance management is usually proactive performance

monitoring. For example, on non-AIX systems, too heavy CPU utilization may

cause the system arbitrarily to kill processes to reduce system load.' Real-time

device monitoring can help detect and thus prevent potential problems from

occurring. AIX NetView provides the MIB application builder. The MIB

2 AIX changed the scheduling policy in line with the revised virtual memory management to prevent
this as described in Sec. 4.5.

Networking

User applications

PC Future dist.
integration services

M
S
e
c

Distributed file services
Diskless support services

a
n
a

u g
r
i Time Directory Future

e
m

t service service e
y n

t
Remote procedure calls

and presentation services

Threads

Operating system and transport services

Figure 12.10. The OSF distributed computing environment.

225

application builder generates an application that monitors a network device in

real time. The NetView operator selects one or more MIB variables that need to

be periodically monitored and graphed. The application is then saved under a

user-definable name which is then dynamically added to an AIX NetView menu.

AIX NetView is based on technology developed from Hewlett-Packard's Network

Node Manager.

12.7 The OSF distributed computing environment

The distributed computing environment (DCE) was first made available in early

1993, with an enhanced DCE product in mid 1993. UNIX International has

announced support for DCE and the European Community (EC) has endorsed

DCE as their strategy for distributed computing.
DCE is OSF's standard for distributed computing. Figure 12.10 shows DCE's

principal components. DCE allows computers from a variety of vendors to

communicate transparently and share resources such as computing power, files,

printers and other objects in the network. As with other OSF components, DCE

was the result of an OSF vendor neutral request process. As with other chosen

selections (for example, OSF/Motif) DCE combines the best of technologies

submitted to OSF. The principal components are now described.

226 Inside the IBM RISC System/6000

Remote procedure calls

This was provided by the Hewlett-Packard and DEC submission of Network

Computing System (NCS) already discussed in this chapter.

Distributedfilesystem

Like the industry standard distributed filesystem NFS already described, the

purpose of the DCE filesystem (DFS) is to allow users and applications to use

files on remote computers as though they were locally based. OSF chose the

Andrew filesystem (AFS) version 4.0 from Transarc. AFS provides some

advantages over NFS including uniform name space, meaning that every file
available on the network has a consistent and uniform name, regardless of

computer. Like the IBM journalled filesystem, DFS is a log-based filesystem,

giving rise to high reliability even after a DFS server machine failure. DFS also

includes support for AIX filesystem security extensions such as access control

lists. AFS is implemented using a client-to-server programming approach using

underlying RPCs coded with OSF DCE.

Naming services

The naming services provide a consistent name for resources throughout the

distributed environment. This allows applications to make use of resources such

as files, disks or print queues in a consistent manner and without needing to

know their precise network location until runtime. DCE supports the directory

services programming interface from X/Open called XDS. This is based on ISO

9594, 1988, or equivalently CCITT X.500.

Authentication and authorization

DCE chose Kerberos3 version 5 from MIT. Kerberos is an encryption-based

third-party authentication mechanism for network security. Version 5 includes an

authentication interface to RPC.

Time services

DCE chose DEC's DECdts time services . The purpose of a time service is to
synchronize the clock of a local computer with universal time , coordinated
(UTC). DECdts includes tracing and management tools and interoperates with

In Greek mythology Cerberus (its Latin name) was the three-headed hound of Hades and guardian
of the chasm which led to his master's kingdom. Cerberus was brought back from the underworld
by Herakles.

Networking 227

the current industry standard network time protocol from Transarc (which was
not chosen by OSF).

PC integration

This component allows PC-connected users to share files on a DCE-based

machine and to send printing to attached printers on that system. OSF chose two

components. First, PC/NFS from Sun Microsystems allowing DOS PCs file-

sharing. Second, the LM/X server from Microsoft allowing any PC having

software using the server message block, LAN protocol to access the DCE

server. It is important to remember that these two products are server-only

products running on the AIX host. It is the user's responsibility to provide the

client implementation products that run on the typically DOS systems.

13
The IBM bridge

For existing IBM customers the natural method of network connection is

provided by IBM's systems network architecture (SNA). Probably the largest

and most complex SNA network in use today is that of IBM itself. This allows

any IBM employee to send and receive files, notes and messages to over 300 000
other users. For any new IBM product to be accepted therefore, either internally

by IBM, or by IBM's existing customer base, it must include good SNA support.

However, the UNIX world too has its own set of network standards, based on

TCP/IP. To be a credible UNIX computer system, then, the RISC system had to

support TCP/IP at least as well as other UNIX vendors. So the RISC system

designers had to satisfy both SNA and TCP/IP requirements. This chapter begins

by explaining some basic IBM mainframe concepts terms and technology. It then

moves on to see how the RISC system interoperates by way of mainframe

terminal emulation, and the associated programming interfaces that allow RISC

system to IBM mainframe and minicomputer connectivity.

13.1 Fundamentals

Many large computer vendors, including Unisys, ICL and IBM, have retained a

vendor set of communications protocols or character encoding standards to talk

between their traditional computer systems. First, let us consider EBCDIC, the

character-encoding system used by IBM mainframe and IBM minicomputer
systems.

13.1.1 Extended binary coded data interchange code

Extended binary coded data interchange code (EBCDIC) is a character-encoding

standard that takes characters represented by the English language and assigns
them an 8-bit binary value. Its counterpart is the ASCII coding standard used in

the PC and UNIX world. Since EBCDIC is an 8-bit code there is room for 256

possible characters, so it has room for a full set of punctuation characters and

special symbols. Traditional ASCII is, by comparison, only a 7-bit encoding
scheme.

228

The IBM bridge 229

Since the encoding schemes are different, if data is transferred from a RISC
system to an IBM mainframe it must clearly be translated from ASCII to
EBCDIC using a suitable conversion program. The reverse conversion needs to
be made when downloading host information to the RISC system.

13.1.2 SNA, logical and physical units

SNA is an architecture that enables IBM computers to talk to each other over a

variety of physical connection media, be they telephone lines, Ethernet, Token

Ring or X.25 connections. Like the ISO OSI and TCP/IP architectures, SNA is

split into a number of layers. Also, like ISO and TCP/IP, SNA is open because all

its interfaces are openly documented. The principal layers'of SNA are shown in

Fig. 13.1.

Any SNA network contains one or more host systems known as system

Transaction services
-Provides application services
-Data is created and/or updated

Presentation services
-Data is formatted and presented

7

6

Data flow control (session control)
-Conversation protocols, synchronizes 5

data flow, correlates exchange of data
and groups data into units

Transmission control
-Paces data exchanges to match processing 4

capacity. Coordinates the flow of
messages, acknowledgement and security

Path control
-Routes data between source and 3

destination and controls data traffic

Data link control
-Transmits data between adjacent nodes 2

in SNA: SDLC for telephone lines,
QLLC for X.25, LLC/MAC for LAN

Physical control
-Connects physically and electrically 1

Figure 13.1. SNA architectural layers.

230 Inside the IBM RISC System/6000

Host
SSCP

P PU

PU, LUs

Figure 13.2. SNA domain structure.

LU

services control points (SSCPs). The SSCP activates and controls the network.

An SSCP manages a portion of the network known as a domain. The SSCP talks

to the user via a hierarchy that normally includes a physical unit and a logical
unit. This is shown in Fig. 13.2.

The physical unit (PU) controls the physical resources of the node. A PU must

be able to implement the lowest three SNA layers. PUs are classified by
capability:

Type 1 (PU Ti) Peripheral node (old terminal node)

Type 2 (PU T2) Peripheral node, e.g. cluster control unit 3174

Type 2.1 (PU T2. 1) Cluster control unit and/or peer node

Type 4 (PU T4) Communications controller, e.g. 3745

Type 5 (PU T5) Host node

The logical unit is an end point in SNA terminology. That is to say, the end
point for data sent across the network. Here are the types:

LUO Customer-defined session, raw API programming interface

LU1 Remote job entry (RJE) applications

LU2 3270 type terminal using the 3270 data stream

LU3 3270 terminal printers

LU6.2 Advanced program-to-program communication (APPC). This is a

peer-to-peer session-oriented protocol, that is, it is between LU6.2

devices and the first stage in communication involves establishing a

communications path between devices between the participating
systems.

The IBM bridge 231

13.2 What is an IBM mainframe?

In the sixties most computers were used in scientific applications; IBM's range

was no exception. IBM, however, began development of a new range of general-

purpose computers that could be used for more general-purpose data processing.

These systems introduced the concept of the `balanced design' point whereby a

computer could manipulate all forms of data effectively without a particular

preference for high-speed mathematics. Additionally, the various subsystems of

the computer such as the processor, disk, communications, were of similar

capability, so they were in balance with one another. So in 1965 the System/360

system was born, the number 360 representing the the 360 degrees of a circle to

indicate a balanced all round design.

System/360 (named S/ 360 for short) improved, and thus was born System/370.

System/370 was then developed to include extended architecture (XA) and then

progressed to System/390. Table 13.1 shows the principal advances in IBM

mainframe architecture to the present day.

Table 13. 1. Mainframe machine architecture advances

Year Name Attachment Instruction set

1964 S/360
1970 S/370 Block multiplexer channel
1972 Virtual storage
1980 Data streaming channel
1981 370-XA
1985 Vector facility
1986 ESA/370
1989 Move page
1990 ESA/390 ESCON channels Sysplex timer, security
1991 Extended distance feature Enhance move page, subsystem storage protection,

processor availability facility

13.2.1 Mainframe operating systems

IBM has four mainframe operating systems:

VSE Virtual storage extended

VM Virtual Machine

MVS Multiple Virtual Storage

AIX Advanced Interactive eXecutive (see Appendix 1)

VSE is the cheapest, simplest and least capable of the four, with MVS the most

232 Inside the IBM RISC System/6000

capable of IBM's vendor systems. VM is an operating system in its own right but

it is also commonly used as a Hypervisor. In this mode it presents one or more

virtual machines' environments, which can contain a `second level' operating

system, e.g. MVS or VSE. Today each of these operating systems has a preferred

version orderable in the /ESA form. For example, MVS/ESA, meaning the MVS

operating system for the Enterprise Systems Architecture (/ESA), that is to say,

exploiting the latest in IBM mainframe technology.

13.2.2 Connecting the RISC system to an IBM mainframe

The fundamental concept in IBM mainframe connections is the channel. The

channel is a high-speed block-oriented communications path that connects

peripherals to the mainframe. Figure 13.3 shows the most important connection

methods from an IBM RISC System/6000 to an IBM mainframe. Working from

left to right in the diagram: from a regular parallel channel output a 3174 local

cluster controller connects IBM terminals. AIX1 shows that an AIX system with

a MicroChannel 3270 connection card (having a coax output) can connect to

such a controller and, with suitable software, provide RISC system users with

IBM mainframe terminal emulation on their attached ASCII or X-Windows

screens.
If the mainframe is not local but perhaps several thousand kilometres distant,

the user will need to connect to a remote cluster controller (AIX2). In this

example the parallel channel has an attached model 3745 communications control-

ler which communicates via two modems and a telephone line with the remote

3174 cluster controller. As before, the RISC system will require a 3270 connection

adapter.
For RISC system to mainframe communications using TCP/IP, a cluster or

communications controller cannot be used, as this is designed to support SNA

communications.' Connection needs to be via a 3172 interconnect controller.

The 3172 controller connects to a mainframe parallel or ESCON channel and has

output of Ethernet and/or Token Ring LAN and/or FDDI. The RISC system

can then connect in the conventional way to this LAN, as shown in AIX3, AIX4.

The 3172 can also connect to other IBM systems running TCP/IP, for example,

IBM PS/2 systems running the IBM products TCP/IP for DOS or TCP/IP for

OS/2.
Finally, the RISC system may be running SNA communications software, for

example, participating in a program-to-program communication from mainframe

' Strictly, a communications controller can be used for TCP/IP in two cases: using a 3745 with an
Ethernet adapter and NCP version 6, or using a 3745 with an X.25 link and NPSI. Additionally,
it is possible to encapsulate TCP/IP within SNA. These topics are beyond the scope of this dis-
cussion.

The IBM bridge 233

IBM ES/9000
mainframe

Channel

AIX1

AIX
RISC System

/6000

Coax

3745 comms
controller

Channel

Channel

3172 Interconnect
controller

Ethernet

AIX3

AIX
RISC System

/6000

AIX2

AIX
RISC System

/6000

Remote 3174
cluster control

unit

Coax

Figure 13.3. IBM mainframe connections.

AIX4

AIX
RISC System

/6000

3174 cluster
control unit

Token
Ring

AIX5

AIX
RISC System

/6000

to IBM RISC System/6000. Such SNA communications would be connected as

shown in AIX5. A 3174 cluster controller connects to an IBM mainframe.

Downstream this model has a Token Ring LAN output instead of the more

usual coax. This then connects the RISC system. Of course other participating

SNA communications from other IBM systems such as DOS or OS/2 may also

be attached.

The IBM mainframe family

In an effort to provide an easier migration path for users, IBM is rationalizing its

mainframe offering onto a single model family called Enterprise System/9000

(ES/9000). This family replaces other well-known model numbers, for example

the 3081, 4381, 9370 and 3090 families.

234 Inside the IBM RISC System/6000

The ES/ 9000 includes:

• Support of the System/390 architecture

• Multiway processors

• Vector processing
• Hardware partitioning using PR / SM

• Faster channel support via Enterprise Systems connection (ESCON) and

ESCON/XDF

13.2.3 Why use a mainframe?

Certain computer applications cannot be distributed easily and are best suited to

mainframe processing power. The banking and airline industries make significant

use of large IBM mainframe systems, each system serving thousands of online

users. The economies of scale mean that the real cost per user for a mainframe

providing a distributed transaction processing application is very low. From a

systems viewpoint, mainframes offer centralized control, management and backup.

Upgrading mainframe systems is, of course, much easier than upgrading distributed

minicomputer systems. Large corporate IBM mainframe computer users typically

run applications written in-house, perhaps using the IBM transaction processing

system CICS. Applications typically display on character-based screens, though

Graphical Data Display Manager (GDDM) graphics is possible. Applications are

typically written in COBOL, PL/I, C or a number of other languages.

13.3 IBM mainframe communications

Existing users connect to IBM mainframe systems in one of two ways: terminal

emulation or program-to-program communication. In the first case the objective

is to allow a user sitting at a RISC system console, X-Windows-attached or

ASCII terminal to view an IBM mainframe screen and interact as though they

were using a genuine IBM 3270, fixed-function terminal or better.

In the second case, the objective is for there to be a communication between a

RISC system and the IBM mainframe. This may be simply to download data

stored on the IBM mainframe, or it could be that a program on the IBM

mainframe is cooperatively processing with a program on a RISC system.

AIX allows both these functions to be performed, typically using native UNIX

TCP/IP or using IBM SNA.

13.4 IBM mainframe terminal emulation

Because of the differing user requirements for interconnecting a RISC system to

The IBM bridge 235

an IBM mainframe, IBM provides more than one IBM mainframe terminal

emulation package.

13.4.1 AIX 3278/79 terminal emulation

The most simple form of terminal emulation is provided by the AIX 3278 / 79

terminal emulation program. As the program name suggests, it allows the user

sitting at a high-function terminal (HFT) or windowed aixterm session to

emulate IBM 3278 and 3279 terminals. These are base function terminals, the

3279 supporting colour. Physically, the connection is made between the coax

output of the 3270 connection adapter installed in the RISC system and a 3174

cluster control unit. The control unit can be either the SNA or the non-SNA

version, be local or remote to the host, and must operate in the control unit

terminal (CUT) mode.
This emulator really does provide base function indeed, but it is very simple to

install and use.

13.4.2 Host connection terminal emulation

Host connection (HCON) is the name given to the high-function IBM mainframe

terminal emulator. With HCON a user has a great deal of flexibility as to the

connection of the RISC system to the IBM mainframe and also the type of RISC

system terminal screen on which the IBM mainframe terminal emulation screen

will be displayed. Figure 13.4 shows the connection options.

The connection from the RISC system to the IBM mainframe may be via any

one of the following:

• An X.25 WAN (SNA connection)

• A local or remote 3174 cluster control unit (SNA or non-SNA)

IBM
mainframe

i
X.25
packet switch

1

RISC System
/6000

3 x 74
controller n IBM

mainframe

Token Ring

IBM
mainframe

IBM
mainframe

Figure 13.4. HCON connectivity.

236 Inside the IBM RISC System16000

• A locally attached Token Ring (SNA connection)

• A remote SDLC line (SNA connection)

If an SNA connection is used then the RISC system emulates a 3174 cluster
control unit and therefore appears to the host as an SNA PU T2. 1 connection.

This means that SNA Services/6000 must also be installed as a prerequisite

product . In practice this is not a problem , but it does require a good degree of

setup.
Once installed , the user may run HCON from even an ASCII terminal, and of

course from an X-Windows or HFT display . A user can have multiple sessions,
and be logged on to multiple hosts.

HCON also allows file transfer between a RISC system and an IBM mainframe.
This enables a user to work with files locally and then to transfer them to the

IBM mainframe (or vice versa). Various options allow for the translation of data

between ASCII and EBCDIC formats and the creation of blocked records on the

IBM mainframe.

13.4.3 TCP/IP terminal emulation

If a user is fortunate enough to have TCP/IP installed on the IBM mainframe

then mainframe terminal emulation is an easy process. A user can enter standard

TCP/IP commands to perform file transfer and terminal emulation. For example,

using the ftp command a user may transfer files from the RISC system to the

mainframe and vice versa, translating from ASCII to EBCDIC datastream as

required. Using the RISC system telnet command a user will perform IBM

mainframe terminal emulation to the TCP/IP-equipped mainframe host. The

telnet program on the RISC system has a component that allows it to perform

full-screen emulation so that mainframe applications that use cursor addressing

(and most do) work correctly. The advantage of this configuration is that any

LAN-connected RISC system can use the RISC system as a gateway, by using

the telnet command twice-once to log on to the gateway RISC system and

the second time to log on to the host. IBM mainframe terminal emulation is

available even though HCON is not installed on the local RISC system.

The user can of course run a telnet session from an aixterm window on an X-

Windows screen and so produce a windowed IBM mainframe terminal session

under AlXwindows. However, IBM now has available a separate program x3270

called the AIX X-Windows Emulator that performs this more efficiently. This

emulator is a native OSF/Motif program and therefore must be run under X-

Windows. The physical connection requirements are the same as for the previous

telnet method.
The AIX X-Windows Emulator offers advantages over using telnet or any

other mainframe terminal emulator discussed so far. First, it is a native OSF/

Motif application and supports cutting and pasting from other X-Windows and

The IBM bridge 237

MOTIF applications to the emulator screen, or vice versa. Most importantly, the

emulation provides Graphical Data Display Manager (GDDM) graphics.

GDDM is the standard for IBM mainframe graphics. For example, the IBM

mainframe application system (AS) makes use of GDDM to display data graphi-

cally in the form of charts. Various IBM host printing utilities allow previewing

of documents containing graphics by using GDDM.

If the reader is considering adding an IBM RISC System/6000 into an existing

IBM mainframe network, IBM mainframe terminal emulation is probably a

requirement. But which emulator to choose? Although the AIX X-Windows

Emulator provides the highest function, it also requires that TCP/IP be running

on the host VM or MVS mainframe computer. And recall that to make the TCP/

IP connection requires the RISC system to IBM mainframe connection to be

made via a 3172 interconnect controller and not the traditional (and inexpensive)

3174 control unit. In an IBM SNA network-managed environment this may be

unlikely, so the bottom line is that terminal emulation is normally enabled by

using the HCON terminal emulator.

13.4.4 Express 3270 terminal emulation

Systems Strategies market a family of products called Express 3270 which also

provide IBM mainframe terminal emulation (and more) for RISC systems. The

software comes in four basic flavours:

• SNA (systems network architecture): the software emulates terminals con-
nected via a 3274 cluster control unit and connects physically using the
SDLC protocol from the multiprotocol adapter.

• BSC (binary synchronous communication): the software emulates terminals

connected via a 3274 BSC (non-SNA) cluster control unit.

• QLLC (qualified logical link control): the software emulates a terminal

connected via a 3274 cluster control unit but the physical connection is via

the X.25 card.
• RJE: the software allows emulation of the IBM 3770 remote job entry

workstation.

At the time of writing, these products cannot be used concurrently with IBM

SNA Services/ 6000 or any product that depends on it, for example, AIX NetView

Service Point.

13.5 AIX to IBM mainframe programming interfaces

The most popular form of programmed communication from the IBM RISC

System/6000 to the IBM mainframe involves the use of a programming interface

that is part of the HCON emulator. (The 3278/79 emulation program does not

provide any programming interfaces, only terminal emulation.)

238 Inside the IBM RISC System/6000

HCON provides a number of programming interfaces . The first is similar in
concept to the IBM HLLAPI (high -level language application programming

interface) 2 in that it allows a program to act as a programmable operator to an
IBM mainframe . It is called API/3270. Program function calls can be coded to
send keystrokes to the HCON terminal session or to examine the contents of the

screen buffer (called a `presentation space ' in SNA terminology). As an example,
an applications developer could write a simple program that automatically
checks the IBM mainframe response time when the user is otherwise idle. Such a
program might operate in the following way.

Do the following actions for the whole duration of the program:

• If the operator information area (OIA) below the bottom enterable line on

the screen indicates link failure then terminate program.

• If the bottom right-hand corner of the screen has a message of HOLDING and

user is idle then send a clear key to the host.

This is the program flow:

1 Establish that the user has logged on.

2 Take a capture of the presentation space.

3 Wait the time limit and take another capture of the presentation space.

4 If the two compare then user is idle.

5 If the user is idle then send an Enter keysequence to the host and monitor the

time for the busy indicator in the OIA.

6 Print the result in a window on the X-Windows screen or write results into a

logfile.

HCON also provides an additional API interface called HCON API T. This is

another API interface designed for program-to-program communication. A RISC

system program uses this API to talk to a program running on the IBM

mainframe. API_T also has additional programming calls that can perform

HCON API/3270 facilities such as automatic logon and the ability to start a

program running on the IBM mainframe. A typical HCON API_T program flow

is:

1 Start emulator if not running and log on to it.

2 Start program on IBM mainframe host

3 Send message to host program.

4 Host program replies.

5 Repeat above steps 3 and 4 as necessary.

6 Close down host program and if necessary log off host.

2 In a recent announcement HCON now provides the real HLLAPI programming interface allowing
migration of customers ' existing non-AIX, HLLAPI applications.

The IBM bridge 239

The advantage of using the HCON API/3270 or HCON API_T is that their

programming and configuration requirements are small. Using API/3270 an AIX

interface to an existing IBM mainframe program can be quickly developed.

Using API_T cooperative processing applications can be easily developed.

Both of these programming interfaces use the LU2 (logical unit 2) method of

defining the entity at the RISC system end. This is an imbalanced configuration.

It would be far better for the RISC system to communicate with the IBM

mainframe on an equal basis. This is achieved using IBM APPC, described in

Sec. 13.7.

13.6 What is an IBM AS/400?

The IBM AS/400 is the established IBM minicomputer family. A business can

start with the entry level AS/400 model D02 capable of supporting fewer than six

users and grow their requirements to a D80 system with several hundred users.

The AS/400 system, designed in Rochester, Minnesota, is an evolution from the

IBM System/38 and the result of a development of the IBM Future Systems

group. In the seventies IBM set up the Future Systems group with the object-

ive of developing a replacement to the mid-range System/370 architecture.

The architecture was designed to overcome some of the limitations of classic

IBM mainframes. As such, the System/38 and AS/400 were designed to
operate in office environments and not require maintenance by computer-skilled

personnel.
Some of the extensions in the AS/400 architecture may have influenced the

RISC system design including single level storage-the ability to map files into

memory-and some aspects of the journalled filesystem.

The AS/400 usually drives character-based terminal screens using a twinax

cabling system. Twinax cable is similar in concept and construction to the

Ethernet LAN coaxial cable. Twinax, however, as the name suggests, has two

internal core cables surrounded by a braided shield, instead of one for coax.

13.6.1 Physical IBM AS/400 to RISC system connections

Local terminals have twinax cables that connect directly to a card in the AS/400

called the workstation controller. IBM does not supply a MicroChannel adapter

with twinax output, so physically the RISC system connects to an IBM AS/400

in the following ways:

1 From a serial port on the IBM RISC System/6000 to an IBM link protocol

converter and thence to a twinax port on the IBM AS/400. The IBM link

protocol converter models 5208 or 5209 convert from ASCII to twinax

protocol, therefore the IBM AS/400 believes it is talking to a native IBM AS/

400 screen.

240 Inside the IBM RISC System/6000

2 Directly to the ASCII ports provided by ASCII workstation controller card

in the IBM AS/400.
3 To a remote IBM AS/400 by an SDLC communications line to a modem,

telephone line, remote modem and into the SDLC communications port of

the remote IBM AS/400 system.
4 Via an X.25 network, where both the IBM AS/400 and the IBM RISC

System/6000 have X.25 adapter cards installed.
5 To a LAN such as Token Ring or Ethernet. The IBM AS/400 now has

integral Token Ring or Ethernet adapter cards.

Of the five methods described, the last, LAN connection, is the preferred option.

As with IBM mainframe connections, connecting the IBM RISC System/6000

to the IBM AS/400 can be divided into two categories: first, emulating the

standard AS/400 terminal (called the 5250); and second, making AIX to AS/400

program-to-program communications.

13.6.2 IBM AS/400 terminal emulation

In the first two methods described above the RISC system can connect its ASCII
serial ports to an IBM AS/400 via the protocol converter or ASCII workstation

controller. Using either of these options the RISC system does not need any

additional software, it can use standard UNIX terminal emulation software to

make the connection. In all other cases however, it is necessary to use the IBM

AS/400 Connection Program/6000.

The IBM AS/ 400 Connection Program/6000

The IBM AS/400 Connection Program / 6000 allows an IBM RISC System/6000

to communicate with the PC/support component of the OS/400 AS/400 operating

system via SNA or TCP/ IP. When an SNA connection is used the RISC system

users can:

• Log on to the AS/400 and have a full-screen emulation session to the AS/400.

• Transfer files between the AS/400 and the RISC system. (This requires PC

support at the AS/400 end.)
• Execute commands remotely on the AS/400 from the RISC system.

• This is possible with Token Ring, Ethernet, X.25 and synchronous data link

control (SDLC) physical connections.

