Bull

Technical Reference
Base Operating System and Extensions

Volume 1/2

AIX

ORDER REFERENCE
86 A2 81AP 05

Bull

Technical Reference
Base Operating System and Extensions

Volume 1/2

AlX

Software

February 1999

BULL ELECTRONICS ANGERS
CEDOC

34 Rue du Nid de Pie — BP 428
49004 ANGERS CEDEX 01
FRANCE

ORDER REFERENCE
86 A2 81AP 05

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright © Bull S.A. 1992, 1999

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIXis a registered trademark in the United States of America and other countries licensed exclusively through

the Open Group.

Year 2000

The product documented is this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Table of Contents

About This Book

Base Operating System (BOS) Runtime Services (A—P)

ab4l or 1I64a Subroutine ..
abort Subroutine

abs, div, labs, Idiv, imul_dbl, umul_dbl, llabs, or lidiv Subroutine
access, accessx, or faccessx Subroutine

acct Subroutine

acl_chgor acl_fchg Subroutine
acl_getoracl_fgetSubroutine
acl_putoracl_fput Subroutine
acl_setoracl fset Subroutine i

addssys Subroutine
adjtime Subroutine

aio_cancel or aio_cancel64 Subroutine
aio_error or aio_error64 Subroutine
aio_read or aio_read64 Subroutine e
aio_return or aio_return64 Subroutine
aio_suspend or aio_suspend64 Subroutine
aio_write or aio_write64 Subroutine
asin, asinl, acos, acosl, atan, atanl, atan2, or atan2l Subroutine
asinh, acosh, or atanh Subroutine

assertMacro

atof, strtod, strtold, atoff, or strtof Subroutine

audit Subroutine
auditbin Subroutine
auditevents Subroutine ..
auditlog Subroutine
auditobj Subroutine
auditpack Subroutine
auditproc Subroutine

auditread, auditread_r Subroutines e

auditwrite Subroutine
authenticate Subroutine .
basename Subroutine . ..

bcopy, bcmp, bzero or ffs Subroutine
bessel: j0, j1,jn, y0,y1,oryn Subroutine

bindprocessor Subroutine
brk or sbrk Subroutine ...
bsearch Subroutine
btowc Subroutine
_check_lock Subroutine .
_clear_lock Subroutine ..
catclose Subroutine
catgets Subroutine
catopen Subroutine

ccsidtocs or cstoccsid Subroutine

cfgetospeed, cfsetospeed,

chacl or fchacl Subroutine

cfgetispeed, or cfsetispeed Subroutine

Preface

xiii

—_ -
1 1 1 | | |

P O N I U G W G e e N
PONNNNNNYND DD
NOOIOTADNO®® N

iv

chdir SUBIoULINE i e
chmod or fchmod Subroutine ...
chown, fchown, Ichown, chownx, or fchownx Subroutine
Chpass SUBroUtiNg e
Chroot SUBroUtINg o
ChsSys SUDIOULINE o
ckuseracct SUDroUtiNg it e
ckuserlD Subroutine e
class, _class, finite, isnan, or unordered Subroutines
CloCK SUbIroUtINg e
close SUDIoUtiNg ot
compare_and_swap Subroutine
compile, step, or advance Subroutine i
confstr SUBIOULINEo
CONY SUDIOULINES ..ottt e e e e e
copysign, nextafter, scalb, logb, or ilogb Subroutine
crypt, encrypt, or setkey Subroutine
CS SUDIOULINE ..o
CSId SUBIOULING . ..o e
ctermid Subrouting
ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine
ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine
Ctype SUDIOULINES o
cuserid SUDIOULING
defssys Subroutine
delssys Subroutine
dirname SUbroUting e
disclaim Subroutine e
diclose Subroutine e
dlerror SUbroutingo o
dlopen Subroutine
disym Subroutine

drand48, erand48, jrand48, Icong48, Irand48, mrand48, nrand48, seed48, or srand48
SUDIOULING . ..

drem or remainder Subrouting
_end, etext,or _edataldentifier
ecvt, fevt, orgevt Subroutine ...
erf, erfl, erfc, or erfcl Subroutine
errlog Subroutine
exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine
exit, atexit, or _exit Subroutine
exp, expl, expm1, log, logl, log10, log10l, log1p, pow, or powl Subroutine
fattach Subroutine e
fchdir Subroutine e
fclear or fclear64 Subroutine ... e
fclose or fflush Subroutine
fentl, dup, or dup2 Subroutine
fdetach Subroutine
feof, ferror, clearerr, orfilenoMacro
fetch_and_add Subroutine
fetch_and_and or fetch_and_or Subroutine
finfo or ffinfo Subroutine
flockfile, ftrylockfile, funlockfile Subroutine L

floor, floorl, ceil, ceill, nearest, trunc, rint, itrunc, uitrunc, fmod, fmodl, fabs, or fabsl
SUDBIOULINE ... e

Technical Reference: Base Operating System

1-85
1-87
1-90
1-93
1-95
1-97
1-99

1-101

1-103

1-105

1-106

1-108

1-109

1-113

1-115

1-118

1-120

1-122

1-124

1-125

1-126

1-129

1-131

1-134

1-135

1-136

1-138

1-140

1-141

1-142

1-143

1-146

1-147
1-150
1-151
1-152
1-154
1-155
1-158
1-165
1-167
1-170
1-172
1-173
1-175
1-177
1-184
1-186
1-187
1-188
1-189
1-191

1-193

fmtmsg Subroutine 1-196

fnmatch Subroutine e 1-199
fopen, fopen64, freopen, freopen64 or fdopen Subroutine 1-201
fork or vfork Subroutine 1-205
fork, f_fork, or vfork Subroutine 1-205
fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable
SUDIOULINE . ..o 1-208
fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine 1-210
fp_cpusync Subroutine 1-212
fp_flush_imprecise Subroutine 1-214
fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subrout1in?_()a1 .
fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invemp,
fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines 1-217
fp_raise_xcp Subroutine 1-219
fp_read_rnd or fp_swap_rnd Subroutine i 1-220
fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine 1-222
fp_trap Subroutine 1-225
fp_trapstate Subroutine 1-227
fread or fwrite Subroutine 1-229
freeaddrinfoSubroutine 1-232
frevoke Subroutine e 1-233
frexp, frexpl, Idexp, Idexpl, modf, or modfl Subroutine 1-234
fscntl Subroutine o e 1-236
fseek, fseeko, fseekob4, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or
fsetpos64 SUDbroUtiNe o e 1-237
fsync Subroutine 1-241
ftok SUbrouting e 1-242
ftw or ftwB4 Subroutine e 1-244
fwide Subroutine e 1-247
fwprintf, wprintf, swprintf Subroutines 1-248
fwscanf, wscanf, swscanf Subroutines 1-253
gai_strerror Subroutine 1-258
get_speed, set_speed, or reset_speed Subroutinesl 1-259
getaddrinfo Subroutine 1-261
getargs Subroutine 1-264
getaudithostattr, IDtohost, hosttolD, nexthost or putaudithostattr Subroutine 1-266
getc, getchar, fgetc, or getw Subroutine 1-268
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines 1-271
getconfattr Subroutine 1-272
getcontext or setcontext Subroutine 1-277
getowd Subroutine 1-278
getdate Subroutine e 1-280
getdtablesize Subroutine 1-284
getenv Subroutine ... 1-285
getevars Subroutine 1-286
getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent Subroutine 1-288
getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r Subroutine .. {550
getgid or getegid Subroutine 1-292
getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine 1-293
getgrgid_r Subroutine 1-295
getgrnam_r Subroutine 1-296
getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine 1-297
getgroups Subroutine 1-301
getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine 1-302

Preface \'J

getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer

SUDIOULINE . .. 1-304
getlogin Subroutine 1-307
getlogin_r Subrouting e 1-309
getnameinfo Subroutine 1-311
getopt SUDbroUtine 1-313
getpagesize Subroutine o 1-316
getpass Subroutine ... 1-317
getpered Subroutine 1-318
getpenv SUBroUting 1-320
getpgid Subroutinge 1-322
getpid, getpgrp, or getppid Subroutine 1-323
getportattr or putportattr Subroutine 1-324
getpri Subroutine 1-328
getpriority, setpriority, or nice Subroutine 1-329
getprocs SUbrouting 1-331
getpw Subrouting 1-333
getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine . .. 1-334
getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine 1-336
getroleattr, nextrole or putroleattr Subroutine 1-339
getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutine . . 1-342
getrusage, getrusage64, times, or vtimes Subroutine 1-344
gets or fgets Subroutine 1-348
getsid Subroutine 1-350
getssys Subroutine 1-351
getsubopt Subroutine e 1-352
getsubsvr Subroutine 1-353
getthrds Subroutine 1-354
gettimeofday, settimeofday, or ftime Subroutine ol 1-356
gettimer, settimer, restimer, stime, or time Subroutine 1-358
gettimerid Subroutine 1-361
getttyent, getttynam, setttyent, or endttyent Subroutine 1-363
getuid or geteuid Subroutine 1-365
getuinfo Subroutine ... 1-366
getuserattr, IDtouser, nextuser, or putuserattr Subroutine 1-367
GetUserAuths Subroutine 1-374
getuserpw, putuserpw, or putuserpwhist Subroutine, 1-375
getusraclattr, nextusracl or putusraclattr Subroutine 1-378
getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutine 1-381
getvisent, getvisbytype, getvisbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine1 354
getwc, fgetwc, or getwchar Subroutine o 1-386
getwd Subrouting 1-388
getws or fgetws Subroutine 1-389
glob Subrouting 1-391
globfree Subroutine 1-395
grantpt Subroutine 1-396
hsearch, hcreate, or hdestroy Subroutine 1-397
hypot Subroutine 1-399
iconv_close Subroutinge i i 1-400
ICONV SUDIOULINE o 1-401
ICONV_0PEN SUDIrOULINE 1-403
if freenameindex Subroutine 1-405
if_indextoname Subroutine 1-406
if nameindex Subroutine 1-407

vi Technical Reference: Base Operating System

if nametoindex Subroutine e 1-408

IMAIXMapping Subroutine 1-409
IMAuxCreate Callback Subroutine i 1-410
IMAuxDestroy Callback Subroutine i 1-411
IMAuxDraw Callback Subroutine o i 1-412
IMAuxHide Callback Subroutine i 1-413
IMBeep Callback Subroutine i 1-414
IMClose Subroutingo 1-415
IMCreate Subroutine i 1-416
IMDestroy Subroutine 1-417
IMFilter Subroutine i e 1-418
IMFreeKeymap Subroutine ... i e 1-419
IMIndicatorDraw Callback Subroutine i, 1-420
IMIndicatorHide Callback Subroutine i i 1-421
IMInitialize Subroutine 1-422
IMInitializeKeymap Subroutine 1-424
IMloctl Subroutine 1-425
IMLookupString Subroutine 1-427
IMProcess Subrouting i 1-428
IMProcessAuxiliary Subroutine 1-430
IMQueryLanguage Subroutine 1-432
IMSimpleMapping Subroutine 1-433
IMTextCursor Callback Subroutine it 1-434
IMTextDraw Callback Subroutine 1-435
IMTextHide Callback Subroutine i 1-436
IMTextStart Callback Subroutine i 1-437
inet_net_ntop Subroutine 1-438
inet_net_pton Subroutine 1-439
inet_ntop Subroutine 1-440
inet_pton Subroutine 1-441
initgroups Subroutine 1-442
initialize Subroutine e 1-443
insque or remque Subrouting e 1-444
ioctl, ioctlx, ioctl32, or ioctl32x Subroutine 1-445
isendwin SUbrouting i e 1-449
iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace,

iswupper, or iswxdigit Subroutine 1-450
iswctype or is_wctype Subroutine ... 1-452
jecode SUBIOULINESot 1-453
Japanese conv Subroutines ... 1-455
Japanese ctype Subroutines 1-457
kill or killpg Subroutine 1-459
Kleenup Subroutine 1-462
Knlist Subroutine o e 1-463
_lazySetErrorHandler Subroutine 1-465
[3tol or [tol3 Subroutine e 1-467
[B64a r SUDIOULING e e 1-468
layout_object_create Subroutine 1-470
layout_object_editshape or wcslayout_object_editshape Subroutine 1-472
layout_object_free Subroutine 1-476
layout_object_getvalue Subroutine 1-477
layout_object_setvalue Subroutine 1-479
layout_object_shapeboxchars Subroutine L 1-481
layout_object_transform or weslayout_object_transform Subroutine 1-483
I[dahread Subroutine i e 1-487

