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About This Book

The primary objective of this manual is to help hardware and software designers who are
working with the PowerPC 604™ microprocessor. This book is intended as a companion
to the Power PC™ Microprocessor Family: The Programming Environments, referred to as
The Programming Environments Manual. Because the PowerPC Architecture™ is
designed to be flexible to support a broad range of processors, The Programming
Environments Manual provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

Note that The Programming Environments Manual does not attempt to replace the
PowerPC architecture specification (documented in The PowerPC Architecture: A
Soecification for a New Family of RISC Processors), which defines the architecture from
the perspective of the three programming environments and which remains the defining
document for the PowerPC architecture.

The PowerPC 604 RISC Microprocessor User’s Manual summarizes features of the 604
that are not defined by the architecture. This document and The Programming
Environments Manual distinguishes between the three levels, or programming
environments, of the PowerPC architecture, which are as follows:

»  PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA definesthe
base user-level instruction set, user-level registers, datatypes, memory conventions,
and the memory and programming models seen by application programmers.

» PowerPC virtual environment architecture (VEA)—TheVEA, whichisthe smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment inwhich multiple processorsor other devicescan
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resourcesin
an environment in which other processors and other devices can access external
memory.
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» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA a so conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture
information into topics that build upon one another, beginning with a description and
complete summary of 604-specific registers and progressing to more specialized topics
such as 604-specific details regarding the cache, exception, and memory management
models. As such, chapters may include information from multiple levels of the architecture.
(For example, the discussion of the cache model uses information from both the VEA and
the OEA.)

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 604. It is assumed that the reader
understands operating systems, microprocessor system design, the basic principles of RISC
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

e Chapter 1, “Overview,” is useful for those who want ageneral understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition, and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.
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Chapter 2, “PowerPC 604 Processor Programming Model,” is useful for software
engineers who need to understand the 604-specific registers, operand conventions,
and details regarding how PowerPC instructions are implemented on the 604.

Chapter 3, “Cache and Bus Interface Unit Operation,” provides a discussion of the
cache and memory model as implemented on the 604.

Chapter 4, “Exceptions,” describes the exception model asimplemented on the 604.

Chapter 5, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as implemented on the 604.

Chapter 6, “Instruction Timing,” describes instruction timing in the 604.
Chapter 7, “Signal Descriptions,” describes individual signals defined for the 604.
Chapter 8, “ System I nterface Operation,” describes interface operations on the 604.

Chapter 9, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the 604.

Appendix A, “ PowerPC Instruction Set Listings,” listsall the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

Appendix B, “Invalid Instruction Forms,” describes how invalid instructions are
treated by the 604.

This manual aso includes a glossary and an index.

In this document, the terms “PowerPC 604 Microprocessor” and “604” are used to denote
a microprocessor from the PowerPC architecture family. The PowerPC 604
microprocessors are available from IBM as PPC604 and from Motorola as MPC604.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual.

PowerPC Microprocessor Family: The Programming Environments, MPCFPE/AD
(Motorola Order Number) and MPRPPCFPE-01 (IBM Order Number)

The Power PC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, CA

John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA

Power PC 601 RISC Microprocessor User’'s Manual, Rev 1

MPC601UM/AD (Motorola Order Number) and 52G7484/(M PR601UMU-02)
(IBM Order Number)

PowerPC 601 RISC Microprocessor Technical Summary, Rev 1

MPC60L/D (Motorola order number) and MPR601TSU-02 (IBM order number)
PowerPC 603 RISC Microprocessor User’s Manual, MPC603UM/AD (Motorola
order number) and MPR603UMU-01 (IBM order number)
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*  PowerPC 603 RISC Microprocessor Technical Summary, Rev 3

MPC603/D (Motorola order number) and MPR603TSU-03 (IBM order number)
*  PowerPC 604 RISC Microprocessor Technical Summary, Rev 1

MPC604/D (Motorola order number) and MPR604TSU-02 (IBM order number)
«  PowerPC 620 RISC Microprocessor Technical Summary, MPC620/D (Motorola

order number) and MPR620TSU-01 (IBM order number)

Additional literature on PowerPC implementations is being released as new processors
become available.

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

ACTIVE_LOW A bar over asignal nameindicates that the signal is active low—for
example, ARTRY (addressretry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
APO-AP3 (address bus parity signals) and TTO-TT4 (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

mnemonics Instruction mnemonics are shown in lowercase bold.

OPERATIONS Address-only bus operations that are named for the instructions that
generate them areidentified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.

italics Italics indicate variable command parameters, for example, bectrx
0x0 Prefix to denote hexadecimal number

Ob0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rA|0 The contents of a specified GPR or the value 0.

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronymsfor registers are shown in uppercase text.

Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.
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n

In certain contexts, such asasignal encoding, thisindicatesadon’t
care.

Used to express an undefined numerical value.

Acronyms and Abbreviations

The Tablei contains acronyms and abbreviations that are used in this document. Note that
the meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ASR Address space register
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BHT Branch history table
BPU Branch processing unit
BTAC Branch target address cache
BUID Bus unit ID
COP Common on-chip processor
CR Condition register
CTR Count register
DABR Data address breakpoint register
DAR Data address register
DBAT Data BAT
DEC Decrementer (register)
DEQ Decode queue
DISQ Dispatch queue
DSISR Register used for determining the source of a DSI exception
DTLB Data translation look-aside buffer
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in, first out
FLQ Finish load queue
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HIDO Hardware implementation dependent (register) 0
IABR Instruction address breakpoint register
IBAT Instruction BAT
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation look-aside buffer
U Integer unit
JTAG Joint Test Action Group
L2 Secondary cache
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSU Load/store unit
MCIU Multiple-cycle integer unit
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMCRn Monitor mode control register n
MMU Memory management unit
MSB Most-significant byte
msh Most-significant bit
MSR Machine state register
NaN Not a number
No-Op No operation
OEA Operating environment architecture
PID Processor identification tag
PLL Phase-locked loop
PMCn Performance monitor control (register) n
PMI Performance monitor interrupt
PTE Page table entry
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
PTEG Page table entry group
PVR Processor version register
RISC Reduced instruction set computing/computer
ROB Reorder buffer
RTL Register transfer language
RWITM Read with intent to modify
SCIU Single-cycle integer unit
SDA Sampled data address (register)
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIA Sampled instruction address (register)
SIMM Signed immediate value
SLB Segment look-aside buffer
SPR Special-purpose register
SPRGn Registers available for general purposes
SR Segment register
SRRO (Machine status) save/restore register 0
SRR1 (Machine status) save/restore register 1
B Time base register
TLB Translation lookaside buffer
UIMM Unsigned immediate value
UISA User instruction set architecture
VEA Virtual environment architecture
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations
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Terminology Conventions

Tableii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table ii. Terminology Conventions

The Architecture Specification This Manual
Data storage interrupt (DSI) DSI exception
Extended mnemonics Simplified mnemonics
Instruction storage interrupt (ISI) ISI exception
Interrupt* Exception
Privileged mode (or privileged state) Supervisor-level privilege
Problem mode (or problem state) User-level privilege
Real address Physical address
Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

* For a detailed discussion of how the terms interrupt and exception are used in this document, see the introduction
to Chapter 4, “Exceptions.”

Tableiii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)
D d
DS ds
FLM FM
FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)
FXM CRM
RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM
U IMM
ul UIMM
1,00, 10 0...0 (shaded)
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Chapter 1
Overview

This chapter provides an overview of the PowerPC 604™ microprocessor. It includes the
following:
e A summary of 604 features

» Details about the 604 hardware implementation. This includes descriptions of the
604's execution units, cache implementation, memory management units (MMUs),
and system interface.

e A description of the 604 execution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

1.1 Overview
This section describes the features of the 604, provides a block diagram showing the major
functional units, and describes briefly how those unitsinteract.

The 604 isan implementation of the PowerPC™ family of reduced instruction set computer
(RISC) microprocessors. The 604 implements the PowerPC Architecture™ asit is specified
for 32-bit addressing, which provides 32-hit effective (logical) addresses, integer datatypes
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single-precision and
double-precision).

The 604 is a superscalar processor capable of issuing four instructions simultaneously. As
many as six instructions can finish execution in parallel. The 604 has six execution units
that can operate in paralel:

* Foating-point unit (FPU)

« Branch processing unit (BPU)

» Load/store unit (LSU)

* Threeinteger units (1Us):
— Two single-cycle integer units (SCIUS)
— One multiple-cycle integer unit (MCIU)
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This paralle design, combined with the PowerPC architecture’'s specification that
instructions be of uniform length, allows for rapid execution times, yields high efficiency
and throughput. The 604’ s rename buffers, reservation stations, dynamic branch prediction,
and completion unit increase instruction throughput, guarantee in-order completion, and
ensure a precise exception model. (Note that the PowerPC architecture specification refers
to al exceptions as interrupts.)

The 604 has separate memory management units (MMUSs) and separate 16-Kbyte on-chip
caches for instructions and data. The 604 implements two 128-entry, two-way set (64 x 2)
associative trans ation lookaside buffers (TLBs), one for instructions and one for data. The
604 also provides support for demand-paged virtual memory address translation and
variable-sized block trandation. The TLBs and the cache use least-recently used (LRU)
replacement algorithms.

The 604 has a 64-bit external data bus and a 32-bit address bus. The 604 interface protocol
alows multiple masters to compete for system resources through a central external arbiter.
Additionally, on-chip snooping logic maintains data cache coherency for multiprocessor
applications. The 604 supports single-beat and burst data transfers for memory accesses
and memory-mapped |1/O accesses.

The 604 uses an advanced, 3.3-V CMOS process technology and is fully compatible with
TTL devices.

1.1.1 PowerPC 604 Microprocessor Features
This section summarizesfeatures of the 604’ simplementation of the PowerPC architecture.
Figure 1-1 provides a block diagram showing features of the 604. Note that this is a

conceptual block diagram intended to show the basic features rather than an attempt to
show how these features are physically implemented on the chip.
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Figure 1-1. Block Diagram
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Major features of the 604 are as follows:
» High-performance, superscalar microprocessor
— Asmany as four instructions can be issued per clock cycle.

— Asmany assix instructions can start executing per clock (including threeinteger
instructions).

— Single clock cycle execution for most instructions
« Six independent execution units and two register files
— BPU featuring dynamic branch prediction
— Speculative execution through two branches
— 64-entry fully-associative branch target address cache (BTAC)

— B512-entry, direct-mapped branch history table (BHT) with two bits per entry
for four levels of prediction—not-taken, strongly not-taken, taken, strongly
taken

— Two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU)

— Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

Each SCIU has a two-entry reservation station to minimize stalls.

The MCIU has atwo-entry reservation station and provides early exit (three
cycles) for 16- x 32-bit and overflow operations.

Thirty-two GPRs for integer operands
Twelve rename buffers for GPRs
— Three-stage floating-point unit (FPU)

— Fully IEEE 754-1985 compliant FPU for both single- and double-precision
operations

— Supports non-1EEE mode for time-critical operations

— Fully pipelined, single-pass double-precision design

— Hardware support for denormalized numbers

— Two-entry reservation station to minimize stalls

— Thirty-two 64-bit FPRs for single- or double-precision operands
— Load/store unit (LSU)

— Two-entry reservation station to minimize stalls
Single-cycle, pipelined cache access
Dedicated adder performs EA calculations
Performs alignment and precision conversion for floating-point data
Performs alignment and sign extension for integer data
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— Four-entry finish load queue (FLQ) provides load miss buffering
— Six-entry store queue
— Supports both big- and little-endian modes
Rename buffers
— Twelve GPR rename buffers
— Eight FPR rename buffers
— Eight condition register (CR) rename buffers
The 604 rename buffers are described in Section 1.2.1.5, “Rename Buffers.”
Completion unit

— Retires an instruction from the 16-entry reorder buffer when al instructions
ahead of it have been completed and the instruction has finished execution

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and removes speculatively executed, dispatched,
and fetched instructions if branch is mispredicted

— Retires as many as four instructions per clock

Separate on-chip instruction and data caches (Harvard architecture)
— 16-Kbyte, four-way set-associative instruction and data caches
— LRU replacement algorithm

— 32-byte (eight word) cache block size

— Physically indexed; physical tags. Note that the PowerPC architecture refers to
physical address space as real address space.

— Cachewrite-back or write-through operation programmable on a per page or per
block basis

— Instruction cache can provide four instructions per clock cycle; data cache can
provide two words per clock cycle.

— Caches can be disabled in software

— Caches can be locked

— Parity checking performed on both caches

— Data cache coherency (MESI) maintained in hardware
— Secondary data cache support provided

— Instruction cache coherency maintained in software

— Provides ano-DRTRY /data streaming mode, which allows consecutive burst
read data transfers to occur without intervening dead cycles. This mode aso
disables data retry operations.

Separate memory management units (MMUS) for instructions and data
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— Addresstrandlation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— Separate instruction and data translation lookaside buffers (TLBS)

— Both TLBs are 128-entry and two-way set associative

— Separate IBATs and DBATS (four each) also defined as SPRs

— LRU replacement algorithm

— Hardware table search (caused by TLB misses) through hashed page tables
— 52-bit virtual address; 32-bit physical address

Bus interface features include the following:

— Selectable processor-to-bus clock frequency ratios (1:1, 1.5:1, 2:1, and 3:1)
— A 64-bit split-transaction external data bus with burst transfers

— Support for address pipelining and limited out-of-order bus transactions
— Additional signals and signal redefinition for direct-store operations
Multiprocessing support features include the following:

— Hardware enforced, four-state cache coherency protocol (MES!) for data cache.
Bitsare provided in the instruction cache to indicate only whether a cache block
isvalid or invalid.

— Separate port into data cache tags for bus snooping

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

Power management
— Operating voltage is3.3+ 0.3V

— Software-initiated NAP mode suspends instruction dispatch and waits for all
activity in progress, including active and pending bus transactions, to complete.
It then shuts down the internal chip clocks, and enters nap mode.

Performance monitor can be used to help in debugging system designs and
improving software efficiency, especially in multiprocessor systems.

In-system testability and debugging features through JTAG boundary-scan
capability
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1.2 PowerPC 604 Microprocessor Hardware
Implementation

This section provides an overview of the 604’'s hardware implementation, including

descriptions of the functional units, shown in Figure 1-2, the cache implementation, MMU,

and the system interface.

Note that Figure 1-2 provides a more detailed block diagram than that presented in
Figure 1-1—showing the additional data paths that contribute to the improved efficiency in
instruction execution and more clearly indicating the relationships between execution units
and their associated register files.
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1.2.1 Instruction Flow

Severa units on the 604 ensure the proper flow of instructions and operands and guarantee
the correct update of the architectural machine state. These units include the following:

Fetch unit—Using the next sequential address or the address supplied by the BPU
when a branch is predicted or resolved, the fetch unit supplies instructions to the
eight-word instruction buffer.

Decode/dispatch unit—The decode/dispatch unit decodes instructions and
dispatches them to the appropriate execution unit. During dispatch, operands are
provided to the execution unit (or reservation station) from the register files, rename
buffers, and result buses.

Branch processing unit (BPU)—In addition to providing the fetcher with predicted
target instructions when a branch is predicted (and a mispredict-recovery addressiif
abranchisincorrectly predicted), the BPU executesall condition register logical and
flow control instructions.

Completion unit—The completion unit retires executed instructions in program
order and controls the updating of the architectural machine state.

1.2.1.1 Fetch Unit

The fetch unit provides instructions to the eight-entry instruction queue by accessing the
on-chip instruction cache. Typically, the fetch unit continues fetching sequentially as many
asfour instructions at atime.

The address of the next instruction to be fetched is determined by several conditions, which
are prioritized asfollows:

1
2.

Detection of an exception. Instruction fetching begins at the exception vector.

The BPU recovers from an incorrect prediction when a branch instruction isin the
execute stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

The BPU recovers from an incorrect prediction when a branch instruction isin the
dispatch stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

The BPU recovers from an incorrect prediction when a branch instruction isin the
decode stage. Subsequent instructions are flushed and fetching begins at the correct
target address.

A fetch addressisfound in the BTAC. Asacache block isfetched, the branch target
address cache (BTAC) and the branch history table (BHT) are searched with the
fetch address. If itisfound inthe BTAC, thetarget addressfromthe BTAC isthefirst
candidate for being the next fetch address.

If none of the previous conditions exit, the instruction is fetched from the next
sequential address.
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1.2.1.2 Decode/Dispatch Unit

The decode/dispatch unit provides the logic for decoding instructions and issuing them to
the appropriate execution unit. The eight-entry instruction queue consists of two four-entry
gueues—a decode queue (DEQ) and a dispatch queue (DISQ).

The decode logic decodes the four instructions in the decode queue. For many branch
instructions, these decoded instructions along with the bitsin the BHT, are used during the
decode stage for branch correction.

The dispatch logic decodes the instructionsin the DISQ for possible dispatch. The dispatch
logic resolves unconditional branch instructions and predicts conditional branch
instructions using the branch decode logic, the BHT, and valuesin the CTR.

The 512-entry BHT provides two bits per entry, indicating four levels of dynamic
prediction—strongly not-taken, not-taken, taken, and strongly taken. The history of a
branch’s direction is maintained in these two bits. Each time a branch is taken the valueis
incremented (with amaximum value of three meaning strongly-taken); when it isnot taken,
the bit value is decremented (with a minimum value of zero meaning strongly not-taken).
If the current value predicts taken and the next branch is taken again, the BHT entry then
predicts strongly taken. If the next branch is not taken, the BHT then predicts taken.

The dispatch logic aso alocates each instruction to the appropriate execution unit. A
reorder buffer (ROB) entry is alocated for each instruction, and dependency checking is
done between the instructions in the dispatch queue. The rename buffers are searched for
the operands as the operands are fetched from the register file. Operands that are written by
other instructions ahead of this one in the dispatch queue are given the tag of that
instruction’s rename buffer; otherwise, the rename buffer or register file supplies either the
operand or atag. Asinstructions are dispatched, the fetch unit is notified that the dispatch
gueue can be updated with more instructions.

1.2.1.3 Branch Processing Unit (BPU)

The BPU is used for branch instructions and condition register logical operations. All
branches, including unconditional branches, are placed in a reservation station until
conditions are resolved and they can be executed. At that point, branch instructions are
executed in order—the completion unit is notified whether the prediction was correct.

The BPU also executes condition register logica instructions, which flow through the
reservation station like the branch instructions.

1.2.1.4 Completion Unit

The completion unit retires executed instructions from the reorder buffer (ROB) in the
completion unit and updates register files and control registers. The completion unit
recognizes exception conditions and discards any operations being performed on
subsequent instructions in program order. The completion unit can quickly remove
instructions from a mispredicted branch, and the decode/dispatch unit begins dispatching
from the correct path.
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The instruction is retired from the reorder buffer when it has finished execution and all
instructions ahead of it have been completed. The instruction’s result is written into the
appropriate register file and is removed from the rename buffers at or after completion. At
completion, the 604 also updates any other resource affected by this instruction. Severa
instructions can complete simultaneously. Most exception conditions are recognized at
completion time.

1.2.1.5 Rename Buffers

To avoid contention for a given register location, the 604 provides rename registers for
storing instruction results before the completion unit commits them to the architected
register. Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight
for the condition register. GPRs are described in Section 1.3.2.1, “General-Purpose
Registers (GPRs),” FPRs are described in Section 1.3.2.2, “Floating-Point Registers
(FPRs),” and the condition register is described in Section 1.3.2.3, “Condition Register
(CR)”

When the dispatch unit dispatches an instruction to its execution unit, it allocates arename
register for the results of that instruction. The dispatch unit also provides a tag to the
execution unit identifying the result that should be used as the operand. When the proper
result is returned to the rename buffer it is latched into the reservation station. When all
operands are available in the reservation station, execution can begin.

The completion unit does not transfer instruction results from the rename registers to the
registers until any speculative branch conditions preceding it in the completion queue are
resolved and the instruction itself isretired from the completion queue without exceptions.
If a speculatively executed branch is found to have been incorrectly predicted, the
speculatively executed instructions following the branch are flushed from the completion
gueue and the results of those instructions are flushed from the rename registers.

1.2.2 Execution Units

The following sections describe the 604's arithmeti c execution units—the two single-cycle
IUs, the multiple cycle IU, and the FPU. When the reservation station sees the proper result
being written back, it will grab it directly from one of the result buses. Once all operands
are in the reservation station for an instruction, it is eligible to be executed. Reservation
stations temporarily store dispatched instructions that cannot be executed until all of the
source operands are valid.

1.2.2.1 Integer Units (IUs)

The two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU) execute al integer
instructions. These are shown in Figure 1-1 and Figure 1-2. Each U has a dedicated result
bus that connects to rename buffers and to all reservation stations. Each |U has a two-entry
reservation station to reduce stalls. The reservation station can receive instructions from the
decode/dispatch unit and operands from the GPRs, the rename buffers, or the result buses.
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Each SCIU consists of three single-cycle subunits—a fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero
operations. These subunits handle al one-cycle arithmetic instructions; only one subunit
can execute an instruction at atime.

The MCIU consists of a 32-bit integer multiplier/divider and supports early exit on
16- x 32-bit multiplication operations. The MCIU executes mfspr and mtspr instructions,
which are used to read and write special-purpose registers. The MCIU can execute an
mtspr or mfspr instruction at the same time that it executesamultiply or divideinstruction.
These instructions are allowed to compl ete out-of-order.

Note that the load and store instructions that update their address base register (specified by
the r A operand) pass the update results on the MCIU’s result bus. Otherwise, the MCIU'’s
result busis dedicated to MCIU operations.

1.2.2.2 Floating-Point Unit (FPU)

The FPU, shownin Figure 1-1 and Figure 1-2, is a single-pass, double-precision execution
unit; that is, both single- and double-precision operations require only asingle pass, with a
latency of three cycles.

Asthe decode/dispatch unit issuesinstructionsto the FPU’ stwo reservation stations, source
operand data may be accessed from the FPRs, the floating-point rename buffers, or the
result buses. Results in turn are written to the floating-point rename buffers and to the
reservation stations and are made available to subsequent instructions. Instructions are
executed from each reservation station in dispatch order.

1.2.2.3 Load/Store Unit (LSU)

The LSU, shown in Figure 1-1 and Figure 1-2, transfers data between the data cache and
the result buses, which route data to other execution units. The LSU supports the address
generation and handles any alignment for transfers to and from system memory. The LSU
also supports cache control instructions and load/store multiple/string instructions. As
noted above, load and store instructions that update the base address register pass their
results on the MCIU’s result bus. Thisis the only exception to the dedicated use of result
buses.

The LSU includes a 32-bit adder dedicated for EA calculation. Data alignment logic
manipul ates data to support aligned or misaligned transfers with the data cache. The LSU’s
load and store queues are used to buffer instructions that have been executed and are
waiting to be completed. The queues are used to monitor data dependencies generated by
data forwarding and out-of-order instruction execution ensuring a sequential model.

The LSU alows load operations to precede pending store operations and resolves any
dependencies incurred when a pending store is to the same address as the load. If such a
dependency exists, the LSU delays the load operation until the correct data can be
forwarded. If only the low-order 12 bits of the EAs match, both addresses may be aliases
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for the same physical address, in which case, the load operation is delayed until the store
has been written back to the cache, ensuring that the load operation retrieves the correct
data.

The LSU does not alow the following operations to be speculatively performed on
unresolved branches:

« Store operations
» Loading of noncacheable data or cache miss operations
» Loading from direct-store segments

1.2.3 Memory Management Units (MMUs)

The primary functions of the MMUsareto trandatelogical (effective) addressesto physical
addresses for memory accesses, 1/0 accesses (most 1/0O accesses are assumed to be
memory-mapped), and direct-store accesses, and to provide access protection on blocks
and pages of memory.

The PowerPC MMUs and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting addressis amultiple of its size.

Address translations are enabled by setting bitsin the MSR—M SR[IR] enablesinstruction
address tranglations and M SR[DR] enables data address trangl ations.

The 604's MM Us support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory. The MMUs support block address trandlations, direct-store segments,
and page trandlation of memory segments. Referenced and changed status are maintained
by the processor for each page to assist implementation of a demand-paged virtual memory
system.

Separate but identical trandation logic isimplemented for data accesses and for instruction
accesses. The 604 implementstwo 128-entry, two-way set associative trand ation lookaside
buffers (TLBs), one for instructions and one for data. These TLBs can be accessed
simultaneously.

1.2.4 Cache Implementation

The 604 implements separate 16-Kbyte, four-way set-associative data and instruction
caches (Harvard architecture). The PowerPC architecture defines the unit of coherency as
a cache block, which for the 604 is a 32-byte (eight-word) line.
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PowerPC implementations can control the following memory access modes on a page or
block basis:

*  Write-back/write-through mode

» Cache-inhibited mode

¢ Memory coherency

* Guarded memory (prevents access for speculative execution)

The cachesimplement an LRU replacement algorithm.

1.2.4.1 Instruction Cache

The 604's 16-Kbyte, four-way set associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions. Instruction
cache coherency is not maintained by hardware.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabled/enabled and invalidated by setting the HIDO[16] and
HIDO[20] bits, respectively. The instruction cache can be locked by setting HIDO[18].

1.2.4.2 Data Cache

The 604's data cache is a 16-Kbyte, four-way set associative cache. It is a
physically-indexed, nonblocking, write-back cache with hardware support for reloading on
cache misses. Within one cycle, the data cache provides double-word access to the LSU.

The data cache tags are dual-ported, so the process of snooping does not affect other
transactions on the system interface. If asnoop hit occurs, the LSU is blocked internally for
one cycle to allow the eight-word block of datato be copied to the write-back buffer.

To ensure cache coherency, the 604 data cache supports the four-state MESI
(modified/exclusive/shared/invalid) protocol.

These four states indicate the state of the cache block as follows:

* Modified (M)—The cache block is modified with respect to system memory; that is,
datafor this addressis valid only in the cache and not in system memory.

« Exclusive (E)—This cache block holds valid datathat isidentical to the data at this
address in system memory. No other cache has this data.

e Shared (S)—This cache block holds valid datathat isidentical to thisaddressin
system memory and at |east one other caching device.

« Invaid (I)—This cache block does not hold valid data.

Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabled/enabled and invalidated by setting the
HIDO[17] and HIDO[21] bits, respectively. The data cache can be locked by setting
HIDO[19].
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Each cache line contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bitsA27-A31 of thelogica addresses are zero); thus, a cache
line never crosses a page boundary. Accesses that cross a page boundary can incur a
performance penalty.
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Figure 1-3. Cache Unit Organization

1.2.5 System Interface/Bus Interface Unit (BIU)

The 604 provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signalsto
alow for avariety of system-level optimizations. The 604 uses one-beat and four-beat data
transactions, athough it is possible for other bus participants to perform longer data
transfers. The 604 clocking structure supports processor-to-bus clock ratios of 1:1, 1.5:1,
2:1, and 3:1, as described in Section 1.2.6, “Clocking.”

The system interface is specific for each PowerPC processor implementation. The 604
system interface is shown in Figure 1-4.
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Address Bus <——>{ <«——> Data Bus
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Clocks <€———» ~<«——> Test/Control/Miscellaneous
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Figure 1-4. System Interface

Four-beat burst-read memory operationsthat |oad an eight-word cache block into one of the
on-chip caches are the most common bus transactions in typical systems, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the data cache).

The BIU implementsthe critical double-word first access where the double-word requested
by the fetcher or the load/store unit is fetched first and the remaining wordsin the line are
fetched later. The critical double-word as well as other words in the cache block are
forwarded to the fetcher or to the LSU before they are written to the cache.

Memory accesses can occur in single-beat or four-beat burst datatransfers. The addressand
data buses are independent for memory accesses to support pipelining and split
transactions. The 604 supports bus pipelining and out-of-order split-bus transactions. In
general, the bus-pipelining mechanism alows as many as three address tenures to be
outstanding before a data tenure is initiated. Address tenures for address-only transactions
can exceed thislimit.

Typicaly, memory accesses are weakly-ordered. Sequences of operations, including
load/store string/multiple instructions, do not necessarily complete in the same order in
which they began—maximizing the efficiency of the bus without sacrificing coherency of
the data. The 604 allows load operations to precede store operations (except when a
dependency exists, of course). In addition, the 604 provides a separate queue for snoop push
operations so these operations can access the bus ahead of previously queued operations.
The 604 dynamically optimizes run-time ordering of load/store traffic to improve overall
performance.
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In addition, the 604 implements a data bus write only signal (DBWO) that can be used for
reordering write operations. Asserting DBWO causes the first write operation to occur
before any read operations on a given processor. Although this may be used with any write
operations, it can aso be used to reorder a snoop push operation.

Access to the system interface is granted through an external arbitration mechanism that
alows devices to compete for bus mastership. This arbitration mechanism is flexible,
alowing the 604 to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction pair (lwarx/stwcx.) for atomic memory
references and other operations useful in multiprocessor implementations.

The following sections describe the 604 bus support for memory and direct-store
operations. Note that some signals perform different functions depending upon the
addressing protocol used.

1.2.5.1 Memory Accesses

Memory accesses allow transfer sizesof 8, 16, 24, 32, 40, 48, 56, or 64 bitsin one bus clock
cycle. Datatransfers occur in either single-beat transactions or four-beat burst transactions.
A single-beat transaction transfers as much as 64 bits. Single-beat transactions are caused
by noncached accesses that access memory directly (that is, reads and writes when caching
isdisabled, cache-inhibited accesses, and storesin write-through mode). Burst transactions,
which always transfer an entire cache block (32 bytes), are initiated when a block in the
cache is read from or written to memory. Additionaly, the 604 supports address-only
transactions used to invalidate entries in other processors TLBs and caches.

Typicaly 1/O accesses are performed using the same protocol as memory accesses. Refer
to Chapter 8, “ System Interface Operation,” for more information.

1.2.5.2 Signals
The 604’s signals are grouped as follows:

* Address arbitration signals—The 604 uses these signals to arbitrate for address bus
mastership.

» Addresstransfer start signals—These signalsindicate that a bus master has begun a
transaction on the address bus.

¢ Addresstransfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

» Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted,
write-through, or cache-inhibited.
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* Addresstransfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They a so indicate whether a condition
exists that requires the address phase to be repeated.

« Dataarbitration signals—The 604 uses these signalsto arbitrate for data bus
mastership.

» Datatransfer signals—These signa's, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

« Datatransfer termination signals—Data termination signals are required after each
data beat in adatatransfer. In asingle-beat transaction, the datatermination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signalsapply toindividual beatsand indicate the end of thetenure only after thefina
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

» Systemstatussignals—These signal sincludetheinterrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

* Processor state signals—Thesetwo signals are used to set the reservation coherency
bit and set the size of the 604's output buffers.

» Miscellaneous signals—These signals are used in conjunction with such resources
as secondary caches and the time base facility.

¢ Test/COP interface signals—The common on-chip processor (COP) unit isthe
master clock control unit and it provides a seria interface to the system for
performing built-in self test (BIST).

» Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE

A bar over a signal name indicates that the signa is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
are not active-low, such as APO-AP3 (address bus parity
signals) and TTO-TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

1.2.5.3 Signal Configuration
Figure 1-5 illustrates the logical pin configuration of the 604, showing how the signals are
grouped.
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Figure 1-5. PowerPC 604 Microprocessor Signal Groups

1.2.6 Clocking

The 604 has a phase-locked loop (PLL) that generates the internal processor clock. The
input, or reference signal, to the PLL isthe bus clock. The feedback in the PLL guarantees
that the processor clock is phase-locked to the bus clock, regardless of process variations,
temperature changes, or parasitic capacitances. The PLL also ensures a 50% duty cycle for
the processor clock.

The 604 supports the following processor-to-bus clock frequency ratios—1:1, 1.5:1, 2:1,
and 3:1, although not all ratios are available for all frequencies. For more information, refer
to the 604 hardware specifications.
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1.3 PowerPC 604 Microprocessor Execution Model
This section describes the following characteristics of the 604’s execution model:

The PowerPC architecture

The 604 register set and programming model
The 604 instruction set

The 604 exception model

Instruction timing on the 604

1.3.1 Levels of the PowerPC Architecture

The PowerPC architecture is derived from the IBM POWER Architecture™ (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
isimplemented. For example, if aprocessor adheresto the virtual environment architecture,
it isassumed that it meets the user instruction set architecture specification.

PowerPC user instruction set architecture (UISA)—The UISA defines the level of

the architecture to which user-level software must conform. The UISA defines the
base user-level instruction set, user-level registers, datatypes, memory conventions,
and the memory and programming models seen by application programmers. Note
that the PowerPC architecture refers to user level as problem state.

PowerPC virtual environment architecture (VEA)—TheVEA, which isthe smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processorsor other devicescan
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for managing resources in an environment in which other
processors and other devices can access external memory.

Implementations that conform to the PowerPC VEA a so adhere to the UISA, but
may not necessarily adhere to the OEA.

PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level resources typically required by an operating system. The OEA
defines the PowerPC memory management model, supervisor-level registers, and
the exception model. Note that the PowerPC architecture refers to the supervisor
level as privileged state.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.
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The 604 complieswith all three levels of the PowerPC architecture. Note that the PowerPC
architecture defines additional instructions for 64-bit data types. These instructions cause
an illega instruction exception on the 604. PowerPC processors are alowed to have
implementation-specific features that fall outside, but do not conflict with, the PowerPC
architecture specification. Examples of features that are specific to the 604 include the
performance monitor and nap mode.

The 604 is a high-performance, superscalar PowerPC implementation of the PowerPC
architecture. Like other PowerPC processors, it adheres to the PowerPC architecture
specifications but also has additional features not defined by the architecture. These
features do not affect software compatibility. The PowerPC architecture allows optimizing
compilers to schedule instructions to maximize performance through efficient use of the
PowerPC instruction set and register model. The multiple, independent execution units in
the 604 allow compilers to maximize parallelism and instruction throughput. Compilers
that take advantage of the flexibility of the PowerPC architecture can additionally optimize
instruction processing of the PowerPC processors.

1.3.2 Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

During normal execution, a program can access the registers, shown in Figure 1-6,
depending on the program’s access privilege (supervisor or user, determined by the
privilegelevel (PR) bit in the machine state register (MSR)). Note that registers such asthe
general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through
operandsthat are part of the instructions. Accessto registers can be explicit (that is, through
the use of specific instructions for that purpose such as Move to Special-Purpose Register
(mtspr) and Move from Special-Purpose Register (mfspr) instructions) or implicitly asthe
part of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

The numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

Figure 1-6 shows the registers implemented in the 604, indicating those that are defined by
the PowerPC architecture and those that are 604-specific. Note that all of these registers
except the FPRs are 32 bits wide.
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PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating environment) and one that corresponds to the user mode of operation
(used by application software). As shown in Figure 1-6, the programming model
incorporates 32 GPRs, 32 FPRs, specia-purpose registers (SPRs), and severa
miscellaneous registers. Note that each PowerPC implementation has its own unique set of
implementation-dependent registers that are typicaly used for debugging, configuration,
and other implementati on-specific operations.

Some registers are accessible only by supervisor-level software. This division allows the
operating system to control the application environment (providing virtual memory and
protecting operating-system and critical machine resources). Instructions that control the
state of the processor, the address translation mechanism, and supervisor registers can be
executed only when the processor isin supervisor mode.

The following sections summarize the PowerPC registers that are implemented in the 604.

1.3.2.1 General-Purpose Registers (GPRs)

The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are 32 bits wide in 32-bit PowerPC implementations and 64 bits wide in 64-bit
PowerPC implementations. The 604 also has 12 GPR rename buffers, which provide away
to buffer dataintended for the GPRs, reducing stalls when the results of one instruction are
required by a subseguent instruction. The use of rename buffers is not defined by the
PowerPC architecture, and they are transparent to the user with respect to the architecture.
The GPRs and their associated rename buffers serve as the data source or destination for
instructions executed in the [Us.

1.3.2.2 Floating-Point Registers (FPRSs)

The PowerPC architecture also defines 32 floating-point registers (FPRS). These 64-bit
registers typically are used to provide source and target operands for user-level,
floating-point instructions. The 604 has eight FPR rename buffers that provide a way to
buffer data intended for the FPRs, reducing stalls when the results of one instruction are
required by a subsequent instruction. The rename buffers are not defined by the PowerPC
architecture. The FPRs and their associated rename buffers can contain data objects of
either single- or double-precision floating-point formats.

1.3.2.3 Condition Register (CR)

The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,
and logical instructions, and provide a mechanism for testing and branching. The 604 also
has eight CR rename buffers, which provide away to buffer data intended for the CR. The
rename buffers are not defined by the PowerPC architecture.
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1.3.2.4 Floating-Point Status and Control Register (FPSCR)

The floating-point status and control register (FPSCR) is a user-level register that contains
al exception signa bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard.

1.3.2.5 Machine State Register (MSR)

The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and restored
when the exception handling completes. The 604 implements the MSR as a 32-bit register;
64-bit PowerPC processors use a 64-bit MSR that provides a superset of the 32-bit
functionality.

1.3.2.6 Segment Registers (SRs)

For memory management, 32-bit PowerPC implementations use sixteen 32-bit segment
registers (SRs).

1.3.2.7 Special-Purpose Registers (SPRs)

The PowerPC operating environment architecture defines numerous specia-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing specia operations. Some SPRs are accessed
implicitly as part of executing certain instructions. All SPRs can be accessed by using the
move to/from SPR instructions, mtspr and mfspr.

In the 604, all SPRs are 32 bits wide.

1.3.2.7.1 User-Level SPRs
Thefollowing SPRs are accessible by user-level software:

« Link register (LR)—The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
32 bitswide.

* Count register (CTR)—The CTR isdecremented and tested automatically asaresult
of branch and count instructions. The CTR is 32 bits wide.

 XER—The 32-hit XER contains the integer carry and overflow bits.
« Thetime baseregisters (TBL and TBU) can be read by user-level software, but can
be written to only by supervisor-level software.

1.3.2.7.2 Supervisor-Level SPRs
The 604 also contains SPRs that can be accessed only by supervisor-level software. These
registers consist of the following:

e The 32-bit data DSISR defines the cause of DSI and alignment exceptions.

¢ Thedata addressregister (DAR) is a 32-hit register that holds the address of an
access after an alignment or DSI exception.
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The decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. In the
604, the decrementer frequency is 1/4th of the bus clock frequency (asisthetime
base frequency).

The 32-bit SDR1 register specifies the location and page table format used in
logical-to-physical address translation for pages.

The machine status save/restore register 0 (SRRO) isa 32-bit register that is used by
the 604 for saving the address of the instruction that caused the exception, and the
address to return to when a Return From Interrupt (rfi) instruction is executed.

The machine status save/restore register 1 (SRR1) is a 32-hit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed.

SPRGO-SPRG3 registers are 32-bit registers provided for operating system use.

The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions.

Theprocessor version register (PVR) isa32-bit, read-only register that identifiesthe
version (model) and revision level of the PowerPC processor.

Thetime baseregisters (TBL and TBU) together provide a 64-hit time base register.
Theregistersareimplemented asa64-bit counter, with the least-significant bit being
the most frequently incremented. The PowerPC architecture defines that the time
base frequency be provided as a subdivision of the processor clock frequency. In the
604, the time base frequency is 1/4th of the bus clock frequency (asisthe
decrementer frequency). Counting is enabled by the Time Base Enable signal
(TBEN).

Block address trandation (BAT) registers—The PowerPC architecture defines 16
BAT registers, divided into four pairs of data BATs (DBATS) and four pairs of
instruction BATs (IBATS).

The 604 includes the following registers not defined by the PowerPC architecture:

Instruction address breakpoint register (IABR)—This register can be used to cause
a breakpoint exception to occur if a specified instruction address is encountered.

Data address breakpoint register (DABR)—This register can be used to cause a
breakpoint exception to occur if a specified data address is encountered.

Hardware implementation-dependent register 0 (HIDO)—This register is used to
control various functionswithin the 604, such as enabling checkstop conditions, and
locking, enabling, and invalidating the instruction and data caches.

Processor identification register (PIR)—The PIR is a supervisor-level register that
has aright-justified, four-bit field that holds a processor identification tag used to
identify aparticular 604. Thistag isused to identify the processor in multiple-master
implementations.
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» Performance monitor counter registers (PMC1 and PMC2). The countersare used to
record the number of times a certain event has occurred.

« Monitor mode control register 0 (MMCRO)—Thisis used for enabling various
performance monitoring interrupt conditions and establishes the function of the
counters.

» Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that whileit is not guaranteed that the HID registers, or other implementati on-specific
registers, be consistent among PowerPC processors.

1.3.3 Instruction Set and Addressing Modes

The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.3.3.1 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. Thisfixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.3.3.1.1 Instruction Set

The 604 implements the entire PowerPC instruction set (for 32-bit implementations) and
most optional PowerPC instructions. The PowerPC instructions can beloosely grouped into
the following general categories:

* Integer instructions—These include computational and logical instructions.

— Integer arithmetic instructions
— Integer compare instructions
— Logical instructions
— Integer rotate and shift instructions
» Foating-point instructions—These include floating-point computational
instructions, as well asinstructions that affect the FPSCR. Floating-point
instructions include the following:
— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point move instructions
— Floating-point status and control instructions
— Optiona floating-point instructions (listed with the optional instructions below)
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The 604 supports al |EEE 754-1985 floating-point data types (normalized,
denormalized, NaN, zero, and infinity) in hardware, eliminating the latency incurred
by software exception routines.

The PowerPC architecture al so supports anon-I EEE mode, controlled by abit inthe
FPSCR. In this mode, denormalized numbers, NaNs, and some |EEE invalid
operations are not required to conform to |EEE standards and can execute faster.
Note that all single-precision arithmetic instructions are performed using a
double-precision format. Thefloating-point pipelineisasingle-passimplementation
for double-precision products. For almost all floating-point instructions, a
single-precision instruction using only single-precision operandsin
double-precision format performs the same as its double-precision equivalent.

