
iAPX 286 EVALUATION BUILDER
USER'S GUIDE

Order Number: 121711-001

Copyright © 1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager Plug-A-Bubble
CREDIT intel MCS PROMPT
i Intelevision Megachassis Promware
ICE InleUec Micromainframe RMX/80
iCS iRMX Micromap Syslem2000
im iSBC Multibus UPI
Insile iSBX Multimodule ,.&ope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS. or RMX and a numerical suffix.

I A420/881/3K DO I

REV. REVISION HISTORY DATE

-001 Original issue. 9/81

iii

PREFACE I

This manual provides operating instructions for the iAPX 286 Evaluation Builder,
an 8086-resident vehicle for building descriptor tables and binding relocatable
segments of iAPX 286 programs to absolute addresses.

This manual is designed for users who are already familiar with:

• the architecture and features of the iAPX 286 microprocessor as described in the
iAPX 286 User~s Manual.

• the operation of the Series III development system as described in the lntellec
Series III Microcomputer Development System Console Operating Instructions
manual.

To use the iAPX 286 Evaluation Builder you need version Vl.O or later of the
BD286E software component.

This manual contains the following chapters and appendices:

• Chapter 1, Overview of the iAPX 286 Evaluation Package, presents an overview
of the Evaluation Package, describes the features and the functions of the
individual components of the package, and concludes with a presentation of the
iAPX 286 Development System.

• Chapter 2, The iAPX 286 Evaluation Builder, provides technical information
necessary to use the Evaluation Builder to create gates, descriptor tables and the
task state segment, bind addresses, and use the X286E run-time procedures. The
listings and contents of the output module are also described.

• Chapter 3, Evaluation Builder Controls, describes the procedures required to
invoke the Evaluation Builder and the controls that are provided to specify
activities and output of the builder .

. • Chapter 4, Evaluation Builder Language, describes the declarative language
that allows you to specify initial system configuration and segment attributes
and to define stacks, gates, and descriptor tables.

• Chapter 5, X286E Support Package, provides information needed to use the
iAPX 286 Evaluation Package. It describes X286E conventions and initializa­
tion, descriptor and table management, task state segment management, and
free space management.

• Appendix A, Error Messages, gives a listing of error and warning messages and
recovery information.

• Appendix B, Status Codes, gives brief descriptions of the iAPX 286 status
codes.

Related Publications
For information on the iAPX 286 microprocessor, see the following manual:

• iAPX 286 User's Manual, 121749

For information on the iAPX 286 Evaluation Package assembler and simulator, see
the following manuals:

• iAPX 286 Evaluation Macro Assembly Language Reference Manual, 121708

• iAPX 286 Evaluation Macro Assembler Operating Instructions, 121709

• iAPX 286 Evaluation Macro Assembly Language Pocket Reference, 121710

• iAPX 286 Evaluation Simulator Operating Instructions, 121712

v

vi

For information on the Series III development system, see the following manuals:

• Intellec Series III Microcomputer Development System Product Overview,
121575

• A Guide to Intellcc Series III Mjcrocomputer Development Systems, 121632

• Intellec Series III Microcomputer Development System Console Operating
Instructions, 121609

• ISIS-II CREDIT CRT-Based Text Editor User's Guide, 9800902
• Model 740 Hard Disk Subsystem Operation and Checkout, 9800943

Notational Conventions

UPPERCASE

italics

[]

{ }

{ } ...

inpu: ,''''es

<cr>

punctuation

Characters shown in upper case must be entered in the
order shown. You can enter the characters in uppercase or
lowercase.

Italics indicate variable information, such as fjlename or
address.

Brackets indicate optional arguments or parameters.

Braces indicate one and only one of the enclosed entries
must be selected. If the field is also surrounded by
brackets, the enclosed items are optionaL

Braces followed by ellipses indicate that at least one of the
enclosed items must be selected. If the field is also sur­
rounded by brackets, the enclosed items are optional. The
items may be used in any order unless otherwise noted.

Ellipses indicate that the preceding argument or parameter
may be repeated.

Examples of user input are printed in white on black to
differentiate user entry from system output.

The characters "cr" enclosed in angle brackets indicates
the RETURN key. Do not enter the angle brackets or the
characters "cr".

Any other punctuation besides those described above must
be entered as shown. For example, all of the punctuation
shown in the following commands must be entered:

-a:,e GDT(LIMIT = +8:, E\-RY = (seg1,seg2));

s : ~ M : N T S ~ a c '< s e : : _ " _ = : \ ,
stacK-se ~ (~, '- = ~),
stac,~-se 2 ~_ , _ = 2);

CHAPTER 1
OVERVIEW OF THE iAPX 286
EVALUATION PACKAGE

PAGE

Introduction 1-1
Assembler Overview 1-1
Builder Overview 1-2
Simulator Overview 1-2
X286E Run-Time Procedures Overview 1-2
Using the Evaluation Package 1-3
iAPX 286 Development Package 1-3

CHAPTER 2
THE iAPX 286 EVALUATION BUILDER
Overview 2-1
Assignment of Segment Attributes and

Protection Levels 2-2
Gate Creation 2-2
Descriptor Table and Task State Segment Creation . 2-2

Global Descriptor Table 2-2
Interrupt Descriptor Table 2-3
Local Descriptor Table 2-3
Task State Segment 2-4

Address Binding . 2-4
Selector Resolutions 2-5

Inter-Segment References 2-5
External References 2-5

Use of the X286E Run-Time Procedure File 2-5
Command File Listing :...... 2-6
Map... 2-6
Symbol Table 2-7
Output Module 2-7

CHAPTER 3
EVALUATION BUILDER CONTROLS
Evaluation Builder Invocation 3-1
Controls 3-2

COMMAND and NOCOMMAND 3-2
DEBUG and NODEBUG 3-2
PRINT and NOPRINT 3-3

Command File Listing 3-3
Map..................................... 3-3
Symbol Table 3-4

Examples of Evaluation Builder Invocation 3-4
Example 1: NOCOMMAND Control 3-5
Example 2: PRINT and COMMAND Controls .. 3-6
Example 3: Construction of an X286E File...... 3-7

CONTENTS I

CHAPTER 4 PAGE

EV ALUATION BUILDER
LANGUAGE
Segment Definition 4-1
Gate Definition 4-2
Table Definition . 4-2
Stack Definition 4-3
Keywords and Their Abbreviated Forms 4-4
Sample Builder Program 4-4

CHAPTERS
X286E SUPPORT PACKAGE
Product Use Environment 5-1
Conventions _. 5-1

Calling Conventions 5-2
Descriptor Table Conventions 5-2
Privilege Level Conventions 5-2

X286E Initialization 5-2
Descriptor and Table Management 5-3

Descriptor and Table Management Procedures ... 5-3
CREATE_LDT 5-4
ALLOC_SLOTS 5-7
FREE_SLOTS 5-9
COPY_DESCRIPTOR 5-11
MOVE_DESCRIPTOR ".. 5-13
GET_DESCRIPTOR 5-15
PUT_DESCRIPTOR 5-17
INSTALL_GATE 5-19
GET_IDT_DESCRIPTOR 5-21
PUT_IDT_DESCRIPTOR 5-23
INSTALL_IDT_GATE 5-25

Descriptor Declarations 5-27
Task State Segment Management 5-29

CREATE_TASK 5-30
OJoDEFINE_TASK 5-32

Segment Management 5-34
CREATE_SEG 5-35
DELETE_SPACE 5-37

Free Space Management 5-39
ALLOC_SPACE 5-40
FREE_SPACE 5-41

APPENDIX A
ERROR MESSAGES

APPENDIXB
STATUS CODES

vii

TABLES

TABLE TITLE PAGE

1-1 iAPX 286 Evaluation Package. 1-1

ILLUSTRATIONS I

FIGURE TITLE PAGE FIGURE TITLE PAGE

1-1 Software Development Using the 5-7 PUT _DESCRIPTOR Processing 5-18
iAPX 286 Evaluation Package '. 1-4 5-8 Call Gate Descriptor Content ,. ... 5-20

2-1 Inter-Segment References 2-6 5-9 GET _lOT _DESCRIPTOR Processing .. 5-22
5-1 CREA TE_LDT Processing ,. 5-5 5-10 PUT _lOT _DESCRIPTOR Processing .. 5-24
5-2 ALLOC_SLOTS Processing 5-8 5-11 Interrupt Gate Descriptor Content 5-26
5-3 FREE_SLOTS Processing 5-10 5-12 CREA TE_ TASK Processing 5-31
5-4 COPY _DESCRIPTOR Processing 5-12 5-13 CREA TE_SEG Processing 5-36
5-5 MOVE_DESCRIPTOR Processing 5-14 5-14 DELETE_SP ACE Processing 5-38
5-6 GET _DESCRIPTOR Processing 5-16

viii

CHAPTER 1
OVERVIEW OF THE iAPX 286

EVALUATION PACKAGE

This chapter presents an overview of the iAPX 286 Evaluation Package. It briefly
describes the product and specifies its components: an assembler, a builder, and a
simulator. It also provides an overview of these components and concludes with a
brief presentation of the iAPX 286 Development Package, a future software
product.

Introduction

The iAPX 286 Evaluation Package is a software product designed to allow system
developers to evaluate the iAPX 286 microprocessor. The Evaluation Package
enables you to evaluate the microprocessor's architecture and features such as the
instruction set, segmentation, processor timing, and memory mapping and protec­
tion. You can experiment with the operating system functions and write and test
simple systems that you can later port to the iAPX 286 microprocessor with minor
modification. This software product also enables you to begin the development of
more complex iAPX 286 programs and operating system nuclei for later execution
on the iAPX 286 microprocessor.

This product consists of an assembler, a system builder utility, an iAPX 286
simulator, and a set of run-time support procedures. Table 1-1 shows the software
components contained in the Evaluation Package, the mnemonics by which they are
called, and the names of the associated files that contain the software components.

Table 1-1. iAPX 286 Evaluation Package

Component Mnemonic Filename

iAPX 286 Evaluation Macro Assembler AS286E AS286E.86
iAPX 286 Evaluation Builder BD286E BD286E.86
iAPX 286 Evaluation Simulator SM286E SM286E.86
X286E Run-Time Procedures X286E BD286E.INC
X286E Source File Declarations X286E.INC

The following paragraphs provide descriptions of the components of the package.

Assembler Overview

The iAPX 286 Evaluation Macro Assembler accepts a main program module written
in assembly language as input, and produces an object file acceptable to the
iAPX 286 Evaluation Builder and a program listing. The assembly language pro­
gram should contain code, data, and stack segments for an initial task, and may also
contain additional code, data, and stack segments for tasks to be established at run­
time. The program may reference external system functions supported by the
iAPX 286 Evaluation Simulator as well as the external X286E procedures, but must
otherwise be a completely self-contained module.

AS286E has been produced from the Series III ASM86 to promote portability of
programs from the iAPX 86 to the iAPX 286. AS286E supports the full iAPX 286
instruction set, which is a superset of the instructions found in ASM86. Some of the
ASM86 directives have been eliminated or modified to suit the iAPX 286. For
example, the segment statement has been changed. However, many of the ASM86
features, such as the instruction set syntax, operand typing, structures, and macros,
have been carried over to AS286E·unchanged.

1-1

Overview of the iAPX 286 Evaluation Package

1-2

Builder Overview

The iAPX 286 Evaluation Builder accepts three input files: an object file produced
by AS286E, a file containing builder commands, and the X286E run-time pro­
cedures file (BD286E.INC). The Evaluation Builder produces an object file accep­
table to the iAPX 286 Simulator and a listing containing: a copy of the command
file, a map describing the contents of the descriptor tables created and the addresses
of segments, public symbols, a symbol table, and error messages.

The builder command language provides the mechanism for building a single task.
Descriptor tables and the task state segment are created. To evaluate the protection
mechanism, attributes and privilege levels may be assigned to data and executable
segments, and gates to public procedures may be created.

BD286E assigns physical addresses to all segments including the descriptor tables
and the task state segment and resolves all inter-segment references. BD286E also
provides the linkage to the X286E run-time procedures and the system functions
supported by SM286E.

Simulator Overview

The iAPX 286 Evaluation Simulator allows you to execute programs on a simulated
iAPX 286 architecture, to observe instruction timings, debug symbolically and to
examine and modify the contents of tables, registers, and memory. The simulator
consists of three major parts - a loader, a simulator, and a monitor/debugger.

The simulator loader loads an executable file produced by the Evaiuation Builder. It
initializes the descriptor tables and the task state segment and loads the executable
and data segments into a simulated iAPX 286 address space. The loader also sets up
a table of debug information if the DEBUG control was used with AS286E.

The simulator portion simulates the iAPX286 processor and executes your program.
It executes all supported instructions and enforces all protection rules. It verifies seg­
ment access types, offsets for segment boundaries, and privileged instructions and
gating. It handles all processor traps and faults exactly as they are on the iAPX 286
processor.

The monitor/debugger provides functions for displaying or modifying the contents
of registers, memory locations, symbol table, descriptor tables, and task state seg­
ment, all of which can be referenced symbolically. It displays instructions in
disassembled form, and provides mUltiple breakpoints, instruction timing informa­
tion, and an interval timer to generate pseudo-hardware interrupts. Instructions may
be executed continuously or in step mode.

X286E Run-Time Procedures Overview

The iAPX 286 Evaluation Package supports a single module, single task created
statically. The program module may contain code, data, and stacks for additional
tasks, but the creation of additional task descriptors, task state segments, and local
descriptor tables must be done at run-time. In other words, in multi-tasking pro­
grams the initial task in the system must contain code to set up and dispatch other
tasks.

The X286E Run-Time Procedures and Source File Declarations are designed to
assist a programmer with the creation of tasks, local descriptor tables, and
segments. Procedures are also provided to manage descriptor tables and the system
free memory space.

iAPX286

iAPX286 Overview of the iAPX 286 Evaluation Package

Using the Evaluation Package

There is a straight flow from assembler to builder to simulator with two associated
interfaces. Figure 1-1 illustrates the use of these components for software
development.

The builder accepts an object module from a single assembly. This module contains
names identifying segments, public and external symbols, segment contents, and
debugging information.