The AIX IBM AS/400 Connection Program can also be used with the AS/400-

based TCP/IP connectivity utility which allows the IBM AS/400 TCP/IP

functionality. These two programs working together allow:

The IBM bridge 241

AS/400
connection program

SNA services
/6000

AIX

TCP/IP

Token Ring
Ethernet
X.25

TCP/IP
connection utilities

OS/400

Figure 13.5. IBM RISC System/6000 to IBM AS/400 communications using TCP/IP.

• File transfer to any remote TCP/IP system including AIX.

• RISC system to IBM AS/400 mail exchange via the simple mail transfer

protocol.
• Telnet : AIX users have full-screen access to IBM AS/400 applications, and

IBM AS /400 users full screen access to AIX applications.

The connection of an IBM RISC System/6000 to an IBM AS/400 is shown
in Fig. 13.5.

13.6.3 AIX to IBM AS1400 programming interfaces

Since there are no specific AS/400 terminal emulators, there are no equivalent

programmable operator interfaces from AIX to the AS/400 as there were with

the IBM mainframe. Instead, applications developers wishing to maintain

program-to-program communications should use APPC, which is the subject of

the next section.

13.7 AIX SNA transaction programs

Several different application programming interfaces (APIs) are available to the

AIX SNA transaction programmer. Each API is composed of a set of C

language function calls, that provide the necessary communication between

transaction programs (TPs) and logical units (LUs). An applications developer

must choose among them, according to the LU type used, the requirements of

the application and the style of coding you prefer. AIX SNA Services/6000

provides the following APIs:

• Operating system subroutines limited interface (LU type 6.2 support)
• Operating system subroutines extended interface (LU types 1, 2, 3, 6.2 support)

• Library subroutines (LU types 1, 2, 3 and 6.2 support)

• Generic SNA interface (special-purpose SNA functions)

• LU type 0 facility interface

242 Inside the IBM RISC System/6000

The most commonly used interfaces are the extended interface and the library
subroutines.

The extended interface consists of the following functions: openO , closeO,

readxO , writexO , ioctlO and selectO . The purpose of this interface is to provide

TPs with access to and control of SNA functions, but yet not to depart from the

well-known AIX programming context. The library subroutines, however,

provide a more SNA-oriented programming context. From a functional

viewpoint, these two interfaces are equivalent.

The library subroutines consist of the following functions : snaopenO , snallocO,

snareadO , snawritO , snactlO , snadealO and snaclseO . Here is a brief overview of

what these functions provide:

snaopenO Open a connection

snallocO Create (allocate) a conversation on the opened connection

snareadO Receive data from the remote TP

snawrit() Send data to the remote TP

snactlO Control and monitor conversation

snadealO End (deallocate) conversation

snaclse() Disable access to a connection

These subroutines are provided through the 1ibsna. alibrary.
To show the simplicity of coding a small sample application, Fig. 13.6 shows a

sample source transaction program and Fig. 13.7 shows a sample target transaction

program. These programs are sample AIX SNA APPC programs, using the LU

type 6.2 protocol. Think of a source TP as the program initiating (allocating) a

conversation and the target TP as the program receiving an allocate request.

Somewhat like the client/server relationship we know so well from the TCP/IP

applications. However the client/server relationship between APPC TPs often

`changes direction', making the client a server and vice versa, by means of

different levels of flow control, not usually seen in the traditional client/server

relationship.
Note the luxsna. h include file. This file defines all the error codes specific to

AIX SNA Services/6000. It also defines all the necessary C structures used by

AIX SNA TPs.

The program flow is:

1 Source TP opens a connection and a cid is returned. This is an identifier,

identifying the connection.

2 Source TP allocates a conversation and an rid is returned. This is an identifier,

identifying the conversation, also called the resource identifier.

3 Source TP sends two numbers to the target TP, using snawritO.

The IBM bridge

/* snamult.c: LU 6.2 Source Transaction Program */

#include <luxsna.h>

long cid = -1; /*
long rid = -1; /*

struct allo_str allo_str; /*
struct write_out write_out; /*
struct readout readout; /*

main(argc, argv)
int argc;
char *argv[];
{

char buf[512];
int i;

SNA file descriptor

SNA resource ID

allocate structure

write structure

read structure

if (argc != 4) /* check input = conn_name + numbers
{

printf("Usage: %s conn_name number number\n",argv[O]);
exit(0);

}

sprintf(buf,"%s %s",argv[2],argv[3]); /* build buf

if ((cid = snaopen(argv[l])) == -1) /* open connection
{

}

perror(" snaopen");

exit(1);

memset(&allo_str, 0, sizeof(struct allo_str));

strcpy(allo_str.tpn, "snamultd"); /* transaction program name

allo_str.type = MAPPED_CONV; /* conversation type: Mapped

if ((rid = snalloc(cid, &allo_str, "M")) __ -1) /* allocate

{

}

perror("snalloc");
if (snaclse(cid) == -1) perror("snaclse");
exit(2);

243

/* ---- clear write structure and send transaction -

memset(&write_out, 0, sizeof(struct write_out));

if (snawrit(cid, buf, strlen(buf)+1, rid, &write_out, "M") <= 0)

perror("snawrit");

else
{

}

/* ---- read server response and display it - */
if ((i = snaread(cid, buf, sizeof(buf), rid, 0, &read_out,

„M„)) == -1)

else
perror(" snaread");

printf("%s\n",buf);

if (snaclse (cid) __ -1) perror(" snaclse");
}

Figure 13 . 6. snamult source transaction program.

244 Inside the IBM RISC System/6000

/* snamultd.c: LU 6.2 Target Transaction Program */

#include <luxsna.h>

long cid = -1; /* SNA file descriptor */
long rid = -1; /* SNA resource ID

struct allo_str allo_str; /* allocate structure
struct deal_str deal_str; /* deallocate structure */
struct write-out write_out; /* write structure */
struct readout read_out; /* read structure

main(argc, argv)

int argc;

char *argv[];
{

char buf[1024];
int a, b, i;
rid = atol(argv[3]); /* Get resource ID

if ((cid = snaopen(argv[2])) == -1) /* open connection

{

}

perror("snaopen");
exit(0);

memset(&allo_str, 0, sizeof(struct allo_str));
allo_str.rid = rid; /* Put resource ID in
if ((rid = snalloc(cid, &allo_str, "m")) = -1)

perror("snalloc");
if (snaclse(cid) == -1) perror("snaclse");
exit(2);

structure

/* ---- clear receive buffer and read message ----------
memset (buf, '\0', sizeof (buf));
if ((i = snaread(cid, buf , sizeof (buf), rid, 0, &read_out, "M")) _ -1)
{

perror("snaread");
break;

sscanf(buf,"%d %d",&b,&a);
if (b*a == 0) break;
sprintf(buf,"%d * %d = %d",b,a,b*a);
/* - clear write structure and send response
memset(&write_out, 0, sizeof(struct write-out));

if (snawrit(cid, buf, strlen(buf)+1, rid, write-out, "M") <= 0)
{

}
}

}

perror("snawrit");
break;

Figure 13 . 7. snamultd target transaction program . Continues.

The IBM bridge 245

memset(&deal_str, 0, sizeof(struct deal_str)); /* clear dealloc structure

deal_str.rid = rid; /* specify resource ID

deal_str.deal_flag = DISCARD; /* type discard */

deal_str.type = DEAL_FLUSH; /* deallocate flush

if (snadeal(cid, &deal_str, "M") == -1) /* deallocate conversation
perror("snadeal");

if (snaclse(cid) = -1) perror("snaclse");
}

Figure 13.7. snamultd target transaction program. Concluded.

4 Target TP reads these numbers using snareadO , multiplies the numbers and

returns the result to the source TP, using snawriteO . The source TP reads the

result using snareadO and displays the result.

Here is an example of how to use the program:

snamultCONNECTION_NAME 10 5

10 * 5 = 50

The CONNECTION_NAME is the name of an AIX SNA SERVICES/6000 connec-

tion profile. To make AIX TPs work, a systems programmer needs to set up some

profiles describing local LUs, TPs and the location of the remote system.

Several programs are available for the RISC system, that use the mentioned

APIs. If you need additional source sample code for APPC programming, a

sample file transfer application comes with AIX SNA Services/6000. This is

located in the /usr/lpp/sna/samples directory.

13.7.1 Common programming interface-C

Common programming interface-C (CPI-C) is not yet available for the IBM

RISC System/60003 but because of its strategic importance to APPC the reader

should understand it.

As APPC developed, distinct APIs for APPC platforms on different IBM

platforms emerged. Each API had unique characteristics and usually a different

function call interface. CPI-C was developed to avoid platform dependencies.

Although the actual implementation of CPI-C over APPC may vary from

platform to platform, the API is consistent. A distributed applications developer

can utilize CPI-C without needing specific knowledge of how the interface is

implemented on a specific platform. Portability is also clear. Since the program-

ming interface to APPC is standardized with CPI-C, applications may be moved

from one CPI-C platform to another. Also note that the CPI-C function call

interface has adopted as an X/Open standard, though X/Open will not necessarily

3 Not available directly , but it is available using the Encina Transaction Processing subsystem, see
Appendix 3.

248 Inside the IBM RISC System/6000

use APPC as the underlying transport protocol. This means that the CPI-C

programming interface is likely to be used by even non -IBM systems wanting to

communicate with each other.

13.8 Network management

The concept of network management has already been explained in Sec. 12.6,

where the AIX NetView/6000 product which enables a suitably configured IBM

RISC System/6000 to perform Network Management of a TCP/IP network using

SNMP was also discussed. The choice of the name `NetView' for this product

might be regarded as confusing however, since NetView has traditionally been

the term used to describe tools that IBM uses to manage networks of systems

interconnected via SNA. The rest of this section therefore describes the relation-

ship and interconnection of AIX NetView/6000 and the host SNA NetView

facilities available on an IBM mainframe running either the MVS or VM

operating systems.

Within SNA, network entities are divided into four categories for network

management as shown in Fig. 13.8:

• The focal point provides the final level of network decision making and

centralizes the network management task. Skilled operations staff are hence

required only at the focal point and not throughout the system.

• The entry point, service point and collection point transport network manage-

ment information from particular devices to the focal point.

• The collection point simply forwards information collected by other entry

points The entry point provides network management for itself and attached

devices and must be an SNA physical unit.

• The service point provides network management of non-SNA devices out-

side the entry point, for example from SNMP (see Sec. 12.6.1). The service

point converts the information into SNA format and sends it to the focal

point.

The product that links AIX NetView/6000 to the host by providing the service

point function as described above is IBM AIX NetView service point. Of course

this runs on top of SNA Services/6000 which they use to communicate with the

IBM mainframe focal point.

13.8.1 NetView service point

Recall that the service point function means acting as a relayer or bridge between

an IBM SNA subsystem and a non-IBM subsystem, such as TCP/IP. The idea of

using the Netview service point (NSP) package then is to forward any machine or

network problems back to a centralized NetView focal point where an operator

can use NSP or NetView management facilities to resolve the problem. This is

The IBM bridge 247

Focal point

Collection point

Entry
point

Service point

Non-SNA
devices

Figure 13.8. Network management structure.

done by writing a user-written event-driven application (see Sec. 6.1.5) program

using a programming toolkit. The application interface library has two program-
ming interfaces:

• Function-specific functions: high-level functions (may use)

• Toolkit interface: low-level functions (must use)

An example of a function-specific function would be `send error sense data to

IBM mainframe NetView'. An example of a toolkit interface function might be

`create object'. Although a supplied toolkit is used to write event-driven programs,

these programs neither require nor use any component of the X-Windows event-

driven programming environment or the Motif toolkit. The programming facili-
ties available fall into five functional areas:

1 Alert processing facilities: allow the programmer to send notification of

detected problems to the host.

2 Common operator services: allow the programmer to receive commands from

and send commands to the NetView command processor.
3 Asynchronous communication facilities: allow programs to establish sessions

with asynchronous TTY ports.

4 Host data facility: provides an LU 6.2 protocol-based file transfer utility.

5 Distribute application support: provides remote procedure call interface for

communications between AIX systems.

Here are some examples of NSP applications:

• Check the hardware and software error log on a IBM RISC System/6000 and

send any major failures to IBM mainframe Net View for operator

notification.

• Check disk space left on all AIX logical volumes. If space is short inform

248 Inside the IBM RISC System16000

IBM mainframe NetView and wait for an IBM mainframe NetView

RUNCMD which triggers a local AIX program to increase the size of the

filesystem dynamically using the AIX logical volume management facilities.

• Use TCP/IP SNMP commands to retrieve TCP/IP network status and relay

this to IBM mainframe NetView.

14
Security

Computer manufacturers are to an extent victims of their own success. In early

mainframe systems, relatively few people had access to computers, and such

access may well have been via terminals in physically secure areas. Additionally,

the sheer complexity of early mainframe systems discouraged unauthorized

access.
Today, the situation has changed radically and personal computers and worksta-

tions permeate even the smallest businesses. For example, within IBM there is a

policy that employees should have access to their own personal computer or

workstation and be connected to the worldwide IBM mainframe network.
Without implementation of proper security measures, an employee could inadvert-

ently or maliciously alter sensitive data or programs, or gain access to restricted

information. AIX implements an impressive array of security features designed

to protect a user's data from unauthorized access. This chapter explains these

features in detail.

14.1 Complying with security standards

The American National Computer Security Commission (NCSC) is the driving

force behind developments in computer security. In 1983, this organization

published the US Department of Defense (DOD) Trusted Computer Systems

Evaluation Criteria (TCSEC). This work is commonly known as the `Orange

Book', an understandable abbreviation since this was the colour of the cover of

the original report. The Orange Book became a US military standard in 1985 and

today offers the central role in the specification of secure computer systems. An

up-and-coming standard perhaps better suited to the requirements of commercial

users is the Minimum Security Functionality Requirements for Multi-User Operat-

ing Systems (MSFR). However, discussion of MSFR is beyond the scope of this

book.
The Orange Book defines a trusted system as `one which offers its users

and administrators an assurance that a particular, well-defined level of security is

attained'. The computer's hardware and software must incorporate security

249

250 Inside the IBM RISC System/6000

Al
Verified
design

B1 B2 B3
Labelled
security

Structured
protection

Security
domains

Cl.
Discretionary C2

security
protection

Controlled
access

D
No protection

Figure 14.1. Orange Book, levels of trust.

facilities that must pass a formal evaluation, and their purpose and use must be
documented.

The Orange Book defines four levels of trusted systems, as shown in Fig. 14.1.

• Cl Discretionary security protection

-User ID logon and authentication
-Enforcing a need-to-know security policy
-Separate execution domain for trusted computer base (TCB)

• C2 Controlled access protection
-Limiting user access
-Clear storage objects prior to use

-Security auditing

• B 1 Labelled security
-Mandatory access control (MAC)

-Labelling of human readable output

-Process isolation through TCB controlled separate address spaces

• B2 Structured protection

-Device labels for all attached physical devices
-Trusted communication path
-Modular kernel designed to enforce least privilege

-Separate read/ write attributes for segments

-Covert storage channel analysis

-Formal model of the security policy

-Design top-level specification

-Configuration management

• B3 Security domains

-Discretionary access control

-Administrative privilege

Features not implemented in AIX 3 are shown in italics. The current security

Security 251

classification is no better than C2 though most of the necessary features of the

other levels have already been implemented. I believe it is just a matter of time

before AIX reaches B I and B2 security levels.

14.2 Physical security

The first level of security is physical security. Physically, the IBM RISC System/

6000 is well protected against unauthorized access. All models have a three-

position keyswitch on the front of the machines which has the states:

Normal The usual position. The RISC system boots from any trusted device,

which does not include the diskette drive.

Secure This is as for the normal position but in addition the operation of
the front panel reset button is disabled.

Service In this position the RISC system will boot to standalone diagnostics

stored on the hard disk. If not yet installed or corrupted then it is

possible to boot from a diagnostics diskette placed in the diskette

drive. Booting diagnostics is a restricted option since the program

has the choice of starting a root `superuser' privileged shell.

In addition a RISC system may not be dismantled unless the keyswitch is set to

the service position.

14.3 Identification and authentication

Identification means logging on to AIX with a valid user name . Authentication is

by default supplying the correct password that corresponds to the entered user

ID. As with most other UNIX systems, an invalid user ID is not challenged by

AIX, but after a password has been entered the error message `name or password

incorrect' is displayed. Thus the potential fraudulent user cannot determine

which was in error. Also, the time to process the entered password and user ID

has been deliberately extended so that it would take a user an impossibly long

time to try and uncover a password to a known user ID by random attempts. Of

course all incorrect logon attempts are logged, so the potential criminal may

leave the systems administrator clues about their identity from the user IDs,

locations and times of the attempted logons.
Normally, a single password is the only check required for a user logon. AIX

extended this to allow the systems administrator to add one or more default

authentication programs. Figure 14.2 is an example. This means that every user

will also be subjected to the authorization program TopSecret. If this program

returns a nonzero value then the logon will be rejected. Of course this test could

be made more specific to a set of users instead of to all.

252 Inside the IBM RISC System/6000

In the file /etc/security/user

default:
authl = SYSTEM,NextCheck

and in /etc/security/login.cfg

NextCheck:

program = /usr/bin/TopSecret

Figure 14.2. Adding the Next Check authorization.

14.3.1 Resource control

Once a user has logged on AIX enables the systems administrator to limit a user's

use of AIX resources. These limits include values for the amount of CPU time,

real and virtual memory and stack that a user can legitimately use.
AIX also provides the control of disk storage on a user or group basis based

on the Berkeley BSD 4.3 disk quota system. This includes the ability to set a

normal (soft) limit on allowable disk allocations, a hard limit beyond which the

user can not exceed, and a quota grace period, that is, the time the user can

exceed the soft limit, which when exceeded causes the new hard limit to be set to

the soft limit.

14.3.2 Users and superusers

Three types of users can be defined under AIX: root (also referred to as

superuser), administrative and normal. The user identification (UID) is the factor

which determines the type of the user. A UID of 0 gives a user complete access to

all resources on the system; when the system is installed there is one user defined

with a UID of 0 and a user name of root, however it is possible to create another

user with the same UID but a different name-something you would only do for

specific reasons such as creating a shutdown user to run the shutdown command

immediately on logging on to the system. The second type of user is an administra-

tive user who is assigned a UID in the range 1-199. Administrative users

automatically belong to the system group and have access rights to many

processes (performance monitoring commands, printing and spooling commands

and accounting, to mention a few) unavailable to normal users. The third type of

user is a normal user with a UID of 200 and above.

UNIX also defines the concept of a group identification (GID). A number of

standard groups are defined under AIX at system installation; the default group

for normal users is staff and for administrative users the default group is system.

Another group defined at installation is security; members of this group have

permission to run all the user and system group commands. Members of the

security group are powerful users, they can add and remove users and groups

Security 253

and change user passwords. Being a member of the system group and a member

of the security group is not mutually exclusive, in other words a user can be a

member of either group or both. There is, however, an added bonus in making

members of the security group also members of the system group-which is that

only root can add, remove or change the details of users in the system group

(administrative users). Thus, if there were two members of the security group on

the system (in charge of creating new accounts and dealing with forgotten

passwords), it would be wise to make them members of the system group so as to

prevent them being able to administer each other.

14.4 The trusted computer base

The trusted computer base (TCB) enforces the security policy of the system.

Basically this means that certain programs in the system are sensitive and should be

accessible only to certain classes of user. AIX maintains a list of these programs (in

the file/etc/security/sysck. cfg), and their required levels of authorization,

therefore running the sysck checking program it is a simple matter to verify the TCB.

TCB programs fall into three categories:

• The operating system (kernel and installable libraries)

• Any configuration files that control the system

• Any programs that modify the above

Of course the systems administrator can modify the programs that are listed in

the TCB and use this list for a variety of purposes. As an example consider the

following entry stored in the sysck. cfg file:

/home/robert/bin/stepon

class = music

owner = robert

group = aixpeople

mode = TCB,rwxr-x---

program = "/home/robert/bin/stepon"

This entry indicates that the program stepon has the class of music. There may be

many programs that have this class, but by running the sysck the systems

administrator can check the validity of all programs in the music class in one pass.

By dividing programs into named classes, users can check program sets regularly,

perhaps at logon time.

14.5 Modifications to password storage

In early versions of UNIX, encrypted passwords were stored in a publicly

readable file called /e t c/pa s swd. The login program simply encrypted the

password entered by the user, compared it with the encrypted version already in

254 Inside the IBM RISC System/6000

/etc/passwd and if a match was found logged on the user. Unfortunately, this

also enabled any logged-on user to encrypt a number of `common' passwords

and compare them against entries in /etc/passwd. If any of the encrypted

passwords matched any entry in the /e t c/pas swd file then that user's password

was discovered. The key problem was that the password file was readable. AIX

changed this and moved the password field in the password file into an AIX

superuser-accessible-only file /etc/security/passwd. In general, many

security files are stored in the /e t c/security directory and these files are

modifiable only by root and are not readable by anybody else.

14.6 Limiting user access

As originally designed, UNIX (unlike IBM PC DOS or OS/2) recognizes the
concept of file ownership by a specified user ID. Any UNIX file has three sets of
file permissions: read, write and execute. These are applied to the three classes:
user, group and anybody. For example, in long list command in Fig. 14.3 the file
shortpeople is owned by the user snowwhite who may read, write or execute
the file. Any users who are in the dwarfs group can read from and write to the
file. Finally, anybody may write to the file. The UNIX file permissions are
classified at the C2 security level.

$ is -1 /home/shortpeople

-rwxrw--w- 1 snowwhite dwarfs 8192 Apr 01 01:23 shortpeople
Group access

L Group access

Owner access

Type (file, directory, link, ...) specifier

Figure 14.3. UNIX file permissions.

14.7 Discretionary access control

Discretionary access control (DAC) provides an extended set of file permissions

that are used to augment or to replace the standard UNIX file permissions

already discussed. These extended file permissions are known as access control

lists (ACLs). For example, a file can be made totally inaccessible to anyone by
issuing the following command:

chmod 000 /home/jane/topsecret

However the user jane, a member of the group staff, could still access her file
provided the ACL information had been set thus:

permit rw- u: jane, g: staff

This information, retrieved using the aclget command says `allow the read and

Security 255

write access to the user jane , when she is also a member of the group staff'. In
general there are three allowable modes:

Permit Grants the specified access modes for the users , groups or user/group

combinations . This is in addition to any access rights granted by the

regular UNIX filesystem permissions.

Deny Explicitly restricts a type of access to named users, groups or user/
group combinations . This restrictive mode overrides the permit and

specify modes.

Specify Allows the specified access modes for named users, groups or user/

group combinations . This overrides any permissions granted by the

regular UNIX file permissions.

The aclget, acledit and aciput commands manipulate the ACLs which are stored

in the filesystem inode (see Sec . 10.4). Extending the previous example , assume

the user jane 's file t op s e c re t is changed in the following ways:

permit rw- u:snowwhite

deny rw- u: grumpy

specify rwx u: sleepy, g: dwarfs

Now the file t op s e c re t, in addition to its base UNIX file permissions, has

three additional restrictions imposed on it. First , that the user snowwhite is

allowed read and write access , as well as anything that the base permissions

allowed her . Second , that the user grumpy is denied read and write access to the

file, no matter what the base file permissions allow him . Third, that the user

sleepy, while a member of the group dwarfs, is given read , write and execute

access regardless of the state of the base file permissions.

This is clearly a powerful facility, and is particularly useful for sensitive

information . A user can remove all accesses to a file by changing its mode to 000,

then using the ACLs give only their own user ID access.

Another benefit of the ACL is that the set user ID (SUID) and set group ID

(SGID) do not work with ACLs. In traditional UNIX, when a program is run it

is executed with the privileges of the user 's logon name . For example , I have a

utility called fm (file manager) that allows me to manipulate my files. It is a

program owned by the user ID marcus. When another user jane executes this

program , she executes this program with the user ID jane, that is to say with the

ID of the caller . However , if I set the SUID or SGID file permission bits on then

jane executes the program with my authority, that is with the ID of the owner.

This would seem to be necessary in some cases , for example, the tape drive in the

AIX system should not be accessible by just anybody , but by giving the backup,

restore and tar commands root ownership and setting the SUID bit on these

commands , when I execute the tar program I become the superuser root. The

user ID root has authority to access the tape commands so the tape manipulation

256 Inside the IBM RISC System/6000

commands can proceed without error. The SUID facility is useful here, but for
my file manager program it would be a security loophole, because my program
allows the user to run AIX commands from its built-in command line. Setting the
SUID bit on my program would allow any other user to execute the program, and,
while executing this program, allow the user the authority of the user marcus. From
the built-in command line that user could, for example, delete all my files.

In fact, current releases of AIX now ignore SGID and SUID on any shell

script. This means that a script program that needs access to a secure resource

must use an ACL on that file to give the user the required access explicitly.

14.8 Trusted communication path

The trusted communication path allows for secure logons. Users invoke the

trusted communication path by pressing a special key sequence known as the

secure attention key (SAK). This is defined as a two-key sequence Control-X

followed by Control-R. So in AIX to ensure a correct logon you should:

• Wait for the logon prompt to be displayed.

• Do not enter user ID, enter SAK sequence.

• If a new logon screen scrolls up you have a secure path and may log on with

confidence. However if the trusted shell prompt appears, the initial logon

screen was a fake program that was trying to steal your password.

14.9 Mandatory access control

AIX does not yet implement mandatory access control (MAC), which prevents the

operating system from being classified to the BI security level. In this scheme

files are first tagged with a security classification. A user wishing to manipulate

files must have a security tag at the same level or higher than the data being

accessed. So for example, a user named Sheela with security clearance secret

could try to manipulate two files, one tagged top secret and the other tagged not

secret. MAC would prevent Sheela from accessing the top secret file. Sheela may

be able to access the file tagged not secret depending on its regular UNIX file

permissions (rwxrwxrwx). That is to say, the MAC permissions must be satisfied in

addition to the standard UNIX file permissions for access to be granted to the user.

14.10 Accounting

While the accounting system was developed primarily to charge users for

resources used, there are two spinoff benefits from setting up accounting-

security and performance. Accounting records the users who logged on to the

system, when and from what terminal, what commands they ran during their

session and what resources were used by those commands.

