

Compatibility

Description .. 20... 0.0.0 0c ee 1
Application Guidelines 0... 2200000048. 1
Hardware Interrupts 22.022. eee eee eee 1

Software Interrupts0.. 0.0.0.0 eee ee ee 3
High-Level Language Considerations 3
Assembler Language Programming Considerations 3

Opcodes 0.0... 4

80286 Anomalies0 0.0.00 ce 8

| 80386 Anomalies 2.0.20. 0 0 eee eee 8
| 80486 Anomalies 000.0000 0000.4 13

| 80387 Anomalies0... 000222 ee eee 14
ROM BIOS and Operating System Function Calls 14

Software Compatibility2..--.-.02000- 16
Multitasking Provisions 2.2... e eee eee 17

Interfaces 2.0.0.0... 2 ee 18
Classes 2.0. ee 19
Time-OutS 2.0. 20

Machine-Sensitive Programs--202-0-080- 20
Math Coprocessor Compatibility00... 20

| 80486 to 80387 Compatibility2.. 21
80387 to 80287 Compatibility-.. 23
Exceptions0...0 0.00 eee ee 24

80287 to 8087 Compatibility 25
Diskette Drives and Controller40.. 27
Fixed Disk Drives and Controller 28

© Copyright IBM Corp. 1990 i

li Compatibility— October 1990

Figures

1. String Instruction/Register Size Mismatch 10
2. Write and Format Head Settle Time 15
3. Functional Code Assignments 19
4. Math Coprocessor Software Compatibility 21
5. Diskette Drive Read, Write, and Format Capabilities 27

© Copyright IBM Corp. 1990 il

lv Compatibility— October 1990

Description

The differences in system microprocessors, math coprocessors,
general system architecture, and diskette drive capabilities must be
taken into consideration when designing application programs
exclusively for a specific model or programs compatible across the
IBM Personal Computer and Personal System/2 product lines. This
section discusses these major differences and provides some
suggestions to aid you in developing your program.

Application Guidelines

Use the following information to develop application programs for the
IBM Personal Computer and Personai System/2 products. Whenever
possible, BIOS should be used as an interface to hardware in order to
provide maximum compatibility and portability of applications across
systems.

Hardware interrupts

Hardware interrupts are level-sensitive for systems using the Micro
Channel architecture while systems using the Personal Computer
type I/O channel design have edge-triggered hardware interrupts.

The interrupt controller clears its in-service register bit when the
interrupt routine sends an End-of-Interrupt (EOI) command to the
controller. The EOI command is sent whether the incoming interrupt
request to the controller is active or inactive.

In level-sensitive systems, the interrupt-in-progress latch is readable
at an I/O address bit position. This latch is read during the interrupt
service routine and may be reset by the read operation or may
require an explicit reset.

Note: Designers may want to limit the number of devices sharing an
interrupt level for performance and latency considerations.

Compatibility— October 1990 1

The interrupt controller on level-sensitive systems requires the

interrupt request to be inactive at the time the EOI command is sent:
otherwise, a “new” interrupt request will be detected and another
microprocessor interrupt caused.

To avoid this problem, a level-sensitive interrupt handler must clear
the interrupt condition (usually by a Read or Write to an I/O port on
the device causing the interrupt). After clearing the interrupt
condition, a JMP $+ 2 should be executed prior to sending the EOI!
command to the interrupt controller. This ensures that the interrupt
request is removed prior to re-enabling the interrupt controller.

Another JMP $+2 should be executed after sending the EOI
command, but prior to enabling the interrupt through the Set Interrupt
Enable Flag (STI) command.

In the level-sensitive systems, hardware prevents the interrupt
controllers from being set to the edge-triggered mode.

Hardware interrupt IRQQ is defined as the replacement interrupt level

for the cascade level IRQ2. Program interrupt sharing should be
implemented on IRQ2, interrupt hex 0A. The following processing
occurs to maintain compatibility with the IRQ2 used by IBM Personal
Computer products:

1. A device drives the interrupt request active on IRQ2 of the
channel.

2. This interrupt request is mapped in hardware to IRQ9Q input on the
second interrupt controller.

3. When the interrupt occurs, the system microprocessor passes
contro] to the IRQ9 (interrupt hex 71) interrupt handler.

4. This interrupt handler performs an EOI command to the second
interrupt controller and passes control to IRQ2 (interrupt hex OA)
interrupt handler.

5. This IRQ2 interrupt handler, when handling the interrupt, causes
the device to reset the interrupt request prior to performing an
EO! command to the master interrupt controller that finishes
servicing the IRQ2 request.

2 Compatibility— October 1990

Software Interrupts

With the advent of software interrupt sharing, software interrupt

routines must daisy chain interrupts. Each routine must check the
function value and if it is not in the range of function calls for that
routine, it must transfer control to the next routine in the chain.
Because software interrupts are initially pointed to 0:0 before daisy
chaining, it is necessary to check for this case. If the next routine is
pointed to 0:0 and the function call is out of range, the appropriate
action is to set the carry flag and do a RET 2 to indicate an error
condition.

High-Level Language Considerations

The IBM-supported languages of IBM C, BASIC, FORTRAN, COBOL,

and Pascal are the best choices for writing compatible programs.

If a program uses specific features of the hardware, that program
may not be compatible with all IBM Persona! Computer and Personal
System/2 products. Specifically, the use of assembler language
subroutines or hardware-specific commands (for example In, Out,
Peek, and Poke) must follow the assembler language rules. See
“Assembler Language Programming Considerations.”

Any program that requires precise timing information should obtain it

through an operating system or language interface; for example,
TIME$ in BASIC. If greater precision is required, the assembler

techniques in “Assembler Language Programming Considerations”

are available. The use of programming loops may prevent a program
from being compatible with other IBM Personal Computer products,
IBM Personal System/2 products, and software.

Assembler Language Programming
Considerations

This section describes fundamental! differences between the systems

in the Personal Computer and Personal System/2 product lines that
may affect program development.

