
United States Patent (19)
Crump et al.

USOO.5850562A

11 Patent Number: 5,850,562
(45) Date of Patent: Dec. 15, 1998

54

56)

PERSONAL COMPUTER APPARATUS AND
METHOD FORMONITORING MEMORY
LOCATIONS STATES FOR FACILITATING
DEBUGGING OF POST AND BIOS CODE

Inventors: Dwayne Thomas Crump; Steven
Taylor Pancoast, both of Lexington,
Ky.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No. 266,927
Filed: Jun. 27, 1994

Int. Cl." G06F 1/24; G06F 9/24;
G06F 11/28; G06F 11/34

U.S. Cl. 395/800; 364/221.7; 364/267;
364/267.4; 364/267.91; 364/297.8; 364/269.4;

364/DIG. 1; 364/DIG. 2; 395/700; 395/183.16;
395/183.07

Field of Search 395/800, 575,
395/700, 725,775, 275,375, 750, 183.14,
183.07, 416, 497, 483, 739; 364/DIG. 1,
DIG. 2; 371/16.1, 16.5, 19, 18, 72, 66

References Cited

U.S. PATENT DOCUMENTS

5,093.914 3/1992 Coplien et al. 395/700
OTHER PUBLICATIONS

Motorola Microcomputer Development Systems-Low
Cost MPU/MCU Evaluation Modules, Motorola Micropro
cessors, Series C, Motorola Inc., 1983, pp. 8-10.
Primary Examiner Daniel H. Pan
Attorney, Agent, or Firm-Daniel E. McConnell; Sean T.
Moorhead

57 ABSTRACT

A monitor and debugger routine operable on a personal
computer for facilitating the design of power-on Self-test
(POST) and basic input and output system (BIOS) code. The
monitor and debugger routine is invoked by POST code
early in the System initialization process, before most of the
system hardware devices have been initialized and before
the operating System has been invoked. The monitor and
debugger routine uses minimal System resources-lower
memory and a Serial communications controller-and is
accessed via an external communications and display device
connected via a Serial communications link generated by the
Serial communications controller. AS So invoked, the moni
tor and debugger routine can be used to facilitate the design
and debugging of the remaining portions of the System
initialization code, hardware interface code, Suspend and
resume code, Video code, and other code that cannot be
debugged using Standard debuggers that require a function

4,701,845 10/1987 Anderson et al. ossils ing BIOS and an operating system to operate.
4,879,646 11/1989 Iwasaki et al. 395/375
5,047,926 9/1991 Kuo et al. 395/575 10 Claims, 6 Drawing Sheets

108

Boot-Up Routine:
CPU Jumps to Reset Vector
Code at Power-Up or Reset

110

Partial Post

Transfer Execution

Debugger Bit
Set

Finish Post
Tests and

Initializations

Load and Transfer
Execution Control
to the Operating

System

Control to the
Monitor and

Debugger Routine

5,850,562 Sheet 1 of 6 Dec. 15, 1998 U.S. Patent

FIG.

5,850,562 Sheet 2 of 6 Dec. 15, 1998 U.S. Patent

U.S. Patent Dec. 15, 1998 Sheet 3 of 6 5,850,562

40 44 i

FIG 3A Micro Math Processor Coprocessor
42 i

46 y s

page. 2—JJ DRAM SIP

56
Video Controlle 50

Address MUX

c. O

54 52
DRA Data Buffer

Cache

53

62 i Cache
Controller

64
Buffer

66 --
--P 68

70 Latch/Buffer
W/DeCode

Bus Controller i

71 72 E. F

Central Arbiter
74 i

76 Buffer
- - -

e y F
78 i

FIG. 3 FIG. F.G. 76 1,–
V 3A 3B

78 i

U.S. Patent Dec. 15, 1998 Sheet 4 of 6 5,850,562

106
106a

External
Communications
and Display Device

O
BEEF ir / AE-10

Serial
Communications

Link
107

12 E. Keyboard Keyboard
Karm-Ra Controller

94 96 88
RS-232 CMOS
UARTS NVRAM ROM

7 a a TT
Ta T a T T T a T
V

84 86 98 OO 102
8277 Disk- IDE Disk CMOS Parallel Tinners
ette Adapter Controllers Clock Adapter

80

FIG. 3B

U.S. Patent Dec. 15, 1998 Sheet 5 of 6 5,850,562

108

Boot-Up Routine:
CPU Jumps to Reset Vector
Code at Power-Up or Reset

FIG. 4

Partial POSt

Transfer Execution
Control to the
Monitor and

Debugger Routine
Debugger Bit

Set

Finish POSt
Tests and

Initializations

Load and Transfer
Execution Control
to the Operating

System

U.S. Patent Dec. 15, 1998 Sheet 6 of 6 5,850,562

120

Boot-Up Routine:
CPU Jumps to Reset Vector
Code at Power-Up or Reset

FIG. 5
Partial POSt:
Test CPU;
initialize Memory Controller;
Test Shadow Memory;
Decompress and Copy BIOS
from ROM to Shadow RAM;

Activate Shadow RAM;
initialize Serial Controller

Transfer Execution
Control to the
Monitor and

Debugger Routine

Debugger Bit
et in CMOS

Finish POSt
Tests and

initializations

Transfer Execution
Control to the
PBOOT ROutine

5,850,562
1

PERSONAL COMPUTER APPARATUS AND
METHOD FOR MONITORING MEMORY
LOCATIONS STATES FOR FACILITATING
DEBUGGING OF POST AND BIOS CODE

FIELD OF THE INVENTION

The present invention relates generally to computer SyS
tem design and, more specifically, to a computer System
having a monitor and debugger module capable of Starting
execution before an operating System is loaded, thereby
facilitating in Situ design, testing, and revision of power-on
self-test (POST) and basic input and output system (BIOS)
code.

BACKGROUND OF THE INVENTION

Personal computer Systems are well known in the art.
Personal computer systems in general, and IBM Personal
Computers in particular, have attained wide-Spread use for
providing computer power to many Segments of today's
modern Society. Personal computers can typically be defined
as a desktop, floor Standing, or portable microcomputer that
is comprised of a System unit having a single central
processing unit (CPU) and associated volatile and non
volatile memory, including all RAM and BIOS ROM, a
Video display controller, a video display terminal (also
known as a “system monitor”), a keyboard, one or more
flexible diskette drives, a fixed disk Storage drive (also
known as a “hard drive’), a So-called “mouse' pointing
device, and an optional printer. One of the distinguishing
characteristics of these Systems is the use of a motherboard
or System planar to electrically connect these components
together. These Systems are designed primarily to give
independent computing power to a single user and are
inexpensively priced for purchase by individuals or Small
businesses. Examples of Such personal computer Systems
are IBM's PERSONAL COMPUTER AT (IBM PC/AT),
IBM's PERSONAL SYSTEM/1 (IBM PS/1), and IBM's
PERSONAL SYSTEM/2 (IBM PS/2).

Personal computer Systems are typically used to run
Software to perform Such diverse activities as word
processing, manipulation of data via Spread-sheets, collec
tion and relation of data in databases, displays of graphics,
design of electrical or mechanical Systems using System
design Software, etc.
When computers are turned on, they typically go through

a “booting” process. When a computer “boots” it first
performs a power-on self-test (POST), which involves run
ning various tests to ensure that the computer is functioning
correctly and involves initializing the registers within certain
hardware devices. Part of performing the POST involves
loading the basic input and output System (BIOS) code into
memory. After performing the POST, the computer typically
loads an operating system (OS), such as IBM's PC-DOS or
OS/2 or Microsoft's MS-DOS.
The POST and BIOS code are both intimately linked to

the specific hardware of the computer system. The POST
code typically tests and initializes Specific hardware devices,
Such as the memory controller, the Video controller, the
Serial communications controller, the parallel communica
tions controller, the interrupt controller, the keyboard
controller, the flexible diskette controller, and the fixed
diskette controller. Likewise, the BIOS code interfaces
between the Specific hardware devices and programs, Such
as the operating System and application programs.

