IBM 6x86MX™ MICROPROCESSOR

E — =____‘_= Enhanced Sixth-generation CPU
N Compatible with MMX" Technology

Bus Interface \—)

IBM 6x86MX MICROPROCESSOR BUS INTERFACE

The signals used in the IBM 6x86MX CPU bus interface are described in this chapter. Figure 3-1
shows the signal directions and the major signal groupings. A description of each signal and their
reference to the text are provided in Table 3-1 (Page 3-2).

. INTR |e———
Clock — CLKMULO NMI [Interrupt
Control —> CLKMULL SMi# |e——— Control
—_—
st { RESET — 3
> WM_RST FLUSH# [e—
KEN# [€— { Cach
A31-A3 L 5 ache
<:> PCD Control
Address BE7#- BEO# PWT
Bus WB/WT# [€—
—> A20M# N
BOFF# |[€—
BREQ > | Bus
Address 4 < | AP HOLD |e—— [Aritrat
! ‘ APCHK Arbitration
Parity HLDA |——
pata <:> D63 - DO AHOLD [&—)
EADS# [€——
Cache
DP7 - DPO —
o 4 — BM
Parity PCHK# 6x86MX HITM#
NV |e—)
CPU
FERR# [—>
-—
CACHE# IGNNE# |€— FPU Error
<«—— p/c#
Bus <«— Lock#
Cycle < <« wio SUSP# [| power
Definition | scye SUSPA# > Management
\‘_ WIR# TCK |[&——
I [
(<—— nps# D0 [»~ JTAG
< Apsc# ™S [
Bus < — ™| BRDY# TRSTH# [
g’c'fl —>{ BrROYCH
ontro —_—
NA¥ PMO > _Performance
(| SMIACT# PM1 Monitor
Vee2 Voltagee——— Vee2 Det
Detect
Figure 3-1. IBM 6x86MX CPU Functional Signal Groupings

3-1

3.1 Signal Description Table

The Signal Summary Table (Table 3-1) describes the signals in their active state unless otherwise
mentioned. Signals containing slashes (/) have logic levels defined as “1/0.” For example the
signal W/R#, is defined as write when W/R#=1, and as read when W/R#=0. Signals ending with a
“#” character are active low.

Table 3-1. IBM 6x86MX CPU Signals Sorted by Signal Name

Signal Name Description /10 Reference

A20M# A20 Mask causes the CPU to mask (force to 0) the A20 address bit wheput Page 3-9
driving the external address bus or performing an internal cache acdess.
A20M# is provided to emulate the 1 MByte address wrap-around that
occurs on the 8086. Snoop addressing is not affected.

A31-A3 TheAddress Bus in conjunction with the Byte Enable signals 3-state | Page 3-9
(BE7#-BEO#), provides addresses for physical memory and external /O
devices. During cache inquiry cycles, A31-A5 are used as inputs to
perform cache line invalidations.

ADS# Address Strobebegins a memory/I/O cycle and indicates the addresq limstput | Page 3-13
(A31-A3, BE7#-BEO#) and bus cycle definition signals (CACHE#, D/C#,
LOCK#, M/IO#, PCD, PWT, SCYC, W/R#) are valid.

ADSC# Cache Address Strobgoerforms the same function as ADS#. Outppt Page 3-13

AHOLD Address Hold allows another bus master access to the IBM 6x86MX| Input Page 3-18
CPU address bus for a cache inquiry cycle. In response to the assertion of
AHOLD, the CPU floats AP and A31-A3 in the following clock cycle.

AP Address Parity is the even parity output signal for address lines A31{ABstate | Page 3-10
(A4 and A3 are excluded). During cache inquiry cycles, AP is the 110
even-parity input to the CPU, and is sampled with EADS# to producg
correct parity check status on the APCHK# output.

APCHK# Address Parity Check Statusis asserted during a cache inquiry cyclg iDutput | Page 3-10
an address bus parity error has been detected. APCHK# is valid twq
clocks after EADS# is sampled active. APCHK# will remain asserted for
one clock cycle if a parity error is detected.

BE7#-BEO# | TheByte Enables in conjunction with the address lines, determine tHe3-state | Page 3-9
active data bytes transferred during a memory or 1/O bus cycle. 110

BOFF# Back-Off forces the IBM 6x86MX CPU to abort the current bus cycle Input Page 3-16
and relinquish control of the CPU local bus during the next clock cygle.

The IBM 6x86MX CPU enters the bus hold state and remains in this |state
until BOFF# is negated.

BRDY# Burst Ready indicates that the current transfer within a burst cycle, or theénput Page 3-13
current single transfer cycle, can be terminated. The IBM 6x86MX CPU
samples BRDY# in the second and subsequent clocks of a bus cycle. BRDY#
is active during address hold states.

BRDYC# Cache Burst Readyperforms the same function as BRDY# and is IogicTIIylput Page 3-13

ORed with BRDY# within the IBM 6x86MX CPU.

3-2

Signal Description Table 3

Table 3-1. IBM 6x86MX CPU Signals Sorted by Signal Name (Continued)

Signal Name

Description

110

Reference

BREQ

Bus Requests asserted by the IBM 6x86MX CPU when an internal bu
cycle is pending. The IBM 6x86MX CPU always asserts BREQ, along
ADS#, during the first clock of a bus cycle. If a bus cycle is pending, BR
is asserted during the bus hold and address hold states. If no additional
cycles are pending, BREQ is negated prior to termination of the current

5 Output
yith

EQ

bus
cycle.

Page 3-16

CACHE#

Cacheability Statusindicates that a read bus cycle is a potentially

cacheable cycle; or that a write bus cycle is a cache line write-back or |
replacement burst cycle. If CACHE# is asserted for a read cycle and KH
asserted by the system, the read cycle becomes a cache line fill burst g

Output
ne

N# is
ycle.

Page 3-11

CLK

Clock provides the fundamental timing for the IBM 6x86MX CPU. The
frequency of the IBM 6x86MX CPU input clock determines the operatin
frequency of the CPU’s bus. External timing is defined referenced to the
rising edge of CLK.

Input

YQ

Page 3-7

CLKMUL1-
CLKMULO

TheClock Multiplier inputs are sampled during RESET to determine th
IBM 6x86MX CPU core operating frequency.

If = 00 core/bus ratio is 2.5

If = 01 core/bus ratio is 3.0

If = 10 core/bus ratio is 2.0 (default)

If = 11 core/bus ratio is 3.5

elnput

Page 3-7

D63-D0

Data Bussignals are three-state, bi-directional signals which provide th
data path between the IBM 6x86MX CPU and external memory and I/Q
devices. The data bus is only driven while a write cycle is active (state=
The data bus is floated when DHOLD is asserted.

e3-state
D 1/O
T2).

Page 3-10

D/C#

Data/Control Status. If high, indicates that the current bus cycle is an |
or memory data access cycle. If low, indicates a code fetch or special b
cycle such as a halt, prefetch, or interrupt acknowledge bus cycle. D/C1
driven valid in the same clock as ADS# is asserted.

Dutput
us
#is

Page 3-11

DP7-DPO

Data Parity signals provide parity for the data bus, one data parity bit p
data byte. Even parity is driven on DP7-DPO for all data write cycles.
DP7-DPO are read by the IBM 6x86MX CPU during read cycles to cheg
even parity. The data parity bus is only driven while a write cycle is acti
(state=T2).

eB-state
110

k for

e

Page 3-10

EADS#

External Address Strobeindicates that a valid cache inquiry address is
being driven on the IBM 6x86MX CPU address bus (A31-A5) and AP. 1
state of INV at the time EADS# is sampled active determines the final st
the cache line. A cache inquiry cycle using EADS# may be run while th
IBM 6x86MX CPU is in the address hold or bus hold state.

Input
'he
ate of
e

Page 3-18

EWBE#

External Write Buffer Empty indicates that there are no pending write
cycles in the external system. EWBE# is sampled only during I/O and
memory write cycles. If EWBE# is negated, the IBM 6x86MX CPU delg
all subsequent writes to on-chip cache lines in the “exclusive” or “modif
state until EWBE# is asserted.

Input

ys
ed”

Page 3-15

3-3

..'Ii

Table 3-1. IBM 6x86MX CPU Signals Sorted by Signal Name (Continued)

Signal Name Description 110 Reference

FERR# FPU Error Status indicates an unmasked floating point error has occunréutput | Page 3-19
FERR# is asserted during execution of the FPU instruction that caused the
error. FERR# does not float during bus hold states.

FLUSH# Cache Flushforces the IBM 6x86MX CPU to flush the cache. External | Input Page 3-15
interrupts and additional FLUSH# assertions are ignored during the flugh.
Cache inquiry cycles are permitted during the flush.

HIT# Cache Hitindicates that the current cache inquiry address has been folr@itput | Page 3-18
the cache (modified, exclusive or shared states). HIT# is valid two clocks

after EADS# is sampled active, and remains valid until the next cache inquiry
cycle.

HITM# Cache Hit Modified Data indicates that the current cache inquiry addrgs®utput | Page 3-18
has been found in the cache and dirty data exists in the cache line (mogified
state). The IBM 6x86MX CPU does not accept additional cache inquiry|
cycles while HITM# is asserted. HITM# is valid two clocks after EADS#.

HLDA Hold Acknowledgeindicates that the IBM 6x86MX CPU has responded utput | Page 3-17
the HOLD input and relinquished control of the local bus. The IBM
6x86MX CPU continues to operate during bus hold as long as the on-chip
cache can satisfy bus requests.

HOLD Hold Requestindicates that another bus master has requested control pfripet Page 3-16
CPU's local bus.
IGNNE# Ignore Numeric Error forces the IBM 6x86MX CPU to ignore any Input Page 3-19

pending unmasked FPU errors and allows continued execution of floating
point instructions.

INTR Maskable Interrupt forces the processor to suspend execution of the | Input Page 3-14
current instruction stream and begin execution of an interrupt service routine.
The INTR input can be masked (ignored) through the IF bit in the Flagg
Register.

INV Invalidate Requestis sampled with EADS# to determine the final state|ofnput Page 3-18
the cache line in the case of a cache inquiry hit. An asserted INV directs the
processor to change the state of the cache line to “invalid”. A negated INV

directs the processor to change the state of the cache line to “shared.”

KEN# Cache Enableallows the data being returned during the current cycle t¢ bgut Page 3-15
placed in the CPU’s cache. When the IBM 6x86MX CPU is performing
cacheable code fetch or memory data read cycle (CACHE# asserted), gnd
KEN# is sampled asserted, the cycle is transformed into a 32-byte cache line
fill. KEN# is sampled with the first asserted BRDY# or NA# for the cycle.

LOCK# Lock Statusindicates that other system bus masters are denied accesg Otiyput | Page 3-11
local bus. The IBM 6x86MX CPU does not enter the bus hold state in
response to HOLD while LOCK# is asserted.

M/1O# Memory/IO Status. If high, indicates that the current bus cycle is a memadButput | Page 3-11
cycle (read or write). If low, indicates that the current bus cycle is an I/Q
cycle (read or write, interrupt acknowledge, or special cycle).

3-4

Signal Description Table 3

Table 3-1. IBM 6x86MX CPU Signals Sorted by Signal Name (Continued)

Signal Name

Description

110

Reference

NA#

Next Addressrequests the next pending bus cycle address and cycle
definition information. If either the current or next bus cycle is a locked cy
a line replacement, a write-back cycle, or if there is no pending bus cycl
IBM 6x86MX CPU does not start a pipelined bus cycle regardless of the
of NA#.

Input
cle,

e, the
state

Page 3-13

NMI

Non-Maskable Interrupt Requestforces the processor to suspend
execution of the current instruction stream and begin execution of an N
interrupt service routine.

Input
MI

Page 3-14

PCD

Page Cache Disableeflects the state of the PCD page attribute bit in th
page table entry or the directory table entry. If paging is disabled, or fo
cycles that are not paged, the PCD pin is driven low. PCD is masked by
cache disable (CD) bit in CRO, and floats during bus hold states.

eOutput

the

Page 3-15

PCHK#

Data Parity Check indicates that a data bus parity error has occurred Output

during a read operation. PCHK# is only valid during the second clog
immediately after read data is returned to the IBM 6x86MX CPU
(BRDY# asserted) and is inactive otherwise. Parity errors signaled K
logic low on PCHK# have no effect on processor execution.

k

y a

Page 3-10

PMO-PM1

Performance Monitor indicate an at least one overflow or event
occurred in the associated Performance Monitor Register (0-1).