Compatibility— October 1990 3

Opcodes

The following opcodes work differently on systems using either the
80286 or 80386 microprocessor than they do on systems using the
8088 or 8086 microprocessor.

e PUSH SP

The 80286 and 80386 microprocessors push the current stack
pointer; the 8088 and 8086 microprocessors push the new stack
pointer, that is, the value of the stack pointer after the PUSH SP
instruction is completed.

¢ Single step interrupt (when TF = 1) on the interrupt instruction
(Opcode hex CC, CD):

The 80286 and 80386 microprocessors do not perform a
single-step interrupt on the INT instruction; the 8088 and 8086
microprocessors do perform a single-step interrupt on the INT
instruction.

¢ The divide error exception (interrupt 0):

The 80286 and 80386 microprocessors push the CS:IP of the
instruction that caused the exception; the 8088 and 8086
microprocessors push the CS:IP of the instruction following the
instruction that caused the exception.

¢ Shift counts for the 80286 and 80386 microprocessors:

Shift counts are masked to 5 bits. Shift counts greater than 31 are
treated mod 32. For example, a shift count of 36 shifts the
operand four places.

¢ LOCK prefix:

When the LOCK prefix is used with an instruction, the system
microprocessor executes the entire instruction before allowing
interrupts. If a Repeat String Move instruction is locked,
interrupts may be disabled for a long duration.

The 8088, 8086, and 80286 microprocessors allow the LOCK prefix
to be used with most instructions. However, the 80386
microprocessor restricts the use of LOCK to the following
instructions:

— Bit Test and Set Memory, Register/Immediate

— Bit Test and Reset Memory, Register/Immediate
— Bit Test and Complement Memory, Register/Immediate
— XCHG Register, Memory
- XCHG Memory, Register
— ADD, OR, ADC, SBB, Memory, Register/immediate

4 Compatibility— October 1990

— AND, SUB, XOR Memory, Register/Immediate
— NOT, NEG, INC, DEC Memory.

An undefined opcode trap (INT 6) is generated if the LOCK prefix
is used in the 80386 environment with an instruction not listed.

When the 80286 is operating in the virtual memory mode, the
LOCK prefix is IOPL-sensitive. Since the 80386 restricts the use
of the LOCK prefix to a specific set of instructions, the LOCK
prefix is not IOPL-sensitive in the 80386 environment.

¢ Multiple lockout instructions:

There are several microprocessor instructions that, when

executed, lock out external bus signals. DMA requests are not
honored during the execution of these instructions. Consecutive

instructions of this type prevent DMA activity from the start of the
first instruction to the end of the last instruction. To allow for
necessary DMA cycles, as required by the diskette controller in a
multitasking system, multiple lock-out instructions must be
separated by a JMP SHORT $+2.

e Back-to-back I/O commands:

Back-to-back !/O commands to the same I/O ports do not permit
enough recovery time for some I/O adapters. To ensure enough
time, a JMP SHORT $+2 must be inserted between IN/OUT
instructions to the same I/O adapters.

Note: MOV AL,AH type instruction does not allow enough
recovery time. An example of the correct procedure
follows:

OUT I0_ADD,AL
JMP SHORT $+#2
MOV AL,AH
OUT IO ADD,AL

e 1/O commands followed by an STI instruction:

[/(O commands followed immediately by an STI instruction do not
permit enough recovery time for some system board and channel
operations. To ensure enough time, a JMP SHORT $+2 must be
inserted between the I/O command and the STI instruction.

Note: MOV AL,AH type instruction does not allow enough

recovery time. An example of the correct procedure
follows:

Compatibility— October 1990 5

QUT I0_ADD,AL

JMP SHORT $+2
MOV AL,AH
STI

NT bit and IOPL bits:

When the 80286 is operating in the Real Address mode, the NT
and IOPL bits in the flag register cannot be changed: the bits are
zero.

The 80386 allows the NT bit and the IOPL bits to be modified by
POP stack into flags, and other instructions, while operating in
the Real Address mode. This has no effect on the Real Address
mode operation. However, upon entering Protected Mode
operation, the NT bit should be cleared to prevent erroneous
execution of the IRET instruction. If NT is set, the IRET attempts
to perform a task switch to the previous task.

Overlap of OUT and following instructions:

The 80386 has a delayed write to memory and delayed
output-to-I/O capability. It is possible for the actual output cycle
to I/O devices to occur after the completion of instructions
following the Out instruction. Under certain conditions, this may
cause some programs to behave in an undesirable manner. For
example, an interrupt handler routine may output an EO!
command to the interrupt controller to drop the interrupt request.
If the interrupt handler has an STI instruction following the output
instruction, the 80386 may re-enable interrupts before the
interrupt controller drops the interrupt request. This could cause
the interrupt routine to be reentered.

To avoid this problem, either of the following procedures may be
used:

— Place a JMP SHORT $+2 instruction between the OUT
instruction and the STI instruction, or

— Read back the status from the interrupt controller before
executing the STI instruction.

— Math coprocessor instructions:

In 80386-based systems, the mode of the microprocessor and
math coprocessor are tightly coupled. This is not the case for
80286-based systems. The 80286-based systems require the
math coprocessor FSETPM instruction to be executed to enable

Compatibility — October 1990

the 80287 to operate in the Protected mode. The 80287 remains
in the Protected mode until it is reset.

The mode of the 80287 determines the format in which the math
coprocessor state information is saved by the FSTENV and
FSAVE instructions. In the Protected mode, the instruction and
data operand pointers are saved as selector/offset pairs; in the
Real Address mode, the physical address and opcode are saved.

if the FSETPM instruction is encountered in the 80386

environment, it is ignored. The formatting is performed by the
80386, which internally maintains the instruction and data
operand pointers. The Real Address mode format image is saved
when the 80386 is operating in the Real Address mode or Virtual

8086 mode. The Protected mode format is used otherwise.

See also “Math Coprocessor Compatibility” on page 20 for more
information.

Use of 32-bit registers and the 32-bit addressing mode:

It is possible to use the 32-bit registers and 32-bit addressing
mode in all operating modes of the 80386 through the use of the
operand-size prefix or address-size prefix.

