
Copyright © Harris Corporation 1997

7-29

Harris Semiconductor

No. AN111.1 March 1997 Harris Digital

Harris 80C286 Performance Advantages Over the 80386
Author: Ted Dimbero

Introduction
The Harris 80C286, operating at the same frequency as the
80386, has performance advantages over the 80386 when
executing 16-bit industry standard 80C86 or 80C286 code.
This is evident in the following areas:

(1) Input/Output Handling

(2) Interrupt Handling

(3) Control Transfer (Loop, Jump, Call)

(4) 286 Protected Mode Systems

(5) Multi-Tasking and Task Switching Operations.

This advantage is due to the 80C286 requirement of fewer
clock cycles to execute the same instructions. In addition to
these areas, the 80C286 executes many other instructions in
the same number of clock cycles as the 80386.

This results in an 80C286 performance advantage in areas
including:

• Multi-Tasking Systems.

• Control Applications - utilizing interrupt and I/O
instructions.

• Structured Software - utilizing many Control transfer
instructions.

• Operating Systems that rely on interrupts to perform
functions.

• Upgrading 16-bit 80C86 applications for increased
performance.

The 80C286 can be effectively used as a fast 80C86.
However, the 80386 is not a fast 80C286. This study shows
that software written for the 80C86/80C286 can execute
more efficiently on the 80C286 than on the 80386. There is
not significant performance advantage to be gained by
simply moving a system design from an 80C286 to an 80386
at either 16MHz or 20MHz. The 80C286 is the processor
best suited for executing 16-bit 80C86/80C286 code, which
represents the world’s largest base of microprocessor
software.

Architecture Background
The 80C286 Harris’ newest static CMOS microprocessor
combines low operating and standby power with high
performance. The Harris 80C286 is available in speeds of
12.5MHz, 16MHz, 20MHz and 25MHz.

The 80C286 evolved from the industry standard 80C86
microprocessor. The 80C286 has vast architectural
enhancements over its predecessor that allow the 80C286 to
execute the same code with a significant performance
increase. Disregarding the clock speed increase, when
upgrading from an 80C86 to an 80C286, the 80C286 can
execute the same code with an increase in throughput of up
to 4 times that of the 80C86. This increase is solely due to
the architectural enhancements.

It is common belief that replacing an 80C286 with the 32-bit
80386 microprocessor will yield similar performance
increases. This is not the case. The new architecture gives
the 80386 32-bit capability and increased protection
features, but it does not significantly increase the throughput
of a 16-bit 8086 or 80286 code. In most cases, when
executing industry standard 8086 or 80286 code, replacing
the 80C286 with an 80386 does not result in a significant
performance increase. In some cases, such a replacement
will actually cause a performance degradation.

Figure 1 illustrates a comparison of the number of clock
cycles needed to execute several instructions available on all
three microprocessors (80C86, 80C286, and 80386). This
illustrates the dramatic effect of 80C286 architectural
enhancements on performance when compared to the
80C86 and the lack of similar performance improvement
when executing 8086/80286 code on the 80386.

With an 80C86 to 80C286 upgrade, system designers can
execute existing 8086 code on the 80C286 and take
advantage of an immediate performance upgrade. This
same benefit is not realized when switching from an 80C286
to an 80386. This comparison illustrates that changing from
an 80C286 to an 80386 does not yield throughput when
executing the same industry standard 80C86/80C286 code
(the world’s largest base of microprocessor software).



7-30

Application Note 111

Instruction Comparison
The Appendix in this document illustrates a direct compari-
son of the number of clock cycles needed to execute the
same instructions on the 80C286 and the 80386. The table
includes examples of instruction timing for all instructions
available on both processors. Several addressing modes of
each instruction type are included.

Of the 190 instruction examples analyzed, 74 of the
instructions execute faster on the 80C286 than on the
80386; 66 of the instructions analyzed execute in the same
number of clock cycles on both processors. This leaves only
50 instructions with improved performance on the 80386
(See Figure 2). Over 70% of the instructions analyzed
execute as fast or faster on the 80C286 than on the 80386.

This is vastly different than the previous 86-286 upgrade.
With that upgrade, the 80C286 exhibits equal or better per-
formance than the 80C86 with 100% of the instructions. This
clearly indicates the 80C286 is the processor best suited for
executing industry standard 8086 family code.