Because the POST code and BIOS code are so intimately
connected to the hardware, developing POST code and

15

25

35

40

45

50

55

60

65

2
BIOS code can be very difficult. Many tools are available to
help design application programs. For example, the well
known program DEBUG.COM, which is part of the
PC-DOS Suite of programs, allows developers to debug
programs relatively easily. Many other Similar programs for
debugging code are known in the art. However, these
programs typically are application programs themselves.
That is, DEBUG.COM is an application that executes in a
layer above PC-DOS, which executes in a layer above the
BIOS.

It is readily apparent that these tools are virtually worth
less for developing POST code and BIOS code. The com
puter system will not function before the POST code finishes
executing and before a functioning BIOS is loaded into
memory. As such, operating systems such as PC-DOS, OS/2,
and MS-DOS, which require the completion of the POST
and the presence of a functioning BIOS, cannot be loaded or
executed. Without PC-DOS or another operating system
loaded, the debugger tools, such as DEBUG.COM and
others cannot be loaded or used. Thus, these operating
system-based tools can be used to aid development of POST
code or BIOS code.

Typically, the developer of POST code and BIOS code
uses an in-circuit emulator (ICE) as a tool of choice to aid
code development. ICE Systems emulate the System proces
Sor and allow typical debugging tasks to be performed Such
as (1) viewing and modifying memory locations, I/O
locations, and processor registers, (2) setting and clearing
breakpoints, and (3) starting and stopping processor execu
tion. However, ICE Systems are very expensive, costing on
the order of $30,000 to $50,000 for a system. Development
Sites often ration the use of limited ICE debugging tools,
forcing developers to use less efficient tools, thereby impact
ing productivity.

Additionally, many new processors are incorporating a
system management mode (SMM). SMM provides a state
that can be entered via the highest level interrupt and is
typically used for implementing power management func
tions and suspend/resume functions. Like POST code, the
SMM code is located in firmware and contains hardware
Specific functions and does not rely on any particular oper
ating System.

Moreover, ICE systems must be restarted when the elec
trical power powering the electronic System being debugged
is cycled. AS Such, using ICE Systems to help with the design
and debugging of Suspend and resume Systems that involve
removing electrical power from one or more electronic
devices in the computer System has a usability penalty in the
form of restarting the ICE system.

Therefore, it is desirable to provide a way of debugging
Software without requiring that the BIOS be functioning or
that an operating System be executed. It is also desirable to
provide a way to aid the development and debugging of
POST code, BIOS code, and SMM code.

SUMMARY OF THE INVENTION

According to the present invention, a computer System is
provided having a low-level monitor and debugger routine.
Preferably, the routine is capable of executing before the
power-on self-test (POST) routine completes execution and
before the basic input and output system (BIOS) code is
made available to the system. Therefore, the monitor and
debug routine is capable of facilitating the design and
debugging of POST code and BIOS code.

In one embodiment, the execution of the monitor and
debugger routine is controlled by a flag Set in nonvolatile

5,850,562
3

CMOS memory. In this embodiment, the POST routine
begins by performing a minimal System initialization includ
ing enabling a lower portion of memory, performing a short
memory test, decompressing the BIOS from the PROM and
writing the BIOS sections to shadow memory, and initial
izing the serial communications controller. Then, the POST
routine tests the flag in CMOS nonvolatile memory. If the
flag is SET, then the POST routine passes execution control
to the monitor and debugger routine. If the flag is not SET,
then the POST routine continues executing, thereby initial
izing the System hardware. Thus, the debugger is always
present and can be invoked by changing the flag in non
volatile RAM and rebooting the system.

It is therefore an advantage of the present invention to
provide a low-level monitor and debugger capable of execu
tion before completion of the POST code execution.

It is a further advantage of this invention to provide a tool
to facilitate the design and debugging of POST code and
BIOS code, thereby increasing the productivity of program
mers writing POST code and BIOS code.

It is yet another advantage of the present invention to
provide a low-level debugger that can be easily invoked
without requiring that a Substantial portion of the System be
functional, Such as the keyboard, Video Subsystem, and a
disk drive.

These and other advantages of the present invention will
become more apparent from a detailed description of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, which are incorporated in
and constitute a part of this specification, embodiments of
the invention are illustrated, which, together with a general
description of the invention given above, and the detailed
description given below Serve to example the principles of
this invention.

FIG. 1 is a perspective View of a personal computer
embodying this invention;

FIG. 2 is an exploded perspective view of certain ele
ments of the personal computer of FIG. 1 including a
chassis, a cover, an electromechanical direct access Storage
device and a planar board and illustrating certain relation
ships among those elements,

FIG. 3 (including FIGS. 3A and 3B) are electrical sche
matic block diagrams of certain components of the personal
computer of FIGS. 1 and 2;

FIG. 4 is a flow chart showing an overview of the
low-level monitor and debugger routine of the present
invention; and

FIG. 5 is a flow chart showing some of the details of an
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

While the present invention will be described more fully
hereinafter with reference to the accompanying drawings, in
which a preferred embodiment of the present invention is
shown, it is to be understood at the outset of the description
which follows that perSons of skill in the appropriate arts
may modify the invention here described while still achiev
ing the favorable results of this invention. Accordingly, the
description which follows is to be understood as being a
broad, teaching disclosure directed to perSons of skill in the
appropriate arts, and not as limiting upon the present inven
tion.

1O

15

25

35

40

45

50

55

60

65

4
Referring now more particularly to the accompanying

drawings, a microcomputer System embodying the present
invention is there shown and generally indicated at 10 (FIG.
1). As mentioned hereinabove, the computer 10 may have an
asSociated monitor 11, keyboard 12, mouse 13, and printer
or plotter 14. The computer 10 has a cover 15 formed by a
decorative outer member 16 (FIG. 2) and an inner shield
member 18 which cooperate with a chassis 19 in defining an
enclosed, Shielded Volume for receiving electrically pow
ered data processing and Storage components for processing
and Storing digital data. At least certain of these components
are mounted on a multilayer planar 20 or motherboard which
is mounted on the chassis 19 and provides a means for
electrically interconnecting the components of the computer
10 including those identified above and such other associ
ated elements as floppy disk drives, various forms of direct
acceSS Storage devices, accessory cards or boards, and the
like. AS pointed out more fully hereinafter, provisions are
made in the planar 20 for the passage of input/output signals
to and from the operating components of the microcomputer.
The computer System has a power Supply 17 and a power

Switch 21, which Switches unregulated line power to and
from the power Supply 17. The chassis 19 has a base
indicated at 22, a front panel indicated at 24, and a rear panel
indicated at 25 (FIG. 2). The front panel 24 defines at least
one open bay (and in the form illustrated, four bays) for
receiving a data Storage device Such as a disk drive for
magnetic or optical disks, a tape backup drive, or the like. In
the illustrated form, a pair of upper bays 26, 28 and a pair
of lower bays 29, 30 are provided. One of the upper bays 26
is adapted to receive peripheral drives of a first size (such as
those known as 3.5 inch drives) while the other 28 is adapted
to receive drives of a selected one of two sizes (such as 3.5
and 5.25 inch) and the lower bays are adapted to receive
devices of only one size (3.5 inch). One floppy disk drive is
indicated at 27 in FIG. 1, and is a removable medium direct
acceSS Storage device capable of receiving a diskette inserted
thereinto and using the diskette to receive, Store and deliver
data as is generally known. One hard disk drive is indicated
at 31 and is a fixed medium direct acceSS Storage device
capable of Storing and delivering data as is generally known.