Output

Page 3-39

PWT

Page Write-Through reflects the state of the PWT page attribute bit in
page table entry or the directory table entry. PWT pin is negated during
cycles that are not paged, or if paging is disabled. PWT takes priority o
WB/WTH#.

heutput

ver

Page 3-15

RESET

Resetsuspends all operations in progress and places the IBM 6x86MX
into a reset state. Reset forces the CPU to begin executing in a known
All data in the on-chip caches is invalidated.

aRuLt

State.

Page 3-7

SCYC

Split Locked Cycleindicates that the current bus cycle is part of a
misaligned locked transfer. SCYC is defined for locked cycles only. A
misaligned transfer is defined as any transfer that crosses an 8-byte bo

Output

undary.

Page 3-11

SMI#

SMM Interrupt forces the processor to save the CPU state to the top

SMM memory and to begin execution of the SMI service routine at the
beginning of the defined SMM memory space. An SMI is a higher-prior
interrupt than an NMI.

nfinput

ty

Page 3-14

SMIACT#

SMM Interrupt Active indicates that the processor is operating in Syste@utput

Management Mode. SMIACT# does not float during bus hold states.

Page 3-13

SUSP#

Suspend Requestequests that the CPU enter suspend mode. SUSP#
ignored following RESET and is enabled by setting the SUSP bit in CC

isnput
R2.

Page 3-19

SUSPA#

Suspend Acknowledgendicates that the IBM 6x86MX CPU has entere
low-power suspend mode. SUSPA# floats following RESET and is en
by setting the SUSP bit in CCR2.

dOutput
abled

Page 3-19

TCK

Test Clock (JTAG) is the clock input used by the IBM 6x86MX CPU's
boundary scan (JTAG) test logic.

Input

Page 3-22

TDI

Test Data In (JTAG) is the serial data input used by the IBM 6x86MX
CPU's boundary scan (JTAG) test logic.

Input

Page 3-22

3-5

..'Ii

Table 3-1. IBM 6x86MX CPU Signals Sorted by Signal Name (Continued)

Signal Name Description 110 Reference
TDO Test Data Out(JTAG) is the serial data output used by the IBM 6x86MXOutput | Page 3-22
CPU's boundary scan (JTAG) test logic.
TMS Test Mode Selecf{JTAG) is the control input used by the IBM 6x86MX | Input Page 3-22
CPU's boundary scan (JTAG) test logic.
TRST# Test Mode ResetJTAG) initializes the IBM 6x86MX CPU's boundary | Input Page 3-22

scan (JTAG) test logic.

VCC2DET | Vcc2 Detectis always driven low by the CPU to indicate that the IBM | Output
6x86MX requires two different Vcc voltages.

WB/WT# Write-Back/Write-Through is sampled during cache line fills to define thinput Page 3-16
cache line write policy. If high, the cache line write policy is write-back. |If
low, the cache line write policy is write-through. (PWT forces write-through
policy when PWT=1.)

WM_RST Warm Resetforces the IBM 6x86MX CPU to complete the current Input Page 3-9
instruction and then places the IBM 6x86MX CPU in a known state. Orlce

WM_RST is sampled active by the CPU, the reset sequence begins orf the
next instruction boundary. WM_RST does not change the state of the
configuration registers, the on-chip cache, the write buffers and the FPY
registers. WM_RST is sampled during reset.

W/R# Write/Read Status If high, indicates that the current memory, or I/O bug Output | Page 3-11
cycle is a write cycle. If low, indicates that the current bus cycle is a reaf
cycle.

3-6

Signal Descriptions 3

3.2 Signal Descriptions 3.2.2 Reset Control

The following paragraphs provide additional The IBM 6x86MX CPU output signals are
information about the IBM 6x86MX CPU initialized to their reset states during the CPU
signals. For ease of this discussion, the signalkgset sequence, as shown in Table 3-4 (Page

are divided into 16 functional groups as illus- 3-8). The signal states given in Table 3-4
trated in Figure 3-1 (Page 3-1). assume that HOLD, AHOLD, and BOFF# are

negated.
3.2.1 Clock Control
AssertingRESET suspends all operations in

TheClock Input (CLK) signal, supplied by progress and places the IBM 6x86MX CPU in
the system, is the timing reference used by tha reset state. RESET is an asynchronous signal
IBM 6x86MX CPU bus interface. All external but must meet specified setup and hold times to
timing parameters are defined with respect to guarantee recognition at a particular clock

the CLK rising edge. The CLK signal enters edge.

the IBM 6x86MX CPU where it is multiplied

to produce the IBM 6x86MX CPU internal ~ On system power-up, RESET must be held

AC specifications. delay allows the CPU’s clock circuit to stabi-
lize and guarantees proper completion of the
The Clock Multiplier (CLKMUL1, reset sequence.
CLMULDO) inputs are sampled during RESET _ .
to determine the CPU’s core operating During normal operation, RESET must be
frequency (Table 3-2). asserted for at least 15 CLK periods in order to
guarantee the proper reset sequence is
Table 3-2. Clock Control executed. When RESET negates (on its falling
CORE TO BUS edge), the pins listed in Table 3-3 determine if
CLKMULL | CLKMULO |) 5ek raTIO certain IBM 6x86MX CPU functions are
0 0 25 enabled.
0 1 3.0 Table 3-3. Pins Sampled During RESET
1 0 2.0 (Default)
1 1 35 S’\Ili,':lﬂél' DESCRIPTION

FLUSH# If = 0, three-state test mode enabled.
WM_RST If = 1, built-in self test initiated.

The CLKMUL pins have internal pull-up and

pull down resistors to define the default ratio.
Therefore the default setting indicates which
mode the CPU will operate in if the CLKMUL
are not driven and left floating.

3-7

..'I

Table 3-4. Signal States During RESET

SIGNAL LINE STATE SIGNAL LINE STATE
A20M# Ignored IGNNE# Ignored
A31-A3 Undefined until first ADS# INTR Ignored
ADS# 1 INV Ignored
ADSC# 1 KEN# Ignored
AHOLD Recognized LOCK# 1
AP Undefined until first ADS# M/IO# Undefined until first ADS#
APCHK# 1 NA# Ignored
BE7#-BEO# Undefined until first ADS# NMI Ignored
BOFF# Recognized PCD Undefined until first ADS#
BRDY# Ignored PCHK# 1
BRDYC# Ignored PWT Undefined until first ADS#
BREQ 0 RESET 1
CACHE# Undefined until first ADS# SCYC Undefined until first ADS#
D(63-0) Float SMI# Ignored
D/C# Undefined until first ADS# SMIACT# 1
DHOLD Ignored SUSP# Ignored
DP(7-0) Float SUSPA# Float
EADS# Ignored TCK Recognized
EWBE# Ignored TDI Recognized
FERR# 1 TDO Responds to TCK, TDI, TMS,
TRST#
FLUSH# Initiates three-state test mogle TMS Recognized
HIT# 1 TRST# Recognized
HITM# 1 W/R# Undefined until first ADS#
HLDA Responds to HOLD WB/WT# Ignored
HOLD Recognized WM_RST Initiates self-test

3-8

Signal Descriptions 3

Warm Reset(WM_RST) allows the IBM TheByte Enable (BE7#-BEO#) lines are
6x86MX CPU to complete the current instruc-bi-directional signals that define the valid data
tion and then places the IBM 6x86MX CPU inpytes within the 64-bit data bus. The

a known state. WM_RST is an asynchronouscorrelation between the enable signals and data
signal, but must meet specified setup and holgytes is shown in Table 3-5.

times in order to guarantee recognition at a

particular CLK edge. Once WM_RST is Table 3-5. Byte Enable Signal o

sampled active by the CPU, the reset sequence Data Bus Byte Correlation

begins on the next instruction boundary.

BYTE CORRESPONDINGDA-

WM _RST differs from RESET in that the ENABLE TABYTE

contents of the on-chip cache, the write BE7# D63-D56
buffers, the configuration registers and the BEG# D55-D48
floating point registers contents remain BES# D47-D40
unchanged. BE4# D39-D32
Following completion of the internal reset BE3# D31-D24
sequence, normal processor execution begins BE2# D23-D16
even if WM_RST remains asserted. If RESET BE1# D15-D8
and WM_RST are asserted simultaneously, BEO# D7-DO

WM_RST is ignored and RESET takes

priority. If WM_RST is asserted at the falling Puring a cache line fill, (burst read or “1+4”
edge of RESET, built-in self test (BIST) is burstread) the IBM 6x86MX CPU expects data

initiated. to be returned as if all data bytes are enabled,
regardless of the state of the byte enables.
3.2.3 Address Bus BE7#-BEO# float during bus hold and byte

enable hold states.
The Address Bus(A31-A3) lines provide the

physical memory and external I/0 device Address Bit 20 Mask(A20M#) is an active

addresses. A31-A5 are bi-directional signals low input which causes the IBM 6x86MX

used by the IBM 6x86MX CPU to drive CPU to mask (force low) physical address bit

addresses to both memory devices and /0O 20 when driving the external address bus or

devices. During cache inquiry cycles the IBM when performing an internal cache access.

6x86MX CPU receives addresses from the Asserting A20M# emulates the 1 MByte

system using signals A31-A5. address wrap-around that occurs on the 8086.
The A20 signal is never masked during

Using signals A31-A3, the IBM 6x86MX CPU \yrite-back cycles, inquiry cycles, system

can address a 4-GByte memory address spacgianagement address space accesses or when

Using signals A15-A3, the IBM 6x86MX CPU paging is enabled, regardless of the state of the
can address a 64-KByte 1/0 space through tha20Mm# input.

processor’s /O ports. During I/O accesses,
signals A31-A16 are driven low. A31-A3 float
during bus hold and address hold states.

3-9

..'Ii

2.4 Address Parity 3.2.6 Data Parity

w |||||| |
ln

Address Parity (AP) is a bi-directional signal TheData Parity Bus (DP7-DPO0) provides and
which provides the parity associated with receives parity data for each of the eight data
address lines A31-A5. (A4 and A3 are not bus bytes (Table 3-6). The IBM 6x86MX CPU
included in the parity determination.) During generates even parity on the bus during write
IBM 6x86MX CPU generated bus cycles, whileycles and accepts even parity from the system
the address bus lines are driven, AP becomesduring read cycles. DP7-DPO is driven only
output supplying even address parity. During while a write cycle is active.

cache inquiry cycles, AP becomes an input and

is sampled by EADS#. During cache inquiry

cycles, even-parity must be placed on the AP Table 3-6. Parity Bit to Data
line to guarantee an accurate result on the Byte Correlation
APCHK# (Address Parity Check Status) pin. ATV BT TAEVTE
Address Parity Check Status§APCHK#) is DP7 D63-D56
driven active by the CPU when an address bus DP6 D55-D48
parity error has been detected for a cache DP5 D47-D40
inquiry cycle. APCHK# is asserted two clocks DP4 D39-D32
after EADS# is sampled asserted, and remains DP3 D31-D24
valid for one clock only. Address parity errors
signaled by APCHK# have no effect on bP2 D23D16
processor execution. DP1 D15-D8
DPO D7-DO

3.2.5 Data Bus
Parity Check (PCHK#) is asserted when a data

Data Bus(D63-DO0) lines carry three-state, bus parity error is detected. Parity is checked
bi-directional signals between the IBM during code, memory and I/O reads, and the
6x86MX CPU and the system (i.e., external second interrupt acknowledge cycle. Parity is
memory and I/O devices). The data bus transnot checked during the first interrupt acknowl-
fers data to the IBM 6x86MX CPU during edge cycle.

memory read, 1/O read, and interrupt acknowl- .
edge cycles. Data is transferred from the igmParity is checked for only the active data bytes

6x86MX CPU during memory and I/O write @S determined by the active byte enable signals
cycles. except during a cache line fill (burst read or

“1+4” burst read). During a cache line fill, the
Data setup and hold times must be met for IBM 6x86MX CPU assumes all data bytes are
correct read cycle operation. The data bus isvalid and parity is checked for all data bytes
driven only while a write cycle is active. regardless of the state of the byte enables.