The following discussion groups each of the instructions into
one of several categories to analyze which applications will
benefit from utilizing the 80C286. The categories used are:

• Jumps, Calls, Returns and Loops (Real Mode)
• I/O Instructions
• Logic, Arithmetic, Data Transfer, Shift and Rotate

Instructions
• Interrupts
• Miscellaneous Instructions
• Protected Mode/Multi-Tasking Instructions

Jumps, Calls, and Loops
In real mode, near calls, jumps, and conditional jumps
(transfers within the current code segment) all take the same
number of clock cycles to execute on the 80C286 and the
80386. Since the segment sizes are larger on the 80386, the
near transfer instructions on the 80386 can transfer a greater
distance.

The far calls and jumps (transfers that switch to a new code
segment; i.e., a code segment context switch) are faster on
the 80C286: four clocks and one clock respectively. The far
return instruction executes in three less clock cycles on the
80C286, and the near return takes one extra clock cycle.
The protected mode calls, jumps, and returns are all faster

FIGURE 1. ARCHITECTURAL COMPARISON

MUL (BX)
XOR AX, (BP) (SI)
OUT PORT, AX
NOT (BX+ 10)
CALL near
LOOP
INT 3
AAD
ADD mem (BX) (DI), AX

(125)

(17)
(10)

(25)

(19)

(17)

(52)

(60)

(28)

N
U

M
B

E
R

 O
F

 C
LO

C
K

S
 T

O
 E

X
E

C
U

T
E

 IN
S

T
R

U
C

T
IO

N
S

(S
P

E
C

IF
IE

D
 V

A
LU

E
S

 IN
 P

A
R

E
N

T
H

E
S

E
S

)

80C86 80C286 80386

TOTAL (353)

TOTAL (101)

TOTAL (119)

(24)

(19)

(7) (3)
(7)
(7)(8)

(23)

(14)
(8)

(10)
(7)

(6)
(7)
(11)

(33)

(19)
(7)

FIGURE 2. EXECUTION SPEED COMPARISON (NUMBER OF
INSTRUCTIONS)

74

66

50

80C286
FASTER THAN

80386

80386
FASTER THAN

80C286

80C286
EQUAL TO

80386



7-31

Application Note 111

on the 80C286 and are discussed in the section on Pro-
tected Mode.

The loop instruction is three clock cycles faster on the
80C286 than the 80386. Thus, the 80C286 would save 300
clock cycles over the 386 if a LOOP instruction were
executed 100 times.

I/O Instructions
The 80C286 has significant advantage with the I/O
instructions. The IN instruction is almost 2 1/2 times faster
on the 80C286; the 80386 takes 7 extra clock cycles to exe-
cute the same instruction. The OUT instruction is over 3
times faster on the 80C286; again the 80386 takes 7 extra
clock cycles to execute the same instruction. Executing the I/
O instructions on the 80386 is equivalent to executing on the
80C286 with 7 wait states.

The string I/O instructions (INS and OUTS) are also signifi-
cantly faster on the 80C286. The INS instruction is 10 clock
cycles faster on the 80C286, and the OUTS instruction is 9
clock cycles faster. This is particularly important if the string
operations are going to be used to input and output a large
block of data using the REP prefix. Inputing 100 words of
data with the REP INS instruction is 208 clock cycles faster
on the 80C286. An even more significant difference can be
seen when outputing 100 words with the REP OUTS instruc-
tion. In this case, the 80C286 is 800 clock cycles faster than
the 80386.

Logic, Arithmetic, Data Transfer, Shift and
Rotate Instructions
Most forms of logic, arithmetic, and data transfer instructions
execute in the same number of clock cycles on both
processors. Certain operand combinations of these instruc-
tions (immediate to register for example) take one extra
clock to execute on the 80C286.

In real mode, the segment register transfer instructions exe-
cute as fast or faster on the 80C286 than they do on the
80386. For example, using the POP instruction to transfer
data into a segment register is 2 clock cycles faster on the
80C286.

Most of the string manipulation instructions execute in the
same number of clock cycles on both processors. The
MOVS and STOS instructions are faster on the 80C286.