Prior to relating the above structure to the present
invention, a Summary of the operation in general of the
personal computer System 10 may merit review. Referring to
FIG. 3, there is shown a block diagram of a personal
computer System illustrating the various components of the
computer System Such as the System 10 in accordance with
the present invention, including components mounted on the
planar 20 and the connection of the planar to the I/O slots
and other hardware of the personal computer System. Con
nected to the planar is the System processor 40, also herein
CPU 40, comprised of a microprocessor, which is connected
by a high speed CPU local bus 42 through a memory control
unit 46, which is further connected to a volatile random
access memory (RAM) 53. The memory control unit 46 is
comprised of a memory controller 48, an address multi
plexer 50, and a data buffer 52. The memory control unit 46
is further connected to a random access memory 53 as
represented by the four RAM modules 54. The RAM 54
preferably comprises at least one Single in-line memory
modules (SIMMs), which are known to those skilled in the
art. The memory controller 48 includes the logic for map
ping addresses to and from the microprocessor 40 to par
ticular areas of RAM 53. This logic is used to reclaim RAM
previously occupied by BIOS. Further generated by memory
controller 48 is a ROM select signal (ROMSEL), that is used
to enable or disable ROM 88. While any appropriate micro

5,850,562
S

processor can be used for System processor 40, one Suitable
microprocessor is the 80486 which is sold by INTEL. The
Intel 80486 has an internal cache, therefore, any CPU 40 that
is an Intel 80486 will have a CPU cache 41.

While the present invention is described hereinafter with
particular reference to the system block diagram of FIG. 3,
it is to be understood at the outset of the description which
follows that it is contemplated that the apparatus and meth
ods in accordance with the present invention may be used
with other hardware configurations of the planar board. For
example, the system processor 40 could be an Intel 80286 or
80386 microprocessor. AS used herein, reference to an
80286 or 80386 or 80486 generally intends such a micro
processor as obtained from Intel. However, in recent times
other manufacturers have developed microprocessors which
are capable of executing the instruction set of the Intel X86
architecture, and usage of the terms Stated is intended to
encompass any microprocessor capable of executing that
instruction Set. AS known to perSons skilled in the applicable
arts, early personal computers typically used the-then popu
lar Intel 8088 or 8086 microprocessor as the system pro
ceSSor. These processors have the ability to address one
megabyte of memory. More recently, personal computers
typically use the high speed Intel 80286, 80386, and 80486
microprocessors which can operate in a virtual or real mode
to emulate the slower speed 8086 microprocessor or a
protected mode which extends the addressing range from 1
megabyte to 4 Gigabytes for Some models. In essence, the
real mode feature of the 80286, 80386, and 80486 proces
sors provide hardware compatibility with Software written
for the 8086 and 8088 microprocessors. Processors in the
Intel family described are frequently identified by a three
digit reference to only the last three digits of the full type
designator, as “486”.

Returning now to FIG. 3, the CPU local bus 42
(comprising data, address and control components) provides
for the connection of the microprocessor 40, a math copro
cessor 44, a video controller 56, a system cache memory 60,
and a cache controller 62. The video controller 56 has
associated with it a monitor (or Video display terminal) 11
and a video memory 58. Also coupled on the CPU local bus
42 is a buffer 64. The buffer 64 is itself connected to a slower
speed (compared to the CPU local bus 42) system bus 66,
also comprising address, data and control components. The
system bus 66 extends between the buffer 64 and a further
buffer 68. The system bus 66 is further connected to a bus
control and timing unit 70 and a DMA unit 71. The DMA
unit 71 is comprised of a central arbiter 82 and a DMA
controller 72. An additional buffer 74 provides an interface
between the system bus 66 and an optional feature bus such
as the Industry Standard Architecture (ISA) bus 76. Con
nected to the bus 76 are a plurality of I/O slots 78 for
receiving ISA adapter cards (not shown). ISA adapter cards
are pluggably connected to the I/O slots 78 and may provide
additional I/O devices or memory for the system 10.
An arbitration control bus 80 couples the DMA controller

72 and central arbiter 82 to the I/O slots 78, a diskette
controller 84, and an Integrated Drive Electronics (IDE)
fixed disk controller 86.

While the microcomputer system 10 is shown with a basic
4 megabyte RAM module 53, it is understood that additional
memory can be interconnected as represented in FIG. 3 by
the addition of optional higher-density memory modules 54.
For purposes of illustration only, the present invention is
described with reference to the basic four megabyte memory
module.
A latch buffer 68 is coupled between the system bus 66

and a planar I/O bus 90. The planar I/O bus 90 includes

15

25

35

40

45

50

55

60

65

6
address, data, and control components respectively. Coupled
along the planar I/O bus 90 are a variety of I/O controllers
and other components Such as the diskette controller 84, the
IDE disk controller 86, an interrupt controller 92, an serial
communications (RS-232) controller 94, nonvolatile CMOS
RAM 96, also herein referred to as NVRAM, a CMOS
real-time clock 98, a parallel communications (Centronics
interface) controller 100, a plurality of timers 102, the
preprogrammed read only memory (PROM) 88, and the
8042 keyboard and mouse controller 104. The 8042, shown
at 104, is the slave microprocessor that interfaces with the
keyboard 12 and the mouse 13. The programmable read only
memory 88 includes the BIOS that is used to interface
between the I/O devices and the operating system of the
microprocessor 40. BIOS stored in ROM 88 can be copied
into RAM 53 to decrease the execution time of BIOS. ROM
88 is further responsive (via ROMSEL signal) to memory
controller 48. If ROM 88 is enabled by memory controller
48, BIOS is executed out of ROM. If ROM 88 is disabled by
memory controller 48, ROM is not responsive to address
inquiries from the microprocessor 40 (i.e. BIOS is executed
out of RAM). Preferably the ROM 88 is a Flash PROM,
which is known to those skilled in the art and which is
manufactured by many Sources and widely available. Also,
preferably the System includes circuitry and firmware (not
shown) configured to erase and program the Flash PROM in
situ.

The real-time clock 98 is used for time of day calculations
and the NVRAM 96 is used to store system configuration
data. That is, the NVRAM 96 will contain values which
describe the present configuration of the System. For
example, NVRAM 96 contains information describing the
capacity of a fixed disk or diskette, the type of display, the
amount of memory, time, date, etc. Of particular importance
NVRAM will contain data (can be one bit) which is used by
memory controller 48 to determine whether BIOS is
executed out of ROM or RAM and whether to reclaim RAM
intended to be used by BIOS RAM. Furthermore, these data
are stored in NVRAM whenever a special configuration
program, Such as SET Configuration, is executed. The
purpose of the SET Configuration program is to Store values
characterizing the configuration of the system to NVRAM.

Nearly all of the above devices comprise volatile regis
ters. To prevent the unnecessary cluttering of the drawings,
the registers of a particular device will be referenced to that
device. For example, the CPU registers will be referred to as
the CPU 40 registers and the video controller registers will
be referenced as the video controller 56 registers.
AS mentioned hereinabove, the computer has a cover

indicated generally at 15 which cooperates with the chassis
19 in forming an enclosed, Shielded Volume for containing
the above identified components of the microcomputer. The
cover 15 preferably is formed with an outer decorative cover
member 16 which is a unitary molded component made of
a moldable Synthetic material and a metallic thin sheet liner
18 formed to conform to the configuration of the decorative
cover member. However, the cover can be made in other
known ways and the utility of this invention is not limited to
enclosures of the type described.

Also shown in FIG. 3 is an external communications and
display device 106. The external communications device
106 is connected to the computer system 10 via a serial
communications link 107, which is generated by the serial
communications controller 94. The external communica
tions and display device is capable of transmitting and
receiving data via the serial communications link 107. In
addition, the device 106 has the capability of displaying data

5,850,562
7

received via the link 107 on a cathode ray tube 106a, liquid
crystal display (LCD), or the like, and has the capability of
receiving user input from an input device Such as a keyboard
106b or keypad. Examples of Suitable external communica
tions and display devices include a dedicated terminal
station and a personal computer, such as an IBM PS/1,
executing a terminal program, Such as Datastorm's Pro
comm Plus (under PC-DOS), Microsoft's TERMINAL.EXE
(under Windows) and PM Terminal (under OS/2).