3-10

Signal Descriptions 3

PCHK# is valid only during the second clock involves a control function such as a halt, inter-
immediately after read data is returned to the rupt acknowledge or code fetch.

IBM 6x86MX CPU (BRDY# asserted). At))

other times PCHK# is not active. Parity error8US Lock (LOCK#) is an active low output
signaled by the assertion of PCHK# have no Which, when asserted, indicates that other

effect on processor execution. system bus masters are denied access to control
of the CPU bus. The LOCK# signal may be
3.2.7 Bus Cycle Definition explicitly activated during bus operations by

including the LOCK prefix on certain instruc-
Each bus cycle is assigned a bus cycle type. Théns. LOCK# is also asserted during descriptor
bus cycle types are defined by six three-stateupdates, page table accesses, interrupt acknowl-
outputs: CACHE#, D/C#, LOCK#, M/IO#, edge sequences and when executing the XCHG
SCYC, and W/R# as listed in Table 3-7 (Pageinstruction. However, if the NO_LOCK bit in
3-12). CCRL1 is set, LOCK# is asserted only during
page table accesses and interrupt acknowledge
sequences. The IBM 6x86MX CPU does not
enter the bus hold state in response to HOLD
while the LOCK# output is active.

These bus cycle definition signals are driven
valid while ADS# is active. D/C#, M/IO#,

W/R#, SCYC and CACHE# remain valid until
the clock following the earliest of two signals:

NA# asserted, or the last BRDY# for the cycleMemory/IO (M/IO#) distinguishes between
memory and I/O operations. When high, this
signal indicates that the current bus cycle is a
memory read or memory write. When low,
M/10# indicates that the current bus cycle is an
I/O read, 1/O write, interrupt acknowledge

Cache Cycle Indicator(CACHE#) is an cycle or special bus cycle.

output that indicates that the current bus cycle. . : : .
is a potentially cacheable cycle (for a read), o%p“t Cycle (SCYC) is an active high output

indicates that th b e h hat indicates that the current bus cycle is part
Indicates that the current bus Cycle IS a cach€y misaligned locked transfer. SCYC is

line write-back or line replacement burst Cyc'f{jefined for locked cycles only. A misaligned

(for a write). If CACHE# is asserted for a read, , qter is defined as any transfer that crosses
cycle and the KEN# input is returned active b‘yin 8-byte boundary

the system, the read cycle becomes a cache line
fill burst cycle. Write/Read (W/R#) distinguishes between

Data/Control (D/C#) distinguishes between write and read operations. When high, this

dat d ol " When hiah. thi signal indicates that the current bus cycle is a
ata ahd controf operations. en nigh, this memory write, I/O write or a special bus cycle.
signal indicates that the current bus cycle is

data t for 1 ¢ /0. Wh Awhen low, this signal indicates that the current
ata transter 1o or from memory or /4. encycle is a memory read, 1/0O read or interrupt

low, D/C# indicates that the current bus Cydeacknowledge cycle.

LOCK# continues asserted until after BRDY#
is returned for the last locked bus cycle. The
bus cycle definition signals float during bus
hold states.

3-11

..'I

Table 3-7. Bus Cycle Types

BUS CYCLE TYPE

M/10#

D/C#

WIR#

CACHE#

LOCK#

Interrupt Acknowledge

0

0

1

Does not occur.

0

0

X

Does not occur.

0

0

X

Special Cycles:

If BE(7-0)# = FEh: Shutdown

If BE(7-0)# = FDh: Flush (INVD, WBINVD)
If A4 = 0 and BE(7-0)# = FBh: Halt (HLT)
If BE(7-0)# = F7h: Write-Back (WBINVD)
If BE(7-0)# = EFh: Flush Acknowledge
(FLUSH#)

If A4 =1 and BE(7-0)# = FBh: Stop Grant
(SUSP#)

Does not occur.

I/0 Data Read

I/0O Data Write

Does not occur.

Cacheable Memory Code Read
(Burst Cycle if KEN# Returned Active)

Non-cacheable Memory Code Read

Does not occur.

Locked Memory Data Read

Cacheable Memory Data Read
(Burst Cycle if KEN# Returned Active)

Non-cacheable Memory Data Read

Locked Memory Write

Burst Memory Write
(Writeback or Line Replacement)

1*

Single Transfer Memory Write

1

1

1

1

Note: X = Don't Care

*Note: LOCK# continues to be asserted during a write-back cycle that occurs following an aborted (BOFF# asserted)

locked bus cycle.

3-12

Signal Descriptions 3

3.2.8 Bus Cycle Control 6x86MX CPU does not start a pipelined bus
cycle regardless of the state of the NA# input.

The bus cycle control signals (ADS#, ADSCH#, ,

BRDY#, BRDYC#, NA#, and SMIACT#) SyStem Management Mode Active

indicate the beginning of a bus cycle and allow{SMIACT#) behaves in one of two ways

system hardware to control bus cycle termina-d€pending on which SMM mode is in effect.

tion timing and address pipelining. In SL-Compatible Mode, SMIACT# is an
Address Strobe(ADS#) is an active low active low output which indicates that the CPU

output which indicates that the CPU has driver|S OPerating in System Management Mode.
a valid address and bus cycle definition on theoSMIACT# is asserted in response to the asser-

appropriate output pins. ADS# floats during 10N of SMI# or due to execution of SMINT
bus hold states. instruction. SMIACT# is also asserted during
accesses to define SMM memory if SMAC bit
Cache Address StrobdADSC#) performs the CCRL1 is set. The SMAC bit allows access to
same function as ADS#. ADSC# is used to SMM memory while not in SMM mode and
interface directly to a secondary cache typically used for initialization purposes.

controller. o , o
While in SL-compatible mode, when servicing

Burst Ready (BRDY#) is an active low input an SMI# interrupt or SMINT instruction,
that is driven by the system to indicate that theSMIACT# remains asserted until a RSM
current transfer within a burst cycle or the instruction is executed. The RSM instruction
current single transfer bus cycle can be termi-causes the IBM 6x86MX CPU to exit SMM
nated. The CPU samples BRDY# in the secondnode and negate the SMIACT# output. If a
and subsequent clocks of a cycle. BRDY# is cache inquiry cycle occurs while SMIACT# is
active during address hold states. active, any resulting write-back cycle is issued
with SMIACT# asserted. This occurs even
Cache Burst Ready(BRDYC#) performs the thought the write-back cycle is intended for

ORed with BRDY internally by the CPU.

BRDYC# is used to interface directly to a In Cyrix Enhanced Mode, SMIACT# does not
secondary cache controller. indicate that the CPU is operating in system

. _ . management mode. In Cyrix Enhanced Mode,
Next Address(NA#) is an active low input s\VIACT# is asserted for every SMM memory
that is driven by the system to request the nexpys cycle and negated for every non-SMM

pending bus cycle address and cycle definitior}nemory cycle. In this mode SMIACT# follows
information even though all data transfers for {he timing of MIO# and W/R#.

the current bus cycle are not complete. This

new bus cycle is referred to as a “pipelined” During RESET, the USE_SMI bit in CCR1 is

cycle. If either the current or next bus cycle is acleared. While USE_SMI is zero, SMIACT# is

locked cycle, a line replacement, a write-back always negated. SMIACT# does not float

cycle or there is no pending bus cycle, the IBMduring bus hold states, except during Cyrix’s
Enhanced SMM Operations.

3-13

..'Ii

3.2.9 Interrupt Control Once NMI processing has started, no additional
NMiIs are processed until an IRET instruction is

The interrupt control signals (INTR, NMI, executed, typically at the end of the NMI

SMI#) allow the execution of the current service routine. If NMI is re-asserted prior to

instruction stream to be interrupted and execution of the IRET, one and only one NMI

suspended. rising edge is stored and then processed after

Maskable Interrupt Request (INTR) is an execution of the next IRET.

active high level-sensitive input which causesSystem Management Interrupt Request

the processor to suspend execution of the (SMI#) is an interrupt input with higher priority
current instruction stream and begin executiothan the NMI input. Asserting SMI# forces the
of an interrupt service routine. The INTR inpuprocessor to save the CPU state to SMM

can be masked (ignored) through the IF bit inmemory and to begin execution of the SMI
the Flags Register. service routine.

When not masked, the IBM 6x86MX CPU sMI# behaves one of two ways depending on

responds to the INTR input by performing twathe IBM 6x86MX’s SMM mode.
locked interrupt acknowledge bus cycles.

During the second interrupt acknowledge cyclén SL-compatible mode SMi# is a falling edge
the IBM 6x86MX CPU reads the interrupt ~ Sensitive input and is sampled on every rising
vector (an 8-bit value), from the data bus. Theedge of the processor input clock. Once SMI#
8-bit interrupt vector indicates the interrupt servicing has started, no additional SMI# inter-
level that caused generation of the INTR and [&§pts are processed until a RSM instruction is
used by the CPU to determine the beginning executed. If SMI# is reasserted prior to execu-
address of the interrupt service routine. To ~ tion of a RSM instruction, one and only one
assure recognition of the INTR request, INTRSMI# falling edge is stored and then processed
must remain active until the start of the first after execution of the next RSM.

int t ack led le. - i
Interrupt acknowiedge cycie In Cyrix enhanced SMM mode, SMI# is level

Non-Maskable Interrupt Request(NMI) isa Sensitive, and nested SMI's are permitted under
rising edge sensitive input which causes the control of the SMI service routine. As a level
processor to suspend execution of the currengensitive input, software can process all SMI
instruction stream and begin execution of an interrupts until all sources in the chipset have
NMI interrupt service routine. The NMl inter- cleared. In enhanced mode, SMIACT# is

rupt cannot be masked by the IF bit in the Flagksserted for every SMM memory bus cycle and
Register. Asserting NMI causes an interrupt Nnegated for every non-SMM bus cycle.

which internally supplies interrupt vector 2h t
the CPU core. Therefore, external interrupt
acknowledge cycles are not issued.

qn either mode, SMI# is ignored following reset
and recognition is enabled by setting the
USE_SMI bit in CCRL1.

3-14

Signal Descriptions 3

3.2.10 Cache Control 6x86MX CPU issues a special flush acknowl-

. edge cycle to indicate completion of the flush
The cache control signals (EWBE#, FLUSH#sequence. If the processor is in a halt or shut-

KEN#, PCD, PWT, WB/WT#) are used to indidown state, FLUSH# is recognized and the
cate cache status and control caching activity|BM 6x86MX CPU returns to the halt or shut-

. . down state following completion of the flush
Ext_ernal Wr|te Buffer Empty (EWBE#) 'S an sequence. If FLUSH# is active at the falling
active low input driven by the system to indi-

: . .edge of RESET, the processor enters three state
cate when there are no pending write cycles et mode

the external system. The IBM 6x86MX CPU

samples EWBE# during write cycles (I/O and Cache Enable(KEN#) is an active low input
memory) only. If EWBE# is not asserted, the which indicates that the data being returned
processor delays all subsequent writes to during the current cycle is cacheable. When the
on-chip cache lines in the “exclusive” or IBM 6x86MX CPU is performing a cacheable
“modified” state until EWBE# is asserted. code fetch or memory data read cycle and
Regardless of the state of EWBE#, all writes tREN# is sampled asserted, the cycle is trans-
the on-chip cache are delayed until any previformed into a cache line fill (4 transfer burst
ously issued external write cycle is complete. cycle) or a “1+4” cache line fill. KEN# is

This ensures that external write cycles occur ampled with the first asserted BRDY# or NA#
program order and is referred to as “strong for the cycle. I/0 accesses, locked reads, system
write ordering”. To enhance performance, management memory accesses and interrupt

“weak write ordering” may be allowed for acknowledge cycles are never cached.
specific address regions using the Address

Region Registers (ARRs) and Region ControlPage Cache Disabl€PCD) is an active high
Registers (RCRs). output that reflects the state of the PCD page

. . _attribute bit in the page table entry or the direc-
Cache Flush(FLUSH#) is a falling edge sensitory table entry. If paging is disabled or for
tive input that forces the processor to cycles that are not paged, the PCD pin is driven

write-back all dirty data in the cache and thenjow. PCD is masked by the cache disable (CD)
invalidate the entire cache contents. FLUSH#pit in CRO (driven high if CD=1) and floats

need only be asserted for a single clock but during bus hold states.
must meet specified setup and hold times to

guarantee recognition at a particular clock Page Write Through (PWT) is an active high
edge. output that reflects the state of the PWT page

attribute bit in the page table entry or the direc-
Once FLUSH# is sampled active, the IBM tory table entry. During non-paging cycles, and
6x86MX CPU begins the cache flush sequengghile paging is disabled the PWT pin is driven
after completion of the current instruction. Jow. If PWT is asserted, PWT takes priority
External interrupts and additional FLUSH# over the WB/WT# input. If PWT is asserted for
requests are ignored while the cache flush is #lther reads or writes, the cache line is saved in,
progress. However, cache inquiry cycles are or remains in, the shared (write-through) state.
permitted during the flush sequence. The IBMPWT floats during bus hold states.

