T-79-07-10 **VA706** HIGH-SPEED, FAST-SETTLING PRECISION OPERATIONAL **AMPLIFIER** ## **FEATURES** - Fast Settling Time: ±0.1% in 200ns - High Slew Rate: 42V/µs - · Wide Gain Bandwidth: 25MHz - Ease of Use: Internally Compensated, Unity Gain Stable at CL = 50pF - Large Output Current: ±50mA - Low Supply Voltage Operation: ±4V Wide Input Voltage Range: Within 1.5V of V+ and 0.5V of V- - Short Circuit Protection ## DESCRIPTION The VA706 is a high-speed general purpose monolithic operational amplifier useful for signal frequencies extending into the video range. The same processing innovations which permit the high speed also allow very high output currents capable of driving large capacitive loads at high speeds. The high open-loop voltage gain of 5000V/V and high slew rate of 40V/µs make the VA706 ideal for analog amplification and processing of high-speed signals. The VA706 is internally compensated for stable operation when driving capacitive loads up to 500pF. The wide gain bandwidth of 25MHz and 40V/µs slew rate results in ±0.1% settling times of 200ns, which makes the amplifier ideal for fast data conversion systems. The high output current capability of ±50mA allows the amplifler to drive terminated transmission lines of 50Ω with amplitudes of 5V peak to peak. Along with the high speed and output drive capability, a 25nA offset current and trimmable offset voltage make the VA706 usable for signal conditioning applications where accuracy must be maintained. | ABSOLUTE MAXIMUM RATINGS | | |--|------------| | Supply Voltages | ±6V | | Differential Input Voltage | ±9V | | Common Mode Input Voltage | /SI -0.5V | | Power Dissipation (Note 1) | 450mW | | Output Short Circuit Current Duration (Note 2) | Indefinite | | Operating Temperature Range: | | | Operating Temperature Hange: | | |---|--------------| | Commercial (706 J, K) | …0°to 70°C | | Storage Temperature Range6 | 5° to +150°C | | Lead Temperature (Soldering to 60 Sec.) | 300℃ | | | | Note 1: Power derating above TA = 70°C to be based on a maximum junction temperature of 150°C and the following thermal resistance factors: Note 2: Continuous short circuit protection is allowed to the following case and ambient temperatures: | _ | θ _{JC} (°C/W) | | T _C (°C) | T _A (°C) | |------|------------------------|-----|---------------------|---------------------| | DIP | 75 | 180 | 110 | 70 | | SOIC | 115 | 180 | 95 | 70 | ## CONNECTION DIAGRAM 8-Lead Dual In-Line/SOIC Package 8 NC Balance 1 7 V+ IN- 2 6 Out IN+ 3 v- 4 5 Balance Top View # SIMPLIFIED SCHEMATIC # PACKAGE TYPES AVAILABLE - 8-Pin Plastic DIP - 8-Pin CERDIP - 8-Pin SOIC V T C INC VA706 T-79-07-10 **ELECTRICAL CHARACTERISTICS** (V_S = $\pm5V$, T_A = 25° C unless otherwise stated) | | | | VA706J | | | VA706K | | | | |--------------------------------------|--------------------------------|---|----------|--------------|------|----------|--------------|------|-------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Input Offset Voltage | Vos | | | 8 | 20 | | 4 | 10 | mV | | T _{Min to} T _{Max} | | 0°≤T _A ≤70°C | | 11 | 28 | | 6 | 16 | ,, | | Average Offset Voltage Drift | ΔV _{OS} /ΔΤ | 0° ≤T _A ≤70°C | | 20 | | | 20 | | μV/°C | | Input Blas Current | IB | | | 650 | 1100 | | 650 | 1100 | nA | | Input Offset Current | los | | | 35 | 120 | | 35 | 120 | nA | | TMIn to TMax | | °≤T _A ≤70°C | | 70 | 200 | | 70 | 200 | | | Input Common Mode Range | V _{CM} | | +3
⊹4 | +3.5
-4.5 | | +3
-4 | +3.5
-4.5 | | ٧ | | Differential Input Resistance | R _{IND} | (Note 1) | 3 | 10 | | 3 | 10 | | MΩ | | Common Mode Input