Security 257

AIX provides both traditional accounting systems, from BSD and USL. There

are two main directories: /usr/1ib/acct, where all the C programs and shell

proceedures needed to run the accounting system are stored; and /var/adm,

which contains the data, report and summary files. The accounting data files

belong to members of the system group, and all active data files reside in the user

adm's home directory /var/adm.

The accounting package provides information in four areas: connect, process,

disk and printer statistics. Connect data, entries for system startups, shutdowns

and logons including date, time, user and port details are written to /var/adm/

wtmp. Process data, user ID, group ID, name, elapsed time, memory usage and

I/O to disk are written to /var/adm/pac ct. Disk information, that is filesystem

space per user, is written to /usr/adm/dtmp. Printer and queue information is

written to /usr/adm/fee.

Once started the collection of data is on-going; the startup command /usr/

lib/startup can be included in /etc/rc, so that on subsequent reboots

accounting is automatically restarted. There are two shell script commands which

create daily and monthly summary reports, runacct and monacct. These com-

mands can be automated by the use of the cron timed command daemon facility.

In addition to the summary shell scripts, there are two `interactive' commands:

the acctcms command, which summarizes resource use by command name and

can be used to produce long-term statistics on system utilization, providing

information on total system usage and the frequency with which commands are

used; and the acctcom command, which handles the same data as acctcms, but

provides detailed information about each process. The commands include options
to display all process accounting records or records of particular interest based

on criteria such as time, name of command, user or group that invoked the

process, and resources used.

14.11 Auditing

The auditing system provides a means of detecting potential violations of the

system security policy by recording information about security-relevant events

such as activities in the trusted computer base, changing system configuration

information, modifying user accounts, or even circumventing the auditing system

itself.
To audit an activity the command or process that initiates it, i.e., the audit

event, must be listed in the /etc/security/audit/events file, otherwise it
must be added to the file along with the message to be generated when that event
occurs. Auditing events can be grouped into subsets, called classes which facilitate
the selection of particular events for specific users.

In order to understand auditing issues the terms `subject' and `object' need to
be defined. In general , subjects initiate actions, and objects receive actions;
therefore processes can be defined as subjects and filesystem components (such as

258 Inside the IBM RISC System/6000

files, directories, devices and named pipes) and also interprocess communications

(such as semaphores, shared memory and message queues) can be defined as
objects.

Both user and object auditing can be configured: user auditing enables a
specific user to be monitored, while object auditing allows for specific files, such
as the password file, to be monitored.

There are two methods of collecting data: bin mode enables the long-term
storage of a large amount of data for offline analysis; stream mode allows the
system to process the data as it is collected. In a situation where both the long-
term logging and the immediate reaction to security violations is required, both
bin and stream modes should be configured.

There are two directories central to auditing: /audi t is where the data files

reside; and /etc/security/audit is where the auditing commands and

configuration files reside. The files objects, events and config in /etc/

security/audit determine the audit configuration: objects contains a list

of files which when accessed in either read or write mode will generate an event;

events lists all defined events and the format for the message generated;

c o n f i g specifies the event classes , the users who are to be monitored, and what
mode auditing is to use-bin, stream or both. Figure 14.4 shows some sample

configuration files.

Once the c o n f i g file has been suitably edited the auditing system can be

started with the command /etc/audit start. /etc/audit shutdown halts

the audit program and all audit data is flushed from the kernel buffers into the

audit bin.

14.12 Checking programs

AIX includes a number of checking programs that verify the consistency of
system files. sysck has already been discussed. AIX also provides commands
(usrck, pwdck) to check the consistency of the user, password and group files.

The virscan command checks that no executable program contains a binary

string known as a virus. Typically this `signature' string is machine code which,

when executed, damages the user's files or environment. virscan checks the files
specified against a set of signatures listed in /e t c/security/scan/

v i r s i g. 1st . For example, within many AIX development environments it

would be prudent for each user's startup program to check all the executable files

on the workstation or, for a shared machine, that user's directory. Also, any

software that is to be installed on a machine has to be checked with virscan
before execution. In this way the environment is kept clean.

Security 259

A sample objects file

/etc/security/user:

w = "S-USER-Write"

/etc/security/audit/config:

w = "AUD CONFIG Write"

SAMPLE EVENTS FILE

S_USER_Write = printf "%s"

File_Write = printf "file descriptor = %d"

SAMPLE CONFIG FILE

classes:

general = USER_SU, PASSWORD-Change, FILE_Unlink, FILE-Link, FILE Remove

system = USER_Change, GROUP_Change, USER_Create, GROUP_Create

users:
root = system, general
fred = general

bin:
"info on bin filenames, sizes and commands"

stream:
"info on stream commands"

start:
binmode = on
streammode = off

Figure 14 . 4. Sample auditing files.

15
Diagnostics

IBM has traditionally produced systems with advanced diagnostics capabilities

because of its long history with commercial computer systems; even the best of

systems fail, perhaps because a component has come to the end of its useful life.

For a commercial customer the cost of not having their IBM RISC System/6000

running their business application may be large, for example where RISC

systems are used in the financial dealing systems marketplace. Whatever the

problem or failure, a customer is first interested in getting their RISC system

operational as quickly as possible. This chapter shows the excellent range of

diagnostics facilities that the RISC system provides to help minimize system

downtime and maximize user productivity.
One of the key innovations that the RISC system uses to enhance reliability

has already been discussed in Sec. 3.1. Recall that the RISC system contains an

on-card sequencer and dedicated test circuitry on the planar which thoroughly

tests the electronics in a series of built-in self-tests (BISTs) and power-on self-

tests (POSTs). Because these tests do not rely on the RISC system processors
and drive a three-digit numeric LED display, they overcome the basic limita-

tion of many other vendors' diagnostics, which run a diagnostic program

under the control of the system processor, loaded into system memory. In such
systems, a system processor or memory failure may lead to erroneous diagnostic

results.
Another key innovation of the RISC system is that diagnostics can be

performed online while the system is running. This is of great importance for the

business user whose systems administrators can perform first-level diagnostics

while a customer's business application is still running, perhaps at reduced

functionality, and try and determine the cause of the problem. Therefore the

SMIT systems management tool has a top-level option-diagnostic routines. This

option runs the same diagnostic software as for standalone diagnostics. Because

the panels are the same, the systems administrator has a consistent set of

diagnostic tools in both online and standalone situations. Further, these

diagnostic tools are the same as those used by the IBM Service representatives.

Clearly, some diagnostic routines cannot be run while the system is doing

260

Diagnostics 261

productive work, and in such circumstances the systems administrator can bring
the machine down to maintenance mode and run the test again.

This chapter discusses both hardware and software diagnostics.

15.1 Hardware diagnostics

Aside from the BIST and POST processes already described, the main hardware

diagnostics tool is an integrated set of screen-based programs run either from

SMIT while AIX is running, or standalone from diskette.

For an error that cannot be detected while AIX is running, it may be necessary

to change the run level of the AIX system from multiuser mode to maintenance

mode with the telinit command, and rerun the diagnostics stored on the hard

disk. Alternatively, for a complete system failure the same application needs to

be loaded from diskette. This is performed by switching on the RISC system with

the first diagnostics diskette in the floppy disk drive and the keyswitch set to the

service position. There are four basic categories of diagnostics:

1 Diagnostic routines: test the machine hardware and detect any hardware

problems. A problem will be indicated by an SRN (service request number):

The SRN will allow a service representative to determine quickly what parts

are required to repair the machine.
2 Service aid: will look at the machine configuration, exercise external interfaces,

format media, look at past diagnostic results, control what resources are

tested, check out media, etc.
3 Advanced diagnostic routines: will normally be used by the service representa-

tive. It comprises a set of extended diagnostic tests presented in the same
format as for option 1.

4 System exerciser: tests resources running in an overlap mode.

Figure 15.1 is an example of a diagnostics screen from diagnostic routines menu,

system verification submenu. In this example the user had tested the hdiskO disk

and rmtO tape objects. Notice also the function key descriptions at the bottom of
the panel; diagnostics are presented as a full-screen character-based application.

It is recommended that online diagnostics be run as part of a preventative

maintenance schedule of the systems administrator.
The next sections of this chapter focus on software diagnostics and other AIX

tools and techniques used for detecting errors.

15.2 Software diagnostics

Software diagnostics accessible from the SMIT menu allow:

I Verify an optional program product Since the installp and updatep installation

and update programs record installation history in the ODM/VPD database,

AIX can recheck if a program product has been installed correctly.

262

DIAGNOSTIC SELECTION

An * in front of the resource shows that the test has been run.
Choose the test that you want to run.

Object Location Description

Base System 00-00
fd0 00-00-OD-00
lp1 00-00-OP-00
lp0 00-00-S1-00
tty0 00-00-S1-00
ttyl 00-00-S2-00
entO 00-04
3270c0 00-05
tokO 00-07
scsi0 00-08

* hdisk0 00-08-00-00
hdiskl 00-08-00-10
hdisk2 00-08-00-20
cdO 00-08-00-30

* rmtO 00-08-00-40
rmtl 00-08-00-50

F3=Cancel F10=Exit

801006

CPU, fpa, memory, I/O planar, op panel

Diskette Drive

Standard Parallel Port P

Serial Port
Serial Port

Serial Port

Ethernet High-Performance LAN Adapter

3270 Connection Adapter Version B

Token-Ring High-Performance Adapter

SCSI I/O Controller

670 MB SCSI Disk Drive

1007 MB SCSI Disk Drive

670 MB SCSI Disk Drive

CD-ROM Drive

2.3 GB 8mm Tape Drive

525 MB 1/4-Inch Tape Drive

Figure 15.1. A sample SMIT diagnostics screen panel.

2 Alert manager The concept of an alert has already been described in Sec.
13.8.1. The alert manager gathers information from the AIX error log system,
converts this to a format known by NetView and forwards this information
to the IBM mainframe NetView via a PU-SSCP session . The error log in AIX

has some flags related to errors . If a particular error has alert =1 and it is

logged 1og=1, the alert manager will handle the error as described.

15.3 Error logging

The AIX error logging facility is a powerful nonintrusive tool that is a first line of

defence for the AIX systems adminstrator in detecting and tracking down errors.

The purpose of the error log is to save errors as they occur for later analysis. As

shipped the error log may grow to 1 Mb in size or 30 days in age before being

overwritten. Look at Fig. 15.2 to see how error logging works.

When an application or kernel component of AIX detects an error it writes the

error to a special file called /dev/error. Kernel programs (for example, a

device driver) use the functions errsave() or errlogQ. The errdaemon which should

always be started (see Fig. 3.2 on page 17) reads /dev/error, time stamps the

message, and, using an error record template and information from the VPD and

ODM configuration database, places a compressed binary entry into the error

log. If AIX has been set to concurrently notifiable then the error is written to the

console as well.

Inside the IBM RISC System/6000

Diagnostics 283

Error rec. VPD Config.
Alert

manag
I (

er
Console
display

templates database database

Concurrent?

Error d 4aemon

Detecting
program

Figure 15.2. Error logging.

errsave()
errlog()

H-I /dev/error

Error
log

errpt

At regular intervals the systems administrator' formats the error log. This is
done using the errpt command which can produce both summary and detailed

reports. In order to maximize the chances of detecting an error, the detailed
AIX error log is very detailed so it is usually best to print out a summary
listing first, then to use the appropriate flags on errpt to select just the events
which are of interest. For example, Fig. 15.3 shows the key parts of a real
summary report.

An applications developer designing an application may well choose to include

error logging in their product. Do not forget that since the error log may be
converted into network alerts this provides a good way to report and maintain a

set of distributed applications centrally. The reader should distinguish clearly

between error logging and trace logging. The trace facility enables a systems

administrator to track the usage of AIX operating system and kernel facilities by

applications. This was described earlier Sec.5.7.

15.4 Dump and crash

AIX provides powerful dump facilities that can be used to analyse the state of a

RISC system at the time of an unexpected system failure. Of course, at that time
it is too late to check whether the /dev/rhd7 dump device is large enough for

the dump, so a good systems administrator should try creating and examining

system dumps ahead of schedule. In order to prevent unauthorized dumping, the
keyboard command to dump (sysdumpstart) needs root authority, and the dump
keysequence (Control + Alt + NumPad1) will only be actioned if the front

panel key is in the service position.

Once the dump is started it saves the following information:

' On my IBM RISC System/6000 workstation the systems administration, systems and applications
programming is all down to one person-me! It is therefore in my interest to keep my system
productive; I check the error log once weekly.

264 Inside the IBM RISC System/6000

ERROR ID TIMESTAMP T CL RES_NAME ERR DESCRIPTION

192AC07A 0310843291 T 0 errdemon Error logging turned off

9DBCFDEE 0301044591 T 0 errdemon Error logging turned off

0E017ED1 0303182191 P H mem2 Memory failure

038F2580 0304165291 U H scdisk0 Undetermined

AA8AB241 0304180191 T 0 OPERATOR Operator notification

Figure 15.3 A sample summary error report.

• System variables and status
• Process, file and inode tables
• System buffers and TTY information

• Kernel stack

• User state areas
• Timer information

• Socket information

Once a dump has been produced it may be examined using the crash command.

crash can also be used to examine an active system.

15.5 The IBM support system

No matter how reliable a RISC system is, hardware and software do fail. If they

do, what does the RISC system customer do next? The support system does work

but needs to be understood by both customer and IBM personnel. It only works

well when both parties understand the ground rules, since a failure to do so can

easily lead to misunderstandings and frustration.

15.5.1 Good housekeeping

There are a number of tasks an AIX systems administrator should do, and others

that must be done to submit a problem successfully to IBM support. Being

prepared before a problem develops will certainly save time.

Recommended tasks

Advisable but not essential tasks include:

• Regular checking of the error log
• Regular checking of the accounting system (if enabled)

• Periodic exercising of online diagnostics

• Familiarization with the contents of the IBM RISC System/6000 Problem

Solving Guide.

Diagnostics 265

Mandatory tasks

Before submitting a problem, the user must have the following:

• The telephone number of the AIX Systems Support Centre (SSC). For IBM

mainframes separate numbers for software and hardware exist. For AIX

however, usually a single number deals with both software and hardware.

This means, therefore, the required number is usually neither the mainframe

numbers, nor the number of the IBM marketing branch who have configured,

received and processed the customer's order. Make a note of this number

before it is needed!

• An IBM customer number. The SSC will not accept a call without one.2
• The system number of the failing system. Usually it is an alphanumeric

sequence, for example FMOG9. Or if the failing component is software

probably the AIX program number-currently 5756-030-and the level of

the software that is running, discovered by typing the lslpp command.

• A description of the problem.
• A severity rating in the range 1 to 3. These ratings are classified in the

following way:

1 As a result of the reported problem my live system is down and my

business function cannot proceed. This is the highest priority. IBM

endeavours to fix severity 1 problems in 48 hours.3

2 My system is down as a result of the problem but I may be able to

manage without it (for example, I have a backup or alternative system).

IBM endeavours to fix these problems within a few days.

3 My system is affected by the problem but able to proceed (or for example,

the fault occurs on a nonbusiness production system, say on a development
machine). IBM endeavours to fix this problem in less than a working

week.

Note that one should be very careful not to report all problems at severity

level 1. In the real world there is only a finite amount of resource available to

fix problems; artificially reporting at a high priority may adversely affect the

resolution of other outstanding problems.

A subcategory of severity is priority. Priority ratings are either 1 or 2 and

are issued internally by the Support Centre. So for example, a problem may

be progressed as a severity 2, priority 1 problem.

2 Readers who are IBM customers will be pleased to hear that this is especially true for IBM
personnel reporting problems on internal systems. The cheerful phrase `but I'm calling from within
IBM' will cut little ice with the AIX Systems Support Centre unless the IBM employee knows their
customer number.
The times listed here are estimates only, they may vary from country to country but give the reader
a feel for the kind of turnaround that IBM development or hardware customer support (CS) aim to
provide to its customers via the Support Centre.

286 Inside the IBM RISC System/6000

• A detailed description of the problem. For any problem this means an

analysis of what machine configuration and sequence of events led to the

problem. For hardware problems, this may also include information such as

status of front panel LEDs. For software problems, ideally developers require

a test case that will clearly reproduce the problem complete with supporting

documentation. Other items that may be requested include a software dump,
or error logs.

15.5.2 Reporting an AIXproblem

The call to the SSC will follow the flow outlined in Fig. 15.4. When a user first

calls the SSC, identification is required by way of the IBM customer number and

the system number of the failing system (or software number of the failing AIX

component). A brief description of the problem and the associated severity rating

also needs to be given. In reply, the call-taker returns a problem reference

Customer IBM

C ll SSCa s SSC validates cal l

P bl d t il L l 1 tro em e a eve suppor

Recommend/
C llb kapply fix a ac customer

I
Test fix. Online search

I

Fix okay? Level 2 search Level 3
A i

Yes
ust n

0

APAR assign

Change team

T fiest x

Cl bl PTF b ildose pro em u

Worldwide
database update

Figure 15.4. Reporting an AIX problem.

Diagnostics 267

number that should be used in further communications with the SSC until the
problem is resolved.

The person who takes the call is not necessarily an AIX-skilled person and

so a detailed problem description here is not required. The call-taker's function

is simply to register the problem with the correct support group. This is level

1 support for software problems or customer services (CS) for hardware

problems.

For a hardware problem the next stage in the process is the CS personnel

telephoning to try and determine the problem. CS use the same diagnostics

previously described, so an experienced AIX systems administrator who has

already run diagnostics when a problem occurs may be able to indicate the

failing item(s) directly by quoting the service request number (SRN) produced by

diagnostics. In this case the CS technician will usually be able to call with the

replacement part rather than having to make a visit to determine the cause of the

problem. In some countries RISC systems are shipped with a modem that can be

used by CS to run diagnostics remotely.
A software problem is usually more involved. Problems are passed to level 1

support and handled on a `first come, first served' basis within their severity

band. After a call is registered, level I support call back directly to ask for a more

detailed problem description. If appropriate, level 1 support will make an on-the-

spot search of the IBM worldwide Remote Technical Assistance Information

Network (RETAIN) database. Hopefully this will identify the source of the

problem and enable it to be solved. It may be classified as `user error', or it may

be that a fix to the problem has already been identified but that the failing system

is not at the required software level.

If this does not resolve the software problem, the SSC will take the problem

away for further level 1 or level 2 support analysis. This means a more extended

search of various international databases for symptoms of the problem that have

been outlined. Usually this will prove successful and the discovered fix will be

shipped to rectify the problem.
If level 1 or level 2 support cannot resolve the problem, it is passed to level 3

support located in IBM AIX development labs in Austin, Texas. The problem

and supporting document is received by development and receives an APAR

number. Development labs have standards on resolution times of APARs. There

is considerable pressure on development to turn around quality problem resolu-

tions as soon as is practicable. When the fix is identified it is thoroughly tested

and sent to the customer. Normally this involves electronic transmission from

Austin to the country's SSC and then to the customer.
The fix should be applied and tested and, assuming the problem is cured, the

SSC informed that the problem may now be closed. (If the problem is not

resolved more communications to level 3 support will be required.)

At the end of a valid software problem resolution a new APAR will have been
created and a problem fixed. At periodic intervals IBM collects pervasive APARs

288 Inside the IBM RISC System/6000

(that is to say, particular selective fixes to common problems) and combines

these on a preventative maintenance package (PMP) shipped automatically by

IBM to AIX customers. At interim times, however, it would be the task of the

systems administrator to report the problem to the SSC, who can usually typically

identify the selective fix necessary to cure the problem.

16
Standards and performance

The UNIX world is driven by standards-but whose standards and what do

they really mean? This chapter concentrates on the larger and more popular

standards. It describes the background on each standard and shows how AIX or

the IBM RISC System/6000 participates in the standard.
To start with Table 16.1 is a performance summary of the IBM RISC System/

6000. IBM has said that where there is a standards conflict it will try to comply

with standards in the following hierarchy:

ISO/IEC 9945-1:1990
ANSI
IEEE POSIX
FIPS 151
XPG3
SVID issue 2

BSD 4.3

16.1 Vendor standards

16.1.1 Berkeley Software Distribution

BSD (Berkeley Software Distribution) is the UNIX implementation developed by

the University of California at Berkeley. The latest version of BSD is 4.4. AIX

includes BSD 4.3 components with some additions from BSD 4.4, for example

networking.

16.1.2 The Open Software Foundation

The Open Software Foundation (OSF) is an international nonprofit-making

research and development company whose goal is to produce a leading open

systems environment achieved through an `open, vendor-neutral process'. The

founders of OSF were major computer vendors such as IBM, DEC and Hewlett-

Packard who each made million dollar investments into OSF.

289

270 Inside the IBM RISC System/6000

00
O,

W) M N 00 -

N V
.,!

NnM zz

©

^r
!̂,/^7y Mpp WOO D\^y

^

W O- .-MOf-^

^^/ -- W) z z V1 00 'IT
sNV [-

00
h

VIN -- ISM

A r4 N hNM.^.^

M O Wn M 0--

WO 0 00 NV 00W) M \0 000

00 [^ M Q

ca^^ zz

N D n O o
0M C\00 IC ON N
A M n N 1 N • h

N

\0 0oN01

Er N N 01 00 Q Q

N

O

N

t NQ' <

°o vC Nzz

A 4 N M'.O °-°- z'.o

-o c, 00 < 0,

[^TOQyy

AM z

av,oo:!^ v,
QNV N M .-- z7

010^0^'O Q"^

AMN -- N OZM

aaa

Standards and performance 271

OSF's first marketable product was OSF/Motif, a GUI environment for X-

Windows. Spectacularly successful, Motif has become almost a de facto GUI

interface for UNIX computers, much to the annoyance of Sun Microsystems

whose Open Look products predate Motif.

Currently OSF is working in six major areas:

• The operating system, OSF/ 1

• The graphical user interface, OSF/Motif

• A distributed computing environment, OSF/DCE
• A distributed management environment, OSF/DME

• An object code distribution format, OSF/ANDF

• The interface specification, OSF/AES

OSF/ 1

OSF's main focus of activity after OSF/Motif was the development of OSF/ 1,

which in plain terms is the main competitor to the principal mainstream UNIX

product in the marketplace, USL Unix System V release 4. OSF/ 1 is a UNIX

operating system with the following features (and more):

• MACH kernel and memory management
• Encore symmetric multiprocessing

• Dynamic system configuration

• AIX Logical Volume Manager, Berkeley File systems

• ANSI C

• Secureware BI security

• X-Windows and MOTIF GUI

• OSF /DCE communications

OSF distributed management environment

The OSF distributed management environment (DME) product provides manage-

ment of systems in an open system. OSF selected a number of technologies

including:

• Tivoli's WizDOM, graphically enabled and object-oriented service manager

• Banyan Systems' network logger, actually developed by Wang

• Bull's consolidated management (CM) protocol programming interface

• Hewlett-Packard's Open View network management server
• Hewlett-Packard's and Gradient Technologies' software distribution utilities
• IBM's systems resource controller (SRC)
• IBM's Resource Data Engine, for monitoring and resource control

• Gradient Technologies' PC Agent and PC Event. These allow a systems

administrator to perform management functions remotely, and to transfer

272 Inside the IBM RISC System/6000

files from OSF/DME to the PC. The PC Event component forwards error

notifications from the PC to a management system.

OSF architecture neutral distribution format

The OSF architecture neutral distribution format (ANDF) is a compiler intermedi-

ate technology that enables developers to develop and distribute applications in a

format that may run on differing open systems architectures. The goal is to

provide `shrink-wrapped' software that can run on many differing systems,

avoiding the extra manufacturing and tailoring costs of providing software for a

specific vendor's architecture.

OSF selected a product from the Defence Research Agency in the UK.

OSFapplication environment specification

The OSF application environment specification (AES) provides a set of program-

ming interfaces built upon POSIX, ANSI C, FIPS 151 and XPG3 (all covered in

this chapter). Each OSF component, for example DCE or DME, has an AES

component describing the systems administration, API interface, user environ-

ment and system environment for that product. The AES should be thought of

as an enabling technology, enabling the building of portable and interoperable

applications, rather than as a product.
OSF components are chosen using a four-step vendor-neutral process. These

stages are:

• Vendor neutral request for technology (RFT)

• Selection of best technologies

• Development and snapshot program

• Full product delivery

In the request for technology, OSF publishes a list of requirements for a

technology area that needs to be implemented, for example, distributed com-

munications, or security. Any vendor may then submit proposals to satisfy this

request. After an allotted time OSF makes a decision based on opinions from

within OSF and from experienced external consultants. OSF's decisions usually

result in selecting the best components from a variety of offerings.

IBM has announced its intention to support OSF/ 1 and other OSF components

on its future UNIX platforms. Already we have seen the announcement of AIX/

ESA which is a native OSF/ 1 port to the IBM mainframe architecture. We

should expect IBM over time to integrate OSF/1 functionality into AIX on the

IBM RISC System/6000.

However, what about ports of OSF/1 to other IBM platforms? A port to the

PS/2 architecture would be politically sound, indeed a test port was performed

over two years ago now, but running OSF/ 1 native on the IBM RISC System/6000

Standards and performance 273

would be a difficult decision for IBM to make. If we look at the history of OSF / 1, we

see that things did not proceed according to IBM's initial expectations. Initially, OSF

chose the AIX kernel as the foundation for OSF / 1 and the other components as listed

above. For a number of reasons though, this became an unacceptable choice and the

kernel component was changed to Mach, a microkernel UNIX operating system from

Carnegie-Mellon University. So IBM's internal plan of integrating OSF / 1 into AIX

went from possible to extremely nontrivial overnight. (Today AIX logical volume

filesystem management, and some internationalization support is included in OSF / 1.

Also, AIX has already adopted the OSF/ I file tree naming standard.) It does bode

well for the independence of OSF over its founder vendors, especially IBM who

contributed financially more than most. Overall, I believe that IBM will incorporate

OSF/1 and other components into future releases of AIX. The timescale for

integration was to be in 1993 and beyond because IBM does not want to

reduce the total function shipped with AIX. For example, some AIX facilities

such as real time and fault tolerance will only be available in OSF/ 1.2, shipping

in 1993, and so IBM cannot fully merge the base operating system component of

OSF 1.x until that time.

16.1.3 SVID

SVID, the System V interface definition, is a vendor specification from UNIX

System Labs (USL, formerly part of AT&T). SVID, like X/Open's XPG, is

organized into two parts-base and extensions. SVID issue 2 defines System V

release 3.2 compatibility; SVID issue 3 defines System V release 4 compatibility.