Preface vii

viii

Idclose or Idaclose Subroutine 1-488
Idfhread Subroutine 1-490
ldgetname Subroutine 1-492
Idiread, Idlinit, or Idlitem Subroutine 1-494
Idiseek or Idnlseek Subroutine 1-496
Idohseek Subroutine i 1-498
Idopen or Idaopen Subroutine 1-499
Idrseek or ldnrseek Subroutine 1-501
ldshread or I[dnshread Subroutine i 1-503
ldsseek or ldnsseek Subroutine 1-505
Idtbindex Subroutine 1-507
Idtbread Subroutine 1-508
Idtbseek Subroutine 1-510
Igamma, Igammal, or gamma Subroutine i 1-511
lineout Subroutine 1-513
link SUbroutine 1-515
lio_listio or lio_listio64 Subroutine 1-517
load SUbroUting o 1-520
loadbind Subroutine 1-524
loadquery Subroutine 1-526
localeconv SUbroutine i 1-528
lockfx, lockf, flock, or lockf64 Subroutine 1-532
loginfailed Subroutine 1-536
loginrestrictions Subroutine 1-538
[0ginSuCCESS SUDroUting 1-541
Isearch or Ifind Subroutine 1-543
Iseek, llseek or IseekB4 Subroutinecc i 1-545
Ivm_changelv Subroutine 1-547
Ivm_changepv Subroutine 1-550
Ivm_createlv Subroutine e 1-552
Ivm_createvg Subroutine 1-556
lvm_deletelv Subroutine e 1-559
Ivm_deletepv Subroutine 1-561
lvm_extendlv Subroutine e 1-563
Ivm_installpv Subroutine 1-567
Ivm_migratepp Subroutine 1-570
Ivm_querylv Subroutine 1-573
Ivm_querypv Subroutine 1-577
Ivm_queryvg Subroutine 1-581
Ivm_queryvgs Subroutine 1-584
lvm_reducelv Subroutine 1-586
Ivm_resynclp Subroutine 1-589
Ivm_resynclv Subroutine 1-591
Ivm_resyncpv Subroutine i e 1-593
Ivm_varyoffvg Subroutine 1-595
Ivm_varyonvg Subroutine 1-597
madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqgrt, mcmp, move, min, omin, fmin, m_in,

mout, omout, fmout, m_out, sdiv, or itom Subroutine 1-602
madvise Subroutine 1-605
makecontext or swapcontext Subroutine 1-607
malloc, free, realloc, calloc, mallopt, mallinfo, alloca, or valloc Subroutine 1-608
MatchAllAuths, , MatchAnyAuths, or MatchAnyAuthsList Subroutine 1-612
matherr Subroutine 1-613
mblen Subroutine e 1-615
mbrlen SUbrouting 1-616

Technical Reference: Base Operating System

mbrtowc Subroutine
mbsadvance Subroutine i
mbscat, mbscmp, or mbscpy Subroutine
mbschr Subroutine
mbsinit Subroutine
mbsinvalid Subroutine
mbslen Subroutine
mbsncat, mbsncmp, or mbsncpy Subroutine
mbspbrk Subroutine
mbsrchr Subroutine
mbsrtowcs Subroutine
mbstomb Subroutine
mbstowes Subroutine ...
mbswidth Subroutine
mbtowc Subroutine

memccpy, memchr, memcmp, memcpy, memset or memmove Subroutine

mincore Subroutine
mkdir Subroutine
mknod or mkfifo Subroutine L
mktemp or mkstemp Subroutine
mmap or mmap64 Subroutine
mntctl Subroutine ...
moncontrol Subroutine L
monitor Subroutine
monstartup Subroutine
mprotect Subroutine
msem_init Subroutinel
msem_lock Subroutine L
msem_remove Subroutine
msem_unlock Subroutine oL
msgctl Subroutine
msgget Subroutine
msgrcv Subroutine ...
msgsnd Subroutine
msgxrcv Subroutine
msleep Subroutine
msync Subroutine L
munmap Subroutine
mwakeup Subroutine
newpass Subroutine
nftw or nftw64 Subroutine
nl_langinfo Subroutine oL,
nlisté4 Subroutine
nlist Subroutine
ns_addr Subroutine
ns_ntoa Subroutine
odm_add_obj Subroutine il
odm_change_obj Subroutine
odm_close _class Subroutine,
odm_create class Subroutine
odm_err_msg Subroutine i
odm_free list Subroutine
odm_get_by_id Subroutine L
odm_get_list Subroutine il

odm_get_obj, odm_get_first, or odm_get_next Subroutine

Preface

ix

1-618
1-620
1-622
1-623
1-624
1-625
1-626
1-627
1-628
1-629
1-630
1-632
1-633
1-634
1-635
1-636
1-638
1-640
1-642
1-644
1-646
1-651
1-653
1-655
1-662
1-667
1-669
1-671
1-673
1-674
1-676
1-679
1-681
1-684
1-687
1-690
1-691
1-693
1-694
1-695
1-698
1-701
1-703
1-705
1-707
1-708
1-709
1-711
1-713
1-715
1-716
1-718
1-720
1-722
1-724

odm_initialize Subroutine e 1-727

odm_loCK SUBIoUtiNg i 1-728
odm_mount_class SUbroutineci it e 1-730
odm_open_class Subroutine i 1-732
odm_rm_by id Subroutine e 1-734
odm_rm_class Subroutine 1-736
odm_rm_obj Subroutine 1-738
odm_run_method Subroutinet e 1-740
odm_set_path Subroutine i 1-742
odm_set_perms Subroutine 1-743
odm_terminate Subroutine 1-744
odm_unlock Subroutine e 1-746
open, openx, open64, creat, or creat64 Subroutine 1-747
opendir, readdir, telldir, seekdir, rewinddir, or closedir Subroutine 1-755
passwdexpired Subroutine 1-758
pathconf or fpathconf Subroutine 1-759
pause Subroutine 1-762
PCloSe SUBIOULINEo o 1-763
PError SUDIOULING . ..o e 1-764
PipPe SUDIOULINE 1-765
plock Subroutine 1-767
pm_battery_control Subroutine 1-769
pm_control_parameter Subroutine 1-771
pm_control_parameter System Call 1-774
pm_control_state Subroutine 1-777
pm_control_state System Call 1-779
pm_event_query Subroutine 1-781
pm_system_event_query System Call i 1-783
pmlib_get_event_notice Subroutine 1-784
pmlib_register_application Subroutine 1-787
pmlib_request_battery Subroutine 1-788
pmlib_request_parameter Subroutine 1-790
pmlib_request_state Subroutine 1-796
POIl SUDbroUting 1-798
POPEN SUDIOULING . ..ot e e 1-802
printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine 1-804
profil Subroutine 1-813
psdanger SUbroUtiNge 1-816
psignal Subroutine or sys_siglist Vector i 1-817
pthread_atfork Subroutine 1-818
pthread_attr_destroy Subroutine 1-820
pthread_attr_getdetachstate or pthread_attr_setdetachstate Subroutines 1-821
pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines 1-823
pthread_attr_getschedparam Subroutine 1-825
pthread_attr_getstackaddr Subroutine i 1-826
pthread_attr_getstacksize Subroutine 1-827
pthread_attr_init Subroutine 1-828
pthread_attr_setschedparam Subroutine, 1-830
pthread_attr_setstackaddr Subroutine 1-831
pthread_attr_setstacksize Subroutine 1-832
pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np Subroutine . asa
pthread_cancel Subroutine 1-836
pthread_cleanup_pop or pthread_cleanup_push Subroutine 1-837
pthread_cond_destroy or pthread_cond_init Subroutine 1-838

X Technical Reference: Base Operating System

PTHREAD_COND_INITIALIZERMacroooiii ... 1-840

pthread_cond_signal or pthread_cond_broadcast Subroutine 1-841
pthread_cond_wait or pthread_cond_timedwait Subroutine 1-843
pthread_condattr_destroy or pthread_condattr_init Subroutine 1-845
pthread_condattr_getpshared Subroutine 1-847
pthread_condattr_setpshared Subroutine, 1-849
pthread_create Subroutine 1-851
pthread_delay_np Subroutine i 1-853
pthread_equal Subroutine 1-854
pthread_exit Subroutine 1-855
pthread get_expiration_np Subroutine 1-857
pthread_getconcurrency or pthread_setconcurrency Subroutine 1-858
pthread_getschedparam Subroutine 1-860
pthread_getspecific or pthread_setspecific Subroutine 1-862
pthread_getunique_np Subroutine 1-864
pthread_join, or pthread_detach Subroutine 1-865
pthread_key_create Subroutine i 1-867
pthread_key_delete Subroutine 1-869
pthread_kKill Subroutine 1-870
pthread lock_global_np Subroutine 1-871
pthread_mutex_init or pthread_mutex_destroy Subroutine 1-872
PTHREAD_MUTEX_INITIALIZERMaCroccoiiiiiiieeiiiiann... 1-874
pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine .. o
pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine 1-877
pthread_mutexattr_getkind_np Subroutine L 1-879
pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine 1-881
pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutines 1-883
pthread _mutexattr_setkind_np Subroutine 1-885
pthread_once Subroutine i 1-887
PTHREAD_ONCE_INITMaCIO\ttt e 1-888
pthread_rwlock_init, pthread_rwlock_destroy Subroutine 1-889
pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines 1-891
pthread_rwlock_unlock Subroutine i 1-893
pthread rwlock_wrlock or pthread_rwlock_trywrlock Subroutines 1-895
pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutines .. 1-897
pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines 1-899
pthread_self Subroutine i 1-901
pthread_setcancelstate, pthread_setcanceltype or pthread_testcancel Subroutines . . . o0n
pthread_setschedparam Subroutine i 1-904
pthread_sigmask Subroutine 1-906
pthread_signal_to_cancel_np Subroutine 1-907
pthread_suspend_np and pthread_continue_np Subroutine 1-908
pthread_unlock_global_np Subroutine i 1-909
pthread_yield Subroutine 1-910
ptrace, ptracex Subroutine 1-911
ptsname SUbrouting i 1-922
putc, putchar, fputc, or putw Subroutine 1-923
puteny SUbroUting 1-926
puts or fputs Subroutine 1-927
putwc, putwchar, or fputwe Subroutine 1-929
putws or fputws Subroutine 1-931
pwdrestrict._method Subroutine 1-933

Preface Xi

Xii

Appendix A. Base Operating System Error Codes for Services That Require
Path—-Name Resolutionccoiiiiiiiiiii it ie i nninnnnns

Appendix B. ODM Error Codescoiiiiiiiiiininnnrrernnnnnnnrnennns

Technical Reference: Base Operating System

About This Book

This book provides information on Technical Reference, Volumes 1 and 2: Base Operating
System and Extensions. Topics covered provide information on application programming
interfaces to the Advanced Interactive Executive Operating System (referred to in this text
as AlX).