L oad/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions

— Integer load and store multiple instructions

— Integer load and store string instructions

— Floating-point load and store

Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— System call and rfi instructions
— Condition register logical instructions

Synchronization instructions—The PowerPC architecture defines instructions for
memory synchronizing, especially useful for multiprocessing:

— Load and store with reservation instructions—These Ul SA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

— The Synchronizeinstruction (sync)—This Ul SA-defined instructionisuseful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

— The Instruction Synchronize instruction (isync)—This instruction causes the
604 to purgeitsinstruction buffers and fetch the doubl e word containing the next
sequential instruction.

— The Enforce In-Order Execution of I/O instruction (eieio)—The eieio
instruction, defined by theVEA, can be used instead of the syncinstruction when
only memory references seen by 1/0 devices need to be ordered.

Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. These
instructions include move to/from special-purpose register instructions (mtspr and

mfspr).
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» Memory/cache control instructions—These instructions provide control of caches,
TLBs, and segment registers.
— User- and supervisor-level cacheinstructions
— Segment register manipulation instructions
— Trandlation lookaside buffer management instructions
* Optiona instructions—the 604 implements the following optional instructions:

— The eciwx/ecowx instruction pair
— The TLB Synchronize instruction (tlbsync)
— Optional graphicsinstructions:
— Store Floating-Point as Integer Word |ndexed (stfiwx)
— Floating Reciproca Estimate Single (fres)
— Floating Reciprocal Square Root Estimate (frsgrte)
Floating Select (fsal)

Note that this grouping of the instructions does not indicate which execution unit executes
aparticular instruction or group of instructions.

Integer instructions operate on byte, haf-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It aso provides for word and double-word
operand loads and stores between memory and a set of 32 FPRs.

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
specific store instructions.

PowerPC processors follow the program flow when they arein the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of severa
components of the system software to be invoked.

1.3.3.1.2 Calculating Effective Addresses
The effective address (EA) isthe 32-bit address computed by the processor when executing
amemory access or branch instruction or when fetching the next sequential instruction.
The PowerPC architecture supports two simple memory addressing modes:
* EA =(rA|0) + offset (including offset = 0) (register indirect with immediate index)
e EA =(rA|0) + rB (register indirect with index)

These simple addressing modes alow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occursin asingle clock cycle.
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For amemory accessinstruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored.

1.3.4 Exception Model

The following subsections describe the PowerPC exception model and the 604
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state asa
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular PowerPC processor may recognize exception conditions out of order,
exceptions are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of next instruction
to be executed is saved in SRRO so execution can resume at the proper place when the
exception handler returns control to the interrupted process.

Unless acatastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.
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The PowerPC architecture supports the following types of exceptions:

» Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisaly; that is, the machine state at the time the exception
occursis known and can be completely restored.

*  Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 604
implements only the imprecise nonrecoverable mode. The imprecise, recoverable
mode is treated as the precise mode in the 604.

¢ Asynchronous—The OEA portion of the PowerPC architecture definestwo types of
asynchronous exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the externa
interrupt and decrementer interrupt, which are maskable and asynchronous
exceptions. In the 604, and in many PowerPC processors, the hardware interrupt
is generated by the assertion of the Interrupt (INT) signal, which is not defined
by the architecture. In addition, the 604 implements the system management
interrupt, which performs similarly to the external interrupt, and is generated by
the assertion of the System Management Interrupt (SMI) signal, and the
performance monitor interrupt.

When these exceptions occur, their handling is postponed until all instructions,
and any exceptions associated with those instructions, complete execution.
These exceptions are maskabl e by setting MSR[EE].

— Asynchronous, nonmaskable—T here are two nonmaskabl e asynchronous
exceptionsthat are imprecise: system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signals used to cause these
exceptions. These exceptions may not be recoverable, or may provide alimited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the machine state register (M SR)—FEO and
FE1—that determine how floating-point exceptions are handled. There are four
combinations of hit settings, of which the 604 implements three. These are as follows:

* Ignore exceptions mode (FEO = FE1 = 0). Inthismode, theinstruction dispatchlogic
feeds the FPU as fast as possible and the FPU uses an internal pipelineto allow
overlapped execution of instructions. In this mode, floating-point exception
conditions return a predefined value instead of causing an exception.

» Preciseinterrupt mode (FEO = 1; FE1 = x). This mode includes both the precise
mode and impreci se recoverable mode defined in the PowerPC architecture. In this
mode, afloating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 604 takes floating-point exceptions as
defined by the PowerPC architecture.
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* Imprecise nonrecoverable mode (FEO = 0; FE1 = 1). In this mode, when a
floating-point instruction causes a floating point exception, the save restore
register 0 (SRRO) may point to an instruction following the instruction that caused
the exception.

The 604 exception classes are shown in Table 1-1.

Table 1-1. Exception Classifications

Type

Exception

Asynchronous/nonmaskable

Machine check
System reset

Asynchronous/maskable

External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise

Instruction-caused exceptions

Synchronous/imprecise

Floating-point exceptions (imprecise nonrecoverable mode)

The 604’s exceptions, and agenera description of conditions that cause them, are listed in

Table 1-2.
Table 1-2. Overview of Exceptions and Conditions
Exception Vector Offset . "
Type (hex) Causing Conditions
Reserved 00000 —
System reset 00100 A system reset is caused by the assertion of either the soft reset or hard reset
signal.
Machine check | 00200 A machine check exception is signaled by the assertion of a qualified TEA

indication on the 604 bus, or the machine check interrupt (MCP) signal. If
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

DSI

00300

The cause of a DSI exception can be determined by the bit settings in the

DSISR, listed as follows:

0 Set if a load or store instruction results in a direct-store program exception;
otherwise cleared.

1 Set if the translation of an attempted access is not found in the primary table
entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] =1, set by an eciwx, ecowx, lwarx, or stwcx. instruction; otherwise
cleared. Set by an eciwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.

9 Set if an EA matches the address in the DABR while in one of the three
compare modes.

10Set if the segment table search fails to find a translation for the effective
address; otherwise cleared.

11 Set if eciwx or ecowx is used and EAR[E] is cleared.

ISI

00400

An ISI exception is caused when an instruction fetch cannot be performed for

any of the following reasons:

* The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an ISI exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

* The fetch access is to a direct-store segment.

* The fetch access violates memory protection. If the key bits (Ks and Kp) in
the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604 stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment

00600

An alignment exception is caused when the processor cannot perform a
memory access for the following reasons:

A floating-point load, store, Imw, stmw, lwarx, stwcx., eciwx, or ecowx
instruction is not word-aligned.

A dcbz instruction refers to a page that is marked either cache-inhibited or
write-through.

A dcbz instruction has executed when the 604 data cache is locked or disabled.
An access is not naturally aligned in little-endian mode.

An Imw, stmw, Iswi, Iswx, stswi, or stswx instruction is issued in little-endian
mode.
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

* Floating-point exceptions—A floating-point enabled exception condition
causes an exception when FPSCR[FEX] is set and depends on the values
in MSR[FEO] and MSR[FE1].

FPSCRIFEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

» lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

» Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PRY], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSR[PR] = 1.

» Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer

00900

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved

00AQ00-00BFF

System call

00C00

A system call exception occurs when a System Call (sc) instruction is executed.

Trace

00D00

Either MSR[SE] = 1 and any instruction (except rfi) successfully completed or
MSR[BE] = 1 and a branch instruction is completed.

Floating-point
assist

00EOO

Defined by the PowerPC architecture, but not required in the 604.

Reserved 00E10-00EFF | —

Performance 00F00 The performance monitoring interrupt is a 604-specific exception and is used

monitoring with the 604 performance monitor, described in Section 1.5, “Performance

interrupt Monitor.”
The performance monitoring facility can be enabled to signal an exception
when the value in one of the performance monitor counter registers (PMC1 or
PMC?2) goes negative. The conditions that can cause this exception can be
enabled or disabled in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF —
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Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)
Instruction 01300 An instruction address breakpoint exception occurs when the address (bits O to
address 29) in the IABR matches the next instruction to complete in the completion unit,
breakpoint and the IABR enable bit IABR[30] is set.
System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
management input signal is asserted. This exception is provided for use with the nap mode,
interrupt which is described in Section 1.4, “Power Management—Nap Mode.”
Reserved 01500-02FFF Reserved, implementation-specific exceptions. These are not implemented in
the 604.

1.3.5 Instruction Timing

As shown in Figure 1-7, the common pipeline of the 604 has six stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline
consists of three stages through which al floating-point instructions must pass.

Fetch (IF)
)
Decode (ID)
\i
(Four-instruction dispatch per clock cycle in | Dispatch (DS)

€

any combination) m
/ Execute Stage
SCIu2 ‘ ’ MCIU ‘ ’ FPU

Complete (C)
Y
Write-Back (W)

Figure 1-7. Pipeline Diagram
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The common pipeline stages are as follows:

» Ingtruction fetch (IF)—During the IF stage, the fetch unit loads the decode queue
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

¢ Instruction decode (ID)—During the ID stage, all time-critical decoding is
performed on instructions in the dispatch queue (D1SQ). The remaining decode
operations are performed during the instruction dispatch stage.

» Instruction dispatch (DS)—During the dispatch stage, the decoding that is not
time-critical is performed on the instructions provided by the previous ID stage.
Logic associated with this stage determines when an instruction can be dispatched
to the appropriate execution unit. At the end of the DS stage, instructions and their
operands are latched into the execution input latches or into the unit’s reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

» Execute (E)—While the execution stage is viewed as a common stage in the 604
instruction pipeline, theinstruction flow is split among the six execution units, some
of which consist of multiple pipelines. Aninstruction may enter the execute stage
from either the dispatch stage or the execution unit’s dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifiesthe compl etion stage that theinstruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

¢ Complete (C)—The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB).
Results may be written back from the rename buffers to the register as early asthe
complete stage. If the completion logic detects an instruction containing exception
status or if abranch has been mispredicted, all subsequent instructionsare cancelled,
any results in rename buffers are discarded, and instructions are fetched from the
correct instruction stream.

The CR, CTR, and LR are also updated during the compl ete stage.

*  Writeback (W)—Thewriteback stageis used to write back any information from the
rename buffers that was not written back during the complete stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. Integer divide instructions
iterate in stage two of the multiplier. SPR operations can execute in the MCIU in parallel
with multiply and divide operations.
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The floating-point pipeline has three stages. Floating-point divide operations iterate in the
first stage.

1.4 Power Management—Nap Mode

The 604 provides a power-saving mode, called nap mode, in which all internal processing
and bus operations are suspended. Software initiates nap mode by setting the M SR[POW]
bit. After this bit is set, the 604 suspends instruction dispatch and waits for al activity in
progress, including active and pending bus transactions, to complete. It then powers down
the internal clocks, and indicates nap mode by asserting the HALTED output signal.

When the 604 isin nap mode, all internal activity stops except for decrementer, time base,
and interrupt logic, and the 604 does not snoop bus activity unless the system asserts the
RUN input signal. Asserting the RUN signal causesthe HALTED signal to be negated.

Nap mode is exited (clocks resume and MSR[POW] cleared) when any asynchronous
interrupt is detected.

1.5 Performance Monitor

The 604 incorporates a performance monitor facility that system designers can useto help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

The monitor mode control register 0 (MMCRO) can be used to specify the conditions for
which a performance monitoring interrupt is taken. For example, one such condition is
associated with one of the counter registers (PMC1 or PMC2) incrementing until the most
significant bit indicates a negative value. Additionally, the sampled instruction address and
sampled data address registers (SIA and SDA) are used to hold addresses for instruction
and data related to the performance monitoring interrupt.
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Chapter 2
PowerPC 604 Processor Programming
Model

Thischapter describesthe PowerPC programming model with respect to the 604. It consists
of three major sections, which describe the following:

* Registersimplemented in the 604
» Operand conventions
e The 604 instruction set

2.1 The PowerPC 604 Processor Register Set

This section describes the registers in the 604 and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 604-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 604. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

Note that registers are defined at al three levels of the PowerPC architecture—user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for al computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
istransferred between memory and registers with explicit load and store instructions only.
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2.1.1 Register Set

The PowerPC UISA registers, shown in Figure 2-1, are user-level. The genera-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Accessto registers can be explicit (that is, through the use of specific instructions
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to access the integer exception register (XER) is SPR 1). These registers can
be accessed using the mtspr and mfspr instructions.

Implementation Note—The 604 fully decodes the SPR field of the instruction. If the SPR
specified is undefined, theillegal instruction program exception occurs.
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Figure 2-1. Programming Model—PowerPC 604 Microprocessor Registers
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The PowerPC’s user-level registers are described as follows:

User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— Genera -purpose registers (GPRs). The PowerPC genera -purpose register file

consists of thirty-two GPRs designated as GPRO-GPR31. The GPRs serve as
data source or destination registers for all integer instructions and provide data
for generating addresses. See” General Purpose Registers (GPRs),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for more
information.

Floating-point registers (FPRs). The floating-point register file consists of
thirty-two FPRs designated as FPRO-FPR31, which serves as the data source or
destination for al floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see “Floating-Point Registers (FPRs),” in Chapter 2, “ PowerPC
Register Set,” of The Programming Environments Manual.

Condition register (CR). The CR isa 32-bit register, divided into eight 4-bit
fields, CRO—CRY7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
“Condition Register (CR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual .

Implementation Note—The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fields (mtcrf) instruction may
perform more slowly when only aportion of the fields are updated as opposed to
all of thefields. The condition register access latency for the 604 isthe samein
both cases. In the 604, an mtcrf instruction that sets only asinglefield performs
significantly faster than one that sets either no fields or multiplefields. For more
information regarding the most efficient use of the mterf instruction, see
Section 6.6, “Instruction Scheduling Guidelines.”

Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see “ Floating-Point Status and Control Register
(FPSCR),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual.

I mplementation Note—The PowerPC architecture states that in some
implementations, the Move to FPSCR Fields (mtfsf) instruction may perform
more slowly when only aportion of thefields are updated as opposed to all of the
fields. In the 604 implementation, there is no degradation of performance.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
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registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for
integer operations. It is set implicitly by many instructions. See “XER Register
(XER),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
“Link Register (LR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual .

— Count register (CTR). The CTR holds aloop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can aso
provide the branch target address for the Branch Conditional to Count Register
(bectrx) instruction. For more information, see “Count Register (CTR),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual.

e User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB), a 64-hit structure that maintains and operates an interval timer. The TB
consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level accessto the TB for
writing values to the TB. For more information, see “ PowerPC VEA Register
Set—Time Base,” in Chapter 2, “ PowerPC Register Set,” of The Programming
Environments Manual.

e Supervisor-level registers (OEA)—The OEA defines the registers that are used
typicaly by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are describes as follows:

— Configuration registers

— Machine state register (MSR). The M SR defines the state of the processor.
The M SR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Movefrom Machine State Register (mfmsr) instruction. See“Machine
State Register (MSR),” in Chapter 2, “ PowerPC Register Set,” of The
Programming Environments Manual for more information.
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Implementation Note—Note that the 604 defines MSR[29] as the performance monitor
marked mode bit (PM). This additiona bit is described in Table 2-1.

Table 2-1. MSR[PM] Bit

Bit

Name

Description

29

PM

Performance monitor marked mode

0  Process is not a marked process.

1  Process is a marked process.

This bit is specific to the 604, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 9, “Performance Monitor.”

— Processor version register (PVR). Thisregister is aread-only register that

identifies the version (model) and revision level of the PowerPC processor.
For more information, see “ Processor Version Register (PVR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

Implementation Note—The processor version number is 4 for the 604. The
processor revision level starts at 0x0000 and is different for each revision of
the chip. Therevision level is updated for each silicon revision.

— Memory management registers
— Block-addresstrandation (BAT) registers. The PowerPC OEA includes eight

block-address translation registers (BATS), consisting of four pairs of
instruction BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of
dataBATs (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for
alist of the SPR numbers for the BAT registers. For more information, see
“BAT Registers,” in Chapter 2, “ PowerPC Register Set,” of The Programming
Environments Manual. Because BAT upper and lower words are loaded
separately, software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.

SDR1. The SDR1 register specifies the page table base address used in
virtual-to-physical address trandlation. For more information, see“SDR1,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.”

Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fieldsin the segment register are interpreted
differently depending on the value of bit 0. See “ Segment Registers,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

— Exception handling registers
— Dataaddress register (DAR). After aDSl or an alignment exception, DAR is

set to the effective address generated by the faulting instruction. See “Data
Address Register (DAR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.
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SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. See “ SPRGO-SPRG3,” in Chapter 2, “ PowerPC Register Set,” of
The Programming Environments Manual for more information.

DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “ PowerPC Register Set,” of The
Programming Environments Manual for more information.

Machine status savelrestore register 0 (SRR0). The SRRO register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See “Machine Status Save/Restore Register 0
(SRRO0),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

Machine status save/restore register 1 (SRR1). The SRR1 register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See “Machine Status Save/Restore Register 1
(SRR1),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Miscellaneous registers

Time Base (TB). The TB is a 64-bit structure that maintains the time of day
and operates interval timers. The TB consists of two 32-bit registers—time
base upper (TBU) and time base lower (TBL). Note that the time base
registers can be accessed by both user- and supervisor-level instructions. See
“Time Base Facility (TB)—OEA,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Decrementer register (DEC). Thisregister isa 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See* Decrementer Register (DEC),” in Chapter 2, “ PowerPC Register Set,” of
The Programming Environments Manual for more information.

Implementation Note—In the 604, the decrementer register is decremented
at a speed that is one-fourth the speed of the bus clock.

Dataaddress breakpoint register (DABR)—Thisoptional register can be used
to cause a breakpoint exception to occur if a specified data addressis
encountered. See* DataAddress Breakpoint Register (DABR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for
more information.

External access register (EAR). This optional register is used in conjunction
with the eciwx and ecowx instructions. Note that the EAR register and the
eciwx and ecowx instructions are optional in the PowerPC architecture and
may not be supported in all PowerPC processorsthat implement the OEA. See
“External Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.
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e Hardwareimplementation register s—The PowerPC architecture allows
implementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 604 are described asfollows. Note that in the 604, these registers
are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception to occur if a specified instruction addressis
encountered.

— Hardwareimplementation-dependent register 0 (HIDO)—Thisregister isused to
control various functions within the 604, such as enabling checkstop conditions,
and locking, enabling, and invalidating the instruction and data caches.

— Processor identification register (PIR)—The PIR is a supervisor-level register
that has aright-justified, four-bit field that holds a processor identification tag
used to identify aparticular 604. Thistag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the OEA, the register definition isimplementation-specific.

— Performance monitor counter registers (PMC1 and PMC2). The counters are
used to record the number of times a certain event has occurred.

— Monitor mode control register 0 (MMCRO)—Thisis used for enabling various
performance monitoring interrupt conditions and establishes the function of the
counters.

— Sampled instruction address and sampled data address registers (SIA and

SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registersis consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 604-Specific Registers

This section describes registers that are defined for the 604 but are not included in the
PowerPC architecture. This section also includes adescription of the PIR, whichisassigned
an SPR number by the architecture but is not defined by it. Note that these are al
supervisor-level registers.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The 604 aso implements an Instruction Address Breskpoint Register (IABR). When
enabled, instruction fetch addresses will be compared with an effective address that is
stored in the IABR. The granularity of these compares will be aword. If the word specified
by the IABR isfetched, the instruction breakpoint handler will be invoked. The instruction
which triggers the breakpoint will not be executed before the handler isinvoked.

ThelABR isshownin Figure 2-2.
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ADDRESS |BE|TE|

0 29 30 31

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bitsin the IABR are defined as shown
in Table 2-2.

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description
0-29 Word address to be compared
30 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.
31 Translation enabled. This bit is compared with the MSRJ[IR] bit. An IABR match is
signaled only if these bits also match.

Theinstruction that triggerstheinstruction address breakpoint exception is executed before
the exception handler is invoked. For more information about the IABR exception, see
Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).”

The IABR can be accessed with the mtspr and mfspr instructions using the SPR number,
1010.

2.1.2.2 Processor ldentification Register (PIR)

The processor identification register (PIR) is a 32-bit register that holds a processor
identification tag in the four least significant bits (PIR[28-31]). This tag is useful for
processor differentiation in multiprocessor system designs. In addition, thistag is used for
several direct-store bus operationsin the form of a*“bus transaction from” tag.

PIR [] Reserved

0000000000000O0O00OOCOOOOOOOOOOOO | PID |
0 27 28 31

Figure 2-3. Processor Identification Register
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The PIR can be accessed with the mtspr and mfspr instructions using the SPR number,
1013. Notethat although this number is defined by the OEA, theregister structureisdefined
by each implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register O

The hardware implementation dependent register O (HIDO) isan SPR that controlsthe state
of several functions within the 604.

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings

Bit

Description

Enable machine check input pin

0  The assertion of the MCP does not cause a machine check exception.

1  Enables the entry into a machine check exception based on assertion of the MCP input, detection of a
Cache Parity Error, detection of an address parity error, or detection of a data parity error.

Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the

processor checkstops or continues processing.

Enable cache parity checking

0  The detection of a cache parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

Enable machine check on address bus parity error

0  The detection of a address bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

Enable machine check on data bus parity error

0  The detection of a data bus parity error does not cause a machine check exception.

1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SHD and ARTRY
signals to the high (negated) state. If this is done, then the system must restore the signals to the high state.

15

Not hard reset
0 A hard reset occurred if software had previously set this bit
1  Ahard reset has not occurred.

16

Instruction cache enable

0  The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.

1  Theinstruction cache is enabled

17

Data cache enable

0  The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.

1  The data cache is enabled.
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Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

18 | Instruction cache lock

0  Normal operation

1  Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry.

19 | Data cache lock

0  Normal operation

1  Allmisses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to
work as normal. This is the only method for “deallocating” an entry. The dcbz instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.

20 Instruction cache invalidate all

0  The instruction cache is not invalidated.

1 When set, an invalidate operation is issued that marks the state of each clock in the instruction cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 | Data cache invalidate all

0  The data cache is not invalidated.

1  When set, an invalidate operation is issued that marks the state of each clock in the data cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write

operation to the register). Note that the data cache must be enabled for the invalidation to occur.

24 | Serial instruction execution disable

0  The 604 executes one instruction at a time. The 604 does not post a trace exception after each
instruction completes, as it would if MSR[SE] or MSR[BE] were set.

1 Instruction execution is not serialized.

29 | Branch history table enable

0  The 604 uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch
instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section “Conditional Branch Control,” in Chapter 4 of The Programming Environments Manual.

1  Allows the use of the 512-entry branch history table (BHT).

The BHT is initialized and disabled at power-on reset. The BHT is updated while it is disabled, so it can be

initialized before it is enabled.

2.1.2.4 Performance Monitor Registers

The remaining five registers defined for use with the 604 are used by the performance
monitor. For more information about the performance monitor, see Chapter 9,
“Performance Monitor.”

2.1.2.4.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

Chapter 2. PowerPC 604 Processor Programming Model 2-11



The MMCRO can be written to or read only in supervisor mode. The MM CRO includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-4.

Table 2-4. MMCRO Bit Settings

Bit

Name

Description

DIS

Disable counting unconditionally
0  The values of the PMCn counters can be changed by hardware.
1  The values of the PMCn counters cannot be changed by hardware.

DP

Disable counting while in supervisor mode

0  The PMCn counters can be changed by hardware.

1  If the processor is in supervisor mode (MSR[PR] is cleared), the counters
are not changed by hardware.

DU

Disable counting while in user mode

0  The PMCn counters can be changed by hardware.

1  If the processor is in user mode (MSR[PR] is set), the PMC counters are not
changed by hardware.

DMS

Disable counting while MSR[PM] is set
0  The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

DMR

Disable counting while MSR(PM) is zero.
0  The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

ENINT

Enable performance monitoring interrupt signaling.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.

DISCOUNT

Disable counting of PMC1 and PMC2 when a performance monitor interrupt is
signaled (that is, (PMCNINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or
the occurrence of an enabled time base transition with (INTONBITTRANS =1) &
(ENINT = 1)).

0  The signalling of a performance monitoring interrupt has no effect on the
counting status of PMC1 and PMC2.

1 The signalling of a performance monitoring interrupt prevents the changing
of the PMC1 counter. The PMC2 counter will not change if
PMC2COUNTCTL =0.

Because a time base signal could have occurred along with an enabled counter

negative condition, software should always reset INTONBITTRANS to zero, if the

value in INTONBITTRANS was a one.

7-8

RTCSELECT

64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11  Pick bit 47 to count
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Table 2-4. MMCRO Bit Settings (Continued)

Bit Name Description
9 INTONBITTRANS Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on

0 Do not allow interrupt signal if chosen bit transitions.
1  Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10-15 | THRESHOLD Threshold value. All 6 bits are supported by the 604; allowing threshold values
from 0 to 63. The intent of the THRESHOLD support is to be able to characterize
L1 data cache misses.

16 PMC1INTCONTROL | Enable interrupt signaling due to PMC1 counter negative.
0  Disable PMC1 interrupt signaling due to PMC1 counter negative
1  Enable PMC1 Interrupt signaling due to PMC1 counter negative

17 PMC2INTCONTROL | Enable interrupt signalling due to PMC2 counter negative. This signal overrides
the setting of DISCOUNT.

0  Disable PMC2 interrupt signaling due to PMC2 counter negative

1  Enable PMC2 Interrupt signaling due to PMC2 counter negative

18 PMC2COUNTCTL May be used to trigger counting of PMC2 after PMC1 has become negative or

after a performance monitoring interrupt is signaled.

0  Enable PMC2 counting

1  Disable PMC2 counting until PMCL1 bit O is set or until a performance monitor
interrupt is signaled

This signal can be used to trigger counting of PMC2 after PMC1 has become

negative. This provides a triggering mechanism for counting after a certain

condition occurs or after a preset time has elapsed. It can be used to support

getting the count associated with a specific event.

19-25 | PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 2-5.

26-31 | PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 2-6.

2.1.2.4.2 Performance Monitor Counter Registers (PMC1 and PMC2)
PMC1 and PMC2 are 32-hit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). However,
an interrupt is not signaled unless both PCMn[INTCONTROL] and MMCRO[ENINT] are
also set.

Note that the interrupts can be masked by clearing MSR[EE]; theinterrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MM CRO[DISCOUNT] forces the counters stop counting when a counter interrupt
occurs.

PMC1 and PMC2 are SPRs 953 and 954, respectively, and can be read and written to by
using the mfspr and mtspr instructions. Software is expected to use the mtspr instruction
to explicitly set the PMC register to non-negative values. If software sets a negative value,
an erroneous interrupt may occur. For example, if both PCMn[INTCONTROL] and
MMCRO[ENINT] are set and the mtspr instruction is used to set a negative value, an
interrupt signal condition may be generated prior to the completion of the mtspr and the
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values of the SIA and SDA may not have any relationship to the type of instruction being

counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO0[19-31]. The number of occurrences of these selected events is counted from the
time the MMCRO was set either until a new value is introduced into the MM CRO register
or until a performance monitor interrupt is generated. Table 2-5 lists the selectable events
with their appropriate MM CRO encodings.

Table 2-5. Selectable Events—PMC1

MMCRO[19-25]

Encoding Description
000 0000 Nothing
000 0001 Processor cycles
000 0010 Number of instructions completed
000 0011 RTCSELECT bit transition
000 0100 Number of instructions dispatched
000 0101 Icache misses
000 0110 dtlb misses
000 0111 Branch predicted incorrectly
000 1000 Number of reservations requested (LARX is ready for execution)
000 1001 Number of load dcache misses that exceeded the threshold value with lateral L2 intervention
000 1010 Number of store dcache misses that exceeded the threshold value with lateral L2 intervention
000 1011 Number of mtspr instructions dispatched
000 1100 Number of sync instructions
000 1101 Number of eieio instructions
000 1110 Number of integer instructions being completed every cycle (no loads or stores)
000 1111 Number of floating-point instructions being completed every cycle (no loads or stores)
001 0000 LSU produced result
001 0001 SCIU1 produced result
001 0010 FPU produced result
001 0011 Instructions dispatched to the LSU
001 0100 Instructions dispatched to the SCIU1
001 0101 Instructions dispatched to the FP unit
001 0110 Snoop requests received
001 0111 Number of load dcache misses that exceeded the threshold value without lateral L2 intervention
001 1000 Number of store dcache misses that exceeded the threshold value without lateral L2 intervention
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Bits MM CRO[26-31] are used for selecting events associated with PMC2. These settings are
shown in Table 2-6.

Table 2-6. Selectable Events—PMC2

MMCRO[26-31] Description
Select Encoding

00 0000 Nothing

00 0001 Processor cycles

00 0010 Number of instructions completed

00 0011 RTCSELECT bit transition

00 0100 Number of instructions dispatched

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses

000111 Instruction tlb misses

00 1000 Branches completed

00 1001 Number of reservations successfully obtained (STCX succeeded)

00 1010 Number of mfspr instructions dispatched

00 1011 Number of icbi instructions

00 1100 Number of isync instructions

00 1101 Branch unit produced result

00 1110 SCIUO produced result

001111 MCIU produced result

01 0000 Instructions dispatched to the branch unit

01 0001 Instructions dispatched to the SCIUO

01 0010 Number of loads completed

010011 Instructions dispatched to the MCIU

01 0100 Number of snoop hit occurred

2.1.2.4.3 Sampled Instruction Address Register (SIA)

The two address registers contain the addresses of the data or the instruction that caused a
threshold-related performance monitor interrupt. For more information on
threshol d-related interrupts, see Section 9.1.2.2, “ Threshold Events”

The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by athreshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective addressis put
in the SIA is called the sampled instruction.
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If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match theinstruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 955).

2.1.2.4.4 Sampled Data Address Register (SDA)

The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the performance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than athreshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 959).

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of datain these registers.

2.2.1 Floating-Point Execution Models—UISA

The |IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

« Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

» Single-precision arithmetic instructions require al operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is doneimplicitly
by the processor.
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All PowerPC implementations provide the equivalent of the following execution modelsto
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

¢ Underflow during multiplication using a denormalized operand
¢ Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length isimplicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “ natural” address of an operand
isan integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-7. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands).

The concept of alignment is also applied more generally to datain memory. For example,
a 12-byte dataitem is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory accessinstructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

2.2.4 Floating-Point Operand

The 604 provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
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standard 754-1985, |IEEE Sandard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual .

The 604 supports non-lEEE mode whenever FPSCR[29] is set. In this mode, denormalized
numbers, NaNs, and some |EEE invalid operations are treated in a non-1EEE conforming
manner. Thisisaccomplished by delivering results that approximate the values required by
the |EEE standard. Table 2-7 summarizes the conditions and mode behavior for operands.

Table 2-7. Floating-Point Operand Data Type Behavior

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI =0) (NI=1)
Single denormalized Single denormalized Single denormalized Normalize all three | Zero all three
Double denormalized | Double denormalized | Double denormalized
Single denormalized Single denormalized Normalized or zero Normalize Aand B | Zero Aand B
Double denormalized | Double denormalized
Normalized or zero Single denormalized Single denormalized Normalize Band C | ZeroB and C
Double denormalized | Double denormalized
Single denormalized Normalized or zero Single denormalized Normalize Aand C | Zero Aand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized Normalize C Zero C
Double denormalized
Single QNaN Don't care Don't care QNanN! QNaN!!
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNaNM QNaNM
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNanl QNanl
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero
Double normalized Double normalized Double normalized
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

L Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.
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Table 2-8 summarizes the mode behavior for results.

Table 2-8. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)
Single Denormalized Return single-precision Return zero.
denormalized number with trailing
zeros.
Single Normalized Return the result. Return the result.
Infinity
Zero
Single QNaN Return QNaN. Return QNaN.
SNaN
Single INT Place integer into low word of FPR. | If (Invalid Operation)
then
Place (0x8000) into FPR[32-63]
else
Place integer into FPR[32-63].
Double Denormalized Return double precision Return zero.
denormalized number.
Double Normalized Return the result. Return the result.
Infinity
Zero
Double QNaN Return QNaN. Return QNaN.
SNaN
Double INT Not supported by 604 Not supported by 604

2.2.5 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual .

2.3 Instruction Set Summary

This chapter describes instructions and addressing modes defined for the 604. These

instructions are divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

» Foating-point instructions—Theseincludefloating-point arithmetic instructions, as

well asinstructionsthat affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”
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» Loadand storeinstructions—Theseinclude integer and floating-point |oad and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

« Flow contral instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

* Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, “ Processor Control Instructions—UISA "
Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA.”

« Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

¢ Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For moreinformation, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA.”

« External control instructions—These include instructions for use with special
input/output devices. For moreinformation, see Section 2.3.5.4, “ Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes aparticular instruction or group of instructions. Thisinformation, which isuseful
in taking full advantage of the 604’s superscalar parallel instruction execution, is provided
in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
usesinstructions that are four byteslong and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It aso provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and aformatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified
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mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portabl e across the various assemblersfor the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 604 instructions belong to one of the following three classes:

* Defined
e lllega
¢ Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the 604.

The classis determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of areserved instruction, the instruction isillegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 604 provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 604 provides hardware support for all instructions defined for 32-bit implementations.
The 604 does not support the optional fsgrt, fsgrts, and tlbia instructions.
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A defined instruction can have invalid forms. The 604 provides limited support for
instructions that are represented in an invalid form. Appendix B, “Invalid Instruction
Forms,” lists al invalid instruction forms and specifies the operation of the 604 upon
detecting each.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

* Instructions not defined in the PowerPC architecture. The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1,4,5,6,9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture may define any of these instructionsto
perform new functions.

» Instructions defined in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-hit
PowerPC processors are considered illegal by 32-bit processors such as the 604.

Thefollowing primary opcodes are defined for 64-bit implementations only and are
illegal on the 604:

2, 30, 58, 62

» All unused extended opcodes areillegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 areillegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

¢ Aninstruction consisting of only zerosisguaranteed to beanillegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokesthe systemillegal instruction error handler (aprogram exception). Note that
if only the primary opcode consists of all zeros. Theinstruction is considered a
reserved instruction, as described in Section 2.3.1.4, “ Reserved Instruction Class”

The 604 invokes the system illegal instruction error handler (a program exception) when it
detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, “ Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. With the exception of the instruction consisting entirely
of binary zeros, theillegal instructions are available for further additions to the PowerPC
architecture.
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2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” in The Programming
Environments Manual for additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:
« Instructionsin the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, “POWER Architecture Cross Reference,” in
The Programming Environments Manual.

* Implementation-specific instructions required to conform to the PowerPC
architecture

« Architecturally-alowed extended opcodes
* Implementation-specific instructions

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering,” in Chapter 3, “Operand Cornventions,” of The Programming
Environments Manual for more information about big- and little-endian byte ordering.
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The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
isan integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwiseitismisaligned. For adetailed discussion about
memory operands, see Chapter 3, “Operand Conventions,” of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored.

L oad and store operations have three categories of effective address generation:

* Register indirect with immediate index mode
* Register indirect with index mode
» Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

e Immediate
e Link register indirect
» Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
achange in context. Execution of one of these instructions ensures the following:

« No higher priority exception exists (sc).

« All previousinstructions have completed to a point where they can no longer cause
an exception. If aprior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before thisinstruction is
executed.
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» Previousinstructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

« Theinstructionsfollowing the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and will not cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the
mtmsr instruction, aprivileged instruction could be executed or privileged access could be
performed without causing an exception even though the M SR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 604—those caused directly by the execution of an
instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

¢ An attempt to execute an illegal instruction causes theillegal instruction (program
exception) handler to beinvoked. An attempt by auser-level program to execute the
supervisor-level instructions listed below causesthe privileged instruction (program
exception) handler to be invoked. The 604 provides the following supervisor-level
instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tibie, and tibsync. Note that the privilege level of themfspr and mtspr instructions
depends on the SPR encoding.

« Anattempt to access memory that is not available (page fault) causes the | S|
exception handler to be invoked.

« Anattempt to access memory with an effective address alignment that isinvalid for
the instruction causes the alignment exception handler to be invoked.

» Theexecution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

» The execution of atrap instruction invokes the program exception trap handler.

« The execution of afloating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

¢ Theexecution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “ Exceptions.”
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2.3.3 Instruction Set Overview

This section provides abrief overview of the PowerPC instructionsimplemented in the 604
and highlights any special information with respect to how the 604 implements a particul ar
instruction. Note that the categories used in this section correspond to those used in
Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

¢ CR Update—Thedot (.) suffix on the mnemonic enables the update of the CR.
« Overflow option—The o suffix indicates that the overflow bit inthe XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding afew user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

« Integer arithmetic instructions

* Integer compare instructions

* Integer logical instructions

» Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-9 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-9. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax
Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
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Table 2-9. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low mullw  (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw  (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu  (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation iscomplete. The
604 arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the integer exception register are set to reflect an overflow condition
of a 32-bit result. This may only occur when the overflow enable bit is set (OE = 1).
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2.3.4.1.2 Integer Compare Instructions

Theinteger compareinstructions algebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register r B. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-10
summarizes the integer compare instructions.

Table 2-10. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rArB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rArB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logica instructions shown in Table2-11 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] bhits.

See Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-11. Integer Logical Instructions

Name Mnemonic Ospyer:;r;d
AND Immediate andi. rA,rS,UuIMM
AND Immediate Shifted andis. rA,rS,UIMM
OR Immediate ori rA,rS,UIMM
OR Immediate Shifted oris rA,rS,UuIMM
XOR Immediate Xori rA,rS,UuiMM
XOR Immediate Shifted Xoris rA,rS,UIMM
AND and (and.) rA,rS,rB
OR or (or.) rA,rS,rB

2-28 PowerPC 604 RISC Microprocessor User's Manual



Table 2-11. Integer Logical Instructions (Continued)

Name Mnemonic Ospyir;r;d

XOR xor (xor.) rArS,rB
NAND nand (nand.) rA,rS,rB
NOR nor (nor.) rA,rS,rB
Equivalent eqv (eqv.) rA,rS,rB
AND with Complement andc (andc.) rA,rS,rB
OR with Complement orc (orc.) rA,rS,rB
Extend Sign Byte extsb (extsb.) rA,rS

Extend Sign Half Word extsh (extsh.) rArS

Count Leading Zeros Word cntlzw (cntlzw.) | rArS

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
alows ssmpler coding of often-used functions such as clearing the leftmost or rightmost
bits of aregister, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructionsrotate the contents of aregister. Theresult of therotation is either
inserted into the target register under control of amask (if amask hit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with amask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-12.

Table 2-12. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask

rlwinm (rlwinm.)

rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask

rlwnm (rlwnm.)

rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert

riwimi (rlwimi.)

rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.
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Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-13.

Table 2-13. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word slw  (slw.) rA,rS,rB
Shift Right Word srw  (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

Floating-point arithmetic instructions

Floating-point multiply-add instructions
Floating-point rounding and conversion instructions
Floating-point compare instructions

Floating-point status and control register instructions
Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the |IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-14.

Table 2-14. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul  (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Divide (Double-Precision) fdiv  (fdiv.) frD,frA,frB
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Table 2-14. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Square Root (Double-Precision) fsqrt (fsqrt.) frD,frB
Floating Square Root Single fsqrts (fsqrts.) frD,frB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate frsgrte (frsqrte.) frD,frB
Floating Select fsel frD,frA,frC,frB

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-15.

Table 2-15. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frAfrC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frAfrC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Foating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precison number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.
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Examples of uses of these instructions to perform various conversions can be found in

Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

Table 2-16. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fctiw  (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare
instructions are summarized in Table 2-17.

Table 2-17. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Unordered fcmpu crfD,frA,frB
Floating Compare Ordered fcmpo crfD,frA,frB

Within the PowerPC architecture, an fcmpu or fcmpo instruction with the Rc bit set can
cause an illegal instruction program exception or produce a boundedly undefined result. In
the 604, cr fD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by agiven processor. Executing an FPSCR instruction ensuresthat all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-18.

Table 2-18. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) | crbD
Move to FPSCR Bit 1 mtfsbl (mtfsbl.) | crbD

PowerPC 604 RISC Microprocessor User's Manual




2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-19 summarizes the floating-point
move instructions.

Table 2-19. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Move Register fmr  (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and trandlated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

Integer load instructions

Integer storeinstructions

Integer load and store with byte reverse instructions
Integer load and store multiple instructions
Floating-point load instructions

Floating-point store instructions

Memory synchronization instructions

Implementation Notes—The following describes how the 604 handles misalignment:

If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal
segment, an exception may occur when the boundary is crossed (that is, aprotection
violation occurs on the new page). In these cases, the 604 triggers a DS| exception
and the instruction may have partially completed.

Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the sametype. Memory accessesthat crossaword boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point
doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.
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* Any operation that crosses aword boundary (doubleword for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accessesistrandated. If either tranglation resultsin adata memory violation, aDS
exception issignaled. If two trandations crossfrom T = 1 into T = 0 space (a
programming error), the 604 completes al of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and he 604 requires a direct-store protocol “Reply” from the
device. If two tranglations crossfrom T = 0into T = 1 space, aDSl exceptionis
signaled.

* Inthe PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form isinvalid. These include the
integer load indexed instructions (Ibzx, Ibzux, Ihzx, Ihzux, Ihax, [haux, lwzx,
Iwzux), the integer store indexed instructions (stbx, stbux, sthx, sthux, stwx,
stwux), the load and store with byte-reversal instructions (Ihbrx, lwbrx, sthbrx,
stwbrx), the string instructions (Iswi, Iswx, stswi, stswx), and the synchronization
instructions (sync, lwar x). In the 604, executing one of these invalid instruction
forms causes CRO to be set to an undefined value. The floating-point load and store
indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux, stfdx, stfdux) are also
invalid when the Rc bit is one. In the 604, executing one of these invalid instruction
forms causes CRO to be set to an undefined value.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory

sync |wait for update

icbi [remove (invalidate) copy in instruction cache
sync |wait for ichi to be globally performed

isync [remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to itemsin the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxesin systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “ Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the 604
does not broadcast the M hit for instruction fetches, external caches are subject to
coherency paradoxes.
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2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exception
(0x00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA #0andrA #rD (otherwiseinvalid), the EA isplaced into r A and the memory el ement
(byte, half word, word, or double word) addressed by the EA isloaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA =rD asinvalid forms.