Resistance | R _{INC} | (Note 1) | 4 | 8 | | 4 | 8 | | МΩ | | Differential Input Capacitance | CIND | (Note 1) | | 2 | | | | | ρF | | Common Mode Input
Capacitance | CINC | (Note 1) | | 3 | | | 3 | | pF | | Input Voltage Noise | e _N | BW=10Hz to 100KHz | | 12 | | | 12 | | μVRM | | Open Loop Voltage Gain | A _V | V _{OUT} =±3V
R _L =2kΩ | 1 | 5 | | 2 | 5 | | V/mV | | | Vout | R _L =2kΩ | ±3.5 | +4
-4.2 | | ±3.5 | +4
-4.2 | | | | Output Voltage Swing | | R _L =51Ω | ±2.0 | ±2.4 | | ±2.5 | ±2.7 | | ٧ | | Power Supply Current | Is | | | 7 | 10 | | 7 | 10 | mA | | Common Mode Rejection Ratio | CMRR | V _{CM} =±2V | 60 | 70 | | 60 | 70 | | dB | | Power Supply Rejection Ratio | PSRR | ΔVpS =±0.5V | 60 | 66 | | 60 | 66 | | dB | | Slew Rate | SR | 10-90%of
Leading Edge
(Figure 1) | 30 | 42 | | 30 | 42 | | V/µs | | Settling Time | t _S | To ±0.1%(±4mV)
of Final Value
(Figure 1) (Note 1) | | 200 | 250 | | 200 | 250 | ns | | Gain Bandwidth Product | GBW | | | 25 | | | 25 | | MHz | | Small Signal Rise/Fall Time | t _r /t _f | e _O = ±50mV
10-90%
(Figure 1) | | 7 | | | 7 | | ns | | Full Power Bandwidth | BWFP | R _L = 2kΩ
C _L = 50pF
V _{OUT} = 6Vp-p | | 2.2 | | | 2.2 | | MHz | Notes: 1. Not tested, guaranteed by design. # T-79-07-10 ## **DIE INFORMATION** | WAFER TEST LIMITS | | | | | | | |--|-----------------|--|----------|----------|--|--| | V _S = ±5V, T _A = 25° C unless otherwise stated | | | | | | | | PARAMETER | SYM | CONDITIONS | VA706XS | UNITS | | | | Input Offset
Voltage | Vos | | 20 | mV Max | | | | Input Blas
Current | lΒ | | 1000 | nA Max | | | | Input Offset
Current | los | | 50 | nA Max | | | | Input Common
Mode Range | V _{СМ} | | +3
-4 | V Min | | | | Open Loop
Voltage Gain | Av | V _{OUT} =±3V
R _L = 2k | 2 | V/mV Min | | | | Output | Vaux | RL = 2kΩ | ±3.5 | V Min | | | | Voltage Swing | VOUT | R _L = 51 Ω | ±2.5 | A MILL | | | | Power Supply
Current | Is | | 10 | mA Max | | | | Common Mode
Rejection Ratio | CMRR | V _{CM} ≂±2V | 60 | dB Min | | | | Power Supply
Rejection Ratio | PSRR | $\Delta V_{PS} = \pm 0.5 V$ | 60 | dB Min | | | | Slew Rate | SR | 10-90% of
Leading Edge
(Figure 1a,b) | 30 | V/µs Min | | | | TYPICAL ELECTRICAL CHARACTERISTICS | | | | | | | |--|-------|---|--------------------|-------|--|--| | V _S = ±5V, T _A = 25° C unless otherwise stated | | | | | | | | PARAMETER | SYM | CONDITIONS | VA706XS
TYPICAL | UNITS | | | | Input Offset
Voltage
T _{Min} to T _{Max} | Vos | | 30 | mV | | | | Input Offset
Current
TMin to TMax | los | | 75 | nA | | | | Settling Time | ts | To ±0.1% of
Final Value
(Figure 1a,b) | 200 | ns | | | | Gain Bandwidth
Product | GBW | | 25 | MHz | | | | Small Signal
Rise/Fall Time | tr/tf | eo=±50mV
10-90%
(Figure 1c) | 7 | ns | | | | Full Power
Bandwidth | BWFP | R _L = 2k Ω
C _L = 50pf
VOUT= 6V p- | 2.2 | MHz | | | ## **DICE POLICY** # **Electrical Characteristics** Each die is electrically tested to the commercial or military grade DC parameters to guard band limits at 25°C to guarantee operation over the full temperature range. Quality Assurance All dice are 100% visually inspected to the requirement of MIL-STD-883C, Method 2010.2, Condition 3. All dice are glass passivated with only the bonding pads exposed to provide scratch protection. All dice are provided with gold backing. # Shipping Packages/Order Information All dice are packaged in die crates with individual compartments which prevent damage to the die during shipping. The Individual cavity size of the die crate is such that