Working Draft Project
T11/1568-D

Revision 8
16 April 2003

Information technology -
Fibre Channel HBA API (FC-HBA)

This is an internal working document of T11, a Technical Committee of Accredited Standards Committee INCITS
(InterNational Committee for Information Technology Standards). As such this is not a completed standard and has
not been approved. The contents may be modified by the T11 Technical Committee. The contents are actively
being modified by T11. This document is made available for review and comment only.

Permission is granted to members of INCITS, its technical committees, and their associated task groups to
reproduce this document for the purposes of INCITS standardization activities without further permission, provided
this notice is included. All other rights are reserved. Any duplication of this document for commercial or for-profit
use is strictly prohibited.

T11 Technical Editor: Robert Nixon
Emulex
3535 Harbor Blvd.
Costa Mesa, CA 92626
USA

Telephone: 714-513-8117
Facsimile: 714-513-8265
Email: bob.nixon@emulex.com

Reference number
ISO/IEC XXXXX-XXX : 200x
ANSI INCITS.***:200x

Printed Wednesday, April 16, 2003 4:41 PM

Points of Contact:

T11 Chair T11 Vice-Chair

Robert Snively Edward Grivha

Brocade Communications Systems Incorporated Cypress Semiconductor
1745 Technology Drive 2401 E. 86th Street

San Jose, CA 95110 Bloomington, MN 55425
Tel: 408-487-8135 Tel: 952-851-5046
Fax: 408-392-6676 Fax: 612-851-5087
Email: rsnively@brocade.com Email: elg@cypress.com
INCITS Secretariat Telephone: 202-737-8888

1250 Eye Street, NW Suite 200 Facsimile: 202-638-4922

Washington, DC 20005 Email: incits@itic.org

T11 Web Site www.t11.org

T11.2 Reflector To subscribe send e-mail to t11_2-request@mail.tll.org with ‘subscribe’ as the subject
To unsubscribe send e-mail to t11_2-request@mail.t11.org with ‘unsubscribe’ as the subject
Internet address for distribution via T11.2 reflector: t11_2@mail.t11.org

T11.3 Reflector To subscribe send e-mail to t11_3-request@mail.tll.org with ‘subscribe’ as the subject
To unsubscribe send e-mail to t11_3-request@mail.t1l.org with ‘unsubscribe’ as the subject
Internet address for distribution via T11.3 reflector: t11_3@mail.t11.org

T11.5 Reflector To subscribe send e-mail to t11_5-request@mail.tll.org with ‘subscribe’ as the subject
To unsubscribe send e-mail to t11_5-request@mail.t11.org with ‘unsubscribe’ as the subject
Internet address for distribution via T11.5 reflector: t11_5@mail.t11.org

Document Distribution

Global Engineering Telephone: 303-792-2181 or
15 Inverness Way East 800-854-7179
Englewood, CO 80112-5704 Facsimile: 303-792-2192

Working Draft Fibre Channel HBA API (FC-HBA)

16 April 2003 T11/1568-D Revision 8

Revision Information

1 Revision History

1.1 Revision 1 (May 7, 2002)

a)
b)
c)
d)

e)

Originated from SNIA submission “Common HBA APl Version 2.18" dated March 1, 2002 (ref.
T11/02-149v0)

Adapted to the T10 Working Draft template (T10/01-314r0)

Modified to reflect T11 as the committee of origin

Extracted material from the original SNIA Introduction and from the SD3 for this project to compose the
Foreword

Added Normative References and Definitions, Symbols, Abbreviations, and Conventions clauses

1.2 Revision 2 (May 24, 2002)

a)
b)
c)
d)

e)
f)
9)

h)
i)
)
K)
1)

Corrected the document title and status

Corrected the revision history for Revision 1

Added content for clause 1, Scope

Added definitions and abbreviations for application programming interface, host bus adapter, storage area
network, persistent binding, target mapping, wrapper library, vendor specific library, and several basic
SCSl terms

Removed prior clause 4, which was redundant with the Foreword

Added a new clause 4 that specifies general design constraints on the specification and implementations.
Merged prior clauses 5, 11, 12, and 13 to create a new clause 5 specifying software structure and behavior
rules

Removed prior clause 6, which was not relevant to standard specification

Created a new clause 6 by merging the prior clauses 7 (Attribute Definitions) and 8 (Data Structures)

Prior clause 9 (Function Calls) becomes new clause 7

Prior clause 10 becomes new clause 8

Extracted descriptive material on target mapping and persistent binding to create Annex A

m) Extracted all coding samples to create Annex B

1.3 Revision 3 (July 29, 2002)

a)
b)
c)
d)
e)
f)
Q)
h)

)
)

K)
1)

Corrected typo (“APIVersion”) and spelling error (“Foreward”) in revision history for Revision 1

Added function HBA_SendRLS per 02-299v0

Removed Port type definitions for E_Ports and G_Ports per meeting 6/11/02

Clarified relationship of HBA_Mgmtinfo and RNID per meeting 6/11/02

Removed comments from data structure definitions where similar textual field descriptions closely follow.
Changed many places to make consistent use of glossary terminology per meeting 6/11/02.

Changed many places to make consistent use of normative keywords per meeting 6/11/02.

Clarified memory layout of certain data structures containing IP Addresses, SCSI LUNs, Name_ Identifiers,
and address identifiers per meeting 6/11/02.

Clarified restrictions on values of certain data types specified as lists of symbolic constants, per meeting
6/11/02.: See specifications of data types HBA_STATUS, HBA_PORTTYPE, HBA_PORTSTATE,
HBA_PORTSPEED, HBA_BIND_CAPABILITY, HBA_BIND_TYPE, EventCode, and EventType.
Eliminated trademarked names from examples in clause 8

Added function directory and requirements table per meeting 6/11/02

Added overview descriptions of polled and asynchronous event reporting methods per meeting 6/11/02.
Some of the material used was removed from the description of function HBA_GetEventBuffer.

Working Draft Fibre Channel HBA API (FC-HBA) iii

| 16 April 2003 T11/1568-D Revision 8

1.4 Revision 4 (August 30, 2002)

All numeric references are with respect to the enumeration of version 3

a)

b)

c)

d)

e)

a)
h)

)

p)
a)

Fixed typos
A) In 3.1.7 changed “TA” to “A”;
B) In6.4.2.8 and 6.4.2.9 header lines, changed “4ypes” to “4Types”;
C) In7.3.10.2, changed “bet” to “be”.
D) In7.4.4.4, changed “SAM-2SAM-2" to “SAM-3".
E) In 7.5, changed several “"HBA_STATUS_CHECK_CONDITION*

to “HBA_STATUS_SCSI_CHECK_CONDITION".
F) In7.6.6.1 change*“,”to"".
G) In 7.6.8.3 description of object_wwn, change “object_wwn is honzero” to “object_wwn is zero”.
H) In A.4.1 change “to to” to “to”.
[) In A.4.8, change “the the” to “the”.
In 6.10.1, added entries for HBASendRLS to the list of function prototype declarations and to the decla-
ration for structure HBA_EntryPointsV2. Necessary to complete 02-299v0.
In 6.4.2.14, clarified the scope of the NumberOfDiscoveredPorts reported for a local Nx_Port. See
02-305v1.
In 7.5, specified in the description of each function that it shall not cause a SCSI command to be sent to an
Nx_Port that is not a SCSI target, and specified in the returned function value for each function that
HBA_STATUS_ERROR_NOT_A_TARGET shall be returned if the remote Nx_Port identified in the
function call does not have SCSI Target functionality. See 02-305v1.
In 7.4.4.2 and 7.4.5.2, clarified that retrieved target mapping lists should be current at the time of the
function call that retrieves them. See 02-305v1.
In 5.4.2 and 7.2.9.2, changed the use of HBA_STATUS_ERROR_STALE_DATA and its related call to
HBA_Refreshinformation from optional to mandatory. See 02-305vland 02-495v0.
In 7.4.4.4, clarified that HBA_STATUS ERROR_MORE_DATA is a valid returned function value for
HBA_GetFcpTargetMapping. See 02-305v1.
In 7.4.6.4, clarified that HBA_STATUS ERROR_MORE_DATA is a valid returned function value for
HBA_GetFcpPersistentBinding. See 02-305v1.
In 6.2, added a function return code for aborting a function that would have caused a SCSI overlapped
command condition. In 7.5, specified in the description of each function that it shall not cause a SCSI
command to be sent if it would cause a SCSI overlapped command condition, and specified in the returned
function code for each function that HBA_STATUS_ERROR_TARGET_BUSY shall be returned if the
implementation is unable to send the requested command without causing a SCSI overlapped command
condition. See 02-305vl1and 02-495v0.
In 3.1.63, 7.4.4.2, and 7.4.5.2, clarified that a target mapping may identify either a specific logical unit or a
whole target. In 6.6.2.7, 6.6.2.8, 6.6.2.10, 6.6.2.12, 6.6.2.13, and 6.6.2.14, added requirements for return
values within returned target mappings. Changed all SAM-2 references to SAM-3. See 02-305vland
02-495v0.
In 6.4.2.13 and 6.6.2.11, added rules and tables specifying the names to be returned as OSDeviceName.
See 02-439v0 and 02-495v0.
In 6.2 and 7.x.x.4, clarified the constraints this standard places on the values returned as function status.
See 02-495v0 concerning 02-289v1.
In table 1, removed the compliance information. See 02-495v0 concerning 02-407vO0.
In 6.5.2.10, 6.5.2.11, 6.5.2.12, 6.5.2.13, 6.5.2.14, and 6.5.2.15, emphasized the requirement from 7.3.9.2
that certain statistics values shall be equal to Link Error Status Block fields.
In6.9.1.2,6.9.1.3,6.9.1.4, 6.9.1.5,6.9.1.6, 6.9.1.7, 7.7.3.1, 7.7.4.2, 7.7.5.2, 7.7.6.2, 7.7.7.2, 7.7.8.2, and
7.7.9.2, used the term “category” instead of the inconsistently used and inappropriately suggestive term
“level” to label groupings of event types. In the glossary, added “event”, “event category”, and “event type”.
In 6.9.2.1, added descriptions of the asynchronous event types.
In many places, substituted the more specific term HBA for adapter.

Working Draft Fibre Channel HBA API (FC-HBA) iv

| 16 April 2003 T11/1568-D Revision 8

1.5 Revision 5 (25 October 2002)

All numeric references are with respect to the enumeration of version 4.

a)

Throughout the document, corrected many spelling problems identified by FrameMaker Spelling Checker
(editorial).

In 1, inserted project numbers for recently authorized INCITS standards development projects (editorial).
In 2.3, updated the revision numbers of draft standards (editorial).

In 2.3, added a reference to FC-PI-2 (editorial).

In 3.1.10, removed spurious sentence concerning construction of unique identifiers (editorial).

In 3.1.21, corrected the reference documents for the definition of FC_Port (editorial).

In 6.2, add a definition for currently undefined status code HBA_ STATUS_ERROR_ILLEGAL_FCID
(editorial).

In 7.3.5.1, change pAdapterattributes to indicate that it is a pointer (editorial).

In 6.6.1.7, remove a spurious space from the middle of the reference to structure HBA_BIND_TYPE in the
declaration of HBA_FCPBIindingEntry2 (editorial).

In 6.6.1.7, add a semicolon after the Status field in the declaration of HBA_FCPBindingEntry2 (editorial).
In 7.4.5.1, remove the semicolon after the definition of the pMapping field (editorial).

In 7.4.9.1, add a space between the words in the definition of the binding field (editorial).

In 7.4.10.1, add a comma after the definition of the handle field and remove the comma after the definition
of the hbaPortWWN field (editorial).

In 7.4.11.1, remove extra tabs before the definition of the statistics field (editorial).

In many places, incorporated FC-HBA compliance requirements (per 02-407v3, approved FC-HBA
meeting 10/8/02)

In references, glossary, and new annex B, incorporated HBA API Mapping to InfiniBand (per 02-425v2,
approved FC-HBA meeting 10/8/02)

1.6 Revision 6 (19 December 2002)

All numeric references are with respect to the enumerations of version 5.

a)
b)
c)

d)
e)

)

a)
h)

)

)
k)

Corrected several spelling problems identified by FrameMaker Spelling Checker (editorial).
Repunctuated many lists to make them more nearly compliant with the T10 editors style guide. (editorial)
Replaced several inappropriate uses of “which”, “can”, “must”, “ execute”, and
“NCITS” with appropriate alternatives (editorial)

Replaced several possibly ambiguous references to “them” by more specific references. (editorial)
Replaced all instances of Name Identifier with Name_Identifier for consistency with FC_FS and FC-GS-4.
(editorial)

Resolved all editor's notes concerning units for sizes to specify sizes are in bytes. (per 02-550v1, approved
at FC-HBA meeting December 10, 2002)

In 2.2 and 2.3, updated the version numbers of references. (editorial)

In2.2,2.3, 3.1, 3.2, 6, and 7, added specifications for support of SB devices. (per 02-423v4, approved at
FC-HBA meeting December 10, 2002)

In 3.1, 4.1, 4.2,5.2, 5.3, 5.5, several places in 7, 8.1, and several places in Annex A, establish additional
grounds of compliance for products that have the required external interface but that achieve multivendor
configurability by OS-supported structures. (per 02-550v1, approved at FC-HBA meeting December 10,
2002)

In 6.2 and 7.2.2.4, added an error status code to indicate that a call has been made to HBA LoadLibrary
when the library is already loaded. (per 02-550v1, approved at FC-HBA meeting December 10, 2002)

In 6.2 and 7.2.3.4, added error status codes to indicate that a call has been made to HBA_FreeLibrary
when there is no library loaded. (per 02-550v1, approved at FC-HBA meeting December 10, 2002)

LT

could”, “will", “assume”,

Working Draft Fibre Channel HBA API (FC-HBA) v

| 16 April 2003 T11/1568-D Revision 8

p)

a)

In 6.4.2.14 table 1, revise the preferred format for the name of an HBA local adapter port on Solaris to
reflect the latest recommendation from SNIA (per 02-550v1, approved at FC-HBA meeting December 10,
2002)

In 6.6.2.11 table 2, annotate the preferred formats for the names of magnetic and optical logical units on
Solaris to reflect the latest recommendation from SNIA (per 02-550v1, approved at FC-HBA meeting
December 10, 2002)

In 6.7.1, inserted missing open bracket at beginning of HBA_Mgnt | nf o structure declaration. (editorial)

In 7.7.3.1, resolve editor's note 20 concerning multiple registrations for the same asynchronous event from
the same application by specifying the later registration becomes effective in addition to the earlier one(s).
(per 02-550v1, approved at FC-HBA meeting December 10, 2002)

In 7.6.6.2, modify the rules for validating an HBA_SendRNIDV2 request to allow for an RNID reply that
does not contain the Common Node Identification Data. (per 02-550v1, approved at FC-HBA meeting
December 10, 2002)

In B.2.5.1, removed a paragraph that incorrectly described the DATA-OUT BUFFMT field, and that would
be redundant with an earlier paragraph if corrected. (editorial)

1.7 Revision 7 (19 February 2003)

a)
b)
c)
d)
e)

f)
9)

h)

i)
)

k)
1)

m)
n)

0)
p)

a)
r

s)
B
u)

v)

In the T11 cover pages, added subscription information for the T11.5 reflector (editorial).

In the Foreword, corrected list item b to be two list items. (editorial).

In the Foreword, corrected the description of Task Group T11.5 (editorial).

In the Foreword, changed format of membership lists to be similar to FC-FS (editorial).

In the Foreword, removed redundant clause/annex counts from Introduction (direction of FC-HBA meeting
6 Feb 03).

In the Scope, made formatting corrections to first list (direction of FC-HBA meeting 6 Feb 03).

In the Scope, replaced entire list of “examples of standards” in Scope with reference to T10 and T11 web
sites (direction of FC-HBA meeting 6 Feb 03).

In the Normative references, changed the fax number for ANSI customer service to match the one on their
web site (editorial).

In the Approved references, removed uncited reference to IEEE802 (editorial).

In the References under development, removed revision numbers from references (direction of FC-HBA
meeting 6 Feb 03).

In the References under development, removed uncited reference to FC-PI (direction of FC-HBA meeting
6 Feb 03).

In the Normative references, changed SRP reference from a reference under development to an approved
reference (direction of FC-HBA meeting 6 Feb 03).

In the IETF references, removed uncited references to RFCs 854, 2373, 2616, 2625, and 2818 (editorial).
In the Normative references, removed the Other references subclause and made it an informative annex
(direction of FC-HBA meeting 6 Feb 03).

In the Glossary, defined “local Nx_Port” (direction of FC-HBA meeting 6 Feb 03).

In the Glossary, clarified the definitions of N_Port and Nx_Port, including adding new definitions for Public
NL_Port, Private NL_Port, and end port, and changing local Nx_Port to local end port (editorial).

In the Glossary, added definition of FCP_Port (editorial).

In Conventions, allowed only upper case for alphabetic hex digits, and allowed separating hex numbers
into groups of four digits for readability (editorial).

In the End port statistics attribute specifications, consolidated the description of counter behavior from
scattered places (editorial).

In the Library Attributes, provided missing function entry point declarations and function table declaration
for the SB functions (edtiorial).

In the specification of function HBA GetFCA4Statistics, corrected a discrepancy in the name of the Port
WWN parameter (editorial).

In the specification of function HBA_Refreshinformation, clarified the circumstance in which
HBA_STATUS ERROR_STALE_DATA shall be returned (editorial).

Working Draft Fibre Channel HBA API (FC-HBA) Vi

| 16 April 2003 T11/1568-D Revision 8

w)

X)
y)

2)

In the Compliance annex, incorporated management interoperability requirements per 03-007v1 (direction
of FC-HBA meeting 6 Feb 03).

In the InfiniBand annex, corrected the title of the second figure (editorial).

In the InfiniBand annex, incorporated buffer overflow and binding query features per 03-035v1 (direction of
FC-HBA meeting 6 Feb 03).

globally, checked spelling of InfiniBand, and added a trademark acknowledgement to critical references
(direction of FC-HBA meeting 6 Feb 03).

aa) Globally, replaced “vendor specific library” with “HBA specific library” and “HBA vendor specific software”

with “HBA specific software” (direction of FC-HBA meeting 6 Feb 03).

ab) Globally, corrected the spelling of N_Port_ID, N_Port_ Name, and Node_ Name (direction of FC-HBA

meeting 6 Feb 03).

ac) Globally, replaced references to Nx_Port and N_Port with end port as appropriate (editorial).
ad) Globally, normalized the use of “i.e.” and “e.g.” (editorial).
ae) Globally, normalized appearance of parenthetic crossreferences (editorial).

a)
b)
c)
d)

e)

f)
9)
h)
i)
)
K)
1)

m)
n)

0)
9)

a)
r

s)

B
u)

v)
w)

1.8 Revision 8 (16 April 2003)

Globally, change “Fibre Channel HBA” to “HBA” (direction of FC-HBA meeting 10 April 2003).

Globally, change “FCP-2 SCSI” to “FCP-2" (direction of FC-HBA meeting 10 April 2003).

Globally, removed unnecessary quotation marks (direction of FC-HBA meeting 10 April 2003).

In Abstract, change reference to this standard to say “This standard” (direction of FC-HBA meeting 10 April
2003).

In Abstract, Foreword, and Scope, change “exercise” to “use” (direction of FC-HBA meeting 10 April 2003).
In the Table of Contents, adjusted all subclause levels to use the same indent (direction of FC-HBA
meeting 10 April 2003).

In Foreword, changed “is a piece of hardware” to “is hardware” (direction of FC-HBA meeting 10 April
2003).

In Foreword, changed a long “that is” clause to a separate sentence (direction of FC-HBA meeting 10 April
2003).

In Foreword, capitalized network in Storage networking Industry Association (editorial).

In Foreword, corrected description of FC-MI to be an INCITS Technical Report (direction of FC-HBA
meeting 10 April 2003).

In Foreword, removed uninformative adverbs “widely”, “generally”, and “largely” (direction of FC-HBA
meeting 10 April 2003).

In Foreword paragraph 5, changed “Specifically, it” to “This standard” (direction of FC-HBA meeting 10
April 2003).

In Foreword paragraph 5, added a colon to introduce the list (direction of FC-HBA meeting 10 April 2003).
In Foreword list item ¢, changed “sufficient to satisfy” to “necessary to comply with* (direction of FC-HBA
meeting 10 April 2003).

In Foreword list item f, added “, and“ before the semicolon at the end (direction of FC-HBA meeting 10 April
2003).

In Introduction, change “The Fibre Channel HBA API (FC-HBA) standard” to “This standard” (direction of
FC-HBA meeting 10 April 2003).

Removed the Acknowledgements (direction of FC-HBA meeting 10 April 2003).

In Scope paragraph 1, changed the first “This standard” to “The Fibre Channel HBA API standard”
(direction of FC-HBA meeting 10 April 2003).

In Scope paragraph 1, changed “Specifically, this standard” to “This standard” (direction of FC-HBA
meeting 10 April 2003).

In Scope paragraph 1, added a colon to introduce the list (direction of FC-HBA meeting 10 April 2003).

In Scope list item ¢, changed “sufficient to satisfy” to “necessary to comply with* (direction of FC-HBA
meeting 10 April 2003).

In Scope last paragraph, remove “examples of “ (direction of FC-HBA meeting 10 April 2003).

In 2.3, added a reference to FC-SW-3 (direction of FC-HBA meeting 10 April 2003).

Working Draft Fibre Channel HBA API (FC-HBA) vii

| 16 April 2003 T11/1568-D Revision 8

x) In 3.1, added the acronym to all terms in the glossary for which the acronym is in 3.2 (direction of FC-HBA
meeting 10 April 2003).

y) In3.1.1, removed a spurious colon at the end of the paragraph title (direction of FC-HBA meeting 10 April
2003).

z) In3.1.5, added a period at the end of the paragraph (direction of FC-HBA meeting 10 April 2003).

aa) In 3.1.14, added an example of concatenation (direction of FC-HBA meeting 10 April 2003).

ab) In 3.1.18, corrected the format of the hexadecimal number (direction of FC-HBA meeting 10 April 2003).

ac) In 3.1.22, removed redundant references to standards FC-FS and FC-PI (direction of FC-HBA meeting 10
April 2003).

ad) In 3.1.24, changed reference standards to FC-AL-2 and FC-SW-3 (direction of FC-HBA meeting 10 April
2003).

ae) In 3.1.27, removed redundant reference to standards FC-GS-4 (direction of FC-HBA meeting 10 April
2003).

af) In 3.1.37, changed the definition of Internet Protocol to match the better one from FC-SWAPI (direction of
FC-HBA meeting 10 April 2003).

ag) In 3.1.39, corrected errors in the definition of Loop Initialization Primitive (direction of FC-HBA meeting 10
April 2003).

ah) In 3.1.43, corrected errors in the definition of FL_Port (direction of FC-HBA meeting 10 April 2003).

ai) In 3.1.47, corrected the name of the Not_Operational Primitive Sequence (direction of FC-HBA meeting 10
April 2003).

aj) In 3.1.48, replaced the undefined acronym LCF with Link Control Facility (direction of FC-HBA meeting 10
April 2003).

ak) In 3.1.64, qualified OPN as a primitive signal (direction of FC-HBA meeting 10 April 2003).

al) In definitions, added a definition of FCP-2 (direction of FC-HBA meeting 10 April 2003).

am)In definitions, added a definition of HBA API instance (direction of FC-HBA meeting 10 April 2003).

an) In 3.1.31, made the definition of host bus adapter specific to Fibre Channel (direction of FC-HBA meeting
10 April 2003).

ao) In Annex B.2.6.1, allow vendor specific binding establishment (03-206v0, approved at the FC-HBA
meeting 10 April 2003)

ap) In Annex B.2.7.1, allow selective return of binding information (03-206v0, approved at the FC-HBA
meeting 10 April 2003)

aq) In Annex C, corrected the title from “LUN Mapping ...” to “Target Mapping ...”

Working Draft Fibre Channel HBA API (FC-HBA) viii

ANSI (1)
INCITS.***:200x

American National Standards
for Information Systems -

Fibre Channel HBA API (FC-HBA)

Secretariat
InterNational Committee for Information Technology Standards

Approved mm dd yy

American National Standards Institute, Inc.

Abstract

A standard Application Programming Interface defines a scope within which and a grammar by which it is possible
to write application software without attention to vendor-specific infrastructure behavior. This standard defines a
standard Application Programming Interface the scope of which is management of Fibre Channel Host Bus
Adapters and use of certain Fibre Channel facilities for discovery and management of the components of a Fibre

Channel Storage Area Network.

This standard is to be used in conjunction with the Fibre Channel and SCSI families of standards.

Working Draft Fibre Channel HBA API (FC-HBA) iX

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the require-
ments for due process, consensus, and other criteria for approval have been met by the
standards developer. Consensus is established when, in the judgment of the ANSI Board
of Standards Review, substantial agreement has been reached by directly and materially
affected interests. Substantial agreement means much more than a simple majority, but
not necessarily unanimity. Consensus requires that all views and objections be considered
and that effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he or she has approved the standards or not,
from manufacturing, marketing, purchasing, or using products, processes, or procedures
not confirming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give interpretation on any American National Standard in the name of the
American National Standards Institute. Requests for interpretations should be addressed
to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any
time. The procedures of the American National Standards Institute require that action be
taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American
National Standards may receive current information on all standards by calling or writing
the American National Standards Institute.

standard.

of this standard.

CAUTION: The developers of this standard have requested that holders of patents that may be required for
the implementation of the standard, disclose such patents to the publisher. However, neither the developers
nor the publisher have undertaken a patent search in order to identify which, if any, patents may apply to this

As of the date of publication of this standard and following calls for the identification of patents that may be
required for the implementation of the standard, no such claims have been made.

No further patent search is conducted by the developer or the publisher in respect to any standard it
processes. No representation is made or implied that licenses are not required to avoid infringement in the use

Published by

American National Standards Institute
11 West 42nd Street, New York, NY 10036

Copyright 200x by American National Standards Institute

All rights reserved.

Printed in the United States of America

Working Draft Fibre Channel HBA API (FC-HBA)

16 April 2003 T11/1568-D Revision 8

Contents
Page
L0} 01 1=) PR Xi
LTS3 A0 1= 101 = XXiii
(I3 Ao T U XXV
[T (=11Y 0] o RSP XXV
1] o o 11 Tox 1o o T XXIX
IS T o]0) o1 U UUPPPPT 1
2 NOMMALIVE REFEIENCES.uiiiit coiii et et e te e et et e taees e tata b a e e e s e e aeeaaaeaaaaaaaaeeees 3
A R VLo T4 4 oY YL (= (=T (=] o = 3
A N o] o] (oYL= =1 (=T €= o > P 3
2.3 References under deVEIOPMENL......... cccooi oo e s e e e e e e e e e e e e e e e te e e e e aeaeaeesrrarennannnnnas 3
A I o =] (=T (= o = 4
2.5 InfiniBand Trade Organization FefErENCES...........ooiiiiiiieee e e e e e e e e e e e e e e e et 4
3 Definitions, symbols, abbreviations, and CONVENLIONS........... coocooiiiiiiii e r e e e e e e e aeees 5
G 700 O I < {01 € L .5
3.2 SYMDOIS @nd @bhreVIatiONS. e e e e e e e et et ——————— 9
G 0 T (=471 o £ .10
G20 A o] Y7 =T o1 1o 1 A1
3.5 Notation for Procedures and FUNCHONS......... c.cooiiiiii i s s s e s e s e s e e e e e e e aaaeaeeeeeesaeaeaessereeennnnnnnns A1
T cT L= | IO o 3 1 = 1 o £ UPPSRPUR 12
O R S T0 Y1 ATV V£ {0 o (U = A2
o O3 - g T U= Vo = 13
4.3 Operating SYStemM DEPENUENCIES.ceeieiiiiiiiit et e e e e e e e e e e ettt ae e s e aaaaaaaeaaaaaaaeees 14
4.4 FC-MI COMMON HBA APt ettt e e ettt e e s e ettt e e e e e nbe bt e e e ensbe e e e e e sntbeeeeesnnnneeeeas A4
5 Software StruCture and BERNAVIOL...........cooiiiiiiieieeeeee et e e e e e ettt et e et e et s e e e s e s eaeaeaaaaaaaeees 15
L0 R 1 =T 11 S 15
LA 0 10T L= 1 U od (1 = S 15
L R O T] o1 Yo | o] U o (0= 15
I @ I 1[0 [T o1 T o L Y 1 U Tod (1 = U 15
5.3 Names, Handles and Their USAgE......... coociiiiiiiiiiicc et e e e s e s e e e e e e e e aaaaaae e e e e aeeeaeeseeeeannnnnnnns .16
5.4 HBA Configuration Rediscovery Effect 0N the APL........ .o A7
L0 3 A [o T 0T (0] A0 Lo £ [1P 17
5.4.2 HBA_STATUS _ERROR_STALE _DATA . ..ot ettt ettt et ee e e et e e e e e nbe e e e nnnene 17
L I AT =1 a1y = L[= 1 o] L= 4T Yo [R 17
5.5 MUIIUSE CONSIAEIALIONS.uvt teiiiieiiieie e ee e e e e e e s e e e e e e e e s e s st e e e e eeeeeseeaaseatbeaeeeeeaeseesansnnennrnneeeeaeeaanas .18
6 ALrIDULES AN DALA SIIUCTUIES.uuies ceiieiiciiie e e e e e e e s e s e e e e e e e e s e e s e st reaeeeeeeaesaassanseetaaaeeeeaeeeaessansnnsenneaneeaaaes 19
L = T Ty Tl N] o1 L (=TI = PRSP .19
6.2 STAtUS RELIUIMN VAIUES.........cc oo e e e e e e et r e e e e e e e e e s et et e e e etaeeseesansanntenrnneeeeaeeaanas 19
5.3 HBA ALTIDULES. ...ttt e ettt e e e sttt e e s e st be e e e e ek bt e e e e s bbeeeaeanbbeeeeesaabbeeeeesabbeeeeeanes 22
6.3.1 HBA Attribute Data DECIAIAtIONS.......... vieeieeiiii et e e s e e e e e s s et r e e eeee e s e s sasanrararaneeeaaeas 22
6.3.2 HBA AtribULtE SPECITICALIONS. ... uuiieiiiiiiiiiie e i e e e e e e e e s st a e e e e e eeeesnssnnsenreraraneeeaaeas 22
LR 2 A @0 1 o 7= T = 22
LR I Y = 1 11 - od 1] =1 PR 22
LR 7 BT = 11N 100 0] o = PR 22
LS 2 Y o T = PR PRRTSR 22

Working Draft Fibre Channel HBA API (FC-HBA) Xi

| 16 April 2003 T11/1568-D Revision 8

O B I Y To T L= | B TS o o o o] P TP TP PPRP PP 23
5.3.2.6 INOGEWWVN.....ooiii ittt e ettt e e e et e e e e e et e e e e e et b b e e e e e e taeee e e s teaeae e s ataeaeeaantaesaesannsbaaeeeasbeeeenannees 23
6.3.2.7 NOAESYMDOICNEAIME. ...t e et s e e e e et et e e e et b e e e e e abbeeeeeanneee 23
6.3.2.8 HaAIrOWAIEVEISION.uuiit ittt et et ettt ettt e e e e e e e e et et ettt e e et e b e sesaseaeaaeeaeaeaeseeesessassessasarsrarnnan i nnses 23
B.3.2.9 DIIVEIVEISION....coeiit ittt e et et ee et et e e e e e e e eeee e et e eeeee e e s tebe s e e e a e sesaseeaaeeeaesaaesesesesssssssssssrssasnnntnnnnnnes 23
6.3.2.10 OPLONROMVEISION....ccciis tieiitiite ettt et e ettt e e e et bt e e e e bbbt e e et b et e e e ettt e e e e e nbbeee e e abbeeeesannene 23
B.3.2. 11 FilMWAIEV BISION. ... ittt ettt e eeee et et et et e e e e e e et et et e et eeeee e tete s e b e seseseaeaeaeaasaeesesesessassestsrssssnsnnntnnnnsns 23
6.3.2.12 VENAOISPECITICIDceii ittt e e et e e e e bt e e e ettt e e e e bb e e e e e abbeeeeeannene 23
6.3.2.13 NUMDBEIOTPOIMS.ottt e s e s e s e e e e e e e aeeeeeeeeeeeesaesesbasebreaaaaaa e naes 24
B.3.2.14 DIIVEINGIME. .. uuiiit ceeeeitiiiitt e eeeeee e e et e e e e eeeeeeee et e eeee e et aeae s aae b e b — e e aaseaeaeaeaaaaaeaesesesssssestsssrsrarnnatnnnnnes 24
6.4 FC POt AITDULES.ei ettt e e s ettt e e e okt et e e e bb e e e e e aabb et e e e s e sbbeeeeesabbeeeeeanes .24
6.4.1 FC_Port Attribute Data DECIAratioNS. cooouuiiieiiiiiie et abre e e e aanene 24
L T o T R 1Y/ o1 TSP P TP PUPPTPPPRP 24
L I w0 S = 1 (TP 24
L G T 0 ¢] 01 25
B.4.1.4 ClASS Of SBIVICE.....cc ittt e oottt et e e e e e e s et bbb b et ettt e e e e e e s e e aabbrbbeeeeeeaaeaaeas 25
O B o O B Y/ o = SR SRTTPSR 25
Lo ST e O o o A 11] o 11 (= 25
6.4.2 FC_Port Attribute SPECIfICALIONS.uuut i e e e e et e e e e e e e e e ae e e as 26
Lt R o .1] = o = 26
B.4.2.2 NOUEWWVN.....oiiii ittt et e e e et e e s e sttt e e e e et bttt e e s ettt e e e e e bebeeeeasnbbeeeeeanbaeeeeeanbbeeeeeansbeeeesansens 26
B.4.2.3 POMWWVN.eiiii ittt ettt e et e e e e ettt e e e e skt b e e e e ettt e e e e e bbb e e e e e bbeeeeeantbeeee e e nbbeeeeeansbeeeeeannees 26
Lo o 653 V0] o [Tod AN = = T 26
S o £ o] o PR SPRTPSR 26
(ORI o] Y/ o= T OO PUPPPTRTRRN 26
B.4.2.7 POITSIALE. ...ttt r oo e e oo et e e et et ettt et e e s e e e e e e e e e e e e e e et e e et e e e e e e e e rnannnnnnra s 27
6.4.2.8 PortSUPPOrtedCIasSSOfSEIVICE.ccct ceieeiiee e e e e e e e e e e e e e e e e eete e e e e e e e aae e ae s eas 27
LR e I o] 65U o] oL e=Te | o N N oY U 27
Lo K I o 7 o A= o I o =T 27
Lo R 0T 60 o] oL (=T RS o= = o U 27
L A o 6] 01 o 27
6.4.2.13 POIMAXFIAMESIZE.ot ittt e ettt e e e e e e e e bbb e et e et e e e e e e s e s anbb e bbeeeeeeaeeeaeas 27
B.4.2.14 OSDEVICENAIME.eiitiieeiiiiiett ettt e ettt et e e e e s e oo bbb e ettt et e e e e e e aa s bbb bbe et e e e e e e e e e e aanbbnbbereeeeeeaeeas 28
6.4.2.15 NUMDEIrOfDISCOVEIEUPOITS. ettt e e e e e e s bbbt e e ee e e e e e e et bbb e e e eeeeeeeeas 28
B.4.2.16 FADFICNAME...... i ettt e oottt e e e e e e e e s s e b e et e e eee e e e e e e bbb nreeeeeeaaeas 28
6.5 BN PO SEALISTICS. ...eeeet cieiieeiiai ittt e e e e e e ettt e et e e e e e e s e e b b bbb e e e et e e e e e e aa s anbbnsbereeeaeeeea s .29
6.5.1 End Port Statistics Data DeCIarations.............coocuiuiiiiiiiiieiie e 29
6.5.2 End Port Statistics Attribute SPeCIfICAtIONS.........uuuuiiiiiiiiie e e e arreaaa s 29
LSS A o 1 o] 7= T = PR 29
6.5.2.2 SECONUSSINCELASIRESEL.uiit ceiiieii ittt e et e e e st e e e st e e e e abbe e e e s s bbeeeeeanbbeeeeennnees 29
LR T2 T T =T 1= 7 PP TP PT T 29
B.5.2.4 RXFTAIMES..... it ettt e e e e oo et et et e et ettt e e e e aE et o e o e ot e e e e e e eeeeeeee e e e e e e enae e e nnnnn s 30
B.5.2.5 TXWWOIUS.....utit ceeeiieiie ettt ettt e e ettt e e e s sttt e e e sa bttt e e e e ahbe e e e e e aa b be e e e e e ambe e e e e e ambeeeeesesbbeeeeeaabbeeeaennnnns 30
B.5.2.6 RXWWVOIUS. ...t teei ittt ettt ettt e sttt e e e sh et e e e sa bttt e e e e shbe e e e e e sh b b e e e e e s abbe e e e e e aabeseee s e sbbeeeeeaabbeeeeennnnn 30
LR T A T = T 1 | SRR PP PUP PRSP 30
LRI I NN (@ 151 01 011 | S PR SRRTTPSR 30
LSRRI B =1 g {0} 4 = T PP PP PP 30
SRS O 0T g o 1= L= U 1= 30
6.5.2.11 LINKFAIUIBCOUNL......uuit iiiiieiiiiiie et e ettt e sttt e e e sttt e e s sttt e e e e sabe bt e e e s nbee e e e e anbeeaeesanbbeeeeeanbbeeeesannens 30
SRS 2 o 111 @ 1 15/ T @ 11] | PR 30
SRS e T o 111 @ J 15 T [F= 1 @ 10]) PR 30
6.5.2.14 PrimitiveSeqProtOCOIEITCOUNL........utiiiiieeiis ittt e e e e s e e et e e e e e e e s s e st e e e e eeeeasesansnnsrnananeeaaaees 30
6.5.2.15 INVAIIATXWOIACOUNL.....ccci teiiiiiiiee ettt e ettt e e e et e e e e st bt e e e s bt e e e e anbee e e e e snnbbeeeeeanbbeeeeennnene 31
6.5.2.16 INVAIA CRC COUNL...cciiiitiiiieiiitiie ettt ettt e e e ettt e e e ettt e e e e sttt e e e e s nbbe e e e e anbbeeeeeannbbeeeeeanbbeeeesannens 31

Working Draft Fibre Channel HBA API (FC-HBA) Xii

| 16 April 2003 T11/1568-D Revision 8

6.5.2.17 INPULIREGUESTS.iit ceieieie ittt et e e e e e e e et e e et e e e e e e s e s e et e e et e e e e s ann b e brereeeeaeean s 31
6.5.2.18 OULPULIREGUESTES.coiiiieeiiieiet ittt e ettt e e e s e e s ettt e e te e e 1a s e et e et e e en e e s nn b e eeeeeeeeas 31
6.5.2.19 CONIIOIREQUESTS.eeii ettt ettt ettt e ettt e e e ekttt e e e e aa b bt e e e e s b b et e e e ek beee e e e nbbe e e e e anbbeeeesannene 31
6.5.2.20 INPUIMEGADYIES. ...t ettt e e bbbt e e e e bt e e e e ettt e e e et e e e e e abb e e e e e anneee 31
6.5.2.21 OULIPUIMEGADYLIES ...t ittt ettt e bt e et e e e e e ittt e e e e bbb e e e e e abbeeeeeanneee 31
6.6 FCP_POrt AUNDULES (SEE FCP-2)....ci ittt ettt e e e bbbt e e e s et b e e e e e e nbbbeeee e 31
6.6.1 FCP_Port Attribute Data DECIAratioNS.couuuiieiiiiiieee ettt e e e sanene 31
6.6.1.1 HBA_FCPBINDINGTYPE. ... ittt e s s eeeeeeatseeaentnnnn e ees 31
6.6.1.2 HBA_BIND _CAP ABILI T Y ettt s eeeeeeeeeaeesetennnnnnan e ees 31
6.6.1.3 HBA BIND _TYPE....c.cit coitoeeeeececeeee ettt ettt ettt et e es et e st e e e eesenaneseseseeeaeseaneranans 32
Lo 0 0 | = 7 I | U 32
8.6.1.5 HBA_SCSIl0....cuoue. eeeeeeeeeeceeeeee ettt ettt e ettt ettt ettt ettt n et et en e 32
8.6.1.6 HBA _FCPI....cucu. ceeeieceieeee ettt ettt a ettt et et e s e e sttt e s et et et e e s s s s e et eanenanans 32
B.6.1.7 COMPOSITE LY PES. ..ttt eeittieie ittt ettt e e e e s bt e e e e st b bt e e e e ek bt e e e e ekt bt e e e e b b e e e e e aabbe e e e e e nbbe e e e e anbbeeeeeannene 32
6.6.2 Target Mapping and Persistent Binding Attribute Specifications..............ooovvviviiiiiiiii e, 33
6.6.2.1 HBA _FCPBINDINGTYPE.......cittttiiiiiiitieeiitiiiee et atiee e e e sttt e e e s sttt e e e e stateaeesnbaeeeeaanbaeaeessnbeaeeseasbeeeesnnnens 33
6.6.2.2 HBA _BIND_CAPABILITY coettiiiit etee sttt ettt s ettt e e e ettt e e e s sttt e e e e sttt e e e s ssnbae e e e e snbeeeeeeannbeeeeseansbeeeeennsens 34
6.6.2.3 HBA _BIND _TYPE. .. ittt ittt ettt et e e e et e e e e ekttt e e e et b e e e e et be e e e e abbeeee e s bbeeeeeanbbeeeeeannens 34
B.6.2.4 HBA _LUID......ci it tiitiii oottt s ettt e bt e e e s sttt e e e e ettt e e e e aa bt e e e e aabe et e e e as s bee e e e e aRbee e e e e e bbeeeeeatreeeeeannees 34
N T o = N ST @] | 5 P SPRRPSR 34
B.6.2.6 HBA _FCPID......ciit tiiii ettt e et e e e e ettt e e e e sttt e e e e s bbbt e e e s nbbe e e e e anbbeeee e e nbbeeeeeanbbeeeeennnees 34
B.6.2.7 INOUEWNWVN.....oiiii ittt e ettt e e s s ettt e e e ettt ee e s ettt e e e e e bbbt e e e e nbbeeeeaanbeeeeeeanbbeeeeeansbeeeeeansens 34
B.6.2.8 POMWWVN.....oiiiiiii ittt e ettt e e s e sttt e e e e sttt e e e s et be e e e e et b be e e e e bbeeeeeanbbeeeeeanbbeeeeeansbeeeesansens 35
LT I o] o PSRRI 35
T2 O ot o] I o P PR SRR TSR 35
5.6.2.11 OSDEVICENAIME.etitiieeii ittt e ettt et e e e et e e s bbb e ettt et e e e e e e aa s e b b e bbe e et e e eeeeeeeaanbbnbbeneereeeaeeas 35
6.6.2.12 SCSIBUSNUMDETceiit ittt oottt et e e e e e e e e b b e bb e et e e eeeeaa e e aaabnnbbeneeeeeeaaeas 36
Lo T G T S T ox I 1= Ve = LU '] 1= 36
L R S 1o~ (@ 1] U o PP RPTTORPR 36
6.6.3 Persistent Binding Capabilities.......... .ccoooiiiiiiii s e e e e e e e e e —————— 37
6.6.3.1 Persistent Binding Capability: HBA_CAN_BIND_TO D ID.....cccc. oiiiiiii e 37
6.6.3.2 Persistent Binding Capability: HBA_CAN_BIND_TO_WWPN.......... oo 37
6.6.3.3 Persistent Binding Capability: HBA_CAN_BIND_TO_WWNN......cooe i 37
6.6.3.4 Persistent Binding Capability: HBA_CAN_BIND_TO_LUID.......... oooiiiiiiie e 37
6.6.3.5 Persistent Binding Capability: HBA_CAN_BIND_ANY_LUNS.......cc. oo 37
6.6.3.6 Persistent Binding Capability: HBA_CAN_BIND_TARGETS......cccc coiiiiiii e 37
6.6.3.7 Persistent Binding Capability: HBA_CAN_BIND_AUTOMAP.......... oo 38
6.6.3.8 Persistent Binding Capability: HBA_CAN_BIND_CONFIGURED.......... cccoociiiiiiieeieeee e 38
6.6.4 Persistent BINAING SEING TYPES..ciiiiiiiiiieie e iie ettt e e e s e e s e e e e e e e e s s s sa e e rreeeaeesessanstansraaraneeeaaens 38
6.6.4.1 Persistent Binding Type: HBA_BIND_TO D _ID.....uuies coiiiiiiiiiieeieee e ee e ses st e e e e e e e e e e s nnnnnrnananeeaae s 38
6.6.4.2 Persistent Binding Type: HBA_BIND_TO_WWPN........ci it e e naaannann e e 38
6.6.4.3 Persistent Binding Type: HBA_BIND_TO_WWNN.......cooiiiiiiiiiiieiiiee e e rr e e s e e e s s s ssnennanneaeeeeeees 38
6.6.4.4 Persistent Binding Type: HBA_BIND_TO_LUID......ccc. coiiiiiiiiiie et e e e e e sneavnanaene e e 38
6.6.4.5 Persistent Binding Type: HBA_BIND _TARGETS.......cccoii ittt r e e e e e e e s tre e e e aeaeean s 39
IS] = B ANt 1] o 11 (= T PP PPPUPUPPPSPN .39
6.8 FC-3 Management AtIIDULES. ... c.uiieiiiie i er e e e s s r e e e e e e s e e et r e e e e e eeeessassnnarnrnneeeeaeeaanas 40
6.8.1 FC-3 Management Data DeCIArationS.......... cocicciriiiiiieiie e i e s ittt e e e e e e e s s st re e e e e e e e s e s snnanrrnaraeeaeaaes 40
6.8.2 FC-3 Management AttriDULE OVEIVIEW.......... cocciiiiiiiee et e e e e e e s s r e e e e e e e s e s st enra e aereeaaeas 40
6.8.3 FC-3 Management Attribute SPeCIfiCAtIONS.......... cvuiiiiiie e e e e e e e 40
LRS00 A 0o 1 o] 7= T =P 40
B.8.3.2 WWWVIN ..ot ittt ettt e e e sttt e e e e et bt e e e ekt bt e e e ek bt e e e e e R e be e e e e b b e e e e e et be e e e e e bbeeeeeabreeeeennneee 41
LRSI T U 113 o - PR 41
LS TR TR o 1 [R PRTTTPPSR 41
6.8.3.5 NUMDErOFAUACNEANOUES.ccct it e e et e e e st e e e e abbeeeeeanneee 41

Working Draft Fibre Channel HBA API (FC-HBA) Xiii

| 16 April 2003 T11/1568-D Revision 8

LTS X G T | YT 1T o TSP 41
(OIS T T U 0 1] o] P 41
LTS TR S T | = [| (=7 41
6.8.3.9 TOPOIOGYDISCOVEIYFIAGS. ...ccce i ettt et e e e e e ettt e e e et e e e e abbe e e e e anneee 41
6.9 Polled Event NOtIfiCation AttrDULES......... oo e e e e e s e e e e eee e e s 42
6.9.1 Polled Event Data DECIAIAtiONS. ciiiieieieiie it et e e e s e s et ee et e e e e ae e s s e s aeeeeeaeeeseessanssnseneeaeeeeaeens 42
Lo I o1 T= o I Y =T o O o T[S 42
6.9.1.2 Polled Event Data Structure DeCIarationsS. c..eeeviiieeie oo e e e e e e e e s e eeeereeeeeereeee s 42
6.9.2 Polled Event Attribute SPeCifiCatiONS...........coiuiiiiiiii e 42
LSS A V=T o1 (@ o = PP 42
6.10 Asynchronous Event Notification AMIHDULES..........ooiiiiiiiiii e A2
6.10.1 Asynchronous Event Data DeClarationsS. coooiiiiiiieiiiiiie ettt 42
6.10.1.1 CallDAaCk HANAIE.......... coeeeeeeiee e e et e e e e e e e s e s sttt e e e eeeeeeesanssnbrnaeeeeeaaaens 42
6.10.1.2 HBA Add Category EVENT TYPE....ueiie ittt ettt ettt ettt ettt e e sttt e e e s atb et e e s abbeeeeeaabbbeeeeanaes 43
6.10.1.3 HBA Calegory EVeNE Ty DS, ittt ettt ettt e e e e e bbb e e e e e e bbann e e e e eetnaeeaees 43
6.10.1.4 POt Category EVeNE Ty PBS . i iiiiit cieieie ittt ettt e e e et e e e e ettt e e e e e aeab e e e e eetaba s e e eeetnaeeaees 43
6.10.1.5 Port Statistics Category EVENT TYPES....uuuuur ieieiiieieeiieietiititiiriss s s s s s s e e e e e e e aeaaaeaeeeeeeeaeaeesseerrenrnnnn s 43
6.10.1.6 Target Category EVENt Ty DS, .. ittt ittt et et s e e e e aa s e e e ee e bbb e e e e e abba s 43
L0 O T A 1 01 OF= =T [0 i VA A= A 1] 1= 43
6.10.2 Asynchronous Event Attribute SPecifiCations.......... c..uuuuiieiiiiiiiiie e 43
LT O 20t R V=T o] i 1Y 1T PSPPSR 43
L0t I I o = 1Y N 1] oW1 44
6.11.1 Library Attribute Data DECIAratiONS...........ccoiiiiiiiiiiieieeiiiii s s s e s e s e e e e e e e e e e e e e e e re e e e eeeeeeaee e res e as 44
6.11.2 Library Attribute SPECIfICAIONS..........coii i e s 52
L 00 I 2t R o 1]] =1 o = 52
5 O T - | SRR 52
L R B X o] == {0 PSP PUPPPTPSP 52
L Y - o= R SERTPSR 52
B.11.2.5 WV EISION...ceiiii ettt et e oottt oottt e et e e e e oot a b bbbt ettt e e e e e e e e e e b b e b e et e et e e e e e e e e bbb reaeereeaaaeas 52
L O G T o 1U 1 o o = PR SRR TP PSR 52
T FUNCHON CAIS....coi i ettt e et e e e e e o4 e a bbb bt ettt e e e e e e aa s n b be bbb et e et e e e e e e e aannnbb e b e eeeaeaeeas 53
A R O YT V1 PR PP O TP PPPPPPPT .53
A2 W o = 1 YA @Fo] 11 o] N U o 1T 1T .55
A R o 1 = N 1= A =Y 6] o o 55
70 0 R o T 4T | S PP PP PP PP 55
A A =1] 1[0 U 55
A G B Y o 1010 1= o | £ PP PRT R 55
T.2.1.4 REIUIMN VAIUES.....cco it ettt ettt ettt e e ettt e e e ettt e e e e et b bt e e e e et b et e e e e bbeeee e e nbbeeeseanbbeeeesannees 55
A o = AN o = o [] o) - 2R 56
[0 R o 1 4T | PP TP PP 56
A =1 0] 1 o] o TP 56
R B Y o [0 11=T o € ST UUPPP PR 56
T.2.2.4 REIUIM VAIUES.....c. e ettt ettt et e e ettt e e e e bt e e e e s e bbbt e e e e et be e e e e e bbeee e e e nbbeeeseanbbeeeesnnnees 56
A T =7 AN 1= N o - R 56
7S T0 R o T 3T | PP TP PP 56
A A =T 10 1o} o TSR 56
A T B Y o [0 0 1 T=T o £ O PPT P UPPP PR 57
7.2.3.4 REIUIM VAIUES....... it ettt ettt e ettt e e e ettt e e e e st b bt e e e e e bbe e e e e e bbeee e e e nbbeeeeeanbbeeeesnnneee 57
A R o =Y AN = C=To 1) (=1 T = Y2 57
[S R o T 4T PP PT T 57
A =T] 0] 1 o] o T PR 57
e R Y o [0 1 T=T o | £ O PPP TP UPPPPTT R 57
T.2.4.4 REIUIM VAIUES.......o it ettt ettt e ettt e e e ettt e e e e e bbbt e e e et be e e e e e bbeeee e s nbbeeeeeanbbeeeeennneee 57

Working Draft Fibre Channel HBA API (FC-HBA) Xiv

| 16 April 2003 T11/1568-D Revision 8

7.2.5 HBA _REQISIEILIDIANYV2. ...t oot ettt e et e e e et e e e abbe e e e e annene 58
072 00 R o] ¢ 0 = 1 P 58
A ST B =T Tod] o) 1o o TP PP PPTPTPPRR 58
A T B Y (o (VT4 1= 0 £ TP PP TP T TP PUPPPPPPRP 58
7.2.5.4 RELUIM VAIUES........ot ettt e e et et e et e e e e e e e e et et et et e e et et et bbb e seseseaeaeeeaeaeeeseeeeeesassesbasarsearnnan i nnnans 58
7.2.6 HBA_GetWrapperLibDraryAtrDULES. oot 58
72 < 00 R o] 0 = 1 P 58
A T B =T Tod]) 1o o O PP SRR PP 58
A A Y (o (VT4 =T o] £ TP PP TPPPTPPPRP 59
7.2.6.4 RELUIM VAIUES........vt ettt ee et et et et et e e e e e e et et et e et et et ete e bbb e seseseaeaeaeaeaeeeseeesessassesssssssearnnan i nnnans 59
7.2.7 HBA_GetVendorLibraryAttriDULES.uiii e 59
7 A5 R o] ¢ 2 - | P 59
A v B =1 Tol]) o] o T O PP PP PPTP PP 59
A R B Y (o (VT4 1= o £ TP PP TUPPTPPPRP 59
T.2.7.4 RELUIMN VAIUES. ...t ettt ettt e e oo oo ekttt ettt e e e e e e s et bbb bb ettt e et e e e e e e aanbbnbbeneeeeaaaaaas 60
7.2.8 HBA_GetNUMDEIOTAUAPDIErS.o oo e e e e e e e e e e e et e e e e e e aaeae e e ee s 60
A7 T R o1 14T | S PP T PP PT T 60
A T =~ 1] 1[0 o 60
A S TS R Y o 1010 1 T= o | £ S PTUPPPPTTPP 60
7.2.8.4 RELUIMN VAIUES. ...t ittt e oo e oottt e et e e e e e e e e e s bbb bbb et e e et eeee e e e nbbnbbnneeeeeeaaens 60
7.2.9 HBA_RefreShINfOrmMatioN........c..eeiiiiiii s et e e e as 60
A7 IS R Lo T 10T | S PP TOTPTT 60
A B = 1] 1[0 61
RS T Y o 1810 1 1= o £ PP PR 61
7.2.9.4 RELUIMN VAIUES. ...t ittt ettt e oot e ettt e e e e e e e e et bbb bbb et e e e e e e e e e e aanbbnbbeneeeeeeaaans 61
7.2.10 HBA_RefreshAdapterCoNfigUIAtiON...........coiiiiiiiiieieeeeiieiii s s e s e s e e e e e e e aeee e e aeeeeeeaanaeerernr e eas 61
70 KO Tt R o 1 14T | S PP T PP PP 61
A2 KO B2 ==] 1 0 o U 61
A L0 TR B N o U0 0= o £ ST PPUPPTRR PPN 62
7.2.10.4 RETUIN VAIUES.eeet ittt ettt et e e a4 e oottt et e e e e e e e e e e b b e bb e et e e eee e e e e e e nbbnbbnneeeeeeaaeas 62
A N R o [= N T Y =Y] = 11] 108U 62
70 5 0 R o 1 4T | S PP PP PP PTT 62
40 A ==] 1 T o U 62
7.3 HBA and Port INfOrmation FUNCHONS. coiiiiiiiiiiie ittt e e s e e e e e e e e e e e s .62
R T R o 1 = N 1= AN F= Vo) (=T NN =0 = S 62
4 70 0 R o T 0T | S PP PP PP PP PP 62
4 T8 2 1 = 1 110 62
S T TS T Y o [0 0 1 T= o | £ PP PRSP 63
7.3.1.4 REIUI VAIUES.....co it ettt ettt e e ettt e e e ettt e e e e s et b bt e e e e et be e e e e e bbeee e e s nbbeeeseanbbeeeesnnnees 63
R I o =7 AN O] 01T o Yo F= T (= PR 63
S T00 R o T 4T | PP PP PP PP 63
4 T =T 10 1o} o TR 63
S R B Y o [0 1 1=T o £ PP UPPP PR 63
7.3.2.4 REIUIM VAIUES.....co it ettt ettt e ettt e e e ekttt e e e e et kbt e e e e et be e e e e e bbeeee e s nbbeeeeeanbbeeeesannene 63
A R I o =Y AN @] o 1T oY F= 1 (=14 2 YA AT PR 64
S TR 700 R o T 0T PP PP PP 64
4 T T2 =T 10 1o} o TSP 64
S S RS T Y o [0 0 1 T=T o | C PP UUPPPPRTRRP 64
7.3.3.4 REIUIM VAIUES.....c. it ettt ettt e et e e e ettt e e e e s ettt e e e e et b e e e e e e bbeee e e e nbbeeeeeanbbeeeeennneee 64
R o = AN O [1Y Yo - o (= SR 64
S T S0t R o T 4T PP TP PTT 64
A T B =T 0] 1 o] o TSP 65
RS e R Y o [0 1 T=T o | £ S PPPTPUPPPPTTRRPP 65
T.3.4.4 REIUIM VAIUES......t ettt ettt e ettt e e e ekttt e e e e e bbbt e e e e et be e e e e e bbeee e e s nbbeeeeeanbbeeeeennneee 65

Working Draft Fibre Channel HBA API (FC-HBA) XV

| 16 April 2003 T11/1568-D Revision 8

7.3.5 HBA_GetAdapterAttULES. ... et rb e e e 65
A0S TR 00 o] ¢ 0 = 1 P 65
R BT B =T Tod] o 1o o T PR PPRP O PPPSR 65
RS RS B Y (o VT4 T=T o] £ TP TP T PP TUPPTPPPRP 65
7.3.5.4 RELUIM VAIUES........vt ettt e et ee e et e e e e e e e e et et ettt e et e ettt e seseseaaeaeeaeaeaeseeesessassesbasarsearnaan i nans 65
7.3.6 HBA_GetAdapterPOrALIIIDULES.t ettt ebre e e aanene 66
A0S TN G 00 o] 0 = 1 P 66
R N ST B =T Tod] o) 1o o T PP P PR PP 66
RS T A Y (o (U0 T=T o] £ TP T PP TPPPTPPPRP 66
7.3.6.4 RELUIM VAIUES........ut ettt ettt et e e et et e e e e e e et et et ettt ettt et et bbb e seseseaaeeeeaeaaaeseeesesssssessassrsrasnnan i nnnans 66
7.3.7 HBA_GetDiSCOVEredPOrtALIIDULES.co.iiiiiiiiii ettt e e e e 67
0 TR A0 R o] ¢ 2 - 1 67
R v B =T Tod] o) 1o o TP PP P PP PP 67
RS T R I Y (o (VT4 11T 0] £ PO PP OPUPPPPPPRP 67
T.3.7.4 RELUIMN VAIUES. ...t ittt et e e oo oo et e et ettt e e e e e e e e s bbb bbbttt e e e e e e e e e aanbbabbereeeeeaaaans 67
7.3.8 HBA_GetPOrtAtHDUIESBYWWIN.......c.. oo s e s e e e e e e e e e e e e e e e e e e eeeeaeee s teenerensnnan s 68
RS TR 70 R o T 10T | S PP T PP PP 68
A TR T2 0 = 1] 1[0 68
RS R S RS I Y o [0 10 1 T= o | £ PP PR 68
7.3.8.4 RELUIMN VAIUES.......eet ittt e oot e ettt e e e e e e s e s bbb bbb e et e e ea e e e e e aanbbnbbebeeeeeaaaens 68
FARC R I o 1= AN C 1= T £ = L] 1 02 69
RS TR IS R o T 0= S PP PP PP PTT 69
A TR T2 = 1] 110 T 69
RS RS T Y o [0 10 1 T= o | £ PP PRTSP 69
7.3.9.4 RELUIMN VAIUES. ...t ettt et e oot oottt ettt e e e e e e e e s bbb bbe et e e e e e e eeeeaanbanbbeneeeeeaaaens 69
7.3.10 HBA _GEtFCASIALISTICS. ...ttt ettt e ettt e e e e ettt et e e e e e e s e et b e bb e et e e aeeeaeeaaansnbbeneeeeeeaeaas 70
S 70 KO T0t R o T 14 T | S PP PP PP PP 70
4 700 K0 B2 ==] 1 T o U 70
S B O TR B N o U0 0= o £ T PUPPPTPRRPPPN 70
7.3.10.4 RETUIN VAIUES. ...t ittt ettt e e e e e e oo bbbttt et e e e e e e e e h b b e b e et e e eeeeee e e e nbbnbbeneeeeeeaaeas 70
7.4 FCP INfOrmMation FUNCHIONS. ettt ettt e e e e e e s et bbb et e et e e e e e e aa s s nbenbeeeeeaeeeaan s 71
7.4.1 HBA_GetBindiNgCapability..........oiiiiii i e r e s e s e e e e e e e e e e e e e e et e e e e e aeae e e 71
A 30 0 R o T 4T | S PP PP PP PP 71
A A 0 =~] 110 71
A G R Y o [0 0 1 T=T o | £ PP UPPT PR 71
T4, 1.4 RELUIMN VAIUES. ...t ettt e oo e oottt ettt e et e e e s e s bbb b e et e e et e e e e e e e abbnbbnneeeeeaaeeas 71
P A o 1 = AN CT=11 =TT 1o S U1 o] o o] g F 72
0 R o1 10T | S PP PP PP PP 72
A =T 0] o] o TSR 72
R B Y o [0 0 1 1=T o | £ PSP PPTPUPPP PR 72
T 4.2 4 REIUIM VAIUES......ot ettt ettt e e ettt e e e ettt e e e e e ekt bt e e e e et b et e e e e bbe e e e e nbbeeeeeanbbeeeeennneee 72
A I o =Y AN ST 1211 To T To ST UT o] o o] o F PR 72
A3 T0t R o T 0T PP TP PT T 72
4 T =T 10 1o o TR 73
A TG B Y o [0 1= o | £ ST PP TP UPPPPRTRRPP 73
T 4.3.4 REIUIM VAIUES.....co it ettt ettt e e ettt e e e e ekt e e e e s ekt b e e e e et be e e e e abbeeee e e nbbeeeeeanbbeeeesanneee 73
7.4.4 HBA_GetFCPTargetMapPing......uue. ceeeeeeeeeeiiiiiiiieteerteeaee s st sssstnntseereseeeeaessassssnsessaeeeeseeeessssanssnsssnrsnreeeaees 73
A S R o T 4T | PP T PP 73
A =T 10 1o} o TR 73
A e R Y o [0 0 1 T=T o | £ O PPPT P UUPPP PR 74
T AL REIUIM VAIUES......o it ettt ettt e e e ettt e e e ettt e e e e s ekt bt e e e e et be e e e e e bbe e e e e nbbeeeseanbbeeeeeanneee 74
7.4.5 HBA_GetFcpTargetMapPinNgV 2.uu. viee ettt e e e e e e e s s e sttt e et ae e e e e s s s saaba e taeeaeeaeeeseesannsantanaraneaeaaens 74
38 700 R o T 4T PP TP PP 74
AT =T 10 1o} o T PR 74