In the form illustrated, the communications link 107 is
provided by an electrically conductive tether having at least
one electrical conductor therein, Such as an elongate cable or
the like. Such tethers are known, for example, for connecting
a modem device or the like to a telephone System. In
whatever form provided, the communications link is to have
the functionality of transmitting Signals between the external
communications device 106 and the RS232 serial port 94 of
the host system as shown in FIG. 3.

The BIOS code is responsible for interfacing between the
System hardware electrical devices and the operating System
and application programs. Some of the functions imple
mented by the BIOS include (1) responding to the non
maskable interrupt, (2) performing a print Screen, (3) inter
facing to the system timer 102, keyboard 12, video
controller 56, flexible diskette controller 84, fixed diskette
controller 86, serial communications controller 94, parallel
communications controller 100, the printer 14, and the real
time clock 98, (4) determining the hardware and memory
Size and configuration, and (5) performing various System
Services, which are known to those skilled in the art.

Referring now to FIG. 4, an overview of the present
invention is shown. The power-on self test (POST) routine
starts at 108 when the CPU 40 begins executing the code
pointed to by the reset vector after the System power is
applied or the system is reset. Thereafter, a partial POST is
performed, at 112. The nature of the partial POST will
depend on the Specific nature of the computer System and the
nature of the external communications device 106. The
partial POST must at a minimum initialize the system for the
operation of the monitor and debugger routine, which would
necessarily include initializing the communications control
ler to generate the communications link 107 between the
computer System 10 and the external communications
device 106.

Thereafter, at 112, the flow of execution of the code on the
CPU 40 depends on the state of one or more flags, including
a Debugger Flag. If the Debugger Flag is not SET, then the
POST finishes testing and initializing the hardware compo
nents of the System, at 114. Next, the operating System is
loaded and execution control passes to the operating System,
at 116.

On the other hand, if the Debugger Flag is-SET, then the
execution control is transferred to the monitor and debugger
routine, at 118. The details of the monitor and debugger
routine are discussed further below.

Referring now to FIG. 5, a more detailed flow chart
showing an embodiment of the power-on self-test (POST)
routine and monitor and debugger routine of the present
invention is shown. The POST routine starts at 120 when the
CPU 40 begins executing the code pointed to by the reset
vector after the System power is applied or the System is
reset. Such reset procedures are well known in the art.

The first task is to perform a partial POST, at 122. First,
the POST routine tests the CPU 40 and initialize the memory
controller 46. The POST routine tests the CPU by ensuring
that the CPU passed its internal self-test and further by

15

25

35

40

45

50

55

60

65

8
Writing, Shifting, and testing bits in the various registers. In
initializing the memory controller 46, the POST routine
enables accesses to the lower memory SIMM, which con
tains the lower 640 kilobytes of standard memory and the
shadow RAM, as is known in the art.

Next, the shadow memory is tested and the BIOS is
decompressed from the ROM 88 and copied to the shadow
memory portion of RAM 53. The POST routine tests the
system RAM 53 in segments E000H and F000H. These
Segments are given the Standard, in-depth memory test
comprising: (1) a Sticky-bit test, (2) a double-bit memory
test, and (3) a crossed address line test. These tests are
well-known in the art.

The BIOS is stored in the ROM 88 in a series of serially
Stored compressed imageS. The monitor and debugger rou
tine of the present invention is one Such compressed image.
The monitor and debugger is linked into the BIOS when the
System Software is compiled. The monitor and debugger
routine can remain in the Systems once development is
complete. In the alternative, the monitor and debugger
routine can be replaced with another module, Such as a
System logo display routine.
The images are decompressed and loaded into the appro

priate portions of the shadow RAM. The monitor and
debugger routine is loaded into the portion of memory at
D800:0000. For debugging POST code, any portion of the
lower one megabyte portion of memory would Suffice.
However, for debugging SMM code, the above address is
preferable because when debugging SMM code, it is
imperative that memory regions containing the operating
System of application programs not be disturbed.
Shadowing the BIOS is done to increase the speed of the

System; System performance is enhanced because the BIOS
is running from the faster system RAM 53 (a typical access
time is 80 nanoseconds) rather than the slower ROM 88
(typical access time 250 nanoseconds). Shadowing the BIOS
comprises loading a BIOS decompresser and copier to an
address in lower memory, decompressing the BIOS, copying
the decompressed BIOS to appropriate portions of Segments
E000H and F000H of the system RAM 53, and enabling the
shadow RAM. After the BIOS has been decompressed and
loaded into the shadow RAM, the region of memory corre
sponding to the shadow RAM must be enabled in the
memory controller 46.
Next one of the serial communications controllers 94 is

initialized to provide a communications link 107 to the
external communications device 106. Thus, at his point, the
lower memory SIMM has been tested and enabled, the BIOS
has been decompressed and placed in Shadow RAM, and a
Serial communications controller has been initialized. None
of the other controllers have been enabled and the other
memory in the System is not available. At this stage of the
POST, the keyboard cannot be used, the mouse cannot be
used, the flexible diskette drive cannot be used, the fixed
diskette cannot be used, the Video System cannot be used. AS
Such, none of the prior art debugging tools, Such as
DEBUG.COM, are usable on the system at this stage of the
POST routine.

Next, the Debugger Flag is tested, at 124. The flow of
execution of the code on the CPU 40 depends on whether the
Debugger Flag is SET in the CMOS nonvolatile memory 96.
Preferably, if the Debugger Flag, which is located at bit 0 of
address 07 FH of the CMOS memory 96, is not SET, then the
POST routine continues, at 126.
Next the video controller 56 is tested and initialized and

the video memory 58 is tested. These tests and initializations

5,850,562

are well known in the arts The next task is to test the
remaining System RAM 53 using the three-step, in-depth
memory test described in the text above.

After all the memory is tested, the auxiliary devices
including the 8259 interrupt controller, the serial communi
cations controllers (UARTs), the 8042 keyboard controller,
and any others-are tested and initialized, as is known in the
art. Next, the fixed disk controller is initialized and a
complete test of the fixed disk controller 86 and hard drive
31 is performed, as is well known in the art.

Next, the floppy drive controller 84 is tested and initial
ized. Then, any BIOS extensions are “scanned in” and
initialized at 416 as is well known in the art. BIOS exten
sions are blocks of BIOS code added to the system by
peripheral controllers, such as network controllers. BIOS
extensions are typically located in segments C000H and
D000H on the ISA bus 76 and have an associated “signa
ture” to identify the BIOS extension as such. If a BIOS
extension is detected, the length is checked and a checksum
is calculated and checked. If the Signature, length, and
checksum all indicate that a valid BIOS extension exists,
program control passes to the instruction located three bytes
past the Signature and the BIOS extension can perform any
needed taskS Such as the initialization of the peripheral
controller. Once the extension finishes execution, control
passes back to the Boot-Up Routine, which searches for
more BIOS extensions. Any more BIOS extensions are
handled in the same manner as the BIOS extension above.
If no more BIOS extensions are detected, the POST routine
continues and passes execution control to the PBOOT
routine, at 128.

The PBOOT routine is a well-known routine that runs on
several IBM computers and certain other computers based
on Intel microprocessors. PBOOT determines from where to
boot the operating system (either from the hard drive 31 or
from a disk inside the floppy drive 27), loads the operating
System, analyzes and implements System changes as
instructed by the CONFIG.SYS file, and finally executes the
AUTOEXEC.BAT batch file before returning control to the
operating system. The PBOOT routine is well known in the
art.