In a multitasking environment, extreme care must be taken to

avoid conflicts with other tasks that use extended registers. If the
operating system saves the extended 32-bit registers and new
segment registers in the task context save area, conflicts will be
avoided; if the operating system does not provide this function,
another method must be implemented.

One possible method is to disable the interrupts while using the
extended registers. The extended registers should be saved
before use and restored immediately after use while the
interrupts are still disabled. The time that interrupts are disabled
should be kept as short as possible.

Operand Alignment:

When multiple bus cycles are required to transfer a multibyte
logical operand (for example, a word operand beginning at an
address not evenly divisible by 2), the 80386 transfers the highest

order bytes first.

This characteristic may affect adapters with memory-mapped I/O
that require or assume that sequential memory accesses are
made to the memory I/O ports.

This problem may be avoided by using a REP MOVB(yte) instead

of a REP MOVSW(ord).

Compatibility— October 1990 7

80286 Anomalies

In the Protected mode, when any of the nul! selector values (hex 0000,
0001, 0002, and 0003) are loaded into the DS or ES registers with a
MOV or POP instruction or a task switch, the 80286 always loads the
null selector hex 0000 into the corresponding register.

lf a coprocessor (80287) operand is read from an “executable and
readable” and conforming (ERC) code segment, and the coprocessor
operand is sufficiently near the segment limit that the second or
subsequent byte lies outside the limit, an interrupt 9 will not be
generated.

The following describes the operation of all 80286 parts:

¢ Instructions longer than 10 bytes (instructions using multiple
redundant prefixes) generate an interrupt 13 (General Purpose
Exception) in both the Reali Address mode and Protected mode.

¢ If the second operand of an ARPL instruction is a null selector,
the instruction generates an interrupt 13.

| 80386 Anomalies

| The following describes anomalies that apply to the B-1 stepping
| level of the 80386 microprocessor. Use the Interrupt 15 call with
| (AH) = C9 to determine the stepping level.

80386 Real Address Mode Operation

¢ FSAVE/FSTENV opcode field incorrect:

The opcode of some numeric instructions is saved incorrectly
in the FSAVE/FSTENV format image when the 80386 is
operating in the Real Address mode or Virtual 8086 mode.

The power-on self-test (POST) code in the system ROM
enables hardware interrupt 13 and sets up its vector (INT hex
75) to point to a math coprocessor exception routine in ROM.
Any time this routine is executed as a result of an exception,
it repairs the opcode field by performing the following
sequence:

Clears the ‘busy’ signal latch

Executes FNSTENV (save image on stack)
Extracts instruction pointer from FSTENV memory image
Skips over prefix bytes until opcode is found
Inserts correct opcode information in the memory image
Executes FLDENV to restore the corrected opcode field O

a

P
r
o
n

>

8 Compatibility — October 1990

7. Writes the EOI command to the interrupt controller

8. Transfers control to the address pointed to by the NMI
handler.

Any math coprocessor application containing an NMI handler
should require its NMI handler to read the status of the
coprocessor to determine if the NMI was caused by the
coprocessor. If the interrupt was not generated by the
coprocessor, contro! should be passed to the original NMI
handler.

Applications do not require any modification for this errata
because the BIOS exception routine repairs the opcode field
after exceptions. However, if a debugger is used to display
the math coprocessor state information, the opcode field will

contain an incorrect value for some math coprocessor
instructions.

Single stepping repeated MOVS:

lf a repeated MOVS instruction is executed when
single-stepping is turned on (TF = 1 in the EFLAGS register),

a single-step interrupt is taken after two move steps on the
80386 microprocessor. The 8088, 8086, and 80286
microprocessors take a single-step interrupt after every
iteration step. However, for the 80386, if a data breakpoint is
encountered on the first iteration of a repeated MOVS, the

data break is not taken until after the second iteration. Data
breakpoints encountered on the second and subsequent

iterations stop immediately after the step causing a break.

Wrong register size for string instructions:

One of the (E)CX, (E)SI, or (E)DI registers will not be updated
properly if certain string and loop instructions are followed by
instructions that either:

— Use a different address size (that is, either the string
instruction or the following instruction uses an address
size prefix), or

— Reference the stack (such as PUSH/POP/CALL/RET) and
the “B” bit in the SS descriptor is different from the
address size used by the instructions.

The size of the register (16 bits or 32 bits) is taken from the
instruction following the string instruction rather than from

the string instruction itself. This could result in one of the
following conditions:

Compatibility— October 1990 9

— Only the lower 16 bits of a 32-bit instruction updated (if
the 32-bit string instruction was followed by an instruction
using a memory operand addressed with a 16-bit

address).

— All 32 bits of a register updated rather than just the lower
16 bits.

The following is a list of the instructions and the affected
registers:

instruction Register

REP MOVS (E)SI
MOVS (E)DI
STOS (E)DI
INS (E)DI
REP INS (E)CX

Notes:

1. A 32-bit effective address size specified with a String instruction indicates that
the 32-bit ESI and EDI registers should be used for forming addresses, and the
32-bit ECX register should be used as the count register.

2. A 32-bit operand size on a repeated string move (MOVS) should be used only
if the compiler or programmer can guarantee that the strings do not overlap
destructively. An 8-bit or 16-bit MOVS has a predictable effect when the
strings overlap destructively.

Figure 1. String Instruction/Register Size Mismatch

The problem only occurs if instructions with different address
sizes are mixed, or if a code segment of one size is used with
a stack segment of the other size.

To avoid this problem, add a NOP instruction after each of the
instructions listed in Figure 1 and ensure that the NOP
instruction has the same address size as the string/loop
instruction. If necessary, an address size prefix hex 67 may
precede the NOP instruction.

¢ Wrong ECX update with REP INS:

ECX (or CX in a 16-bit address size) is not updated correctly
in the case of a REP INS' followed by an early start
instruction?. After executing any repeat-prefixed instruction,
the contents of ECX is supposed to be 0, but in the case of an

1 REP INS refers to any input string instruction with a repeat prefix.

2 An early start instruction refers to PUSH, POP, or memory reference instructions.

10 Compatibility— October 1990

REP INS instruction, ECX is not updated correctly and its

contents become hex FFFFFFFF for 32-bit address size
operations and hex OFFFF for 16-bit address size operations.
INS is still executed the correct number of times and EDI is
updated properly.