Working Draft Fibre Channel HBA API (FC-HBA) XVi

| 16 April 2003 T11/1568-D Revision 8

A B Y (o (VT4 =T o £ TP PP P PP TP TPPPTPPPRP 75
T.4.5.4 RELUIM VAIUES........ot ettt ee et et e e et et e e e e e e et et et et e e et tete e bbb e seseseaeeeeeaeaeaeseeeeessassessassrsrarnaat i nnnsns 75
7.4.6 HBA_GetFcpPersiStentBiNdING.......... vouiiiiiiiiiiie it 75
00 o] ¢ 0 = 1 75
A ST B =T Tod] o) 1o o PO PPTP PP 75
A T A Y (o (U0 =T o] £ PO P PR TUPPTPPPRP 76
T.4.6.4 RELUIM VAIUES........vt ettt eeee et e e et et e e e e e e et et et e et e et tete et b e seseseaaaaaeaeaeaeseeesesssssesbasssssarnaan i nnnaes 76
7.4.7 HBA_GetPersiStentBINGINGV2......coo. oottt et e et e e e s abbe e e e e anneee 76
0 0 A o 1 0= P 76
o v =T Tod] o) 1o o PO PR PPTP PP 76
A R B Y (o (VT4 1= o] £ T PP P PO TP PPTPPPRP 76
T.A.7.4 REEUIM VAIUES........ot ettt ee et ee e e et e e e e e e e e et et et e et e e et ete e bbb e seseseaaeeaeaeaeaeseessessaseessarsrsrnrnnat i nnnaes 77
7.4.8 HBA_SetPersiStentBINGINGV2......co. oottt et e e e s abr e e e e e aanene 77
R S 0t R o] ¢ 0 = 1 P 77
A< T 0 = 1] 1[0 77
A S RS T Y o 1010 1= o | £ PP PR 77
T.4.8.4 RELUIM VAIUES. ...t ittt et e oot oo et ettt et e et e e e e e s bbb bbbttt e e eeeee e e e nbnabbereeeeaaaaans 78
7.4.9 HBA_RemoVvePersistentBiNdiNg..........coooiiiiiiiiiie e s s e s 78
A e TS R Lo T4 0T ST TP PP PTT 78
A T = 1] 110 78
RS T Y o [0 0 1 T=T o | £ PP PRTP 78
T.4.9.4 RELUIMN VAIUES. ...t ittt et e e oo oo ettt et e e e e e e s et bbb bbe et e e eee e e e e e e nbbnbbeneeeeeaaaans 79
7.4.10 HBA_RemoVeAlIPersiSteNtBINAINGS. coiiiiiiieieieeeeiee s s e s eaeeeeteeer e eas 79
4300 KO Tt R o 1 4= | SO PP PP TP TP 79
A 0 B2 ==] 1 T o U 79
A O TR B N o U0 1= o £ PPN 79
T.4.10.4 RETUIN VAIUES.eeet ittt ettt e e oo e oottt ettt e e e e e e e e bbbt bb e et e e eee e e e e e e nbnabbnneeeeeeaeeas 79
7.4.11 HBA _GEIFCPSIALISTICS.cii i ettt e e e e e e e e e e bbb e et e e e e e e ae e e anbbnbbereeeeeaeaaas 80
4300 0t R o T 4= | S PP T PP PP 80
At O ==] 1 T o U 80
A e B N o U0 0= £ PSPPI 80
T 4. 114 RETUIN VAIUES. ...t ittt ettt e e oo oo oottt ettt e e e e e a4 e e bbb e bb e et eeeee e e e e e aanbbabb e e e eeeeaaeeas 80
7.5 SCSI INfOrMAtioN FUNCHONS.eeiiiiiiiiie it e e e e e e e e e et e et e e e s e e e e nb b e bereeeaaeeea s .81
T R o 1= NS Y= g o Aot | [T [11 YU 81
4 70 0 R o T 14T | PP PP PP PP 81
48 200 2 0 =] 1[0 81
8 T RS T Y o [0 0 1 T=T o | £ PP 81
T.5.1.4 REIUIM VAIUES......o it ettt et e e ettt e e e e ekttt e e e e e bbbt ee e e s bbe e e e e e tbeeee e e nbbeeeeeanbbeeeeeannees 82
7.5.2 HBA_SCSINQUITYV2....cccies oottt e e e e e e et e e et e e e e e e aeesas e sate e taeeeeeeeeeseeesasnnrennnaneeaaaens 82
4 200 R o T 4T PP T PP 82
ST =T 1] 0] 1 o] o TSR 82
R TR B Y o [0 1 T=T o | C O PPTPUPPPPRTRRP 82
T.5.2.4 REIUIM VAIUES.....c. it ettt ettt e ettt e e e ettt e e e e e e bbbt e e e e ek be e e e e e bbeeee e e nbbeeeeeanbbeeeesnnneee 83
AT I o =7 AN 1= To | =T o] o B 1N £ SR 84
40 700 R o T 4T PP PP PP 84
ST 2 =T 10 1o} o TP 84
R T RS T Y o [0 0 1= o | £ O PPT T UPPPPRTRRPP 84
7.5.3.4 REIUIM VAIUES....... it ettt ettt ettt e e e ekt e e e e e e bbbt e e e e et bt e e e etbe e e e e s nbbeeeeeanbbeeeesannees 85
7.5.4 HBA_SCSIREPOIMLUNSVZ.....cccis ittt e ettt e e et e e s et e e e e e e e e s e s s et et a e e e eeaaeaeesasssntbnnraneeeaaens 85
4 2 0t R o T 0T PP PP PP 85
ST B =T 10 1o} o TSR 85
R T G R Y o [0 1 T=T o | £ T ST UPPPPTTRRPP 85
T.5.4.4 REIUIM VAIUES...... it ettt ettt e ettt e e e ekttt e e e e et b bt e e e et bt e e e e bbe e e e e s nbbeeeeeanbbeeeeennneee 86
PRI o AN ST 0 Lo 2 LoT Vo [@F= T T= o7 1 PR 87

Working Draft Fibre Channel HBA API (FC-HBA) XVii

| 16 April 2003 T11/1568-D Revision 8

8.5 T T8 A o 1 0= P 87
S ST B =T Tod] o 1o o FO PO PR PPTP PP 87
7.5.5.3 ATGUIMIENTS. ...t ettt et e ettt e e e e e oo ettt et e e e e s e oo e bbb et ettt e e e e e e 1a et b e e et e e ee e e e e e e e e e reeeeae s 87
7.5.5.4 RELUIM VAIUES........ot ittt e et ee e e et et e e e e e e ettt e ettt et e et bbb e seseseaeaeeeaeaeaeseeeeessassestassrsearnnan i nnnaes 87
7.5.6 HBA_SCSIREAUCAPACITYV2......coit ittt ettt e ettt e et e e ettt e e et e e e e abbeeeeeaanene 88
28 T 00 o] 0 - 1 P 88
S ST B =T Tod] 1o o OO PP PPRP TP 88
7.5.6.3 ATGUIMIENTS. ...eeiit ettt et e e e e ettt e e e e e oot e e et et e e e e s e oo e b e et ettt e e e e e e aa s s e bR e et e et e e e e e e e e e e reeeeee s 88
7.5.6.4 RELUIM VAIUES........ot ettt ee et et e e et e e e e e e e e et et et et e e e et et et bbbt e seseseaaaaaeaeaaeeseeeseesassessassrsbarnnat i nnnnes 89
7.6 SB INfOrmation FUNCLIONS. cuuuiiiiiiieieie et e e s e e e e e e e eeaaaeaeeaeeeeeseeesessarsraaaaanaens .89
7.6.1 HBA _GetSBTargetMaPPING. .. ccees weeeiiiiitiee ettt e e ettt e e e ettt e e e s st bt e e e e abe b e e e e s abe e e e e e aabee e e e s aanbreeeeeabbeeeeeannene 89
8 T T o] 0 - 1 89
T B B =2 Tod] o) 1o o T O PP PP PR PP 90
S R Y (o (U4 =T o] £ PP TPPPTPPPRP 90
7.6.1.4 RELUIMN VAIUES. ...t ittt et e e oo oot ettt et e e e e e e s e s bbb bbb et e e et e e e e e e aanbnabbeneeeeeeaaans 90
A I A o 1 = AN 1<) 6] = 353 = L= 1o 90
4K 0 R Lo T 14T ST T PP PT T 90
A T =~ 1] 1[0 90
IR B Y o 1010 1= o £ ST TUPPT PR 91
7.6.2.4 RELUIM VAIUES. ...t ettt e e oot oottt e e et e e e e e e e e s bbb bbb et e et eee e e e e e nbbabbeeeeeeeaaaans 91
7.7 SB Disk Device INformation FUNCHONS......... cooouiiiiiiiiiiee ettt e e s e e e s re e e e e aaeee e s 91
A R o 1= AN ST =1 B 2] [CT=] (=T o = Lo | 2 91
% 0 R o T 4T | S PP PP PP PP 91
A0 A = 1] 10 91
A TS B Y o [0 10 1= o | £ PO 92
T.7. 1.4 RELUIMN VAIUES. ...t ettt e oo oottt et e et e e e s e s b bt b bttt e et e e e e e e e s nbbnbbeeeeeeeaaeeas 92
7.8 Fabric Management FUNCHONS. cooiiiii it s s e e e s e e e e e e e e e aeaaaeeeeeeeaaseaeesersennnnnnnnnn .92
A= T R o 1= NS Y= o (o (O I Tt N o U 92
4= 70 0 R o T 0= | S PP PP PP PP 92
4= T80 2 0 =~ 1 110 U 92
R T G T Y o [0 0 1 T=T o | £ PP PR 92
7.8.1.4 RELUIMN VAIUES. ...t ittt et e oot oot ettt e et e e e s et bbb b b ettt e et e e e e e e s nbbnbbeneeeeeaaeeas 93
7.8.2 HBA_SENUCTPASSTRIUV ...t ceiiiie i e ettt ettt s s e s e s e e e e e e e aaaaaeeeeeeeeeaeaeessenesensnnnn i nneas 93
A< T R o 1 10T | S PP PP PP PP 93
A= T =] 1[0 93
R R B Y o 1010 1 1=T o | £ PP PR 93
7.8.2.4 RELUIMN VAIUES. ...t ittt oo oottt et e et e e e s e s bbb bbb et e e et e e e e e e e nbbnbbeaeeeeeaaaeas 94
7.8.3 HBA_SEtRNIDMOMINTO.ueit ittt et e e e e e e e s bbb e e e e e e e e e e e e aabbnbb e e e eeeeaeeeas 94
4= TS 700 R o T 0T PP T PP 94
4 S T 2 =T 0] 1 o] o TR 94
R S TS T Y o [0 0 1= o | C ST UPPP PR 94
7.8.3.4 REIUIM VAIUES.......t ettt e ettt e e e ekttt e e e et b bt e e e e ettt e e e e bbe e e e e e nbbeeeeeanbbeeeeennnees 94
7.8.4 HBA_GEIRNIDMUOMUINTO......uiitiiiiiiiiiiiiiii et e e e e e e e s bbb r e e e e e e e s e e e anbb b reeeeeeeeeas 95
A< T 30t R o T 0T PP PP PP PP 95
A S T =T 0] o] o TR 95
R G I Y o [0 0 1 T=T o | C ST UPPPPTTRPP 95
T.8.4.4 REIUIM VAIUES......ot ettt e e ettt e e e ekttt e e e e et bbb e e e e et be e e e e abbeeee e e nbbeeeeeanbbeeeeennneee 95
7.8.5 HBA_SENURNID......oiit ittt ettt e e e sttt e e e s s bt e e e e sabe et e e e asnbe e e e e e anbeeaeeeasnbbeeeseanbbeeeeennnens 95
4= 78700 R o T 0T PP TP PP 95
A S S T2 =T 10 1o} o TP 95
R B TS T Y o [0 1= o | C ST UUPPPPRTRRP 95
7.8.5.4 REIUIM VAIUES.......t ettt ettt e e e ekttt e e e e bbbt e e e e et b e e e e et be e e e e s nbbeeeeeanbbeeeeennneee 96
7.8.6 HBA_SENURNIDV2.....cci ittt ettt e e e ettt e e e e e bbbt e e e e nbb e e e e e anbeeeeeeannbbeeeeeanbbeeeeeannees 96
4= 70 700 R o T 4T PP PP PP PP 96

Working Draft Fibre Channel HBA API (FC-HBA) XViii

| 16 April 2003 T11/1568-D Revision 8

RS N ST B =T Tod] o) 1o o O PP U PPRP PP 96
RS T A Y (o (U0 T=T o] £ TP PP P RO TUPPTPPPRP 97
7.8.6.4 RELUIM VAIUES........ut ettt e e et et ettt e e e e e e e et ettt e et et et e et bbb e seseseaaeeaeaeaeeeseeeeessassesbsrsrsrarnnan i nnnses 97
A S T A =7 AN 1= Vo |4 PP 98
8 TR 400 R o] ¢ 2 - 1 P 98
R B =T Tod] o) 1o o PR PRP PP 98
AR T I Y (o (V10 T=T 0] £ TP TP T U PP OTUPPPPPPRP 98
T.8.7.4 RELUIM VAIUES........ot ettt e e et et et et et e e e e e e et et et e et e e et ete s bbb e seseseaaeaaeaeaaeeseeseeesassesssssrssarnnan i nnnaes 98
7.8.8 HBA SENARPS ... ittt e e e e e e ettt e e e e ettt e e e e s taae e e e s ataeaeeeasteeaaeeantbeaeeeasreeeeeannees 99
8 TR < T00 O o] 0 - 1 P 99
RS T B =T Tod] o) 1o o OO PR SRR PP 99
RS R S R A Y (o (VT4 =T o] £ TP PP P PR PPPPTPPPRP 99
7.8.8.4 RELUIM VAIUES........uteeeiiiititti e ee et ee e et et e e e e e e et et et et et e e e e teee e b e — e seseseaeaeaeaeaeeeseeeeesssesestssssssannsnn s nans 100
AR S TS = AN 1= 1o 1] PR 100
A< TR IO R o1 10T S PP T PTPTTR 100
A= TR T2 0 = 1 1[0 o T 100
AR S T Y o 1810 1= 1 £ PSP PURPPPPT 100
7.8.9.4 RELUIMN VAIUES. ...t ittt e e e e e oottt et e e e e e e e e s bbb bbb b et et e e e e e e s s nnbbbeneeeeaaaass 101
7.8.10 HBA _SENULIRR.eeiiiiiiiitiiiie ettt ettt e e e st e e e e sttt e e e e sateeeeesssbbeeeeesssbeeeeeeasbeseaessasbeeeeesasaneeaennns 101
4= 700 KO J5t R o T o= | S PP TP TPTTR 101
4= 700 0 B2 0 == o]) 1 T o 101
B T O TR B N o 1810 0= £ PP PT PP 101
7.8.10.4 RETUIN VAIUES. ..ot ittt ettt e e et e et bt ettt e e e e e e e e e bbb bbbt e et eeeeeeeeassannbbbeneeeeaaaass 102
7.8.11 HBA _SENURLS.......t ittt ettt e e s ettt e e e e sttt e e e s st beee e e s bt be e e e e nbaeeeeesnbbeeeeeanbbeeeeesasbeneaennns 102
A< 700 0t R o T 0= | S PP TPTPTTR 102
4= 700 I 2 1 == o] 1 T o S 103
R T G B N o 1B 0 T= £ TSP 103
7.8.11.4 RETUIN VAIUES......eeee ittt ettt e e et e e b bttt et e e e e e e e e e bbb bbb ettt e e e e e e e e as s nnbbbrneeeeaaaeess 103
7.9 Event HandliNg FUNCHONS.uuiiiie ittt s s s e s e s e e e e e e e aeaaaeaaeeeeeeeeeessesnesnnnnnes .103
7.9.1 Polled Event Reporting Behavior MOEL...........oooveiiiiiiiiiicrire e 103
7.9.2 HBA _GetEVENIBUITEI ...ttt e e e e e e e e e e e e e aeaeeeeeeeeaaeaesteaeenennnnnn i ans 104
e B0 R o1 14T | S PP PP PP PP 104
AR I = 1 1[0 o T 104
A IR B Y o 1810 1= o1 £ PSP PURPPPPT 104
7.9.2.4 RELUIN VAIUES. ...t ittt ettt e oo oo e oottt e e e e e e e e e s bbb b e b b et e e e e e e e e s sannbbbeneeeeeeeeens 104
7.9.3 Overview of ASynchronous EVENt REPOITING........un vuririiiiiiiiiiiiiiiiiie e iese s e e e e e e e aereeereeeeeeeaeeeerererer s 105
7.9.3.1 Asynchronous Event Reporting Behavior MOdel.......... c.ouueeeiiiiiii i 105
7.9.3.2 Registration for Events with diverse HBA Specific SOftWare.......... cccccoovviiiiiiiiiieeie e, 105
7.9.4 HBA_RegisterFOrAdapterAdUEVENTS.ccce ciiiiieiiie e e e e e e e e e e e e e e e e s st aareeeaaaaeeas 106
T.9.4. 1 FOIMAL.......ces ceeieiiieeieee e e r e et e e e e e e e et et et e e eeee e e e eeee e an s en s e oo 4o oo e e e e e e e e ee e e eeeeee e e e e ee e nennnnn s 106
A =T 10 1o} o TR 106
A I e R Y o [0 0 1= o £ PSP PUPPPPPTP 107
T.9.4.4 REIUIN VAIUES.....cci it ettt ettt et e e e e sttt e e e e sa bt e e e e ea b b et e e e s ahbe e e e e e ssbeaeeesassbeeeeeanbneeeaenaes 107
7.9.4.5 CallDack ArQUMIEBNLES.uuiis ceiiiii it e e e e e e e e e s s et e e e e e aeeesasaaabentaeeeeeeaeeseeesaasnnnrentnneees 107
7.9.5 HBA _RegIiStErFOrAAPIEIEVENTS. .. .uiiit tiei e ettt e e e e e e s r e e e e e e s s e raeaeraeeaeessassnnsntesenrereeaaeens 107
82 R 700 R o T 0T PP PP PTT 107
A ST =T 0] o] o TP 107
A R TS T Y o 1010 1= o £ SO POPPPPPTP 108
7.9.5.4 REIUIN VAIUES.....c e ettt ettt e e e e sttt e e e e s abe e e e e e aa bbb e e e e s esbeeeeeessbeaeeesasbbeeeeeaabbeeeaenans 108
7.9.5.5 CallDack ArQUMEBNLS.uiet ceiiiii it e e e e e e e e et e e e e e e e e e s s s saabe e b e e e e eeeeeseeesansnnnenntennees 108
7.9.6 HBA_RegisterFOrAdapterPOMEVENTS.......... oot e e e e e e e s s s arereeeeaee s 108
82 2R 700 R o T 4T PP PP PP PR 108
A G T2 =T 0] 1T} o T PSR 109
A e T Y o [0 0 1= o C PP URPPPPT 109

Working Draft Fibre Channel HBA API (FC-HBA) XiX

| 16 April 2003 T11/1568-D Revision 8

7.9.6.4 RELUIN VAIUES.euitieiiee e ittt e ettt e e ee e e e e e s s e s et teeeeeeeeeeeae e s s teteseeaeeeeeesesaannnnssenneneeaeenss 109
7.9.6.5 CallDACK AFGUMEIES.eiies ettt ettt e e et e e e et b ettt e s et bbe e e e s o bbbt e e e sbbae e e e s s nbbe e e e e snnnneeeens 109
7.9.7 HBA_RegisterForAdapterPortStatEVENTS.coii i 110
A8 TR 00 R o T 4T | 110
A =L Tol]) 1o o T PP PP PPPPRPPPPRP 110
R B R I Y (o V10 T=T 0 £ TP PP PP TPTTTP PP 110
A A L= (U T 2= 11T 111
7.9.7.5 CallDACK ATGUIMEINES. .. .eiiis ettt ettt e e e e e e bttt e s ahbb e et e s o bt et e e e sbbbe e e e s s nbb e e e e e annbaeeeens 111
7.9.8 HBA _RegiSterFOrTargelEVENTS. . ..ot ettt e et e e e e e nbbeeeeeaaes 111
A0S = T80 R o T 0T | 111
R A B =T Tod] o) 1o o O PP P OPPPPPRPPPPRR 111
R S R A Y (o V10 T=T o £ TP OO P PP T PR PPPPRPP 112
7.9.8.4 RELUIN VAIUES.uuit ieiie ettt e ettt e e e e e e e e s s e e ettt e e eeeeeeeeae s s nsbebesteaeeeeeesessansnsebeneeeeaaaenss 112
7.9.8.5 CallDACK ATGUIMEINES.eiiis teiiiei ittt ettt ettt e ettt e e e e abe et e s ahb b et e e s o bbbt e e e sbbbe e e e s s nbbeeeeeannnneeeeas 112
7.9.9 HBA_ReQIStEIFOrLINKEVENTS. s s e e e e e e e e e e e e e e et e e e e e e e e e tereeer e ans 113
7.9.9. 1 FOIMAL... ..ot ceiiiiiieie ettt e e e st e e e e e e e et et eee e et eeee s teee e s ne s e o a1 oo e e e e e e e eeteeeeeeeeeeeeeeeenennnnnnnnnn s 113
e IR T2 0 = 1 1[0 o 113
AR R RS T Y o 1810 1= o1 £ PSP PURPPPPT 113
7.9.9.4 RELUIMN VAIUES. ...t ittt e e e e e e e oo et e et e e e e e e e e s bbb be b b et e eeeeeeassannbbbeneeeeaaaaens 113
e e R OF= 1 = Tod (AN o U T 0 T=T] 114
7.9.10 HBA_ReMOVECAIIDACK.......... i st ee et aee e ans 114
e 20 KO Tt R o T 4T | S PP PP OTPTTR 114
A8 T8 0 B2 0 == o] 1 T o 114
A I O TR B N o 1810 0= o £ PSPPI 114
7.9.10.4 RETUIN VAIUES......eeet ittt ettt e e e e e e oottt ettt e e e e e e e e e bbb bbbt e et e e e eeeeaasaannbsbrneeeeaaaass 114
S T O o 11 8= U1 o] o PPN 115
ST R @Y= V1 PP O PP PP PP PPT R TPTPPPPPI 115
S 1 PRSP PPRPTPURPR 115
S O 1 o PSP 116
Annex A FC-HBA ComplianCe ReQUIFEMIENTS.......cccii i eeeeee et s e s e s e s e e e e e e e aeaeaeaeaaeeeeeeeessssnsnnnnnnes 117
AL OVEBIVIBW....eiiis tieee ettt ettt et e e o444 4k b bt et ettt e e ee e e o e o bbb b b e et e et e e e e e e e s e aa bbb be e et e e e aee e e e s aannnnrreees 117
N 0 0T (o] L PP PP PP P TP TRPPPP 119
FNC I o = AN A 11 1] o TU | (=TSP SORPP 122
N O = o T AN o0 (P 123
AS ENG PO STALISTICS. ... e ettt ettt e e e ettt ettt e e e e e e e s et bbb et e et e e e aeeeeesaabnbbbrneeas 124
FN] 2 B r= L[] 1T T PSPPI 125
A.7 FC-3 Management AtTIDULES. oo e e e e e e s e st rr e e e e e e e e e s e aannnreaeees 126
E R T I o1 A AN 101U (=SSR 127
Annex B Mapping FC-HBA to INfINIBANAIMuiiiiiiiiiiii i r e e e e e s s e e e e e e e e e s e s snnnnneees 128
[Y {0 o3 (8 | (=T T @0 o= o) PR 128
(23000 R @ =T Vo RPN 128
B.1.2 FC management SErviCe OPEIatiONS........c..uuuuueiieeeeeeiisiiiiriteeeeeeeeeeesssssssareeaereeeeaessssassnssssreeeseaesessannes 129
B.1.2.1 HOSt t0 HBA COMMUNICALION. .. .uet tiitieiieeiitiiiie e s eitiiee e e stetee e e s st e e e s snbeeeeessasba e e e e e snbeeeeessenbeeeesesnbeeeeennes 129
B.1.2.2 Service Name for the FC ManagemeNt SEIVICE..........iciuuiiiriiiieeeeeeiisiisiesireereseeesssssnssnnrereseeeeeaessans 129
B.1.2.3 Registration of the FC Management Service Name by HBAS..........ccoocciiiiiiiiiee i .130
B.1.2.4 Discovery of the FC Management SEIVICE..........cccciiiiiiiiiiiieiie e e e s s esttree e e e e s e e s s srraneeeea e e e e e s ennneees .130
B.1.2.5 HBA COMPONENES ¢ ettt ciiei i ettt ettt e e e e et e e et et et s s e e e e ee ot e e e e e e teba s e e e e eebban e e eeeeetbba e eeeeeennnneeeeenes .130
B.1.2.6 FC Management Service CONNECHIONS......... ¢.uiviiieeiiiiiiiiiiee et e e e e e e e ses st re e e e s ae e s s s s snnrnnaeereeeeeeseeaanns 131
B.1.2.6.1 Establishing @ CONNECHON.cciiiiii et e e e e e e e e e e e st araae e e e e aaaeeseeannnes 131
B.1.2.6.2 ReleasiNg @ CONNECHON. iiiiieeiie s ittt e e e e e e s e st e e e e ee e e e s s st ateeaeeeaeaessassansaretnereeeaaaeeseaannnes 131
B.1.2.7 INFOrMALION UNIES......iit ceieee ettt e e ettt e e e ettt e e e sttt e e e s snbb e e e e e anbebeeeesnbbeeeeeannes 132

Working Draft Fibre Channel HBA API (FC-HBA) XX

| 16 April 2003 T11/1568-D Revision 8

B.1.2.8 Asynchronous EVent NOLfICAtION. «.ooiiuiiiiiiiiie e 132
B.1.2.9 HCA Receive BUuffer ManagemeENt......... cocueiiiiiiiiiieei ittt e s e e e 132
B.1.2.10 HBA Receive Buffer ManagemeNt......... ccueeiiiiiiiiiieeiiiiiee ettt 132
B.1.2.11 Data BUfEIS....cciis ceee ittt ettt e e e e e e e e e se ettt e e e e ee e e e e e e nrnnrereeaeaeeeeeaann 133
B.1.2.11.1 MEMOIY DESCIIPIOIS. ... uveie teeiee ittt e ettt ettt ettt e e ettt e e e e bb et e e s abb bt e e e e sbb e e e e e anbbbeeeeanbbeeeeeantns 133
B.1.2.11.2 Data BUffer DESCIIPLOIS.uvttciiiiiee et ee ettt ettt e sttt e e e abe e e e s st b e e e e e anbe e e e e s anbre e e e e anens 133
B.1.3 FC Management Support for SCSI OPeratioNS.ccoiiiiiiieiiiiiee ettt 134
B.1.3.1 HOSt t0 HBA COMMUNICALIONS.citeeeie ettt e e e e e e e ettt e e e e e e e e s s et eeeeeaeeeanssnnnsnnreneeeneeeeaeeanns 134
B.1.3.2 Discovery Of SRP Target POrS......... ooiioiiiiiiee ittt ettt e e e e eneee 134
B.1.3.3 SRP TArQet POt IDS.....cccs ittt ettt ettt e e e e e e s ettt e e e e e e aa s s reeeeaeeee s 134
B.1.3.4 SRP CONNECHIONS. ...ciiit tiiiiietitee i e et e e et ettt e et eeeesesaa sttt teeeaaeeeesasaaansssseeeeeeaaeessesansnsaenneeneeeseesanns 135
B.1.3.4.1 Establishing an SRP CONNECLON. cuiiiiiiiiiie ettt et anees 135
B.1.3.4.2 Releasing an SRP CONNECHION........c.cuiiiiiiiiiai ittt e et e e e s rab e e e s asbreeeeeeanes 136
(2 07 [a1 {0 = 10 o 0 1 £ PR 137
[T U 01 0 1= 1 Y2 PP PUUPPPPT 137
= A == =V o] 1] I @ 1= o 1o o 1S 137
B.2.2.1 Establish_CONNECHION FEQUEST......... ¢eeeieiie e s e e e e e e e e e e e e e eeeeees 137
B.2.2.2 Establish_CONNECHION FESPONSE.......ceuuiiiiie e e ittt s e e s e e e e e e e e e aaaaeeaeeees .138
B.2.2.3 Establish_Connection_REJ FESPONSE......cci i iii e s e e e e s e e e e e e e e e aaaaaasaeeeeeaaanaes 139
A R T Ao b= T (= AN 11] o 11 (=R 140
B.2.3.1 Get_Adatper AttrDULES FEQUEST.........uui et s e e e s e e e e e e e aaaaaaeeeeees .140
B.2.3.2 Get_Adapter _AttrDULES FESPONSE. et it e e i ettt a s e e e e e e e e e e e e e aaeaaeeaeeees 141
S YA T) o] A = 1 - VPP UUPPPPT 143
B.2.4.1 Get_POM_Data MEOUEST.....iiit eeiiei ittt et e e e et s e e e e ee bbb r e e e e eetbb e e e e eeaaanneeeaeees .143
B.2.4.2 Gt _POI _DaAta I8 PONSE. . uuui tiitiit ittt ettt ettt ettt e e e e e e et e ettt ar e e e e s ee bbbt e e e e eetbb e e e aeesaanneaeaeees 144
SN I i o A DL | = W TP URPPPPT 147
B.2.5.1 Sel PO _DaAta MBOUEST. . .. it iiitiieieie ittt e ettt e e e et e e e e et s e e e e e e eat e s e e et ae bbb e e e eaee bbb e e eaeesannseaeeenes 147
B.2.5.2 Sel_POrt_Data MBSPONSE.cuut i iieitietitie et ettt e et et ettt e s e e et ee b e e e e e ettt e e e aeetaa s e aeeeeta s e e e eesestneeeeensenen .150
B.2.5.3 Set_Port_Data REJ RESPONSE. ...ttt ettt e e e e s e e e e e e e ab e et aee e aseeeaeees 151
A ST =T o IS 4 1= L PRI 152
B.2.6.1 BiNd_SRP_INItIatOr FEOUEST......uut ittt s e s e e e e e e e e e aaaaaeeeeeees 152
B.2.6.2 BiNd_SRP _INitialor FESPONSE.ccct coiiie it s e s e s e e e e e e e e e e e e e aaeaeaaearareaara—_ 155
B.2.7 Get_SRP_INItAtOr _BiNAINGS...ccciiis ciiiiie oottt s s s s s s e e e e e e e e aeaaaaaaaeaeeeaeeeeeeeeeasnnnnes 156
B.2.7.1 Get_SRP_Initiator_BiNdiNgS FEQUEST......... cooiiiii e s s e e e e e e e e e e e e e aeeeeeees .156
B.2.7.2 Get_SRP_Initiator_BiNAINGS FE@SPONSE.......uuiiiieee e e e eeeeeeee et e ettt s s s s e e e e e e e e e e e aaaaaaeaeeees .158
= TS 1= T I = T I PRSP 160
B.2.8.1 SeNd_PasSSTRIU FEOUEST......... ittt e s s e s e e e s e aaeaaaeeaeaaaeeeeeeessannnes .160
B.2.7.2 SENU_PaASSTNIU FESPONSE.....ciieiiiieee e e e i ettt e e et e e e e et e e e e e e e e sse et ae e aeeeaeaaeesasssstestaeaeaeeaeesasaanns 162
S S B 1= A 0T A = 1) 13RS 163
B.2.8.1 Get_POrt StatiStiCS FEOUEST. teeieeiii i ittt ee e e e s e e e e e e e s s et e e e e e e aaeesssssnnenraeereeaaeeseeaann .163
B.2.8.2 Get_POrt StatiStiCS FESPONSE......cciiiiie e e ittt e e s e e e e e e e e s s reeareeaeee s s s s snransreeeeaaeans .164
B.2.9 Asynchronous Event (AEN) REPOIMING......ccc. uuiiiieiiee et ie e e e e e s e s e e e e e e e e e s s ssnnananeeeeeeeeeesaeannnes 165
B.2.9.1 AEN FBOUEST. ..uui teiiiiii ettt et e ettt s s e e et e et e e e e e et b e et e e et e e e e e et e e e e e e arr e e e earraan .165
B.2.9.2 AEN I8SPONSE. .. ceiit teettiiiie ettt e et e e et et e et ettt s s e e e e et e e et et e a e e e et ae e e e e e e bbb e e e et e e aaaaes 167
Annex C Target Mapping and Persistent BiNAINGcccvveeiiiiiiiiiiiii e s e e e e e e s s e e s e e e e e e s e s ennnnneees 168
C.1 Introduction to Target Mapping and Persistent BINAING......... ccccciiiiiiiiieee e e s nnee e e 168
L 0 R I o L= o] o o] 1= 3 0 =T~ PR 168
C.1.2 OS Identification of Storage REeSOUICES (SCSIID)....uuuuis voviiriiiiiieiriee e e s e s e e e e e e e e rar e aeaee s 168
C.1.3 FCP-2 Identification of Storage ReSoUrces (FCPID).......... cocuuiiiiiiiieiee e ieiciiiriereer e s e e e e e e s sssenvreaeeeeeeae s 168
LS - o 1= 1Y = o] o1 o =R 169
O N =T 715 (=Y a1 A 21T o {1 o TR 169
C.4 Persistent Binding Capabiliti©s......... ueeuiiiiiiiiiiiiie e e s e e e e e e s e s aaaae s 169

Working Draft Fibre Channel HBA API (FC-HBA) XXi

16 April 2003 T11/1568-D Revision 8

O I O 1= V= R 169
C.4.2 Persistent Binding Capability: HBA_CAN_BIND_TO_D_ID....ccccc. toiiiiiiiiieiiiiieee et 170
C.4.3 Persistent Binding Capability: HBA_CAN_BIND_TO_WWPN........c.iiiiiiiiiiiiiieeiieiee e 170
C.4.4 Persistent Binding Capability: HBA_CAN_BIND_TO_WWNN........c.tiiiiiiiiiiiie i 170
C.4.5 Persistent Binding Capability: HBA_CAN_BIND_TO_LUID........c. tooiiiiiiiieiiiiieee e 170
C.4.6 Persistent Binding Capability: HBA_CAN_BIND_ANY_LUNS ..ottt 170
C.4.7 Persistent Binding Capability: HBA_CAN_BIND_TARGETS ..ot 171
C.4.8 Persistent Binding Capability: HBA_CAN_ BIND_AUTOMAP........c. oottt 171
C.4.9 Persistent Binding Capability: HBA_CAN_BIND_CONFIGURED.......... cccciiiuiiiiiiiiiiiee e 171
Annex D FUunction CodiNg EXAMPIESccoiiiiiiiiiiiiiii ettt e e bb e e s bbb e e e e sabb e eeeeannneeas 172
D.1 FUNCHON HBA_GEIVEISION. ...ccci ittt ettt e et e e e ekttt e e et e e e ekt e e e e e e annbbe e e e e annes 172
D.2 FUNCtion HBA_LOAALIBIAIY..........viiiiiiiie ettt e e 172
D.3 FUNCHON HBA_FIEELIDIAIY.....ccct ettt e et e e e e et bt e e s annbr e e e e annns 172
D.4 Function HBA_REQISIEILIDIAIY......... viiieiieieiiiiere et e et e e e e e s e e e e e e e aaaaaeas 172
D.5 Function HBA_GetNUMDEIrOfAGAPIEIS. et e e e e e e e aaaaas 173
D.6 Function HBA_RefreshINformation.........ouueiiiiiiiiiiii e e e e e e e e e e 173
D.7 Function HBA_GetAdapIErNAIME.uvuiieiiiiiiiiis e i e s e s e e e e e e et et e e et e e et et eeae s teaae e s s aa s e s e aaseeaeaaeaaaasaeneneees 173
D.8 FUNCHON HBA _OPENAUAPIET......cet ceeiiieeeieieitete s e s e s e s e e e e e e e aeaeae et ettt aeaeaee e reteansaraa s e s asaaeaaaaaaaaaaes 174
D.9 FUNCHON HBA _ClOSEAUAPIETuut cieiireieeeeeiiieeetit s s s s e s e e e e e e e aeaeaeteeeeeaeeeaee e teeesnreras e s aaaaeaaaeaaaaaaes 174
D.10 Function HBA_GetAdapterAtDULES......... wueeeieeeccccci s e e e e e aaaaaaas 174
D.11 Function HBA_GetAdapterPOrtAtIDULES.viiiee e e e e e e e e 174
D.12 Function HBA_GetDiscoveredPOrtAIIDULES. cooiieic e 175
D.13 FUNCtion HBA _GetPOrtSEALISTICS. .. .uuun vereieieiiieiiiiiiiiie s isis s eeeeeaeaaee e et s aaaaeeeeeeaaaaaens 175
F N oL Loy = = 1] [To T =T o]) V2SRRI 176

Working Draft Fibre Channel HBA API (FC-HBA) XXii

16 April 2003

List of Tables

1 Preferred format for FC_Port OSDeviceName
2 Preferred format for logical unit OSDeviceName
3 Function Summary and Requirements
4 Function Values for HBA_GetVersion
5 Function Values for HBA_GetWrapperLibraryAttributes
6 Function Values for HBA_GetVendorLibraryAttributes
Values for CDB_Bytel
General Function Requirements
Function Requirements for Systems Supporting SB
HBA Attributes
FC_Port Attributes
End Port Statistics
SB Statistics
FC-3 Management Attributes
Library Attributes
Memory Descriptor
Data Buffer Descriptor Format Codes
Establish_Connection request
Establish_Connection response
Establish_Connection_REJ response
Establish_Connection_REJ response reason codes
Get_Adapter_Attributes request
Get_Adapter_Attributes response
Get_Adapter_Attributes response reason codes
Adapter Attributes.......ccccovvviii i
Get_Port_Data request........ccovvviiiiiieiieeiiii e,

~

Al
A.2
A3
A4
A5
A.6
A7
A.8
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.24
B.25
B.26
B.27
B.28
B.29
B.30
B.31

Working Draft Fibre Channel HBA API (FC-HBA)

Get_Port_Data response

Get_Port_Data response reason codes
POrt DESCIHPION .. e s
Set_Port_Data reqUESEcooevvieeiiiiineieeiiien e

Set_Port_Data response

Set_Port_Data_REJ response
Set_Port_Data_REJ response reason codes
Bind_SRP_Initiator request
Bind_SRP_Initiator response
Bind_SRP_Initiator response reason codes
Get_SRP_Initiator_Bindings request
Get_SRP_Initiator_Bindings response
Get_SRP_Initiator_Bindings response reason codes
SRP initiator bindingccoiieieeee e
Send_PassThru reqUEST........uuevveeveeiiiiiiciiiiieer e
Request Type Fieldccoveeeeiiiiiiieeeeee e,
Send_PassThru response
Send_PassThru response reason codes
Get_Port_Statistics request
Get_Port_Statistics response
Get_Port_Statistics response reason codes
AEN reQUEST ..o e
Event TYPe COAESuuviiiiieeeee et
AEN IrE€SPONSE ..ottt

T11/1568-D Revision 8

XXiii

16 April 2003 T11/1568-D Revision 8

List of Figures

Page
1 CoNEEXETOr FC-HBA ... ittt et e et e e oo e oo bbb ettt et e e e e e e e s e a e bbb e be et e e e eeeeassaanbbbbbeeeeaaeasanaaans 2
2 SOFIWAIE STTUCTUIE ...ttt ettt e e oottt ettt e e e e oo o a bbbttt et e e e e e e e ea o b bbb bbbt e et e e e e e e e aaannbbebeeeeaaaaens 13
B.1 HBA With IB HOSt AtTACIRIMENT ...t e e e e e e e e e e e e bbb eeeeeaaeeas 129
B.2 HBA (I/0O Unit) with Three IOCS and TWO FC_POMS......uuuuiiiiiiiie i s a e 130
B.3 SRP Target Port IDs and FC Management SErVICE NAIMES.......uucicieiiieie e e eeeeee et 135

Working Draft Fibre Channel HBA API (FC-HBA) XXiV

16 April 2003 T11/1568-D Revision 8

Foreword
This foreword is not part of American National Standard INCITS.***:200x.

An HBA is hardware, typically on a host system and sometimes embedded on a RAID controller or other storage
device that interfaces a system to a Fibre Channel fabric. An HBA may support multiple FC-4 types, including
FCP-2, IPFC, and FC-VI. In order to manage an HBA and the fabric behind it, upper level management software
applications require information that has not been available from HBAs in a consistent manner across operating
systems, vendors, and platforms, and in some cases not at all. Implementations have been HBA vendor specific.
This required that when a software application needed access to certain Fibre Channel parameters (e.g.. WWN or
attached LUNS), vendor specific drivers or OS specific calls had to be used to get to this information. This has
resulted in long qualification times, difficult integration across platforms, and inconsistency between HBA vendors.
It further has made implementation of cross-vendor SAN management applications difficult and expensive in devel-
opment time and code complexity. A standard HBA API enables implementation by multiple vendors of a consistent
low-level HBA interface for accessing information in a Fibre Channel Storage Area Network.

An initial specification for a common HBA API (HBA API Phase 1) was prepared within The Storage Networking
Industry Association (The SNIA) during 2000 and published as an informative annex to INCITS Technical Report
FC-MI. It has been adopted by vendors of SAN management software and HBAs, and is recognized as having
resolved the perception of Fibre Channel as being unmanageable. It has since become the basis for definition of
new FC-GS-4 Fabric Services as well.

SNIA has provided a proposal for the initial draft of the HBA API Phase 2 that resolves many omissions and issues
with the HBA API Phase 1 and is fully compatible with the earlier specification. SNIA HBA API Phase 2 is the basis
for this standard.

This standard defines an Application Programming Interface the scope of which is management of Fibre Channel
Host Bus Adapters and use of certain Fibre Channel facilities for discovery and management of the components of
a Fibre Channel Storage Area Network. This standard defines interfaces to capabilities for:

a) observation and modification of descriptive and operational characteristics of HBAs and end ports;

b) access to Fibre Channel Fabric Services;

c) access to Fibre Channel Extended Link Services necessary to comply with the FC-MI manageability profile
for Host Bus Adapters;

d) discovery and characterization of FCP-2 storage resources;

e) observation of HBA, end port, and storage access traffic statistics;

f) observation and modification of the availability and representation of Fibre Channel storage resources to
Operating System applications; and

g) timely and selective reporting of HBA and fabric configuration, status, and statistical events.

With any technical document there may arise questions of interpretation as new products are implemented. INCITS
has established procedures to issue technical opinions concerning the standards developed by INCITS. These
procedures may result in Technical Information Bulletins being published by INCITS.

These Bulletins, while reflecting the opinion of the Technical Committee that developed the standard, are intended
solely as supplementary information to other users of the standard. This standard, ANSI INCITS.***:200x, as
approved through the publication and voting procedures of the American National Standards Institute, is not altered
by these bulletins. Any subsequent revision to this standard may or may not reflect the contents of these Technical
Information Bulletins.

Working Draft Fibre Channel HBA API (FC-HBA) XXV

16 April 2003 T11/1568-D Revision 8

Current INCITS practice is to make Technical Information Bulletins available through:

Global Engineering Telephone: 303-792-2181 or
15 Inverness Way East 800-854-7179
Englewood, CO 80112-5704 Facsimile: 303-792-2192

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent to the INCITS Secretariat, InterNational Committee for Information Technology Standards, Infor-
mation Technology Institute, 1250 Eye Street, NW, Suite 200, Washington, DC 20005-3922.

This standard was processed and approved for submittal to ANSI by the InterNational Committee for Information

Technology Standards (INCITS). Committee approval of the standard does not necessarily imply that all committee
members voted for approval. At the time of it approved this standard, INCITS had the following members:

Company Representative

Editors Note 1 - xxx: <<Insert INCITS member list>>

Working Draft Fibre Channel HBA API (FC-HBA) XXVi

16 April 2003 T11/1568-D Revision 8

Technical Committee T11 on Lower Level Interfaces, which reviewed this standard, had the following members:
Robert Snively, Chair

Edward Grivna, Vice-Chair
Neil Wanamaker, Secretary

Company Representative

Editors Note 2 - xxx: insert current T11 membership after all T11 comment resolution is complete

Working Draft Fibre Channel HBA API (FC-HBA) XXVii

16 April 2003 T11/1568-D Revision 8

Task Group T11.5 on Storage Management Interfaces, which developed and reviewed this standard, had the
following members:

Roger Cummings, Chair
Robert Pulley, Vice-Chair
Nabin Acharya, Secretary

Company Representative

Editors Note 3 - xxx: insert current T11.5 membership after all T11 comment resolution is complete

Working Draft Fibre Channel HBA API (FC-HBA) XXViii

| 16 April 2003 T11/1568-D Revision 8

Introduction
| This standard is divided into these clauses and annexes:

Clause 1 defines the scope of this standard and places it in context of other standards and standards projects.
Clause 2 enumerates the normative references that apply to this standard.
Clause 3 specifies definitions, symbols, and abbreviations.
Clause 4 presents general constraints on the design of this standard and on compliant implementations.
Clause 5 specifies constraints imposed on the structure and general behavior of implementations.
Clause 6 specifies data structures and attribute semantics.
Clause 7 specifies function calls.
Clause 8 specifies methods of configuring implementations.
Annex A is a normative specification identifying required and optional features.
Annex B is a normative specification of the mapping of HBA API functions onto InfiniBand.
Annex C is informative material that describes the motivation for target mapping and persistent binding fea-
tures of HBAs.
Annex D is informative material that provides exemplary C code for several of the functions specified in the
body of this standard.
| Annex E is a bibliography of documents that are informatively referenced by this standard.

Working Draft Fibre Channel HBA API (FC-HBA) XXiX

16 April 2003 T11/1568-D Revision 8

American National Standard INCITS.***: 200X

American National Standard for Information Systems -
Information Technology -
Fibre Channel HBA API (FC-HBA)

1 Scope

A standard application programming interface (API) defines a scope within which, and a grammar by which it is
possible to write application software without attention to vendor-specific infrastructure behavior. The Fibre
Channel HBA API standard specifies a standard API the scope of which is management of Fibre Channel host bus
adapters (HBAs) and use of certain Fibre Channel facilities for discovery and management of the components of a
Fibre Channel storage area network (SAN). This standard defines interfaces to capabilities for:

a)
b)
c)
d)
e)

f)

a)

observation and modification of descriptive and operational characteristics of HBAs and end ports;

access to Fibre Channel Fabric Services (see FC-GS-4);

access to Fibre Channel Extended Link Services necessary to comply with the manageability profile for
HBAs recommended in FC-MI (see FC-MI);

discovery and characterization of FCP-2 storage resources (see FCP-2);

observation of HBA, end port, and storage access traffic statistics;

observation and modification of the availability and representation of Fibre Channel storage resources to
operating system applications; and

timely and selective reporting of HBA and fabric configuration, status, and statistical events.

Working Draft Fibre Channel HBA API (FC-HBA) 1

| 16 April 2003 T11/1568-D Revision 8

This standard is to be used in conjunction with the Fibre Channel and SCSI families of standards, to which at the
time this standard was written it related as indicated in figure 1

Applications others| | others File System Management
v
ULPs others |others scsl
FC-4 otherg | others SCSI FCP:
FCP-2
FC-3 Other Common Link Services:
Services FC-FS
HBA API:
FC-HBA
FC-2 Signaling and
and Transmission protocols:
FC-1 FC-FS
Transmitters, Receivers,
FC-0 and Media:
FC-PI-2

Figure 1 — Context for FC-HBA

| For standards in the Fibre Channel and SCSI families of standards see the web sites of INCITS Technical
Committees T10 (http://www.t10.0rg/) and T11 (http://www.t11.org/)

Working Draft Fibre Channel HBA API (FC-HBA) 2

16 April 2003 T11/1568-D Revision 8

2 Normative References

2.1 Normative references

The following standards contain provisions that, by reference in the text, constitute provisions of this standard. At
the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agree-
ments based on this standard are encouraged to investigate the possibility of applying the most recent editions of
the standards listed below.

Unless noted otherwise, copies of the following documents may be obtained from ANSI: approved ANSI standards,
approved and draft international and regional standards (ISO, IEC, CEN/CENELEC, ITUT), and approved and draft
foreign standards (including BSI, JIS, and DIN). For further information, contact ANSI Customer Service
Department at 212-642-4900 (phone), 212-398-0023 (fax) or via the World Wide Web at http://www.ansi.org.

Additional availability contact information is provided below as needed.

2.2 Approved references

FC-AL-2: ANSIINCITS 332-1999, Fibre Channel — Arbitrated Loop — 2

FCP-2: INCITS 350 DRAFT, Fibre Channel Protocol-2

FC-FLA: ANSIINCITS TR-20:1998 Fibre Channel — Fabric Loop Attach

FC-SB-2: ANSI INCITS 349-2001, Fibre Channel — Single Byte Command Set — 2
SBCON: ANSI INCITS 296:1997, Single Byte Command Code Sets Connection

SRP: ANSI INCITS 365-2002 , SCSI RDMA Protocol (SRP)

2.3 References under development

At the time of publication, the following referenced American National Standards were still under development. For
information on the current status of the document, or regarding availability, contact the relevant standards body or
other organization as indicated.

FC-FS: ANSI INCITS Project 1331-D, Fibre Channel - Framing and Signaling Interface

FC-GS-4: ANSI INCITS Project 1505-D, Fibre Channel-Generic Services - 4

FC-PI-2: ANSI INCITS Project 1506-D, Fibre Channel-Physical Interfaces - 2

FC-SB-3: ANSIINCITS Project 1569-D, Fibre Channel — Single Byte Command Set — 3

FC-SW-3: ANSI INCITS Project 1508-D, Fibre Channel — Switch Fabric — 3

SAM-3: ANSI INCITS Project 1561-D, SCSI Architecture Model - 3

SPC-3: ANSI INCITS Project 1416-D, SCSI Primary Commands-3

Working Draft Fibre Channel HBA API (FC-HBA) 3

16 April 2003 T11/1568-D Revision 8

SBC-2: ANSI INCITS Project 1417-D, SCSI Block Commands - 2

2.4 IETF references

Copies of the following approved IETF standards may be obtained through the Internet Engineering Task Force
(IETF) at www.ietf.org.

RFC 768: User Datagram Protocol, August1980.
RFC 791: Internet Protocol, September 1981.
RFC 793: Transmission Control Protocol, September 1981.

RFC 2460: Internet Protocol, Version 6 (IPv6) Specification, December 1998.

2.5 InfiniBand Trade Organization references

Copies of reference IBA may be obtained from the InfiniBand™ Trade Organization, www.infinibandta.org.

IBA: InfiniBand™ Architecture Specification, Volume 1, release 1.0.a.

Working Draft Fibre Channel HBA API (FC-HBA) 4

16 April 2003 T11/1568-D Revision 8

3 Definitions, symbols, abbreviations, and conventions

3.1 Definitions

3.1.1 address identifier: An address value used to identify source (S_ID) or destination (D_ID) of a frame (see
FC-FS).

3.1.2 application programming interface (API): A grammar within a programming language that provides
means for higher-level software (i.e., applications) to control a specialized subsystem. An application programming
interface may abstract a simpler uniform feature set from more complex and variant native interfaces of
subsystems of similar purpose but differing implementations.

3.1.3 Arbitrated Loop: A Fibre Channel topology where L_Ports use arbitration to gain access to the loop (see
FC-AL-2).

3.1.4 ASCll array: An ordered sequence of zero or more bytes, each having value equal to a Printable ASCII
character. The number of bytes in an ASCII Array is determined by means external to itself.

3.1.5 ASCII string: An ordered sequence of one or more bytes, the last of which has value zero and all others
have value equal to a Printable ASCII character.

3.1.6 byte: An eight-bit entity with its least significant bit denoted as bit 0 and most significant bit as bit 7. The
most significant bit is shown on the left side, unless specifically indicated otherwise.

3.1.7 callback: A call to an application function previously registered for asynchronous event reporting. (see
7.9.3.1).

3.1.8 classes of service: Type of frame delivery services used by the communicating end ports that may also be
supported through a fabric (see FC-FS).

3.1.9 Common Transport (CT): A protocol defined by FC-GS-4 that provides access to Services and their
related Servers. CT may also refer to an instance of the Common Transport (see FC-GS-4).

3.1.10 concatenation: A logical operation that joins together strings of data and is represented with the symbol ||
(e.g., S_ID||X_ID represents S_ID concatenated with X_ID to provide a reference of uniqueness).

3.1.11 data frame: An FC-4 Device_Data frame, an FC-4 Video_Data frame, or a Link_Data frame (see FC-FS).

3.1.12 Destination_Identifier (D_ID): The address identifier used to indicate the targeted destination end port of
the transmitted frame (see FC-FS).

3.1.13 Directory: A repository of information about objects that may be accessed via the Directory Service (see
FC-GS-4).

3.1.14 end port: An Nx_Port or a Private NL_Port.
3.1.15 event: A change of condition of an object that is supported by an HBA API.

3.1.16 event category: A group of event types that affect the same kind of object and share a common regis-
tration function.

3.1.17 event type: A classification of events by the specific change of condition that occurred.

Working Draft Fibre Channel HBA API (FC-HBA) 5

16 April 2003 T11/1568-D Revision 8
3.1.18 F_Port: The LCF within the Fabric that attaches to an N_Port through a link. An F_Port is addressable by
the N_Port attached to it, with a common well-known address identifier FFFFFEh (see FC-FS).

3.1.19 Fabric: The entity that interconnects Nx_Ports attached to it and is capable of routing frames by using only
the D_ID information in a FC-2 frame header (see FC-FS).

3.1.20 Fabric_Name: A Name_ldentifier associated with a Fabric (see FC-FS).

3.1.21 FC-4 Type: An FC-4 protocol associated with the value in the Type field in the header of a data frame (see
FC-FS).

3.1.22 FC_Port: A port that is capable of transmitting or receiving Fibre Channel frames. FC_Ports include
N_Ports, NL_Ports, Nx_Ports, L_Ports, F_Ports, FL_Ports, Fx_Ports, E_Ports, B_Ports, G_Ports and GL_Ports
(see FC-FS and FC-PI-2).

3.1.23 FCP_Port: An end port that supports the SCSI Fibre Channel Protocol (see FCP-2).

3.1.24 FCP-2: A SCSI transport protocol for using Fibre Channel as a SCSI service delivery system (see FCP-2).

3.1.25 FL_Port: An F_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology (see
FC-AL-2 and FC-SW-3).

3.1.26 frame: An indivisible unit of information used by FC-2 (see FC-FS).
3.1.27 Fx_Port: A switch port capable of operating as an F_Port or FL_Port (see FC-FS).
3.1.28 Generic Services: The collection of Services defined by FC-GS-4.

3.1.29 HBA APl instance: Code implementing an HBA API library that is a component of an application that is
operating on a computer system.

3.1.30 HBA APl library: A library of function calls that presents an HBA APl compliant with this standard.

3.1.31 HBA specific library: HBA specific software structured as a library of function calls compliant with the
requirements of this standard.

3.1.32 HBA specific software: A component of an HBA API library that adapts some vendor specific category of
HBAs and their drivers to software that presents an HBA API compliant with this standard.

3.1.33 host bus adapter (HBA): A hardware component together with its supporting software that provides an
interface from an operating system to a Fibre Channel fabric, loop, or link.

3.1.34 Internet Protocol (IP): A protocol for communicating data packets between identified endpoints on a
multipoint network. (IPv4 see RFC 791 and IPv6 see RFC 2460).

3.1.35 IP Address: An identifier of an endpoint in Internet Protocol.

3.1.36 link: Two unidirectional fibres transmitting in opposite directions and their associated transmitters and
receivers.

3.1.37 local end port: An end port on the same system with respect to an HBA API instance.

3.1.38 logical unit: An externally addressable entity within a target that implements a SCSI device model and
contains a device server (see SAM-3).

Working Draft Fibre Channel HBA API (FC-HBA) 6

16 April 2003 T11/1568-D Revision 8

3.1.39 logical unit number (LUN): An encoded 64-bit identifier for a logical unit (see SAM-3).

3.1.40 Logical Unit Unique Identifier (LUID): An Identification Descriptor from the Vital Products Data Device
Identification Page (Page 83h) returned by a logical unit in reply to a SCSI INQUIRY command (see SPC-3) with
further constraints specified in 6.6.1.4

3.1.41 Loop Initialization Primitive (LIP): Any one of the Primitive Sequences used to cause initialization of all
L_Ports attached to an Arbitrated Loop topology (see FC-AL-2).

3.1.42 L_Port: A port that contains Arbitrated Loop functions associated with Arbitrated Loop topology (see
FC-AL-2).

3.1.43 Name Server: A server among those provided by Generic Services (see FC-GS-4).

3.1.44 Name_ldentifier: A 64-bit identifier, with a 60-bit value preceded by a 4-bit Network_Address_Authority
Identifier (NAA), used to identify entities in Fibre Channel (e.g., N_Port, node, F_Port, or Fabric) (see FC-FS).

3.1.45 NL_Port: An N_Port that contains the Loop Port State Machine defined in FC-AL-2. It may be attached to
one or more NL_Ports and FL_Ports in an Arbitrated Loop topology. Without the qualifier Public or Private, an
NL_Port shall be a Public NL_Port.

3.1.46 node: A collection of one or more end ports controlled by a level above FC-2 (see FC-FS).

3.1.47 Node_Name: A Name_ldentifier associated with a node (see FC-FS).

3.1.48 Node Symbolic Name: A Symbolic Name associated with a node (see FC-GS-4).

3.1.49 Not_Operational Primitive Sequence (NOS): A primitive sequence indicating that an FC_Port is in the
nonoperational state (see FC-FS).

3.1.50 N_Port: A hardware entity that includes a Link Control Facility but not Arbitrated Loop functions associated
with Arbitrated Loop topology, and has the ability to act as an Originator, a Responder, or both. Well-known
addresses are considered to be N_Ports (see FC-FS and FC-AL-2).

3.1.51 N_Port_ID: A Fabric unique address identifier by which an N_Port is known. The identifier may be
assigned by the fabric during the initialization procedure or by other procedures not defined in this standard. The
identifier is used in the S_ID and D_ID fields of a frame (see FC-FS).