These two books are part of the six—volume technical reference set, AIX Technical
Reference, 86 A2 81AP to 86 A2 91AP, which provides information on system calls, kernel
extension calls, and subroutines in the following volumes:

e Base Operating System and Extensions, Volumes 1 and 2 provide information on system
calls, subroutines, functions, macros, and statements associated with AIX base operating
system runtime services.

e Communications, Volumes 1 and 2 provide information on entry points, functions, system
calls, subroutines, and operations related to communications services.

e Kernel and Subsystems, Volumes 1 and Zprovide information about kernel services,
device driver operations, file system operations, subroutines, the configuration
subsystem, the communications subsystem, the low function terminal (LFT) subsystem,
the logical volume subsystem, the M—audio capture and playback adapter subsystem, the
printer subsystem, the SCSI subsystem, and the serial DASD subsystem.

Who Should Use This Book

This book is intended for experienced C programmers. To use the book effectively, you
should be familiar with AIX or UNIX System V commands, system calls, subroutines, file
formats, and special files.

Before You Begin

Before you begin the tasks discussed in this book, you should see A/X 4.3 System
Management Guide: Operating System and Devices and AlX 4.3 System Management
Guide: Communications and Networks for more information.

How to Use This Book

Overview of Contents
This book contains the following chapters and appendixes:

e Base Operating System and Extension Technical Reference, Volumes 1 and 2 contain
alphabetically arranged system calls (called subroutines), subroutines, functions, macros,
and statements on Base Operating System Runtime (BOS) Services.

¢ Volume 2 also contains alphabetically arranged Fortran Basic Linear Algebra Subroutines
(BLAS).

Highlighting

The following highlighting conventions are used in this book:

Preface xiii

Bold Identifies commands, subroutines, keywords, files, structures,
directories, and other items whose names are predefined by the
system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied
by the user.
Monospace Identifies examples of specific data values, examples of text similar to

what you might see displayed, examples of portions of program code
similar to what you might write as a programmer, messages from the
system, or information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of
this product.

AIX 32-Bit Support for the X/Open UNIX95 Specification

Beginning with AlX Version 4.2, the operating system is designed to support the X/Open
UNIX95 Specification for portability of UNIX—based operating systems. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification.
Beginning with Version 4.2, AlX is even more open and portable for applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the
system environment on a per—system, per—user, or per—process basis.

To determine the proper way to develop a UNIX95—portable application, you may need to
refer to the X/Open UNIX95 Specification, which can be obtained on a CD—ROM by
ordering the printed copy of AIX Commands Reference, order number 86 A2 38JX to 86 A2
43JX, or by ordering Go Solo: How to Implement and Go Solo with the Single Unix
Specification, a book which includes the X/Open UNIX95 Specification on a CD—ROM.

AIX 32-Bit and 64—Bit Support for the UNIX98 Specification

Beginning with AlX Version 4.3, the operating system is designed to support the X/Open
UNIX98 Specification for portability of UNIX-based operating systems. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification.
Making AlX Version 4.3 even more open and portable for applications.

At the same time, compatibility with previous AlX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the
system environment on a per—system, per—user, or per—process basis.

To determine the proper way to develop a UNIX98—portable application, you may need to
refer to the X/Open UNIX98 Specification, which can be obtained on a CD—ROM by
ordering the printed copy of AIX Commands Reference, order number 86 A2 38JX to 86 A2
43JX, or by ordering Go Solo: How to Implement and Go Solo with the Single Unix
Specification, order number SR28-5705, a book which includes the X/Open UNIX98
Specification on a CD—ROM.

Related Publications

The following books contain information about or related to application programming
interfaces:

e AIX General Programming Concepts : Writing and Debugging Programs, Order Number
86 A2 34JX.

e AIX Communications Programming Concepts, Order Number 86 A2 35JX.

e AIX Kernel Extensions and Device Support Programming Concepts, Order Number 86
A2 36JX.

XiV Technical Reference: Base Operating System

o AIX Files Reference, Order Number 86 A2 79AP.
o AIX Version 4.3 Problem Solving Guide and Reference, Order Number 86 A2 32JX.

e Hardware Technical Information-General Architectures, Order Number 86 A1 09WD.

Ordering Publications
You can order publications from your sales representative or from your point of sale.

To order additional copies of this book, use the following order numbers:

e AIX Technical Reference, Volume 1: Base Operating System and Extensions Order
Number 86 A2 81AP.

e AlX Technical Reference, Volume 2: Base Operating System and Extensions, Order
Number 86 A2 82AP.

Use AIX and Related Products Documentation Overview, order number 86 A2 71WE, for
information on related publications and how to obtain them.

Preface XV

XVi Technical Reference: Base Operating System

Base Operating System (BOS) Runtime Services (A-P)

Base Operating System Runtime Services (A-P) 1-1

1-2 Technical Reference: Base Operating System

a64l or 164a Subroutine

Purpose
Converts between long integers and base—64 ASCII strings.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

long a64l (String)
char *String;

char *164a (LongInteger)
long LongInteger;

Description

The a64l and 164a subroutines maintain numbers stored in base—64 ASCII characters. This
is a notation in which long integers are represented by up to 6 characters, each character
representing a digit in a base—64 notation.

The following characters are used to represent digits:

Represents 0.
/ Represents 1.
0-9 Represents the numbers 2—11.
A-Z Represents the numbers 12-37.
a-z Represents the numbers 38—63.

Parameters

String Specifies the address of a null-terminated character string.
Longinteger Specifies a long value to convert.

Return Values

The a64l subroutine takes a pointer to a null-terminated character string containing a value
in base—64 representation and returns the corresponding long value. If the string pointed to
by the String parameter contains more than 6 characters, the a64l subroutine uses only the
first 6.

Conversely, the 164a subroutine takes a long parameter and returns a pointer to the
corresponding base—64 representation. If the Longlnteger parameter is a value of 0, the
164a subroutine returns a pointer to a null string.

The value returned by the 164a subroutine is a pointer into a static buffer, the contents of
which are overwritten by each call.

If the *String parameter is a null string, the a64l subroutine returns a value of OL.

If Longlinteger is OL, the 164a subroutine returns a pointer to a null string.

Implementation Specifics
These a64l and 164a subroutines are part of Base Operating System (BOS) Runtime.

Base Operating System Runtime Services (A-P) 1-3

Related Information

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

List of Multithread Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

1-4 Technical Reference: Base Operating System

abort Subroutine

Purpose
Sends a SIGIOT signal to end the current process.
Library
Standard C Library (libc.a)
Syntax
#include <stdlib.h>
int abort (void)
Description

The abort subroutine sends a SIGIOT signal to the current process to terminate the process
and produce a memory dump. If the signal is caught and the signal handler does not return,
the abort subroutine does not produce a memory dump.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the
system produces a memory dump in the core file in the current directory and prints an error
message.

The abnormal—termination processing includes the effect of the fclose subroutine on all
open streams and message—catalog descriptors, and the default actions defined as the
SIGIOT signal. The SIGIOT signal is sent in the same manner as that sent by the raise
subroutine with the argument SIGIOT.

The status made available to the wait or waitpid subroutine by the abort subroutine is the
same as a process terminated by the SIGIOT signal. The abort subroutine overrides
blocking or ignoring the SIGIOT signal.

Note: The SIGABRT signal is the same as the SIGIOT signal.

Return Values
The abort subroutine does not return a value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The exit, atexit, or _exit subroutine, fclose subroutine, Kill, or killpg subroutine, raise
subroutine, sigaction, sigvec, signal subroutine, wait or waidtpid subroutine.

The dbx command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-5

abs, div, labs, Idiv, imul_dbl, umul_dbl, llabs, or lidiv
Subroutine

Purpose

Computes absolute value, division, and double precision multiplication of integers.
Library

Standard C Library (libc.a)
Syntax

#include <stdlib.h>

int abs (1)
int i;

#include <stdlib.h>

long labs (i)
long i;

#include <stdlib.h>

div_t div (Numerator, Denominator)
int Numerator: Denominator;

#include <stdlib.h>

void imul_dbl (i, 7, Result)
long i, j7;
long *Result;

#include <stdlib.h>

ldiv_t 1ldiv (Numerator, Denominator)
long Numerator: Denominator;

#include <stdlib.h>

void umul_dbl (i, j, Result)
unsigned long i, J;
unsigned long *Result;

#include <stdlib.h>

long long int llabs (i)
long long int i;

#include <stdlib.h>

lldiv_t 1l1ldiv (Numerator, Denominator)
long long int Numerator, Denominator;

1-6 Technical Reference: Base Operating System

Description
The abs subroutine returns the absolute value of its integer operand.

Note: A twos—complement integer can hold a negative number whose absolute value is
too large for the integer to hold. When given this largest negative value, the abs
subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number
represented by the Numerator parameter by that specified by the Denominator parameter. If
the division is inexact, the sign of the resulting quotient is that of the algebraic quotient, and
the magnitude of the resulting quotient is the largest integer less than the magnitude of the
algebraic quotient. If the result cannot be represented (for example, if the denominator is 0),
the behavior is undefined.

The labs and Idiv subroutines are included for compatibility with the ANSI C library, and
accept long integers as parameters, rather than as integers.

The imul_dbl subroutine computes the product of two signed longs, i and j, and stores the
double long product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs, /and j, and stores
the double unsigned long product into an array of two unsigned longs pointed to by the
Result parameter.

The llabs and lldiv subroutines compute the absolute value and division of long long
integers. These subroutines operate under the same restrictions as the abs and div
subroutines.

Note: When given the largest negative value, the llabs subroutine (like the abs
subroutine) returns the same value.

Parameters

i Specifies, for the abs subroutine, some integer; for labs
and imul_dbl, some long integer; for the umul_dbl
subroutine, some unsigned long integer; for the llabs
subroutine, some long long integer.

Numerator Specifies, for the div subroutine, some integer; for the Idiv
subroutine, some long integer; for lldiv, some long long
integer.

J Specifies, for the imul_dbl subroutine, some long integer;
for the umul_dbl subroutine, some unsigned long integer.

Denominator Specifies, for the div subroutine, some integer; for the Idiv
subroutine, some long integer; for lldiv, some long long
integer.

Result Specifies, for the imul_dbl subroutine, some long integer;
for the umul_dbl subroutine, some unsigned long integer.

Return Values

The abs, labs, and llabs subroutines return the absolute value. The imul_dbl and
umul_dbl subroutines have no return values. The div subroutine returns a structure of type
div_t. The Idiv subroutine returns a structure of type Idiv_t, comprising the quotient and the
remainder. The structure is displayed as:

struct 1div_t {
int quot; /* quotient */
int rem; /* remainder */
bi
The lldiv subroutine returns a structure of type lldiv_t, comprising the quotient and the
remainder.

Base Operating System Runtime Services (A-P) 1-7

access, accessx, or faccessx Subroutine

Determines the accessibility of a file.

Standard C Library (libc.a)

#include <unistd.h>

int access (PathName, Mode)
char *PathName;

int accessx (PathName, Mode, Who)
char *PathName;

Who;

int faccessx (FileDescriptor, Mode, Who)
int FileDescriptor;

Who;

The access, accessx, and faccessx subroutines determine the accessibility of a file
system object. The accessx and faccessx subroutines allow the specification of a class of
users or processes for whom access is to be checked.

The caller must have search permission for all components of the PathName parameter.

Purpose
Library
Syntax
int Mode;
int Mode,
int Mode,
Description
Parameters
PathName
FileDescriptor
Mode

Specifies the path name of the file. If the PathName parameter refers to
a symbolic link, the access subroutine returns information about the file
pointed to by the symbolic link.

Specifies the file descriptor of an open file.

Specifies the access modes to be checked. This parameter is a bit
mask containing 0 or more of the following values, which are defined in
the sys/access.h file:

R_OK Check read permission.

W_OK Check write permission.

X_OK Check execute or search permission.
F OK Check the existence of a file.

If none of these values are specified, the existence of a file is checked.