To avoid this problem, one of the following procedures may
be used:

— Insert an explicit MOV ECX,0 (or MOV CxX,0) instruction

after any REP iNS instruction. This ensures that the
contents of ECX or CX are 0.

— Do not rely on the count in ECX (or CX) after a REP INS

instruction but instead, move a new count into ECX (or
CX) before using it again.

¢ Test register access fails:

Accessing the Translate Lookaside Buffer (TLB) test
registers, TR6 and TR7, may not function properly.

Avoid using test registers TR6 and TR7 to test the TLB.

80286 Compatible Protected Mode Operation

¢ Math coprocessor Save/Restore environment operands:

If either of the last two bytes of an FSAVE/FRSTOR or

FSTENV/FLDENV is not accessible, the instruction cannot be

restarted. An FINIT instruction must be issued to the math

coprocessor before any other math coprocessor instruction
can be executed. This problem arises only in demand-paged
systems, or demand-segmented systems that increase the
segment size on demand.

¢ Wrap-around math coprocessor operands:

The 80386 architecture does not permit a math coprocessor
operand, or any other operand, to wrap around the end of a
segment. If such an instruction is issued in a protected
segmented system, and the operand starts and ends in valid

parts of a segment, but passes through an inaccessible

region of the segment, the math coprocessor may be put in

an indeterminate state. Under these conditions, an FCLEX or
FINIT must be sent before any other math coprocessor
instruction is issued.

Compatibility— October 1990 11

¢ Load Segment Limit instruction cannot precede PUSH/POP:

If the instruction executed immediately after a Load Segment
Limit (LSL) instruction does a stack operation, the value of
(E)SP may be incorrect after the operation.

Note: Stack operations resulting from noninstruction

sources, such as exceptions or interrupts following the
LSL, do not corrupt (E)SP.

To avoid this problem, make sure that the instruction
following an LSL instruction is never one that does a push to
or pop off the stack. This includes PUSH, POP, RET, CALL,
ENTER, and other such instructions. This can be achieved by
always following an LSL instruction with a NOP instruction.
Even if a forbidden instruction is used, (E)SP may be updated
correctly since the problem is data-dependent and only

occurs if the LSL operation succeeds (that is, sets the ZF
flag).

¢ LSL/LAR/VERR/VERW malfunction with a NULL selector:

An LSL, LAR, VERR, or VERW executed with a NULL selector
(that is, bits 15 through 2 of the selector set to 0) operates on

the descriptor at entry 0 of the Global Descriptor Table (GDT)
instead of unconditionally clearing the ZF flag.

This problem can be avoided by filling in the “NULL
descriptor” (that is, the descriptor at entry 0 of the GDT) with
all zeroes, which is an invalid descriptor type.

The access to the “NULL descriptor” is made but fails since
the descriptor has an invalid type. The failure is reported
with ZF cleared, which is the desired behavior.

80386 Extended Protected Mode Operation

The foliowing problems exist for operation in the Virtual 8086
mode.

¢ Task switch to Virtual 8086 mode does not set prefetch limit:

The 80386 prefetch unit limit is not updated when doing a task
switch to the Virtual 8086 mode. This can cause an incorrect
segment limit violation to be reported if the microprocessor
instruction fetches the segment limit that existed before the
task switch.

This problem can be avoided by using an IRET with the
appropriate items on the stack to start the Virtual 8086 task in
place of the task switch method.

12 Compatibility October 1990

¢ FAR jump near page boundary in Virtual 8086 mode:

When paging is enabled in the Virtual 8086 mode, and a

direct FAR jump (opcode EA) instruction is located at the end
of a page (or within 16 bytes of the end), and the next page is
not cached in the TLB internal to the 80386, the FAR jump
instruction leaves the prefetcher limit at the “end” of the old
code segment instead of setting it at the “end” of the new
code segment. This can allow execution off the end of the
new segment to trigger a segment limit violation, or cause a

spurious GP fault if the old and new segments overlap anda
prefetch crosses the old segment limit.

There is no way to detect code “walking off” the end of a

code segment. However, the spurious GP fault can be

avoided by simply performing an IRET back to the instruction
causing the fault. The IRET will set the prefetch limit

correctly, provided the exception handler has the ability to
determine a spurious GP fault from a “real” GP fault.

| 80486 Anomalies

| The foilowing describes anomalies that apply to the B stepping level

| of the 80486 microprocessor. Use the Interrupt 15 call with (AH) =C9
| to determine the stepping level.

| Programs with time-delay dependencies should be reexamined for
| proper operation in systems using the 80486 microprocessor.

| Programs using single JMP SHORT $+ 2 (a delay mechanism) to

| separate I/O operations will perform properly. However, programs
| using multiple JMPs to separate I/O operations might not perform
| properly. Each JMP will delay three clocks on the 80486
| microprocessor instead of five clocks as on the 80386
| microprocessor.

| In protect mode and virtual 8086 mode, the microprocessor allows

| doubleword accesses to some locations masked by the I/O

| Permission Bit Map. This problem occurs only when doubleword

| accesses are made to a port address using an I/O instruction. It does
| not occur when byte or word accesses are made to I/O ports.

| Programs using STI/CLI sequences (interrupt enable/disable) should

| ensure that multiple instructions execute between the STI and the CLI
| instructions. A single instruction (including NOP) is not sufficient to
| guarantee recognition of an interrupt.

Compatibility— October 1990 13

| 80387 Anomalies

| FCOMP will return an incorrect comparison when the memory
| operand is used. When the memory operand is a denormal number
| with the same exponent as the operand in the ST register but with a
| different significant part, the comparision indicates equality between
| the two operands. An alternative method is to put both operands onto
| the register stack before comparing them. When both operands are
| on the stack, the comparison result is correct.