3-15

..'Ii

TheWrite-Back/Write-Through (WB/WT#) Back-Off (BOFF#) is an active low input that
input allows the system to define the write forces the IBM 6x86MX CPU to abort the
policy of the on-chip cache on a line-by-line current bus cycle and relinquish control of the
basis. If WB/WT# is sampled high during a lineCPU's local bus in the next clock. The IBM

fill cycle and PWT is low, the line is defined assx86MX CPU responds to BOFF# by entering
write-back and is stored in the exclusive statethe bus hold state as listed in Table 3-9 (Page
If WB/WT# is sampled high during a write to a3-17). The IBM 6x86MX CPU remains in bus
write-through cache line (shared state) and hold until BOFF# is negated. Once BOFF# is
PWT is low, the line is transitioned to negated, the IBM 6x86MX CPU restarts any
write-back (exclusive state). If WB/WT# is aborted bus cycle in its entirety. Any data
sampled low or PWT is high, the line is definedeturned to the IBM 6x86MX CPU while

as write-through and is stored in (line fill), or BOFF# is asserted is ignored. If BOFF# is
remains in (write), the shared state. Table 3-8asserted in the same clock that ADS# is
(Page 3-16) lists the effects of WB/WT# on thasserted, the IBM 6x86MX CPU may float
state of the cache line for various bus cycles. ADS# while in the active low state.

Table 3-8. Effects of WB/WT# on Bus Requesi{BREQ) is an active high output
Cache Line State asserted by the IBM 6x86MX CPU whenever a
BUSCYCLE | o\ | WBI/ WRITE MESI bus cycle is pending internally. The IBM
TYPE Wr# | PoLIcY STATE | 6x86MX CPU always asserts BREQ in the first
Line Fill 0 0 | Write-through| Shared | clock of a bus cycle with ADS# as well as
Line Fill 0 1 | wite-back | Exclusive during bus hold and address hold states if a bus
Line Fill 1 x | Write-through| Shared | cycle is pending. If no additional bus cycles are
Memory Write | 0 0 | Writethrough| Shared | pending, BREQ is negated prior to termination
(Note) of the current cycle.
Memory Write | O 1 Write-back Exclusive
(Note) Bus Hold Request(HOLD) is an active high
Memory Write | 1 x | Write-through| Shared | input used to indicate that another bus master
(Note) requests control of the CPU's local bus. After

Note: Only applies to memory writes to addresses that are currentiyrecognizing the HOLD request and completing

valid in the cache. the current bus cycle or sequence of locked bus

3211 Bus Arbitration cycles, the IBM 6x86MX CPU responds by
floating the local bus and asserting the hold

The bus arbitration signals (BOFF#, BREQ, acknowledge (HLDA) output. The bus remains
HOLD, and HLDA) allow the IBM 6x86MX granted to the requesting bus master until
CPU to relinquish control of its local bus wher1OLD is negated. Once HOLD is sampled
requested by another bus master device. Ondéegated, the IBM 6x86MX CPU simulta-

the processor has released its bus, the bus neously drives the local bus and negates
master device can then drive the local bus HLDA.

signals.

3-16

Signal Descriptions 3

Hold Acknowledge (HLDA) is an active high asserted until HOLD is negated. Once HOLD
output used to indicate that the IBM 6x86MXis sampled negated, the IBM 6x86MX CPU
CPU has responded to the HOLD input and hsisnultaneously drives the local bus and

relinquished control of its local bus. Table 3-Begates HLDA.
(Page 3-17) lists the state of all the IBM

6x86MX CPU signals during a bus hold state.

The IBM 6x86MX CPU continues to operate

during bus hold states as long as the on-chip

cache can satisfy bus requests. HLDA is

Table 3-9. Signal States During Bus Hold

SIGNAL LINE STATE SIGNAL LINE STATE
A20M# Recognized internally INTR Recognized internally
A31-A3 Float INV Recognized
ADS# Float KEN# Ignored
ADSC# Float LOCK# Float
AHOLD Ignored M/IO# Float
AP Float NA# Ignored
APCHK# Driven NMI Recognized internally
BE7#-BEO# Float PCD Float
BOFF# Recognized PCHK# Driven
BRDY# Ignored PWT Float
BRDYC# Ignored RESET Recognized
BREQ Driven SCYC Float
CACHE# Float SMI# Recognized
DIC# Float SMIACT# Driven
D63-D0 Float SUSP# Recognized
DP7-DPO Float SUSPA# Driven
EADS# Recognized TCK Recognized
EWBE# Recognized internally TDI Recognized
FERR# Driven TDO Responds to TCK, TDI, TMS, TRST
FLUSH# Recognized TMS Recognized
HIT# Driven TRST# Recognized
HITM# Driven WI/R# Float
HLDA Responds to HOLD WB/MWT# Ignored
HOLD Recognized WM_RST Recognized
IGNNE# Recognized internally

3-17

#

..'Ii

3.2.12 Cache Coherency The state of the INV pin at the time EADS# is
sampled active determines the final state of the
The cache coherency signals (AHOLD, cache line. If INV is sampled high, the final
EADS#, HIT#, HITM#, and INV) are used to state of the cache line is “invalid”. If INV is
initiate and monitor cache inquiry cycles. sampled low, the final state of the cache line is

These signals are intended to be used to ensuRared”. A cache inquiry cycle using EADS#
cache coherency in a uni-processor environ- may be run while the IBM 6x86MX CPU is in
ment only. Contact Cyrix for additional speci-either an address hold or bus hold state. The

fications on maintaining coherency in a inquiry address must be driven by an external
multi-processor environment. device.

Address Hold Reques{AHOLD) is an active Hit on Cache Line (HIT#) is an active low

high input which forces the IBM 6x86MX CPU output used to indicate that the current cache
to float A31-A3 and AP in the next clock CyC|e.inquiry address has been found in the cache
While AHOLD is asserted, only the address bugnodified, exclusive or shared states). HIT# is
is disabled. The current bus cycle remains valid two clocks after EADS# is sampled

active and can be completed in the normal active, and remains valid until the next cache
fashion. The IBM 6x86MX CPU does not inquiry cycle.

generate additional bus cycles while AHOLD is B _ _
asserted except write-back cycles in responsettdt on Modified Data (HITM#) is an active

a cache inquiry cycle. low output used to indicate that the current
cache inquiry address has been found in the
External Address Strobe(EADS#) is an cache and dirty data exists in the cache line
active low input used to indicate to the IBM (modified state). If HITM# is asserted, a
6x86MX CPU that a valid cache inquiry write-back cycle is issued to update external

address is being driven on the IBM 6x86MX memory. HITM# is valid two clocks after

CPU address bus (A31-A5) and AP. The IBMEADS# is sampled active, and remains asserted
6x86MX CPU checks the on-chip cache for thigntil two clocks after the last BRDY# of the
address. If the address is present in the cacheyrite-back cycle is sampled active. The IBM

the HIT# signal is asserted. If the data associex86MX CPU does not accept additional cache

ated with the inquiry address is “dirty” (modi- inquiry cycles while HITM# is asserted.
fied state), the HITM# signal is also asserted. If

dirty data exists, a write-back cycle is issued thvalidate Request(INV) is an active high

update external memory with the dirty data. input used to determine the final state of the

Additional cache inquiry cycles are ignored cache line in the case of a cache inquiry hit.

while HITM# is asserted. INV is sampled with EADS#. A logic one on
INV directs the processor to change the state of
the cache line to “invalid”. A logic zero on
INV directs the processor to change the state of
the cache line to “shared”.

3-18

Signal Descriptions 3

3.2.13 FPU Error Interface 3.2.14 Power Management Interface

The FPU interface sighals FERR# and The two power management signals (SUSP#,
IGNNE# are used to control error reporting for SUSPA#) allow the IBM 6x86MX CPU to

the on-chip floating point unit. These signals enter and exit suspend mode. The IBM

are typically used for a PC-compatible system6x86MX CPU also enters suspend mode as the
implementation. For other applications, FPU result of executing a HALT instruction if the
errors are reported to the IBM 6x86MX CPU HALT bit is set in CCR2. Suspend mode

core through an internal interface. circuitry forces the IBM 6x86MX CPU to

. .) consume minimal power while maintaining the
Floating Point Error Status (FERR#) is an entire internal CPU state.

active low output asserted by the IBM
6x86MX CPU when an unmasked floating ~ Suspend Reques(SUSP#) is an active low
point error occurs. FERR# is asserted during input which requests that the IBM 6x86MX
execution of the FPU instruction that caused CPU enter suspend mode. After recognition of
the error. FERR# does not float during bus an active SUSP# input, the IBM 6x86MX CPU
hold states. completes execution of the current instruction,

. .) any pending decoded instructions and associ-
Ignore Numeric Error (IGNNE#) is an active 5104 bus cycles, issues a stop grant bus cycle,
low input which forces the IBM 6x86MX CPU 5 then asserts the SUSPA# output. SUSP# is

to ignore any pending unmasked FPU errors jgnored following RESET and is enabled by
and allows continued execution of floating setting the SUSP bit in CCR2.

point instructions. When IGNNE# is not
asserted and an unmasked FPU error is TheSuspend AcknowledggSUSPA#) output
pending, the IBM 6x86MX CPU only executes indicates that the IBM 6x86MX CPU has

the following floating point instructions: entered low-power suspend mode as the result
FNCLEX, FNINIT, FNSAVE, FNSTCW, of either assertion of SUSP# or execution of a
FNSTENYV, and FNSTSW#. IGNNE# is HALT instruction. SUSPA# remains asserted

ignored when the NE bit in CRO is setto a 1. until SUSP# is negated, or until an interrupt is
serviced if suspend mode was entered via the
HALT instruction. If SUSP# is asserted and
then negated prior to SUSPA# assertion,
SUSPA# may toggle state after SUSP#
negates.

3-19

..'Ii

The IBM 6x86MX CPU accepts cache flush 3.2.15 Performance Monitoring
requests and cache inquiry cycles while

SUSPA# is asserted. If FLUSH# is asserted, The PMO and PM1 pins are outputs that are
the CPU exits the low power state and serviceg@ssociated with performance monitoring.
the flush request. After completion of all These pins can be defined in two different
required write-back cycles, the CPU returns toways.

the low power state. SUSPA# negates during oo
the write-back cycles. Before issuing the If PMO, bit 9 in the Counter Event Control

write-back cycle, the CPU may execute severaregiSter is set, the PMO pin indicates an over-
code fetches ’ low has occurred; if reset, the PMO pin indi-

cates that a performance counter event has
If AHOLD, BOFF# or HOLD is asserted while occurred. The PM1 pin operates in the same
SUSPA# is asserted, the CPU exits the low manner, but is controlled by PM1, bit 25.
power state in preparation for a cache inquiry
cycle. After completion of any required

The PMO and PM1 pins indicate only that an
write-back cycles resulting from the cache event or overflow occurred at least once. More

inquiry, the CPU returns to the low power statethan one event or overflow can occur in the
only if HOLD, BOFF# and AHOLD are same CPU or external clock cycle.
negated. SUSPA# negates during the

write-back cycle.

Table 3-10 (Page 3-21) lists the IBM 6x86MX
CPU signal states for suspend mode when
initiated by either SUSP# or the HALT instruc-
tion. SUSPA# is disabled (three-state)
following RESET and is enabled by setting the
SUSP bitin CCR2.