Referring back to task 124, if the Debugger Flag is Set in
CMOS NVRAM 96, indicating that the monitor and debug
ger routine is to be executed, then the flow of the executed
code then branches to the monitor and debugger routine, at
130.
When execution control is transferred to the monitor and

debugger routine, many of the Subsystems of the computer
System are not yet functioning. Therefore, the monitor and
debugger routine is configured to be accessed by a commu
nications device 106 external to the computer system 10.
The monitor and debugger routine must first be initial

ized. The monitor and debugger routine hooks the debug and
Single Step interrupt vectors in the System interrupt vector
table for the CPU 40, as is known in the art. See, i486
Microprocessor Programmer's Reference Manual, Intel
Corp., 1990, pages 11-1 to 11-9. With the CPU 40 being an
80486, hooking these vectors allows the monitor and debug
ger routine to use the 486 internal debug registers, to use
normal “CC” break points in the code, to set breakpoints in
the ROM code, and to Set breakpoints on memory accesses.
See id.

Once initialized, the monitor and debugger routine has
two major operations: (1) providing a communications link
107 to the external communications device 106 and (2)
displaying and modifying memory and registers and con

1O

15

25

35

40

45

50

55

60

65

10
trolling operation of the code executing on the CPU 40.
Specifically, the monitor and debugger routine interfaces
with the external communications and display device 106
via the Serial communications controller 94 and responds to
the following commands from the external communications
device 106 in the following formats:

Display Memory (displaying 8 lines of memory)
D &ADDR

Set Memory Breakpoints (Break on any R/W/X access)
B <ADDR> (setting one breakpoint)
B <ADDR> <ADDR> (setting two breakpoints)

Clear all memory breakpoints
B

Go (Execute without setting breakpoints)
G

Go After setting Breakpoints (break on execute
access only)
G <ADDR> (setting one breakpoint)
G <ADDR> <ADDR> (setting two breakpoints)

Input from I/O Port (Read byte)
I PORT

Modify Memory
M <ADDR>=<Value(s)> (bytes, words, or double)

Output to I/O Port
O <PORTS=<Byte Values

Display all registers
R

Modify a register (to a specified value)
R ® Names=&Values

Trace (execute next instruction & display
registers)

T

In this particular embodiment, the address terms <ADDR2
can be an offset, a Segment:offset, a register name, or a
numeric Value. Any numeric value may be a register name
as well, and the addition and Subtraction of numeric values
(including registers) is permitted.

Interfacing via a Serial communications controller is
known in the art. The monitor and debugger routine Signals
that it is active and awaiting commands by transmitting a
message (e.g., “System turned on with Debugger Enabled.
BIOS Debugger V1.3") and a cursor (e.g., a minus sign “-”
to the serial communications controller 94 for transmission
to the external communications device 106 via the serial
communications link 107. The user, Seeing the message and
cursor displayed on the external communications device 106
is thus aware that the monitor and debugger module is
loaded and functioning. Thereafter, the monitor and debug
ger routine acts responsive to commands from the user.

Preferably, the messages Sent to the external communi
cations device 106 are in ASCII code format, as is known in
the art. In the alternative, other formats can be used, Such as
compressed formatS or pure binary data formats.

Responsive to the Display Memory command, D
<ADDR>, being transmitted to the monitor and debugger
module from the external communications device 106 via
the serial communications link 107, the monitor and debug
ger routine causes the external communications device to
display the data located at the desired region of memory.
Specifically, the monitor and debugger routine polls the
Serial communications controller 94 for input codes arriving
via the serial communications link 107. Responsive to the
Display Memory command being received via the Serial
communications link 107, the monitor and debugger routine
(1) causes the CPU 40 to read the particular area of memory,
(2) formats the memory data into a format suitable for
display on the external communications device, and (3)
transmits the formatted memory data and a new cursor to the
serial communications controller 94 for transmission to the

5,850,562
11

external communications device 106 via the Serial commu
nications link 107.

For example, assuming that the ES Segment register
contains the value 0000H and assuming that the EAX
general register contains the value 21234H, responsive to
the command D ES:EAX-100, the monitor and debugger
routine would transmit with the serial controller 94 a signal
corresponding to the following display:

OOOOOOO21334 OOOOOOOOOOOOOOOO
OOOOOOO21343 OOOOOOOOOOOOOOOO

(a total of, e.g., eight lines) followed by another cursor.
Responsive to the Set Breakpoint command, B CADDR2

or B <ADDR2 <ADDR2, being transmitted to the monitor
and debugger module from the external communications
device 106 via the serial communications link 107, the
monitor and debugger routine Sets either one or two break
points for the address(es). These breakpoints cause a break
on a memory read, write, or execution access at that loca
tion. Specifically, the monitor and debugger routine polls the
Serial communications controller 94 for input codes arriving
via the serial communications link 107. Responsive to the
Set Breakpoint command being received via the Serial
communications link 107, the monitor and debugger routine
causes the CPU 40 to write the desired breakpoint address
(es) to one of the 486 debug address registers, thereby
Setting a breakpoint at the address(es), enabling the break
point by Setting the applicable control bit(s) in the debug
control registers of the 486 CPU 40. Finally, the monitor and
debugger routine transmits a new cursor character to the
Serial communications controller 94 for transmission to the
external communications device 106 via the Serial commu
nications link 107. After the breakpoints are set, once the
code being debugged begins execution again, then any
access to or from that memory location, whether a data
access or an execution access) will cause a debug interrupt,
which passes execution control back to the monitor and
debugger routine.

Responsive to the Clear Breakpoint command, B, being
transmitted to the monitor and debugger module from the
external communications device 106 via the Serial commu
nications link 107, the monitor and debugger routine clearS
all breakpoints. Specifically, the monitor and debugger rou
tine polls the serial communications controller 94 for input
codes arriving via the serial communications link 107.
Responsive to the Clear Breakpoint command being
received via the serial communications link 107, the monitor
and debugger routine causes the 486 CPU 40 to reset the
applicable control bit(s) in the debug control registers of the
CPU 40, thereby disabling all of the 486 debug address
registers, effectively clearing the breakpoint(s) at those
address(es). Finally, the monitor and debugger routine trans
mits a new cursor character to the Serial communications
controller 94 for transmission to the external communica
tions device 106 via the serial communications link 107.

Responsive to the Go command, G, being transmitted to
the monitor and debugger module from the external com
munications device 106 via the serial communications link
107, the monitor and debugger routine begins execution of
the code on the CPU 40 at the next instruction. Specifically,
the monitor and debugger routine polls the Serial commu
nications controller 94 for input codes arriving via the serial
communications link 107. Responsive to the Go command
being received via the serial communications link 107, the
monitor and debugger routine causes the CPU 40 to begin

15

25

35

40

45

50

55

60

65

12
execution of the code Starting at the instruction in the code
segment (CS) pointed to by the instruction pointer (EIP)
before the debug exception occurred by executing an IRET
instruction, thereby returning from the debug exception.

After a Go command is acted upon, the CPU 40 will
execute the code indefinitely, until either an instruction
breakpoint fault occurs or a data-breakpoint trap occurs. AS
Stated above, if either breakpoint is triggered, then execution
control is transferred back to the monitor and debugger
routine, which transmits a new cursor character to the Serial
communications controller 94 for transmission to the exter
nal communications device 106 via the Serial communica
tions link 107.
The monitor and debugger routine also responds to a Go

After Setting Breakpoints command, G <ADDR2 or G
<ADDR> <ADDR2. Responsive to the Go After Setting
Breakpoints being transmitted to the monitor and debugger
module from the external communications device 106 via
the serial communications link 107, the monitor and debug
ger routine Sets one or two instruction-breakpoints and
begins execution of the code on the CPU 40 at the next
instruction. Specifically, the monitor and debugger routine
polls the serial communications controller 94 for input codes
arriving via the serial communications link 107. Responsive
to the Go After Setting Breakpoints command being
received via the serial communications link 107, the monitor
and debugger routine causes the CPU 40 to (1) write the
desired breakpoint address(es) to one of the 486 debug
address registers, thereby Setting a breakpoint at the address
(es), which generate an instruction-breakpoint fault before
the instruction located at that address and (2) begin execu
tion of the code Starting at the instruction in the code
segment (CS) pointed to by the instruction pointer (EIP)
before the debug exception occurred by executing an IRET
instruction, thereby returning from the debug exception.
As with the Go command, after a Go After Setting

Breakpoints command is acted upon, the CPU 40 will
execute the code indefinitely, until either an instruction
breakpoint fault occurs or a data-breakpoint trap occurs. AS
Stated above, if either breakpoint is triggered, then execution
control is transferred back to the monitor and debugger
routine, which transmits a new cursor character to the Serial
communications controller 94 for transmission to the exter
nal communications device 106 via the Serial communica
tions link 107.