Implementation Notes—The following notes describe the 604 implementation of integer
load instructions:

* Inthe PowerPC architecture, the Rc bit must be zero for ailmost all load and store
instructions. If the Rc bit is one, the instruction form isinvalid. These include the
integer load indexed instructions (Ibzx, Ibzux, Thzx, Ihzux, Ihax, lhaux, lwzx, and
Iwzux). In the 604, executing one of these invalid instruction forms causes CRO to
be set to an undefined value.

» For load with update instructions (Ibzu, Ibzux, Ihzu, lhzux, lhau, Ihaux, lwzu,
Iwzux, Ifsu, Ifsux, Ifdu, Ifdux), whenrA =0 or rA =rD theinstruction formis
considered invalid. If rA =0, the 604 sets GPRO to an undefined value. If rA =rD,
the 604 setsr D to an undefined value.

» The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebraic (Iha, Ihax) instructions with
greater latency than other types of load instructions. Thisis not the case for the 604.

Table 2-20 summarizes the integer load instructions.

Table 2-20. Integer Load Instructions

Name Mnemonic Operand Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update lbzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
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Table 2-20. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed | Ihaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents of r S are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

« IfrA £0, the effective addressis placed into rA.

« IfrS=rA, the contents of register r S are copied to the target memory element, then
the generated EA isplaced intorA (rS).

The PowerPC architecture defines store with update instructionswithrA = 0 asan invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-21
summarizes the integer store instructions.
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Table 2-21. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rArB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

Implementation Notes—The following notes describe the 604 implementation of integer
store instructions:

* |nthe PowerPC architecture, the Rc bit must be zero for ailmost all load and store
instructions. If the Rc bit is one, the instruction form isinvalid. These include the
integer store indexed instructions (stbx, stbux, sthx, sthux, stwx, stwux). In the
604, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

< For the store with update instructions (stbu, stbux, sthu, sthux, stwu, stwux, stfsu,
stfsux, stfdu, stfdux), when rA =0, the instruction form is considered invalid. In
this case, the 604 sets GPRO to an undefined value.

2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions

Table 2-22 describes integer load and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing datain big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, “Byte Ordering,” in The Programming
Environments Manual.

Implementation Note—In the PowerPC architecture, the Rc bit must be zero for almost
all load and store instructions. If the Rc bit is one, the instruction form is invalid. These
include the load and store with byte-reversal instructions (Ihbrx, lwbrx, sthbrx, stwbrx).
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In the 604, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

Table 2-22. Integer Load and Store with Byte Reverse Instructions
Name Mnemonic Operand Syntax
Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB
Load Word Byte-Reverse Indexed lwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

2.3.4.3.6 Integer Load and Store Multiple Instructions

The load/store multipleinstructions are used to move blocks of datato and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DS| exception associated with the address translation of the second page.

Implementation Notes—The following describes the 604 implementation of the
load/store multiple instruction:

The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructions (Imw and stmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 604
provides hardware support for Imw, stmw, Iswi, Iswx, stswi, and stswx instructions
to cross a page boundary. However, aDSI exception may occur when the boundary
is crossed (for example, if a protection violation occurs on the new page).

Executing an Imw instruction in which r A isin the range of registers to be loaded
orinwhich RA =RT =0isinvalidinthearchitecture. Inthe 604, al registersloaded
are set to undefined values. Any exceptions resulting from a memory access cause
the system error handler normally associated with the exception to be invoked.

The 604’s implementation of the Imw instruction allows one word of datato be
transferred to the GPRs per internal clock cycle (that is, one register isfilled per
clock) whenever the datais found in the cache. For the stmw instruction, datais
transferred from the GPRs to the cache at arate of one word (GPR) per clock cycle.

When an Imw or stmw accessisto honcacheable memory, dataistransferred onthe
external bus at arate of oneword per external bustenure. Bus tenures are pipelined,
allowing a maximum tenure rate of one address tenure every three bus-clock cycles.

Theload multiple and load string instructions can beinterrupted after theinstruction
has partially completed. If r A has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.
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The PowerPC architecture defines the load multiple word (Imw) instruction with r A in the
range of registers to be loaded as an invalid form.

Table 2-23. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word | stmw rS,d(rA)

2.3.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registersor from registersto memory without concern for alignment. Theseinstructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-24
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, “Byte Ordering,” in The Programming Environments Manual for more
information.

Table 2-24. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax
Load String Word Immediate | Iswi rD,rANB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate | stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the sametype.
A non-word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.
A non-word-aligned string operation that crosses a double-word boundary is also slower
than aword-aligned string operation.
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Implementation Note—The following describes the 604 implementation of the load/store
string instruction:

* The 604 provides hardware support for Imw, stmw, Iswi, Iswx, stswi, and stswx
instructions to cross a page boundary. However, a DSI exception may occur when
the boundary is crossed (for example, if a protection violation occurs on the new
page).

* Anlswi or Iswx instructioninwhichrA or rB isin the range of registers potentially
to beloaded or inwhichrA =rD = 0isaninvalid instruction form. In the 604, all
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

» Theload multiple and load string instructions can be interrupted after theinstruction
has partialy completed. If r A has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

» The 604 executesload string operationsto cacheable memory at two cycles per word
if they are word-aligned. Two additional cycles per instruction are required if they
arenot word-aligned. Cache-inhibited load string instructionsrequire one bustenure
per word if they are aligned. An additional tenure per instruction isrequired if a
cache-inhibited load string operation is not word aligned.

* The 604 executes store string operations to cacheable memory at arate of one cycle
per word if they are word-aligned. Cacheable store string operations that are not
word-aligned require five cycles per word. Cache-inhibited store string instructions
require one bus tenure per word if they are word-aligned. Two bus tenures per word
are required if a store string operation is not word aligned.

¢ Theload multiple and load string instructions can beinterrupted after theinstruction
has partially completed. If r A has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

2.3.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access resultsin an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading the operandsinto the target
FPR.
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Implementation Notes—T he following notes characterize how the 604 treats exceptions:

¢ Onthe 604, if afloating-point number is not aligned on aword boundary, an
alignment exception occurs.

« Thefloating-point load and store indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the 604, executing one
of these invalid instruction forms causes CRO to be set to an undefined value.

Note that the PowerPC architecture defines load with update instructionswithrA =0 asan
invalid form.

Table 2-25. Floating-Point Load Instructions

Name Mnemonic Operand Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rArB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

2.3.4.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-26 summarizes the floating-point store instructions.

Table 2-26. Floating-Point Store Instructions

Name Mnemonic Operand Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,r B
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,r B
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
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Table 2-26. Floating-Point Store Instructions (Continued)

Name Mnemonic Operand Syntax
Store Floating-Point Double with Update Indexed stfdux frS,r B
Store Floating-Point as Integer Word Indexed stfiwx frS,rB

Some floating-point store instructions require conversions in the LSU. Table 2-27 shows
the conversions made by the LSU when performing a Store Floating-Point Single
instruction.

Table 2-27. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized If(exp < 896)
then Denormalize and Store
else
Store
Double Denormalized Store Zero
Double Zero Store
Infinity
QNaN
Double SNaN Store

2-42 PowerPC 604 RISC Microprocessor User's Manual



Table 2-28 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is ssmply stored.
Only in afew cases are any other actions taken.

Table 2-28. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero Store
Infinity
QNaN
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero Store
Infinity
QNaN
Double SNaN Store

Architecturally, al floating-point numbers are represented in double-precision format
within the 604. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The 604 supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cyclesarerequired to compl ete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the 604, there is aso a case
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is adenormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles areincurred during the store.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of hitsin the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.
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2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aigned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

¢ Branch relative

¢ Branch conditiona to relative address
¢ Branch to absolute address

¢ Branch conditional to absolute address
¢ Branch conditional to link register

¢ Branch conditional to count register

Note that in the 604, al branch instructions (b, ba, bl, bla, bc, bca, bel, bcla, belr, belrl,
bectr, bectrl) and condition register logical instructions (crand, cror, crxor, crnand,
crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bitsinthe
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the 604 flush speculatively
executed instructions and restore the machine state to immediately after the branch. This
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions

Table 2-29 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbolsis provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics” in The
Programming Environments Manual for alist of simplified mnemonic examples.

Table 2-29. Branch Instructions

Name Mnemonic Operand Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bcl bcla) BO,Bl,target_addr
Branch Conditional to Link Register belr  (bclrl) BO,BI
Branch Conditional to Count Register becetr  (bectrl) BO,BI
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2.3.4.4.3 Condition Register Logical Instructions

Condition register logica instructions, shown in Table 2-30, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Table 2-30. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA, crbB
Condition Register AND with Complement crandc crbD,crbA, crbB
Condition Register OR with Complement crorc crbD,crbA, crbB
Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions asinvalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-31 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-31. Trap Instructions

Name Mnemonic Operand Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
acomplete set of simplified mnemonics.
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2.3.4.5 System Linkage Instruction—UISA

This section describes the System Call (sc) instruction that permits a program to call on the
system to perform a servicee See aso Section2.3.6.1, “System Linkage
Instructions—OEA,” for additional information.

Table 2-32. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax

System Call sc —

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5.1, “Processor Control Instructions—VEA,” for the mftb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-33 summarizestheinstructionsfor reading from or writing to the condition register.

Table 2-33. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER mcrxr crfD
Move from Condition Register mfcr rD

Note that the performance of the mtcrf instruction depends greatly on whether only one
field is being accessed or either no fields or multiple fields are accessed as follows:

¢ Those mterf instructions that update only one field are executed in either of the
SClUs and the CR field is renamed as with any other SCIU instruction.

¢ Thosemtcrf instructionsthat update either multiplefieldsor nofieldsare dispatched
to the MCIU and a count/link scoreboard bit is set. When that bit is set, no more
mtcrf instructions of the sametype, mtspr instructionsthat update the count or link
registers, branch instructions that depend on the condition register and CR logical
instructions can be dispatched to the MCIU. The bit is cleared when the mtctr,
mtcrf, or mtlr instruction that the bit is executed.
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Because mtcrf instructions that update a single field do not require such synchronization
that other mtcr f instructions do, and because two such single-field instructions can execute
in paralel, it istypically more efficient to use multiple mtcrf instructions that update only
one field apiece than to use one mterf instruction that updates multiple fields. A rule of
thumb follows:

* Itisalways more efficient to use two mtcrf instructions that update only one field
apiece than to use one mterf instruction that updates two fields.

— It isalmost always more efficient to use three or four mtcrf instructions that
update only one field apiece than to use one mtcr f instruction that updates three
fields.

— Itisoften more efficient to use more than four mtcr f instructionsthat update only
one field than to use one mtcrf instruction that updates four fields.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-34 lists the mtspr and mfspr instructions.

Table 2-34. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr rD,SPR

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and

about related aspects of memory synchronization.

Table 2-35. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax
Load Word and Reserve Indexed lwarx rD,rA,rB
Store Word Conditional Indexed stwcex. rS,rA,rB
Synchronize sync —

The proper paired use of thelwar x with stwex. instructions allows programmers to emul ate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” The Iwarx instruction must be paired with an stwcx.
instruction with the same effective address used for both instructions of the pair. Note that
the reservation granularity is implementation-dependent. See 2.3.5.2, “Memory
Synchronization Instructions—VEA,” for detail s about additional memory synchronization
(eieio and isync) instructions.
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Implementation Notes—The following notes describe the 604 implementation of memory
synchronization instructions:

» The PowerPC architecture requires that memory operands for Load and Reserve
(Iwarx) and Store Conditional (stwcx.) instructions must be word-aligned. If the
operands to these instructions are not word-aligned on the 604, an alignment
exception occurs.

» The PowerPC architecture indicates that the granularity with which reservations for
Iwar x and stwcx. instructions are managed isimplementation-dependent. |nthe 604
reservations, this granularity is a 32-byte cache block.

¢ Thesync instruction causes the 604 to serialize. The sync instruction can be
dispatched with other instructions that are before it, in program order. However, no
more instructions can be dispatched until the sync instruction compl etes.
Instructions aready in the instruction buffer, due to prefetching, are not refetched
after the sync completes. If reflecting is required, isync should be executed to flush
the instruction buffer after the sync. The sync is dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Rc bit must be zero for amost al load and store
instructions. If the Rc bit is one, the instruction form isinvalid. These include the sync and
Iwar x instructions. In the 604, executing one of these invalid instruction forms causes CRO
to be set to an undefined value. The stwex. instruction isthe only load/store instruction that
hasavalid form if Rcis set. If the Rc bit is zero, the result of executing thisinstruction in
the 604 causes CRO to be set to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aiasing, and other related issues.
Implementationsthat conform to theVEA also adhereto the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), theVEA
definesthe mftb instruction (user-level instruction) for reading the contents of thetime base
register; see Chapter 3, “Cache and Bus Interface Unit Operation,” for more information.
Table 3-34 shows the mftb instruction.

Table 2-36. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR
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Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both abasic and simplified
mnemonic. Assemblers recognize an mftb mnemonic with two operands asthe basic form,
and an mftb mnemonic with one operand as the simplified form.

Implementation Notes—The following information is useful with respect to using the
time base implementation in the 604:

« The 604 allows user-mode read access to the time base counter through the use of
the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a32-bit PowerPC implementation, the 604 supports separate access
tothe TBU and TBL, whereas 64-bit implementations can access the entire TB
register at once.

e Thetime base counter is clocked at afrequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the timebase enable (TBE) input signal.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and
about related aspects of memory synchronization.

Table 2-37 describes the memory synchronization instruction s defined by the VEA.

Table 2-37. Memory Synchronization Instructions—VEA

Name Mnemonic Operand Implementation Notes
Syntax

Enforce In-Order eieio — The eieio instruction is dispatched by the 604 to the LSU. The

Execution of I/O eieio instruction executes after all preceding cache-inhibited
or write-through memory instructions execute; all following
cache-inhibited or write-through instructions execute after the
eieio instruction executes. When the eieio instruction
executes, an EIEIO address-only operation is broadcast on
the external bus to allow ordering to be enforced in the
external memory system.

Instruction isync — The isync instruction causes the 604 to purge its instruction

Synchronize buffers and fetch the double word containing the next
sequential instruction.
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System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a SYNC bus operation and perform the appropriate actions
to guarantee that memory references that may be queued internally to the second-level
cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of 1/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As aresult, frequent use of this
instruction may degrade performance dlightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard al prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

¢ Cache management instructions (user-level and supervisor-level)
*  Segment register manipulation instructions
« Trandation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See 2.3.6.3, “Memory Control Instructions—OEA,” for information about supervisor-level
cache, segment register manipulation, and translation lookaside buffer management
instructions.

2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 3, “ Cache and Bus Interface
Unit Operation,” for more information about cache topics.

The user-level cacheinstructions provide software away to help manage processor caches.
The following sections describe how these operations are treated with respect to the 604's
cache.

Aswith other memory-related instructions, the effect of the cache management instructions
on memory are weakly-ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, async instruction must be placed in the program following those instructions.

Note that this discussion does not apply to direct-store segment accesses because these are
defined to be cache-inhibited and instruction fetch from them is not alowed. Cache
operations that access direct-store segment are treated as no-ops. Table 2-38 summarizes
the cache instructions defined by the VEA. Note that these instructions are accessible to
user-level programs.
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Table 2-38. User-Level Cache Instructions

Name

Operand

Mnemonic Syntax

Implementation Notes

Data
Cache
Block Touch

dcbt rA,rB The VEA defines this instruction to allow for potential system
performance enhancements through the use of software-initiated
prefetch hints. Implementations are not required to take any action based
off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache. The
604 performs the prefetch when the address hits in the TLB or the BAT, is
permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. If the
operation does not meet these criteria, it is treated as a no-op. The data
brought into the cache as a result of this instruction is validated in the
same way a load instruction would be (that is, if no other bus participant
has a copy, it is marked as Exclusive, otherwise it is marked as Shared).
The memory reference of a dcbt causes the reference bit to be set.

A successful dcbt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data
Cache
Block
Touch for
Store

dcbtst rArB This instructions behaves like the dcbt instruction.

Data
Cache
Block Set
to Zero

dcbz rArB The effective address is computed, translated, and checked for
protection violations as defined in the VEA. If the 604 does not have
exclusive access to the block, it presents an operation onto the 604 bus
interface that instructs all other processors to invalidate copies of the
block that may reside in their cache (this is the kill operation on the bus).
After it has exclusive access, the 604 writes all zeros into the cache
block. If the 604 already has exclusive access, it immediately writes all
zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or
disabled, the an alignment exception occurs.

If the operation is successful, the cache block is marked modified.

Data
Cache
Block Store

dcbst rArB The effective address is computed, translated, and checked for
protection violations as defined in the VEA. If the 604 does not have
exclusive access to the block, it broadcasts the essence of the instruction
onto the 604 bus (using the clean operation, described in Table 3-4). If
the 604 has modified data associated with the block, the processor
pushes the modified data out of the cache and into the memory queue for
future arbitration onto the 604 bus. In this situation, the cache block is
marked exclusive. Otherwise this instruction is treated as a no-op.

Data
Cache
Block Flush

dcbf rArB The effective address is computed, translated, and checked for
protection violations as defined by the VEA. If the 604 does not have
exclusive access to the block, it broadcasts the essence of the instruction
onto the 604 bus (using the flush operation described in Table 3-4). In
addition, if the addressed block is present in the cache, the 604 marks
this data as invalid. On the other hand, if the 604 has modified data
associated with the block, the processor pushes the modified data out of
the cache and into the memory queue for future arbitration onto the 604
bus. In this situation, the cache block is marked invalid.
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Table 2-38. User-Level Cache Instructions (Continued)

Name Mnemonic Operand Implementation Notes
Syntax

Instruction icbi rArB The effective address is computed, translated, and checked for

Cache protection violations as defined in the PowerPC architecture. If the

Block addressed block is in the instruction cache, the 604 marks it invalid. This

Invalidate instruction changes neither the content nor status of the data cache. In
addition, the ICBI operation is broadcast on the 604 bus unconditionally
to support this function throughout multilayer memory hierarchy.

2.3.5.4 Optional External Control Instructions

The external control instructions alow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 2-39.

Table 2-39. External Control Instructions

Name Mnemonic Operand Syntax
External Control In Word Indexed eciwx rD,rA,rB
External Control Out Word Indexed ecowx rS,rA,rB

The eciwx and ecowx instructions cause an alignment exception if they are not
word-aligned.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA aso adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-40). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The rfi instruction is a
supervisor-level instruction that is useful for returning from an exception handler.

Table 2-40. System Linkage Instructions—OEA

Name Mnemonic Operand Syntax
System Call sc —
Return from Interrupt rfi —

2.3.6.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and
write to the M SR and the SPRs.
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Table 2-41 summarizes the instructions used for reading from and writing to the MSR.

Table 2-41. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax
Move to Machine State Register mtmsr rs
Move from Machine State Register mfmsr rD

The OEA defines encodings of the mtspr and mfspr instructions to provide access to

supervisor-level registers. The instructions are listed in Table 2-42.

Table 2-42. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr rD,SPR

Encodings for the 604-specific SPRs are listed in Table 2-43.

Table 2-43 SPR Encodings for 604-Defined Registers (mfspr)

SF’F{1
Register Name
Decimal spr[5-9] spr[0-4]

952 11101 11000 MMCRO

953 11101 11001 PMC1

954 11101 11010 PMC2

955 11101 11011 SIA

959 11101 11111 SDA

1010 11111 10010 IABR

1023 11111 11111 PIR

INote that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in

the instruction, with the high-order 5 bits appearing in bits 16—20 of the instruction and the low-order 5 bits in
bits 11-15.

Simplified mnemonics are provided for the mtspr and mfspr instructions in Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual. For a discussion of
context synchronization requirements when atering certain SPRs, refer to Appendix E,
“Synchronization Programming Examples,” in The Programming Environments Manual.
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For information on SPR encodings (both user- and supervisor-level) see Chapter 8,
“Ingtruction Set,” in The Programming Environments Manual. Note that there are
additional SPRs specific to each implementation; for implementation-specific SPRs, see
the user’'s manual for that particular processor.

2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

» Cache management instructions (supervisor-level and user-level)
e Segment register manipulation instructions
¢ Trandation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 2.7.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-44 lists the only supervisor-level cache management instruction.

Table 2-44. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes
Data dcbi rA,rB The EA is computed, translated, and checked for protection
Cache violations as defined in the OEA.
Block The 604 broadcasts the essence of the instruction onto the 604
Invalidate bus (using the kill operation). In addition, if the addressed block

is present in the cache, the 604 marks this data as invalid
regardless of whether the data is clean or modified. Note that
this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

See Section 2.7.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references adirect-store segment, theinstruction istreated as ano-op. Note that any
cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) istreated as a no-op.
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2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-45 provide access to the segment registers for 32-bit
implementations. Theseinstructions operate compl etely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to “ Synchronization Requirements for Special Registers and
for Lookaside Buffers” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 2-45. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax
Move to Segment Register mtsr SR,rS
Move to Segment Register Indirect mtsrin rS,rB
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect mfsrin rD,rB

2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)
The address trandation mechanism is defined in terms of segment descriptors and page
table entries (PTESs) used by PowerPC processors to locate the logical to physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
tables and page tables in memory, respectively.

Refer to Chapter 7, “Memory Management” for more information about TLB operation.
Table 2-46 summarizes the operation of the TLB instructionsin the 604.
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Table 2-46. Translation Lookaside Buffer Management Instruction

Name

Mnemonic

Operand
Syntax

Implementation Notes

TLB
Invalidate
Entry

tibie

rB

Execution of this instruction causes all entries in the congruence class
corresponding to the specified EA to be invalidated in the processor
executing the instruction and in the other processors attached to the
same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, “Address Transfer Attribute Signals.”

The OEA requires that a synchronization instruction be issued to
guarantee completion of a tlbie across all processors of a system.
The 604 implements the tlbsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions. Multiple tibie
instructions can be executed correctly with only one tlbsync
instruction, following the last tlbie, to guarantee all previous tlbie
instructions have been performed globally.

Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tlbie have been completed prior
to executing the tlbie instruction.

When a snooping 604 detects a TLB invalidate entry operation on the
bus, it accepts the operation only if no TLB invalidate entry operation
is being executed by this processor and all processors on the bus
accept the operation (ARTRY is not asserted). Once accepted, the
TLB invalidation is performed unless the processor is executing a
multiple/string instruction, in which case the TLB invalidation is
delayed until it has completed.

Other than the possible TLB miss on the next instruction prefetch, the
tibie does not affect the instruction fetch operation—that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB
Synchronize

tlbsync

The TLBSYNC operation appears on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions.

See the tlbie description above for information regrading using the
tlbsync instruction with the tlbie instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Section 3.9.6, “Cache
Reaction to Specific Bus Operations.”

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. As described above, the tlbie
instruction can be used to invalidate a particular index of the TLB based on EA[14-19].
With that concept in mind, a sequence of 64 tlbie instructions followed by asingletlbsync
instruction would cause all the 604 TLB structuresto beinvalidated (for EA[14-19] =0, 1,
2,..., 63). Thereforethetlbiainstruction is not implemented on the 604. Execution of atlbia
instruction causes an illegal instruction program exception.
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Because the presence and exact semantics of the TLB management instructions is
implementation-dependent, system software should incorporate uses of these instructions
into subroutines to minimize compatibility problems.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, aset of alternative mnemonicsis provided for some
frequently used operations (such as no-op, load immediate, |oad address, move register, and
complement register). Programswritten to be portable acrossthe various assemblersfor the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For acomplete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual.
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Chapter 3
Cache and Bus Interface Unit Operation

This chapter describes the organization of the 604’'s on-chip cache system, the MESI cache
coherency protocol, specia concernsfor cache coherency in single- and multiple-processor
systems, cache control instructions, various cache operations, and the interaction between
the cache and the memory unit.

To minimize the number of bus accesses, the 604 contains separate 16-K byte, four-way set-
associative instruction and data caches and also provides support for secondary (L2)
caching. The cache block sizeis 32 bytes. The cache is designed to adhere to awrite-back
policy, but the 604 alows control of cacheability, write policy, and memory coherency at
the page and block level, as defined by the PowerPC architecture. The caches use a least
recently used (LRU) replacement policy.
The 604 cache implementation has the following characteristics:

e Separate 16-Kbyte instruction and data caches (Harvard architecture)

¢ Instruction and data caches are four-way set associative.

e Cachesimplement an LRU replacement algorithm within each set.

¢ The cache directories are physically addressed. The physical (real) addresstagis
stored in the cache directory.

« Boththeinstruction and data caches have 32-byte cache blocks. A cache block isthe
block of memory that a coherency state describes, also referred to as a cache line.

« Thecoherency state hitsfor each block of the data cache alow encoding for all four
possible MESI states:

— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Shared (9)

— Invalid (1)
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« The coherency state bit for each cache block of the instruction cache alows
encoding for two possible states:

— Invalid (INV)
— valid (VAL)

e Each cache can beinvalidated or locked by setting the appropriate bitsin the
hardware implementation dependent register 0 (HIDO), a special-purpose register
(SPR) specific to the 604.

The 604 uses eight-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 604 presents a double-word-aligned address. Memory
controllers are expected to transfer this double word of datafirst, followed by double words
from increasing addresses, wrapping back to the beginning of the eight-word block as
required.

Burst misses can be buffered into two 8-word line-fill buffers before being loaded into the
cache. Writes of cache blocks by the 604 (for a copy-back operation) always present the
first address of the block, and transfer data beginning at the start of the block. However, this
does not preclude other masters from transferring critical double words first on the bus for
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used in the
context of maintaining cache coherency. These devices could be processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

The organization of the 604 instruction and data caches is shown in Figure 3-1.

128 Sets [ [
[ ] I I d T T T T
° °
[ | I

T T T T T T T

Block 0| Address Tag 0 | State Words 0—7
t t t t t t t

Block 1| Address Tag 1 ] State Words 0—7
} } } } } } }

Block 2| Address Tag 2 State Words 0-7
t t t t t t t

Block 3| Address Tag 3 State Words 0-7

|«—— 8 Words/Block ———— ]

Figure 3-1. Cache Organization
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As shown in Figure 3-2, the instruction cache is connected to the bus interface unit (BIU)
with a 64-bit bus; likewise, the data cache is connected both to the BIU and the load/store
unit (LSU) with a 64-bit bus. The 64-bit bus allows two instructions to be loaded into the
instruction cache or adoubleword (for example, adouble-precision floating-point operand)
to be loaded into the data cache in a single clock. The instruction cache provides a 128-bit
interface to the instruction fetcher, so four instructions can be made available to the
instruction unit in asingle clock cycle.

Instruction Unit Load/Store Unit (LSU)
A A
Instructions (0-127) EA (20-31) Data (0-63)
\i \i \i
B Cache Cache o
Tags Tags
Instruction Cache 1 \ Data Cache
16-Kbyte PA (0-19) 16-Kbyte
Four-Way Set Associative 17 oy Four-Way Set Associative
_ Cache Cache _
- Logic Logic -
A A A A
Instructions (0-63) PA (0-31) Data (0-63)
\i \i

MMUY/Bus Interface Unit (BIU)
EA: Effective Address

PA: Physical Address

Figure 3-2. Cache Integration

3.1 Data Cache Organization

As shown in Figure 3-2, the physically-addressed data cache lies between the load/store
instruction unit (L SU) and the bus interface unit (BIU), and provides the ability to read and
write data in memory by reducing the number of system bus transactions required for
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes data to the
other execution units. The LSU supports the address generation and al the data alignment
to and from the data cache. The LSU also handles other types of instructions that access
memory, such as cache control instructions, and supports out-of-order loads and stores
while ensuring the integrity of data.

Chapter 3. Cache and Bus Interface Unit Operation 3-3



The 16-Kbyte, four-way set data cache is nonblocking write-back cache with hardware
reload. The data cache can continue to process loads and stores while as many as four block
fill requests are in progress.

The set associativity of the data cache is shown in Figure 3-1.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27-A31 of the EA are zero); as a result, cache blocks
are aligned with page boundaries. Within a single cycle, the data cache provides a double-
word access to the LSU.

The data cache supports a coherent memory system using the four-state MESI coherency
(modified/exclusive/shared/invalid) protocol. Dual -ported data cache tags are implemented
to prevent snooping accesses from affecting other bus traffic, except when snooping hits
modified data. The LSU is blocked for one cycle to copy the cache block of data into a
write-back buffer. The data cache can beinvalidated on ablock or invalidate-all granularity.
Also, data cache enable, lock, and parity checking enable bits can be set in hardware
implementation register 0 (HIDO).

3.2 Instruction Cache Organization

The 16-Kbyte, four-way set-associative instruction cache is physically-indexed. The
organization of the instruction cache, shown in Figure 3-1, is identical to that of the data
cache. Each cache block contains eight contiguous words from memory that are loaded
from an eight-word boundary (that is, bitsA27-A31 of the effective addresses are zero); as
aresult, cache blocks are aligned with page boundaries.

Within a single cycle, the instruction cache provides as many as four instructions to the
instruction fetch unit. The instruction cache coherency is software-controlled. The
instruction cache can be invalidated on a block or invalidate-all granularity. The instruction
cache can be enabled, locked, and checked for parity depending on the setting of enable bits
provided in HIDO.

Theinstruction cache differs from the data cache in that it does not implement MESI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. If a processor modifies a memory location that may be
contained in theinstruction cache, software must ensure that memory updates are visible to
the instruction fetching mechanism. This can be achieved by the following instruction
sequence:

dcbst # update memory
sync # wait for update

icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer
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These operations are necessary because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes made to itemsin the data cache may
not be reflected in memory until after a fetch operation completes.

3.3 MMUs/Bus Interface Unit

The bus interface unit (BIU) is compatible with those of the PowerPC 601™ and
PowerPC 603™ microprocessors. It implements both tenured and split-transaction modes
and can handle as many as three outstanding transactions in pipelined mode. If permitted,
the BIU can complete one or more write transactions between the address and data tenures
of aread transaction. The BIU has 32-bit address and 64-bit data buses protected by byte

parity.

The BIU implementsthe critical-doubl e-word-first access where the double word requested
by the fetcher or the LSU is fetched first and the remaining words in the line are fetched
later. The critical double word as well as other words in the cache block are forwarded to
the fetcher or to the LSU before they are written to the cache.

The bus can be run at 1x, 2/3x, 1/2x or 1/3x the speed of the processor. The programmable
on-chip phase-locked loop (PLL) generates the necessary processor clocks from the bus
clock.

When amemory access failsto hit in the cache, the 604 accesses system memory through
the bus interface unit. These operations must arbitrate for bus access.

The memory management units (MMUS) provide address trandation as specified by the
PowerPC OEA, including block address transation and page translation of memory
segments. The MMUs and the bus interface unit are shown in Figure 3-3.

The 604 implements separate MMUSs, one for instruction accesses and one for data
accesses. Virtual address translation uses two 128-entry, two-way Set-associative (64 x 2)
trandation lookaside buffers (TLBS), onefor instruction accesses and one for data accesses.
The 604 provides hardware that performs the TLB reload (also known as page table walk)
when a trandation is not in a TLB. Memory management is described in Chapter 5,
“Memory Management.”

The BIU handles block fill and write-back requests from either cache, as well as all
noncacheable reads and writes.
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Instruction Unit Load/Store Unit

Instruction MMU Data MMU

TLB Reload
[

Data Cache

Instruction Cache

Bus Interface Unit

Bus

Figure 3-3. Bus Interface Unit and MMU

As shown in Figure 3-4, the 604 implements four types of memory queues to support the
four types of operations—Iline-fill, write, copy-back, and invalidation operations. For aline-
fill operation, the line-fill address from either the instruction or data cache is kept in the
memory address queue until the address can be sent out in an address tenure. After the
address tenure, the address is transferred to the line-fill address queue, which releases the
address bus for other transactions in split-transaction mode. As each double word for the
line-fill operation isreturned, it istransferred to the line-fill buffer, whereit isforwarded to
the LSU.
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Figure 3-4. Memory Queue Organization

For write operations, the address is kept in the memory address queue and the data is kept
in the write buffer until both can be sent out in awrite transaction. Similarly, for copy-back
operations the address is kept in the copy-back address queue and the data is kept in the
copy-back buffer until both can be sent out in aburst write transaction. For a cache control
instruction or astoreto ashared cache block, the addressiskept in the cache control address
gueue until an address-only transaction is sent out to broadcast the cache control command.
Because all address queues in the 604 are treated as part of the coherent memory system,
they are checked against the data cache and snoop addresses to ensure data consistency and
to maintain MESI coherency protocol.
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To support theincreased bandwidth of the nonblocking caches, the BIU can handle as many
as three pipelined transactions before data has to be provided by the memory system. The
three outstanding transactions can be any combination of the foll owing—two noncacheable
or write-through write operations, two data cache rel oads, one instruction cache reload, and
two cache block copybacks. In addition, address-only transactions are not counted in the
three outstanding transactions.

For details concerning the signals, see Chapter 7, “Signal Descriptions,” and for
information regarding bus protocol, see Chapter 8, “ System Interface Operation.”

3.4 Memory Coherency Actions

The following sections describe memory coherency actions in response to various
operations and instructions.

3.4.1 604-Initiated Load and Store Operations

The following tables provide an overview of the behavior of the 604 with respect to load
and store operations. Table 3-1 does not include noncacheable cases. The first three cases
(load when the cache block is marked I) aso involve selecting a replacement class and
copying back any modified data that may have resided in that replacement class.

Table 3-1. Memory Coherency Actions on Load Operations

Cache State Bus Operation Snoop Response Action

| Read —ARTRY Load data and mark E
—-SHD

| Read —ARTRY Load data and mark S
SHD

| Read ARTRY Retry read operation

S None Don't care Read from cache

E None Don't care Read from cache

M None Don't care Read from cache

Table 3-2 does not address the noncacheable or write-through cases and does not
completely describe the exact mechanismsfor the operations described. The first two cases
also involve selecting a replacement class and copying back any modified data that may
have resided in that replacement class. The state of the SHD signal is unimportant in this
table.
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Table 3-2. Memory Coherency Actions on Store Operations

Cache State Bus Operation Snoop Response Action
| RWITM —ARTRY Load data, modify it, mark M
| RWITM ARTRY Retry the RWITM
S Kill -ARTRY Modify cache, mark M
S Kill ARTRY Retry the kill
E None Don't care Modify cache, mark M
M None Don't care Modify cache

3.5 Sequential Consistency

The following sections describe issues related to sequential consistency with respect to
single processor and multiprocessor systems.

3.5.1 Sequential Consistency Within a Single Processor

The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in the order specified by the program with respect
to exceptions and data dependencies. Note that all potential precise exceptions are resolved
before memory accesses that miss in the cache are forwarded onto the memory queue for
arbitration onto the bus. In addition, although subsequent memory accesses can addressthe
cache, full coherency checking between the cache and the memory queue is provided to
avoid dependency conflicts.

3.5.2 Weak Consistency between Multiple Processors

The PowerPC architecture requires only weak consistency among processors—that is,
memory accesses between processors need not be sequentialy consistent and memory
accesses among processors can occur in any order. The ability to order memory accesses
weakly provides opportunities for more efficient use of the system bus. Unless a
dependency exists, the 604 allows read operations to precede store operations.

Note that strong ordering of memory accesses with respect to the bus (and therefore, as
observed by other processors and other bus participants) can be accomplished by following
instructions that access memory with the SYNC instruction.
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3.5.3 Sequential Consistency Within Multiprocessor Systems

The PowerPC architecture defines aload operation to have been performed with respect to
all other processors (and mechanisms) when the value to be returned by the load can no
longer be changed by a subsequent store by any processor (or other mechanism). In
addition, it defines a store operation to be performed with respect to all other processors
(and mechanisms) when any load operation from the same location returns the value stored
(or a subsequently stored value).

In the 604, cacheable load operations and cacheable, non—write-through store operations
are performed with respect to al other processors (and mechanisms) when they have
arbitrated to addressthe cache. If acache miss occurs, these operations may drop amemory
reguest into the processor's memory queue, which is considered an extension to the state of
the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through store
operations are performed with respect to other processors (and mechanisms) when they
have been successfully presented onto the 604 bus interface. As a result, if multiple
processors are performing these types of memory operations to the same addresses without
properly synchronizing one another (through the use of the lwar x/stwcx. instructions), the
results of these instructions are sensitive to the race conditions associated with the order in
which the processors are granted bus access.

If the 604 uses an L 2 cache, the system designer must ensure the memory system responds
to the SYNC and EIEIO bus operations in such away that the required ordering of memory
operationsis preserved.

3.6 Memory and Cache Coherency

The 604 can support a fully coherent 4-Gbyte (2%2) memory address space. Bus snooping
isused to drive afour-state (MESI) cache coherency protocol which ensures the coherency
of al processor and direct-memory access (DMA) transactions to and from global memory
with respect to each processor’'s cache. It is important that all bus participants employ
similar snooping and coherency control mechanisms. The coherency of memory is
maintained at a granularity of 32-byte cache blocks (this size is also called the coherency
or cache-block size).

All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

*  Write-through (W attribute)

« Caching-inhibited (I attribute)

¢ Memory coherency (M attribute)

e Guarded (G attribute)
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These attributes are programmed by the operating system for each page and block. The W
and | attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory
location. The G attribute prevents speculative loading and prefetching from the addressed
memory location.

3.6.1 Data Cache Coherency Protocol

Each 32-byte cache block in the 604 data cache isin one of four states. Addresses presented
to the cache are indexed into the cache directory and are compared against the cache
directory tags. If no tags match, the result is acache miss. If atag match occurs, a cache hit
has occurred and the directory indicates the state of the block through three state bits kept
with the tag.

Thefour possible statesfor ablock inthe cache arethe invalid state (1), the shared state (S),
the exclusive state (E), and the modified state (M). The four MESI states are defined in
Table 3-3 and illustrated in Figure 3-5.

Table 3-3. MESI State Definitions

MESI State Definition

Modified (M) | The addressed block is valid in the cache and in only this cache. The block is modified with respect
to system memory—that is, the modified data in the block has not been written back to memory.

Exclusive (E) | The addressed block is in this cache only. The data in this block is consistent with system memory.

Shared (S) The addressed block is valid in the cache and in at least one other cache. This block is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state.

Invalid (I) This state indicates that the addressed block is not resident in the cache and/or any data contained
is considered not useful.

The primary objective of a coherent memory system is to provide the same image of
memory to al processors in the system. This is an important feature of multiprocessor
systems since it alows for synchronization, task migration, and the cooperative use of
shared resources. An incoherent memory system could easily produce unreliable results
depending on when and which processor executed a task. For example, when a processor
performs a store operation, it is important that the processor have exclusive access to the
addressed block before the update is made. If not, another processor could have a copy of
the old (or stale) data. Two processors reading from the same memory location would get
different answers.

To maintain a coherent memory system, each processor must follow simple rules for
managing the state of the cache. These include externally broadcasting the intention to read
acache block not in the cache and externally broadcasting the intention to writeinto ablock
that is not owned exclusively. Other processors respond to these broadcasts by snooping
their caches and reporting status back to the originating processor. The status returned
includes a shared indicator (that is, another processor has a copy of the addressed block)
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and aretry indicator (that is, another processor either has a modified copy of the addressed
block that it needs to push out of the chip, or another processor had a queuing problem that
prevented appropriate snooping from occurring).

To maximize performance, the 604 provides a second path into the data cache directory for
snooping. This allows the mainstream instruction processing to operate concurrently with
the snooping operation. The instruction processing is affected only when the snoop control
logic detects a situation where a snoop push of modified data is required to maintain
memory coherency.

Modified in Cache A Shared in Cache A
Cache A Cache B Cache A Cache B
. Data invalid\ . ;
M —{ Valid Data — not congruent S ——| Valid Data S —| Valid Data
System Memory System Memory
Data invalid\ ;
— ™| not congruent — ™ Valid Data
Exclusive in Cache A Invalid in Cache A
Cache A Cache B Cache A Cache B
. Data invalid\ ; .
E —| Valid Data —not congruent | —{ Invalid Date X—{ Don'’t Care
System Memory System Memory
— > Valid Data — Don't Care

Figure 3-5. MESI States
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3.6.2 Coherency and Secondary Caches

The 604 supports the use of alarger secondary cache that can be implemented in different
configurations. The use of an L2 cache can serveto further improve performance by further
reducing the number of bus accesses. The L2 cache must operate with respect to the
memory system in a manner that is consistent with the intent of the PowerPC architecture.

L2 caches must forward all relevant system bus traffic onto the 604 so the 604 can take the
appropriate actionsto maintain memory coherency as defined by the PowerPC architecture.

3.6.3 Page Table Control Bits

The PowerPC architecture allows certain memory characteristics to be set on a page and on
ablock basis. These characteristics include the following:

«  Write-back/write-through (using the W bit)
» Cacheable/noncacheable (using the | bit)
« Memory coherency enforced/not enforced (using the M hit)

An additional page control bit, G, handles guarded storage and is not considered here. This
ability allows both single- and multiple-processor system designs to exploit numerous
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits to be
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these hits if coherent
memory support is desired. Careless specification of these bits may create situations that
present coherency paradoxes to the processor. In particular, this can happen when the state
of these bits is changed without appropriate precautions (such as flushing the pages that
correspond to the changed bits from the caches of all processorsin the system) or when the
address trandations of aliased real addresses specify different values for any of the WIM
bits. These coherency paradoxes can occur within a single processor or across several
processors.

It is important to note that in the presence of a paradox, the operating system software is
responsible for correctness. The next section provides afew simple examplesto convey the
meaning of a paradox.