ROM BIOS and Operating System Function Calis

For maximum portability, programs should perform all I/O operations
through operating system function calls. In environments where the
operating system does not provide the necessary programming
interfaces, programs should access the hardware through ROM BIOS
function calls, if permissible.

14

In some environments, program interrupts are used for access to
these functions. This practice removes the absolute addressing
from the program. Only the interrupt number is required.

The coprocessor detects six different exception conditions that
can occur during instruction execution. If the appropriate
exception mask within the coprocessor is not set, the coprocessor
sets the ‘error’ signal. This ‘error’ signal generates a hardware
interrupt 13 (IRQ 13) causing the ‘busy’ signal to be held in the
busy state. The ‘busy’ signal can be cleared by an 8-bit !/O Write
command to address hex O0FO with bits DO through D7 equal to 0.

The power-on self-test code in the system ROM enables
hardware IRQ 13 and sets up its vector to point to a routine in
ROM. The ROM routine clears the ‘busy’ signal latch and then
transfers control to the address pointed to by the NMI vector.
This maintains code compatibility across the IBM Personal
Computer and Personal System/2 product lines. The NMI handler
reads the status of the coprocessor to determine if the NMI was
caused by the coprocessor. If the interrupt was not caused by the
coprocessor, control is passed to the original NMI handler.

In systems using the 80286 or 80386 microprocessor, IRQ 9 is
redirected to INT hex 0A (hardware IRQ 2). This ensures that
hardware designed to use IRQ 2 will operate in these systems.
See “Hardware Interrupts” on page 1 for more information.

The system can mask hardware sensitivity. New devices can
change the ROM BIOS to accept the same programming interface
on the new device.

Compatibility - October 1990

In cases where BIOS provides parameter tables, such as for

video or diskette, a program can substitute new parameter values

by building a new copy of the table and changing the vector to
point to that table. However, the program should copy the current
table, using the current vector, and then modify those locations in
the table that need to be changed. In this way, the program does
not inadvertently change any values that should be left the same.

The Diskette Parameters table pointed to by INT hex 1E consists

of 11 parameters required for diskette operation. Itis
recommended that the values supplied in ROM be used. If it

becomes necessary to modify any of the parameters, build
another parameter block and modify the address at INT hex 1E

(0:78) to point to the new block.

The parameters were established to allow:

— Some models of the IBM Personal Computer to operate both
the 5.25-inch high-capacity diskette drive (96 tracks per inch)
and the 5.25-inch double-sided diskette drive (48 tracks per
inch).

— Some models of the Personal System/2 to operate both the
3.5-inch 1.44MB diskette drive and the 3.5-inch 720KB
diskette drive.

The gap length parameter is not always retrieved from the
parameter block. The gap length used during diskette read,
write, and verify operations is derived from within diskette BIOS.

The gap length for format operations is still obtained from the

parameter biock.

Note: Special considerations are required for format operations.

Refer to the diskette section of the /BM Personal System/2
and Personal Computer BIOS Interface Technical
Reference for the required details.

If a parameter block contains a head settle time parameter value
of 0 milliseconds, and a write or format operation is being

performed, the following minimum head settle times are

enforced.

Drive Type Head Settle Time

5.25-Inch Diskette Drives:

Double Sided (48 TFPI) 20 ms

High Capacity (96 TPl) 15 ms

3.5-Inch Diskette Drives:

720KB 20 ms

1.44MB 15 ms

Figure 2. Write and Format Head Settle Time

Compatibility— October 1990 15

Read and verify operations use the head settle time provided by
the parameter block.

If a parameter block contains a motor-start wait parameter of less
than 500 milliseconds (1 second for a Personal Computer
product) for a write or format operation, diskette BIOS enforces a
minimum time of 500 milliseconds (1 second for a Personal
Computer product). Verify and write operations use the
motor-start time provided by the parameter block.

¢ Programs may be designed to reside on both 5.25-inch or 3.5-inch
diskettes. Since not all programs are operating-system
dependent, the following procedure can be used to determine the
type of media inserted into a diskette drive:

1. Verify Track 0, Head 0, Sector 1 (1 sector): This allows
diskette BIOS to determine if the format of the media is a
recognizable type.

If the verify operation fails, issue the reset function (AH =(Q) to
diskette BIOS and try the operation again. If another failure
occurs, the media needs to be formatted or is defective.

2. Verify Track 0, Head 0, Sector 16 (1 sector).

lf the verify operation fails, either a 5.25-inch (48 TPI) or
3.5-inch 720KB diskette is present. The type can be
determined by verifying Track 78, Head 1, Sector 1 (1 sector).
A successful verification of Track 78 indicates a 3.5-inch
720KB diskette is installed; a verification failure indicates a
5.25-inch (48 TPl) diskette is installed.

Note: Refer to the DOS Technical Reference for the File
Allocation Table parameters for single-sided and
double-sided diskettes.

3. Read the diskette controller status in BIOS starting with
address 40:42. The fifth byte defines the head that the
operation ended with. If the operation ended with head 1, the
diskette is a 5.25-inch, high-capacity (96 TPl) diskette: if the
operation ended with head 0, the diskette is a 3.5-inch 1.44MB
diskette.

Software Compatibility

To maintain software compatibility, the interrupt polli ng mechanism
used by IBM personal computer products is retained. Software that
interfaces with the reset port for the IBM personal computer

16 Compatibility— October 1990

positive-edge interrupt sharing? does not create interference.

Level-sensitive interrupt hardware allows several devices to
simultaneously set a common interrupt line active (low) without

interference.

Application code that deals directly with the interrupt controller may
try to reset the controller to the positive edge-sensitive mode when
relinquishing control. The interrupt control circuitry of the system

board prevents setting the controller to the edge-sensitive mode by
blocking positive edge-sensitive commands to the interrupt

controllers.

Multitasking Provisions

The BIOS contains a feature to assist multitasking implementation.
“Hooks” are provided for a multitasking dispatcher. Whenever a

busy (wait) loop occurs in the BIOS, a hook is provided for the
program to break out of the loop. Also, whenever BIOS services an
interrupt, a corresponding wait loop is exited, and another hook is
provided. Thus a program can be written that employs the bulk of the
device driver code. The following is valid only in the Real Address
mode and must be taken by the code to allow this support.

