
ICE-86ATM 
iAPX 86 IN-CIRCUIT EMULATOR 

• Real-Time In-Circuit Emulation of iAPX 
86 Microsystems 

• Emulate Both Minimum and Maximum 
Modes of 8086 CPU 

• Full Symbolic Debugging 
• Breakpoints to Halt Emulation on a 

Wide Variety of Conditions 
• Comprehensive Trace of Program 

Execution 

• Disassembly of Trace or Program 
Memory from Object Code into 
Assembler Mnemonics 

• Software Debugging With or Without 
User System 

• Handles Full 1 Megabyte 
Addressability of iAPX 86 

• Enhance Existing ICE-86 ™ Emulators 
to ICE-86A ™ Capabilities with 
ICE-86U™ Upgrade Package 

The Intel® ICE-86A In-Circuit Emulator provides sophisticated hardware and software debugging capabilities 
foriAPX 86 microsystems and iAPX 86 Single-Board Computers. These capabilities include In-Circuit Emula­
tion for the 8086 Central Processing Unit plus extensions to debug systems including the 80891/0 Processor 
and 8087 Numeric Processor Extension. The emulator includes three circuit boards which reside in any 
Intellec® Microcomputer Development System. A cable and buffer box connect the Intel/ec system to the user 
system by replacing the user's 8086, thus extending powerful Intellec system debugging functions into the 
user system. Using the ICE-86A module, the designer can execute prototype 8086 or 8089 software in 
continuous or single-step modes and can SUbstitute blocks of Intellec system memory for user equivalents. 
Breakpoints allow the user to stop emulation on user-specified conditions of the iAPX 86 system, and the trace 
capability gives a detailed history of the program execution prior to the break. All user access to the prototype 
system software may be done symbolically by referring to the source program variables and labels. 

The ICE-86U In-Circuit Emulator upgrade package converts any existing ICE-86 module (non-A version) to the 
capabilities of an ICE-86A module. 

The following are trademarks of Intel Corporation and its affiliates and may be used only to products: , 
tnsite, iRMX, System 2000, CREDIT, iRMXlSO, MULTIBUS, PROMPT, Promware, Megachassis, Library Manager, MAIN 
iCS and a numerical suffix. © INTEL CORPORATION. 1981. 

16-35 



ICE-86A™ IN-CIRCUIT EMULATOR 

INTEGRATED HARDWARE/SOFTWARE 
DEVELOPMENT 

The ICE-86A emulator allows hardware and software 
development to proceed interactively. This is more 
effective than the traditional method of independent 
hardware and software development followed by 
system integration. With the ICE-86A module, pro­
totype hardware can be added to the system as it is 
designed. Software and hardware testing occurs 
while the product is being developed. 

Conceptually, the ICE-86A emulator assists three 
stages of development: 

1. It can be operated without being connected to 
the user's system, so the ICE-86A module's 
debugging capabilities can be used to facilitate 
program development before any of the user's 
hardware is available. 

2. Integration of software and hardware can begin 
when any functional element of the user system 
hardware is connected to the 8086 socket. 
Through ICE-86A emulator mapping capabilities, 
Intellec memory, ICE module memory, or diskette 
memory can be substituted for missi ng prototype 
memory. Time-critical program modules are 
debugged before hardware implementation by 
using the 2K-bytes of high-speed ICE-resident 
memory. As each section of the user's hardware is 
completed, it is added to the prototype. Thus 
each section of the hardwC!re and software is 
"system" tested as it becomes available. 

3. When the user's prototype is complete, it is tested 
with the final version of the user system software. 
The ICE-86A module is then used for real-time 
emulation of the 8086 to debug the system as a 
completed unit. 

Thus the ICE-86A module provides the user with the 
ability to debug a prototype or production system at 
any stage in its development without introducing 
extraneous hardware or software test tools. 

SYMBOLIC DEBUGGING 

Symbols and PUM statement numbers may be sub­
stituted for numeric values in any of the ICE-86A 
emulator commands. This allows the user to make 
symbolic references to 1/0 ports, memory ad­
dresses, and data in the user program. Thus the user 
need not remember the addresses of variables or 
program subroutines. 