maximum rotation of the die within the cavity is < 45°. Minimum order for dice is 100, supplied only in multiples of Die size = 0.035 x 0.035 inch (1225 sq. mils) 0.89 x 0.89 mm (0.79 sq. mm) Shipped in die crates. T-79-07-10 Figure 1: Slew Rate and Settling Time Test Circuit T-79-07-10 TYPICAL PERFORMANCE CHARACTERISTICS ($V_S = \pm 5V$, $T_A = 25^{\circ}$ C unless otherwise stated) T-79-07-10 **VA706** TYPICAL PERFORMANCE CHARACTERISTICS (VS= ±5V, TA = 25° C unless otherwise stated) Maximum Output Voltage Swing vs Load Resistance Maximum Output Voltage Swing vs Temperature Short Circuit Output Current vs Temperature **Equivalent Input Noise vs Bandwidth** 36 V T-79-07-10 TYPICAL PERFORMANCE CHARACTERISTICS ($V_S = \pm 5V$, $T_A = 25^{\circ}$ C unless otherwise stated) Open Loop Freq. Response, R_L= 50Ω , C_L= 50pF Open Loop Freq. Response, \mathbf{R}_{L} = 2K Ω , \mathbf{Q}_{L} = 50pF Zero dB Phase Margin and Zero dB Freq. vs Temp. Gain Margin and 180 Degree Freq. vs Temp. ## APPLICATION INFORMATION ### **AC Characteristics** The 28MHz 0dB crossover point of the VA706 is achieved without feed-forward compensation, a technique which can produce long tails in the recovery characteristic. The single pole rolloff follows the classic 20dB/decade slope to frequencies approaching 50MHz. The phase margin of 58°, even with a capacitive load of 50pF, gives stable and predictable performance down to unity gain follower configurations. At frequencies beyond 50MHz, the 20dB/decade slope is disturbed by an output stage zero, the damping factor of which is dependent upon the load capacitor. This results in loss of gain margin (gain at loop phase = 360°) at frequencies of 70 to 100MHz which at a gain margin of 5dB (RL = 2k, CL = 50pF) results in a 10dB peak in the unity gain follower closed loop characteristic (Figure 2). Figure 2 shows a blow up of the open loop characteristics in the 10MHz to 200MHz frequency range as well as the corresponding unity gain follower characteristics at similar load conditions. It is seen that the output stage zero results in bandwidth extension beyond the 28MHz, 0dB crossover point. In fact, with the proper choice of the RLCL load, the unity gain follower can be "tweaked" to give flat small signal response to 100MHz. Figure 3 shows corresponding time domain response for a small signal step. As expected there is a strong 80MHz ring for RL = $2k\Omega$, CL = 50pF which disappears at RL = 50Ω , CL=5pF. Offset Voltage Nulling The configuration of Figure 4 will give a typical VOS nulling range of ±15mV. If a smaller adjustment range is desired, resistor values R1 = R2 can be increased accordingly. For example, at R1 = 3.6k Ω , the adjustment range is ±5mV. Since pins 1 and 5 are not part of the signal path. AC characteristics are left undisturbed. # T-79-07-10 Layout Considerations As with any high-speed wideband amplifier, certain layout considerations are necessary to ensure stable operation. All connections to the amplifier should be kept as short as possible, and the power supplies bypassed with 0.1µF capacitors to signal ground. It is suggested that a ground plane be considered as the best method for ensuring stability because it minimizes stray inductance and unwanted coupling in the ground signal paths. To minimize capacitive effects, resistor values should be kept as small as possible, consistent with the application. Figure 4: Vos Nulling Method # T-79-07-10 Figure 2: Unity Gain Follower Frequency Characteristics Figure 3: Unity Gain Follower Step Response