3-20

Signal Descriptions 3

Table 3-10. Signal States During Suspend Mode

SIGNAL LINE AT INTIATED | SIGNAL LINE HALT INITIATED
A20M# Ignored INTR Latched/Recognized
A31-A3 Driven INV Recognized
ADS# 1 KEN# Ignored
ADSC# 1 LOCK# 1
AHOLD Recognized M/IO# Driven
AP Driven NA# Ignored
APCHK# 1 NMI Latched/Recognized
BE7#-BEO# Driven PCD Driven
BOFF# Recognized PCHK# 1
BRDY# Ignored PWT Driven
BRDYC# Ignored RESET Recognized
BREQ 0 SCYC Driven
CACHE# Driven SMI# Latched/Recognized
DIC# Driven SMIACT# 1
D63-D0 Float SUSP# 0/ Recognized
DP7-DPO Float SUSPA# 0
EADS# Recognized TCK Recognized
EWBE# Ignored TDI Recognized
FERR# 1 TDO Responds to TCK, TDI, TMS,

TRST#
FLUSH# Recognized TMS Recognized
HIT# Driven TRST# Recognized
HITM# 1 WI/R# Driven
HLDA Driven in response to HOLD WB/WT# Ignored
HOLD Recognized WM_RST Latched/Recognized
IGNNE# Ignored

..'Ii

3.2.16 JTAG Interface

The IBM 6x86MX CPU can be tested using
JTAG Interface (IEEE Std. 1149.1) boundary
scan test logic. The IBM 6x86MX CPU pin
state can be set according to serial data
supplied to the chip. The IBM 6x86MX CPU
pin state can also be recorded and supplied as
serial data.

Test Clock (TCK) is the clock input used by
the IBM 6x86MX CPU boundary scan (JTAG)
test logic. The rising edge of TCK is used to
clock control and data information into the
IBM 6x86MX CPU using the TMS and TDI
pins. The falling edge of TCK is used to clock
data information out of the IBM 6x86MX CPU
using the TDO pin.

Test Data Input (TDI) is the serial data input
used by the IBM 6x86MX CPU boundary scan
(JTAG) test logic. TDI is sampled on the rising
edge of TCK.

Test Data Output (TDO) is the serial data
output used by the IBM 6x86MX CPU
boundary scan (JTAG) test logic. TDO is
output on the falling edge of TCK.

Test Mode Selec{TMS) is the control input
used by the IBM 6x86MX CPU boundary scan
(JTAG) test logic. TMS is sampled on the
rising edge of TCK.

Test Rese{TRST#) is an active low input
used to initialize the IBM 6x86MX CPU
boundary scan (JTAG) test logic.

3-22

Functional Timing 3

Functional Timing
of RESET to determine if the IBM 6x86MX

3.3.1 Reset Timing CPU should enter built-in self-test, enable
tree-state test mode or enable the scatter-gather

Figure 3-2 illustrates the required RESET tinmterface pins, respectively. WM_RST and

ing for both a power-on reset and a reset thaiLUSH# must be valid at least two clocks

occurs during operation. The WM_RST andprior to the RESET falling edge.

FLUSH# inputs are sampled at the falling edge

c A

Reset Inactive = 2 CLKs Min.

RESET Power-On Reset = 1 msec Min. Reset after Power-On = 15 CLKs Min.
WM_RST VALID
FLUSH# VALID

Note 1. ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test
Note 2. ADS# asserted approximately 2**19 clocks after RESET falling edge if built-in self-test requested.
Note 3. Output pins driven to specified RESET state a maximum of 2 CLKs after RESET rising edge. 1734900

Figure 3-2. RESET Timing

3-23

E E5E
3.3.2 Bus State Definition

The IBM 6x86MX CPU bus controller supports non-pipelined and pipelined operation as well
as single transfer and burst bus cycles. During each CLK period, the bus controller exists in one
of six states as listed in Table 3-11. Each of bus state and its associated state transitions are
illustrated in Figure 3-3, (Page 3-25) and listed in Table 3-12, (Page 3-26).

Table 3-11. IBM 6x86MX CPU Bus States

STATE NAME DESCRIPTION

Ti Idle Clock During Ti, no bus cycles are in progress. BOFF# and RESET force the
bus to the idle state. The bus is always in the idle state while HLDA jis
active.

Tl First Bus Cycle Clock During the first clock of a non-pipelined bus cycle, the bus enters the T1

state. ADS# is asserted during T1 along with valid address and bus|cycle
definition information.

T2 Second and Subsequent | During the second clock of a non-pipelined bus cycle, the bus enters the
Bus Cycle Clock T2 state. The bus remains in the T2 state for subsequent clocks of the bus
cycle as long as a pipelined cycle is not initiated. During T2, valid data is
driven during write cycles and data is sampled during reads. BRDY# is
also sampled during T2. The bus also enters the T2 state to complete bus
cycles that were initiated as pipelined cycles but complete as the only
outstanding bus cycle.

T12 First Pipelined Bus Cycle | During the first clock of a pipelined cycle, the bus enters the T12 state.
Clock During T12, data is being transferred and BRDY# is sampled for the
current cycle at the same time that ADS# is asserted and address/bus cycle
definition information is driven for the next (pipelined) cycle.

)

T2P Second and Subsequent | During the second and subsequent clocks of a pipelined bus cycle where

Pipelined Bus Cycle Clock two cycles are outstanding, the bus enters the T2P state. During T2P, data
is being transferred and BRDY# is sampled for the current cycle.
However, valid address and bus cycle definition information continugs to
be driven for the next pipelined cycle.

Td Dead Clock The bus enters the Td state if a pipelined cycle was initiated that requires
one idle clock to turn around the direction of the data bus. Td is required
for a read followed immediately by a pipelined write, and for a write
followed immediately by a pipelined read.

3-24

Functional Timing

-,
A P (from any state)
B
G H
J

D
<
I
M
K
1741800

Figure 3-3. IBM 6x86MX CPU Bus State Diagram

3

3-25

3-26

Functional Timing

Table 3-12. Bus State Transitions
CURRENT | NEXT
TRANSITION STATE STATE EQUATION

A Ti Ti No Bus Cycle Pending.

B Ti T1 New or Aborted Bus Cycle Pending.

C T1 T2 Always.

D T2 T2 Not Last BRDY# and No New Bus Cycle Pending, or
Not Last BRDY# and New Bus Cycle Pending and NA#
Negated.

E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Nega

F T2 Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.

G T2 T12 | NotLast BRDY# and New Bus Cycle Pending and NA#
Sampled Asserted.

H T12 T2 Last BRDY# and No Dead Clock Required.

I T12 Td Last BRDY# and Dead Clock Required.

J T12 T2P | Not Last BRDY#.

K T2P T2P | NotLast BRDY#.

L T2P T2 Last BRDY# and No Dead Clock Required.

M T2P Td Last BRDY# and Dead Clock Required.

N Td T12 | New Bus Cycle Pending and NA# Sampled Asserted.

0] Td T2 No New Bus Cycle Pending, or
New Bus Cycle Pending and NA# Negated.

P Any Ti RESET Asserted, or

State BOFF# Asserted.

ted.

Functional Timing 3

3.3.3 Non-Pipelined Bus The CPU uses the data parity inputs to check
Cycles for even parity on the active data lines. If the

o _ CPU detects an error, the parity check output
Non-pipelined bus operation may be used for(pcHk#) asserts during the second clock fol-

all bus cycle types. The term “non-pipelined” |owing the termination of the read cycle.
refers to a mode of operation where the CPU

allows only one outstanding bus cycle. In Figure 3-4 (Page 3-28) illustrates the func-
other words, the current bus cycle must com-tional timing for two non-pipelined sin-
plete before a second bus cycle is allowed to gle-transfer read cycles. Cycle 2 is a

start. potentially cacheable cycle as indicated by the
o . CACHE# output. Because this cycle is poten-
3.3.3.1 Non-Pipelined Single tially cacheable, the CPU samples the KEN#
Transfer Cycles input at the same clock edge that BRDY# is

asserted. If KEN# is negated, the cycle termi-
heabl ds 1/ d | nates as shown in the diagram. If KEN# is
non-cacheable memory reads, I/O read cyc €asserted, the CPU converts this cycle into a

and special cycles. A non-pipelined single .ot cvele as described in the next section.
transfer read cycle begins with address and biy a4+ must be negated for non-pipelined opera-

cycle definition information driven on the bus tion. Pipelined bus cycles are described later
during the first clock (T1 state) of the bus in this chapter.

cycle. The CPU then monitors the BRDY#
input at the end of the second clock (T2 state)
If BRDY# is asserted, the CPU reads the
appropriate data and data parity lines and ter-
minates the bus cycle. If BRDY# is not active,
the CPU continues to sample the BRDY# input
at the end of each subsequent cycle (T2 states).
Each of the additional clocks is referred to as a
wait state.

Single transfer read cycles occur during

3-27

———— — S—
- e Functional Timing
o
————— T —
e
Ti T1 T2 T1 T2 T2 T2 Ti Ti Ti

o T\ U W U
ADS# \ CYCLEl/i\ CYCLE 2

Address, AP X VALID X VALID)

~—

CACHE# / \ /

s \ /
T __ /0]

[v) N\
DATA, DP { IN) { IN }
PCHK# \ VALID | \ vaLp /
Cycle 1: Cycle 2:
Non-Cacheable, Potentially Cacheable,
0 Wait State Read 2 Wait-State Read

Figure 3-4. Non-Pipelined Single Transfer Read Cycles

3-28

Functional Timing 3

Single transfer write cycles occur for writes bus cycle. Data and data parity remain valid
that are neither line replacement nor write-baduring all wait states. If the write cycle is a
cycles. The functional timing of two non-pipewrite to a valid cache location in the “shared”

lined single transfer write cycles is shown in state, the WB/WT# pin is sampled with
Figure 3-5. During a write cycle, the data anBRDY#. If WB/WT# is sampled high, the

data parity lines are outputs and are driven cache line transitions from the “shared” to the
valid during the second clock (T2 state) of théexclusive” state.

CLK

ADS#

Address, AP

CACHE#

W/R#

NA#

BRDY#

WB/WT#

DATA, DP

N o W e O o W o W W o Wl
X VALID X VALID X
/ |
/ [
\VRRRASY
OO, __ | A0R0R
out —(o —

Cycle 1:
0 Wait-State Write

Cycle 2:
2 Wait-State Write

Figure 3-5. Non-Pipelined Single Transfer Write Cycles

3-29

..'I

Functional Timing

3.3.3.2 Non-pipelined Burst Each time BRDY# is sampled asserted during
Read Cycles the burst cycle, a data transfer occurs. The CPU
reads the data and data parity busses and assigns
The IBM 6x86MX CPU uses burst read cyclesthe data to an internally generated burst
to perform cache line fills. During a burst readaddress. Although the CPU internally generates
cycle, four 64-bit data transfers occur to fill the burst address sequence, only the first address
one of the CPU’s 32-byte internal cache lines. of the burst is driven on the external address bus.
A non-pipelined burst read cycle begins with System logic must predict the burst address
address and bus cycle definition information sequence based on the first address. Wait states
driven on the bus during the first clock (T1 may be added to any transfer within a burst by

state) of the bus cycle. The CACHE# output isdelaying the assertion of BRDY# by the desired
always active during a burst read cycle and is number of clocks.

driven during the T1 clock.

The CPU checks even data parity for each of the
The CPU then monitors the BRDY# input at four transfers within the burst. If the CPU
the end of the second clock (T2 state). If detects an error, the parity check output
BRDY# is asserted, the CPU reads the data (PCHK#) asserts during the second clock fol-

and data parity and also checks the KEN# |owing the BRDY# assertion of the data transfer.
input. If KEN# is negated, the CPU terminates

the bus cycle as a single transfer cycle. If ~ Figure 3-6 (Page 3-31) illustrates two non-pipe-
KEN# is asserted, the CPU converts the cyclelined burst read cycles. The cycles shown are
into a burst (cache line fill) by continuing to the fastest possible burst sequences (2-1-1-1).
sample BRDY# at the end of each subsequentNA# must be negated for non-pipelined opera-
clock. BRDY# must be asserted a total of fourtion as shown in the diagram. Pipelined bus
times to complete the burst cycle. cycles are described later in this chapter.