The simulator accepts a loadable file from the builder. This file contains a single­
task program with all descriptor positions established in the LOT, GOT, and IDT.
Physical addresses are assigned and descriptors are completely initialized. The file
consists of descriptor tables and task state segment along with the contents of all
segments in the program. Debug information if requested at assembly time will also
be included.

iAPX 286 Development Package

The iAPX 286 Development Package is a future product that is to be designed for
both systems and applications developers. With the Development Package; you will
be able to develop and test large complex applications. The following additional
capabilities are planned for the Development Package:

• High level languages

• Math Processor support

• A system binder for combining separately generated object modules

• A more complete System Builder, capable of creating multiple static tasks

• A librarian

1-3

Overview of the iAPX 286 Evaluation Package

G
8
CD ISIS-II CREDIT CRT-Based Text Editor User's Guide

® iAPX 286 Evaluation Macro Assembly Language Reference Manual

® iAPX 286 Evaluation Macro Assembler Operating Instructions

@ iAPX 286 Evaluation Builder User's Guide

® iAPX 286 Evaluation Simulator Operating Instructions

121711-16

Figure 1-1 Software Development U sing· the iAPX 286 Evaluation Package

1-4

iAPX286

CHAPTER 2
THE iAPX 286 EVALUATION BUILDER

This chapter provides technical information necessary for using the iAPX Evalua­
tion Builder (BD286E). It describes:

• Creation of gates, descriptor tables and the task state segment

• Address binding

• Selector resolution

• Use of the X286E run-time procedures

• Contents of the listing file:
• Command File Listing

• Map
• Symbol Table

• Contents of the BD286E output module

Overview

The Evaluation Builder builds descriptor tables and binds relocatable segments to
absolute addresses and also produces a load module containing absolute text and,
optionally, debug information.

BD286E takes as input a file containing an object module produced by the iAPX 286
Evaluation Macro Assembler (AS286E).

The output from the Evaluation Builder consists of a loadable object module, an
optional map, and an optional symbol table. The object 'module contains the
memory image of an AS286E program, which can be loaded by the iAPX 286
Evaluation Simulator (SM286E).

The Evaluation Builder:

• Allows assignment of segment attributes and privilege levels.

• Allows the explicit creation of call gates for inter level transfers, and interrupt
and trap gates for the Interrupt Descriptor Table (lDT).

• Creates the Global Descriptor Table (GOT), Interrupt Descriptor Table (lOT),
and the Local Oescriptor Table (LOT).

• Creates a Task State Segment for a single-LOT, single-task program.

• Allows you to control whether descriptor entries are placed in the GDT, LDT or
lOT.

• Assigns absolute addresses to relocatable segments.

• Performs selector resolutions to segments and to a predefined gate for systeql
functions.

• Creates gates for X286E run-time procedures contained in a predefined file
(BD286E.INC) and performs selector resolutions to these gates.

• Produces a map summarizing the results of segment, gate, and public symbol
processing and a symbol table showing the logical addresses of symbols pro­
duced by the assembler.

• Detects and lists errors found in the input module, the invocation line and the
command file.

These functions are described in the following sections.

2-1

The iAPX 286 Evaluation Builder

2-2

Assignment of Segment Attributes and
Protection Levels

U sing the command language specified in Chapter 4, you may specify a segment
privilege level and change a non-conforming executable segment into a conforming
one.

Gate Creation

By using Evaluation Builder commands~ you create gates from public symbols
declared in your assembly language program. You can specify gate type (call,. inter­
rupt or trap gate only) and gate privilege level. The default type is a call gate and the
default privilege level is 3. While creating a .gate, the Builder searches the public sym­
bol table for a matching name. The Builder issues a warning if either the symbol can
not be found or the symbol does not represent a gatable procedure in an executable
segment. .,
If the symbol is found and it represents a gatable procedure entry, the Evaluation
Builder builds a gate pointing to the public entry, sets the gate's word count equal to
the entry word count, sets its type to the specified (or default) type, and sets its
privilege l~vel equal to the specified (or default) value.

Besides gates created under your control, the builder also creates a predefined gate
for the system entry point called DQ_SIM and public gates for the X286E run-time
procedures using the information found in a predefined fil~ .pamed BD286E.lNC.
These gates are all included in the GDT.

Descriptor Table and Task State Segment Creation

To specify entries in the GDT, LDT, or IDT table, you specify the table name
(GDT, LDT, or IDT) and list the entry names. All entries not specifically assigned to
the GDT or lOT will be placed in the LOT. You can include interrupt and trap gates
only in the lOT table. The Evaluation Builder issues a warning if:

• You try to put an interrupt gate or a trap gate in either the GOT or the LOT.

• You try to include segment or call gate descriptors in the lOT.

You may specify table limits if you want extra blank entries. The Evaluation Builder
issues a warning if the specified table becomes too large. By default, there are no
extra entries in the IDT, 16 in the GDT, and 16 in the LOT.

The Evaluation Builder reserves the first 17 entries (entries 0-16 inclusive) in each of
the descriptor tables for Intel use. If any of these entries are used, a warning is issued
but the specified entry is used.

NOTE
The development package will reserve a larger number of entries for Intel
use.

The following paragraphs describe the detailed structure of each table.

Global Descriptor Table

The Evaluation Builder builds the GDT according to the list of elements specified in
your command. The Evaluation Builder issues a warning if a specified segment or
gate does not exist. Besides the entries specified by you, the GDT also contains

iAPX286

iAPX286 The iAPX 286 Evaluation Builder

preassigned entries, reserved entries,. and some extra entries. The Evaluation Builder
issues a warning if you use a preassigned entry or a reserved entry. The Evaluation
Builder fills all uninitialized entries with zeros.

B0286E formats the GOT as follows:

Entry

o

1

2

3

4

5

6

7-16

17-n

Descriptor

All zeros

Writable data segment descriptor for GOT

Writable data segment descriptor for lOT

Table descriptor for LDT

Writable data segment descriptor for LOT

Gate descriptor for system routine DO_SIM

Task State Segment descriptor

Reserved entries

Segment and gate descriptors for X286E run-time
procedures. 'n' is determined by BD286E using informa-
tion in the BD286E.lNC file (if any)

Segment and gate descriptors as specified by you (if
any)

Extra entries (if any)

Interrupt Descriptor Table
As with the GOT, the Evaluation Builder builds the IDT according to the list of
elements you specify. The Evaluation Builder issues a warning if a specified gate
does not exist. Besides the entries specified by you, the builder always includes
entries 0 through 16 for interrupts 0-16 into the lOT (see iAPX 286 User's Manual).
Some of these entries are reserved for simulator use. The Evaluation Builder fills all
uninitialized entries with zeros.

Local Descriptor Table
You may specify the first part of the LOT. The builder creates the table by including
the specified entries followed by all other segments and gates not already included in
either the GOT or the IDT. LOT also contains a number of reserved entries as
specified above.

BD286E formats the LOT as follows:

Entry Descriptor

o All zeros

1 Writable data segment descriptor for LOT

2-16 Reserved entries

17-n Segment descriptors and gate descriptors (if any)

Extra entries (if any)

2-3

The iAPX 286 Evaluation Builder

2-4

Task State Segment

The builder creates the initial task state segment (TSS) only if you have initialized
the input module by induding register initialization values in the assembly language
END statement. You must specify a stack segment for each protection level that
contains code. The builder issues a warning and creates a corresponding invalid
entry in the task state segment if:

• the information for the initialization of a segment register (CS-IP, SS-SP, or
DS) is not present in the object module, or

• you do not specify a stack segment for any of the privilege levels 0, 1, and 2 (the
warning does not necessarily imply user error), or

• a specified segment for a stack is not a stack segment or

• the privilege level for CS is not equal to the privilege level of SS or

• the privilege level of CS is numerically greater than the privilege level of DS.

ES is initialized equal to DS, BP equal to SP. The link field is initialized to 0, the
nested context flag to 0, the 1/0 privilege level to 1, interrupt enable flag to 1, all
other flags to zero, and all other registers also equal to zero.

Address Binding

The Evaluation Builder assigns paragraph addresses to all segments (including tables
and the task state segment) so that the Simulator can use the 8086 base registers as
iAPX 286 base registers. The addresses are assigned starting at zero in the following
order: GDT, IDT, LDT, TSS, X286E procedure segments (if any), and all user's
segments.

The iAPX 286 memory is organized as follows:

AddressO-
GOT

lOT

LOT

TSS

X286E
procedures

User segments

+- Highest address

iAPX28.6

iAPX286 The iAPX 286 Evaluation Builder

Selector Resolutions

The Evaluation Builder provides selector resolutions for two types of program
references:

• inter-segment references and

• external references to predefined publics such as the DQ_SIM system entry
point and the X286E run-time procedures.

The builder sets the requested privilege level (RPL) of each reference equal to the
descriptor privilege level (DPL) of the referencing segment.

Inter-Segment References

The builder determines the privilege level of the referencing segment (X) and the
privilege level of the referenced segment (Y). Recall that in the iAPX 286, a segment
X is said to be more privileged than a segment Y if the privilege level of X is
numerically less than the privilege level of Y (see figure 2-1 Segment Reference
Example). The builder resolves inter-segment references in the following manner.

• If Y is a data segment, then the reference to the data segment is replaced with
the corresponding descriptor table selector. In addition, a warning is issued if Y
is more privileged than X (see figure 2-1(d».

• If Y is an executable segment, then:

a. If X and Yare at the same privilege level (see figure 2-I(a», the resolution is
performed in the same manner as for a data segment.

b. If X is more privileged than Y (see figure 2-1(b», then the resolution is
performed in the same manner as for a data segment and a warning is
issued.

c. If X is less privileged than Y and Y is a conforming segment (see figure
2-1(c», then the resolution is performed as for a data segment.

d. If X is less privileged than Y and Y is not a conforming segment (see figure
2-1(d», BD286E searches its gate table for a matching selector, offset pair.
If a gate is found, the segment reference is replaced with the corresponding
gate selector. If a gate is not found, a warning is issued and the resolution is
performed as for a data segment.

External References

When the Evaluation Builder encounters an external reference, it searches its gate
table for a matching name. The gate table contains one predefined entry named
DQ_SIM for service routines and a number of entries extracted from information
contained in the X286E run-time procedures file (if any). If BD286E finds no mat­
ching name for the external reference, it issues a warning. If it finds a gate name, it
replaces the external reference with the corresponding gate selector.

Use of the X286E Run-Time Procedure File

When building your program, the builder automatically searches for the file whose
name is the same as the builder file name with the extension "INC". It builds the
first part of the GDT and the first part of its gate table using information in that file.
If the file does not exist, the GDT will be initialized to empty and no X286E pro­
cedure gates are included into the initial public table. This is the case when you do
not want to include the X286E procedure file.

2-5

iAPX286

2-6

Legend:

pi: privilege level

0: segment

Figure 2-1. Segment Reference Example

The iAPX 286 Evaluation Builder

121711-15

The following examples illustrate building programs with and without run-time
procedures.

Example 2-1

RUN BD286E :F5:0SFILE.08~ ;R~~-:;~e :~::eJ~res are inc luded

The above example presumes that the run-time procedure file (BD286E. INC) is
available to BD286E. The run-time procedures are included in the program.

Example 2-2

The above example builds a program that does not include the run-time procedures.

Command File Listing

The builder outputs a copy of the command file to the listing file. This portion of the
listing file contains the command lines preceded by line numbers, and error messages
following the line (if any).

Map

BD286E outputs a segment map and a public table to the listing file.

For each segment, the listing shows the following:

• Owning descriptor table and table index

• Base address as a six digit hexadecimal number

iAPX 286 The iAPX 286 Evaluation Builder

• Limit as a four digit hexadecimal number

• Privilege level

• Access type

• Segment name

For each public symbol, the listing shows the following:

• Symbol name
• Type (gate or procedure)

• Owning descriptor table and table index (if a gate)

• Privilege level (if a gate)

• Word count (if any)

• Segment selector

• Segment offset as a four digit hexadecimal number

Symbol Table

The builder outputs a symbol table by default. The symbol table contains the symbol
names defined in your assembly language program, one block per segment. The
symbol listing contains the

• segment name
• list of alphabetized symbols declared in the segment along with their offsets in

the segment.

Output Module

BD286E outputs a load module. Debug information is also output by default.

2-7

CHAPTER 3
EVALUATION BUILDER CONTROLS

This chapter provides information that you need to invoke the iAPX 286 Evaluation
Builder (BD286E). The chapter also describes the controls that you can specify as
part of the invocation to control the activities of the builder and the output
generated by these controls. Finally, the chapter is concluded with three examples
illustrating invocations of the Evaluation Builder.

Evaluation Builder Invocation

BD286E operates on a Series-III Microcomputer Development System. You can
invoke the iAPX 286 Evaluation Builder in either of the two ways shown below. The
syntax notation used to define invocation is given in the preface.

When the system is under the control of ISIS-II, you can invoke the Evaluation
Builder by typing:

[: F n : J RUN ~: F n : J B D 286 E [.86] commandtal/ < C r>

where

.86 The specification' .86' is optional.

commandtail = [:Fn:]infile [TO [:Fn:]outfile][controllist]

:Pn:

infiJe

outfile

con tro/list

references the directory of the disk in drive 'n' that contains
the target file. The value is an integer between 0 and 9. If :Pn:
is not specified, :FO: is assumed.

the file that contains the iAPX 286 object module produced
by the iAPX 286 Evaluation Assembler that is the program
input to the Evaluation- Builder and must be specified. The
input file may reside on any direct access storage medium sup­
porte'd by the host operating system.

the file to be created by the Evaluation Builder for use by the
simulator. outfile is determined in one of two ways: you can
specify the outfile in the command tail with the TO token
after the input file or it is determined by the Evaluation
Builder to be the same name as the input file but with no
extension. A fatal error results if the output file name is the
same as the input file. If a file with the same name as the out­
put file exists, it will be deleted and replaced with the specified
output file unless protected at which time an error will be
issued.

a specification of a set of controls for the activities of the
Evaluation Builder. These controls are described later in this
chapter.

When the system is already under the control of the RUN program, you can invoke
the Evaluation Builder by typing:

: : F r : : 6 ~ 2 8 6 E : .86: commandtal! <: r>

3-1

Evaluation Builder Controls

3-2

The Evaluation Builder always signs on to the system console. The sign-on message
is shown below:

<0.5. name> iAPX286 EVALUATION BUILDER, VX.Y

Where O.S. name is a string, if any, returned by the host operating system.