The divide instruction executes in the same number of clock
cycles on both processors. The number of clocks to execute
the multiply instruction on the 80386 is data dependent; the
number of clocks to execute the same instruction on the
80C286 is fixed. On average, the multiply instruction is five
clock cycles faster on the 80386, but depending on the data,
the 80386 could be as many as 4 clock cycles slower the
80C286.

The rotate and shift instructions are faster on the 80386.
Unlike the 80C286, the 80386 rotate and shift instructions do
not depend on the number of bits to be shifted or rotated.
Thus, the 80386 has the advantage with multi-bit rotate and
shift instructions. The 80C286 does, however, execute single
bit rotate and shift instructions faster.

Interrupt Instructions
Interrupts are serviced more quickly on the 80C286. The INT
instruction, in real mode, executes 14 cycles faster on the
80C286 than it does on the 80386. The INTO, BOUND, and
other instructions that can cause an interrupt all benefit from
the faster interrupt handling features of the 80C286. The
return from interrupt instruction (IRET) is 7 clock cycles
faster on the 80C286. The PUSHA and POPA instructions,
frequently used by interrupt handling procedures, are both
faster on the 80C286. Protected Mode interrupt handling is
discussed in the Protected Mode section.

Miscellaneous Instructions
The BCD instructions, HLT, and CBW execute from 1 to 5
clock cycles faster on the 80C286. The instructions to set
and clear individual flags and the CWD instruction all

INSTRUCTION

ADVANTAGE

80C286 NONE 80386

Near JMP and Call X

Far CALL, JMP and RET X

LOOP X

INSTRUCTION

ADVANTAGE

80C286 NONE 80386

IN X

OUT X

INS X

OUTS X

INSTRUCTION

ADVANTAGE

80C286 NONE 80386

Most Logic and Arithmetic X

Certain Operand Combinations
of Logic and Arithmetic

X

Divide X

Multiply X

Single Bit Shift or Rotate X

Multi-Bit Shift or Rotate X

String Instructions X

INSTRUCTION

ADVANTAGE

80C286 NONE 80386

INTN X

INTO X

BOUND (If Interrupt) X

Break Point Interrupt X



7-32

Application Note 111

execute in the same number of cycles on both processors.
The ENTER, LEAVE, and BOUND instructions are from 1 to
3 cycles faster on the 80386. The BOUND instruction is only
faster if an interrupt is not caused by the instruction.

Protected Mode/Multi-Tasking
When executing 80286 protected mode code, the 80C286
significantly out-performs the 80386. Task switching
operations execute 100 to 113 clock cycles faster on the
80C286. The instruction to return from a called task is 63
clock cycles faster on the 80C286. This results in a very
significant performance increase for systems utilizing the
multi-tasking features.

Inter-segment JMP, CALL and segment loading instructions
also operate faster on the 80C286. The 80C286 saves any-
where from 4 to 11 clock cycles depending on the particular
inter-segment transfer instruction. In protected mode, the
inter-segment return is also faster on the 80C286. The
80C286 is 7 clock cycles faster when executing an inter-seg-
ment return to the same privilege level and is 13 cycles
faster on inter-segment returns to a different privilege level.

The instructions to initialize and check the protected mode
registers execute as fast or faster on the 80C286. The IDTR
access instructions are an exception to this in that they take
one extra clock cycle to execute on the 80C286. The
instruction to switch the processor to protected mode
(LMSW) is 7 cycles faster on the 80C286.

Most of the 80286 protected mode access checking instruc-
tions operate as fast or faster on the 80C286 than on the
80386. The LAR instruction is one clock cycle faster on the
80C286 and the LSL instruction is 5 clock cycles faster. The
VERW instruction executes in the same speed on both pro-
cessors and the VERR is 5 cycles faster on the 80386. The
ARPL instruction used in protected mode procedures for
pointer validation is 10 clock cycles faster on the 80C286.

Subroutine Analysis
This section lists several subroutines and then compares the
number of clock cycles each subroutine will take to execute
on the 80C286 and on the 80386.

Example 1

This interrupt routine outputs a character to a terminal via a
UART. The AL register must contain the character to be
output. The routine first checks the status of the UART to
determine if it is busy. If it is busy, the routine loops until the
UART is free; when the UART is free, the character is output.
Following is a listing of the code and the clock cycle analysis
for the OUT_CHAR routine.

This sample procedure executes about 25% faster on the
80C286 than on the 386. The advantage is realized through
the 80C286’s faster interrupt handling and faster I/O
instructions.