3.1.52 N_Port_Name: A Name_ldentifier associated with an N_Port (see FC-FS).

3.1.53 Nx_Port: A port capable of operating as an N_Port or Public NL_Port, but not as a Private NL_Port. By
use of the term Nx_Port, this standard neither specifies nor constrains the behavior of Private NL_Ports (see
FC-FS and FC-AL-2).

3.1.54 operating system (OS): Software running on a system that interposes between the physical resources of
the system and the application programs using it, abstracting the behavior of the resources and arbitrating access

to them

3.1.55 Ordered Set: A transmission word composed of a special character in its first (left-most) position and data
characters in its remaining positions (see FC-FS).

3.1.56 Payload: Contents of the Data Field of a frame, excluding Optional Headers and fill bytes, if present (see
FC-FS).

Working Draft Fibre Channel HBA API (FC-HBA) 7

16 April 2003 T11/1568-D Revision 8

3.1.57 persistent binding: A function of an HBA that retains a pairing of an OS SCSI identification and an FCP-2
identification across resets of the HBA, its fabric, or its OS, and subsequently reestablishes a target mapping based
on the pairing; or else a representation of a single such pairing.

3.1.58 Phase I: The Common HBA API Interface specification in FC-MI.

3.1.59 Phase II: This standard.

3.1.60 Platform: An association of one or more Nodes for the purpose of discovery and management (see
FC-GS-4).

3.1.61 Port Name: A Name_ldentifier associated with an FC_Port (see FC-FS).
3.1.62 Port Symbolic Name: A Symbolic Name associated with an FC_Port (see FC-GS-4).

3.1.63 Primitive Sequence: An Ordered Set transmitted repeatedly and continuously until a specified response is
received (see FC-FS).

3.1.64 Primitive Signal: An Ordered Set designated to have a special meaning. (e.g., an Idle or R_RDY) (see
FC-FS).

3.1.65 Printable ASCII Characters: ASCII characters in the range 20h through 7Eh.

3.1.66 Private NL_Port: An NL_Port that does not attempt a Fabric Login and does not transmit the primitive
signal OPN(00,x) (see FC-AL-2).

3.1.67 Public NL_Port: An NL_Port that attempts a Fabric Login (see FC-AL-2).

3.1.68 SCSil target device: A SCSI device containing logical units and SCSI target ports that receives device
service and task management requests for processing (see SAM-3).

3.1.69 SCSil target port: A SCSI target device object that acts as the connection between device servers and task
managers and the service delivery subsystem through which requests and responses are routed (see SAM-3).

3.1.70 server: A server is an entity that accepts CT requests and provides CT responses. A Server is accessed
via a Service (e.g., the Name Server is accessed using the Directory Service) (see FC-GS-4).

3.1.71 service: A service is provided by a Node, accessible via an N_Port that is addressed by a Well-Known
Address or an N_Port_ID. Examples of a service include the Directory Service and the Alias Service. A service
provides access to one or more Servers (see FC-GS-4).

3.1.72 Single Byte Command Sets (SB): A Fibre Channel FC-4 protocol specified in FC-SB-2 or subsequent
revisions of that standard (see FC-SB-2 or FC-SB-3).

3.1.73 Source_ldentifier (S_ID): The address identifier used to indicate the source end port of the transmitted
frame (see FC-FS).

3.1.74 storage area network (SAN): A data communication system the primary or only purpose of which is
providing access from computer systems to SCSI target devices. In the context of this standard, a storage area
network is always implemented with Fibre Channel technology.

3.1.75 Symbolic Name: A user-defined name for an object, composed of Printable ASCII Characters.
Uniqueness of its value is not required.

Working Draft Fibre Channel HBA API (FC-HBA) 8

16 April 2003 T11/1568-D Revision 8

3.1.76 target: Synonymous with SCSI target port

3.1.77 target mapping: A function of an HBA that makes an OS SCSI identification of a target or logical unit
operationally equivalent to a specified FCP-2 identification of a target or logical unit; or else a representation of a
single such equivalence.

3.1.78 TCP Port Number: An identifier of a destination in Transmission Control Protocol (see RFC 793).

3.1.79 Transmission Control Protocol (TCP): A protocol communicating reliable flow-controlled byte streams
over Internet Protocol allowing independent concurrent streams to multiple destinations at any IP Address (see
RFC 793).

3.1.80 transmission word: A string of four contiguous transmission characters occurring on boundaries that are
zero modulo 4 from a previously received or transmitted special character (see FC-FS).

3.1.81 UDP Port Number: An identifier of a destination in User Datagram Protocol (see RFC 768).

3.1.82 User Datagram Protocol (UDP): A protocol communicating a packet stream with no incremental reliability
over Internet Protocol allowing multiple independent concurrent destinations at any IP Address (see RFC 768).

3.1.83 vendor specific library: Obsolete term for HBA specific library (see FC-MI).

3.1.84 Well-known addresses: A set of address identifiers defined in this standard to access global server
functions. (e.g., a name server) (see FC-FS).

3.1.85word: : A string of four contiguous bytes occurring on boundaries that are zero modulo 4 from a specified
reference.

3.1.86 Worldwide_Name (WWN): A Name_Identifier that is worldwide unique, and represented by a 64-bit value
(see FC-FS).

3.1.87 wrapper library: A component of an HBA API library that combines the interfaces of one or more HBA
specific libraries into a single interface compliant with this standard.

3.2 Symbols and abbreviations

+ plus or minus

X multiply

+ add

- subtract

Il concatenate

=or EQ equal

= approximately equal

#zor NE not equal

<orlLT less than

<orLE less than or equal to

>or GT greater than

>or GE greater than or equal to

API application programming interface
CM:REQ Connection Management Request (see IBA)
FC Fibre Channel

HBA host bus adapter

Working Draft Fibre Channel HBA API (FC-HBA) 9

| 16 April 2003 T11/1568-D Revision 8

IB InfiniBand™ Transport (see IBA)
I0C I/0 Controller (see IBA)
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
LSB least significant bit
LUID Logical Unit Unique Identifier
LUN logical unit number
LIP Loop Initialization Primitive Sequence
| NOS Not_Operational Primitive Sequence
os operating system
SCSI Small Computer System Interface (see SAM-3)
SA Subnet Administrator (see IBA)
SAM-3 SCSI Architecture Model-3 (see SAM-3)
SAN storage area network
SB Single Byte Command Code Sets (see FC-SB-2 or FC-SB-3)
SPC-3 SCSI Primary Commands-3 (see SPC-3)
SRP SCSI RDMA Protocol (see SRP)
TCA Target Channel Adapter (see IBA)
TCP Transmission Control Protocol
UDP User Datagram Protocol

3.3 Keywords

3.3.1 expected: A keyword used to describe the behavior of the hardware or software in the design models
presumed by this standard. Other hardware and software design models may also be implemented.

3.3.2invalid: A keyword used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt of
an invalid bit, byte, word, field or code value shall be reported as an error.

3.3.3 mandatory: A keyword indicating an item that is required to be implemented as defined in this standard to
claim compliance with this standard.

3.3.4 may: A keyword that indicates flexibility of choice with no implied preference.
3.3.5 may not: Keywords that indicates flexibility of choice with no implied preference.

3.3.6 obsolete : A keyword indicating that an item was defined in prior standards but has been removed from this
standard.

3.3.7 opaque: A keyword indicating that value has no semantics or internal structure.

3.3.8 optional: A keyword that describes features that are not required to be implemented by this standard.
However, if any optional feature defined by this standard is implemented, it shall be implemented as defined in this
standard.

3.3.9reserved: A keyword referring to bits, bytes, words, fields and code values that are set aside for future
standardization. Their use and interpretation may be specified by future extensions to this or other standards. A
reserved bit, byte, word or field shall be set to zero, or in accordance with a future extension to this standard.
Recipients are not required to check reserved bits, bytes, words or fields for zero values. Receipt of reserved code
values in defined fields shall be reported as an error.

Working Draft Fibre Channel HBA API (FC-HBA) 10

16 April 2003 T11/1568-D Revision 8
3.3.10 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such
requirements to ensure interoperability with other products that conform to this standard.

3.3.11 should: A keyword indicating flexibility of choice with a preferred alternative; equivalent to the phrase “it is
recommended”.

3.4 Conventions

Certain words and terms used in this American National Standard have a specific meaning beyond the normal
English meaning. These words and terms are defined either in clause 3 or in the text where they first appear.

Fields containing only one bit are usually referred to as the name bit instead of the name field.
Numbers that are not immediately followed by lower-case b or h are decimal values.
Numbers immediately followed by lower-case b (xxb) are binary values.

Numbers immediately followed by lower-case h (xxh) are hexadecimal values.

Hexadecimal digits that are alphabetic characters are upper case (i.e., ABCDEF, not abcdef).

Hexadecimal numbers may be separated into groups of four digits by spaces. If the number is not a multiple of four
digits, the first group may have fewer than four digits (e.g., AB CDEF 1234 5678h)

Decimal fractions are initiated with a comma (e.g., two and one half is represented as 2,5).
Decimal numbers having a value exceeding 999 are separated with a space(s) (e.g., 24 255).
An alphanumeric list (e.g., a, b, c or A,B,C) of items indicate the items in the list are unordered.

A numeric list (e.g., 1,2,3) of items indicate the items in the list are ordered (i.e., item 1 shall occur or complete
before item 2).

In the event of conflicting information the precedence for requirements defined in this standard is

1) text,
2) tables, then
3) figures.

3.5 Notation for Procedures and Functions

Procedures and functions are specified in the syntax of the “C” programming language.

Working Draft Fibre Channel HBA API (FC-HBA) 11

16 April 2003 T11/1568-D Revision 8

4 General Constraints

4.1 Software Structure

The API specified in this standard shall be presented in the form of a library of function calls specified in this
standard. In OS environments that have a well-defined software structure for a library of function calls, that
structure shall be used.

An HBA API that is compliant with this standard shall facilitate common management methodologies for configura-
tions of HBAs that may be provided by multiple vendors and installed or removed at various times. This shall be
achieved by a software structure that is either OS specific and fully documented by the OS vendor or as defined in
this standard.

Should a fully documented OS structure not be used, a software structure is specified in this standard that is
composed of a single API for access to all HBAs (i.e., a wrapper library) layered on top of a configurable set of
modules each of which provides service for some collection of vendor specific HBAs and their drivers (i.e., HBA
specific libraries).

NOTE 1 An HBA API library that is structured as a wrapper library and HBA specific libraries also allows incre-
mental upgrade from implementations of the FC-MI Common HBA API (see 4.4).

The relationships of the components of either software structure to one another and to their environment is
indicated in figure 2. Also indicated in figure 2 is that both the API offered by the HBA API library to applications
and the API offered by HBA specific libraries to the wrapper library are specified by this standard. They are
identical interfaces other than as may be indicated elsewhere in this standard.

Working Draft Fibre Channel HBA API (FC-HBA) 12

16 April 2003 T11/1568-D Revision 8

o0®
Application(s)
_ EJ% _ _________ FC-HBA
, Interface
i HBA AP library i
wrapper i
; -OR- library :
i) | | Forea
i OSSpeCIfIC _______‘_____i'lnterfaces
: library | i
! | o0t | |
i HRA specific i
i library(ies) :
oo O e S eV = 4 e
OS Specific | Interfaces
Interface | |
oo’
HBA specific
software/drivers

Figure 2 — Software Structure

An HBA API library that is compliant with the requirements of this specification may be identified as an FC-HBA
compliant HBA API. A wrapper library that is compliant with this specification may be referenced as an FC-HBA
compliant wrapper library but it shall not be referenced as an FC-HBA compliant HBA API. An HBA specific library
that is compliant with this specification may be referenced as an FC-HBA compliant HBA specific library but it shall
not be referenced as an FC-HBA compliant HBA API.

4.2 C language

This standard defines an API only in the C language. It is possible to specify functionally equivalent APIs in other
languages but these shall not be referenced as FC-HBA compliant.

Working Draft Fibre Channel HBA API (FC-HBA) 13

16 April 2003 T11/1568-D Revision 8

In this standard, references within C code declarations to the names of other C code declarations shall be
considered normative specifications that the structure and semantics of the element referencing the name shall be
as specified in the declaration that is named.

All functions provided in compliance with function specifications in this standard shall use C-style calling conven-
tions. No constraint is specified or implied on the internal implementation of components of an HBA API library.

Unless specified otherwise, data structures and elements shall be stored in memory as determined by the local
machine, operating system, and C compiler.

This standard provides declarations for all data structures that it requires. Although these declarations may in
common practice be combined into a C header file, that is not required for compliance.

4.3 Operating System Dependencies

Although most of this standard has been written with attention to making it independent of specific operating
environments, it has in some cases been necessary to make normative statements specific to certain OSs in order
to assure interoperability. Normative statements specific to an OS shall not be considered in determining the
compliance of implementations for other OSs. This shall be understood to lead to less assurance of interoperability
of compliant components in OSs for which specific normative statements have not been made.

4.4 FC-MI Common HBA API

A less featured version of the specification herein was published as an informative annex to Fibre Channel -
Methodologies for Interconnect Technical Report (see FC-MI). Wrapper libraries that are compliant with this
standard shall interoperate with vendor specific libraries, applications, and drivers that are compliant with the
Common HBA API in FC-MI. HBA specific libraries that are compliant with this standard shall interoperate with
wrapper libraries, applications, and drivers that are compliant with the Common HBA API in FC-MI. However,
combinations including wrapper libraries or vendor specific libraries that are compliant only with FC-MI shall not be
considered FC-HBA compliant HBA APIs.

Working Draft Fibre Channel HBA API (FC-HBA) 14

16 April 2003 T11/1568-D Revision 8

5 Software Structure and Behavior

5.1 Overview

This clause specifies certain constraints on the overall structure and behavior of an implementation compliant with
this standard.

The intention of this standard is to facilitate implementation of a uniform and unitary interface to HBAs produced by
multiple vendors that may be installed in the same system. The software that implements this interface may derive
from components developed independently by those vendors and possibly others as well (e.g., application
vendors). This standard therefore specifies not only the external behavior of an HBA API but also certain internal
structure and interfaces that represent boundaries of likely modularization.

This standard further recognizes that an implementation may run in the context of an operating system that
enables both concurrent and serial operation of related software applications. This standard therefore specifies
certain expectations for consistency of results in multitasking environments.

5.2 Software Structure

5.2.1 OS specific structure
An OS specific structure for an HBA API library shall meet these criteria:

a) The HBA API shall be presented in the form of a library of function calls that includes those specified as
required for an HBA API library in this standard.

b) All functions in an HBA API library that have the same name as a function in this standard shall comply
with all requirements of this standard for the function.

c) The software that interfaces to HBA specific software and presents the HBA API shall be available from the
OS vendor.

d) Documentation shall be available from the OS vendor that fully specifies the structure and interface for
HBA specific software.

e) The OS specific structure shall allow adding and removing individual HBAs and HBA specific software
without affecting other HBAs and other HBA specific software, other than any temporarily degraded
operation of the OS necessary for adding or removing an HBA.

f) If the OS allows physical or logical addition or removal of HBAs without requiring the OS to pass through a
state of degraded operation, the OS specific structure for the HBA API shall allow addition or removal of
the HBA specific software for the HBAs without requiring the OS to pass through a state of degraded
operation.

g) Documentation shall be available from the OS vendor that fully specifies the means for adding and
removing individual HBAs and HBA specific software without affecting the operation of other HBAs and
other HBA specific software.

h) Any necessary initialization beyond that inherent in library loading shall be implemented in the function
HBA_LoadLibrary.

5.2.2 OS independent structure
If an OS specific structure is not used, this standard defines a single C-style library interface that shall be imple-
mented at two distinct levels. At the upper level, a wrapper library shall provide the HBA API specified in this

standard to applications and shall provide the ability to handle multiple vendor implementations of the HBA API
through dynamic loading of HBA specific libraries. The functions of the wrapper library shall invoke their respective

Working Draft Fibre Channel HBA API (FC-HBA) 15

16 April 2003 T11/1568-D Revision 8

functions in HBA specific libraries provided by each HBA vendor. The relationships of the modules implementing
these levels with one another and with other software are indicated in figure 2. For the most part, there is a one to
one correspondence between the functions of the wrapper library and the functions of the HBA specific libraries.
The differences are noted in clause 7.

Implementations shall not preclude multiple instances of the wrapper library in an OS (e.g., for 32 versus 64 bit
operation, or for vendor-specialized versions); however, the unitary interface goal may be compromised unless
there is only a single instance of the wrapper library.

Initialization of libraries shall be implemented in the function HBA_LoadLibrary. The wrapper library function
HBA_LoadLibrary shall accomplish configuration determination, OS specific library linking functions, and API
initialization. The HBA specific library function HBA_LoadLibrary shall only accomplish its own initialization.

References to the functions of the HBA specific libraries shall be loaded into data structures owned by the wrapper
library. This shall be accomplished through the functions HBA_RegisterLibrary and HBA _RegisterLibraryV2 that
shall be defined in all HBA specific libraries.

5.3 Names, Handles and Their Usage

The concepts of names and handles are used in this APl as generic ways to reference an HBA. The use of a
handle is specified to be independent of the operating system.

Associated with each HBA that may be opened and managed there shall be a name that:

a) shall be unique to that HBA among all applications sharing the same instance of the HBA API library; and
b) may change across OS reboots.

Associated with each HBA that may be opened and managed there shall be a handle that:

a) shall be persistent between open and subsequent close of the HBA,;

b) in an HBA API library with OS independent structure its lower 16 bits shall be determined by the HBA
specific library for the HBA so no two HBAs supported by the same HBA specific library have the same
value;

c) inan HBA API library with OS independent structure its upper 16 bits shall be determined by the wrapper
library so no two HBA specific libraries registered with that wrapper library have the same value;

d) may change across reboots; and

e) may change on successive opens of the same HBA.

These situations may be recognized in vendor specific manner:
a) addition of a new HBA;
b) removal of an HBA; and
c) replacement of an HBA

When a new HBA is added, a new name shall be assigned to the HBA that does not conflict with previous names.

When an HBA is removed, the name of the HBA should not be re-used, in order for upper level software to reliably
reference the same device.

When an HBA is replaced, there shall be no change in functionality, WWN, or any other HBA properties, and the

same name should be assigned. Any change in the properties, including WWN, should be treated as addition of a
new HBA.

Working Draft Fibre Channel HBA API (FC-HBA) 16

16 April 2003 T11/1568-D Revision 8

5.4 HBA Configuration Rediscovery Effect on the API

5.4.1 Introductory discussion

The HBA API specified by this standard has several functions in which logical or physical SAN resources are
identified by an index. This method implies the existence of internal tables of the resources.

NOTE 2 These tables are only logically implied. No implementation constraint is intended

These tables include the collection of adapters available via the HBA API, the collection of end ports on an HBA,
and the collection of discovered FC_Ports for an end port. In a dynamic SAN, resources may be added or
removed, which raises the possible need to reassign indexes in implicit tables. But an application may expect to
extract and maintain its own information about SAN resources, keyed to the API's implicit tables by the index. If the
index assignment were to change without coordination, the information in the application's space would refer to
different resources than the information in the API.

In the Common HBA API (see 4.4), the APIs implicit tables are static except at explicit synchronization calls.
HBA_Refreshinformation updates all tables for a specified HBA. HBA_RefreshAdapterConfiguration was added in
this standard to serve the same purpose for the table of adapters. This assures the application and the libraries
remain consistent in the assignment of indexes to resources and also allows the application to control the amount
of computation and communication invested in maintaining a contemporary view of the SAN configuration.

Although many kinds of dynamic changes may be detected promptly by the HBA software (e.g., by RSCN), the
polled event reporting mechanism is unreliable. For an application to remain current, frequent polling of the entire
name server is necessary, either by frequent calls to HBA_Refreshinformation or explicitly. Either is extremely
costly in large SANs. To reduce the need for polling, the Common HBA API added two extensions that were
consistent with the static table assumption: The HBA_STATUS_ERROR_STALE_DATA error to indicate that static
tables are out of date (see 5.4.2), and semistatic tables (see 5.4.3).

The asynchronous event method in this standard provides a reliable notification of pending configuration changes;
however, the earlier extensions have been retained for several reasons: They allow applications written for the
Common HBA API to run on FC-HBA compliant libraries. They enable use of a simple application design that does
not monitor asynchronous events. Finally, they may close possible implementation-dependent timing windows for
applications that may concurrently process configuration change events and other events (including timers and
operator input).

Finally, in this standard, new functions have been added that use WWNs rather than indexes into implicit tables to
identify objects.

5.4.2 HBA_STATUS_ERROR_STALE_DATA

Rather than simply returning static obsolete information, a library shall return
HBA_ STATUS_ERROR_STALE_DATA. This shall be returned by any function that references an implicit table with
a pending change for the calling application, and continues until HBA_Refreshinformation is called. Without
changing the static table design, this prevents the application from unknowingly using the stale data. This error also
notifies the application at the earliest point that the application would have accessed the stale data without
requiring any extra overhead to monitor for changes.

5.4.3 Semistatic table model

The semistatic table model preserves the relationship between SAN resources and the indexes by which the API
references them but allows addition and removal of resources.

Working Draft Fibre Channel HBA API (FC-HBA) 17

16 April 2003 T11/1568-D Revision 8

A resource that is no longer available shall continue to be assigned its index, but any function that references the
index shall return HBA_STATUS_ERROR_UNAVAILABLE. A newly discovered resource, if added to the tables
prior to HBA_Refreshinformation, shall be assigned the least unassigned index. Calls that identify the number of
some type of resource shall return the largest assigned index, even when some indexes are assigned to resources
that no longer exist. The number of resources and the size of the table may therefore change without a call to a
Refresh function, but these rules shall constrain such changes:

a) Open HBA handles shall continue to reference the same HBA even if the index is no longer installed.

b) An HBA name or index assigned to an HBA for which the bus position, WWN, and OS device name have
not changed shall remain assigned to the same HBA even if the HBA is removed and reinstalled.

¢) Handles, HBA names, and HBA indexes assigned to adapters that have been removed and not replaced
shall not be reassigned. References to them shall generate HBA_STATUS_ERROR_UNAVAILABLE.

These rules imply that in systems that contain adapters from multiple vendors and allow dynamic HBA reconfigu-
ration, it may not be possible for the wrapper library to assign contiguous HBA indexes to adapters from the same
vendor.

5.5 Multiuse considerations

Multiple unrelated applications of the HBA API specified by this standard may operate concurrently and without
coordination. In environments supporting multithreaded applications, multiple threads of the same application may
similarly operate concurrently and without coordination. Although the result of any HBA API call may be affected by
concurrently operating HBA API calls (or events elsewhere in the fabric), the HBA API libraries shall be imple-
mented so as not to become unstable or internally inconsistent as a result of concurrent use or external events.
Implementations of the HBA API library and of wrapper libraries and HBA specific libraries if used shall prevent
re-entrant operation where it would compromise this goal.

Implementations of the HBA API specified by this standard shall also be tolerant of certain concurrency issues.
They may operate concurrently with other such applications, so the results of any given call may not be predicted
based on any information gained from prior calls by the same application. Further, a successfully registered event
callback function may be invoked before its registration function returns to the application.

Working Draft Fibre Channel HBA API (FC-HBA) 18

16 April 2003

6 Attributes and Data Structures

6.1 Basic Attribute Types

T11/1568-D Revision 8

t ypedef unsigned char HBA U NT8; /* An 8 bit unsigned integer */

typedef unsigned int HBA U NT32; /* A 32 bit unsigned integer */

t ypedef | ong HBA_| NT64;

/* A 64 bit signed integer;

t ypedef HBA Ul NT8 HBA BOOLEAN; /* A single true/false flag */

t ypedef HBA Ul NT32 HBA HANDLE; /* opaque handl e used to identify an HBA */

typedef struct HBA wwn {HBA_U NT8 wwn[8];} HBA VW,
/* The first

/* shall be in the first byte of the array, */
/* and successive bytes of the Nane_ldentifier */
/* shall be in successive bytes of the array. */

6.2 Status Return Values

may use OS-specific typedef */

PHBA WWN; / An FC-FS Nane_ldentifier */
byte of the Nane_ldentifier */

Functions that return an object of type HBA_STATUS shall set the value of that object to a value among those in

6.2.

t ypedef HBA U NT32 HBA_STATUS;

/* No Error */
#def i ne HBA STATUS K

/* Error */
#def i ne HBA STATUS_ERROR

/* Function not supported.*/
#def i ne HBA STATUS ERROR NOT_SUPPORTED

/* invalid handle */
#define HBA STATUS_ERROR | NVALI D_HANDLE

/* Bad argunent */
#def i ne HBA STATUS ERROR ARG

/* WW not recognized */
#define HBA STATUS_ERROR | LLEGAL W\

/* Index not recognized */
#def i ne HBA STATUS ERROR | LLEGAL_| NDEX

/* Larger buffer required */
#define HBA_STATUS_ERROR_MORE_DATA

Working Draft Fibre Channel HBA API (FC-HBA)

/*

Function status return structure */

19

16 April 2003 T11/1568-D Revision 8

/* Information has changed since the last call to HBA Refreshlnformation */
#def i ne HBA_STATUS_ERROR_STALE_DATA 8

/* SCSI Check Condition reported*/
#def i ne HBA_STATUS_SCSI _CHECK_CONDI TI ON 9

/* HBA busy or reserved, retry may be effective*/
#def i ne HBA_STATUS_ERROR_BUSY 10

/* Request tinmed out, retry may be effective */
#define HBA_ STATUS_ERROR_TRY_AGAI N 11

/* Referenced HBA has been renoved or deactivated */
#defi ne HBA STATUS ERROR UNAVAI LABLE 12

/* The requested ELS was rejected by the local HBA */
#def i ne HBA STATUS_ERROR_ELS REJECT 13

/* The specified LUN is not provided by the specified HBA */
#def i ne HBA_STATUS_ERROR | NVALI D_LUN 14

/* An inconpatibility has been detected*/

/* anong the library and driver nodul es i nvoked */

/* that may cause one or nore functions */

/* in the highest version they all support */

/* to operate incorrectly. */

/* The differing function sets of software nodul es */

/* inmplenenting different versions of the HBA APl specification */
/* does not in itself constitute an inconpatibility.*/

/* Known interoperability bugs anobng supposedly conpatible versions */
/* shoul d be reported as inconpatibilities, */

/* but not all such interoperability bugs may be known. */

/* This value may be returned by any function */

/* that calls an HBA specific library and returns an HBA_STATUS, */
/* and by HBA LoadLi brary and HBA_ Get Adapt er Nane. */

#define HBA_STATUS_ERROR | NCOWPATI BLE 15

/* Miltiple adapters have a matching WW. */
/* This may occur if the NodeWAW of multiple adapters is identical. /
#def i ne HBA STATUS_ERROR_AMBI GUOUS_ W\ 16

/* A persistent binding request included a bad |ocal SCSI bus nunber */
#def i ne HBA STATUS ERROR LOCAL_BUS 17

/* A persistent binding request included a bad |ocal SCSI target nunber */
#def i ne HBA STATUS_ERROR_LOCAL_TARGET 18

/* A persistent binding request included a bad |local SCSI |ogical unit nunber */
#def i ne HBA STATUS ERROR LOCAL_LUN 19

/* A persistent binding set request included */
/* a local SCSI IDthat was al ready bound */
#def i ne HBA STATUS_ERROR_LOCAL_SCSI | D_BOUND 20

/* A persistent binding request included a bad or unlocatable FCP Target FCID */
#def i ne HBA STATUS_ERROR TARGET_FCI D 21

/* A persistent binding request included a bad FCP Target Node_Name */
#define HBA_ STATUS_ERROR _TARGET _NODE_\WWWN 22

Working Draft Fibre Channel HBA API (FC-HBA) 20

16 April 2003 T11/1568-D Revision 8

/* A persistent binding request included a bad FCP Target Port Name */
#define HBA_STATUS_ERROR_TARGET_PORT_WWN 23

/* A persistent binding request included */
/* an FCP Logical Unit Number not defined by the identified Target*/
#defi ne HBA_STATUS_ERROR TARGET_LUN 24

/* A persistent binding request included */
/* an undefined or otherw se inaccessible Logical Unit Unique lIdentifier */
#def i ne HBA STATUS_ERROR_TARCET_LUI D 25

/* A persistent binding renove request included */
/* a binding that did not match a binding established by the specified port */
#define HBA_STATUS_ERROR_NO_SUCH_BI NDI NG 26

/* A SCSI conmand was requested to an end port that was not a SCSI Target Port */
#def i ne HBA STATUS ERROR NOT_A TARGET 27

/* A request was nade concerning an unsupported FC-4 protocol */
#def i ne HBA_STATUS_ERROR_UNSUPPORTED_FC4 28

/* A request was nmade to enabl e uni npl enmented capabilities for a port */
#def i ne HBA STATUS ERROR | NCAPABLE 29

/* A SCSI function was requested at a tine when issuing the requested conmand */
/* woul d cause a SCSI overl apped command condition (see SAM-3) */
#def i ne HBA_STATUS_ERROR_TARCET_BUSY 30

/* A call was made to HBA FreeLi brary when no library was | oaded */
#def i ne HBA STATUS ERROR NOT_LOADED 31

/* A call was made to HBA LoadLi brary when a library was already | oaded */
#def i ne HBA STATUS_ERROR_ALREADY_LOADED 32

/* The Address ldentifier specified in a call to HBA SendRNI DV2 */

/* violates access control rules for that call */
#def i ne HBA STATUS ERROR | LLEGAL_FCI D 33

Working Draft Fibre Channel HBA API (FC-HBA)

21

16 April 2003 T11/1568-D Revision 8

6.3 HBA Attributes

6.3.1 HBA Attribute Data Declarations

typedef struct HBA AdapterAttributes {

char Manuf act urer[64];

char Seri al Nunber [64] ;

char Model [256] ;

char Model Descri pti on[256] ;
HBA_VWN NodeWW;

char NodeSymnbol i cNane[256] ;
char Har dwar eVer si on[256] ;
char Dri ver Ver si on[256] ;
char Opt i onROWer si on[256] ;
char Fi r mnar eVer si on[256] ;
HBA Ul NT32 Vendor Speci ficl D
HBA_ Ul NT32 Number Of Port s;

char Dri ver Nane[256] ;

} HBA_ADAPTERATTRI BUTES, *PHBA ADAPTERATTRI BUTES;

6.3.2 HBA Attribute Specifications
6.3.2.1 Compliance

Some HBA attributes shall be implemented as specified, and some shall either be implemented or given a value
indicating they are not implemented (see annex A).

6.3.2.2 Manufacturer

Manufacturer shall be an ASCII string not exceeding 64 bytes the value of which is the name of the manufacturer of
the HBA.

Example:

Hot Biscuits Adapters

6.3.2.3 SerialNumber
SerialNumber shall be an ASCII string not exceeding 64 bytes the value of which is the serial number of the HBA.
Example:

1040A- 0000003

6.3.2.4 Model

Model shall be an ASCII string not exceeding 256 bytes the value of which is a vendor specific name or identifying
text for the HBA model.

NOTE 3 To allow complete representation in the CIM model of an HBA, the length of this attribute should not
exceed 64 bytes.

Working Draft Fibre Channel HBA API (FC-HBA) 22

16 April 2003 T11/1568-D Revision 8

Example:

HBA1040A

6.3.2.5 ModelDescription

ModelDescription shall be an ASCII string not exceeding 256 bytes the value of which is a longer textual
description of the HBA model.

Example:

Hot Biscuits Adapters Short Form

6.3.2.6 NodeWWN

NodeWWN shall be the Node_Name of this HBA. If an HBA has multiple end ports associated with more than one
node, the value of NodeWWN shall be chosen from among the names of the associated nodes by vendor specific
means.

6.3.2.7 NodeSymbolicName

NodeSymbolicName shall be an ASCII string not exceeding 256 bytes the value of which is the Fibre Channel
Node Symbolic Name. In a Fabric, this shall be the same as the Node Symbolic Name registered with the name
server.

6.3.2.8 HardwareVersion

HardwareVersion shall be an opaque ASCII string not exceeding 256 bytes the value of which is a vendor specific
identification of the hardware revision level of the HBA.

NOTE 4 To allow complete representation in the CIM model of an HBA, the length of this attribute should not
exceed 64 bytes.

6.3.2.9 DriverVersion

DriverVersion shall be an opaque ASCII string not exceeding 256 bytes the value of which is a vendor specific
identification of the driver version controlling this HBA.

6.3.2.10 OptionROMVersion

OptionROMVersion shall be an opaque ASCII string not exceeding 256 bytes the value of which is a vendor
specific identification of the option ROM or BIOS version of the HBA, if any.

6.3.2.11 FirmwareVersion

FirmwareVersion shall be an opaque ASCII string not exceeding 256 bytes the value of which is a vendor specific
identification of the firmware version of the HBA, if any.

6.3.2.12 VendorSpecificlD

VendorSpecificlD shall have a vendor specific value.

Working Draft Fibre Channel HBA API (FC-HBA) 23

16 April 2003 T11/1568-D Revision 8

6.3.2.13 NumberOfPorts

NumberOfPorts shall be the number of end ports on this HBA.

6.3.2.14 DriverName

DriverName shall be an ASCII string not exceeding 256 bytes the value of which is the file name for the driver
binary file. In the case of some operating systems that implement a generic driver name (e.g., Driver.o in Unixware)
an absolute path should be included in the driver name.

Example 1:

For NT 4.0 or Win2000 environment, it is the SCSI miniport driver name for the HBA (e.g., 1040AW2K.SYS is the
name of the binary file for the SCSI miniport for the Hot Biscuits Adapters Short Form).

Example 2:
For UnixWare that uses generic driver name Driver.o, the full/absolute path should be used.

/ et c/ conf/ pack. d/ Hot Bi scuits/Driver.o

6.4 FC_Port Attributes

6.4.1 FC_Port Attribute Data Declarations
6.4.1.1 Port Type
Any data object of type HBA_PORTTYPE shall have a value defined in 6.4.1.1

typedef HBA Ul NT32 HBA PORTTYPE;

#def i ne HBA_PORTTYPE_UNKNOWN 1 /* Unknown */

#def i ne HBA_PORTTYPE_OTHER 2 /* Other */

#def i ne HBA_PORTTYPE_NOTPRESENT 3 /* Not present */

#def i ne HBA PORTTYPE_NPORT 5 /* End port in a Fabric */

#defi ne HBA PORTTYPE_NLPORT 6 /* End port on a Public Loop */
#defi ne HBA PORTTYPE_FLPORT 7 /* Fabric port on a Loop */
#def i ne HBA_PORTTYPE_FPORT 8 /* Fabric Port */

#def i ne HBA_PORTTYPE_LPORT 20 /* End port on a Private Loop */
#def i ne HBA_PORTTYPE_PTP 21 /* Point to Point */

6.4.1.2 Port State

Any data object of type HBA_PORTSTATE shall have a value defined in 6.4.1.2

Working Draft Fibre Channel HBA API (FC-HBA) 24

16 April 2003 T11/1568-D Revision 8

t ypedef HBA_Ul NT32 HBA PORTSTATE;

/* Unknown */

/* Operational */

/* User Ofline */

/* Bypassed */

/* I'n diagnostics node */
/* Link Down */

/* Port Error */

/* Loopback */

#def i ne HBA_PORTSTATE_UNKNOMW
#def i ne HBA_PORTSTATE_ONLI NE
#defi ne HBA PORTSTATE_CFFLI NE
#def i ne HBA PORTSTATE_BYPASSED
#defi ne HBA PORTSTATE_DI AGNOSTI CS
#def i ne HBA_PORTSTATE LI NKDOWN
#def i ne HBA_PORTSTATE_ERROR

#def i ne HBA_PORTSTATE LOOPBACK

O~NO O, WNPE

6.4.1.3 Port Speed
Any data object of type HBA_PORTSPEED shall have a value defined in 6.4.1.3

typedef HBA U NT32 HBA PORTSPEED;

#defi ne HBA PORTSPEED UNKNOMAN 0 /* Unknown - transceiver incapable
of reporting*/
/* 1 GBit/sec */
/* 2 GBit/sec */
/* 10 GBit/sec */
/* 4 Bit | sec */
1<<15)/* Speed not established*/

#def i ne HBA PORTSPEED 1GBI T

#def i ne HBA_PORTSPEED 2GBI T

#def i ne HBA PORTSPEED 10GBI T

#def i ne HBA PORTSPEED 4GBI T

#def i ne HBA PORTSPEED NOT_NEGOTI ATED

0 BADNBR

6.4.1.4 Class of Service

Any data object of type HBA_COS shall have a value as defined in FC-GS-4 for Class of Service - Format

t ypedef HBA Ul NT32 HBA CCS; /* See O ass of Service - Format in FC GS-4*/

6.4.1.5 FC-4 Types

Any data object of type HBA FCATYPES shall have a value as defined in FC-GS-4 for FC-4 TYPES - Format

typedef struct HBA fc4types {
HBA U NT8 bits[32]; /* See FC-4 TYPEs - Format in FC-GS-4 */
} HBA FCATYPES, *PHBA FCATYPES;

6.4.1.6 FC_Port Attributes

Any data object of type HBA_PORTATTRIBUTES shall have the format defined in 6.4.1.6

Working Draft Fibre Channel HBA API (FC-HBA)

25

16 April 2003 T11/1568-D Revision 8

typedef struct HBA PortAttributes {

HBA_ W\ NodeWW;

HBA WA Por t WAN,;

HBA_ Ul NT32 Port Fcl d;

HBA PORTTYPE Port Type;

HBA PORTSTATE Port St at e;

HBA_COS Por t Suppor t edd assof Servi ce;
HBA FCATYPES Por t Suppor t edFc4Types;
HBA FCATYPES Port Acti veFc4Types;

char Por t Symbol i cNane[256] ;
char CSDevi ceNane[256] ;
HBA_PORTSPEED Por t Suppor t edSpeed,;

HBA PORTSPEED Por t Speed;

HBA Ul NT32 Por t MaxFr aneSi ze;

HBA WAWN Fabri cNane;

HBA_ Ul NT32 Number of Di scover edPorts;

} HBA PORTATTRI BUTES, *PHBA_ PORTATTRI BUTES;

6.4.2 FC_Port Attribute Specifications
6.4.2.1 Compliance

Some FC_Port Attributes shall be implemented as specified, and some shall either be implemented or given a
value indicating they are not implemented (see annex A).

6.4.2.2 NodeWWN

NodeWWN shall be the Fibre Channel Node_Name associated with this FC_Port.

6.4.2.3 PortWwN

PortWWN shall be the Fibre Channel Port Name of this FC_Port.

6.4.2.4 PortSymbolicName

PortSymbolicName shall be an ASCII string not exceeding 256 bytes the value of which is the General Services
Port Symbolic Name (see FC-GS-4). In a Fabric, this shall be the same as the entry registered with the name
server.

6.4.2.5 PortFcld

PortFcld shall be an unsigned integer the value of which is the current Fibre Channel address identifier of the
FC_Port. The first byte of the address identifier shall be stored in the high order byte of PortFcld, and successive
bytes of the address identifier shall be stored in successively lower order bytes of PortFcld. The lowest order byte
of PortFcld shall be zero.

6.4.2.6 PortType

PortType shall be an enumerated type that identifies the General Services Port Type, sometimes elaborated by link
topology, that the FC_Port is currently operating in FC-GS-4. It shall have a value defined in 6.4.1.1

Working Draft Fibre Channel HBA API (FC-HBA) 26

16 April 2003 T11/1568-D Revision 8

6.4.2.7 PortState

PortState shall be an integer the value of which indicates the current state of the FC_Port. It shall have a value
defined in 6.4.1.2. The sequence and timing of FC_Port states exhibited as an FC_Port experiences errors or
transient conditions is vendor specific.

6.4.2.8 PortSupportedClassofService

PortSupportedClassofService shall identify the supported classes of service of this FC_Port. It shall have a value
as defined in FC-GS-4 for Class of Service - Format.

6.4.2.9 PortSupportedFc4Types

PortSupportedFc4Types shall identify the FC-4 types for which it is possible to configure this end port and its
software. It shall be zero if the port is not an end port. It shall have a value as defined in FC-GS-4 for FC-4 TYPEs
- Format.

The first word of the FC-4 TYPEs structure defined by GS-4 shall be stored in bytes zero through three of the
HBA_FCATYPES bits array, and successive words of the FC-4 TYPEs structure defined by GS-4 shall be stored in
successively higher numbered four byte groups of the HBA_FCA4TYPES bits array. The lowest order byte of each
word shall be stored in the lowest numbered byte of the group of four bytes in which the word is stored, and
successively higher order bytes of each word shall be stored in successively higher numbered bytes of the group of
bytes in which the word is stored.

6.4.2.10 PortActiveFc4Types

PortActiveFc4Types shall identify the FC-4 types that have been determined to be currently available from this end
port. It shall be zero if the port is not an end port. It shall have a value as defined in FC-GS-4 for FC-4 TYPEs -
Format.

The first word of the FC-4 TYPEs structure defined by GS-4 shall be stored in bytes zero through three of the
HBA_FCATYPES bits array, and successive words of the FC-4 TYPEs structure defined by GS-4 shall be stored in
successively higher numbered four byte groups of the HBA_FCA4TYPES bits array. The lowest order byte of each
word shall be stored in the lowest numbered byte of the group of four bytes in which the word is stored, and
successively higher order bytes of each word shall be stored in successively higher numbered bytes of the group of
bytes in which the word is stored.

6.4.2.11 PortSupportedSpeed

PortSupportedSpeed shall identify the signalling bit rates at which this FC_Port may operate. It shall have a value
defined in 6.4.1.3. It may identify multiple speeds.

6.4.2.12 PortSpeed

PortSpeed shall identify the signalling bit rate at which this FC_Port is currently operating. It shall have a value
defined in 6.4.1.3. It shall indicate only a single speed.

6.4.2.13 PortMaxFrameSize

PortMaxFrameSize shall have value equal to the maximum frame size in bytes supported by this FC_Port.

Working Draft Fibre Channel HBA API (FC-HBA) 27

16 April 2003 T11/1568-D Revision 8

6.4.2.14 OSDeviceName

OSDeviceName shall be an ASCII string not exceeding 256 bytes the value of which is the device name that this
end port is visible from on the operating system, if known. It shall be a zero length ASCII string if the port is not an
end port.

If an OSDeviceName is provided by the HBA API in an HBA_PortAttributes structure, it shall comply with these
rules:

a) A non-null end port OSDeviceName shall be provided if, and only if, it is possible to use that name in
operating system specific functions to affect the same end port as is specified in the other fields in the rest
of the structure.

b) If there are any names that have the preferred format as specified in table 1 and also satisfy rule a), then
one of them shall be provided. If there are more than one, one shall be chosen and consistently provided
(i.e., multiple calls shall provide the same name).

c) If there are no names with the preferred format as specified in table 1 but there are names that satisfy rule
a), then one of them shall be provided. If there are more than one, one shall be chosen and consistently
provided (i.e., multiple calls shall provide the same name).

d) If no name satisfies rule a), the OSDeviceName shall be a zero length ASCII string.

Table 1 — Preferred format for FC_Port OSDeviceName

Preferred format 2@
oS
Local adapter port Discovered port
AlX /dev/fscsin (zero length string)
Linux /dev/name (zero length string)
Solaris /devices/localporthame cX:pwwn
(the attachment
point ID)
Windows | \\Scsin: (zero length string)

@ In end port name format samples, text appearing in bold weight shall appear in the indicated position exactly
as it appears in the format sample Text appearing in normal weight italics is a placeholder for similar text
determined by the rules of the OS. Italicized lower case n represents any decimal number and may be more
than one digit. Normal text in parentheses is descriptive, not format sample.

6.4.2.15 NumberofDiscoveredPorts

For a local end port, the value of NumberofDiscoveredPorts shall be the number of end ports (regardless of their
FC-4 support) and Fx_Ports that are visible to that local end port. At a minimum, this shall be the number of end
ports mapped to a local SCSI device. It may reflect any superset of that minimum, up to all of the end ports and
Fx_Ports on the fabric. For discovered FC_Ports this value shall be zero.

6.4.2.16 FabricName

FabricName shall have value equal to the Name_Identifier for the Fabric to which the FC_Port is attached, if
known.

Working Draft Fibre Channel HBA API (FC-HBA) 28

16 April 2003 T11/1568-D Revision 8

6.5 End Port Statistics

6.5.1 End Port Statistics Data Declarations

/* Statistical counters for FC-0, FC-1, and FC-2 */

typedef struct HBA PortStatistics {

HBA | NT64 SecondsSi ncelLast Reset ;
HBA | NT64 TxFr anes;

HBA | NT64 TxWor ds;

HBA_| NT64 RxFr anes;

HBA | NT64 RxWor ds;

HBA | NT64 LI PCount ;

HBA | NT64 NOSCount ;

HBA | NT64 Er r or Fr anes;

HBA | NT64 DunpedFr anes;

HBA | NT64 Li nkFai | ureCount ;
HBA | NT64 LossOf SyncCount ;

HBA_| NT64 LossO Si gnal Count ;
HBA | NT64 Prim tiveSeqProtocol Err Count;
HBA | NT64 | nval i dTxWor dCount ;
HBA | NT64 | nval i dCRCCount ;

} HBA PORTSTATI STI CS, *PHBA_PORTSTATI STI CS;
/* Statistical counters for FC-4 protocols */

typedef struct HBA FCAStatistics {

HBA_| NT64 | nput Request s;
HBA | NT64 CQut put Request s;
HBA | NT64 Cont r ol Request s;
HBA | NT64 | nput Megabyt es;
HBA | NT64 Qut put Megabyt es;

} HBA_FCASTATI STI CS, *PHBA_FCASTATI STI CS;

6.5.2 End Port Statistics Attribute Specifications
6.5.2.1 Compliance

Some end port statistics shall be implemented as specified, and some shall either be implemented or given value
FFFF FFFF FFFF FFFFh indicating they are not implemented (see annex A).

Statistics counters shall be 64-bit unsigned integers that shall wrap to zero on exceeding 7FFF FFFF FFFF FFFFh.
They shall not be reset during normal operation so traffic rates may be determined by the difference of time and
counter values at two successive calls, with appropriate measures to deal with counter wrap.

6.5.2.2 SecondsSincelLastReset

SecondsSincelLastReset shall have value equal to the number of seconds since the statistics were last reset.

6.5.2.3 TxFrames

TxFrames shall have value equal to the number of total Transmitted Fibre Channel frames across all protocols and
classes.

Working Draft Fibre Channel HBA API (FC-HBA) 29

16 April 2003 T11/1568-D Revision 8

6.5.2.4 RxFrames

RxFrames shall have value equal to the number of total Received Fibre Channel frames across all protocols and
classes.

6.5.2.5 TxWords

TxWords shall have value equal to the number of total Transmitted Fibre Channel words across all protocols and
classes.

6.5.2.6 RxWords

RxWords shall have value equal to the number of total Received Fibre Channel words across all protocols and
classes.

6.5.2.7 LIPCount

LIPCount shall have value equal to the number of LIP events that have occurred on a arbitrated loop.
6.5.2.8 NOSCount

NOSCount shall have value equal to the number of NOS events that have occurred on the switched Fabric.
6.5.2.9 ErrorFrames

ErrorFrames shall have value equal to the number of frames that have been received in error.

6.5.2.10 DumpedFrames

DumpedFrames shall have value equal to the number of frames that were lost due to a lack of host buffers
available.

6.5.2.11 LinkFailureCount

LinkFailureCount shall have value equal to the value of the LINK FAILURE COUNT field of the Link Error Status Block
for the specified end port (see FC-FS).

6.5.2.12 LossOfSyncCount

LossOfSyncCount shall have value equal to the value of the LOSS-OF-SYNCHRONIZATION COUNT field of the Link
Error Status Block for the specified end port (see FC-FS).

6.5.2.13 LossOfSignalCount

LossOfSignalCount shall have value equal to the value of the Loss-OF-SIGNAL COUNT field of the Link Error Status
Block for the specified end port (see FC-FS).

6.5.2.14 PrimitiveSeqProtocolErrCount

Primitive Sequence Protocol Error Count shall have value equal to the value of the PRIMITIVE SEQUENCE PROTOCOL
ERROR field of the Link Error Status Block for the specified end port (see FC-FS).

Working Draft Fibre Channel HBA API (FC-HBA) 30

16 April 2003 T11/1568-D Revision 8

6.5.2.15 InvalidTxWordCount

InvalidTxWordCount shall have value equal to the value of the INVALID TRANSMISSION WORD field of the Link Error
Status Block for the specified end port (see FC-FS).

6.5.2.16 Invalid CRC Count

InvalidCRCCount shall have value equal to the value of the INvALID CRC CouNT field of the Link Error Status Block
for the specified end port (see FC-FS).

6.5.2.17 InputRequests

InputRequests shall have value equal to the number of FC-4 operations causing FC-4 data input. Some single
FC-4 requests may cause both input and output of data (e.g., Bidirectional SCSI commands in FCP). If these
requests occur, they shall be counted in both InputRequests and OutputRequests. This admits the possibility that
the sum of InputRequests and OutputRequests may exceed the total number of requests.

6.5.2.18 OutputRequests

OutputRequests shall have value equal to the number of FC-4 operations causing FC-4 data output. Some single
FC-4 requests may cause both input and output of data (e.g., Bidirectional SCSI commands in FCP). If these
requests occur, they shall be counted in both InputRequests and OutputRequests. This admits the possibility that
the sum of InputRequests and OutputRequests may exceed the total number of requests.

6.5.2.19 ControlRequests

ControlRequests shall have value equal to the number of FC-4 operations that are not intended to cause FC-4 data
movement.

6.5.2.20 InputMegabytes
InputMegabytes shall have value equal to the number of megabytes (mega = 1 000 000) of FC-4 data input.
6.5.2.21 OutputMegabytes

OutputMegabytes shall have value equal to the number of megabytes (mega = 1 000 000) of FC-4 data output.

6.6 FCP_Port Attributes (see FCP-2)

6.6.1 FCP_Port Attribute Data Declarations
6.6.1.1 HBA_FCPBINDINGTYPE

/* A bit mask of Phase 1 persistent binding capabilities */

t ypedef enum HBA fcpbi ndi ngtype {TO D ID, TO WA, TO OTHER} HBA FCPBI NDI NGTYPE;
6.6.1.2 HBA_BIND_CAPABILITY

Any data object of type HBA_BIND_CAPABILITY shall have a value defined in 6.6.1.2

Working Draft Fibre Channel HBA API (FC-HBA) 31

16 April 2003

typedef HBA Ul NT32 HBA Bl ND_CAPABI LI TY;

#define HBA CAN BIND TO D | D 0x0001
#define HBA CAN Bl ND_TO WAPN 0x0002
#define HBA CAN Bl ND_TO WANN 0x0004
#define HBA CAN BIND TO LU D 0x0008
#define HBA CAN Bl ND_ANY_LUNS 0x400
#define HBA CAN Bl ND_TARGETS 0x800
#define HBA CAN Bl ND_AUTOVAP 0x1000
#define HBA CAN Bl ND_CONFI GURED 0x2000

6.6.1.3 HBA_BIND_TYPE

Any data object of type HBA_BIND_TYPE shall have a value defined in 6.6.1.3

t ypedef HBA U NT32 HBA BI ND_TYPE;

#define HBA BIND_TO D | D 0x0001
#def i ne HBA Bl ND_TO WAPN 0x0002
#define HBA BI ND_TO WARN 0x0004
#define HBA BI ND_TO LU D 0x0008
#define HBA Bl ND_TARGETS 0x800

6.6.1.4 HBA_LUID

typedef struct HBA LU D {

char buf f er[256] ;
} HBA LU D, *PHBA LU D;
6.6.1.5 HBA_Scsild

typedef struct HBA Scsild {

char CSDevi ceNane[256] ;
HBA_Ul NT32 Scsi BusNumber ;
HBA Ul NT32 Scsi Tar get Nunber ;
HBA Ul NT32 Scsi OSLun;

} HBA_SCSI I D, *PHBA_SCSIID;
6.6.1.6 HBA_Fcpld

typedef struct HBA Fcpld {

HBA Ul NT32 Fcl d;
HBA_ WAN NodeWN;
HBA WAN Por t VWAN;
HBA Ul NT64 FcplLun;

} HBA FCPI D, *PHBA FCPI D;
6.6.1.7 Composite types

typedef struct HBA _FcpScsi Entry {
HBA SCSI | D Scsi | d;
HBA FCPI D Fcpl d;
} HBA_FCPSCSI ENTRY, *PHBA_FCPSCSI ENTRY;

Working Draft Fibre Channel HBA API (FC-HBA)

T11/1568-D Revision 8

32

16 April 2003 T11/1568-D Revision 8

typedef struct HBA FcpScsi EntryV2 {
HBA_SCSI I D Scsi | d;
HBA_FCPI D Fcpl d;
HBA LUl D LU D

} HBA_FCPSCSI ENTRYV2, *PHBA_ FCPSCSI ENTRYV2;

typedef struct HBA FCPTar get Mappi ng {
HBA Ul NT32 Nunber OF Entri es;
HBA_FCPSCSI ENTRY entry[1]; /* Variable | ength array containing
nappi ngs*/
} HBA_FCPTARGETMAPPI NG, *PHBA_FCPTARGETMAPPI NG,

typedef struct HBA FCPTar get Mappi ngV2 {
HBA Ul NT32 Number Of Entri es;
HBA_FCPSCSI ENTRYV2 entry[1]; /* Variable I ength array containing
nmappi ngs*/
} HBA FCPTARGETMAPPI NGV2, *PHBA FCPTARGETMAPPI NGV2;

typedef struct HBA FCPBi ndi ngEntry {
HBA_FCPBI NDI NGTYPE type;

HBA _SCSI | D Scsi | d;
HBA_FCPI D Fcpl d;
HBA Ul NT32 Fcl d;

} HBA_FCPBI NDI NGENTRY, *PHBA_FCPBI NDI NGENTRY;

typedef struct HBA FCPBi nding {

HBA_Ul NT32 Number Of Ent ri es;

HBA_FCPBI NDI NGENTRY entry[1]; /* Variable length array */
} HBA_FCPBI NDI NG *PHBA_FCPBI NDI NG,

typedef struct HBA_FCPBi ndi ngEntry2 {

HBA Bl ND_TYPE type;
HBA_SCSI I D Scsi |l d;
HBA_FCPI D Fcpl d;
HBA LUl D LU D;
HBA STATUS St at us;

} HBA_FCPBI NDI NGENTRY2, *PHBA_FCPBI NDI NGENTRY2;

t ypedef struct HBA_FcpBi ndi ng2 {

HBA_Ul NT32 Number Of Ent ri es;

HBA_FCPBI NDI NGENTRY2 entry[1]; /* Variable length array */
} HBA_FCPBI NDI N&, *PHBA_FCPBI NDI NG2;

6.6.2 Target Mapping and Persistent Binding Attribute Specifications
6.6.2.1 HBA_FCPBINDINGTYPE

NOTE 5 HBA_FCPBINDINGTYPE has been retained in this standard for compatibility with HBA API Phase 1 (see
FC-MI).

The value of a data object of type HBA_FCPBINDINGTYPE shall be as indicated in its declaration. Symbolic
constant TO_OTHER shall be used in Phase 1 compatible HBA_GetPersistentBinding functions to indicate binding
types not defined in Phase 1. Phase 2 functions, in order that they may distinguish several additional types of
persistent bindings, do not specify this type.

Working Draft Fibre Channel HBA API (FC-HBA) 33

16 April 2003 T11/1568-D Revision 8

6.6.2.2 HBA_BIND_CAPABILITY

A data object of type HBA_BIND_CAPABILITY shall represent the ability of an HBA to provide a specific set of
features related to persistent binding. Each HBA end port together with its driver software has certain implemented
Persistent Binding Capabilities. Additionally, an HBA end port together with its driver software may allow the avail-
ability of some Persistent Binding Capabilities it implements to be enabled or disabled. Any data object of type
HBA_BIND_CAPABILITY shall have a value equal to the bit-wise OR of zero or more symbolic constants declared
in 6.6.1.2 and defined in 6.6.3

6.6.2.3 HBA_BIND_TYPE

A data object of type HBA_BIND_TYPE shall indicate a set of Persistent Binding features that are relevant to a
specific Persistent Binding. Any data object of type HBA_ BIND_TYPE shall have a value equal to the bit-wise OR
of zero or more symbolic constants declared in 6.6.1.3 and defined in 6.6.4

6.6.2.4 HBA_LUID

A data object of type HBA_LUID shall have value equal to an Identification Descriptor from the Vital Products Data
Device Identification Page (VPD Page 83h) returned by a logical unit in reply to a SCSI INQUIRY command as
specified in SPC-3 with further constraints specified in this subclause. Its length shall be 256 bytes or less. Its
Association value shall be device association (zero) and its Identifier Type shall be one of Vendor Specific (zero),
T10 vendor identification (one), EUI-64 (two) or Name_Identifier as defined in FC-FS (three). An Identification
Descriptor of Identifier Type two or three should be used if the related logical unit provides any Identification
Descriptor of these Identifier Types. A vendor specific LUID has no assurance of uniqueness or persistence. One
should be used only if it is the only alternative, or its persistence and uniqueness are known by the local adminis-
tration to be sufficient.

6.6.2.5 HBA_SCSIID

A data object of type HBA_SCSIID shall encapsulate an operating system identification of a SCSI logical unit. The
value of its OSDeviceName field shall be as specified in 6.6.2.11. The value of its ScsiBusNumber field shall be as
specified in 6.6.2.12. The value of its ScsiTargetNumber field shall be as specified in 6.6.2.13. The value of its
ScsiOSLun field shall be as specified in 6.6.2.14.

NOTE 6 Most versions of Windows and Unix and their application programs identify storage resources via an
abstraction of the classic SCSI Parallel Interface architecture (see SAM-3): A resource is identified as though it is
a SCSiI logical unit within a SCSI target device accessed by a SCSI controller. The means of identification is a
numeric triplet comprising Controller (or Bus) Number, Target Number, and Logical Unit Number (LUN). This may in
turn be further abstracted to a device in the OS file system, and thereby identified by its device name, a character
string.

6.6.2.6 HBA_FCPID

A data object of type HBA_FCPID shall represent the identification of a SCSI logical unit on an FCP-2 service
delivery system. The value of its Fcld field shall be as specified in 6.6.2.9. The value of its NodeWWN field shall be
as specified in 6.6.2.7. The value of its PortWWN field shall be as specified in 6.6.2.8. The value of its FcpLun field
shall be as specified in 6.6.2.10.

6.6.2.7 NodeWWN

Within the context of any FCP attribute data structures defined in 6.6.1, the value of a field with symbolic name
NodeWWN shall be zero or the Node_Name of an FCP-2 Target device (see SAM-3).

Working Draft Fibre Channel HBA API (FC-HBA) 34

16 April 2003 T11/1568-D Revision 8

Within the context of a target mapping returned from an HBA API function, NodeWWN shall be the Node_Name of
the FCP-2 Target device that is represented in the mapping.

6.6.2.8 PortWWN

Within the context of any FCP attribute data structures defined in 6.6.1, the value of a field with symbolic name
PortWWN shall be zero or the N_Port_Name of an FCP-2 Target device (see SAM-3).

Within the context of a target mapping returned from an HBA API function, PortWWN shall be the Port Name of the
FCP-2 Target device that is represented in the mapping.

6.6.2.9 Fcld

Within the context of FCP attribute data structures defined in 6.6.1, the value of a field with symbolic name Fcld
shall be zero or the N_Port_ID of an FCP-2 Target device (see SAM-3).

6.6.2.10 FcpLun

Within the context of any FCP attribute data structures defined in 6.6.1, the value of a field with symbolic hame
FcpLun shall be zero or the 64-bit SCSI LUN of a SCSI logical unit within an FCP-2 Target device (see SAM-3).

Within the context of a target mapping returned from an HBA API function, if the mapping is to a specific logical
unit, the value of FcpLun shall be the 64-bit SCSI LUN of the logical unit that is mapped, or if the mapping is to a
target device, the value of FcpLun shall be the logical unit not specified extended address method LUN.

Byte zero of a SCSI LUN shall be stored as the highest order eight bits of the value of an FcpLun field, and
successive bytes of the SCSI LUN shall be stored as successively lower order groups of eight bits of the FcpLun
field.

6.6.2.11 OSDeviceName

Within the context of FCP attribute data structures defined in 6.6.1, the value of a field with symbolic name OSDevi-
ceName shall be an ASCII string that is null or the name by which the operating system represents a SCSI Logical
Unit (see SAM-3) to application programs, if known. This attribute is an ASCII string with length from 1 to 256
bytes.