I have not been able to find any documentation to say that AIX version 3.2

and higher adheres to any SVID level, although as stated earlier IBM tries to

comply with SVID issue 2 whenever possible so long as this does not conflict

with compliance to other more favoured standards.

16.1.4 IBM's systems application architecture

Systems application architecture (SAA) is one response from IBM to providing a

coherent set of programming interfaces and a single look-and-feel specification

across its entire line of vendor computer operating systems, namely:

• IBM Operating System/2
• IBM OS/400
• IBM VM/ESA
• IBM MVS/ESA

SAA is IBM's key strategy for integration of its non-UNIX offerings. The reader

should appreciate that AIX and SAA are IBM's key architectures for the future.

SAA interfaces consist of three related elements: common user access, common

communications support and the common programming interface.

274 Inside the IBM RISC System/6000

Common user access (CUA) is the definition of user interface components that

should be common across all applications, for example, the placement of a menu

bar with a number of options and that the help option should be the rightmost

option in the menu bar. CUA is based on a set of generally accepted user

interface design principles and is optimized for ease of use. CUA defines two

interface models: entry and graphical. Entry is the recommended model for the

nonprogrammable terminal environment and is best suited for data entry environ-

ments. The graphical model is recommended for workstation applications and

makes extensive use of windows, action bars with pull down and stand graphical

widgets such as pushbuttons and scroll bars.
The common programming interface (CPI) comprises a broad and consistent

set of languages and services that programmers employ. Using these interfaces

programmers can more easily move their applications from one SAA platform to

another.
The common communications support (CCS) defines architectures and

protocols that allow standardized communications between devices, application

programs, systems and networks. CCS consists of IBM SNA protocols and

selected OSI protocols to allow IBM and non-IBM systems to be connected. It

now also includes TCP/IP.

16.1.5 Common open software environment (COSE)

The common operating software environment (COSE) is an attempt by six

manufacturers, Hewlett-Packard, IBM, Santa Cruz Laboratories, Sun

Microsystems, Univel and UNIX Systems Laboratories, to broadly deliver a

common software environment for GUI development across their UNIX

platforms. It is only a paper specification at the time of writing (late 1993) but

when (and if) this standard is embodied in real products, it will offer hope for

programmers who want to develop their applications just once for UNIX

platforms. COSE is split into six sections which are described here:

Common desktop environment

This relates to the look and feel of applications and the necessary programming

interfaces, technical and style guide documentation necessary to support the

production of such applications. X-Windows version 11 forms the base technol-

ogy upon which this will be built, with the programming interface for applications

being provided by OSF/Motif, with inter-application communication using

Sunsoft's Tooltalk. Other technologies which will be drawn from include HP's

visual user environment and USL's desktop file manager.

Standards and performance 275

Networking

The six vendors have agreed, in principle, to support the systems listed below for
communication between their own and other vendor systems.

• OSF's DCE
• Sunsoft's Open Network Computing +

• Novell/Univel Netware

High performance graphics

Three levels of graphics will be supported. These are:

• Xlib for basic 2D graphics

• PEX for 2D and 3D geometry graphics

• X Image Extensions library (XIElib) for advanced imaging

Multimedia

The six vendors will submit a joint specification to the Interactive Multimedia

Association's (IMA) request for technology. (The IMA, of Annapolis, Maryland,

is an industry forum in which over 250 companies discuss the merits of proposed

formats, protocols and technologies. It is the practical standards-setting organiza-
tion for multimedia.)

Object technology

The six vendors will support the efforts of the Object Management Group

(OMG) and the Common Object Request Broker (COBRA) for distributed
management solutions.

Systems management

The six vendors will work together to provide common solutions and implementa-

tions to support user group management, software installation, maintenance and

licensing, storage management, printer and filesystem management.

Of the six areas, the most clearly defined, and the most important is the

common desktop environment. It uses components that already exist in the

marketplace today, and establishes OSF/Motif as the programming interface
(and look and feel) for GUI applications on UNIX and also AIX platforms.

Significantly, OSF have agreed to submit the Motif specification and associated

support materials to X/Open for incorporation into the influential X/Open

portability guide during 1994. (X/Open is described in more detail in Sec.
16.3.5.)

276 Inside the IBM RISC System/6000

16.2 US government standards : FIPS and NIST

The Department of Commerce agency of the US government sets standards for

its procurement. NIST, the National Institute of Standards and Technology,

develops product-level implementation standards for this department. Of

particular interest are the Federal Information Processing Standards (FIPS)

which are computing standards.
FIPS standards are important because the US government usually makes these

a prerequisite to winning a government contract. The two standards that

computer vendors are often required to meet are FIPS 151-1 and FIPS 158. In

1988, FIPS 151 simply stated that the computer system should comply with the

IEEE POSIX standard draft 12.0 of IEEE P1003.1. In March 1990 this was

updated to the now ratified POSIX standard 1003.1-1988. IBM's AIX meets and

exceeds this standard.
FIPS 158 specifies the windowing interface. It dictates that the Windowing

system should be X-Windows X11.3 or later; also that the vendor should supply

the programming interfaces Xlib and the X toolkit intrinsics Xt. IBM meets and

exceeds FIPS 158 with its AlXwindows component of AIX for the IBM RISC

System/6000.
NIST is also involved in setting standards for CASE. The IBM, AIX CASE

offering described in Sec. 5.2 conforms to the recommended NIST reference

model for CASE.

16.3 US standards bodies

16.3.1 ANSI

ANSI, the American National Standards Institute, is a voluntary organization

which coordinates US representation to ISO. The ANSI X3 committee defines

standards for programming languages such as C, Fortran and Pascal.
The IBM RISC System/6000 XL series of compilers all meet ANSI standards.

16.3.2 IEEE

The US founded, Institution of Electrical and Electronics Engineers (IEEE) is the

recognized voice of professionally qualified (to degree level and higher) electron-

ics engineers in America. The IEEE also has members worldwide. The IEEE is

very active and has been particularly so in standards setting. For many years,

the IEEE has been the source of many of the hardware computer bus standards

in the industry. Of late, the IEEE's Technical Committee on Operating Systems

(TCOS) has established standards for a comprehensive set of operating system

interfaces that support both portability and interoperability. The principal output

so far has been the portable operating system interface called POSIX.

Standards and performance 277

Over 25 committees are involved in defining POSIX standards and application

environment profiles (AEPs), which can be applied against the base standards to

define a particular environment. For example, the 1003.4 committee defines the

interface extension for real time to 1003.1. The 1003.13 committee defines a

profile that specifies the AEP. Table 16.2 is a summary covering the various

standards.

When a systems or applications vendor ships a program they can classify in

one of four levels of POSIX compliance:

• Nonconforming: this means that the application is not POSIX compliant at

all.

• Conforming using extensions: a POSIX application built with some non-

POSIX extensions, for example NFS, or X/OPEN extensions.

• Conforming: a POSIX application including some ANSI or ISO options.

• Strictly conforming: an application built using just POSIX and ANSI C.

16.3.3 Standard P1201.1

The IEEE P1201.1 has undergone many changes. Initially, it was to be a

standard like POSIX but for GUIs. In this respect it was really to be a straight

choice between OSF/Motif and Sun Microsystems Open Look. Unfortunately

both Sun (the chief supporter of Open Look) and many other vendors dedicated

to OSF/Motif were not prepared to see anything other than their GUI environ-

ment as a standard. The result? Neither GUI could be selected as `the standard'

so the long-suffering P1201.1 committee tried a different approach. This was the

layered API (LAPI) approach. LAPI adds an additional layer above the GUI (as

if there were not already enough layers!) and the programmer would write to that

layer. Three organizations submitted LAPI technology to the P1201.1 working

committee, namely XVT Software, the US Air Command and NASA. Of the

three, only XVT has a working product, a high-level programming interface that

allows C programs to be written in a GUI-independent fashion. Target windowing

systems include OSF/Motif, Open Look, IBM OS/2 Presentation Manager and

Microsoft Windows. Unfortunately the LAPI approach has many problems, for

example, the programmer cannot use any GUI-specific features else portability is

lost. No firm decision has yet been made.

On a closely related area, and partly because it seems P1201.1 now represents a

higher level programming interface, the sponsor executive committee for POSIX

submitted a project authorization request for a standard GUI for POSIX. As one

might expect, OSF submitted a modular toolkit environment based on Motif,
while Sun Microsystems and UNIX Systems Laboratories submitted the open

toolkit environment based on Open Look. Once again Motif and Open Look

fought to a draw, and the committee could not decide.

The bottom line is that there are two unofficial `standards' in the GUI arena,

278 Inside the IBM RISC System/6000

Table 16.2. IEEE POSIX 1003 standards

Standard Description

1003.0 Guide to the POSIX open system environment
1003.1 Base system including system calls and utilities
1003.2 Shell and application utilities
1003.3 POSIX test methods
1003.4 Real-time extensions
1003.5 Ada binding to the POSIX base system
1003.6 Security
1003.7 Systems administration
1003.8 POSIX networking
1003.9 Fortran binding to the POSIX system
1003.10 Supercomputing application environment
1003.11 Transaction processing environment
1003.12 Protocol independent interface
1003.13 Real-time application environment profile
1003.14 Multiprocessing
1003.15 Batch services

Open Look and Open Software Foundation . With the announcement and
implementation of COSE (see Sec . 16.1.5) this will undoubtedly change.

16.3.4 ISO

ISO, the International Organization for Standardization, is a body founded to

encourage standardization. The members of ISO are the national standard bodies

such as ANSI for the United States, DIN for Germany, and BSI for the United

Kingdom.
Two ISO standards of note include the IEEE POSIX standard which in ISO

terms is ISO/IEC 9945-1, and the character classification standard ISO 8859.

AIX meets and exceeds ISO/IEC 9945-1 and also enables ISO 8859 standards to

be used natively under AIX character-based and graphical windowing

environments.

16.3.5 X/Open

X/Open is not strictly a standards body, but a consortium of international

computer and software vendors who came together to encourage open systems.

X/Open's objectives are to develop an open and multivendor common applications

environment (CAE) based on international or de facto standards. The CAE that

vendors need to adhere to is specified in the X/Open Portability Guide (XPG).

The latest level of XPG is XPG3 which constitutes two sections. The base is built

around POSIX 1003.1-1988 and includes specifications for the systems program-

ming interface, commands, utilities and ANSI C. The extension has 12 parts:

Standards and performance

• Fortran
• COBOL

• Ada

• Pascal
• ISAM
• Terminal interfaces
• Window management

• SQL

• X/Open transport interface
• PC networking
• IPC
• Source code transfer

279

IBM uses X /Open's VSX test suite to ensure that AIX conforms to XPG3 base

brand, which in fact really means that AIX complies to POSIX!

16.4 Graphics bodies and standards

16.4.1 X Consortium

The MIT X Consortium was formed in January 1988 to further the develop-

ment of the X Window system and promote cooperation within the computer

industry of standard software interfaces at all layers in the X-Windows environ-

ment. There are two categories of membership: member (for large organizations

like IBM) and affiliate (for smaller companies). The X Consortium publishes
the Inter-Client Communication Conventions Manual (ICCCM) which

describes the conventions that X client programs must observe to co-exist

peacefully.

16.4.2 PHIGS

PHIGS is both an ANSI and an ISO standard. PHIGS defines a powerful API

for both 2D and 3D graphics applications. IBM's version on PHIGS is called

graPHIGS and is based on the following standards:

• ISO/IEC 9592-1 PHIGS part 1, Functional Description

• ISO/IEC 9593-1 Fortran Language Binding of PHIGS

16.5 Performance standards

Over the last few years the explosive growth in workstation computing power has

led to an equally explosive growth in the claims of many workstation vendors

each to have the `fastest' performing UNIX computer system. Many performance

benchmarks are now available, claiming to test thoroughly the all-round capabili-

280 Inside the IBM RISC System/6000

ties of the IBM RISC System/6000. This section discusses some of the more

meaningful tests and the results.

16.5.1 SPEC

Standard Performance Evaluation Corporation (SPEC) is a nonprofit-making

corporation initiated by the Electronic Engineering Times. SPEC's stated purpose

is to design a suite of benchmarking programs that are effective and fair in

comparing the performance of computer systems. SPEC's members include some

of the foremost computer vendors in the industry. IBM joined SPEC in May

1989 and is a member of the SPEC steering committee. The benchmarks are so

large that they cannot easily be `optimized' and have long enough run times to

minimize timing differences.
SPEC has announced two benchmark suites to date. The first benchmark suite

SPEC suite 1 was released in October 1989. Its present revision is SPEC 1.2b,

and focuses on CPU-intensive applications in a technical workstation environ-

ment. The result of this benchmark is a number called the SPECmark. A DEC

VAX 11/780 has a SPECmark of 1.0. The SPECmark is computed by taking the

geometric mean of the 10 individual ratios for the benchmarks (that is to say the

10th root of the product of the benchmark times in seconds). Two derived

numbers are the integer SPECmark and the floating-point SPECmark which are

the geometric means of the four integer and six floating-point benchmarks. In

January 1992, SPEC introduced SPEC suite 2 comprising two benchmarks:

CINT92 and CFP92. CINT92 extended the number of integer tests to six, and

CFP92, floating-point tests to fourteen. As before, a geometric mean is calculated,

this time for each set of results. Unlike SPEC suite 1 an overall measure of the 20

tests is not now computed since systems with a similar SPECmark rating could

have widely different floating and integer performance characteristics rendering a

combined SPECmark number meaningless. SPEC suite 2 is designed to replace

suite 1. SPEC SDM 1.0, published in May 1991, focuses on multitasking

software development applications for UNIX-based systems.
SPEC is already working on future benchmark suites and intends to cover

other areas such as networking, graphics and input/output. Anybody can

write to SPEC for a benchmarks source tape. Both tapes together cost about

£1500.

16.5.2 SPEC suite 2

The 20 benchmarks are listed here. See Table 16.3 for a summary.

alvinn This program is used to train an autonomous land vehicle in a
neural network. It is a CPU-intensive program using single-preci-

sion C.

Standards and performance 281

Table 16.3. SPEC suite 2 benchmarks

Name Language Calculation Description

compress C Integer File compression utility
eqntott C Integer Boolean equation minimizer
espresso C Integer Programmable array logic generation
gcc C Integer gnu C compiler
li C Integer LISP interpreter solving nine queens problem
sc C Integer A spreadsheet benchmark
alvinn C Floating point Neural network simulation
doduc Fortran Floating point Seven kernel synthetic benchmark
ear C Floating point Human ear simulation
fpppp Fortran Floating point Quantum chemistry
hydro2d Fortran Floating point Astrophysics simulation
mdljdp2 Fortran Floating point Quantum chemistry
mdljsp2 Fortran Floating point Quantum chemistry
nasal Fortran Floating point Nasa applications
ora Fortran Floating point Ray tracing
spice2g6 Fortran Floating point Analogue circuit simulation
su2cor Fortran Floating point Quantum physics
swm256 Fortran Floating point Finite difference arithmetic
tomcatv Fortran Floating point Fluid dynamics
waves Fortran Floating point Particle in cell simulation

compress A file compression utility using Lempel-Ziv encoding. This

program, written in C, compresses and decompresses a 1 Mb file 20

times.

doduc A large kernel extracted from a Monte Carlo simulation of the

time evolution of a thermo-hydraulic model for a nuclear reactor

component. The 5300 lines of Fortran perform little I/O. The code

contains many loops and short branches and is not easily

vectorizable.

ear A benchmark supplied by Apple that simulates the human ear. The

program's input is a sound file and its output a 1 Mb cochleagram

output file. This is a single-precision C benchmark.

eqntott Translates a logical representation of a boolean equation into a

truth table. There are 3400 lines of C; execution is mainly spent in

the ghort() function.

espresso One of a collection of tools for the generation and optimization of

programmable array logic. Performs heuristic boolean function

minimizations. It is completely CPU integer intensive and provides

insight into how logic simulation and routeing algorithms can be

expected to perform. It has 13 500 lines of C. Almost no paging on

most systems.

282 Inside the IBM RISC System/6000

fpppp This measures the performance of computations from quantum

chemistry. The 2700 lines of Fortran do almost no branching.

gcc The GNU C compiler distributed by the Free Software Foundation.

It measures the time taken for the compiler to convert 76

preprocessed source files into optimized Sun-3 assembly language.

It is representative of work done in a software engineering environ-

ment. It is a C, integer-intensive program.

hydro2d This is an astrophysics program that solves the hydrodynamic

Navier-Stokes equations. It is a vectorizable double-precision

Fortran program.

li A lisp interpreter written in C. The benchmark measures the time

to solve the popular nine queens problem. It comprises over 7000

lines of LISP. The execution time is dominated by the many

program short loops and branches and is CPU integer intensive.

mdljsp2 This is a single-precision Fortran benchmark that represents

quantum chemistry applications. The program solves the equations

of motion of 500 atoms using the Lennard-Jones interatomic

potential model method.

mdljdp2 This is a double-precision Fortran version of the previous

benchmark.

nasal A collection of seven floating-point intensive programs. Double

precision and CPU intensive. There are 2200 lines of Fortran, some

of which are vectorizable.

ora Optical Research Associates: traces rays through an optical system

composed of spherical and plane surfaces. This is a double-precision

Fortran benchmark.

sc This is a spreadsheet benchmark that performs standard operations

such as cursor movement, data entry and calculation. Output is

directed into a file.

spice2g6 An analogue circuit simulation and analysis widely and heavily

used in the electronic design automation market. It is a CPU-

bound floating-point application. There are 18 400 lines of Fortran.

It stress tests small instruction and data caches. It is unlikely to

benefit from vectorization or parallelization techniques.

su2cor This calculates particle masses of elementary particles using the

statistical Monte Carlo method. It is a vectorizable double-precision

Fortran program.

Standards and performance 283

swm256 This solves a system of shallow water equations using finite differ-

ence approximation on a 256 x 256 grid. This is a single-precision

Fortran benchmark.

tomcatv This is a 250-line Fortran program performing mesh generation.

The code is highly vectorizable but creates several very large

memory arrays.

waves This is a single-precision Fortran benchmark. It performs a two-

dimensional particle in cell simulation used to study plasma

phenomena.

16.5.3 SPEC system development multitasking

System development multitasking (SDM) consists of two multitasking system

level benchmarks sdet and kenbusi . Both benchmarks are designed to exercise

CPU, memory , disk I /O and operating system services.

• sdet is a benchmark with AT&T origins . It comprises the execution of a

number of UNIX commands used in C-based commercial software develop-

ment including spell, nroff, diff, make andfind.

• kenbusi is derived from the Monash University Suite for UNIX benchmark-

ing (MUSBUS). The benchmark uses commands and procedures that are

used in a typical UNIX/ C research and development environment such as cc,

cat, grep , mkdir and rm.

SDM measures performance by gradually increasing the workload applied to the

system . This is achieved by increasing the number of concurrent copies of the

workload script . The number of scripts is increased until thrashing bottlenecks

occur . The throughput metric is defined as the peak scripts executed per hour.

16.5.4 The Transaction Processing Performance Council

The Transaction Processing Performance Council (TPC) was formed in 1988

with the purpose of developing transaction processing application benchmarks.

Two benchmarks are of particular interest: TPC-A multiuser and TPC-B

multitasking.
The TPC A benchmark dates back to November 1989. It is an interactive

multiuser benchmark representative of an online transaction processing (OLTP)

banking environment. It measures (in transactions per second-tps) the

throughput of a system with the requirement that 90 per cent of all transactions

must have an external user response time of two seconds or less. TPC-A

therefore uses a remote terminal emulator connected to the system under test to

simulate actual users entering transactions.

284 Inside the IBM RISC System/6000

The TPC B benchmark was created in September 1990. It is a multitasking

workload that exercises the database on a system under test. It uses the same

banking application as TPC-A but no terminal I/O or network overhead is

simulated. TPC-B (like TPC-A) requires that 90 per cent of transactions have a

residence time of two seconds or less. IBM results detailed previously were

obtained using AIX version 3.2 and Informix-Online 4.00.

16.5.5 Whetstones

This benchmark was created in 1976 by Curnow and Wichman . It is written in

Algol and based on a statistical distribution of Algol statements. Fortran, C and
Pascal versions are now available . Single- and double -precision versions also

exist . It is a CPU-bound benchmark with no I / O or system calls. Hence it may at

best be a test of raw system floating -point performance and maturity of the

compiler. Results are expressed in MWHETS (millions of whetstones). The
higher the number, the better the performance.

16.5.6 Dhrystones

A dhrystone is an old (1984) performance metric. It is composed of approximately

100 C statements. It does not use floating-point, terminal or disk I/O, or any

AIX system function. Today the SPEC series of benchmarks are usually used in-

stead of dhrystones. Dhrystone test results are expressed in dhrystones per

second.

16.5.7 Linpack

This benchmark was written by Jack J. Dongarra of Argonne National Labora-

tory. It is coded in Fortran and uses a linear programming problem involving

array manipulation to test machine performance. The innermost computational

loops of the workload are isolated in one subroutine called the basic linear

algebra subroutine (BLAS). Single- and double-precision versions of the

benchmark exist. The results are expressed in terms of MFLOPS (millions of

floating-point operations per second). The higher the number, the better the

performance.

16.6 Competitive summary

We have seen how AIX conforms to industry standards and performs in industry

benchmarks. How does it fare against other leading UNIX or personal computer

implementations? Table 16.4 is my summary which I feel was accurate at the time

of writing.

Standards and performance 285

Table 16.4. AIX competitive summary

Description AIX HP-UX NCR SCO SunOS ULTRIXOS/2
3.2 8.Ox V.4 ODT 4. 1.2 4.2a 2.0

Scalable kernel Y Y
Efficient I/O Y Y Y Y
Kernel pre-emption Y P P
Dynamic linking Y Y Y Y
Shared libraries Y P Y P Y Y
Streams Y Y Y Y Y
Reliable filesystem Y Y
Disk volume manager Y P Y Y P
Sys. mgt . interface Y Y Y Y Y
Good internationalization Y Y P P P Y Y
Good documentation Y Y P Y P Y Y
Good connectivity Y Y Y Y Y Y Y
Good compilers Y Y Y Y Y Y
Good security Y Y Y Y Y Y

Y = yes, P = partial

17
A change of attitude

In the fiscal year 1991, IBM sold almost three billion dollars' worth of UNIX

products, placing IBM as the world's third largest vendor of UNIX systems. This

was a substantial improvement over the previous year and enough to place IBM

in the same league as vendors with strong UNIX connections including Sun

Microsystems and DEC.

My personal view is that IBM's marketing strategy for the IBM RISC System/

6000 is not based on straight-line derived revenue or profitability for two

reasons. First, IBM is still not perceived by many other vendors or corporates as

a significant player in the UNIX marketplace, even though I would argue the

above sales figures prove otherwise. Second, and perhaps more significantly, the

nineties have meant lean times for most established computer vendors. As the

general worldwide recession continues, I believe that computer vendors' aspira-

tions seem now to be sighted on not making a year-on-year loss, rather than on

maximizing profits.

In this difficult global computer marketplace I believe that IBM's strategy

for the nineties relies heavily on expanding its market share, especially in the open

systems marketplace, via IBM's premier open systems computer system the IBM

RISC System/6000. How is this being achieved? By meeting the needs of any

potential and existing customer by using the full range of information technology

facilities such as marketing, technology leadership and manufacturing, supplied

by IBM itself or from any IBM business partner. Business partners divide into

three categories:

• The value added reseller

• The ex-IBM companies
• Vendor alliances

Let us look at some of marketing strategy changes that I believe have taken place

inside IBM, before covering the above three categories.

286

A change of attitude 287

17.1 Market driven for customer satisfaction

One of the differentiating factors that IBM marketing provided in the seventies was

the excellence of the IBM systems engineer. The systems engineer and sales

professional were traditionally a team that marketed AIX and other IBM

computer systems to existing IBM customers or to new business prospects. Since

the beginning of the nineties, IBM has made the change to services marketing, but

before we cover that, let us look at the traditional role of the IBM systems engineer.

The established role of the IBM systems engineer was to work with an IBM

customer or prospect to determine the best system for that customer's needs. For

a large and established IBM customer one or more systems engineers would be

dedicated to a particular `account' and would work solely as technical liaison and

account maintenance for the IBM systems used by that customer. At a pre-sales

stage the systems engineer worked with the customer to understand the business

requirements, determine the most suitable IBM system and plan the installation.

After sale and installation, the systems engineer continued to work closely with

the customer.

By the mid eighties the emphasis within IBM was on `getting closer to the

customer' and this usually involved spending more time with the customer. It

was not uncommon in large IBM customer sites for IBM staff to be located

almost full time on the customer premises.

Some of the key phrases that have dominated IBM marketing strategy for

1991 and 1992 include `market driven' and `total solutions'. The systems engineer-

ing team is now oriented to provide an `open minded' solution comprising both

products and services to help the customer to be more successful; in particular, to

provide services to build customer enterprise-wide multivendor information

systems based on the principles of `what you have is what we will support' and

`what you need is what we will help you get'. Here are some examples of services

that IBM could provide, taken from real IBM customer situations:

• Performing a technical appraisal of the customer's international and single-

vendor corporate computing system and drawing up a plan on how to move

this to an open systems UNIX-based platform, incorporating IBM AIX and

other UNIX vendors' workstations and minicomputers.

• Project management of a large avionics installation and development project.

• Supplying skilled AIX people to work onsite with the customer to implement
a portable streams interface on AIX and non-IBM UNIX systems.

17.2 IBM terms and conditions

IBM now provides many flexible options of purchase and leasing to encourage

existing IBM and prospective customers to consider AIX. (Since exact availability,

terms and conditions will vary from country to country and from time to time

288 Inside the IBM RISC System/6000

readers should check their IBM electronic customer support or their local IBM

marketing representative for exact details.)

17.2.1 The IBM volume purchase agreement

The IBM volume purchase agreement (VPA) offers an enterprise a discount on

the price of IBM computer systems based on an agreed yearly purchase quantity.

This agreement benefits both the customer and IBM. The customer agrees to

purchase a stated minimum quantity of IBM AIX systems over a fixed period,

usually one year. This can be a `worldwide VPA', which is advantageous for

international corporations, each of which may make small individual sales, but

which when aggregated form a larger commitment. In return IBM discounts the

equipment sold to the customer based on total quantity and retail price. This

agreement is beneficial to IBM because manufacturing divisions are assured of a

guaranteed production quantity in the coming yearly period.