3.6.4 MESI State Diagram

The 604 provides dedicated hardware to provide data cache coherency by snooping bus
transactions. The address retry capability of the 604 enforces the MESI protocol, as shown
in Figure 3-6. Figure 3-6 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.
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Bus Transactions

RH = Read hit (D = Snoop push
RMS = Read miss, shared
RME = Read miss, exclusive ® = Invalidate transaction
WH = Write hit
WM = Write miss @ = Read-with-intent-to-modify

SHR = Snoop hit on a read
SHW = Snoop hit on a write or @ = Read
read-with-intent-to-modify

Figure 3-6. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 3-6 gives a detailed list of MESI transitions for various operations and WIM bit
settings.

3.6.5 Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

¢ Load or store operations to a page with WIM = 0b011 and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a cache-
inhibited page that hitsin the cache presents a paradox to the processor. The 604
ignores the data in the cache and the state of the cache block is unchanged.

e Store operation to a page with WIM = 0b10X and a cache hit on a modified cache
block occurs. This page was marked as write-through yet the processor was given
access to the cache (write-through page are always main memory). Any store
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operation to awrite-through page that hits a modified cache block in the cache
presents a coherency paradox to the processor. The 604 writes the data both to the
cache and to main memory (note that only the data for this store is written to main
memory and not the entire cache block). The state of the cache block is unchanged.

3.6.6 Coherency Paradoxes in Multiple-Processor Systems

It is possible to create a coherency paradox across multiple processors. Such paradoxes are
particularly difficult to handle since some scenarios could result in the purging of maodified
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the memory
coherency bit (or the M bit). Improper use of this bit can lead to multiple processors
accepting acache block into their caches and marking the dataas exclusive. In turn, thiscan
lead to a state where the same cache block is modified in multiple processor caches.

Additional information on what bus operations are generated for the various instructions
and state conditions can be found in Chapter 8, “ System Interface Operation.”

3.7 Cache Configuration

There are several bitsin the HIDO register that can be used to configure the instruction and
data cache. These are described as follows:

« Bit 1—Enable cache parity checking. Enables a machine check exception based on
the detection of a cache parity error. If thisbit is cleared, cache parity errors are
ignored. Note that the machine check exception isfurther affected by the M SR[ME]
bit, which specifies whether the processor enters checkstop state or continues
processing.

¢ Bit 7—Disable snoop response high state restore. If this bit is set, the processor
cannot drivethe SHD and ARTRY signalsto the high (negated) state, and the system
must restore the signals to the high state. See Chapter 7, “ Signal Descriptions,” for
more information.

* Bit 16—Instruction cache enable. If thisbit is cleared, the instruction cacheis
neither accessed nor updated. Disabling the caches forces all pages to be accessed
asif they were marked cache-inhibited (WIM = X1X). All potential cache accesses
from the bus are ignored.

» Bit 17—Data cache enable. If thisbit is cleared, the data cache is neither accessed
nor updated. Disabling the cache forces al pages to be accessed asif they were
marked cache-inhibited (WIM = X1X). All potential cache accesses from the bus,
such as snoop and cache operations are ignored.

« Bit 18—Instruction cachelock. Setting this bit lockstheinstruction cache, in which
case all cache misses are treated as cache-inhibited. Cache hits occur as normal.
Cache operations and theicbi instruction continue to work as normal.
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» Bit 19—Data cache lock. Setting this bit locks the data cache, in which case al
cache misses are treated as cache-inhibited. Cache hits occur as normal, and cache
snoops and other operations continue to work as normal. Thisisthe only way to
deallocate an entry. If the data cacheislocked when thedcbz instruction is executed,
it takes an alignment exception, provided the target address had been translated
correctly.

¢ Bit 20—Instruction cache invalidate all. When this bit is set, the instruction cache
begins an invalidate operation marking the state of each cache block in the desired
cacheasinvalid without copying back any datato memory. It isassumed that no data
in theinstruction cache is modified. Accessto the cache is blocked during thistime.
The bits are reset when the invalidation operation begins (usually the cycle
immediately following the write to the register beginning an invalidate operation).

» Bit 21—Data cache invalidate all. When this bit is set, the data cache begins an
invalidate operation marking the state of each cache block in the desired cache as
invalid without copying back any modified linesto memory. Accessto the cache is
blocked during this time. The bits are reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accesses to
the cache from the bus are signaled as a miss during the time that the invalidate-all
operation isin progress.

The HIDO register can be accessed with the mtspr and mfspr instructions.

3.8 Cache Control Instructions

The VEA and OEA portions of the PowerPC architecture define instructions that can be
used for controlling caches in both single- and multiprocessor systems. The exact behavior
of these instruction in the 604 is described in the following sections.

Severa of theseinstructions are required to broadcast their essence (such as akill, clean, or
flush operation) onto the 604 bus interface so that all processorsin amultiprocessor system
can take the appropriate actions. The 604 contains snooping logic to monitor the bus for
these commands and control logic to keep the cache and the memory queue coherent.
Additional details on the specific bus operations can be found in Chapter 7, “Signal
Descriptions.”

3.8.1 Instruction Cache Block Invalidate (icbi)

The effective address is computed, transated, and checked for protection violations as
defined in the PowerPC architecture. If the addressed block isin the instruction cache, the
604 marks this instruction cache block as invalid. This instruction changes neither the
content nor status of the data cache. The ICBI operation is broadcast on the 604 bus
unconditionally to support this function throughout a system’s memory hierarchy.
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3.8.2 Instruction Synchronize (isync)

The isync instruction causes the 604 to purge its instruction buffers and fetch the next
sequential instruction.

3.8.3 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance improvement through the use of
software-initiated prefetch hints. The 604 treats these instructions identically. Note that
PowerPC implementations are not required to take any action based on the execution of this
instruction, but they may choose to prefetch the cache block corresponding to the effective
address into their cache. The 604 fetches the data into the cache when the address hitsin
the TLB or the BAT, is permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. Otherwise, the 604 treats these
instructions as no-ops.

Regarding MESI cache coherency, the data brought into the cache as a result of these
instructions is validated in the same manner that aload instruction would be (that is, if no
other bus participant hasacopy, itismarked as exclusive; otherwiseit is marked as shared).
The memory reference of adcbt instruction causes the reference bit to be set.

Note also that the successful execution of the dcbt instruction affects the state of the TLB
and cache LRU hits as defined by the LRU algorithm.

3.8.4 Data Cache Block Set to Zero (dcbz)

As defined in the VEA, when the dcbz instruction is executed the effective address is
computed, trandated, and checked for protection violations. If the 604 does not already
have exclusive access to this cache block, it presents a kill operation onto the 604 bus—a
kill operation instructs all other processors to invalidate copies of the cache block that may
reside in their caches. After it has exclusive access to the cache block, the 604 writes all
zeros into the cache block. In the event that the 604 already has exclusive access, it
immediately writes all zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or disabled, an alignment
exception occurs.

3.8.5 Data Cache Block Store (dcbst)

Asdefined inthe VEA, when a Data Cache Block Store (dcbst) instruction is executed, the
effective address is computed, trandlated, and checked for protection violations. If the 604
does not have modified datain this block, the 604 broadcasts a clean operation onto the bus.
If modified (dirty) data is associated with the cache block, the processor pushes the
modified data out of the cache and into the memory queue for future arbitration onto the
604 bus. In this situation, the cache block is marked as exclusive. Otherwise thisinstruction
is treated as a no-op.
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3.8.6 Data Cache Block Flush (dcbf)

Asdefined in the VEA, when a Data Cache Block Flush (dcbf) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604
does not have modified datain this cache block, it broadcasts a flush operation onto the 604
bus. If the addressed cache block is in the cache, the 604 marks this data as invalid.
However, if the cache block is present and modified, the processor pushes the modified data
into the memory queue for arbitration onto the 604 bus and the cache block is marked as
invalid.

3.8.7 Data Cache Block Invalidate (dcbi)

Asdefined in the OEA, when a Data Cache Block Invalidate (dcbi) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 604 broadcasts akill operation onto the 604 bus. If the addressed cache block isin the
cache, the 604 marksthisdataasinvalid regardless of whether the datais modified. Because
this instruction may effectively destroy modified data, it is privileged and has store
semantics with respect to protection; that is, write permissionisrequired for the DCBI (kill)
operation.

3.9 Basic Cache Operations

This section describes operations that can occur to the cache, and how these operations are
implemented in the 604.

3.9.1 Cache Reloads

A cache block is reloaded after a read miss occurs in the cache. The cache block that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified datais first written to external memory before the cache reload occurs.

3.9.2 Cache Cast-Out Operation

The 604 uses an L RU replacement algorithm to determine which of the four possible cache
locations should be used for a cache update. Updating a cache block causes any modified
data associated with the least-recently used element to be written back, or cast out, to
system memory.

3.9.3 Cache Block Push Operation

When a cache block in the 604 is snooped and hit by another processor and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus. The 604 supports
two kinds of push operations—normal push operations and enveloped high-priority push
operations, which are described in Section 3.9.7, “Enveloped High-Priority Cache Block
Push Operation.”
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3.9.4 Atomic Memory References

The lwarx/stwex. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 2, “PowerPC 604 Processor
Programming Model.”

3.9.5 Snoop Response to Bus Operations

When the 604 is not the bus master, it monitors bus traffic and performs cache and memory-
gueue snooping as appropriate. The snooping operation is triggered by the receipt of a
qualified snoop request. A qualified snoop request is generated by the simultaneous
assertion of the TS and GBL bus signals.

Instruction processing is interrupted for one clock cycle only when a snoop hit occurs and
the snoop state machine determines a push-out operation is required.

The 604 maintains a write queue of bus operations in progress and/or pending arbitration.
This write queue is also snooped in response to qualified snoop requests. Note that block-
length (four beat) write operations are always snooped in the write queue; however, single-
beat writes are not snooped. Coherency for single-beat writes is maintained through the use
of cache operations that are broadcast with the write on the system interface or the
Iwar x/stwex. instructions.

The 604 drivestwo snoop status signals (ARTRY and SHD) in response to aqualified snoop
request that hits. These signals provide information about the state of the addressed block
for the current bus operation. For more information about these signals, see Chapter 7,
“Signal Descriptions.”

3.9.6 Cache Reaction to Specific Bus Operations

There are several bus transaction types defined for the 604 bus. The 604 must snoop these
transactions and perform the appropriate action to maintain memory coherency; see
Table 3-4. For example, because single-beat write operations are not snooped when they are
gueued in the memory unit, additional operations such as flush or kill operations, must be
broadcast when the write is passed to the system interface to ensure coherency.

A processor may assert ARTRY for any bustransaction dueto internal conflictsthat prevent
the appropriate snooping. In general, if ARTRY is not asserted, each snooping processor
must take full ownership for the effects of the bus transaction with respect to the state of the
processor.

The transactions in Table 3-4 correspond to the transfer type signals TTO-TT4, which are
described in Section 7.2.4.1, “Transfer Type (TTO-TT4).”
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Table 3-4. Response to Bus Transactions

Transaction

Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a dcbst
instruction. This operation affects only blocks marked as modified (M). Assuming the
GBL signal is asserted, modified blocks are pushed out to memory, changing the state
to E.

Flush block The flush operation is an address-only bus transaction initiated by executing a dcbf

instruction. Assuming the GBL signal is asserted, the flush block operation results in the

following:

« If the addressed block is in the S or E state, the state of the addressed block is
changed to I.

« If the addressed block is in the M state, the snooping device asserts ARTRY and SHD,
the modified block is pushed out of the cache, and its state is changed to I.

Write-with-flush
Write-with-flush-atomic

Write-with-flush and write-with-flush-atomic operations are issued by a processor after
executing stores or stwcx., respectively to memory in a variety of different states,
particularly noncacheable and write-through. 60x processors do not use this transaction
code for burst transfers, but system use for bursts is not precluded. If they appear on the
bus and the GBL bit is asserted, the 60x processors have the same snoop response as
for flush block, except that a hit on the reservation address causes loss of the
reservation.

Kill block

Kill block is an address-only transaction issued by a processor after executing a dcbi
instruction, a dcbz instruction to a location marked | or S, or a write operation to a block
marked S. If a kill-block transaction appears on the bus, and the GBL bit is asserted, the
addressed block is forced to the | state if it is in the cache.

Write-with-kill

In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
block is forced to the | state, killing modified data that may have been in the block. In
addition to snooping the cache, the three-entry write queue is also snooped. A kill
operation that hits an entry in the write queue purges that entry from the queue.

Read
Read-atomic

Read is used by most single-beat or burst reads on the bus. A read on the bus with the
GBL bit asserted causes the following snoop responses:

« If the addressed block is in the cache in the | state, the processor takes no action.

« If the addressed block is in the cache in the S state, the processor asserts the SHD
snoop status signal.

« If the addressed block is in the cache in the E state, the processor asserts the SHD
snoop status signal and changes the state of that cache block to S.

« If the addressed block is in the cache in the M state, the processor asserts both the
ARTRY and SHD snoop status signals and changes the state of that block in the
cache fromE to S.

Read-atomic operations appear on the bus in response to lwarx instruction and receive
the same snooping treatment as a read operation.
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Table 3-4. Response to Bus Transactions (Continued)

Transaction

Response

Read-with-intent-to-
modify (RWITM)
RWITM atomic

The RWITM transaction is issued to acquire exclusive use of a memory location for the
purpose of modifying it. One example is a processor that writes to a block that is not
currently in its cache. When GBL is asserted, RWITM transactions on the bus cause the
processors to take the following snoop actions:

« |If the addressed block is not in the cache, it takes no action.

« If the addressed block is in the cache in the S or E state, the processor changes the
state of that block in the cache to I.

« If the addressed block is present in the cache in the XM state, then the 60x asserts
both the ARTRY and the SHARED snoop status signals, pushes the dirty block out of
the cache and changes the state of that block in the cache from XM to INV.

RWITM atomic appears on the bus in response to the stwcx. instruction and receives
the same snooping treatment as RWITM.

TLBSYNC

This TLB synchronize operation is an address-only transaction placed onto the bus by a
604 when it executes a tlbsync instruction.

When the TLBSYNC bus operation is detected by a snooping 604, the 604 asserts the
ARTRY snoop status if any operations based on an invalidated TLB are pending.

TLB invalidate

A TLB invalidate transaction is an address-only transaction issued by a processor when
it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12—19 of the EA in their correct respective bit positions.

In response to a TLB invalidate operation, snooping processors invalidate the entire
congruence class in any TLBs associated with the specified EA. In addition, a snooping
604 also asserts the ARTRY snoop status when it has a pending TLB invalidate
operation, and a second TLB invalidate operation is detected.

For more information on the tibie instruction, see Section 2.3.6.3.3, “Translation
Lookaside Buffer Management Instructions—(OEA).”

1/O reply

The I/O reply operation is part of the direct-store operation. It serves as the final bus
operation in the series of bus operations that service a direct-store operation.

EIEIO

An EIEIO operation is put onto the bus as a result of executing an eieio instruction. The
eieio instruction enforces ordered execution of accesses to noncacheable memory. The
604s internally enforce ordering of such accesses with respect to the eieio instruction in
that noncacheable accesses due to instructions that occur before the eieio instruction in
the program order are placed on the bus before any noncacheable accesses that result
from instructions that occur after the eieio instruction with the EIEIO bus operation
separating the two sets of bus operations.

If the system implements a mechanism that allows reordering of noncacheable

requests, the appearance of an EIEIO operation should cause it to force ordering
between accesses that occurred before and those that occur after.

SYNC

The sync instruction generates an address-only transaction, which the 604 places onto
the bus.

When a 604 detects a SYNC operation on the bus, it asserts the ARTRY snoop status if
any other snooped cache operations are pending in the device.

Read-with-no-intent-to-
cache (RWNITC)

A RWNITC operation is issued by a bus-attached device as TT(4,0-3) = 0b10101—like
aread, but with TT4 = 1). The 604 snoops this operation and if it gets a cache hit on a
block marked M, it writes the block back to memory and marks it E.

This operation is useful for a graphics adapter that reads display data from memory.
This data may be in the processor’s cache and may be updated frequently. Because the
adapter does not cache the data, the processor need not leave the block in the S state,
requiring a bus operation to regain exclusive access.
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Table 3-4. Response to Bus Transactions (Continued)

Transaction Response

XFERDATA XFERDATA read and write operations are bus transactions that result from execution of
the eciwx or ecowx instructions, respectively. These instructions assist certain adapter
types (especially displays) to make high-speed data transfers. They do this by
calculating an effective address, translating it, and presenting the resulting physical
address to the adapter.

The XFERDATA read and write operations transfer a word of data to or from the
processor, respectively. They also present the 4-bit resource ID (RID) field, using the
concatenation of the bits TBST || TSIZ[0-2]. These transactions are unique in the sense
that the address that is transferred does not select the slave device; it is simply being
passed to the slave device for use in a subsequent transaction. Rather, the RID bits are
used to select among the slave devices.

Although the intent of these instructions is that the slave device that is selected by the
RID bits will use the address that is transferred in a subsequent data transfer, the exact
nature of this data transfer is not defined by 604 bus specifications. It is a private
transfer that can be defined by the system like any other direct memory access.

3.9.7 Enveloped High-Priority Cache Block Push Operation

If the 604 has a read operation outstanding on the bus and another pipelined bus operation
hits against a modified block, the 604 provides a high-priority push operation. This
transaction can be envel oped within the address and data tenures of aread operation. This
feature prevents deadlocks in system organizations that support multiple memory-mapped
buses. More specifically, the 604 internally detects the scenario where one or more load
reguests are outstanding and the processor has pipelined a write operation on top of the
load. Normally, when the data busis granted to the 604, the resulting data bustenureis used
for the load operation.

The enveloped high-priority cache block push feature defines a bus signal, the data bus
write only qualifier (DBWO), which, when asserted with a qualified data bus grant,
indicates that the resulting data tenure should be used for the first store operation instead.
If no store operation is pending, the first read operation is performed. If no write operation
is pending, the 604 can perform a read operation. This signa is described in detail in
Section 8.11, “Using Data Bus Write Only.” Note that the enveloped copy-back operation
isan internally pipelined bus operation.

3.9.8 Bus Operations Caused by Cache Control Instructions

Table 3-5 provides an overview of the bus operationsinitiated by cache control instructions.
Note that Table 3-5 assumes that the WIM bits are set to 001; that is, since the cache is
operating in write-back mode, caching is permitted and coherency is enforced.
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3.9.9 Cache Control Instructions

Table 3-5 lists bus operations performed by the 604 when they execute cache control
instructions.

Table 3-5. 604 Bus Operations Initiated by Cache Control Instructions

Instruction Cache State Next Cache State Bus Operation Comment
sync Don't care No change SYNC First clears memory queue
eieio Don't care No change EIEIO No clear meaning
icbi Don't care | ICBI —
dcbi Don't care | Kill —
(invalidate)
dcbf E, S, I | Flush —
(flush) - __ -
M | Write-with-kill Marked as write-through
dcbst E,S, I No change Clean —
(store) - o -
M E Write-with-kill Marked as write-through
dcbz | M Kill May also replace
(zero) .
S M Kill —
M, E M None Write over modified data
dcbt, debtst | | E, S Read State change on reload
M, E, S No Change None —
tlbsync Don't care No change TLBSYNC —

Table 3-5 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.10, “Cache Actions.”

Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 8, “Instruction
Set,” in The Programming Environments Manual describe the cache control instructionsin
detail. Severa of the cache control instructions broadcast onto the 604 interface so that all
processors in a multiprocessor system can take appropriate actions. The 604 contains
snooping logic to monitor the bus for these commands and the control logic required to
keep the cache and the memory queues coherent. For additional details about the specific
bus operations performed by the 604, see Chapter 8, “System Interface Operation.”

3.10 Cache Actions

Table 3-6 lists the actions that occur for various operations depending on different WIM bit
settings.
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Table 3-6. Cache Actions

Cache | MESI . Bus Bus s Snoop .
WIM State Action Operation | WIM TT0-4 | Rsv'n Response Action
000 | Load Read 000 01010 | (n/a) (None) Load the block of data into cache
forward data from load
mark cache block E
000 | Load Read 000 01010 | (n/a) SHD Load the block of data into cache
load from cache
mark cache block S
000 | Load Read 000 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ME Load (None) (nfa) | (n/a) (n/a) (n/a) Load from cache
S
001 | Load Read 001 01010 | (n/a) (None) Load the block of data into cache
mark cache block E
load from cache
001 | Load Read 001 01010 | (n/a) SHD Load the block of data into cache
load from cache
mark cache block S
001 | Load Read 001 01010 | (n/a) ARTRY or Release the bus
ARTRY&SH retry the operation
001 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S
011 ESI | Load Single- 01M 01010 | (n/a) (None) or Load from main memory
010 beat read 11M SHD
110
111
011 ESI | Load Single- 01M 01010 | (n/a) ARTRY or Release the bus
010 beat read 11M ARTRY&SH retry the operation
110
111
011 M Load Single- 01M 01010 | (n/a) (None) or Paradox—cache should be |
010 beat read 11M SHD load from main memory
110
111
011 M Load Single- 01M 01010 | (n/a) ARTRY or Paradox—cache should be |
010 beat read 11M ARTRY&SH release the bus
110 retry the operation
111
100 | Load Read 100 01010 | (n/a) (None) Load the block of data into cache
load from cache
mark the cache block E
100 | Load Read 100 01010 | (n/a) SHD Load the block of data into cache
load from cache
mark cache block S
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
100 | Load Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ME Load (None) (n/a) | (n/a) (n/a) (n/a) Load from cache
S
101 | Load Read 101 01010 | (n/a) (None) Load the block of data into cache
load from cache
mark cache E
101 | Load Read 101 01010 | (n/a) SHD Load the block of data into cache
load from cache
mark cache block S
101 | Load Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 ME Load (None) (nfa) | (n/a) (n/a) (n/a) Load from cache
S
000 | lwarx Read 000 11010 | Set (None) Load the block of data into cache
atomic by set reservation
this op load from cache
mark cache block E
000 | lwarx Read 000 11010 | Set SHD Load the block of data into cache
atomic by set reservation
this op load from cache
mark cache block S
000 | lwarx Read 000 11010 | (n/a) ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
000 ME lwarx lwarx 000 00001 | Set (None) or Set reservation
S reservation by SHD load from cache
set this op
000 ME lwarx lwarx 000 00001 | (n/a) ARTRY or Release the bus
S reservation ARTRY&SHD | retry the operation
set
001 | lwarx Read 001 11010 | Set (None) Load the block of data into cache
atomic by mark cache block E
this op set reservation
load from cache
001 | lwarx Read 001 11010 | Set SHD Load the block of data into cache
atomic by set reservation
this op load from cache
mark cache block S
001 | lwarx Read 001 11010 | (n/a) ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
001 ME lwarx lwarx 001 00001 | Set (None) or Set reservation
S reservation by SHD load from cache
set this op
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
001 ME lwarx lwarx 001 00001 | (n/a) ARTRY or Release the bus
S reservation ARTRY&SH retry the operation
set

011 | lwarx Single- 01M 11010 | Set (None) or Set reservation

010 beat read by SHD load from main memory

atomic this op

011 | lwarx Single- 01M 11010 | (n/a) ARTRY or Release the bus

010 beat read ARTRY&SHD | retry the operation

atomic

011 ES lwarx Single- 01M 11010 | Set (None) or Set the reservation

010 beat read by SHD load from main memory

atomic this op

011 ES lwarx Single- 01M 11010 | (n/a) ARTRY or Release the bus

010 beat read ARTRY&SHD | retry the operation

atomic
011 M lwarx Single- 01M 11010 | Set (None) or Paradox—cache should be |
010 beat read by SHD set the reservation

atomic this op load from main memory
011 M lwarx Single- 01M 11010 | (n/a) ARTRY or Paradox—cache should be |
010 beat read ARTRY&SH release the bus

atomic retry the operation

100 | lwarx (n/a) (nfa) | (n/a) (n/a) (n/a) A lwarx to a page marked write-

101 through causes a data access
exception; therefore no bus
transaction results.

101 (n/a) lwarx (n/a) (n/a) | (n/a) (n/a) (n/a) A lwarx to a page marked write-
through causes a data access
exception; therefore no bus
transaction results.

000 | Store RWITM 000 01110 | (n/a) (None) or Load the block of data into cache

SHD store to cache
mark cache M
000 | Store RWITM 000 01110 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S Store Kill 000 01100 | (n/a) (None) or Wait for the kill to be successfully
SHD presented
store to cache
mark cache block M
000 S Store Kill 000 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation

000 E Store (None) (nfa) | (n/a) (n/a) (n/a) Store to cache
mark cache block M

000 M Store (None) (nfa) | (n/a) (n/a) (n/a) Store to cache
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
001 | Store RWITM 001 01110 | (n/a) (None) or Load the block of data into cache
SHD mark cache block E
store to cache
mark cache block M
001 | Store RWITM 001 01110 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S Store Kill 001 01100 | (n/a) (None) or Wait for kill to be successfully
SHD presented
mark cache block E
store to cache
mark cache block M
001 S Store Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 E Store (None) (nfa) | (n/a) (n/a) (n/a) Store to cache
mark cache block M
001 M Store (None) (n/a) | (n/a) (n/a) (n/a) Store to cache
011 | Store Write with 01M 00010 | (n/a) (None) or Store to main memory
010 flush 11M SHD
110
111
011 | Store Write with 01M 00010 | (n/a) ARTRY or Release the bus
010 flush 11M ARTRY&SH retry the operation
110
111
011 ES Store Write with 01M 00010 | (n/a) (None) or Paradox—cache should be |
010 flush 11M SHD store to main memory
110
111
011 ES Store Write with 01M 00010 | (n/a) ARTRY or Paradox—cache should be |
010 flush 11M ARTRY&SHD | release the bus
110 retry the operation
111
011 M Store Write with 01M 00010 | (n/a) (None) or Paradox—cache should be |
010 flush 11M SHD store to main memory
110
111
011 M Store Write with 01M 00010 | (n/a) ARTRY or Paradox—cache should be |
010 flush 11M ARTRY&SHD | release the bus
110 retry the operation
111
100 | Store Write with 100 00010 | (n/a) (None) or Store to main memory
flush SHD
100 ME Store Write with 100 00010 | (n/a) ARTRY or Release the bus
S flush ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
100 ME Store Write with 100 00010 | (n/a) (None) or Store to cache
S flush SHD store to main memory
101 | Store Write with 101 00010 | (n/a) (None) or Write to main memory
flush SHD (note: no reload on a store miss)
101 ME Store Write with 101 00010 | (n/a) ARTRY or Release the bus
S flush ARTRY&SHD | retry the operation
101 ME Store Write with 101 00010 | (n/a) (None) or Store to cache
S flush SHD store to main memory
000 S stwcex. (None) (nfa) | (n/a) None (n/a) Update condition register
000 | stwcex. RWITM 000 11110 | Yes (None) or Load the block of data into cache
atomic (and SHD release the reservation
reset) update the condition register
store to cache
mark cache M
000 | stwex. | RWITM 000 11110 | Yes ARTRY or Release the bus
atomic ARTRY&SHD | retry the operation
000 S stwcex. Kill 000 01100 | Yes (None) or Wait for the kill to be successfully
(and SHD presented
reset) release reservation
update condition register
store to cache
mark cache block M
000 S stwcex. Kill 000 01100 | Yes ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ME stwcex. (None) (nfa) | (n/a) None (n/a) Update condition register
000 E stwcex. (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
mark cache block M
000 ME stwcex. (None) (nfa) | (n/a) Yes (n/a) (n/a)
(and
reset)
000 M stwcex. (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
001 S| stwcex. (None) (nfa) | (n/a) None (n/a) Update condition register
001 | stwcex. RWITM 001 11110 | Yes (None) or Load the block of data into cache
atomic (and SHD release the reservation
reset) update the condition register

store to cache
mark cache M

001 | stwex RWITM 001 11110 | Yes ARTRY or Release the bus

atomic ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
001 S stwcex. Kill 001 01100 | Yes (None) or Release reservation
(and SHD update condition register
reset) mark cache block E
store to cache
mark cache block M
001 S stwcex. Kill 001 01100 | Yes ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 E stwcex. (None) (n/a) | (n/a) None (n/a) Update condition register
001 ME stwcex. (None) (nfa) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
mark cache block M
001 ME stwcex. (None) (nfa) | (n/a) Yes (n/a) (n/a)
001 M stwcex. (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache
011 | stwcex. (None) (nfa) | (n/a) None (n/a) Update condition register
010
011 | stwcex. Write with 01M 10010 | Yes (None) or Release reservation
010 flush (and SHD update condition register
atomic reset) store to main memory
011 | stwcex. Write with 01M 10010 | Yes ARTRY or Release the bus
010 flush ARTRY&SHD | retry the operation
atomic
011 ME stwcex. (None) (n/a) | (n/a) None (n/a) Paradox—cache should be |
010 S update condition register
011 ME stwex. | Write with 01M 10010 | Yes (None) or Paradox—cache should be |
010 S flush (and SHD check/release reservation
atomic reset) update condition register
store to main memory
011 ME stwcex. Write with 01M 10010 | Yes ARTRY or Paradox—cache should be |
010 S flush ARTRY&SH release the bus
atomic retry the operation
011 M stwcex. (n/a) (nfa) | (n/a) None (n/a) (n/a)
010
100 (n/a) stwcex. (n/a) (nfa) | (n/a) (n/a) (n/a) A stwcx. to a page marked write-
101 though causes a data access
11X exception; therefore, no bus
transaction results.
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action

100 (n/a) stwcex. (n/a) (n/a) | (n/a) Yes (n/a) An stwcx. to a page marked

101 write-though causes a data

11X access exception; therefore, no
bus transaction results.

000 | dcbt Read 000 01010 | (n/a) (None) Load the block of data into cache
mark the cache E

000 | dcbt Read 000 01010 | (n/a) SHD Load the block of data into cache
mark the cache S

000 | dcbt Read 000 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
000 ME dcbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
S

001 | dcbt Read 001 01010 | (n/a) (None) Load the block of data into cache
mark the cache E

001 | dcbt Read 001 01010 | (n/a) SHD Load the block of data into cache
mark the cache S

001 | dcbt Read 001 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
001 ME dcbt (None) (nfa) | (n/a) (n/a) (n/a) No-op
S

011 | dcbt (None) 01M (n/a) (n/a) (n/a) No-op

010 11M

110

111

011 ES dcht (None) (nfa) | (n/a) (n/a) (n/a) No-op

010

110

111

011 M dcbt (None) (nfa) | (n/a) None (n/a) No-op

010

110

111

011 M dcbt (n/a) (n/a) | (n/a) None (n/a) (n/a)

010

110

111

100 | dchbt Read 100 01010 | (n/a) (None) Load the block of data into cache
mark the cache E

100 | dcbt Read 100 01010 | (n/a) SH Load the block of data into cache
mark the cache S

100 | dcbt Read 100 01010 | (n/a) ARTRY or Release the bus

ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
100 ME dcbt (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
101 | dcbt Read 101 01010 | (n/a) (None) Load the block of data into cache
mark the cache E
101 | dcbt Read 101 01010 | (n/a) HD Load the block of data into cache
mark the cache S
101 | dcbt Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SH retry the operation
101 ME dcbt (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
000 | dcbtst Read 000 01010 | (n/a) (None) Load the block of data into cache
mark the cache E
000 | dcbtst Read 000 01010 | (n/a) HD Load the block of data into cache
mark the cache S
000 | dcbtst Read 000 01010 | (n/a) ARTRY or Release the bus
ARTRY&SH retry the operation
000 S dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
000 ME dcbtst (None) 000 (n/a) (n/a) (n/a) No-op
001 | dcbtst Read 001 01010 | (n/a) (None) Load the block of data into cache
mark the cache E
001 | dcbtst Read 001 01010 | (n/a) SH Load the block of data into cache
mark the cache S
001 | dcbtst Read 001 01010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 ME dcbtst (None) (nfa) | (n/a) (n/a) (n/a) No-op
S
011 | dcbtst (None) 01M (n/a) (n/a) (n/a) No-op
010 11M
110
111
011 ES dcbtst (None) (nfa) | (n/a) (n/a) (n/a) No-op
010
110
111
011 M dcbtst (None) (n/a) | (n/a) None (n/a) No-op
010
110
111
011 M dcbtst (n/a) (nfa) | (n/a) None (n/a) (n/a)
010
110
111
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
100 | dcbtst Read 100 01010 | (n/a) (None) Load the block of data into cache
mark cache E
100 | dcbtst Read 100 01010 | (n/a) HD Load the block of data into cache
mark cache as block S
100 | dcbtst Read 100 01010 | (n/a) ARTRY or Release the bus
ARTRY&SH retry the operation
100 ME dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
S
101 | dcbtst Read 101 01010 | (n/a) (None) Load the block of data into cache
mark cache block E
101 | dcbtst Read 101 01010 | (n/a) HD Load the block of data into cache
mark cache block S
101 | dcbtst Read 101 01010 | (n/a) ARTRY or Release the bus
ARTRY&SH retry the operation
101 S dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
E
101 M dcbtst (None) (n/a) | (n/a) (n/a) (n/a) No-op
000 | dchz Kill 000 01100 | (n/a) (None) or Establish the block in data cache
SHD without fetching the block from
main memory
clear all bytes
mark cache block M
000 Sl dchz Kill 000 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 S dcbhz Kill 000 01100 | (n/a) (None) or Clear all bytes in the block
SHD mark cache block M
000 E dcbhz (None) 000 (n/a) (n/a) (n/a) Clear all bytes in the block
mark cache block M
000 M dchz (None) (nfa) | (n/a) (n/a) (n/a) Write zeros to all bytes in the
cache block
001 | dcbhz Kill 001 01100 | (n/a) (None) or Establish the block in data cache
SHD without fetching the block from
main memory
clear all bytes
mark cache block M
001 | dchz Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S dcbz Kill 001 01100 | (n/a) (None) or Mark cache block E
SHD set all bytes of the block to zero
mark the cache block M
001 S dcbz Kill 001 01100 | (n/a) ARTRY or Release the bus

ARTRY&SH Retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
001 E dcbz (None) (n/a) | (n/a) (n/a) (n/a) Write zeros to all bytes in the
Cache block
mark cache block M
001 M dcbhz (None) (nfa) | (n/a) (n/a) (n/a) Write zeros to all bytes in the
cache block
010 ME dcbz (n/a) (nfa) | (n/a) (n/a) (n/a) A dcbz to a page marked cache
011 Sl inhibited or write-through causes
110 an alignment exception;
111 therefore this transaction does
100 not occur on the bus
101
000 ESI | dcbst Clean 000 00000 | (n/a) (None) or No-op
SHD
000 ES1 | dcbst Clean 000 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 M dcbst Write with 100 00110 | (n/a) (None) or Write the block to main memory
kill SHD mark cache block E
000 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
001 ES1 | dcbst Clean 001 00000 | (n/a) (None) or No-op
SHD
001 ES1 | dcbst Clean 001 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 M dcbst Write with 100 00110 | (n/a) (None) or Write all bytes in the cache block
kill SHD to main memory
mark cache block E
001 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
011 ES1 | dcbst Clean W1M | 00000 | (n/a) (None) or No-op
010 SHD
110
111
011 | dcbst Clean W1M | 00000 | (n/a) ARTRY or Release the bus
010 ARTRY&SHD | retry the operation
110
111
011 M dcbst Write with 100 00110 | (n/a) (None) or Write all bytes in the cache block
010 kill SHD to main memory
110 Mark cache block E
111
011 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
010 kill ARTRY&SH retry the operation
110
111
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
100 ES1 | dcbst Clean 100 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 ESI | dcbst Clean 100 00000 | (n/a) (None) or No-op
SHD
100 M dcbst Write with 100 00110 | (n/a) (None) or Write the block back to memory
kill SHD mark cache block E
100 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
101 ESI | dcbst Clean 101 00000 | (n/a) (None) or No-op
SHD
101 ES1 | dcbst Clean 101 00000 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 M dcbst Write with 100 00110 | (n/a) (None) or Write the block back to memory
kill SHD mark cache block E
101 M dcbst Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
000 | dcbf Flush 000 00100 | (n/a) (None) or No-op
SHD
000 | dcbf Flush 000 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 ES dcbf Flush 000 00100 | (n/a) (None) or Mark cache block |
SHD
000 ES dcbf Flush 000 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 M dcbf Write with 100 00110 | (n/a) (None) or Write the block of data back to
kill SHD main memory

mark the cache block |

000 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
001 | dcbf Flush 001 00100 | (n/a) (None) or No-op
SHD
001 ES dcbf Flush 001 00100 | (n/a) (None) or Mark cache block |
SHD
001 ES1 | dcbf Flush 001 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 M dcbf Write with 100 00110 | (n/a) (None) or Write all bytes in the cache block
kill SHD to main memory
mark cache block |
001 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
011 | dcbf Flush W1M | 00100 | (n/a) (None) or No-op
010 SHD
110
111
011 | dcbf Flush W1M | 00100 | (n/a) ARTRY or Release the bus
010 ARTRY&SHD | retry the operation
110
111
011 ES dcbf Flush W1M [ 00100 | (n/a) (None) or Mark cache block |
010 SHD
110
111
011 ES dcbf Flush W1M | 00100 | (n/a) ARTRY or Retry the operation
010 ARTRY&SH
110
111
011 M dcbf Write with 100 00110 | (n/a) (None) or Flush the block
010 kill SHD mark cache block |
110
111
011 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
010 kill ARTRY&SHD | retry the operation
110
111
100 | dcbf Flush 100 00100 | (n/a) (None) or No-op
SHD
100 ES dcbf Flush 100 00100 | (n/a) (None) or Mark cache block |
SHD
100 ES1 | dcbf Flush 100 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
100 M dcbf Write with 100 00110 | (n/a) (None) or Write the block back to memory
kill SHD mark cache block |
100 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SHD | retry the operation
101 | dcbf Flush 101 00100 | (n/a) (None) or No-op
SHD
101 ES dcbf Flush 101 00100 | (n/a) (None) or Mark cache block |
SHD
101 ES1 | dcbf Flush 101 00100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
101 M dcbf Write with 100 00110 | (n/a) (None) or Flush the block
kill SHD mark cache block |
101 M dcbf Write with 100 00110 | (n/a) ARTRY or Release the bus
kill ARTRY&SH retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
000 | dcbi Kill 000 01100 | (n/a) (None) or No-op
SHD
000 ME dcbi Kill 000 01100 | (n/a) (None) or Mark the cache block |
S SHD
000 ME dcbi Kill 000 01100 | (n/a) ARTRY or Release the bus
S ARTRY&SHD | retry the operation
001 | dcbi Kill 001 01100 | (n/a) (None) or No-op
SHD
001 | dcbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 S dcbi Kill 001 01100 | (n/a) (None) or Mark cache block |
SHD
001 S dcbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 EM dcbi Kill 001 01100 | (n/a) (None) or Mark cache block |
SHD
001 EM dcbi Kill 001 01100 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
011 | dcbi Kill W1M | 01100 | (n/a) (None) or No-op
010 SHD
110
111
011 ME dcbi Kill W1M | 01100 | (n/a) (None) or Mark cache block |
010 S SHD
110
111
011 ME dcbi Kill W1M | 01100 | (n/a) ARTRY or Release the bus
010 S ARTRY&SHD | retry the operation
110
111
100 | dcbi Kill 100 01100 | (n/a) (None) or No-op
SHD
100 ME dcbi Kill 100 01100 | (n/a) ARTRY or Release the bus
S ARTRY&SHD | retry the operation
100 ME dcbi Kill 100 01100 | (n/a) (None) or Mark cache block |
S SHD
101 | dcbi Kill 101 01100 | (n/a) (None) or No-op
SHD
101 ME dcbi Kill 101 01100 | (n/a) ARTRY or Release the bus
S ARTR&SHD retry the operation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
101 ME dcbi Kill 101 01100 | (n/a) (None) or Mark cache block |
S SHD
000 INV icbi ICBI 000 01101 | (n/a) (None) or No-op
SHD
000 INV icbi ICBI 000 01101 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
000 VAL icbi ICBI 000 01101 | (n/a) (None) or Mark icache block INV
SHD
000 VAL icbi ICBI 000 01101 | (n/a) ARTRY or Release the bus
ARTRY&SHD | retry the operation
001 INV icbi ICBI 001 01101 | (n/a) (None) or No-op
SHD
001 INV icbi ICBI 001 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
001 VAL icbi ICBI 001 01101 | (n/a) (None) or Mark icache block INV
SHD
011 INV icbi ICBI 01M 01101 | (n/a) (None) or No-op
010 11M SHD
110
111
011 INV icbi ICBI 01M 01101 | (n/a) ARTRY or Release the bus
010 VAL 11M ARTRY&SHD | retry the operation
110
111
011 VAL icbi ICBI 01M 01101 | (n/a) (None) or Mark icache block INV
010 11M SHD
110
111
100 INV icbi ICBI 100 01101 | (n/a) (None) or No-op
SHD
100 INV icbi ICBI 100 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
100 VAL icbi ICBI 100 01101 | (n/a) (None) or Mark icache block INV
SHD
101 INV icbi ICBI 101 01101 | (n/a) (None) or No-op
SHD
101 INV icbi ICBI 101 01101 | (n/a) ARTRY or Release the bus
VAL ARTRY&SHD | retry the operation
101 VAL icbi ICBI 101 01101 | (n/a) (None) or Mark icache block INV
SHD
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
(n/a) (n/a) sync SYNC xx1 01000 | (n/a) (None) or The sync instruction completed.
SHD (Note: This table does not give
an accurate representation of
what the sync instruction does.)
(n/a) (nfa) | sync SYNC xx1 01000 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
(n/a) (n/a) | eieio EIEIO xx1 10000 | (n/a) (None) or The eieio instruction has
SHD completed.
(Note: This table does not give
an accurate representation of
what the eieio instruction does.)
(n/a) (n/a) | eieio EIEIO xx1 10000 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
(n/a) (n/a) tibie TLB xx1 11000 | (n/a) (None) or Hold off any new storage
invalidate SHD instructions.
Wait for the completion of any
outstanding storage instructions
Invalidate the requested TLB
entry
(Note: This table does not
thoroughly characterize the tlbie
instruction.)
(n/a) (n/a) tibie TLB xx1 11000 | (n/a) ARTRY or Release the bus.
invalidate ARTRY&SHD | Retry the operation
tlbsync | TLB sync xx1 01001 | (n/a) (None) or The TLB sync instruction has
SHD completed.
(Note: This table does not
thoroughly characterize the
tlbsync instruction.)
tlbsync | TLB sync xx1 01001 | (n/a) ARTRY or Release the bus.
ARTRY&SHD | Retry the operation.
| Snoop-kill xx1 01100 | None (None) No-op
| Snoop-kill xx1 01100 | Yes (None) Release reservation.
(and
reset)
ME Snoop-kill xx1 01100 | None (None) Mark cache block I.
S
ME Snoop-kill xx1 01100 | Yes (None) Mark cache block I.
S (and Release reservation.
reset)
| Snoop- xx1 01010 | None (None) No-op
read
| Snoop- xx1 01010 | Yes SHD No-op
read
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
S Snoop- xx1 01010 | (n/a) SHD No-op
read
E Snoop- xx1 01010 | (n/a) SHD Mark cache block S.
read
M Snoop- x01 01010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory;
if successful, mark cache block S
M Snoop- x11 01010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory;
If successful, mark cache block S
| Snoop- xx1 11010 | None (None) No-op
read
atomic
| Snoop- xx1 11010 | Yes SHD No-op
read
atomic
S Snoop- xx1 11010 | (n/a) SHD No-op
read
atomic
E Snoop- xx1 11010 | (n/a) SHD Mark cache block S
read
atomic
M Snoop- xx1 11010 | (n/a) ARTRY&SHD | Attempt to write cache block
read back to main memory; if
atomic successful, mark cache block S.
| Snoop- xx1 01110 | None (None) No-op
RWITM
| Snoop- xx1 01110 | Yes (None) Release reservation.
RWITM (and
reset)
ES Snoop- xx1 01110 | None (None) Mark cache block I.
RWITM
ES Snoop- xx1 01110 | Yes (None) Mark cache block I.
RWITM (and Release reservation.
reset)
M Snoop- xx1 01110 | None ARTRY&SH Attempt to write cache block
RWITM back to main memory;
if successful, mark cache block I.
M Snoop- xx1 01110 | Yes ARTRY&SH Attempt to write cache block
RWITM (and back to main memory;
reset) if successful, mark cache block I,