If an OSDeviceName is provided by the HBA API in an HBA_Scsild structure within an HBA_FCPTargetMapping or
HBA_ FCPTargetMappingv2 structure, it shall comply with these rules:

a) A non-null logical unit OSDeviceName shall be provided if, and only if, it is possible to use that name in
operating system specific functions to affect the same logical unit as is referenced by the other fields in the
rest of the structure.

b) If there are any names that have the preferred format as specified in table 2 and also satisfy rule a), then
one of them shall be provided. If there are more than one, one shall be chosen and consistently provided
(i.e., multiple calls shall provide the same name).

c) If there are no names with the preferred format as specified in table 2 but there are names that satisfy rule
a), then one of them shall be provided. If there are more than one, one shall be chosen and consistently
provided (i.e., multiple calls shall provide the same name).

d) If no name satisfies rule a), the OSDeviceName shall be a zero length ASCII string.

Working Draft Fibre Channel HBA API (FC-HBA) 35

16 April 2003 T11/1568-D Revision 8

Table 2 — Preferred format for logical unit OSDeviceName

Preferred format for logical unit type 2@
oS disk/optical cd-rom tape changer
AIX /dev/hdiskn (disk) /dev/cdn /dev/rmtn (zero length string)
7drev/omdn (optical)
Linux /dev/sdn /dev/srn /dev/st/n (zero length string)
Solaris /devirdsk/cxtydzs2 P | /dev/rdsk/cxtydzs2 /dev/rmt/nn (zero length string)
Windows | W\PHYSICALDRIVENn | W\CDROMnN \ATAPEN \WACHANGERnN

@ In logical unit name format samples, text appearing in bold weight shall appear in the indicated position
exactly as it appears in the format sample. Text appearing in normal weight italics is a placeholder for
similar text determined by the rules of the OS. Italicized lower case n represents any decimal number and
may be more than one digit. Normal text in parentheses is descriptive, not format sample.

These names shall reference the raw (i.e., unformatted) and unpartitioned disk. So long as it is consistent
with Solaris convention, rdsk shall be used to indicate the raw device and s2 shall be used to reference the
unpartitioned disk. Should other conventional formats be established for representing these
characteristics, the new conventions shall also be considered preferred formats.

6.6.2.12 ScsiBusNumber

Within the context of any FCP attribute data structures defined in 6.6.1, the value of a field with symbolic hame
ScsiBusNumber shall be zero or a number that in accord with the specifications of the operating system identifies
the SCSI Domain in which the operating system represents a SCSI Logical Unit to application programs. This may
be referenced as 'bus number' in OS documentation (see SAM-3 and relevant OS documentation).

Within the context of a target mapping returned from an HBA API function, if the driver for the HBA that returns the
target mapping has registered with the operating system for a local bus number, the value of the ScsiBusNumber
shall be its registered local bus number.

6.6.2.13 ScsiTargetNumber

Within the context of any FCP attribute data structures defined in 6.6.1, the value of a field with symbolic hame
ScsiTargetNumber shall be zero or a number that in accord with the specifications of the operating system
identifies the SCSI target device in which the operating system may represent SCSI Logical Units to application
programs. This may be referenced as target ID or device number' in OS documentation (see SAM-3 and relevant
OS documentation).

Within the context of a target mapping returned from an HBA API function, the value of ScsiTargetNumber shall be
the OS Target ID of the device that is mapped.

6.6.2.14 ScsiOSLun
Within the context of any FCP attribute data structures defined in 6.6.1, the value of a field with symbolic name
ScsiOSLun shall be zero or a number that in accord with the specifications of the operating system distinguishes a

SCSI Logical Unit within its represented device to application programs (see SAM-3 and relevant OS documen-
tation).

Working Draft Fibre Channel HBA API (FC-HBA) 36

16 April 2003 T11/1568-D Revision 8

Within the context of a target mapping returned from an HBA API function, if the mapping is to a specific logical
unit, the value of ScsiOSLun shall be the OS LUN of the logical unit that is mapped, or if the mapping is to a target
device, the value of ScsiOSLun shall be vendor specific.

6.6.3 Persistent Binding Capabilities
6.6.3.1 Persistent Binding Capability: HBA_CAN_BIND_TO_D_ID

The Persistent Binding capability HBA_CAN_BIND_TO_D_ID shall indicate the ability of an HBA to accept a
Persistent Binding that identifies the Fibre Channel target port by its address identifier.

6.6.3.2 Persistent Binding Capability: HBA_CAN_BIND_TO_WWPN

The Persistent Binding capability HBA_CAN_BIND_TO_WWPN shall indicate the ability of an HBA to accept a
Persistent Binding that identifies the Fibre Channel target port by its WWPN.

6.6.3.3 Persistent Binding Capability: HBA_CAN_BIND_TO_WWNN

The Persistent Binding capability HBA_CAN_BIND_TO_WWNN shall indicate the ability of an HBA to accept a
Persistent Binding that identifies a Fibre Channel target device (not a target port) by its World Wide Node Name
(WWNN). Its ambiguity with respect to multi-port devices is intentional, being left for the HBA and / or fabric to
resolve in vendor specific manner.

6.6.3.4 Persistent Binding Capability: HBA_CAN_BIND_TO_LUID

The Persistent Binding capability HBA_CAN_BIND_TO_LUID shall indicate the ability of an HBA to accept a
Persistent Binding that identifies the Fibre Channel target logical unit by the value of one of its device-associated
Identification Descriptors (LUID).

6.6.3.5 Persistent Binding Capability: HBA_CAN_BIND_ANY_LUNS

The Persistent Binding capability HBA_CAN_BIND_ANY_LUNS shall indicate the ability of an HBA to accept
Persistent Binding settings that independently specify both the ScsiOSLuns and FcpLuns.

An HBA that does not express the HBA_CAN_BIND_ANY_LUNS capability may require that all Persistent Binding
settings preserve the groupings of logical units into devices, i.e., for any pair of Persistent Binding settings, the
HBA may be able to support them both concurrently only if

a) the OS target number identified by both persistent bindings is the same and the FCP target port identified
by both persistent bindings is the same; or

b) the OS target number identified by the persistent bindings is different and the FCP target port identified by
the persistent bindings is different.

NOTE 7 In many OS implementations unpredictable behavior, possibly including failure to boot, may result from
mapping OS LUN 0 to any FCP LUN other than 0.

6.6.3.6 Persistent Binding Capability: HBA_CAN_BIND_TARGETS
The Persistent Binding capability HBA_CAN_BIND_TARGETS shall indicate the ability of an HBA to interpret a
single Persistent Binding setting as direction to automatically generate Target Mappings for all LUNs offered by the

target device identified in the HBA_FCPID of the persistent binding setting to LUNS subordinate to the bus and
target numbers identified in the HBA_SCSIID of the persistent binding.

Working Draft Fibre Channel HBA API (FC-HBA) 37

16 April 2003 T11/1568-D Revision 8

6.6.3.7 Persistent Binding Capability: HBA_CAN_ BIND_AUTOMAP

The Persistent Binding capability HBA_CAN_BIND_AUTOMAP shall indicate the ability of an HBA to attempt to
automatically generate Target Mappings and Persistent Bindings for all discovered storage resources.

If this capability is not indicated or disabled, Target Mappings shall be established only based on Persistent
Bindings that have been explicitly configured by means specified in this standard or otherwise.

NOTE 8 This capability is sometimes described as HBA-based LUN Masking.
6.6.3.8 Persistent Binding Capability: HBA_CAN_BIND_CONFIGURED
The Persistent Binding capability HBA_CAN_BIND_CONFIGURED shall indicate the ability of an HBA to accept
the Persistent Binding configuration functions HBA_SetPersistentBindingV2, HBA_RemovePersistentBinding, and

HBA_RemoveAllPersistentBindings.

An HBA that does not express this capability may provide only vendor specific or automatically generated configu-
ration of persistent bindings.

6.6.4 Persistent Binding Setting Types
6.6.4.1 Persistent Binding Type: HBA_BIND_TO_D_ID

If a Persistent Binding setting includes this feature in its type, the setting shall identify the Fibre Channel target port
by its Fcld field. The PortWWN, NodeWWN, and LUID fields shall be ignored.

If a Persistent Binding setting includes more than one of HBA_BIND_TO_D_ID, HBA_BIND_TO_WWPN,
HBA_ BIND_TO_WWNN, AND HBA_BIND_TO_LUID in its type, that setting shall be rejected.

6.6.4.2 Persistent Binding Type: HBA_BIND_TO_WWPN

If a Persistent Binding setting includes this feature in its type, the setting shall identify the Fibre Channel target port
by its PortWWN field. The Fcld, NodeWWN, and LUID fields shall be ignored.

If a Persistent Binding setting includes more than one of HBA_BIND_TO_D_ID, HBA_BIND_TO_WWZPN,
HBA BIND_TO_WWNN, AND HBA_BIND_TO_LUID in its type, that setting shall be rejected.

6.6.4.3 Persistent Binding Type: HBA_BIND_TO_WWNN
If a Persistent Binding setting includes this feature in its type, the setting shall identify the Fibre Channel target
device by its NodeWWN field. The Fcld, PortWWN, and LUID fields shall be ignored. The HBA shall choose by

vendor specific means an appropriate target port associated with the identified target device.

If a Persistent Binding setting includes more than one of HBA_BIND_TO_D_ID, HBA_BIND_TO_WWPN,
HBA BIND_TO_WWNN, AND HBA_BIND_TO_LUID in its type, that setting shall be rejected.

6.6.4.4 Persistent Binding Type: HBA_BIND_TO_LUID

If a Persistent Binding setting includes this feature in its type, the setting shall identify the Fibre Channel target
logical unit by its LUID field. The FcpLun, Fcld, PortWWN, and NodeWWN fields shall be ignored.

If a Persistent Binding setting includes more than one of HBA_BIND_TO_D_ID, HBA_BIND_TO_WWPN,
HBA_BIND_TO_WWNN, AND HBA_BIND_TO_LUID in its type, that setting shall be rejected.

Working Draft Fibre Channel HBA API (FC-HBA) 38

16 April 2003

T11/1568-D Revision 8

6.6.4.5 Persistent Binding Type: HBA_BIND_TARGETS

If a Persistent Binding setting includes this feature in its type, Target Mappings shall be automatically generated
from OS LUNSs on the controller and target indicated by the HBA_SCSIID of the persistent binding to all logical
units on the FCP target port indicated by HBA_FCPID of the persistent binding, up to the capacity of the OS target
implementation. The LUNs in the HBA_FCPID and the HBA_SCSIID shall be ignored.

If a setting does not include this feature in its type, the setting shall be treated as a persistent binding of the
specified OS logical unit to the specified FCP logical unit. The HBA may not have the
HBA_CAN_BIND_ANY_LUNS capability, in which case the Persistent Binding settings that may be configured may
be restricted to those that preserve logical unit groupings within targets as described in 6.6.3.5.

6.7 SB Attributes

typedef struct HBA SBDevld {
char OSDevi ceNane[256] ;
} HBA SBDEVI D, *PHBA SBDEVI D;

typedef struct HBA SBId {

HBA Ul NT32 Fcl d;

HBA_ WWN NodeWN;

HBA WAN Por t VWAN;

HBA Ul NT32 SBDevi cel denti fier;

} HBA SBI D, *PHBA_ SBI D

typedef struct HBA Ned {
HBA Ul NT32
HBA Ul NT32

} HBA _NED, *PHBA_NED,

NEDWor dO;
Nel 1d[7];

t ypedef struct HBA DeviceSel f Desc {
HBA _NED TokenNED;
HBA _NED Devi ceNED;
} HBA DEVI CESELFDESC, *PHBA DEVI CESELFDESC;

typedef struct HBA SBDevEntry {

HBA _SBDEVI D SBDev!| d;

HBA SBI D SBI d;

HBA_DEVI CESELFDESC Devi ceSel f Desc;
} HBA SBDEVENTRY, *PHBA SBDEVENTRY;

t ypedef struct HBA SBTar get Mappi ng {
HBA_Ul NT32 Number Of Entri es;
HBA_SBDEVENTRY entry[1];

} HBA SBTARGETMAPPI NG, * PHBA SBTARGETMAPPI NG

Working Draft Fibre Channel HBA API (FC-HBA)

/* Node El enent ldentifier*/
/* Node El enent Descriptor*/

/* Device Self Description Data*/

/* Variable | ength array containing mappi ngs*/

39

| 16 April 2003 T11/1568-D Revision 8

typedef struct HBA SBStatistics {

HBA_ | NT32 SSCHRSCHCount ;

HBA | NT32 Sanpl eCount ;

HBA | NT32 Devi ceConnect Ti ne;
HBA_| NT32 Functi onPendi ngTi ne;
HBA | NT32 Devi ceDi sconnect Ti ne;
HBA | NT32 Cont r ol Uni t Queui ngTi me;
HBA | NT32 Devi ceActiveOnl yTi ne;
HBA | NT32 Reserved;

HBA | NT32 Reserved;

} HBA _SBSTATI STI CS, *PHBA_SBSTATI STI CS;

typedef struct HBA SBDskCapacity {

HBA_ | NT32 SCSI For mat LBA; /* SCSI Read Capacity Format */
HBA | NT32 SCSI For mat Bl kLen; /* SCSI Read Capacity Format */
HBA | NT32 SBDskNunber O Cyl i nders; /* cyls*/

HBA | NT32 SBDskTr acksPer Cyl i nder; /* tracks per cyl */

HBA_ | NT32 SBDskMaxUsabl eTr ackLen; /* usable track capacity */

} HBA _SBDSKCAPACI TY, *PHBA_SBDSKCAPACI TY;

6.8 FC-3 Management Attributes

6.8.1 FC-3 Management Data Declarations
typedef enum HBA wantype { NODE_WAN, PORT_WAN} HBA WANTYPE;

typedef struct HBA Myntlnfo {

HBA VWWN WAN;

HBA_Ul NT32 uni ttype;

HBA Ul NT32 Portld;

HBA Ul NT32 Nunber OF At t achedNodes;
HBA Ul NT16 | PVer si on;

HBA Ul NT16 UDPPort ;

HBA_Ul NT8 | PAddr ess[16] ;

HBA_Ul NT16 reserved;

HBA_ Ul NT16 Topol ogyDi scover yFl ags;

} HBA_MGMTI NFO, *PHBA MGMTI NFG,

6.8.2 FC-3 Management Attribute Overview

NOTE 9 Although the HBA_Mgmtinfo structure closely resembles the Specific Identification Data in an RNID
Accept with Node Identification Data Format DFh (see FC-FS), it is different. First, it includes only 8 bytes of the
initial 16 bytes of the Specific Identification Data. Further, the names of the fields in this structure reflect an earlier
version of the reply to the RNID ELS. RNID was significantly redefined in FC-FS after the predecessor to this
standard had stabilized.

6.8.3 FC-3 Management Attribute Specifications
6.8.3.1 Compliance

Some FC-3 management attributes shall be implemented as specified, and some shall either be implemented or
given a value indicating they are not implemented (see annex A).

Working Draft Fibre Channel HBA API (FC-HBA) 40

16 April 2003 T11/1568-D Revision 8

6.8.3.2 WWN

The value of the WWN field of a data structure of type HBA_MGMTINFO shall be the value of the first eight bytes
of the initial 16 bytes of the Specific Identification Data in an RNID Accept with Node Identification Data Format
DFh (see FC-FS). This is vendor specific data.

6.8.3.3 unittype

The value of the unittype field of a data structure of type HBA_MGMTINFO shall be the value of the Association
Type (formerly unit type) field of the Specific Identification Data in an RNID Accept with Node Identification Data
Format DFh (see FC-FS), describing the type of equipment this HBA represents.

6.8.3.4 Portld

The value of the Portld field of a data structure of type HBA_MGMTINFO shall be the value of the Physical Port
Number field of the Specific Identification Data in an RNID Accept with Node Identification Data Format DFh (see
FC-FS).

6.8.3.5 NumberOfAttachedNodes

The value of the NumberOfAttachedNodes field of a data structure of type HBA_MGMTINFO shall be the value of
the Number of Attached Nodes field of the Specific Identification Data in an RNID Accept with Node Identification
Data Format DFh (see FC-FS).

6.8.3.6 IPVersion

The value of the IPVersion field of a data structure of type HBA_MGMTINFO shall be the value of the concatenated
Node Management and IP Version fields of the Specific Identification Data in an RNID Accept with Node Identifi-
cation Data Format DFh (see FC-FS), indicating the management protocol stack and whether the following IP
address is a IPv4 or IPv6 address.

6.8.3.7 UDPPort

The value of the UDPPort field of a data structure of type HBA_MGMTINFO shall be the value of the UDP/TCP
Port Number field of the Specific Identification Data in an RNID Accept with Node Identification Data Format DFh
(see FC-FS), indicating the management UDP/TCP port.

6.8.3.8 IPAddress

The value of the IPAddress field of a data structure of type HBA_MGMTINFO shall be the value of the IP address
field of the Specific Identification Data in an RNID Accept with Node Identification Data Format DFh (see FC-FS),
indicating the management IP address.

The least significant byte of the IP address field of the RNID Specific Identification Data structure shall be stored in
byte zero of the HBA_MGMTINFO IPAddress array, and successively higher order bytes of the IP address field of
the RNID Specific Identification Data structure shall be stored in successively higher numbered bytes of the
HBA_MGMTINFO IPAddress array.

6.8.3.9 TopologyDiscoveryFlags
The value of the TopologyDiscoveryFlags field of a data structure of type HBA_MGMTINFO shall be the value of

the vendor specific field in word 12 of the Specific Identification Data in an RNID Accept with Node Identification
Data Format DFh (see FC-FS).

Working Draft Fibre Channel HBA API (FC-HBA) 41

16 April 2003 T11/1568-D Revision 8

6.9 Polled Event Notification Attributes

6.9.1 Polled Event Data Declarations

6.9.1.1 Polled Event Codes

#def i ne HBA EVENT LI P_OCCURRED 1
#def i ne HBA EVENT LI NK_UP 2
#def i ne HBA EVENT LI NK_DOWN 3
#def i ne HBA EVENT LI P_RESET OCCURRED 4
#def i ne HBA EVENT RSCN 5
#def i ne HBA EVENT PROPRI ETARY OXFFFF

6.9.1.2 Polled Event Data Structure Declarations

typedef struct HBA_Link_EventInfo {
HBA_ Ul NT32 Port Fcl d; /* end port at which this event occurred */
HBA_ Ul NT32 Reserved[3] ;

} HBA_LI NK_EVENTI NFO, *PHBA_LI NK_EVENTI NFQ,

typedef struct HBA RSCN Eventlnfo {
HBA_Ul NT32 Port Fcl d; /* end port at which this event occurred */
HBA Ul NT32 NPor t Page; /* Reference FCG-FS for RSCN ELS
Affected Port | D Pages*/
HBA Ul NT32 Reserved[2] ;
} HBA _RSCN_EVENTI NFO, *PHBA_RSCN_EVENTI NFQ,

typedef struct HBA Pty Eventlnfo {
HBA_Ul NT32 Pt yDat a[4] ; /* Proprietary data */
} HBA_PTY_EVENTI NFO, *PHBA_PTY_EVENTI NFO

typedef struct HBA Eventlnfo {
HBA Ul NT32 Event Code;

uni on {
HBA_LI NK_EVENTI NFO Li nk_Event | nf o;
HBA_RSCN_EVENTI NFO RSCN_Event | nf o;
HBA_PTY_EVENTI NFO Pty_Event I nfo;
} Event;

} HBA_EVENTI NFO, *PHBA_EVENTI NFOQ,
6.9.2 Polled Event Attribute Specifications
6.9.2.1 EventCode

EventCode shall contain an event code describing an event reported by the polled event API (see 6.9.1.1).

6.10 Asynchronous Event Notification Attributes

6.10.1 Asynchronous Event Data Declarations
6.10.1.1 Callback Handle

typedef void *HBA CALLBACKHANDLE;

Working Draft Fibre Channel HBA API (FC-HBA) 42

16 April 2003 T11/1568-D Revision 8

6.10.1.2 HBA Add Category Event Type

#define HBA_EVENT_ADAPTER_ADD 0x101

6.10.1.3 HBA Category Event Types

#define HBA_EVENT_ADAPTER_UNKNOVW 0x100
#def i ne HBA EVENT_ADAPTER REMOVE 0x102
#def i ne HBA EVENT_ADAPTER CHANGE 0x103

6.10.1.4 Port Category Event Types

#def i ne HBA EVENT _PORT _UNKNOWN 0x200
#def i ne HBA_EVENT_PORT_OFFLI NE 0x201
#def i ne HBA_EVENT_PORT_ONLI NE 0x202
#def i ne HBA_EVENT_PORT_NEW TARGETS 0x203
#def i ne HBA EVENT_PORT_FABRI C 0x204

6.10.1.5 Port Statistics Category Event Types

#def i ne HBA EVENT _PORT_STAT THRESHOLD 0x301
#def i ne HBA EVENT _PORT_STAT GROWH 0x302

6.10.1.6 Target Category Event Types

#def i ne HBA_EVENT_TARGET _UNKNOWN 0x400
#def i ne HBA_EVENT_TARGET _OFFLI NE 0x401
#def i ne HBA_EVENT_TARGET_ONLI NE 0x402
#def i ne HBA_EVENT _TARGET REMOVED 0x403

6.10.1.7 Link Category Event Types

#def i ne HBA EVENT LI NK_UNKNOWN 0x500
#def i ne HBA EVENT LI NK_| NCI DENT 0x501

6.10.2 Asynchronous Event Attribute Specifications

6.10.2.1 EventType

EventType shall contain an event type describing an event reported by the asynchronous event API (see 6.10.1).

a)
b)
c)
d)
e)
f)

9)

The value of EventType shall be HBA_EVENT_ADAPTER_ADD to indicate that an HBA supported by the
HBA API has been added to the local system.

The value of EventType shall be HBA_EVENT_ADAPTER_REMOVE to indicate that an HBA supported by
the HBA API has been removed from the local system.

The value of EventType shall be HBA EVENT_ADAPTER_CHANGE to indicate that there has been a
configuration change to an HBA on the local system supported by the HBA API.

The value of EventType shall be HBA EVENT_PORT_OFFLINE to indicate that an HBA on the local
system supported by the HBA API has stopped providing communication.

The value of EventType shall be HBA_EVENT_PORT_ONLINE to indicate that an HBA on the local
system supported by the HBA API has restarted providing communication.

The value of EventType shall be HBA_EVENT_PORT_NEW_TARGETS to indicate that an HBA on the
local system supported by the HBA API has added FCP target devices to its discovered ports.

The value of EventType shall be HBA EVENT_PORT_FABRIC to indicate that an HBA on the local
system supported by the HBA API has received an RSCN ELS.

Working Draft Fibre Channel HBA API (FC-HBA) 43

h)
)
)
k)

16 April 2003

T11/1568-D Revision 8

The value of EventType shall be HBA_EVENT_PORT_STAT_THRESHOLD to indicate that a statistical
counter has reached a registered level.

The value of EventType shall be HBA_EVENT_PORT_STAT_GROWTH to indicate that a statistical
counter has increased at a rate equal to or in excess of a registered rate.

The value of EventType shall be HBA_EVENT_TARGET_OFFLINE to indicate that operational use of an
FCP target port supported by the HBA API has become impossible.

The value of EventType shall be HBA_EVENT_TARGET_ONLINE to indicate that operational use of an
FCP target port supported by the HBA API has been restored.

The value of EventType shall be HBA_EVENT_TARGET_REMOVED to indicate that an FCP target port
supported by the HBA API has been removed from the fabric.

The value of EventType shall be HBA_EVENT_LINK_INCIDENT to indicate that an HBA on the local
system supported by the HBA API has received an RLIR ELS.

6.11 Library Attributes

6.11.1 Library Attribute Data Declarations

Functions implemented in compliance with this standard shall conform to the function prototypes declared in this
subclause.

The fol
i es:

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

t ypedef

Working Draft Fibre Channel HBA API (FC-HBA)

| owi ng are prototypes for the functions specified in both HBA APl Phase 1 and 2 |ibrar-

HBA Ul NT32
HBA STATUS
HBA STATUS
HBA Ul NT32
HBA STATUS
HBA HANDLE
voi d

HBA STATUS

(*
(*
(*
(*
(*
(*

HBAGet Ver si onFunc) () ;

HBALoadLi braryFunc) () ;

HBAFr eelLi braryFunc) () ;

HBAGet Nunber OF Adapt er sFunc) () ;
HBAGet Adapt er NaneFunc) (HBA_Ul NT32,
HBACpenAdapt er Func) (char *);

(* HBAC oseAdapt er Func) (HBA_HANDLE)

(* HBAGet Adapt er Attri but esFunc)
(HBA_HANDLE, HBA ADAPTERATTRI BUTES *);
(* HBAGet AdapterPortAttri butesFunc)
(HBA_HANDLE, HBA Ul NT32, HBA PORTATTRI BUTES *);

(* HBAGet Port StatisticsFunc)

(HBA_HANDLE, HBA Ul NT32, HBA PORTSTATI STI CS *);

(* HBAGet Di scoveredPort Attri but esFunc)

(HBA_HANDLE, HBA Ul NT32, HBA Ul NT32, HBA_PORTATTRI BUTES *);
(* HBAGet Port Attri but esByWANFunc)

(HBA_HANDLE, HBA WAN, HBA PORTATTRI BUTES *);

HBA STATUS(* HBASendCTPassThr uFunc)

(HBA_HANDLE, void *, HBA U NT32, void *, HBA U NT32);

(* HBARef reshl nf ormat i onFunc) (HBA_HANDLE)

(* HBAReset StatisticsFunc)(HBA_HANDLE, HBA Ul NT32);

(* HBAGet FcpTar get Mappi ngFunc)

(HBA_HANDLE, HBA FCPTARGETMAPPI NG *);

(* HBAGet FcpPer si st ent Bi ndi ngFunc)

(HBA_HANDLE, HBA FCPBI NDI NG *) ;

(* HBAGet Event Buf f er Func)
(HBA_HANDLE, HBA EVENTI NFO *,
(* HBASet RNI Dvgnt | nf oFunc)
(HBA_HANDLE, HBA MGMTI NFO *);
(* HBAGet RNI DMgnt | nf oFunc)
(HBA_HANDLE, HBA MGMTI NFO *);

char *);

HBA STATUS
HBA STATUS
HBA STATUS

HBA STATUS

voi d

voi d

HBA_STATUS
HBA STATUS
HBA_STATUS
HBA Ul NT32 *);
HBA_STATUS

HBA STATUS

44

16 April 2003

t ypedef

t ypedef

t ypedef

t ypedef

The fol
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef
t ypedef

t ypedef

t ypedef

HBA_STATUS

HBA_STATUS

HBA_STATUS

HBA STATUS

owi ng are prototypes for the functions specified only in HBA API

HBA_STATUS
HBA_STATUS
HBA_STATUS
voi d

HBA_STATUS
HBA_STATUS
HBA_STATUS
HBA_STATUS
HBA STATUS
HBA_STATUS
HBA_STATUS

HBA STATUS

HBA STATUS

HBA STATUS

HBA STATUS

HBA Ul NT32
HBA STATUS

HBA STATUS

HBA STATUS

T11/1568-D Revision 8

(* HBASendRNI DFunc)

(HBA_HANDLE, HBA WAN, HBA WANTYPE, void *, HBA U NT32 *);
(* HBASendScsi | nqui ryFunc)

(HBA_HANDLE, HBA WAN, HBA Ul NT64, HBA Ul NT8,

HBA_UI NT32, void *, HBA U NT32, void *, HBA U NT32);
(* HBASendReport LUNsFunc)

(HBA_HANDLE, HBA WM, void *, HBA U NT32, void *,
HBA Ul NT32) ;

(* HBASendReadCapaci t yFunc)

(HBA_HANDLE, HBA WAN, HBA Ul NT64, void *, HBA U NT32,

void *, HBA Ul NT32);

Phase 2 l|ibraries:

(* HBAOpenAdapt er By WANFunc)

(HBA_HANDLE *, HBA W) ;

(* HBAGet FcpTar get Mappi ngV2Func)

(HBA_HANDLE, HBA WAN, HBA FCPTARGETMAPPI NG *);

(* HBASendCTPassThr uV2Func)

(HBA_HANDLE, HBA WM, void *,
HBA_UI NT32 *);

(* HBARefreshAdapt er Confi gurati onFunc) ();

(* HBAGet Bi ndi ngCapabi | i t yFunc)

(HBA_HANDLE, HBA WAN, HBA BI ND_CAPABI LI TY *);

(* HBAGet Bi ndi ngSupport Func)

(HBA_HANDLE, HBA WAN, HBA BI ND_CAPABI LI TY *);

(* HBASet Bi ndi ngSupport Func)

(HBA_HANDLE, HBA WAN, HBA BI ND_CAPABI LI TY);

(* HBASet Per si st ent Bi ndi ngV2Func)

(HBA_HANDLE, HBA WA, const HBA FCPBI NDI N& *);

(* HBAGet Per si st ent Bi ndi ngV2Func)

(HBA_HANDLE, HBA WA, HBA FCPBI NDI N& *);

(* HBARenovePer si st ent Bi ndi ngFunc)

(HBA_HANDLE, HBA WAN, const HBA FCPBI NDI N& *);

(* HBARenoveAl | Per si st ent Bi ndi ngsFunc)

(HBA_HANDLE, HBA VW) ;

(* HBASendRNI DV2Func)

(HBA_HANDLE, HBA WA, HBA WA, HBA Ul NT32, HBA Ul NT32,
HBA_UI NT32*) ;

(* HBAScsi | nqui r yV2Func)

(HBA_HANDLE, HBA WAN, HBA WAN, HBA Ul NT64, HBA Ul NT8,
HBA U NT8, void *, HBA U NT32 *, HBA U NT8 *,
void *, HBA U NT32 *);

(* HBAScsi Report LUNsV2Func)
(HBA_HANDLE, HBA WA, HBA WA, void *,
HBA_UI NT8 *, void *, HBA U NT32 *);

(* HBAScsi ReadCapaci t yV2Func)

(HBA_HANDLE, HBA WA, HBA WA, HBA Ul NT64, void *,
HBA U NT32 *, HBA U NT8 *, void *, HBA U NT32 *);

(* HBAGet Vendor Li braryAttri but esFunc)

(HBA_LI BRARYATTRI BUTES *) ;

(* HBARenoveCal | backFunc)

(HBA_CALLBACKHANDLE) ;

(* HBARegi st er For Adapt er AddEvent sFunc)

(void (*)(void *, HBA WA, HBA Ul NT32),

voi d *, HBA CALLBACKHANDLE *);

(* HBARegi st er For Adapt er Event sFunc)

(void (*)(void *, HBA WAN, HBA Ul NT32),

voi d *, HBA HANDLE, HBA CALLBACKHANDLE *);

HBA UI NT32, void *,

void *,

HBA UI NT32 *,

Working Draft Fibre Channel HBA API (FC-HBA)

16 April 2003

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef
t ypedef
t ypedef

t ypedef

HBA_STATUS

HBA_STATUS

HBA_STATUS

HBA_STATUS

HBA STATUS

HBA_STATUS

HBA STATUS

HBA_ STATUS

HBA STATUS

HBA STATUS

HBA STATUS
HBA STATUS
HBA STATUS

HBA STATUS

T11/1568-D Revision 8

(* HBARegi st er For Adapt er Por t Event sFunc)

(void (*)(void *, HBA WA, HBA Ul NT32, HBA Ul NT32),
void *, HBA HANDLE, HBA WA, HBA CALLBACKHANDLE *);

(* HBARegi st er For Adapt er Por t St at Event sFunc)

(void (*)(void *, HBA WAN, HBA Ul NT32),

voi d *, HBA_HANDLE, HBA WA, HBA PORTSTATI STI CS,

HBA_ Ul NT32, HBA_CALLBACKHANDLE *);

(* HBARegi st er For Tar get Event sFunc)

(void (*)(void *, HBA WAN, HBA WAN, HBA Ul NT32),
void *, HBA HANDLE, HBA WAN, HBA VWW,
HBA_CALLBACKHANDLE *, HBA Ul NT32);

(* HBARegi st er For Li nkEvent sFunc)

(void (*)(void *, HBA WAN, HBA U NT32, void *, HBA_Ul NT32),
void *, void *, HBA U NT32, HBA HANDLE,
HBA_CALLBACKHANDLE *);

(* HBASendRPLFunc)

(HBA_HANDLE, HBA WAN, HBA WAN, HBA Ul NT32,

HBA_UI NT32, void *, HBA U NT32 *);

(* HBASendRPSFunc)

(HBA_HANDLE, HBA WA, HBA WA, HBA Ul NT32, HBA WW,
HBA_UI NT32, void *, HBA U NT32 *);

(* HBASendSRLFunc)

(HBA_HANDLE, HBA WAN, HBA WAN, HBA Ul NT32, void *,
HBA_UI NT32 *);

(* HBASendLI| RRFunc)

(HBA_HANDLE, HBA WAN, HBA WAN, HBA Ul NT8, HBA_ Ul NT8,
void *, HBA U NT32 *);

(* HBAGet FCASt ati sti csFunc)

(HBA_HANDLE, HBA WAN, HBA Ul NT8,

HBA_FCASTATI STICS *);

(* HBAGet FCPSt ati sti csFunc)

(HBA_HANDLE, const HBA SCSIID *,
HBA_FCASTATI STI CS *);

(* HBASendRLSFunc)

(HBA_HANDLE, HBA WAN, HBA WAN, void *, HBA U NT32 *);

(* HBA_Get SBTar get Mappi ngFunc)

(HBA_HANDLE, HBA WAN, HBA_ SBTARGETMAPPI NG *);

(* HBA Get SBStatisticsFunc)

(HBA_HANDLE, const HBA SBDEVID *, HBA SBSTATI STICS *);

(* HBA_SBDskGCet Capaci t yFunc)

(HBA_DEVI CESELFDESC, HBA SBDSKCAPACI TY *)

Working Draft Fibre Channel HBA API (FC-HBA)

46

16 April 2003

T11/1568-D Revision 8

The followi ng structure is used to register a vendor-specific library that supports only Phase
1 functions. Although such libraries are supported, they are not conpliant with this standard.

typedef struct HBA_EntryPoints {
HBAGet Ver si onFunc
HBALoadLi br ar yFunc
HBAFr eeLi br ar yFunc
HBAGet Nunmber OF Adapt er sFunc
HBAGet Adapt er NaneFunc
HBAOpenAdapt er Func
HBACI oseAdapt er Func
HBAGet Adapt er Att ri but esFunc
HBAGet Adapt er Port At t ri but esFunc
HBAGet Port St ati sti csFunc
HBAGet Di scover edPort Attri but esFunc
HBAGet Port At t ri but esByW\WFunc
HBASendCTPassThr uFunc
HBARef r eshl nf or mat i onFunc
HBAReset St at i sti csFunc
HBAGet FcpTar get Mappi ngFunc
HBAGet FcpPer si st ent Bi ndi ngFunc
HBAGet Event Buf f er Func
HBASet RNl DMgnt | nf oFunc
HBAGet RNI DMt | nf oFunc
HBASendRNI DFunc
HBASendScsi | nqui r yFunc
HBASendRepor t LUNsFunc
HBASendReadCapaci t yFunc

} HBA_ENTRYPO NTS, *PHBA ENTRYPO NTS;

Working Draft Fibre Channel HBA API (FC-HBA)

Get Ver si onHandl er;

LoadLi br aryHandl er;

Fr eeLi braryHandl er;

Get Nunber OF Adapt er sHandl er ;

Get Adapt er NareHandl er;
OpenAdapt er Handl er;

Cl oseAdapt er Handl er;

Get Adapt er At tri but esHandl er;
Get Adapt er Port At tri but esHandl er;
Cet Port Stati sti csHandl er;

Get Di scoveredPort Attri but esHandl er;
Get Port Attri but esByWWHandl er ;
SendCTPassThr uHandl er;

Ref r eshl nf or mat i onHandl er;
Reset St ati sti csHandl er;

Get FcpTar get Mappi ngHandl er ;

Get FcpPer si st ent Bi ndi ngHandl er ;
Cet Event Buf f er Handl er;

Set RNl DMgnt | nf oHandl er;

Get RNI DMgnt | nf oHandl er ;

SendRNI DHandl er ;

Scsi | nqui ryHandl er;

Repor t LUNsHandl er;

ReadCapaci t yHandl er;

47

16 April 2003

T11/1568-D Revision 8

The followi ng structure is used to register a conpliant vendor-specific library on a system

t hat does not support SB devi ces.

typedef struct HBA EntryPoi ntsV2 {
HBAGet Ver si onFunc
HBALoadLi br ar yFunc
HBAFr eeLi br ar yFunc
HBAGet Nunmber OF Adapt er sFunc
HBAGet Adapt er NaneFunc
HBAOpenAdapt er Func
HBACI oseAdapt er Func
HBAGet Adapt er Att ri but esFunc
HBAGet Adapt er Port At t ri but esFunc
HBAGet Port St ati sti csFunc
HBAGet Di scover edPort Attri but esFunc
HBAGet Port At t ri but esByW\WFunc
HBASendCTPassThr uFunc
HBARef r eshl nf or mat i onFunc
HBAReset St at i sti csFunc
HBAGet FcpTar get Mappi ngFunc
HBAGet FcpPer si st ent Bi ndi ngFunc
HBAGet Event Buf f er Func
HBASet RNl DMgnt | nf oFunc
HBAGet RNI DMt | nf oFunc
HBASendRNI DFunc
HBASendScsi | nqui r yFunc
HBASendRepor t LUNsFunc
HBASendReadCapaci t yFunc
HBAOpenAdapt er By WANFunc
HBAGet FcpTar get Mappi ngV2Func
HBASendCTPassThr uV2Func
HBARef r eshAdapt er Confi gurati onFunc
HBAGet Bi ndi ngCapabi | i t yFunc
HBAGet Bi ndi ngSupport Func
HBASet Bi ndi ngSupport Func
HBASet Per si st ent Bi ndi ngV2Func
HBAGet Per si st ent Bi ndi ngV2Func
HBARenovePer si st ent Bi ndi ngFunc
HBARenoveAl | Per si st ent Bi ndi ngsFunc
HBASendRNI DV2Func
HBAScsi | nqui ryV2Func
HBAScsi Repor t LUNsV2Func
HBAScsi ReadCapaci t yV2Func
HBAGet Vendor Li brar yAttri but esFunc
HBARenovecCal | backFunc
HBARegi st er For Adapt er AddEvent sFunc
HBARegi st er For Adapt er Event sFunc
HBARegi st er For Adapt er Por t Event sFunc

Get Ver si onHandl er;

LoadLi br aryHandl er;

Fr eeLi braryHandl er;

Get Nunber OF Adapt er sHandl er ;

Get Adapt er NareHandl er;

OpenAdapt er Handl er;

Cl oseAdapt er Handl er;

Get Adapt er At tri but esHandl er;

Get Adapt er Port At tri but esHandl er;
Cet Port Stati sti csHandl er;

Get Di scoveredPort Attri but esHandl er;
Get Port Attri but esByWWHandl er ;
SendCTPassThr uHandl er;

Ref r eshl nf or mat i onHandl er;

Reset St ati sti csHandl er;

Get FcpTar get Mappi ngHandl er ;

Get FcpPer si st ent Bi ndi ngHandl er ;
Cet Event Buf f er Handl er;

Set RNl DMgnt | nf oHandl er;

Get RNI DMgnt | nf oHandl er ;

SendRNI DHandl er ;

Scsi | nqui ryHandl er;

Repor t LUNsHandl er;

ReadCapaci t yHandl er;

OpenAdapt er ByW\NHandl er ;

Get FcpTar get Mappi ngV2Handl er;
SendCTPassThr uvV2Handl er;

Ref r eshAdapt er Confi gur ati onHandl er;
Get Bi ndi ngCapabi | i t yHandl er;

Get Bi ndi ngSupport Handl er;

Set Bi ndi ngSupport Handl er;

Set Per si st ent Bi ndi ngV2Handl er;

Get Per si st ent Bi ndi ngV2Handl er;
RenovePer si st ent Bi ndi ngHandl er;
RermoveAl | Per si st ent Bi ndi ngsHandl er;
SendRNI DV2Handl er ;

Scsi | nqui ryV2Handl er;

Scsi Repor t LUNsV2Handl er;

Scsi ReadCapaci t yV2Handl er;

Get Vendor Li braryAttri but esHandl er;
RenovecCal | backHandl er;

Regi st er For Adapt er AddEvent sHandl er ;
Regi st er For Adapt er Event sHandl er;

Regi st er For Adapt er Por t Event sHandl er;

HBARegi st er For Adapt er Por t St at Event sFunc

Regi st er For Adapt er Por t St at Event sHandl er;

HBARegi st er For Tar get Event sFunc
HBARegi st er For Li nkEvent sFunc
HBASendRPLFunc

HBASendRPSFunc

HBASendSRLFunc

HBASendL| RRFunc

HBAGet FCASt at i sti csFunc

HBAGet FCPSt at i sti csFunc

Working Draft Fibre Channel HBA API (FC-HBA)

Regi st er For Tar get Event sHandl er;
Regi st er For Li nkEvent sHandl er;
SendRPLHandl er;

SendRPSHandl er ;

SendSRLHandl er;

SendL| RRHandl er;

Cet FCASt ati sti csHandl er;

Cet FCPSt at i sti csHandl er;

48

| 16 April 2003 T11/1568-D Revision 8

HBASendRLSFunc SendRLSHandl er ;
} HBA_ENTRYPO NTSV2, *PHBA ENTRYPO NTSV2;

Working Draft Fibre Channel HBA API (FC-HBA) 49

16 April 2003

T11/1568-D Revision 8

The followi ng structure is used to register a conpliant vendor-specific library on a system

that supports SB devices.

typedef struct HBA EntryPoi ntsV2 {
HBAGet Ver si onFunc
HBALoadLi br ar yFunc
HBAFr eeLi br ar yFunc
HBAGet Nunmber OF Adapt er sFunc
HBAGet Adapt er NaneFunc
HBAOpenAdapt er Func
HBACI oseAdapt er Func
HBAGet Adapt er Att ri but esFunc
HBAGet Adapt er Port At t ri but esFunc
HBAGet Port St ati sti csFunc
HBAGet Di scover edPort Attri but esFunc
HBAGet Port At t ri but esByW\WFunc
HBASendCTPassThr uFunc
HBARef r eshl nf or mat i onFunc
HBAReset St at i sti csFunc
HBAGet FcpTar get Mappi ngFunc
HBAGet FcpPer si st ent Bi ndi ngFunc
HBAGet Event Buf f er Func
HBASet RNl DMgnt | nf oFunc
HBAGet RNI DMt | nf oFunc
HBASendRNI DFunc
HBASendScsi | nqui r yFunc
HBASendRepor t LUNsFunc
HBASendReadCapaci t yFunc
HBAOpenAdapt er By WANFunc
HBAGet FcpTar get Mappi ngV2Func
HBASendCTPassThr uV2Func
HBARef r eshAdapt er Confi gurati onFunc
HBAGet Bi ndi ngCapabi | i t yFunc
HBAGet Bi ndi ngSupport Func
HBASet Bi ndi ngSupport Func
HBASet Per si st ent Bi ndi ngV2Func
HBAGet Per si st ent Bi ndi ngV2Func
HBARenovePer si st ent Bi ndi ngFunc
HBARenoveAl | Per si st ent Bi ndi ngsFunc
HBASendRNI DV2Func
HBAScsi | nqui ryV2Func
HBAScsi Repor t LUNsV2Func
HBAScsi ReadCapaci t yV2Func
HBAGet Vendor Li brar yAttri but esFunc
HBARenovecCal | backFunc
HBARegi st er For Adapt er AddEvent sFunc
HBARegi st er For Adapt er Event sFunc
HBARegi st er For Adapt er Por t Event sFunc

Get Ver si onHandl er;

LoadLi br aryHandl er;

Fr eeLi braryHandl er;

Get Nunber OF Adapt er sHandl er ;

Get Adapt er NareHandl er;

OpenAdapt er Handl er;

Cl oseAdapt er Handl er;

Get Adapt er At tri but esHandl er;

Get Adapt er Port At tri but esHandl er;
Cet Port Stati sti csHandl er;

Get Di scoveredPort Attri but esHandl er;
Get Port Attri but esByWWHandl er ;
SendCTPassThr uHandl er;

Ref r eshl nf or mat i onHandl er;

Reset St ati sti csHandl er;

Get FcpTar get Mappi ngHandl er ;

Get FcpPer si st ent Bi ndi ngHandl er ;
Cet Event Buf f er Handl er;

Set RNl DMgnt | nf oHandl er;

Get RNI DMgnt | nf oHandl er ;

SendRNI DHandl er ;

Scsi | nqui ryHandl er;

Repor t LUNsHandl er;

ReadCapaci t yHandl er;

OpenAdapt er ByW\NHandl er ;

Get FcpTar get Mappi ngV2Handl er;
SendCTPassThr uvV2Handl er;

Ref r eshAdapt er Confi gur ati onHandl er;
Get Bi ndi ngCapabi | i t yHandl er;

Get Bi ndi ngSupport Handl er;

Set Bi ndi ngSupport Handl er;

Set Per si st ent Bi ndi ngV2Handl er;

Get Per si st ent Bi ndi ngV2Handl er;
RenovePer si st ent Bi ndi ngHandl er;
RermoveAl | Per si st ent Bi ndi ngsHandl er;
SendRNI DV2Handl er ;

Scsi | nqui ryV2Handl er;

Scsi Repor t LUNsV2Handl er;

Scsi ReadCapaci t yV2Handl er;

Get Vendor Li braryAttri but esHandl er;
RenovecCal | backHandl er;

Regi st er For Adapt er AddEvent sHandl er ;
Regi st er For Adapt er Event sHandl er;

Regi st er For Adapt er Por t Event sHandl er;

HBARegi st er For Adapt er Por t St at Event sFunc

Regi st er For Adapt er Por t St at Event sHandl er;

HBARegi st er For Tar get Event sFunc
HBARegi st er For Li nkEvent sFunc
HBASendRPLFunc

HBASendRPSFunc

HBASendSRLFunc

HBASendL| RRFunc

HBAGet FCASt at i sti csFunc

HBAGet FCPSt at i sti csFunc

Working Draft Fibre Channel HBA API (FC-HBA)

Regi st er For Tar get Event sHandl er;
Regi st er For Li nkEvent sHandl er;
SendRPLHandl er;

SendRPSHandl er ;

SendSRLHandl er;

SendL| RRHandl er;

Cet FCASt ati sti csHandl er;

Cet FCPSt at i sti csHandl er;

50

| 16 April 2003 T11/1568-D Revision 8

HBASendRLSFunc SendRLSHandl er ;

HBA_Get SBTar get Mappi ngFunc Get SBTar get Mappi ngHandl er;
HBA Get SBSt ati sti csFunc Get SBSt ati sti csHandl er;
HBA_ SBDskGet Capaci t yFunc SBDskGet Capaci t yHandl er;

} HBA_ENTRYPO NTSV2, *PHBA_ENTRYPO NTSV2;

Working Draft Fibre Channel HBA API (FC-HBA) 51

16 April 2003 T11/1568-D Revision 8

/* This structure is defined here only for reference. */
/* It should be incorporated in code by including */

/* the appropriate system header file. */

struct tm{

i nt t m sec; /* seconds after the minute - [0,59] */
i nt tmmn; /* minutes after the hour - [0,59] */

i nt t m_hour; /* hours since mdnight - [0,23] */

i nt t m nday; /* day of the month - [1,31] */

i nt t m_non; /* months since January - [0, 11] */

i nt tmyear; /* years since 1900 */

i nt t m wday; /* days since Sunday - [0,6] */

i nt t m yday; /* days since January 1 - [0, 365] */

i nt tm.isdst; /* daylight savings tine flag */

b

typedef struct HBA LibraryAttributes {
HBA BOCOLEAN fi nal ;

char Li bPat h[256] ;
char VNane[256] ;
char Wer si on[256] ;
struct tm bui | d_dat e;

} HBA_ LI BRARYATTRI BUTES, *PHBA LI BRARYATTRI BUTES

6.11.2 Library Attribute Specifications
6.11.2.1 Compliance

Some library attributes shall be implemented as specified, and some shall either be implemented or given a value
indicating they are not implemented (see annex A).

6.11.2.2 Final

If the library implements the final draft of the HBA API library specification version indicated by the value of
HBA_GetVersion and similar functions, its final attribute shall be true. If the library implements a preliminary draft of
the HBA API library specification version indicated by the function value, its final attribute shall be false.

6.11.2.3 LibPath

LibPath shall be an ASCII string the value of which is the fully qualified path name of the library file.

6.11.2.4 VName

VName shall be an ASCII string the value of which is the name of the organization that developed the library code.

6.11.2.5 VVersion

VVersion shall be an ASCII string the value of which is the Identification used by the developing organization for
the code revision of the library being called represented as a null-terminated ASCII string.

6.11.2.6 build_date
build_date shall be a standard tm structure containing the date/time at which the developing organization
completed the code revision of the library being called. Zero values are acceptable for fields beyond the intended

resolution of the developer. A compliant implementation may not provide correct values of the tm_wday, tm_yday,
and tm_isdst fields.

Working Draft Fibre Channel HBA API (FC-HBA) 52

16 April 2003

7 Function Calls

7.1 Overview

T11/1568-D Revision 8

Some HBA API functions shall be implemented as specified, and some shall either be implemented or return a
value indicating they are not implemented (see annex A).

Table 3 is a directory to the functions specified by this standard.

Table 3 — Function Summary and Requirements

Function Reference

Library Control Functions

HBA_GetVersion 7.2.1
HBA_LoadLibrary 7.2.2
HBA_FreeLibrary 7.2.3
HBA_RegisterLibrary 7.2.4
HBA_RegisterLibraryV2 7.2.5
HBA_GetWrapperLibraryAttributes 7.2.6
HBA_GetVendorLibraryAttributes 7.2.7
HBA_GetNumberOfAdapters 7.2.8
HBA_Refreshinformation 7.2.9
HBA_RefreshAdapterConfiguration 7.2.10
HBA ResetStatistics 7.2.11
HBA and Port Information Functions
HBA_GetAdapterName 7.3.1
HBA_OpenAdapter 7.3.2
HBA_OpenAdapterByWWN 7.3.3
HBA_CloseAdapter 7.3.4
HBA_GetAdapterAttributes 7.3.5
HBA_GetAdapterPortAttributes 7.3.6
HBA_GetDiscoveredPortAttributes 7.3.7
HBA_GetPortAttributesByWWN 7.3.8
HBA_GetPortStatistics 7.3.9
HBA_GetFC4Statistics 7.3.10
FCP Information Functions
HBA_GetBindingCapability 7.4.1
HBA_GetBindingSupport 7.4.2
HBA_SetBindingSupport 7.4.3
HBA_GetFcpTargetMapping 7.4.4

Working Draft Fibre Channel HBA API (FC-HBA)

53

16 April 2003

T11/1568-D Revision 8

Table 3 — Function Summary and Requirements

Function Reference
HBA_GetFcpTargetMappingV2 7.4.5
HBA_GetFcpPersistentBinding 7.4.6
HBA_GetPersistentBindingV2 7.4.7
HBA_SetPersistentBindingV2 7.4.8
HBA_RemovePersistentBinding 7.4.9
HBA_RemoveAllPersistentBindings 7.4.10
HBA_GetFCPStatistics 7.4.11

SCSI Information Functions
HBA_SendScsilnquiry 7.5.1
HBA_ScsilnquiryV2 7.5.2
HBA_SendReportLUNs 7.5.3
HBA_ScsiReportLunsV2 754
HBA_SendReadCapacity 7.5.5
HBA_ScsiReadCapacityV2 7.5.6

SB Information Functions
HBA_GetSBTargetMapping 7.6.1
HBA GetSBStatistics 7.6.2

SB Disk Device Information Functions
HBA_SBDskGetCapacity 7.7.1
Fabric Management Functions
HBA_ SendCTPassThru 7.8.1
HBA_SendCTPassThruv2 7.8.2
HBA_SetRNIDMgmtinfo 7.8.3
HBA_GetRNIDMgmtinfo 7.8.4
HBA_SendRNID 7.8.5
HBA_SendRNIDV2 7.8.6
HBA_SendRPL 7.8.7
HBA_SendRPS 7.8.8
HBA_SendSRL 7.8.9
HBA_SendLIRR 7.8.10

Working Draft Fibre Channel HBA API (FC-HBA)

54

| 16 April 2003 T11/1568-D Revision 8

Table 3 — Function Summary and Requirements

Function Reference
HBA_SendRLS 7.8.11

Event Handling Functions
HBA_GetEventBuffer 7.9.2
HBA_RegisterForAdapterAddEvents 7.9.4
HBA_RegisterForAdapterEvents 7.9.5
HBA_RegisterForAdapterPortEvents 7.9.6
HBA_RegisterForAdapterPortStatEvents 7.9.7
HBA_RegisterForTargetEvents 7.9.8
HBA_RegisterForLinkEvents 7.9.9
HBA_RemoveCallback 7.9.10

7.2 Library Control Functions

7.2.1 HBA_GetVersion
7.2.1.1 Format

HBA U NT32 HBA Get Version();

7.2.1.2 Description

The HBA_GetVersion function shall return the version of the HBA API specification with which the HBA API library
is compatible.

An example usage of this function is provided in D.1
7.2.1.3 Arguments

None.

7.2.1.4 Return Values

function value shall indicate the version of the HBA API specification with which the library is compliant. The
values shall be as specified in table 4.

Table 4 — Function Values for HBA_GetVersion

Function Value Specification Version
1 Obsolete (see FC-MI)
2 This standard
any other Reserved

Working Draft Fibre Channel HBA API (FC-HBA) 55

16 April 2003 T11/1568-D Revision 8

7.2.2 HBA_LoadLibrary
7.2.2.1 Format

HBA_STATUS HBA_ LoadLi brary();

7.2.2.2 Description

The HBA_LoadLibrary function shall perform any initialization not inherent in the loading of an HBA API library by
an application.

The HBA_LoadLibrary function in a wrapper library shall perform common initialization, determine the configured
HBA specific libraries, load the configured HBA specific libraries, load the HBA specific libraries’ function tables,
and call the HBA specific libraries' HBA_LoadLibrary functions. If incompatibilities are detected among the wrapper
library, its configured HBA specific libraries, and the drivers associated with the configured HBAs, any HBA specific
libraries with which no incompatibility was detected shall have been loaded
The HBA_LoadLibrary function in an HBA specific library shall perform vendor specific initialization.
An example usage of this function is provided in D.2
7.2.2.3 Arguments
None.
7.2.2.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS OK shall be returned to indicate the library and all its configured HBA specific libraries
loaded properly.
b) HBA_STATUS ERROR_ALREADY_LOADED shall be returned to indicate that a library is already loaded.
c¢) HBA_STATUS ERROR_INCOMPATIBLE shall be returned to indicate incompatibilities were detected
among the wrapper library, its configured HBA specific libraries, and the drivers associated with the
configured HBAs.
d) HBA_STATUS_ERROR may be returned to indicate any other problem with loading.
e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.
7.2.3 HBA_FreeLibrary
7.2.3.1 Format

HBA_STATUS HBA Freelibrary();

7.2.3.2 Description

The HBA_FreeLibrary function shall free the system resources used by the called library. It shall be called after all
HBA library functions are complete to free all resources.

An example usage of this function is provided in D.3

Working Draft Fibre Channel HBA API (FC-HBA) 56

16 April 2003 T11/1568-D Revision 8

7.2.3.3 Arguments
None.
7.2.3.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_ OK shall be returned to indicate the library was able to free all resources.
b) HBA_STATUS ERROR_NOT_LOADED shall be returned to indicate that there was no library currently
loaded.
¢) HBA_STATUS ERROR may be returned to indicate any problem with freeing resources.
d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.
7.2.4 HBA_RegisterLibrary
7.2.4.1 Format
HBA_STATUS HBA_Regi st erLi brary(
HBA_ENTRYPQO NTS *pHBAI nf o
)
7.2.4.2 Description
The HBA_RegisterLibrary function shall register the Phase | functionality of an HBA specific library with the
wrapper library. This shall be implemented only by an HBA specific library and called by the wrapper library (i.e.,
clients of the HBA API specified by this standard shall not refer to this function directly). HBA specific libraries
compliant with this standard shall support this function to preserve compatibility with Phase | wrapper libraries.
An example implementation of this function is provided in D.4

7.2.4.3 Arguments

pHBAINnfo shall be a pointer to a structure in which the entry addresses of the vendor specific implementations of
the Phase I library functions may be returned.

7.2.4.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS OK shall be returned to indicate function pointers have been returned.
b) HBA_STATUS ERROR may be returned to indicate any problem with returning pointers.
c) The value among those in 6.2 for which the comment most closely describes the result of the function

should be returned to indicate any reason with no required value.

pHBAInfo shall be unchanged. The structure to which it points shall contain the entry addresses of the vendor
specific implementations of each Phase | library function.

Working Draft Fibre Channel HBA API (FC-HBA) 57

16 April 2003 T11/1568-D Revision 8

7.2.5 HBA_RegisterLibraryV2
7.2.5.1 Format
HBA_STATUS HBA_Regi st er Li braryV2(

HBA_ENTRYPO NTSV2 * pHBAI nf o
)
7.2.5.2 Description
The HBA_RegisterLibraryV2 function shall register the Phase Il functionality of an HBA specific library with the
wrapper library. This shall be implemented only by an HBA specific library and called by the wrapper library (i.e.,
clients of the HBA API specified by this standard shall not refer to this function directly). HBA specific libraries
compliant with this standard shall support both this function (HBA_RegisterLibraryV2) and HBA_RegisterLibrary.
7.2.5.3 Arguments

pHBAINnfo shall be a pointer to a structure in which the entry addresses of the vendor specific implementations of
all library functions may be returned.

7.2.5.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_OK shall be returned to indicate function pointers have been returned.
b) HBA_STATUS_ ERROR may be returned to indicate any problem with returning pointers.
¢) The value among those in 6.2 for which the comment most closely describes the result of the function

should be returned to indicate any reason with no required value.

pHBAInfo shall be unchanged. The structure to which it points shall contain the entry addresses of the vendor
specific implementations of all library functions.

7.2.6 HBA_GetWrapperLibraryAttributes
7.2.6.1 Format
HBA_ Ul NT32 HBA_Get W apper Li braryAttri butes(
HBA LI BRARYATTRI BUTES *attri butes
)
7.2.6.2 Description
The HBA_GetWrapperLibraryAttributes function shall return details about the implementation of the wrapper library
in which the call is implemented. Its intended uses include to allow software to determine whether a compatible

library is installed and to allow installation software to describe to an operator a library about to be replaced.

In an HBA API library with OS specific structure, the HBA_GetWrapperLibraryAttributes function returns infor-
mation about the OS specific software that presents the API.

Working Draft Fibre Channel HBA API (FC-HBA) 58

16 April 2003 T11/1568-D Revision 8

7.2.6.3 Arguments

attributes shall be a pointer to a structure in which the attributes of the library implementing the call may be
returned.

7.2.6.4 Return Values

function value shall indicate the version of the HBA API specification with which the library is compliant. The
values shall be as specified in table 5.

Table 5 — Function Values for HBA_GetWrapperLibraryAttributes

Function Value Specification Version
1 Obsolete (see FC-MI)
2 This standard
any other Reserved

attributes shall be unchanged. The structure to which it points shall contain the attributes of the library imple-
menting the call. If it is not practical to determine the LibPath attribute, a null string may be returned for that
attribute.

7.2.7 HBA_GetVendorLibraryAttributes
7.2.7.1 Format
HBA_ Ul NT32 HBA_GCet Vendor Li braryAttri but es(

HBA_ Ul NT32 adapt er _i ndex,
HBA_ LI BRARYATTRI BUTES *attri but es

)

7.2.7.2 Description

The HBA_GetVendorLibraryAttributes function shall return details about the implementation of the HBA specific
library associated with the specified HBA. Its intended uses include to allow software, including a wrapper library, to
determine whether a compatible library is installed and to allow installation software to describe to an operator a
library about to be replaced.

In an HBA API library with OS specific structure, the HBA_GetVendorLibraryAttributes function returns information
about the OS specific software that presents the API. This shall be the same as the information returned by
HBA_GetWrapperLibraryAttributes.

7.2.7.3 Arguments

adapter_index shall be an index to an HBA in the range of the return value of HBA_GetNumberOfAdapters. The
version details shall be returned for the HBA specific library that interfaces to the indexed HBA.

In an HBA API library with OS specific structure, the HBA_GetVendorLibraryAttributes function returns information
about the OS specific software that presents the API regardless of the HBA that is indexed.