17.2.2 IBM leasing

IBM leasing is often a cost-effective way of utilizing IBM equipment. Depending

on the country, there may be good reason why it is more tax efficient to lease

rather than to buy. Here is a list of some of the terms that may be possible with

an IBM RISC System/6000 hardware and software leasing contract:

• One stop shopping-everything can be included

• Competitive rates vs. the marketplace

• Discounted and fixed IBM maintenance
• Rollover / refinancing
• Interim buyout options

• Fully disclosed IBM contracts

In many countries IBM leasing operates as an independent business unit and

offers customers an attractive package in order to secure business.

17.2.3 The IBM trade-in program

Customers who have bought previous IBM UNIX systems, and increasingly

customers who have bought another vendor's UNIX system, can trade in that

UNIX system for an IBM AIX system. Of course, since these terms are subject to

change the reader should contact their IBM marketing representative for full

information.

A change ofattitude 289

17.2.4 The IBM technology trade-in

In an attempt to become more open to customers, IBM now announces many

products well before it is ready to ship them. IBM wants to tell customers what

products are coming down the line. However, some customers may be

consequently put off from ordering products that may shortly be replaced by

newer IBM technology. To prevent this, IBM announced a series of technology

trade-in programmes allowing users to buy systems or peripherals today, then to

exchange or upgrade them to already announced new systems and components.

For example, the current range of high-performance graphics cards (discussed in

Sec. 8 .7) were announced several months before their `general availability'. In the

interim , IBM customers could purchase existing graphics cards and trade them in

when the new cards became readily available. A second example is the model

upgrade ability, allowing users of RISC system models 320, 520 and 530 to

upgrade their systems to newer higher performing models in the RISC system

family.

17.2.5 Discounts to developers and demonstrators

IBM recognized that however good RISC system hardware and AIX software

are, they are of little use without good applications support. IBM therefore

has a twofold strategy in place to encourage applications developers to support

AIX.
First, IBM has a number of internationally placed `porting centres' whose

purpose is specifically to support the conversion of software written for other

(typically UNIX) platforms onto AIX. The vendor discusses with IBM the

nature and expected effort required for the port and reserves the required time
with the porting centre which has a variety of IBM AIX and other systems. But

this is not enough-clearly if the applications developer had initially developed

for AIX then porting would not be necessary! Therefore to encourage applications

developers to use AIX as their UNIX base (and have to port to other UNIX

flavours), IBM offers certain financial discounts to bona fide developers of

AIX applications. These discounts may also be extended to industrial consult-

ants also.

17.2.6 Source code availability

IBM now makes available the complete source code and build guide for AIX to

those customers who need to customize and enhance their AIX environment.

Since AIX derives in part from USL System V 3.2 +, the Tahoe/Reno BSD 4.3

and OSF/ 1, source licenses to these are required as contractual prerequisites.

IBM is very proud of its version of UNIX. If a customer wants the source to

AIX they can have it.

290 Inside the IBM RISC System/6000

17.3 The IBM value added reseller

The IBM value added reseller (VAR) is an important part of IBM's marketing

team, selling the IBM RISC System/6000 to small and medium sized-businesses.

The VAR buys IBM RISC System/6000 computers from IBM then resells them

together with services and software to the customer. A customer's contact is

therefore with the VAR and not with IBM. The customer does, however,

normally obtain hardware and software support from IBM unless the VAR elects

to provide their own. Traditionally, IBM sold computers to the large corporate

customer, but clearly the market for computer systems now extends from the

very smallest to the very largest business. VARs are one of the key ways in which

IBM can penetrate the open systems marketplace, especially specific segments of

industry or customers who have little or no previous computing skills or utiliza-

tion. Small business customers do not have the time or resources to staff in-house

computer departments; they are interested in using a RISC system as a tool in

their business. They are typically interested in buying a complete systems solution

from a VAR supplier, and usually the VAR has specific knowledge in a customer's

business sector and will be able to tailor an existing package for the customer's

use. The IBM marketing salesforce works hand in hand with the VAR, usually

by understanding a customer's needs, then by identifying the best VAR that

satisfies a customer's requirements.

17.4 IBM companies

In the nineties IBM realized that it needs to restructure its business radically into

increasingly autonomous companies to increase profitability. This restructuring

has taken the form of variable IBM ownership across a range of product

businesses, marketing and service companies-from wholly owned, majority

owned or minority owned to no ownership at all. These companies can also be

categorized into two groups: first, companies like Lexmark who were part of

existing IBM worldwide development; second, companies like Metaphor who are

the result of recent IBM acquisitions. This new structure is designed to allow

each company greater local management control, allowing it to react faster and

be more flexible toward changes in the information technology marketplace, and,

most importantly, each company is now a genuine profit centre, buying services

and products to manufacture its products. In the past, it may have been common

for the more profitable sectors of IBM to subsidize the lesser; this will not

happen in the future. Further, should a wholly or part-owned IBM subsidiary

register year-on-year losses then IBM would be very likely to sell off its
shareholding to the highest bidder. This provides greater local management
focus on reducing cost, for example, within IBM the increasing trend of hiring

contractors to meet varying workload demands instead of taking on permanent

staff.

A change ofattitude 291

17.4.1 LA ^amark International

In March 991, Lexmark International Inc., an independent company, was

formed frog IBM's former typewriter and office printer business. The name

Lexmark w. s created by combining `lex' an abbreviation of lexicon (meaning

`pertaining words') and `mark' (referring to `marks on paper'). IBM holds a

10 per cent . quity interest in the company, the balance being owned by Clayton

and Dubili4 Inc. IBM has entered into several manufacturing, marketing and

distribution agreements with the new company. For example, one such agreement

enables Lei4 nark's line of printers and supplies to continue to be sold under the

IBM brandf tame through the established IBM worldwide dealer and distribution

network.

17.4.2 Mf taphor Computer Systems

Since Octol ,er 1991, the California-based Metaphor Computer Systems has

become a ,'holly-owned subsidiary of IBM. Metaphor is now focusing on

integrating :s data interpretation systems (DIS) into the IBM product family.

DIS combil .s a graphical user interface with relational database technology. It

allows noni chnical business professionals to access multiple databases and to

construct tly it own applications.

17.5 Vi ndor alliances

Imitation is surely one of the sincerest forms of flattery. IBM has already learnt

to its cost in the PC marketplace what imitation and innovation can lead to if not

cultured coi rectly. In the early eighties IBM legitimized the growing personal

computer r rketplace, at the time occupied by computers running the CP/M

operating s; stem. The IBM personal computer was explosively successful, but

today IBM' s not a majority manufacturer in this marketplace nor indeed the

leading maa ufacturer by revenue or volume. The standard that IBM created is

now domiii led by other manufacturers. In 1987 IBM introduced the IBM

Personal System/2. This computer and its complementary operating system, IBM

Operating $,'stem/2, was designed to regain the leadership of the PC marketplace

through teed nical innovation. I believe that this strategy has not so far succeeded

as is evidel,ced by the current volumes and revenues of Personal System/2

computers a ainst regular ISA or EISA bus systems. It has faltered because IBM

did not cool,.-rate closely enough with other industry vendors. Thus its revolution-

ary rather t1 to evolutionary strategy has not yet had the desired effect.

So what s IBM's strategy for gaining market share with the IBM RISC

System/600 ? I believe it is not only to produce technical leadership but also to

work coopd atively with other industry vendors, and, in so doing, encouraging

them to usl this IBM technology as their standard. IBM now has agreements

292 Inside the IBM RISC System/6000

with Wang, Bull, Motorola and Apple. All these vendors will be working with

IBM to promote the IBM POWER architecture standard in the marketplace.

What are the details?

17.5.1 IBM and Apple

In July 1991, IBM, Apple and Motorola signed an agreement to work together to

produce an advanced family of UNIX-based RISC workstations based on the

IBM Performance Optimized With Enhanced RISC (POWER) architecture as

already used in the IBM RISC System/6000 family. The parts of the agreement

are discussed below.

The PowerPC architecture

`PowerPC' is a term used to describe the shrinking of the current three-chipset

POWER architecture into a single physical chip. These new integrated processor

chips will be designed in the Somerset design centre in Austin, Texas. PowerPC

will also be manufactured by Motorola and will be incorporated into future

systems by IBM and Apple as well as any other vendor who wants to buy the

architecture.

The PowerOpen platform

PowerOpen is an implementation of a UNIX operating system built upon the

PowerPC architecture. PowerOpen has five components:

1 The base layer is the hardware POWER or PowerPC architecture defined

previously. The PowerPC architecture does not mandate the use of the

MicroChannel bus.
2 The operating system layer will be provided by an OSF/ 1 kernel-based

implementation of AIX.
3 The user interface in PowerOpen will be either OSF/Motif or the Macintosh

interface provided with A/UX, Apple's implementation of UNIX.

4 An application binary interface (ABI) will be defined to allow products

written to run on mixed IBM or Apple, hardware and software platforms.

Current IBM AIX applications will be binary compatible with this ABI.

5 To produce software emulation of the DOS and Macintosh architectures,

enabling existing software to run under PowerOpen.

Taligent

Taligent is the name to a joint venture company of IBM and Apple whose task is

to design the operating system, compilers and tools that will form the PowerOpen

A change ofattitude 293

platform. 7 e company is headed by CEO Joseph Guglielmi, a former IBM

corporate vp i;e-president.
A key en11 thasis in the design of all of this software is that it is based on object-

oriented so, tware technology. The intent is to design systems that are more

reliable and robust using object-oriented programming techniques. In the late

1980s IBM! vas working on a new object-oriented operating system in a project

called `Patri ,)t Partners', drawing on the expertise of companies such as Nextstep

and Metap) or. Apple too was working on a similar project called `Pink'. This

had similar)bject-oriented deliverables, and in a meeting of minds in December

1991, Appil chairman John Sculley, IBM president Jack Kuehler and IBM

general maj ager Jim Cannavino formed the joint venture Taligent under the

leadership 4,f Guglielmi. Taligent is staffed by IBM and Apple employees with

new emplo ,-es hired as necessary. Taligent is located in Cupertino, California.

Although ^ e target design points for Taligent are products that will run on

POWER aj l PowerPC platforms, the operating system that will be produced

will be avaj able to run on any hardware platform and Taligent will license its

software te4 urology and systems to any requesting software vendor.

17.5.2 IB14 and Bull

Bull, the F ench computer systems manufacturer, is another vendor that has

signed a m nufacturing and marketing agreement with IBM. In a major shift

away from Bull's MIPS and Motorola processor-based workstations, Bull will

use the IBN POWER and PowerPC architectures and other IBM components in

its future sy tems.
From a > arketing standpoint, Bull will market these future RISC systems (in

competition with IBM RISC systems) to Bull customers. The POWER

architecture may become Bull's strategic RISC architecture for future systems. It

is certainly sensible for there to be binary compatibility between future Bull

RISC and I! 4M RISC System/6000 systems and this will be achieved if technically

and politico ly possible.

Bull is al) leading the cooperative development efforts with IBM to produce a

range of syi metrical multiprocessing RISC systems based on its multiprocessing

expertise.

17.5.3 IA 14 and Motorola

Together, E M, Motorola and Apple are cooperatively manufacturing the new

IBM RISC System/6000 processors. Motorola and IBM have set up a joint
design facili. y in Austin to develop three versions of the PowerPC chip: an entry-

level proceq or for laptops, a mid-range processor for desktop systems and a

high-end pl :)cessor for workstations. Apple and IBM are creating a fourth

PowerPC p :)cessor for entry-level desktop systems. Motorola will be principally

294 Inside the IBM RISC System/6000

responsible for the manufacture of PowerPC processors. The implementation is

initially expected to be in complementary metal oxide semiconductor (CMOS)

using 0.5 micron technology. (That is to say, the distance between individual

circuit tracks inside the integrated circuit is 0.5 millionths of a metre; the smaller

the distance the better.) The first PowerPC microprocessor (the model 601) was

produced in October 1992. Motorola hopes to move to, a 0.35 micron process
and increase the processor chip speed to 100 MHz by 1995.

17.5.4 IBM and Wang

Fiscal years 1989 and 1990 were difficult years for Wang. The company, founded

in 1951 by Dr An Wang and later handled by his son Fred Wang, has experienced
declining sales and profitability. In the summer of 1991 IBM and Wang

Laboratories announced a strategic business alliance, allowing Wang to market

IBM products. The alliance is intended to help Wang transform itself from a

provider of minicomputer hardware solutions to a provider of software and

systems integration solutions. Wang are reselling IBM's RISC System/6000 and

Personal System/2 products under the Wang logo. In addition, Wang are market-

ing the IBM Application System/400 to Wang VS customers who convert their
VS applications to run under the AS /400.

17.6 OEM marketing

The overall original equipment manufacturer (OEM) market worldwide for

electronics is estimated to be as much as 500 000 million US dollars. Around the

world many companies in the information technology industry have established

themselves firmly as OEM suppliers. IBM, on the other hand, until recently has

not. Although IBM is the world's largest manufacturer of semiconductor chips, it

has historically produced these chips only for its own needs, but this is no longer
true.

Today, IBM has initiated significant new agreements with customers in the

OEM marketplace. IBM is now open to supply OEM customers with hardware

technology, services, maintenance and software. From personal systems to

enterprise systems, subassemblies or chip sets, IBM is keen to participate. As an

example, when IBM announced its industry-leading one gigabyte, 3.5 inch hard

disk drive, it made it available in the OEM marketplace before it was even

incorporated into RISC system products.

Besides the OEM agreements already described with Apple and Motorola,

IBM has already won several non-RISC system deals. These include customers

such as Hitachi, Mitsubishi and Thompson-CSF.

The message is clear-through OEM marketing and development IBM can

deliver more solutions to more customers. OEM sales provide greater market

access, technology expansion, early product feedback and, most importantly,

increased profitability.

A change of attitude 295

17.7 F1 ture developments

Future harC ware developments that IBM announce will be built soundly on the

PowerPC ai hitecture and its alliances with Motorola and IBM. During 1993

OEM manl facturers have had acccess to PowerPC components to produce

PowerPC al hitecture notebooks and laptops of between 50 and 150 SPECmarks

during 1994 (comparable to the performance of today's RISC system Model

520H). By 1 195 a processor performing at least 500 SPECmarks and executing at

a clock spec of 100 MHz would seem to be possible.

The prinq i pal new software innovation that IBM is working hard to deliver is

the integral :)n of the OSF/ 1 kernel into the AIX. Already, in an announced

statement of direction, IBM believes that OSF/ 1 compatibility is key to its future,

because it I opes that the OSF / 1 will be the leading open systems operating

system by tj end of this century.

17.8 Si mmary

The IBM RI C System/6000 workstations and servers offer excellent performance

and value. I i addition, the AIX operating system, IBM's advanced implementa-
tion of UNI K, offers an enhanced UNIX environment. It includes a sophisticated

systems mat agement tool, hypertext help, real-time programming, adherence to

industry sta dards such as POSIX, ANSI and XPG3 and an affinity to AT&T
and Berkele r versions of UNIX. This combination of performance, value, func-

tion, ease q use, reliability and standards compliance, in conjunction with IBM

service and upport, is one that increasing numbers of users are finding it hard to

resist.
Just as tl ^- IBM PC provided IBM's runaway success for the eighties, I see

AIX and t4 IBM RISC System/6000 as IBM's charmed family for the nineties.

Appendix 1
The history of UNIX and IBM's
involvement

Perhaps one of the largest inhibitors to the success of IBM's UNIX computer has

been IBM's low-key UNIX marketing strategy. Many important IBM customers

have been unaware that IBM has had a long and growing involvement with

UNIX computer systems stretching back to a product delivered in 1980, over 10

years ago.
For users new to UNIX this appendix will first examine the origins and

history of UNIX, then describe the past and present versions of IBM's UNIX

offerings.

A1.1 UNIX history

In 1965, Bell Laboratories (a part of AT&T) joined with General Electric and

Project MAC of the Massachusetts Institute of Technology to develop the

Multics operating system. Multics did not perform as expected and Bell

consequently left the project leaving two people in particular, Ken Thompson

and Dennis Ritchie, without a `convenient interactive computing service'. At that

time, Thompson had written a Fortran game called `Space Travel' which ran on

a DEC PDP-7 that was little used at the time. In order to develop new versions

of the game, Thompson had to take his Fortran code and cross-compile it on a

Honeywell 635 computer which output paper tape that could subsequently be fed

into the PDP-7 system. To create a better environment, Thompson took some

ideas for a proposed filesystem and demand paging environment on which he

had been working and implemented them on the PDP-7. Eventually, the environ-

ment was powerful enough for standalone development, and another member of

the Bell computing science centre called the system UNIX. UNIX was a pun on

the name Multics, since it was designed to do a few things well, whereas Multics

was designed to do many things well.
Although this early version was promising it needed more work, and Thompson

and Ritchie got their chance to move it to a DEC PDP-11 in 1971 when the

patent department at Bell wanted a text processing system. Next Thompson

implemented the language called B, an interpreted language based on the language

296

The history of UNIX and IBM's involvement 297

Basic Comb ned Programming Language (BCPL). From B, a compiled language

called C wa developed, and in 1973 the operating system was rewritten in C, an

unheard of tep at the time but one which was to have great consequences, since

this fundanj ntal feature gave UNIX its machine-independent portability.

By 1974 A r&T was selling UNIX to universities who requested it for educational

purposes. (lecause of a consent decree of 1956, AT&T could not market

computer si rvices, nor could they advertise, market or otherwise support the

product.)
In 1977, 1 iteractive Systems Corporation became the first value added reseller

(VAR) of a JNIX system, and added some enhancements that were to surface in

PC/IX. Intractive's first hardware platform was Onyx computers, a company

founded by 13ob Marsh and Kip Myers.
From 191 7 to 1982, Bell combined several AT&T UNIX variants into a single

system and lamed it UNIX System III, the first commercial version of UNIX.

Bell Labors tories later added more features calling the new product UNIX

System V (I sere was never a System IV). Meanwhile, people at the University of

California 1 Berkeley had developed a variant of UNIX and called it BSD for

Berkeley S4 ftware Distribution. One of the `Berkeley enhancements' that was

significant ,as the use of the Termcap database and the Curses library for

driving diffi rent ASCII terminals in a device-independent manner. AT&T have

added their)wn implementation called Terminfo.
From th1 mid-eighties then, there were two fundamental flavours of UNIX,

System V a d BSD. This was to change in 1990 with the introduction of UNIX

System V r lease 4, which integrated both BSD and UNIX System V versions

into a singl4 unified product.
In 1991,: kT&T separated its UNIX operations from its computer systems

division am, set up UNIX System Labs (USL). Since that time the ownership of

USL has bi)adened to include Amdahl, Fujitsu, Novell and Sun, to name but a

few. USL's:, thief function involves the support and licensing of UNIX System V.
USL has c1 se connections with UNIX International (UI). UNIX International,

like OSF, ; a nonprofit-making organization, and exists to promote UNIX

System V a id to provide input to USL regarding future enhancements to USL

products.
Table Al 1 summarizes UNIX development.

A1.2 V C/IX

The first 11M computer system to run an IBM licensed version of UNIX was

nothing m1 re than an unmodified IBM Personal Computer XT powered by a

4.77 MHz ntel 8088 processor, 256 kb memory and 10 Mb of hard disk. This
version of UNIX was a port of AT&T UNIX System III. The port was

performed! y Interactive Systems Corporation, now owned by Sun Microsystems.
PC/IX wa first announced in the spring of 1984. PC/IX was supplied on

298 Inside the IBM RISC System/6000

Table Al. 1. UNIX development milestones

Year Description

1969 First UNIX on PDP-7 (written in assembler)
1971 PDP-11 version (written in assembler)
1972 UNIX version 2
1973 UNIX versions 3 and 4
1974 UNIX version 5 (written in C)
1975 UNIX version 6 (programmer's workbench)
1979 UNIX version 7
1980 IBM maxi/UNIX (based on UNIX version 7)
1982 UNIX System III (AT&T standard, base for PC/IX)
1983 UNIX System V release 1 (base for IX/370)

IBM VM/IX
1984 UNIX System V release 2 (base for AIX version 2.1)

IBM PC/IX
IBM XENIX for IBM System 9000 and IBM PC AT

1985 IBM Interactive Executive
IBM AIX version 2.1 for IBM RT PC system (base for AIX version 3.1)

1988 IBM Secure XENIX
IBM AOS (based on BSD 4.3)

1990 UNIX System V release 4
IBM AIX version 3.1

1992 IBM FTX (based on UNIX System V release 4)
IBM AIX/ESA
IBM AIX version 3.2

1993 USL UNIX system VR4.2

nineteen , 5.25 inch low density floppy disks and installed in only 30 minutes. A
very full featured multiuser package , it included a base operating system and
seven subsets:

• Programming tools including C and SNOBOL compilers

• Communication tools including a printer spooling subsystem and
terminal emulation products

• Program development tools like SCCS and make

• Text processing tools like nroff

• Standard UNIX games programs

• Accounting record and site-specific billing programs
• Other Interactive specific tools such as the full-screen interactive systems

editor (INed), DOS disk read and write utilities

All this for only $900 in 1984, including manuals which were almost reproduced

verbatim from the original AT&T memos and manuals-a real bargain.

A1.3 XENIX

In the early eighties Microsoft became interested in UNIX. This was not alto-

The history of UNIX and IBM's involvement 299

gether surprising since Microsoft 's DOS operating system had certain similarities
to UNIX right from early times. The ability to redirect output , pipes , the internal
format of device drivers , and even some of the early DOS technical documenta-
tion was UNIX like. Microsoft licensed UNIX System 7 from AT&T, customized
it for the personal computers and called it XENIX.

In early 1984 IBM introduced a benchtop microcomputer called System 9000.
Initially this system ran the computer system operating system (CSOS), a simple
operating system that IBM believed would cater for this machine 's destined
marketplace , that of the office or laboratory for use by engineers, scientists or
technicians . The specification of this machine however, with a Motorola 68000
processor , up to 40 Mb of hard disk and 5 Mb of RAM, also made it an ideal entry-
level UNIX system. This, coupled with the already strong use of UNIX by the

scientific community at the time , prompted IBM to offer XENIX for this system.
Following this announcement , IBM also announced XENIX for the IBM

Personal Computer AT. Whereas PC/IX had run on an Intel 8086 processor in
real mode, XENIX required an Intel 80286 processor or better and ran in
protected mode . Other requirements were really only a 20 Mb hard disk and a
5.25 inch high-capacity disk drive . Also available were three additional packages:
first , a programmer 's toolkit including a C compiler and assembler as well as
traditional UNIX programming tools such as the lexical analyser lex and the
compiler compiler yacc; second , a text formatting package comprising the nroff

and troff programs ; and third , a system extension package including some TCP/
IP networking, extra accounting and editing programs, and migration aids for
existing PC/IX users.

In late 1988 IBM introduced Secure XENIX. This was a little-advertised product
that functioned on either IBM PC AT or PS/2 systems. Secure XENIX introduced
the concept of least privilege and enforced security using mandatory and discretion-

ary security policies . Secure XENIX had the option of full TCP /IP support.
In 1988, Microsoft handed over development of XENIX to the California-

based Santa Cruz Organization (SCO). Under the direction and control of SCO,
SCO XENIX is now based on AT&T UNIX System V . 3. It is now a very
different product in substance and character and competes directly with IBM
AIX PS /2. SCO XENIX includes a component called Open Desktop which is a
basic UNIX system packaged with a database and the OSF / Motif windowing
system . It also now features a complete set of programming tools for users to
develop programs in that environment.

A1.4 AIX PS/2

This is IBM's version of UNIX for the PS / 2. It is the result of a joint development
between the California -based Locus Computing Corp. and IBM . AIX PS/2 was

originally based on a highly modified version of UNIX 4.1 BSD.
AIX PS /2 runs on any IBM PS /2 with an Intel 386 SX or better processor. It

300 Inside the IBM RISC system/6000

represents a very complete implementation of UNIX and includes the following

components:

• Base operating system
• Operating system extensions, including vi, INed editors, administration, mail

and basic networking utilities (UUCP plus)

• C, Pascal and Fortran compilers

• Text formatting tools

• DOS-Merge, DOS integration software

• X-Windows, OSF/Motif, X-Desktop

• TCP/IP networking
• Application development and X-Windows development and debugging tools

In order to be price competitive with other UNIX offerings for personal

computers, AIX PS/2 is sold in components from the base operating system

upwards. For the user who runs just AIX applications, only the base operating

system needs to be purchased.
DOS-Merge is a component that allows AIX PS/2 to provide one or more

IBM DOS sessions concurrently using the VM86 `Virtual 8086 mode' of the Intel

386 processor. DOS sessions can be full screen or windowed onto an X-Windows

system screen. Since the DOS session provides full real mode emulation of DOS,

it is possible to run Microsoft Windows in real-mode concurrently with other

AIX tasks and commands. Because the VM86 mode of the processor is used to

provide DOS, these sessions run without impacting the performance of regular

AIX tasks, unlike the IBM RISC System/6000 which needs to emulate the Intel

8086 processor in software. DOS-Merge also provides support for dedicating

hardware adapter cards to one or more DOS sessions.

Because this is a full implementation of UNIX, AIX PS/2 can serve as an

entry-level multiuser commercial UNIX system with a number of ASCII attached

or LAN users, running character-based or X-Windows applications.

The X-Windows component allows the user to run and develop applications

under X-Windows at version 11 release 5. Also included in the X-Windows

component is the popular X-Desktop software from IXI, an earlier version of

that shipped with the IBM RISC System/6000.

Initially, AIX PS/2 included specific support for the IBM transparent comput-

ing facility (TCF), a development that provided a heterogeneous computing

network for PS/2 AIX and mainframe AIX systems. TCF is a very advanced

product developed by Locus Computing Corporation that enables user facilities

including:

• Automatic file duplication, replication and recovery. Files may be stored

locally and remotely for reliability. Should a remote fileserver fail, a local

AIX program can continue to operate on local files which are automatically re-

synchronized with network copies when the network becomes available again.

The history of UNIX and IBM's involvement 301

• Process migration. This allows a program to run in the environment best

suited for its operation. An AIX application can be compiled and run in

either an AIX PS/2 or mainframe AIX environment. Dynamic process

migration allows the movement of programs from the PS/2 environment to

the mainframe environment as the overall heterogeneous system load changes.