WB/WT# is sampled at the same clock edge a&igure 3-7 (Page 3-32) depicts a burst read cycle
KEN#. In conjunction with PWT and the with wait states. A 3-2-2-2 burst read is shown.
on-chip configuration registers, WB/WT#

determines the MESI state of the cache line for

the current line fill.

3-30

Functional Timing 3

CLK

ADS#

Address, AP

CACHE#

W/R#

NA#

BRDY#

KEN#

WB/WT#

DATA, DP

PCHK#

T1 T2 T2 T2 T2 T1 T2 T2 T2

A R U B W W

T2

Ti

\ cYcLE1 / \ cycLE 2 j

VALID

<

X VALID

11T

ARSI OUHARSEA SRR

SRR MU

VALID VALID

z
><

| |
NoXNn —— n X N X

{ ~n X

IN

VALID VALID VALID VALID VALID

VALID

VALID

Cycle 1: 2-1-1-1 Burst Read Cycle Cycle 2: 2-1-1-1 Burst Read Cycle

Figure 3-6. Non-Pipelined Burst Read Cycles

3-31

..'I

Functional Timing

Ti T1 T2 T2 T2 T2 T2 T2 T2 T2 Ti Ti
o A
ADSH CYCLEL
Address, AP I VALID)
CACHE#
WIRG
BRDY# \ |
KEN# i)
wawt# R R00OR0U vaLio N NN N ol
DATA, DP N —— N N)
PCHK# VALID VALID VALID VALID
Cycle 1: 3-2-2-2 Burst Read Cycle 1735400

Figure 3-7. Burst Cycle with Wait States

Burst Cycle Address Sequence. address sequence shown in Table 3-13 (Page

The IBM 6x86MX CPU provides two different 3-33). The IBM 6x86MX CPU CACHE# out-
address sequences for burst read cycles. The Put is not asserted during the single read cycle
IBM 6x86MX CPU burst cycle address prior to the burst. Therefore, CACHE# must
sequence modes are referred to as “1+4” and Not be used to qualify the KEN# input to the

“linear”. After reset, the CPU default mode is Processor. In addition, if KEN# is returned
“14+4". active for the “1” read cycle in the “1+4”, all

data bytes supplied to the CPU must be valid.
In “1+4” mode, the CPU performs a single The CPU samples WB/WT# during the “1”
transfer read cycle prior to the burst cycle, if theread cycle, and does not resample WB/WT#
desired first address is (...xx8). During this sin-during the following burst cycle. Figure 3-8
gle transfer read cycle, the CPU reads the criti-(Page 3-33) illustrates a “1+4” burst read
cal data. In addition, the IBM 6x86MX CPU cycle.
samples the state of KEN#. If KEN# is active,
the CPU then performs the burst cycle with the

3-32

Functional Timing 3

Table 3-13. “1+4” Burst Address Sequences
BURST CYCLE FIRST | SINGLE READ CYCLE PRI- BURST CYCLE ADDRESS
ADDRESS OR TO BURST SEQUENCE
0 None 0-8-10-18
8 Address 8 0-8-10-18
10 None 10-18-0-8
18 Address 18 10-18-0-8
Ti T1 T2 T1 T2 T2 T2 T2 Ti Ti
ADS# CYCLE1// |\CYCLE2
Address, AP >< >< ><
VALID (A4-A0 = 08h or 18h) VIALID (A4-AD = 00h or 10h)
CACHE#
W/R# /
NA#
BRDY#
KEN#
KEN# must be asserted for both gycles.
WB/WT# VALID
DATA, DP N o ——(N0 N N
PCHK# \ vaup | / vaup | vaup | vaup JvALD
\ \
Cycle 1: Single transfer read Cycle 2: 2-1-1-1 Burst Read Cycle
1740300

Figure 3-8. “1+4” Burst Read Cycle

3-33

..'I

Functional Timing

The address sequences for the IBM 6x86MX CPU's linear burst mode are shown in Table 3-14.
Operating the CPU in linear burst mode minimizes processor bus activity resulting in higher sys-

tem performance. Linear burst mode can be enabled through the IBM 6x86MX CPU CCR3 con-
figuration register.

Table 3-14. Linear Burst Address Sequences

BURST CYCLE FIRST BURST CYCLE ADDRESS
ADDRESS SEQUENCE
0 0-8-10-18
8 8-10-18-0
10 10-18-0-8
18 18-0-8-10

3-34

Functional Timing 3

3.3.3.3 Burst Write Cycles As on burst read cycles, only the first address
of a burst write cycle is driven on the external

Burst write cycles occur for line replacement address bus. System logic must predict the

and write-back cycles. Burst writes are similaremaining burst address sequence based on the

to burst read cycles in that the CACHE# outptirst address. Burst write cycles always begin

is asserted and four 64-bit data transfers occwith a first address ending in O (signals

Burst writes differ from burst reads in that the A4-A0=0) and follow an ascending address

data and data parity lines are outputs rather thegquence for the remaining transfers

inputs. Also, KEN# and WB/WT# are not san{0-8-10-18).

pled during burst write cycles. _ . o
Figure 3-9 illustrates two non-pipelined burst

Data and data parity for the first data transfer write cycles. The cycles shown are the fastest
are driven valid during the second clock (T2 possible burst sequences (2-1-1-1). As shown,
state) of the bus cycle. Once BRDY# is sam-an idle clock always exists between two

pled asserted for the first data transfer, valid back-to-back burst write cycles. Therefore, the
data and data parity for the second transfer asecond burst write cycle in a pair of

driven during the next clock cycle. The sameback-to-back burst writes is always issued as a
timing relationship between BRDY# and data non-pipelined cycle regardless of the state of
applies for the third and fourth data transfers #se NA# input.

well. Wait states may be added to any transfer

within a burst by delaying the assertion of

BRDY# by the required number of clocks.

Ti T1 T2 T2 T2 T2 Ti* T1 T2 T2 T2 T2 Ti
ADS# CYCLE 1 CYCLE 2
Address, AP >< VALID (A4-AO = 00h) X X VALID (A4-A0 = 00h)
CACHE#
WI/R#
N OO0 YO0) 00N
BRDY# WVV VVVVVVV C
DATA, DP out X out X outr X out out X out X out X out
\ \ \ \ \ \ \ \
Cycle 1: 2-1-1-1 Burst Write Cycle Cycle 2: 2-1-1-1 Burst Write Cycle 1735300
*Note: Ti state always exists between two back-to-back burst write cycles.

Figure 3-9. Non-Pipelined Burst Write Cycles

3-35

Functional Timing

Pipelined Bus Cycles The CPU latches the state of the NA# pin

internally. Therefore, even if a new bus cycle
Pipelined addressing is a mode of operationis not pending internally at the time NA# was
where the CPU allows up to two outstandingsampled asserted, the CPU still issues a pipe-
bus cycles at any given time. Using pipelindghed bus cycle if an internal bus request
addressing, the address of the first bus cycletturs prior to completion of the current bus
driven on the bus. While the CPU waits for thg/cle. Once NA# is sampled asserted, the state
data for the first cycle, the address for a secasfdNA# is ignored until the current bus cycle
bus cycle is issued. Pipelined bus cycles occempletes. If two cycles are outstanding and
for all cycle types except locked cycles and the second cycle is a read, the CPU samples
burst write cycles. KEN# and WB/WT# for the second cycle
when NA# is sampled asserted.

..'I

w

3.

Pipelined cycles are initiated by asserting
NA#. The CPU samples NA# at the end of Figure 3-10 and Figure 3-11 (Page 3-37) illus-
each T2, T2P and Td state. KEN# and trate pipelined single transfer read cycles and
WB/WT# are sampled at either the same cloplpelined burst read cycles, respectively.

as NA# is active, or at the same clock as the

first BRDY# for that cycle, whichever occurs

first. The CPU issues the next address a mini-

mum of two clocks after NA# is sampled

asserted.
Ti T1 T2 T2 T12 T2 T2 Ti
CLK ,__/__/__/__ ,__/__/__/__*__*__/__/
CPU enters idle bus state because
ADS# \ CYCLE1 / / \ CYCLE 2 / no bus cycle pending internally.
Address, AP X VALID ;/ X VALID 2 X
CACHE# / \ /
WIRH# \ /
NA# OO Ny AR ANRXN
Ty W I
KEN# sampled when NA# sampled asserted.
DATA, DP (Tt) {2)
PCHK# \ vaup1 / \ vaupz /
Cycle 1:Non-Cacheable, Cycle 2:Potentially Cacheable,
2 Wait State Read Pipelined Read Cycle

Figure 3-10. Pipelined Single Transfer Read Cycles

3-36

Functional Timing 3

CLK

ADSH

Address, AP

CACHE#

W/R#

BRDY#

KEN#

WB/WT#

DATA, DP

PCHK#

Ti T1 T2 T2 T12 T2P T2 T2 T2 T2 Ti Ti
CYCLE1 / CYCLE 2
I VALID 1 I VALID 2 I
VALID VALID
IN 1 IN 1 IN 1 IN 1 N2 XN IN 2 IN 2
VALID 1 [{ VALID 1 |} VALID 1 |{ VALID 1 |X VALID 2 X VALID 2 |{ VALID 2 X VALID 2

Cycle 1: 2-1-1-1 Burst Read Cycle

Cycle 2: Pipelined Burst Read Cycle

1741500

Figure 3-11. Pipelined Burst Read Cycles

3-37

Functional Timing

..'I

3.34.1 Pipelined Back-to-Back ically inserts a “dead” (Td) clock cycle. Dur-
Read/Write Cycles ing the Td state, the data bus floats. The CPU
then drives the write data onto the bus in the
Figure 3-12 depicts a read cycle followed by afollowing clock. The CPU also inserts a Td
pipelined write cycle. Under this condition, clock between a write cycle and a pipelined
the data bus must change from an input for theead cycle to allow the data bus to smoothly

read cycle to an output for the write cycle. In transition from an output to an input.
order to accomplish this transition without

causing data bus contention, the CPU automat-

Ti T1 T2 T2 T12 T2P Td T2 Ti
S (D (N I Y B VS (R W (R A A W B N
ADSH# CYCLE 1 L\ CYCLE 2
e
Address, AP >< VALID 1 >< VALID 2 ><
CACHE#
WI/R# (
NA#
BRDY# Y
KEN#
DATA, DP (IN1 X IN1 X IN1 X IN 1)——(OUT2:>7
PCHK# VALID 1 VALID 1 VALID 1 VALID 1
Cycle 1: 2-1-1-1 Burst Read Cycle 2: Pipelined Write 1735700

Figure 3-12. Read Cycle Followed by Pipelined Write Cycle

3-38

Functional Timing 3

3.35 Interrupt Acknowledge Cycles

The CPU issues interrupt acknowledge bus cycles in response to an active INTR input.
Interrupt acknowledge cycles are single transfer cycles and always occur in locked pairs as
shown in Figure 3-13. The CPU reads the interrupt vector from the lower eight bits of the
data bus at the completion of the second interrupt acknowledge cycle. Parity is not checked
during the first interrupt acknowledge cycle.

M/IO#, D/C# and W/R# are always logic low during interrupt acknowledge cycles. Addi-
tionally, the address bus is driven with a value of 0000 0004h for the first interrupt acknowl-
edge cycle and with a value of 0000 0000h for the second. A minimum of one idle clock
always occurs between the two interrupt acknowledge cycles.

Ti Tl T2 Ti T1 T2 Ti Ti
CLK \ \ \ \ \ \ __ N
Idle States = 1 CLK Min.
ADS# \ CYCLE1 |/ \ CYCLE2 |/
Address X 0000 0004h p{ X 0000 0000h
M/10#, \ /7
DIC#, WIR#
LOCK# \ /
BROY# LT
DATA { IN s ! IN)
PCHK# \ VALID /
Interrupt Vector Read
During Second Interrupt
Acknowledge Cycle. 1735800

Figure 3-13. Interrupt Acknowledge Cycles

3-39

..'I

Functional Timing

3.3.6 SMI# Interrupt Timing To facilitate using SMI# to power manage 1/O
peripherals, the IBM 6x86MX CPU imple-
The CPU samples the System Managementments a feature called 1/O trapping. If the cur-
Interrupt (SMI#) input at each clock edge. Atent bus cycle is an I/O cycle and SMI# is
the next appropriate instruction boundary, thasserted a minimum of three clocks prior to
CPU recognizes the SMI# and completes allBRDY#, the CPU immediately begins execu-
pending write cycles. The CPU then assertstion of the SMI service routine following com-
SMIACT# and begins saving the SMM headgaietion of the I/O instruction. No additional
information to the SMM address space. instructions are executed prior to entering the
SMIACT# remains asserted until after SMI service routine. /O trap timing require-
execution of a RSM instruction. Figure 3-14 ments are shown in Figure 3-15 (Page 3-41).
illustrates the functional timing of the
SMIACT# signal.