Completion of Evaluation Builder processing is indicated by the sign-off message
sent to the system console. If there are no fatal errors, the builder will sign off as
shown below:

PROCESSING COMPLETE, n WARNINGS

Where n is either the word 'NO' or the number of warnings found (for N = I the
plural'S' will be dropped). If a fatal error occurs, the sign-off message will be:

PROCESSING ABORTED

Controls

The user interface to the Evaluation Builder consists if a set of controls and a com­
mand language. The command language is described in the following chapter. The
controls to the Evaluation Builder are contained in the controllist:

con trol/ist = COMMAND [([:Fn:]commandfile)] I NOCOMMAND
DEBUG I NODEBUG
PRINT n£:Fn:]listfile)] I NOPRINT

L< :device:)

Each of the keywords in the Evaluation Builder syntax has an abbreviated form. If
the keyword has a prefix 'NO', then the abbreviated form also has the same prefix.
The keywords and their abbreviated forms are listed below:

COMMAND CM
DEBUG DB
PRINT PR

COMMAND and NOcOMMAND

You enter the COMMAND control followed by an optional pathname (e.g.,
"COMMAND(:Fl :PROG.CMD)") to specify the file name where the builder will
find all the commands for the creation of segment descriptors, gates, descriptor
tables, and task state segment. Entering COMMAND without a pathname indicates
that the command file is the file whose name and drive are the same as the input file
but with the extension "CMD". You enter NOCOMMAND to specify that no com­
mand file is to be used. COMMAND, without a path name, is the default.

DEBUG and NODEBUG

You enter the DEBUG control word to specify that the debug information such as
symbol information, . is to be output to the object file and the list file. You enter
NODEBUG to suppress all debug output. DEBUG is the default.

iAPX286

iAPX286 Evaluation Builder Controls

PRINT and NOPRINT

You enter PRINT followed by an optional pathname (e.g., "PRINT (:LP:)") to
direct the command file listing, the map, the symbol table, and warning messages to
the indicated file. Entering PRINT without a pathname directs the above listings to
the default list file whose name and drive are the same as the output file but with the
extension "MP2". Entering NOPRINT suppresses all listing output. Fatal error
messages always appear on the output console. PRINT, without a pathname, is the
default. A fatal error will occur if the print file name is the same as the input, out­
put, or command file name. The list file (if any) will contain the information shown
below:

Command File Listing

A copy of the command file is output to the list file, with appropriate warnings (if
any). The format of the command file listing is shown below:

COMMAND FILE: filename

1

16
17
18

SEGMENT xxxxx(LEVEL=n),

TABLE
S'TACK
END

COMMAND FILE PROCESSING COMPLETED

Where the first column indicates the command line number (for error reporting),
and the last line indicates that the command file processing is complete.

Map

The map is output to the list file (if any). It contains information about segments
and public symbols in the module.

The segment map lists information about each segment in the input module. The
information consists of: the owning descriptor table and the segment index in that
table, the base, the limit in bytes, the privilege level, the access type, and the com­
bine name. The access type is given as a string of at most three characters (EO for
executable only, ERfor executable and readable, C for conforming, RO for read­
only, RW for readable and writable, S for stack (expand down». For example,
'ERC' indicates an executable readable conforming segment, 'EO' indicates an
executable only segment, and'S' indicates a writable stack segment. Segments are
listed by descriptor tables and segment indices.

The public table lists all public symbols in alphabetical order. For each symbol the
entry consists of: the symbolic name, the type (CALL or INTR or TRAP or PROC),
the owning descriptor table and the gate index (if a gate), the privilege level (if a
gate), the word count, the segment selector, and the offset. If the public symbol does
not represent a gate, then the two fields TABLE and DPL will be filled with dashes.
If the word count is greater than 31 or there is no word count, the word count field
WC will be filled with dashes. For the special DQ_SIM symbol, the segment selec­
tor and the offset will not be listed.

The format of the map is shown below:

3-3

Evaluation Builder Controls

3-4

MODU lE: module name

SEGMENT MAP

TABLE BASE lIMIT DPl ACCESS COMBINE NAME

GDT{xxxx) xxxxxxH xxxxH X xxx xxxxxxxxxxxx
xxxxxxxxxxxx GDT{xxxx) xxxxxxH xxxxH X xxx

lDT{xxxx) xxxxxxH xxxxH x xxx xxxxxxxxxxxx

PUBLIC TABLE

SYMBOL NAME TYPE TABLE DPl WC SELECTOR OFFSET

xxxxxxxxxxxxxx xxxx GDT{xxxx) X xx GDT(xxxx) xxxxH
xxxxxxxxxxxxxx xxx x --------- lDT(xxxx) xxxxH

.
xxxxxxxxxxxxxx xxxx lDT{xxxx) x xx lDT(xxxx) xxxxH

Symbol Table

The symbol table is output if the control DEBUG is set and if the input module con­
tains debug information. For each segment defined in the program, the segment
name is listed followed by information for symbols defined in the segment. Symbol
information consists of the symbol offset and its symbolic name listed on the same
line.

The format of the symbol table is shown below:

SYMBOL TABLE

S E G MEN T: segment name

OFFSET SYMBOL OFFSET SYMBOL

xxxxH xxxxxxxxxxxxxx xxxxH xxxxxxxxxxxxxx
xxxxH xxxxxxxx~xxxxx xxxxH xxxxxxxxxxxxxx

xxxxH xxxxxxxxxxxxxx xxxxH xxxxxxxxxxxxxx

Examples of Evaluation Builder Invocation

The following examples show some typical usage of the Evaluation Builder program
under the Series III Operating System. Each example shows the invocation line as it
would appear on the system console followed by the content of portions of the list
file.

iAPX286

iAPX286 Evaluation Builder Controls

Example 1: NOCOMMAND control

RUN BD286E MYPROG.OBJ NOCOMMAND

SERIES-III iAPX286 EVALUATION BUILDER, V1.0

INPUT: MYPROG.OBJ
OUTPUT: MYPROG
DATE: 03/19/81

CONTROLS SPECIFIED:
NOCOMMAND

COMMAND FILE: (none)

MODULE: MYPROG

SEGMENT MAP

TABLE BASE

GDT(1) OOOOOOH
GDT(2) 0OO180H
GOT(4) 000210H

LOT(1) 0OO210H
LOT(17) 0OO540H
LOT(18) 0OO560H

PUBLIC TABLE

LIMIT

0177H
0087H
0147H

0147H
0019H
0044H

DPL ACCESS COMBINE

0 RW :GDT
0 RW :IDT
0 RW :LDT

0 RW :LOT
3 RW MYDATA
3 ER MYCOOE

NAME

SYMBOL NAME

ALLOCATE
CREATE SEGMENT
OELET(~)EGMENT

TYPE TABLE OPL WC SELECTOR OFFSET

PROC ------­
CALL GOT(26)
CALL GOT(20)

o
o

2
10

5

LDT(18)
GOT(17)
GOT(17)

0010H
0060H
0020H

This example shows the use of BD286E in the simplest way. There is.no command
file, the user does not specify any tables. All segments in the input module are at
level 3. The entries in the GDT are created from the BD286E.INC file, and the LDT
contains only entries for user's segments. The print file is MYPROG.MP2, and the
output file is MYPROG. BD286E assigns absolute addresses to all segments includ­
ing the GDT, IDT, and LOT segments. Call gates are obtained from BD286E.INC.

3-5

Evaluation Builder Controls

3-6

Example 2: PRINT and COMMAND controls

RUN BD286E SAMPLE.OB~ PRINT(:LP:) COMMAND(MY:~:)

SERIES-III iAPX286 EVALUATION BUILDER, V1.0

INPUT: SAMPlE.OBJ
OUTPUT: SAMPLE
DATE: 03/19/81

CONTROLS SPECIFIED:
PRINT(:LP:) COMMAND(MYCMD)

COMMAND FILE: MYCMD

(command file listing)

COMMAND FILE PROCESSING COMPLETED

MODULE: SAMPLE

SEGMENT MAP

TABLE BASE LIMIT DPl

. . . .
lDT(17) 001000H 01FFH 3
lDT(18) 001200H 03FFH 3
LDT(19) FF1800H FDFFH 3

PUBLIC TABLE

SYMBOL NAME TYPE TABLE

ERROR HANDLER INTR IDT(10)
GET NEXT ITEM PROC -------
PROCESS_SEGMENT CAll lDT(20)

ACCESS COMBINE NAME

RW USER DATA
ERC USER=:CODE
S STACK

DPL WC SELECTOR

3 0 6DT(30)
5 LDT(18)

3 10 LDT(18)

OFFSET

0100H
0200H
OOEOH

In this example the user specifies a command file (MYCMD in drive 0), and the
listing is sent to the printer. The builder creates descriptor tables according to the
specifications in the MYCMD file. For example an interrupt gate is defined in the
command file using the public symbol ERROR_HANDLER, and a call gate is
defined using the public symbol PROCESS_SEGMENT. The base and limit of the
segment STACK have to be adjusted because the segment is an expand-down
segment. If its length is 200H bytes and its top is at address 1800H, then the limit
should be 64K-00200H -I = FDFFH and the base should be 16M-64K + 1800H =
OFFI800H.

iAPX286

iAPX286 Evaluation Builder Controls

Example 3: Construction of an X286E file.

SERIES-III iAPX286 EVALUATION BUILDER, V1.0

INPUT: OS.OBJ
OUTPUT: BD286E.INC
DATE: 03/19/81

CONTROLS SPECIFIED:
COMMAND(OS.CMD)

***WARNING :104: MODULE NOT A MAIN MODULE
MODULE: X286E

COMMAND FILE: OS.CMD

1 segment
2 X286E DATA (level = 0),
3 X286E-CODE (level = 0) ,
4 X286E-STACK (level = 0) ;
5
6 gate
7 CREATE SEGMENT (level = 0) ,
8 DE LET()EGMENT (level = 0);
9

10 table
11 GDT (l i mi t = +0,
12 entry = (X286E_CODE,
13 X286E_DATA,
14 X286E_STACK,
15 CREATE_SEGMENT,
16 DELETE_SEGMENT»
17 end

COMMAND FILE PROCESSING COMPLETED

MODULE:X286E

SEGMENT MAP

TABLE BASE LIMIT DPL ACCESS COMBINE NAME

. . . .
GDT(17) 0002AOH 0069H 0 RW X286E CODE
GDT(18) 000310H OOFDH 0 ER X286E-DATA
GDT(19) FF0450H FFBFH 0 S X286()TACK

PUBLIC TABLE

SYMBOL NAME TYPE TABLE DPL WC SELECTOR

.
CREATE SEGMENT CALL GDT(20) 0 10 GDT(1?)
DELETE=SEGMENT CALL GDT(21) 0 5 GDT(1?)

OFFSET

.
0050H
0060H

3-7

Evaluation Builder Controls iAPX286

3-8

SYMBOL TABLE

SEGMENT: X286E_CODE

OFFSET SYMBOL

OOSOH CREATE SEGMENT

SEGMENT: X286E DATA

OFFSET SYMBOL

OFFSET SYMBOL

OFFSET SYMBOL

This example gives a sample of the command file that can be used to create the
X286E file needed by B0286E to resolve all external references to X286E run-time
procedures. Only the GOT is defined with no extra entries. Segments are assigned
privilege level 0, gates are assigned privilege level 0, and all segments and gates are
included in the GOT. The output is directed to the file named B0286E.lNC, the
command file is OS.CMO, and (by default) the list file is B0286E.MP2.

CHAPTER 4
EVALUATION BUILDER LANGUAGE

This chapter describes the declarative language supported by the iAPX 286 Evalua­
tion Builder. This language allows you to specify a simple initial system configura­
tion. It allows you to specify attributes for segments and to define stacks for the
initial task state segment, gates, and descriptor tables.

The syntax for an Evaluation Builder program is:

builder-program = definition [; ...][ENO]

where definition can be one or more of the following:

SEGMENT segment-definition[, ...]
GATE gate-definition[, ...]
TABLE table-definition[, ...]
STACK stack-definition[, ...]

All of the definitions but STACK accept keyword parameters. The definitions can
be specified in any order but parameters can not be duplicated in the same definition
and a descriptor can not be referenced before it is created. The optional END direc­
tive indicates the end of the command stream in a file. If this declaration is not pre­
sent, the builder assumes the end of the program when it reaches the end of the com­
mand file.

Each definition in the above syntax format is described in the following paragraphs.

Segment Definition

To modify one or more segment descriptors, enter the keyword SEGMENT and a
segment-definition for each segment. Each segment-definition is entered in the
following format:

segment-name ((LEVEL= privilege-level I [, ...])
CONFORMING I NOCONFORMING

where

segment-name the symbolic name of a segment defined in the assembly
language module

privilege-level an allowable segment privilege level (0, 1, 2, or 3)

You. modify segment descriptors by defining the privilege level and conformance
attributes. If you specify the LEVEL parameter, you must also provide the privilege
level value. No numeric value is allowed with the CONFORMING/
NOCONFORMING parameter. By default, all attributes are taken from the input
object file. Segment bases are set by the builder.

Example:

4-1

Evaluation BuDder Language

4-2

In the example segment 'segl' has a privilege level 0 and is a conforming segment (it
should be an executable segment). Segment 'seg2' has a privilege level l. All other
attributes are extracted from the input.object file.

Gate Definition

To create one or more gates, enter the keyword GATE and a gate-definition for each
gate. You enter each gate-definition in the following format:

[(
LEVEL = privilege-level }]

gate-name (CALL I INTERRUPT I TRAP [, ... J)

where

gate-name the symbolic name of a public symbol

privilege-level an allowable gate privilege level (0, I, 2, or 3)

This declaration allows you to define gates and set their privilege levels and types.
The gate name must be a public identifier for a procedure in an executable segment.
The word count for all call gates are extracted from the input object file. No pro­
cedure type checking is performed for interrupt and trap gates. Note that task gate is
not supported because the Evaluation Builder will only be used to create single­
LDT, single-task programs. As with the segment definition, only values for the
parameter LEVEL are required. By default, the privilege level of a gate is set to 3
and its type is a call gate.

Example:

In this example, two gates are defined: one is a level 2 interrupt gate and its entry
point is the virtual address of the public procedure 'pub I', and the other is a level 3
call gate (both default values) and its entry point is the virtual address of 'pub2' .