INSTRUCTION

ADVANTAGE

80C286 NONE 80386

BCD Instructions X

Data Conversion (CBW, CWD) X

Flag Settling and Clearing X

BOUND (If No Interrupt) X

INSTRUCTION

ADVANTAGE

80C286 NONE 80386

Task Switching X

Segment Register Loading X

Inter-Segment Transfer X

System Register Instructions X

Inter-Segment Transfers X

Access Checking Instructions X

80C286
CLOCK CYCLES

80386
CLOCK CYCLES OUT_CHARACTER PROC NEAR

3 4 PUSHF ; save caller’s flags.

3 2 PUSH AX ; save data to be output.

5 12 CK_STATUS: IN AL, PORT_STATUS ; Input UART status.

6 5 CMP AL, BUSY ; Check If UART Busy.

3/7 3/7 JE CK_STATUS ; If busy go check again.

5 4 POP AX ; If not busy restore AX

3 10 OUT OUT_PORT, AL ; and output data.

5 5 POPF ; Restore Flags

17 22 IRET ; Return.

23 37 INT x ; Instruction to initiate OUTCHAR

____ ____ ; Interrupt.

73 104 Total cycles if UART not busy.

18 24 Number of cycles added for each loop while UART is busy.

EXAMPLE 1.



7-33

Application Note 111

Example 2

The second example outputs and entire string of characters
using the previous interrupt routine (denoted by “INT x” in
the code below). The DS:SI registers point to the beginning
of the string to be output. The string is variable in length and
must be terminated with the “$” character.

To output a string of 20 characters, the 80C286 would take
1,899 clock cycles; using the same routine, the 80386 would
take 2,511 cycles. Each time a string of 20 characters is
output, the 80C286 will save 612 clock cycles; an 80C286
performance increase of almost 25%. The advantage is
realized through the 80C286’s faster interrupt handling,
faster I/O instructions, faster FAR transfer instructions and
faster register saving and restoring instructions.

Example 3

This example adds all the values of a source array in
memory to the values of a destination array in memory. The
result is stored in the destination array. Both arrays are
assumed to be in the current data segment. The count (num-

ber of words in the array), offset of source array, and offset of
destination array are all assumed to be placed on the stack
(in that order) by the calling program. The source code for
the procedure is listed in the Example 3 Table below.

80C286
CLOCK CYCLES

80386
CLOCK CYCLES OUT_STRING PROC FAR

17 18 PUSHA ; save caller’s registers.

5 5 NEXT: LODSB ; Load first char to be output.

3 2 CMP AL, “$” ; Check to see if End of string.

3/7 3/7 JE done ; If end then go to DONE.

73 104 INT x ; If not end output character.

7 7 JMP next ; Go get next char to output.

19 24 DONE: POPA ; Restore Registers when done.

15 18 RET ; Far Return.

13 17 Call OUT_STRING ; Far Call to initiate.

____ ____ ; OUT_STRING procedure.

79+91/char 91+121/char Total number of clocks to start and end routine.
+Number of additional clocks to output each character in the output string.

EXAMPLE 2.

80C286
CLOCK CYCLES

80386
CLOCK CYCLES ADD_ARRAY PROC NEAR

17 18 PUSHA ; save caller’s registers.
2 2 MOV BP, SP ; Point BP to current stack
5 4 MOV CX, (bp+22) ; Load array size from stack

; into CX.
5 4 MOV SI, (bp+20) ; Load offset of source array

; from stack into SI.
5 4 MOV DI, (bp+18) ; Load offset of destination

; array from stack into DI.
2 2 CLD ; Clear Direction Flag.
5 5 NEXT: LODSW ; Load the source word into AX.
7 7 ADD (DI), AX ; Add source to destination.
3 2 ADD DI, 02 ; Point DI to next data.

8/4 11 LOOP NEXT ; Continue to ADD all elements
; in the two arrays.

19 24 POPA ; Restore Registers
11 10 RET 6 ; Near return.

; Following is the code necessary to set up and call the above procedure.
5 5 PUSH count ; Put count parameter on stack
3 2 PUSH offset S_ARRAY ; Put offset of source array

; on stack.
3 2 PUSH offset D_ARRAY ; Put offset of destination

; array on stack.
7 7 CALL ADD_ARRAY ; Near Call to initiate

____ ____ ; ADD_Array procedure.
84+(23*CX)-4 84+(25*CX) Total number of clocks to start and end routine.

+Number of additional clocks for each item in array to be added.