NOTE 10 An index is used rather than a name or handle so that this service may be called without opening an
HBA.

Working Draft Fibre Channel HBA API (FC-HBA) 59

16 April 2003 T11/1568-D Revision 8

More than one HBA may be interfaced by the same library, so more than one index may cause the same set of
library details to be returned.

attributes shall be a pointer to a structure in which the attributes of the library implementing the call may be
returned.

7.2.7.4 Return Values

function value shall indicate the version of the HBA API specification with which the library is compliant. The
values shall be as specified in table 6.

Table 6 — Function Values for HBA_GetVendorLibraryAttributes

Function Value Specification Version
1 Obsolete (see FC-MI)
2 This standard
any other Reserved

attributes shall be unchanged. The structure to which it points shall contain the attributes of the specified HBA
specific library. If it is not practical to determine the LibPath attribute, a null string may be returned for that attribute.

7.2.8 HBA_GetNumberOfAdapters
7.2.8.1 Format

HBA U NT32 HBA_Get Nunmber Of Adapt ers();

7.2.8.2 Description

The HBA_GetNumberOfAdapters function shall return the number of HBAs supported by the library. This shall be
the current number of HBAs. The value returned shall reflect dynamic change of HBA inventory without requiring
restart of the system, driver, or library.

An example usage of this function is provided in D.5

7.2.8.3 Arguments

None.

7.2.8.4 Return Values

function value shall be the number of adapters supported by this library. If no adapters are supported, the library
shall return 0.

7.2.9 HBA_Refreshinformation
7.2.9.1 Format

voi d HBA Refreshl nformation(
HBA HANDLE handl e

)

Working Draft Fibre Channel HBA API (FC-HBA) 60

16 April 2003 T11/1568-D Revision 8

7.2.9.2 Description

The HBA_Refreshinformation function shall cause information saved by the HBA API about the specified HBA to
be made current.

An HBA API shall return a HBA_STATUS_ERROR_STALE_DATA error to any call identifying an HBA end port or
discovered FC_Port by an index into an implied internal table (i.e., HBA_GetAdapterPortAttributes,
HBA_GetDiscoveredPortAttributes) if the assignment of indexes in the implied table has changed since the appli-
cation last called HBA_Refreshinformation. If an HBA API returns HBA_STATUS_ERROR_STALE_DATA to an
application on a call referring to an HBA, the HBA API shall continue to return
HBA_STATUS_ERROR_STALE_DATA to that application for all calls referring to the same HBA until that appli-
cation calls HBA_Refreshinformation for the HBA, indicating to the HBA API that the application is prepared to deal
with the changes.

An example usage of this function is provided in D.6
7.2.9.3 Arguments

handle shall be a handle to an open HBA.

7.2.9.4 Return Values

None.

7.2.10 HBA_RefreshAdapterConfiguration
7.2.10.1 Format

voi d HBA_RefreshAdapt er Confi gurati on(

)

7.2.10.2 Description

The HBA_RefreshAdapterConfiguration function shall cause information saved by the HBA API about the HBAs
present in the system to be made current.

NOTE 11 HBA_RefreshAdapterConfiguration is intended to support dynamic HBA reconfiguration in HBA API
library implementations that comply with strictly static implicit tables by explicitly provoking the library to discover
and assign HBA indexes and names to newly installed HBAs. This relieves the library of the need to poll for new
adapters.

The HBA_RefreshAdapterConfiguration function shall not interfere with any established relationships between
software and adapters that have not been reconfigured. Thus, these relationships shall survive an invocation of
HBA_RefreshAdapterConfiguration:

a) Open HBA handles shall continue to reference the same HBA even if it is no longer installed.

b) An HBA name or index assigned to an HBA for which the bus position, WWN, and OS device name have
not changed shall remain assigned to the same HBA even if it is removed and reinstalled.

¢) Handles, HBA names, and HBA indexes assigned to adapters that have been removed and not replaced
shall not be reassigned. References to them shall continue to generate
HBA_STATUS_ERROR_UNAVAILABLE.

NOTE 12 These rules imply that in systems that allow dynamic HBA reconfiguration, indexes assigned to removed
adapters may be interspersed with indexes to installed adapters. In systems that contain adapters from multiple

Working Draft Fibre Channel HBA API (FC-HBA) 61

16 April 2003 T11/1568-D Revision 8
vendors and allow dynamic HBA reconfiguration, it may not be possible for the wrapper library to assign contiguous
HBA indexes to adapters from the same vendor.
A driver may have the capability of recognizing (or being told of) a functionally equivalent replacement of a
removed HBA that may have different identifying information. In this case, the replacement HBA should occupy the
HBA index and name of the removed HBA after HBA_ RefreshAdapterConfiguration is called. If an HBA API
chooses to implement a strictly static table model, before HBA RefreshAdapterConfiguration is called but after the
replacement is inserted, HBA _STATUS_ERROR_STALE DATA or HBA_STATUS ERROR_UNAVAILABLE shall
be returned on any reference to identifiers of the removed HBA.
7.2.10.3 Arguments
None.
7.2.10.4 Return Values
None.
7.2.11 HBA_ResetStatistics
7.2.11.1 Format

voi d HBA Reset Statistics(
HBA_HANDLE handl e,
HBA_ Ul NT32 porti ndex

)
7.2.11.2 Description

The HBA_ResetStatistics function is obsolete. It is retained for compatibility with very early implementations of
HBA API clients. It shall have no effect and return no value.

7.3 HBA and Port Information Functions

7.3.1 HBA_GetAdapterName
7.3.1.1 Format

HBA STATUS HBA Get Adapt er Name(
U NT32 adapt eri ndex,
char *pAdapt er nane

)

7.3.1.2 Description

The HBA_GetAdapterName function shall return the text string that identifies this HBA. The text string may be
used to open the HBA with the library as well as for a human-readable identification of an HBA instance. The name

shall be derived from the reversed domain name of the manufacturer.

An example usage of this function is provided in D.7

Working Draft Fibre Channel HBA API (FC-HBA) 62

16 April 2003 T11/1568-D Revision 8

7.3.1.3 Arguments
adapterindex shall be the index of the HBA for which the name is to be returned.
pAdaptername shall be a pointer to space in which the HBA name may be returned as an ASCII string.
7.3.1.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate successful completion.

b) HBA_STATUS ERROR_ILLEGAL_INDEX if there is no adapter with the given index.

¢) HBA_STATUS ERROR may be returned to indicate any problem with returning attributes.

d) The value among those in 6.2 for which the comment most closely describes the result of the function

should be returned to indicate any reason with no required value.
pAdaptername shall be unchanged. The buffer to which it points shall contain an ASCII string in the form:
mfgdomain-model-adapterindex
where mfgdomain shall be the reverse form of a domain name owned by the manufacturer of the HBA; model shall
be a vendor specific identifier of the HBA product model; and adapterindex shall be a decimal number distin-
guishing multiple instances of the same model registered with the HBA API
Example:
com Hot Bi scui t sAdapt er s- HBA1040A- 1
7.3.2 HBA_OpenAdapter
7.3.2.1 Format
HBA HANDLE HBA_ OpenAdapt er (
char *pAdapt er nane

)
7.3.2.2 Description
The HBA_OpenAdapter function shall open a named HBA. By opening an HBA, an upper level application is
ensuring that all access to an HBA_HANDLE between an open and a close shall be to the same HBA. An
HBA_OpenAdapter may not imply a driver open; that is vendor implementation dependent.
An example usage of this function is provided in D.8
7.3.2.3 Arguments
pAdaptername shall be an adapter name returned by HBA_GetAdapterName.

7.3.2.4 Return Values

function value shall be a valid HBA_HANDLE on success, or zero on failure.

Working Draft Fibre Channel HBA API (FC-HBA) 63

16 April 2003 T11/1568-D Revision 8

For HBA API libraries with OS independent structure (i.e., a wrapper library and HBA specific libraries), the high
order 16 bits of the value shall be zero when returned by an HBA specific library. The high order 16 bits of the value
shall be assigned by a wrapper library to uniquely identify the HBA specific library that handles the HBA that is
opened.

7.3.3 HBA_OpenAdapterByWWN
7.3.3.1 Format

HBA_STATUS HBA_OpenAdapt er By WAN(
HBA HANDLE *pHandl e,
HBA WAN wwn

)
7.3.3.2 Description
The HBA_OpenAdapterByWWN function shall attempt to open a handle to the HBA that contains a Node_Name or
N_Port_Name matching the wwn argument. The specified WWN shall match the HBA's Node_Name or
N_Port_Name. Discovered end ports (remote end ports) shall NOT be checked for a match.
7.3.3.3 Arguments
pHandle shall be a pointer to a handle. The value at entry is irrelevant.
wwhn shall be a WWN to match the Node_Name or N_Port_Name of the HBA to open.
7.3.3.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_OK shall be returned to indicate the handle contains a valid HBA handle.
b) HBA_STATUS ERROR_ILLEGAL _WWN shall be returned to indicate nho HBA has a Node_Name or
N_Port_Name that matches wwn.
c) HBA_STATUS _ERROR_AMBIGUOUS_WWN shall be returned to indicate multiple adapters have a
matching WWN. This may occur if the Node_Names of multiple adapters are identical.
d) HBA_STATUS_ERROR may be returned to indicate any other problem with opening the adapter.
e) The value among those in 6.2 for which the comment most closely describes the result of the function

should be returned to indicate any reason with no required value.

pHandle shall be unchanged. If the open succeeds, the value to which it points shall be a handle to the requested
HBA. On failure, the value is undefined.

7.3.4 HBA_CloseAdapter
7.3.4.1 Format

voi d HBA Cl oseAdapt er (
HBA HANDLE handl e
)

Working Draft Fibre Channel HBA API (FC-HBA) 64

16 April 2003 T11/1568-D Revision 8

7.3.4.2 Description

Function HBA_CloseAdapter shall close an open HBA.

An example usage of this function is provided in D.9

7.3.4.3 Arguments

handle shall be a HBA_HANDLE to an opened HBA that is to be closed.
7.3.4.4 Return Values

None.

7.3.5 HBA_GetAdapterAttributes

7.3.5.1 Format

HBA_STATUS HBA_Get Adapter Attri but es(
HBA HANDLE handl e,
HBA_ADAPTERATTRI BUTES *pAdapterattri butes

)

7.3.5.2 Description

The HBA_GetAdapterAttributes function shall retrieve the attributes for an HBA.

An example usage of this function is provided in D.10

7.3.5.3 Arguments

handle shall be a HBA_HANDLE to an opened HBA for which attributes are requested.

pAdapterattributes shall be a pointer to a structure in which attributes for the HBA may be returned

7.3.5.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_OK shall be returned to indicate the attributes of an HBA have been returned.
b) HBA_STATUS ERROR may be returned to indicate any problem with getting attributes.
c) The value among those in 6.2 for which the comment most closely describes the result of the function

should be returned to indicate any reason with no required value.

pAdapterattributes shall be unchanged. The structure to which it points shall contain attributes for the HBA. HBA
attributes may include:

Manuf act ur er

Seri al Nunber
Model

Mbdel Descri pti on
NodeW\N
NodeSymbol i cNare
Har dwar eVer si on

Working Draft Fibre Channel HBA API (FC-HBA) 65

16 April 2003 T11/1568-D Revision 8

DriverVersion
Opt i onROWer si on
Fi r mnvar eVer si on
Vendor Speci ficl D
Nunber Of Port s

Dri ver Nane

7.3.6 HBA_GetAdapterPortAttributes
7.3.6.1 Format

HBA_STATUS HBA_Get Adapt er Port Attri but es(
HBA_HANDLE handl e,
HBA_ Ul NT32 porti ndex,
HBA_ PORTATTRI BUTES *pPortattributes

)

7.3.6.2 Description

Function HBA_GetAdapterPortAttributes shall retrieve the attributes for a specified end port on an HBA.

An example usage of this function is provided in D.11

7.3.6.3 Arguments

handle shall be an HBA_HANDLE to an opened HBA.

portindex shall be the index within the specified HBA of the end port to query.

pPortattributes shall be a pointer to a structure in which attributes for the end port may be returned

7.3.6.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS OK shall be returned to indicate the attributes of an end port on an HBA have been
returned.

b) HBA_STATUS ERROR_ILLEGAL_INDEX if there is no end port with the given index.

c) HBA_STATUS_ERROR may be returned to indicate any problem with getting attributes.

d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pPortattributes shall be unchanged. The structure to which it points shall contain attributes for the end port. Port
attributes may include:

NodeVWWN

Por t WAN

Port Fcl d

Port Type

Port St at e

Por t Support edd assof Servi ce
Por t Support edFc4Types

Port Acti veFc4Types

CSDevi ceNane

Working Draft Fibre Channel HBA API (FC-HBA) 66

16 April 2003 T11/1568-D Revision 8

Por t Speed

Nurnber of Di scover edPorts
Por t Syrmbol i cNane

Por t Support edSpeed

Port MaxFranmeSi ze

Fabri cNane

7.3.7 HBA_GetDiscoveredPortAttributes

7.3.7.1 Format

HBA_STATUS HBA_Get Di scoveredPort Attri but es(
HBA_HANDLE handl e,
HBA Ul NT32 porti ndex,

HBA_Ul NT32 di scover edporti ndex,
HBA_PORTATTRI BUTES *pPortattri butes

)
7.3.7.2 Description

The HBA_GetDiscoveredPortAttributes function shall retrieve the attributes for a specified FC_Port discovered in
the network.

An example usage of this function is provided in D.12
7.3.7.3 Arguments

handle shall be a HBA_HANDLE to an opened HBA containing the local end port for which a discovered FC_Port
is to be queried.

portindex shall be the index on the HBA of the local end port through which to query the discovered FC_Port.
discoveredportindex shall be the index of the discovered FC_Port to query.
pPortattributes shall be a pointer to a structure in which attributes for the discovered FC_Port may be returned
7.3.7.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate the attributes of an FC_Port visible to the specified local

end port have been returned.

b) HBA_STATUS ERROR_ILLEGAL_INDEX if there is no end port with the given index.

c) HBA_STATUS_ERROR may be returned to indicate any problem with returning attributes.

d) The value among those in 6.2 for which the comment most closely describes the result of the function

should be returned to indicate any reason with no required value.

pPortattributes shall be unchanged. The structure to which it points shall contain attributes for the discovered
FC_Port. Attributes for a discovered FC_Port may include:

NodeW\N

Por t WAN
Port Fcld

Working Draft Fibre Channel HBA API (FC-HBA) 67

16 April 2003 T11/1568-D Revision 8

Port Type

Port St at e

Por t Support edd assof Servi ce
Por t Support edFc4Types
Port Acti veFc4Types
CSDevi ceNane

Por t Speed

Por t Synmbol i cNane

Por t Support edSpeed
Por t MaxFr aneSi ze
Fabri cNane

In the case of HBA _GetDiscoveredPortAttributes NumberOfDiscoveredPorts shall be 0.
7.3.8 HBA_GetPortAttributesByWWN
7.3.8.1 Format
HBA_STATUS HBA_Get Port At tri but esByWAN(
HBA HANDLE handl e,

HBA WAN Por t VWAN,
HBA_PORTATTRI BUTES *pPortattri butes

)
7.3.8.2 Description

The HBA_GetPortAttributesByWWN function shall retrieve the attributes for a local HBA end port or discovered
FC_Port specified by Port Name.

7.3.8.3 Arguments
handle shall be a HBA_HANDLE to an opened HBA.
PortWWN shall be the Port Name of the FC_Port to query.
pPortattributes shall be a pointer to a structure in which attributes for the FC_Port may be returned
7.3.8.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS OK shall be returned to indicate the attributes of a FC_Port with the specified Port Name
have been returned.
b) HBA_STATUS ERROR_ILLEGAL WWN shall be returned to indicate the HBA referenced by handle is
not able to access a local end port or discovered FC_Port with Port Name hbaPortWWN.
c) HBA_ STATUS ERROR may be returned to indicate any problem with returning attributes.
d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.
pPortattributes shall be unchanged. The structure to which it points shall contain attributes for the FC_Port.

FC_Port attributes are as described in HBA _GetAdapterPortAttributes (see 7.3.6) for local HBA end ports and in
HBA_GetDiscoveredPortAttributes (see 7.3.7) for discovered FC_Ports:

Working Draft Fibre Channel HBA API (FC-HBA) 68

16 April 2003 T11/1568-D Revision 8

7.3.9 HBA_GetPortStatistics
7.3.9.1 Format

HBA_STATUS HBA_ Get Port Stati stics(
HBA HANDLE handl e,
HBA Ul NT32 porti ndex,
HBA_ PORTSTATI STI CS *pPortstatistics

);

7.3.9.2 Description

The HBA_GetPortStatistics function shall retrieve the statistics for a specified end port on an HBA. The exact
meaning of events being counted for each statistic is vendor specific. LinkFailureCount, LossOfSyncCount,
LossOfSignalCount, PrimitiveSeqProtocolErrCount, InvalidTxWordCount, and InvalidCRCCount shall be the
values that are maintained by the end port in its Link Error Status Block (see FC-FS).

An example usage of this function is provided in D.13

7.3.9.3 Arguments

handle shall be a HBA_HANDLE to an opened HBA for which end port statistics are to be returned.
portindex Shall be the index of the end port to query.

pPortstatistics shall be a pointer to a structure in which statistics for the end port may be returned.

7.3.9.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS _OK shall be returned to indicate the statistics for the specified end port have been
returned.

b) HBA_STATUS_ ERROR_ILLEGAL_INDEX if there is no end port with the given index.

c) HBA_STATUS_ERROR may be returned to indicate any problem with returning statistics.

d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pPortstatistics shall be unchanged. The structure to which it points shall contain statistics for the end port. End
port statistics may include:

SecondsSi ncelLast Reset
TxFr anes

TxWor ds

RxFr anes

RxWor ds

LI PCount

NOSCount

Er r or Fr anes

DunpedFr anes

Li nkFai | ur eCount
LossOF SyncCount
LossO Si gnal Count
PrimtiveSeqProtocol Err Count

Working Draft Fibre Channel HBA API (FC-HBA) 69

16 April 2003 T11/1568-D Revision 8

I nval i dTxWor dCount
| nval i dCRCCount

7.3.10 HBA_GetFCA4Statistics

7.3.10.1 Format

HBA_ STATUS HBA_ Cet FCASt ati sti cs(

)

HBA_HANDLE handl e,

HBA WA hbaPor t VW,

HBA_ Ul NT8 FCAt ype,

HBA FCASTATI STICS *statistics

7.3.10.2 Description

The HBA_GetFCA4Statistics function shall return traffic statistics for a specific FC-4 protocol via a specific local HBA
and local end port.

NOTE 13 Basic Link Service, Extended Link Service, and CT each have specific Data Structure TYPE values, so
their traffic may be requested.

7.3.10.3 Arguments

handle shall be a handle to an open HBA containing the end port for which to return FC-4 statistics.

hbaPortWWN shall be the Port Name of the local HBA end port for which to return FC-4 statistics.

FC4type shall be the Data Structure TYPE assigned by FC-FS to the FC-4 protocol for which FC-4 statistics are
requested.

statistics shall be a pointer to an FC-4 Statistics structure in which the statistics for the specified FC-4 protocol
may be returned.

7.3.10.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a)
b)
c)

d)
e)

HBA_STATUS_OK shall be returned to indicate the statistics for the specified FC-4 and end port have
been returned.

HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

HBA STATUS ERROR_UNSUPPORTED_FC4 shall be returned to indicate the specified HBA end port
does not support the specified FC-4 protocol.

HBA_STATUS ERROR may be returned to indicate any problem with no required value.

The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

statistics shall be unchanged. The structure to which it points shall contain the statistics for the specified FC-4
protocol.

Working Draft Fibre Channel HBA API (FC-HBA) 70

16 April 2003 T11/1568-D Revision 8

7.4 FCP Information Functions

7.4.1 HBA_GetBindingCapability
7.4.1.1 Format

HBA_STATUS HBA_Cet Bi ndi ngCapabi | i ty(
HBA_HANDLE handl e,
HBA WA hbaPor t VW,
HBA_BI ND_CAPABI LI TY *pFl ags

)

7.4.1.2 Description

The HBA_GetBindingCapability function shall return the binding capabilities implemented for a specified HBA end
port.

7.4.1.3 Arguments

handle shall be a handle to an open HBA containing the end port for which to return implemented persistent
binding capabilities.

hbaPortWWN shall be the Port Name of the local HBA end port for which to return implemented persistent binding
capabilities.

pFlags shall point to an HBA_BIND_CAPABILITY structure in which to return implemented persistent binding
capabilities.

7.4.1.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS OK shall be returned to indicate the persistent binding capabilities implemented by the
specified end port have been returned.

b) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

¢) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support persistent binding.

d) HBA_STATUS_ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pFlags shall be unchanged. In the structure to which it points, the implemented persistent binding capabilities shall
be indicated.

Working Draft Fibre Channel HBA API (FC-HBA) 71

16 April 2003 T11/1568-D Revision 8

7.4.2 HBA_GetBindingSupport
7.4.2.1 Format

HBA_STATUS HBA_Get Bi ndi ngSupport (
HBA HANDLE handl e,
HBA WA hbaPor t VW,
HBA_BI ND_CAPABI LI TY *pFl ags

);

7.4.2.2 Description

The HBA_GetBindingSupport function shall return the binding capabilities currently enabled for a specified HBA
end port.

7.4.2.3 Arguments

handle shall be a handle to an open HBA containing the end port for which to return currently enabled persistent
binding capabilities.

hbaPortWWN shall be the Port Name of the local HBA end port for which to return currently enabled persistent
binding capabilities.

pFlags shall point to an HBA_BIND_CAPABILITY structure in which to return currently enabled persistent binding
capabilities.

7.4.2.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate the persistent binding capabilities currently enabled by the
specified end port have been returned.

b) HBA_STATUS_ ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

c) HBA_STATUS _ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support persistent binding.

d) HBA_STATUS_ ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pFlags shall be unchanged. In the structure to which it points, the currently enabled persistent binding capabilities
shall be indicated.

7.4.3 HBA_SetBindingSupport
7.4.3.1 Format

HBA_ STATUS HBA_Set Bi ndi ngSupport (
HBA HANDLE handl e,
HBA WA hbaPor t VW,
HBA Bl ND_CAPABI LI TY fl ags

Working Draft Fibre Channel HBA API (FC-HBA) 72

16 April 2003 T11/1568-D Revision 8

7.4.3.2 Description

The HBA_SetBindingSupport function shall set the binding capabilities currently enabled for a specified HBA end
port to a subset of those that the HBA end port has implemented.

Disabling HBA_CAN_BIND_AUTOMAP shall limit the OS visibility of the SAN to those resources explicitly
identified in Persistent Bindings. This standard does not propose any utility in disabling other capabilities, though
imaginative developers may.

7.4.3.3 Arguments

handle shall be a handle to an open HBA containing the end port for which to set the currently enabled persistent
binding capabilities.

hbaPortWWN shall be the Port Name of the local HBA end port for which to set the currently enabled persistent
binding capabilities.

flags shall point to an HBA_BIND_CAPABILITY structure indicating persistent binding capabilities to enable.
7.4.3.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate persistent binding capabilities have been enabled by the
specified end port as requested.

b) HBA_STATUS_ ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

c) HBA_STATUS _ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support persistent binding.

d) HBA_ERROR_INCAPABLE shall be returned to indicate the flags include a flag for a capability not imple-
mented for the referenced end port.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

7.4.4 HBA_GetFcpTargetMapping
7.4.4.1 Format

HBA STATUS HBA Get FcpTar get Mappi ng(
HBA HANDLE handl e,
HBA FCPTARGETMAPP| NG * pMappi ng

)

7.4.4.2 Description

The HBA_GetFcpTargetMapping function shall return the mapping between OS identification of SCSI targets or
logical units and FCP identification of targets or logical units offered by the specified HBA at the time the function
call is processed (see SAM-3, FCP-2, and relevant OS documentation). Space in the pMapping structure
permitting, one mapping entry shall be returned for each FCP logical unit represented in the OS and one mapping
entry shall be returned for each FCP target that is represented in the OS but for which no logical units are repre-
sented in the OS. No target mapping entries shall be returned to represent FCP objects that are not represented in
the OS (i.e., are unmapped).

Working Draft Fibre Channel HBA API (FC-HBA) 73

16 April 2003 T11/1568-D Revision 8

7.4.4.3 Arguments
handle shall be a handle to an open HBA for which to retrieve the mapping.

pMapping shall be a pointer to an HBA_FCPTARGETMAPPING structure. The size of this structure shall be
limited by the NumberOfEntries value within the structure at function call.

7.4.4.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate all mapping entries have been returned for the specified
end port.

b) HBA_STATUS ERROR_MORE_DATA shall be returned to indicate more space in the buffer is required to
contain mapping information.

c) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pMapping shall be unchanged. The structure to which it points shall contain mapping information from OS identifi-
cations of SCSI logical units to FCP identifications of logical units for this HBA (see SAM-3, FCP-2, and relevant
OS documentation). The number of entries returned shall be the minimum of the number of entries specified at
function call or the full mapping. The value of the NumberOfEntries field of the returned structure shall be the total
number of mappings the HBA has established even when the function returns an error because the buffer is too
small to return all of the established mappings. An upper level application may either allocate a sufficiently large
buffer and check this value after a read, or do a read of the NumberOfEntries value separately and allocate a hew
buffer given the size to accommodate the entire mapping structure.

7.4.5 HBA_GetFcpTargetMappingV2
7.4.5.1 Format

HBA_STATUS HBA_ Get FcpTar get Mappi ngV2(
HBA HANDLE handl e,
HBA WA hbaPor t W,
HBA_FCPTARGETMAPPI NGV2 *pMappi ng

)

7.4.5.2 Description

The HBA_GetFcpTargetMappingV2 function shall return the mapping between OS identification of SCSI targets or
logical units and FCP identification of targets or logical units offered by the specified HBA end port at the time the
function call is processed. Space in the pMapping structure permitting, one mapping entry shall be returned for
each FCP logical unit represented in the OS and one mapping entry shall be returned for each FCP target that is
represented in the OS but for which no logical units are represented in the OS. No target mapping entries shall be
returned to represent FCP objects that are not represented in the OS (i.e., are unmapped).

The mappings returned shall include a Logical Unit Unique Device Identifier (LUID) for each logical unit that
provides one (see SAM-3, FCP-2, and relevant OS documentation). If the VPD Page 83 information for a logical
unit provides more than one LUID, the one returned shall be the type 3 (FC Name_ldentifier) LUID with the
smallest identifier value if any LUID of type 3 is provided; otherwise, the type 2 (IEEE EUI-64) LUID with the
smallest identifier value if any LUID of type 2 is provided; otherwise, the type 1 (T10 vendor identification) LUID
with the smallest identifier value if any LUID of type 1 is provided; otherwise, the type 0 (vendor specific) LUID with

Working Draft Fibre Channel HBA API (FC-HBA) 74

16 April 2003 T11/1568-D Revision 8

the smallest identifier value. If the logical unit provides no LUID, the value of the first four bytes of the LUID field
shall be zero.

7.4.5.3 Arguments
handle shall be a handle to an open HBA containing the end port for which target mappings are requested.
hbaPortWWN shall be the Port Name of the local HBA end port for which target mappings are requested.

pMapping Pointer to an HBA_FCPTARGETMAPPINGV2 structure. The size of this structure shall be limited by
the NumberOfEntries value within the structure.

7.4.5.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate all mapping entries have been returned for the specified
end port.

b) HBA_STATUS ERROR_MORE_DATA shall be returned to indicate more space in the buffer is required to
contain mapping information.

c) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

d) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support target mapping.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pMapping shall be unchanged. The structure to which it points shall contain mapping information from OS identifi-
cations of SCSI logical units to FCP identifications of logical units for the specified local HBA end port (see SAM-3,
FCP-2, and relevant OS documentation). The number of entries in the structure shall be the minimum of the
number of entries specified at function call or the full mapping. The value of the NumberOfEntries field of the
returned structure shall be the total number of mappings the end port has established even when the function
returns an error because the buffer is too small to return all of the established mappings. An upper level application
may either allocate a sulfficiently large buffer and check this value after a read, or do a read of the NumberOfEntries
value separately and allocate a new buffer given the size to accommodate the entire mapping structure.

7.4.6 HBA_GetFcpPersistentBinding
7.4.6.1 Format

HBA STATUS HBA Get FcpPer si st ent Bi ndi ng(
HBA HANDLE handl e,
HBA_FCPBI NDI NG * pBi ndi ng

)
7.4.6.2 Description
The HBA_GetFcpPersistentBinding function shall return the persistent bindings that direct the HBA in establishing

mappings from OS identifications of SCSI logical units to FCP identifications of logical units (see SAM-3, FCP-2,
and relevant OS documentation).

Working Draft Fibre Channel HBA API (FC-HBA) 75

16 April 2003 T11/1568-D Revision 8

7.4.6.3 Arguments
handle shall be a handle to an open HBA.

pBinding shall be a pointer to a HBA_FCPBINDING structure. The size of this structure shall be limited by the
NumberOfEntries value within the structure.

7.4.6.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate all binding entries have been returned for the specified
end port.

b) HBA_STATUS ERROR_MORE_DATA shall be returned to indicate more space in the buffer is required to
contain binding information.

c) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

d) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support persistent binding.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pBinding shall be unchanged. The structure to which it points shall contain binding information from OS identifica-
tions of SCSI logical units to FCP identifications of logical units for the specified HBA (see SAM-3, FCP-2, and
relevant OS documentation). The number of entries in the structure shall be the minimum of the number of entries
specified at function call or the full set of bindings. The value of the NumberOfEntries field of the returned structure
shall be the total number of persistent bindings the HBA has established even when the function returns an error
because the buffer is too small to return all of the established bindings. An upper level application may either
allocate a sufficiently large buffer and check this value after a read, or do a read of the NumberOfEntries value
separately and allocate a new buffer given the size to accommodate the entire mapping structure.

7.4.7 HBA_GetPersistentBindingV2
7.4.7.1 Format

HBA STATUS HBA Get Per si st ent Bi ndi ngV2(
HBA HANDLE handl e,
HBA WA hbaPor t VW,
HBA FCPBI NDI N& *bi ndi ng

)

7.4.7.2 Description

The HBA_GetFcpPersistentBindingV2 function shall return persistent bindings between an FCP target and a SCSI
ID for a specified HBA end port. The binding information may include bindings to Logical Unit Unique Device ldenti-
fiers.

7.4.7.3 Arguments

handle shall be a handle to an open HBA containing the end port for which to return persistent binding.

hbaPortWWN shall be the Port Name of the local HBA end port for which to return persistent binding.

Working Draft Fibre Channel HBA API (FC-HBA) 76

16 April 2003 T11/1568-D Revision 8

binding shall be a pointer to an HBA_FCPBINDING2 structure. The NumberOfEntries field in the structure shall
limit the number of entries that shall be returned.

7.4.7.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate all binding entries have been returned for the specified
end port.

b) HBA_STATUS ERROR_MORE_DATA shall be returned to indicate more space in the buffer is required to
contain binding information.

¢) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

d) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support persistent binding.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

binding shall be unchanged. The structure to which it points shall contain binding information from OS identifica-
tions of SCSI logical units to FCP and LUID identifications of logical units for the specified HBA end port (see
SAM-3, FCP-2, and relevant OS documentation). The number of entries in the structure shall be the minimum of
the number of entries specified at function call or the full set of bindings. The NumberOfEntries field shall contain
the total number of bindings established by the end port. An application may either call
HBA_GetPersistentBindingV2 with NumberOfEntries set to 0 to retrieve the number of entries available, or allocate
a sufficiently large buffer to retrieve entries at first call. The Status field of each HBA_FCPBINDINGENTRY2
substructure shall be zero.

7.4.8 HBA_SetPersistentBindingV2

7.4.8.1 Format

HBA_STATUS HBA_Set Per si st ent Bi ndi ngV2(
HBA HANDLE handl e,

HBA_ WA hbaPor t WAN,
HBA_FCPBI NDI N&2 *bi ndi ng

)

7.4.8.2 Description

The HBA_SetPersistentBindingV2 function shall set additional persistent bindings between SCSI IDs and FCP
targets for the specified HBA end port. It shall accept extended bindings to Logical Unit Unique Device ldentifiers.
Bindings already in effect shall remain in effect. A requested binding to the same local OS SCSI ID as a binding
that is already in effect shall be errored. Each requested binding may succeed or fail independently of the others.
Persistent Bindings established by this call shall not cause change of a Target Mapping until reinitialization of the
OS, HBA, and / or fabric. The effects on Target Mappings of establishing Persistent Bindings by other means (e.qg.,
vendor specific APl or management utility) is not specified.

7.4.8.3 Arguments

handle shall be a handle to an open HBA containing the end port for which to set persistent binding.

Working Draft Fibre Channel HBA API (FC-HBA) 77

16 April 2003 T11/1568-D Revision 8

hbaPortWWN shall be the Port Name of the local HBA end port for which to set persistent binding.

binding shall be a pointer to an HBA_FCPBINDING2 structure. The NumberOfEntries field in the structure shall
determine the number of requested entries in the structure.

7.4.8.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS OK shall be returned to indicate the requested persistent bindings have been set for the
specified end port.

b) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

¢) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support persistent binding.

d) HBA_STATUS ERROR_LOCAL_SCSIID_BOUND shall be returned to indicate a persistent binding set
request included a local SCSI ID that was already bound.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

binding shall be unchanged. In the structure to which it points, the success or failure of setting the binding
requested by each HBA FCPBINDINGENTRY?2 substructure shall be indicated by setting the value of the Status
field in the substructure to a value defined in 6.2
7.4.9 HBA_RemovePersistentBinding
7.4.9.1 Format
HBA_ STATUS HBA_RenpvePer si st ent Bi ndi ng(

HBA HANDLE handl e,

HBA WA hbaPor t WAN,
HBA_FCPBI NDI NG *bi ndi ng

)

7.4.9.2 Description

The HBA_RemovePersistentBinding function shall remove one or more persistent bindings to specified SCSI IDs
for the specified HBA end port. A persistent binding shall be removed if and only if both the local SCSI ID and FCP
ID match a binding specified in the arguments. The removal of any binding shall not affect other persistent
bindings.

Persistent Bindings removed by this call shall not cause change of a Target Mapping until reinitialization of the OS,
HBA, and / or fabric. The effects on Target mappings of removing Persistent Bindings by other means (e.g., vendor
specific APl or management utility) is not specified.

7.4.9.3 Arguments

handle shall be a handle to an open HBA containing the end port from which to remove persistent bindings.

hbaPortWWN shall be the Port Name of the local HBA end port for which to remove persistent bindings.

Working Draft Fibre Channel HBA API (FC-HBA) 78

16 April 2003 T11/1568-D Revision 8

binding shall be a pointer to a HBA_FCPBINDING2 structure indicating the bindings for which removal is
requested. The NumberOfEntries field in the structure shall determine the number of requested entries in the
structure.

7.4.9.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate the requested persistent bindings have been removed for
the specified end port.

b) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

¢) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support persistent binding.

d) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

binding shall be unchanged. In the structure to which it points, the success or failure of removing the binding
requested by each HBA FCPBINDINGENTRY?2 substructure shall be indicated by setting the value of the Status
field in the substructure to a value defined in 6.2

7.4.10 HBA_RemoveAllPersistentBindings

7.4.10.1 Format

HBA_STATUS HBA_RenoveAl | Per si st ent Bi ndi ngs(

HBA HANDLE handl e,

HBA W hbaPor t WWN
)
7.4.10.2 Description
The HBA_RemoveAllPersistentBindings function shall remove all persistent bindings for a specified HBA end port.
Persistent Bindings removed by this call shall not cause change of a Target Mapping until reinitialization of the OS,
HBA, and / or fabric. The effects on Target mappings of removing Persistent Bindings by other means (e.g., vendor
specific APl or management utility) is not specified.
7.4.10.3 Arguments
handle shall be a handle to an open HBA containing the end port from which to remove all persistent bindings.
hbaPortWWN shall be the Port Name of the local HBA end port from which to remove all persistent bindings.
7.4.10.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS OK shall be returned to indicate all persistent bindings have been removed for the
specified end port.

b) HBA_STATUS ERROR_ILLEGAL WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

Working Draft Fibre Channel HBA API (FC-HBA) 79

| 16 April 2003 T11/1568-D Revision 8

c¢) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA referenced by handle
does not support persistent binding.

d) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

7.4.11 HBA_GetFCPStatistics

7.4.11.1 Format

HBA_STATUS HBA_ Get FCPSt ati sti cs(
HBA HANDLE handl e,

const HBA SCSIID *lunit,
HBA_FCASTATI STICS *statistics

)
7.4.11.2 Description

The HBA_GetFCPStatistics function shall return traffic statistics for a specific OS SCSI logical unit provided via the
FCP protocol on a specific local HBA.

7.4.11.3 Arguments
handle shall be a handle to an open HBA for which to return FCP-2 statistics.
lunit shall be a pointer to a structure specifying the OS SCSI logical unit for which FCP-2 statistics are requested

statistics shall be a pointer to a FC-4 Statistics structure in which the FCP-2 statistics for the specified logical unit
may be returned.

7.4.11.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate FCP-2 statistics have been returned for the specified HBA.

b) HBA_STATUS_ ERROR_INVALID_LUN shall be returned to indicate the HBA referenced by handle does
not support the logical unit referenced by lunit.

c) HBA_STATUS _ERROR_UNSUPPORTED_FC4 shall be returned to indicate the specified HBA end port
does not support FCP-2.

d) HBA_STATUS_ ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

statistics shall be unchanged. The structure to which it points shall contain the FCP-2 statistics for the specified
HBA and logical unit.

Working Draft Fibre Channel HBA API (FC-HBA) 80

16 April 2003 T11/1568-D Revision 8

7.5 SCSI Information Functions

7.5.1 HBA_SendScsilnquiry
7.5.1.1 Format
HBA_STATUS HBA_SendScsi | nqui ry(
HBA_HANDLE handl e,
HBA_WAN Por t WAN,
HBA_ Ul NT64 f cLUN,
HBA_Ul NT8 EVPD,
HBA_U NT32 PageCode,
void * pRspBuffer,
HBA_ Ul NT32 RspBufferSize,

void * pSenseBuffer,
HBA Ul NT32 SenseBufferSize

)
7.5.1.2 Description

The HBA_SendScsilnquiry function shall send a SCSI INQUIRY command (see SPC-3) to a remote FCP_Port
(see FCP-2).

A SCSI command shall not be sent to an end port that does not have SCSI target functionality. A SCSI command
shall not be sent if doing so would cause a SCSI overlapped command condition with a correctly operating target
(see SAM-3). Proper use of tagged commands (see SAM-3) is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

7.5.1.3 Arguments

handle shall be a handle to an open HBA.

PortWWN shall be the Port Name of a SCSI Target Port.

fcLUN shall be the SCSI LUN to send the SCSI INQUIRY command to.

EVPD shall be set to zero to return the standard SCSI INQUIRY data, or shall be set to one to return the vital
product data specified by the page code.

PageCode shall be the Vital Product Data page code to request if EVPD is set to one, or shall be ignored if EVPD
is set to zero.

pRspBuffer shall be a pointer to a buffer to receive the response.
RspBufferSize shall be the size in bytes of the buffer to receive response.
pSenseBuffer shall be a pointer to buffer to receive SCSI sense data.

SenseBufferSize shall be the size in bytes of the buffer to receive SCSI sense data.

Working Draft Fibre Channel HBA API (FC-HBA) 81

16 April 2003 T11/1568-D Revision 8
| p

7.5.1.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate the complete payload of a reply to the SCSI INQUIRY
command has been returned.

b) HBA_STATUS ERROR_NOT_A TARGET shall be returned to indicate the identified remote end port
does not have SCSI Target functionality.

¢) HBA_STATUS ERROR_TARGET_BUSY shall be returned to indicate unable to send the requested
command without causing a SCSI overlapped command condition.

d) HBA_STATUS_ SCSI_CHECK_CONDITION shall be returned to indicate returned SCSI status indicates a
SCSI CHECK CONDITION.

e) HBA_ STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the response to the SCSI INQUIRY
command. It shall be zero length if returned SCSI status indicates a SCSI CHECK CONDITION.

pSenseBuffer shall be unchanged. The buffer to which it points shall contain the SCSI sense data for the SCSI
INQUIRY command. shall be nonzero length only if returned SCSI status indicates a SCSI CHECK CONDITION.

7.5.2 HBA_ScsilnquiryV2
7.5.2.1 Format

HBA_STATUS HBA_Scsi | nqui ryV2 (
HBA HANDLE handl e,
HBA WA hbaPor t W,
HBA WW di scover edPort WW,
HBA_ Ul NT64 f cLUN,
HBA_ Ul NT8 CDB_Bytel,
HBA_ Ul NT8 CDB_Byt e2,
voi d *pRspBuffer,
HBA_Ul NT32 *pRspBufferSize,
HBA_ Ul NT8 *pScsi St at us,
voi d *pSenseBuffer,
HBA_ Ul NT32 *pSenseBufferSize

)

7.5.2.2 Description

The HBA_ScsilnquiryV2 function shall send a SCSI INQUIRY command to a remote end port (see SPC-3).

A SCSI command shall not be sent to an end port that does not have SCSI target functionality. A SCSI command
shall not be sent if doing so would cause a SCSI overlapped command condition with a correctly operating target
(see SAM-3). Proper use of tagged commands (see SAM-3) is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

7.5.2.3 Arguments

handle shall be a handle to an open HBA through which the SCSI INQUIRY command shall be issued.

Working Draft Fibre Channel HBA API (FC-HBA) 82

16 April 2003 T11/1568-D Revision 8

hbaPortWWN shall be the Port Name for a local HBA end port through which the SCSI INQUIRY command shall
be issued.

discoveredPortWWN shall be the Port Name for an end port to which the SCSI INQUIRY command shall be sent.
fcLUN shall be the SCSI LUN to which the SCSI INQUIRY command shall be sent.

CDB_Bytel shall be the second byte of the CDB for the SCSI INQUIRY command. This contains control flag bits.
At the time this standard was written, the effects of the value of CDB_Bytel on a SCSI INQUIRY command were as
indicated in table 7

Table 7 — Values for CDB_Bytel

CDB_Bytel value Effect
0 Request the standard SCSI INQUIRY data
1 Request the vital product data (EVPD)

specified by CDB_Byte?2

Request command support data (CmdDt)
for the command specified in CDB_Byte2

2

other values May cause SCSI Check Condition

CDB_Byte?2 shall be the third byte of the CDB for the SCSI INQUIRY command. If CDB_Bytel is 1, CDB_Byte2
shall be the Vital Product Data page code to request. If CDB_Bytel is 2, CDB_Byte2 shall be the Operation Code
of the command support data requested. For other values of CDB_Bytel, the value of CDB_Byte2 is unspecified,
and values other than zero may cause a SCSI Check Condition.

pRspBuffer shall be a pointer to a buffer to receive the SCSI INQUIRY command response.

pRspBufferSize shall be a pointer to the size in bytes of the buffer to receive the SCSI INQUIRY command
response.

pScsiStatus shall be a pointer to a buffer to receive SCSI status.

pSenseBuffer shall be a pointer to a buffer to receive SCSI sense data.

pSenseBufferSize shall be a pointer to the size in bytes of the buffer to receive SCSI sense data.

7.5.2.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate the complete payload of a reply to the SCSI INQUIRY
command has been returned.

b) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

¢) HBA_STATUS ERROR_NOT_A TARGET shall be returned to indicate the identified remote end port
does not have SCSI Target functionality.

d) HBA_STATUS ERROR_TARGET_BUSY shall be returned to indicate unable to send the requested
command without causing a SCSI overlapped command condition.

e) HBA_STATUS_ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

Working Draft Fibre Channel HBA API (FC-HBA) 83

16 April 2003 T11/1568-D Revision 8

pRspBuffer shall be unchanged. If the function value is HBA_STATUS_OK, the buffer to which it points shall
contain the response to the SCSI INQUIRY command.

pRspBufferSize shall be unchanged. The value of the integer to which it points shall be the size in bytes of the
response returned by the command. This shall not exceed the size passed as an argument at this pointer.

pScsiStatus shall be unchanged. The value of the byte to which it points shall be the SCSI status (see SAM-3). If
the function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the value of the SCSI
status may be interpreted based on the SCSI spec. A SCSI status of OK indicates a SCSI response is in the
response buffer. A SCSI status of Check Condition indicates no value is stored in the response, and the sense
buffer shall contain failure information if available. All other SCSI status codes should be interpreted by reference
to SAM-3.

pSenseBuffer shall be unchanged. If the function value is HBA_STATUS_SCSI_CHECK_CONDITION, the buffer
to which it points shall contain the sense data for the command.

pSenseBufferSize shall be unchanged. The value of the integer to which it points shall be the size in bytes of the
sense information returned by the command. This shall not exceed the size passed as an argument at this pointer.

7.5.3 HBA_SendReportLUNs
7.5.3.1 Format

HBA_STATUS HBA_SendRepor t LUNs(
HBA_ HANDLE handl e,
HBA_WAN por t VWAN,
void * pRspBuffer,
HBA_ U NT32 RspBufferSize,
void * pSenseBuffer,
HBA U NT32 SenseBufferSize

)
7.5.3.2 Description

The HBA_SendReportLUNs function shall send a SCSI REPORT LUNS command (see SPC-3) to a remote
FCP_Port (see FCP-2).

A SCSI command shall not be sent to an end port that does not have SCSI target functionality. A SCSI command
shall not be sent if doing so would cause a SCSI overlapped command condition with a correctly operating target
(see SAM-3). Proper use of tagged commands (see SAM-3) is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

7.5.3.3 Arguments

handle shall be a handle to an open HBA.

PortWWN shall be the Port Name of a SCSI Target Port.

pRspBuffer shall be a pointer to a buffer to receive the response.

RspBufferSize shall be the size in bytes of the buffer to receive response.

pSenseBuffer shall be a pointer to buffer to receive SCSI sense data.

Working Draft Fibre Channel HBA API (FC-HBA) 84

16 April 2003 T11/1568-D Revision 8

SenseBufferSize shall be the size in bytes of the buffer to receive SCSI sense data.
7.5.3.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate the complete payload of a reply to the SCSI REPORT
LUNS command has been returned.

b) HBA_STATUS ERROR_NOT_A TARGET shall be returned to indicate the identified remote end port
does not have SCSI Target functionality.

¢) HBA_STATUS ERROR_TARGET_BUSY shall be returned to indicate unable to send the requested
command without causing a SCSI overlapped command condition.

d) HBA_STATUS_ SCSI_CHECK_CONDITION shall be returned to indicate returned SCSI status indicates a
SCSI CHECK CONDITION.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the response to the SCSI REPORT
LUNS command. It shall be zero length if returned SCSI status indicates a SCSI CHECK CONDITION.

pSenseBuffer shall be unchanged. The buffer to which it points shall contain the SCSI sense data for the SCSI
REPORT LUNS command. shall be nonzero length only if returned SCSI status indicates a SCSI CHECK
CONDITION.

7.5.4 HBA_ScsiReportLunsV2
7.5.4.1 Format

HBA_STATUS HBA_Scsi Report LUNsV2(
HBA HANDLE handl e,
HBA WA hbaPor t VW,
HBA WW di scover edPort W,
voi d *pRspBuf fer,
HBA Ul NT32 *pRspBufferSize,
HBA_ Ul NT8 *pScsi St at us,
voi d *pSenseBuffer,
HBA_ Ul NT32 *pSenseBufferSize

)
7.5.4.2 Description

The HBA_SendReportLunsV2 function shall send a SCSI REPORT LUNS command to Logical Unit Number O of a
remote end port (see SPC-3)

A SCSI command shall not be sent to an end port that does not have SCSI target functionality. A SCSI command
shall not be sent if doing so would cause a SCSI overlapped command condition with a correctly operating target
(see SAM-3). Proper use of tagged commands (see SAM-3) is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

7.5.4.3 Arguments

handle shall be a handle to an open HBA through which the SCSI REPORT LUNS command shall be issued.

Working Draft Fibre Channel HBA API (FC-HBA) 85

16 April 2003 T11/1568-D Revision 8

hbaPortWWN shall be the Port Name for a local HBA end port through which the SCSI REPORT LUNS command
shall be issued.

discoveredPortWWN shall be the Port Name for an end port to which the SCSI REPORT LUNS command shall
be sent.

pRspBuffer shall be a pointer to a buffer to receive the SCSI REPORT LUNS command response.

pRspBufferSize shall be a pointer to the size in bytes of the buffer to receive the SCSI REPORT LUNS command
response.

pScsiStatus shall be a pointer to a buffer to receive SCSI status.

pSenseBuffer shall be a pointer to a buffer to receive SCSI sense data.

pSenseBufferSize shall be a pointer to the size in bytes of the buffer to receive SCSI sense data.

7.5.4.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate the complete payload of a reply to the SCSI REPORT
LUNS command has been returned.

b) HBA_STATUS_ ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

c) HBA_STATUS ERROR_NOT_A_TARGET shall be returned to indicate the identified remote end port
does not have SCSI Target functionality.

d) HBA_STATUS ERROR_TARGET_BUSY shall be returned to indicate unable to send the requested
command without causing a SCSI overlapped command condition.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. If the function value is HBA_STATUS_OK, the buffer to which it points shall
contain the response to the SCSI REPORT LUNS command.

pRspBufferSize shall be unchanged. The value of the integer to which it points shall be the size in bytes of the
response returned by the command. This shall not exceed the size passed as an argument at this pointer.

pScsiStatus shall be unchanged. The value of the byte to which it points shall be the SCSI status (see SAM-3). If
the function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the value of the SCSI
status may be interpreted based on the SCSI spec. A SCSI status of OK indicates a SCSI response is in the
response buffer. A SCSI status of Check Condition indicates no value is stored in the response, and the sense
buffer shall contain failure information if available. All other SCSI status codes should be interpreted by reference
to SAM-3.

pSenseBuffer shall be unchanged. If the function value is HBA_STATUS_ SCSI_CHECK_CONDITION, the buffer
to which it points shall contain the sense data for the command.

pSenseBufferSize shall be unchanged. The value of the integer to which it points shall be the size in bytes of the
sense information returned by the command. This shall not exceed the size passed as an argument at this pointer.

Working Draft Fibre Channel HBA API (FC-HBA) 86

16 April 2003 T11/1568-D Revision 8

7.5.5 HBA_SendReadCapacity
7.5.5.1 Format

HBA_STATUS HBA_SendReadCapaci t y(
HBA HANDLE handl e,
HBA_WWN por t VWAN,
HBA_ Ul NT64 f cLUN,
void * pRspBuffer,
HBA_U NT32 RspBufferSize,
void * pSenseBuffer,
HBA Ul NT32 SenseBufferSize

)
7.5.5.2 Description

The HBA_SendReadCapacity function shall send a SCSI READ CAPACITY command (see SBC-2) to a remote
FCP_Port (see FCP-2).

A SCSI command shall not be sent to an end port that does not have SCSI target functionality. A SCSI command
shall not be sent if doing so would cause a SCSI overlapped command condition with a correctly operating target
(see SAM-3). Proper use of tagged commands (see SAM-3) is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.
7.5.5.3 Arguments
handle shall be a handle to an open HBA.
PortWWN shall be the Port Name of a SCSI Target Port.
fcLUN shall be the SCSI LUN to send the SCSI READ CAPACITY command to.
pRspBuffer shall be a pointer to a buffer to receive the response.
RspBufferSize shall be the size in bytes of the buffer to receive response data.
pSenseBuffer shall be a pointer to buffer to receive SCSI sense data.
SenseBufferSize shall be the size in bytes of the buffer to receive SCSI sense data.
7.5.5.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_OK shall be returned to indicate the complete payload of a reply to the SCSI READ
CAPACITY command has been returned.
b) HBA_STATUS ERROR_NOT_A_TARGET shall be returned to indicate the identified remote end port
does not have SCSI Target functionality.
¢) HBA_STATUS ERROR_TARGET_BUSY shall be returned to indicate unable to send the requested
command without causing a SCSI overlapped command condition.
d) HBA_STATUS_SCSI_CHECK_CONDITION shall be returned to indicate returned SCSI status indicates a

SCSI CHECK CONDITION.
e) HBA_STATUS_ERROR may be returned to indicate any problem with no required value.

Working Draft Fibre Channel HBA API (FC-HBA) 87

16 April 2003 T11/1568-D Revision 8

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the response to the SCSI READ
CAPACITY command. It shall be zero length if returned SCSI status indicates a SCSI CHECK CONDITION.

pSenseBuffer shall be unchanged. The buffer to which it points shall contain the SCSI sense data for the SCSI
READ CAPACITY command. shall be nonzero length only if returned SCSI status indicates a SCSI CHECK
CONDITION.

7.5.6 HBA_ScsiReadCapacityV2
7.5.6.1 Format

HBA_STATUS HBA_Scsi ReadCapaci t yV2(
HBA HANDLE handl e,
HBA WA hbaPor t W,
HBA WW di scover edPort W,
HBA_Ul NT64 f cLUN,
voi d *pRspBuffer,
HBA Ul NT32 *pRspBufferSize,
HBA_ Ul NT8 *pScsi St at us,
voi d *pSenseBuffer,
HBA_Ul NT32 *pSenseBufferSize

)
7.5.6.2 Description

The HBA_ScsiReadCapacityV2 function shall send a SCSI READ CAPACITY command to a remote end port (see
SBC-2).

A SCSI command shall not be sent to an end port that does not have SCSI target functionality. A SCSI command
shall not be sent if doing so would cause a SCSI overlapped command condition with a correctly operating target
(see SAM-3). Proper use of tagged commands (see SAM-3) is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

7.5.6.3 Arguments

handle shall be a handle to an open HBA through which the SCSI READ CAPACITY command shall be issued.

hbaPortWWN shall be the Port Name for a local HBA end port through which the SCSI READ CAPACITY
command shall be issued.

discoveredPortWWN shall be the Port Name for an end port to which the SCSI READ CAPACITY command shall
be sent.

fcLUN shall be the SCSI LUN to which the SCSI READ CAPACITY command shall be sent.
pRspBuffer shall be a pointer to a buffer to receive the SCSI READ CAPACITY command response.

pRspBufferSize shall be a pointer to the size in bytes of the buffer to receive the SCSI READ CAPACITY
command response.

pScsiStatus shall be a pointer to a buffer to receive SCSI status.

Working Draft Fibre Channel HBA API (FC-HBA) 88

16 April 2003 T11/1568-D Revision 8

pSenseBuffer shall be a pointer to a buffer to receive SCSI sense data.

pSenseBufferSize shall be a pointer to the size in bytes of the buffer to receive SCSI sense data.

7.5.6.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS OK shall be returned to indicate the complete payload of a reply to the SCSI READ
CAPACITY command has been returned.

b) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

¢) HBA_STATUS ERROR_NOT_A TARGET shall be returned to indicate the identified remote end port
does not have SCSI Target functionality.

d) HBA_STATUS ERROR_TARGET_BUSY shall be returned to indicate unable to send the requested
command without causing a SCSI overlapped command condition.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. If the function value is HBA_STATUS_OK, the buffer to which it points shall
contain the response to the SCSI READ CAPACITY command.

pRspBufferSize shall be unchanged. The value of the integer to which it points shall be the size in bytes of the
response returned by the command. This shall not exceed the size passed as an argument at this pointer.

pScsiStatus shall be unchanged. The value of the byte to which it points shall be the SCSI status (see SAM-3). If
the function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the value of the SCSI
status may be interpreted based on the SCSI spec. A SCSI status of OK indicates a SCSI response is in the
response buffer. A SCSI status of Check Condition indicates no value is stored in the response, and the sense
buffer shall contain failure information if available. All other SCSI status codes should be interpreted by reference
to SAM-3.

pSenseBuffer shall be unchanged. If the function value is HBA_STATUS_SCSI_CHECK_CONDITION, the buffer
to which it points shall contain the sense data for the command.

pSenseBufferSize shall be unchanged. The integer to which it points shall be set to the size in bytes of the sense
information returned by the command. This shall not exceed the size passed as an argument at this pointer.

7.6 SB Information Functions

7.6.1 HBA_GetSBTargetMapping
7.6.1.1 Format

HBA_STATUS HBA_GCet SBTar get Mappi ng (
HBA_ HANDLE handl e,
HBA_WWN hbaPor t WAN,
HBA_SBTARCGETMAPPI NG * pMappi ng

Working Draft Fibre Channel HBA API (FC-HBA) 89

16 April 2003 T11/1568-D Revision 8

7.6.1.2 Description

Retrieves the mappings offered by the specified local adapter port between OS identification of logical I/O devices
and the worldwide-unique node-element identifier that is part of each device's Node Element Descriptor (NED). All
SB-capable control units are required to support self-description data for the devices they manage, including
device Node Element Descriptor data, as described in ANSI X3.296:1997, Single Byte Command Code Sets
Connection (see SBCON).

7.6.1.3 Arguments

handle shall be an HBA_HANDLE to the open HBA containing the end port for which target mappings are
requested

hbaPortWWN shall be the Name_Identifier the local adapter port for which target mappings are requested.

pMapping shall be a pointer to an HBA_SBTARGETMAPPING structure. The size of this structure is indicated by
the NumberOfEntries value within the structure.

7.6.1.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned if the function was successful.

b) HBA_STATUS_ ERROR_ILLEGAL_WWN shall be returned if the adapter referenced by the handle does
not contain an end port with Port Name hbaPortWWN.

c) HBA_STATUS _ERROR_NOT_SUPPORTED shall be returned if the adapter referenced by the handle
does not support target mapping.

d) HBA_STATUS _ERROR_MORE_DATA shall be returned if more space in the buffer is required to contain
the mapping information.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pMapping shall be unchanged. The HBA_SBTARGETMAPPING structure to which it points shall now contain the
full mapping information from OS identifications of 1/O devices to SB identifications of devices for the specific local
adapter port (see FC-SB-2, FC-SB-3 and relevant platform hardware and OS documentation). The value of the
NumberOfEntries field of the returned structure shall indicate the total number of mappings the port has estab-
lished even when the function returns an error because the buffer is too small to return all of them. An upper level
application may either allocate a sufficiently large buffer and check this value after a read, or do a read of the
NumberOfEntries value separately and allocate a new buffer of sufficient size to accommodate the entire mapping
structure.

7.6.2 HBA_GetSBStatistics
7.6.2.1 Format

HBA STATUS HBA Get SBStatistics (
HBA HANDLE handl e,
const HBA SBDEVI D *devi ce,
HBA_ SBSTATI STI CS *statistics

)
7.6.2.2 Description

Returns statistics for a specific device provided via the SB protocol on a specific local adapter.

Working Draft Fibre Channel HBA API (FC-HBA) 90

16 April 2003 T11/1568-D Revision 8

7.6.2.3 Arguments

handle shall be an HBA_HANDLE to an open HBA associated with the device for which SB statistics are
requested

device shall be a pointer to an HBA_SBDEVID structure specifying the device for which statistics are requested.

statistics shall be a pointer to an HBA_SBSTATISTICS structure in which the statistics for the specified device
may be returned.

7.6.2.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned if the function was successful.

b) HBA_STATUS ERROR_INVALID_DEVICE shall be returned if the specified device is not accessible via
the adapter referenced by the handle.

c) HBA_STATUS ERROR_UNAVAILABLE shall be returned if statistics are not available for the specified
device.

d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

statistics shall be unchanged. The structure to which it points shall contain the statistics for the specified device.
The statistics returned may reflect activity on all paths via which the device is accessible.

7.7 SB Disk Device Information Functions

7.7.1 HBA_SBDskGetCapacity
7.7.1.1 Format

HBA_STATUS HBA SBDskGet Capacity (
HBA DEVI CESELFDESC Devi ceSel f Desc,
HBA_SBDSKCAPACI TY *pSBDskCapaci ty

)

7.7.1.2 Description

Returns the capacity of the SB-attached disk device identified by DeviceSelfDesc. The information is returned in
the specified HBA_SBDSKCAPACITY structure in two formats:

a) the same format as returned for SCSI disks by the SCSI Read Capacity command (number_of blocks +
block_size); and

b) the format typically used for disk capacities by IBM mainframe operating systems -- number_of _cylinders +
number_of _tracks_per_cylinder + track_size.

The SCSI-format capacity information is derived from the cyls/tracks per cyl/track size

Working Draft Fibre Channel HBA API (FC-HBA) 91

16 April 2003 T11/1568-D Revision 8

format information. SBDskMaxUsableTrackLen is the unformatted capacity of the track. The capacity information
returned by this function does not reflect the track capacity for user data, which depends on the size of the user
data blocks on each track.