Table Definition

To create one or more tables, enter the keyword TABLE and a table-definition for
each table. You would enter each table-definition in the following format:

{

LIMIT = [+] num-of-entries)

{

GOT} { segment-name}
lOT (ENTRY = ([index:] gate-name [, ...]) [, ... J)
LOT nUll-name

where

num-of-entries the number of entries or extra entries in the table

index: references a particular entry in the table

segment-name the symbolic name assigned to identify a segment

gate-name the symbolic name assigned to identify a gate

null-name designates that no name has been assigned (blank entry)

iAPX286

iAPX286 Evaluation Builder Language

The name of the table determines its type (GOT, IDT, and LOT are reserved words
for the Evaluation Builder).

The LIMIT parameter allows you to specify the number of entries for the indicated
table. The Evaluation Builder reserves the first 17 entries in each table. Using the '+'
symbol enables you to specify the number of extra entries you desire in a given table.
A LIMIT specification not containing the '+' symbol specifies the total number of
entries for the table. The minimum number of entries allowed is O. The maximum
number of entries allowed is 8191. This allows for the dynamic construction of new
entries. The size of the specified table is equal to

(8 bytes) * (number of entries
+ number of reserved entries
+ number of extra entries)

The ENTRY parameter allows you to specify the content of a table. An optional
index may be used. The selector index for each entry is assigned sequentially in the
order that the entries are specified. If you specify an index for a given entry, that
entry will be placed at the corresponding table location and all entries between the
previously assigned index and specified index will not be allocated. If you do not
provide a name for the entry (null name), the selector index for that entry will be
skipped and the corresponding entry will be marked invalid. These entries can be
used by calling the X286E run-time procedures. The minimum allowable index value
is 1 and the maximum allowable value is 8191. Reserved entries will not be used
unless specified using index:. In this event a warning will be issued.

Example:

In the example the GOT contains descriptors for the segments 'segl', 'seg2', and
descriptors for gates 'pub 1', 'pub2'. It has 80 extra entries. The lOT contains a gate
descriptor for 'pub3' at entry 5, 'pub4' at entry 10, and 'pub5' at entry 20. Entries 0
through 4, 6 through 9, and 11 through 19 will be included in the lOT but will be
marked invalid.

Stack Definition

To specify stack entries for the task state segment,enter the keyword STACK and a
stack-definition for each stack. Each stack-definition is entered in the following
format:

segment-name

where

segment-name is the name of a stack segment.

This declaration allows you to specify stack segments that will be used to initialize
the task state segment. The segment selector value and privilege level are extracted
from the segment table. The Evaluation Builder checks to determine if the specified
segment is a stack segment of privilege level less than or equal to 2. Note that stack
privilege should be previously defined using a SEGMENT definition.

4-3

Evaluation Builder Language

4-4

Example

In the above example the segments 'stack_segO', 'stack_segl', and 'stack_seg2'
are assigned privilege levels 0, I, and 2 respectively. The STACK definition indicates
that these three segments are to be used to initialize the registers pairs (SSO,SPO),
(SSI,SPI), and (SS2,SP2) in the initial task state segment.

Keywords and Their Abbreviated Forms

The keywords used in the Evaluation Builder language also have the abbreviated
forms listed below:

CALL
CONFORMING
ENTRY
GATE
INTERRUPT
LEVEL
LIMIT
NOCONFORMING
SEGMENT
STACK
TABLE
TRAP

CA
CF
ET
GA
IT
LV
LM
NOCF
SM
ST
TB
TR

Sample Builder Program

The following example illustrates a simple Evaluation Builder program that you
might enter.

SEGMENT seg1(lEVEl = 0, CONFORMING),
seg2(lEVEl = 1),
stack_s~gO (lEVEL = 0),
stack_seg1 (LEVEL = 1),
stack_seg2 (lEVEL = 2);

STACK stack_segO, stack_seg1, stack_seg2;
GATE pub1 (lEVEL = 2),

pub2,
pub3(interrupt),
pub4(interrupt),
pubS(interrupt)i

TABLE GDT(lIMIT = +80, ENTRY = (seg1,seg2,pub1,pub2»,
IDT(ENTRY = (S:pub3, 10:pub4, 20:pubS»

END

iAPX286

CHAPTER 5
X286E SUPPORT PACKAGE

This chapter provides information needed to use the iAPX 286 Evaluation Package
Run-Time Support Procedures (X286E). It describes:

• Product environment

• X286E conventions

• X286E initialization

• Descriptor and table management

• Task state segment management

• Segment management

• Free space management

The iAPX 286 Evaluation Package is intended to allow you to experiment with the
iAPX 286 architecture, particularly its operating system features. The X286E
package provides assistance in your use of these features. The X286E portion of the
evaluation package consists of run-time procedures that can be linked with your pro­
gram and a collection of assembler macro, structure and record definitions that you
can include in your program.

X286E provides four classes of service:

• Descriptor and descriptor table management

• Task state segment management

• Segment management

• Free space management

The descriptor and descriptor table management procedures assist you to manage
descriptor slots; to create, delete, and change descriptors; and to create new local
descriptor tables. Task state segment management is an extension of descriptor
management. It allows you to change a data segment into a task state segment. Seg­
ment management procedures allow you to create segments and allocate memory
space and to free space occupied by segments. The free space management pro­
cedures are used to manage the pool of free memory. These procedures are used in
the creation and deletion of segments and LDT's.

Product Use Environment

The X286E procedures are executed by the iAPX 286 Evaluation Simulator
(SM286E). They are contained in the file BD286E.INC and are automatically linked
into your program by the Evaluation Builder if the BD286E.INC file is found. The
X286E macro, structure and record definitions are contained in the file X286E.INC,
which may be included in your source file when assembling with the evaluation
assembler (AS286E). The required hardware for use of the evaluation package is a
Series III Microcomputer Development System.

Conventions

X286E applies three categories of conventions:

• Calling conventions

• Descriptor table conventions

• Privilege level conventions

5-1

X286E Support Package

5-2

Calling Conventions

The X286E procedures expect parameters to be placed on the stack, with pointer
parameters requiring both a segment selector and offset part. With one exception,
all of the parameters are either 16 bit words or 32 bit pointers. The 16 bit parameters
are either integers or selectors. The one exception is the access rights byte parameter
that is padded to 16 bits to keep the stack word aligned. These procedures restore
only the CS, IP, DS, SS, SP, and BP registers before they return. All procedures
return a status code in the AX register. A status code value of zero indicates a suc­
cessful completion of the procedure. A non-zero status code value indicates that the
procedure has failed and encodes the reason for the failure.

Many of the procedures allow manipulation of the descriptors in the tables that are
not immediately accessible. You select such descriptors by using a 32 bit number
consisting of a segment selector and a table selector. The table selector should either
be null or be the selector of an LDT descriptor. If the table descriptor is null, the
descriptor is taken to be either the GDT or the current LDT depending on the TI
field of the segment selector.

Descriptor Table Conventions

The first two slots in the GDT (indices 1 and 2) and any LDT (indices 0 and I) are
reserved for use by X286E and must not be altered by your program. The descriptor
immediately following an LDT descriptor must be an alias that describes the descrip­
tor table as a writable data segment. Similarly, descriptor number one (the second
descriptor in the LDTs and the first useable descriptor in the GDT) in each descrip­
tor table must be a descriptor that describes the descriptor table as a writable data
segment. To facilitate access to the IDT, GDT entry number two is dedicated as a
data descriptor for the IDT. Note that the Evaluation Builder automatically sets up
the proper data segment aliases for the tables (GDT, IDT, initial LDT) it constructs.

As X286E does not do extensive task state segment manipulation, aliases for the task
state segment are not required. However, you may find such aliases useful for your
own purposes, in which case you must create and manage them yourself.

Privilege Level Conventions

The X286E procedures all reside in one level 0 code segment. The gates that point to
them also have privilege level 0 thus restricting access to X286E to level O. This can
be changed at run-time by using the put_descriptor and get_descriptor procedures
to change the privilege levels in some or all of the gates.

X286E uses a level 0 stack, which must be provided by the user program. X286E will
use at most 100 bytes on this stack per call. This means that the user's level 0 stack
should be enlarged by 100 bytes to accommodate X286E.

X286E Initialization

You must call the X286E initialization procedure before any other X286E procedure
can be called. This procedure initializes the free space table. The procedure is
parameterless. It is called as follows:

CALL X286_INITIALIZE

The procedure always returns with a status code of zero indicating successful
initialization.

iAPX286

iAPX286 X286E Support Package

Descriptor and Table Management

Descriptor and table management consists of a set of descriptor and table manage­
ment procedures and a set of descriptor declarations. These provide only primitive
services. Higher level services, such as alias management and synchronization of
access to shared segments, are not provided.

Descriptor And Table Management Procedures

This section consists of a set of X286E procedures that assist you in managing
descriptor table slots*, creating, deleting and changing descriptors, and in creating
new local descriptor tables. The following descriptor and table management pro­
cedures are presented in this section:

• CREAT~LDT

• ALLOC_SLOTS

• FRE~SLOTS

• COPY_DESCRIPTOR

• MOV~DESCRIPTOR

• GET_DESCRIPTOR

• PUT_DESCRIPTOR

• INSTALL_GATE

• GET_IDT_DESCRIPTOR

• PUT_IDT_DESCRIPTOR

• INSTALL_IDT_GATE

*The term descriptor table slot is used in this chapter to refer to the eight-byte field
corresponding to a descriptor table entry. Thus, for example, a single slot is
required to hold a segment descriptor. .

5-3

CREATE_LOT

5-4

The CREATE_LOT procedure creates a new local descriptor table and allocates
space for it.

Procedure Call Syntax

PUSH nstots
PUSH SEG copy_list
PUSH OFFSET copy_list
PUSH SEG move_list
PUSH OFFSET move_list
PUSH SEG LOT_set
PUSH OFFSET LOT_set
CALL CREATE_LOT

Input Parameters

nstots a numeric value that specifies the number of table slots to be
allocated to the new local descriptor table. If nslots equals zero,
the new LOT is given the same number of descriptor slots as the
current LOT. If nslots contains a non-zero value, the new LOT
is given that number of descriptor slots.

an array of selectors that designate the descriptors to be copied
from the current LDT to the new LDT. The first word in the
array must contain the number of descriptors to be copied. The
remainder of the array is composed of the string of selectors to
be copied.

An array of selectors that designate the descriptors to be moved
to the new LDT and deleted from the current LOT. The first
word in the array must contain the number of descriptors to be
moved. The remainder of the array is composed of the string of
selectors designating the descriptors to be moved.

Output Parameters

the word in memory which receives the selector to the descriptor
for the new LOT.

status_code a status code is returned in AX. A zero value indicates a suc­
cessful completion of the procedure. A non-zero value indicates
that the procedure failed and encodes the reason for failure.

Description

This procedure creates a new local descriptor table and allocates memory for it. Two
new slots are allocated in the GOT for storing the LOT descriptor and a data seg­
ment alias for the table. The number of descriptor slots to be contained in the new
LOT is specified in nslots. If nslots contains a non-zero value, the new LOT will
contain the number of slots specified in nslots. If nslots contains a zero value, the
new LDT will contain the same number of descriptor slots as the current LOT.

In addition to creating a new LDT, the procedure can copy and/or move descriptors
from the current LDT into the new LOT. The copy and move both cause parallel
descriptor transfers. That is, in either case, the descriptor in slot n of the current
LOT is transferred to slot n of the new LOT. In the case of copy, each specified
descriptor is copied into the associated slot in the new LOT leaving the descriptor in

iAPX286 X286E Support Package

the current LDT unchanged. When descriptors are moved, the designated descrip­
tors are moved from the current LOT to parallel slots in the new LDT. However,
each of the designated descriptors is then deleted from the current LDT by zeroing
its access rights byte. Slots in the new LOT not initialized by copy or move are
zeroed out.

Example

The calling sequence shown below is a typical example of the CREATE_LOT call.
Figure 5-1 graphically illustrates call processing.

Call CREATE_LOT:

PUSH 0
PUSH SEG COpy LIST
PUSH OFFSET COPY_LIST
PUSH SEG MOVE lIST
PUSH OFFSET MOVE lIST
PUSH SEG lOT SEl
PUSH OFFSET LOT SEL
CALL CREATE LOT

01--_---1

n _--'

GOT

0

m new LOT
descriptor

m+1 alias

n

GOT

0

1

2

3

4

5

6

7

8

9

;NEW lOT TO HAVE THE SAME SIZE AS
;THE CURRENT lOT.

3

2:Tl:RPL

m m 3:TI:RPL

n n 4:TI:RPL

p p
COPY_LIST

r r

s s

t t

x x
z z

current LOT

(a) Initial condition

0

1

2 m m

3 n n

4 p p

5 (freed)

6 (freed)

7 (freed)

8 (freed)

9 z z

(b) Final condition

4

5:TI:RPL

6:TI:RPL

7:TI:RPL

8:TI:RPL

0

2

3

4

5

6

7

8

m m
n n
p p

r. ... r

s s

t t

x x

new LOT

Figure 5-1 CREATE_LDT Processing 121711-01

5-5

X286E Support Package

Status Codes Meaning

5-6

o Success

Insufficient space (for new LOT)

2 Selector from copy or move list is out of range*

3 Insufficient number of adjacent slots free in GDT (2
needed)

10 Invalid LOT size (nslots greater than 8K or equal to 1 **)

* A status code of 2 indicates partial completion of
CREATE_LOT. The LOT and its descriptors (in the
GOT) are created and all copies and moves involving
valid selectors are done. Copies or moves involving
invalid selectors are ignored.

** Because slot 0 in an LOT is reserved, and slot 1 must be a
data descriptor for the LOT, each LDT is required to
have a minimum of two slots'-

iAPX286

ALLoe_SLOTS

The ALLOC_SLOTS procedure allocates one or more consecutive slots in a
descriptor table.

Procedure Call Syntax

PUSH nstots
PUSH table_set
PUSH SEG new_set
PUSH OFFSET new_sel
CALL ALLOe_SLOTS

Input Parameters
nstots a numeric value that specifies the number of consecutive slots

that are to be allocated in the designated descriptor table.

the selector in the GOT that indexes the descriptor of the table
that is to be allocated slots. If this value is null, the GDT itself is
indicated. (Note that this is the only case where a null table_sel
always indicates the GOT.)