CLK

=
erovi {ANCARUACARRRARGARR, RN, ARCACACACRERRRRRRRCAAR - AXGAXE

S ___/ I I I TP » I e

1CLKMIN | 1CLKMIN

\ Normal . \ Normal . 1 1 L SMI .
ADSH \Ax&s‘ \Ax&s‘ . . . Hmda/

- - - - |\ 40K ‘ | ‘ ;
SMIACT# ‘ ‘ ‘ ‘ S\ MN ‘ ‘ ‘ 40K
]] MIN\

1739900

Figure 3-14. SMIACT# Timing in SL Compatible Mode

3-40

Functional Timing 3

| I/O Cycle (Read or Write) |
T1 T2 T2 T2 T2 T2

CLK /__l [__/__/

Byte Enaiies VALID
ADSH# /
BRDY# 00 __ | (00N
SMi# vl

<¢—— 3 CLK Min.—

Figure 3-15. SMM I/O Trap Timing

3.3.7 Cache Control Timing The latency between when FLUSH# occurs
o and when the cache invalidation actually com-
3.3.7.1 Invalldatlng the Cache p|etes varies depending on:

Using FLUSH#
(1) the state of the processor when FLUSH# is

The FLUSH# input forces the CPU to asserted,

write-back and invalidate the entire contents of(2) the number of modified cache lines,

the on-chip cache. FLUSH# is sampled at eacf?) thg number of wait states inserted during the
clock edge, latched internally and then recog- ~ Write-back cycles.

nized internally at the next instruction bound-Figure 3-16 (Page 3-42) illustrates the

ary. Once FLUSH# is recognized, the CPU sequence of events that occur on the bus in
issues a series of burst write cycles to response to a FLUSH# request.

write-back any “modified” cache lines. The

cache lines are invalidated as they are written

back. Following completion of the write-back

cycles, the CPU issues a flush acknowledge

special bus cycle.

3-41

..'Ii

Functional Timing

SN AUAN AV AWAYAE RS AWAWAWAY AW AW
ADS# |/ |/
—

BRDY# \ \| [
Address X Write-Back Cycle X 0000 0004h
FusHy |\
Wait for Processor Write-Back of all Modified Lines Flush Acknowledge
to Complete Current in Internal Cache Special Cycle
Instruction

Figure 3-16. Cache Invalidation Using FLUSH#

3-42

Functional Timing 3

3.3.7.2 EWBE# Timing

During memory and I/0O write cycles, the IBM 6x86MX CPU samples the external write
buffer empty (EWBE#) input. If EWBE# is negated, the CPU does not write any data to
“exclusive” or “modified” internal cache lines. After sampling EWBE# negated, the CPU
continues to sample EWBE# at each clock edge until it asserts. Once EWBE# is asserted,
all internal cache writes are allowed. Through use of this signal, the external system may
enforce strong write ordering when external write buffers are used. EWBE# functional tim-
ing is shown in Figure 3-17.

4avatinlalaValalaialalal
post [__|/

wr | [T

DATA +—(our)

EWBE# [OUUQU _LOGUOOGUN
BRDY# i/

Write Cycle: No writes to E or M-State lines Writes to E or M-State lines
EWBE# sampled that hit in the internal cache. that hit in the internal cache
with each BRDY#. EWBE# sampled at each can complete.

clock edge.

Figure 3-17. External Write Buffer Empty (EWBE#) Timing

3-43

3.3.8

..'Ii

Bus

Arbitration

Functional Timing

3.3.8.1 HOLD and HLDA

An external bus master can take control of th&/sing the HOLD/HLDA handshake, an exter-
CPU's bus using either the HOLD/HLDA

handshake signals or the back-off (BOFF#)

input. Both mechanisms force the IBM
6x86MX CPU to enter the bus hold state.

nal bus master requests control of the CPU’s
bus by asserting the HOLD signal. In response
to an active HOLD signal, the CPU completes
all outstanding bus cycles, enters the bus hold
state by floating the bus, and asserts the HLDA
output. The CPU remains in the bus hold state
until HOLD is negated. Figures 3-18 (this
page), Figure 3-19 (Page 3-45) and Figure
3-20 (Page 3-46) illustrate the timing associ-
ated with requesting HOLD during an idle bus,
during a non-pipelined bus cycle and during a
pipelined bus cycle, respectively.

CLK

ADS#

Address

HOLD

HLDA

Ti Ti Ti Ti Ti 1 T2
\ /S AN A AN
\ |
} { VALID
<¢— Min One Clock P <4 ZeroM(iZTocks —» \T

3-44

Figure 3-18. Requesting Hold from an Idle Bus

Functional Timing 3

CLK

ADS#

Address

BRDY#

HOLD

HLDA

T1

T2

T2

Ti

Ti

Ti

S S

VALID

Figure 3-19. Requesting Hold During a Non-Pipelined Bus Cycle

3-45

I .. S
- e Functional Timing
- [. - -
I BT B T
I T S T -
Ti T ™ ™ T12 ™ ™ Ti Ti Ti

e O\
ADSH# \ cvcle / /A CYCLE 2 / \

Address, AP X VALID 1 X VALID 2

S—

N S Ja

BRDY# _I_\
DATA, DP /_WZ)——@ 2

HOLD /

|

:
|

HLDA /

Figure 3-20. Requesting Hold During a Pipelined Bus Cycle

3-46

Functional Timing 3

3.3.8.2 Back-Off Timing

An external bus master requests immediate
control of the CPU's bus by asserting the
back-off (BOFF#) input. The CPU samples
BOFF# at each clock edge and responds by
floating the bus in the next clock cycle as
shown in Figure 3-21. The CPU remains in

the bus hold state until BOFF# is negated.

If the assertion of BOFF# interrupts a bus

cycle, the bus cycle is restarted in its entirety

following the negation of BOFF#. If KEN#

was sampled by the processor before the cycle
was aborted, it must be returned with the same
value during the restarted cycle. The state of
WB/WT# may be changed during the restarted
cycle.

If BOFF# and BRDY# are active at the same
clock edge, the CPU ignores BRDY#. Any
data returned to the CPU with the BRDY# is
also ignored. If BOFF# interrupts a burst read
cycle, the CPU does not cache any data
returned prior to BOFF#. However, this data
may be used for internal CPU execution.

T1

CLK __
ADS# [\

T2

Address :X

Ti

Ti T1 T2

~"

{ VALID

BRDY# XXXXXX

BOFF#

Figure 3-21. Back-Off Timing

3-47

..'I

Functional Timing

3.3.9 Cache Inquiry Cycles If the line is in the “modified” state, the CPU

asserts both HIT# and HITM#. The CPU then
Cache inquiry cycles are issued by the systemssues a bus cycle request to write the modified
with the CPU in either a bus hold or address cache line to external memory. HITM#

hold state. Bus hold is requested by assertingdemains asserted until the write-back bus cycle
either HOLD or BOFF#, and address hold is completes. No additional cache inquiry cycles
requested by asserting AHOLD. The system are accepted while HITM# is asserted. Write-
initiates the cache inquiry cycle by asserting back cycles always start at burst address 0.
the EADS# input. The system must also driveOnce the write-back cycle has completed, the
the desired inquiry address on the address CPU changes the cache line state to “invalid”
lines, and a valid state on the INV input. if the INV input was sampled logic high, or

In response to the cache inquiry cycle, the shared” if the INV input was sampled low.

CPU checks to see if the specified address is |n addition to checking the cache, the CPU
present in the internal cache. If the address isalso snoops the internal line fill and cache
present in the cache, the CPU checks the MES)rite-back buffers in response to a cache
state of the cache line. If the line is in the inquiry cycle. The following sections
“exclusive” or “shared” state, the CPU assertsdescribe the functional timing for cache
the HIT# output and changes the cache line inquiry Cyc|es and the Corresponding

state to “invalid” if the INV input was sampled write-back cycles for the various types of
logic high with EADS#. inquiry cycles.

3-48

Functional Timing 3

3.3.9.1 Inquiry Cycles should not be asserted until the second clock

Using HOLD/HLDA after HLDA as shown in the diagram. If the

inquiry address hits on a modified cache line,

Figure 3-22 illustrates an inquiry cycle where HIT# and HITM# are asserted during the sec-
HOLD is used to force the CPU into a bus holdnd clock following EADS#. Once HITM#
state. In this case, the system asserts HOLDasserts, the system must negate HOLD to allow
and must wait for the CPU to respond with the CPU to run the corresponding write-back
HLDA before issuing the cache inquiry cycle.cycle. The first cycle issued following nega-
To avoid address bus contention, EADS# tion of HLDA is the write-back bus cycle.

T T T T T T T T TL T2 T2 T2 T2 T T
S Y VY VY W W A N L WY L WY A O A AR
ADSH# \ |/
Address |From CPU} {focru} { Write-Back Cycle)
seovs [T, T [T
HOLD \
HLDA / \
EADSH# L/
v RN R RTRAIANIR vauo A0
HIT# \
HITMV# \ [

Figure 3-22. HOLD Inquiry Cycle that Hits on a Modified Line

3-49

..'I

Functional Timing

3.3972 Inquiry Cycles Using BOFF# shown in the diagram. If the inquiry address
hits on a modified cache line, HIT# and HITM#

Figure 3-23 illustrates an inquiry cycle where are asserted during the second clock following
BOFF# is used to force the CPU into a bus holdEEADS#. Once HITM# asserts, the system must
state. In this case, the system asserts BOFF#negate BOFF# to allow the CPU to run the cor-
and the CPU immediately relinquishes control responding write-back cycle. The first cycle

of the bus in the next clock. To avoid address issued following negation of BOFF# is the

bus contention, EADS# should not be assertedvrite-back bus cycle.

until the second clock edge after BOFF# as

TL i Ti T i T T T2 T2 T2 T2 Ti T 0TI T2
AN EYAYANANARARANANAE AN AW RWRWRW
aost [__| | !
Address |From CPU) E@ (Write-Back Cycle X X Cycle 1
(Restarted)
BRDY# ARG RN NN AR
BOFF# | | [
EADSH# L/
v T e Y DA AR
HIT# \
HITM# \ /

Figure 3-23. BOFF# Inquiry Cycle that Hits on a Modified Line

3-50

Functional Timing 3

3.3.93 Inquiry Cycles AHOLD as shown in the diagram. If the
Using AHOLD inquiry address hits on a modified cache line,

the CPU asserts HIT# and HITM# during the

Figure 3-24 illustrates an inquiry cycle where second clock following EADS#. The CPU then

AHOLD is used to force the CPU into an issues the write-back cycle even if AHOLD

address hold state. In this case, the system remains asserted. ADS# for the write-back

asserts AHOLD and the CPU immediately cycle asserts two clocks after HITM# is

floats the address bus in the next clock. To asserted. To prevent the address bus and data

avoid address bus contention, EADS# shouldous from switching simultaneously, the system

not be asserted until the second clock edge afteust adhere to the restrictions on negation of
AHOLD as shown in Figure 3-24.

T1 T2 Ti Ti Ti Ti Ti T2 T2 T2 T2 T2 Ti Ti

1
ew LU\ U
aps |___|/ |
Address | FromcPu } ECE‘I\ { Write-Back Cycle {
erov [T | T | D
Data, DP H } { our) our)our] our}
AHOLD / \
EADS# (i
v AR v RO AN A A AT
HIT# \
HITM# \ []

Restrictions on negating AHOLD:

1. During a write cycle, AHOLD should not be negated in the same clock that BRDY# is asserted.

2. During pipelined bus cycles, AHOLD should not be negated during the Td clock between a read cycle followed by a pipelined write cycle.
3. While HITM# s asserted, AHOLD should not be negated in the same clock that ADS# is asserted.