7.7.1.3 Arguments

DeviceSelfDesc shall specify the self description data (Token NED + Device NED) identifying the device for which
capacity information is requested. ANSI X3.296:1997, Single Byte Command Code Sets Connection (see SBCON)
describes Token NED and Device NED.

pSBDskCapacity shall be a pointer to an HBA_SBDSKCAPACITY structure in which capacity information for the
specified device may be returned.

7.7.1.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_OK shall be returned if the function was successful.
b) HBA_STATUS_ ERROR_UNAVAILABLE shall be returned if the device identified by DeviceSelfDesc is
unknown or no longer active.
c) The value among those in 6.2 for which the comment most closely describes the result of the function

should be returned to indicate any reason with no required value.

pSBDskCapacity shall be unchanged. The structure to which it points shall contain the capacity information for the
device.

7.8 Fabric Management Functions

7.8.1 HBA_SendCTPassThru
7.8.1.1 Format

HBA_STATUS HBA_SendCTPassThr u(
HBA HANDLE handl e,
voi d *pReqBuffer,
HBA Ul NT32 ReqBufferSi ze,
voi d *pRspBuf fer,
HBA U NT32 RspBufferSize
)

7.8.1.2 Description

The HBA_SendCTPassThru function shall send a CT pass through frame. An HBA shall decode this CT_IU
request per FC-GS-4, routing the CT frame in a Fabric according to the GS_TYPE field within the CT frame.

7.8.1.3 Arguments
handle shall be a handle to an open HBA.

pRegBuffer shall be a pointer to a buffer containing the full CT payload, including the CT header, to be sent as
defined in FC-GS-4 with the byte ordering as defined in FC-FS.

Working Draft Fibre Channel HBA API (FC-HBA) 92

16 April 2003 T11/1568-D Revision 8

ReqgBufferSize shall be the size of the full CT payload including the CT header, in bytes.
pRspBuffer shall be a pointer to a buffer for the CT response.
RspBufferSize shall be the size of the buffer for the CT response payload in bytes.
7.8.1.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_ OK shall be returned to indicate the complete reply to the CT Passthrough command has
been returned.
b) HBA_STATUS ERROR may be returned to indicate any problem with no required value.
¢) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.
pRspBuffer shall be unchanged. The buffer to which it points shall contain the CT response payload including the
CT header received in response to the frame sent, as defined in FC-GS-4 with the byte ordering as defined in
FC-FS. If the size of the actual response exceeds the size of the response buffer, trailing data shall be truncated
from the response so that the returned data equals the size of the buffer.
7.8.2 HBA_SendCTPassThruVv2
7.8.2.1 Format

HBA_STATUS HBA_SendCTPassThr uV2(
HBA_HANDLE handl e,
HBA WA hbaPor t W,
voi d *pReqBuffer,
HBA_ Ul NT32 ReqBufferSi ze,
voi d *pRspBuffer,
HBA Ul NT32 *pRspBufferSize
)
7.8.2.2 Description

The HBA_SendCTPassThruV2 function shall send a CT request payload. An HBA should decode this CT_IU
request per FC-GS-4, routing the CT frame in a fabric according to the GS_TYPE field within the CT frame.

7.8.2.3 Arguments
handle shall be a handle to an open HBA through which to issue the CT request.
hbaPortWWN shall be the Port Name of the local HBA Nx_Port through which to issue the CT request.

pReqBuffer shall be a pointer to a buffer containing the full CT payload, including the CT header, to be sent as
defined in FC-GS-4 with the byte ordering as defined in FC-FS.

RegBufferSize shall be the size of the full CT payload including the CT header, in bytes.
pRspBuffer shall be a pointer to a buffer for the CT response.

RspBufferSize shall be a pointer to the size of the buffer for the CT response payload in bytes.

Working Draft Fibre Channel HBA API (FC-HBA) 93

| 16 April 2003 T11/1568-D Revision 8

7.8.2.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate the complete reply to the CT Passthru command has been
returned.

b) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an Nx_Port with Port Name hbaPortWWN.

¢) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the CT response payload including the
CT header received in response to the frame sent, as defined in FC-GS-4 with the byte ordering as defined in
FC-FS. If the size of the actual response exceeds the size of the response buffer, trailing data shall be truncated
from the response so that the returned data equals the size of the buffer.

pRspBufferSize shall be unchanged. The integer to which it points shall be set to the size (in bytes) of the actual
response data.

7.8.3 HBA_SetRNIDMgmtinfo
7.8.3.1 Format

HBA_STATUS HBA_Set RNI DMgnt | nf o(
HBA_HANDLE handl e,
HBA_MGMTI NFO i nf o

)
7.8.3.2 Description

The HBA_SetRNIDMgmtinfo function shall set the RNID (Request Node Identification Information Data) returned
from the HBA (see FC-FS).

7.8.3.3 Arguments
handle shall be a handle to an open HBA.

info shall be a structure containing the information for this HBA to return in a Specific Node Identification Data
Format DFh of an RNID Accept (see FC-FS).

7.8.3.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_ OK shall be returned to indicate the RNID reply information has been set as requested.
b) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

c) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

Working Draft Fibre Channel HBA API (FC-HBA) 94

16 April 2003 T11/1568-D Revision 8

7.8.4 HBA_GetRNIDMgmtinfo
7.8.4.1 Format

HBA_ STATUS HBA_ Get RNI DMgnt | nf o
HBA HANDLE handl e,
HBA_MGMTI NFO * pl nfo

)
7.8.4.2 Description

The HBA_GetRNIDMgmtinfo function shall return the RNID (Request Node ldentification Information Data) from
the HBA (see FC-FS).

7.8.4.3 Arguments
handle shall be a handle to an open HBA.

pInfo shall be a pointer to a structure in which to return the information that this HBA returns in a Specific Node
Identification Data Format DFh of an RNID Accept (see FC-FS).

7.8.4.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_ OK shall be returned to indicate the RNID reply information has been returned.
b) HBA_STATUS_ ERROR may be returned to indicate any problem with no required value.
c) The value among those in 6.2 for which the comment most closely describes the result of the function

should be returned to indicate any reason with no required value.

pInfo shall be unchanged. The structure to which it points shall contain the information that this HBA returns in a
Specific Node Identification Data Format DFh of an RNID Accept (see FC-FS).

7.8.5 HBA_SendRNID
7.8.5.1 Format

HBA_STATUS HBA_SendRNI D(
HBA HANDLE handl e,
HBA_ WA wwn,
HBA_WWTYPE wwnt ype,
void * pRspBuffer,
HBA U NT32 * RspBufferSize

7.8.5.2 Description

Issues an RNID ELS to another end port with the Node Identification Data Format set to indicate the default
Topology Discovery format (DFh) is to be returned (see FC-FS).

7.8.5.3 Arguments

handle shall be a handle to an open HBA.

Working Draft Fibre Channel HBA API (FC-HBA) 95

16 April 2003 T11/1568-D Revision 8

wwhn shall be the Port Name of the end port to which the RNID ELS shall be sent.

wwntype Deprecated.

pRspBuffer shall be a pointer to a buffer for the RNID response.

RspBufferSize shall be the size of the buffer for the RNID response payload in bytes.

7.8.5.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate the complete reply to the RNID ELS has been returned,
even if the response is an ELS reject response.

b) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

c) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the payload data from the RNID Reply
as defined per FC-FS. If the size of the actual response exceeds the size of the response buffer, trailing data shall
be truncated from the response so that the returned data equals the size of the buffer.

7.8.6 HBA_SendRNIDV2
7.8.6.1 Format

HBA_STATUS HBA_SendRNI DV2(

HBA HANDLE handl e,

HBA WA hbaPor t W,

HBA WAN dest VAN,

HBA_ Ul NT32 dest FCI D,

HBA Ul NT32 Nodel dDat aFor nat ,

voi d *pRspBuffer,

HBA Ul NT32 *pRspBufferSize
)s

7.8.6.2 Description

The HBA_SendRNIDV2 function shall issue an RNID ELS to another FC_Port requesting a specified Node Identifi-
cation Data Format

Parameter destFCID may be set to allow the RNID ELS to be sent to an FC_Port that may not be registered with
the name server. If destFCID is set to x’00 00 00’, then the parameter shall be ignored. Otherwise, operation shall
be as follows:

If destFCID is not zero, the HBA API library shall verify that the destWWN/destFCID pair match in order to limit
visibility that may violate scoping mechanisms (e.g., soft zoning):

a) If the destWWN/destFCID pair matches an entry in the discovered ports table, the RNID shall be sent.

b) Ifthere is no entry in the discovered ports table for the destWWN or destFCID, then the RNID shall be sent.

c) If there is an entry in the discovered ports table for the destWWN, but the destFCID does not match, then
the request shall be rejected.

d) On completion of the HBA SendRNIDV2, if the Common Identification Data Length is nonzero in the RNID
response, the API library shall compare the N_Port WWN in the Common Identification Data of the RNID

Working Draft Fibre Channel HBA API (FC-HBA) 96

16 April 2003 T11/1568-D Revision 8

response with destWWN and shall fail the operation without returning the response data if they do not
match. If the Common Identification Data Length is zero in the RNID response, then this test shall be
omitted.

7.8.6.3 Arguments

handle shall be a handle to an open HBA through which the ELS shall be sent.

hbaPortWWN shall be the Port Name of the local HBA end port through which the ELS shall be sent.

destWWN shall be the Port Name of the remote FC_Port to which the ELS shall be sent.

destFCID shall be the address identifier of the destination to which the ELS is sent if destFCID is nonzero.
destFCID shall be ignored if destFCID is zero.

NodeldDataFormat shall be a valid value for Node Identification Data Format as per FC-FS.

pRspBuffer shall be a pointer to a buffer to receive the ELS response.

pRspBufferSize shall be a pointer to the size in bytes of pRspBuffer.

7.8.6.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a)
b)
c)
d)
e)

f)
9)

HBA_STATUS_OK shall be returned to indicate the complete LS_ACC to the RNID ELS has been
returned.

HBA_STATUS _ERROR_ELS REJECT shall be returned to indicate the RNID ELS was rejected by the
destination end port.

HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

HBA_STATUS ERROR_ILLEGAL_FCID shall be returned to indicate the destWWN/destFCID pair
conflicts with a discovered Port Name/address identifier pair known by the HBA referenced by handle.
HBA_STATUS ERROR_ILLEGAL_FCID shall be returned to indicate the N_Port WWN in the RNID
response does not match the destWWwN.

HBA_STATUS_ERROR may be returned to indicate any problem with no required value.

The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the payload data from the RNID Reply
as defined per FC-FS. Note, if the ELS was rejected, this shall be the LS_RJT payload. If the size of the reply
payload exceeds the size specified in argument pRspBufferSize at entry to the function, the returned data shall be
truncated to the size specified in the argument.

pRspBufferSize shall be unchanged. The integer to which it points shall contain the size in bytes of the complete
ELS reply payload. This may exceed the size specified as an argument. This shall indicate that the data in
pRspBuffer has been truncated.

Working Draft Fibre Channel HBA API (FC-HBA) 97

16 April 2003 T11/1568-D Revision 8

7.8.7 HBA_SendRPL
7.8.7.1 Format

HBA_STATUS HBA_SendRPL (
HBA HANDLE handl e,
HBA WA hbaPor t VW,
HBA_WW agent _wan,
HBA_ Ul NT32 agent _donai n,
HBA_U NT32 port | ndex,
voi d *pRspBuffer,
HBA U NT32 *pRspBufferSize
)

7.8.7.2 Description

The HBA_SendRPL function shall issue a Read Port List (RPL) Extended Link Service through the specified HBA
to a specified end port or domain controller (see FC-FS).

7.8.7.3 Arguments
handle shall be a handle to an open HBA through which the ELS shall be sent.
hbaPortWWN shall be the Port Name of the local HBA end port through which the ELS shall be sent.

agent_wwn shall be the Port Name of an FC_Port that shall be requested to provide its list of FC_Ports if
agent_wwn is nonzero. agent_wwn shall be ignored if agent_wwn is zero.

agent_domain shall be a domain number and the domain controller for that domain shall be the entity that shall be
requested to provide its list of FC_Ports if agent_wwn is zero. agent_domain shall be ignored if agent_wwn is
nonzero.

portindex shall be the index of the first FC_Port requested in the response list.

NOTE 14 If the recipient complies with FC-FS, the index of the first FC_Port in the complete list maintained by the
recipient of the request is zero.

pRspBuffer shall be a pointer to a buffer to receive the ELS response.
pRspBufferSize shall be a pointer to the size in bytes of pRspBuffer.

NOTE 15 If the responding entity complies with FC-FS, it truncates the list in the response to the number of
FC_Ports that fit.

7.8.7.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate the complete LS_ACC to the RPL ELS has been returned.

b) HBA_STATUS ERROR_ELS REJECT shall be returned to indicate the RPL ELS was rejected by the
destination end port.

¢) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

d) HBA_STATUS_ERROR may be returned to indicate any problem with no required value.

Working Draft Fibre Channel HBA API (FC-HBA) 98

16 April 2003 T11/1568-D Revision 8

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the payload data from the RPL Reply as
defined per FC-FS. If the ELS was rejected, this shall be the LS_RJT payload. If the size of the reply payload
exceeds the size specified in argument pRspBufferSize at entry to the function, the returned data shall be
truncated to the size specified in the argument.

pRspBufferSize shall be unchanged. The integer to which it points shall contain the size in bytes of the complete
ELS reply payload. This may exceed the size specified as an argument. This shall indicate that the data in
pRspBuffer has been truncated.

NOTE 16 Truncation is not necessary if the responding entity complies with FC-FS.
7.8.8 HBA_SendRPS
7.8.8.1 Format
HBA_STATUS HBA_SendRPS (
HBA_HANDLE handl e,
HBA_ WA hbaPor t WN,
HBA_WW agent _wan,
HBA_ Ul NT32 agent _donai n,
HBA_ W obj ect _wwn,
HBA_ Ul NT32 obj ect _port_nunber,
voi d *pRspBuf fer,
HBA_ Ul NT32 *pRspBufferSize
);
7.8.8.2 Description

The HBA_SendRPS function shall issue a Read Port Status Block (RPS) Extended Link Service through the
specified HBA to a specified FC_Port or domain controller (see FC-FS).

7.8.8.3 Arguments
handle shall be a handle to an open HBA through which the ELS shall be sent.
hbaPortWWN shall be the Port Name of the local HBA end port through which the ELS shall be sent.

agent_wwn shall be the Port Name of an FC_Port that shall be requested to provide Port Status if agent_wwn is
nonzero. agent_wwn shall be ignored if agent_wwn is zero.

agent_domain shall be the domain number for the domain controller that shall be requested to provide Port status
if agent_wwn is zero. agent_domain shall be ignored if agent_wwn is nonzero.

object_wwn shall be the Port Name of an FC_Port for which Port Status shall be returned if object_wwn is
nonzero. object_wwn shall be ignored if object wwn is zero

object_port_number shall be a relative port number of the FC_Port for which Port Status shall be returned if
object_ wwn is zero. Relative port number shall be defined in a vendor specific manner within the entity to which the
request is sent. object_port_number shall be ignored if object_wwn is nonzero.

pRspBuffer shall be a pointer to a buffer to receive the ELS response.

Working Draft Fibre Channel HBA API (FC-HBA) 99

16 April 2003 T11/1568-D Revision 8

pRspBufferSize shall be a pointer to the size in bytes of pRspBuffer. A size of 56 is sufficient for the largest
response.

7.8.8.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate the complete LS_ACC to the RPS ELS has been returned.

b) HBA_STATUS ERROR_ELS REJECT shall be returned to indicate the RPS ELS was rejected by the
destination end port.

¢) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

d) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the payload data from the RPS Reply
as defined per FC-FS. If the ELS was rejected, this shall be the LS_RJT payload. If the size of the reply payload
exceeds the size specified in argument pRspBufferSize at entry to the function, the returned data shall be
truncated to the size specified in the argument.

pRspBufferSize shall be unchanged. The integer to which it points shall contain the size in bytes of the complete
ELS reply payload. This may exceed the size specified as an argument. This shall indicate that the data in
pRspBuffer has been truncated.
7.8.9 HBA_SendSRL
7.8.9.1 Format
HBA STATUS HBA SendSRL (
HBA HANDLE handl e,
HBA WA hbaPor t VW,
HBA WAN wwn,
HBA_ U NT32 dormmi n,
voi d *pRspBuffer,
HBA Ul NT32 *pRspBufferSize
)
7.8.9.2 Description

The HBA_SendSRL function shall issue a Scan Remote Loop (SRL) Extended Link Service through the specified
HBA to a specified domain controller (see FC-FS).

7.8.9.3 Arguments
handle shall be a handle to an open HBA through which the ELS shall be sent.
hbaPortWWN shall be the Port Name of the local HBA end port through which the ELS shall be sent.

wwhn shall be the Port Name of the FL_Port for the loop to be scanned if wwn is nonzero. The ELS shall be sent to
the domain controller associated with the named FL_Port. wwn shall be ignored if wwn is zero.

Working Draft Fibre Channel HBA API (FC-HBA) 100

16 April 2003 T11/1568-D Revision 8

domain shall be a domain number for which all loops shall be scanned if wwn is zero. The ELS shall be sent to the
domain controller of the domain. domain shall be ignored if wwn is nonzero.

pRspBuffer shall be a pointer to a buffer to receive the ELS response.

pRspBufferSize shall be a pointer to the size in bytes of pRspBuffer. Eight is a sufficient length for any response.
7.8.9.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate the complete LS_ACC to the SRL ELS has been returned.

b) HBA_STATUS ERROR_ELS REJECT shall be returned to indicate the SRL ELS was rejected by the
destination domain.

c) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

d) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the payload data from the SRL Reply as
defined per FC-FS. Note, if the ELS was rejected, this shall be the LS_RJT payload. If the size of the reply payload
exceeds the size specified in argument pRspBufferSize at entry to the function, the returned data shall be
truncated to the size specified in the argument.

pRspBufferSize shall be unchanged. The integer to which it points shall contain the size in bytes of the complete
ELS reply payload. This may exceed the size specified as an argument. This shall indicate that the data in
pRspBuffer has been truncated.

7.8.10 HBA_SendLIRR
7.8.10.1 Format

HBA_STATUS HBA_SendLI RR (

HBA HANDLE handl e,

HBA WA hbaPor t W,

HBA WAN dest VW,

HBA_Ul NT8 functi on,

HBA Ul NT8 type,

voi d *pRspBuffer,

HBA U NT32 *pRspBufferSize
)

7.8.10.2 Description

The HBA_SendLIRR function shall issue a Link Incident Record Registration (LIRR) Extended Link Service
through the specified HBA end port to a specified remote end port (see FC-FS). The HBA and its software shall not
autonomously originate LIRR, so link incident registration shall be entirely under control of application software.
7.8.10.3 Arguments

handle shall be a handle to an open HBA through which the ELS shall be sent.

hbaPortWWN shall be the Port Name of the local HBA end port through which the ELS shall be sent.

Working Draft Fibre Channel HBA API (FC-HBA) 101

16 April 2003 T11/1568-D Revision 8

destWWN shall be the Port Name of the remote FC_Port to which the ELS shall be sent. If this is zero, the desti-
nation shall be the management server well known address.

function shall be the code for the registration function to be performed. See FC-FS for permitted values and their
meanings.

type shall be the FC-4 device TYPE for which specific link incident information requested if type is nonzero. Only
the common link incident information is requested if type is zero.

pRspBuffer shall be a pointer to a buffer to receive the ELS response.

pRspBufferSize shall be a pointer to the size in bytes of pRspBuffer. Eight is a sufficient length for any response.
7.8.10.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS OK shall be returned to indicate the complete LS _ACC to the LIRR ELS has been
returned.

b) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the local HBA does not support
link incident reporting.

c) HBA_STATUS ERROR_ELS REJECT shall be returned to indicate the LIRR ELS was rejected by the
destination end port.

d) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

e) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

f) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the payload data from the LIRR Reply
as defined per FC-FS. Note, if the ELS was rejected, this shall be the LS_RJT payload. If the size of the reply
payload exceeds the size specified in argument pRspBufferSize at entry to the function, the returned data shall be
truncated to the size specified in the argument.

pRspBufferSize shall be unchanged. The integer to which it points shall contain the size in bytes of the complete
ELS reply payload. This may exceed the size specified as an argument. This shall indicate that the data in
pRspBuffer has been truncated.

7.8.11 HBA_SendRLS
7.8.11.1 Format

HBA_STATUS HBA_SendRLS (
HBA HANDLE handl e,
HBA WA hbaPor t VW,
HBA WAN dest VW,
voi d *pRspBuf fer,
HBA U NT32 *pRspBufferSize

Working Draft Fibre Channel HBA API (FC-HBA) 102

16 April 2003 T11/1568-D Revision 8

7.8.11.2 Description

The HBA_SendRLS function shall issue a Read Link Error Status Block (RLS) Extended Link Service through the
specified HBA end port to request a specified remote FC_Port to return the Link Error Status Block associated with
the destination Port Name (see FC-FS).

7.8.11.3 Arguments

handle shall be a handle to an open HBA through which the ELS shall be sent.

hbaPortWWN shall be the Port Name of the local HBA end port through which the ELS shall be sent.
destWWN shall be the Port Name of the remote FC_Port to which the ELS shall be sent.
pRspBuffer shall be a pointer to a buffer to receive the ELS response.

pRspBufferSize shall be a pointer to the size in bytes of pRspBuffer. A size of 28 is sufficient for the largest
response.

7.8.11.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_OK shall be returned to indicate the complete LS_ACC to the RLS ELS has been returned.

b) HBA_STATUS_ ERROR_ELS_ REJECT shall be returned to indicate the RNID ELS was rejected by the
destination FC_Port.

c) HBA_STATUS _ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name hbaPortWWN.

d) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pRspBuffer shall be unchanged. The buffer to which it points shall contain the payload data from the RLS Reply as
defined per FC-FS. Note, if the ELS was rejected, this shall be the LS_RJT payload. If the size of the reply payload
exceeds the size specified in argument pRspBufferSize at entry to the function, the returned data shall be
truncated to the size specified in the argument.

pRspBufferSize shall be unchanged. The integer to which it points shall contain the size in bytes of the complete

ELS reply payload. This may exceed the size specified as an argument. This shall indicate that the data in
pRspBuffer has been truncated.

7.9 Event Handling Functions

7.9.1 Polled Event Reporting Behavior Model

The polled event reporting method provides a simple polled interface to a basic set of HBA-detected events. It is
retained in this standard for compatibility with the Common HBA API Interface specification in FC-MI. It comprises
a single function, HBA_GetEventBuffer.

An implementation of the polled event reporting method shall behave as though it were a circular queue of event

records in the format of HBA_Eventinfo structures (see 6.9.1.2) that shall represent RSCN, link status, or other
events. Event records shall be added to the presumed circular queue as events occur. Events shall be removed

Working Draft Fibre Channel HBA API (FC-HBA) 103

16 April 2003 T11/1568-D Revision 8

from the presumed circular queue in order of occurrence as any application calls HBA GetEventBuffer. The size of
the queue shall be implementation dependent. If the queue becomes full, any newly added records shall replace
the oldest records and the next record to be delivered to an application shall be the oldest remaining record. This
shall cause the oldest records to be lost.

If multiple applications make overlapping sequences of HBA_GetEventBuffer calls, each available event record
shall each be delivered in the return to only one HBA_GetEventGuffer call. In this circumstance, the exact distri-
bution of records to applications may not be predictable, but the sequence of events delivered to any application
shall be strictly in order of event occurrence.

Any event reported via the polled event reporting method shall also be reported to all applications that have regis-
tered for that event through the asynchronous event reporting method.

The arrival of an RSCN ELS shall be treated as a separate event for each Affected Port_ID Page carried by the
RSCN.

7.9.2 HBA_GetEventBuffer
7.9.2.1 Format

HBA_STATUS HBA_ Get Event Buf f er (
HBA HANDLE handl e,
HBA_EVENTI NFO *pEvent Buf f er,
HBA_U NT32 *pEvent Count

)
7.9.2.2 Description
The HBA_GetEventBuffer function shall remove and return the next events from the HBA's event queue. The
number of events returned shall be the lesser of the value of argument EventCount at call and the number of
entries available in the event queue.
7.9.2.3 Arguments
handle shall be a handle to an open HBA.
pEventBuffer shall be a pointer to a buffer to receive events.
pEventCount shall be a pointer to the number of event records that fit in the space allocated for the buffer to
receive events. It shall be set to the size (in event records) of the buffer for receiving events on call, and shall be
returned as the number of events actually delivered.
7.9.2.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS OK shall be returned to indicate no errors were encountered and pEventCount indicates

the number of event records returned.
b) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

c) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

Working Draft Fibre Channel HBA API (FC-HBA) 104

16 April 2003 T11/1568-D Revision 8

pEventBuffer shall be unchanged. The buffer to which it points shall contain event records representing previously
undelivered events.

pEventCount shall be unchanged. The integer to which it points shall contain the number of event records that
actually were delivered.

7.9.3 Overview of Asynchronous Event Reporting
7.9.3.1 Asynchronous Event Reporting Behavior Model

The asynchronous event reporting method provides a selective and prompt means of notifying interested applica-
tions of HBA-detected events. It comprises a set of functions that allow applications to register for notification of
specified groups of events.

In the asynchronous event reporting method, an application shall be notified of an event occurrence by a callback
to a function that has been registered by the application. The parameters of the callback function shall identify and
characterize the event. The call shall occur promptly after detection of the event; however, this standard places no
specific limits on promptness.

For the purpose of asynchronous event reporting, events detected by an HBA shall be grouped coarsely into event
categories and more specifically into event types. When an application registers a callback function for
asynchronous event notification, it selects a category and source of events that shall be reported via that callback
function. Depending on the registration function, the source may be the local system, a local HBA, a local HBA
port, or an FCP target device. An application that is registered for events of a selected category and source shall
be notified of every event detected concerning the selected source of any type in the selected category. An appli-
cation shall not be notified of any event of a category and source for which it is not registered at the time of occur-
rence of the event.

An application that has registered for notification of events of a selected category and source may later deregister
for notification of that category and source of events.

If an application registers a callback function for an event category and source without explicitly deregistering
previous callback functions for the same event category and source, each registered function shall be called on
occurrence of any event of the selected category and source.

Upon registration for statistical events, an application also specifies the conditions of statistical counters that shall
be detected as an event.

An application may register for multiple groups of events with the same or differing callback functions. On regis-
tering for notification of a group of events, an application shall provide a void pointer that shall be passed to the
callback. An application that registers multiple groups of events with the same callback function may use the data
at that pointer to identify the registration call that enabled each callback.

Multiple applications may register concurrently for the same events. In this case, each event occurrence shall be
reported to each registered application. Any event reported via the polled event reporting method shall also be
reported via the asynchronous event reporting method to all applications that have registered for that event.

The arrival of an RSCN ELS shall be treated as a separate event for each Affected Port_ID Page carried by the
RSCN.

7.9.3.2 Registration for Events with diverse HBA specific software

When an application calls an HBA API library function to register for asynchronous events, the HBA API library
may in turn rely on some form of registration with HBA specific software. A wrapper library shall repeat the same

Working Draft Fibre Channel HBA API (FC-HBA) 105

16 April 2003 T11/1568-D Revision 8

event registration call to each HBA specific library. The possibility arises that some HBA specific software may
successfully process the registration, some may indicate it is unsupported, and some may fail to register for other
reasons. In the presence of variant responses to event registration from HBA specific software, the behavior of the
HBA API library shall be as follows:

The HBA API library shall continue to register with each instance of HBA specific software regardless of the
response from any instance of HBA specific software.

If all instances of HBA specific software indicate the same result, the HBA API library shall return a status appro-
priate to that result.

If any instance of HBA specific software indicated successful registration, the HBA API library shall return
HBA_STATUS_OK.

If any instance of HBA specific software indicated nonsupport for the event being registered and no instance of
HBA specific software indicated successful registration, the HBA API library shall return
HBA_STATUS_ERROR_NOT_SUPPORTED.

If no instance of HBA specific software indicated successful registration or nonsupport for the event being regis-
tered, but not all instances of HBA specific software indicated the same result, the HBA API library shall return a
status appropriate to the result indicated by one of the instances of HBA specific software, chosen in a vendor
specific manner.

If not all instances of HBA specific software indicated the same result, the HBA API library shall follow the other
rules in this subclause and in addition, for each instance of HBA specific software that indicated a result other than
successful completion, the HBA API library shall make a nonvolatile record in a vendor specific manner of the
identity of the function call and the instance of HBA specific software and the result it indicated.

NOTE 17 It is suggested to use the stderr device on unix systems and the event log on Windows systems to make
a nonvolatile record of event registration errors.

7.9.4 HBA_RegisterForAdapterAddEvents
7.9.4.1 Format

HBA_STATUS HBA_Regi st er For Adapt er AddEvent s(
voi d (*pCall back) (
voi d *pDat a,
HBA_WAN Por t VW,
HBA Ul NT32 event Type
)
voi d *pUser Dat a,
HBA CALLBACKHANDLE *pCal | backHandl e

)

7.9.4.2 Description

The HBA_RegisterForAdapterAddEvents function shall register an application defined function that shall be called
upon occurrence of HBA add category asynchronous events. When a new HBA is added to the local system, this
callback shall be called with a Port Name of the new HBA. The event type shall be HBA_EVENT_ADAPTER_ADD.
To terminate event delivery, HBA RemoveCallback shall be called.

Working Draft Fibre Channel HBA API (FC-HBA) 106

16 April 2003 T11/1568-D Revision 8

7.9.4.3 Arguments
pCallback shall be a pointer to the entry to the callback routine.

pUserData shall be a pointer that shall be passed to the callback routine with each event. This may be used for
correlating the event with the source of its event registration.

pCallbackHandle shall be a pointer to a structure in which an opaque identifier that may be used to deregister the
callback may be returned.

7.9.4.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate successful callback function registration.

b) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

c) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pCallbackHandle shall be unchanged. The structure to which it points shall contain an opaque identifier that may
be used to deregister the callback if the function value is HBA_STATUS_OK.

7.9.4.5 Callback Arguments

pData shall be the pointer that was passed from registration for this event category. This may be used for corre-
lating the event with the source of its event registration.

PortWWN shall be the Port Name of any end port on the HBA that was added.
eventType shall be HBA_EVENT_ADAPTER_ADD

7.9.5 HBA_RegisterForAdapterEvents

7.9.5.1 Format

HBA_STATUS HBA Regi st er For Adapt er Event s(
void (*pCall back) (
voi d *pDat a,
HBA WAN Por t VW,
HBA_U NT32 event Type
)
voi d *pUser Dat a,
HBA_ HANDLE handl e,
HBA CALLBACKHANDLE *pCal | backHandl e

)

7.9.5.2 Description

The HBA_RegisterForAdapterEvents function shall register an application defined function that shall be called
upon occurrence of HBA category asynchronous events. When an HBA category event occurs for the specified
adapter, the callback function shall be called with event type of HBA_EVENT_ADAPTER_REMOVE or
HBA_EVENT_ADAPTER_CHANGE. Events shall cause callbacks whether the HBA handle specified at regis-
tration is held open or not. To terminate event delivery, HBA_RemoveCallback shall be called.

Working Draft Fibre Channel HBA API (FC-HBA) 107

16 April 2003 T11/1568-D Revision 8

7.9.5.3 Arguments
pCallback shall be a pointer to the entry to the callback routine.

pUserData shall be a pointer that shall be passed to the callback routine with each event. This may be used for
correlating the event with the source of its event registration.

handle shall be a handle to an open HBA for which event callbacks are requested.

pCallbackHandle shall be a pointer to a structure in which an opaque identifier that may be used to deregister the
callback may be returned.

7.9.5.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS_ OK shall be returned to indicate successful callback function registration.

b) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

c) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pCallbackHandle shall be unchanged. The structure to which it points shall contain an opaque identifier that may
be used to deregister the callback if the function value is HBA_STATUS_OK.

7.9.5.5 Callback Arguments

pData shall be the pointer that was passed from registration for this event category. This may be used for corre-
lating the event with the source of its event registration.

PortWWN shall be a Port Name of any end port on the HBA that detected the event. The client should re-discover
all aspects of the HBA and ALL connected FC_Ports as the prior state may not be accurate.

eventType shall be a value specified in 6.10.1.3 indicating the type of event that occurred.
7.9.6 HBA_RegisterForAdapterPortEvents
7.9.6.1 Format

HBA STATUS HBA Regi st er For Adapt er Por t Event s(
void (*pCal | back) (
voi d *pDat a,
HBA WAN Por t VW,
HBA_U NT32 event Type,
HBA U NT32 fabricPortID
)
voi d *pUser Dat a,
HBA HANDLE handl e,
HBA WAN Por t VW,
HBA CALLBACKHANDLE *pCal | backHandl e

Working Draft Fibre Channel HBA API (FC-HBA) 108

16 April 2003 T11/1568-D Revision 8

7.9.6.2 Description

The HBA_RegisterForAdapterPortEvents function shall register an application defined function that shall be called
upon occurrence of port category asynchronous events. When a port category event occurs for the specified port,
the callback function is called with event type set to the appropriate event. Event types shall be
HBA_EVENT_PORT_OFFLINE, HBA_EVENT_PORT_ONLINE, HBA_EVENT_PORT_NEW_TARGETS,
HBA_EVENT_PORT_FABRIC or HBA_EVENT_PORT_UNKNOWN. If the event is of type
HBA_EVENT_PORT_FABRIC, the callback argument fabricPortID shall contain the RSCN affected Port ID page
for the sub-section of the fabric that has changed, as per the RSCN definition in FC-FS. The arrival of an RSCN
ELS shall be treated as a separate event for each Affected Port ID Page carried by the RSCN. For all other event
types, fabricPortID shall be ignored. Events shall cause callbacks whether the HBA handle specified at registration
is held open or not. To terminate event delivery, HBA_RemoveCallback shall be called.

7.9.6.3 Arguments
pCallback shall be a pointer to the entry to the callback routine.

pUserData shall be a pointer that shall be passed to the callback routine with each event. This may be used for
correlating the event with the source of its event registration.

handle shall be a handle to an open HBA for which event callbacks are requested.
PortWWN shall be the Port Name of the end port on the specified HBA for which event callbacks are requested

pCallbackHandle shall be a pointer to a structure in which an opaque identifier that may be used to deregister the
callback may be returned.

7.9.6.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_OK shall be returned to indicate successful callback function registration.
b) HBA_STATUS_ ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name PortWWN.
c) HBA_STATUS_ERROR may be returned to indicate any problem with no required value.
d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pCallbackHandle shall be unchanged. The structure to which it points shall contain an opaque value that may be
used to deregister the callback if the function value is HBA_STATUS_ OK.

7.9.6.5 Callback Arguments

pData shall be the pointer that was passed from registration for this event category. This may be used for corre-
lating the event with the source of its event registration.

PortWWN shall be the Port Name of the HBA end port that detected the event.
eventType shall be a value specified in 6.10.1.4 indicating the type of event that occurred.

fabricPortID If the event is of type HBA_EVENT_PORT_FABRIC, this shall contain the RSCN affected Port ID
page, as per the RSCN definition in FC-FS. For all other event types, fabricPortID shall be ignored.

Working Draft Fibre Channel HBA API (FC-HBA) 109

16 April 2003 T11/1568-D Revision 8

7.9.7 HBA_RegisterForAdapterPortStatEvents
7.9.7.1 Format

HBA_STATUS HBA_Regi st er For Adapt er Por t St at Event s(
void (*pCal | back) (
voi d *pDat a,
HBA_WAN Por t VWN,
HBA_U NT32 event Type,

)

voi d *pUser Dat a,

HBA HANDLE handl e,

HBA WAN Por t VW,

HBA Port Statistics stats,

HBA Ul NT32 st at Type,

HBA CALLBACKHANDLE *pCal | backHandl e

)

7.9.7.2 Description

The HBA_RegisterForAdapterPortStatEvents function shall define conditions causing an HBA port statistics
category asynchronous event and register an application defined function that shall be called upon occurrence of
the HBA statistics category asynchronous event so defined. This may be used for statistic threshold crossing, or
growth rate events. Multiple statistics may be registered in one call by setting more than one statistic in the stats
argument to a non-zero value. For threshold events, once a specific threshold is crossed, the callback shall be
automatically de-registered for that statistic. If other statistics were registered for that callback, they shall remain in
effect until they are crossed. Events shall cause callbacks whether the HBA handle specified at registration is held
open or not. To terminate event delivery, HBA_RemoveCallback shall be called.

7.9.7.3 Arguments
pCallback shall be a pointer to the entry to the callback routine.

pUserData shall be a pointer that shall be passed to the callback routine with each event. This may be used for
correlating the event with the source of its event registration.

handle shall be a handle to an open HBA for which event callbacks are requested.

PortWWN shall be the Port Name of the end port on the specified HBA for which event callbacks are requested
stats shall be a Port Statistics structure in which nonzero values shall indicate the counters to be monitored. If
statType is HBA_EVENT_PORT_STAT_THRESHOLD, any non-null values in the stats structure shall be inter-
preted as the thresholds to watch for. If statType is HBA_EVENT_PORT_STAT_GROWTH, any non-null values in
the stats structure shall be interpreted as growth rate numbers over 1 minute, although the frequency at which the
growth is monitored is vendor specific

statType shall be a value specified in 6.10.1.5 that shall determine whether the events registered by this call are
threshold crossing or growth rate of the indicated counters

pCallbackHandle shall be a pointer to a structure in which an opaque identifier that may be used to deregister the
callback may be returned.

Working Draft Fibre Channel HBA API (FC-HBA) 110

| 16 April 2003 T11/1568-D Revision 8

7.9.7.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:

a) HBA_STATUS OK shall be returned to indicate successful callback function registration.

b) HBA_STATUS ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name PortWWN.

¢) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA specific library or
underlying system does not support statistic events.

d) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

e) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pCallbackHandle shall be unchanged. The structure to which it points shall contain an opaque identifier that may
be used to deregister the callback if the function value is HBA_STATUS_OK.

7.9.7.5 Callback Arguments

pData shall be the pointer that was passed from registration for this event category. This may be used for corre-
lating the event with the source of its event registration.

PortWWN shall be the Port Name of the HBA end port that detected the event.
eventType shall be a value specified in 6.10.1.5 indicating the type of event that occurred.
7.9.8 HBA_RegisterForTargetEvents

7.9.8.1 Format

HBA_ STATUS HBA_Regi st er For Tar get Event s(
void (*pCall back) (
voi d *pDat a,
HBA WA hbaPor t W,
HBA WW di scover edPor t W,
HBA_U NT32 event Type,
)
voi d *pUser Dat a,
HBA HANDLE handl e,
HBA WA hbaPor t VW,
HBA WW di scover edPort W,
HBA_CALLBACKHANDLE *pCal | backHandl e,
HBA U NT32 al |l Targets

)

7.9.8.2 Description

The HBA_RegisterForTargetEvents function shall register an application defined function that shall be called upon
occurrence of target category asynchronous events. When an event concerning an FCP-2 target port occurs, the
callback function shall be called with event type of HBA _EVENT_TARGET_OFFLINE,
HBA_EVENT_TARGET_ONLINE, HBA_EVENT_TARGET_REMOVED, or HBA_EVENT_TARGET_UNKNOWN.
Events shall cause callbacks whether the HBA handle specified at registration is held open or not. To terminate
event delivery, HBA_RemoveCallback shall be called.

Working Draft Fibre Channel HBA API (FC-HBA) 111

16 April 2003 T11/1568-D Revision 8

7.9.8.3 Arguments
pCallback shall be a pointer to the entry to the callback routine.

pUserData shall be a pointer that shall be passed to the callback routine with each event. This may be used for
correlating the event with the source of its event registration.

handle shall be a handle to an open HBA for which event callbacks are requested.

hbaPortWWN shall be the Port Name of the end port on the specified HBA for which event callbacks are
requested

discoveredPortWWN shall be the Port Name of the target end port for which event callbacks are requested

pCallbackHandle shall be a pointer to a structure in which an opaque identifier that may be used to deregister the
callback may be returned.

allTargets shall indicate the scope of target end ports registered by this call. If allTargets is non-zero, the value in
discoveredPortWWN shall be ignored, and events for all current and future discovered target end ports shall be
registered by this call. If allTargets is zero, only event for the target end port specified by discoveredPortWWN shall
be registered by this call
7.9.8.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_OK shall be returned to indicate successful callback function registration.
b) HBA_STATUS_ ERROR_ILLEGAL_WWN shall be returned to indicate the HBA referenced by handle does
not contain an end port with Port Name PortWWN.
c) HBA_STATUS _ERROR may be returned to indicate any problem with no required value.
d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pCallbackHandle shall be unchanged. The structure to which it points shall contain an opaque identifier that may
be used to deregister the callback if the function value is HBA_STATUS_OK.

7.9.8.5 Callback Arguments

pData shall be the pointer that was passed from registration for this event category. This may be used for corre-
lating the event with the source of its event registration.

hbaPortWWN shall be the Port Name of the local HBA end port through which the target event was detected
discoveredPortWWN shall be the Port Name of the remote end port at which the target event was detected

eventType shall be a value specified in 6.10.1.6 indicating the type of event that occurred.

Working Draft Fibre Channel HBA API (FC-HBA) 112

16 April 2003 T11/1568-D Revision 8

7.9.9 HBA_RegisterForLinkEvents
7.9.9.1 Format

HBA_STATUS HBA_Regi st er For Li nkEvent s(
void (*pCal | back) (
voi d *pDat a,
HBA WA adapt er W,
HBA_U NT32 event Type,
voi d *pRLI RBuffer,
HBA_ Ul NT32 RLI RBufferSi ze

),

voi d *pUser Dat a,

voi d *pRLI RBuffer,

HBA_ Ul NT32 RLI RBufferSize,

HBA HANDLE handl e,

HBA CALLBACKHANDLE *pCal | backHandl e,

);

7.9.9.2 Description

The HBA_RegisterForLinkEvents function shall register an application defined function that shall be called upon
occurrence of link category asynchronous events on a specified HBA. When an event concerning a fabric link is
detected by the HBA, the callback function shall be called. Arrival of an RLIR ELS shall be the only fabric link event
type. Upon arrival of an RLIR ELS, the HBA or its driver shall provide ELS acknowledgement. Events shall cause
callbacks whether the HBA handle specified at registration is held open or not. To terminate event delivery,
HBA_RemoveCallback shall be called.

7.9.9.3 Arguments

pCallback shall be a pointer to the entry to the callback routine.

pUserData shall be a pointer that shall be passed to the callback routine with each event. This may be used for
correlating the event with the source of its event registration.

pRLIRBuffer shall be a pointer to buffer in which RLIR data may be passed to the callback function. This buffer
shall be overwritten at each entry to a fabric link event callback function that references it. It shall not be overwritten
during the time between an entry to the callback function and its subsequent exit.

RLIRBufferSize shall be the size in bytes of the buffer that pRLIRBuffer addresses.

handle shall be a handle to an open HBA for which event callbacks are requested.

pCallbackHandle shall be a pointer to a structure in which an opaque identifier that may be used to deregister the
callback may be returned.

7.9.9.4 Return Values
function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS_ OK shall be returned to indicate successful callback function registration.
b) HBA_STATUS ERROR_NOT_SUPPORTED shall be returned to indicate the HBA specific library or

underlying system does not support statistic events.
c) HBA_STATUS_ERROR may be returned to indicate any problem with no required value.

Working Draft Fibre Channel HBA API (FC-HBA) 113

16 April 2003 T11/1568-D Revision 8

d) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

pCallbackHandle shall be unchanged. The structure to which it points shall contain an opaque identifier that may
be used to deregister the callback if the function value is HBA_STATUS_OK.

7.9.9.5 Callback Arguments

pData shall be the pointer that was passed from registration for this event category. This may be used for corre-
lating the event with the source of its event registration.

adapterWWN shall be the Port Name of any end port on the HBA from which a fabric link event is being reported

eventType shall be a value specified in 6.10.1.7 indicating the type of event that occurred. If it is
HBA_EVENT_LINK_INCIDENT, an RLIR has arrived, and further information shall be provided in the data at
RLIRBuffer. If it is HBA_EVENT_LINK_UNKNOWN, a fabric link or topology change was detected by means other
than RLIR, and the data at RLIRBuffer shall be ignored.

pRLIRBuffer shall be the pointer to the RLIR data buffer passed as an argument to the registration call. The buffer
to which it points shall contain the payload data from the RLIR ELS being reported, as defined per FC-FS. If the
actual RLIR payload exceeds the size of the buffer originally registered, trailing data shall be truncated to the size
specified as an argument on the original registration call.
RLIRBufferSize shall be the size in bytes of the complete payload of the RLIR ELS. IF it exceeds the size
specified as an argument on the original registration call, this shall indicate the returned data has been truncated to
the size specified as an argument on the original registration call.
7.9.10 HBA_RemoveCallback
7.9.10.1 Format
HBA_STATUS HBA RenpveCal | back(

HBA CALLBACKHANDLE cal | backHandl e
)
7.9.10.2 Description

The HBA_RemoveCallback function shall remove an instance of a callback routine specified by the opaque handle
callbackHandle.

7.9.10.3 Arguments

callbackHandle shall be the opaque handle returned by the asynchronous event registration function that shall be
deregistered.

7.9.10.4 Return Values

function value shall be a value defined in 6.2 indicating the reason for completion of the requested function:
a) HBA_STATUS OK shall be returned to indicate successful callback function removal.
b) HBA_STATUS ERROR may be returned to indicate any problem with no required value.

c) The value among those in 6.2 for which the comment most closely describes the result of the function
should be returned to indicate any reason with no required value.

Working Draft Fibre Channel HBA API (FC-HBA) 114

16 April 2003 T11/1568-D Revision 8

8 Configuration

8.1 Overview

This clause applies only to HBA API libraries with OS independent structure. No part of it applies to HBA API
libraries with OS specific structure. It specifies a uniform, complete, and persistent inventory of the components
that compose an HBA API on a system and their relationships to one another. It is intended to facilitate both config-
uration services and HBA API implementations. It refers to features of specific operating systems.

A given environment using the HBA APl may be the result of several installation processes from various vendors.
Each vendor's installation process may install one or more HBA specific libraries and may install a version of the
Common API library (wrapper library). The process of installing a version of the wrapper library should include the
preservation of any previously installed version so that it may be restored if necessary.

8.2 Win32

In a Win32 environment (e.g., Window NT, Windows 2000) the method for registering multiple vendors’ HBA
specific libraries shall be:

a) Under the Registry, an HBA vendor shall install a registry key to indicate where the vendor library is
installed. The registry key shall be of the format

\HKEY_LOCAL_MACHINE\SOFTWARE\SNIA\HBA\vendorid

b) The key shall have a value named LibraryFile of type REG_SZ that contains the full path to the vendor's
library.

c) vendorid in the key name shall be the reversed domain name of the vendor followed by “.” followed by the
vendor specific name for the library that uniquely identifies the vendor library.

Example:

\\ HKEY_LOCAL_MACHI NE\ SOFTWARE\ SNI A\ HBA\ or g. sni a. sanpl e
Li braryFile = “c:/Program Fi | es/ Sanpl evendor/ Li brary.dl |”

The method used to load multiple vendors' libraries in a Win32 environment shall include these procedures:

a) The wrapper library shall be installed as files named HBAAPI.DLL and HBAAPI.LIB and shall be installed
in directory %systemroot%/System32/.

b) The wrapper library shall read the registry to discover HBA specific library names.

c) Using the Win32 routines LoadLibrary and GetProcAddress, the wrapper shall open and discover the
appropriate vendors libraries.

d) The wrapper library shall use these libraries to discover the aggregate number of adapters and report this
to the upper level application.

e) The names of the lower level adapters shall be passed through the wrapper library.

f) A call to open an HBA shall be switched by the wrapper library, which shall assign and use the upper 16
bits of the HBA_HANDLE to determine which HBA to address on a given routine.

g) Remaining calls shall be routed by the wrapper library to the appropriate HBA specific library given the
HBA_HANDLE.

Working Draft Fibre Channel HBA API (FC-HBA) 115

16 April 2003 T11/1568-D Revision 8

8.3 Unix

In a Unix environment the method for registering multiple vendors’ HBA specific libraries shall be:

a) If it does not already exist, a text file /etc/hba.conf shall be created.
b) In the file /etc/hba.conf, an HBA vendor shall insert a text line to indicate where the vendor library is
installed. The text line shall be of the format

vendorid<sp>vslpath
¢) vendorid in the key name shall be the reversed domain name of the vendor followed by “.” followed by the
vendor specific name for the library that uniquely identifies the vendor library.
d) <sp> shall be any nonnull combination of space characters and tab characters.
e) vslpath shall be the full path to the HBA specific library.

Examples:
org. sni a. sanpl e /usr/lib/libhbaapi-reference-vsl.so
com hot bi scui t sadapt er s. super vsl /usr/1ib/sparcv9/lib-hba-supervsl.so

The method used to load multiple vendors' libraries in a unix environment shall include the procedures in the
following list:

a) The wrapper library shall be installed as files named HBAAPI.DLL and HBAAPI.LIB and shall be installed
in the directory appropriate to the library type:
A) 32-bit: /usr/lib
B) 64-bit: vendor-specific subdirectory of /usr/lib/ for 64-bit libraries (e.g., /usr/lib/sparcv9/).

b) The wrapper library shall read the /etc/hba.conf file to discover HBA specific library names.

c) Using OS HBA specific library loading routines (e.g., dlopen and disym on Solaris), the wrapper shall open
and discover the appropriate vendors libraries.

d) The wrapper library shall use these libraries to discover the aggregate number of adapters and report this
to the upper level application.

e) The names of the lower level adapters shall be passed through the wrapper library.

f) A call to open an HBA shall be switched by the wrapper library, which shall assign and use the upper 16
bits of the HBA_HANDLE to determine which HBA to address on a given routine.

g) Remaining calls shall be routed by the wrapper library to the appropriate HBA specific library given the
HBA_HANDLE.

Working Draft Fibre Channel HBA API (FC-HBA) 116

16 April 2003 T11/1568-D Revision 8

Annex A
(Normative)

FC-HBA Compliance Requirements

A.1 Overview

FC-HBA compliant software shall observe all the normative specifications in the body of this standard; however,
compliance does not require implementation of all specified features. This normative annex identifies the features
that FC-HBA compliant software shall implement and how it shall indicate optional features that it does not
implement. This normative annex also identifies additional features that software that is compliant with FC-HBA
Management Interoperability Extensions shall implement.

Functions shall be mandatory, management-mandatory, optional, or not allowed.

A management-mandatory function shall be optional for compliance with FC-HBA but mandatory for compliance
with the FC-HBA Management Interoperability Extensions.

A compliant HBA specific library shall:

a) for each mandatory function, provide an entry point as specified in this standard that when entered shall
return the response as specified in this standard;

b) for each optional function, provide an entry point as specified in this standard that when entered shall have
the effects and return the response as specified in this standard or shall have no effect and return
HBA_STATUS_ERROR_NOT_SUPPORTED; and

c) for a function that is not allowed, provide no entry point.

A compliant HBA API library, whether of OS specific or OS independent (i.e., wrapper library) structure, shall:

a) for each mandatory function, provide an entry point as specified in this standard; and
b) for a function that is not allowed, provide no entry point.

NOTE 18 There are no optional functions for an HBA API library.
A compliant HBA API library that is a wrapper library shall:

a) for any function that identifies a specific HBA, call the appropriate HBA specific library function and return
the response returned by the HBA specific library function; and

b) for any function that does not identify a specific HBA, perform the functions and return the response as
specified in this standard.

A compliant HBA API library that is of OS specific structure shall:

a) for any function that identifies a specific HBA and for which the HBA specific software enables the function,
perform the functions and return the response as specified in this standard;

b) for any function that identifies a specific HBA and for which the HBA specific software does not enable the
function, return HBA_STATUS_ERROR_NOT_SUPPORTED; and

c) for any function that does not identify a specific HBAperform the functions and return the response as
specified in this standard.

Working Draft Fibre Channel HBA API (FC-HBA) 117

Attributes and statistics shall be mandatory, management-mandatory, optional, or not allowed. A
management-mandatory attribute or statistic shall be optional for compliance with FC-HBA but mandatory for
compliance with the FC-HBA Management Interoperability Extensions. Compliant software shall:

a) for each mandatory attribute and statistic, implement it as specified in this standard,;

b) for each optional attribute and statistic, either implement it as specified in this standard or provide the value
indicating unspecified; and

c) for each not allowed attribute and statistic, provide the value indicating unspecified.

Working Draft Fibre Channel HBA API (FC-HBA) 118

16 April 2003 T11/1568-D Revision 8

A.2 Functions

Table A.1 and table A.2 specify the the requirements for implementing functions for software that is compliant with
FC-HBA and software that is compliant with FC-HBA Management Interoperability Extensions. Table A.1 specifies
requirements for all implementations of compliant software. The functions in table A.2 shall be not allowed for all
implementations of compliant software on systems that do not support SB devices, and shall be required as
specified in the table for all implementations of compliant software on systems that support SB devices. Within
each table, different requirements are specified for an HBA API library than for HBA specific libraries.

Table A.1 — General Function Requirements

Function Eor HBA API ZSLSE? Reference
library libraries
Library Control Functions
HBA_GetVersion M M 7.2.1
HBA_LoadLibrary M M 7.2.2
HBA_FreeLibrary M M 7.2.3
HBA_RegisterLibrary N M 7.2.4
HBA_RegisterLibraryV2 N M 7.2.5
HBA_GetWrapperLibraryAttributes M N 7.2.6
HBA_GetVendorLibraryAttributes M M 7.2.7
HBA_GetNumberOfAdapters M M 7.2.8
HBA_Refreshinformation M M 7.2.9
HBA_RefreshAdapterConfiguration M N 7.2.10
HBA ResetStatistics M 0] 7.2.11
Adapter and Port Information Functions

HBA_GetAdapterName M M 7.3.1
HBA_OpenAdapter M M 7.3.2
HBA_OpenAdapterByWWN M O 7.3.3
HBA_CloseAdapter M M 7.3.4
HBA_GetAdapterAttributes M M 7.3.5
HBA_GetAdapterPortAttributes M M 7.3.6
HBA_GetDiscoveredPortAttributes M M 7.3.7
HBA _GetPortAttributesByWWN M @] 7.3.8
HBA_GetPortStatistics M M 7.3.9
HBA_GetFC4Statistics M @) 7.3.10
Key:

M designates a function that is mandatory.

Mgt designates a function that is management-mandatory.

O designates a function that is optional.

N indicates a function that is not allowed.

Working Draft Fibre Channel HBA API (FC-HBA) 119

16 April 2003 T11/1568-D Revision 8
Table A.1 — General Function Requirements
Function Eor HBA API 58235? Reference
library libraries
FCP Information Functions
HBA_GetBindingCapability M @] 74.1
HBA_GetBindingSupport M 0] 7.4.2
HBA_SetBindingSupport M 0] 7.4.3
HBA_GetFcpTargetMapping M 0] 7.4.4
HBA_GetFcpTargetMappingV2 M O 7.4.5
HBA_GetFcpPersistentBinding M 0] 7.4.6
HBA_GetPersistentBindingV2 M 0] 7.4.7
HBA_SetPersistentBindingV2 M 0] 7.4.8
HBA_RemovePersistentBinding M 0] 7.4.9
HBA_RemoveAllPersistentBindings M 0] 7.4.10
HBA_GetFCPStatistics M o] 7.4.11
SCSI Information Functions
HBA_SendScsilnquiry M 0] 7.5.1
HBA_ScsilnquiryV2 M 0] 7.5.2
HBA_SendReportLUNs M 0] 7.5.3
HBA_ScsiReportLunsV2 M 0] 7.5.4
HBA_SendReadCapacity M 0] 7.5.5
HBA_ScsiReadCapacityV2 M 0] 7.5.6
Fabric Management Functions

HBA_SendCTPassThru M Mgt 7.8.1
HBA_SendCTPassThruVv2 M Mgt 7.8.2
HBA_SetRNIDMgmtinfo M 0] 7.8.3
HBA_GetRNIDMgmtinfo M M 7.8.4
HBA_SendRNID M Mgt 7.8.5
HBA_SendRNIDV2 M Mgt 7.8.6
HBA_SendRPL M Mgt 7.8.7
HBA_SendRPS M Mgt 7.8.8
HBA_SendSRL M Mgt 7.8.9
HBA_SendLIRR M Mgt 7.8.10

Key:

M designates a function that is mandatory.
Mgt designates a function that is management-mandatory.
O designates a function that is optional.

N indicates a function that is not allowed.

Working Draft Fibre Channel HBA API (FC-HBA)

120

16 April 2003 T11/1568-D Revision 8
Table A.1 — General Function Requirements
. For HBA Ap| | FOr HBA
Function . specific Reference
library :)
libraries
HBA_SendRLS M Mgt 7.8.11
Event Handling Functions
HBA_GetEventBuffer M Mgt 7.9.2
HBA_RegisterForAdapterAddEvents M @] 7.9.4
HBA_RegisterForAdapterEvents M 0] 7.9.5
HBA_RegisterForAdapterPortEvents M Mgt 7.9.6
HBA_RegisterForAdapterPortStatEvents M 0] 7.9.7
HBA_RegisterForTargetEvents M O 7.9.8
HBA_RegisterForLinkEvents M Mgt 7.9.9
HBA_RemoveCallback M Mgt 7.9.10
Key:
M designates a function that is mandatory.
Mgt designates a function that is management-mandatory.
O designates a function that is optional.
N indicates a function that is not allowed.
Table A.2 — Function Requirements for Systems Supporting SB
. For HBA APl | FOT HBA
Function . a specific Reference
library . g
libraries
SB Information Functions
HBA_GetSBTargetMapping M 0] <by editor>
HBA_GetSBStatistics M 0] <by editor>
SB Disk Device Information Functions
HBA_SBDskGetCapacity M 0] <by editor>

Key:
M designates a function that is mandatory.

O designates a function that is optional.
N indicates a function that is not allowed.

Mgt designates a function that is management-mandatory.

@ The functions in this table shall be not allowed for all implementations of FC-HBA compliant software on
systems that do not support SB devices, and shall be required as specified in the table for all
implementations of FC-HBA compliant software on systems that support SB devices.

Working Draft Fibre Channel HBA API (FC-HBA)

121

16 April 2003

A.3 HBA Attributes

T11/1568-D Revision 8

Table A.3 specifies the requirements for implementing HBA attributes for software that is compliant with FC-HBA
and software that is compliant with FC-HBA Management Interoperability Extensions.

Table A.3 — HBA Attributes

Attribute Name Requirement Value indicating unspecified Reference
Manufacturer M not applicable 6.3.2.2
SerialNumber M not applicable 6.3.2.3
Model M not applicable 6.3.2.4
ModelDescription 0] Null string 6.3.2.5
NodeWWN 0] Eight null bytes 6.3.2.6
NodeSymbolicName O Null string 6.3.2.7
HardwareVersion o Null string 6.3.2.8
DriverVersion 0] Null string 6.3.2.9
OptionROMVersion 0] Null string 6.3.2.10
FirmwareVersion 0] Null string 6.3.2.11
VendorSpecificlD 0] zero 6.3.2.12
NumberOfPorts M not applicable 6.3.2.13
DriverName ©) Null string 6.3.2.14
Key:

M designates a function that is mandatory.

Mgt designates a function that is management-mandatory.

O designates a function that is optional.

N indicates a function that is not allowed.

Working Draft Fibre Channel HBA API (FC-HBA) 122

16 April 2003

A.4 FC_Port Attributes

T11/1568-D Revision 8

Table A.4 specifies the the requirements for implementing FC_Port Attributes for software that is compliant with
FC-HBA and software that is compliant with FC-HBA Management Interoperability Extensions. Different
requirements are specified for attributes of local HBA end ports than for discovered FC_Ports.

Table A.4 — FC_Port Attributes

for
Attribute Name For local discovered | Value indicating unspecified Reference
end ports
FC_Ports

NodeWWN M 0] eight null bytes 6.4.2.2
PortWWN M M not applicable 6.4.2.3
PortSymbolicName 0] 0] null string 6.4.2.4
PortFcld M M not applicable 6.4.2.5
PortType M 0] HBA_PORTTYPE_UNKNOWN 6.4.2.6
PortState M 0] HBA_ PORTSTATE_UNKNOWN 6.4.2.7
PortSupportedClassofService | M 0] zero 6.4.2.8
PortSupportedFc4dypes M 0] 32 null bytes 6.4.2.9
PortActiveFc4ypes M M not applicable 6.4.2.10
PortSupportedSpeed M 0] HBA_PORTSPEED_UNKNOWN | 6.4.2.11
PortSpeed M 0] HBA_PORTSPEED UNKNOWN | 6.4.2.12
PortMaxFrameSize M 0] zero 6.4.2.13
OSDeviceName M O null string 6.4.2.14
NumberofDiscoveredPorts M N zero 6.4.2.15
FabricName M O zero 6.4.2.16
Key:

M designates a function that is mandatory.