¢ The program is responsible for the serialization of access to the
device driver. The BIOS code is not for a reentrant device.

¢ The program is responsible for matching corresponding Wait and

Post calls.

Warning: Because data width conversions can require more than 12
microseconds, 32-bit operations to the video subsystem can cause a

diskette overrun in the 1.44MB mode. !f an overrun occurs, BIOS

returns an error code and the operation should be retried.

3 Hex address 02FX or O6FX, where X is the interrupt level.

Compatibility— October 1990 17

Interfaces

There are four interfaces to be used by the muititasking dispatcher:

Startup: First, the startup code hooks interrupt hex 15. The
dispatcher is responsible for checking for function codes of AH= hex
90 or 91. The following “Wait” and “Post” sections describe these
codes. The dispatcher must pass all other functions to the previous
user of interrupt hex 15. This can be done by a JMP or aCALL. If the
function code is hex 90 or 91, the dispatcher should do the
appropriate processing and return by the IRET instruction.

Serialization: The multitasking system must ensure that the device
driver code is used serially. Multiple entries into the code can result
in serious errors.

Wait: Whenever the BIOS is about to enter a busy loop, it first issues
an interrupt hex 15 with a function code of hex 90 in AH, signaling a
wait condition. At this point, the dispatcher should save the task
Status and dispatch another task. This allows overlapped execution
of tasks when the hardware is busy. The following is an outline of the
code that has been added to the BIOS to perform this function.

MOV AX, 9OXXH wait code in AH and 3

; type code in AL
INT 15H 3; issue call
JC TIMEOUT ; optional: for time-out or

; if carry is set, time-out
; occurred

NORMAL TIMEOUT LOGIC ; normal time-out

Post: Whenever the BIOS has set an interrupt flag for a
corresponding busy loop, an interrupt hex 15 occurs with a function
code of hex 91 in AH. This signals a Post condition. At this point, the
dispatcher should set the task status to “ready to run” and return to
the interrupt routine. The following is an outline of the code added to
BIOS that performs this function.

MOV AX, 91XXH ; post code AH and
; type code AL

INT 15H ; issue call

18 Compatibility— October 1990

Classes

The following types of wait loops are supported:

e The class for hex 0 to 7F is for serially reusable devices. This
means that for the devices that use these codes, access to the
BIOS must be restricted to only one task at a time.

e The class for hex 80 to BF is for reentrant devices. There is no

restriction on the number of tasks that can access the devices.

e The class for hex CO to FF is for noninterrupt devices. There is

no corresponding interrupt for the wait loop. Therefore, it is the
responsibility of the dispatcher to determine what satisfies this

condition to exit from the loop.

Function Code Classes

Type Code (AL) Description

OOH- > 7FH Serially reusable devices; the operating system
must serialize access.

80H- > OBFH Reentrant devices; ES:BX is used to distinguish
different calls (multiple 1/O calls are allowed

simultaneously).

OCOH- > OFFH Wait-only calls. There is no complementary Post
for these waits; these are time-out only. Times
are function-number dependent.

Function Code Assignments: The following are specific assignments

for the Personal System/2 BIOS. Times are approximate.

Type Code (AL) Time Out Description

00H Yes (12 seconds) Fixed Disk

01H Yes (2 seconds) Diskette

02H No Keyboard

OFCH Yes Fixed Disk Reset

OFDH Yes (500-ms Read/Write) Diskette Motor Start

OFEH Yes (20 seconds) Printer

Figure 3. Functional Code Assignments

The asynchronous support has been omitted. The serial and parallel

controllers generate interrupts, but BIOS does not support them in the
interrupt mode. Therefore, the support should be included in the
multitasking system code if that device is to be supported.

Compatibility— October 1990 19

Time-Outs

To support time-outs properly, the multitasking dispatcher must be
aware of time. If a device enters a busy loop, it generally should
remain there for a specific amount of time before indicating an error.
The dispatcher should return to the BIOS wait loop with the carry bit
set if a time-out occurs.

Machine-Sensitive Programs

Programs can select machine-specific features, but they must first
identify the machine and model type. IBM has defined methods for
uniquely determining the specific machine type. The location of the
machine model bytes can be found through interrupt 15 function code
(AH) = hex CO. See the /BM Personal System/2 and Personal
Computer BIOS Interface Technical Reference for a listing of model
bytes for IBM Personal Computer and Personal System/2 products.

Math Coprocessor Compatibility

IBM systems use three math coprocessors: the 8088- and 8086-based
systems use the 8087, the 80286-based systems use the 80287, and
the 80386-based systems use the 80387.

In the Real Address mode and Virtual 8086 mode, the 80386 computer
with an 80387 Math Coprocessor is upward object-code compatible
with software for the 8086/8087 and 80286/80287 Real-Address mode
systems; in the Protected mode, the 80386/80387 is upward
object-code compatible with software for the 80286/80287
Protected-mode systems. However, if a math coprocessor instruction
other than FINIT, FSTSW, or FSTCW is executed by an 80386-based
System without an 80387 present, the 80386 waits indefinitely for a
response from the 80387. This causes the system to stop processing
without providing an error indication. To prevent this problem,
software should check for the presence of the 80387 before executing
math coprocessor instructions. The BIOS equipment function should
be used when possible as the method for detecting the presence of
the math coprocessor.

The only other differences of operation that may appear when
8086/8087 programs are ported to a Protected-mode 80386/80387
system (not using the Virtual 8086 mode), are in the format of
operands for the administration instructions FLDENV, FSTEN,

20 Compatibility— October 1990

FRSTOR, and FSAVE. These instructions are normally used only by
exception handiers and operating systems, not by application

programs.

Software Written for:

8087 80287 80287

Operating Modes Real Real Protected

8087 Real Mode Yes Yes* No

80287 Real Mode Yes* Yes No

80387 Real Mode Yes*** Yes** No

80387 8086 Virtual Mode Yes*** Yes** No

80287 Protected Mode No Yes** Yes

80387 Protected Mode No No Yes**

* See “8087 to 80287 Compatibility.”