This includes the ability to remote fork an application, where a program can

start another instance of itself on a remote mainframe node.

Though TCF showed much early promise, it is not now seen as the future

direction for AIX in heterogeneous environments including AIX on IBM

mainframe platforms, therefore it is now not included in the latest releases of

AIX PS/2.

As with any personal computer based UNIX system, installation and main-

tenance require a significant amount of care. Most IBM PS/2 systems are not

equipped with a tape drive, which means that loading the operating system

and utilities is usually performed selectively from diskette. An end-user AIX

PS/2 configuration requires the installation of about 40 diskettes and needs

60 Mb of space, but a fully configured development AIX PS/2 system may

require the installation of over 120 diskettes and over 200 Mb of disk space. For

these reasons, a serious development system should be fitted with a tape drive.

AIX PS/2 is positioned as an entry level to the IBM AIX family. How well

does it live up to this claim? IBM has had only moderate success in marketing

AIX PS/2 as the UNIX system of choice for personal computer users. Why?

First, AIX PS/2 predominantly runs on IBM PS/2 computers and provides only

limited support for IBM compatibles. This is because AIX PS/2 cannot use the

IBM Personal Computer BIOS which is written to the requirements of a single-

tasking operating system like DOS. Instead, AIX PS/2 addresses the hardware

directly, and because other vendors' non-MicroChannel bus-based machines have

various hardware differences they will not necessarily work with AIX PS/2.

Second, in the personal computer UNIX marketplace there is no de facto agreed

standard for binary application compatibility.' The marketplace for AIX PS/2

systems therefore is typically a small configuration, multiuser commercial system.

For example, a customer may develop a simple character-based application on

an IBM RISC System/6000 for its worldwide series of offices. Smaller offices

may not justify their own IBM RISC System/6000 so the application could be

ported to an IBM PS/2 running AIX PS/2 for these smaller branches.

Ironically, since the cost of the IBM RISC System/6000 is now very low, it can

outperform a high-end IBM PS/2 in terms of performance per pound spent, thus

making the choice of AIX PS/2 more difficult.

A potential `standard ' is the Intel iBCS (Intel binary compatibility software) specification for
personal computer UNIX. This allows applications written for one vendor 's personal computer
UNIX to run on another vendor 's UNIX without recompilation . AIX PS /2 does not yet conform to
this standard.

302 Inside the IBM RISC System/6000

Table A1.2. The models in the RT PC family

Model Size Disk interface Processor

10 Desktop ST506 ROMP
15 Desktop ESDI ROMP
20 Floorstanding ST506 ROMP
25 Floorstanding ESDI ROMP

115 Desktop EESDI APC
125 Floorstanding EESDI APC
135 Floorstanding EESDI FAPC

The future of AIX PS/2 then is at a crossroads. IBM clearly needs to provide

or resell a PS/2-based UNIX product, because the potential market place, that of

existing IBM PS/2 users, is large. With the advent of OSF/ 1 and its porting to

IBM PC, PC-compatible and PS/2 platforms, I would expect AIX PS/2 to

undergo radical changes.

A1.5 The IBM RT PC system

The IBM RISC Technology Personal Computer (RT PC) was IBM's first

hardware platform specific to the UNIX operating system.' By understanding

the characteristics of the RT PC the IBM RISC System/6000 can be seen as an
evolutionary rather than revolutionary development.

The RT PC was a family of desktop and deskside minicomputers running the

operating system AIX. AIX had always been a merge of USL UNIX System V

release 2 and BSD 4.3. A typical desktop and deskside RT PC is shown in Fig.

Al.!. Actually, during the evolution of the family both processor speeds and

hard disk interfaces changed leading to the models shown in Table A1.2.

In Europe the RT PC was sold as the IBM 6150 microcomputer system.

Within IBM the machine was simply called the RT.

A key feature of the RT was its RISC processor. RISC in this context

represents `reduced instruction set computer' and means the production of a

microprocessor whose instruction set is limited to useful instructions heavily used

in most programs. A smaller instruction set can be executed more quickly. In fact

the RT processor had 118 instructions, more than most traditional RISC proces-

sors. The initial processor developed was called ROMP (research OPD micro

processor) and reflected the cooperation of the IBM research and office products

division in the processor design and manufacture. Later enhancements in technol-

ogy effectively increased the processor clock speed leading to the advanced

2 Actually early RT PC systems ran an IBM internal operating system called CPR but this was never
sold as a product. Equally, AIX version 3 was developed initially upon the RT PC but never
released on this platform.

The history of UNIX and IBM's involvement

Figure A1.l. A desktop and deskside RT PC.

303

processor computer (APC), and later with the model 135, the fast advanced

processor computer.

Memory management was performed using IBM virtual memory management

chips which interfaced with the virtual resource manager layer of the AIX

operating system.

The physical construction of the RT was as follows. A plastic case (copper

sputtered to help shield from stray electromagnetic radiation) contained a single
planar card containing two different sets of computer buses and support circuitry.

The first bus was the ROMP storage channel which interconnected four special

slots : one processor, one floating point and two system memory. The second bus

was IBM PC AT compatible and was for connecting peripheral cards such as

disk, graphics and terminal I/O.
The modular nature of the design enabled RT systems to be easily upgraded.

For example, from the first floorstanding model 20 to the model 125, right up to

the model 135, by steadily replacing processor, disk controller, memory cards,

etc. The planar card in the RT did not change in its design and included not only

the AT and dedicated system bus but also a DMA controller, two serial ports, a

keyboard and mouse interface. It also contained an I/O channel converter

(IOCC).
Limits on the RT system included a maximum of 16 Mb of system memory (40

bits wide: 32 bits of data and 8 bits of error correction), two 5.25 inch floppy disk

304 Inside the IBM RISC System/6000

drives , three internal 5.25 inch hard disk drives (900 Mb total) and fully

populated AT bus slots , six for the desktop models and eight for the floorstanding

systems . Early RT systems used the Seagate ST506 disk interface, replaced by the

enhanced small device interface (ESDI) in later models , then by the faster

enhanced ESDI (EESDI).
Other peripheral support was provided using AT form factor cards . Initially

these were IBM Personal Computer AT cards, though later RT systems used RT-

specific cards . Examples of cards included: the APA graphics adapter cards for

graphics displays running X-Windows; the SCSI adapter to connect external

hard disks ; the 1 inch tape support card ; and a variety of high -performance

synchronous and asynchronous communications cards.
The initial release of AIX for the RT was version 1.0 then later version 2,

culminating in version 2.2.1. An extremely fortunate design move (predating

AT&T UNIX System V release 4), AIX version 2 was always a merge of UNIX
System version V and Berkeley BSD. A key feature of the software architecture
was that AIX was built on a low-level software component called the virtual

resource manager (VRM). VRM controlled the real hardware and provided an

idealized and `virtualized ' machine interface to AIX. This was done to optimize

AIX's use of the real hardware and also enabled , in principle , the RT to be a

platform for other operating systems, for example PICK.

This version of AIX also brought some (helpful) baggage from PC/ IX including

the printing subsystem and the INed full -screen editor . Aside from the standard

UNIX facilities provided by the AT&T and BSD levels previously indicated, a

number of AIX features are of note:

1 HFT support : an IBM terminal subsystem that allowed an arbitrary number
of separate full-screen virtual terminals to be opened on a single physical

screen. The user switched through these with a key sequence.

2 Stanza-based configuration in many of the traditional UNIX system
files giving rise to fewer configuration errors.

3 DOS affinity: the ability to run DOS programs via a hardware or software

Intel PC emulator , translate DOS commands into UNIX ones with the DOS

shell and allow satellite DOS systems to share AIX files or log on to AIX

hosts with AIX access for DOS products.

4 IBM affinity using the SNA services program that provides SNA support

and via other IBM host terminal emulation programs.

5 X-Windows support on native RT graphic displays.

6 Enhanced software maintenance and installation using layered software product

installation, and the ability to back out selective AIX installed products and

features.
7 Enhanced diagnostics using standalone diagnostics and service disks

with low-level errors reported to a planar-controlled LED error display.

The history of UNIX and IBM's involvement 305

A1.6 Academic operating system

While IBM would have preferred customers of its RT PC systems to use AIX,

many universities and educational establishments had standardized on the de
facto UNIX in the educational environment, that is BSD.

In order to satisfy the requirements for regular BSD, the IBM Academic

Information Systems (ACIS) group at Palo Alto ported the BSD 4.3 level of UNIX,

calling the result the academic operating system (AOS). From an architectural

point of view this version of UNIX ran `native' on top of the raw RT PC hardware

and not upon VRM. Only genuine education customers could buy ACIS, since IBM

wanted to promote AIX as the standard UNIX operating system for RT machines.

Some of the ACIS features, for example the Andrew programming toolkit,

were not available for AIX and so for some educational customers AOS was a
must. Some of the highlights of AOS were:

• It was a port of BSD level 4.3.
• It included the X-Windows networked windowing system.
• It included the Andrew toolkit, an extensible object-oriented graphical toolkit

for building X-Windows applications.
• It included the Metaware C compiler.

Those who used AOS were always favourably impressed by it. It soon became

clear, however, that an AOS equipped RT was not price competitive enough for

some universities. In an effort to produce a machine which could be more useful
to these environments IBM introduced model 6152. This was a standard IBM

PS/2 model 60 with two special MicroChannel cards. One card contained a

modified ROMP processor and support circuitry, the second up to 8 Mb of

RISC processor memory. The 6152 was able to run AOS, but much more cheaply

than the RT system. Additionally, using the Intel 80286 processor it could also

run DOS or OS/2 version 1. Internal versions of this system were enabled to

allow concurrent running of AOS and one other operating system.

The IBM 6152 therefore has the distinction of being the first machine I know

capable of concurrently running UNIX and DOS or OS/2.

A1.7 Fault-tolerant UNIX

FTX is a native port of the UNIX System V release 4 operating system designed
to run on the IBM System / 88 fault-tolerant computer system . The IBM System/
88 is IBM's highly fault-tolerant computer . The architecture of the machine uses
hardware redundancy to achieve continuous availability. For example , all hard
disks , memory and central processors are duplicated. In the event of a failure of
any single component the system continues and automatically telephones the
IBM support centre. IBM customer support arrives with the replacement part
and can hot plug the replacement.

306 Inside the IBM RISC System/6000

Initially the System/88 was powered by a Motorola 68000 series processor

and ran the virtual operating system (VOS). Today the latest members of the

System/88 family are powered by Intel i860 RISC processors with between 32

Mb and 256 Mb of main memory. What also surprised many people was IBM's

decision to implement the USL UNIX System V release 4 on this platform. The

operating system is called FTX (release 2).

Actually, this is not so surprising since the System/88 is based on the Stratus

range of computers. FTX meets a number of international standards including

System V Interface Definition (SVID) issue 3, POSIX 1003.1 and X/Open's

XPG3. FTX includes the standard virtual filesystem (VFS), TCP/IP networking

and NFS and RFS file-sharing. FTX also includes the X-Windows graphical

interface and the Open Look graphical environment.

IBM positions the System/88 as a high reliability, hardware fault tolerant

system. The IBM RISC System/6000, for example, can never become as fault

tolerant as the System/88 because a single system does not include hardware

duplication, nor does the MicroChannel bus support hot pluggability.

A1.8 Mainframe UNIX

IBM has had a number of IBM mainframe (see Sec. 13.2) system UNIX

developments. To date however, they have all had a common disappointing

bottom line, that is to say, they have not sold well. It would be wrong to infer,

however, that this was a reflection on the technical quality or abilities of the

various offerings; the first IBM mainframe UNIX called maxi/ UNIX was an

early excellent UNIX implementation. Low sales figures represent the solid

established base of IBM mainframe users using IBM's traditional mainframe

operating systems-VSE, VM and MVS. These users have traditionally been

interested in moving up the scale of IBM's vendor operating systems, perhaps

from VSE to MVS, while being able to maintain object code compatibility of

applications written even decades ago. But times are changing. Today many new

and existing corporate IBM customers have already made the decision to move

to a company-wide open systems strategy based on the UNIX operating system.

Therefore I would expect a dramatic increase in the sales of IBM mainframe AIX

in the medium term.

A1.8.1 maxi/UNIX

maxi/UNIX was a version of UNIX produced as a result of a joint project

between Bell Labs and IBM to implement UNIX on the IBM 370 mainframe.

The project was started at IBM Yorktown in 1978, and a working version

completed in only 18 months. maxi/UNIX ran on top of the IBM time-sharing

system (TSS) operating environment. Though very successful at the time, maxi/

The history of UNIX and IBM's involvement 307

UNIX was never made into a formally supported IBM LPP but remained an
IBM PRPQ (see the glossary, Appendix 5, for details).

A1.8.2 VM/IX

Though maxi/UNIX was an excellent product it was based on a TSS which was

not strategic. IBM began to develop a version of UNIX that ran as a guest under

IBM's VM operating system. The product of this labour was VM/IX, developed
jointly by Interactive Systems Corp. and IBM and shipped in 1983. IBM's VM

operating system is not only an operating system but also a kind of hypervisor

(see Sec. 13.2.1). The operating system presents a logical `virtual machine' to

programs that run under it. These programs can be simple applications or, in the

case of VM/IX, an entire operating system in itself. That is to say, the VM/IX

product required the customer first to install the IBM VM operating system, then

to install VM/IX under it. Speaking honestly, the VM/IX product had several

limitations that made it less than useful in a business environment. For example,

it utilized IBM 3270 screens and would not support ASCII terminals.

A1.8.3 IX/370

One of the major performance problems with VM/IX was that both UNIX

and the controlling VM operating system believed that they owned the whole

machine. Since both operating systems tried hard to optimize memory and other

resources, the result was operating systems conflict and generally poor perform-

ance. IBM mainframe architecture supports special instructions known as assists

that enable child operating systems, such as running under VM, to operate more

efficiently. In an effort to improve performance, IX/370 did not use the VM/IX

product as a code base but went back to the maxi/UNIX code. It included TSS

and packaged it under VM trying to take advantage of hardware assists where

possible. IX/370 also allowed the attachment of ASCII terminals in a somewhat

painful manner. ASCII terminals had to be connected to a separate IBM Series/ 1

computer which was then connected to the IBM mainframe.

A1.8.4 AIX/370

AIX/370 was announced in March 1987. It provided a tightly integrated
distributed mainframe UNIX environment in conjunction with the transparent
computing facility (TCF). The TCF cluster was a collection of TCF nodes
connected via an Ethernet or Token Ring network . A TCF node is an AIX/370
system or an IBM PS /2 running AIX/PS2 version 1.2.1 or later. In addition,
AIX/370 supported ASCII terminals attached to the IBM PS /2 or IBM RT PC
system.

Like its predecessors though, AIX/370 was not a native implementation of

308 Inside the IBM RISC System/8000

AIX, it ran as a `guest' under the supervision of the VM or VM extended

architecture operating systems.
By the late eighties it was clear to IBM management that a radical change of

direction was required for future IBM mainframe UNIX products. The current

offerings were just not commercially successful. These were some of the

drawbacks:

• Not a native implementation of UNIX but running under another operating

system. This had a performance penalty.
• Running under VM meant that customers had to be knowledgeable with

IBM's VM operating system too. Not particularly likely if the customer just

had experience with UNIX, and if they had VM experience then why not

implement their new application under VM instead of UNIX?
• Connecting ASCII terminals was via another specialized IBM computer

system (for example the IBM Series 11), adding to the cost and skills required

for an IBM mainframe UNIX solution.
• The cost of IBM's UNIX route was as competitive as its main rival, that of

Amdahl, which provided a native UNIX implementation called UTS.

The product that addressed these points is AIX/ESA.

A1.8.5 AIX/ESA

AIX/ESA is the current implementation of UNIX for the IBM mainframe. It

extends IBM's family of current AIX offerings to any IBM mainframe containing

the Enterprise Systems Architecture (ESA). In developing AIX/ESA, IBM has

sought to overcome the limitations of its previously mainframe UNIX offerings

and to produce a serious UNIX implementation that can serve hundreds of

interactive users attached via standard ASCII terminals. Answering another

customer request,AIX/ESA is the first implementation of IBM mainframe UNIX

that can run native. In fact three modes of operation are supported:

• Native mode AIX/ESA runs natively on the ESA processor and has full

control of all resources.
• Logical partition (PRISM) mode PRISM is a hardware feature of an IBM

mainframe that logically partitions the mainframe into several smaller ESA

systems, each with its own set of peripherals. AIX/ESA can execute within a

logical partition.

• Virtual machine mode AIX / ESA may run underneath the VM / ESA operat-

ing system. In this mode VM acts as a hypervisor controlling the real

processor and peripherals. VM presents a `virtualized machine' to AIX/ESA

which runs as a guest operating system.

AIX/ESA is particularly noteworthy because it is IBM's first announced

implementation of a UNIX operating system based on the Open Software

The history of UNIX and IBM's involvement

Commands and libraries

NFS

Figure A1.2. AIX/ ESA nucleus.

OSF/Motif OSF extensions

Parallel kernel extension

Mach 2.5 nucleus

Logical volume manager

Virtual filesystem

UFS filesystem

Streams

Security

TCP/IP

309

Foundation OSF/ 1. The principal components of OSF/ 1 which form the nucleus

of AIX/ESA are shown in Fig. A1.2.

The fundamental component of OSF/ 1 is the Mach kernel from Carnegie-

Mellon University with extension from Encore Corporation to permit symmetric

multiprocessing. Core OSF/1 technology also incorporated into AIX/ESA
includes:

• The portable STREAM communications interface from Mentat

• The AIX logical volume manager

• Security features from SecureWare

• The OSF/ 1 VFS and UFS filesystems, based on the Berkeley BSD fastfile
system

• TCP/IP

• Threads

• OSF/Motif and X-Windows client support

• Commands and libraries from AIX and BSD
• Compliance with X/Open's Portability Guide 3 (XPG3)

Connecting interactive users

One of the greatest technical challenges in implementing any form of UNIX on

an IBM mainframe is the support of interactive users. A UNIX system with

ASCII terminals operates using a character-based full duplex link. In this scheme,

as the user presses a key on the ASCII terminal, that character is sent to the

user's application program on the system and then echoed back to the user's

terminal screen. IBM mainframe terminals, and indeed the entire IBM mainframe
architecture is block mode oriented. In this form of communication no characters

are sent from an IBM Block mode terminal to the application until the user has
pressed the Enter key. Because most UNIX applications need to process input

character by character some method of connecting ASCII screens to an AIX/
ESA needed to be devised.

310 Inside the IBM RISC System/6000

The solution was to connect all ASCII terminals via an IBM RISC System/
6000 . The RISC system is connected to the IBM mainframe using a special
MicroChannel `channel ' attachment card. Recall from Sec . 13.2.2 that a channel
is the fundamental form of IBM mainframe to peripheral connection highway.
Under AIX/ ESA a special device driver called the remote TTY driver (RTY)

communicates with a remote TTY server via the channel attachment . The RTY

device driver presents a standard TTY system call interface to AIX. The RTY

server drives serial lines on the RISC system to which user terminals are
attached . Within the RTY server , the terminal buffer manager collects the
responses for all ASCII terminals being serviced into a single buffer and when it

is full , or when a timeout occurs , sends the buffer to the host. In this way,

individual keystrokes from ASCII terminals are not sent as blocks of size 1
byte to the IBM mainframe . This new strategy overcomes a limitation of many of
IBM's previous UNIX offerings which could become overloaded when a
significant number of users logged on , because now users share a single block
communications data packet.

Appendix 2
IBM hard disk interfaces

Many different types of hard disk interface are used in today's workstations and

UNIX computers. It is valuable to look at these interfaces and the terms used to

describe them. This provides a reference point from which to assess the latest

IBM serial link disk technology.

A2.1 The Seagate ST506 disk interface

One of the first hard disks designed for personal computers and workstations

was the Seagate Technologies model ST506 5 Mb hard disk. This had a full-

height 5.25 inch form factor.

The interface to this hard disk was a controller usually contained on a separate

card plugged into the PC or workstation expansion bus. The hard disk was

connected to this adapter with two ribbon cables, one for commands, the other

for data. The hard disk had a third four-wire connector supplying 12 and 5 volt

DC power. The data were sent at 5 megabits per second from the controller card

to the hard disk electronics using the modified frequency modulation (MFM)

encoding technique.

The ST506 was the first hard disk from Seagate; subsequent disks had different

part numbers but maintained the same electrical interface which was named the

ST506 interface. The earliest versions of the IBM RT PC system used 40 Mb and

70 Mb ST506 hard disks. Later the data transfer rate was increased to 7.5

megabits per second and data encoded on the hard disk using run length limited

(RLL) encoding. This encoding method had been used for some considerable

time by IBM on mainframe disks. Of course to use RLL a new hard disk and

controller was required.

Many early personal UNIX systems stored the geometry of the hard disk (that

is to say the number of cylinders, heads and sectors per track) on the first

addressable sector of the hard disk. The first time that the disk was low-level

formatted it was common to ask the user a number of questions to determine this

low-level information.

On early IBM personal computer systems another strategy was employed, that

311

312 Inside the IBM RISC System/6000

of drive type numbers. A table in read-only memory mapped a drive type

number to known drive characteristics, such as heads, cylinders and sectors per
track.

A2.2 The enhanced small device interface

The next step forward was the enhanced small device interface (ESDI), developed

by Dal Allan of ENDL Consulting, California. This was usually implemented on

a separate card that plugged into the I/O bus of the computer. Later models of

the IBM RT PC system used the ESDI disk interface. As with ST506, an EDSI

controller card was plugged into the workstation and this connected to the ESDI

disk with two ribbon cables (control and data) and a third cable supplied the DC
power.

Unlike ST506 however, raw data was sent to the hard disk and encoded at 10

megabits per second, twice as dense as with MFM. ESDI also had intelligent

media management, being able to substitute bad disk sectors automatically, thus

presenting the device driver with an apparently error-free disk. ESDI also had

the ability to inform the controller of its hard disk geometry, and the operating

system could use this information regarding the number of tracks and sectors to

its advantage by trying to place files in the physical UNIX filesystem in logically
adjacent sectors or tracks.

On late models of the IBM RT PC system, IBM introduced the EESDI

interface, which comprised a faster ESDI controller; you could, for example, use
standard ESDI disks with either controller.

A2.3 Integrated drive electronics

The next logical step was to integrate the controller electronics onto the hard

disk itself, eliminating the need for a controller card altogether. This is the

approach used for example in the IBM RISC System/6000 model 320H. This is

commonly known as the IDE interface, or by the IBM name direct bus attach

(DBA). There are many different types of DBA, for example 8 bit, 16 bit,

enhanced 16 bit. In the IBM implementation, DBA hard disks have a single edge

connector which is powered by a single ribbon cable supplying control, data and

power.

A2.4 Small computer systems interface

SCSI represents the current industry standard for interfacing peripherals to

UNIX workstations. IBM's implementation of SCSI conforms to the ANSI

X3.131-1986 standard. The IBM RISC System/6000 uses SCSI to interface all

internal and external hard disks (save the IDE attachments of the 320H system

and the serial link disks described in Sec. 8.1).

IBM hard disk interfaces 313

SCSI
controller

ID=7

Planar
board

SCSI device
ID=6

SCSI device
ID = 5

Figure A2.1. SCSI physical configuration.

SCSI uses a 50 conductor wide bus to transfer control and data information to

up to eight addressable SCSI devices. Internal SCSI devices are powered by a

four-wire cable; external SCSI devices from the external enclosure power supply.

Each SCSI device has assigned a unique ID from 0 (the lowest priority) to 7 (the

highest). ID 7 is normally assigned to the controller itself as shown in Fig. A2. 1.

Each SCSI device may have up to eight logical units or subdevices for a

theoretical total of (8 x 7) 56 devices per adapter card (not recommended for

bandwidth reasons). Physically, the RISC System SCSI adapter must be within

six metres of the hard disks it controls. This is because the adapter has a single-

ended SCSI bus which means that its signal pins have voltages in the range 0-5

volts. (Another more costly solution might be to provide a SCSI adapter card

with a differential bus. In that scheme hard disks can be up to 25 metres away

because the adapter outputs are via a differential voltage.)
SCSI hard disks, like IDE (DBA) hard disks, have most of their controller

electronics mounted on the hard disk itself. This includes automatic bad sector

management.

Bus free
phase

Arbitration
phase

Selection/
reselection
phase

Data/command
Status/msg
phase

Figure A2.2. SCSI bus phases.

A2.4.1 How does the SCSI bus work?

In order to transfer data between the source (initiator) and the destination

(target) the SCSI bus goes through a set sequence or phases as shown in Fig.

A2.2:

1 In the bus free phase no initiator or target is using the bus and it is available
for use by any connected device. A device needs to wait for a free phase

before it can start a request.

314 Inside the IBM RISC System/6000

2 In the arbitration phase an initiator puts in a request for control of the bus.

Earlier we said that the SCSI bus is a prioritized bus and that ID 0 has the

lowest priority, with ID 7 the highest. The initiator now sets the data line

representing its ID. For example, a device whose ID was 4 would wait for a

bus free phase then set data line 4 high (there are 8 data transfer lines). After

setting the line the initiator waits an arbitration delay period during which
time any higher priority initiator (IDs 5-7 in this example) may assert its

data line. If this happens our initiator has to start all over again and wait for

a bus free phase. If no higher priority device wants control our initiator is
now able to move to the next stage.

3 In the selection/reselection phase the initiator places its own ID on the SCSI

bus together with the ID of the desired target. The target device recognizes

this and sends back a confirmation message to the initiator allowing the final
phase to begin.

4 Thence begins the final message, command, data and status phase. The
message phase is optional and may negotiate such things as the required data

transfer rate or subdevice (logical unit) specific information.

5 Next the command sequence begins by transferring a command descriptor
block from initiator to target. This is usually either a 6 or a 10 byte block.

The command block indicates to the target to prepare for a data transfer.

Information may be sent in either direction according to the definition of the
operation code.

6 After data is transferred the target sends back a status byte to the initiator.

A2.4.2 SCSI performance

Data is transferred from the SCSI device to the SCSI controller synchronously

or asynchronously at the fastest data rate that both items support. As the word

suggests, asynchronous transfer means that each byte of data must be sent then

acknowledged before the next byte can be transmitted. This byte-by-byte

handshaking between initiator and target slows down the theoretical SCSI

transfer rate to about 3 Mb per second. In synchronous mode, multiple bytes of

data can be transferred to a destination. After the transfer is completed a block

acknowledgement is sent. This method increases the maximum data transfer rate
to about 5 Mb per second.