Output Parameters

the word in memory that receives the selector for the first slot
allocated.

status_code a status code is returned in AX. A zero value indicates a
successfull completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description

A free slot (available for allocation) is defined to be a table entry having a zero
access rights byte. An allocated slot is marked by setting its present bit to 1.

ALLOC_SLOTS allocates one or more consecutive slots in a descriptor table. The
parameter nslots specifies the number of slots to be allocated. The parameter
table_sel contains the selector in the GOT that indexes the descriptor for the table
to be allocated slots. If table_sel is null, the slots are to be allocated to the G DT .

The procedure stores the selector for the first slot allocated into new_sel and
returns a status code in AX.

Example

The calling sequence shown below is a typical use of the ALLOC_SLOTS pro­
cedure. Figure 5-2 illustrates call processing.

PUSH 4
PUSH LOT SEL
PUSH SEG-SLOT SEl
PUSH OFFSET SLOT SEL
CALL ALLOC SLOTS-

iALLOCATE FOUR SLOTS
iSELECTOR FOR LOT
iSLOT_SEL WILL INDEX
iFIRST SLOT ALLOCATED.

5-7

X286E Support Package iAPX286

(befor~ call) (after call)

0 a a 0 a a

b b 1 b b

} I new_sel r-
} allocated slots free slots

x .•.. x x x

n y y n y y

LOT LOT

Figure 5-2. ALLOC_SLOTS Processing 121711-02

Status Codes Meaning

o Success

3 Insufficient (consecutive) free descriptor slots.

5 Invalid table selector

5-8

FREE_SLOTS

The FREE_SLOTS procedure frees one or more consecutive slots in a descriptor
table.

Procedure Call Syntax

PUSH nslots
PUSH table_sel
PUSH sel
CALL FREE_SLOTS

Input Parameters

nslots a numeric value that specifies the number of consecutive slots
that are to be freed from the designated descriptor table.

sel

the selector in the GDT that indexes the descriptor of the table
that contains the slots to be freed. If this value is null, either the
GOT or the current LOT is indicated, depending on the TI bit in
seJ.

the selector that indexes the first slot to be freed from the
designated descriptor table.

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description

FREE_SLOTS frees one or more consecutive slots in a descriptor table by zeroing
the access rights byte for these slots. Parameter nsJots specifies the number of slots
to be freed from the table. The parameter tabJe_seJ designates the selector in the
GDT that indexes the descriptor of the table containing the slots to be freed. If
tabJe_seJ is null, the slots are freed from the GDT or the current LDT, depending
on the TI bit of seJ. The parameter seJ is the selector that indexes the first slot in the
table to be freed. Attempts to free slots beyond the end of a table are ignored.

Example

The calling sequence shown below is an example of a typical call to this procedure.
Figure 5-3 illustrates FREE_SLOTS processing.

DEFAULT_TABLE EQU 0

PUSH 2
PUSH DEFAULT_TABLE
PUSH SLOT NO
CALL FRE(=SLOTS

;FREE TWO SLOTS
;USE GOT OR CURRENT LOT
;SELECTOR (IN GOT) FOR FIRST FREED SLOT

5-9

X286E Support Package iAPX286

(before call) (after call)

0 0
a .•.. a a a
b .••• b b b

I SlOT_NO~ c •••. c c c

d d
} freed slots e ...• e

f ..•• f L .. f
g g 9····9

n n

GDT GOT

Figure 5-3. FRE~SLOTS Processing 121711-83

Status Codes Meaning

o Success

5 Invalid table selector

5-10

COPY_DESCRIPTOR

This procedure copies a descriptor from one descriptor slot to another.

Procedure Call Syntax

PUSH fro"'-tabJe
PUSH fro",-seJ
PUSH to_table
PUSHto_sel
CALL COPY_DESCRIPTOR

Input Parameters

fro"'-tab/e the selector of the descriptor table containing the descriptor to
be copied. If this value is null, then either the GDT or the cur­
rent LDT is indicated, depending on the TI bit in from_sel.

fro",-se/ the selector that indexes the slot containing the descriptor to be
copied

to_table the selector of the descriptor table that the descriptor is to be
copied to. If this value is null, then either the GDT or the current
LDT is indicated, depending on the TI bit in to_sel.

to_sel the selector that indexes the slot that is to receive the copied
descriptor

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description

The COPY--DESCRIPTOR procedure copies a descriptor from one descriptor slot
to another. The descriptor slot in the froIIL-table remains unchanged.

NOTE

No attempt is made to copy or check for aliases, even if the descriptor is an
LDT. You must manage aliases (and perform any re-linking required).

Example

This example is a typical call to COPY_DESCRIPTOR. Figure 5-4 illustrates
COPY_DESCRIPTOR processing.

PUSH 0
PUSH SLOT B
PUSH lDT_ii
PUSH SLOT D
CAll COPV=DESCRIPTOR

5-11

X286E Support Package

5-12

o o

LOT

(a) Before CAll COPY_DESCRIPTOR

o o

I SLOT B f-----. b b

LOT lOT_M

(b) After CAll COPY_DESCRIPTOR

Figure 5-4. COPY_DESCRIPTOR Processing

Status Codes

o

2

5

Meaning

Success

Selector out of range

from_table or to_table does not select a table

iAPX286

121711-04

MOVE_DESCRIPTOR

This procedure moves a descriptor from one descriptor slot to another.

Procedure Call Syntax

PUSH from_table
PUSH from_sel
PUSH to_table
PUSH to_sel
CALL MOVE_DESCRIPTOR

Input Parameters

from_table the selector of the descriptor table containing the descriptor to
be moved. If this value is null, then either the GDT or the cur­
rent LDT is indicated, depending on the TI bit in from_seJ.

from_sel the selector that indexes the slot containing the descriptor to be
moved

to_table the selector of the descriptor table to receive the descriptor. If
this value is null, then either the GDT or the current LDT is
indicated, depending on the TI bit in to_seJ.

to_sel the selector that indexes the slot that is to receive the descriptor.

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description
The MOVE_DESCRIPTOR procedure moves a descriptor from one descriptor slot
to another. The descriptor slot is then freed in the original table by zeroing its access
rights byte.

NOTE

No attempt is made to move or check for aliases, even if the descriptor is an
LDT. You must manage aliases (and perform any re-linking required).

Example
This example is a typical call to MOVE_DESCRIPTOR. Figure 5-5 illustrates
MOVE_DESCRIPTOR processing.

PUSH 0
PUSH SLOT B
PUSH lDT M
PUSH SLOT D
CALL MOVE=DESCRIPTOR

5-13

X286E Support Package iAPX286

o o

LOT LDTM

(a) Before CALL MOVE_DESCRIPTOR

o 0

LOT LDTM

(b) After CALL MOVE_DESCRIPTOR

Figure 5-5. MOVE_DESCRIPTOR Processing 12171HJ5

Status Codes _ Meaning

o Success

2 Selector out of range

5 from_table or to_table does not select a table

5-14

GET_DESCRIPTOR

The GET_DESCRIPTOR procedure copies a descriptor from a descriptor table to
a data segment.

Procedure Call Syntax

PUSH from_table
PUSH from_sel
PUSH SEG buffer
PUSH OFFSET buffer
CAll GET_DESCRIPTOR

Input Parameters

from_table the selector of the descriptor table containing the descriptor to
be copied. If this value is null, then either the GDT or the cur­
rent LDT is indicated, depending on the TI bit in from_seJ

from_sel the selector that indexes the descriptor to be copied

buffer the eight bytes in the data segment to receiv~ the copy of the
descriptor

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description

This procedure copies a descriptor from a descriptor table to an eight-byte field in a
data segment.

Example

The calling sequence shown below is a typical example of an application of
GET_DESCRIPTOR. Figure 5-6 graphically illustrates the processing of this
procedure.

PUSH LOT_SEL
PUSH SEL N
PUSH SEG-WORK OESC
PUSH OFFSET WORK OESC
CALL GET DESCRIPTOR

5-15

X286E Support Package iAPX286

I SEL_N .. b b

(table

~
descriptor)

L OFFSET WORLDESC

I f.. SEG WORK_DESC

GOT an LOT segment A

(a) Before CALL GET _DESCRIPTOR

I SELN f-. b b

(table

~
descriptor)

I OFFSET WORK_DESC ... b b

I f.. SEG WORK_DESC

GOT an LOT segment A

(b) After CALL GET_DESCRIPTOR

Figure 5-6. GET_DESCRIPTOR Processing 121711-06

Status Codes Meaning

o Success

2 Selector out of range

5 from_table does not select a table

5-16

PUT_DESCRIPTOR

The PUT --.:DESCRIPTOR procedure copies a descriptor from a data segment to a
descriptor table slot.

Procedure Call Syntax

PUSH SEG buffer
PUSH OFFSET buffer
PUSH to_table
PUSH to_sel
CALL PUT_DESCRIPTOR

Input Parameters

buffer

to_table

eight bytes in the data segment containing the descriptor to be
copied.

the selector of the descriptor table that is to receive the copied
descriptor. If this value is null, then either the GDT or the cur­
rent LDT is indicated, depending on the TI bit in to_seJ.

the selector that indexes the slot where the descriptor is to be
copied

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description

This procedure copies a descriptor from a data segment to a descriptor table. The
procedure overwrites whatever descriptor is in the selected slot in the descriptor
table.

Example
The calling sequence shown below is a typical example of an application of
PUT_DESCRIPTOR. Figure 5-7 graphically illustrates the processing of this
procedure.

PUSH SEG WORK OESC
PUSH OFFSET WORK_OESC
PUSH LOT SEL
PUSH SEL-N
CALL PUT-DESCRIPTOR

5-17

X286E Support Package

I OFFSET WORK_DESC ..

I SEG WORK_DESC ...

L OFFSET WORK_DESC ..

I SEG WORK_DESC j+-

b b

segment A

b• b

segment A

(table
descriptor)

GDT

(a) Before CALL PUT_DESCRIPTOR

(table
descriptor)

GDT

(b) After CALL PUT_DESCRIPTOR

Figure 5-7 . PUT_DESCRIPTOR Processing

Status Codes Meaning I
o Success

2 Selector out of range

5 to_table does not select a table

5- J 8

iAPX286

SELN" a 8

an LOT

SELN" b b

an LDT

121711-07

INSTALL_GATE

This procedure writes a gate descriptor into the GDT or an LDT.

Procedure Call Syntax

PUSH to_table
PUSHto_sel
PUSH WORD PTR gate_AR
PUSH nparm_words
PUSH SEG target
PUSH OFFSET target
CALllNSTALLGATE

Input Parameters

the selector of the descriptor table that is to receive the gate
descriptor. If this value is null, then either the GDT or the cur­
rent LDT is indicated, depending.on the TI bit in to_sel.

the selector indexing the slot in the descriptor table where the
gate descriptor is to be placed

the byte that is to be placed in the access rights byte of the
descriptor

nparm_words the number of parameter words for the procedure in the case of
call gates (i.e., the value to be placed in the word count byte of
the descriptor)

target a FAR procedure or task state segment

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description
The INSTALL_GATE procedure writes a gate descriptor into the GDT or an LDT.
to_table and to_sel specify the table and descriptor slot into which the gate is to be
placed. gate~R is the byte that is to be placed in the access rights byte of the
descriptor. It can be any value, this procedure does not check it. nparm_ words is
the number of parameter words for the procedure in the case of call gates. It must be
specified for both call and task gates although it is ignored for the later case. target
is a procedure or task state segment. If the gate is to be a task gate the pointer to
target must still be a 32 bit pointer whose selector denotes a TSS. The offset portion
will be written into the descriptor but not l,lsedby the iAPX 286.

5-19

X2&6E Support Package

5-20

Example
The calling sequence shown below is a typical example of a CALL
INST ALL_GATE. Figure 5-8 graphically illustrates the processing of this
procedure.

CGATE A EQU 24H ;(SLOT 4 IN CURRENT LOT)
PCOUNT EQU 3

PUSH 0
PUSH CGATE A
PUSH WORD PTR AR_BYTE
PUSH PCOUNT
PUSH SEG PROC A
PUSH OFFSET pioc A
CALL INSTALL_GATE

This call loads the call gate descriptor as shown below:

byte: 1

3

5

(OFFSET;PfWC_A)

(SEG: PROC_A)

(AR BYTE) : (PCOUNT)

o
2

4

7 6 (S/W:reserved)

Figure 5-8. Call Gate Descriptor Content 121711-08

PUSH 0 causes the call gate descriptor to be loaded into the LDT in the slot indexed
byCGATE_A.

Status Codes Meaning

o Success

2 Selector out of range

5 to_table does not select a table

iAPX286

GET_lOT_DESCRIPTOR

This procedure copies a descriptor from the lOT to a data segment.

Procedure Call Syntax

PUSH int_num
PUSH SEG buffer
PUSH OFFSET buffer
CALL GET _tOT_DESCRIPTOR

Input Parameters

buffer

the interrupt number (i.e., the slot index) in the IDT

eight bytes in memory to receive the copy of the descriptor from
the IDT

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description
This procedure copies a descriptor from the IDT to an eight-byte field in a data
segment.

Example
The calling sequence shown below is a typical example of a GET _IDT_
DESCRIPTOR call. Figure 5-9 graphically illustrates the results of this procedure.

PUSH INUM
PUSH SEG WORK OESC
PUSH OFFSET W~RK nESC
CALL GET_lOT_DESCRIPTOR

5-21

X286E Support Package

0

1

I OFFSET WORK_DESC-------1

I INUM .. b b

SEG WORK_DESC .. ____

lOT data segment A

(a) Before CAll GET_lOT_DESCRIPTOR

0

1

I OFFSET WORK_DESC b b

I INUM .. b b

SEGWORLDESC ___

lOT data segment A

(b) After CAll GET_lOT_DESCRIPTOR

Figure 5-9. GET_lOT_DESCRIPTOR Processing

5-22

Status Codes

o

6

Meaning

Success

int_num out of range

iAPX286

121711-09

PUT_lOT_DESCRIPTOR

This procedure copies a descriptor from a data segment to the lOT.

Procedure Call Syntax

PUSH SEG buffer
PUSH OFFSET buffer
PUSHinLnum
CALL PUT_lOT_DESCRIPTOR

Input Parameters

buffer

inLnum

eight bytes in the data segment containing the descriptor to be
copied

the interrupt number (i.e.,the slot index) of the lOT entry where
the descriptor is to be placed

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description
This procedure copies a descriptor from an eight-byte field in a data segment to the
IDT, overwriting the previous content of the slot specified.