** See “80287 to 80387 Compatibility.”

***See “8087 to 80287 Compatibility” and “80287 to 80387 Compatibility.”

Figure 4. Math Coprocessor Software Compatibility

Many changes have been designed into the 80387 to directly support
the IEEE standards in hardware. These changes result in increased
performance by eliminating the need for software that supports the
IEEE standard.

| 80486 to 80387 Compatibility

| The 80486 microprocessor and the !evel C 80387 coprocessor treat
| numeric precision exception (PE) differently from previous levels. If
| the PE bit was reset to 0 before the instruction is executed, the C1(A)

| bit in the condition code indicates the round-up direction of the last
| ESC instruction when the result is inexact. If the PE bit was set to 1
| before the instruction is executed, the round-up bit is undefined.

| The 80486 reports some numeric exceptions later than the level C
| 80387 does. For some numeric exceptions, the NPX Exception
| Interrupt (IRQ 13) is not generated until the next noncontrol floating
| point or FWAIT instruction is about to be executed. On the other
| hand, the 80387 always generates the NPX Exception Interrupt at the
| completion of the floating point instruction that caused the exception.

| Programs must detect the presence of the microprocessor before
| using the ET bit in Control Register 0 (CRO). The ET bit in CRO is
| hardwired to 1. Programs write 0 or 1 to this bit, but a 1 is always
| returned on read.

Compatibility— October 1990 21

| The following problems exist for operations with paging enabled.

¢ Coprocessor operands:

To avoid having a nonstartable instruction involving math
coprocessor operands in demand-paged systems, ensure the
operands do not cross page boundaries. This can be
accomplished by aligning math coprocessor operands in 128-byte
boundaries within a segment, and aligning the start of segments
on 128-byte physical boundaries.

¢ Page fault error code on stack is not reliable:

When a page fault (exception 14) occurs, the three defined bits in
the error code can be unreliable if a certain sequence of
prefetches occurred at the same time.

Although the page-fault error code pushed onto the page-fault
handler stack is sometimes unreliable, the page-fault linear
address stored in register CR2 is always correct. The page-faulit
handler should refer to the page-fault linear address in register
CR2 to access the corresponding page table entry and thereby
determine whether the page fault was due to a page-not-present
condition or a usage violation.

When paging is enabled (PG = 1 in CRO), accessing 1/O
addresses in the range hex 00001000 to hex OOOOFFFF, or
accessing a 80387 Math Coprocessor using ESC instructions (I/O
addresses hex 800000F8 to hex 800000FF) can generate incorrect
\/O addresses on A12 through A31 if the I/O address is the same
as a memory linear address that is mapped by the TLB.

The physical address corresponding to the memory linear
address mapped by the TLB is ANDed with the I/O address,
causing the I/O address to be incorrect in most cases.

A suggested method for handling normal I/O addresses between
hex 00000 and hex OFFFF is as follows: The operating system is
required to map the lowest (first) 64KB of linear address space to
16 pages, which are defined such that bits 12 through 15 of the
linear and physical addresses are equal. This requires that the
pages be aligned on a 64KB physical boundary (the physical
address associated with the first page has address bits 15
through 0 equal to 0).

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

| ® I/O relocated in paged systems:

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

| A suggested method for handling the math coprocessor I/O
| addresses requires that the memory page at linear address hex
| 80000000 always be

22 Compatibility — October 1990

marked “not present” so it cannot be cached in the TLB. This

may be accomplished in one of the following ways:

— Require the operating system to handle a 4KB “hole” in the
linear address space at the 2GB boundary.

— Restrict the linear address space to a 2GB maximum instead

of 4GB. No segments will have a linear address above the
2GB boundary.

¢ Spurious page level protection fault:

This problem only occurs when the page table and the directory
entries that map the stacks for the inner levels of a task are
marked as supervisor access only, and an external bus HOLD

comes during the cycle that pops (E)SP off the stack during an
inter-level RET or IRET.

This problem can be avoided by marking the pages that map the
inner level stacks (level 0, 1, and 2) to permit the user read

access. The segmentation protection mechanism can be used to
prevent user access to the linear addresses containing these
stacks, if required.

80387 to 80287 Compatibility

The following summarizes the differences between the 80387 and

80287 Math Coprocessors, and provides details showing how 80287
software can be ported to the 80387 Math Coprocessor:

Note: Any migration from 8087 directly to the 80387 must also take
into account the differences between the 8087 and the 80287.
This information is provided on page 25.

¢ The 80387 supports only affine closure for infinity arithmetic, not
projective closure.

e Operands for FSCALE and FPATAN are no longer restricted in
range (except +00); F2XM1 and FPTAN accept a wider range of
operands.

e Rounding control is in effect for FLD constant.

¢ Software cannot change entries of the tag word to values (other
than empty) that differ from actual register contents.

¢ In conformance with the IEEE standard, the 80387 does not
support special data formats pseudozero, pseudo-NaN,
pseudoinfinity, and unnormal.

Compatibility-— October 1990 23

Exceptions

When the overflow or underflow exception is masked, the only
difference from the 80287 is in rounding when overflow or underflow
occurs. The 80387 produces results that are consistent with the
rounding mode.

For exceptions that are not masked, a number of differences exist due
to the IEEE standard and to functional improvements to the
architecture of the 80387:

24

There are fewer invalid-operation exceptions due to denormal

operands, because the instructions FSQRT, FDIV, FPREM, and

conversions to BCD or to integer normalize denormal operands
before proceeding.

The FSQRT, FBSTP, and FPREM instructions may cause
underflow, because they support denormal operands.

The denormal exception can occur during the transcendental
instructions and the FXTRACT instruction.

The denormal exception no longer takes precedence over all
other exceptions.

When the operand is zero, the FXTRACT instruction reports a
zero-divide exception and leaves — oo in ST(1).

The status word has a new bit (SF) that signals when

invalid-operation exceptions are due to stack underflow or
overflow.

FLD extended precision no longer reports denormal exceptions,
because the instruction is not numeric.