1-8 Technical Reference: Base Operating System

Who Specifies the class of users for whom access is to be checked. This
parameter must be one of the following values, which are defined in the
sys/access.h file:

ACC_SELF Determines if access is permitted for the current

process. The effective user and group IDs, the
concurrent group set and the privilege of the current
process are used for the calculation.

ACC_INVOKER Determines if access is permitted for the invoker of

the current process. The real user and group IDs,
the concurrent group set, and the privilege of the
invoker are used for the calculation.

Note: The expression access (PathName, Mode) is equivalent to

accessx (PathName, Mode, ACC_INVOKER).

ACC_OTHERS Determines if the specified access is permitted for

any user other than the object owner. The Mode
parameter must contain only one of the valid modes.
Privilege is not considered in the calculation.

ACC_ALL Determines if the specified access is permitted for

Return Values

all users. The Mode parameter must contain only
one of the valid modes. Privilege is not considered in
the calculation

If the requested access is permitted, the access, accessx, and faccessx subroutines
return a value of 0. If the requested access is not permitted or the function call fails, a value
of —1 is returned and the errno global variable is set to indicate the error.

Error Codes

The access and accessx subroutines fail if one or more of the following are true:

EACCES

EFAULT

ELOOP

ENOENT

ENOTDIR
ESTALE

ENOENT
ENOENT
ENOENT

ENAMETOOLONG

Search permission is denied on a component of the PathName
prefix.

The PathName parameter points to a location outside the allocated
address space of the process.

Too many symbolic links were encountered in translating the
PathName parameter.

A component of the PathName does not exist or the process has the
disallow truncation attribute set.

A component of the PathName is not a directory.

The process root or current directory is located in a virtual file
system that has been unmounted.

The named file does not exist.
The PathName parameter was null.

A symbolic link was named, but the file to which it refers does not
exist.

A component of the PathName parameter exceeded 255 characters
or the entire PathName parameter exceeded 1023 characters.

The faccessx subroutine fails if the following is true:

EBADF The value of the FileDescriptor parameter is not valid.

Base Operating System Runtime Services (A-P) 1-9

The access, accessx, and faccessx subroutines fail if one or more of the following is true:

EIO An 1/O error occurred during the operation.
EACCES The file protection does not allow the requested access.
EROFS Write access is requested for a file on a read—only file system.

If Network File System (NFS) is installed on your system, the accessx and faccessx
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.
ETXTBSY Write access is requested for a shared text file that is being executed.
EINVAL The value of the Mode argument is invalid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acl_get subroutine, chacl subroutine, statx subroutine, statacl subroutine.

The aclget command, aclput command, chmod command, chown command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-10 Technical Reference: Base Operating System

acct Subroutine

Purpose
Enables and disables process accounting.
Library
Standard C Library (libc.a)
Syntax
int acct (Path)
char *Path;
Description
The acct subroutine enables the accounting routine when the Path parameter specifies the
path name of the file to which an accounting record is written for each process that
terminates. When the Path parameter is a 0 or null value, the acct subroutine disables the
accounting routine.
If the Path parameter refers to a symbolic link, the acct subroutine causes records to be
written to the file pointed to by the symbolic link.
If Network File System (NFS) is installed on your system, the accounting file can reside on
another node.
Note: To ensure accurate accounting, each node must have its own accounting file.
Although no two nodes should share accounting files, a node’s accounting files can
be located on any node in the network.
The calling process must have root user authority to use the acct subroutine.
Parameters

Path Specifies a pointer to the path name of the file or a null pointer.

Return Values

Upon successful completion, the acct subroutine returns a value of 0. Otherwise, a value of
—1 is returned and the global variable errno is set to indicate the error.

Error Codes
The acct subroutine is unsuccessful if one or more of the following are true:

EACCES Write permission is denied for the named accounting file.

EACCES The file named by the Path parameter is not an ordinary file.
EBUSY An attempt is made to enable accounting when it is already enabled.
ENOENT The file named by the Path parameter does not exist.

EPERM The calling process does not have root user authority.

EROFS The named file resides on a read—only file system.

If NFS is installed on the system, the acct subroutine is unsuccessful if the following is true:

ETIMEDOUT The connection timed out.

Base Operating System Runtime Services (A-P) 1-11

acl_chg or acl_fchg Subroutine

Purpose
Changes the access control information on a file.
Library
Security Library (libc.a)
Syntax
#include <sys/access.h>
int acl_chg (Path, How, Mode, Who)
char *Path;
int How;
int Mode;
int Who;
int acl_fchg (FileDescriptor, How, Mode, Who)
int FileDescriptor;
int How;
int Mode;
int Who;
Description
The acl_chg and acl_fchg subroutines modify the access control information of a specified
file.
Parameters

FileDescriptor ~ Specifies the file descriptor of an open file.

How Specifies how the permissions are to be altered for the affected entries
of the Access Control List (ACL). This parameter takes one of the
following values:

ACC_PERMIT Allows the types of access included in the Mode
parameter.

ACC_DENY Denies the types of access included in the Mode
parameter.

ACC_SPECIFY Grants the access modes included in the Mode
parameter and restricts the access modes not included
in the Mode parameter.

Mode Specifies the access modes to be changed. The Mode parameter is a
bit mask containing zero or more of the following values:

R_ACC Allows read permission.
W_ACC Allows write permission.

X_ACC Allows execute or search permission.

1-12 Technical Reference: Base Operating System

Path Specifies a pointer to the path name of a file.

Who Specifies which entries in the ACL are affected. This parameter takes
one of the following values:

ACC_OBJ_OWNER
Changes the owner entry in the base ACL.

ACC_OBJ_GROUP
Changes the group entry in the base ACL.

ACC_OTHERS Changes all entries in the ACL except the base entry
for the owner.

ACC_ALL Changes all entries in the ACL.

Return Values

On successful completion, the acl_chg and acl_fchg subroutines return a value of 0.
Otherwise, a value of —1 is returned and the errno global variable is set to indicate the error.

Error Codes

The acl_chg subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file

system that has been unmounted.
The acl_fchg subroutine fails and the file permissions remain unchanged if the following is
true:
EBADF The FileDescriptor value is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EINVAL The How parameter is not one of ACC_PERMIT, ACC_DENY, or
ACC_SPECIFY.

EINVAL The Who parameter is not ACC_OWNER, ACC_GROUP,
ACC_OTHERS, or ACC_ALL.

EROFS The named file resides on a read—only file system.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

Base Operating System Runtime Services (A-P) 1-13

EIO An 1/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and
the invoker does not have root user authority.

If Network File System (NFS) is installed on your system, the acl_chg and acl_fchg
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The acl_get subroutine, acl_put subroutine, acl_set subroutine, chacl subroutine, chmod
subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-14 Technical Reference: Base Operating System

acl_get or acl_fget Subroutine

Purpose
Gets the access control information of a file.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

char *acl_get (Path)
char *Path;

char *acl_fget (FileDescriptor)
int FileDescriptor;

Description
The acl_get and acl_fget subroutines retrieve the access control information for a file
system object. This information is returned in a buffer pointed to by the return value. The
structure of the data in this buffer is unspecified. The value returned by these subroutines
should be used only as an argument to the acl_put or acl_fput subroutines to copy or
restore the access control information.

Parameters

Path Specifies the path name of the file.
FileDescriptor Specifies the file descriptor of an open file.

Return Values

On successful completion, the acl_get and acl_fget subroutines return a pointer to the
buffer containing the access control information. Otherwise, a null pointer is returned and
the errno global variable is set to indicate the error.

Error Codes
The acl_get subroutine fails if one or more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or the process has the
disallow truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ESTALE The process’ root or current directory is located in a virtual file

system that has been unmounted.

Base Operating System Runtime Services (A-P) 1-15

Security

The acl_fget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_get or acl_fget subroutine fails if the following is true:

EIO An /O error occurred during the operation.

If Network File System (NFS) is installed on your system, the acl_get and acl_fget
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Access Control The invoker must have search permission for all components of the
Path prefix.

Audit Events None.

Implementation Specifics

These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The acl_chg or acl_fchg subroutine, acl_put or acl_fput subroutine, acl_set or acl_fset
subroutine, chacl subroutine, chmod subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-16 Technical Reference: Base Operating System

acl_put or acl_fput Subroutine

Purpose
Sets the access control information of a file.
Library
Security Library (libc.a)
Syntax
#include <sys/access.h>
int acl_put (Path, Access, Free)
char *Path;
char *Access;
int Free;
int acl_fput (FileDescriptor, Access, Free)
int FileDescriptor;
char *Access;
int Free;
Description
The acl_put and acl_fput subroutines set the access control information of a file system
object. This information is contained in a buffer returned by a call to the acl_get or acl_fget
subroutine. The structure of the data in this buffer is unspecified. However, the entire
Access Control List (ACL) for a file cannot exceed one memory page (4096 bytes) in size.
Parameters
Path Specifies the path name of a file.
FileDescriptor ~ Specifies the file descriptor of an open file.
Access Specifies a pointer to the buffer containing the access control
information.
Free Specifies whether the buffer space is to be deallocated. The following
values are valid:
0 Space is not deallocated.
1 Space is deallocated.

Return Values

On successful completion, the acl_put and acl_fput subroutines return a value of 0.
Otherwise, —1 is returned and the errno global variable is set to indicate the error.

Error Codes

The acl_put subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

Base Operating System Runtime Services (A-P) 1-17

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file

system that has been unmounted.
The acl_fput subroutine fails and the file permissions remain unchanged if the following is
true:
EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EINVAL The Access parameter does not point to a valid access control buffer.
EINVAL The Free parameter is not 0 or 1.

EIO An 1/O error occurred during the operation.

EROFS The named file resides on a read—only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path
prefix.

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The acl_chg subroutine, acl_get subroutine, acl_set subroutine, chacl subroutine, chmod
subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-18 Technical Reference: Base Operating System

acl_set or acl_fset Subroutine

Purpose
Sets the access control information of a file.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl_set (Path, OwnerMode, GroupMode,
char *Path;

int OwnerMode;

int GroupMode;

int DefaultMode;

int acl_fset (FileDescriptor, OwnerMode,
int *FileDescriptor;

int OwnerMode;

int GroupMode;

int DefaultMode;

Description

DefaultMode)

GroupMode, DefaultMode)

The acl_set and acl_fset subroutines set the base entries of the Access Control List (ACL)
of the file. All other entries are discarded. Other access control attributes are left

unchanged.

Parameters

DefaultMode Specifies the access permissions for the default class.

FileDescriptor Specifies the file descriptor of an open file.

GroupMode Specifies the access permissions for the group of the file.

OwnerMode Specifies the access permissions for the owner of the file.

Path Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bit mask containing zero or more

of the following values:

R_ACC Authorize read permission.
W_ACC Authorize write permission.
X_ACC Authorize execute or search permission.

Return Values

Upon successful completion, the acl_set and acl_fset subroutines return the value 0.
Otherwise, the value —1 is returned and the errno global variable is set to indicate the error.

Error Codes

The acl_set subroutine fails and the access control information for a file remains

unchanged if one or more of the following are true:

Base Operating System Runtime Services (A-P) 1-19

Security

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file

system that has been unmounted.
The acl_fset subroutine fails and the file permissions remain unchanged if the following is
true:
EBADF The file descriptor FileDescriptor is not valid.
The acl_set or acl_fset subroutine fails and the access control information for a file remains

unchanged if one or more of the following are true:

EIO An 1/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and
the invoker does not have root user authority.

EROFS The named file resides on a read—only file system.
If Network File System (NFS) is installed on your system, the acl_set and acl_fset
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Access Control: The invoker must have search permission for all components of the Path
prefix.