Symbols can be used to reference variables, pro­
cedures, program labels, and source statements. A 
variable can be displayed or changed by referring to 
it by name rather than by its absolute location in 
memory. Using symbols for statement labels, pro­
gram labels, and procedure names simplifies both 
tracing and breakpoint setting. Disassembly of a 
section of code from either trace or program 
memory into its assembly mnemonics is readily 
accomplished. 

PLUG INTO 
USER 
8086 SOCKET 

r - - - - - - - - - - - - - - ---- - - - - - --- - --------- - --, 
I ..- ____ -, T·CABLE I 
I I I I 
I I I I 
I I I II 

I I I I IN~~LS\EC I I 
I I I AUXILLIARY CONNECTOR I 
I I I 
I I I I I L ____ -l I 
L ____________________________ ~N~L~~T!.MJ 

Figure 1. ICE-8SA ™ Emulator Block Diagram 

16-36 AFN·01950A 



ICE-86A ™ IN-CIRCUIT EMULATOR 

A typical iAPX 86 development configuration. It is based on Intellec® Series III Development System, which 
hosts the ICE·86A™ emulator. The ICE·86A™ module is shown connected to a user prototype system, in this 
case, an SDK·a6. 

Furthermore, each symbol may have associated 
with it one of the data types BYTE, WORD, INTEGER, 
SINTEGER (for short, 8·bit integer), POINTER, 
REAL, OREAL, or TREAL. Thus the user need not 
remember the type of a source program variable 
when examining or modifying it. For example, the 
command "!VAR" displays the value in memory of 
variable VAR in a format appropriate to its type, while 
the command "!VAR = !VAR + 1" increments the 
value of the variable. 

The user symbol table generated along with the ob· 
ject file during a PUM·86, PASCAL·86 or FORTRAN· 
86 compilation or an ASM·86 assembly is loaded into 
memory along with the user program which is to be 
emulated. The user can utilize the available symbol 
table space more efficiently by using the SELECT 
option to choose which program modules will have 
symbols loaded in the symbol table. The user may 
also add to this symbol table any additional symbolic 
values for memory addresses, constants, or 
variables that are found useful during system 
debugging. 

The ICE·86A module provides access through sym· 
bolic definition to all of the 8086 registers and flags. 
The READY, NMI, TEST, HOLD, RESET, INTR, 
MN/MX, and RQ/GT pins of the 8086 can also be 
read. Symbolic references to key ICE·86A emulation 
information are also provided. 

MACROS AND COMPOUND COMMANDS 

The ICE-86A module provides a programmable diag­
nostic facility which allows the user to tailor its oper­
ation using macro commands and compound 
commands. 

A macro is a set of ICE-86A commands which is given 
a single name. Thus, a sequence of commands 
which is executed frequently may be invoked simply 
by typing in a single command. The user first defines 
the macro by entering the entire sequence of com­
mands which he wants to execute. He then names 
the macro and stores it for future use. He executes 
the macro by typing its name and passing up to ten 
parameters to the commands in the macro. Macros 
may be saved on a disk file for use in subsequent 
debugging sessions. 

Compound commands provide conditional execu­
tion of commands (IF), and execution of commands 
until a condition is met or until they have been ex­
ecuted a specified number of times (COUNT, 
REPEAT). 

Compound commands and macros may be nested 
any number of times. 

16-37 AFN·01950A 



ICE-86A™ IN-CIRCUIT EMULATOR 

MEMORY MAPPING 

Memory for the user system can be resident in the 
user system or "borrowed" from the Intellec System 
through the ICE-86A emulator's mapping capability. 
The speed of run emulation by the ICE-86A module 
depends on which mapping options are being used. 

The ICE-86A emulator allows the memory which is 
addressed by the 8086 to be mapped in 1 K-byte 
blocks to: 

1. Physical memory in the user's system, which pro­
vides 100 percent real-time emulation atthe user­
system clock rate (up to 5 MHz) with no wait 
states. 

2. Either of two 1 K-byte blocks of ICE-86A module 
high-speed memory, which allow nearly full­
speed emulation (with two additional wait states 
per 8086-controlled bus cycle). 