release reservation
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
| Snoop- xx1 11110 | None (None) No-op
RWITM
atomic
| Snoop- xx1 11110 | Yes (None) Release reservation.
RWITM (and
atomic reset)
S Snoop- xx1 11110 | None (None) Mark cache block I.
E RWITM
atomic
S Snoop- xx1 11110 | Yes (None) Mark cache block I.
E RWITM (and Release reservation.
atomic reset)
M Snoop- xx1 11110 | None ARTRY&SH Attempt to write cache block
RWITM back to main memory;
atomic if successful, mark cache block I.
M Snoop- xx1 11110 | Yes ARTRY&SHD | Attempt to write cache block
RWITM (and back to main memory;
atomic reset) if successful, mark cache block I,
release reservation.
| Snoop- xx1 00100 | None (None) No-op
flush
| Snoop- xx1 00100 | Yes (None) No-op
flush
SE Snoop- xx1 00100 | (n/a) (None) Mark cache block I.
flush
M Snoop- xx1 00100 | (n/a) ARTRY&SH Attempt to write cache block
flush back to main memory;
if successful:
mark cache block I.
ESI Snoop- xx1 00000 | (n/a) (None) No-op
clean
M Snoop- xx1 00000 | (n/a) ARTRY&SH Attempt to write cache block
clean back to main memory; if
successful, mark cache block E.
| Snoop- xx1 00010 | None (None) No-op
write with
flush
| Snoop- xx1 00010 | Yes (None) Release reservation.
write with (and
flush reset)
S Snoop- xx1 00010 | None (None) Mark cache block I.
write with
flush
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
S Snoop- xx1 00010 | Yes (None) Mark cache block I.
write with (and Release reservation.
flush reset)
E Snoop- xx1 00010 | None (None) Paradox—no one else should be
write with writing if this cache is E.
flush Mark cache block |
E Snoop- xx1 00010 | Yes (None) Paradox—no one else should be
write with (and writing if this cache is E.
flush reset) Mark cache block I.
Release reservation.
M Snoop- xx1 00010 | None ARTRY&SH Paradox—no one else should be
write with writing if this cache is M.
flush Attempt to write cache block
back to main memory;
if successful, mark cache block |
M Snoop- xx1 00010 | Yes ARTRY&SH Paradox—no one else should be
write with (and writing if this cache is M.
flush reset) Attempt to write cache block
back to main memory;
if successful, mark cache block I,
release reservation
| Snoop- xx1 00110 | None (None) No-op
write with
kill
| Snoop- xx1 00110 | Yes (None) Release reservation.
write with (and
kill reset)
S Snoop- xx1 00110 | None (None) Mark cache block I.
write with
kill
S Snoop- xx1 00110 | Yes (None) Mark cache block I.
write with (and Release reservation.
kill reset)
E Snoop- xx1 00110 | None (None) Paradox—no one else should be
write with writing if this cache is E.
kill Mark cache block I.
E Snoop- xx1 00110 | Yes (None) Paradox—no one else should be
write with (and writing if this cache is E.
kill reset) Mark cache block I.
Release reservation.
M Snoop- xx1 00110 | None (None) Paradox—no one else should be
write with writing if this cache is M.
kill Mark cache block I.
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoo .
WIM State Action Operation WIM TT0-4 | Rsv'n Responpse Action
M Snoop- xx1 00110 | Yes (None) Paradox—no one else should be
write with (and writing if this cache is M.
kill reset) Mark cache block I.
Release reservation.
| Snoop- xx1 10010 | None (None) No-op
write with
flush
atomic
| Snoop- xx1 10010 | Yes (None) Release reservation.
write with (and
flush reset)
atomic
S Snoop- xx1 10010 | None (None) Mark cache block I.
write with
flush
atomic
S Snoop- xx1 10010 | Yes (None) Mark cache block I.
write with (and Release reservation.
flush reset)
atomic
E Snoop- xx1 10010 | None (None) Paradox—no one else should be
write with writing if this cache is E.
flush Mark cache block I.
atomic
E Snoop- xx1 10010 | Yes (None) Paradox—no one else should be
write with (and writing if this cache is E.
flush reset) Mark cache block I,
atomic release reservation.
M Snoop- xx1 10010 | None | ARTRY&SHD | Paradox—no one else should be
write with writing if this cache is M.
flush Attempt to write block back to
atomic main memory;
if successful, mark cache block |
M Snoop- xx1 10010 | Yes ARTRY&SHD | Paradox—no one else should be
write with (and writing if this cache is M.
flush reset) Attempt to write block back to
atomic main memory;
if successful: mark cache block I,
release reservation.
(n/a) Snoop- xx1 11000 | (n/a) (None) Respond with (none) when the
TLB TLB has been invalidated.
invalidate
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Table 3-6. Cache Actions (Continued)

Cache | MESI . Bus Bus , Snoop .
WIM State Action Operation WIM TT0-4 | Rsv'n Response Action
(n/a) Snoop- xx1 11000 | (n/a) (None) but Do not perform the TLB
TLB ARTRY is invalidate—this is to prevent a
invalidate activated on deadlock condition from
the bus from occurring.
another
processor
(n/a) Snoop- xx1 11000 | (n/a) ARTRY Respond with retry until the TLB
TLB has been invalidated.
invalidate
(n/a) Snoop- xx1 01000 | (n/a) (None) If no TLB invalidates are
SYNC pending, no-op.
(n/a) Snoop- xx1 01000 | (n/a) ARTRY If a TLB invalidate is pending,
SYNC respond with retry.
(n/a) Snoop- xx1 01001 | (n/a) (None) If no TLB invalidates are
TLBSYNC pending, no-op.
(n/a) Snoop- xx1 01001 | (n/a) ARTRY If a TLB invalidate is pending,
TLBSYNC respond with retry.
(n/a) Snoop- xx1 10000 | (n/a) (None) No-op
EIEIO
(n/a) Snoop- xx1 10000 | (n/a) ARTRY No-op
EIEIO
| Snoop- xx1 01101 | (n/a) (None) No-op
ICBI
VAL Snoop- xx1 01101 | (n/a) (None) Invalidate entry in icache
ICBI
| Snoop- xx1 01011 | None (None) No-op
RWNITC
| Snoop- xx1 01011 | Yes SHD No-op
RWNITC
ES Snoop- xx1 01011 | (n/a) HD No-op
RWNITC
M Snoop- xx1 01011 | (n/a) ARTRY&SHD | Attempt to write cache block
RWNITC back to main memory; if
successful, mark cache block E.
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3.11 Access to Direct-Store Segments

The 604 supports both memory-mapped and 1/0O-mapped access to 1/0 devices. In addition
to the high-performance bus protocol for memory-mapped 1/0 accesses, the 604 provides
the ability to map memory areasto the direct-storeinterface (SR[T] = 1) with thefollowing
two kinds of operations:

 Direct-store operations. These operations are considered to address the noncoherent
and noncacheabl e direct-store; therefore, the 604 does not maintain coherency for
these operations, and the cache is bypassed completely.

« Memory-forced direct-store operations. These operations are considered to address
memory space and are therefore subject to the same coherency control as memory
accesses. These operations are global memory references within the 604 and are
considered to be noncacheable.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for
these operations is determined by the settings of the WIM bits.
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Chapter 4
Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to asinterruptsin the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusua conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until al instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
if itisdesired to allow control to ultimately return to the excepting program.
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In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentialy guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRR1 soon after the exception istaken to prevent thisinformation from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception isidentified by the processor.
Taken An exception is said to be taken when control of instruction

execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor-
level (referred to as privileged state in the architecture specification).

Note that the PowerPC architecture documentation refersto exceptions asinterrupts. In this
book, the term interrupt is reserved to refer to asynchronous exceptions, and sometimes to
the event that causes the exception to be taken. Also, the PowerPC architecture uses the
word exception to refer to |EEE-defined floating-point exceptions, conditions that may
cause aprogram exception to be taken (See Section 4.5.7, “ Program Exception (0x00700).)
The occurrence of these |EEE exceptions may in fact not cause an exception to be taken.
| EEE-defined exceptions are referred to as | EEE floating-point exceptions or floating-point
exceptions.

4.1 PowerPC 604 Microprocessor Exceptions

As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. A synchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
system management interrupt and performance monitoring exception are defined by the
PowerPC architecture.
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Table 4-1. Exception Classifications

Type Exception
Asynchronous/nonmaskable Machine Check
System Reset
Asynchronous/maskable External interrupt
Decrementer interrupt
System management interrupt (604-specific)
Performance monitoring exception (604-specific)
Synchronous/precise Instruction-caused exceptions
Synchronous/imprecise Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Exceptionsimplemented in the 604, and conditions that cause them, arelisted in Table 4-2.

Table 4-2. Exceptions and Conditions—Overview

Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00000 —

System reset 00100 The causes of system reset exceptions are implementation-dependent. In the
604 a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check | 00200 On the 604 a machine check exception is signaled by the assertion of a qualified

TEA indication on the 604 bus, or the machine check input (MCP) signal. If the
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by read, write, and instruction
fetch operations initiated by the processor; however, it is expected that the TEA
signal would be used by a memory controller to indicate that a memory parity
error or an uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state. (Note that, physical address is referred to as the real
address in the architecture specification.)

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.
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Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

DSl

00300

A DSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.5.3, “DSI| Exception (0x00300).” Such
accesses can be generated by load/store instructions, certain memory control
instructions, and certain cache control instructions.

ISI

00400

An IS| exception occurs when an instruction fetch cannot be performed for a
variety of reasons described in Section 4.5.4, “IS| Exception (0x00400).”

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604 stops dispatching
instructions and waits for all dispatched instructions to complete. Any exceptions
associated with dispatched instructions are taken before the interrupt is taken.

Alignment

00600

An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.5.6, “Alignment Exception
(0x00600).” Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 604. In
these cases, the 604 provides logic to handle these conditions without requiring
the processor to invoke the alignment exception handler.

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

* Floating-point enabled exception—A floating-point enabled exception
condition is generated when either MSR[FEO] or MSR[FE1] and
FPSCRI[FEX] are set. The settings of FEO and FE1 are described in
Table 4-4.

FPSCRI[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 3 of
The Programming Environments Manual.

« lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, “Instruction Set
Summary.”

« Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if spr[0]=1 and
MSR[PR] = 1.

« Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.5.7, “Program Exception (0x00700).”

Floating-point
unavailable

00800

Defined by the PowerPC architecture, but not implemented in the 604.

Decrementer

00900

The decrementer interrupt exception is taken if the interrupt is enabled and the
exception is pending. The exception is created when the most significant bit
changes from 0 to 1. If it is not enabled, the exception remains pending until it is
taken.

4-4

PowerPC 604 RISC Microprocessor User’'s Manual




Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Reserved 00A00 Reserved for implementation-specific exceptions. For example, the 601 uses
this vector offset for direct-store exceptions.

Reserved 00B00O —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 The trace exception, which is implemented in the 604, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either
MSRI[SE] = 1 and any instruction (except rfi) successfully completed or
MSRI[BE] = 1 and a branch instruction is completed.

Performance 00F00 The performance monitoring interrupt is a 604-specific exception and is used

monitoring with the 604 performance monitor, described in Section 4.5.13, “Performance

interrupt Monitoring Interrupt (0OxO0F00).”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled by through bits in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF | Reserved for implementation-specific exceptions not implemented on the 604.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits O to

address 29) in the IABR matches the next instruction to complete in the completion unit,

breakpoint and the IABR enable bit (bit 30) is set to 1.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI

management input signal is asserted. This exception is provided for use with the nap mode.

interrupt

Reserved 014FF-02FFF | Reserved for implementation-specific exceptions not implemented on the 604.

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, asfollows:

1. Nonmaskable, asynchronous exceptions have priority over al other exceptions—

system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

Imprecise exceptions (imprecise mode fl oating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

M askabl e asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.
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Exception priorities are described in “Exception Priorities,” in Chapter 6, “ Exceptions,” in
The Programming Environments Manual.

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception isbeing handled. Asaresult, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRRO did not cause the exception then that
instruction appears not to have begun execution. For more information on context-
synchronization, see Chapter 6, “Exceptions,” in The Programming Environments Manual.

4.3 Exception Processing

When an exception is taken, the processor uses the save/restore registers, SRRO and SRR1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore register 0
(SRRO) is used to help calculate where instruction processing should resume when the
exception handler returns control to the interrupted process. Depending on the exception,
thismay be the addressin SRRO or at the next addressin the program flow. All instructions
in the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (asin the case of a system call or trap exception). The
SRRO register is shown in Figure 4-1.

SRRO (holds EA for instruction in interrupted program flow) |

Figure 4-1. Machine Status Save/Restore Register 0

SRRO is 32 bits wide in 32-bit implementations.

The savelrestore register 1(SRR1) is used to save machine status (selected bits from the
M SR and possibly other status bits as well) on exceptions and to restore those values when
rfi isexecuted. SRR1 is shown in Figure 4-2.

Exception-specific information and MSR bit values

Figure 4-2. Machine Status Save/Restore Register 1
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Typicaly, when an exception occurs, bits 24 and 10-12 of SRR1 are loaded with
exception-specific information and bits 5-9, and 16-31 of MSR are placed into the
corresponding hit positions of SRR1.

Note that in other implementations every instruction fetch that occurs when MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRR1.

In the 604 and in other 32-bit PowerPC implementations, the M SR is 32 bitswide as shown
in Figure 4-3.

[] Reserved

0000000000000 |POW| 0 ||LE|EE|PR|FP|ME|FEO|SE|BE|FE1| 0 |IP||R|DR|O|PM|RI|LE|
0 12 13 14 15 16 17 1819 20 2122 23 24 25262728293031

Figure 4-3. Machine State Register (MSR)

The M SR hits are defined in Table 4-3. Full function reserved bits are saved in SRR1 when
an exception occurs; partial function reserved bits are not saved.

Table 4-3. MSR Bit Settings

Bit(s) Name Description
0 — Reserved. Full Function.

1-4 — Reserved. Partial function.

5-9 — Reserved. Full function.

10-12 | — Reserved. Partial function.

13 POW Power management enable

0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note that power management functions are implementation-dependent.

14 — Reserved—Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable

0  While the bit is cleared the processor delays recognition of external interrupts and
decrementer exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0  The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.
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Table 4-3. MSR Bit Settings (Continued)

Bit(s)

Name

Description

18

FP

Floating-point available

0  The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores, and moves.

1 The processor can execute floating-point instructions, and can take floating-point enabled
exception type program exceptions.

19

ME

Machine check enable
0  Machine check exceptions are disabled.
1  Machine check exceptions are enabled.

20

FEO

|IEEE floating-point exception mode O (See Table 4-4).

21

SE

Single-step trace enable

0  The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of
the next instruction (unless that instruction is an rfi instruction). Successful execution
means that the instruction caused no other exception.

22

BE

Branch trace enable

0  The processor executes branch instructions normally.

1 The processor generates a branch type trace exception upon the successful execution of
a branch instruction.

23

FE1

IEEE floating-point exception mode 1 (See Table 4-4).

24

Reserved. This bit corresponds to the AL bit of the POWER architecture.

25

Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0  Exceptions are vectored to the physical address 0x000n_nnnn.

1  Exceptions are vectored to the physical address OxFFFn_nnnn.

26

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, “Memory Management.”

27

DR

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, “Memory Management.”

28

Reserved, full function.

29

PM

Performance monitor marked mode

0  Process is not a marked process.

1 Process is a marked process.

This bit is specific to the 604, and is defined as reserved by the PowerPC architecture. For
more information about the performance monitor, see Section 4.5.13, “Performance Monitoring
Interrupt (0Ox00F00).”
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Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description

30 RI Indicates whether system reset or machine check exception is recoverable.
0  Exception is not recoverable.
1  Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable

0  The processor runs in big-endian mode.
1  The processor runs in little-endian mode.

The |IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
al. The possible settings and default conditions for the 604 are shown in Table 4-4. For
further details, see Chapter 6, “Exceptions,” of The Programming Environments Manual.

Table 4-4. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable

0 Floating-point imprecise recoverable. In the 604, this bit setting causes the 604 to operate in floating-
point precise mode.

1

1 Floating-point precise mode

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

4.3.1 Enabling and Disabling Exceptions

When

acondition existsthat may cause an exception to be generated, it must be determined

whether the exception is enabled for that condition.

| EEE floating-point enabled exceptions (atype of program exception) are ignored
when both MSR[FEOQ] and MSR[FEL] are cleared. If either of these bits are set, all
IEEE enabl ed floating-point exceptions are taken and cause a program exception.
Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the M SR[EE] bit. When M SR[EE] = 0, recognition
of these exception conditionsisdelayed. MSR[EE] iscleared automatically when an
exception istaken, to delay recognition of conditions causing those exceptions.

A machine check exception can occur only if the machine check enable bit,
MSR[ME], isset. If MSR[ME] iscleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bitsin the HIDO register, which is
described in Table 4-7.
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System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1

The machine status save/restore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

Bits 1-4 and 10-15 of SRR1 are loaded with information specific to the exception
type.

Bits 5-9 and 16-31 of SRR1 are loaded with a copy of the corresponding bits of the
MSR. Note that depending on the implementation, reserved bits may not be copied.

The MSRisset asdescribed in Table 4-3. The new valuestake effect beginning with
the fetching of thefirst instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address tranglation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new MSR value, at alocation
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSRJ[IP)]. If IPis cleared,
exceptions are vectored to the physical address 0x000n_nnnn. If IPisset, exceptions
are vectored to the physical address OxFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See

Section 4.5.2, “Machine Check Exception (0x00200).”

4.3.3 Setting MSR[RI]
The operating system should handle MSR[RI] asfollows:

In the machine check and system reset exceptions—If SRR1[RI] is cleared, the
exception is not recoverable. If itis set, the exception is recoverable with respect to
the processor.

In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

In each exception handler—Clear MSR[RI], set the SRRO and SRR1 registers
appropriately, and then execute rfi.
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« Not that the RI bit being set indicates that, with respect to the processor, enough
processor state datais valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

4.3.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

< All previousinstructions have completed to a point where they can no longer cause
an exception. If apreviousinstruction causes adirect-storeinterface error exception,
the results must be determined before thisinstruction is executed.

« Previousinstructions complete execution in the context (privilege, protection, and
address tranglation) under which they were issued.

¢ Therfi instruction copies SRR1 bits back into the MSR.

* Theinstructionsfollowing thisinstruction execute in the context established by this
instruction.

For a compl ete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

4.4 Process Switching
The operating system should execute one of the following when processes are switched:

e The syncinstruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to beinitiated until the
sync instruction completes. For an example showing use of the sync instruction, see
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

« Theisyncinstruction, which waitsfor al previousinstructionsto complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

e Thestwex. instruction, to clear any outstanding reservations, which ensures that an
Iwar x instruction in the old process is not paired with an stwcx. instruction in the
New process.

The operating system should set the MSR[RI] bit as described in Section 4.3.3, “ Setting
MSR[RI]”
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4.5 Exception Definitions

Table 4-5 shows al the types of exceptions that can occur with the 604 and the MSR bit
settings when the processor transitions to supervisor mode due to an exception. Depending
on the exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-5. MSR Setting Due to Exception

Exception MSR Bit
Type

POW | ILE | EE [ PR | FP | ME | FEO [ SE| BE| FE1 | IP | IR | DR | RI LE
System reset 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
Machine 0 — 0 0 0 0 0 0 0 0 — |0 0 0 | ILE
check
DSl 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
1SI 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
External 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
Alignment 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
Program 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
Floating- 0 — 0 0 0 — 0 0 0 0 — 10 0 0 | ILE
point
unavailable
Decrementer 0 — 0 0 0 — 0 0 0 0 — 10 0 0 ILE
System call 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
Trace 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
exception
System 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
management
Performance 0 — 0 0 0 — 0 0 0 0 — |0 0 0 | ILE
monitor

0 Bit is cleared.

ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address 0x000n_nnnn (where nnnnn
is the vector offset); if IP is set, exceptions are vectored to the physical address
OxFFFn_nnnn. Table 4-2 shows the exception vector offset of the first instruction of the
exception handler routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The 604 implements the system reset exception as defined in the PowerPC architecture
(OEA). The system reset exception is a nonmaskable, asynchronous exception signaled to
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the processor through the assertion of system-defined signals. In the 604, the exception is
signaled by the assertion of either the SRESET or HRESET inputs, described morefully in
Chapter 7, “Signal Descriptions.”.

Table 4-6. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1-4 Cleared
5-9 Loaded with equivalent bits from the MSR
10-15 Cleared
16-31 Loaded with equivalent bits of the MSR

Note that if the processor state is corrupted to the extent that execution cannot resume reliably, the
MSRI[RI] bit (SRR1[30]) is cleared.

MSR POW 0 BE O
ILE  --- FE1 O
EE 0 IP —
PR 0 IR 0
FP 0 DR O
ME  --- RI 0
FEO O LE  Setto value of ILE

SE ©0

The SRESET input provides a“warm” reset capability. Thisinput is used to avoid causing
the 604 to perform the entire power-on reset sequence, thereby preserving the contents of
the architected registers. This capability is useful when recovering from certain checkstop
or machine check states. When a system reset exception is taken, instruction execution
continues at offset 0x00100 from the physical base address indicated by MSR[1P].

4.5.2 Machine Check Exception (0x00200)

The 604 implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, after receiving a qualified transfer error
acknowledge (TEA) indication on the 604 bus, or after the machine check interrupt (MCP)
signal had been asserted. Asdefined in the OEA, the exception is not taken if the MSR[ME]
is cleared.

M achine check conditions can be enabled and disabled using bitsin the HIDO described in
Table 4-7.

Table 4-7. Machine Check Enable Bits

HIDO Bit Description
0 Enable machine check input pin
1 Enable cache parity checking
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Table 4-7. Machine Check Enable Bits

HIDO Bit Description
2 Enable machine check on address bus parity error.
3 Enable machine check on data bus parity error.

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, the TEA signal is expected to be used by a memory controller to
indicate that a memory parity error or an uncorrectable memory ECC error has occurred.
Note that the resulting machine check exception isimprecise and unordered with respect to
the instruction that originated the bus operation.

If the MSR[ME] bit and the appropriate bits in HIDO are set, the exception is recognized
and handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] =0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.5.2.2, “ Checkstop State (MSR[ME] = 0)."

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-8.
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Table 4-8. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis implementations can set this to an EA of some instruction that was executing
or about to be executing when the machine check condition occurred.

SRR1 0-9 Cleared

10 Set when a data cache parity error is detected, otherwise zero

11 Set when a instruction cache parity error is detected, otherwise zero
12 Set when Machine Check Pin (MCP) is asserted, otherwise zero

13 Set when TEA pin is asserted, otherwise zero

14 Set when a data bus parity error is detected, otherwise zero

15 Set when an address bus parity error is detected, otherwise zero
16-29 MSR(16-29)

30 Zero
31 MSR(31)
MSR POW 0 BE O
ILE - FE1 O
EE 0 IP —
PR 0 IR 0
FP 0 DR O
ME* 0 RI 0
FEO O LE Set to value of ILE
SE O

* Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
alow the processor to continue execution at the machine check exception vector address.
Typicaly earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When amachine check exception istaken, instruction execution resumes at offset 0x00200
from the physical base address indicated by MSR[1P].

4.5.2.2 Checkstop State (MSR[ME] = 0)

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot resume without the processor being reset. The contents of al latches are
frozen within two cycles upon entering checkstop state.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0), or through an invalid tranglation. On such a system,
for example, execution of aData Cache Block Set to Zero (dcbz) instruction that introduces
a block into the cache associated with a nonexistent physical address may delay the
machine check exception until an attempt is made to store that block to main memory.

Chapter 4. Exceptions 4-15



Note that not all PowerPC processors provide the same level of error checking. The reasons
aprocessor can enter checkstop state are implementation-dependent.

4.5.3 DSI Exception (0x00300)

A DSl exception occurs when no higher priority exception exists and a datamemory access
cannot be performed. The DSl exception is implemented as it is defined in the PowerPC
architecture (OEA). Note that there are some conditions for which the PowerPC
architectures allow implementations to optionally take a DSI exception. Table 4-9 lists
conditions defined by the architecture that optionally may cause aDS| exception.

Table 4-9. Other MMU Exception Conditions

Condition Description DSISR
Iwarx or stwex. with W =1 Reservation instruction to write-through segment or block | DSISR[5] = 1
lwarx, stwcx., eciwx, or ecowx Reservation instruction or external control instruction DSISR[5] =1

instruction to direct-store segment when SR[T] =1 or STE[T] =1

Load or store that results in a direct- | Direct-store interface protocol signalled with an error DSISR[0] =1
store error condition
eciwx or ecowx attempted when eciwx or ecowx attempted with EAR[E] = 0 DSISR[11]=1

external control facility disabled

4.5.4 1SI Exception (0x00400)

An ISl exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA). In addition, an instruction fetch from a no-execute segment resultsin
an ISl exception.

When an ISl exception is taken, instruction execution resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)

An externa interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). TheINT signal is expected to remain asserted until the 604 takes the external
interrupt exception. If the external interrupt signal is negated early, recognition of the
interrupt request is not guaranteed. After the 604 begins execution of the external interrupt
handler, the system can safely negate the INT. When the signal is detected, the 604 stops
dispatching instructions and waits for all pending instructions to complete. This allows any
instructions in progress that need to take an exception to do so before the external interrupt
is taken. After all instructions have cleared, the 604 takes the external interrupt exception
as defined in the PowerPC architecture (OEA).

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE] hit is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.
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When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

4.5.6 Alignment Exception (0x00600)

The 604 implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following conditions are met:

» A floating-point load or store, Imw, stmw, Iwar x, or stwcx. instruction is not word-
aligned.

« |If afloating-point number is not word-aligned. The 604 provides hardware support
for misaligned storage accesses for other memory access instructions. If a
misaligned memory access crosses a 4-K byte page boundary within a memory
segment, an exception may occur when the boundary is crossed (that is, thereisa
protection violation on an attempt to access the new page). In these cases, aDSl
exception occurs and the instruction may complete partially.

e Some types of misaligned memory accesses are slower than aligned accesses.
Accesses that cross aword boundary (and double-precision values aligned on a
double-word boundary) are broken into multiple accesses by the LSU. More
dramatically, any noncacheable memory access that crosses a double-word
boundary requires multiple external bus tenures.

e Operations that cross aword boundary (and operations involving double-precision
values aligned on a double-word boundary) require two accesses, which are
trandated separately. If either tranglation creates a DSI exception condition, that
exception issignaled.

* If the T-hit settings are not the same for both portions of a misaligned memory
access, (which is considered to be a programming error), the 604 completes al of
the accesses for the operation, the segment information from the T = 1 spaceis
presented on the bus for every access of the operation, and the 604 requires a direct-
store access reply from the device. If two tranglations cross memory locations that
aeT=0intoT =1, aDSI exception is signaled.

« A dcbz instruction references a page that is marked either cache-inhibited or write-
through or has executed when the 604 data cacheislocked or disabled. Notethat this
condition may not cause an alignment exception in other PowerPC processors.

« Anaccessisnot naturally aligned in little-endian mode.

* Anecowx or eciwx is not word-aligned.

o Almw, stmw, Iswi, Iswx, stswi, or stswx instruction isissued in little-endian mode.

4.5.7 Program Exception (0x00700)

The 604 implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

The 604 invokes the system illega instruction program exception when it detects any
instruction from theillegal instruction class.
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The 604 fully decodes the SPR field of the instruction. If an undefined SPR is specified, a
program exception is taken.

The UISA defines the mtspr and mfspr instructions with the record bit (Rc) set to cause a
program exception or provide a boundedly undefined result. In the 604, the appropriate CR
should be treated as undefined. Likewise, the PowerPC architecture states that the Floating
Compared Unordered (fcmpu) or Floating Compared Ordered (fcmpo) instruction with the
record bit set can either cause aprogram exception or provide aboundedly undefined result.
In the 604, CR field BF for these cases should be treated as undefined.

When a program exception is taken, instruction execution resumes at offset 0x00700 from
the physical base address indicated by MSR[1P].

Note that the 604 supports one of the two floating-point imprecise modes supported by the
PowerPC architecture. The three modes supported by the 604 are described as follows:

¢ Ignore exceptions mode (M SR[FEQ] = MSR[FE1] = 0)—In ignore exceptions
mode, the instruction dispatch logic feeds the FPU as fast as possible, and the FPU
uses an internal pipeline to allow overlapped execution of instructions. IEEE
floating-point exception conditions (as defined in the PowerPC architecture) do not
cause any exceptions.

» Precise exceptions mode (MSR[FEQ] = 1; MSR[FE1] = X)—In thismode, afloating
point instruction that causes a floating-point exception brings the machineto a
precise state. In doing so, the 604 sequencer unit can detect fl oating-point exception
conditions and take floating-point exceptions as defined by the PowerPC
architecture. Note that the imprecise recoverable mode supported by the PowerPC
architecture (M SR[FEQ] = 1; MSR[FE1] = 0) isimplemented identically to precise
exceptions mode in the 604.

» Imprecise nonrecoverable mode (M SR[FEQ] = 0; MSR[FE1] = 1)—In this mode,
floating-point exception conditions cause a floating-point exception to be taken,
SRRO may point to some instruction following the instruction that caused the
exception.

Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual .

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset 0x00800 from the physical base address indicated by MSR[IP].
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4.5.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in the 604 as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the 604, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, “ Exceptions,” in The Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900
from the physical base address indicated by MSR[1P].

4.5.10 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. In the 604,
the system call exception is implemented as it is defined in the PowerPC architecture.
Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset 0x00C00
from the physical base address indicated by MSR[1P].

4.5.11 Trace Exception (0x00DO00)

Thetrace exception is taken when the single step trace enabl e bit (M SR[SE]) or the branch
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When atrace
exception istaken, the values written to SRR1 are implementation-specific; those valuesfor
the 604 are shown in Table 4-10.

Table 4-10. Trace Exception—SRR1 Settings

Register Setting
SRR1 0-2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5-9 Cleared

10 Set for Iswx or stswx, otherwise cleared

11 Set for mtspr to SDR1, EAR, HIDO, PIR, IBATs, DBATS, SRs
12 Set for taken branch, otherwise cleared

13-15 Cleared

16-31 MSR(16-31).

When atrace exception is taken, instruction execution resumes as offset 0x00D00 from the
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (0OxOOEQO)

The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the 604.
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4.5.13 Performance Monitoring Interrupt (OxO0OF0O0)

The PowerPC 604 performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions. The performance monitor is provided to help system developers
to debug their systems and to increase system performance with efficient software,
especidly in a multiprocessor system where memory hierarchy behavior must be
monitored and studied in order to develop agorithms that schedule tasks (and perhaps
partition them) and distribute data optimally.

The performance monitor uses the following SPRs:

¢ Performance monitor counters 1 and 2 (PMC1 and PM C2)—two 32-bit counters
used to store the number of times a certain event has occurred.

e The monitor mode control register 0 (MMCRO), which establishes the function of
the counters.

» Sampledinstruction address and sampled dataaddressregisters (SIA and SDA). The
two address registers contain the addresses of the data and of the instruction that
caused athreshold-related performance monitor interrupt.

The 604 supports a performance monitor interrupt that is caused by a counter negative
condition or by atime-base flipped bit counter defined in the MM CRO register.

As with other PowerPC interrupts, the performance monitoring interrupt follows the
normal PowerPC exception model with a defined exception vector offset (OxO0F00). The
priority of the performance monitoring interrupt is below the external interrupt and above
the decrementer interrupt. The contents of the SIA and SDA are described in
Section 2.1.2.4, “Performance Monitor Registers.” The performance monitor is described
in Chapter 9, “Performance Monitor.”

4.5.14 Instruction Address Breakpoint Exception (0x01300)

Theinstruction address breakpoint exception occurs when an attempt is made to execute an
instruction that matches the address in the instruction address breakpoint register (IABR)
and the breakpoint is enabled (IABR[30] isset). Theinstruction that triggers the instruction
address breakpoint exception is not executed before the exception handler isinvoked. The
vector offset of the instruction address breakpoint exception is 0x01300.

4.5.15 System Management Interrupt (0x01400)

The 604 implements a system management interrupt exception, which is not defined by the
PowerPC architecture. The system management exception is very similar to the external
interrupt exception and is particularly useful in implementing the nap mode. It has priority
over an external interrupt and it uses a different interrupt vector in the exception table (at
offset 0x01400).
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Like the externa interrupt, a system management interrupt is signaled to the 604 by the
assertion of an input signal. The system management interrupt signal (SMI) is expected to
remain asserted until the interrupt is taken. If the SMI signal is negated early, recognition
of the interrupt request is not guaranteed. After the 604 begins execution of the system
management interrupt handler, the system can safely negate the SMI signal. After the SMI
signal is detected, the 604 stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt is taken.

When the exception is taken, 604 vectors to the system management interrupt vector in the
interrupt table. The vector offset of the system management is 0x01400.

4.5.16 Power Management

Nap mode is a simple power-saving mode, in which al internal processing and bus
operation is suspended. Software initiates nap mode by setting M SR[POW]. After this bit
is set, the 604 suspends instruction dispatch and waits for all activity, including active and
pending bustransactions, to complete. It then shuts down theinternal chip clocks and enters
nap mode state. The 604 indicates the internal idle state by asserting the HALTED output
regardless whether the clock is stopped.

Nap mode must be entered by using the following code sequence:

napl oop

sync
mmsr <GPR> (nodify the PONbit only; at this point the EE bit should
have al ready been enabl ed by the software)

i sync
ba napl oop

Since this code segquence creates an infinite loop, the programmer should ensure that the
exit routine (one of the exception handler routines listed below) properly updates SRRO to
return to a point outside of thisloop.

While the 604 is in nap mode, all internal activity except for decrementer, timebase, and
interrupt logic is stopped. During nap mode, the 604 does not snoop; if snooping is
required, the system may assert the RUN signal. The clocks run while the RUN signa is
asserted, but instruction execution does not resume. The HALTED output is deasserted to
indicate any bus activity, including a cache block pushout caused by a snoop request, and
is reasserted to indicate that the processor is idle and that the RUN signal can be safely
deasserted to stop the clocks. The maximum latency from the RUN signal assertion to the
starting of clock isthree bus clock cycles.

To ensure proper handling of snoops in a multiprocessor system when a processor is the
first to enter nap mode, the system must assert the RUN signal no later than the assertion of
BG to another bus master. This constraint is necessary to ensure proper handling of snoops
when the first processor is entering nap mode.
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Nap mode is exited (clocks resume and M SR[POW] cleared) when an external interrupt is
signaled by the assertion of INT, SRESET, MCP, or SMI, when a decrementer interrupt
occurs, or when a hard reset is sensed.

For moreinformation about the RUN and HALTED signals, refer to Section 7.2.10.4, “Run
(RUN)—Input,” and Section 7.2.10.2, “Reservation (RSRV)—Output.”
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Chapter 5
Memory Management

This chapter describes the PowerPC 604 microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the tranglation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses, 1/0
accesses (most 1/0 accesses are assumed to be memory-mapped), and direct-storeinterface
accesses. |n addition, the MMU provides access protection on a segment, block or page
basis. This chapter describes the specific hardware used to implement the MMU model of
the OEA in the 604. Refer to Chapter 7, “Memory Management,” in The Programming
Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
tranglation—instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physica
address mapping for instruction and data accesses. The segment information translates the
effective address to an interim virtual address, and the page table information translates the
interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the 604). In addition, two
trandation lookaside buffers (TLBs) are implemented on the 604 to keep recently-used
page address tranglations on-chip. Although the PowerPC OEA describes one MMU
(conceptually), the 604 hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be performed independently (and simultaneously).
Therefore, the 604 is described as having two MMUSs, one for instruction accesses (IMMU)
and one for data accesses (DMMU).

The block address trandation (BAT) mechanism is a software-controlled array that stores
the available block addresstranglations on-chip. BAT array entriesareimplemented as pairs
of BAT registers that are accessible as supervisor specia-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the 604, they reside in the
instruction and data MM Us respectively.
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The MMUSs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Overview

The 604 implements the memory management specification of the PowerPC OEA for
32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tablesin the generation of 32-bit physical addresses. PowerPC processors
also have a BAT mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 604 MMU implementation defined by the OEA are asfollows:

» Support for real addressing mode—L ogical-to-physical address translation can be
disabled separately for data and instruction accesses.

¢ Block address translation—Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory space.
Thiscan be used for tranglating large address ranges whose mappings do not change
frequently.

» Direct-store segments—If the T bit intheindexed segment register isset for any load
or storerequest, this request accesses a direct-store segment; bus activity isdifferent
and the memory space used has different characteristics with respect to how it can
be accessed. The address used on the bus consists of bits from the EA and the
segment register.

» Segmented address trand ation—T he 32-bit effective address is extended to a 52-hit
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segment
register. This 52-bit virtual address space is divided into 4-Kbyte pages, each of
which can be mapped to a physical page.

The 604 aso provides the following features that are not required by the PowerPC
architecture:

» Separate translation lookaside buffers (TLBs)—The 128-entry, two-way set
associative | TLBsand DTLBskeep recently-used page addresstrang ations on-chip.

e Table search operations performed in hardware—The 52-bit virtual addressis
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the trandationisnot foundinaTLB
(that is, aTLB miss occurs), the hardware performs a table search operation (using
a hashing function) to search for the PTE.
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e TLB invalidation—The 604 implements the optional TLB Invalidate Entry (tlbi€)
and TLB Synchronize (tIbsync) instructions, which can be used to invalidate TLB
entries. For more information on the tlbie and tlbsync instructions, see
Section 5.4.3.2, “TLB Invalidation.”

Table 5-1 summarizes the 604 MMU features, including those defined by the PowerPC
architecture (OEA) for 32-hit processors and those specific to the 604.

Table 5-1. MMU Feature Summary

Feature Category

Architecturally
Defined/
604-Specific

Feature

Address ranges

Architecturally defined

232 pytes of effective address

252 pytes of virtual address

232 pytes of physical address

Page size

Architecturally defined

4 Kbytes

Segment size

Architecturally defined

256 Mbytes

Block address
translation

Architecturally defined

Range of 128 Kbyte—256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection

Architecturally defined

Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history

Architecturally defined

Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined

Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs

Architecturally defined

Instructions for maintaining TLBs (tlbie and tlbsync
instructions in 604)

604-specific

128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors

Architecturally defined

Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

604-specific

The 604 performs the table search operation in hardware.
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5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is trandated to a physical address according to
the procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization

Figure5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search of the page
tablesfor PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.

The 604 maintains two on-chip TLBs with the following characteristics:

« 128 entries, two-way set associative (64 x 2), LRU replacement

» DataTLB supportsthe DMMU; instruction TLB supports the IMMU

e Hardware TLB update

» Hardware update of memory access recording bitsin the trandation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of
atrangdlation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the 604 instruction and data
MMUSs, respectively. The instruction addresses shown in Figure 5-2 are generated by the
processor for sequential instruction fetches and addresses that correspond to a change of
program flow. Data addresses shown in Figure5-3 are generated by load and store
instructions (both for the memory and the direct-storeinterfaces) and by cacheinstructions.

As shown in the figures, after an address is generated, the higher-order bits of the effective
address, EAO-EA 19 (or asmaller set of address bits, EAO—EAN, in the cases of blocks), are
transl ated into physical address bits PAO—PA 19. The lower-order addressbits, A20-A31 are
untranslated and therefore identical for both effective and physical addresses. After
trangl ating the address, the MM Us pass the resulting 32-bit physical addressto the memory
subsystem.
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In addition to the higher-order address bits, the MM Us automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the accessisfor a
load or astore operation. Thisinformation isthen used by the MMUsto appropriately direct
the address trandlation and to enforce the protection hierarchy programmed by the
operating system. Section 4.3, “Exception Processing,” describes the MSR, which controls
some of the critical functionality of the MMUs.