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Implementation Specifics

These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The acl_chg subroutine, acl_get subroutine, acl_put subroutine, chacl subroutine, chmod
subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-20 Technical Reference: Base Operating System

addssys Subroutine

Purpose
Adds the SRCsubsys record to the subsystem object class.
Library
System Resource Controller Library (libsrc.a)
Syntax
#include <sys/srcobj.h>
#include <spc.h>
int addssys (SRCSubsystem)
struct SRCsubsys *SRCSubsystem;
Description
The addssys subroutine adds a record to the subsystem object class. You must call the
defssys subroutine to initialize the SRCSubsystem buffer before your application program
uses the SRCsubsys structure. The SRCsubsys structure is defined in the
/usr/include/sys/srcobij.h file.
The executable running with this subroutine must be running with the group system.
Parameters

SRCSubsystem A pointer to the SRCsubsys structure.

Return Values

Upon successful completion, the addssys subroutine returns a value of 0. Otherwise, it
returns a value of —1 and the odmerrno variable is set to indicate the error, or an SRC error
code is returned.

Error Codes
The addssys subroutine fails if one or more of the following are true:

SRC_BADFSIG Invalid stop force signal.
SRC_BADNSIG Invalid stop normal signal.
SRC_CMDARGZ2BIG Command arguments too long.
SRC_GRPNAM2BIG Group name too long.
SRC_NOCONTACT Contact not signal, sockets, or message queue.
SRC_NONAME No subsystem name specified.
SRC_NOPATH No subsystem path specified.
SRC_PATH2BIG Subsystem path too long.
SRC_STDERR2BIG stderr path too long.
SRC_STDIN2BIG stdin path too long.
SRC_STDOUT2BIG stdout path too long.

Base Operating System Runtime Services (A-P) 1-21

SRC_SUBEXIST New subsystem name already on file.

SRC_SUBSYS2BIG Subsystem name too long.
SRC_SYNEXIST New subsystem synonym name already on file.
SRC_SYN2BIG Synonym name too long.

Security

Privilege Control: This command has the Trusted Path attribute. It has the following kernel
privilege:

SET_PROC_AUDIT
Files Accessed:

Mode File
644 /etc/objrepos/SRCsubsys
Auditing Events:

If the auditing subsystem has been properly configured and is enabled, the addssys
subroutine generates the following audit record (event) each time the subroutine is

executed:
Event Information
SRC_addssys Lists the SRCsubsys records added.

See "How to Set Up Auditing” in AlX 4.3 System Management Guide: Operating System
and Devices for details about selecting and grouping audit events, and configuring audit
event data collection.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files
/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/dev/iSRC Specifies the AF_UNIX socket file.
/dev/.SRC—unix Specifies the location for temporary socket files.
/usr/include/spc.h Defines external interfaces provided by the SRC

subroutines.
/ust/include/sys/srcobj.h Defines object structures used by the SRC.

Related Information
The chssys subroutine, defssys subroutine, delssys subroutine.

The auditpr command, chssys command, mkssys command, rmssys command.

Auditing Overview and System Resource Controller Overview in AIX 4.3 System
Management Guide: Operating System and Devices.

Defining Your Subsystem to the SRC, System Resource Controller (SRC) Overview for
Programmers in AIX General Programming Concepts : Writing and Debugging Programs.

1-22 Technical Reference: Base Operating System

adjtime Subroutine

Purpose
Corrects the time to allow synchronization of the system clock.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
int adjtime (Delta, Olddelta)
struct timeval *Delta;
struct timeval *0Olddelta;

Description
The adjtime subroutine makes small adjustments to the system time, as returned by the
gettimeofday subroutine, advancing or retarding it by the time specified by the Delta
parameter of the timeval structure. If the Delta parameter is negative, the clock is slowed
down by incrementing it more slowly than normal until the correction is complete. If the
Delta parameter is positive, a larger increment than normal is used. The skew used to
perform the correction is generally a fraction of one percent. Thus, the time is always a
monotonically increasing function, unless the clock is read more than 100 times per second.
A time correction from an earlier call to the adjtime subroutine may not be finished when
the adjtime subroutine is called again. If the Olddelta parameter is nonzero, then the
structure pointed to will contain, upon return, the number of microseconds still to be
corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local
area network. Such time servers would slow down the clocks of some machines and speed
up the clocks of others to bring them to the average network time.

The adjtime subroutine is restricted to the users with root user authority.

Parameters

Delta Specifies the amount of time to be altered.

Olddelta Contains the number of microseconds still to be corrected from an
earlier call.

Return Values

A return value of 0 indicates that the adjtime subroutine succeeded. A return value of —1
indicates than an error occurred, and errno is set to indicate the error.

Error Codes

The adjtime subroutine fails if the following are true:
EFAULT An argument address referenced invalid memory.
EPERM The process’s effective user ID does not have root user authority.

Base Operating System Runtime Services (A-P) 1-23

aio_cancel or aio_cancel64 Subroutine

Purpose
Cancels one or more outstanding asynchronous /O requests.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

aio_cancel (FileDescriptor, aiochp)
int FileDescriptor;
struct aiocb *aiocbp;

aio_cancel64 (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description

The aio_cancel subroutine attempts to cancel one or more outstanding asynchronous I/O
requests issued on the file associated with the FileDescriptor parameter. If the pointer to the
aio control block (aiocb) structure (the aiocbp parameter) is not null, then an attempt is
made to cancel the I/O request associated with this aiocb. If the aiocbp parameter is null,
then an attempt is made to cancel all outstanding asynchronous I/O requests associated
with the FileDescriptor parameter.

The aio_cancel64 subroutine is similar to the aio_cancel subroutine execpt that it attempts
to cancel outstanding large file enabled asynchronous I/O requests. Large file enabled
asynchronous I/O requests make use of the aiocb64 structure instead of the aiocb
structure. The aiocb64 structure allows asynchronous /O requests to specify offsets in
excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_cancel is redefined to be
aio_cancel64.

When an 1/O request is canceled, the aio_error subroutine called with the handle to the
corresponding aiocb structure returns ECANCELED.

1-24 Technical Reference: Base Operating System

Parameters

FileDescriptor Identifies the object to which the outstanding asynchronous 1/0
requests were originally queued.

aiocbp Points to the aiocb structure associated with the 1/0O operation. The
aiocb structure is defined in the /usr/include/sys/aio.h file and
contains the following members:

int aio_whence
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_regprio
struct event aio_event

struct osigevent aio_event

int aio_flag
aiohandle_t aio_handle
aliocbp64 Points to the aiocb64 structure associated with the 1/0 operation. The

aiocb structure is defined in the /ust/include/sys/aio.h file and the
same field as the aiocb structure with the execption that the aio_offset
field is a 64 bit (off64_t) quantity.

Execution Environment

The aio_cancel and aio_cancel64 subroutines can be called from the process environment
only.

Return Values

AlIO_CANCELED Indicates that all of the asynchronous I/O requests were canceled
successfully. The aio_error subroutine call with the handle to the
aiocb structure of the request will return ECANCELED.

AIO_NOTCANCELED Indicates that the aio_cancel subroutine did not cancel one or
more outstanding I/O requests. This may happen if an I/O request
is already in progress. The corresponding error status of the 1/0
request is not modified.

AIO_ALLDONE Indicates that none of the I/O requests is in the queue or in
progress.
-1 Indicates that the subroutine was not successful. Sets the errno

global variable to identify the error.

A return code can be set to the following errno value:

EBADF Indicates that the FileDescriptor parameter is not valid.

Implementation Specifics

The aio_cancel or aio_cancel64 subroutine is part of Base Operating System (BOS)
Runtime.

Related Information
The aio_error or aio_error64 subroutine, aio_read or aio_read64 subroutine, aio_return
or aio_return64 subroutine, aio_suspend or aio_suspend64 subroutine, aio_write or
aio_write64 subroutine, lio_listio or lio_listo64 subroutine.

The Asynchronous I/O Overview and The Communications 1/0O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low—level, stream, terminal, and asynchronous 1/O interfaces.

Base Operating System Runtime Services (A-P) 1-25

aio_error or aio_error64 Subroutine

Purpose
Retrieves the error status of an asynchronous I/O request.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int
aio_error (handle)
aio_handle_t handle;

int aio_error64 (handle)
aio_handle_t handle;

Description

The aio_error subroutine retrieves the error status of the asynchronous request associated
with the handle parameter. The error status is the errno value that would be set by the
corresponding I/O operation. The error status is EINPROG if the 1/O operation is still in
progress.

The aio_error64 subroutine is similar to the aio_error subroutine except that it retrieves the
error status associated with an aiocb64 control block.

Parameters

handle The handle field of an aio control block (aiocb or
aiocb64) structure set by a previous call of the aio_read,
aio_read64, aio_write, aio_write64, lio_listio,
aio_listio64 subroutine. If a random memory location is
passed in, random results are returned.

Execution Environment

The aio_error and aio_error64 subroutines can be called from the process environment
only.

1-26 Technical Reference: Base Operating System

Return Values

0 Indicates that the operation completed successfully.

ECANCELED Indicates that the 1/0O request was canceled due to an
aio_cancel subroutine call.

EINPROG Indicates that the 1/0O request has not completed.

An errno value described in the aio_read, aio_write, and
lio_listio subroutines:

Indicates that the operation was not queued successfully.
For example, if the aio_read subroutine is called with an
unusable file descriptor, it (aio_read) returns a value of —1
and sets the errno global variable to EBADF. A subsequent
call of the aio_error subroutine with the handle of the
unsuccessful aio control block (aiocb) structure returns
EBADF.

An errno value of the corresponding I/O operation:
Indicates that the operation was initiated successfully, but
the actual I/O operation was unsuccessful. For example,
calling the aio_write subroutine on a file located in a full file
system returns a value of 0, which indicates the request
was queued successfully. However, when the 1/0 operation
is complete (that is, when the aio_error subroutine no
longer returns EINPROG), the aio_error subroutine returns
ENOSPC. This indicates that the /O was unsuccessful.

Implementation Specifics

The aio_error and aio_error64 subroutines are part of Base Operating System (BOS)
Runtime.

Related Information

The aio_cancel or aio_cancel64 subroutine, aio_read or aio_read64 subroutine,
aio_return or aio_return64 subroutine, aio_suspend or aio_suspend64 subroutine,
aio_write or aio_write64 subroutine, lio_listio or lio_listio64 subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low—level, stream, terminal, and asynchronous 1/O interfaces.

Base Operating System Runtime Services (A-P) 1-27

aio_read or aio_read64 Subroutine

Purpose
Reads asynchronously from a file.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_read(FileDescriptor, aiochp)
int FileDescriptor;
struct aiocb *aiocbp;

int aio_read64 (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description

The aio_read subroutine reads asynchronously from a file. Specifically, the aio_read
subroutine reads from the file associated with the FileDescriptor parameter into a buffer.

The aio_read64 subroutine is similar to the aio_read subroutine execpt that it takes an
aiocb64 reference parameter. This allows the aio_read64 subroutine to specify offsets in
excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64

The details of the read are provided by information in the aiocb structure, which is pointed
to by the aiocbp parameter. This information includes the following fields:

aio_buf Indicates the buffer to use.
aio_nbytes Indicates the number of bytes to read.

When the read request has been queued, the aio_read subroutine updates the file pointer
specified by the aio_whence and aio_offset fields in the aiocb structure as if the
requested I/O were already completed. It then returns to the calling program. The
aio_whence and aio_offset fields have the same meaning as the whence and offset
parameters in the Iseek subroutine. The subroutine ignores them for file objects that are not
capable of seeking.

If an error occurs during the call, the read request is not queued. To determine the status of
a request, use the aio_error subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set
the AIO_SIGNAL bit in the aio_f1lag field in the aiocb structure.

Note: The SIGIO signal is replaced by real-time signals when they are available. The
event structure in the aiocb structure is currently not in use but is included for future
compatibility.