3. Intellec System memory, which provides emula­
tion at approximately 0.02 percent of real-time with a 
5 MHz clock. 

4. A random-access diskette file, with emulation 
speed comparable to Intellec System memory, ex­
cept the emulation must wait when a new page is 
accessed on the diskette. 

The user can also designate a block of memory as 
non-existent. The ICE-86A module issues an error 
message when any such "guarded" memory is ad­
dressed by the user program. 

As the user prototype progresses to include 
memory, emulation becomes real time. 

OPERATION MODES 

The ICE-86A software is a RAM-based program that 
provides the user with easy-to-use commands for 
initiating emulation, defining breakpoints, control­
ling trace data collection, and displaying and con­
trolling system parameters. ICE-86A commands are 
configured with a broad range of modifiers which 
provide the user with maximum flexibility in describ­
ing the operation to be performed. 

Emulation 

Emulation commands to the ICE-86A emulator con­
trol the process of setting up, running and halting an 
emulation of the user's iAPX 86 System. Breakpoints 
and tracepoints enable the ICE-86A module to halt 

emulation and provide a detailed trace of execution 
in any part of the user's program. A summary of the 
emulation commands is shown in Table 1. 

Table 1. Summary of ICE-86ATM Emulation 
Commands 

Command Description 

GO Initializes emulation and allows the user to 
specify the starting point and breakpoints. 
Example: 

GO FROM .S:TARTTILL .DELAY EXECUTED 

where START and DELAY are statement 
labels. 

STEP Allows the user to Single-step through the 
program. 

Breakpoints: The ICE-86A module has two break­
point registers that allow the user to halt emulation 
when a specified condition is met. The breakpoint 
registers may be set up for execution or non­
execution breaking. An execution breakpoint con­
sists of a single address which causes a break 
whenever the 8086 executes from its queue an in­
struction byte which was obtained from the address. 
A non-execution breakpoint causes an emulation 
break when a specified condition other than an in­
struction execution occurs. A non-execution break­
point condition, using one or both breakpoint 
registers, may be specified by anyone of or a combi­
nation of: 

16-38 

1. A set of address values. Break on a set of address 
values has three valuable featu'res: 

a. Break on a single address. 

b. The ability to set any number of breakpoints 
within a limited range (1024 bytes maximum) 
of memory. 

c. The ability to break in an unlimited range. Ex­
ecution is halted on any memory access to an 
address greater than (or less than) any 20-bit 
breakpoint address. 

2. A particular status of the 8086 bus (one or more 
of: memory or I/O read or write, instruction fetch, 
halt, or interrupt acknowledge). 

3. A set of data values (features comparable to 
break on a set of address values, explained in 
point one). 

4. A segment register (break occurs when the regis­
ter is used in an effective address calculation). 

AFN'()1950A 



intel· ICE-86A™ IN-CIRCUIT EMULATOR 

Emulation break can also be set to occur on an 
external signal condition. An external breakpoint 
match output and emulation status lines are pro­
vided on the buffer box. These allow synchronization 
of other test equipment when a break occurs or 
when emulation is begun. 

Tracepoints: The ICE-86A module has two 
tracepoint registers which establish match condi­
tions to conditionally start and stop trace collection. 
The trace information is gathered at least twice per 
bus cycle, first when the address signals are valid 
and second when the data signals are valid. If the 
8086 execution queue is otherwise active, additional 
frames of trace are collected. 

Each trace frame contains the 20 addressldata lines 
and detailed information on the status of the 8086. 
The trace memory can store 1,023 frames, or an 
average of about 300 bus cycles, providing ample 
data for detemining how the 8086 was reacting prior 
to emulation break. The trace memory contains the 

last 1,023 frames of trace data collected, even if this 
spans several separate emulations. The user has the 
option of displaying each frame of the trace data or 
displaying by instruction in actual ASM-86 Assem­
bler mnemonics. Unless the user chooses to disable 
trace, the trace information is always available after 
an emulation. 