The figures show the way in which the A20-A26 address hits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits PAO—-PA19) of the two selected cache
blocks to determine if a cache hit has occurred. In the case of a cache miss, the instruction
or data access is then forwarded to the bus interface unit which then initiates an externa
memory access.
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5.1.3 Address Translation Mechanisms
PowerPC processors support the following four types of address trandlation:
« Page address trand ation—transl ates the page frame address for a 4-Kbyte page size

¢ Block addresstranglation—trandates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte.

» Direct-store interface address trandl ation—used to generate direct-store interface
accesses on the external bus; not optimized for performance—present for
compatibility only.

* Real addressing mode addresstranslation—when addresstrandation isdisabled, the
physical addressisidentical to the effective address.

Figure 5-4 shows the four address translation mechanisms provided by the MMUs. The
segment descriptors shown in the figure control both the page and direct-store interface
address trandation mechanisms. When an access uses the page or direct-store interface
address trandation, the appropriate segment descriptor is required. In 32-bit
implementations, one of the 16 on-chip segment registers (which contain segment
descriptors) is selected by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store
interfaceis present only for compatibility with existing I/O devices that used this interface.
When an access is determined to be to the direct-store interface space, the implementation
invokes an elaborate hardware protocol for communication with these devices. The
direct-store interface protocol is not optimized for performance, and therefore, its use is
discouraged. The most efficient method for accessing 1/0O devices is by memory-mapping
the1/O areas.

For memory accesses trandated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address trandation
misses in an on-chip TLB, the MMU causes a search of the page tablesin memory (using
the virtual address information and a hashing function) to locate the required physica
address.

Block address translation occurs in parallel with page and direct-store segment address
trandation and is similar to page address translation; however, fewer higher-order effective
address bits are trandated into physical address bits (morelower-order address bits (at least
17) are untranglated to form the offset into a block). Also, instead of segment descriptors
and a TLB, block address tranglations use the on-chip BAT registers as a BAT array. If an
effective address matches the corresponding field of a BAT register, the information in the
BAT register is used to generate the physical address; in this case, the results of the page
trandation and the direct-store translation (occurring in parallel) are ignored.
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Figure 5-4. Address Translation Types

Direct-store address translation is used when the direct-store translation control bit (T bit)
in the corresponding segment descriptor is set. In this case, the remaining information in
the segment descriptor is interpreted as identifier information that is used with the
remaining effective address hits to generate the packets used in a direct-store interface
access on the external interface; additionally, no TLB lookup or page table search is
performed.

Trandation isdisabled for real addressing mode. In this casethe physical address generated
isidentical to the effective address. Instruction and data address trandation is enabled with
the MSR[IR] and MSR[DR] bits, respectively. Thus when the processor generates an
access, and the corresponding address trandation enable bit in MSR (MSR[IR] for
instruction accesses and MSR[DR] for data accesses) is cleared, the resulting physical
address is identical to the effective address and al other trandation mechanisms are
ignored.
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5.1.4 Memory Protection Facilities

In addition to the trandation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

Table 5-2. Access Protection Options for Pages

User Read Supervisor Read .

e Supervisor
I-Fetch Data I-Fetch Data
Supervisor-only — — — v v v
Supervisor-only-no-execute — — — — v v
Supervisor-write-only v v — v v v
Supervisor-write-only-no-execute — v — — v v
Both user/supervisor v v v v v v
Both user-/supervisor-no-execute — v v — v v
Both read-only v v — v v —
Both read-only-no-execute — v — — v —
Guarded

v Access permitted
— Protection violation

The operating system determines whether instruction can be fetched from an area of
memory for which the no-execute option is provided in the segment descriptor. Each of the
remaining options is enforced based on a combination of information in the segment
descriptor and the page table entry. Thus, the supervisor-only option allows only read and
write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception to be taken.

Finally, thereisafacility in the VEA and OEA that allows pages or blocksto be designated
as guarded preventing out-of order accesses that may cause undesired side effects. For
example, areas of the memory map that are used to control 1/O devices can be marked as
guarded so that accesses (for example, instruction prefetches) do not occur unless they are
explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in
Chapter 7, “Memory Management,” in the The Programming Environments Manual.
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5.1.5 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bitsin the
page address translation mechanism that can be used as history information relevant to the
page. Thisinformation can then be used by the operating system to determine which areas
of memory to write back to disk when new pages must be allocated in main memory. While
these bits are initially programmed by the operating system into the page table, the
architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required.

Implementation Note—In the process of loading the TLB, the 604 checks the state of the
changed and referenced bits for the matched PTE. If the referenced bit is not set and the
table search operation isinitially caused by aload operation or by an instruction fetch, the
604 automatically sets the referenced bit in the trandation table. Similarly, if the table
search operation is caused by a store operation and either the referenced bit or the changed
bit is not set, the hardware automatically sets both bits in the translation table. In addition,
during the address trandation portion of a store operation that hits in the TLB, the 604
checks the state of the changed bit. If the bit is not already set, the hardware automatically
updates the TLB and the tranglation table in memory to set the changed bit. For more
information, see Section 5.4.1, “Page History Recording.”

5.1.6 General Flow of MMU Address Translation

The following sections describe the genera flow used by PowerPC processors to trandate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data

trangdlation is disabled (MSR[IR] = 0 or MSR[DR] = 0), rea addressing mode is used

(physical address equals effective address) and the access continues to the memory

subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-5 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select either
direct-store interface or page address trand ation.
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Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Notethat if the BAT array search resultsin ahit, the accessis qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (1Sl or DSI
exception) is generated.

Implementation Note—The 604 BAT registersare not initialized by the hardware after the
power-up or reset sequence. Consequently, all valid bits in both instruction and data BAT
areas must be cleared before setting any BAT areafor the first time. Thisis true regardless
of whether address trandation is enabled. Also, software must avoid overlapping blocks
while updating a BAT area or areas. Even if trandation is disabled, multiple BAT area hits
are treated as programming errors and can corrupt the BAT registers and produce
unpredictable results.
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5.1.6.2 Page and Direct-Store Interface Address Translation
Selection

If address trandlation is enabled and the effective address information does not match with
a BAT array entry, then the segment descriptor must be located. Once the segment
descriptor islocated, the T bit in the segment descriptor selects whether the trandation isto
a page or to a direct-store segment as shown in Figure 5-6. In addition, Figure 5-6 also
shows the way in which the no-execute protection is enforced; if the N bit in the segment
descriptor is set and the access is an instruction fetch, the accessis faulted as described in
Chapter 7, “Memory Management,” in The Programming Environments Manual. Note that
the figure showsthe flow for these cases as described by the PowerPC OEA, and sothe TLB
references are shown as optional. As the 604 implements TLBs, these branches are valid,
and described in more detail throughout this chapter.
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5.1.6.3 Selection of Page Address Translation

If the T bit in the corresponding segment descriptor is 0, page address trandation is
selected. The information in the segment descriptor is then used to generate the 52-hit
virtual address. The virtual address is then used to identify the page address translation
information (stored as page table entries (PTES) in a page table in memory). For increased
performance, the 604 has two on-chip TLBs to store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page trandation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU requires a search of the page table. In this case, the 604 hardware performs the
page table search operation. If the PTE is successfully found, anew TLB entry is created
and the page trandation is once again attempted. This time, the TLB is guaranteed to hit.
Once the PTE islocated, the access is qualified with the appropriate protection bits. If the
accessis aprotection violation (not allowed), either an ISl or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
ISl or DSI exception occurs so software can handle the page faullt.

5.1.6.4 Selection of Direct-Store Interface Address Translation

When the segment descriptor has the T bit set, the access is considered a direct-store
interface access and the direct-store interface protocol of the external interface is used to
perform the accessto direct-store space. The selection of addresstranslation type differsfor
instruction and data accesses only in that instruction accesses are not alowed from
direct-store segments; attempting to fetch an instruction from a direct-store segment causes
an ISl exception. See Section 5.5, “ Direct-Store Interface Address Trandlation,” for more
detailed information about the trandation of addresses in direct-store space.

5.1.7 MMU Exceptions Summary

In order to complete any memory access, the effective address must be trandated to a
physical address. As specified by the architecture, an MMU exception condition occurs if
thistrandation fails for one of the following reasons:

« Thereisnovalid entry in the page table for the page specified by the effective
address (and segment descriptor) and thereis no valid BAT trandation.

¢ Anaddresstrandation is found but the accessis not allowed by the memory
protection mechanism.

The trand ation exception conditions defined by the OEA for 32-bit implementations cause
either the ISl or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains information that
identifies the address of thefailing instruction. Refer to Chapter 4, “ Exceptions,” for amore
detailed description of exception processing.
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Table 5-3. Translation Exception Conditions

Condition Description Exception
Page fault (no PTE found) No matching PTE found in page tables (and no | access: IS| exception
matching BAT array entry) SRR1[1]=1
D access: DSI exception
DSISR[1] =1
Block protection violation Conditions described for block in “Block Memory | access: IS| exception
Protection” in Chapter 7, “Memory Management,” SRR1[4]=1

in The Programming Environments Manual.* -
D access: DSI exception

DSISR[4] =1
Page protection violation Conditions described for page in “Block Memory | access: IS| exception
Protection” in Chapter 7, “Memory Management,” SRR1[4]=1

in The Programming Environments Manual. -
D access: DSI exception

DSISR[4] =1
No-execute protection Attempt to fetch instruction when SR[N] = 1 ISI exception
violation SRR1[3]=1
Instruction fetch from Attempt to fetch instruction when SR[T] =1 ISI exception
direct-store segment SRR1[3] =1
Instruction fetch from Attempt to fetch instruction when MSR[IR] =1 and | ISI exception
guarded memory either matching xBAT[G] = 1, or no matching BAT SRR1[3] =1

entry and PTE[G] = 1

In addition to the tranglation exceptions, there are other MM U-related conditions (some of
them defined as implementation-specific and therefore, not required by the architecture)
that can cause an exception to occur. These exception conditions map to the processor
exception as shown in Table 5-4. The only MMU exception conditions that occur when
MSR[DR] = 0 are the conditions that cause the alignment exception for data accesses. For
more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 4.5.6, “Alignment Exception
(0x00600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
“Memory/CacheAccessAttributes,” in Chapter 5, “ Cache Model and Memory Coherency,”
of The Programming Environments Manual. Refer to Chapter 4, “Exceptions,” and to
Chapter 6, “Exceptions,” in The Programming Environments Manual for a complete
description of the SRR1 and DSISR bit settings for these exceptions.
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Table 5-4. Other MMU Exception Conditions for the PowerPC 604 Processor

Condition

Description

Exception

dcbzwithW=1orl=1

dcbz instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

dcbz when the data cache is
locked

The dcbz instruction takes an alignment
exception if the data cache is locked (HIDO
bits 18 and 19) when it is executed.

Alignment exception

Iwarx or stwex. with W =1

Reservation instruction to write-through
segment or block

DSl exception DSISR[5] = 1

lwarx, stwcx., eciwx, or ecowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSl exception
DSISR[5] = 1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1

Alignment exception (not
required by architecture)

Load or store that results in a
direct-store error

Direct-store interface protocol signalled with
an error condition

DSl exception
DSISR[0] = 1

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with EAR[E] =0

DSl exception
DSISR[11] =1

Imw, stmw, Iswi, Iswx, stswi, or
stswx instruction attempted in
little-endian mode

Imw, stmw, Iswi, Iswx, stswi, or stswx
instruction attempted while MSR[LE] = 1

Alignment exception

Operand misalignment

Translation enabled and operand is
misaligned as described in Chapter 4,
“Exceptions.”

Alignment exception (some
of these cases are
implementation-specific)

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up
the block address translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tablesin memory whenever changes are made to the tablesin memory.
When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, alowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the 604 implements all TLB-related instructions except tlbia, which istreated as
anillegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be “encapsulated” into
subroutines to minimize the impact of migrating across the family of implementations.

5-18 PowerPC 604 RISC Microprocessor User's Manual



Table 5-5 summarizes 604 instructions that specifically control the MMU.

Table 5-5. PowerPC 604 Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#] — rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0-3]] «rS

mfsr rD,SR Move from Segment Register
rD « SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rD « SR[rB[0-3]]

tibie rB * Execution of this instruction causes all entries in the congruence class corresponding to the EA to
be invalidated in the processor executing the instruction and in the other processors attached to
the same bus.

Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync * The tlbsync operation appears on the bus as a distinct operation that causes synchronization of
snooped tlbie instructions.

* These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program the 604
MM USs. These registers are accessible to supervisor-level software only. Theseregistersare
described in Chapter 2, “PowerPC 604 Processor Programming Model .

Table 5-6. PowerPC 604 Microprocessor MMU Registers

Register Description
Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SRO-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit 0. The segment registers are accessed by
the mtsr, mtsrin, mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL—IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined
DBATOU-DBAT3U, and as 32-bit registers in 32-bit implementations. These are special-purpose registers
DBATOL-DBAT3L) that are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in

memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

5.1.9 TLB Entry Invalidation

For PowerPC processors such as the 604 that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optiona TLB
Invalidate Entry (tlbi€) instruction provides away to invalidate the TLB entries.
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Execution of thisinstruction causes al entriesin the congruence class corresponding to the
presented EA to be invalidated in the processor executing the instruction and in the other
processors attached to the same bus.

The tlbsync operation appears on the bus as a distinct operation, that causes
synchronization of snooped tlbie instructions. Section5.4.3.2, “TLB Invalidation,”
describes the TLB invalidation mechanismsin the 604.

5.2 Real Addressing Mode

If address trangdlation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

For information on the synchronization regquirements for changes to MSR[IR] and
MSR[DR], refer to Section 2.3.2.4, “ Synchronization.”

5.3 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides away to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such asamemory-mapped display buffer or an extremely large array of numerical
data.

Block address trandlation in the 604 is described in Chapter 7, “Memory Management,” in
The Programming Environments Manual for 32-bit implementations.

5.4 Memory Segment Model

The 604 adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address trandation), while providing the programming
flexibility afforded by alarge virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
tranglation (BAT) mechanism described in Section 5.3, “Block Address Tranglation.” If not,
the tranglation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual addressto physical address.
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This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 604.

5.4.1 Page History Recording

Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 604 table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be alocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
trandation and not for transations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address trandation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 604, the referenced and changed bits are updated as follows:
« For TLB hits, the C bit is updated according to Table 5-7.

» For TLB misses, when atable search operation isin progress to locate a PTE. The
R and C hits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

Rand C bits Processor Action
in TLB Entry
00 Combination doesn’t occur
01 Combination doesn’t occur
10 Read: No special action
Write: The 604 initiates a table search operation to update C.
11 No special action for read or write

The table shows that the status of the C bit in the TLB entry (in the case of aTLB hit) is
what causes the processor to update the C hit in the PTE (the R bit is assumed to be set in
the page tablesif there isa TLB hit). Therefore, when software clears the R and C bitsin
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The dcbt and dcbtst instructions can execute if there isa TLB/BAT hit or if the processor
isin real addressing mode. In case of a TLB/BAT miss, these instructions are treated as
no-ops; they do not initiate atabl e search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address trandation were disabled (real addressing mode). Additionally, these updates are
performed with single-beat read and byte write transactions on the bus.
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5.4.1.1 Referenced Bit

The referenced (R) bit of a pageislocated in the PTE in the page table. Every time a page
isreferenced (with aread or write access) and the R bit is zero, the 604 setsthe R bit in the
pagetable. The OEA specifiesthat the referenced bit may be set immediately, or the setting
may be delayed until the memory access is determined to be successful. Because the
reference to a page iswhat causes a PTE to be loaded into the TLB, the referenced bit in all
604 TLB entries is effectively always set. The processor never automatically clears the
referenced hit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of thisin
PowerPC systems include the following:

¢ Fetching of instructions not subsequently executed
« Accesses generated by an Iswx or stswx instruction with a zero length

¢ Accesses generated by an stwcex. instruction when no store is performed because a
reservation does not exist

e Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit

The changed bit of apageislocated both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if aTLB isimplemented, as in the 604). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is aready set, the
processor does not change the C bit. If the TLB changed bit is 0, the 604 setsit and atable
search operation is performed to also set the C bit in the corresponding PTE in the page
table. The 604 initiates the table search operation for setting the C bit in this case.

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation isallowed by the page memory protection mechanism and the storeis guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
Set:

¢ The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

e The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
Z€ero.

» Thestore operation isnot performed because an exception occurs before the storeis
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.
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5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the 604 updates the R and C bits in memory, the
accesses are performed as if MSR[DR] =0 and G = 0 (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over amatching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and thereis
no reservation, the C bit is not atered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructionsthat aretreated as aload with respect
to address trandation. Similarly, store operations include those operations generated by
store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings

Causes Setting of Causes Setting
Priority Scenario RBit of C Bit
OEA 604 OEA 604
1 No-execute protection violation No No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
4 Out-of-order store operation contingent on a branch, trap, | Maybe No No No
sc or rfi instruction, or a possible exception
5 Out-of-order store operation contingent on an exception, Maybe No No No
other than a trap or sc instruction, not occurring
6 Zero-length load (Iswx) Maybe No No No
7 Zero-length store (stswx) Maybel® No Maybel No
8 Store conditional (stwcx.) that does not store Maybe! | Yes Maybe! | Yes
9 In-order instruction fetch Yes? Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx, or dcbz instruction Yes Yes Yes Yes
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Table 5-8. Model for Guaranteed R and C Bit Settings (Continued)

Causes Setting of Causes Setting
Lo . R Bit of C Bit
Priority Scenario
OEA 604 OEA 604
12 ichi, dcbt, dcbtst, dcbst, or dcbf instruction Maybe Yes no no
13 dcbi instruction Maybe! | Yes Maybe! | Yes

1if Cis set, R is also guaranteed to be set.
2 This includes the case in which the instruction was fetched out-of order and R was not set
(does not apply for 604).

For more information, see “Page History Recording” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

5.4.2 Page Memory Protection

The 604 implements page memory protection as it is defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

5.4.3 TLB Description

Because the 604 hastwo MMUs (IMMU and DMMU) that operatein parallel, some of the
MMU resources are shared, and some are actually duplicated (shadowed) in each MMU to
maximize performance. For example, athough the architecture defines a single set of
segment registers for the MMU, the 604 maintains two identical sets of segment registers,
one for the IMMU and one for the DMMU; when a segment register instruction executes,
the 604 automatically updates both sets.

5.4.3.1 TLB Organization

The 604 implements separate 128-entry data and instruction TLBs to support the
implementation of separate instruction and data MMUs. This section describes the
hardware resources provided in the 604 to facilitate page address tranglation. Note that the
hardware implementation of the MMU is not specified by the architecture, and while this
description applies to the 604, it does not necessarily apply to other PowerPC processors.

Each TLB contains 128 entries organized as a two-way set associative array with 64 sets as
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address
is being trandated, a set of two TLB entries is indexed in parallel with the access to a
segment register. If the address in one of the two TLB entries is valid and matches the
virtual address, that TLB entry contains the physical address. If no match isfound, aTLB
Mi SS occurs.
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Figure 5-7. Segment Register and DTLB Organization

Unless the accessiis the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into a particular TLB entry
selected by the least-recently-used (LRU) replacement algorithm, and the trandlation
process begins again, thistime with aTLB hit.

TLB entries are on-chip copies of PTESs in the page tables in memory and are similar in
structure. TLB entries consist of two words; the upper-order word contains the VSID and
API fields of the upper-order word of the PTE and the lower-order word contains the RPN,
the C bit, the WIMG bits and the PP bits (as in the lower-order word of the PTE). To
uniquely identify aTLB entry as the required PTE, the PTE also contains four more bits of
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the page index, EA10-EA 13 (in addition to the API bits of the PTE). Formats for the PTE
are given in “PTE Format for 32-Bit Implementations,” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

Software does not have direct access to the TLB arrays, except to invalidate an entry with
thetlbie instruction.

Each set of TLB entries is associated with one LRU bit, which is accessed when those
entries in the same set are indexed. LRU bits are updated whenever aTLB entry is used or
after the entry isreplaced. Invalid entries are always the first to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), when there is an exception condition, only one
exception isreported at atime.

Although addresstranslation is disabled on areset condition, the valid bits of the BAT array
and TLB entriesare not automatically cleared. Thus, TLB entries must be explicitly cleared
by the system software (with the tlbie instruction) before the valid entries are loaded and
address trandlation is enabled. Also, note that the segment registers do not have avalid bit,
and so they should also beinitialized before trandation is enabled.

5.4.3.2 TLB Invalidation

The 604 implements the optiona tlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of the tlbie instruction always invalidates four
entries—both the ITLB entriesindexed by EA14-EA 19 and both the indexed entries of the
DTLB.

Execution of the tlbie instruction causes all entries in the congruence class corresponding
to the specified EA to be invalidated in the processor executing the instruction and also in
the other processors attached to the same bus by causing a TLB invalidate broadcast
operation on the bus as described in Section 7.2.4, “Address Transfer Attribute Signals.”

A TLB invalidate broadcast operation is an address-only transaction issued by a processor
when it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12-19 of the EA in their correct respective bit positions.

When a snooping 604 detectsa TL B invalidate operation on the bus, it acceptsthe operation
only if no TLB invalidation is being performed by this processor and all processors on the
bus accept the operation (ARTRY is not asserted). Once accepted, the TLB invalidation is
performed unless the processor is executing a multiple/string instruction, in which case the
TLB invalidation is delayed until the instruction has completed. Note that a 604 processor
can only have one TLB invalidation operation pending internally. Thus if the 604 has a
pending TLB invalidate operation, it assertsthe ARTRY snoop statusin response to another
TLB invalidate operation on the bus. Detected TL B invalidate operations on the bus and the
execution of the tlbie instruction both cause a congruence-class invalidation on both
instruction and data TLBs.
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The OEA requires that a synchronization instruction be issued to guarantee completion of
a tlbie instruction across all processors of a system. The 604 implements the tlbsync
instruction which causes a TLBSYNC broadcast operation to appear on the bus as an
address-only transaction, distinct from a SYNC operation. It is this bus operation that
causes synchronization of snooped tlbie instructions. Multiple tlbie instructions can be
executed correctly with only one tibsync instruction, following the last tibie, to guarantee
al previous tlbie instructions have been performed globally.

When the TLBSYNC bus operation is detected by a snooping 604, the 604 asserts the
ARTRY snoop statusif any operations based on an invalidated TLB are pending.

Software must ensure that instruction fetches or memory references to the virtual pages
specified by the tibie have been completed prior to executing the tibie instruction.

Other than the possible TLB miss on the next instruction prefetch, the tibie does not affect
the instruction fetch operation—that is, the prefetch buffer is not purged and does not cause
these instructions to be refetched.

Thetlbiainstructionisoptional for animplementation if its effects can be achieved through
some other mechanism. As described above, the tibie instruction can be used to invalidate
aparticular index of the TLB based on EA[14~19]. With that concept in mind, a sequence
of 64 tlbie instructions followed by a single tlbsync instruction would cause all the 604
TLB structures to be invalidated (for EA[14-19] = 0, 1, 2, ..., 63). Therefore the tlbia
instruction is not implemented on the 604. Execution of atlbia instruction causesanillegal
instruction program exception.

Thetlbie and tibsync instructions are described in detail in Section 2.3.6.3.3, “ Translation
Lookaside Buffer Management Instructions—(OEA).” For more information about how
other processors react to TLB operations broadcast on the system bus of a multiprocessing
system, see Section 3.9.6, “ Cache Reaction to Specific Bus Operations.”

5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands
on the “TLB Hit” branch of Figure 5-6. The detailed flow for the “TLB Miss’ branch of
Figure 5-6 isdescribed in Section 5.4.5, “ Page Table Search Operation.” Note that asin the
case of block address trandation, if the dcbz instruction is attempted to be executed either
in write-through mode or as cache-inhibited (W = 1 or | = 1), the alignment exception is
generated. The checking of memory protection violation conditions for page address
trandation is described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.
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5.4.5 Page Table Search Operation

If the trangdlation is not found in the TLBs (a TLB miss), the 604 initiates a table search
operation which is described in this section. Formatsfor the PTE are givenin “PTE Format
for 32-Bit Implementations,” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

Thefollowing is asummary of the page table search process performed by the 604:

1. The 32-bit physical address of the primary PTEG is generated as described in “ Page
Table Addresses’ in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

2. Thefirst PTE (PTEO) in the primary PTEG isread from memory. PTE reads should
occur with an implied WIM memory/cache mode control bit setting of Ob0OL.
Therefore, they are considered cacheable and read (burst) from memory and placed
in the cache.

3. The PTE inthe selected PTEG istested for a match with the virtual page number
(VPN) of the access. The VPN isthe VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] =0
— PTE[V] =1
— PTE[VSID] =VA[0-23]
— PTE[API] = VA[24-29]

4. If amatch is not found, step 3 is repeated for each of the other seven PTEsin the
primary PTEG. If amatch isfound, the table search process continues as described
instep 8. If amatchisnot found within the 8 PTEs of the primary PTEG, the address
of the secondary PTEG is generated.

5. Thefirst PTE (PTEOQ) in the secondary PTEG isread from memory. Again, because
PTE reads typically have aWIM bit combination of 0b001, an entire cachelineis
read into the on-chip cache.

6. ThePTE inthe selected secondary PTEG istested for amatch with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

— PTE[H] =1
— PTE[V] =1
— PTE[VSID] =VA[0-23]
— PTE[API] = VA[24-29]

7. If amatchisnot found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG. If it is never found, an exception is taken (step 9).

8. If amatchisfound, the PTE iswritten into the on-chip TLB and the R bit is updated
inthe PTE in memory (if necessary). If there is no memory protection violation, the

C bit is also updated in memory (if the accessis awrite operation) and the table
search is complete.
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9. If amatchis not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an S| exception or aDSI
exception).

Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary
page table search operations, described in The Programming Environments Manual are
realized in the 604.

Figure 5-9 shows the case of a dcbz instruction that is executed withW =1 or | =1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.
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Figure 5-9. Primary Page Table Search
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ISI Exception DSl Exception

Figure 5-10. Secondary Page Table Search Flow

If the address in one of the two selected TLB entries is valid and matches the virtual
address, that TLB entry contains the physical address. If no match is found, a TLB miss
occurs and, if thisisan in-order access, a hardware table search operation begins. Once the
matching PTE is found in memory, it is loaded into the appropriate TLB entry depending
on the LRU bit setting and translation continues.

The LSU initiates out-of-order accesses without knowledge of whether it islegal to do so.
Therefore, the MMU does not perform hardware table search due to TLB misses until the
reguest is nonspeculative. In these out-of-order cases, the MMU does detect protection
violations and whether a dcbz instruction specifies a page marked as write-through or
cache-inhibited. The MMU aso detects alignment exceptions caused by the dcbz
instruction, which prevents the changed bit in the PTE from being updated erroneously.

Note that when a TLB miss occurs, the MMU does not begin the table search operation if
the accessiis out of order.
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If the MMU registers are being accessed by an instruction in the instruction stream, the
IMMU stallsfor one trandation cycle to perform those operation. The sequencer serializes
instructions to ensure the data correctness. For updating the IBATs and SRs, the sequencer
classifies those operations as fetch serialization. After such an instruction is dispatched, the
instruction buffer is flushed and the fetch stalls until the instruction completes. However,
for reading from the IBATS, the operation is classified as execution serialization. Aslong as
the LSU ensuresthat all previousinstructions can be executed, subsequent instructions can
be fetched and dispatched.

5.4.6 Page Table Updates

This section describes the requirements on the software when updating page tables in
memory via some pseudocode examples. Multiprocessor systems must follow the rules
described in this section so that all processors operate with a consistent set of page tables.
Even single-processor systems must follow certain rules, because software changes must
be synchronized with the other instructions in execution and with automatic updates that
may be made by the hardware (referenced and changed bit updates). Updates to the tables
include the following operations:

¢ AddingaPTE
« Modifying a PTE, including modifying the R and C bits of a PTE
« DeletingaPTE

PTEs must be locked on multiprocessor systems. Access to PTES must be appropriately
synchronized by software locking of (that is, guaranteeing exclusive access to) PTES or
PTEGsif more than one processor can modify thetable at that time. In the examples bel ow,
‘lock()’ and *unlock()’ refer to software locks that must be performed to provide exclusive
access to the PTE being updated. See Appendix E, “Synchronization Programming
Examples,” in The Programming Environments Manual, for more information about the
use of the reservation instructions (such as the Iwar x and stwcx. instructions) to perform
software locking.

On single-processor systems, PTES need not be locked. To adapt the examples given below
for the single-processor case, simply delete the ‘lock()’ and ‘unlock()’ lines from the
examples. The sync instructions shown are required even for single-processor systems (to
ensure that al previous changes to the page tables and all preceding tibieinstructions have
completed).

When TLBs are implemented, they are defined as noncoherent caches of the page tables.
TLB entriesmust be invalidated explicitly with the TLB invalidate entry instruction (tlbie)
whenever the corresponding PTE is modified. In a multiprocessor system, the tlbie
instruction must be controlled by software locking, so that the tlbie is issued on only one
processor at a time. The sync instruction causes the processor to wait until the TLB
invalidate operation in progress by this processor is complete.
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The PowerPC OEA defines the tlbsync instruction that ensures that TLB invalidate
operations executed by this processor have caused all appropriate actions in other
processors. In asystem that contains multiple processors, the tibsync functionality must be
used in order to ensure proper synchronization with the other PowerPC processors. Note
that for compatibility with PowerPC 601 microprocessor systems a sync instruction must
aso follow the tlbsync to ensure that the tlbsync has completed execution on this
processor.

Any processor, including the processor modifying the page table, may accessthe pagetable
at any timein an attempt to reload aTL B entry. An inconsistent page table entry must never
accidentally become visible; thus, there must be synchronization between modifications to
the valid bit and any other modifications (to avoid corrupted data). This requires as many
as two sync operations for each PTE update.

Because theV, R, and C hits each reside in a distinct byte of a PTE, programs may update
these bits with byte store operations (without requiring any higher-level synchronization).
However, extreme care must be taken to ensure that no store overwrites one of these bytes
accidentally. Processors write referenced and changed bits with unsynchronized, atomic
byte store operations.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly atering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. Thiskind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly undefined results. Therefore, PTES must not be
changed in amanner that causes an implicit branch. Chapter 2, “PowerPC Register Set,” in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and M SR bits are changed.

5.4.7 Segment Register Updates

There are certain synchronization requirements for using the move to segment register
instructions. These are described in “ Synchronization Requirements for Special Registers
and for Lookaside Buffers’ in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.
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5.5 Direct-Store Interface Address Translation

As described for memory segments, all accesses generated by the processor map to a
segment descriptor in the segment table. If T = 1 for the selected segment descriptor and
there are no BAT hits, the access maps to the direct-store interface, invoking a specific bus
protocol for accessing some specia-purpose 1/O devices. Direct-store segments are
provided for POWER compatibility. As the direct-store interface is present only for
compatibility with existing I/0 devicesthat used thisinterface and the direct-store interface
protocol is not optimized for performance, its useis discouraged. Applications that require
low latency load/store access to external address space should use memory-mapped 1/0,
rather than the direct-store interface.

5.5.1 Direct-Store Interface Accesses

When the address tranglation process determines that the segment descriptor has T = 1,
direct-store interface address trandation is selected and no reference is made to the page
tables and referenced and changed bits are not updated. These accesses are performed as if
the WIMG bits were 0b0101; that is, caching is inhibited, the accesses bypass the cache,
hardware-enforced coherency is not required, and the accesses are considered guarded.

The specific protocol invoked to perform these accessesinvolvesthe transfer of addressand
data information in packets, however, the PowerPC OEA does not define the exact
hardware protocol used for direct-store interface accesses. Some instructions cause
multiple address/data transactions to occur on the bus. In this case, the address for each
transaction is handled individually with respect to the DMMU.

Thefollowing datais sent by the 604 to the memory controller in the protocol (two packets
consisting of address-only cycles) described in Section 8.6, “ Direct-Store Operation.”
» PacketO
— One of the Kx bits (Ks or Kp) is selected to be the key asfollows:
— For supervisor accesses (MSR[PR] = 0), the Ks hit isused and Kp isignored.
— For user accesses (MSR[PR] = 1), the Kp bit is used and Ksisignored.

— The contents of bits 3-31 of the segment register, which isthe BUID field
concatenated with the “ controller-specific” field.

» Packet 1—SR[28-31] concatenated with the 28 lower-order bits of the effective
address, EA4-EA31.

5.5.2 Direct-Store Segment Protection

Page-level memory protection as described in Section 5.4.2, “ Page Memory Protection,” is
not provided for direct-store segments. The appropriate key bit (Ksor Kp) from the segment
descriptor is sent to the memory controller, and the memory controller implements any
protection required. Frequently, no such mechanism is provided; the fact that adirect-store
segment is mapped into the address space of a process may be regarded as sufficient
authority to access the segment.
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5.5.3 Instructions Not Supported in Direct-Store Segments

The following instructions are not supported at al and cause a DSl exception (with
DSISR[5] set) when issued with an effective address that selects a segment descriptor that
hasT =1 (or when MSR[DR] = 0):

e lwarx

e stwcx.

*  eciwx

*  ECowXx

5.5.4 Instructions with No Effect in Direct-Store Segments
The following instructions are executed as no-ops when issued with an effective address
that selects a segment where T = 1.

e dcbt

e dcbtst

* dcbf

* dchi

e dcbst

e dchz

e ichi

5.5.5 Direct-Store Segment Translation Summary Flow

Figure 5-11 shows the flow used by the MMU when direct-store segment address
tranglation is selected. This figure expands the direct-store segment translation stub found
in Figure 5-6 for both instruction and data accesses. In the case of a floating-point load or
store operation to a direct-store segment, other implementations may not take an alignment
exception, as is alowed by the PowerPC architecture. In the case of an eciwx, ecowx,
Iwarx, or stwcex. instruction, the implementation either sets the DSISR register as shown
and causes the DSI exception, or causes boundedly undefined results.
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Chapter 6
Instruction Timing

This chapter describesinstruction prefetch and execution through all of the execution units
of the PowerPC 604 microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions.

6.1 Terminology and Conventions

This section describes terminology and conventions used in this chapter. This section
defines terms used in this chapter.

« Stage—An element in the pipeline at which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, and writing back the
results. A stage typically takes a cycle to perform its operation; however, some
stages are repeated (a double-precision floating-point multiply, for example). When
this occurs, an instruction immediately following it in the pipelineis forced to stall
initscycle.

In some cases, an instruction may also occupy more than one stage
simultaneously—for example, instructions may complete and write back their
resultsin the same cycle.

After an instruction is fetched, it can always be defined as being in one or more
stages.

» Pipeline—In the context of instruction timing, the term pipeline refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously—analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cyclesto complete (the number
of cyclesis called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.
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Superscalar—A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the sametime. In
the 604 these instructions can |eave the execute stage out of order but must leave the
other stagesin order.

Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term predicted asit is used here does not
imply that the prediction is correct (successful). The PowerPC architecture defines
ameans for static branch prediction, which is part of the instruction encoding. The
604 also implements dynamic branch prediction, where there are levels of
probability assigned to a particular instruction depending on the history of that
instruction, which is recorded in the branch history table (BHT).

Branch resol ution—The determination of whether abranch istaken or not taken. A
branch is said to be resolved when it can exactly be determined which path it will
take. If the branch is resolved as predicted, speculatively executed instructions can
be completed. If the branch is not resolved as predicted, instructions on the
mispredicted path are purged from the instruction pipeline and are replaced with the
instructions from the nonpredicted path.

Program order—The original order in which program instructions are provided to
the instruction queue from the cache.

Stall—An occurrence when an instruction cannot proceed to the next stage.

L atency— The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

Throughput—A measure of the number of instructionsthat are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle.

Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the operands required for execution may
not yet be available. In the 604, each execution unit has a two-entry reservation
station. The 604 implements two types of reservation stations. The integer units
implement out-of-order execution units so integer instructions can be executed out
of order within individual integer units and among the three units. The reservation
stations for the other execution units are in-order reservation stations—that is, all
noninteger instructions must pass through its assigned unit in program order with
respect to other like instructions.
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* Rename buffer—Temporary buffers used by instructions that have not completed
and as write-back buffers for those that have.

» Finish—Thetermindicatesthefinal cycleof execution. Inthiscycle, thecompletion
buffer is updated to indicate that the instruction has finished executing.

e Completion—Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previousinstructionswill cause no exceptions. In somesituations,
an instruction can finish and complete in the same cycle.

¢ Write-back—Write-back (in the context of instruction handling) occurs when a
result is written from the rename registers into the architectural registers (typically
the GPRs and FPRs). Results are written back at compl etion time or are moved into
the write-back buffer. Results in the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken.

6.2 Instruction Timing Overview

The 604 has been designed to maximize instruction throughput and minimize average
instruction execution latency. For many of theinstructionsin the 604, this can be simplified
to include only the execute phase for a particular instruction. Note that the number of
additional cyclesrequired by data access instructions depends on whether the access hitsin
the cache in which case there is a single cycle required for the cache access. If the access
misses in the cache, the number of additional cyclesrequired is affected by the processor-
to-bus clock ratios and other factors pertaining to memory access.

In keeping with this definition, most integer instructions have a latency of one clock cycle
(for example, results for these instructions are ready for use on the next clock cycle after
issue). Other instructions, such as the integer multiply, require more than one clock cycle
to finish execution.

Figure 6-1 provides a detailed block diagram—showing the additional data paths that
contribute to the improved efficiency in instruction execution and more clearly shows the
rel ationships between execution units and their associated register files.
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Figure 6-1. PowerPC 604 Microprocessor Block Diagram Showing Data Paths

As shown in Table 6-1, effective throughput of more than one instruction per clock cycle
can be realized by the many performance features in the 604 including multiple execution
units that operate independently and in parallel, pipelining, superscalar instruction issue,
dynamic branch prediction, the implementation of two reservation stations for each
execution unit to avoid additional latency due to stalls in individual pipelines, and result
buses that forward results to dependent instructions instead of requiring those instructions
to wait until results become available in the architected registers.

The reservation stations and result buses for the GPRs are shown in Figure 6-2
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Figure 6-2. GPR Reservation Stations and Result Buses
Although it is not shown in Figure 6-1, the LSU and FPU are pipelined.

The 604's completion buffer can retire four instructions every clock cycle. In general,
instruction processing is accomplished in six stages—fetch stage, decode stage, dispatch
stage, execute stage, completion stage, and write-back stage. The instruction fetch stage
includes the clock cycles necessary to request instructions from the on-chip cache as well
asthe time it takes the on-chip cache to respond to that request. The decode stage consists
of the time it takes to fully decode the instruction. In the complete stage, as many as four
instructions per cycle are completed in program order. In the write-back stage, results are
returned to the register file. Instructions are fetched and executed concurrently with the
execution and write-back of previous instructions producing an overlap period between
instructions. The details of these operations are explained in the following paragraphs.

6.2.1 Pipeline Structures

The master instruction pipeline of the 604 has six stages. Instructions executed by the
machine flow through these stages. Some instructions combine the completion and write-
back stages into a single cycle. Some instructions (load, store, and floating-point
instructions) flow through additional execution pipeline stages.

The six basic stages of the master instruction pipeline are as follows:

* Fetch (IF)

¢ Decode (ID)

» Dispatch (DS)

» Execute (E)

e Completion (C)
*  Write-back (W)
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These stages are shown in Figure 6-3. Some instructions occupy multiple stages
simultaneously and some individual execution units, such as the FPU and MCIU, have
multiple execution stages.

Fetch (IF)

Y
Decode (ID)
\A

(Four-instruction dispatch per clock cycle in | Dispatch (DS)
N

any combination)

Execute Stage

’ SClu2 ‘ ’ MCIU ‘ ’ FPU

Complete (C)

Y
Write-Back (W)

Figure 6-3. Pipeline Diagram

Pipelines for typical instructions for each of the execution units are shown in Figure 6-4.
Note that this figure does not accurately reflect the latencies for al instructions that pass
through each of the pipelines. The division of instructions into branch, integer, load/store,
and floating-point instructions indicates the execution unit in which the instructions
execute. For example, mtspr instructions, which are not thought of as integer instructions
from a functional perspective, are considered with integer instructions here because they
execute in the MCIU.

Note that in many circumstances, complete and write-back can occur in the same cycle.
Also, integer multiply, integer divide, move to/from SPR, store, and load instructions that
miss in the cache can occupy both the final stage of execute (finish) and complete (and
write-back) simultaneously.
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Figure 6-4. PowerPC 604 Microprocessor Pipeline Stages

Table 6-1 lists the latencies and throughputs for general groups of instructions.

Table 6-1. Execution Latencies and Throughputs

Instruction Latency Throughput
Most integer instructions 1 1
Integer multiply (32x32) 4 2
Integer multiply (others) 3 1
Integer divide 20 19
Integer load 2 1
Floating-point load 3 1
Floating-point store 3 1
Double-precision floating-point multiply-add 3 1
Single-precision floating-point divide 18 18
Double-precision floating-point divide 31 31

6.2.1.1 Description of Pipeline Stages

This section gives a brief description of each of the six stages of the master instruction
pipeline.
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6.2.1.1.1 Fetch Stage

Thefetch stage primarily is responsible for fetching instructions from the instruction cache
and determining the address of the next instruction to be fetched. Instructions fetched from
the cache are latched into an instruction buffer for subsequent consideration by the decode
stage. The instruction fetching logic is shown in Figure 6-5.

i Y Y
[+2 ][4 ]
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i i l \ y
Decode Buffer MUX
Decode Prediction
Dispatch Buffer -
» M =
Dispatch Prediction > U A >
l l X R | To Cache
Pending Branch Queue Target 1 Seq 1
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Station) Target 0 Seq 0 M
U
X
A l Execute Stage Correction
Finished Branch { Target 0 Target 1
Queue
Y \
c _ MUX —— Number Completed
xceptions
PC ;
Complete Stage Correction
\A
MUX

Figure 6-5. Instruction Fetch Address Generation
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The fetch unit keeps the instruction buffer (four-entry decode and four-entry dispatch
buffer) supplied with instructions for the dispatcher to process. Normally, the fetch unit
fetchesinstructions sequentially, even when the instruction buffer isfull because space may
become available by the time the instruction cache supplies them. Instructions are fetched
from the instruction cache in groups of four along double-word boundaries. Instructions
can be fetched from only one cache block at atime, so if only two instructions remain in
the cache block, only two instructions are fetched. If fetching is sequential, then it resumes
at four instructions per clock from the next cache block.