1-28 Technical Reference: Base Operating System

Parameters

FileDescriptor Identifies the object to be read as returned from a call to open.

aiocbp Points to the asynchronous I/O control block structure associated with
the I/O operation. The aiocb and the aiocb64 structures are defined in
the aio.h file and contains the following members:

int aio_whence
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_flag
aio_handle_t aio_handle

Execution Environment

The aio_read and aio_read64 subroutines can be called from the process environment
only.

Return Values
When the read request queues successfully, the aio_read subroutine returns a value of 0.
Otherwise, it returns a value of —1 and sets the global variable errno to identify the error.

Return codes can be set to the following errno values:
EAGAIN Indicates that the system resources required to queue the request are

not available. Specifically, the transmit queue may be full, or the
maximum number of opens may be reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not
valid.

EINVAL Indicates that the aio_whence field does not have a valid value, or that

the resulting pointer is not valid.

Note: Other error codes defined in the sys/errno.h file can be returned by aio_error if an
error during the 1/O operation is encountered.

Implementation Specifics

The aio_read and aio_read64 subroutines are part of Base Operating System (BOS)
Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine,
aio_return or aio_return64 subroutine, aio_suspend or aio_suspend64 subroutine,
aio_write subroutine, lio_listio or lio_listo64 subroutine.

The Asynchronous I/0O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low—level, stream, terminal, and asynchronous I/O interfaces.

Base Operating System Runtime Services (A-P) 1-29

aio_return or aio_return64 Subroutine

Purpose
Retrieves the return status of an asynchronous I/O request.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_return (handle)
aio_handle_t handle;

int aio_returné64 (handle)
aio_handle_t handle;

Description
The aio_return subroutine retrieves the return status of the asynchronous I/0 request
associated with the aio_handle_t handle if the 1/O request has completed. The status
returned is the same as the status that would be returned by the corresponding read or
write function calls. If the 1/0 operation has not completed, the returned status is undefined.

The aio_return64 subroutine is similar to the aio_return subroutine except that it retrieves
the error status associated with an aiocb64 control block.

Parameters

handle The handle field of an aio control block (aiocb or
aioch64) structure is set by a previous call of the aio_read,
aio_read64, aio_write, aio_write64, lio_listio,
aio_listio64 subroutine. If a random memory location is
passed in, random results are returned.

Execution Environment

The aio_return and aio_return64 subroutines can be called from the process environment
only.

Return Values
The aio_return subroutine returns the status of an asynchronous I/O request corresponding
to those returned by read or write functions. If the error status returned by the aio_error
subroutine call is EINPROG, the value returned by the aio_return subroutine is undefined.

Examples
An aio_read request to read 1000 bytes from a disk device eventually, when the aio_error
subroutine returns a 0, causes the aio_return subroutine to return 1000. An aio_read
request to read 1000 bytes from a 500 byte file eventually causes the aio_return subroutine
to return 500. An aio_write request to write to a read—only file system results in the

1-30 Technical Reference: Base Operating System

aio_error subroutine eventually returning EROFS and the aio_return subroutine returning
a value of —1.

Implementation Specifics

The aio_return and aio_return64 subroutines are part of Base Operating System (BOS)
Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine,
aio_read or aio_read64 subroutine, aio_suspend or aio_suspend64 subroutine,
aio_write or aio_write64 subroutine, lio_listio or lio_listio64 subroutine.

The Asynchronous I/0O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low—level, stream, terminal, and asynchronous 1/O interfaces.

Base Operating System Runtime Services (A-P) 1-31

aio_suspend or aio_suspend64 Subroutine

Purpose
Suspends the calling process until one or more asynchronous I/O requests is completed.
Library
Standard C Library (libc.a)
Syntax
#include <aio.h>
aio_suspend(count, aiochpa)
int count;
struct aiocb *aiocbpal 1;
aio_suspendé64 (count, aiochpa)
int count;
struct aiocb64 *aiocbpal 1;
Description

The aio_suspend subroutine suspends the calling process until one or more of the count
parameter asynchronous I/O requests are completed or a signal interrupts the subroutine.
Specifically, the aio_suspend subroutine handles requests associated with the aio control
block (aiocb) structures pointed to by the aiocbpa parameter.

The aio_suspend64 subroutine is similar to the aio_suspend subroutine except that it
takes an array of pointers to aiocb64 structures. This allows the aio_suspend64 subroutine
to suspend on asynchronous I/O requests submitted by either the aio_read64, aio_write64,
or the lio_listio64 subroutines.

In the large file enabled programming environment, aio_suspend is redefined to be
aio_suspend64.

The array of aiocb pointers may include null pointers, which will be ignored. If one of the I/O
requests is already completed at the time of the aio_suspend call, the call immediately
returns.

1-32 Technical Reference: Base Operating System

Parameters

count Specifies the number of entries in the aiocbpa array.

aiocbpa Points to the aiocb or aiocb64 structures associated with
the asynchronous I/O operations. The aiocb structure is
defined in the aio.h file and contains the following

members:
int aio_whence
off_t alio_offset
char *aio_buf
size_t aio_nbytes
int aio_regprio
struct event aio_event

struct osigevent aio_event
int aio_flag
aio_handle_t aio_handle

Execution Environment

The aio_suspend and aio_suspend64 subroutines can be called from the process
environment only.

Return Values

If one or more of the I/O requests completes, the aio_suspend subroutine returns the index
into the aiocbpa array of one of the completed requests. The index of the first element in
the aiocbpa array is 0. If more than one request has completed, the return value can be the
index of any of the completed requests.

In the event of an error, the aio_suspend subroutine returns a value of —1 and sets the
errno global variable to identify the error. Return codes can be set to the following errno

values:
EINTR Indicates that a signal or event interrupted the
aio_suspend subroutine call.
EINVAL Indicates that the aio_whence field does not have a

valid value or that the resulting pointer is not valid.

Implementation Specifics
The aio_suspend or aio_suspend64 subroutines are part of Base Operating System
(BOS) Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine,
aio_read or aio_read64 subroutine, aio_return or aio_return64 subroutine, aio_write or
aio_write64 subroutine, lio_listio or lio_listo64 subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low—level, stream, terminal, and asynchronous 1/O interfaces.

Base Operating System Runtime Services (A-P) 1-33

aio_write or aio_write64 Subroutine

Purpose
Writes to a file asynchronously.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_write(FileDescriptor, aiochp)
int FileDescriptor;
struct aiocb *aiocbp;

int aio_write64 (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description

The aio_write subroutine writes asynchronously to a file. Specifically, the aio_write

subroutine writes to the file associated with the FileDescriptor parameter from a buffer. To
handle this, the subroutine uses information from the aio control block (aiocb) structure,
which is pointed to by the aiocbp parameter. This information includes the following fields:

aio_buf Indicates the buffer to use.
aio_nbytes Indicates the number of bytes to write.

The aio_write64 subroutine is similar to the aio_write subroutine except that it takes an
aiocb64 reference parameter. This allows the aio_write64 subroutine to specify offsets in
excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64.

When the write request has been queued, the aio_write subroutine updates the file pointer
specified by the aio_whence and aio_offset fields in the aiocb structure as if the
requested I/O completed. It then returns to the calling program. The aio_whence and
aio_offset fields have the same meaning as the whence and offset parameters in the
Iseek subroutine. The subroutine ignores them for file objects that are not capable of
seeking.

If an error occurs during the call, the write request is not initiated or queued. To determine
the status of a request, use the aio_error subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set
the AIO_SIGNAL bit in the aio_f1lag field in the aiocb structure.

Note: The SIGIO signal will be replaced by real-time signals when they are available. The
event structure in the aiocb structure is currently not in use but is included for future
compatibility.

1-34 Technical Reference: Base Operating System

Parameters

FileDescriptor
aiocbp

Execution Environment

The aio_write and
only.

Return Values

When the write req
Otherwise, it return

Identifies the object to be written as returned from a call to open.

Points to the asynchronous I/O control block structure associated with
the 1/0O operation.

The aiocb structure is defined in the aio.h file and contains the
following members:

int aio_whence
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_regprio
struct event aio_event

struct osigevent aio_event
int aio_flag
aio_handle_t aio_handle

aio_write64 subroutines can be called from the process environment

uest queues successfully, the aio_write subroutine returns a value of 0.
s a value of —1 and sets the errno global variable to identify the error.

Return codes can be set to the following errno values:

EAGAIN

EBADF
EFAULT

EINVAL

Note: Other error

Indicates that the system resources required to queue the request are
not available. Specifically, the transmit queue may be full, or the
maximum number of opens may have been reached.

Indicates that the FileDescriptor parameter is not valid.

Indicates that the address specified by the aiocbp parameter is not
valid.

Indicates that the aio_whence field does not have a valid value or that
the resulting pointer is not valid.

codes defined in the /usr/include/sys/errno.h file may be returned by

the aio_error subroutine if an error during the 1/0 operation is encountered.

Implementation Specifics
The aio_write or aio_write64 subroutines are part of Base Operating System (BOS)

Runtime.

Related Information
The aio_cancel or

aio_cancel64 subroutine, aio_error or aio_error64 subroutine,

aio_read or aio_read64 subroutine, aio_return or aio_return64 subroutine, aio_suspend

or aio_suspend64

The Asynchronous
Introduction in AIX

subroutine, lio_listio or lio_listio64 subroutine.

I/O Overview and the Communications 1/0O Subsystem: Programming
Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming

Concepts : Writing

and Debugging Programs describes the files, commands, and

subroutines used for low—level, stream, terminal, and asynchronous 1/O interfaces.

Base Operating System Runtime Services (A-P) 1-35

asin, asinl, acos, acosl, atan, atanl, atan2, or atan2l Subroutine

Purpose
Computes inverse trigonometric functions.

Libraries

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

double asin (x)
double x;

long double asinl (x)
long double x;

double acos (x)
double x;

long double acosl (x)
long double x;

double atan (x)
double x;

long double atanl (x)
long double x;

double atan2 (y, x)
double y, x;

long double atan2l (x,y)
long double y, x;

Description
The asin and asinl subroutines return the principal value of the arc sine of x, in the range
[-pi’2, pi/2].
The acos and acosl subroutines return the principal value of the arc cosine of x, in the
range [0, pi].
The atan and atanl subroutines return the principal value of the arc tangent of x, in the
range [—pi/2, pi/2].

The atan2 and atan2l subroutines return the principal value of the arc tangent of y/x, using
the signs of both parameters to determine the quadrant of the return value. The return
values are in the range [—pi, pi].

Parameters

X Specifies a double—precision floating—point value. For the asinl, acosl, atanl,
and atan2l subroutines, specifies a long double—precision floating—point value.

y Specifies a double—precision floating—point value. For the asinl, acosl, atanl,
and atan2l subroutines, specifies long double—precision floating—point value.

Error Codes
When using the libm.a (-Im) library:

1-36 Technical Reference: Base Operating System

asin, asinl, Return a NaNQ and set the errno global variable to EDOM if the
acos, acosl absolute value of the parameter is greater than 1.

When using libmsaa.a (-Imsaa):

asin, acos, If the absolute value of the parameter of asin or acos is greater than 1,

atan2, or if both parameters of atan2 are 0, then 0 is returned and errno is set
to EDOM. In addition, a message indicating DOMAIN error is printed on
the standard output.

asinl, acosl, Return a NaNQ and set the errno global variable to EDOM if the
atan2l absolute value of the parameter is greater than 1.