Responsive to the Input from I/O Port command, I <ports,
being transmitted to the monitor and debugger module from
the external communications device 106 via the serial com
munications link 107, the monitor and debugger routine
causes the external communications device to display the
data byte located at the desired I/O port. Specifically, the
monitor and debugger routine polls the Serial communica
tions controller 94 for input codes arriving via the serial
communications link 107. The i86 family of processors do
not have memory-mapped I/O, rather, the I/O Space lies
parallel to the address Space using the lower 64 kilobytes of
the address lines. Thus, I/O ports must be accessed differ
ently than memory. Responsive to the Input from I/O Port
command being received via the Serial communications link
107, the monitor and debugger routine (1) causes the CPU
40 to read the data byte at that particular I/O port, (2) formats
the I/O port data into a format suitable for display on the

5,850,562
13

external communications device, and (3) transmits the for
matted I/O port data and a new cursor to the Serial commu
nications controller 94 for transmission to the external
communications device 106 via the Serial communications
link 107.

Responsive to the Modify Memory command, <ADDR2 =
<Value(s)>, being transmitted to the monitor and debugger
module from the external communications device 106 via
the serial communications link 107, the monitor and debug
ger routine causes the CPU 40 to modify the data located at

14
external communications device, and (3) transmits the for
matted register data and a new cursor to the Serial commu
nications controller 94 for transmission to the external
communications device 106 via the Serial communications
link 107.

For example, assuming that the registers have the values
as indicated below, the monitor and debugger routine would
transmit with the Serial controller 94 a signal corresponding
to the following display:

EAX=OOOO1234 EBX-OOOOOOOO ECX-OOOOOOOO EDX-OOOOOOOOES-OOOOOOOO ED-OOOOOOOO
EBP-OOOOOOOO SS-OOOO ESP-OOOOOOOOSS:SP-OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
DS-12OOES-2OOO FS-OOOO GS-OOOO FIL-OOOOOOOO - OVF INC EI-POS ZR - CY
CS-08OO EP-OOOOO453 CSIP-OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

the desired region of memory. Specifically, the monitor and
debugger routine polls the Serial communications controller
94 for input codes arriving via the Serial communications
link 107. Responsive to the Modify Memory command
being received via the serial communications link 107, the
monitor and debugger routine causes the CPU 40 to (1)
format the memory data into a format suitable to be written
to memory, (2) writes the formatted data to the particular
area of memory, and (3) transmits a new cursor to the serial
communications controller 94 for transmission to the exter
nal communications device 106 via the Serial communica
tions link 107.

Responsive to the Output to I/O Port command, O
<port>=<byte valued, being transmitted to the monitor and
debugger module from the external communications device
106 via the serial communications link 107, the monitor and
debugger routine causes the external communications
device to write the byte value to the desired I/O port.
Specifically, the monitor and debugger routine polls the
Serial communications controller 94 for input codes arriving
via the serial communications link 107. The i86 family of
processors do not have memory-mapped I/O, rather, the I/O
Space lies parallel to the address Space using the lower 64
kilobytes of the address lines. Thus, I/O ports must be
accessed differently than memory. Responsive to the Input
from I/O Port command being received via the serial com
munications link 107, the monitor and debugger routine
causes the CPU 40 to (1) format the byte value into a format
suitable for writing to the I/O port, (2) write the data byte to
that particular I/O port, and (3) transmit a new cursor to the
serial communications controller 94 for transmission to the
external communications device 106 via the Serial commu
nications link 107.

Responsive to the Display All Registers command, R,
being transmitted to the monitor and debugger module from
the external communications device 106 via the serial com
munications link 107, the monitor and debugger routine
causes the external communications device to display the
data located in all the registers. Specifically, the monitor and
debugger routine polls the Serial communications controller
94 for input codes arriving via the Serial communications
link 107. Responsive to the Display All Registers command
being received via the serial communications link 107, the
monitor and debugger routine (1) causes the CPU 40 to read
the value stored in each register of the CPU 40, (2) formats
the register data into a format Suitable for display on the

25

35

40

45

50

55

60

65

followed by another cursor.
Responsive to the Modify Register command, R <register

name>=<Valued, being transmitted to the monitor and
debugger module from the external communications device
106 via the serial communications link 107, the monitor and
debugger routine causes the CPU 40 to modify the data
located at the desired region of memory. Specifically, the
monitor and debugger routine polls the Serial communica
tions controller 94 for input codes arriving via the serial
communications link 107. Responsive to the Modify Reg
ister command being received via the Serial communications
link 107, the monitor and debugger routine causes the CPU
40 to (1) format the value into a formatsuitable to be written
to the specified register, (2) writes the formatted data to the
particular register, and (3) transmits a new cursor to the
serial communications controller 94 for transmission to the
external communications device 106 via the Serial commu
nications link 107.

Responsive to the Trace command, T, being transmitted to
the monitor and debugger module from the external com
munications device 106 via the serial communications link
107, the monitor and debugger routine causes the CPU 40 to
execute a single instruction and causes the external com
munications device to display the data located in all the
registers. Specifically, the monitor and debugger routine
polls the serial communications controller 94 for input codes
arriving via the serial communications link 107. Responsive
to the Trace command being received via the Serial com
munications link 107, the monitor and debugger routine
causes the CPU 40 to set a trap flag in the flags register of
the CPU 50 and begin execution of the code starting at the
instruction in the code segment (CS) pointed to by the
instruction pointer (EIP) before the debug exception
occurred by executing an IRET instruction, thereby return
ing from the debug exception.

Because the trap flag in the flags register of the 486 CPU
50 is set, after a Trace command is acted upon, the CPU 40
will execute only the next code instruction. Then a debug
exception occurs and execution control is transferred back to
the monitor and debugger routine, which performs the tasks
asSociated with the Display Registers command, above, and
transmits a new cursor character to the Serial communica
tions controller 94 for transmission to the external commu
nications device 106 via the serial communications link 107.
Using the monitor and debugger routine of the present

invention is fairly straightforward. The user writes the code
to be tested and debugged. The PROM is programmed. The
monitor and debugger routine and any invoking routine(s)
are included in the routines programmed into the PROM.

5,850,562
15

Preferably, the circuitry needed to program the PROM is
present on the motherboard. The System is then powered-up.
At this point, either (1) the monitor and debugger routine is
invoked first and used to determine if the target code
functions properly or (2) the target code is executed, the
actual results of its execution are compared to the expected
results of its execution, and if the actual results differ from
the expected results, then the monitor and debugger routine
is invoked to determine the cause of the difference. In either
case, thereafter, the target code is modified and the cycle
Starts again.