EXAMPLE 3.



7-34

Application Note 111

Both processors take the same number of clock cycles for
initialization before the call and closing up after the call (84).
The loop that does the adding is faster on the 80C286. To
add two 100 word arrays, the 80C286 would take 2,380 clock
cycles; the 80386 takes 2,584 (an additional 204 clocks) to
execute the same routine. In this example, the LOOP
instruction gives the 80C286 the performance over the
80386.

Example 4

This procedure is an example of an operating system
procedure developed for a protected mode multi-privilege
level system. The procedure INT_SEGMENT is passed a
segment selector on the stack and will load that entire
segment with zero’s. The procedure is designed to execute
at privilege level zero will a call gate at privilege level 3; this

allows procedures executing at any level to utilize the
INIT_SEGMENT procedure. INIT_SEGMENT provides
protection checks to ensure that the procedure passing the
parameter has valid access to the segment that it is trying to
initialize. This prevents a procedure at privilege level three
from initializing a segment at privilege level zero.

This example shows that when executing instructions used
for privilege verification and privilege level transitions the
80C286 is faster than the 80386. Without taking the LODS
instruction into account, the 80C286 is 38 clock cycles faster
when executing the same procedure. With the LODS
instruction, and assuming a segment size of 100 bytes, the
80C286 would execute this routine 238 clock cycles faster
than the 80386.

80C286
CLOCK CYCLES

80386
CLOCK CYCLES INIT_SEGMENT PROC FAR WC = 1

17 18 PUSHA ; save caller’s registers.

3 2 PUSH ES ;save ES register.

2 2 MOV BP, SP ;Point BP to top of stack.

5 4 MOV AX, (BP+22) ; Load AX with segment selector

; passed as parameter on stack.

5 4 MOV BX, (BP+20) ; Load BX with return CS to

; determine caller’s CPL.

10 20 ARPL AX, BX ; Adjust the Privilege level of

; the segment selector according

; to the caller’s CPL.

16 16 VERW AX ; Test for valid write access

3/7 3/7 JNE ERROR ; If no valid access go to error.

17 18 MOV ES, AX ; LOAD ES with segment to be

; initialized.

14 20 LSL CX, AX ; Load segment size into CX.

2 2 XOR DI, DI ; Load zero into DI.

2 2 XOR AX, AX ; Load zero into AX.

2 2 CLD ; Clear decrement flag.

4+3*cx 5+5*cx REP STOSB ; Init entire segment to 00.

2 2 CLC ; Clear carry to indicate segment

; initialized with no errors.

20 21 DONE: POP ES ; Restore ES register.

19 24 POPA ;Restore Register

55 68 RET 2 ; Ret FAR to different privilege

2 2 ERROR: STC ; SET carry to indicate error.

7 7 JMP DONE

; Code to push selector on stack and initiate INIT SEGMENT via call gate.

3 2 PUSH DATA_SELECTOR ; Place Selector on stack.

82 86 CALL INIT_SEGMENT_GATE ;Instruction to initiate

____ ____ ; INIT SEGMENT procedure.

253 283 Total clocks if ERROR because segment not accessible.

283+(3*S) 321+(5*S) Total number of clocks if segment is initialized to zeros. “S” represents size of segment in
bytes.

EXAMPLE 4.



7-35

Application Note 111

Example 5

This Procedure is a task dispatcher that is invoked via an
interrupt to cause a task switch to occur. This procedure
utilizes a circular linked list of the tasks that need to be
executed. A pointer called “CURRENT_TASK” points to the
data structure for the current task being executed. The data
structure contains the TSS for the task it is describing and a
NEXT field that points to the data structure of the next task in
the list to be executed. When the Task Dispatcher is invoked
it switches the current pointer to the next task in the list and
then invokes the new task by jumping to the TSS for that
task. The data structure for the linked list is illustrated below.

The task dispatcher is actually a separate task that is
invoked via an interrupt that signals that a new task should
be initiated. Following is a listing for the simple task dis-
patcher.