The next address to be fetched is affected by several different conditions. Each stage offers
its own candidate for the next instruction to be fetched, and the latest stage has the highest
priority. As a block is prefetched, the branch target address cache (BTAC) and the branch
history table (BHT) are searched with the fetch address. If the fetch addressisfound in the
BTAC, it is the fetch stage candidate for being the next instruction address (as shown in
Section 6.4.4.1.1, “Timing Example—Branch Timing for a BTAC Hit"); otherwise, the
next sequential address is the candidate provided by the fetch stage.

The decode logic may indicate, based on the BHT or an unconditional branch decode, that
an earlier BTAC prediction was incorrect. The BPU can indicate that a previous branch
prediction, either from the BTAC or the decoder wasincorrect and it can supply anew fetch
address. In this case, the contents of the instruction buffers are flushed. Exception logic
within the completion logic may indicate the need to vector to an exception handler address.
From these choices the exception hasfirst priority, the branch unit has second priority, the
decode correction of aBTAC prediction hasthird priority, and the BTAC prediction hasthe
final priority for instruction prefetching.

6.2.1.1.2 Decode Stage

The decode stage handles all time-critical instruction decoding for instructions in the
instruction buffer. The decode stage contains afour-instruction buffer that shifts one or two
pairs of instructions into the dispatch buffer as space becomes available.

6.2.1.1.3 Dispatch Stage

The dispatch pipeline stage is responsible for non—time-critical decoding of instructions
supplied by the decode stage and for determining which of the instructions can be
dispatched in the current cycle. Also, the source operands of the instructions are read from
the appropriate register file and dispatched with the instruction to the execute stage. At the
end of the dispatch stage, the dispatched instructions and their operands are latched into
reservation stations or execution unit input latches.
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6.2.1.1.4 Execute Stage

As shown in Figure 6-3, after an instruction passes through the common stages of fetch,
decode, and dispatch, they are passed to the appropriate execution unit where they are said
to be in execute stage. Note that the time that an instruction spends in the execute stage
varies depending on the execution unit. For example, the floating-point unit has a fully-
pipelined, three-stage execution unit, so most floating-point instructions have athree-cycle
execute latency, regardlesswhether they are single- or double-precision. Someinstructions,
such asinteger divides, must repeat some stagesin order to calculate the correct result.

The execute stage executes the instruction selected in the dispatch stage, which may come
from the reservation stations or from instructions arriving from dispatch. At the end of
execute stage, the execution unit writes the resultsinto the appropriate rename buffer entry,
and notifies the complete stage that the instruction has finished execution.

If it is determined that the direction of a branch instruction was mispredicted in an earlier
stage, the instructions from the mispredicted path are flushed and fetching resumes at the
correct address.

If an instruction causes an exception, the execution unit reports the exception to the
complete stage and continues executing instructions regardless of the exception. Under
certain conditions, results can write directly into the register file and bypass the rename
registers.

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. Theseinclude the following:

* Integer divide, multiply when OE =0

e All mfspr

* All mtspr instructions except when LR/CTR isinvolved

Note that all instructions that execute in the MCIU can complete during the same cyclein
which they finish executing except for the following:

¢ Instructions that change OV or CA (OE =1)
« Moveto CTR/LR instructions because they are not execution-serialized

An example of one of theseinstructions, mulli, is shown in the instruction timing examples
in Figure 6-9 through Figure 6-12. An instruction can finish execution and complete only
if it is the first instruction to complete. Whether an instruction is able to complete in the
same cycle in which it finishes execution is aso subject to the normal considerations that
affect execution and completion.

For more information about individual execution units, see Section 6.5, “Execution Unit
Timings.”
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6.2.1.1.5 Complete Stage

The complete stage maintains the correct architectural machine state. In doing this it
considers a number of instructions residing in the completion buffer and uses the
information about the status of instructions provided by the execute stage.

When instructions are dispatched, they are issued a position in the 16-entry completion
buffer which they hold until they meet the constraints of completion. When an instruction
finishes execution, its status is recorded in its completion buffer entry. The completion
buffer is managed as afirst-in, first-out (FIFO) buffer; it examines the entries in the order
in which the instructions were dispatched. The fact that the completion buffer allows the
processor to retain the program order ensures that instructions are completed in order.

The status of four entries are examined during each cycle to determine whether the results
can be written back, and therefore, as many as four instructions can complete per clock. If
an instruction causes an exception, the status information in the completion buffer reflects
this, and thisinformation in the compl etion buffer is used to generate the exception. In this
way the completion buffer is used to ensure a precise exception model. Typicaly,
exceptions are detected in the fetch, decode, or execute stage.

Apart from those restrictions necessary to support a precise exception model, the 604
imposes the following restrictions per each cycle:

e Completion stops before astore since store datais read directly from GPRs or FPRs

» Completion stops after a taken branch instruction to simplify the program counter
logic.

Note that the 604 decouples instruction completion from the actual update (write-back) of
the register file; therefore, instructions can compl ete regardless of how many registers they
must update, and a few instructions, such as load cache misses can complete before the
result isknown. Thewrite-back occurs during the complete stageif the portsand resultsare
available; otherwise, the write-back is treated as a separate stage, as shown in the timing
examplesin Section 6.4.1, “ General Instruction Flow.” This provision allows the processor
to complete instructions, without concern for the number or presence of results. Note that
if aread operation missesin the cache, the instruction can complete (aslong asit is certain
that the instruction can cause no exceptions) even though the result is not available.

Rename buffer entriesfor the FPRs, GPRs, and CR act astemporary buffersfor instructions
that have not completed and as write-back buffers for those that have.

Each of the rename buffers has two read ports for write-back, corresponding to the two
ports provided for write-back for the GPRs, FPRs, and CR. As many as two results are
copied from each write-back buffer to aregister per clock cycle.
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If the completion logic detects an instruction containing exception status or an instruction
that can cause subsequent instructions to be flushed at completion (such as mtspr[xer],
instructions that set the summary overflow (SO) bit, and other instructionslisted below), al
following instructions are cancelled, their execution results in the rename buffers are
discarded, and fetching resumes at the correct stream of instructions. Other architectural
registers, such as CTR, LR, and CR, are updated during this stage. A complete list of the
affected instructions is as follows:

e mtspr (xer)

e mcrxr

e isync

* Instructions that set the summary overflow, SO, bit
e Iswx with O bytesto load

* Foating-point arithmetic, frsp, fctiw, and fctiwz instructions that cause an
exception with FPSCR[VE] = 1

« A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE=1)

6.2.1.1.6 Write-Back Stage

The write-back stage is used to write back any information from the rename buffers that
was hot written back by the complete stage.

As mentioned in Section 6.2.1.1.5, “Complete Stage,” each of the rename buffers has two
read ports for write-back, corresponding to the two ports provided for write-back for the
GPRs, FPRs, and CR. As many as two results are copied from the write-back buffersto a
register per clock cycle. To compensate for the extra write-back stage, the GPR rename
buffer has 12 entries, which reduces the chances for dispatch stalls for applications that
depend heavily on integer instructions.

6.3 Memory Performance Considerations

Due to the 604's instruction throughput of four instructions per clock cycle, lack of data
bandwidth can become a performance bottleneck. In order for the 604 to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.
If there are many processors in a system environment, one processor may experience long
memory latencies while another bus master (for example, a direct memory access
controller) is using the external bus.
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To reduce this possible contention, the PowerPC architecture provides three memory
update modes—write-back, write-through, and cache-inhibit. Each page of memory is
specified to be in one of these modes. If a page isin write-back mode, data being stored to
that page is written only to the on-chip cache. If a page isin write-through mode, writesto
that page update the on-chip cache on hits and aways update main memory. If a pageis
cache-inhibited, data in that page is never stored in the on-chip cache. All three of these
modes of operation have advantages and disadvantages. A decision asto which modeto use
depends on the system environment as well as the application. Although these modes are
described in detail in Chapter 3, “Cache and Bus Interface Unit Operation,” Section 6.3.4,
“Memory Operations,” briefly describes how these modes may affect instruction timing.

6.3.1 MMU Overview

The 604 implements separate 128-entry, two-way set-associative TLBs, one each for
instruction and data accesses. The TLBs are managed in hardware and adhere to the
specifications for segmented page virtual memory provided in the operating environment
architecture (OEA). Theblock addresstranglation (BAT) registersmakeit possibleto easily
manage large contiguous areas of memory (128 Kbyte to 256 Mbyte).

The MM Us also control memory protection aswell as the cache functions, such aswhether
ablock or pageiswrite-back or write-through, is cacheable/noncacheable, is kept coherent,
or isavailable for speculative execution.

For more information about the 604 MMU implementation, see Chapter 5, “Memory
Management.”

6.3.2 Cache Overview

The nonblocking data cache, shown in Figure 6-6, provides continuous load or store access
during a cache block reload.
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Figure 6-6. Data Caches and Memory Queues

For aload operation, the cache is accessed first by the LSU and data is forwarded to the
execution unit and to the rename buffer if the access hits in the cache. Otherwise, the load
operation is added to the load queue.

Store operations are added to the store queue after they are successfully trandated. As each
store operation is completed with respect to the execution unit, it is only marked as
completed in the queue so instruction processing can continue without having to wait for
the actual store operation to take place either in the cache or in system memory. When the
cache is not busy, one completed store can be written to the cache per cycle. In the case of
a cache miss on a store operation, that store information is placed in the store miss queue
to allow subsequent store operations to continue while the missing cache block is brought
in from system memory. The store queue can hold six instructions.

As each load miss completes, the cache is accessed a second time. If it misses again, the
instruction is moved to the load miss register while the missing cache block is brought in.
Thisallows asecond load miss to begin without having to wait for the first oneto complete.
The load queue can hold as many as four instructions.
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Requests from a mispredicted branch path are selectively removed from the memory
gueues when the misprediction is corrected, €liminating unnecessary memory accesses and
reducing traffic on the system bus. The 604 aso implements the cache block touch
instructions (dcbt and dcbtst) which allows the processor to schedule bus activity more
efficiently and increase the likelihood of a cache hit.

The data cache is kept coherent using MESI protocol and maintains a separate port so
snooping does not interfere with other bustraffic. Note that coherency is not maintained in
the instruction cache. Instructions are provided by the PowerPC architecture to ensure
coherency in the instruction cache.

Both caches can be disabled, invalidated, or locked by using bitsin the HIDO register. For
more information, see Section 2.1.2.3, “ Hardware |mplementation-Dependent Register 0.

For more information about the 604 cache implementation, see Chapter 3, “ Cache and Bus
Interface Unit Operation.”

6.3.3 Bus Interface Overview

The bus interface unit (BIU) on the 604 is compatible with that on the PowerPC 601 and
603 processors. The BIU supports both tenured and split-transaction modes and can handle
asmany asthree outstanding pipelined operations. The BIU can compl ete one or morewrite
transactions between the address and data tenures of aread transaction. The BIU provides
critical double word first, so the datain the double word requested by theinstruction fetcher
or LSU is presented to the cache before the other datain the cache block. Thecritical double
word is forwarded to the fetcher or to the LSU without having to wait for the entire cache
block to be updated.

For more information about the BIU, see Chapter 3, “Cache and Bus Interface Unit
Operation.”

6.3.4 Memory Operations

The 604 provides features that provide flexible and efficient accesses to memory in both
single- and multiple-processor systems.

6.3.4.1 Write-Back Mode

When storing data while in write-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on modified line replacements, cache flushes, or when another processor attempts to
access a specific address for which there is a corresponding modified cache entry. For this
reason, write-back mode may be preferred when external bus bandwidth is a potential
bottleneck—for example, in a multiprocessor environment. Write-back mode is also well
suited for datathat is closely coupled to a processor, such aslocal variables.
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If more than one device uses data stored in apage that isin write-back mode, snooping must
be enabled to allow write-back operations and cache invalidations of modified data. The
604 implements snooping hardware to prevent other devices from accessing invalid data.
When bus snooping is enabled, the processor monitors the transactions of the other devices.
For example, if another device accesses a memory location and its memory-coherent (M)
bit is set, and the 604's on-chip cache has a modified value for that address, the processor
preempts the bus transaction, and updates memory with the cache data. If the cache
contents associated with the snooped address are unmodified, the 604 invalidates the cache
block. The other device is then free to attempt an access to the updated memory address.
See Chapter 3, “ Cache and Bus Interface Unit Operation,” for complete information about
bus snooping.

Write-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

6.3.4.2 Write-Through Mode

Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the datain the cache must
always agree with external memory (for example, video memory), or when there is shared
(global) data that may be used frequently, or when allocation of a cache block on a cache
miss is undesirable. Cached data is not automatically written back if that data is from a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that are in write-through mode may cause a decrease in performance.
Each time astore is performed to memory in write-through mode, the bus remains busy for
the extra clock cycles required to update memory; therefore, load operations that miss the
cache must wait until the external store operation completes.

6.3.4.3 Cache-Inhibited Mode
If amemory page is specified to be cache-inhibited, data from this page is not cached.

Areas of the memory map can be cache-inhibited by the operating system software. If a
cache-inhibited access hits in the on-chip cache, the corresponding cache block is
invalidated. If the line is marked as modified, it is written back to memory before being
invalidated.

In summary, the write-back mode allows both |oad and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the cache-inhibited mode causes memory access for both loads and stores.
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6.4 Timing Considerations

A superscalar machine is one that can issue multiple instructions concurrently from a
conventional linear instruction stream. The 604 is a true superscalar implementation of the
PowerPC architecture since amaximum of four instructions can be issued to the execution
units during each clock cycle. Although a superscalar implementation complicates
instruction timing, these complications are transparent to the functionality of software.
While the 604 appears to the programmer to execute instructions in sequentia order, the
604 provides increased performance by executing multiple instructions at a time, and by
using hardware to manage dependencies.

When an instruction is issued, the register file places the appropriate source data on the
appropriate source bus. The corresponding execution unit then reads the data from the bus.
The register files and source buses have sufficient bandwidth to allow the dispatching of
four instructions per clock. If an operand is unavailable, the instruction is kept in a
reservation station until the operand becomes available.

The 604 contains the following execution units that operate independently and in parallel:
« Branch processing unit (BPU)
» Two 32-bit single-cycle integer units (SCIU)
¢ One 32-bit multiple-cycle integer units (MCIU)
e 64-bit floating-point unit (FPU)
* Load/store unit (LSU)

Asshownin Figure 1-1, the BPU directsthe program flow with the aid of adynamic branch
prediction mechanism. The instruction unit determines to which of the five other execution
units an instruction is dispatched.

6.4.1 General Instruction Flow

When the IU or FPU finishes executing an instruction, it places the resulting data, if any,
into one of the GPR, FPR, or condition register rename registers. Theresults are then stored
into the correct register file during the write-back stage. If a subsequent instruction is
waiting for this data, it is forwarded from the result buses, directly into the appropriate
execution unit for the immediate execution of the waiting instruction. This alows a data-
dependent instruction to be executed without waiting for the data to be written into the
register file and then read back out again. This feature, known as feed forwarding,
significantly shortens the time the machine may stall on data dependencies.
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Asmany as four instructions are fetched from the instruction cache per cycle and placed in
the decode buffer. After they are decoded, instructions advance to the dispatch buffers as
space becomes available. The 604 tries to keep the IQ full at al times. Although four
instructions can be brought in from the on-chip cache in asingle clock cycle, if thereisa
two-instruction vacancy in the IQ, two instructions can be fetched from the cache to fill it.
If while filling the 1Q, the request for new instructions misses in the on-chip cache,
arbitration for a memory access begins. Whenever a pair of positions opens in the queue,
the next two instructions are shifted in.

6.4.2 Instruction Fetch Timing

The timing of the instruction fetch mechanism on the 604 depends heavily on the state of
the on-chip cache. The speed with which the required instructions are returned to the
fetcher depends on whether the instruction being asked for is in the on-chip cache (cache
hit) or whether a memory transaction is required to bring the data into the cache (cache
miss).

6.4.2.1 Cache Hit Timing Example

Assuming that the instruction fetcher is not blocked from the cache by a cache reload
operation and the instructions it needs are in the on-chip cache (a cache hit has occurred),
there will only be one clock cycle between the time that the instruction fetcher requests the
instructions and the time that the instructions enter the |Q. As previoudly stated, instructions
are fetched in pairs from a single cache block, so usualy four instructions are
simultaneously fetched from the on-chip cache and loaded into the 1Q. If the fetch address
pointsto the last two instructionsin the instruction cache block, asisthe casein Figure 6-7,
only two instructions can be fetched into the 1Q.

Figure 6-7 shows the timing for the following simple code sequence for instructions that
use the SCIUs and the FPU:

and
or

f add
fsub
addc
subfc
f madd
fnsub
xor
neg

f adds
f subs
add
subf
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Figure 6-7. Instruction Timing—Cache Hit

Theinstruction timing for this example is described cycle-by-cycle as follows:

0. Two integer instructions (and and or) and two floating-point instructions (fadd and
fsub) are fetched in cycle 0. These were fetched from the second double-word
boundary in theinstruction cache, so only two instructions can befetched in the next
clock cycle.

1. Incyclel, thelast two instructionsin the cache block (addc and subfc) are fetched,
while instructions 0—-3 pass into the decode stage.

2. Incycle 2, the two integer add instructions (0 and 1) are dispatched, one to each of
the SCIUs. The fadd instruction (2) is dispatched to the FPU. The fsub instruction
cannot be dispatched, so is held in the dispatch stage until the next cycle.
Instructions 4 and 5 are in the decode stage.

Instructions 6-9 are fetched from a new cache block. Note that thisisthe typical,
and the most efficient, alignment for instructions fetching, allowing all eight
instruction in the cache block to be fetched in two cycles (four instructions per

cycle).
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3. Thefollowing occursin cycle 3:

— Thefirst twointeger instructions (and and or) enter the execute stages of thetwo
SCIUs. The two integer instructions decoded in cycle 2 (addc and subfc) are
dispatched without delay to the two SCIUs. The next pair of integer instructions
(xor and neg) isin decode stage and the final pair of integer instructions (add
and subf) is fetched from the second quad word in the instruction cache block.

— Thefadd instruction enters execute stagein the FPU, vacating the di spatch stage,
allowing thefsub instruction to dispatch. Thefmadd and fmsub instructionsare
in decode stage, and thefinal pair of floating-point instructions (faddsand fsubs)
isfetched.

4. Thefollowing occursin cycle 4:

— Inthe SCIUs, thefirst two integer instructions compl ete execution and write back
their results, and the second pair of integer instructions (addc and subfc) enters
execute stage. The next pair of integer instructions (xor and neg) isheld in the
dispatch stage because the fmsub instruction cannot dispatch.

— Thefadd instruction isin the second of the three execute stages and fsub isin
thefirst. Thefmadd instruction (6) isin the dispatch stage, which forcesfmsub
to remain in the dispatch stage, similar to the situation in cycle 1 when two
floating-point instructions were ready for dispatch. Note that because of in-order
dispatch, the integer instructions (8 and 9) are also held in the dispatch stage
behind the fmsub instruction. The final pair of floating-point instructions enters
decode stage.

5. Thefollowing occursin cycle 5:

— Thefirst two integer instructions have completed, written back their results, and
vacated the pipeline. The second pair of integer instructions has executed and
vacated the execution stages, but must remain in the completion buffer until the
previous floating-point instructions can complete. The third pair of integer
instructions is allowed to dispatch, and the final pair of integer instructionsis
held in the decode stage behind the previous floating-point instructions
(10 and 11).

— Inthe FPU, fadd isin thefinal execute stage, fsub isin the second stage, fmadd
isinthefirst, and fmsub isallowed to dispatch. Because instructions 7-9 occupy
the two available positions for instruction pairsin the dispatch unit, fadds and
fsubsare heldin decode, again, forcing subseguent integer instructionsto remain
in decode.

6. Thefollowing occursin cycle 6:

— Thesecond pair of integer instructions (4 and 5) remainsin the compl etion buffer
waiting for the previous fl oating-point instructions to complete. The third pair of
integer instructions is in execute stage, and the final pair of integer instructions
isheld in the dispatch stage behind the fsubs instruction.
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— Inthe FPU, fadd isin the complete and write-back stages, fsub isin the final
execute stage, fmadd isin the second stage, and fmsub isin thefirst. Thefadds
instruction isin dispatch, causing the final floating-point instruction, fsubs, to
stall in dispatch.

7. Thefollowing occursincycle7:

— Integer instructions 4 and 5 are allowed to complete and writeback because the
previous fsub instruction completes. However, the next pair of integer
instructions (8 and 9) must wait in the complete stage until fmadd and fmsub
can complete. Theadd and subf instructions arein the dispatch stage along with
the previous fsubs instruction.

— Thefsub instruction completes, allowing integer instructions 4 and 5 to
complete. Floating-point instructions continue to move through the floating-
point pipeline with fmadd in the final execute stage, fmsub in the second stage,
and faddsin the first. The final floating-point instruction, fsubs, is allowed to
dispatch.

8. Thefollowing occursin cycle 8:

— Integer instructions 8 and 9 continue to wait in the complete stage until fmsub
can complete. The add and subf instructions moveinto execute stage along with
the previous fsubs instruction, which isin the first stage of execute.

— Thefmadd instruction completes and writes back and the subsequent floating-

point instructions each move to the next stage in the floating-point pipeline.
9. Thefollowing occursin cycle 9:

— Integer instructions 8 and 9 are allowed to complete with the fmsub instruction.
However, the final pair of integer instructions (12 and 13) must wait in the
complete stage until fadds and fsubs can complete and write back.

— Thefmsub instruction completes and writes back and the subsequent floating-
point instructions each move to the next stage in the floating-point pipeline.

10. Thefollowing occursin cycle 10:

— The two remaining integer instructions remain in the complete stage until the

fsubsinstruction compl etes.

— Thefadds instruction completes and writes back and the remaining floating-
point instruction, fsubs, isin the last execute stage in the floating-point pipeline.

11.In cycle 11 all remaining instructions complete.
Note that the double-precision floating-point add instructions each has a latency of three

cycles (assuming no register dependencies) but can be fully pipelined and achieve a
throughput of one floating-point instruction per clock cycle.
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6.4.2.2 Cache Miss Timing Example
Figure 6-8 illustrates the timing for a cache miss using the following code sequence.

add
f add
add
f add
br

add
fsub
add
f sub
add
f add

Note that this example assumes a best-case scenario.

1fadd| |

2 add - ‘
3fadd| | ] >~
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Figure 6-8. Instruction Timing—Instruction Cache Miss (BTAC Hit)
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Theinstruction timing for this example is described cycle-by-cycle as follows:

0.
1

In cycle O, thefirst pair of add and fadd instructions is fetched.

Incycle 1, the second pair of add and fadd instructionsis fetched asthefirst pair is
decoded.

In cycle 2, thefirst pair of add and fadd instructions is dispatched, the second pair
is decoded and the br instruction is fetched.

In cycle 3, thefirst pair of add and fadd instructions is in execute, the second pair
isin dispatch stage, and the br instruction isin decode. By this time the target
instruction, add (5) was not found in theinstruction cache and arbitration for theline
fill has begun.

In cycle 4, thefirst add instruction completes and writes back, the first fadd
instruction isin the second execute stage, and the second pair of add/fadd
instructions enter execute stage. The br instruction isin dispatch stage and
arbitration continuesfor thelinefill. Thetarget instruction, add (5), and fsub remain
in the fetch state.

Incycle5, fadd (1) isin thefinal execute stage in the floating-point pipeline, which
prevents the subsegquent add instruction from completing and writing back. The
second fadd instruction isin the second cycle of the floating-point execute stage and
the br instruction isin execute stage. During this cycle, the address for the target
instruction is on the address bus and access has been granted for the data bus.

In cycle 6, fadd (1) completes and writes back, allowing the add (2) instruction to
complete and write back. The fadd (3) instruction isin the final execute stage and

the br instruction isin complete stage. Thefirst beat of the four-beat burst (which

contains the critical double word) is sent over the data bus.

Incycle 7, fadd (3) completes and writes back, allowing the br instruction to
complete. The second beat of the burst transfer begins on the data bus.

In cycle 8, thetwo instructionsin the critical doubleword transferredin cycles6 and
7 (add (5) and fsub (6)) are placed in theinstruction queue. All previousinstructions
have vacated the completion buffer.

Incycle 9, add (5) and fsub (6) are in decode stage and the pair of instructions
loaded in the second beat of the data burst (add (7) and fsub (8)) are fetched. Note
that although thereisroom in the instruction queue for as many asfour instructions,
only instructions 7 and 8 are available.

10.In cycle 10, instructions 5 and 6 are in dispatch stage, instructions 7 and 8 arein

decode stage, and the third pair of instructions are fetched. The fourth pair of
instructions are sent in the fourth and final beat of the four-beat data burst.

11. Intheremaining clock cycles, the instructions shown complete processing similarly

toinstructions 0—3. Note again that although theinteger instructionsadd (7) and add
(9) complete, they cannot write back until the previous floating-point instructions
fsub (6) and fsub (8) write back.
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6.4.3 Cache Arbitration

When a cache miss occurs, aline-fill operation isinitiated to update the appropriate cache
block. When the double word containing the data at the specified address (the critical
doubleword) isavailable, it isforwarded to the cache and made availabl e to other resources
on the 604. Likewise, subsequent double words are also forwarded as they reach the
memory unit.

Fetches to different lines can hit in the cache during the line-fill operation; however, if a
miss occurs before the cache block has been updated, the line-fill operation must complete
before the line-fill operation caused by the subsequent miss can begin.

For more information about the cache implementation in the 604, see Chapter 3, “Cache
and Bus Interface Unit Operation.”

6.4.4 Branch Prediction

The 604 implements several features to reduce the latencies caused by handling branch
instructions. In particular, it provides a means of dynamic branch prediction. This is
especialy critical for the 604 to take fullest advantage of the possibilities of increased
throughput made available from its pipelined and highly paralel organization. Dynamic
branch prediction isimplemented in the fetch, decode, and dispatch stages, as described in
the following:

In the fetch stage, the fetch address is used to access the branch target address cache
(BTAC), which contains the target address of previously executed branch instructions that
are predicted to be taken. The 64-entry BTAC is fully associative to provide a high hit
percentage. If afetch addressisin the BTAC, the target addressis used in the next cycle to
fetch the instructions from the predicted path. If the address is not present, sequentia
instruction flow is assumed and the appropriate sequential addressis generated based on the
number of instructions added to the decode buffer. The fetch address, rather than the first
branch address, is sufficient to access the BTAC, since a BTAC entry contains the first
predicted taken branch beyond the current fetch address.

In the decode and dispatch stages, the first branch instruction isidentified and its outcome
is predicted. For an unconditional branch instruction, the instruction prefetch is redirected
to the target address if this branch was predicted as not taken by a previous stage.
Conditional instructions whose direction depends on the value in the CTR are predicted
based on that value. If the prediction differsfrom the current branch prediction, the prefetch
isredirected.

For conditional branch instructions that depend only on abit inthe CR, the BHT is used for
the prediction. The BHT is a 512-entry, direct-mapped cache with 2 bits that can indicate
four prediction states—strongly taken, taken, not-taken, and strongly not-taken. The entry
is updated each time a conditional branch instruction that depends on a bit in the condition
register is executed. For example, aBHT entry that predicts “taken” is updated to “ strongly
taken” after the branch istaken or is updated to “not-taken” if the next branch is not-taken.
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6.4.4.1 Branch Timing Examples

This section shows how the timing of a branch is affected depending upon whether the
branch hits in the BTAC, or whether correction is required in one of the stages. The
following examples use the following code sequence:

and

I d
add
bc

or
cnp

I d
mul |i

6.4.4.1.1 Timing Example—Branch Timing for a BTAC Hit
Figure 6-9 shows the timing for a branch instruction that had a BTAC hit.
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Figure 6-9. Instruction Timing—Branch with BTAC Hit
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Thetiming for this example is described, cycle-by-cycle, asfollows:

0. Inclock cycle 0, instructions 0-3 are fetched. The target instruction of the bc
instruction is found in the BTAC.

1. Incyclel, instructions 0-3 are decoded and instructions 47, using the address in
the BTAC, are fetched.

2. Incycle 2, instructions 03 are dispatched and instructions 4—7 are decoded.

3. Incycle 3, instructions 03 are in the execute stage and instructions 4—7 are in the
dispatch stage.

4. Incycle4, instructions 0, 2, and 3 are in the complete stage, but only instruction 0
is alowed to complete and write back because the Id instruction (1) is still in the
execute stage of the LSU pipeline. Instructions 2and 3 wait in the complete stage.
Instructions 4—7 all enter the execute stage.

5. Incycle5, theld (1) instruction is ableto complete and write back, allowing theadd
instruction to write back and vacate the pipelinein the next cycle. Thebr instruction
also completes. Because the branch is taken, the or (4) instruction, which could
otherwise write back in this cycle, stays in the complete stage and compl etes and
writesback in the next cycle. Thecmp (5) instruction al so entersthe compl ete stage;
Id (6) and mulli (7) enter the second stages of the LSU and MCIU pipelines,
respectively.

6. Incycle 6, instructions 4-6 complete and write back their results. The mulli
instruction, which is one of theinstructionsthat can complete and write back during
itsfinal cycle in the execute stage, occupies the execute and complete stages, but
cannot write back because both GPR write-back ports are occupied by theor and Id
instructions.

7. The mulli instruction writes back its results.

6.4.4.1.2 Timing Example—Branch with BTAC Miss/Decode Correction
In the example shown in Figure 6-10, the branch target address is not found in the BTAC
during the fetch cycle of the bc instruction, as was the case in Figure 6-9. This one-cycle

delay causes the second group of instructions to be executed one cycle later than if thereis
aBTAC hit.
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Figure 6-10. Instruction Timing—Branch with BTAC Miss/Decode Correction

A cycle-by-cycle description of this exampleis asfollows:

0.
1

In cycle 2, instructions 03 are dispatched and instructions 47 are fetched.

In cycle 3, instructions 03 are in the execute stage and instructions 4-7 are in the
decode stage.

Incycle4, instructions0, 2, and 3 complete, but only instruction Oisallowed towrite
back, because the Id instruction (1) is still in the execute stage of the LSU pipeline.
Instructions 2 and 3 wait in the complete stage. Instructions 4—7 enter the dispatch
stage.

Incycle 5, theld (1) instruction is able to write back, alowing the following add
instruction (which completed in the previous cycle) to write back and vacate the
pipeline in the next cycle. Instructions 4—7 are in the execute stage.

Incycle6, theor and cmp (5) instructions compl ete and write back; Id (6) and mulli
(7) enter the second stages of the LSU and MCIU execute pipelines, respectively.

In cycle 7, the Id (6) instruction completes and writes back its results. The mulli
instruction finishes executing, completes, and writes back its results. Note that the
mulli instruction is able to complete in the same cycle astheld instruction because,
unlike in the previous example, the two GPR write-back ports are available.
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6.4.4.1.3 Timing Example—Branch with BTAC Miss/Dispatch Correction
Figure 6-11 uses the same code sequence as the example shown in Figure 6-9, and shows
the timing when the BTAC miss is corrected in the dispatch stage. The timing in this
exampleisidentical to that in Figure 6-10, except that the timings for instructions 4—7 are
shifted over by one cycle.
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[
|
11d |
1
2add |
3bc |
I

|

|

|

|

|

|

61d

——

7 mulli

[ ] Feteh I Execute
[ 1 Decode [ ] Complete

I
|
|
I
I
|
|
|
[ oispaich N wiite-Back | |

Figure 6-11. Instruction Timing—Branch with BTAC Miss/Dispatch Correction

6.4.4.1.4 Timing Example—Branch with BTAC Miss/Execute Correction
Figure 6-12 uses the same code sequence as the previous examples, and shows the timing
when the BTAC miss is corrected in the execute stage. The timing in this example is
identical to that in Figure 6-10, except that the timings for instructions 4—7 are shifted over
by two cycles (and over one cycle when compared to thetiming when correction is provided
in the dispatch stage, as shown in Figure 6-11).
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Figure 6-12. Instruction Timing—Branch with BTAC Miss/Execute Correction

6.4.5 Speculative Execution

To take fullest advantage of pipelining and parallelism, the 604 speculatively executes
instructions along a predicted path until the branch isresolved. The 604 can handle as many
as four dispatched, uncompleted branch instructions (with four more in the instruction
queue) and can execute instructions from the predicted path of two unresolved branch
instructions. Theresults of speculatively executed instructions (the predicted state) are kept
in temporary locations, such as rename buffers, the completion buffer, and various shadow
registers. Architecturally defined resources are updated only after a branch is resolved.

To record the predicted state, the 604 uses many of the same resources (primarily the
rename buffers and completion buffer) and logic as the mechanism used to maintain a
precise exception model, as is common among superscalar implementations. The 604
design avoids the performance degradation that may come from such a design due to
speculative execution of longer latency instructions, by implementing additional logic to
record the predicted state whenever a predicted branch instruction is dispatched. This
alows the state to be quickly recovered when the branch prediction is incorrect. The
recording of these predicted states makes it possible to identify and selectively remove
instructions from the mispredicted path.

A shadow register is used with the CTR and LR to accelerate instructions that access these
registers. Shadow registers are updated and the old value is saved whenever a branch
instruction isdispatched, evenif it isfrom apredicted path for abranch that has not yet been
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resolved. If the prediction is correct, there is no penalty. If the prediction is incorrect,
shadow registers are restored from the saved values so instructions fetched from the correct
path can be dispatched and executed. When the branch instruction completes, architected
registers are updated.

6.4.6 Instruction Dispatch and Completion Considerations

The 604's ability to dispatch instructions at a peak rate of four per cycle is affected by
availability of such resources as execution units, destination rename registers, and
completion buffer entries. To avoid dispaich unit stalls due to instruction data
dependencies, each execution unit has two reservation stations. If a data dependency could
prevent an instruction from beginning execution, that instruction is dispatched to the
reservation station associated with its execution unit, clearing the dispatch unit. When the
data that the operation depends upon is returned via a cache access or as a result of a
previous operation, execution begins during the cycle after the rename register is updated.
If the second instruction in the dispatch unit requires the same execution unit, that
instruction is not dispatched until the first instruction completes execution.

Instructions are dispatched to reservation stations in order, but from the perspective of the
overal program flow, instructions can execute out of order. The following aspects of the
604’ s support for out-of-order execution should be noted:

» TheBPU, FPU, and L SU each have two-entry in-order reservation stations. These
stations alow instructionsto clear the dispatch stage even though operands may not
yet be available for execution to occur. The BPU, FPU, and L SU instructions may
execute out of order with respect to one another and to other execution units, but the
BPU, FPU, and LSU instructions pass through their respective reservation stations
and pipelinesin program order.

« Each integer unit has atwo-entry out-of-order reservation station which allows

integer instructions to execute out-of-order within each execution as well as with
respect to instructions in other execution units.

The completion unit can track instructions from dispatch through execution and ensure that
they are completed in program order. In-order completion ensures the correct architectural
state when the 604 must recover from a mispredicted branch, or any other exception or
interrupt.

Therate of instruction completion is unaffected by the 604's ability to write the instruction
results from the rename registers to the architecturally defined registers when the
instruction is retired. The 604 can perform two write-back operations from each of the
rename registers to the register files (CR, GPRs, and FPRs) each clock cycle.

Due to the 604's out-of-order execution capability, the in-order completion of instructions
by the completion unit provides a precise exception mechanism. All program-related
exceptions are signaled when the instruction causing the exception has reached the last
position in the completion buffer. All prior instructions are allowed to complete and write
back before the exception is taken.
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6.4.6.1 Rename Register Operation

To avoid contention for agiven register filelocation in the course of out-of-order execution,
the 604 provides rename registers for the storage of instruction results prior to their
commitment (in program order) to the architecturally defined register by the completion
unit. Register renaming minimizes architectural resource dependencies, namely the output
and antidependencies, that would otherwise limit opportunities for out-of-order execution.
Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight for the
condition register.

A GPR rename buffer entry is alocated when an instruction that modifies a GPR is
dispatched. This entry is marked as allocated but not valid. When the instruction executes,
it writes its result to the entry and sets the valid bit. When the instruction completes, its
result is copied from the rename buffer entry to the GPR and the entry is freed for
reallocation. For load with update instructions that modify two GPRs, onefor load dataand
another for address, two rename buffer entries are allocated.

The rename register for the GPRs is shown in Figure 6-13.
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Figure 6-13. GPR Rename Register

When an integer instruction is dispatched, its source operands are searched simultaneously
from the GPR file and its rename buffer. If avalueisfound in the rename buffer, that value
is used; otherwise, the valueis read from the GPR. However, the rename buffer entry may
not yet be valid if the instruction that updates the GPR has not yet executed. In this case,
the instruction is dispatched with the rename buffer entry identifier in place of the operand,
which will be supplied by the reservation station when the result is produced. The GPR file
and its rename buffer have eight read ports for source operands to support dispatching of
four integer instructions each cycle.

The FPR file has 32 registers of 64 bitswide and an eight-entry rename buffer. The FPR file
and its rename buffer have three read ports for three source operands, which alow one
floating-point instruction to be dispatched per cycle.
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The 604 treats each of the 4-bit fields in the condition register as a register and applies
register renaming for each with an eight-entry rename buffer.

Along with the reorder buffer, the rename buffers provide the basis of the precise exception
mechanism, because the 604's architectural state represents, at all times, the results of
instructions completed in program order. Precise exceptions greatly simplify the exception
model by allowing the appearance of serialized execution.

6.4.6.2 Execution Unit Considerations

As previously noted, the 604 is capable of dispatching and retiring four instructions per
clock cycle. One of the factors affecting the peak dispatch rate is the availability of
execution units on each clock cycle.

For an instruction to be issued, the required reservation station must be available. The
dispatcher monitors the availability of al execution units and suspends instruction dispatch
if the required reservation station is not available. An execution unit may not be available
if it can accept and execute only oneinstruction per cycle, or if an execution unit’s pipeline
becomesfull. Thissituation may occur if instruction execution takes more clock cyclesthan
the number of pipeline stages in the unit, and additional instructions are issued to that unit
to fill the remaining pipeline stages.

6.4.7 Instruction Serialization

Some instructions, such as mfspr and most mtspr instructions, extended arithmetic
instructions that require the carry bit, and condition register instructions, require
serialization to execute correctly. For thisreason, the 604 implements asimple serialization
mechanism that allows such instructions to be dispatched properly but delays execution
until they can be executed safely. When al previous instructions have completed and
updated their results to the architectural states, the serialized instruction is executed by
directly reading and updated in the architectural states. If the instruction target is a GPR,
FPR, or the CR, the register isrenamed to allow later nondependent instructionsto execute.

Store instructions are dispatched to the LSU where they are trandated and checked for
exception conditions. If no exception conditions are present, the instruction is passed to the
store queue where it waits for all previous instructions to complete before it can be
completed. Direct-storage accesses are handled in the same way to ensure that exceptions
are precise.

The performance is hot degraded since instructions following a serializing instruction are
dispatched and executed usualy before the serializing instruction is executed. One
serialized instruction can complete per clock cycle.

The following sections describe the serialization modes.
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6.4.7.1 Dispatch Serialization Mode

Dispatch serialization occurs when an mtspr instruction that accesses either the counter or
link or amtcrf instruction that accesses multiple bits is dispatched to the MCIU. In these
instances, an interlock is set so that no other such instructions or branch unit instructions
(branch and CR logical) can dispatch until the original instruction executes and clears the
interlock. The interlock is cleared when the instruction that sets the interlock finishes
executing. On the next cycle the instruction that is waiting can dispatch.

6.4.7.2 Execution Serialization Mode

The occurrence of an execution serialization instruction has no effect on the dispatching
and execution of any following instructions. The only difference between an execution
serialization instruction and a nonserialization instruction is that the execution serialization
instruction cannot be executed until it isthe oldest uncompleted instruction in the processor.
In other words, the instruction is dispatched into a reservation station, but cannot be
executed until the completion block informs the execution unit to execute the instruction.
Thismeansit is guaranteed to wait at least one cycle before it can execute.

Instructions causing execution serialization include the following:

« Condition register logical operations (crand, crandc, creqv, crnand, crnor, cror,
crorc, crxor, and mcrf)

¢ mfspr and mfmsr
e mtspr (except count and link registers) and mtmsr

e Instructions that use the carry bit (adde, addeo, subfe, subfeo, addme, addmeo,
subfme, subfmeo, addze, addzeo, subfze, and subfzeo)

6.4.7.3 Postdispatch Serialization Mode
Postdispatch serialization occurs when the serializing instruction is being completed. All
instructions following the postdispatch serialized instruction are flushed, refetched, and re-
executed. Instructions causing postdispatch serialization include the following:

e mtspr (xer)

e mcrxr

e isync

¢ Instructions that set the summary overflow, SO, bit

« |swx with O bytesto load

* Foating-point arithmetic, frsp, fctiw, and fctiwz instructions that cause an
exception with FPSCR[VE] = 1

» Foating-point instructions with the Rc (record bit) set
e FPSCR ingtructions—mtfsb0, mtfsb1, mtfsfi, mffs, mtfsf, and mcrfs

» A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE = 1)
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6.4.7.4 Serialization of String/Multiple Instructions

Serialization is required for al load/store multiple/string instructions. These instructions
are broken into a sequence of register-aligned operations. The first operation is dispatched
along with any preceding instructions in the dispatch buffer. Subsequent operations are
dispatched one-word-per-cycle until the operation is finished. String/multiple instructions
remain in the dispatch buffer for at |east two cycleseven if they only require asingle-word—
aligned memory operation.