Example
The calling sequence shown below is a typical example of a PUT _IDT_
DESCRIPTOR call. Figure 5-10 graphically illustrates the results of of this
procedure.

PUSH SEG WORK OESC
PUSH OFFSET WORK_DESC
PUSH INUM
CALL PUT lOT DESCRIPTOR

5-23

X286E Support Package iAPX 286

5-24

0

1

I OFFSET WORK_OESC"" b b

I INUM ~ a a

SEG WORK_OESC ___

data segment A IDT

(a) Before CAlL PUT_IOT_[)ESCRIPTOR

o

I OFFSET WORK_OESC ... b b

INUM J...t--_b_._ ... _ .. _.b_ ...

SEG WORK_OESC ___

data segment A IPT

(b) After CALL PUT_lOT_DESCRIPTOR

Figure 5-10. PUT_lOT_DESCRIPTOR Processing

Status Codes

o

6

Meaning

Success

int_num out of range

121711-10

INSTALL_lOT_GATE

The INSTALL_lOT_GATE procedure writes a gate descriptor into the lOT.

Procedure Call Syntax

PUSH int_num
PUSH WORD PTR gate_AR
PUSH SEG interrupLhandler
PUSH OFFSET interrupt_handler
CALL INST ALL_IDT _GATE

Input Parameters

int_num the interrupt number (i.e., the slot index) in the lOT

gate_AR the byte to be placed in the access rights byte of the gate
descriptor

in terrup L handler an interrupt procedure or task

Output Parameter

Description

a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason
for failure.

This procedure writes a gate descriptor into the lOT. int_num is the interrupt
number which is also the index of the lOT slot that is to contain the gate descriptor.
gate_AR is the byte that is to be placed in the access rights byte of the descriptor
and defines the gate's access rights. This procedure does not check the access rights
value. interrupt_handler is an interrupt procedure or task. If the gate is to be a task
gate, the pointer to the interrupt_handler must still be a 32 bit pointer. The offset
portion will be written into the gate descriptor but will not be used by the iAPX 286.

Example
The calling sequence shown below is a typical example of a INST ALL_
lOT_GATE call. Figure 5-11 graphically illustrates the results of this procedure.

PUSH INUM
PUSH WORD PTR AR8YTE
PUSH SEG IH PROt
PUSH nFFSET-IH PRCC
CALL I~STALL_riT GATE

This call loads the interrupt call gates as shown below.

X286E Support Package

5-26

byte: 1
3

5

7

(OFFSET; ItLPROC)

(SEG: IH_PROC)

(ARBYTE) : (not used)

(S/w:reserved)

o
2
4

6

Figure 5-11. Interrupt Gate Descriptor Content 121711-11

PUSH INUM causes the above interrupt gate descriptor to be loaded in the lOT in
the slot corresponding to interrupt number INUM.

Status Codes Meaning

o Success

6 int_flum out of range

iAPX286

iAPX286 X286E Support Package

Descriptor Declarations

In addition to the descriptor and table management procedurf,), assembly language
structure and record definitions are provided to assist you in coding routines that
deal with descriptors and tables.

The DA T A_AR record defines the access rights byte of a data segment. The record
fields are identified by the following field names:

PRES
DPL
S
EXEC
EXPAND_DOWN
WRITABLE
ACCESSED

the present bit
the descriptor privilege level field
the segment bit (initialized to 1)
the executable bit (initialized to 0)
the expand down bit
the writable bit
the accessed bit

The CODE_AR record defines the access rights byte of a code segment. The record
fields are identified by the following field names:

PRES
DPL
S
EXEC
CONF
READABLE
ACCESSED

the present bit
the descriptor privilege level bit
the segment bit (initialized to 1)
the executable bit (initialized to 1)
the conforming bit
the readable bit
the accessed bit

The CNTRL_AR record defines the access rights of control descriptors. The record
fields are identified by the following field names:

PRES
DPL
S
CTYPE

the present bit
the descriptor privilege level field
the segment bit (initialized to 0)
the control descriptor type

Constants are defined for the control descriptor types. The names of the constants
are:

TS_TYPE
BUSY _ TS_ TYPE
LDT_TYPE
CALLGATLTYPE
INT _GATE_TYPE
TRAP _GATE_TYPE
TASLGATE_ TYPE

the type number of a task state segment(1)
the type number of a busy task state segment(3)
the type number of a local descriptor table(2)
the type number of a call gate(4)
the type number of an interrupt gate(6)
the type number of a trap gate(7)
the type number of a task gate(5)

Structures are defined for segment descriptors and for gate descriptors.

The segment descriptor structure is named SEG_DESeR. The descriptor fields are
identified by the following field names:

LIMIT
ADDR_lOW
ADDR_HIGH
AR
SW_WORD

the segment limit field
the least significant word of the base address
the most significant byte of the base address
the access rights byte
the software reserved word

5-27

X286E Support Package

5-28

The gate descriptor structure is named GATE_DESCR. The structure fields are
identified by the following field names:

TARGET
NPARM_WORDS
AR
SW_WORD

the selector and offset of the gate target
the number of parameter words (for call gates)
the access rights byte
the software reserved word

A record named SELECTOR that describes a selector is also provided. The record
fields are identified by the following field names:

INDEX
TI
RPL

the index field of a selector
the table indicator bit
the requested privilege level field

iAPX 286

iAPX286 X286E Support Package

Task State Segment Management

Task state segment management is an extension of descriptor and descriptor table
management. It allows you to change a data segment into a task state segment. This
capability is provided through a procedure to turn a data segment into a task state
segment, a macro that defines a task state segment, and a declaration for the task
state segment structure.

The CREATE_TASK procedure enables you to create a task. This procedure
creates the task by turning a data segment into a task state segment.

You can delete the task state segment with the DELETE_SPACE procedure.

Task state segment management is also supported at assembly time with a macro
OJoDEFINE_TASK for creating a task state segment as a data segment and with a
definition for a task state segment structure.

5-29

CREATE_TASK

5-30

The CREATE_TASK procedure changes a data segment into a task state segment.

Procedure Call Syntax

PUSH TS_se/
CALL CREATE_TASK

Input Parameter

the selector in the GDT for the data segment descriptor that is to
be changed into a task state segment

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure.

Description

This procedure changes a data segment into a task state segment by changing its
descriptor to a task state segment descriptor. The data segment must have sufficient
space for a task segment(at least 44 bytes).

Example

PUSH TSEL
CALL CREATE_TASK

This call transforms data segment TSEG into a task state segment.

iAPX286

Status Codes

o

2

7

X286E Support Package

data segment
descriptor

GOT

(a) Before CALL CREATLTASK

task state
segment

descriptor

GOT

(b) After CALL CREATE_TASK

(segment with
TS information)

TSEG

(segment with
TS information)

TSEG

Figure 5-12. CREATE_TASK Processing

Meaning

Success

TS_sel is out of range

121711-12

TS_sel does not select a data segment in the GDT, or the
data segment is too small.

5-31

%DEFINE_TASK

5-32

OJoDEFINE_ TASK is an AS286E macro for creating a data segment containing task
state segment information.

Macro Invocation Syntax

%DEFINE_ TASK(tname, start, 55/, D5/, S50, 5S1, SS2, IdLse/, back_link)

Input Parameters

tname

start

SSI

D$I

S50

SS1

SS2

IdLsel

Description

the name of the task

the starting location (initial CS and IP) of the task, a far label

a segment name that defines the initial SS for the task

the segment selector to which OS and ES are to be initialized in
the task

the segment selector for the initial stack segment for level °
the segment selector for the initial sta.ck segment for level 1

the segment selector for the initial stack segment for level 2

the selector for the task's local descriptor table

the value to be placed in the back link field of the task state
segment

%DEFINE_ TASK is not an X286E run-time procedure, but rather an assembly
time macro designed to create a data segment to be converted to a task state segment
at run time using the procedure CREA TE_ TASK. The name of the task is provided
by the parameter 'tname'. The task state segment will be defined as a data segment
with that name. Task execution will start at the memory location indicated by the
parameter 'start'. This parameter must be a far label. SS is initialized by 'SS/'. SP
will be initialized to 0. DS and ES are initialized by the argument 'DS/'. The
arguments 'SSO', 'SS1', and 'S82' are the segment selectors (names) that provide the
initial stack segments for the level 0, 1, and 2 stacks respectively. The initial SP value
for the privileged stacks is O. Argument ldt_sel is the selector for the task's local
descriptor table. It may be initialized at run time when the task state segment is
created. Argument 'back_link' provides the value to be placed in the back link
field.

NOTE
The stack segments specified are expected to be expand-down data
segments, thus the initial SP values of zero.

The declaration for the task state segment structure is named TS_STRUC. The task
state segment fields are defined by the following field names:

BACK_LINK
PRIV_STACK

the back link field
the array of three pointers to level 0, 1, and 2 stacks

iAPX286

IP_SAVE
FLAGS_SAVE
AX_SAVE
eX_SAVE
OX_SAVE
BX_SAVE
SP_SAVE
BP_SAVE
SI_SAVE
OI_SAVE
ES_SAVE
eS_SAVE
SS_SAVE
OS_SAVE
LOT_SAVE

the saved instruction pointer
the saved flags
the saved AX register
the saved ex register
the saved DX register
the saved BX register
the saved SP register
the saved BP register
the saved SI register
the saved D I register
the saved ES selector
the saved es selector
the saved SS selector
the saved DS selector
the saved LDT selector

X286E Support Package

5-33

X286E Support Package

5-34

Segment Management

Two procedures are provided for segment management. CREATE_SEG creates
new segments and allocates memory space to segments and DELETE_SPACE frees
the space occupied by a segment and marks the segment as not present.

iAPX286

CREATE_SEG

The CREATE_SEG procedure creates a new segment and allocates memory space
for the segment.

Procedure Call Syntax

PUSH WORD PTR AR
PUSH limit
PUSH table_sel
PUSHsel
CALL CREATE_SEG

Input Parameters

AR the access rights byte for the segment

limit

sel

the limit value of the segment

the selector of the descriptor table into which the segment
descriptor is to be placed. If this value is null, either the GDT or
the current LDT is indicated, depending on the TI bit in seJ.

the selector that indexes the slot allocated in the descriptor table
to receive the segment descriptor.

Output Parameter

status_code a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero value
indicates that the procedure failed and encodes the reason for
failure

Description
This procedure creates a new segment and allocates memory space for the segment.
The parameters table_sel and sel specify the descriptor table and slot respectively
where the segment descriptor is to be placed. The parameters AR and limit define
the access rights and limit values for the segment and are stored in the appropriate
segment descriptor fields. The descriptor slot to contain the segment descriptor
should have been allocated prior to this call.

Example
The following calling seQ.uence illustrates a typical CREA TE_SEG call. Figure 5-13
illustrates CREATE_SEG processing.

PUSH WORD PTR AR
PUSH SEG LIM
PUSH LDT-SEL
PUSH SEL-N
CALL CREATE_SEG

iACCESS BYTE VALUE
;SEGMENT LIMIT VALUE
;SELECTED DESCRIPTOR TABLE
iSELECTEDSLOT IN TABLE

5-35

X286E Support Package iAPX 286

· · · · · ·

~
(allocated
slot)

· · · ·
GOT an LOT

(a) Before CALL CREATE_SEG

· · · · · · limit

~
(descriptor)

· · · ·

segment

tARi base

'" reserved

GOT an LOT Limit

(segment)

/ o

(b) After CALL CREATE_SEG

Figure 5-13. CREA TE_SEG Processing 121711-13

Status Codes Meaning

o Success

Insufficient space for the new segment

5 Invalid table selector

5-36

DELETE_SPACE

The DELETE_SPACE procedure frees space occupied by a segment and marks the
segment as not present.

Procedure Call Syntax

PUSH table_sel
PUSH set
CALL DELETE_SPACE

Input Parameters

the selector of the descriptor table in which the segment
descriptor is located. If this value is null, then either the GDT or
the current LDT is indicated, depending on the TI bit in sel.

sel the selector that indexes the segment descriptor in the descriptor
table

Output Parameter

status_code a status code is returned in AX. A zero value indicates a suc­
cessful completion of the procedure. A non-zero value indicates
that the procedure failed and encodes the reason for failure.

Description
DELETE_SP ACE frees the memory space occupied by a segment and marks the
the segment as not present. If the segment is an LOT, its alias is also marked as not
present.

NOTE
There are no other attempts to manage aliases. You must ensure that all
other aliases set up by your program are dealt with properly.

Example
The following example illustrates a typical call of DELETE_SPACE. Figure 5-14
illustrates DELETE_SPACE processing.

PUSH LOT SEL
PUSH SEL-N
CALL OElITE_SPACE

5-37

X286E Support Package

o 1------..

table
descriptor

•

•
GOT

0

I LOT_SEL ~

o
~----...

SELN .. segment
descriptor

an , LOT

(a) Before DELETE_SPACE CALL

0

· · I SELN .. ·
table

~
descriptor

· · ·
GOT

(b) After DELETE_SPACE CALL

·
(not

present)

· · · · ·
an LOT

Figure 5-14. DELETE_SPACE Processing

Status Codes Meaning

o Successful

4 Not a segment descriptor or space is already freed

5 Invalid table selector

5-38

iAPX286

(segment)

121711-14

iAPX286 X286E Support Package

Free Space Management

The free space management procedures allow dynamic allocation and de-allocation
of the memory space above the loaded program. All but one paragraph (16 bytes) of
the available memory beyond the top of the program loaded is accessible through
these procedures for use at runtime. (X286E reserves the first available paragraph
for use in managing the free memory space). The procedures deal with 24 bit real
addresses. However, due to a restriction of the iAPX 286 Evaluation Simulator, the
addresses must be paragraph aligned. That is, the four least significant bits of the
address must be O. The free space management procedures may be accessed indi­
rectly through the CREATE_SEG, CREATE_LOT, and DELETE_SPACE pro­
cedures. The remainder of this section describes the free space procedures.

5-39

ALLOC_SPACE

5-40

The ALLOC_SP ACE procedure allocates memory space.