The monitor and debugger routine of the present inven
tion is particularly useful for debugging POST, BIOS, SMM,
and OS code used on motherboards for complete Systems.
Such a motherboard might have, in addition to the CPU,
PROM, RAM, memory controller, and communications
controller, a video controller and a keyboard controller with
an associated video display terminal and keyboard attached
thereto. The user can (1) use the keyboard 12 and the display
11 of the target system to interact with and determine if the
target System is functioning correctly by comparing the
actual results of the executed target code to the expected
results and, if the actual results differ from the expected
results, (2) invoke the monitor and debugger routine and use
the keyboard 106b and display 106a of the external com
munications and display device 106 to interact with the
monitor and debugger routine, thereby debugging the target
System. Again, because it uses So little of the System
hardware, the monitor and debugger routine can be used to
debug code without requiring or interfering with the opera
tion of the POST, BIOS, SMM, and OS code.
To use the monitor and debugger routine, it must be

loaded into memory and have control over the execution of
the CPU code. As described in text accompanying FIGS. 4
and 5, the execution control can be passed to the monitor and
debugger routine responsive to the Debugger Flag being
SET. However, to use this embodiment, the Debugger Flag
must be SET in the CMOS nonvolatile RAM, as explained
above. It is possible to set this bit in several ways. For
example, the POST routine can set the bit very soon after the
code Starts executing at the address indicated by the Reset
Vector. Then, each time the System restarts, the debugger
will be invoked. From there, the debugger can either be
exited by Simply issuing the Go command with no break
points set, or utilized to debug the system. Since, the POST
code and BIOS code are located in the PROM 88, any
modifications to that code can be accompanied by code
setting that bit and placed in the new ROM.
AS another example, a simple program can be written to

set the bit in the CMOS nonvolatile memory. If the system
is not too corrupt, the user can execute that program from the
operating System, thereby Setting the bit, and restart the
System, thereby invoking the monitor and debugger program
of the present invention.

In the alternative, methods other than Setting and testing
the Debugger Flag in CMOS nonvolatile memory can be
used to activate the monitor and debugger routine.
Specifically, a particular piece of code other than the POST
can invoke the monitor and debugger routine. For example,
the Suspend/resume code can be modified to call the monitor
and debugger routine before or after the System State is Saved
or before or after the System State is restored.
As another example, a routine in the POST can use the

Status of the communications link to determine whether or
not to activate the monitor and debugger routine.
Specifically, in the embodiments of FIGS. 4 and 5, instead
of checking the Status of the Debugger Flag at StepS 112 and

15

25

35

40

45

50

55

60

65

16
124, after the serial communications controller 94 is initial
ized the POST can use the serial communications controller
94 to test the condition of the data set ready (DSR) and the
clear to send (CTS) lines of the RS-232C serial communi
cations link 107. If the status of the DSR and CTS lines
indicate the presence of an external communications device
106 that is ready to communicate, then the routine can pass
execution control to the monitor and debugger routine.
Invoking the monitor and debugger routine in this example
is particularly Straightforward. If the monitor and debugger
routine is not needed, then the external communications and
display device 106 is disconnected from the serial commu
nications controller 94 (by, e.g., either physically discon
necting the two by unplugging the Serial link connector or
logically disconnecting the two by removing either the DSR
signal, the CTS signal, or both) before the system is
restarted. AS the System restarts, the absence of proper levels
at either DSR, CTS, or both DSR and CTS is detected and
the monitor and debugger routine is not invoked. On the
other hand, if the monitor and debugger routine is needed,
then the external communications and display device 106 is
connected to the serial communications controller with DSR
and CTS at proper levels and the system is restarted. As the
System restarts, the Serial communications controller 94
detects proper levels at both DSR and CTS and execution
control is passed to the monitor and debugger routine.

It is readily apparent that the technique described in the
paragraph immediately above would preferably not be used
for Systems in which the monitor and debugger routine
remains in Systems Sold to the general public. Rather, that
technique would most likely be used internally for designers
and that routine would not be linked into the final commer
cial System. In the alternative, the Debugger Flag can be
combined with the DTR and CTS status check Such that if
the Debugger Flag is set and the DTR and CTS lines indicate
that an external communications device is connected and
ready to communicate, then the monitor and debugger
routine is invoked. Using this alternative, the routines could
be linked into a System for use by the general public.

Once the monitor and debugger program is active, it can
be used by the user to facilitate the debugging and design of
the code. The actual Sequence of commands will depend on
the particular habits of the user; however, a typical Session
might include: (1) setting a data-breakpoint or two in the
code being developed using the Set Memory Breakpoints
command, (2) Setting an instruction-breakpoint or two and
Starting execution of the code with the Go After Setting
Breakpoints command, (3) waiting for a breakpoint, (4)
examining relevant memory and registers using the Display
Memory and Display All Registers commands (comparing
the displayed results with the expected results), (5) Stepping
through the code using the Trace command (comparing the
displayed results with the expected results), (6) making
modifications to the code being developed responsive to the
comparison of the displayed results to the expected results,
and (7) restarting the System again, thereby beginning the
cycle again.
While the present invention has been illustrated by the

description of embodiments thereof, and while the embodi
ments have been described in considerable detail, it is not
the intention of the applicant to restrict or in any way limit
the Scope of the appended claims to Such detail. For
example, although the embodiment described above is
designed around a 486 microprocessor, the monitor and
debugger routine can be used to facilitate the design, testing,
and revision of many different types of motherboards, Such
as those based on CPUs manufactured by Motorola Inc.,

5,850,562
17

Advanced Micro Devices, etc. AS another example, the
terminal program executing on the external communications
and display device can be modified to provide disassembly
of instructions (by adding a routine to convert machine
readable instructions and operands into their associated
ASCII mnemonics and ASCII operands) and to provide a
Symbolic debugging front end (by adding a routine to use the
map file from the linker to translate symbols to absolute
addresses, which are Sent to the monitor and debugger
routine via the Serial link). Additional advantages and modi
fications will readily appear to those skilled in the art.
Therefore, the invention in its broader aspects is not limited
to the Specific details, representative apparatus and method,
and illustrative examples shown and described. Accordingly,
departures may be made from Such details without departing
from the Spirit or Scope of the applicant's general inventive
concept.
We claim:
1. A computer System comprising:
(A) a central processing unit (CPU) having registers

asSociated there with and functioning for executing
code including an operating System;

(B) a programmable read-only memory (PROM) in circuit
communication with Said CPU and containing code
(PROM code) executable on said CPU and which is
other than operating System code;

(C) a random access memory (RAM) in circuit commu
nication with said CPU;

(D) a memory controller in circuit communication with
said CPU and configured to interface between said
CPU and said RAM;

(E) a video controller in circuit communication with said
CPU and configured to generate Signals corresponding
to a Visual image corresponding to data within a Video
memory;

(F) a keyboard controller in circuit communication with
said CPU and configured to interface between said
CPU and a keyboard;

(G) a communications controller in circuit communica
tion with said CPU and configured to interface between
said CPU and a communications bus;

(H) a basic input and output module Stored within Said
PROM and configured to interface between code
executing on Said CPU and Said memory controller,
Said communications controller, Said video controller,
and Said keyboard controller, and

(I) a monitor and debugger module Stored within said
PROM, in circuit communication with an external
communications device via a communications link,
Said monitor and debugger module being configured to:
(1) execute on said CPU prior to the operating System

being loaded into said RAM and before the execu
tion of the operating System,

(2) receive monitor commands from said external com
munications device,

(3) receive debugger commands from said external
communications device,

(4) respond to a first monitor command being trans
mitted by the external communications device by
transmitting to Said external communications device
a signal corresponding to the then current State of the
registers of said CPU,

(5) respond to a second monitor command being trans
mitted by the external communications device by
modifying the state of the registers of said CPU,

(6) respond to a third monitor command being trans
mitted by the external communications device by

15

25

35

40

45

50

55

60

65

18
transmitting to the external communications device a
Signal corresponding to the then current State of at
least one memory location,

(7) respond to a fourth monitor command being trans
mitted by the external communications device by
modifying the State of at least one memory location,

(8) respond to a first debugger command being trans
mitted by the external communications device by
Setting at least one breakpoint corresponding to at
least one particular location in Said RAM,

(9) respond to a second debugger command being
transmitted by the external communications device
by clearing at least one breakpoint corresponding to
at least one particular location in Said RAM,

(10) respond to a third debugger command being
transmitted by the external communications device
by starting the execution of PROM code by said
CPU at a particular code instruction,

(11) respond to the executing PROM code accessing a
portion of Said RAM corresponding to a breakpoint
by ceasing the execution of PROM code by said
CPU,

(12) respond to the executing PROM code executing
from a portion of Said RAM corresponding to a
breakpoint by ceasing the execution of PROM code
by said CPU, and

(13) respond to a fourth debugger command being
transmitted by the external communication device by
causing said CPU to execute a single PROM code
instruction and transmit to Said external communi
cations device a signal corresponding to the then
current state of the registers of said CPU.