The advantage of the 80C286 in this case is in the faster
task switch instruction. The task switch instruction is 101
clock cycles faster on the 80C286 than on the 80386. This
performance increase makes the 80C286 the clear choice
for multi-tasking applications.

Appendix
This appendix contains a table directly comparing the
number of clock cycles necessary to execute all the
instructions available on both the 80C286 and the 80386.
The table includes several addressing modes of each
instruction.

The table has five columns. The first column list the
instruction being compared. The second column lists the
number of clock cycles that the 80C286 needs to execute
that instruction. The third column lists the number of clock

cycles needed by the 80386 to execute the same instruction.
The fourth column divides the number of cycles needed by
the 80386 by the number of cycles needed by the 80C286. If
this figure is greater than one, (see fifth column) then the
80C286 is faster than the 80386. For example, a 2.0 would
indicate the 80C286 executes the same instruction twice as
fast as the 80386. A 1.0 indicates that both processors
execute the instruction in the same number of cycles. A
number less than one indicates the 80386 is faster than the
80C286.

80C286
CLOCK CYCLES

80386
CLOCK CYCLES TASK_DISPATCH PROC FAR

5 4 START: MOV BX, CURRENT TASK + 2 ; Load BX with contents of next

; field of current TASK. BX will

; contain the address of the data

; structure for next task to run

3 2 MOV CURRENT TASK, BX ; Update Current Task to point to

; new task to be executed.

178 279 JMP DWORD PTR (BX-2) ; Start new task by jumping to TSS

; for new task.

7 7 JMP START ; JUMP to start for next time the

____ ____ ; TASK dispatcher is invoked.

193 292

EXAMPLE 5.

TSS1_SEL

CURRENT_TASK
NEXT_PTR

TSS2_SEL

NEXT_PTR

TSS3_SEL

NEXT_PTR

APPENDIX TABLE

80C286 INSTRUCTION

NUMBER CLOCKS
TO EXECUTE ON

80C286

NUMBER CLOCKS
TO EXECUTE ON

80386
80386/
80C286

80C286 FASTER
THAN OR EQUAL

TO 80386

AAA 3 4 1.33 √

AAD 14 19 1.36 √

AAM 16 17 1.06 √

AAS 3 4 1.33 √

ADC reg, reg 2 2 1.00 √



7-36

Application Note 111

ADC mem, reg 7 7 1.00 √

ADC reg, immed 3 2 0.67

ADC mem, immed 7 7 1.00 √

ADD reg, reg 2 2 1.00 √

ADD mem, reg 7 7 1.00 √

ADD reg, immed 3 2 0.67

ADD mem, immed 7 7 1.00 √

AND reg, reg 2 2 1.00 √

AND mem, reg 7 7 1.00 √

AND reg, immed 3 2 0.67

AND mem, immed 7 7 1.00 √

ARPL reg, reg 10 20 2.00 √

ARPL mem, reg 11 21 1.91 √

BOUND (no interrupt) 13 10 0.77

CALL immed (near) 7 7 1.00 √

CALL immed (far real mode) 13 17 1.31 √

CALL immed (far PVAM) 26 34 1.31 √

CALL gate (same privilege PVAM) 41 52 1.27 √

CALL gate (different privilege PVAM) 82 86 1.05 √

CALL TSS (Task Switch PVAM) 177 278 1.57 √

CALL task_gate (Task Switch PVAM) 182 287 1.58 √

CBW 2 3 1.50 √

CLC 2 2 1.00 √

CLD 2 2 1.00 √

CLI 3 3 1.00 √

CLTS 2 5 2.50 √

CMC 2 2 1.00 √

CMP reg, reg 2 2 1.00 √

CMP mem, reg 6 5 0.83

CMP reg, immed 3 2 0.67

CMP mem, immed 6 5 0.83

CMPS 8 10 1.25 √

CWD 2 2 1.00 √

DAA 3 4 1.33 √

DAS 3 4 1.33 √

DEC reg 2 2 1.00 √

DEC mem 7 6 0.86

DIV word, reg 22 22 1.00 √

DIV word, mem 25 25 1.00 √

APPENDIX TABLE (Continued)