Interrogation and Utility 

Interrogation and utility commands give the user 
convenient access to detailed information about the 
user program and the state of the 8086 that is useful 
in debugging hardware and software. Changes can 
be made in both memory and the 8086 registers, 
flags, input pins, and 1/0 ports. Commands are also 
provided for various utility operations such as load­
ing and saving program files, defining symbols and 
macros, displaying trace data, setting up the 
memory map, and returning control to ISIS-II.A sum­
mary of the basic interrogation and utility com­
mands is shown in Table 2. 

Table 2. Selected ICE-86A ™ Module Interrogation and Utility Commands 

Memory/Register Commands 
Display or change the contents of: 
• Memory 
• 8086 Registers 
• 8086 Status flags 
• . 8086 Input pins 
• 8086 I/O ports 
• ICE-86A Pseudo-Registers (e.g. emulation timer) 

Memory Mapping Commands 
Display, declare, set, or reset the ICE-86A memory mapping. 

Symbol Manipulation Commands 
Display any or all symbols, program modules, and program 
line numbers and their associated values (locations in 
memory). 

Set the domain (choose the particular program module) for 
the line numbers. 

Define new symbols as they are needed in debugging. 

Remove any or all symbols, modules, and program 
statements. 

Change the value of any symbol. 

Select program modules whose symbols will be used in 
debugging. 

TYPE 
Assign or change the type of any symbol in the symbol table. 

RQ/GT 
Set or display the status of the Request/Grant facility which 
enables the ICE-86A module to share the system bus with 
coprocessors. 

BUS 
Display which device in the user'siAPX 86 system is cur­
rently master of the system bus. 

CAUSE 
Display the cause of the most recent emulation break. 

PRINT 
Display the specified portion of the trace memory. 

LOAD 
Fetch user symbol table and object code from the inputfile. 

EVALUATE 
Display the value of an expression in binary, octal, decimal, 
hexadecimal, and ASCII. 

CLOCK 
Select the internal (lCE-86A module provided, for stand­
alone mode only) or an external (user-provided) system 
clock. 

RWTIMEOUT 
Allows the user to time out READ/WRITE command signals 
based on the time taken by the 8086 to access Intellec 
memory or diskette memory. 

ENABLE/DISABLE RDY 
DASM Enable or disable logical AND of ICE-86Aemulator Ready 

Disassemble user program memory intoASM-86Assembler with the user Ready signal for accessing Intellec memory, 
mnemonics. ICE memory, or diskette memory. 

16-39 AFN·01950A 



inter ICE-86A™ IN-CIRCUIT EMULATOR 

iAPX 86/20 DEBUGGING 

The ICE-86A module has the extended capabilities to 
debug iAPX 86/20 microsystems which contain both 
the 8086 microprocessor and the 8087 Numeric 
Processor Extension (NPX). An iAPX 86/20 system is 
configured in the 8086's "maximum" mode and 
communication between the processors is accom­
plished through the RO/GT signals. Debugging can 
be done either using theB087 chip itself (in which 
case the 8086 ESCAPE instruction is interpreted as a 
floating point instruction) or using the 8087 
software emulator E8087 (where the 8086 INTER­
RUPT instruction is interpreted as a floating point 
instruction). Three new data types are defined to use 
the NPX: 

REAL (4 byte Short Real) 
OREAL (8 byte Long Real) 
TREAL (10 byte Temporary Real) 

While the 8087 NPX is not a programmable part, it 
does interact closely with the 8086 and can execute 
instructions in parallel with it. The ICE-86A module 
provides information about the relative timing of 
instruction execution in each processor so that the 
complete system can be debugged. Other debug­
ging capabilities available through the ICE-86A 
module are: symbolically disassemble NPX call in­
structions from memory or trace history; display or 
change the control, status and flag values of the 
NPX; display the NPX stack either in hexadecimal or 
disassembled form; and display.the last ,instruction 
address, last operand, and last operand address. 

iAPX 86/11 DEBUGGING 

The 8089 Real-Time Breakpoint Facility (RBF-89) is 
an extension of the ICE-86A emulator that aids in 
testing and trouble-shooting iAPX 86/11 systems de­
signed around a combination of the 8086 CPU and 
the 8089 Input/Output Processor (lOP). RBF-89 in­
terrogates 8089 registers, sets breakpOints in 8089 
programs, and performs its other functions by pre­
paring special control blocks in application system 
memory. It then issues input/output channel­
attention commands to the 8089 in the user's system 
to perform these functions. While using the RBF-89 
extension, the user can also enter and execute the 
other standard ICE-86A emulator commands. 