An important performance booster in the design of SCSI is the ability of

multiple commands to be simultaneously in progress on a single SCSI bus, that

is, there is concurrent activity. For example, a SCSI bus may have two connected

SCSI hard disks. While one disk head has had a command issued to seek across

the disk to a distant track, a second SCSI hard disk could be transferring data to

the SCSI controller. In a multiuser or multitasking environment this is an

important advantage.

Overlapped command processing is possible because once a target has received

IBM hard disk interfaces 315

a command descriptor block it can disconnect from the bus. This means another

initiator is freed to send commands to another target while the first target is

processing.
Early members of the RISC system family provided an SCSI-1 adapter using a

single MicroChannel card. Newer members of the family make use of more

advanced adapters. At the time of writing the current position was as follows:

• Model 220: integrated SCSI-1 interface using on-planar NCR SCSI controller

chips.
• Models 530, 540, 550, 560, 950 use a single MicroChannel card using a

16 MHz Western Digital WD33C93A processor providing an SCSI-1

interface. This achieves a burst data rate of 4 Mb per second or, including

command overhead, approximately 3 Mb per second.
• Models 340, 350, 355, 360, 365, 370, 375, 570, 580 and 970 incorporate the

SCSI-1 adapter on the planar. This provides the same functionality as for the

plug in card except that `twin tail' (see Sec. 12.4.2) connections are not

allowed.
• In late 1992, IBM announced a MicroChannel SCSI-2 adapter. This supports

a data transfer rate of up to 10 Mb per second, achieved by using a

20 MHz Western Digital WD33C93B processor and altering firmware to deal

with the faster SCSI bus, target mode and command tag queuing.' The RISC

System model 980B comes equipped with the adapter as standard.
• In June 1993 IBM announced a differential SCSI-2 adapter. It has the

facilities of the regular SCSI-2 adapter but it also enables SCSI devices to be

connected at distances of up to 19 metres.

Both SCSI-1 and SCSI-2 adapters support the 40 Mb per second BusMaster

MicroChannel mode.
The SCSI-1 interface supports a 4 Mb, the SCSI-2 a 10 Mb and the 9333 serial

link disk an 8 Mb per second data transfer rate from SCSI to RISC system

processor. These data transfer speeds are not the performance determining areas

when one considers that hard disks are currently capable of transferring informa-

tion from their platters at about only 3 Mb per second. One of the interesting

characteristics of the 9333 serial link drive is that data transfer rates can rise to
up to 8 Mb per second by simply adding more disks into the serial link

subsystem. An equivalent SCSI system is limited in throughput when more that

one disk is attached to the SCSI adapter simply because only one disk can be

sending or receiving data at a time. Still, SCSI is the best general-purpose high-

speed peripheral interface available and future developments, for example SCSI-3

(with a 16-bit data bus), will improve performance still further.

' Target mode enables the adapter to behave as a target device instead of the normal source. Tag
queuing allows commands to be accepted from the host and queued prior to execution.

Appendix 3
Bibliography and further information

A3.1 Bibliography and references

For more information in a particular area, readers may wish to contact the

standard bodies or vendors, or refer to the following list:

Bach, M. J. (1986). The Design of the UNIX Operating System, Prentice-Hall,
Englewood Cliffs, N.J.

Bornat, R. (1984). Understanding and Writing Compilers, Macmillan Press,
London.

Braca, M. (1991). `X Display Management', UNIXworld, McGraw-Hill, New
York, Vol. 8, No. 4, April 1991.

Comer, D. (1988). Internetworking with TCP/IP, Prentice-Hall, Englewood Cliffs,
N.J.

Gibbs, B. (1992). Demystifying the Object Data Manager 1 and 2, lecture from
IBM Field Television Network (FTN), IBM, USA.

Groves, R. and R. Oehler (1989). IBM Second Generation RISC, proceedings
from the International Conference on Computer Design, 3 October 1989,
IEEE, Boston, M.A.

Harris, C. (1993). The IBM RISC System/6000, McGraw-Hill, London.
Heller, D. (1991). Motif Programming Manual, Vol. 6, No. 1, September 1991,

IBM, USA.
IBM (1982). The 801 Minicomputer, proceedings from the Symposium on

Architectural Support for Programming Languages, IBM, USA.
IBM (1990). Power Processor Architecture, IBM, USA.
IBM (1990). `IBM RISC System/6000', IBM Journal of Research and Develop-

ment, January 1990, IBM, USA.
IBM (1991). The IBM UK Annual Report, IBM, UK.
IBM (1992). IBM RISC System/6000 Performance Enhancements, Tools and

Offerings, handouts from live television presentation.
IBM (1992). The IBM Technical Disclosure Bulletin, IBM, USA.

316

Bibliography and further information 317

IBM (1992). AIX Version 3.2 and RISC System/6000 Announcements Overview,

IBM, UK.

IBM (1993). IBM RISC System16000 Facts and Figures, IBM, UK. G320-9878-10.

The following online publications are from the IBM RISC System/6000 Hypertext

Information Base Library. Publication SC23-2163-04:

AIX Technical Reference: Base Operating System and Extensions

AIX Technical Reference: Kernel and Subsystems

AIX Technical Reference: Graphics

AIX Technical Reference: User Interface

Communications Programming Concepts

General Programming Concepts

Info Crafter 16000 User's Guide

Assembler Programming Guide

7015 POWERserver Hardware Technical Reference.

Keller, T. (1992). `AIX 3.2 Memory Load Control', AlXpert Journal, IBM, USA,
February 1992, pp. 17-25.

Kuenning, G. (1987). UNIX Papers, Article Real Time UNIX, Macmillan Inc.,

Indiana.
Oehler, R. and M. Blasgen (1991). IBM RISC System/6000: Architecture and

Performance, IEEE, Boston, MA.

OSF (1992). Internationalisation Made Easy, OSF, Cambridge, MA.

Tannenbaum, H. S. (1987). Operating Systems Design and Implementation,

Prentice-Hall, Englewood Cliffs, N.J.
Wong, C. (1992). `The Top 10 UNIX Companies of 1992', UNIXworld,

McGraw-Hill, New York, Vol. 9, No. 12, December 1992, pp. 46-56.

For a list of IBM publications used in the writing of this publication, see Sec.

A3.3.

A3.2 Useful addresses

International telephone numbers are given.

Bristol Technologies Inc.
898 Ethan Allen Highway, Ridgefield, Connecticut, CT 06877.
Tel: 1-203-438-6769

IBM UK
National Enquiry Centre

389 Chiswick High Road, London W4 4AL
Tel: 44-81-747-0747
Technical Publications Centre
PO Box 117, Basing View, Basingstoke, Hampshire RG21 1 EJ

Tel: 44-256-343-000

318 Inside the IBM RISC SystemI6000

IBM US

Armonk

New York 10504, USA

Tel: 1-800-IBM-6676, ex. 990

IBM Austin Development

IBM Corporation

Advanced Workstation Division
11400 Burnet Road, Austin, Texas TX 78758, USA.

IXI Limited
62-74 Burleigh Street, Cambridge, CB1 1 OJ
Tel: 44-223-462131

Locus Computing Corporation
9800 La Cienega Boulevard, Inglewood, CA 90301-4440

Tel: 1-310-337-5017

Open Software Foundation
11 Cambridge Center, Cambridge, MA 12142
Tel: 1-617-621-8895

SPEC
c/o NCGA
2722 Merrilee Drive , Suite 200 , Fairfax, VA 22031-4499
Tel: 1-703-698-9600 ex. 318

Visual Edge Software
Distributed in the UK by Protek Software, 1 York Road, Maidenhead,

Berkshire SL6 1 SQ

Tel: 44-628-759-59

X/Open
X/Open Company Limited

Apex Plaza, Forbury Road, Reading, Berkshire RG1 lAX
Tel: 44-734-508311

A3.3 IBM publications

IBM publishes a large number of technical AIX publications that provide

detailed information in particular areas of AIX. The following orderable publica-

tions are recommended to enhance your understanding of AIX. All of the

following publications were used as background reading material for this book.

For more complete details including abstracts, the reader should use IBM

Electronic Customer Support or contact their IBM Technical Publications

Centre.

Bibliography and further information 319

GA 19-5576
GG22-9487
GG22-9493
GG22-9494
GG22-9495

GG24-1690
GG24-3376
GG24-3382
GG24-3458
GG24-3489
GG24-3584
GG24-3570
GG24-3589
GG24-3611
GG24-3629
GG24-3633
GG24-3666

GG24-3692
GG24-3695
GG24-3700
GG24-3711
GG24-3735
GG24-3750
GG24-3814
GG24-3850
SA23-2619
SC23-2409
SC23-2482

GC67-0210
G325-0060
GU59-8129
GK2T-0237

The IBM RISC System/6000 Handbook

AIX v3.1 access control lists

AIX SNA services/ 6000 profile configuration

Sun to IBM RISC System/6000 migration guide

DEC VAX/VMS 5.4 to IBM RISC System/6000 AIX version 3.1

migration guide

IBM Personal Computer PC/IX

TCP/IP tutorial and technical overview

AlXwindows programming guide

X.25 Guide
Aix distributed environments: nfs, ncs, rpc, ds migration

A plain man's view of the IBM MicroChannel

Printing for fun and profit under AIX V3

AIX V3 for the IBM RISC System/6000 national language support
IBM RISC System/6000 NIC tuning guide for Fortran and C
Writing a device driver for AIX V3
The IBM RISC System/6000 as real-time system
Cooking with SNA and 3270 emulators on the IBM RISC System/
6000
AIX/V3 X.25 communications

Xstation 120/130 (install, config, tune)

Experiences in using AIX NetView service point

Predicting execution time on the IBM RISC System/6000

AIX consumer transaction/6000

AIX V3.1 additional authorization: an example

Upgrading to AIX 3.2, the inside story

AIX 3.2 national language support (NLS)

IBM RISC System/ 6000 technology

High availability cluster multiprocessing, systems administration

AIX software and data distribution/6000 user's guide

IBM family applications catalogue

The AIX applications catalogue (US publication)

The AIX applications directory (UK publication)

General information and planning kit

A3.4 Further information

In a publication of this size it has not been possible to include information on all

aspects of the IBM RISC System/6000. An outline of the known omissions is

given in the following pages.

320 Inside the IBM RISC System/6000

A3.4.1 Transaction processing

IBM now supplies two products, Enterprise Computing in a New Age (Encina)

and Customer Information Control System/6000 (CICS / 6000), allowing customers

to implement business transaction processing (TP) applications. A detailed review

of either of these products warrants publications in themselves, so only an

overview is presented here.

Before discussing either product it is useful to clarify just exactly what business

transaction processing is. In a transaction processing system, one execution of an

application program processes a single transaction. This may not be any different

to a regular business application interacting with a database. However TP

applications make some of the following additional requirements:

• High availability-many TP systems, for example, banking cashpoint systems,

are required to be available 24 hours a day, 7 days a week.

• Swift and consistent response time-businesses typically use TP systems to

provide services to their customers. In order to offer high levels of customer

service the underlying TP application must provide fast response times.

Additionally, for operators to have faith in their system, consistent response

times are required.
• Atomic access and update of shared resources-TP applications concurrently

access and update shared data. Individual transactions must complete sucessfully

without interfering with any other transactions, that is, be `atomic' in nature.

Any serious TP system must provide the following individual transaction:

-Commit: to save changes made successfully in a transaction

-Rollback: to put the database to the state it was in before the transaction
started

• Crash recovery-the computer system may need to be restarted after an
unexpected shutdown, for example, a power loss. Upon restart the TP system
must be able to back out any changes to restore system consistency.

• Forward recovery-the TP system must be able to recover a completely lost

database using two components: first, a historical database backup; and

second, a record of changes successfully made to that database. This is

known as forward recovery.

IBM's TP strategy for the IBM RISC System/6000 uses the CICS/6000 and

Encina products on the existing base AIX and AIX distributed computing

environment. This is shown in Fig. A3. 1.

A3.4.2 Encina

The Encina family is a suite of five modular products that allow customers to

start designing and to begin initially implementing distributed transactional

applications that run in a heterogeneous, networked computing environment.

Bibliography and further information 321

User applications

CICS programming interface

Encina

Distributed computing environment

AIX

Figure A3.1. CICS and Encina layering.

The products are based on technology provided by the TransArc Corporation.

The components are: executive, server core, monitor, structured file service and

peer-to-peer communications service.

Executive

The Encina executive contains core APIs for defining transactional clients and

servers. First, transactional-C (Tran-C) is a high-level API that simplifies transac-

tion demarcation, concurrency control and exception handling. Transaction-C is

made up of a set of macros and library routines for ANSI C. Figure A3.2 is a

simple example of a transaction definition in Tran-C.

The second API, called transactional RPC (TRPC), extends the DCE RPC with

transaction semantics. This is important since if a standard RPC fails, the client

cannot usually determine whether the message never arrived at the server, whether

the server failed during the computation, or whether the return message was lost.

When a transactional RPC fails however, the encompassing transaction is aborted.

The executive also contains the distributed transaction service (TRAN) which

is the means by which a consensus is reached among transaction participants as

to whether to commit or abort. This service provided the logic for the two-phase

commit protocol.

transaction { ...

debit (salaryExpense, amount);

credit (accountsPayable, amount);

enterAuditData (employeeIdentifier, amount, date);
}

onCommit
printf ("Transaction succeeded\n");

onAbort
printf ("Transaction aborted\n");

Figure A3.2. A sample transactional-C program.

322 Inside the IBM RISC System/6000

Server core

The server core provides for the management of recoverable data and includes
components such as:

• The lock service to implement serialization of transactions.

• The recovery service to provide the undo/redo logic required to implement

rollback after abort and roll-forward after system failure.

• The volume service to provide the multiple physical and mirrored disk

support.

• The log service to provide a write-ahead log for storing transaction outcomes

and updates to recoverable data.

• The TRAN/XA interface to provide access to XA supporting databases such

as the majority of modem database packages. The XA interface is the

X/Open standard for initiating and coordinating subordinate database trans-

actions.

Monitor

The executive and server core components form a toolkit that allows an applica-

tions developer to write client/ server applications supporting transactional remote

invocation, distributed two-phase commit processing and the management of

recoverable data. The monitor extends the toolkit with three environment services,

allowing a complete solution of distributed online transaction processing. The

three services are the development, execution and administration services.

• The development environment allows the applications developer to interconnect

with a wide range of front end tools and fourth-generation languages, for

example OSF/Motif or the forms editor JAM.

• The execution environment augments the toolkit with facilities to provide
better availability, performance and security.

• The administration environment allows centralized and simplified systems

administration. This includes the ability to monitor active clients, server

availability and load, or auditing information.

Structuredfile service

The Encina structured file service (SFS) provides a record-oriented filesystem,
offering transaction integrity and supporting ISAM-compliant and VSAM-style
programming interfaces . It is provided to overcome the typical UNIX and DCE

distributed filesystem limitations which treat files as a single stream of bytes.
Multiple file layouts are supported by SFS including entry sequenced , relative
and B -tree. SFS uses authentication tools from DCE as its base.

Bibliography and further information 323

Peer-to-peer communication service

The Encina peer-to-peer communication (PPC) service is composed of two

subcomponents: the PPC executive and the PPC SNA gateway.

• The PPC executive contains programming interfaces for issuing APPC (that

is, IBM SNA, LU6.2 style) communications packaged into a TCP/IP protocol

stream. It supports the IBM, CPI-C interface.

• The PPC gateway allows an Encina program to communicate directly with a

host program via the LU6.2 protocol interface.

I would recommend that an applications developer writing TP applications

afresh would be best advised to write Encina applications. It is, however, more

likely that they would be migrating and/or modifying existing CICS transaction

processing applications to run in the AIX environment. For this CICS/6000

should be used.

A3.4.3 CICS/6000

CICS/6000 was designed to be part of the CICS family which already extends to

the OS/400, OS/2, MVS and VSE operating systems. By supporting a substantial

subset of the CICS/MVS programming interface an applications developer can

easily migrate applications written in COBOL or C.
Many commercial applications require only character screen support. CICS

provides this via basic mapping support (BMS). CICS applications using the

minimum level of BMS for 3270 are portable unchanged from host mainframe

CICS systems. The minimum level of BMS support is sufficient for most 3270

applications. CICS/6000 also includes support for OSF/Motif. An OSF/Motif

application can now start a transaction using the external call interface.

Some of the techniques available to a CICS TP developer include:

• Data integrity-using explicit and implicit mechanisms. Explicit mechanisms

include commit and rollback. When a single transaction involves updating

several databases on different systems, a process known as two-phase commit

is required to complete the transaction reliably.
• Transaction routeing-a terminal operator may execute a remote transaction

in any other CICS in the network. for example, from CICS/6000 to CICS/

MVS.
• Function shipping-a program transparently accesses remote data.

• Distributed program link-a local CICS program invokes a remote CICS

program.
• Distributed transaction processing-a local CICS program uses the APPC

protocol to communicate with another system.

CICS / 6000 provides the programmer with traditional CICS application develop-

324 Inside the IBM RISC System/6000

ment and system management facilities such as the CICS command interpreter

(CECI), the run-time resources definition facility (CEDA) and the screen design

aid.

A3.4.4 Callpath

Callpath is a software product linking the RISC system to various vendor

telephone systems. Callpath enables the applications developer to automate

many aspects of agent activity in customer databases with telephone calls to and

from their clients, providing those clients with a faster and more effective service.

Typical client areas include universities, government offices, airlines, hospitals

and banks.

For example, within IBM Callpath is used to provide a faster and more

effective computer helpdesk facility. Users experiencing problems in accessing or

using their computer systems typically call a central helpdesk. As the helpdesk

answers the telephone, Callpath can determine the identity of the caller (based on

the inbound telephone extension), and place an information screen in front of the

helpdesk professional. This may include the name of the user, the computer

equipment owned by the user and a historical log of previous reported questions

and problems. The helpdesk professional therefore gains a headstart in being

able to assist the user before that user has even spoken a word. It may be that in

conversation with the user their problem is best handled by another Helpdesk

professional so Callpath can `transfer' the information screen thus far displayed

to another helpdesk person.

Another way in which Callpath can help increase business productivity is to

provide users with a computerized messaging service. For example, a customer

could call my office while I was absent. Callpath could play my personalized

voice message which could ask the caller to leave a voice message. After the

message was left, Callpath could automatically send an electronic message to my

IBM Professional Office System indicating that a voicemail message was waiting.

I could then call my extension and, using a `touch-tone' phone, retrieve, play,

pause or otherwise manipulate the waiting voicemail.

A3.4.5 Speech server products

The speech server series of products enables an applications developer to produce

business applications that respond to, process or output spoken text. At the most

fundamental level the products allow a user to talk into a microphone and have

their words recognized electronically into text which can then be either stored in

a flat file format or passed to an application. Alternatively, information may be

presented to the user audibly.
To take advantage of these facilities three components are required:

Bibliography and further information 325

1 A RISC system with the AIX Speech Client/6000 software installed controlling

an M-Audio capture and playback hardware adapter. This needs to be

connected to a suitable microphone and loudspeaker. This RISC system is the

system with which the user interacts.
2 A RISC system with the AIX Speech Server/6000 software installed control-

ling one or more IBM speech accelerator type 1 or type 2 cards. The type 1

card supports one client session, the type 2 card two sessions. Cards may be

placed into a server machine (subject to slot availability) to cater for up to

eight active speech sessions.
3 A LAN connection between the client and server machines hardware.

In a typical scenario, an applications developer will have fully integrated audio

into the user's application. Using the dedicated speech application programming

interface, audio signals are received by the M-Audio capture card in the client

machine and transmitted to the speech accelerator card and software in the

server machine. The words are matched against the 20 000 word supplied library

and translated into text which is then fed back to the client machine for

processing in the application. At other points in the application data is sent

outward to the M-Audio capture and thence to the loudspeaker under application

control.
In a typical environment one server machine serves up to eight client machines

interconnected across a LAN. However, a minimal environment could run

both client and server components within a single machine should this be

required.

A3.4.6 Hub management

Hub management is a part of the Netview product family and allows the

management of LANs that incorporate the IBM 8250 multiprotocol intelligent

LAN hub. It aids LAN management by collecting and reporting statistics per

hub port and per LAN, and offers LAN-level security by preventing unauthorized

users from network access.
For more marketing or technical information on these products please contact

your IBM marketing representative.

Appendix 4
Abbreviations

AADU AIX access for DOS users

ABI Application binary interface

ACIS Academic information system

ACL Access control list
AEP Application environment profile

AES Application environment specification

AFS Andrew filesystem

AIC AIX interface composer

AIX Advanced interactive executive

ANDF Architecture neutral distribution format

ANSI American National Standards Institute

APAR Authorized problem analysis report

API Application program interface
APPC Advanced program-to-program communication

ARP Address resolution protocol

ASCII American standard code for information interchange

ATK Andrew toolkit

BEAR Break-even after release

BIOS Basic input output system

BIST Built-in self-test
BNU Basic networking utilities

BOS Basic operating system

BSC Binary synchronous communication

BSD Berkeley software distribution
CAE Common applications environment

CASE Computer-aided software engineering

CCS Common communications support

CCW Channel control word

CD-ROM Compact disk read-only memory

CE Customer engineer (now renamed CS)

CGM Computer graphics metafile

326

Abbreviations 327

CICS Customer information control system

CISC Complex instruction set computer

CLM Cluster lock manager

CMOS Complementary metal oxide semiconductor

CMS Conversational monitor system

CMVC Configuration management version control

COBOL Common business oriented language

COP Common on-chip processor

COSE Common open software environment

CPI Common programming interface

CPM Control program for microcomputers

CPU Central processing unit

CR Carriage return

CRC Cyclic redundancy check

CS Customer support, the IBM service organization

CSOS Computer system operating system

CUA Common user access

CUT Control unit terminal

DAC Discretionary access contro

DAS Dual attach station

DAT Digital audio tape

DBA Direct bus attach

DBCS Double byte character set
DBMS Database management system

DCE Distributed computing environment

DEC Digital Equipment Corporation

DFS Distributed file system

DFT Distributed function terminal

DIS Data interpretation system

DLC Data link control

DLL Dynamic link library

DPS Display PostScript
DRAM Dynamic random access memory

DSLO Distributed systems licence option

DTE Data terminal equipment

EBCDIC Extended binary coded data interchange code

ECC Error correction code

ECMA European Computer Manufacturers Association

ECS Electronic customer support

EGA Enhanced graphics adapter

EISA Extended industry standard architecture

ENCINA Enterprise Computing in a New Age

EOF End of file

328 Inside the IBM RISC System/6000

ESA Enterprise Systems Architecture
ESC Escape
ESCON Enterprise systems connection

ESDI Enhanced small device interface

ESP Engineering support processor

FDDI Fibre distributed data interface

FIPS Federal information processing standard

FP Floating point

FTN Field television network
FTP File transfer protocol

FX Fixed point

GDDM Graphical data display manager

GID Group identification

GKS Graphics kernel system

GL Graphics library

GML Generalized markup communication

GPR General-purpose register

GTO Graphic terminal option

GUI Graphical user interface

HAS High availability system

HAT Hash anchor table

HCON Host connection

HFT High-function terminal

HIPPI High-performance parallel interface

iBCS Intel binary compatibility standard

IBM International Business Machines

IC Integrated circuit
ICMP Internet control message protocol

IDE Integrated drive electronics

IDP Internet datagram protocol

IDRC Improved data recording cabability
IEEE Institute of Electrical and Electronics Engineers

INED Interactive systems editor

I/O Input / output

IOCC Input output channel converter

IP Internet protocol

IPC Interprogram communication

IPL Initial program load

ISA Industry standard architecture
ISAM Indexed sequential access method

IT Information technology

JFS Journalled filesystem

JIS Japanese Industry Standard

Abbreviations

kb

LAN

LAPI

LF

LP

LPP

LV

LVM

LU

MAC

MAU

Mb

MBCS

MFM

MHz

MIB

Kilobyte
Local area network
Layered API
Line feed

Logical partition

Licensed program products

Logical volume

Logical volume manager

Logical unit

Mandatory access control

Multistation access unit

Megabyte

Multibyte character set

Modified frequency modulation

Megahertz
Management information base

MIF Maker interchange format

MRI Machine-readable information

MVS Multiple virtual storage

NCS Network computing system

NCSC National Computer Security Commission

NDIS Network driver interface support

NETBIOS Network basic input output system

NFS Network file system

NIDL

NIST

NLS

NSP

NT

NVRAM

NVT

OCS

ODM

OEM

OIA

OLTP

OPD

OSF

OSWC

PC

PC DOS
PCB
PCI

Network interface definition language

National Institute of Standards and Technology

National language support

Netview service point

New technology
Nonvolatile random access memory

Novell virtual terminal

On-card sequencer
Object data manager
Original equipment manufacturer

Operator information area

Online transaction processing

Office products division

Open Software Foundation
Open Systems and Workstations Consultancy

Personal computer

Personal computer disk operating system

Printed circuit board

PC interface

329

330 Inside the IBM RISC System/6000

PCL Printer control language

PCSIM PC simulator

PFT Page from table
PIO Programmed input/output

PLB Picture-level benchmark

PMP Preventative maintenance package

POS-ID Programmable option select ID

POST Power-on self-test

POWER Performance optimization with enhanced RISC
PP Physical partition
PR/SM Processor resource/ systems manager

PS/2 Personal System/2

PSM Persistent storage manager

PSS Persistent storage segment

PTF Program temporary fix

PU Physical unit

QLLC Qualified logical link control

RAM Random access memory

RARP Reverse address resolution protocol

RAS Reliability, availability and serviceability

RETAIN Remote technical assistance information network

RFT Request for technology

RGB Red green blue

RISC Reduced instruction set cycles
RJE Remote job entry
RLL Run length limited

RLM Resource licence manager
RM Resource manager
ROM Read-only memory

ROMP Research OPD microprocessor

ROS Read-only storage

RPC Remote procedure call
RT RISC technology
RTY Remote TTY
SAA Systems application architecture

SAF Service access facility

SAK Secure attention key

SBCS Single-byte character set

SCLM Software configuration and library manager

SCSI Small computer systems interface

SDE Software development environment

SDLG Synchronous data link control

SDM System development multitasking

Abbreviations 331

SDS Software development system
SDT Static debug trap
SFS Structured file service
SGID Set group ID
SGML Standardized general markup language
SIMM Single inline memory module
SIPO System installation productivity option
SLIP Serial line interface protocol
SMIT Systems management interface tool

SMTP Simple mail transfer protocol

SNA Systems network architecture
SNMP Simple network management protocol

SOCC Serial optical channel converter

SPC Software publications centre
SPEC Standard Performance Evaluation Corporation

SPOT Shared product object tree

SPP Sequenced packet protocol

SQL Structured query language

SRC Systems resource controller

SRF Standard record format

SRN Service request number

SSC Systems support centre

SSCP System services control point

SSDO Single source dual object

SSSO Single source single object

SSU Selective subsystem update

SUID Set user ID

TCB Trusted computer base

TCF Transparent computing facility

TCOS Technical Committee on Operating Systems

TCP/IP Transmission control protocol/ Internet protocol

TCSEC Trusted computer system evaluation criteria

TCW Translation control words

TFTP Trivial file transfer protocol

TIFF Tagged image file format

TLB Translation lookaside buffer

TLI Transport layer interface

TP Transaction processing

TP Transaction programs

TPC Technical Publications Centre or Transaction Performance Council

TRAN Distributed transaction service

TRPC Transactional RPC

TSR Terminate and stay resident

332 Inside the IBM RISC System16000

TSS Time-sharing system

TTM Time to market

TTY Teletype

UDP User datagram protocol

UI UNIX International

UID User identification

UIL User interface language

USL UNIX System Laboratories

UTC Universal time, coordinated

UUCP UNIX-to-UNIX copy program

UUID Universal unique identifier

VG Volume group

VGA Video graphics array

VGDA Volume group descriptor area

VM Virtual machine

VM86 Virtual mode 86
VMM Virtual memory management or virtual memory manager
VOS Virtual operating system

VP Value point

VPA Volume purchase agreement

VPD Vital product data

VPN Virtual page number

VRM Virtual resource manager

VSE Virtual storage extended

VTAM Virtual telecommunications access method

WAN Wide area network

XA Extended architecture
XCOFF Extended common object file format

XDE X-Windows debugging environment

XDF Extended data facility

XDMCP X-Windows display management control protocol

XDR External data representation

XIO Extended input/output

XPG X/Open portability guide

Appendix 5
Glossary

AFS

AIX

A/UX

BSD

C

Networking software originally developed at CMU . Included in OSF
DCE.