These error—handling procedures may be changed with the matherr subroutine when using
the libmsaa.a (-Imsaa) library.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The asinh, acosh, or atanh subroutine, matherr subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128-Bit long double Floating—Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-37

asinh, acosh, or atanh Subroutine

Purpose
Computes inverse hyperbolic functions.
Libraries
IEEE Math Library (libm.a) or System V Math Library (libmsaa.a)
Syntax
#include <math.h>
double asinh (x)
double x;
double acosh (x)
double x;
double atanh (x)
double x;
Description
The asinh, acosh, and atanh subroutines compute the inverse hyperbolic functions.
The asinh subroutine returns the hyperbolic arc sine specified by the x parameter, in the
range of the —-HUGE_VAL value to the +HUGE_VAL value. The acosh subroutine returns
the hyperbolic arc cosine specified by the x parameter, in the range 1 to the +HUGE_VAL
value. The atanh subroutine returns the hyperbolic arc tangent specified by the x
parameter, in the range of the -HUGE_VAL value to the +HUGE_VAL value.
Note: Compile any routine that uses subroutines from the libm.a library with the —Im flag.
For example: to compile the asinh.c file, enter:
cc asinh.c -1m
Parameters

X Specifies a double—precision floating—point value.

Error Codes

The acosh subroutine returns NaNQ (not—a—number) and sets errno to EDOM if the x
parameter is less than the value of 1.

The atanh subroutine returns NaNQ and sets errno to EDOM if the absolute value of x is
greater than 1.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The copysign, nextafter, scalb, logb, or ilogb subroutine, exp, expm1, log, log10, or
pow subroutine, sinh, cosh, or tanh subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-38 Technical Reference: Base Operating System

assert Macro

Purpose
Verifies a program assertion.
Library
Standard C Library (libc.a)
Syntax
#include <assert.h>
void assert (Expression)
int FExpression;
Description
The assert macro puts error messages into a program. If the specified expression is false,
the assert macro writes the following message to standard error and stops the program:
Assertion failed: Expression, file FileName, line LineNumber
In the error message, the FileName value is the name of the source file and the
LineNumber value is the source line number of the assert statement.
Parameters
Expression Specifies an expression that can be evaluated as true or false. This
expression is evaluated in the same manner as the C language IF
statement.

Implementation Specifics
This macro is part of Base Operating System (BOS) Runtime.

The assert macro uses the _assert subroutine.

Related Information
The abort subroutine.

The cpp command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-39

atof, strtod, strtold, atoff, or strtof Subroutine

Purpose

Libraries

Syntax

Converts an ASCII string to a floating—point or double floating—point number.

Standard C Library (libc.a)

#include <stdlib.h>

double atof (NumberPointer)
const char *NumberPointer;

double strtod (NumberPointer, EndPointer)
const char *NumberPointer
char**EndPointer;

long double strtold (NumberPointer, EndPointer)
char *NumberPointer, **EndPointer;

float atoff (NumberPointer)
char *NumberPointer;

float strtof (NumberPointer, EndPointer)
char *NumberPointer, **EndPointer;

Description

1-40

The atof subroutine and strtod subroutine convert a character string, pointed to by the
NumberPointer parameter, to a double—precision floating—point number. Similarly, the
strtold subroutine converts a character string to a long double—precision floating—point
number. The atoff subroutine and strtof subroutine convert a character string, pointed to by
the NumberPointer parameter, to a single—precision floating—point number. The first
unrecognized character ends the conversion.

Except for behavior on error, the atof subroutine is equivalent to the strtod subroutine call,
with the EndPointer parameter set to (char**) NULL.

Except for behavior on error, the atoff subroutine is equivalent to the strtof subroutine call,
with the EndPointer parameter set to (char**) NULL.

These subroutines recognize a character string when the characters are in one of two
formats: numbers or numeric symbols.

e For a string to be recognized as a number, it should contain the following pieces in the
following order:

a. An optional string of white—space characters

b. An optional sign

c. A nonempty string of digits optionally containing a radix character
d

. An optional exponent in E-format or e—format followed by an optionally signed
integer.

e For a string to be recognized as a humeric symbol, it should contain the following pieces
in the following order:

a. An optional string of white—space characters
b. An optional sign
c. One of the strings: INF, infinity, NaNQ, NaNS, or NaN (case insensitive)

Technical Reference: Base Operating System

Parameters

NumberPointer ~ Specifies a character string to convert.
EndPointer Specifies a pointer to the character that ended the scan or a null value.

Return Values
Upon successful completion, the atof, atoff, strtod, strtold, and strtof subroutines return
the converted value. If no conversion could be performed, a value of 0 is returned and the
errno global variable is set to indicate the error.

Error Codes
Note: Because a value of 0 can indicate either an error or a valid result, an application that
checks for errors with the strtod, strtof, and strtold subroutines should set the
errno global variable equal to 0 prior to the subroutine call. The application can
check the errno global variable after the subroutine call.

If the string pointed to by NumberPointer is empty or begins with an unrecognized character,
a value of 0 is returned for the strtod, strtof, and strtold subroutines.

If the conversion cannot be performed, a value of 0 is returned, and the errno global
variable is set to indicate the error.

If the conversion causes an overflow (that is, the value is outside the range of representable
values), +/- HUGE_VAL is returned with the sign indicating the direction of the overflow,
and the errno global variable is set to ERANGE.

If the conversion would cause an underflow, a properly signed value of 0 is returned and the
errno global variable is set to ERANGE.

For the strtod, strtof, and strtold subroutines, if the value of the EndPointer parameter is
not (char**) NULL, a pointer to the character that stopped the subroutine is stored in
*EndPointer. If a floating—point value cannot be formed, *EndPointeris set to
NumberPointer.

The atoff and strtof subroutines have only one rounding error. (If the atof or strtod
subroutines are used to create a double—precision floating—point number and then that
double—precision number is converted to a floating—point number, two rounding errors could
occur.)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The atoff and strtof subroutines are not part of the ANSI C Library. These subroutines are
at least as accurate as required by the IEEE Standard for Binary Floating—Point Arithmetic.
The atof and strtod subroutines accept at least 17 significant decimal digits. The atoff and
strtof subroutines accept at least 9 leading 0’s. Leading 0’s are not counted as significant
digits.

Related Information

The scanf subroutine, strtol, strtoul, atol, or atoi subroutine, wstrtol, watol, or watoi
subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128-Bit long double Floating—Point Format in AIX General Programming Concepts :
Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-41

audit Subroutine

AUDIT_QUERY Returns a mask indicating the state of the auditing

subsystem. The mask is a logical ORing of the
AUDIT_ON, AUDIT_OFF, and AUDIT_PANIC flags.

Enables auditing. If auditing is already enabled, only
the failure—mode behavior changes. The Argument
parameter specifies recovery behavior in the event of
failure and may be either 0 or the value

Disables the auditing system if auditing is enabled. If
the auditing system is disabled, the audit subroutine
does nothing. The Argument parameter is ignored.

Disables the auditing system (as does AUDIT_OFF)
and resets the auditing system. If auditing is already
disabled, only the system configuration is reset.
Resetting the audit configuration involves clearing the
audit events and audited objects table, and terminating
bin and stream auditing. The Argument parameter is

Audit event records will be buffered until a total of
Argument records have been saved, at which time the
audit event records will be flushed to disk. An Argument
value of zero disables this functionality. This parameter
only applies to AIX Version 4.1.4 and later.

Purpose
Enables and disables system auditing.
Library
Standard C Library (libc.a)
Syntax
#include <sys/audit.h>
int audit (Command, Argument)
int Command;
int Argument;
Description
The audit subroutine enables or disables system auditing.
When auditing is enabled, audit records are created for security—relevant events. These
records can be collected through the auditbin subroutine, or through the /dev/audit special
file interface.
Parameters
Command Defined in the sys/audit.h file, can be one of the following values:
The Argument parameter is ignored.
AUDIT_ON
AUDIT_PANIC.
Note: If AUDIT_PANIC is specified, bin—-mode auditing must be
enabled before the audit subroutine call.
AUDIT_OFF
AUDIT_RESET
ignored.
AUDIT_EVENT_THRESHOLD
1-42 Technical Reference: Base Operating System

AUDIT_BYTE_THRESHOLD
Audit event data will be buffered until a total of
Argument bytes of data have been saved, at which time
the audit event data will be flushed to disk. An
Argument value of zero disables this functionality. This
parameter only applies to AlX Version 4.1.4 and later.

Argument Specifies the behavior when a bin write fails (for AUDIT_ON) or
specifies the size of the audit event buffer (for
AUDIT_EVENT_THRESHOLD and AUDIT_BYTE_THRESHOLD). For
all other commands, the value of Argument is ignored. The valid values
are:

AUDIT_PANIC The operating system shuts down if an audit record
cannot be written to a bin.

Note: If AUDIT_PANIC is specified, bin—-mode auditing must be
enabled before the audit subroutine call.

BufferSize The number of bytes or audit event records which will
be buffered. This parameter is valid only with the
command AUDIT_BYTE_THRESHOLD and
AUDIT_EVENT_THRESHOLD. A value of zero will
disable either byte (for AUDIT_BYTE_THRESHOLD)
or event (for AUDIT_EVENT_THRESHOLD) buffering.

Return Values

For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful
completion, a mask indicating the state of the auditing subsystem. The mask is a logical
ORing of the AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and AUDIT_NO_PANIC flags. For
any other Command value, the audit subroutine returns 0 on successful completion.

If the audit subroutine fails, a value of —1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The audit subroutine fails if either of the following is true:

EINVAL The Command parameter is not one of AUDIT_ON, AUDIT_OFF,
AUDIT_RESET, or AUDIT_QUERY.

EINVAL The Command parameter is AUDIT_ON and the Argument parameter
specifies values other than AUDIT_PANIC.

EPERM The calling process does not have root user authority.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

dev/audit Specifies the audit pseudo—device from which the audit records are
read.

Related Information

The auditbin subroutine, auditevents subroutine, auditlog subroutine, auditobj
subroutine, auditproc subroutine.

The audit command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-43

auditbin Subroutine

Purpose
Defines files to contain audit records.
Library
Standard C Library (libc.a)
Syntax
#include <sys/audit.h>
int auditbin (Command, Current, Next, Threshold)
int Command;
int Current;
int Next;
int Threshold;
Description
The auditbin subroutine establishes an audit bin file into which the kernel writes audit
records. Optionally, this subroutine can be used to establish an overflow bin into which
records are written when the current bin reaches the size specified by the Threshold
parameter.
Parameters
Command If nonzero, this parameter is a logical ORing of the following values, which
are defined in the sys/audit.h file:

AUDIT_EXCL Requests exclusive rights to the audit bin files. If the file
specified by the Current parameter is not the kernel’s
current bin file, the auditbin subroutine fails immediately
with the errno variable set to EBUSY.

AUDIT_WAIT The auditbin subroutine should not return until:

bin full The kernel writes the number of bytes specified by the
Threshold parameter to the file descriptor specified by
the Current parameter. Upon successful completion, the
auditbin subroutine returns a 0. The kernel writes
subsequent audit records to the file descriptor specified
by the Next parameter.

bin failure An attempt to write an audit record to the file specified
by the Current parameter fails. If this occurs, the
auditbin subroutine fails with the errno variable set to
the return code from the auditwrite subroutine.

bin contention Another process has already issued a successful call
to the auditbin subroutine. If this occurs, the auditbin
subroutine fails with the errno variable set to EBUSY.

system shutdown
The auditing system was shut down. If this occurs, the
auditbin subroutine fails with the errno variable set to
EINTR.

Current A file descriptor for a file to which the kernel should immediately write

audit records.

1-44 Technical Reference: Base Operating System

Next

Threshold

Return Values

Specifies the file descriptor that will be used as the current audit bin if the
value of the Threshold parameter is exceeded or if a write to the current
bin fails. If this value is —1, no switch occurs.

Specifies the maximum size of the current bin. If 0, the auditing subsystem
will not switch bins. If it is nonzero, the kernel begins writing records to the
file specified by the Next parameter, if writing a record to the file specified
by the Cur parameter would cause the size of this file to exceed the
number of bytes specified by the Threshold parameter. If no next bin is
defined and AUDIT_PANIC was specified when the auditing subsystem
was enabled, the system is shut down. If the size of the Threshold
parameter is too small to contain a bin header and a bin tail, the auditbin
subroutine fails and the errno variable is set to EINVAL.