Mgt designates a function that is management-mandatory.

O designates a function that is optional.

N indicates a function that is not allowed.

Working Draft Fibre Channel HBA API (FC-HBA) 123

16 April 2003 T11/1568-D Revision 8

A.5 End Port Statistics

Table A.5 specifies the requirements for implementing end port statistics for software that is compliant with FC-HBA
and software that is compliant with FC-HBA Management Interoperability Extensions.

For any end port statistic, the value indicating unspecified shall be negative one (-1).

Table A.5 — End Port Statistics

Attribute Name Requirement Reference
SecondsSincelLastReset @] 6.5.2.2
TxFrames o 6.5.2.3
RxFrames @] 6.5.2.4
TxWords @] 6.5.2.5
RxWords @] 6.5.2.6
LIPCount 0] 6.5.2.7
NOSCount 0] 6.5.2.8
ErrorFrames @] 6.5.2.9
DumpedFrames 0] 6.5.2.10
LinkFailureCount M 6.5.2.11
LossOfSyncCount M 6.5.2.12
LossOfSignalCount M 6.5.2.13
PrimitiveSeqProtocolErrCount M 6.5.2.14
InvalidTxWordCount M 6.5.2.15
Invalid CRC Count M 6.5.2.16
InputRequests O 6.5.2.17
OutputRequests @] 6.5.2.18
ControlRequests 0] 6.5.2.19
InputMegabytes O 6.5.2.20
OutputMegabytes @) 6.5.2.21
Key:

M designates a function that is mandatory.

Mgt designates a function that is management-mandatory.

O designates a function that is optional.

N indicates a function that is not allowed.

Working Draft Fibre Channel HBA API (FC-HBA) 124

16 April 2003

A.6 SB Statistics

T11/1568-D Revision 8

Table A.6 specifies the requirements for implementing SB statisticsfor software that is compliant with FC-HBA on a
system that supports SB and software that is compliant with FC-HBA Management Interoperability Extensions on a

system that supports SB. This table shall not apply to compliant software on systems that do not support SB.

For any SB statistic, the value indicating unspecified shall be negative one (-1).

Table A.6 — SB Statistics

Attribute Name Requirement Reference
SSCHRSCHCount 0] <by editor>
SampleCount 0] <by editor>
DeviceConnectTime 0] <by editor>
FunctionPendingTime 0] <by editor>
DeviceDisconnectTime 0] <by editor>
ControlUnitQueuingTime O <by editor>
DeviceActiveOnlyTime O <by editor>

Key:
M designates a function that is mandatory.

O designates a function that is optional.
N indicates a function that is not allowed.

Mgt designates a function that is management-mandatory.

Working Draft Fibre Channel HBA API (FC-HBA)

125

16 April 2003 T11/1568-D Revision 8

A.7 FC-3 Management Attributes

Table A.7 specifies the requirements for implementing FC-3 management attributes for software that is compliant
with FC-HBA and software that is compliant with FC-HBA Management Interoperability Extensions. Different
requirements are specified for return of attributes than for setting them. The value of each attribute shall be the
value in the corresponding field in an RNID LS_ACC transmitted by the local end port.

A compliant function shall make no changes to any attribute not allowed for setting.

Table A.7 — FC-3 Management Attributes

Attribute Name Getting 2 Setting 2 Reference
WWN & M N 6.8.3.2
unittype M 0] 6.8.3.3
Portld M o] 6.8.3.4
NumberOfAttachedNodes M @] 6.8.3.5
IPVersion M 0] 6.8.3.6
UDPPort M O 6.8.3.7
IPAddress M 0] 6.8.3.8
TopologyDiscoveryFlags M 0] 6.8.3.9
Key:
M designates a function that is mandatory.
Mgt designates a function that is management-mandatory.
O designates a function that is optional.
N indicates a function that is not allowed.
@ The value of the WWN attribute shall be the first eight bytes of the value in the
corresponding field in an RNID LS_ACC transmitted by the local end port.

Working Draft Fibre Channel HBA API (FC-HBA) 126

16 April 2003

A.8 Library Attributes

T11/1568-D Revision 8

Table A.5 specifies the requirements for implementing library attributes for software that is compliant with FC-HBA
and software that is compliant with FC-HBA Management Interoperability Extensions.

For any Library Attribute, the value indicating unspecified shall be negative one (-1).

Table A.8 — Library Attributes

Attribute Name Requirement Reference
final M 6.11.2.2
LibPath M 6.11.2.3
VName M 6.11.2.4
VVersion M 6.11.2.5
tm_sec 0] 6.11.1,6.11.2.6
tm_min @] 6.11.1, 6.11.2.6
tm_hour 0] 6.11.1,6.11.2.6
tm_mday M 6.11.1,6.11.2.6
tm_mon M 6.11.1,6.11.2.6
tm_year M 6.11.1,6.11.2.6
tm_wday 0] 6.11.1,6.11.2.6
tm_yday 0] 6.11.1,6.11.2.6
tm_isdst O 6.11.1,6.11.2.6
Key:

M designates a function that is mandatory.

Mgt designates a function that is management-mandatory.

O designates a function that is optional.

N indicates a function that is not allowed.

Working Draft Fibre Channel HBA API (FC-HBA)

127

16 April 2003 T11/1568-D Revision 8

Annex B
(normative)

Mapping FC-HBA to InfiniBand'™
B.1 Structure and Concepts

B.1.1 Overview

Improvements in the throughput and processing power of FC Host Bus Adapters (HBAs) have made it necessary
to develop corresponding enhancements in host connection capabilities. To meet this need, HBAs that attach to
the host with the InfiniBand Transport!™ (IB) are being offered. These HBAs provide the necessary enhancements
in host connection performance, and they also allow multiple hosts to share usage of the same HBA, thereby
allowing for greater utilization of the HBA capabilities. In order to minimize the software impact of using these new
HBAs, it is advantageous to continue to provide the HBA API for them.

In order to implement the HBA API, the host needs to communicate with the HBA in order to send and receive
various SCSI commands, send and receive FC ELSs and FC-CT commands, and obtain various parameters and
performance statistics about fibre channel ports (FC_Ports) on the HBA. The SRP mapping of SCSI onto IB (see
SRP) provides the host with the means to send and receive SCSI commands over IB, however, there is no
standard way for the host to perform FC management functions such as sending FC ELSs and FC-CT commands,
and obtaining parameters and performance statistics for HBA FC_Ports. Therefore, a standard protocol for trans-
mitting these non-SCSI FC management functions over IB is needed to minimize the software effort required to
implement the HBA API for IB-attached HBAs from multiple vendors. To avoid having to support multiple
vendor-specific methods of sending and receiving FC management functions, a single standard method is needed.

This annex defines a protocol, referred to as the FC management service, for transferring FC management
functions between FC management initiators in a host, and an HBA that is attached to the host by IB. The HBA API
library (i.e., the library) acts as the FC management initiator; however, other applications (e.g., independent
operating systems) may also act as FC management initiators. This annex also defines the methods by which the
HBA API library obtains other information regarding IB-attached HBAs (e.g., the set of accessible HBAs or HBA
attributes).

Figure B.1 shows how an HBA API library uses this annex. The HBA in figure B.1 consists of an IB Target Channel
Adapter (TCA), one or more HBA FC_Ports, and one or more I/O Controllers (I0Cs) (see B.1.2.5). The FC
management agents in figure B.1 are applications that make calls to the HBA API library. The HBA API library
performs the methods and protocol defined in this annex on behalf of the FC management agents when communi-
cating with the IB-attached HBA in order to support the HBA API.

Working Draft Fibre Channel HBA API (FC-HBA) 128

Figure B.1 — HBA with IB Host Attachment

Hosts
FC mgmt agent IB Links ‘
HBA
I HBA
HBA API Lib 4/ ‘
< Ml —
Oo| @ ———
| O |
To same ‘
FC mgmt agent target
— - SCSI commands (SRP) J
I —» FC Management (defined here)
HBA API Lib

This annex includes:

a) adescription of the method for discovering the accessible HBAs in an IB subnet;
b) a description of the methods for discovering HBA attributes;
c) adefinition of an FC management service providing the following functions;

A) establishing a communication path between each FC management initiator and each HBA,

B) sending FC ELSs and FC-CT commands from the FC management initiator to a specific FC_Port on
the HBA and receiving responses (see subclause 7.8);

C) sending RSCN or RLIR ELS requests received from a specific port on the HBA to the FC management
initiator;

D) sending HBA FC_Port parameters and statistics to FC management initiators;

E) associating FC management initiators with corresponding FC parameters such as FC_Port
Name_ldentifier, FC Node_Name, and FC-3 management attributes for each HBA FC_Port (see
subclause 6.8.3 for a definition of FC-3 management attributes); and

F) associating SRP initiators with corresponding FC parameters such as FC_Port Name_Identifiers and
Node_Names, and node identification data; and

d) a definition of the rules for choosing SRP target port identifiers so that each SRP target port identifier
corresponds to a specific target FC_Port.

B.1.2 FC management Service Operations

B.1.2.1 Host to HBA Communication

Communication of FC management information between the host and the HBA shall use the FC management
service. Information shall be transferred over one or more IB reliable connections. The FC management initiator
shall initiate each connection using IB Communications Management, and shall act as the client. The HBA shall act
as the server. When the FC management service is used to support the HBA API, the library shall act as an FC
management initiator.

B.1.2.2 Service Name for the FC Management Service

The service name for the FC management service shall be a 64-byte, null-terminated string of UTF-8 encoded
characters of the following format:

‘FCMGT.T11".

Working Draft Fibre Channel HBA API (FC-HBA) 129

16 April 2003 T11/1568-D Revision 8

B.1.2.3 Registration of the FC Management Service Name by HBAs

TCAs that support the FC management service shall send a SubnAdminSet(ServiceRecord) request to the IB
Subnet Administrator (SA) to register as an FC management service provider prior to performing FC management
service operations.

If a TCA supports the FC management service, then it shall support all the requirements of this annex. TCAs that
support the FC management service are referred to as HBAs.

B.1.2.4 Discovery of the FC Management Service

To discover the accessible IB-attached HBAs, the FC management initiator determines the set of IB Target
Channel Adapters (TCASs) that support the FC management service. One method of obtaining this information is to
use the IB Administration Query Subsystem by sending an IB SubnAdminGet(ServiceRecord) request to the
subnet administrator. The request specifies that the subnet administrator is to return all the ServiceRecord
attributes containing the FC management service name (see IBA).

B.1.2.5 HBA Components

HBAs shall contain at least one 1/0 Controller (I0C) (see IBA for additional information regarding 10Cs). Each I0C
shall support the SRP protocol (see SRP), and shall provide at least one SRP Service Name in its ServiceEntries
attribute (see B.1.3).

An IOC shall not provide access to more than one HBA FC_Port. Multiple IOCs may provide access to a single
HBA FC_Port, however, no two IOCs providing access to a single HBA FC_Port shall support an SRP Servi-
ceName that corresponds to the same target end port (see B.1.3.3).

Since I0Cs do not provide access to more than one HBA FC_Port, all SRP ServiceNames supported by that IOC
correspond to FC target ports that are accessed through that HBA FC_Port (see figure B.2).

Figure B.2 — HBA (I/O Unit) with Three IOCs and Two FC_Ports
HBA

I0C 1
ServiceEntries Attribute

SRP ServiceName 1
SRP ServiceName 2 FC_Port #01

- I0C 2
i

IB link(s) ServiceEntries Attribute
to Hosts SRP ServiceName 3
SRP ServiceName 4

I0OC3

ServiceEntries Attribute
SRP ServiceName 1
SRP ServiceName 2 C_Port #02

Working Draft Fibre Channel HBA API (FC-HBA) 130

16 April 2003 T11/1568-D Revision 8

B.1.2.6 FC Management Service Connections
B.1.2.6.1 Establishing a Connection

The FC management initiator shall establish one or more IB reliable connections to the FC management service for
each HBA (see IBA for information about IB reliable connections). The FC management initiator shall initiate an 1B
reliable connection by sending an IB Connection Management (CM) request. The private data field of the
CM:request shall contain the Establish_Channel request (see B.2.2.)

After a connection is established, the FC management initiator may obtain the FC_Port Attributes for each HBA
FC_Port by sending a Get_Port_Data request (see B.2.4). The FC management initiator may also transfer specific
node identification data or request the assignment of a unique N_Port_ID for an HBA FC_Port by sending a
Set_Port_Data request (see B.2.5). The Set_Port_data request provides the N_Port_Name and Node_Name,
specific node identification data, and other data pertaining to a specific HBA FC_Port. If assignment of a unique
N_Port_ID is not indicated, the HBA shall ignore the N_Port_Name and Node_Name in the Set_Port_Data request;
if specific node identification data is provided, the HBA shall apply it to the FLOGI-assigned N_Port_ID of the HBA
FC_Port.

When an HBA that supports N_Port_ID virtualization receives a Set_Port_Data request for an HBA FC_Port, it
determines if it has already obtained an N_Port_ID corresponding to the Port_Name in the Set_Port_Data request.
If no N_Port_ID has been obtained, the HBA shall obtain a unique N_Port_ID; if an N_Port_ID has already been
obtained, the HBA shall not obtain another N_Port_ID. If an N_Port_ID is obtained, the HBA shall use the FC_Port
Name_ldentifier and FC Node_Name provided in the Set_Port_Data request when obtaining the N_Port_ID.
Subsequently, when the HBA performs FC management functions on the HBA FC_Port on behalf of the FC
management initiator, it shall use the N_Port_ID assigned to the FC management initiator.

If assignment of a unique N_Port_ID is not indicated in the Set_Port_Data request, or if the HBA FC_Port does not
support N_Port_ID virtualization, then the HBA shall not obtain a unique N_Port_ID for the FC management
initiator. When performing FC management functions on behalf of the FC management initiator, the HBA shall use
its FLOGI-assigned N_Port_ID.

If the HBA successfully performs the Set_Port_Data request, including the acquisition of a unique N_Port_ID for
the FC_Port, if required, it shall send a Set_Port_Data response. If the HBA does not successfully perform the
Set_Port_Data request, it shall reject the request.

N_Port login shall not be performed as part of establishing an FC management connection or performance of the
Set_Port_Data request (see B.1.3.4.1 and B.2.8.1 for information about N_Port login).

NOTE 19 The FDISC ELS may be used to obtain a unique N_Port_ID (see FC-FS).
B.1.2.6.2 Releasing a Connection

When a connection is to be released, the CM:DREQ message shall be sent. The FC management initiator may
release the connection at any time. The HBA shall not release the connection.

Prior to accepting a CM:DREQ from the FC management initiator, HBAs that support N_Port_ID virtualization shall
determine, for each HBA FC_Port, if the N_Port_ID corresponding to the FC management initiator is currently
logged in with any target FC_Ports. If that N_Port_ID is currently logged in with one or more target FC_Ports and
that N_Port_ID does not also correspond to any SRP initiators, then explicit N_Port logout shall be performed with
all target FC_Ports currently logged in with that N_Port_ID.

Working Draft Fibre Channel HBA API (FC-HBA) 131

16 April 2003 T11/1568-D Revision 8

If the N_Port_ID corresponding to the FC management initiator is currently logged in with target FC_Ports and that
N_Port_ID also corresponds to one or more SRP initiators, then for each target FC_Port, the HBA shall:

a) not perform N_Port logout with the target FC_Port if an SRP login exists between one of the SRP initiators
and the SRP target port identifier corresponding to the target FC_Port; or

b) complete any outstanding ELS and FC-CT requests with the target FC_Port, and perform explicit N_Port
logout with the target FC_Port, if no SRP logins exist between any SRP initiator and the SRP target port
identifier corresponding to the target FC_Port.

If the N_Port_ID corresponding to the FC management initiator does not correspond to an SRP initiator or another
FC management initiator, and if no N_Port logins remain for the N_Port_ID after all required N_Port logouts have
been performed for a given HBA FC_Port, then the HBA shall send a LOGO ELS to the fabric to release the
N_Port_ID of the FC management initiator.

B.1.2.7 Information Units

Information sent between the FC management initiator and the HBA on an IB reliable connection shall be
contained in Information Units (IUs). Each IU is classified as either a request or a response. Requests shall be
used to establish a reliable connection, to convey ELS or FC-CT commands, or to convey other parameters.
Responses shall be used to convey the corresponding responses and provide any information that was requested
(see B.2).

B.1.2.8 Asynchronous Event Notification

Asynchronous events shall include the receipt of incoming RSCN and RLIR ELSs, and other events detected by
the HBA. FC management initiators shall indicate whether or not they require notification of asynchronous events
by sending a Set_Port_Data request (see B.2.5). For those FC management initiators that have indicated that they
require notification of asynchronous events, the HBA shall send an AEN request upon receipt of the RSCN and
LIRR ELSs, and upon the occurrence of HBA-detected events (see B.2.9.1).

B.1.2.9 HCA Receive Buffer Management

HCA receive buffer management restricts the number of outstanding (i.e., unacknowledged) AEN requests sent by
the HBA on a given connection. In the Establish_Connection request, the FC management initiator shall indicate
the maximum number of outstanding AEN requests that the HBA shall be allowed to send on the connection (see
B.2.2.1).

All HCA buffers used to receive 1Us from the HBA shall be at least 1 042 bytes.

B.1.2.10 HBA Receive Buffer Management

HBA receive buffer management restricts the number of outstanding (i.e., unacknowledged) FC management
service requests sent by the HCA on a given connection. In the Establish_Connection response, the HBA shall
indicate the maximum number of outstanding FC management requests that the HCA shall be allowed to send on

the connection (see B.2.2.2).

All HBA buffers used to receive FC management requests shall be at least 64 bytes.

Working Draft Fibre Channel HBA API (FC-HBA) 132

16 April 2003 T11/1568-D Revision 8

B.1.2.11 Data Buffers
B.1.2.11.1 Memory Descriptors

A memory descriptor is a 16-byte structure that identifies an IB memory segment in the host (see IBA for infor-
mation regarding IB memory segments). The format of the memory descriptor is shown in table B.1:.

Table B.1 — Memory Descriptor

B'?/itte 7 6 5 4 3 2 1 0
o | (MsB)
VIRTUAL ADDRESS

7 (LSB)
8 | (MsB)

REMOTE KEY
1 (LSB)
12 | (MsB)

DATA LENGTH
15 (LSB)

The VIRTUAL ADDRESS field contains the IB virtual address of the memory segment. When accessing host memory,
the HBA places this value in the VIRTUAL ADDRESS field of the Reliable Datagram Extended Transport header (see
IBA).

The REMOTE KEY field contains the IB Remote Key that the HBA uses when accessing host memory (see IBA).
The DATA LENGTH field is an unsigned binary integer that specifies the length in bytes of the host memory segment.
B.1.2.11.2 Data Buffer Descriptors

A request may contain a data-out buffer descriptor, a data-in buffer descriptor, or both. If a data buffer descriptor
defines a data-out buffer, the HBA shall only issue RDMA Read operations using the memory descriptor contained
in the data buffer descriptor. If a data buffer descriptor defines a data-in buffer, the HBA shall only issue RDMA
Write operations using the memory descriptor contained in the data buffer descriptor. There are two types of data
buffer descriptors: direct and indirect. Both types of buffer descriptors contain a single memory descriptor as
defined in B.1.2.11.1.

The memory descriptor in a direct buffer descriptor identifies the data buffer. The HBA shall use the contents of the
DATA LENGTH field of the memory descriptor as the length of the data-out buffer or data-in buffer.

The memory descriptor in an indirect buffer descriptor specifies a memory segment containing an indirect table. An
indirect table is a list of one or more memory descriptors. The memory segments specified by the memory
descriptors in the indirect table form the data buffer. The value of the DATA LENGTH field of the memory descriptor
represents the length, in bytes, of the indirect table, and is the number of memory descriptors in the indirect table
multiplied by sixteen (the length, in bytes, of a memory descriptor).

Working Draft Fibre Channel HBA API (FC-HBA) 133

16 April 2003 T11/1568-D Revision 8

The format of each data buffer descriptor is specified by a format code value in the FC management request. In an
FC management request that contains both data-in and data-out buffer descriptors, there is no requirement that
both buffer descriptors be of the same format.

The buffer descriptor format codes shall be as shown in table B.2.

Table B.2 — Data Buffer Descriptor Format Codes

Data Buffer Descriptor Format Code Value
NO DATA BUFFER DESCRIPTOR PRESENT @ Oh
DIRECT BUFFER DESCRIPTOR 1h
INDIRECT BUFFER DESCRIPTOR 2h

a When no data buffer descriptor is present, the HBA shall ignore the buffer descriptor
in the FC management request.

B.1.3 FC Management Support for SCSI Operations

B.1.3.1 Host to HBA Communications

SRP initiators shall use the SRP protocol (see SRP) for transferring SCSI commands and data to the HBA. Hosts
shall support at least one SRP initiator. HBAs shall support a unique SRP target port identifier for every target
FC_Port that is accessible to the FLOGI-assigned N_Port_ID on each HBA FC_Port (see B.1.3.3).

B.1.3.2 Discovery of SRP Target Ports

SRP target ports supported by the HBA shall be discovered using the SRP target port discovery process defined in
SRP (see SRP).

HBAs that support N_Port_ID virtualization have the ability to assign each SRP initiator with a unique N_Port_ID
(see B.1.3.4). For these HBAs, an SRP initiator that has been assigned its own N_Port_ID might not be able to
access all of the SRP target port IDs supported by the HBA due to FC zoning. If an SRP initiator attempts to
perform SRP login with an SRP target port ID corresponding to a target end port to which the SRP initiator’s
N_Port_ID does not have access, then the HBA shall reject the SRP login request (see B.1.3.4.1).

B.1.3.3 SRP Target Port IDs

In order implement the HBA API, SRP initiators require a direct communication path for sending SCSI commands
to individual target FC_Ports. To provide this capability, HBAs shall choose SRP target port IDs so that there is a
one-to-one correspondence between each SRP target port ID and each target FC_Port accessible to the HBA. The
extension portion of each SRP target port ID shall be set to the target FC_Port Name_ Identifier of the target
FC_Port to which the SRP target port ID corresponds. The format of the SRP target port ID shall be as follows:
SRP Target Port ID = IOCGUID.wwpn,

where wwpn = target FC_Port Name_ Identifier.

figure B.3 shows an example of SRP target port identifiers.

The library or operating system supporting an SRP initiator may determine the FC_Port Name_Identifier of the

target FC_Port that is accessible on a connection from the SRP initiator to an SRP target port by examining the
wwpn portion of the SRP target port ID (see SRP for additional information about SRP target port IDs).

Working Draft Fibre Channel HBA API (FC-HBA) 134

16 April 2003 T11/1568-D Revision 8

Figure B.3 — SRP Target Port IDs and FC Management Service Names
HBA

IOC1

Target Port ID =
IOCGUID1.wwpnl

FC Port #01
IOC 2
IB links to| | Target Port ID =
Hosts IOCGUID2.wwpn2 j
FC Ports
IOC 3
Target Port ID E

|OCGUID3.wwpnl

C_Port #02

In figure B.3, when an SRP initiator forms a connection to SRP target port ID ‘IOCGUID1.wwpnl’, FC_Port #01 is
being used since the response to the Get_Port_Data FC management service request indicated that FC_Port #01
was accessed by I0C1 (see B.2.4). When an SRP initiator forms a connection to SRP target port ID
10CGUID2.wwpn2’, FC_Port #01 is also being used because the response to the Get_Port_Data FC management
service request indicated that FC_Port #01 was also accessed by I0C2. When an SRP initiator makes a
connection to SRP target port ID ‘1OCGUID3.wwpnl’, however, FC_Port #02 is being used since the response to
the Get_Port_Data FC management service request indicated that FC_Port #02 was accessed by IOC3. Note that
target FC_Port wwpnl is not accessible using both IOC1 and I0C2 since both IOCs use the same HBA FC_Port
(see B.1.2.5).

When more than 256 target FC_Ports may be accessed from a single HBA FC_Port, multiple IOCs shall be used to
provide access to the HBA FC_Port since each IOC may provide access to only 256 SRP target port IDs. Since
there does not need to be any relationship between 10Cs reported to the host and physical IOCs on the HBA, a
single physical IOC on the HBA may be reported as multiple I0Cs to the host.

B.1.3.4 SRP Connections
B.1.3.4.1 Establishing an SRP Connection

SRP connections shall be established using SRP login as specified in SRP (see SRP). (i.e., one IB reliable
connection shall be established between each SRP initiator and each SRP target port with which the SRP initiator
communicates.) The SRP login request is carried in the private data field of the IB CM:REQ message.

When an HBA that does not support N_Port_ID virtualization receives an SRP login request, it determines if it is
already logged in with the target FC_Port corresponding to the SRP target port ID in the SRP login request (see
B.1.3.3). If the HBA is already logged in, it accepts the connection if resources are available. If it is not logged in,
the HBA attempts to perform N_Port login with the target FC_Port corresponding to the SRP target port ID in the
SRP login request. If N_Port login is successful and resources are available, the HBA accepts the SRP login
request; if N_Port login is not successful or if resources are not available, it rejects the SRP login request.

Working Draft Fibre Channel HBA API (FC-HBA) 135

16 April 2003 T11/1568-D Revision 8

When an HBA that supports N_Port_ID virtualization receives an SRP login request, it determines if it has
completed a Bind_SRP_Initiator request for the SRP initiator. If no Bind_SRP_Initiator request for the SRP initiator
has been completed, the HBA rejects the connection request. SRP Initiator binding is the process of pairing an
SRP initiator port identifier with an FC_Port Name_Identifier, Node_Name, and specific node descriptor that the
HBA uses on behalf of that SRP initiator (see B.2.6 for information about the Bind_SRP_ Initiator function).

If a Bind_SRP_Initiator request that provided the FC_Port Name_ldentifier and Node_Name for the SRP initiator
has been completed, then the HBA determines if it has already obtained an N_Port_ID corresponding to the SRP
initiator. If no N_Port_ID has been obtained, the HBA shall obtain an N_Port_ID for the SRP initiator. The FC_Port
Name_ldentifier and Node_Name that were bound to the SRP initiator in the Bind_SRP_ Initiator request shall be
used when obtaining the N_Port_ID.

If an N_Port_ID for the SRP initiator is obtained, or if the requesting SRP initiator has already been assigned an
N_Port_ID, then the HBA determines if the N_Port_ID corresponding to the SRP initiator is currently logged in with
the target FC_Port corresponding to the SRP target port identifier in the SRP login request. If the N_Port_ID corre-
sponding to the SRP initiator is currently logged in, then the HBA accepts to the connection request, if resources
are available. If the N_Port_ID corresponding to the SRP initiator is not currently logged in, then the HBA shall
query the nameserver using the N_Port_ID corresponding to the SRP initiator to determine if the target FC_Port is
accessible to the SRP initiator. If the target FC_Port is accessible to the SRP initiator, then the HBA shall complete
N_Port login with the target FC_Port using the N_Port_ID corresponding to the SRP initiator, and shall accept the
SRP login request. If the destination target FC_Port is not accessible to the N_Port_ID corresponding to the SRP
initiator, then the HBA shall reject the SRP login without attempting N_Port login.

In order to minimize unsuccessful SRP login attempts due to zoning restrictions, an FC management connection
may be established, and the same FC_Port Name_Identifier and Node_Name as the SRP initiator may be
provided in the Set_Port_Data request. This causes the FC management initiator and SRP initiator to share an
N_Port_ID. Consequently, when the FC management initiator sends a Send_Passthru request to query the
nameserver for the set of accessible target FC_Ports, the nameserver responds with the set of target FC_Port
Name_ldentifiers that are accessible to the N_Port_ID corresponding to the SRP initiator. The accessible SRP
target port identifiers may then be generated as specified in B.1.3.3.

If a Bind__ SRP_Initiator request specifying that the FLOGI-assigned FC_Port Name_Identifier is to be used on
behalf of the SRP initiator has been completed for the requesting SRP initiator, then the HBA determines if its
FLOGI-assigned N_Port_ID is already logged in with the target FC_Port corresponding to the SRP target port ID in
the SRP login request (see B.1.3.3). If the HBA's FLOGI-assigned N_Port_ID is already logged in with the target
FC_Port, shall accept the connection if resources are available. If the HBA's FLOGI-assigned N_Port_ID is not
logged in, the HBA attempts to perform N_Port login with the target FC_Port corresponding to the SRP target port
ID in the SRP login request. If N_Port login successful and resources are available, the HBA accepts the SRP login
request; if N_Port login is not successful or if resources are not available, it rejects the SRP login request.

After SRP login has been successfully completed, the HBA shall convert subsequent SRP commands and SRP
task management requests initiated by the SRP initiator into FCP commands and task management operations
with the target FC_Port corresponding to the SRP target port identifier. The HBA shall also transfer the related data
between the SRP initiator and target FC_Port, and shall send ending status received from the target FC_Port to the
SRP initiator.

B.1.3.4.2 Releasing an SRP Connection

SRP connections are released as specified by SRP (see SRP).

Prior to accepting a CM:DREQ from an SRP initiator, HBAs that support N_Port_ID virtualization shall determine if
the N_Port_ID corresponding to the SRP initiator also corresponds to other SRP initiators. If the N_Port_ID corre-

sponding to the SRP initiator does not also correspond to any other SRP initiator, then explicit N_Port login with the
target FC_Port shall be performed.

Working Draft Fibre Channel HBA API (FC-HBA) 136

16 April 2003 T11/1568-D Revision 8

If the N_Port_ID corresponding to the SRP initiator also corresponds to one or more other SRP initiators the HBA
shall:

a) not perform N_Port logout with the target FC_Port if an SRP login exists between one of the SRP initiators
and the SRP target port identifier corresponding to the target FC_Port; and

b) complete any outstanding ELS and FC-CT requests with the target FC_Port, and perform explicit N_Port
logout with the target FC_Port if no SRP logins exist between any SRP initiator and the SRP target port
identifier corresponding to the target FC_Port.

If N_Port logout with the target FC_Port is performed and no N_Port logins remain for the N_Port_ID corre-
sponding to the SRP initiator, and if the N_Port_ID corresponding to the SRP initiator does not also correspond to
an FC management initiator or SRP initiator, then the HBA shall send a LOGO ELS to the fabric to release the
N_Port_ID of the SRP initiator, provided that the KEEPID bit in the Bind_SRP_ Initiator request was set to zero (see
B.2.6.1).

B.2 Information Units

B.2.1 Summary

Communication between FC management initiators and the HBA is carried in FC management requests and
responses. Each request and response message shall contain a single information unit (IU), that specifies the
meaning of the request or response, and transfers the applicable parameters.

Byte 0 of each IU shall contain a TYPE code. The TYPE code value shall uniquely identify the IU. The length of an U
shall be indicated by its TYPE code and selected fields within the IU. If an IU is received with an invalid TYPE code,
or whose length is incorrect for the 1U, the recipient shall reject the request (see B.2.6).

Bytes 8-15 of each IU contain a TAG value, that provides a mechanism for matching requests with their corre-
sponding responses. Each request IU shall contain a TAG value that is unique among all outstanding requests sent
on an IB reliable connection. Each response shall contain a copy of the TAG value from the corresponding request.

Responders are not required to check whether the TAG values of outstanding requests are unique; if the TAG values
are not unique, responder behavior is unpredictable.

B.2.2 Establish_Connection

B.2.2.1 Establish_Connection request

The Establish_Connection request shall request the establishment of an FC management connection to an HBA.
The Establish_Connection request shall be carried in the private data field of the IB CM:Request message that is

Working Draft Fibre Channel HBA API (FC-HBA) 137

16 April 2003 T11/1568-D Revision 8

used to establish the IB reliable connection with the HBA (see B.1.2.6.1). See table B.3 for the format of the
Establish_Connection request.

Table B.3 — Establish_Connection request

B'?/itte 7 6 5 4 3 2 1 0

0 TYPE (00h)
1 INBOUND REQUEST LIMIT
2

reserved
7
8 (MSB)

TAG

15 (LSB)

The INBOUND REQUEST LIMIT field shall be an unsigned binary integer specifying the maximum number of
outstanding AEN requests for which no response has been received that the HBA is allowed to send on the FC
management connection. The value of the INBOUND REQUEST LIMIT shall be between 1 and 255.

B.2.2.2 Establish_Connection response
The Establish_Connection response shall indicate successful establishment of the IB connection.The
Establish_Connection response shall be carried in the private data field of the CM:Response message. See table

B.4 for the format of the Establish_Connection response.

Table B.4 — Establish_Connection response

B?/itte 7 6 5 4 3 2 1 0
0 TYPE (AOh)
1 OUTBOUND REQUEST LIMIT
2
reserved
7
8 (MSB)
tag
15 (LSB)

The OoUTBOUND REQUEST LIMIT field shall be an unsigned binary integer specifying the maximum number of
outstanding FC management service requests for which no response has been received that the FC management

Working Draft Fibre Channel HBA API (FC-HBA) 138

16 April 2003 T11/1568-D Revision 8

initiator is allowed to send on the FC management connection. The value of the OUTBOUND REQUEST LIMIT shall be
between 64 and 255.

B.2.2.3 Establish_Connection_REJ response
The Establish_Connection_REJ response shall indicate that the HBA is unable to establish an IB connection. The
Establish_Connection_REJ response shall be carried in the private data field of the CM:Reject message. See table

B.5 for the format of the Establish_Connection_REJ response.

Table B.5 — Establish_Connection_REJ response

B?/itte 7 6 5 4 3 2 1 0

0 TYPE (BOh)
1 REASON CODE
2

reserved
7
8 (MSB)

TAG

15 (LSB)

The REASON coDE shall indicate the reason that the IB reliable connection was not established. The codes and their
meanings are defined in table B.6.

Table B.6 — Establish_Connection_REJ response reason codes

Reason Code Description
01h Unable to establish IB connection, no reason specified
02h Reserved
03h Busy

all other values | Reserved

Working Draft Fibre Channel HBA API (FC-HBA) 139

16 April 2003

B.2.3 Get_Adapter_Attributes

B.2.3.1 Get_Adatper_Attributes request

T11/1568-D Revision 8

The Get_Adatper_Attributes request shall be used to obtain the HBA attributes. See table B.7 for the format of the
Get_Adapter_Attributes request.

Table B.7 — Get_Adapter_Attributes request

Bit
Byte

7 6 5 4 3 2

TYPE (01h)

reserved

DATA-IN BUFFMT

(MSB)

TAG

15

(LSB)

16

(MSB)

DATA-IN BUFFER DESCRIPTOR

31

(LSB)

The DATA-IN BUFFMT field shall specify the format of the DATA-IN BUFFER DESCRIPTOR (see B.1.2.11.2).

The DATA-IN BUFFER DESCRIPTOR shall contain a buffer descriptor for a data buffer that the HBA shall use to store
the adapter attributes (see B.2.3.2).

Working Draft Fibre Channel HBA API (FC-HBA)

140

16 April 2003

B.2.3.2 Get_Adapter_Attributes response

T11/1568-D Revision 8

The Get_Adapter_Attributes response shall be used to indicate completion of the Get_Adapter_Attributes request.

See table B.8 for the format of the Get_Adatper_Attributes response..

Table B.8 — Get_Adapter_Attributes response

B'?/itte 7 6 5 4 3 2 0
0 TYPE (Alh)
1 REASON CODE
2
reserved

3
4 (MSB)

AVAILABLE DATA
7 (LSB)
8 (MSB)

TAG
15 (LSB)
16 (MSB)
VENDOR SPECIFIC ID

19 (LSB)

The REAsoN CobpE shall indicate the completion status of the Get_Adapter_Attributes request. See table B.9 for a

definition of the codes and their meanings.

The value of AvAILABLE DATA shall be the size in bytes of the list of all adapter attributes available from the HBA,

regardless of the size of the data-in buffer.

Table B.9 — Get_Adapter_Attributes response reason codes

Reason Code Description
00h Request successfully completed
01 - 02h Reserved
03h Busy. The HBA shall not access the data-in buffer.
04h-08h Reserved
09h The size of available data exceeds the size of the data-in buffer.
all other values | Reserved

The vendor specific ID shall be a 32-bit vendor-specific binary integer identifying the adapter.

Working Draft Fibre Channel HBA API (FC-HBA)

141

16 April 2003 T11/1568-D Revision 8

The data-in buffer shall contain the adapter attributes. The adapter attributes shall be as shown in table B.10 (see
subclause 6.3.2 of this standard for a definition of each adapter attribute). Each attribute shall be a null-terminated
ASCII string. The next attribute shall immediately follow the terminating ASCII null character of the previous
attribute. If the size of the entire attribute list available from the HBA exceeds the size of the data-in buffer, the
attribute list shall be truncated after the last attribute that completely fits in the data-in buffer, and the remaining
bytes of the data-in buffer, if any, shall be set to zero.

Table B.10 — Adapter Attributes

Attribute Vaximum Number
Manufacturer 64
SerialNumber 64

Model 256
ModelDescription 256
NodeSymbolicName 256
HardwareVersion 256
DriverVersion 256
OptionROMVersion 256
FirmwareVersion 256
DriverName 256

Working Draft Fibre Channel HBA API (FC-HBA) 142

16 April 2003

B.2.4 Get_Port_Data

B.2.4.1 Get_Port_Data request

T11/1568-D Revision 8

The Get_Port_Data request shall request information regarding the HBA FC_Ports. See table B.11 for the format of
the Get_Port_Data request.

Table B.11 — Get_Port_Data request

Bit
Byte

7 6 5 4 3

TYPE (02h)

reserved

DATA-IN BUFFMT

(MSB)

TAG

15

(LSB)

16

(MSB)

DATA-IN BUFFER DESCRIPTOR

31

(LSB)

The DATA-IN BUFFMT field shall specify the format of the DATA-IN BUFFER DESCRIPTOR (see B.1.2.11.2).

The DATA-IN BUFFER DESCRIPTOR shall contain a buffer descriptor for a data buffer that the HBA shall use to store
the port attributes (see B.2.4.2).

Working Draft Fibre Channel HBA API (FC-HBA)

143

16 April 2003 T11/1568-D Revision 8

B.2.4.2 Get_Port_Dataresponse

The Get_Port_Data response shall be used to transfer information regarding HBA FC_Ports. See table B.12 for the
format of the Get_Port_Data response.

Table B.12 — Get_Port_Data response

B'?/itte 7 6 5 4 3 2 1 0
0 TYPE (A2h)
1 REASON CODE
2
reserved

3
4 (MSB)

AVAILABLE DATA
7 (LSB)
8 (MSB)

TAG

15 (LSB)

The REASON cODE shall indicate the completion status of the Get_Port_Data request. See table B.13 for a definition
of the codes and their meanings.

The value of AVAILABLE DATA shall be the size in bytes of the list of all port descriptors available from the HBA,
regardless of the size of the data-in buffer.

Table B.13 — Get_Port_Data response reason codes

Reason Code | Description
00h Request successfully completed
01-02h Reserved
03h Busy. The HBA shall not access the data-in buffer.
04h-08h Reserved
09h The size of available data exceeds the size of the data-in buffer.
all other values | Reserved

The data-in buffer shall be used contain the port descriptors. The port descriptors shall contain the information
regarding all HBA FC_Ports. There shall be one port descriptor for each HBA FC_Port, unless the available data
exceeds the size of the data-in buffer. If the size of the entire port descriptor list available from the HBA exceeds
the size of the data-in buffer, the port descriptor list shall be truncated after the last port descriptor that completely
fits in the data-in buffer, and the remaining bytes of the data-in buffer, if any, shall be set to zero. See table B.14 for
the format of the port descriptor.

Working Draft Fibre Channel HBA API (FC-HBA) 144

T11/1568-D Revision 8

16 April 2003
Table B.14 — Port Descriptor
B?/itte 7 5 4 3 2 0
0 (MSB)
PORT DESCRIPTOR LENGTH
1 (LSB)
2 PHYSICAL PORT NUMBER
3 reserved
4 (MSB)
FC_PORT NAME_IDENTIFIER
11 (LSB)
12 (MSB)
FC NODE_NAME
19 (LSB)
20 (MSB)
21 N_PORT_ID
22 (LSB)
23 reserved
24 (MSB)
FABRIC NAME
31 (LSB)
32 (MSB)
PORTTYPE
35 (LSB)
36 (MSB)
PORTSTATE
39 (LSB)
40 (MSB)
PORTSUPPORTEDCLASSOFSERVICE
43 (LSB)

Working Draft Fibre Channel HBA API (FC-HBA)

145

| 16 April 2003 T11/1568-D Revision 8

Table B.14 — Port Descriptor

B'?/itte 7 6 5 4 3 2 1 0
44 (MSB)
PORTSUPPORTEDFC4TYPES
75 (LSB)
76 (MSB)
PORTACTIVEFCATYPES
107 (LSB)
108 (MSB)
PORTSUPPORTEDSPEED
111 (LSB)
112 | (MSB)
PORTSPEED
115 (LSB)
116 | (MSB)
PORTMAXFRAMESIZE
119 (LsSB)
120 | (MSB)
NUMBEROFDISCOVEREDPORTS
123 (LSB)
12n4 i PORTSYMBOLICNAME
n+1 NUMBER OF 10CS
n+2
IOCGUID LIST
m

The PORT DESCRIPTOR LENGTH field shall be an unsigned binary integer specifying the length in bytes of the port
descriptor.

Working Draft Fibre Channel HBA API (FC-HBA) 146

16 April 2003 T11/1568-D Revision 8

The PHYSICAL PORT NUMBER field shall be an unsigned 8-bit integer specifying the vendor-assigned physical port
number. The number specified shall be the same as the physical port number provided in the General Topology
Specific Node Identification data (see FC-FS).

The FC_PORT NAME_IDENTIFIER field shall be set to the Port_Name corresponding to the FLOGI-assigned
N_Port_ID of the HBA FC_Port.

The NoDE_NAME field shall be set to the Node_Name corresponding to the FLOGI-assigned N_Port_ID of the HBA
FC_Port.

The N_PoRT_ID field shall be set to the FLOGI-assigned N_Port_ID of the HBA FC_Port.

The FaBRIC NAME field shall be set to the Fabric Name of the fabric that is attached to the HBA FC_Port. If the HBA
FC_Port is not attached to a fabric, then the Fabric Name field shall be set to zero.

The PORTTYPE, PORTSTATE, PORTSUPPORTEDCLASSOFSERVICE, PORTSUPPORTEDFC4TYPES,
PORTACTIVEFC4TYPES, PORTSUPPORTEDSPEED, PORTSPEED, PORTMAXFRAMESIZE, AND NUMBEROFDISCOVERED-
PoRrTs fields are as defined in subclause 6.4.2 of this standard.

The PorTSYMBOLICNAME field shall be as defined in subclause 6.4.2 of this standard except that it shall terminate
at the first word boundary (i.e., multiple of four bytes) following the zero byte that demarks the end of the actual
name.

The NUMBER OF I0CS field shall be an unsigned binary integer indicating the number of IOCs that provide access to
the HBA FC_Port (see B.1.2.5).

The 1occuiD LIST field shall contain a list of the IOCGUIDs of the IOCs that provide access to the HBA FC_Port
(see B.1.2.5).

B.2.5 Set_Port_Data

B.2.5.1 Set_Port_Data request
The Port_Data request shall be used to request the assignment of a unique N_Port_ID for an HBA FC_Port to

convey the parameters that shall apply to that N_Port_ID. See table B.15 for the format of the Set_Port_Data
request.

Working Draft Fibre Channel HBA API (FC-HBA) 147

16 April 2003 T11/1568-D Revision 8

Table B.15 — Set_Port_Data request

B?/itte 7 6 5 4 3 2 1 0

0 TYPE (03h)
1 PHYSICAL PORT NUMBER
2

reserved
7 AEN NPIV DATA-OUT BUFFMT
8 (MSB)

TAG
15 (LSB)
16 (MSB)
FC_PORT NAME_IDENTIFIER
23 (LSB)
24 (MSB)
FC NODE_NAME
31 (LSB)
32 (MSB)
DATA-OUT BUFFER DESCRIPTOR

47 (LSB)

The PHYSICAL PORT NUMBER field shall be set to the physical port number of the HBA FC_Port to which the
Set_Port_Data request is applied (see B.2.4.2).

The pAaTA-0oUT BUFFMT field shall specify the format of the DATA-OUT BUFFER DESCRIPTOR (See B.1.2.11.2).

The N_Port_ID Virtualization (NPIV) bit shall be set to zero if the FC management initiator does not require the
assignment of a unique N_Port_ID for the HBA port. When the NPIv bit is set to zero, the HBA shall ignore the
FC_PORT NAME_IDENTIFIER and FC NODE_NAME fields. When sending FC ELSs or FC-CT commands on behalf of the
FC management initiator, the HBA shall use its FLOGI-assigned N_Port_ID.

The NPIv bit shall be set to one if the FC management initiator requires the assignment of a unique N_Port_ID.
When the NPIV bit is set to one, the FC_PORT NAME_IDENTIFIER field shall contain a valid FC Port_Name, and the Fc
NODE_NAME field shall contain a valid FC Node_Name. When the NPIV bit is set to one, the HBA shall obtain a
unique N_Port_ID for the FC management initiator unless it has already obtained an N_Port_ID corresponding to
the Port_Name and Node_Name in the Set_Port_Data request. If an N_Port_ID is obtained, the HBA shall use the
FC Port_Name and FC Node_Name provided by the FC management initiator when obtaining the N_Port_ID.

Working Draft Fibre Channel HBA API (FC-HBA) 148

16 April 2003 T11/1568-D Revision 8

Set_Port_Data requests for a single HBA FC_Port may be sent on multiple FC management connections, and the
same Port_Name and Node_Name may be provided in the Set_Port_Data requests. This occurs when a single FC
management initiator establishes the connections, or when multiple FC management initiators establish the
connections in order to share usage of the same N_Port_ID.

The asynchronous event notification (AEN) bit shall be set to one if the FC management initiator requires notifi-
cation of asynchronous events for the HBA FC_Port; if the FC management initiator does not require natification of
asynchronous events for the HBA FC_Port, the AEN bit shall be set to zero (see B.2.9).

When the DATA-OUT BUFFER DESCRIPTOR field contains a data out buffer descriptor, then the data-out buffer shall
contain one or more data blocks containing the payload of an RNID accept ELS that the HBA is to use on behalf of
the FC management initiator for the HBA FC_Port. If the HBA supports N_Port_ID virtualization and if the FC
management initiator has requested the assignment of a unique N_Port_ID in the Set_Port_Data request, the HBA
shall apply the node description data to the assigned N_Port_ID; if the FC management initiator did not request the
assignment of a unique N_Port_ID in the Set_Port_Data request or if the HBA does not support N_Port_ID virtual-
ization, then the HBA port shall apply the specific node identification data to its FLOGI-assigned N_Port_ID for the
HBA FC_Port.

Each data block in the data-out buffer shall contain the entire payload of an the RNID accept ELS to be sent in
response to an RNID ELS request of a different type.

If specific node identification data of the same type as requested in an incoming RNID request is not provided for
the destination N_Port_ID, then the HBA shall respond as required by FC-FS when no specific node identification
data is available. (i.e., it shall either reject the RNID ELS request, or shall accept the request and provide only the
common node identification data.)

If specific Node Identification is not provided in the Set_Port_Data request, a Bind_SRP_Initiator request may later

provide specific node identification for the same Port_Name and Node_Name provided in the Set_Port_Datal
request. This may occur when an SRP Initiator shares an N_Port_ID with a FC management initiator (see B.2.6.1).

Working Draft Fibre Channel HBA API (FC-HBA) 149

16 April 2003 T11/1568-D Revision 8

B.2.5.2 Set_Port_Data response

The Port_Data response shall indicate successful completion of the Set_Port_Data request. See table B.16 for the
format of the Set_Port_Data response.

Table B.16 — Set_Port_Data response

B'?/itte 7 6 5 4 3 2 1 0
0 TYPE (A3h)
1
reserved
7
8 (MSB)
TAG
15 (LSB)
16 reserved NPIV
17 (MSB)
N_PORT_ID
19 (LSB)

The NPIv bit shall be set to one if the FC management initiator has requested that a unique N_Port_ID be assigned
and the HBA and has obtained a unique N_Port_ID corresponding to the FC management initiator. The NPV field
shall be set to zero if the FC management initiator has not requested that a unique N_Port_ID be assigned.

If the NPIV bit is set to one, the N_Port_ID field shall be set to an N_Port_ID that is uniquely assigned to the FC

management initiator. If the NPIV bit is set to zero, the N_Port_ID field shall be set to the FLOGI-assigned
N_Port_ID.

Working Draft Fibre Channel HBA API (FC-HBA) 150

16 April 2003

B.2.5.3 Set_Port_Data_REJ Response

T11/1568-D Revision 8

The Set_Port_Data_REJ response shall indicate that the Set_Port_Data request was not successfully performed.
See table B.17 for the format of the Set_Port_Data_REJ response.

Table B.17 — Set_Port_Data_REJ response

B'?/itte 7 6 5 4 3 2 0

0 TYPE (B3h)
1 REASON CODE
2

reserved
7
8 (MSB)

TAG

15 (LSB)

Working Draft Fibre Channel HBA API (FC-HBA)

151

16 April 2003 T11/1568-D Revision 8

The REASON cOBDE field shall indicate the reason that the Set_Port_Data request was not performed. The codes
and their meanings are defined in table B.18.

Table B.18 — Set_Port_Data_REJ response reason codes

Reason Code | Description
One or more other Set_Port_Data or Bind_SRP_ Initiator requests for this
o1h HBA FC_Port provided the same FC_Port Name_Identifier, but the
Node_Name provided is not the same as the Node_Name provided in the
other requests.

Unable to obtain additional N_Port_IDs. This code shall be returned if the
02h FC management initiator has requested the assignment of a unique
N_Port_ID, but N_Port_ID virtualization not supported.

03h Busy
Insufficient resources to obtain an additional N_Port_ID. This code shall be
04h returned if N_Port_ID virtualization is supported but there are no resources
available, either in the HBA or in the Fabric, for obtaining an additional
N_Port_ID.
A Set_Port_Data request has already been completed on this connection
05h for this HBA FC_Port, and a different FC_Port Name_ldentifier or FC
Node_Name was provided in the Set_Port_Data request.
An additional N_Port_ID was requested, but the HBA FC_Port is not
06h)
attached to a Fabric.
all other values | Reserved
& When multiple Set_Port_Data requests for the same HBA FC_Port provide the same
FC_Port Name_Identifier, the FC Node_Names provided shall also be the same. If SRP
initiator identifiers have also been bound to the same FC_Port Name_ Identifier, their FC
Node_Names shall also be the same (see B.2.6).

B.2.6 Bind_SRP_Initiator

B.2.6.1 Bind_SRP_Initiator request

SRP Initiator binding is the process of pairing an SRP initiator port identifier with an FC Port_Name, FC
Node_Name, and specific node identification data. After a bind is made for an SRP initiator, the HBA shall use the
FC_Port Name_Identifier and FC Node_Name bound to the SRP initiator when obtaining an N_Port_ID corre-
sponding to the SRP initiator, and when performing N_Port login on behalf of the SRP initiator. The HBA shall use
the specific node identification data bound to an SRP initiator when responding to incoming RNID ELS requests for
the N_Port_ID corresponding to the SRP initiator.

The Bind_SRP_ Initiator request shall be used to bind an SRP initiator, (i.e., to send the SRP initiator port identifier,
the FC Port_Name, Node_Name, and specific node identification data corresponding to the SRP initiator), to the
HBA.

HBAs that support N_Port_ID virtualization shall support the Bind_SRP_ Initiator request. An HBA that supports
N_Port_ID virtualization shall not accept an SRP login request from an SRP initiator until the SRP initiator binding
is established either by a Bind_SRP_Initiator request or other vendor specific means.

HBAs that do not support N_Port_ID virtualization shall reject the Bind_SRP_ Initiator request.

Working Draft Fibre Channel HBA API (FC-HBA) 152

| 16 April 2003 T11/1568-D Revision 8

See table B.19 for the format of the Bind_SRP_Initiator request.

Table B.19 — Bind_SRP_Initiator request

Bit

Byte 7 6 5 4 3 2 1 0

0 TYPE (04h)

1 PHYSICAL PORT NUMBER

2 reserved RMV KEEPID ASGN

reserved

7 DATA-OUT BUFFMT

8 (MSB)

TAG

15 (LSB)

16 | (MSB)

SRP INITIATOR PORT IDENTIFIER

31 (LSB)

32 | (MSB)

FC_PORT NAME_IDENTIFIER

39 (LSB)

40 | (MSB)

NODE_NAME

47 (LSB)

48 (MSB)

DATA-OUT BUFFER DESCRIPTOR

63 (LSB)

The PHYSICAL PORT NUMBER field shall be set to the physical port number of the HBA FC_Port to which the
Bind_SRP_Initiator request is applied (see B.2.4.2).

When the assign (ASGN) bit is set to zero, the HBA shall bind the SRP initiator to the FLOGI-assigned N_Port_ID.
When sending SCSI commands on behalf of the SRP initiator, the HBA shall use its FLOGI-assigned N_Port_ID.
When the AsGN field is set to zero, the FC_Port Name_Identifier, FC Node_Name, and Data-out Buffer descriptor
fields shall be ignored by the HBA.

Working Draft Fibre Channel HBA API (FC-HBA) 153

16 April 2003 T11/1568-D Revision 8

When the ASGN bit is set to one, the HBA shall bind the SRP initiator to the FC_Port Name_Identifier, FC
Node_Name, and specific node identification data, if any provided in the Bind_SRP_Initiator Request. The HBA
shall attempt to obtain an N_Port_ID for the SRP initiator prior to sending a Bind_SRP_lInitiator response. If an
N_Port_ID is obtained, the assigned N_Port_ID shall be indicated in the Bind_SRP_lInitiator response; if an
N_Port_ID cannot be obtained, the Bind_SRP_ Initiator request shall be rejected.

When the KEEPID bit is set to zero, then the HBA shall send a LOGO ELS to the fabric to release the N_Port_ID
corresponding to the SRP initiator after completion of an SRP logout by the SRP initiator, provided that no SRP
logins remain for the SRP initiator, and if the N_Port_ID corresponding to the SRP initiator does not also corre-
spond to another SRP initiator or an FC management initiator. When the KEePID bit is set to one, then the HBA shall
not release the N_Port_ID corresponding to the SRP initiator after completion of SRP logout by the SRP initiator.

The remove (RMV) bit shall be set to one in order to remove the bind for an SRP initiator. Prior to the time when a
bind for an SRP initiator is removed, the SRP initiator shall complete SRP logout with all SRP targets with which it
is logged in. When the rRmv field is set to a one and the Bind_SRP_Initiator is accepted, the HBA shall remove the
FC_Port Name_ldentifier, FC Node_Name, and specific node descriptor data, if any, corresponding to the SRP
initiator (see B.1.3.4.2). If an N_Port_ID is assigned to the SRP initiator, then the HBA shall also send a LOGO ELS
to the fabric to release the N_Port_ID corresponding to the SRP initiator, provided that the N_Port_ID does not also
correspond to another SRP initiator or FC management initiator. When the rRmv field is set to one, the FC_PORT
NAME_IDENTIFIER, NODE_NAME, and DATA-OUT BUFFER DESCRIPTOR fields are ignored by the HBA. The rRmv field shall
be set to zero if the bind for an SRP initiator is not to be removed.

The DATA-oUT BUFFMT field shall specify the format of the DATA-OUT BUFFER DESCRIPTOR (see B.1.2.11.2).

When the DATA-OUT BUFFER DESCRIPTOR field contains a valid data out buffer descriptor, then the data out buffer
shall contain one or more data blocks containing the payload of an RNID accept that the HBA uses on behalf of the
SRP initiator. Each data block contains the entire payload of an the RNID accept ELS to be sent in response to an
RNID request ELS of a different type. If the Bind_SRP_Initiator request indicated that the FLOGI-assigned
N_Port_ID is to be used on behalf of the SRP initiator, then the HBA FC_Port shall apply the specific node identifi-
cation data to its FLOGI-assigned N_Port_ID; otherwise, the HBA FC_Port shall apply the specific node identifi-
cation data to the N_Port_ID corresponding to the SRP initiator.

Working Draft Fibre Channel HBA API (FC-HBA) 154

16 April 2003 T11/1568-D Revision 8

B.2.6.2 Bind_SRP_Initiator response

The Bind_SRP_Initiator response shall convey the response to the Bind_SRP_ Initiator request. See table B.20 for
the format of the Bind_SRP_ Initiator response:

Table B.20 — Bind_SRP_lInitiator response

B'?/itte 7 6 5 4 3 2 1 0

0 TYPE (A4h)
1 REASON CODE
2

reserved
7
8 (MSB)

TAG

15 (LSB)
16

N_PORT_ID
18

If the Bind_SRP_Initiator was successfully performed and the ASGN bit was set to one, the N_PORT_ID field shall be
set to the N_Port_ID that was assigned to the SRP initiator; if the ASGN bit is set to zero, the N_PORT_ID field shall
be set to the FLOGI-assigned N_Port_ID. If the Bind_SRP_Initiator request was not successfully performed, the
N_PORT_ID field shall be ignored.

Working Draft Fibre Channel HBA API (FC-HBA) 155

16 April 2003

T11/1568-D Revision 8

The ReEASON coDE field shall indicate the completion status of the Bind_SRP_Initiator request. See table B.21 for a
definition of the codes and their meanings.

Table B.21 — Bind_SRP_Initiator response reason codes

Reason Code | Description
00h Request successfully completed
One or more other Set_Port_Data or Bind_SRP_ Initiator requests for this
01h HBA FC_Port provided the same FC_Port Name, but the FC Node_Name
provided is not the same as the FC Node_Name provided in the other
requests. 2
02h N_Port_ID virtualization not supported; unable to store requested data
03h Busy
04h Insufficient resources to store the requested data fro the SRP initiator
05h Unable to remove bind; An SRP login exists for the SRP initiator
A Bind_SRP_Initiator has already been completed for this SRP_Initiator,
06h .
and it has not been released.
07h The HBA FC_Port is not attached to a fabric, unable to store requested
data
0sh The ASGN bit was set to one, but the fabric was unable to provide an
additional N_Port_ID
all other values | Reserved
& |f more than one SRP initiator shares usage of the same N_Port_ID on an HBA, then the
Bind_SRP_Initiator request for each SRP initiator shall contain the same FC_Port
Name_ldentifier and FC Node_Name. When FC management initiators share the
N_Port_ID by providing the same FC_Port Name_Identifier in Set_Port_Data requests, their
FC Node_Names shall also be identical.

B.2.7 Get_SRP_Initiator_Bindings

B.2.7.1 Get_SRP_Initiator_Bindings request

The Get_SRP_Initiator_Bindings request shall be used to request the SRP initiator binding information currently
established for an HBA (i.e., the physical port number, N_Port Name, N_Port_ID, Node_Name, and specific node

identification data corresponding to each SRP initiator port that has been bound to an HBA virtual N_Port).

HBAs that support N_Port_ID virtualization shall support the Get_ SRP_ Initiator_Bindings request. HBAs that do
not support N_Port_ID virtualization shall reject the Get_ SRP_Initiator_Bindings request.

Working Draft Fibre Channel HBA API (FC-HBA)

156

16 April 2003 T11/1568-D Revision 8

See table B.22 for the format of the Get_SRP_Initiator_Bindings request .

Table B.22 — Get_SRP_Initiator_Bindings request

B?/itte 7 6 5 4 3 2 1 0
0 TYPE (08h)
1 PHYSICAL PORT NUMBER
2
reserved
6
7 PPN sl DATA-IN BUFFMT
8 (MSB)
TAG

15 (LSB)
16 (MSB)

SRP INITIATOR PORT IDENTIFIER
31 (LSB)
32 (MSB)

DATA-IN BUFFER DESCRIPTOR
47 (LSB)

If the PPN bit is set to one, the value of the PHYSICAL PORT NUMBER field shall be the number of a physical port on the
HBA. If the PPN bit is set to zero, the value of the PHYSICAL PORT NUMBER field is not constrained by this standard.

If the siI bit is set to one, the value of the SRP INITIATOR PORT IDENTIFIER field shall be an SRP initiator ID. If the siI
bit is set to zero, the value of the SRP INITIATOR PORT IDENTIFIER field is not constrained by this standard.

If the PPN bit is set to one the HBA shall return only established bindings for the physical port number that is
specified in the PHYSICAL PORT NUMBER field. If the PPN bit is set to zero, the HBA shall return established bindings
on the HBA for all physical ports.