Procedure Call Syntax

PUSH nbytes_minus_one
PUSH SEG address
PUSH OFFSET address
CALL ALLOC_SPACE

Input Parameter

nbytes_minus_one the number of bytes, minus one, of memory space to be
allocated

Output Parameters

address

Description

the three bytes in memory where the 24-bit real address
of the allocated space is placed upon return. from the
procedure

a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero

. value indicates that the procedure failed and encodes the
reason for failure.

This procedure allocates from one to 64K bytes of memory space. The first
parameter is the number of bytes, minus one, of the amount of memory space that is
to be allocated. ALLOC_SPACE returns the 24-bit real address of the allocated
space in the three byte location 'address'.

Example

SAVE ADOR DO 0
NO BYTES OW OFFFH

PUSH NO BYTES
PUSH SE~ SAVE_ADDR
PUSH OFFSET SAVE ADDR
CALL ALLOC SPACE

The above call allocates IOOOH bytes of memory space, placing the 24-bit real
address of the start of the memory block in the low three bytes of SA VE_ADDR.

Status Codes Meaning

o Success

Insufficient free space

F~REE_SPACE

TheFREE_SP ACE procedure frees memory space.

Procedure Call Syntax

PUSH nbytes_minus_one
PUSH SEG address
PUSH OFFSET address
CALL FREE_SPACE

Input Parameters

nbytes_minus_one the number of bytes, minus one, of memory space to be
freed

address the three bytes holding the 24-bit real address of the
space to be freed

Output Parameter

Description

a status code is returned in AX. A zero value indicates a
successful completion of the procedure. A non-zero
value indicates that the procedure failed and encodes the
reason for failure.

This procedure frees from one to 64K bytes of memory space. The first parameter is
the number of bytes, minus one, of memory to be freed. The procedure rounds up
the number of bytes actually freed to the nearest multiple of 16. The second
parameter points to the three byte location that contains the 24-bit starting address
of the memory space to be de-anocated.

Example

SAVE ADDR DO 0
NO_SYTES DW OFFFH

PUSH NO BYTES
PUSH SES SAVE ADDR
PUSH OFFSET SIVE ADDR
CALL FREE_SPACE -

The above example deallocates lOOOH bytes of memory starting at the memory loca­
tion whose 24-bit real address is contained in the three bytes referenced by
SAVE_ADDR.

5-41

X286E Support Package

5-42

Status Codes

o

8

9

Meaning

Success

the address is not aligned on·a paragraph boundary

the space being freed overlaps with space already marked
as free

NOTE
Because ALLOC_SPACE and FREE_SPACE deal with the memory
available between the top of the program loaded and the top of the useable
memory (as reported by the Simulator), attempts to free memory above or
below these points will result in "overlap errors" (Status code 9). In par­
ticular, it is not possible to use FREE_SPACE to free-up a segment con­
tained in the initially loaded program.

iAPX286

APPENDIX A
ERROR MESSAGES

This appendix lists the error and warning messages issued by the Evaluation Builder.

The Evaluation Builder issues error messages if it finds an invalid invocation line or
an illegal input object file. Also, if during the processing of the command file, a syn­
tax error or a semantic error is found, the Evaluation Builder issues diagnostic
messages.

Each message put out by the builder has a unique number and may be either a warn­
ing or an error (errors are fatal, warnings are non-fatal). Warnings are directed to
the list file (if any), and fatal error messages are directed to the console file, and to
the list file (if any).

Each message has the following attributes:

• a unique number

• a fatal or non-fatal attribute (error/warning)

• a textual description

• a set (possibly empty) of items that help to identify the nature of the problem
with respect to the user's program. An item could be a module name, a segment
name, a symbol name, a file name, an extra message, etc ...

Message numbers are assigned, depending on where they occur, as follows:

• lxx-Invocation line or object file errors.

• 2xx-Command file errors.

• 3xx-Internal processing errors.

Besides the type of errors mentioned above, there are also errors that may happen at
a system level. These errors are all fatal errors and are generated as described in the
following paragraph.

Errors at System Interface Level

If an error in a call to the Host Operating System is detected, the Evaluation Builder
will issue a fatal error message to the console file and the list file (if any), and will
return control to the Host Operating System. The error can be an I/O error, an
invalid parameter, an insufficient memory, etc ...

The error message has the following format:

SYSTEM INTERFACE ERROR
error text
FILE: filename

The error text, which is Operating System dependent, may include an exception
number and a description of the error. The file name will be present only if the error
is an I/O error.

A-I

Error Messages

A-2

Errors in Invocation Line and Input Object File

If an error is found in the invocation line or in the input object file, then one of the
following warning/error messages will be issued:

ERROR 100: MISSING INPUT FILE IN COMMAND TAIL
An input file in the command tail is required by the builder. This is a fatal error,
the builder immediately terminates processing and returns control to the Host
Operating System.

ERROR 101: INVALID TOKEN IN COMMAND TAIL
TOKEN: token string

An unknown control, indicated by the token string, was found in the command
tail. This is a fatal error, the builder immediately terminates processing and
returns control to the Host Operating System.

ERROR 102: INVALID DELIMITER IN COMMAND TAIL
ERROR OCCURS AFTER TOKEN
TOKEN: token string

An invalid delimiter, whose location is indicated by the token string, was found
in the command tail. This is a fatal error, the builder immediately terminates
processing and returns control to the Host Operating System.

ERROR 103: INVALID FILE NAME IN COMMAND TAIL
TOKEN: token string

An invalid file name, indicated by the token string, was found in the command
tail. This is a fatal error, the builder immediately terminates processing and
returns control to the Host Operating System.

WARNING 104: MODULE IS NOT A MAIN MODULE
The register initialization record is not present in the input object module. This
is only a warning. No task state segment will be built for the module. The user
may specify register initialization using the END directive in the corresponding
assembly language module.

WARNING 105: MODULE CONTAINS UNSATISFIED EXTERNALS
SYMBOL: symbol name

SYMBOL: symbol name
There are no matching public symbols for the listed external symbols. The only
external symbols allowed are the DQ_SIM symbol for I/O purpose and the
public gates that are defined in the X286E file, which must exist on the same
disk as for the builder.

WARNING 106: INVALID TASK STATE SEGMENT
error text

An entry for the task state segment is illegal (invalid). The error text indicates
why. It may be a missing definition for a base register/register pair such as
CS:IP or SS:SP or DS/ES, the user can provide this information through the
END directive of the assembly language module. Alternately, it may be a miss­
ing stack entry, the user may optionally provide this information by using the
ST ACK definition in the command file. The error may also be caused by an
illegal privilege level assignment; the user should make sure that the code seg­
ment (CS) privilege level is equal to the stack segment (SS) privilege level and
numerically less than or equal to the data segment (DS) privilege level.

iAPX286

iAPX286 Error Messages

WARNING 107: FIXUP REFERENCE TO LESS PRIVILEGED LEVEL
SEGMENT ISREFERENCtNG SEGMENT
SEGMENT: segment name
REFERENCED OBJECT: external name or segment name

An illegal inter-level reference was found. The referencing segment is indicated
by the SEGMENT item and the referenced object is indicated by the
REFERENCED OBJECT item. The user should check the segment privilege
specification in the SEGMENT definition.

WARNING 108: FIXUP REFERENCE TO MORE PRIVILEGED LEVEL
SEGMENT IS REFERENCING SEGMENT
SEGMENT: segment name
REFERENCED OBJECT: external name or segment name

An illegal inter-level reference was found. The referencing segment is indicated
by the SEGMENT item and the referenced object is indicated by the
REFERENCED OBJECT item. The user should check the segment privilege
specification in the SEGMENT definition.

WARNING 109: REFERENCE TO UNSATISFIED EXTERNAL
SYMBOL: symbol name

There is a reference to an unresolved external symbol indicated by its name.
Processing continues with no modification to the unresolved reference.

WARNING 110: REFERENCE TO UNGATED PUBLIC
SYMBOL: symbol name

There is a reference to a more privileged executable segment through a public
symbol, but there is no gate defined for the public entry. The user should define
a gate for the corresponding public using the GATE definition in the c Jrnmand
file.

WARNING 111: INTERRUPT OR TRAP GATE PLACED IN LDT
SYMBOL: symbol name

The builder attempts to put all segment or gate descriptors not explicitly
assigned by the user into the LDT table~ a~..1 . ~ - is an interrupt gate or a trap
gate among them.

ERROR 112: INVALID OBJECT MODULE INPUT
FILE: filename

The input object module is not a valid module. This could mean that the file
does not contain an object file output by the evaluation assembler.

ERROR 113: INVALID STACK SEGMENT SIZE
extra message
SEGMENT: segment name

The size of the specified stack segment is either one byte too small or one byte
too big. The extra message will indicate which case. The user should correct the
size declaration for the corresponding stack segment in the assembly language
module.

WARNING 114: DUPLICATE PUBLIC ENCOUNTERED
SYMBOL: public name

The specified public name in the user program is already used as public symbol
in the X286E file. The user should change the public name in the assembly
language module.

Errors in Command File

If errors are found on a line in the command file, diagnostic messages will be
inserted into the listing after the line on which they were detected.

A-3

Error Messages

A-4

The messages have the following format:

*** WARNING 2xx: LINE n, NEAR 'token', message

Where 2xx is the warning number, n is the number of the line on which the error
occurred, 'token' indicates the location of the error, and message is the warning
message corresponding to the warning number. The warning messages are listed
below along with their assigned numbers.

First are messages to indicate syntax errors found in a command file. The error
recovery involves the insertion and/or the deletion of tokens until the current token
is acceptable. The messages indicate which tokens have been inserted or skipped.

WARNING 200: ILLEGAL TOKEN(S) SKIPPED UNTIL 'token'
WARNING 201: MISSING ";' INSERTED
WARNING 202: MISSING',' INSERTED
WARNING 203: MISSING '(' INSERTED
WARNING 204: MISSING,), INSERTED
WARNING 205: MISSING '=' INSERTED
WARNING 206: MISSING ":' INSERTED
WARNING 207: MISSING SEGMENT ATTRIBUTE, 'NOCONFORMING' INSERTED
WARNING 208: MISSING GATE TYPE, 'CALL' INSERTED
WARNING 209: MISSING TABLE NAME, 'GOT' INSERTED
WARNING 210: MISSING PARAMETER KEYWORD
WARNING 211: MISSING NUMBER
WARNING 212: MISSING IDENTIFIER

Following are semantic errors:

WARNING 213: SPECIFIED SEGMENTOR GATE NOT FOUND
A symbolic name was used in the specification of an entry for a descriptor table,
but there is no matching segment or gate name. This is usually the result of a
typo in the command line or a corresponding gate was not defined using the
GATE definition. The table entry will be marked as invalid entry.

WARNING 214: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE
A symbolic name was used in a SEGMENT definition or a STACK definition,
but no such segment was found in the input module. Probably there is a typo in
the command line. The definition for the segment will be ignored.

WARNING 215: PUBLIC SYMBOL NOT FOUND IN INPUT MODULE
A symbolic name was used to define a gate in a GATE definition, but there is no
such public symbol in the input module. This is usually the result of a typo in the
command line or the user forgot to declare the symbol as a public symbol in the
corresponding assembly language module.

WARNING 216: STACK ALREADY SPECIFIED
The stack segment for the same privilege level was specified more than once in a
STACK definition. The first one specified is used.

WARNING 217: TABLE ENTRY ALREADY SPECIFIED
The ENTRY keyword was specified more than once in a TABLE definition. The
new entries will be added to the corresponding table.

WARNING 218: TABLE LIMIT ALREADY SPECIFIED
A TABLE limit was specified more than once. The first one specified is used.

WARNING 219: PRIVILEGE LEVEL ALREADY SPECIFIED
Privilege level for a gate or a segment was specified more than once. The first
value specified is used.

iAPX286

iAPX286 Error Messages

WARNING 220: GATE TYPE ALREADY SPECIFIED
The gate type (CALL or INTERRUPT or TRAP) was specified more than once
for the same gate. The firs type specified is used.

WARNING 221: SEGMENT ATTRIBUTE ALREADY SPECIFIED
The segment attribute (CONFORMING or NOCONFORMING) was specified
more than once for the same segment. The first attribute specified is used.

WARNING 222: ILLEGAL VALUE FOR PRIVILEGE LEVEL
An illegal number was used to specify a segment or a gate privilege level. This
may be an invalid number or a valid number but greater than 3, the default
value (3) is used instead. This may also be the case where the specified privilege
level for a gate is less than the privilege level of the public entry it points to, this
is only a warning and the specified value is used.

WARNING 223: ILLEGAL VALUE FOR TABLE LIMIT
An illegal number was used to specify a descriptor table limi •. This may be an
invalid number or a valid number but greater than the maximum value allowed
(8191), the default value (+16) is used instead. This may also be the case where
the specified limit is too small for the corresponding table, then the limit will be
set equal to the actual number of table entries. The message is also issued if the
table limit (specified by the user or not) becomes larger than 8191 because of an
entry index assignment, in this case the table limit will be set equal to 8191.

WARNING 224: ILLEGAL VALUE FOR ENTRY INDEX
An illegal number was used to specify an index for a descriptor table entry. This
may be an invalid number or a valid number but greater than the maximum
value allowed (8191), the specified number is ignored. This may also be a valid
number but the entry is reserved for Intel use or entry indices are not assigned in
an increasing order, this is only a warning and the specified value is used.

WARNING 225: ILLEGAL lOT ENTRY
A segment or a call gate was specified as an entry for the Interrupt Descriptor
Table. This is only a warning, and the specified entry is added to the IDT.

WARNING 226: ILLEGAL GOT OR LOT ENTRY
A trap gate or an interrupt gate was specified as an entry to the Global Descrip­
tor Table or the Local Descriptor Table. This is only a warning, and the
specified entry is added to the specified table.

WARNING 227: ILLEGAL STACK ENTRY
In the definition of a stack entry for the Task State Segment a non-stack seg­
ment was used or a stack segment of privilege greater than 2 was used. The entry
will be marked as invalid entry.

WARNING 228: IDENTIFIER TOO LONG
A token of more than 40 bytes was found. The token is rejected.

WARNING 229: NUMBER GREATER THAN 64K
A numeric constant greater than 64K was found at a location where a 16 bit con­
stant was expected such as values for privilege level, limit, or table entry index.
The value is set equal to the specified number modulo 64K.