FLD single/double precision when the operand is denormal
converts the number to extended precision and signals the

denormalized operand exception. When loading a signaling NaN,
FLD single/double precision signals an invalid-operation
exception.

The 80387 only generates quiet NaNs (as on the 80287); however,

the 80387 distinguishes between quiet NaNs and signaling NaNs.

Signaling NaNs trigger exceptions when they are used as
operands; quiet NaNs do not (except for FCOM, FIST, and FBSTP,
which also raise IE for quiet NaNs).

Most 80387 numeric instructions are automatically synchronized
by the 80386. No explicit Wait instructions are required for these

instructions. To maintain compatibility with systems using the
8087, an explicit Wait is required before each numeric instruction.

Compatibility — October 1990

e¢ The FLDENV and FRSTOR instructions should be followed by an

explicit Wait when used in the 80387 environment. An explicit
Wait is not required after these instructions in the 80287
environment.

¢ The 80287 FSETPM (set Protected mode) instruction performs no
useful purpose in the 80387 environment; if encountered, it is
ignored.

e The format of the FSAVE and FSTENV instructions is determined
by the current mode of the 80386; the Real Address mode format
is used when the 80386 is in the Real Address mode, and the
Protected mode format is used when the 80386 is in the Protected
mode.

¢ The following applies only to the B1 stepping level 80386: An

interrupt 9 does not occur for an operand outside a segment size:
an interrupt 13 occurs.

80287 to 8087 Compatibility

The 80287 operating in the Real Address mode can execute 8087
software without major modifications. However, because of
differences in the handling of numeric exceptions by the 80287 and
the 8087, exception-handling routines may need to be changed.

The following summarizes the differences between the 80287 and
8087 Math Coprocessors, and provides details showing how 8087

software can be ported to the 80287 Math Coprocessor.

¢ The 8087 instructions FENi/FNEN! and FDISI/FNDISI perform no

useful function in the 80287 environment. If the 80287 encounters
one of these opcodes in its instruction stream, the instruction is
effectively ignored; none of the 80287 internal states are updated.
While 8086 code containing these instructions may be executed
on an 80287, it is unlikely that the exception-handling routines
containing these instructions will be completely portable to the
80287.

e¢ The ESC instruction address saved in the 80287 includes any
leading prefixes before the ESC opcode. The corresponding

address saved in the 8087 does not include leading prefixes.

¢ Inthe Protected mode, the format of the 80287 saved instruction
and address pointers is different from the format of the 8087. The
instruction opcode is not saved in the Protected mode; exception
handlers have to retrieve the opcode from memory if needed.

Compatibility— October 1990 25

e Interrupt 7 occurs in the 80286 when executing ESC instructions

with either TS (task switched) or EM (emulation) of the 80286

MSW set (TS = 1 or EM = 1). If TS is set, then a Wait instruction

also causes interrupt 7. An exception handler should be included
in 80286 code to handle these exceptions.

¢ Interrupt 9 occurs if the second or subsequent words of a
floating-point operand fall outside a segment size. Interrupt 13

occurs if the starting address of a numeric operand falls outside a
segment size. An exception handler should be included in the
80286 code to report these programming errors.

¢ Most 80287 numeric instructions are automatically synchronized
by the 80286. The 80286 automatically tests the ‘busy’ signal from

the 80287 to ensure that the 80287 has completed its previous
instruction before executing the next ESC instruction. Explicit

Wait instructions are not required to ensure this synchronization.
An 8087 used with 8086 and 8088 system microprocessors
requires explicit Waits before each numeric instruction to ensure
synchronization. Although 8086 software having explicit Wait
instructions executes perfectly on the 80286 without reassembly,
these Wait instructions are unnecessary.

The processor control instructions for the 80287 may be coded
using either a WAIT or No-WAIT form of the mnemonic. The WAIT
forms of these instructions cause the assembler to precede the
ESC instruction with a microprocessor Wait instruction.

26 Compatibility— October 1990

Diskette Drives and Controller

The following figure shows the read, write, and format capabilities for
each type of diskette drive.

Diskette 160/180KB 320/360KB 720KB 1.44MB

Drive Type Mode Mode Mode Mode

§.25-Inch Diskette Drive:
Single Sided (48 TPH) RWF ~ne nen ---
Double Sided (48 TPl) RWF RWF == ---

3.5-Inch Diskette Drive:
720KB Drive --- --- RWF ---

1.44MB Drive --- ~-- RWF RWFE

R-Read W-Write F-Format

Figure 5. Diskette Drive Read, Write, and Format Capabilities

1. 5.25-inch diskettes designed for the 1.2MB mode cannot be used
in either a 160/180KB or a 320/360KB diskette drive.

2. 3.5-inch diskettes designed for the 1.44MB mode cannot be used
in a 720KB diskette drive.

Warning: 32-bit operations to the video subsystem can cause a

diskette overrun in the 1.44MB mode because data width conversions
may require more than 12 microseconds. If an overrun occurs, BIOS
returns an error code and the operation should be retried.

Copy Protection

The following methods of copy protection may not work on systems
using the 3.5-inch 1.44MB diskette drive.

¢ Bypassing BIOS Routines:

— Data Transfer Rate: BIOS selects the proper data transfer
rate for the media being used.

~ Diskette Parameters Table: Copy protection, which creates

its own Diskette Parameters table, may not work on these
drives.

e Diskette Drive Controls:

— Rotational Speed: The time between two events on a diskette
is a function of the controller.

Compatibility-— October 1990 27

- Access Time: Diskette BIOS routines must set the

track-to-track access time for the different types of media
used in the drives.

— Diskette Change Signal: Copy protection may not be able to
reset this signal.

¢ Write Current Control: Copy protection that uses write current
control will not work because the controller selects the proper
write current for the media being used.

Detailed information about specific diskette drives is available in
separate technical references.

Fixed Disk Drives and Controller

Reading from and writing to the fixed disk drive is initiated in the
Same way as with IBM Personal Computer products; however, new
functions are supported. Detailed information about specific fixed
disk drives and fixed disk adapters is available in system-specific
technical references.

28 Compatibility — October 1990