80C286 INSTRUCTION

NUMBER CLOCKS
TO EXECUTE ON

80C286

NUMBER CLOCKS
TO EXECUTE ON

80386
80386/
80C286

80C286 FASTER
THAN OR EQUAL

TO 80386



7-37

Application Note 111

ENTER immed1, immed2 (immed 2 = 6) 36 35 0.97

HLT 2 5 2.50 √

IDIV word, reg 25 27 1.08 √

IMUL word, mem 24 19 0.79

IN 5 12 2.40 √

INC reg 2 2 1.00 √

INC mem 7 6 0.86

INS 5 15 3.00 √

INT 3 (real mode) 23 33 1.43 √

INT immed (real mode) 23 37 1.61 √

INT immed (PVAM same privilege) 40 59 1.48 √

INT immed (PVAM different privilege) 78 99 1.27 √

INT TASK_GATE (PVAM Task Switch) 167 280 1.68 √

INTO (No Jump) 3 3 1.00 √

INTO (YES Jump real mode) 24 35 1.46 √

IRET (real mode) 17 22 1.29 √

IRET (PVAM same privilege) 31 38 1.23 √

IRET (PVAM different privilege) 55 82 1.49 √

IRET (PVAM task switch) 169 232 1.37 √

Jcond label (No jump) 3 3 1.00 √

Jcond label (Yes jump) 7 7 1.00 √

JMP near_label 7 7 1.00 √

JMP Far_label (real mode) 11 12 1.09 √

JMP FAR_LABEL (PVAM) 23 27 1.17 √

JMP CALL_GATE (PVAM same privilege) 38 45 1.18 √

JMP TASK_GATE (PVAM task switch) 183 288 1.57 √

JMP TSS (PVAM task switch) 178 279 1.57 √

LAHF 2 2 1.00 √

LAR reg 14 15 1.07 √

LAR mem 16 16 1.00 √

LDS (real mode) 7 7 1.00 √

LDS (PVAM) 21 22 1.05 √

LEA 3 2 0.67

LEAVE 5 4 0.80

LGDT 11 11 1.00 √

LIDT 12 11 0.92

LLDT reg 17 20 1.18 √

LLDT mem 19 20 1.05 √

LMSW reg 3 10 3.33 √

APPENDIX TABLE (Continued)

80C286 INSTRUCTION

NUMBER CLOCKS
TO EXECUTE ON

80C286

NUMBER CLOCKS
TO EXECUTE ON

80386
80386/
80C286

80C286 FASTER
THAN OR EQUAL

TO 80386



7-38

Application Note 111

LMSW mem 6 13 2.17 √

LODS 5 5 1.00 √

LOOP (Jump) 8 11 1.38 √

LOOP (No Jump) 4 11 2.75 √

LSL reg 14 20 1.43 √

LSL mem 16 21 1.31 √

LTR reg 17 23 1.35 √

LTR mem 19 27 1.42 √

MOV reg, reg 2 2 1.00 √

MOV mem, reg 3 2 0.67

MOV reg, immed 2 2 1.00 √

MOV mem, immed 3 2 0.67

MOV seg_reg, reg (real mode) 2 2 1.00 √

MOV seg_reg, mem (real mode) 5 5 1.00 √

MOV seg_reg, reg (PVAM) 17 18 1.06 √

MOV seg_reg, mem (PVAM) 19 19 1.00 √

MOVS 5 7 1.40 √

MUL reg 21 15 0.71

NEG reg 2 2 1.00 √

NEG mem 7 6 0.86

NOP 3 3 1.00 √

NOT reg 2 2 1.00 √

NOT mem 7 6 0.86

OR reg, reg 2 2 1.00 √

OR mem, reg 7 6 0.86

OR reg, immed 3 2 0.67

OR mem, immed 7 7 1.00 √

OUT 3 10 3.33 √

OUTS 5 14 2.80 √

POP reg 5 4 0.80

POP mem 5 5 1.00 √

POP seg_reg (real mode) 5 7 1.40 √

POP seg_reg (PVAM) 20 21 1.05 √

POPA 19 24 1.26 √

POPF 5 5 1.00 √

PUSH reg 3 2 0.67

PUSH mem 5 5 1.00 √

PUSH seg_reg 3 2 0.67

PUSHA 17 18 1.06 √

APPENDIX TABLE (Continued)