Instructions causing string/multiple serialization include Imw, stmw, Iswi, lswx, stswi, and
Stswx.

6.4.7.5 Serialization of Input/Output

In this serialization mode, all noncacheable loads are performed in order with respect to the
eieio instruction.

6.5 Execution Unit Timings

The following sections describe instruction timing considerations within each of the
respective execution units in the 604. Refer to Table 6-2 for branch instruction execution
timing.

6.5.1 Branch Unit Instruction Timings

The 604 can have two unresolved branches in the branch reservation station and two
resolved branches that have not yet completed. The branch unit serves to validate branch
predictionsmadein earlier stages. It a so verifiesthat the predicted target matchesthe actua
target address. If amisprediction is detected, it redirects the fetch to the correct address and
starts the branch misprediction recovery.

The branch execution unit also executes condition register logical instructions, which the
PowerPC architecture provides for calculating complex branch conditions. Other
architecturesthat lack such instructionswould need to use aseries of branch instructionsto
resolve complex branching conditions. All execution units can update the CR fields, but
only the branch and CR logical operations use CR fields as source operands.

6.5.2 Integer Unit Instruction Timings
The two SCIUs and the MCIU execute al integer and bit-field instructions, and are shown
in Figure 6-14 and Figure 6-15, respectively.
The SCIUs consist of three one-cycle subunits:
« A fast adder/comparator subunit
¢ A logic subunit
« A rotator/shifter/count-leading zero subunit
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These subunits handle all of the one-cycle arithmetic instructions. Only one subunit in each
SCIU can obtain and execute an instruction at atime.

Instruction Dispatch Buses
GPR Operand Buses

Result Buses
/
Y Y Y N
Reservation Station "
y
' y y 0
o
ES
Rotate/Shift/ Adder / . B S
CTLZ N Comparator | Logic s
«Q
2
\ﬁ R
3:1 MUX -
y

Figure 6-14. SCIU Block Diagram

The MCIU, which handles al integer multiple-cycle integer instructions, consists of a 32-
bit integer multiplier/divider subunit. The multiplier supports early exit on 32 x 16-bit
operations. In addition the MCIU executes all mfspr and mtspr instructions.
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Figure 6-15. MCIU Block Diagram

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

e Integer divide, multiply when OE =0
e All mfspr instructions
* All mtspr instructions except when LR/CTR isinvolved

Note that all instructions that execute in the MCIU can complete during the same cyclein
which they finish executing except for the following:

* Instruction that changes OV or CA (OE =1)
* Themoveto CTR/LR instructions cannot because they are not execution-serialized

6.5.3 Floating-Point Unit Instruction Timings

The floating-point unit on the 604 executes al floating-point instructions. Execution of
most floating-point instructions is pipelined within the FPU, allowing up to three
instructionsto be executing in the FPU concurrently. While most fl oating-point instructions
execute with three-cycle latency and one-cycle throughput, three instructions (fdivs, fdiv,
and fres) execute with latencies of 18 to 33 cycles. The fdivs, fdiv, fres, mtfsb0, mtfsbil,
mtfsfi, mffs, and mtfsf instructions block the floating-point pipeline until they complete
execution and thereby inhibit the execution of additional floating-point instructions. With
the exception of the mcrfsinstruction, all floating-point instructions immediately forward
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their CR results to the BPU for fast branch resolution without waiting for the instruction to
be retired by the completion unit and the CR to be updated. Refer to Table 6-2 for floating-
point instruction execution timing.

Asshown in Figure 6-16, The FPU on the 604 is a single-pass, double-precision unit. This
means that both single- and double-precision floating-point operations require one-
pass/one-cycle throughput with a latency of three cycles. This hardware implementation
supports the |EEE 754-1985 standard for floating-point arithmetic, including support for
the NaNs and denormalized data types.

Instructions are obtained from the instruction dispatcher and placed in the reservation
station queue. The operand sources are the FPR, the floating-point rename buffers, and the
result buses. The result of an FPU operation is written to the floating-point rename buffers
and to the reservation stations. I nstructions are executed from the reservation station queue
in the order they were originally dispatched.

Instruction Dispatch Bus

FPR Operand Buses
FPU Result Bus
LS Result Bus 1
FPSCR Bus

- - Queue 1 \

/ \ \ \

- > Queue 0 \%
© i Y
o > Floating-Point Multiply
%' - Add Pre-Alignment Stage 1
O B - Floating-Point Pipeline Add Stage 2

B > Normalize/Round/Write-Back Stage 3
T Result Status Bus 1

Figure 6-16. FPU Block Diagram
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6.5.4 Load/Store Unit Instruction Timings

The execution of most load and store instructions is pipelined. The LSU has two pipeline
stages; the first stage is for effective address calculation, and MMU tranglation, and the
second stage is for accessing the data in the cache. Load instructions have a two-cycle
latency and one-cycle throughput, and store instructions have a two-cycle latency and
single-cycle throughput.

The primary function of the LSU is to transfer data between the data cache and the result
bus, which routes data to the other execution units. The LSU supports the address
generation and all the data alignment to and from the data cache. As shown in Table 6-2,
the LSU also executes specia instructions such as string transfers and cache control.

To improve execution performance, the LSU allows aload operation to be executed ahead
of pending store operations. All data dependencies introduced by this out-of-order
execution are resolved by the LSU. These dependencies arise when, in the instruction
stream, a store is followed by a load from the same address. If the load instruction is
speculatively executed before the store has modified the cache, incorrect datais loaded into
the rename registers. If the low-order 12 bits of the effective addresses are equal, the two
effective addresses may be aliases for the same physical address, in which case the load
instruction waits until the store data is written back to the cache, guaranteeing that the load
operation retrieves the correct data.

The LSU provides hardware support for denormalization of floating-point numbers. Within
the 604, al floating-point numbers are represented as double-precision numbers.
Denormalization can occur during a store floating-point single instruction, when the
double-precision number is converted to a single-precision number.

A block diagram of the load/store unit is shown in Figure 6-17. The unit is composed of:
reservation stations, an address calculation block, data alignment blocks, load queues, and
store queues.
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Figure 6-17. LSU Block Diagram

The reservation stations are used as temporary storage of dispatched instructions that
cannot be executed until all of the instruction operands are valid. The address calculation
block includes a32-bit adder that computesthe effective addressfor all operations. The data
alignment blocks manage the necessary byte manipul ations to support aligned or unaligned
datatransfersto and from the data cache. The load and store queues are used for temporary
storage of instructions for which the effective addresses have been trandated and are
waiting to be completed by the sequencer unit.
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Figure 6-18 shows the structure of the store queue. There are four regions that identify the
state of the store instructions.

Empty

Finished

Completed

Committed

Figure 6-18. Store Queue Structure

When a store instruction finishes execution, it is placed in the finished state. When it is
completed, the finish pointer advances to place it in the completed state. When the store
datais committed to memory, the completion pointer advancesto place it in the committed
state. If the store operation hits in the cache, the commit pointer advances to effectively
remove the instruction from the queue. Otherwise, the commit pointer does not advance
until the cache block is reloaded and the store operation can occur. During this time, the
next store instruction pointed to by the completion pointer can access the cache. If this
second storeinstruction hitsin the cache, it isremoved from the queue. If not, another cache
block reload begins.

6.5.5 isync, rfi, and sc Instruction Timings

The isync, rfi, and sc instructions do not execute in one of the execution units. These
instructions decode to branch unit instructions, as specified by the PowerPC architecture,
but they do not actually execute in the BPU in the same sense that other branch instructions
do. The completion unit treats the rfi and sc instructions as exceptions, and handles them
precisely. When an isync instruction reaches the top of the completion buffer, subsequent
instructions are flushed from the pipeline and are refetched during the next clock cycle.

Although the rfi and sc are dispatched to the branch reservation stations, these instructions
do not execute in the ordinary sense, and do not occupy a position in an execute stage in
one of the BPU. Instead, these instructions are given a position in the completion buffer at
dispatch. When the sc instruction reaches the top of the completion buffer, the system call
exception is taken. When the rfi instruction reaches the top of the completion buffer, the
necessary operations required for restoring the machine state upon returning from an
exception are performed.

The isync instruction causes instructions to be flushed when it is completed. This means
that the decode buffers, dispatch buffers, and execution pipeline are al flushed. Fetching
resumes from the instruction following the isync.
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6.6 Instruction Scheduling Guidelines

The performance of the 604 can beimproved by avoiding resource conflicts and promoting
parallel utilization of execution units through efficient instruction scheduling. Instruction
scheduling on the 604 can be improved by observing the following guidelines:

Schedule instructions such that they can maximize the dispatch rate.

Schedule instructions to minimize execution-unit-busy stalls

Avoid using serializing instructions

Schedule instructions to avoid dispatch stalls due to renamed resource limitations

6.6.1 Instruction Dispatch Rules

The following list provides limitations on instruction dispatch that should be kept in mind
in order to ensure stalls:

At most, four instructions can be dispatched per cycle.

Aninstruction cannot be dispatched unless all preceding instructionsin the dispatch
buffer are dispatched

One instruction can be dispatched per functional unit.
— The branch unit executes all branch and condition register logical instructions

— Thetwo SClUs areidentical and either can be used to execute any integer
arithmetic, logical, shift/rotate, trap, and mtcrf instructions that update only one
field.

— The MCIU executes al integer multiply, divide and move to/from instructions
except mter f instructionsthat update only onefield, which are executed in either
of the SCIUs.

— Theload/store unit executes load, store, and cache control instructions
— The FPU executes al floating-point instructions including move to/from FPSCR
Table 6-2 indicates which execution unit executes each instruction.

Each instruction must have an entry in the 16-entry reorder buffer. The dispatch unit
stallswhen the reorder buffer isfull. Reorder buffer entries become avail able on the
cycle after the instruction has completed.

An instruction that modifies a GPR is assigned one of the 12 positionsin the GPR
rename buffer. Load with updateinstructions get two positions since they update two
registers. When the GPR rename buffer is full, the dispatch unit stalls when it
encounters the first instruction that needs an entry. A rename buffer entry becomes
available one cycle after the result is written to the GPR.

Any floating-point instruction except mcrfs, mtfsfi, mtfsfi., mtfsf, mtfsf., mtfsbO,
mtfsb0., mtfsbl, and mtfsbl. gets one entry in the eight-entry FPR rename buffer.
When the FPR rename buffer is full, dispatch stalls on the next floating-point
instruction. A rename buffer entry can become available one cycle after theresult is
written to the FPR.

6-42

PowerPC 604 RISC Microprocessor User's Manual



The eight-entry CR rename buffer is similar to the GPR rename buffer in that an
instruction that modifies a CR field gets one entry. Thisincludes, for example, all
condition register logical instructions and mtcrf instructions that update only one
CR field. When the CR rename buffer is full, dispatch stalls when the next
instruction to be dispatched needs a CR entry. A rename buffer entry becomes
available one cycle after the result is written to the CR.

Each execution unit has a two-entry reservation station that holds instructions until
they are ready for execution. Instructions cannot be dispatched if the reservation
station isfull.

No following instruction can dispatch in the same cycle as a branch instruction.

Since instructions are dispatched in program order, alater instruction cannot be
dispatched until al earlier ones have.

Thereisan interlock mechanism between CTR and LR. After dispatching amoveto
CTR/LR or mterf with multiple field update, the dispatch stalls on the first branch,
CR logical, moveto CTR/LR, or mterf that update multiple fields until one cycle
after the dispatched move to CTR/LR or mtcrf instruction executes. Those mtcr f
instructions that update multiple fields are execution-serialized.

The 604 can handle as many as four branch instructionsin the execute and complete
stages. Thedispatch stallson thefirst instruction after the fourth branch until thefirst
branch completes.

An instruction cannot be dispatched until all destination registersfor the instruction
have been assigned to a rename register.

An instruction may not be dispatched if a seriaization mode isin effect for the
instruction.

6.6.2 Additional Programming Tips for the PowerPC 604 Processor
The following guidelines should be followed when writing assembly code for the 604.

Interleave memory instructions with integer and floating-point operations.

The 604 has a dedicated L SU that does not require the use of the integer or floating-
point units to process memory operations. Asaresult, when scheduling code for the
604, interleaving memory operations with integer or floating-point instructions
typically result in better performance.

Interleave integer operations.

Because the 604 hasthree |Us, it is also possible to interleave multiple, independent
integer operations. Two of these integer units support simple integer operations,
while the third supports complex integer operations such as bit-field manipulation.

Avoid using instructionsthat write to multiple registers.

The 604's dynamic register renaming permits instructions to execute out of order
with respect to their original program sequence, which increases overall throughput.
However, in other PowerPC processors, certain instructionsincluding the load/store
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multiple/string operations, monopolizetheseinternal hardwareresources, which can
affect performance. For software portability, such instructions should be avoided,
even though they do not suffer the performance degradation in the 604 that they
might in other PowerPC processors. The most common use of suchinstructionsisin
subroutine prologues or epilogues The following alternatives are typically more
efficient:

— Expanding the register save/restore codein-line

— Branching to specia save/restorefunctions (sometimes called millicode) that use
in-line sequences of save and restore instructions.

Usetheload with updateinstruction judiciously.

Another frequently used set of instructions that are subject to this multiple register
usage effect are the load with update instructions. While use of such instructions is
usually desirablefrom a performance standpoint (they eliminate adependent integer
operation), care must still be taken to not issue too many of these instructions
consecutively.

Schedule code to take advantage of renameregisters.

As discussed previously, the 604 provides register renaming as a means of
improving execution speed. Since there are alimited number of rename buffers
implemented in hardware, it is always desirable to minimize pressure on this
resource. One relatively simple means of doing thisisto use immediate addressing
when the option exists. For example, an integer register copy can be performedina
single cycle using anumber of different instructions. However, using an ori
instruction (with an immediate operand of zero) uses only one source register
operand; whereas, the register indirect form of the or instruction uses two source
registers.

Minimize use of instructions that serialize execution.

Some operations, such as memory synchronization primitives and trap instructions,
have well-known serialization properties that are intended when used by a
programmer. Other instructions, however, have more subtle serialization effectsthat
may affect performance. For example, if operations that manipulate condition
register fields are used frequently, they can significantly hinder performance,
particularly when multiple condition fields are being accessed by asingle
instruction, described in the following:

Avoid using the mterf instruction to update multiplefields.

Note that the performance of the mtcr f instruction depends greatly on whether only
onefield is accessed or either no fields or multiple fields are accessed as follows:

— Those mterf instructions that update only one field are executed in either of the
SClUs and the CR field is renamed as with any other SCIU instruction.

— Those mtcrf instructions that update either multiple fields or no fields are
dispatched to the MCIU and a count/link scoreboard bit is set. When that bit is
set, no more mtcrf instructions of the same type, mtspr instructions that update
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the count or link registers, branch instructions that depend on the condition
register and CR logical instructions can be dispatched to the MCIU. The hit is
cleared when the mtctr, mterf, or mtlr instruction that set the bit is executed.

Because mtcrf instructions that update a single field do not require such
synchronization that other mtcrf instructions do, and because two such single-field
instructions can execute in parallel, it is typically more efficient to use multiple
mtcr f instructionsthat update only onefield apiece than to use onemtcr f instruction
that updates multiple fields. A rule of thumb follows:

— Itisalwaysmoreefficient to usetwo mtcr f instructionsthat update only onefield
apiece than to use one mterf instruction that updates two fields.

— It isalmost always more efficient to use three or four mtcrf instructions that
update only one field apiece than to use one mtcr f instruction that updates three
fields.

— Itisoften moreefficient to use morethan four mtcrf instructionsthat update only
one field than to use one mtcrf instruction that updates four fields.

¢ Minimize branching.

The 604 supports dynamic branch prediction and other mechanisms that reduce the
impact of branching; nevertheless, changing control flow in a program is relatively
expensive, in that fullest advantage cannot be taken of resources that can improve
throughput. such as superscalar instruction dispatch and execution. In some cases,
branches can be minimized by simply rewriting an algorithm. In other cases, specia
PowerPC instructions, such asfsel, can be used to eliminate a conditional branch
atogether.

* Notethat thefsel instruction is optional to the PowerPC architecture and may not be
implemented on all PowerPC implementations, so use of thisinstruction to improve
performance in the 604 should be weighed against portability considerations.

6.7 Instruction Latency Summary

Table 6-2 summarizes the execution cycle time of each instruction. Note that the latencies
themselves provide limited insight asto the actual behavior of aninstruction. Thefollowing
list summarizes some aspects of instruction behavior:

» For astore operation, availability means datais visible to the following loads from
the same address. Misaligned load or store operations require one additional cycle,
assuming cache hits.

— Floating-point stores that require denormalization take an additional cycle for
each bit of shifting that is needed up to a maximum of 23.

— Store multiple instructions are taken in pairs and take one additional cycleif an
odd number of registersis stored.

Chapter 6. Instruction Timing 6-45



— Misaligned load string operations require two cycles per register plus two
additional cycles.

— Misaligned store string operations take six cycles per register being stored
(although the final store may only take three cyclesif it does not cross aword
boundary).

For instructions with both a CR result and either a GPR or an FPR result, the cycle
count shown is for the GPR or FPR result. CR results from logical or bit field
instructions that execute in the SCIU and CR results from instructions that execute
in the FPU take one additional cycle.

Integer multipliesthat detect an early exit condition finish acycle earlier than others.
For signed multiplies, if the top 15 bits of the RB operand are al the sameitisan
early out condition. For unsigned multiplies, if the top 15 bitsare all zerositisan
early out condition.

All instructions are fully pipelined except for divides and some integer multiplies.
Theinteger multiplier is athree-stage pipeline. Integer multiplies other than those
that can exit early (described in the previous bullet) stall for one cyclein the first
stage of the pipeline. Integer divideinstructionsiteratein stage two of the multiplier.
Special-purpose register operations can execute in the MCIU in parallel with
multiplies and divides.

— The FPU unit is athree-stage pipeline. Floating-point divides iterate in the
floating-point pipeline. The floating-point unit also has some data-dependent
delays not shown inTable 6-2. If the rounder has acarry out, that is, 1.11...111
roundsto 2.00...000, the FPU takes an additional cycle. If thefinal normalization
of the result requires a shift of more than 63, the FPU takes an additional cycle.
Underflow and overflow take an additional cycle. Denormalization to zero takes
an additional cycle. Massive cancellation resulting in zero takes an additional

cycle.

Table 6-2. Instruction Execution Timing

Instruction Unit Cycle (cycle) Serialization
add SCIU 1 —
addc SCIU 1 —
adde SCIU 1 Execute
addi SCIU 1 —
addic SCIU 1 —
addic. SCIU 1 —
addis SCIU 1 —
addme SCIU 1 Execute
addze SCIU 1 Execute
and SCIU 1 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
andc SCIU 1 —
andi. SCIU 1 —
andis. SCIU 1 —

b BPU 1 —
bc BPU 1 —
bccetr BPU 1 —
bclr BPU 1 —
cmp SCIU 1 —
cmpi SCIU 1 —
cmpl SCIU 1 —
cmpli SCIU 1 —
cntlzw SCIU 1 —
crand BPU 1 Execute
crandc BPU 1 Execute
creqv BPU 1 Execute
crnand BPU 1 Execute
crnor BPU 1 Execute
cror BPU 1 Execute
crorc BPU 1 Execute
crxor BPU 1 Execute
dcbf LSuU — Execute
dcbi LsSuU 3 Execute
dcbst LsSuU — Execute
dcbt LSuU — Execute
dcbtst Lsu — Execute
dcbz LSuU 3 Execute
divw MCIU 20 —
divwu MCIU 20 —
eciwx LSuU 2 + bus Execute
ecowx LSuU 3+ bus Execute
eieio LSuU — lfe}
eqv SCIU 1 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

extsb SCIU 1 —

extsh SCIU 1 —

fabs FPU 3 —

fadd FPU 3 —

fadds FPU 3 —

fcmpo FPU 3 —

fcmpu FPU 3 —

fctiw FPU 3 —

fctiwz FPU 3 —

fdiv FPU 32 FP empty?
fdivs FPU 18 FP empty!
fmadd FPU 3 —
fmadds FPU 3 —

fmr FPU 3 —

fmsub FPU 3 —
fmsubs FPU 3 —

fmul FPU 3 —

fmuls FPU 3 —

fnabs FPU 3 —

fneg FPU 3 —
fnmadd FPU 3 —
fnmadds FPU 3 —
fnmsub FPU 3 —
fnmsubs FPU 3 —

fres FPU 18 FP empty?
frsp FPU 3 —

frsqrte FPU 3 —

fsel FPU 3 —

fsub FPU 3 —

fsubs FPU 3 —

icbi LSuU — —

isync Completion 1 Postdispatch
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

Ibz LSuU 2 —

Ibzu LSuU 2 —

Ibzux LSuU 2 —

Ibzx LSU 2 —

Ifd LSuU 3 —

Ifdu LSuU 3 —

Ifdux LSU 3 —

Ifdx LSuU 3 —

Ifs LSuU 3 —

Ifsu LSU 3 —

Ifsux LsSuU 3 —

Ifsx LSuU 3 —

lha LSuU 2 —

lhau LSuU 2 —

lhaux LSuU 2 —

lhax LSU 2 —

lhbrx LSuU 2 —

lhz LSuU 2 —

lhzu LSU 2 —

lhzux LSuU 2 —

lhzx LSuU 2 —

Imw LSU #regs + 2 String/multiple
Iswi LSU 2(#regs) + 2 String/multiple
Iswx LSU 2(#regs) + 2 String/multiple
lwarx Lsu 3+bus Execute
Iwbrx LSuU 2 —

lwz LSuU 2 —

lwzu LSU 2 —

lwzux LSuU 2 —

lwzx LSuU 2 —

mcrf BPU 1 Execute
mcrfs FPU 3 —

Chapter 6. Instruction Timing

6-49



Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
mcrxr MCIU 3 Execute
mfcr MCIU 3 Execute
mffs FPU 3 —
mfmsr MCIU 3 Execute
mftb MCIU 3 Execute
mfspr LR/CTR MCIU 3 Execute
mfspr (others) MCIU 3 Execute
mtcrf (O/multiple bit) MCIU 1 Dispatch/Execute
mtcrf (single bit) SCIU 1 —
mtfsb0 FPU 3 —
mtfsbl FPU 3 —
mtfsf FPU 3 —
mtfsfi FPU 3 —
mtmsr MCIU 1 Execute
mtspr (LR/CTR) MCIU 1 Dispatch
mtspr (XER) MCIU 1 Complete ?
mtspr (others) MCIU 1 Execute
mulhw MCIU 4(3) —
mulhwu MCIU 4(3) —
mulli MCIU 3 —
mullw MCIU 4(3) —
nand SCIU 1 —
neg SCIU 1 —
nor SCIU 1 —
or SCIU 1 —
orc SCIU 1 —
ori SCIU 1 —
oris SCIU 1 —
rfi Completion — Postdispatch
riwimi SCIU 1 —
rlwinm SCIU 1 —
rlwnm SCIU 1 —
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
sc Completion — Postdispatch
slw SCIU 1 —
sraw SCIU 1 —
srawi SCIU 1 —

Srw SCIU 1 —

stb LSuU 3 Execute

stbu LsuU 3 Execute
stbux LSuU 3 Execute

stbx LSuU 3 Execute

stfd LsuU 3 Execute

stfdu LsSuU 3 Execute
stfdux LSuU 3 Execute

stfdx Lsu 3 Execute
stfiwx LSuU 3 Execute

stfs LSuU 3 Execute

stfsu LsuU 3 Execute
stfsux LSuU 3 Execute

stfsx LSuU 3 Execute

sth LsSuU 3 Execute
sthbrx LSuU 3 Execute

sthu LSuU 3 Execute
sthux LsSuU 3 Execute

sthx LsSuU 3 Execute
stmw LSU #regs + 2 String/multiple
stswi Lsu #regs + 2 String/multiple
stswx LSU #regs + 2 String/multiple
stw LSU 3 Execute
stwbrx LSuU 3 Execute
stwcex. LSU 3 Execute

stwu LSU 3 Execute
stwux Lsu 3 Execute

stwx LSU 3 Execute
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Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization
subf SCIU 1 —
subfc SCIU 1 —
subfe SCIU 1 Execute
subfic SCIU 1 —
subfme SCIU 1 Execute
subfze SCIU 1 Execute
sync LSU — —
tibie LSuU — Execute
tlbsync LSU — —
tw SCIU 1 —
twi SCIU 1 —
xor SCIU 1 —

Xori SCIU 1 —
xoris SCIU 1 —

1 These instructions are not pipelined. They cannot be executed until the previous
instruction in the FPU completes; subsequent FPU instructions cannot begin
execution until these instructions complete.

2The mtspr (XER) instruction causes instructions to be flushed when it executes.
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Chapter 7
Signal Descriptions

This chapter describes the PowerPC 604 microprocessor’s external signals. It contains a
concise description of individua signals, showing behavior when the signal is asserted and
negated and when the signal is an input and an output.

NOTE

A bar over a signal name indicates that the signa is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
are not active low, such as APO-AP3 (address bus parity
signals) and TTO-TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

The 604 signals are grouped as follows:

« Address arbitration signals—The 604 uses these signals to arbitrate for address bus
mastership.

e Addresstransfer start signals—These signalsindicate that a bus master has begun a
transaction on the address bus.

¢ Addresstransfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

e Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write-
through, or cache-inhibited.

e Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

« Dataarbitration signals—The 604 uses these signalsto arbitrate for data bus
mastership.

« Datatransfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.
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7.1

Datatransfer termination signals—Data termination signals are required after each
data beat in adatatransfer. In asingle-beat transaction, the datatermination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signalsapply toindividual beatsand indicatethe end of thetenure only after thefinal
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

System status signals—These signals include the externa interrupt signal,
checkstop signals, and both soft reset and hard reset signals. These signals are used
to interrupt and, under various conditions, to reset the processor.

JTAG/COP interface signals—The JTAG (IEEE 1149.1) interface and common on-
chip processor (COP) unit provides a seria interface to the system for performing
monitoring and boundary tests.

Processor configuration signals—These signals include the memory reservation
signal, machine quiesce control signals, time base enable signal, driver mode signal,
L2 intervention signal, the run and halted signals, and the analog VDD signal.

Clock signals—These signals provide for system clock input and frequency control.

Signal Configuration

Figure 7-1illustratesthe pin configuration of the 604, showing how the signalsare grouped.

NOTE

A pinout showing actual pin numbers is included in the 604
hardware specifications.
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Figure 7-1. PowerPC 604 Microprocessor Signal Groups

7.2 Signal Descriptions

This section describes individual 604 signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signal functions.
Chapter 8, “ System Interface Operation,” describes many of these signalsin greater detail,
both with respect to how individual signals function and how groups of signalsinteract.

7.2.1 Address Bus Arbitration Signals

The address arbitration signals are a collection of input and output signals the 604 uses to
reguest the address bus, recognize when the request is granted, and indicate to other devices
when mastership is granted. For a detailed description of how these signals interact, see
Section 8.3.1, “Address Bus Arbitration.”
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7.2.1.1 Bus Request (BR)—Output

The busrequest (BR) signal isan output signal on the 604. Following are the state meaning
and timing comments for the BR signal.

State M eaning

Timing Comments

Asserted—Indicates that the 604 is requesting mastership of the
address bus. Note that BR may be asserted for one or more cycles,
and then deasserted due to an internal cancellation of the bus request
(for example, due to the loss of a memory reservation). See
Section 8.3.1, “Address Bus Arbitration.”

Negated—I ndicates that the 604 is not requesting the address bus.
The 604 may have no bus operation pending, it may be parked, or the
ARTRY input was asserted on the previous bus clock cycle.

Assertion—Occurs when a bus transaction is needed and the 604
does not have a qualified bus grant. This may occur even if the three
possible pipeline accesses have occurred.

Negation—Occursfor at least one bus clock cycle after an accepted,
qualified bus grant (see BG and ABB), even if another transactionis
pending. It is also negated for at least one bus clock cycle when the
assertion of ARTRY is detected on the bus, with the exception of the
bus master that asserted ARTRY due to the need to perform a cache
line push.

7.2.1.2 Bus Grant (BG)—Input

The bus grant (BG) signal is an input signal on the 604. Following are the state meaning
and timing comments for the BG signal.

State M eaning

Timing Comments

Asserted—I ndicates that the 604 may, with the proper qualification,
assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted, ABB and ARTRY are not asserted, and
ARTRY has been negated on the previous cycle. The ABB and
ARTRY signasaredriven by the 604 or other bus masters. If the 604
is parked, BR need not be asserted for the qualified bus grant. See
Section 8.3.1, “Address Bus Arbitration.”

Negated— Indicatesthat the 604 is not the next potential address bus
master.

Assertion—May occur at any time to indicate the 604 is free to use
the address bus. After the 604 assumes bus mastership, it does not
check for aqualified bus grant again until the cycle during which the
address bus tenure is completed (assuming it has another transaction
to run). The 604 does not accept a BG in the cycles between the
assertion of any TS or XATS through to the assertion of AACK.

Negation—May occur at any time to indicate the 604 cannot use the
bus. The 604 may still assume bus mastership on the bus clock cycle
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of the negation of BG because during the previous cycle BG
indicated to the 604 that it was free to take mastership (if qualified).

7.2.1.3 Address Bus Busy (ABB)
The address bus busy (ABB) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy (ABB)—Output
Following are the state meaning and timing comments for the ABB output signal.

State M eaning

Timing Comments

Asserted—I ndicates that the 604 is the address bus master. See
Section 8.3.1, “Address Bus Arbitration.”

Negated—I ndicates that the 604 is not using the address bus. If ABB
is negated during the bus clock cycle following aqualified bus grant,
the 604 did not accept mastership, even if BR was asserted. Thiscan
occur if apotential transaction is aborted internally before the
transaction is started.

Assertion—Occurs on the bus clock cycle following a qualified BG
that is accepted by the processor (see Negated).

Negation—Occurs on the bus clock cycle following the assertion of
AACK. If ABB is negated during the bus clock cycle following a
qualified bus grant, the 604 did not accept mastership, even if BR
was asserted.

High Impedance—Occurs one-half bus cycle (two-thirds bus cycle
when using 3:1 clock mode, and one-third bus cycle when using 3:2
bus ratio) after ABB is negated.

7.2.1.3.2 Address Bus Busy (ABB)—Input
Following are the state meaning and timing comments for the ABB input signal.

State M eaning

Timing Comments

Asserted—Indicates that the address busisin use. This condition
effectively blocks the 604 from assuming address bus ownership,
regardless of the BG input; see Section 8.3.1, “Address Bus
Arbitration.” Note that the 604 will not take the address bus for the
sequence of cycles beginning with TS and ending with AACK;; thus
effectively making the use of ABB optional, provided that other bus
masters respond in the same way.

Negated—I ndicates that the address bus is not owned by another bus
master and that it is available to the 604 when accompanied by a
qualified bus grant.

Assertion—May occur when the 604 must be prevented from using
the address bus (and the processor is not currently asserting ABB).

Negation—May occur whenever the 604 can use the address bus.
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7.2.2 Address Transfer Start Signals

Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer start (TS) signal identifies the operation as a memory
transaction; extended address transfer start (XATS) identifies the transaction as a direct-
store operation.

For detailed information about how TS and XATS interact with other signals, refer to
Section 8.3.2, “Address Transfer,” and Section 8.6, “ Direct-Store Operation,” respectively.

7.2.2.1 Transfer Start (TS)
The TS signal is both an input and an output signal on the 604.

7.2.2.1.1 Transfer Start (TS)—Output

Following are the state meaning and timing comments for the TS output signal.

State M eaning Asserted—I ndicates that the 604 has begun a memory bus
transaction and that the address-bus and transfer-attribute signalsare
valid. When asserted with the appropriate TTO-TT4 signalsitisalso
animplied data bus request for amemory transaction (unlessitisan
address-only operation).

Negated—Is negated during a direct-store operation.

Timing Comments  Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after TSis asserted.
High Impedance—Occurs one bus clock cycle after TSis negated.

7.2.2.1.2 Transfer Start (TS)—Input
Following are the state meaning and timing comments for the TS input signal.

State Meaning Asserted—I ndicates that another master has begun abus transaction
and that the address bus and transfer attribute signals are valid for
snooping (see GBL).

Negated—I ndicates that no bus transaction is occurring.

Timing Comments Assertion—May occur during the assertion of ABB.
Negation—M ust occur one bus clock cycle after TS is asserted.

7.2.2.2 Extended Address Transfer Start (XATS)
The XATS signal is both an input and an output signal on the 604.

7.2.2.2.1 Extended Address Transfer Start (XATS)—Output

Following are the state meaning and timing comments for the XATS output signal.

State M eaning Asserted—I ndicates that the 604 has begun a direct-store operation
and that the first address cycle is valid. When asserted with the

appropriate XATC signalsit is also an implied data bus request for
certain direct-store operation (unlessit is an address-only operation).

Negated—Is negated during an entire memory transaction.
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Timing Comments Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after the assertion of XATS.

High Impedance—Occurs one bus clock cycle after the negation of
XATS.

7.2.2.2.2 Extended Address Transfer Start (XATS)—Input

Following are the state meaning and timing comments for the XATS input signal.

State M eaning Asserted—I ndicates that the 604 must check for a direct-store
operation reply.
Negated—Indicates that there is no need to check for a direct-store
operation reply.

Timing Comments Assertion—May occur while ABB is asserted.
Negation—M ust occur one bus clock cycle after XATS is asserted.

7.2.3 Address Transfer Signals

The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signalsinteract, refer
to Section 8.3.2, “Address Transfer.”

7.2.3.1 Address Bus (A0-A31)
The address bus (A0-A31) consists of 32 signalsthat are both input and output signals.

7.2.3.1.1 Address Bus (A0-A31)—Output (Memory Operations)
Following are the state meaning and timing comments for the AO-A31 output signals.

State M eaning Asserted/Negated—Represents the physical address (real addressin
the architecture specification) of the datato be transferred. On burst
transfers, the address bus presents the double-word—aligned address
containing the critical code/data that missed the cache on aread
operation, or the first double word of the cache line on awrite
operation. Note that the address output during burst operationsis not
incremented. See Section 8.3.2, “Address Transfer.”

Timing Comments  Assertion/Negation—Occurs on the bus clock cycle after aqualified
bus grant (coincides with assertion of ABB and TS).

High Impedance—Occurs one bus clock cycle after AACK is
asserted.

7.2.3.1.2 Address Bus (A0-A31)—Input (Memory Operations)
Following are the state meaning and timing comments for the AO-A31 input signals.

State M eaning Asserted/Negated—Represents the physical address of a snoop
operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle asthe
assertion of TS; is sampled by 604 only on this cycle.
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7.2.3.1.3 Address Bus (A0-A31)—Output (Direct-Store Operations)
Following are the state meaning and timing comments for the address bus signals (A0 to
A31) for output direct-store operations on the 604.

State Meaning Asserted/Negated—For direct-store operations where the 604 is the
master, the address tenure consists of two packets (each requiring a
bus cycle). For packet 0, these signals convey control and tag
information. For packet 1, these signals represent the physical
address of the data to be transferred. For reply operations, the
address bus contains control, status, and tag information.

Timing Comments Assertion/Negation—Address tenure consists of two beats. The first
beat occurs on the bus clock cycle after a qualified bus grant,
coincidingwith XATS. Theaddress bustransitionsto the second beat
on the next bus clock cycle.

High Impedance—Occurs on the bus clock cycle after AACK is
asserted.

7.2.3.1.4 Address Bus (A0-A31)—Input (Direct-Store Operations)
Following are the state meaning and timing comments for input direct-store operations on
the 604.

State M eaning Asserted/Negated—When the 604 is not the master, it snoops (and
checksaddress parity) on thefirst addressbeat only of al direct-store
operationsfor an 1/0 reply operation with areceiver tag that matches
its PID tag. See Section 8.6, “ Direct-Store Operation.”

Timing Comments Assertion/Negation—Thefirst beat of the1/O transfer addresstenure
coincides with XATS, with the second address bus beat on the
following cycle.

7.2.3.2 Address Bus Parity (APO-AP3)

The address bus parity (APO-AP3) signals are both input and output signals reflecting one
bit of odd-byte parity for each of the four bytes of address when a valid address is on the
bus.

7.2.3.2.1 Address Bus Parity (APO-AP3)—Output
Following are the state meaning and timing comments for the APO-AP3 output signal on
the 604.

State M eaning Asserted/Negated—Represents odd parity for each of four bytes of
the physical address for atransaction. Odd parity means that an odd
number of bits, including the parity bit, are driven high. The signal
assignments correspond to the following:

AP0 AO0-A7
AP1 A8-A15
AP2 A16-A23
AP3 A24-A31
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For more information, see Section 8.3.2.1, “Address Bus Parity.”

Timing Comments Assertion/Negation—The same asA0-A31.
High Impedance—The same asA0-A31.

7.2.3.2.2 Address Bus Parity (APO-AP3)—Input

Following are the state meaning and timing comments for the APO-AP3 input signal on the
604.

State M eaning Asserted/Negated—Represents odd parity for each of four bytes of
the physical address for snooping and direct-store operations.
Detected even parity causes the processor to enter the checkstop
state, or take a machine check exception depending on whether
address parity checking is enabled in the HIDO register and the
condition of the MSR[ME] bit; see Section 2.1.2.3, “Hardware
Implementation-Dependent Register 0.” (See also the APE signal
description.)

Timing Comments Assertion/Negation—The same asA0-A31.

7.2.3.3 Address Parity Error (APE)—Output

The address parity error (APE) signal is an output signal on the 604. Note that the (APE)
signal is an open-drain type output, and requires an external pull-up resistor (for example,
10 kQ to Vdd) to assure proper deassertion of the APE signal). Following are the state
meaning and timing comments for the APE signal on the 604. For more information, see
Section 8.3.2.1, “Address Bus Parity.”

State M eaning Asserted—I ndicates that incorrect address bus parity has been
detected by the 604 on a snoop that the 604 recognizes. Thisincludes
the first address beat of a direct-store operation.

Negated—I ndicates that the 604 has not detected a parity error (even
parity) on the address bus.

Timing Comments Assertion—Occurs on the second bus clock cycle after TS or XATS
is asserted.

High Impedance—Occurs on the third bus clock cycle after TS or
XATS is asserted.

7.2.4 Address Transfer Attribute Signals

Thetransfer attribute signals are a set of signalsthat further characterize the transfer—such
as the size of the transfer, whether it is aread or write operation, and whether it is a burst
or single-beat transfer. For a detailed description of how these signals interact, see
Section 8.3.2, “Address Transfer.”

Note that some signal functions vary depending on whether the transaction is a memory
access or an /O access. For a description of how these sighals function for direct-store
operations, see Section 8.6, “ Direct-Store Operation.”
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7.2.4.1 Transfer Type (TTO-TT4)

The transfer type (TTO-TT4) signals consist of five input/output signals on the 604. For a
complete description of TTO-TT4 signals and for transfer type encodings, see Table 7-1.

7.2.4.1.1 Transfer Type (TTO-TT4)—Output

Following are the state meaning and timing comments for the TTO-TT4 output signals on
the 604.

State M eaning Asserted/Negated—I ndicates the type of transfer in progress.

For direct-store operations these signals are part of the extended
address transfer code (XATC) along with TSIZ and TBST:

XATC(0-7)=TT(0-3)||TBST||[TSIZ(0-2).
Timing Comments Assertion/Negation/High Impedance—The same asA0-A31.

7.2.4.1.2 Transfer Type (TTO-TT4)—Input

Following are the state meaning and timing comments for the TTO-TT4 input signals on
the 604.

State M eaning Asserted/Negated—I ndicates the type of transfer in progress (see
Table 7-1). For direct-store operations, the TTO-TT3 signals form

part of the XATC and are snooped by the 604 if XATS is asserted.
Timing Comments Assertion/Negation—The same asA0-A31.

Table 7-1 describes the transfer encodings for a 604 bus master and the 60x bus
specification.

Table 7-1. Transfer Encoding for PowerPC 604 Processor Bus Master

TTO [ TT1 | TT2 | TT3 | TT4 604 Bus Mgster Transaction Transaction Source
Transaction
0 0 0 0 0 Clean block Address only Cache operation
0 0 1 0 0 Flush block Address only Cache operation
0 1 0 0 0 SYNC Address only Cache operation
0 1 1 0 0 Kill block Address only Store hit/shared or
cache operation
1 0 0 0 0 Ordered 1/0 Address only eieio
operation
1 0 1 0 0 External control Single-beat ecowx
word write write
1 1 0 0 0 TLB invalidate Address only tlbie
1 1 1 0 0 External control Single-beat eciwx
word read read
0 0 0 0 1 Iwarx Address only Iwarx with cache hit
Reservation set
0 0 1 0 1 Reserved Address only N/A
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Table 7-1. Transfer Encoding for PowerPC 604 Processor Bus Master (Continued)

604 Bus Master

TTO | TT1 | TT2 | TT3 | TT4 . Transaction Transaction Source
Transaction
0 1 0 0 1 TLBSYNC Address only tlbsync or tlbie
0 1 1 0 1 ICBI Address only N/A
1 X X 0 1 Reserved — N/A
0 0 0 1 0 Write-with-flush Single-beat Caching-inhibited or
write or burst write-through store
0 0 1 1 0 Write-with-kill Single-beat Cast-out, or snoop
write or burst copyback
0 1 0 1 0 Read Single-beat Caching-inhibited
read or burst load
0 1 1 1 0 Read-with-intent- Burst Load miss, or store
to-modify miss
1 0 0 1 0 Write-with-flush- Single-beat stwex.
atomic write
1 0 