RBF-89 allows the user to. load his application 
(channel) program from diskette into 8089 lOP 
memory and execute it in real time. The program can 
reside in either local (system) RAM (accessible by 

both the 8086 and 8089 microprocessors), or remote 
RAM (aCCessible by the 808910P only). The user may 
request execution to begin at any location and con­
tinue until normal termination, a specified break­
point is reached, or tt')e program 'is otherwise 
aborted. If a program is modified during a debug­
ging session, RBF-89 can save the latest version by 
copying it from application system memory to a disk­
ette file. 

Breakpoints 

RBF-89 supports setting up to twelve breakpoints 
(six per 8089 channel) in the user program. RBF-89 
implements each breakpoint by inserting a HALT 
instruction at the breakpoint location, while saving 
the overwritten instruction in temporary storage. 
When a breakpoint is reached during program ex­
ecution the program h,alts. At this point the user can 
examine 8089 registers, flags, and memory, and op­
tionally resume program execution. The invoked 
breakpoint address is recorded in one of two break­
point registers-one register for each 8089 channel. 
Through simple RBF-89 commands the user can 
display or change the contents of these registers. 

Symbolic Debugging 

As in the ICE-86A emulator, theRBF-89 extension 
accepts symbolic references for variables and 
labels, including symbols in the symbol table 
generated by the ASM-89 assembler. 

Through RBF-89, the user can display and change 
the contents of : 

- memory, which can be displayed as either 
numeric data or disassembled (8089 assembly­
language mnemonic) code. 

- all 8089 registers except the channel control 
pointer (CCP) and status flags. 

Multiprocessor Operation 

The ICE-86A emulator and RBF-89 support 8089 
configurations in both local and remote modes. The 
ICE-86A emulator may be operating either in mini­
mum or maximum mode. In maximum mode, the 
8086 RO/GT lines are employed. This is required for 
the 8089 local mode configuration to provide local 
bus arbitration between the two processors. Using 
RBF-89, the user can: 

16-40 AFN'()1950A 



ICE-86A ™ IN-CIRCUIT EMULATOR 

Set RO/GT to operate for a local or remote 
configuration. 

Display status to determine which processor con­
trols the system bus. 

Start and halt 8089 channel programs. 

RBF-89 permits the 8089 and emulated 8086 to run 
simultaneously as well as sequentially. The user can 
specify breakpoints and begin program execution in 
three operating sequences: 

Set breakpoints, start the 8089, and return control 
to the console until a breakpoint is reached or the 
program runs to completion or is aborted. Use this 
sequence when the 8086 and 8089 programs do 
not need to be executed simultaneously. 

Set breakpoints, start the 8089, return control to 
the console, and start the 8086. This sequence lets 
both microprocessors run simultaneou~!I' 

Set breakpoints, start the 8086, and allow that 
program to drive the 8089 program in a mas­
ter/slave relationship. This sequence would be 
used, for instance, to verify the 8086 communica­
tion driver program. 

RBF-89 System Components 

RBF-89 is furnished as a superset of the ICE-86A 
emulator software. Its main components are: 

A HOST PROGRAM that resides in Intellec devel­
opment system RAM, where it serves as an exten­
sion of the ICE-86A emulator's software driver. 
This program, executed by the development sys­
tem, translates the user's keyboard input into low­
level directives that can be processed by the 
RBF-89 control program (described below), and 
converts information supplied by the control pro­
gram into easily understood display output. 

A CONTROL PROGRAM that resides in ICE-86A 
emulator memory. Running on the emulator's 8086 
microprocessor, the control program monitors 
such operations as preparing program control 
blocks for communication with the 8089 micro­
processor; issuing commands to the 8089 to start, 
terminate, and continue the 8089 task program; 
and directing the 8089 to start execution of the 
RBF-89 utility program (described below). 