If the sii bit is set to one the HBA shall return only established bindings for the SRP initiator ID that is specified in
the SRP INITIATOR PORT IDENTIFIER field. If the sii bit is set to zero, the HBA shall return established bindings on the
HBA for all SRP initiator ports.

If both the PPN bit and the sii bit are set to one the HBA shall return only an established binding of the physical port
number that is specified in the PHYSICAL PORT NUMBER field to the SRP initiator ID that is specified in the srp
INITIATOR PORT IDENTIFIER field. If both the PPN bit and the sii bit are set to zero, the HBA shall return all established
bindings on the HBA.

The DATA-IN BUFFMT field shall specify the format of the data-in buffer descriptor (see B.1.2.11.2).

Working Draft Fibre Channel HBA API (FC-HBA) 157

16 April 2003 T11/1568-D Revision 8

The DATA-IN BUFFER DESCRIPTOR shall contain a buffer descriptor for a data buffer that the HBA shall use to store
the SRP initiator bindings (see B.2.7.2).
B.2.7.2 Get_SRP_Initiator_Bindings response

The Get_SRP_Initiator_Bindings response shall be used to indicate completion of a request to transfer information
regarding HBA SRP initiator bindings. See table B.23 for the format of the Get SRP_Initiator_Bindings response

Table B.23 — Get_SRP_Initiator_Bindings response

B'?/itte 7 6 5 4 3 2 1 0
0 TYPE (A8h)
1 REASON CODE
2
reserved

3
4 (MSB)

AVAILABLE DATA
7 (LSB)
8 (MSB)

TAG

15 (LSB)

The REASON cODE field shall indicate the completion status of the Bind_SRP_Initiator request. See table B.24 for a
definition of the codes and their meanings.

Table B.24 — Get_SRP_lInitiator_Bindings response reason codes

Reason Code | Description

00h Request successfully completed

01h Reserved

02h N_Port_ID virtualization not supported; unable to provide requested data
03h Busy. The HBA shall not access the data-in buffer.

The PPN bit is set to one, but the HBA is unable to find the specified

04h physical port number.
04h-08h Reserved
09h The size of available data exceeds the size of the data-in buffer.

all other values | Reserved

The value of AVAILABLE DATA shall be the size in bytes of the entire list of SRP initiator bindings established by the
HBA, regardless of the size of the data-in buffer.

Working Draft Fibre Channel HBA API (FC-HBA) 158

16 April 2003

T11/1568-D Revision 8

The data-in buffer shall be used contain the SRP initiator binding list. The SRP initiator binding list shall contain all
the SRP initiator bindings that are currently established for any SRP initiators for all HBA FC_Ports on the HBA
unless it has been truncated to fit the data-in buffer. If the size of the entire SRP initiator binding list available from
the HBA exceeds the size of the data-in buffer, the SRP initiator binding list shall be truncated after the last SRP
initiator binding that completely fits in the data-in buffer, and the remaining bytes of the data-in buffer, if any, shall
be set to zero. If the returned data is truncated, different SRP initiator bindings may be returned on successive
requests. See table B.25 for the format of the SRP initiator binding.

Table B.25 — SRP initiator binding

B'?/itte 7 5 4 3 2 0
0 (MSB)
BINDING LENGTH
1 (LSB)
2 PHYSICAL PORT NUMBER
3 reserved
4 (MSB)
SRP INITIATOR PORT IDENTIFIER
19 (LSB)
20 (MSB)
21 N_PORT_ID
22 (LSB)
23 reserved
24 (MSB)
FC_PORT NAME_IDENTIFIER
31 (LSB)
32 (MSB)
FC NODE_NAME
39 (LSB)
40 (MSB)
SPECIFIC NODE IDENTIFICATION DATA
n (LSB)

The value in the BINDING LENGTH field shall be set to the length in bytes of the SRP initiator binding.

The PHYSICAL PORT NUMBER field shall be set to the physical port number of the HBA FC_Port to which the SRP
initiator binding applies.

Working Draft Fibre Channel HBA API (FC-HBA)

159

16 April 2003 T11/1568-D Revision 8
The SRP INITIATOR PORT IDENTIFIER field shall be set to the InfiniBand port identifier of the SRP initiator to which the
SRP initiator binding applies.

The N_pPoRT_ID field shall be set to the N_Port_ID of the HBA virtual N_Port to which the SRP initiator binding
applies.

The FC_PORT NAME_IDENTIFIER field shall be set to the N_Port_Name of the HBA virtual N_Port to which the SRP
initiator binding applies.

The Fc NODE_NAME field shall be set to the Node_Name of the HBA virtual N_Port to which the SRP initiator
binding applies.

The SPECIFIC NODE IDENTIFICATION DATA field shall contain one or more data blocks containing the payload of an
RNID accept that the HBA uses on behalf of the SRP initiator to which the SRP initiator binding applies. Each data

block shall contain the entire payload of an the RNID accept ELS that is sent in response to an RNID request ELS
of a different type.

B.2.8 Send_PassThru

B.2.8.1 Send_PassThru request

The Send_PassThru request allows the FC management initiator to send either an ELS request or an FC-CT
request to a target FC_Port. It is also used to request the HBA to perform N_Port logout with a target FC_Port.

See table B.26 for the format of the Send_PassThru request.

Table B.26 — Send_PassThru request

B?/itte 7 6 5 4 3 2 1 0
0 TYPE (05h)
1 PHYSICAL PORT NUMBER
2 (MSB)
3 TARGET FC_PORT N_PORT_ID
4 (LSB)
5 REQUEST TYPE
6 reserved

Working Draft Fibre Channel HBA API (FC-HBA) 160

| 16 April 2003 T11/1568-D Revision 8

Table B.26 — Send_PassThru request

Bit
Byte

7 DATA-OUT BUFFMT DATA-IN BUFFMT

8 (MSB)

TAG

15 (LSB)

16 (MSB)

DATA-OUT BUFFER DESCRIPTOR

31 (LSB)

32 (MSB)

DATA-IN BUFFER DESCRIPTOR

47 (LSB)

The PHYSICAL PORT NUMBER field shall be set to the physical port number of the HBA FC_Port from which the ELS
request or FC-CT command is to be sent (see B.2.4.2).

The TARGET FC_PORT N_PORT_ID field shall indicate the N_Port_ID of the target FC_Port to which the ELS request
or FC-CT command is to be sent.

The REQUEST TYPE field shall specify the type of request to be sent as shown in table B.27.

Table B.27 — Request Type Field

Value Definition
00 fc els passthru
fc-ct command
01
passthru
02 logout
02-FF reserved

If the REQUEST TYPE field indicates FC ELS passthru or FC-CT command passthru, then the HBA shall determine if
the N_Port_ID corresponding to the FC management initiator is currently logged in with the target FC_Port. If the
N_Port_ID is logged in with the target FC_Port, the HBA shall send the ELS or FC-CT request to the destination
N_Port_ID; if the N_Port_ID is not logged in with the target FC_Port, the HBA shall perform N_Port login with the
target FC_Port prior to sending the ELS or FC-CT request.

If the REQUEST TYPE field indicates logout, then the HBA shall determine if there is an SRP login between an SRP

initiator sharing usage of the N_Port_ID corresponding to the FC management initiator and the SRP target port
identifier corresponding to the target FC_Port. If a login exists, then the HBA does not log out the N_Port_ID; if a

Working Draft Fibre Channel HBA API (FC-HBA) 161

16 April 2003 T11/1568-D Revision 8

login does not exist, the HBA shall log out the N_Port_ID corresponding to the FC management initiator with the
target FC_Port.

The DATA-IN BUFFMT field shall specify the format of the DATA-IN BUFFER DESCRIPTOR. The DATA-OUT BUFFMT field
shall specify the format of the DATA-OUT BUFFER DESCRIPTOR (see B.1.2.11.2).

The format of the DATA-IN BUFFER DESCRIPTOR and DATA-OUT BUFFER DESCRIPTOR fields shall be as specified in
B.1.2.11.2. The data-out buffer shall contain the payload to be sent to the specified N_Port_ID. The data-in buffer
shall used by the HBA to store the payload of the ELS response received from the target FC_Port to which the
request was sent.

When the HBA receives a Send_PassThru request, the HBA shall send the data contained in the data-out buffer as
the payload of an ELS or FC-CT command to the N_Port_ID of the target FC_Port. When the HBA receives the
response, it shall place as much of the payload of the response in the data-in buffer as fits, and it shall send the
Send_PassThru response payload to the FC management initiator.

B.2.7.2 Send_PassThru response

The Send_PassThru response shall convey the response to the Send_PassThru request. See table B.24 for the
format of the Send_PassThru response:

Table B.24 — Send_PassThru response

B?/itte 7 6 5 4 3 2 1 0
0 TYPE (A5h)
1 REASON CODE
2
reserved

3
4 (MSB)

AVAILBLE DATA
7 (LSB)
8 (MSB)

TAG

15 (LSB)

The REASON coDE field shall indicate the completion status of the Send_Passthru request See table B.25 for the
definition of the reason codes.

Working Draft Fibre Channel HBA API (FC-HBA) 162

| 16 April 2003 T11/1568-D Revision 8

The value of AVAILABLE DATA shall be the size in bytes of the entire ELS or FC-CT response payload, regardless of
the size of the data-in buffer.

Table B.25 — Send_PassThru response reason codes

Reason Code | Description

00h Request successfully completed

01h Invalid ELS specified

02h Target FC_Port is inaccessible

03h Busy. The HBA shall not access the data-in buffer.

N_Port logout was requested but not performed because an SRP login
exists between an SRP initiator that shares the N_Port_D of the FC

04h management initiator, and the SRP target port corresponding to the target
FC_Port.
05h-08h Reserved
09h The size of available data exceeds the size of the data-in buffer.

all other values | Reserved

A reason code of Busy shall indicate that the request should be retried later.

A reason code of Invalid ELS shall be returned if the HBA does not support the sending of the ELS request. All
HBAs shall support the LIRR and SCR ELSs. Support of all other ELSs depends on the model.

B.2.8 Get_Port_Statistics

B.2.8.1 Get_Port_Statistics request

The Get_Port_Statistics request allows the FC management initiator to obtain the end port statistics for the HBA
FC_Port corresponding to the IB reliable connection. See table B.26 for the format of the Get_Port_Statistics
request.

Table B.26 — Get_Port_Statistics request

B?/itte 7 6 5 4 3 2 1 0

0 TYPE (06h)
1 PHYSICAL PORT NUMBER
2

reserved
7
8 (MSB)

TAG

15 (LSB)

Working Draft Fibre Channel HBA API (FC-HBA) 163

16 April 2003 T11/1568-D Revision 8
The PHYSICAL PORT NUMBER field shall be set to the physical port number of the HBA FC_Port to which the
Set_Port_Data request is applied (see B.2.4.2).

B.2.8.2 Get_Port_Statistics response

The Get_Port_Statistics response shall contain the end port statistics for the HBA FC_Port corresponding to the IB
reliable connection. See table B.27 for the format of the Get_Port_Statistics response.

Table B.27 — Get_Port_Statistics response

B'?/itte 7 6 5 4 3 2 1 0
0 TYPE (A6h)
1 REASON CODE
2
reserved
7
8 (MSB)
TAG
15 (LSB)
16-23 reserved
24-31 TXFRAMES
32-39 RXFRAMES
40-47 TXWORDS
48-55 RxWORDs
56-63 LIPCouNT
64-71 NOSCounT
72-79 ERRORFRAMES
80-87 DUMPEDFRAMES
88-95 LINKFAILURECOUNT
96-103 LossOfSynchCount
104-111 LossOfSignalCount
112-119 PrimitiveSeqProtocolErrCount
120-127 InvalidTxWordCount
128-135 InvalidCRCCount
136-143 InputRequests

Working Draft Fibre Channel HBA API (FC-HBA) 164

16 April 2003 T11/1568-D Revision 8

Table B.27 — Get_Port_Statistics response

B'?/itte 7 6 5 4 3 2 1 0
144-151 OutputRequests
152-159 ControlrRequests
160-167 InputMegabytes
168-175 OutputMegabytes

The REASON cODE field shall indicate the completion status of the Get_Port_Statistics request See table B.28 for a
definition of the codes and their meanings.

Table B.28 — Get_Port_Statistics response reason codes

Reason Code | Description

00h Request successfully completed
01-02h Reserved
03h Busy. Bytes 16-175 shall be ignored.

all other values | Reserved

The end port statistics shall be contained in bytes 17-175 of the Get_Port_Statistics response. The end port
statistics shall be as defined in subclause 6.5.2 of this standard. The values of all statistics are unsigned binary
integers that wrap back to zero upon overflow.

A library may implement the HBA_Reset_Statistics function by storing the counter values during the
HBA_Reset_Statistics function, and subtracting the current counter values from their stored values whenever
counters are subsequently read.

B.2.9 Asynchronous Event (AEN) Reporting

B.2.9.1 AEN request

The AEN request shall be used by an HBA to report the receipt of an incoming ELS requests, and upon the occur-
rence of HBA_EVENT_PORT_OFFLINE and HBA_EVENT_PORT_ONLINE events, for the HBA FC_Port corre-
sponding to the FC management connection.

Upon the occurrence of HBA_EVENT_PORT_OFFLINE and HBA_EVENT_PORT_ONLINE events, the AEN
request shall be sent on all FC management connections in which the Establish_Connection request indicated that
notification of asynchronous events is required (see B.2.2).

Upon receipt of an RSCN or RLIR ELS request to the FLOGI-assigned N_Port_ID, the HBA shall send an AEN
request on each FC management connection in which the Establish_Connection request indicated that notification
of asynchronous events is required. For HBAs that support N_Port_ID virtualization, the AEN request shall only be
sent on the IB connections to the FC management initiators that have been assigned the N_Port_ID equal to the
destination N_Port_ID of the incoming ELS request.

The HBA shall respond to incoming ELS requests as required by FC-FS.

Working Draft Fibre Channel HBA API (FC-HBA) 165

| 16 April 2003 T11/1568-D Revision 8

See table B.29 for the format of the AEN request:

Table B.29 — AEN request

B'?/itte 7 6 5 4 3 2 1 0
0 TYPE (07h)
PHYSICAL PORT NUMBER
1 (MSB)
SOURCE N_PORT_ID
3 (LSB)
4 EVENT TYPE
5
6 reserved
7
8 (MSB)
TAG
15 (LSB)
16 (MSB)
ELS PAYLOAD LENGTH
(LSB)
18 (MSB)
ELS PAYLOAD
n (LSB)

The PHYSICAL PORT NUMBER field shall be set to the physical port number of the HBA FC_Port from which the AEN
request was received (see B.2.4.2).

The evenT TYPE field shall specify a code corresponding to the type of event that occurred. See table B.30 for a
definition of the codes and their meanings

Table B.30 — Event Type Codes

Value | Meaning

00 els received
01 hba_event_port_online
02 hba_event_port_offline

03-FF | reserved

Working Draft Fibre Channel HBA API (FC-HBA) 166

16 April 2003 T11/1568-D Revision 8

When the EVENT TYPE field specifies an ELS received event, the ELS PAYLOAD LENGTH field shall specify the length
in bytes of the ELS Payload; if the EVENT TYPE field does not specify an ELS received event, the ELS PAYLOAD
LENGTH field shall be ignored. The maximum value of the ELS PAYLOAD LENGTH field is 1 024.

The ELS PAYLOAD field contains the payload of the ELS that was received.

B.2.9.2 AEN response

The AEN response confirms the delivery of an AEN request. See table B.31 for the format of the AEN response:

Table B.31 — AEN response

Bit

Byte 7 6 5 4 3 2 1 0

0 TYPE (A7h)

reserved

8 (MSB)

TAG

15 (LSB)

Since incoming RSCN ELSs contain the N_Port_IDs of the affected end ports instead of the FC Port
Name_ldentifiers, the library supporting the FC management initiator may need to convert each affected
N_Port_ID into its corresponding SRP target port ID. To do this, the FC management initiator for the library may be
used to access the nameserver in order to determine the affected FC_Port Name_ldentifiers. Given this infor-
mation, the library may construct the affected SRP target port identifiers as described in B.1.3.2.

Working Draft Fibre Channel HBA API (FC-HBA) 167

16 April 2003 T11/1568-D Revision 8

Annex C
(Informative)

Target Mapping and Persistent Binding
C.1 Introduction to Target Mapping and Persistent Binding

C.1.1 The problem set

The basic problem to be resolved by Target Mapping and Persistent Binding functions is SCSI Identity Mapping:
Current operating systems identify storage resources in different terms than the FCP-2 protocol (see FCP-2) does.
One of the functions of an HBA and its driver is to translate between the OS and FCP-2 identities of storage
resources. Specifying this translation is a basic part of managing the HBA (and the SAN behind it) since the trans-
lation determines which storage resources are presented to the OS by the HBA.

Subsidiary to this basic problem are several others, not all of which may be resolved by any particular HBA imple-
mentation:

a) Persistence: It may be desired that an OS identity reference the same FCP-2 storage resource despite
reinitialization of the OS, HBA, and/or fabric.

b) Specificity: It may be desired to specify the OS identity assigned to a particular FCP-2 storage resource.

c) Legacy: It may be desired to support early implementations of identity mapping that are less functional or
less widely accepted than the preferred methods today.

d) Autonomy: It may be desired that storage resources available via FCP-2 be made available to the OS
without the need for administrative configuration.

e) Capacity: The number and/or type of storage resources accessible via FCP-2 may exceed the capacity of
the OS or of an HBA driver to service.

f) Selectivity: It may be desired to control which FCP-2 resources are accessible by the OS or by a particular
HBA.

g) Virtualization: More or less flexibility may be desired in making the structure of the storage system as
viewed by the OS resemble that presented to the system by FCP-2 (this gets ahead of the presentation a
little: Though the means of identifying storage resources differs between the OSs and FCP-2, both reflect
the SCSI grouping of logical units within target devices. The question then relates to whether the groupings
of logical units represented by the OS identifiers matches the groupings presented by FCP-2).

C.1.2 OS Identification of Storage Resources (SCSIID)

Most versions of Windows and Unix and their application programs identify storage resources via an abstraction of
the classic SCSI Parallel Interface architecture (see SAM-3): A resource is identified as though it is a SCSI logical
unit within a SCSI target device accessed by a SCSI controller. The means of identification is a numeric triplet
comprising Controller (or Bus) Number, Target Number, and Logical Unit Number (LUN). This may in turn be
further abstracted to a device in the OS file system, and thereby identified by its device name, a character string.

The data structure HBA_SCSIID encapsulates the OS identification of a storage resource.
C.1.3 FCP-2 Identification of Storage Resources (FCPID)

FCP-2 is a standard SCSI-3 Service Delivery System (see SAM-3). As such, it provides identification for SCSI
Initiator Ports and Target Ports, and for Logical Units behind Target Ports. Each Logical Unit is a distinct and
indivisible storage resource.

Working Draft Fibre Channel HBA API (FC-HBA) 168

16 April 2003 T11/1568-D Revision 8

In the Common HBA API specified by FC-MI, the Initiator Port is identified by the HBA handle via which FCP-2
management functions are exercised. In this standard, the Port Name of the HBA end port was added to resolve
ambiguity in multiport adapters. The Target Port may be identified by any of its FC address identifier, its FC Port
Name (WWPN), or its FC Node_Name (WWNN). The latter is intentionally ambiguous with respect to multi-port
target devices, allowing the HBA and / or fabric to choose (hopefully to optimize the choice). The WWPN may be
used when this flexibility is not desired.

Target Logical Units may be identified within a Target Port by their SCSI LUN, a 64-bit structured value defined in
the SCSI Architecture Model specification (see SAM-3). The SCSI LUN is not the same as the OS LUN, though in
some implementations one may be derived from the other.

Logical Units may also be identified independently of their containing Target Port by one of the several types of
Vital Product Data (VPD) Page 83 identifiers defined by the SCSI Primary Commands specification (see SPC-3).
This identity is intended to be independent of the means of accessing the Logical Unit (i.e., if a Logical Unit is
accessible by several Service Delivery Systems, it should express the same VPD Page 83 identifiers on all of
them). VPD Page 83 identifiers appear to be becoming the preferred means of identifying Logical Units within the
SCSI standards community. Use of LUID alone is not practical in certain driver architectures and may not intuitively
represent certain binding options (e.g., binding whole targets).

The data structures HBA_FCPID and HBA_LUID encapsulate the FCP-2 identification of a storage resource (SCSI
target). HBA_FCPID represents the Target Port and SCSI LUN, while HBA_LUID represents a VPD Page 83
identifier. Either one is sufficient to identify a Target Logical Unit.

C.2 Target Mappings

Target Mappings resolve the Identity Mapping problem. A Target Mapping is a pairing of a SCSIID and an FCPID. It
represents a relationship currently in effect such that SCSI operations requested by application programs with
respect to the abstracted SCSI logical unit represented by the SCSIID act on the FCP logical unit identified by the
FCPID. Each HBA is presumed to provide a list of one or more Target Mappings to the OS via its driver. The
collection of all Target Mappings by all HBAs is the OS view of its Fibre Channel SAN resources. More than one
mapping for any one SCSIID does not make sense, though more than one SCSIID may map to the same FCPID.

The HBA API specified by this standard provides no complete specification of how Target Mappings are estab-
lished, though they may be affected by Persistent Bindings (see clause C.3).

C.3 Persistent Bindings

A Persistent Binding is a pairing of a SCSIID and FCPID that is retained through reinitialization of the OS, HBA,
and / or fabric and establishes a Target Mapping subsequent to reinitialization. An HBA that supports Persistent
Bindings therefore resolves the Persistence problem. An HBA that further has the capability to set and remove
Persistent Bindings by functions defined in this standard also resolves the Specificity problem

This standard provides no complete specification of how Persistent Bindings are established, though they may be
affected by the FCP Information Functions it specifies (see 7.4).

C.4 Persistent Binding Capabilities

C.4.1 Overview

A Persistent Binding Capability represents the ability of an HBA to provide a specific feature related to Persistent
Binding. Each HBA end port together with its driver software has certain implemented Persistent Binding Capabil-

Working Draft Fibre Channel HBA API (FC-HBA) 169

16 April 2003 T11/1568-D Revision 8

ities. Additionally, an HBA end port together with its driver software may allow the availability of some Persistent
Binding Capabilities it implements to be enabled or disabled.

Management of Persistent Binding Capabilities ameliorates the Legacy problem: Capabilities formalize optional
support for features that are desirable but not yet implemented and features that are already implemented but not
likely to be widely adopted.

C.4.2 Persistent Binding Capability: HBA_CAN_BIND_TO_D_ID

The Persistent Binding capability HBA_CAN_BIND_TO_D_ID represents the ability of an HBA to accept a
Persistent Binding that identifies the Fibre Channel target port by its Fibre Channel address identifier. In larger and
more dynamic SANS, it is not necessarily persistent over the time frames that may be of interest in establishing
Persistent Bindings. It also may not be unique across disjoint fabrics, which may raise identity ambiguities in
multi-fabric SANs. Address identifier should be used only where it is the only alternative, or its persistence and
uniqueness are known by the local administration to be sufficient. Its capability should be considered primarily an
amelioration of the Legacy problem

C.4.3 Persistent Binding Capability: HBA_CAN_BIND_TO_WWPN

The Persistent Binding capability HBA_CAN_BIND_TO_WWPN represents the ability of an HBA to accept a
Persistent Binding that identifies the Fibre Channel target port by its WWPN. The WWPN is a Fibre Channel
Name_Identifier for a specific end port. Its persistence and uniqueness are sufficient for all expected uses.

C.4.4 Persistent Binding Capability: HBA_CAN_BIND_TO_WWNN

The Persistent Binding capability HBA_CAN_BIND_TO_WWNN represents the ability of an HBA to accept a
Persistent Binding that identifies a Fibre Channel target device (not a target port) by its World Wide Node Name
(WWNN). The WWNN is a Fibre Channel Name_Identifier presumed to apply to a single FCP-2 device. Its
ambiguity with respect to multi-port devices is intentional, being left for the HBA and / or fabric to resolve, so though
not necessarily unique, it is sufficiently specific. Its persistence is sufficient for all expected uses.

C.4.5 Persistent Binding Capability: HBA_CAN_BIND_TO_LUID

The Persistent Binding capability HBA_CAN_BIND_TO_LUID represents the ability of an HBA to accept a
Persistent Binding that identifies the Fibre Channel target logical unit by the value of one of its device-associated
Identification Descriptors (LUID). The LUID may be a Name_Identifier, an EUI-64, a T10 vendor identification, or a
vendor specific value. Its persistence and uniqueness are sufficient for all expected uses if it is a Name_ldentifier,
an EUI-64, or a T10 vendor identification. A vendor specific LUID has no assurance of uniqueness or persistence.
One should be used only if it is the only alternative, or its persistence and uniqueness are known by the local
administration to be sufficient. Vendor Specific LUIDs and T10 vendor identification LUIDs are supported only to
resolve an aspect of the Legacy problem.

C.4.6 Persistent Binding Capability: HBA_CAN_BIND_ANY_LUNS

The Persistent Binding capability HBA_CAN_BIND_ANY_LUNS represents the ability of an HBA to accept
Persistent Binding settings that independently specify both the OS and Fibre Channel target LUNs. This may be
used when FCP LUN values exceed the maximum value permitted for an OS LUN. More powerfully, these settings
allow storage resources to be grouped differently by SCSIID than they are grouped by FCPID. This means that
logical units provided on a single FCP target may be represented to the OS with different Target Numbers, and
logical units provided on different FCP targets may be represented to the OS with the same Target Number. This
capability is intended to assist in resolving the Virtualization problem.

Working Draft Fibre Channel HBA API (FC-HBA) 170

16 April 2003 T11/1568-D Revision 8

An HBA that does not express the HBA_CAN_BIND_ANY_LUNS capability may require that all Persistent Binding
settings preserve the groupings of logical units into devices (i.e., for any pair of Persistent Binding settings, the
SCSIIDs may designate the same target device if and only if the FCPIDs designate the same end port).

In many OS implementations unpredictable behavior, possibly including failure to boot, may result from mapping
OS LUN 0 to any FCP LUN other than 0.

C.4.7 Persistent Binding Capability: HBA_CAN_BIND_TARGETS

The Persistent Binding capability HBA_CAN_BIND_TARGETS represents the ability of an HBA to accept a
Persistent Binding setting with type including HBA_ BIND_TARGETS. This reflects support for device-level
mappings (i.e., the HBA is able to automatically generate Target Mappings from OS LUNs on the OS controller and
target indicated by the SCSIID to all logical units on the FCP target port indicated by FCPID). This capability is
intended to assist in resolving the Virtualization and Autonomy problems.

C.4.8 Persistent Binding Capability: HBA_CAN_ BIND_AUTOMAP

The Persistent Binding capability HBA_CAN_BIND_AUTOMAP indicates that an HBA is able to attempt to
automatically generate Target Mappings and Persistent Bindings for all discovered storage resources. HBAs with
this capability, especially in combination with small SANs and self-identifying file systems, may provide service
without administrative intervention, resolving the Autonomy problem.

If this capability is not indicated (or disabled), the HBA is only able to establish Target Mappings based on
Persistent Bindings that have been explicitly set (sometimes described as LUN Masking). This may be useful in
order to limit the impact on hosts of very large SANs. Disabling this capability provides resolution for both the
Capacity and Selectivity problems.

C.4.9 Persistent Binding Capability: HBA_CAN_BIND_CONFIGURED

The Persistent Binding capability HBA_CAN_BIND_CONFIGURED represents the ability of an HBA to accept the
Persistent Binding configuration functions HBA_SetPersistentBindingV2, HBA_RemovePersistentBinding, and
HBA_RemoveAllPersistentBindings.

An HBA that does not express this capability may provide only some form of automatically generated Persistent
Bindings.

Working Draft Fibre Channel HBA API (FC-HBA) 171

16 April 2003 T11/1568-D Revision 8

Annex D
(informative)

Function Coding Examples

D.1 Function HBA_GetVersion

Following is an example usage of HBA_GetVersion in an application program:
HBA Ul NT32 versi on;
version = HBA CGetVersion();

printf(“Running version % of the HBA APl library.”, version);

D.2 Function HBA_LoadLibrary

Following is an example usage of HBA LoadLibrary in an application program:
HBA STATUS st at us;
status = HBA LoadLibrary();

printf(“Successfully |oaded HBA library.\n");

D.3 Function HBA_FreeLibrary

Following is an example usage of HBA_FreeLibrary in an application program:
HBA_STATUS st at us;
status = HBA Freelibrary();

printf(“Successfully freed HBA library.\n");

D.4 Function HBA_RegisterLibrary

Following is an example implementation of HBA _RegisterLibrary in an HBA specific library:

/* Initialize pointers to our versions of the conmon HBA APl */
HBA_ENTRYPO NTS HBAI nf o;

nmenset (&HBAI nfo, 0, sizeof (HBA_INFO);

HBAI nf 0. Get Ver si onHandl er = MYGet Ver si on;

HBAI nf 0. Get Nunber Of Adapt er sHandl er = MYGet Nunber O Adapt ers;

HBAI nf 0. Get Adapt er NaneHandl er = MyGet Adapt er Nane;

HBAI nf 0. OpenAdapt er Handl er = MYQpenAdapt er;

HBAI nf 0. Cl oseAdapt er Handl er = MYCl oseAdapt er;

HBAI nf 0. Get Adapt er Attri but esHandl er = MyGet Adapt er Attri butes;

HBAI nf 0. Get Adapt er Port Attri but esHandl er = MYGet Adapt er Port Attri but es;
HBAI nf 0. Get Port St ati sticsHandl er = MyGet Port Stati stics;

HBAI nf 0. Get Di scoveredPort Attri but esHandl er = MYGet Di scoveredPort Attri butes;

HBAI nf 0. Get Port Attri but esByW\WHandl er = MYGet Port At tri but esByVW\N;

Working Draft Fibre Channel HBA API (FC-HBA)

172

16 April 2003 T11/1568-D Revision 8
| p

HBAI nf 0. Ref r eshl nf or mat i onHandl er = MYGet Ref r eshl nf or mati on;
HBAI nfo. I nitiateLl PHandl er = NULL; /* Not supported */
HBAI nf 0. Get FcpTar get Mappi ngHandl er = NULL;

HBAI nf 0. Get FcpPer si st ent Bi ndi ngHandl er = NULL;

HBAI nf 0. Get Event Buf f er Handl er = NULL;

HBAI nf 0. Set RNI DMgit Addr essHandl er = NULL;

HBAI nf 0. Get RNl DMgnt Addr essHandl er = NULL;

HBAI nf 0. SendRNI DHandl er = NULL;

HBAI nf 0. Scsi | nqui ryHandl er = NULL;

HBAI nf 0. Repor t LUNsHandl er= NULL;

HBAI nf 0. ReadCapaci t yHandl er = NULL;

return HBA STATUS CK;

D.5 Function HBA_GetNumberOfAdapters

Following is an example usage of HBA_GetNumberOfAdapters and HBA_GetAdapterName in an application
program:

HBA_Ul NT32 versi on;
int i;
HBA STATUS st at us;
char adapt er nane[256] ;
nunber _of _adapters = HBA Get Nunmber Of Adapt ers();
for (i = 0; i < nunber_of_adapters; i++) {
status = HBA Get Adapt er Nane(i, &adapternane);

if (status == HBA STATUS OK) {
printf(“Adapter % is naned %\r\n”, i, adapternane);

}
)

D.6 Function HBA_Refreshinformation

Following is an example usage of HBA_Refreshinformation in an application program:

HBA Ref reshl nf or mat i on(adapt er handl e) ;
status = HBA GetPortStatistics(adapterhandl e, portindex, &portstats);

D.7 Function HBA_GetAdapterName

Following is an example usage of HBA_GetNumberOfAdapters and HBA_GetAdapterName in an application
program:

HBA Ul NT32 versi on;
int i;
HBA_STATUS st at us;
char adapt er nane[256] ;
nunber _of _adapters = HBA Get Nunber O Adapt ers();

for (i =0; i < nunber_of _adapters; i++) {

status = HBA Get Adapt er Nane(i, &adapternane);

Working Draft Fibre Channel HBA API (FC-HBA) 173

16 April 2003 T11/1568-D Revision 8

if (status == HBA STATUS CK) {
printf(“Adapter % is named %\r\n”, i, adapternane);

}
)

D.8 Function HBA_OpenAdapter

Following is an example usage of HBA_GetNumberOfAdapters, HBA GetAdapterName, HBA OpenAdapter, and
HBA_CloseAdapter in an application program:

int i;

HBA_STATUS st at us;

HBA HANDLE adapt er handl e;
char adapt er nane[256] ;

nunmber _of _adapters = HBA Get Nunmber Of Adapt ers();
for (i = 0; i < nunber_of _adapters; i++) {
status = HBA_Get Adapt er Nane(i, &adapternane);
if (status == HBA STATUS OK) {
adapt er handl e = HBA_OpenAdapt er (adapt er nane) ;
if (adapterhandle != NULL) {
printf(“Successfully opened %\r\n",

adapt er nane) ;
HBA_Cl oseAdapt er (adapt er handl e) ;

}
)
D.9 Function HBA_CloseAdapter

Following is an example usage of HBA_OpenAdapter and HBA_CloseAdapter in an application program:

adapt er handl e = HBA OpenAdapt er (adapt er nane) ;

if (adapterhandle != NULL) {
printf(“Successfully opened %\r\n”, adapternane);
HBA_C oseAdapt er (adapt er handl e) ;

}
D.10 Function HBA_GetAdapterAttributes

Following is an example usage of HBA_GetAdapterAttributes in an application program:

HBA STATUS st at us;
HBA ADAPTERATTRI BUTES adapterattri butes;

status = HBA Get Adapter Attri butes(adapterhandl e, &adapterattributes);

printf(“Manufacturer: %\r\n”, adapterattributes. Manufacturer);
printf(“Serial Nunmber: %\r\n”, adapterattributes. Serial Nunber);

D.11 Function HBA_GetAdapterPortAttributes

Following is an example usage of HBA GetAdapterAttributes and HBA GetAdapterPortAttributes in an application
program:

Working Draft Fibre Channel HBA API (FC-HBA) 174

16 April 2003 T11/1568-D Revision 8

HBA STATUS st at us;

HBA_ADAPTERATTRI BUTES adapterattri butes;

HBA_PORTATTRI BUTES portattributes;

status = HBA Get AdapterAttri butes(adapterhandl e, &adapterattributes);
for (i = 0; i < adapterattributes. NunmberOf Ports; i++) {

status = HBA Get AdapterPortAttributes(adapterhandle, i,
&portattributes);

if (status == HBA STATUS CK) {

printf(“Port % has an FC-FS address identifier of %",
portattri butes. PortFcld);

}
D.12 Function HBA_GetDiscoveredPortAttributes

Following is an example usage of HBA_GetDiscoveredPortAttributes in an application program:

HBA STATUS st at us;
HBA_PORTATTRI BUTES portattributes;

/* Get the attributes of first discovered FC Port on first HBA port */
status = HBA GetDi scoveredPortAttri butes(handle, 1, 1, &portattributes);

if (status == HBA STATUS OK) {
printf(“FC Port 1 on HBA Port 1 7,
printf(“has an FC-FS address identifier of %l",
portattributes. PortFcld);

}
D.13 Function HBA_GetPortStatistics

Following is an example usage of HBA_GetPortStatistics in an application program:

HBA STATUS st at us;
HBA_ PORTSTATI STI CS portstats;

status = HBA GetPortStatistics(adapterhandl e, portindex, &portstats);

if (status == HBA STATUS K) {

printf(“Port % has sent % franmes.”, portindex, portstats. TxFrames);

}

Working Draft Fibre Channel HBA API (FC-HBA)

175

| 16 April 2003 T11/1568-D Revision 8

Annex E
(informative)

Bibliography

The following are not normative but provide important background for understanding this standard. For information
on the current status of the listed document(s), or regarding availability, contact the indicated organization.

SNIA HBA API: SNIA Common HBA API Version 2.18, March 1, 2002
NOTE 20 The SNIA is the Storage Networking Industry Association. Information about the availability of its publica-
tions may be obtained from the SNIA by writing to 2570 West El Camino Real Suite 30, Mountain View, CA
94040-1313 USA, by telephone to (USA) 650.949.6750, or on the World Wide Web at http://www.snia.org/

FC-MI: ANSI INCITS TR-30-2002, Fibre Channel - Methodologies for Interconnects Technical Report

Working Draft Fibre Channel HBA API (FC-HBA) 176

	Revision Information
	Contents
	List of Tables
	List of Figures
	Foreword
	Introduction
	1 Scope
	2 Normative References
	2.1 Normative references
	2.2 Approved references
	2.3 References under development
	2.4 IETF references
	2.5 InfiniBand Trade Organization references

	3 Definitions, symbols, abbreviations, and conventions
	3.1 Definitions
	3.2 Symbols and abbreviations
	3.3 Keywords
	3.4 Conventions
	3.5 Notation for Procedures and Functions

	4 General Constraints
	4.1 Software Structure
	4.2 C language
	4.3 Operating System Dependencies
	4.4 FC-MI Common HBA API

	5 Software Structure and Behavior
	5.1 Overview
	5.2 Software Structure
	5.2.1 OS specific structure
	5.2.2 OS independent structure

	5.3 Names, Handles and Their Usage
	5.4 HBA Configuration Rediscovery Effect on the API
	5.4.1 Introductory discussion
	5.4.2 HBA_STATUS_ERROR_STALE_DATA
	5.4.3 Semistatic table model

	5.5 Multiuse considerations

	6 Attributes and Data Structures
	6.1 Basic Attribute Types
	6.2 Status Return Values
	6.3 HBA Attributes
	6.3.1 HBA Attribute Data Declarations
	6.3.2 HBA Attribute Specifications
	6.3.2.1 Compliance
	6.3.2.2 Manufacturer
	6.3.2.3 SerialNumber
	6.3.2.4 Model
	6.3.2.5 ModelDescription
	6.3.2.6 NodeWWN
	6.3.2.7 NodeSymbolicName
	6.3.2.8 HardwareVersion
	6.3.2.9 DriverVersion
	6.3.2.10 OptionROMVersion
	6.3.2.11 FirmwareVersion
	6.3.2.12 VendorSpecificID
	6.3.2.13 NumberOfPorts
	6.3.2.14 DriverName

	6.4 FC_Port Attributes
	6.4.1 FC_Port Attribute Data Declarations
	6.4.1.1 Port Type
	6.4.1.2 Port State
	6.4.1.3 Port Speed
	6.4.1.4 Class of Service
	6.4.1.5 FC-4 Types
	6.4.1.6 FC_Port Attributes

	6.4.2 FC_Port Attribute Specifications
	6.4.2.1 Compliance
	6.4.2.2 NodeWWN
	6.4.2.3 PortWWN
	6.4.2.4 PortSymbolicName
	6.4.2.5 PortFcId
	6.4.2.6 PortType
	6.4.2.7 PortState
	6.4.2.8 PortSupportedClassofService
	6.4.2.9 PortSupportedFc4Types
	6.4.2.10 PortActiveFc4Types
	6.4.2.11 PortSupportedSpeed
	6.4.2.12 PortSpeed
	6.4.2.13 PortMaxFrameSize
	6.4.2.14 OSDeviceName
	6.4.2.15 NumberofDiscoveredPorts
	6.4.2.16 FabricName

	6.5 End Port Statistics
	6.5.1 End Port Statistics Data Declarations
	6.5.2 End Port Statistics Attribute Specifications
	6.5.2.1 Compliance
	6.5.2.2 SecondsSinceLastReset
	6.5.2.3 TxFrames
	6.5.2.4 RxFrames
	6.5.2.5 TxWords
	6.5.2.6 RxWords
	6.5.2.7 LIPCount
	6.5.2.8 NOSCount
	6.5.2.9 ErrorFrames
	6.5.2.10 DumpedFrames
	6.5.2.11 LinkFailureCount
	6.5.2.12 LossOfSyncCount
	6.5.2.13 LossOfSignalCount
	6.5.2.14 PrimitiveSeqProtocolErrCount
	6.5.2.15 InvalidTxWordCount
	6.5.2.16 Invalid CRC Count
	6.5.2.17 InputRequests
	6.5.2.18 OutputRequests
	6.5.2.19 ControlRequests
	6.5.2.20 InputMegabytes
	6.5.2.21 OutputMegabytes

	6.6 FCP_Port Attributes (see FCP-2)
	6.6.1 FCP_Port Attribute Data Declarations
	6.6.1.1 HBA_FCPBINDINGTYPE
	6.6.1.2 HBA_BIND_CAPABILITY
	6.6.1.3 HBA_BIND_TYPE
	6.6.1.4 HBA_LUID
	6.6.1.5 HBA_ScsiId
	6.6.1.6 HBA_FcpId
	6.6.1.7 Composite types

	6.6.2 Target Mapping and Persistent Binding Attribute Specifications
	6.6.2.1 HBA_FCPBINDINGTYPE
	6.6.2.2 HBA_BIND_CAPABILITY
	6.6.2.3 HBA_BIND_TYPE
	6.6.2.4 HBA_LUID
	6.6.2.5 HBA_SCSIID
	6.6.2.6 HBA_FCPID
	6.6.2.7 NodeWWN
	6.6.2.8 PortWWN
	6.6.2.9 FcId
	6.6.2.10 FcpLun
	6.6.2.11 OSDeviceName
	6.6.2.12 ScsiBusNumber
	6.6.2.13 ScsiTargetNumber
	6.6.2.14 ScsiOSLun

	6.6.3 Persistent Binding Capabilities
	6.6.3.1 Persistent Binding Capability: HBA_CAN_BIND_TO_D_ID
	6.6.3.2 Persistent Binding Capability: HBA_CAN_BIND_TO_WWPN
	6.6.3.3 Persistent Binding Capability: HBA_CAN_BIND_TO_WWNN
	6.6.3.4 Persistent Binding Capability: HBA_CAN_BIND_TO_LUID
	6.6.3.5 Persistent Binding Capability: HBA_CAN_BIND_ANY_LUNS
	6.6.3.6 Persistent Binding Capability: HBA_CAN_BIND_TARGETS
	6.6.3.7 Persistent Binding Capability: HBA_CAN_ BIND_AUTOMAP
	6.6.3.8 Persistent Binding Capability: HBA_CAN_BIND_CONFIGURED

	6.6.4 Persistent Binding Setting Types
	6.6.4.1 Persistent Binding Type: HBA_BIND_TO_D_ID
	6.6.4.2 Persistent Binding Type: HBA_BIND_TO_WWPN
	6.6.4.3 Persistent Binding Type: HBA_BIND_TO_WWNN
	6.6.4.4 Persistent Binding Type: HBA_BIND_TO_LUID
	6.6.4.5 Persistent Binding Type: HBA_BIND_TARGETS

	6.7 SB Attributes
	6.8 FC-3 Management Attributes
	6.8.1 FC-3 Management Data Declarations
	6.8.2 FC-3 Management Attribute Overview
	6.8.3 FC-3 Management Attribute Specifications
	6.8.3.1 Compliance
	6.8.3.2 WWN
	6.8.3.3 unittype
	6.8.3.4 PortId
	6.8.3.5 NumberOfAttachedNodes
	6.8.3.6 IPVersion
	6.8.3.7 UDPPort
	6.8.3.8 IPAddress
	6.8.3.9 TopologyDiscoveryFlags

	6.9 Polled Event Notification Attributes
	6.9.1 Polled Event Data Declarations
	6.9.1.1 Polled Event Codes
	6.9.1.2 Polled Event Data Structure Declarations

	6.9.2 Polled Event Attribute Specifications
	6.9.2.1 EventCode

	6.10 Asynchronous Event Notification Attributes
	6.10.1 Asynchronous Event Data Declarations
	6.10.1.1 Callback Handle
	6.10.1.2 HBA Add Category Event Type
	6.10.1.3 HBA Category Event Types
	6.10.1.4 Port Category Event Types
	6.10.1.5 Port Statistics Category Event Types
	6.10.1.6 Target Category Event Types
	6.10.1.7 Link Category Event Types

	6.10.2 Asynchronous Event Attribute Specifications
	6.10.2.1 EventType

	6.11 Library Attributes
	6.11.1 Library Attribute Data Declarations
	6.11.2 Library Attribute Specifications
	6.11.2.1 Compliance
	6.11.2.2 Final
	6.11.2.3 LibPath
	6.11.2.4 VName
	6.11.2.5 VVersion
	6.11.2.6 build_date

	7 Function Calls
	7.1 Overview
	7.2 Library Control Functions
	7.2.1 HBA_GetVersion
	7.2.1.1 Format
	7.2.1.2 Description
	7.2.1.3 Arguments
	7.2.1.4 Return Values

	7.2.2 HBA_LoadLibrary
	7.2.2.1 Format
	7.2.2.2 Description
	7.2.2.3 Arguments
	7.2.2.4 Return Values

	7.2.3 HBA_FreeLibrary
	7.2.3.1 Format
	7.2.3.2 Description
	7.2.3.3 Arguments
	7.2.3.4 Return Values

	7.2.4 HBA_RegisterLibrary
	7.2.4.1 Format
	7.2.4.2 Description
	7.2.4.3 Arguments
	7.2.4.4 Return Values

	7.2.5 HBA_RegisterLibraryV2
	7.2.5.1 Format
	7.2.5.2 Description
	7.2.5.3 Arguments
	7.2.5.4 Return Values

	7.2.6 HBA_GetWrapperLibraryAttributes
	7.2.6.1 Format
	7.2.6.2 Description
	7.2.6.3 Arguments
	7.2.6.4 Return Values

	7.2.7 HBA_GetVendorLibraryAttributes
	7.2.7.1 Format
	7.2.7.2 Description
	7.2.7.3 Arguments
	7.2.7.4 Return Values

	7.2.8 HBA_GetNumberOfAdapters
	7.2.8.1 Format
	7.2.8.2 Description
	7.2.8.3 Arguments
	7.2.8.4 Return Values

	7.2.9 HBA_RefreshInformation
	7.2.9.1 Format
	7.2.9.2 Description
	7.2.9.3 Arguments
	7.2.9.4 Return Values

	7.2.10 HBA_RefreshAdapterConfiguration
	7.2.10.1 Format
	7.2.10.2 Description
	7.2.10.3 Arguments
	7.2.10.4 Return Values

	7.2.11 HBA_ResetStatistics
	7.2.11.1 Format
	7.2.11.2 Description

	7.3 HBA and Port Information Functions
	7.3.1 HBA_GetAdapterName
	7.3.1.1 Format
	7.3.1.2 Description
	7.3.1.3 Arguments
	7.3.1.4 Return Values

	7.3.2 HBA_OpenAdapter
	7.3.2.1 Format
	7.3.2.2 Description
	7.3.2.3 Arguments
	7.3.2.4 Return Values

	7.3.3 HBA_OpenAdapterByWWN
	7.3.3.1 Format
	7.3.3.2 Description
	7.3.3.3 Arguments
	7.3.3.4 Return Values

	7.3.4 HBA_CloseAdapter
	7.3.4.1 Format
	7.3.4.2 Description
	7.3.4.3 Arguments
	7.3.4.4 Return Values

	7.3.5 HBA_GetAdapterAttributes
	7.3.5.1 Format
	7.3.5.2 Description
	7.3.5.3 Arguments
	7.3.5.4 Return Values

	7.3.6 HBA_GetAdapterPortAttributes
	7.3.6.1 Format
	7.3.6.2 Description
	7.3.6.3 Arguments
	7.3.6.4 Return Values

	7.3.7 HBA_GetDiscoveredPortAttributes
	7.3.7.1 Format
	7.3.7.2 Description
	7.3.7.3 Arguments
	7.3.7.4 Return Values

	7.3.8 HBA_GetPortAttributesByWWN
	7.3.8.1 Format
	7.3.8.2 Description
	7.3.8.3 Arguments
	7.3.8.4 Return Values

	7.3.9 HBA_GetPortStatistics
	7.3.9.1 Format
	7.3.9.2 Description
	7.3.9.3 Arguments
	7.3.9.4 Return Values

	7.3.10 HBA_GetFC4Statistics
	7.3.10.1 Format
	7.3.10.2 Description
	7.3.10.3 Arguments
	7.3.10.4 Return Values

	7.4 FCP Information Functions
	7.4.1 HBA_GetBindingCapability
	7.4.1.1 Format
	7.4.1.2 Description
	7.4.1.3 Arguments
	7.4.1.4 Return Values

	7.4.2 HBA_GetBindingSupport
	7.4.2.1 Format
	7.4.2.2 Description
	7.4.2.3 Arguments
	7.4.2.4 Return Values

	7.4.3 HBA_SetBindingSupport
	7.4.3.1 Format
	7.4.3.2 Description
	7.4.3.3 Arguments
	7.4.3.4 Return Values

	7.4.4 HBA_GetFcpTargetMapping
	7.4.4.1 Format
	7.4.4.2 Description
	7.4.4.3 Arguments
	7.4.4.4 Return Values

	7.4.5 HBA_GetFcpTargetMappingV2
	7.4.5.1 Format
	7.4.5.2 Description
	7.4.5.3 Arguments
	7.4.5.4 Return Values

	7.4.6 HBA_GetFcpPersistentBinding
	7.4.6.1 Format
	7.4.6.2 Description
	7.4.6.3 Arguments
	7.4.6.4 Return Values

	7.4.7 HBA_GetPersistentBindingV2
	7.4.7.1 Format
	7.4.7.2 Description
	7.4.7.3 Arguments
	7.4.7.4 Return Values

	7.4.8 HBA_SetPersistentBindingV2
	7.4.8.1 Format
	7.4.8.2 Description
	7.4.8.3 Arguments
	7.4.8.4 Return Values

	7.4.9 HBA_RemovePersistentBinding
	7.4.9.1 Format
	7.4.9.2 Description
	7.4.9.3 Arguments
	7.4.9.4 Return Values

	7.4.10 HBA_RemoveAllPersistentBindings
	7.4.10.1 Format
	7.4.10.2 Description
	7.4.10.3 Arguments
	7.4.10.4 Return Values

	7.4.11 HBA_GetFCPStatistics
	7.4.11.1 Format
	7.4.11.2 Description
	7.4.11.3 Arguments
	7.4.11.4 Return Values

	7.5 SCSI Information Functions
	7.5.1 HBA_SendScsiInquiry
	7.5.1.1 Format
	7.5.1.2 Description
	7.5.1.3 Arguments
	7.5.1.4 Return Values

	7.5.2 HBA_ScsiInquiryV2
	7.5.2.1 Format
	7.5.2.2 Description
	7.5.2.3 Arguments
	7.5.2.4 Return Values

	7.5.3 HBA_SendReportLUNs
	7.5.3.1 Format
	7.5.3.2 Description
	7.5.3.3 Arguments
	7.5.3.4 Return Values

	7.5.4 HBA_ScsiReportLunsV2
	7.5.4.1 Format
	7.5.4.2 Description
	7.5.4.3 Arguments
	7.5.4.4 Return Values

	7.5.5 HBA_SendReadCapacity
	7.5.5.1 Format
	7.5.5.2 Description
	7.5.5.3 Arguments
	7.5.5.4 Return Values

	7.5.6 HBA_ScsiReadCapacityV2
	7.5.6.1 Format
	7.5.6.2 Description
	7.5.6.3 Arguments
	7.5.6.4 Return Values

	7.6 SB Information Functions
	7.6.1 HBA_GetSBTargetMapping
	7.6.1.1 Format
	7.6.1.2 Description
	7.6.1.3 Arguments
	7.6.1.4 Return Values

	7.6.2 HBA_GetSBStatistics
	7.6.2.1 Format
	7.6.2.2 Description
	7.6.2.3 Arguments
	7.6.2.4 Return Values

	7.7 SB Disk Device Information Functions
	7.7.1 HBA_SBDskGetCapacity
	7.7.1.1 Format
	7.7.1.2 Description
	7.7.1.3 Arguments
	7.7.1.4 Return Values

	7.8 Fabric Management Functions
	7.8.1 HBA_SendCTPassThru
	7.8.1.1 Format
	7.8.1.2 Description
	7.8.1.3 Arguments
	7.8.1.4 Return Values

	7.8.2 HBA_SendCTPassThruV2
	7.8.2.1 Format
	7.8.2.2 Description
	7.8.2.3 Arguments
	7.8.2.4 Return Values

	7.8.3 HBA_SetRNIDMgmtInfo
	7.8.3.1 Format
	7.8.3.2 Description
	7.8.3.3 Arguments
	7.8.3.4 Return Values

	7.8.4 HBA_GetRNIDMgmtInfo
	7.8.4.1 Format
	7.8.4.2 Description
	7.8.4.3 Arguments
	7.8.4.4 Return Values

	7.8.5 HBA_SendRNID
	7.8.5.1 Format
	7.8.5.2 Description
	7.8.5.3 Arguments
	7.8.5.4 Return Values

	7.8.6 HBA_SendRNIDV2
	7.8.6.1 Format
	7.8.6.2 Description
	7.8.6.3 Arguments
	7.8.6.4 Return Values

	7.8.7 HBA_SendRPL
	7.8.7.1 Format
	7.8.7.2 Description
	7.8.7.3 Arguments
	7.8.7.4 Return Values

	7.8.8 HBA_SendRPS
	7.8.8.1 Format
	7.8.8.2 Description
	7.8.8.3 Arguments
	7.8.8.4 Return Values

	7.8.9 HBA_SendSRL
	7.8.9.1 Format
	7.8.9.2 Description
	7.8.9.3 Arguments
	7.8.9.4 Return Values

	7.8.10 HBA_SendLIRR
	7.8.10.1 Format
	7.8.10.2 Description
	7.8.10.3 Arguments
	7.8.10.4 Return Values

	7.8.11 HBA_SendRLS
	7.8.11.1 Format
	7.8.11.2 Description
	7.8.11.3 Arguments
	7.8.11.4 Return Values

	7.9 Event Handling Functions
	7.9.1 Polled Event Reporting Behavior Model
	7.9.2 HBA_GetEventBuffer
	7.9.2.1 Format
	7.9.2.2 Description
	7.9.2.3 Arguments
	7.9.2.4 Return Values

	7.9.3 Overview of Asynchronous Event Reporting
	7.9.3.1 Asynchronous Event Reporting Behavior Model
	7.9.3.2 Registration for Events with diverse HBA specific software

	7.9.4 HBA_RegisterForAdapterAddEvents
	7.9.4.1 Format
	7.9.4.2 Description
	7.9.4.3 Arguments
	7.9.4.4 Return Values
	7.9.4.5 Callback Arguments

	7.9.5 HBA_RegisterForAdapterEvents
	7.9.5.1 Format
	7.9.5.2 Description
	7.9.5.3 Arguments
	7.9.5.4 Return Values
	7.9.5.5 Callback Arguments

	7.9.6 HBA_RegisterForAdapterPortEvents
	7.9.6.1 Format
	7.9.6.2 Description
	7.9.6.3 Arguments
	7.9.6.4 Return Values
	7.9.6.5 Callback Arguments

	7.9.7 HBA_RegisterForAdapterPortStatEvents
	7.9.7.1 Format
	7.9.7.2 Description
	7.9.7.3 Arguments
	7.9.7.4 Return Values
	7.9.7.5 Callback Arguments

	7.9.8 HBA_RegisterForTargetEvents
	7.9.8.1 Format
	7.9.8.2 Description
	7.9.8.3 Arguments
	7.9.8.4 Return Values
	7.9.8.5 Callback Arguments

	7.9.9 HBA_RegisterForLinkEvents
	7.9.9.1 Format
	7.9.9.2 Description
	7.9.9.3 Arguments
	7.9.9.4 Return Values
	7.9.9.5 Callback Arguments

	7.9.10 HBA_RemoveCallback
	7.9.10.1 Format
	7.9.10.2 Description
	7.9.10.3 Arguments
	7.9.10.4 Return Values

	8 Configuration
	8.1 Overview
	8.2 Win32
	8.3 Unix

	Annex A
	FC-HBA Compliance Requirements
	A.1 Overview
	A.2 Functions
	A.3 HBA Attributes
	A.4 FC_Port Attributes
	A.5 End Port Statistics
	A.6 SB Statistics
	A.7 FC-3 Management Attributes
	A.8 Library Attributes

	Annex B
	Mapping FC-HBA to InfiniBandtm
	B.1 Structure and Concepts
	B.1.1 Overview
	B.1.2 FC management Service Operations
	B.1.2.1 Host to HBA Communication
	B.1.2.2 Service Name for the FC Management Service
	B.1.2.3 Registration of the FC Management Service Name by HBAs
	B.1.2.4 Discovery of the FC Management Service
	B.1.2.5 HBA Components
	B.1.2.6 FC Management Service Connections
	B.1.2.6.1 Establishing a Connection
	B.1.2.6.2 Releasing a Connection

	B.1.2.7 Information Units
	B.1.2.8 Asynchronous Event Notification
	B.1.2.9 HCA Receive Buffer Management
	B.1.2.10 HBA Receive Buffer Management
	B.1.2.11 Data Buffers
	B.1.2.11.1 Memory Descriptors
	B.1.2.11.2 Data Buffer Descriptors

	B.1.3 FC Management Support for SCSI Operations
	B.1.3.1 Host to HBA Communications
	B.1.3.2 Discovery of SRP Target Ports
	B.1.3.3 SRP Target Port IDs
	B.1.3.4 SRP Connections
	B.1.3.4.1 Establishing an SRP Connection
	B.1.3.4.2 Releasing an SRP Connection

	B.2 Information Units
	B.2.1 Summary
	B.2.2 Establish_Connection
	B.2.2.1 Establish_Connection request
	B.2.2.2 Establish_Connection response
	B.2.2.3 Establish_Connection_REJ response

	B.2.3 Get_Adapter_Attributes
	B.2.3.1 Get_Adatper_Attributes request
	B.2.3.2 Get_Adapter_Attributes response

	B.2.4 Get_Port_Data
	B.2.4.1 Get_Port_Data request
	B.2.4.2 Get_Port_Data response

	B.2.5 Set_Port_Data
	B.2.5.1 Set_Port_Data request
	B.2.5.2 Set_Port_Data response
	B.2.5.3 Set_Port_Data_REJ Response

	B.2.6 Bind_SRP_Initiator
	B.2.6.1 Bind_SRP_Initiator request
	B.2.6.2 Bind_SRP_Initiator response

	B.2.7 Get_SRP_Initiator_Bindings
	B.2.7.1 Get_SRP_Initiator_Bindings request
	B.2.7.2 Get_SRP_Initiator_Bindings response

	B.2.8 Send_PassThru
	B.2.8.1 Send_PassThru request
	B.2.7.2 Send_PassThru response

	B.2.8 Get_Port_Statistics
	B.2.8.1 Get_Port_Statistics request
	B.2.8.2 Get_Port_Statistics response

	B.2.9 Asynchronous Event (AEN) Reporting
	B.2.9.1 AEN request
	B.2.9.2 AEN response

	Annex C
	Target Mapping and Persistent Binding
	C.1 Introduction to Target Mapping and Persistent Binding
	C.1.1 The problem set
	C.1.2 OS Identification of Storage Resources (SCSIID)
	C.1.3 FCP-2 Identification of Storage Resources (FCPID)

	C.2 Target Mappings
	C.3 Persistent Bindings
	C.4 Persistent Binding Capabilities
	C.4.1 Overview
	C.4.2 Persistent Binding Capability: HBA_CAN_BIND_TO_D_ID
	C.4.3 Persistent Binding Capability: HBA_CAN_BIND_TO_WWPN
	C.4.4 Persistent Binding Capability: HBA_CAN_BIND_TO_WWNN
	C.4.5 Persistent Binding Capability: HBA_CAN_BIND_TO_LUID
	C.4.6 Persistent Binding Capability: HBA_CAN_BIND_ANY_LUNS
	C.4.7 Persistent Binding Capability: HBA_CAN_BIND_TARGETS
	C.4.8 Persistent Binding Capability: HBA_CAN_ BIND_AUTOMAP
	C.4.9 Persistent Binding Capability: HBA_CAN_BIND_CONFIGURED

	Annex D
	Function Coding Examples
	D.1 Function HBA_GetVersion
	D.2 Function HBA_LoadLibrary
	D.3 Function HBA_FreeLibrary
	D.4 Function HBA_RegisterLibrary
	D.5 Function HBA_GetNumberOfAdapters
	D.6 Function HBA_RefreshInformation
	D.7 Function HBA_GetAdapterName
	D.8 Function HBA_OpenAdapter
	D.9 Function HBA_CloseAdapter
	D.10 Function HBA_GetAdapterAttributes
	D.11 Function HBA_GetAdapterPortAttributes
	D.12 Function HBA_GetDiscoveredPortAttributes
	D.13 Function HBA_GetPortStatistics

	Annex E
	Bibliography