Advanced interactive executive. IBM's UNIX system announced for the
PS/2 and the IBM RISC System/6000. AIX is POSIX compliant.

UNIX for Apple computers.

Berkeley Software Distribution. UNIX from the University of California
at Berkeley. The latest and final version of BSD is 4.4. Many of the
major enhancements seen in UNIX were originally developed for BSD

UNIX.

A general-purpose programming language and the language of choice
for the UNIX industry . IBM offers C in AIX and SAA.

Curses
Programming tools for screen management. AIX offers standard and

extended curses.

C2
One of the ratings in the US Department of Defense trusted systems
evaluation criteria (the `orange book'). The orange book defines a series
of classes or levels such as: D-no security; Cl-discretionary access
control such as logon; C2-C1 and auditing; Bl-C2 plus mandatory

access control.

Code point
The numeric value a character is assigned within a code set. For example
`A' is at code position 0x41 in ASCII.

333

334 Inside the IBM RISC System/6000

Daemon
Pronounced `demon'. A background, never-ending process normally
started and controlled by AIX performing a service to requestors. For
example, the error daemon collects and logs errors, or the printer
daemon receives queued file print requests.

DMA

GSL

Direct memory access. Transfer of data between the memory and a
peripheral (or another memory) without intervention of the processor.

Graphics subroutine library. The IBM support provided on AIX worksta-
tions for the device-independent manipulation of two-dimensional data.

Hard Me
The IBM term for a hard disk drive usually used to describe 5.25 inch
and smaller hard disks.

Hypertext
Text organized and accessed by a relational database.

IEEE

ILS

ISO

The Institute of Electrical and Electronics Engineers, based in the USA.

International language support. Another term to describe NLS.

The International Organization for Standardization. Produces standards
on many topics including fonts for internationalization.

Kerberos
An encryption-based third-party authentication mechanism for network
security developed at MIT. Included in OSF DCE.

Mach

MIPS

NFS

A Carnegie-Mellon University developed version of UNIX . Mach was
an experimental operating system supporting multiple threads and
muliple processors . The Mach kernel is at the heart of the new OSF/ 1
operating system.

Millions of instructions per second, a measure of a processor's
horsepower. It is usually compared with a known system such as a DEC
PDP11 /780 that has a MIPS rating of 1.

Network File System. A protocol from Sun Microsystems for the
network transparent sharing of filesystems among computer systems
connected via TCP/IP. IBM offers NFS on AIX and SAA platforms.

Glossary 335

NLS

ODM

The IBM preferred name of internationalization. Stands for `national
language support'. Outside IBM also means `network license server' (see

RLM).

The object data manager. A data manager intended for storing system
information. Information is stored and maintained as objects with associ-
ated characteristics and methods. Can also be used to manage systems
data for user programs.

Opcode
Operation code. A component part of a machine instruction telling the
processor to do something. The opcode identifies the type of instruction.
For example, in the POWER processor architecture, the opcode to add a
number to a register is opcode 12, whereas the opcode to add two

registers together is opcode 31.

OSF

OSF/1

POSIX

PRPQ

RISC

The Open Software Foundation. A nonprofit-making foundation whose
objectives include vendor-neutral, hardware-independent software based
on industry standards. Founding members were IBM, DEC, HP, Apollo,

Siemens and others.

UNIX-based operating system developed by the OSF. OSF/ 1 has a
Mach kernel and system calls and libraries based in part upon AIX.
OSF/ 1 will be integrated into all IBM UNIX workstations at a later

date.

Portable operating systems for computer environments. A detailed set of
standards for a portable operating system developed by the IEEE. IBM
belongs to the POSIX committee. AIX is POSIX compliant.

Program request for price quotation. IBM customers may request a
software or hardware function to be implemented upon IBM systems. If
there is a good IBM business case for the product or software package
to be produced it may be implemented for the requested customer. After
this the technology is then normally made available to other IBM
customers as a PRPQ.

Reduced instruction set computing or reduced instruction set cycles.
RISC architecture strives to minimize the number of machine instruc-
tions, and to optimize the number of machine instructions that require
just one cycle of the processor. The results are simplified processor logic
and enhanced processor performance.

336

RLM

ROS

RS232

SDS

SIPO

SNMP

SPEC

SSC

Inside the IBM RISC System/6000

Resource licence manager . This is IBM's name for the network licence
server component of network computer system (NCS).

Read-only storage. The IBM name for read-only memory. ROS or
ROM is an example read-only memory technology.

A standard for connecting computer systems with serial interfaces. More
formally known as the Electronic Industries Association (EIA) 232D
standard. The publication RS232 Made Easy by Martin D. Seyer is a
good source of information (ISBN 0 -13-749870-5).

Software development solutions. IBM's CASE product for the IBM
RISC System/6000. It is composed of an integrated set of basic tools
(SDE Workbench), an integrator to allow the incorporation of existing
tools. The last component, CMVC, provides configuration management
and version control.

System installation productivity option. A set of IBM software products
packaged on a single set of `stacked' tapes. The AIX 3.2 SIPO is
program number 5750-AET and it allows a customer to order on a
single tape base AIX and optional components. The AIX SIPO tape also
contains a header to enable the RISC system to boot and install
standalone from that tape.

Simple network management protocol. The network management
protocol of choice for TCP/IP based LANs.

System performance evaluation cooperative. A suite of benchmarks,
commonly summarized by the term 'SPECmark'. The SPECmark is
designed to replace older benchmarks made obsolete by advances in chip
design and compiler technology. IBM is a member of SPEC.

Systems support centre. A single point of contact for IBM hardware and
software problems. By purchasing or leasing the software an IBM
customer is automatically entitled to service. Hardware service is pro-
vided free during the warranty period and for a cost thereafter.

STORAGE
The IBM term for memory.

SVID
System V interface definition . An AT&T document defining the standard
interfaces to be used by UNIX System V application programmers.

Glossary 337

SVVS

TSR.

System V verification suite. A set of programs to test compliance to
SVID.

Terminate and stay resident program. This is a method used under the
DOS operating system to expand the operating system dynamically.
Typically, the program comprising the TSR is first executed, after which
it installs itself. An interactive TSR then often checks for a particular
user keyboard sequence that indicates the user wants to talk to the TSR.
A communications TSR normally hooks a software interrupt and waits
for that interrupt to be called. Under DOS this is a common way for a
Microsoft Windows program to call a TSR communications driver.

Two-phase commit
In a two-phase commit procedure, the transaction processing system first
asks each resource manager (RM) to prepare to commit, then, when
each RM has signalled readiness, asks each to commit, or, if there are
any RM signals that it cannot commit, asks each to back out.

VAR

VPD

Value added remarketer. An IBM accredited VAR is a software house
that buys IBM RISC System/6000 and AIX from IBM, packages this
with their own applications software and resells this machine to a
customer. Depending on how the VAR chooses to operate, the customer
may receive hardware and software support from IBM, or from the
VAR and IBM combined.

Vital product data. This relates to detailed information about an IBM
product. For example, the date and plant of manufacture, revision and
subrevision levels of a hardware card and any on-card firmware. Many
IBM devices and most IBM adapter cards have special command
sequences that can retrieve this information which may be used for
configuration and diagnostics.

X-Terminal
A dumb terminal which can act as an X-Windows graphics display
server. X-terminals usually boot up from a LAN-connected workstation
in order to load their X server.

X-Windows
The UNIX industry's graphics windowing standard developed at MIT.

Index

/home, 170
/sbin, 170
/usr, 170
/var, 170
220, 7
2D graphics, 156
3278/79, 7
320H, 7
340H, 7
350, 7
355, 7
360, 7
365, 7
370, 7
375, 7
3D Graphics, 98, 156
53H, 7
540, 7
550L, 7
560, 7
580, 7
6150, 302
6152, 302
7051, 211
7051 Network Dataserver, 210
8250, 325
8 mm tape, 144
930, 7
9333, 129
970, 7
970B, 7
980, 7
980B, 7

Acaedmic information system, (ACIS), 305
Academic operating system, 305
Access control, 254
Accounting, 256
Active logic, 150
Ada, 48

adb, 73
Advanced optimizing C compiler, 47
Advanced program- to-program

communication (APPC), 241
Advisory locking, 215
Agents, 223
Aix access for Dos users (AADU), 201
AIX interface composer (AIC), 96
AIX market share, 284, 285
AIX PS 2, 198, 299
AIX sales, 284, 285
AIX source code, 289
AIX/370, 307
AIX/ESA, 308
aixterm, 84
AlXwindows desktop, 99
Alert manager, 262
Allocation policy, 191
Alpha Windows, 139
Amdahl UTS, 308
Announce date, 6
ANSI, 276
ANSI Standard C X3J11, 47
ANSI X3.131-1986, 312
AOS, 305
API/3270, 238
APL, 48
Apple, 292
Apple Macintosh, 292
Application interface library, 247
AS/400, 239
ASCII terminal support, 196
Atomic system calls, 28
Auditing, 257
Authentication, 251

Basic data transfer cycle, 148
Basic input output system (BIOS), 194
Basic networking utilities (BNU), 204
Berkeley Software Distribution (BSD), 269

338

Bespoke education, 128
Block mode device driver, 62
BookManager, 112
BOOTP protocol, 137
BSD quotas, 252
Buffer cache, 187
Build to order, 12
Bull, 293
Bus master data transfers, 152
Business partners, 286

C compile, 170
C interpreter, 96
C + +, 19
Cache hit, 132
Callpath, 324
CASE, 55
CD-ROM, 143
Cerberos, 226
CFRS6000, 120
CGI, 103
Channel, 232
Character mode device driver, 62
Character programming, 85
CICS, 295
CICS/6000, 323
CISC, 37
Client area, 85
Cluster lock manager, 215
CMVC, 57
Cobol, 48
Cocke, John, 37
Code generator, 49, 50
Code motion, 51
Code PTFs, 174
Codeset, 32, 33
Codepage, 32
Collection point, 246
Command descriptor block, 314
Common communications support (CCS),

274
Common programming interface (CPI),

245, 274
Common user access (CUA), 274
Communications programming, 58
Compiler design, 47
Compiler internals, 48
Compiler optimization, 50
Computer bus, 147
Computer graphics metafile (CGM), 103
Concurrent error notification, 262
Configuration management and version

control, 57
Control workstation, 161
COSE, 274

Index

Coarse grain applications, 161
CP/M, 197
CPI-C, 245
Crash, 263
Curses, 85

339

Daemon, 24
Data cache, 43
Data Explorer/6000, 158
DBCS, 30
dbx, 74
Deadlock, 28
Debuggers, 73
DECdts, 226
Deckshell, 101
Device driver configuration, 65
Device driver entry points, 63
Device driver heads, 62
Device drivers, 61
Device handler, 63
Device methods, 65
Dhrystone, 284
Diagnostic software, 261
Diagnostic tools, 261
Diagnostics, 260
Digital tape, 144
Direct bus attach (DBA), 312
Direct manipulation, 100
DirectTalk, 324
Discretionary access control (DAC), 254
Disk Address, 184
Disk Quotas, 252
Diskless client paging space, 142
Diskless workstation, 139
Display PostScript, 97
Distributed applications, 216
Distributed computing environment

(DCE), 225
DMA controller, 152
DoD, 249
DOS, 193
DOS emulation, 194
Dual attach station, 155
Dump, 263
Dump device, 263
Duplicate server cache, 209
Dynamic binding, 67
Dynamic configuration, 19
Dynamic device configuration, 64
Dynamic kernel extension, 66
Dynamic link library (DLL), 67
Dynamic linking, 67

EBCDIC, 228
Education, 126
EISA, 153

340

Electronic customer support (ECS), 105,
113

Encapsulation definition language, 57
Endians, 152
Engineering support processor, 147
Enhanced small device interface (ESDI),

312
Enterprise System/9000, 233
Entry point, 246
Error logging, 262
ESCON, 234
EUC JP, 33
Event driven, 86
Event driven programming, 87
Express 3270, 237
Extended memory, 197
External call interface, 323
External data representation, 208

Fault tolerance, 212
Fault tolerant UNIX, 305
FDDI, 154
Field television network (FTN), 127
File locking, 209
File sharing, 207
File tree, 169
Fileplace, 178
Filesystem, 181
Filesystem recovery, 190
Fine grain applications, 161
FIPS, 276
Flash memory, 137
Focal point, 246
Forking processes, 30
Forward recovery, 320
FP processor, 45
FTX, 305
Function shipping, 323
Future systems group, 239
FX processor, 44

GigaFLOPS, 160
Graphic terminal option (GTO), 157
Graphical data display manager (GDDM),

237
Graphics hardware, 155
Graphics kernel system (GKS), 98
Graphics library (GL), 97
Graphics screens, 136
Graphics tools, 103
graPHIGS, 98
Gt3i, 156
Gt4, 156
Gt4e, 156

Hard disk interfaces, 311

Index

Hardware diagnostics, 261
Hardware problems, 264
Hardware support, 264
Hash anchor table (HAT), 40
Help, 105
Hewlett-Packard CASE, 56
Hewlett-Packard softbench, 57
High availability, 212
High capacity tape backup, 145
High performance parallel interface

(HIPPI), 158
High performance switch, 161
Hiragana, 34
HLLAPI, 238
HoneyDanBer UUCP, 205
Host connection (HCON), 235
Host API T interface, 238
HyperText help, 106

IBM AS /400 Connection Program, 240
IBM Austin, 1
IBM Copenhagen, 174
IBMLink, 113
IBM Loadleveler, 162
IBM Palo Alto, 305
IBM porting centre, 289
IBM Rochester, 239
IBM RT PC System, 302
IBM systems engineer, 287
IBM TJ Watson research centre, 37
IBM Toronto, 47
IBM X-station, 134
IBM Yorktown , 47, 306
ICCCM, 279
Idempotent operation, 209
Identification, 251
imake, 54
Industry standard architecture (ISA), 153
InfoCrafter, 110
InfoExplorer , 105, 106
Infotrainer, 127
inittab, 16
mode, 183
Institution of Electrical and Electronic

Engineers (IEEE), 276
Instruction cache, 44
Integrated drive electronics (IDE), 312
Intel 80286, 193
Intel VM86 mode, 198
Inter-physical, 191
Interface builder, 96
Interleaf, 25
International Standards Organization

(ISO), 278
Intermediate code generator, 49
Internationalization, 30

Index 341

Internet domain, 60
Internet protocol (IP), 205
Intra-physical, 191
IOCC, 150, 193
ISO character sets, 32
IX/370, 307

Journal, 188
Journalled filesystem (JFS), 180

Kana, 34
Kanji, 34
Katakana, 34
Kerberos, 226
Kernel buffer cache, 187
Kernel debugger, 75
Keylock, 251
Keyswitch, 251
KnowledgeSet corporation, 106

Lago systems tape library, 145
Layered API (LAPI), 277
Learning centre, 127
LED error display, 266
Legato Networker, 145
Level support (1, 2, 3), 267
Lexical analyser, 48
Lexmark International, 291
Library connector, 58
Link libraries, 67
Linpack, 284
Live parsing editor, 56
Locus, 299
Locus PC interface, 201
Logical unit (LU), 230
Logical volume (LV), 180, 182
Logical volume manager (LVM), 191
Look and feel, 92
LPEX, 56

M-audio capture, 325
M20, 6
Magic cookie, 84
Mainframe UNIX, 306
Mandatory access control (MAC), 256
Mapped files, 187
Memory caches, 43
Message catalogues, 36
Message queues, 59
Metaphor computer systems, 291
Metaware C compiler, 305
MFM encoding, 311
MicroChannel, 146, 152
MicroChannel real estate, 150
Microsoft, 298
Microsoft flight simulator, 196

Microsoft windows, 196
Model 200, 139, 140
Model 970,970,148
Modified file tree, 169
Monitors, 223
Motif programming, 93
Motif window manager, 93
Motorola, 293
Multibyte character set (MBCS), 30, 33
Multics, 296
Multiple virtual storage (MVS), 231

Named pipes, 58
National Institute of Standards and

Technology (NIST), 276
National language support (NLS), 30
NetView, 222, 246
Netview Service Point (NSP), 246
NetWare, 199
NetWare facilities, 199
Network computer system (NCS), 216
Network driver interface support (NDIS),

203
Network file system (NFS), 207
Network interface definition language

(NIDL), 218
Network license server, 220
Network management, 222, 246
Network node manager, 225
Network systems router, 154
Networking, 204
New technology (NT), 129
Novell NetWare, 199
Novell Virtual Terminal (NVT), 200

Object data manager (ODM), 18, 19
Online diagnostics, 260
Online education, 126
Open look, 101
Open Software Foundation (OSF), 269
Open systems, 1
Open systems benefits, 3
Open systems interconnect layers, 207
Optical disk, 143
Optical networking, 154
Orange Book Security, 249
Original equipment manufacturer (OEM),

294
OSF application environment specification,

272
OSF/ 1, 271
OSF/ANDF, 272
OSF/DME, 271
OSF/Motif, 92
OSI, 207

342 Index

P1003, 276
P1201.1, 277
Packaging PTFs, 174
Page frame table, 40, 41
Parallel processing, 160
Pascal, 48
PC/IX, 297
PCSIM, 194
Peer-to-peer communication service, 323
Performance graphics, 155
Performance management, 224
Performance monitoring, 178
Personal system VP, 153
Persistent storage manager, (PSM), 187
PEX, 98
PHIGS, 279
Physical partition (PP), 182
Physical unit (PU), 230
Physical volume recovery, 190
PICK, 304
Pick correlation, 97
Pink operating system, 293
Pipes, 58
PMP, 175
Portable disk drive, 9
Porting UNIX, 61
POS, 18
POSIX, 276
PostScript, 97
PostScript wrap definitions, 97
POWER architecture, 38
PowerGraphics, 157
POWER Network Dataserver, 210
Power-on self-test (POST), 137
PowerOpen, 292
Power parallel systems, 160
PowerPC architecture, 292
POWERservers, 12
POWERstations, 12
POWER visualization system, 158
Pre-emption, 28
Pre-installation, 170, 171
Pre-loading, 171
Presentation space, 238
Preventative maintenance package (PMP),

174, 175
Printing, 22
Priority rating, 265
Problem reporting, 266
Processor instructions, 39
Program binding, 67
Program (to program) communication, 237
Program management, 53
Programmable option select, 18
Programmed 1/0, 151
Programming environments, 53

Project 801, 37
Project MAC, 296

qdaemon, 25

Raw devices, 62
Real time, 26
Recurrence recognition, 52
Reduced instruction set cycles (RISC), 37
Register model, 38
Remote printing, 136
Remote procedure call (RPC), 208, 217
Remote Technical Assistance Information

Network, (RETAIN), 267
Removable disk options, 9
Repaging, 47
Resource licence manager (RLM), 222
Resource sharing, 216
Restructuring, 51, 290
Rewritable optical disk, 144
Ritchie, 296
RISC system peripherals, 9
RLL encoding, 311
rmss, 178
ROMP processor, 302
Root window, 101
Run level, 261
Run queues, 30, 31
Runtime binding, 67

S100 bus, 153
sar, 178
SCCS, 54
Scheduling, 52
Seagate disks, 311
Secure attention key (SAK), 256
Selective enhancements, 174
Selective fixes, 174, 268
Selective subsystem update (SSU), 174, 175
Semaphores, 59
Serial line interface protocol (SLIP), 137
Serial link , 129, 131
Serial optical channel converter (SOCC),

154
Service access facility (SAF), 18
Service point, 246
Service request number (SRN), 261, 267
Set group ID (SGID), 255
Set user ID (SUID), 255
Severity rating, 265
Shared memory, 59
Shared project object tree (SPOT), 141,

142
Silicon graphics, 97
Single byte character set (SBCS), 30

Index 343

Single-ended SCSI, 313
Single indirect, 185
Single shift (2 and 3), 34
Single source dual object (SSDO), 35
Single source single object (SSSO), 35
SJIS, 94
Small Computer Systems Interface (SCSI),

312
bus phases, 313
performances, 314

Sockets, 59
SoftDist/6000, 176
Software and Data Distribution/6000,

176
Software engineering, 55
Software installation, 170
Software problems, 264
Software support, 264
Space travel, 296
SPEC Suite 2, 280
SPECmark, 280
Speech server, 324
ST506, 311
Standards, 269
Stanzas, 168
Stateless protocol, 208
Storage, 180
Storage manager, 187
Streaming data transfer cycle, 148
Streams, 60
Strength reduction, 50
Structured file service (SFS), 322
Style guide, 92
Summary specifications, 10
Sun Microsystems, 208
SunView, 102
Superscalar architecture, 37
SuperUser, 252
SVID, 273
svmon, 178
Swapper, 16
Switch table, 64
Symmetrical multiprocessing, 293
Syntax analyser, 49
System 370, 306
System 88, 305
System development multitasking (SDM),

280
System installation productivity option

(SIPO), 172
System V IPC, 59
System W, 81
System/360, 231
System/370, 231
System/88, 212
Systems administration, 164

Systems application architecture (SAA),
273

Systems management interface tool
(SMIT), 164

Systems network architecture (SNA), 229
services, 241
support, 229

Systems resource controller (SRC), 17, 217

Taligent, 292
Tape drives, 10
Tape installation, 172
Tape library, 145
tclose problem, 174
Technical Library /6000, 112
Technical publications centre (TPC), 124
Telnet, 207
Terminal emulation, 234
terminfo, 85
Thompson, 296
Thompson-CSF, 294
Time to market (TTM), 4
Thrashing control, 46
TPC, 124
TPC-A, 283
TPC-B, 283
Trace, 77, 263
Training, 126
Transaction processing, 283, 320
Transaction programs (TP), 241

fundamentals, 320
Transactional C, 321
TransArc, 321
Translation lookaside buffer (TLB), 43, 44
Transmission control protocol (TCP), 207
Transmission control protocol/ Internet

protocol, (TCP/IP), 201, 205, 206
for OS/2, 203
protocols (UDP, IP, ARP, ICMP), 207

Transparent Computing Facility (TCF),
300

Transport layer interface (TLI), 60
Trusted computer base (TCB), 253
Trusted path, 256
Trusted systems, 249
Twin tailing, 215
Two-phase commit, 323
Type 3 card, 150
Type 5 card, 150

UIM/X, 96
UJIS, 33
Uniform name space, 226
UniTree, 216
UNIX, 296
Unix domain, 60

344

UNIX filesystems, 182
UNIX history, 296
Unix System Laboratories (USL), 14, 297
UNIX-to-UNIX copy program (UUCP),

204
Unrolling, 51
User datagram protocol (UDP), 207
User interface language (UIL), 96

Value added reseller, 290
ValuePoint, 153
VAX cluster, 213
Vendor neutral technology selection, 272
VGA screen emulation, 195
Virtual manager (VM), 231
Virtual memory, 40
Virtual memory management (VMM), 46
Virtual operating system (VOS), 306
Virtual page number (VPN), 41
Virtual storage extended (VSE), 231
Virus, 258
Visual configurator, 120
Vital product data (VPD), 21
Vital product database, 175
vmstat, 178
vnodes, 209
Volume group (VG), 181
Volume purchase agreement (VPA), 288
VS Fortran, 48

Wang, 294
Whetstones, 284
Widgets, 87

Index

Window manager, 93

X.500, 226
X Consortium, 279
Xde, 73
X Desktop, 99
X Display manager control protocol

(XDMCP), 84, 138
XDS, 226
Xenix, 298
Xerox NS domain, 60
xhost, 84
XL compilers, 47
Xlib, 86
Xlib sample, 87
Xol, 102
X Open, 226, 278, 322
XPG3, 278
X protocol, 86, 98
X security, 84
X utilities, 84
Xstation booting, 137
Xstation manager, 136
Xt, 87
Xt + , 102
xterm, 84
XView, 101
X windows, 81
X windows display management, 138
X windows servers, 202

Zero cycle branching, 45

	01 cover
	page 1

	02 risc
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60

	03 risc
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90

	04 risc
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84

	05 risc
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50

	06 risc
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76

	07 back cover