A UTILITY PROGRAM that resides in the 8089 RAM 
in the user's prototype application system. This 

program, running on the 8089, reads and writes 
data to and from 8089 memory and registers, and 
sets and removes breakpoints in the user's task 
program. 

The 200 bytes of RAM.required by the utility pro­
gram must be accessible to both the ICE-86A 
emulator and the 8089. 

DC CHARACTERISTICS OF THE 
ICE-86A ™ MODULE USER CABLE 

1. Output Low Voltages [Vo(,(Max)=O.4V] 

ADO-AD15 

A16/S3-A19/S7, BHE/S7, RD, 
LOCK, OSO, OS1, SO, S1, S2, 
WR, M/iO, DT/R, DEN, ALE, 
INTA 

HLDA 

IOL (Min) 

12 mA 
(24 mA @ O.5V) 

8 mA 
(16 mA @ 0.5V) 

7 mA 

16 mA 

2. Output High Voltages [VOH (Min)=2.4V] 

ADO-AD15 

A16/S3-A19/S7, BHE/S7, RD, 
LOCK, OSO, OS1, SO, S1, S2, 
WR, M/IO, DT/R, DEN, ALE, 
INTA, HLDA 

RO/GT 

IOH (Min) 

-3 mA 

-2.6 mA 

250 mA 

3. Input Low Voltages [VIL (Max)=O.8V] 

ADO-AD15 
NMI, CLK 
READY 
INTR, HOLD, TEST, RESET 
MN/MX (0.1 JLf to GND) 

IlL (Max) 

-0.2 mA 
. -0.4 mA 
-0.8 mA 
-1.4 mA 
-3.3 mA 

. 4. Input High Voltages [VIH (Min)=2.0V] 

16-41 

ADO-AD15 
NMI, CLK 
READY 
INTR, HOLD, TEST, RESET 
MN/MX (0.1 JLF to GND) 

IIH (Max) 

80JLA 
20JLA 
40JLA 

-0.4 mA 
-1.1 mA 

5. No current is taken from the user circuit at 
Vee pin. 

AFN'()1950A 



inter ICE-86A™ IN-CIRCUIT EMULATOR 

SPECIFICATIONS 

ICE-86A Operating Environment 

REQUIRED HARDWARE 
Intellec microcomputer development system with: 

1. Three adjacent slots for the ICE-86A module. 

2. 64K bytes of Intellec memory. If user prototype 
program memory is desired, additional memory 
above the basic 94K is required. 

System console 
Intellec diskette operating system 
ICE-86A module 

REQUIRED SOFTWARE 
System Monitor 
ISIS-II, version 3.4 or subsequent 
ICE-86A software 

Equipment Supplied 

Printed circuit boards (3) 
Interface cable and emulation buffer module 
Operator's manual 
ICE-86A software, diskette-based 

Emulation Clock 

User system clock up to 5 MHz or 2 MHz ICE-86A 
internal ciock in stand-alone mode 

ORDERING INFORMATION 

Part Number Description 

Physical Characteristics 

PRINTED CIRCUIT BOARDS 
Width: 12.00 in (30.48 cm) 
Height: 6.75 in (17.15 cm) 
Depth: 0.50 in (1.27 cm) 
Packaged Weight: 9.00 Ib (4.10 kg) 

Electrical Characteristics 

DC POWER 
Vcc = +5V +5%-Wo 
Icc = 17A maximum; 11A typical 
Voo = +12V ±5% 
100 = 120 mA maximum; 80 mA typical 
VBB = -10V ±5% or -12V ±5% (optional) 
IBB = 25 mA maximum; 12 mA typical 

Environmental Characteristics 

OPERATING TEMPERATURE 
0° to 40°C 

OPERATING HUMIDITY 
Up to 95% relative humidity without condensation. 

MDS*-86A-ICE iAPX 86 microsystem in-circuit emulator, cable assembly, and interactive software 

MDS*-86U-ICE Upgrade kit to convert ICE-86 emulators to ICE-86A emulator capabilities. 

'MOS is an ordering code only and is not used as a product name or trademark. MOS" is a registered trademark of Mohawk Data 
Sciences Corporation. 

16-42 