WARNING 230: ILLEGAL ATTRIBUTE FOR NON-EXECUTABLE SEGMENT
The CONFORMINCUNOCONFORMING attribute was assigned to a non­
executable (data) segment. The specification is ignored.

A-5

Error Messages

A-6

WARNING 231: UNGATABLE PUBLIC
A CALL gate was defined using a public symbol, but either the public entry
does not have a word count or its word count is greater than 31. The user should
go back to the assembly language program and specify a correct word count for
the corresponding public procedure.

Internal Processing Errors

The fatal internal errors should never occur. The format of the error message is as
follows:

*** ERROR 3xx: INTERNAL PROCESSING ERROR, message

Following is the list of error messages of this class, along with their assigned
numbers:

ERROR 300: INTERNAL NAMES OUT OF SYNCH
ERROR 301: ERROR IN WORKFILE PROCESSING
ERROR 302: INVALID INPUT FORMAT
ERROR 303: IMPROPER USE OF PROCEDURAL INTERFACE
ERROR 304: TOO MANY INTERNAL NAMES
ERROR 305: INSUFFICIENT WORK AREA
ERROR 306: NAME TOO LONG
ERROR 307: ILLEGAL INTERNAL NAME
ERROR 308: MISPLACED DEFINITION
ERROR 309: INVALID FILE TYPE
ERROR 310: READ PAST EOF
ERROR 311: SECTION TOO SHORT
ERROR 312: INVALID INPUT FILE
ERROR 313: ATTEMPT TO USE UNALLOCATED STRUCTURE
ERROR 314: INTERNAL NAME FOR TEXT NOT A SEGMENT
ERROR~5: UNRECOGN~EDF~UPFORMAT
ERROR 316: INCLUDE FILE SIZE ERROR
ERROR 317: NAME TABLE OVERFLOW
ERROR 318: PARSER STACK OVERFLOW
ERROR 319: MULTIPLE ARGUMENTS DISCOVERED DURING A REDUCTION
ERROR 320: PARSER ARGUMENT STACK UNDERFLOW
ERROR 321: PARSER STATE STACK UNDERFLOW
ERROR 322: NO TOKEN AVAILABLE FOR ERROR RECOVERY
ERROR 323: INVALID CONTROL PARAMETER

iAPX286

APPENDIX B
STATUS CODES

This appendix lists the status codes issued by the X286E run-time procedures.

Each X286E run-time procedure will return a status code in AX. The value of the
status code indicates the success or failure of the procedure. A non-zero value
indicates that the procedure has failed and encodes the reason for failure.

The following list contains the code value and meaning of each status code.

Status Code

o

2

3

4

5

6

7

8

9

10

Meaning

Successful completion of the procedure

Insufficient space

Selector out of range

Insufficient number of consecutive free descriptor slots

Not a segment descriptor or space is already freed

Invalid table selector or no table selected

Interrupt number out of range

Selector does not select a data segment in the GDT or the
data segment is too small

Address is not aligned on a paragraph boundary

The space being freed overlaps with space already marked
as free

Invalid LDT size

B-1

abbreviated forms of keywords, 4-4
access rights byte of a data segment, 5-27
access rights byte of a code segment, 5-27
access rights byte of a control descriptor, 5-27
access rights parameter, 5-2
ACCESSED, 5-27
accessed bit, 5-27
ADDR_HIGH, 5-27
ADDR_LOW, 5-27
address binding, 2-4
aliases, 5-2
ALLOC_SLOTS, 5-7
ALLOC_SP ACE, 5-40
allocation of memory space, 5-39
AR, 5-27, 5-28
ASM86,1-1
Assembler Overview, 1-1
assignment of segment attributes and protection

levels, 2-2
AS286E, 1-1
AS286E.86, 1-1

base registers, 2-4
BD286E, 1-1, 1-2, 2-1
BD286E.INC, 1-1,2-2,2-3
BD286E output module, 2-7
BD286E .86, 1-1
builder command language, 1-2
builder controls, 3-1
builder input file, 3-1
builder invocation under ISIS-II control, 3-1
builder invocation under RUN program control, 3-1
Builder Overview, 1-2
builder output file, 3-1
builder program definitions, 4-1
builder sign-on message, 3-2
BUSY _ TS_ TYPE, 5-27

CA,4-4
CALL, 4-2, 4-4
call gate descriptor content, 5-20
CALL_GATE_TYPE, 5-27
calling conventions, 5-2
CF,4-4
changing descriptors, 5-3
CNTRL_AR record, 5-27
CODE_AR record, 5-27
COMMAND, 3-2
command file listing, 2-6
command file listing format, 3-3
CONF, 5-27
CONFORMING, 4-1, 4-4
conforming bit, 5-27
constants for control descriptor types, 5-27
control descriptor type field, 5-27
controllist, 3-1, 3-2
controls, Evaluation Builder, 3-1, 3-2
COPY_DESCRIPTOR, 5-11
CNTRL_AR record, 5-27

INDEX I

CREA TE_LDT, 5-4, 5-39
CREATE_SEG, 5-35, 5-39
CREATE_TASK, 5-29, 5-30
creating descriptors, 5-3
creating local descriptor tables, 5-3
creating a task, 5-29
CTYPE,5-27

DA T A_AR record, 5-27
data segment aliases, 5-2
data segment references, 2-5
deallocation of memory space, 5-39
DEBUG,3-2
debug information, 2-7
default gate, 2-2
default privilege level, 2-2
DEFINE_TASK, 5-29, 5-32
defining a task state segment, 5-29
DELETE_SPACE, 5-29, 5-34, 5-37, 5-39
deleting a task, 5-29
deleting descriptors, 5-3
descriptor declarations, 5-27
descriptor management procedures, 5-3
descriptor privilege level (DPL), 2-5
descriptor privilege level field, 5-27
descriptor table conventions, 5-2
descriptor table creation, 2-2
descriptor table slot, 5-3
Development Package, 1-3
DPL,2-5,5-27
DQ_SIM,2-2

ENTRY, 4-2, 4-4
ET,4-4
Evaluation Builder, 1-1, 2-1
Evaluation Builder controls, 3-1
Evaluation Builder functions, 2-1
Evaluation Builder input, 2-1
Evaluation Builder invocation under ISIS-II

control, 3-1
Evaluation Builder invocation under RUN

program, 3-1
Evaluation Builder language, 4-1
Evaluation Builder output, 2-1, 2-7
Evaluation Macro Assembler, 1-1
Evaluation Package, 1-1
Evaluation Simulator, 1-1, 1-2, 5-1
examples of Evaluation Builder invocation:

NOCOMMAND control, 3-5
PRINT and COMMAND control, 3-6
Construction of an X286E file, 3-7

EXEC, 5-27
executable bit, 5-27
executable segment references, 2-5
EXPAND_DOWN, 5-27
expand down bit, 5-27
e",ternal references, 2-5
extra table entries, 2-2

Index-l

Index

FREE_SLOTS, 5-9
FREE_SP ACE, 541
free space management, 5-39
functions, Evaluation Builder, 2-1

GA,44 _
GATE, 4-1, 4-4
gate creation, 2-2
gate definition, 4-2
GATE_DESCR,5-28
GET_DESCRIPTOR, 5-15
gate descriptor for system routine DQ_SIM, 2-3
gate descriptor structure, 5-28
gate descriptors, 2-3
gate descriptors for X286E run-time procedures, 2-3
gate name, 4-2
gate type, 2-2
GDT, 2-1, 2-2, 2-3, 4-2
GDT entries, 2-3
GET_IDT_DESCRIPTOR, 5-21
Global Descriptor Table(GDT) 2-1,2-2
Global Descriptor Table entries, 2-3

iAPX 286 base registers, 2-4
iAPX 286 Development Package, 1-3
iAPX 286 Evaluation Builder, I-I, 1-2,2'-1
iAPX 286 Evaluation Macro Assembler, I-I
iAPX 286 memory, 24
iAPX 286 Evaluation Package, 1-1
iAPX 286 Evaluation Simulator, I-I, 1-2
IDT, 2-1,2-2,2-3,4-2
IDT entries, 2-3
index, 4-2
INDEX, 5-28
index field of a selector, 5-28
input, Evaluation Builder, 2-1
input file, builder, 3'-1
INSTALL_GATE,5-19
INSTALL_IDT_GATE,5-25
INTERRUPT, 4-2, 44
Interrupt Descriptor Table(IDT), 2-1, 2-3

-Interrupt Descriptor Table entries, 2-3
interrupt gate, 2-2, 4-2
INT_GATE_TYPE, 5-27
inter-segment references, 2-5
invocation of builder under ISIS-II control, 3-1
invocation of builder under RUN program, 3-1
ISIS-II, 3-1
IT, 44

keywords, 44

LDT, 2-2,4-2
LDT entries, 2-3
LDT _TYPE, 5-27
LEVEL 4-1, 4-2, 4-4
LIMIT, 4-2, 4-3, 4-4, 5-27
LM,44
Local Descriptor Table(LDT), 2-2,2-3
Local Descriptor Table entries, 2-3
LV, 44

macro invocation syntax for DEFINE_TASK, 5-32
MAP, 2-6, 3-3
map format, 3-3, 34

Index-2

maximum number of entries, 4-3
minimum number of entries, 4-3
monitor/debugger, 1-2
MOVE_DESCRIPTOR, 5-13

NOCF,44
NOCOMMAND, 3-2
NOCONFORMING,4-1,4-4
NODEBUG, 3-2
NOPRINT,3-3
NPARM_ WORDS, 5-28
null name, 4-2
number of entries, 4-2

output, Evaluation Builder, 2-1
output file, builder, 3-1

_:,f,'"

pointer parameters, 5-'2
PRES, 5-27
present bit, 5-27
PRINT,3-3
privilege level, 4-1, 4;.2
privilege level conventions, 5-2
privilege levels, 2-5
product use environment, 5-1
protection levels, 2-2
public gates, 2-2
public symbol,.~ 7
public symbols, 2-2, 3-3
public table, 2-7, 3-3
public table format, 34
PUT_DESCRIPTOR,5-17
PUT_lOT_DESCRIPTOR, 5-23

READABLE, 5-27
readable bit, 5-27
requested index field, 5-28
requested privilege level (RPL), 2-5
reserved entries, 2-3, 4-3
reserved table entries, 2-2
RPL, 2-5, 5-28
RUN, 3-1
run-time procedures, 1-1, 1-2

S,5-27
sample builder program, 4-4
SEG_DESCR, 5-27
SEGMENT, 4-1, 4-4
segment attributes, 2-2
segment bit, 5-27
segment definition, 4-1
segment descriptors, 2-3
segment descriptor structure, 5-27
segment descriptors for X286E run-time

procedures, 2-3
segment limit field~ 5-27
segment map,2-6, 2-7, 3-3
segment map format, 3-3, 34
segment name, 4-1, 4-2
SELECTOR, 5-28
selector index, 4-3
selector record, 5-28
selector resolutions, 2-5
Series III ASM86, 1-1

iAPX286

/

iAPX286

SERIES III Microcomputer Development
System, 3-1

sign-on message, 3-2
simulator, 1-2
simulator loader, 1-2
Simulator Overview, 1-2
SM,4-4
SM286E,I-1
SM286E.86, 1-1
source file declarations, 1-1, 1-2
ST,4-4
STACK, 4-1, 4-4
ST ACK definition, 4-3
stack segment name, 4-3
status code, 5-2,
structure for gate descriptors, 5-27
structures for segment descriptors, 5-27
SW _WORD, 5-27,5-28
symbol name, 2-7
symbol table, 2-7, 3-4
symbol table format, 3-3, 3-4
syntax for an Evaluation Builder program, 4-1
system entry point, 2-2

TABLE, 4-1, 4-4
table definition, 4-2
table descriptor for LOT, 2-3
table entries reserved by Intel, 2-2
table indicator bit, 5-28
table limits, 2-2
table management procedures, 5-3
table size algorithm, 4-3
TARGET, 5-28
TASK_GATE_TYPE,5-27
Task State Segment(TSS), 2-4, 5-29
task state segment creation, 2-2
task state segment descriptor, 2-3
task state segment structure, 5-32
TB,4-4
TI,5-28
TR, 4~4

TRAP, 4-2, 4-4
trap gate, 2-2, 4-2
TRAP _GATE_TYPE, 5-27
TSS, 2-4
TS_STRUC, 5-32
TS_ TYPE, 5-27
type number of a busy task state segment, 5-27
type number of a call gate, 5-27
type number of an interrupt gate, 5-27
type number of a local descriptor table, 5-27
type number of a task gate, 5-27
type number of a task state segment, 5-27
type number of a trap gate, 5-27

use of the X386E run-time procedures file, 2-8
using the Evaluation Package, 1-3

warnings, 2-2
warnings by the builder, 2-4
word parameters, 5-2
WRITABLE, 5-27, 5-33
writable bit, 5-27
writable data segment descriptor for GOT, 2-3
writable data segment descriptor for lOT, 2-3
writable data segment descriptor for LDT, 2-3

X286E, 1-1
X286E classes of service, 5-1
X286E conventions: 5-1

Calling conventions, 5-2
Descriptor table conventions, 5-2
Privilege level conventions, 5-2

X286E.INC, 1-1
X286E inItialization, 5-2
X286E Run-Time Procedures, 1-1, 1-2, 2-2
X286E Run-Time Procedures file, 2-5
X286E Run-Time Procedures Overview, 1-2
X286E Source File Declarations, 1-1, 1-2
16 bit words, 5-2
32 bit pointers, 5-2
8086 base registers, 2-4

Index

Index-3

iAPX 286 Evaluation Builder User's Guide
121711-001

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide docum~nts that meet the needs of all Intel
product users. This form lets you participate directly in the documentation process. Your comments will
'help us correct and improve our manuals. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document. If you have any comments on the equipment software itself, please contact your Intel
representative. If you wish to order manuals contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this manual (include page number).

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

---.-----------

._-------_._,---------_. ---

- _._. __ ._--_._---- •. ----

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

...... ------.--.... _ .. _ .. _-----------

--_._-, .. _------------_._-----

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY

Please check here if you require a written reply.

STATE
(COUNTRY)

DATE

ZIP CODE

.... -.-.--... ------ ---

WE'D LIKE YOUR COMMENTS ..•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara,CA 95051

I II II I NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, Californ·ia 95051 (408) 987-8080

Printed in U.S.A.