2. A computer System according to claim 1 further com
prising:

(a) an interrupt controller in circuit communication with
said CPU and configured to interface interrupts to said
CPU; and

(b) a peripheral bus bridge in circuit communication with
said CPU and configured to interface between said
CPU and a peripheral bus; and

(l) wherein said communications controller is a Serial
communications controller, Said communications link
is a Serial communications link, and Said monitor and
debugger module is in circuit communication with Said
external communications device via Said Serial com
munications link, and

(c) wherein said basic input and output module stored
within said PROM is configured to interface between
code executing on Said CPU and Said memory
controller, Said Video controller, Said communications
controller, Said interrupt controller, and Said keyboard
controller.

3. A computer System according to claim 2 further com
prising:

(a) a parallel communications controller in circuit com
munication with said CPU and configured to interface
between said CPU and a parallel communications bus;

(b) a fixed diskette drive;
(c) fixed diskette drive controller in circuit communica

tion with said CPU and configured to interface between
said CPU and said fixed diskette drive;

(d) a flexible diskette drive; and
(e) flexible diskette drive controller in circuit communi

cation with said CPU and configured to interface
between said CPU and said flexible diskette drive; and

wherein Said basic input and output module Stored within
said PROM is configured to interface between code

5,850,562
19

executing on Said CPU and Said memory controller,
Said Video controller, Said Serial communications
controller, Said parallel communications controller,
Said interrupt controller, Said keyboard controller, Said
flexible diskette controller, and said fixed diskette con
troller.

4. A computer System according to claim 1 wherein Said
communications controller is a Serial communications
controller, Said communications link is a Serial communi
cations link, and Said monitor and debugger module is in
circuit communication with Said external communications
device via Said Serial communications link along an electri
cally conductive tether.

5. A computer System according to claim 1 further com
prising a power-on self-test module stored in said PROM,
configured to detect the presence of a predetermined number
of Said controllers, and further configured to initialize a
predetermined number of Said controllers, and wherein Said
monitor and debugger module begins execution after said
power-on Self-test module begins execution but before Said
power-on Self-test module completes execution.

6. A computer System according to claim 1 further com
prising:

a power-on self-test module stored in said PROM, con
figured to detect the presence of a first predetermined
number of Said controllers, and further configured to
initialize a Second predetermined number of Said con
trollers, and

a nonvolatile memory in circuit communication with Said
CPU having at least one location capable of being
written to and read by said CPU, said location having
at least a first State and a Second State; and

wherein Said monitor and debugger module responds to
Said nonvolatile memory location being in Said first
State by beginning execution after Said power-on Self
test module begins execution but before Said power-on
Self-test module completes execution; and

wherein Said power-on Self-test module responds to Said
nonvolatile memory location being in Said first State by
executing without causing the execution of Said moni
tor and debugger module.

7. A method of communicating between a computer
System and a communications device external to the com
puter System, the computer System having (i) a central
processing unit (CPU) having registers associated there with
and capable of executing code including an operating
system, (ii) a programmable read-only memory (PROM) in
circuit communication with the CPU and containing code
(PROM code) executable on the CPU, (iii) a random access
memory (RAM) in circuit communication with the CPU,
(iv) a memory controller in circuit communication with the
CPU and configured to interface between the CPU and the
RAM, (v) a video controller in circuit communication with
the CPU and configured to generate Signals corresponding to
a visual image corresponding to data within a Video memory,
(vi) a communications controller in circuit communication
with the CPU and configured to interface between the CPU
and a communications bus, and (vii) a keyboard controller
in circuit communication with the CPU and configured to
interface between the CPU and a keyboard, comprising the
Steps of:

initializing the communications controller to provide a
communications link between the external communi
cations device and the computer System;

starting execution of a PROM code monitor and debugger
module,

15

25

35

40

45

50

55

60

65

20
transmitting a first monitor command to the monitor and

debugger module from the external communications
device via the communications link,

responding to the first monitor command by transmitting
to the external communications device from the moni
tor and debugger module Via the communications link
a signal corresponding to the then current State of the
registers of the CPU;

transmitting a Second monitor command to the monitor
and debugger module from the external communica
tions device via the communications link,

responding to the Second monitor command by modifying
the current state of the registers of the CPU;

transmitting a third monitor command to the monitor and
debugger module from the external communications
device via the communications link,

responding to the third monitor command by transmitting
to the external communications device from the moni
tor and debugger module Via the communications link
a signal corresponding to the then current State of at
least one memory location;

transmitting a fourth monitor command to the monitor
and debugger module from the external communica
tions device via the communications link,

responding to the fourth monitor command by modifying
the State of at least one memory location;

transmitting a first debugger command to the monitor and
debugger module from the external communications
device via the communications link,

responding to the first debugger command by Setting at
least one breakpoint corresponding to at least one
particular location in the RAM;

transmitting a Second debugger command to the monitor
and debugger module from the external communica
tions device via the communications link,

responding to the Second debugger command by clearing
at least one breakpoint corresponding to at least one
particular location in the RAM;

transmitting a third debugger command to the monitor
and debugger module from the external communica
tions device via the communications link,

responding to the third debugger command by Starting the
execution of PROM code by the CPU at a particular
code instruction;

responding to the executing PROM code accessing a
portion of the RAM corresponding to a breakpoint by
ceasing the execution of PROM code by the CPU;

responding to the executing PROM code executing from
a portion of the RAM corresponding to a breakpoint by
ceasing the execution of code by the CPU,

transmitting a fourth debugger command to the monitor
and debugger module from the external communica
tions device via the communications link, and

responding to the fourth debugger command by causing
the CPU to execute a Single code instruction and
transmitting to the external communications device via
the communications link a Signal corresponding to the
then current state of the registers of the CPU.

8. A method of communicating between a computer
System and a communications device external to the com
puter System as described in claim 7 further comprising the
Step of loading an operating System into memory and
wherein the monitor and debugger routine is characterized
by being capable of execution without an operating System

5,850,562
21

being present in memory, and Said Step of Starting execution
of a monitor and debugger module is performed before Said
Step of loading the operating System into the RAM.

9. A method of communicating between a computer
System and a communications device external to the com
puter System as described in claim 7 wherein Said computer
System further comprises a power-on Self-test module con
figured to detect the presence of a first predetermined
number of Said controllers, and further configured to initial
ize a Second predetermined number of Said controllers, and 10
Said Step of Starting execution of a monitor and debugger
module is performed after Said power-on Self-test module
begins execution but before said power-on Self-test module
completes execution.

10. A method of communicating between a computer 15
System and a communications device external to the com

22
puter System as described in claim 7 wherein Said Step of
Starting execution of a monitor and debugger module com
prises the Steps of

(a) testing the status of at least one line of Said commu
nications link to determine if the external communica
tions device is connected to the computer System and
ready to transceive data; and

(b) responsive to the status of the at least one line of Said
communications link indicating that the external com
munications device is connected to the computer Sys
tem and ready to transceive data, causing the execution
of the monitor and debugger routine.