Figure 3-24. AHOLD Inquiry Cycle that Hits on a Modified Line

3-51

- e Functional Timing
- [. - -
— — T —

Figure 3-25 depicts an AHOLD inquiry cycle the data from the line fill cycle is always used
during a line fill. In this case, the write-back to complete the pending internal operation.
cycle occurs after the line fill is completed. However, the data is not placed in the cache if
At least one idle clock exists between the final INV is sampled asserted with EADS#. The
BRDY# of the line fill and the ADS# for the data is placed in the cache in a “shared” state
write-back cycle. If the inquiry cycle hits on if INV is sampled negated.

the address of the line fill that is in progress,

T1 T2 T2 T2 T2 T2 T2 Ti T1 T2 T2 T2 T2 Ti Ti

OaliaialialiainiaiaiatataWaiaiainl
Line Fill Write-Back Cycle
ADS# _] _j
Address | FromcPU) {rocey)
rova ([\ N ARCRCRCRRCARRARKS
Data, DP Y o o) { our J our Y our | our}
AHOLD /
EADS# L
v o T
HIT# \
HITM# \ []

Note: If the inquiry cycle hits on the line fill in progress, the data from the line fill will be used to complete the pending internal operation.
The line is not placed in the cache if INV is sampled asserted with EADS#. The line is placed in the cache in a "shared"

state if INV is sampled negated with EADS#.

Figure 3-25. AHOLD Inquiry Cycle During a Line Fill

3-52

Functional Timing 3

During cache inquiry cycles, the CPU perfornasserts the APCHK# output if a parity error is
address parity checking using A31-A5 and thaetected. Figure 3-26 illustrates the functional
AP signal. The CPU checks for even parity atiching of the APCHK# output.

Tx Tx T T Tx

ax N\ [__
EADS# __/

Address {)

AP { tocru)

APCHK# \ VALID /

Figure 3-26. APCHK# Timing

3-53

- e Functional Timing
- [. - -
— — T —

3.3.10 Cache Inquiry Cycles During SMM Mode

It is assumed that while operating in SL-compatible mode SMM code and data are non-cacheable
thereby precluding any inquiry cycles from hitting on cache lines containing modified SMM data.
Therefore this section is only relevant while operating in Cyrix enhanced SMM mode.

T2 T T T |TW T T T T T T2 T2 T2 T2 T T

=2 V0 V[V L U V[V0 [L 0 Y Y A WY I O
ADS# \ v/

SMIACT# | Vaid) {roceu) { Valid |

Address |From CPU} E}E { Write-Back Cycle)|

HOLD \

HLDA / \

EADS# L/
v o Y e
HIT# \

HITM \ I

1748100

Figure 3-27. Hold Inquiry that Hits on a Modified Data Line

3-54

Functional Timing 3

Cache inquiry cycles are issued by the systens.3.10.1 Inquiry Cycles Using BOFF,

with the CPU in either a bus hold or address HOLD/HLDA

hold state. The SMIACT# pin is floated along

with the other buses, and bus control signals aghe system asserts HOLD or BOFF# to force

defined by the bus hold state. The SMIACT# the CPU into a bus hold state. The system must

pin follows the timing protocol shown in wait for the CPU to respond with HLDA

Figure 3-27 in regards to an inquiry during anbefore issuing the cache inquiry cycle, or in

address hold request. Bus hold is requested bihe case of BOFF# the CPU immediately relin-

asserting either HOLD or BOFF#, and addressjuishes control to the bus in the next cycle. To

hold is requested by asserting AHOLD. The avoid address bus contention, EADS# should

system initiates the cache inquiry cycle by not be asserted until the second clock edge

asserting the EADS# input. The system must after HLDA/BOFF#. If the inquiry address hits

also drive the desired inquiry address on the on a modified cache line, HIT# and HITM#

address lines, and a valid state on the INV ~ are asserted during the second clock following

input. EADS#. Once HITM# asserts, the system must
o negate HOLD/BOFF# to allow the CPU to run

In response to the cache inquiry cycle the CPUne corresponding write-back cycle. The first

checks to see if the specified address is preseglcle issued following negation of

in the internal cache. If the address is presentq| DA/BOFF# is the write-back bus cycle. If

in the cache, the CPU checks the MESI state ofjs cycle is to SMM memory then SMIACT#

the cache line. If the line is in the “exclusive” s asserted, otherwise this cycle is run with
or “shared” state, the CPU asserts the HIT# gmiACT# high.

output and changes the cache line state to
“invalid” if the INV input was sampled logic
high with EADS#. If the line is in the “modi-
fied” state, the CPU asserts both HIT# and
HITM#. The CPU then issues a bus cycle
request to write the modified cache line to
external memory. If the data to be written back
is SMM data, the CPU asserts SMIACT# 1
cycle before asserting the ADS of the write
back cycle. HITM# remains asserted until the
write-back bus cycle completes. No additional
cache inquiry cycles are accepted while
HITM# is asserted. Write-back cycles always
start at burst address 0. Once the write-back
cycle has completed, the CPU changes the
cache line state to “invalid” if the INV input
was sampled logic high, or “shared” if the INV
input was sampled low.

3-55

..'I

Functional Timing

If SMIACT# was low prior to HLDA/BOFF# assertion and write-back cycle is intended for main
memory then SMIACT# must be pulled high at least one clock prior to assertion of ADS# for the
write-back cycle. See Figure 3-28 and Figure 3-29 (Page 3-57). If there is no write-back bus cycle to
run and the next cycle to be run is to SMM memory then SMIACT# must be asserted at least 1 clock
prior to assertion of ADS# as defined in Figure 3-30 (Page 3-58).

T2 T T T | W T T T T TL T2 T2 T2 T2 T Ti

ST AR VA O Y W Y L W W W AN WY W A S AR W
ADS# \ v/
SMIACT# | Vaid) {roceu) { Valid |
Address [From CPU} E}:E‘ { Write-Back Cycle)|

BRDY \

BOFF# \

EADS# L/

v e N

HIT# \

HITM# \ [

Figure 3-28. BOFF# Inquiry Cycle that Hits on a Modified Data Line

3-56

Functional Timing 3

CLK

ADSH#

SMIACT#

Address

HOLD

HLDA

EADS#

INV

HIT#

HITM#

oW T T T T T T T T T2 T2 T2 T2 T T
(AN (L R R IV BV UV A VY A WY U W AW AR AR IR I I

‘ —
vaia) [rocro) (Vaid I
Fomcry) ELPE‘ (Wite Back Cyce I

\
/ \
il

v N

1748300

Figure 3-29. HOLD Inquiry Cycle that Misses the Cache While in SMM Mode

3-57

ew SV UL LY
pos [\ L
SMIACT# [

Address [From CPU) om0}

BRDY \ [\ |

Data {10 ¢PU}T0 £PU)(To|cPU)To| cPU} {TolcPu){Td cPu){T9 cPUYTH CPU)T——

AHOLD /

EADS# _ J
v [TR v XY

HIT# \

{/ l}}}c} [/
[YVVVUVVVVVVVVY

HITM# \ /

1748400

Figure 3-30. AHOLD Inquiry Cycle During a Line Fill from SMM Memory

3-58

Functional Timing 3

3.3.10.2 Inquiry Cycles Using AHOLD AHOLD assertion and the write-back cycle is
_ intended for SMM memory then SMIACT#
In this case, the system asserts AHOLD the must be pulled low at least one clock prior to

CPU immediately floats the address bus in th@ssertion of ADS#. If there is no write-back bus
next clock. To avoid address bus contention, cycle to run and the next cycle to be run is to

EADS# should not be asserted until the secorg\M memory then SMIACT# must be

clock edge after AHOLD. If the inquiry addressasserted at least one clock prior to assertion of
hits on a modified cache line the CPU assersaDS#.

HIT# and HITM# during the second clock

following EADS#. The CPU then issues the The following timing diagram depicts an
write-back cycle even if AHOLD remains ~ AHOLD inquiry cycle during a line fill from
asserted. If this cycle is to SMM memory thenSMM memory. In this case, the write-back
SMIACT# is asserted, otherwise this cycle is Cycle occurs after the line fill is completed, and
run with SMIACT# high. If SMIACT# was low one clock after SMIACT# is set to a logic high
prior to AHOLD assertion and write back cycleProvided the write-back cycle is to main

is intended for main memory then SMACT# memory. For this case, if the write-back cycle
must be pulled high at least one clock prior toiS to SMM memory then the one clock setup
assertion of ADS# for the write-back cycle. time criterion for SMIACT# to ADS# is met
Likewise, if SMIACT# was high prior to and the write-back cycle can start immediately.

3-59

..'I

Functional Timing

3.3.11 Power Management Interface

time from SUSP# sampled active to SUSPA#

SUSP# Initiated Suspend Mode asserted is eight CLKs. As a maximum, the
CPU may execute up to two instructions and

The IBM 6x86MX CPU enters suspend modeassociated bus cycles prior to asserting

when the SUSP# input is asserted and execlBUSPA#. The time required for the CPU to

tion of the current instruction, any pending deactivate SUSPA# once SUSP# has been

decoded instructions and associated bus cycleampled inactive is five CLKSs.

are completed. A stop grant bus cycle is then o

issued and the SUSPA# output is asserted. THdne CPU is in a hold acknowledge state and

CPU responds to SUSP# and asserts SUSPARSP# is asserted, the CPU may or may not

only if the SUSP bit is set in the CCR2 configENter suspend mode depending on the state of
uration register. the CPU internal execution pipeline. If the

CPU is in a SUSP# initiated suspend mode,
SUSP# is sampled (Figure 3-31) on the risingpne occurrence of NMI, INTR and SMI# is
edge of CLK. SUSP# must meet specified stored for execution once suspend mode is
setup and hold times to be recognized at a exited. The IBM 6x86MX CPU also recog-
particular CLK edge. The time from assertiomizes and acknowledges the HOLD, AHOLD,
of SUSP# to activation of SUSPA# varies BOFF# and FLUSH# signals while in suspend
depending on which instructions were decodedode.
prior to assertion of SUSP#. The minimum

| Tx | TX Ti | Ti | Ti | Ti Tx
ck /N / N\ / /S /ST
SUSP# _ i yd > *
8 CLKS‘ 3 5 CLKs
SUSPA# B #

Figure 3-31. SUSP# Initiated Suspend Mode

3-60

Functional Timing 3

HALT Initiated Suspend Mode

The CPU also enters suspend mode as a result of executing a HALT instruction if the HALT bit in
CCR2 is set. The SUSPA# output is asserted no later than 40 CLKs following BRDY# sampled
active for the HALT bus cycle as shown in Figure 3-32. Suspend mode is then exited upon recogni-
tion of an NMI, an unmasked INTR or an SMI#. SUSPA# is deactivated 10 CLKs after sampling
of an active interrupt.

Non-Pipelined HALT
Tm | T2 Ti Ti Ti Ti Ti Ti

CLK A N A W G N A W \ \
ADS# | / i

M/IOH,
BE(O, 1, 3-7)#,
W/R#

A3-A31,
BE#2, D/CH#, IO#

BRDY# \ < | 10 CLKs
INTR, NMI N i

e——40 CLKs (Max)—!
SUSPA# 7 H «

Figure 3-32. HALT Initiated Suspend Mode

3-61

..'I

Functional Timing

Stopping the Input Clock

Once the CPU has entered suspend mode, the input clock (CLK) can be stopped and restarted
without loss of any internal CPU data. The CLK input can be stopped at either a logic high
or logic low state.

The CPU remains suspended until CLK is restarted and suspend mode is exited as described

earlier. While the CLK is stopped, the CPU can no longer sample and respond to any input
stimulus.

Figure 3-33 illustrates the recommended sequenceofapiag the CLK using SUSP# to ini-
tiate suspend mode. CLK may be started prior to or following negation of the SUSP# input.
The system must allow sufficient time for the CPU'’s internal PLL to lock to the desired fre-
guency before exiting suspend mode.

‘ Tx ‘ Tx ‘ ‘ Tx ‘ Tx ‘
CLK \ \

S %
SUSP#

WP

W
w

SUSPA# 7 /
S 2

P

Figure 3-33. Stopping CLK During Suspend Mode

3-62