80C286 INSTRUCTION

NUMBER CLOCKS
TO EXECUTE ON

80C286

NUMBER CLOCKS
TO EXECUTE ON

80386
80386/
80C286

80C286 FASTER
THAN OR EQUAL

TO 80386



7-39

Application Note 111

PUSHF 3 4 1.33 √

RCR or RCL reg, 1 2 9 4.50 √

RCR or RCL mem, 1 7 10 1.43 √

RCR or RCL reg, cl (cl = 4) 9 9 1.00 √

RCR or RCL mem, cl (cl = 4) 12 10 0.83

RCR or RCL reg, 4 9 9 1.00 √

RCR or RCL mem, 4 12 10 0.83

ROR or ROL reg, 1 2 3 1.50 √

ROR or ROL mem, 1 7 7 1.00 √

ROR or ROL reg, cl (cl = 4) 9 3 0.33

ROR or ROL mem, cl (cl = 4) 12 7 0.58

ROR or ROL reg, 4 9 3 0.33

ROR or ROL mem, 4 12 7 0.58

REP INS (cx = 100) 405 613 1.51 √

REP MOVS (cx = 100) 405 405 1.00 √

REP OUTS (cx = 100) 405 1205 2.98 √

REP STOS (cx = 100) 304 505 1.66 √

REP CMPS (cx = 100) 905 905 1.00 √

REPE CMPS (N = 100) 905 905 1.00 √

REPE SCAS (N = 100) 802 805 1.00 √

RET (near) 11 10 0.91

RET (far real mode) 15 18 1.20 √

RET (far PVAM same privilege) 25 32 1.28 √

RET (far PVAM different privilege) 55 68 1.24 √

SAHF 2 3 1.50 √

SHIFT reg, 1 (SHIFT = SAL, SAR, SHR) 2 3 1.50 √

SHIFT mem, 1 7 7 1.00 √

SHIFT reg, cl (cl = 4) 9 3 0.33

SHIFT mem, cl (cl = 4) 12 7 0.58

SHIFT reg, 4 9 3 0.33

SHIFT mem, 4 12 7 0.58

SBB reg, reg 2 2 1.00 √

SBB mem, reg 7 6 0.86

SBB reg, immed 3 2 0.67

SBB mem, immed 7 7 1.00 √

SCAS 7 7 1.00 √

SGDT 11 9 0.82

SIDT 12 9 0.75

SLDT reg 2 2 1.00 √

SLDT mem 3 2 0.67

APPENDIX TABLE (Continued)

80C286 INSTRUCTION

NUMBER CLOCKS
TO EXECUTE ON

80C286

NUMBER CLOCKS
TO EXECUTE ON

80386
80386/
80C286

80C286 FASTER
THAN OR EQUAL

TO 80386



7-40

Application Note 111

SMSW reg 2 2 1.00 √

SMSW mem 3 2 0.67

STS 2 2 1.00 √

STD 2 2 1.00 √

STI 2 3 1.50 √

STOS 3 4 1.33 √

STR reg 2 23 11.50 √

STR mem 3 27 9.00 √

SUB reg, reg 2 2 1.00 √

SUB mem, reg 7 6 0.86

SUB reg, immed 3 2 0.67

SUB mem, immed 7 7 1.00 √

TEST reg, reg 2 2 1.00 √

TEST mem, reg 6 5 0.83

TEST reg, immed 3 2 0.67

TEST mem, immed 6 5 0.83

VERR reg 14 10 0.71

VERR mem 16 11 0.69

VERW reg 14 15 1.07 √

VERW mem 16 16 1.00 √

WAIT 3 6 2.00 √

XCHG reg, reg 3 3 1.00 √

XCHG reg, mem 5 5 1.00 √

XLAT 5 5 1.00 √

XOR reg, reg 2 2 1.00 √

XOR mem, reg 7 6 0.86

XOR reg, immed 3 2 0.67

XOR mem, immed 7 7 1.00 √

______ ______ ______

TOTAL number clocks to execute all instruc-
tions

6978 9048

AVERAGE 1.24

Number of Instructions faster on 80C286 74

Number of Instructions equal on both
processors

66

Number of Instructions faster on 80386 50

______

Total Number of instructions analyzed 190

APPENDIX TABLE (Continued)

80C286 INSTRUCTION

NUMBER CLOCKS
TO EXECUTE ON

80C286

NUMBER CLOCKS
TO EXECUTE ON

80386
80386/
80C286

80C286 FASTER
THAN OR EQUAL

TO 80386