If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of —1 returns and the errno global variable is set to
indicate the error. If this occurs, the result of the call does not indicate whether any records
were written to the bin.

Error Codes

The auditbin subroutine fails if any of the following is true:

EBADF

EBUSY

EBUSY

EINTR
EINVAL

EINVAL

EPERM

The Current parameter is not a file descriptor for a regular
file open for writing, or the Next parameter is neither —1 nor
a file descriptor for a regular file open for writing.

The Command parameter specifies AUDIT_EXCL and the
kernel is not writing audit records to the file specified by the
Current parameter.

The Command parameter specifies AUDIT_WAIT and
another process has already registered a bin.

The auditing subsystem is shut down.

The Command parameter specifies a nonzero value other
than AUDIT_EXCL or AUDIT_WAIT.

The Threshold parameter value is less than the size of a
bin header and trailer.

The caller does not have root user authority.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The audit subroutine, auditevents subroutine, auditlog subroutine, auditobj subroutine,
auditproc subroutine.

The audit command.

The audit file format.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-45

auditevents Subroutine

Purpose

Gets or sets the status of system event auditing.

Library

Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditevents (Command, Classes, NClasses)
int Command;

struct audit_class *(Classes;

int NClasses;

Description

The auditevents subroutine queries or sets the audit class definitions that control event
auditing. Each audit class is a set of one or more audit events.

System auditing need not be enabled before calling the auditevents subroutine. The audit
subroutine can be directed with the AUDIT_RESET command to clear all event lists.

Parameters

Command

Classes

NClasses

Specifies whether the event lists are to be queried or set. The values,
defined in the sys/audit.h file, for the Command parameter are:

AUDIT_SET Sets the lists of audited events after first clearing all
previous definitions.

AUDIT_GET Queries the lists of audited events.

AUDIT_LOCK Queries the lists of audited events. This value also blocks
any other process attempting to set or lock the list of audit
events. The lock is released when the process holding the
lock dies or calls the auditevents subroutine with the
Command parameter set to AUDIT_SET.

Specifies the array of a_event structures for the AUDIT_SET operation, or
after an AUDIT_GET or AUDIT_LOCK operation. The audit_class
structure is defined in the sys/audit.h file and contains the following
members:

ae_name A pointer to the name of the audit class.

ae_list A pointer to a list of null-terminated audit event names for
this audit class. The list is ended by a null name (a leading
null byte or two consecutive null bytes).

Note: Event and class names are limited to 15 significant characters.

ae_len The length of the event list in the ae_list member. This
length includes the terminating null bytes. On an
AUDIT_SET operation, the caller must set this member to
indicate the actual length of the list (in bytes) pointed to by
ae_list.On an AUDIT_GET or AUDIT_LOCK
operation, the auditevents subroutine sets this member to
indicate the actual size of the list.

Serves a dual purpose. For AUDIT_SET, the NClasses parameter

specifies the number of elements in the events array. For AUDIT_GET and

AUDIT_LOCK, the NClasses parameter specifies the size of the buffer

pointed to by the Classes parameter.

1-46 Technical Reference: Base Operating System

Attention: Only 32 audit classes are supported. One class is implicitly defined by the
system to include all audit events (ALL). The administrator of your system should not
attempt to define more than 31 audit classes.

Security

The calling process must have root user authority in order to use the auditevents

subroutine.

Return Codes

If the auditevents subroutine completes successfully, the number of audit classes is
returned if the Command parameter is AUDIT_GET or AUDIT_LOCK. A value of O is
returned if the Command parameter is AUDIT_SET. If this call fails, a value of —1 is returned
and the errno global variable is set to indicate the error.

Error Codes

The auditevents subroutine fails if one or more of the following are true:

EPERM
EINVAL

EINVAL

EINVAL
ENOSPC

EFAULT
EFAULT

EFAULT

EBUSY

ENOMEM

The calling process does not have root user authority.

The value of Command is not AUDIT_SET, AUDIT_GET, or
AUDIT_LOCK.

The Command parameter is AUDIT_SET, and the value of the NClasses
parameter is greater than or equal to 32.

A class name or event name is longer than 15 significant characters.

The value of Command is AUDIT_GET or AUDIT_LOCK and the size of
the buffer specified by the NClasses parameter is not large enough to hold
the list of event structures and names. If this occurs, the first word of the
buffer is set to the required buffer size.

The Classes parameter points outside of the process’ address space.

The ae_11ist member of one or more audit_class structures passed for
an AUDIT_SET operation points outside of the process’ address space.

The Command value is AUDIT_GET or AUDIT_LOCK and the size of the
Classes buffer is not large enough to hold an integer.

Another process has already called the auditevents subroutine with
AUDIT_LOCK.

Memory allocation failed.

Implementation Specifications
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The audit subroutine, auditbin subroutine, auditlog subroutine, auditobj subroutine,
auditproc subroutine, auditread subroutine, auditwrite subroutine.

The audit command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-47

auditlog Subroutine

Purpose
Appends an audit record to the audit trail file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>
int auditlog (Event, Result, Buffer, BufferSize)
char *Event;
int Result;

char *Buffer;
int BufferSize;

Description

The auditlog subroutine generates an audit record. The kernel audit-logging component
appends a record for the specified Event if system auditing is enabled, process auditing is
not suspended, and the Event parameter is in one or more of the audit classes for the
current process.

The audit logger generates the audit record by adding the Event and Result parameters to
the audit header and including the resulting information in the Buffer parameter as the audit
tail.

Parameters

Event The name of the audit event to be generated. This parameter should be
the name of an audit event. Audit event names are truncated to 15
characters plus null.

Result Describes the result of this event. Valid values are defined in the
sys/audit.h file and include the following:

AUDIT_OK The event was successful.
AUDIT_FAIL The event failed.

AUDIT_FAIL_ACCESS
The event failed because of any access control denial.

AUDIT_FAIL_DAC
The event failed because of a discretionary access
control denial.

AUDIT_FAIL_PRIV
The event failed because of a privilege control denial.

AUDIT_FAIL_AUTH
The event failed because of an authentication denial.

Other nonzero values of the Result parameter are converted into the
AUDIT_FAIL value.

Buffer Points to a buffer containing the tail of the audit record. The format of
the information in this buffer depends on the event name.

BufferSize Specifies the size of the Buffer parameter, including the terminating null.

1-48 Technical Reference: Base Operating System

Return Values

Upon successful completion, the auditlog subroutine returns a value of 0. If auditlog fails,
a value of —1 is returned and the errno global variable is set to indicate the error.

The auditlog subroutine does not return any indication of failure to write the record where
this is due to inappropriate tailoring of auditing subsystem configuration files or user—written
code. Accidental omissions and typographical errors in the configuration are potential
causes of such a failure.

Error Codes
The auditlog subroutine fails if any of the following are true:

EFAULT The Event or Buffer parameter points outside of the process’ address
space.

EINVAL The auditing system is either interrupted or not initialized.

EINVAL The length of the audit record is greater than 32 kilobytes.

EPERM The process does not have root user authority.

ENOMEM Memory allocation failed.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditobj subroutine,
auditproc subroutine, auditwrite subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-49

auditobj Subroutine

Purpose
Gets or sets the auditing mode of a system data object.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditobj (Command, Obj _Events, ObjSize)
int Command;

struct o_event *0Obj Events;

int ObjSize;

Description

The auditobj subroutine queries or sets the audit events to be generated by accessing
selected objects. For each object in the file system name space, it is possible to specify the
event generated for each access mode. Using the auditobj subroutine, an administrator
can define new audit events in the system that correspond to accesses to specified objects.
These events are treated the same as system—defined events.

System auditing need not be enabled to set or query the object audit events. The audit
subroutine can be directed with the AUDIT_RESET command to clear the definitions of
object audit events.

Parameters

Command Specifies whether the object audit event lists are to be read or written. The
valid values, defined in the sys/audit.h file, for the Command parameter
are:

AUDIT_SET Sets the list of object audit events, after first clearing all
previous definitions.

AUDIT_GET Queries the list of object audit events.

AUDIT_LOCK Queries the list of object audit events and also blocks any
other process attempting to set or lock the list of audit
events. The lock is released when the process holding the
lock dies or calls the auditobj subroutine with the
Command parameter set to AUDIT_SET.

1-50 Technical Reference: Base Operating System

Obj_Events

ObjSize

Return Values

Specifies the array of o_event structures for the AUDIT_SET operation or
for after the AUDIT_GET or AUDIT_LOCK operation. The o_event
structure is defined in the sys/audit.h file and contains the following
members:

o_type Specifies the type of the object, in terms of naming space.
Currently, only one object—naming space is supported:

AUDIT_FILE Denotes the file system naming space.
o_name Specifies the name of the object.

o_event Specifies any array of event names to be generated when
the object is accessed. Note that event names in AlX are
currently limited to 16 bytes, including the trailing null. The
index of an event name in this array corresponds to an
access mode. Valid indexes are defined in the audit.h file
and include the following:

— AUDIT_READ
— AUDIT_WRITE
— AUDIT_EXEC

For an AUDIT_SET operation, the ObjSize parameter specifies the number
of object audit event definitions in the array pointed to by the Obj_Events
parameter. For an AUDIT_GET or AUDIT_LOCK operation, the ObjSize
parameter specifies the size of the buffer pointed to by the Obj_Events
parameter.

If the auditobj subroutine completes successfully, the number of object audit event
definitions is returned if the Command parameter is AUDIT_GET or AUDIT_LOCK. A value
of 0 is returned if the Command parameter is AUDIT_SET. If this call fails, a value of —1 is
returned and the errno global variable is set to indicate the error.

Error Codes

The auditobj subroutine fails if any of the following are true:

EFAULT

EFAULT

EFAULT

EINVAL

EINVAL

EINVAL
ENOENT

ENOSPC

The Obj_Events parameter points outside the address space of the
process.

The Command parameter is AUDIT_SET, and one or more of the
o_name members points outside the address space of the process.

The Command parameter is AUDIT_GET or AUDIT_LOCK, and the
buffer size of the Obj_Events parameter is not large enough to hold the
integer.

The value of the Command parameter is not AUDIT_SET, AUDIT_GET
or AUDIT_LOCK.

The Command parameter is AUDIT_SET, and the value of one or more
of the o_type members is not AUDIT_FILE.

An event name was longer than 15 significant characters.

The Command parameter is AUDIT_SET, and the parent directory of
one of the file—system objects does not exist.

The value of the Command parameter is AUDIT_GET or
AUDIT_LOCK, and the size of the buffer as specified by the Ob;Size
parameter is not large enough to hold the list of event structures and
names. If this occurs, the first word of the buffer is set to the required
buffer size.

Base Operating System Runtime Services (A-P) 1-51

ENOMEM Memory allocation failed.

EBUSY Another process has called the auditobj subroutine with
AUDIT_LOCK.
EPERM The caller does not have root user authority.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine,
auditproc subroutine.

The audit command.
The audit.h file.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-52 Technical Reference: Base Operating System

auditpack Subroutine

Purpose
Compresses and uncompresses audit bins.
Library
Security Library (libc.a)
Syntax
#include <sys/audit.h>
#include <stdio.h>
char *auditpack (Expand, Buffer)
int Expand;
char *Buffer;
Description
The auditpack subroutine can be used to compress or uncompress bins of audit records.
Parameters

Expand Specifies the operation. Valid values, as defined in the sys/audit.h header
file, are one of the following:

AUDIT_PACK Performs standard compression on the audit bin.

AUDIT_UNPACK Unpacks the compressed audit bin.

Buffer Specifies the buffer containing the bin to be compressed or uncompressed.
This buffer must contain a standard bin as described in the audit.h file.

Return Values

If the auditpack subroutine is successful, a pointer to a buffer containing the processed
audit bin is returned. If unsuccessful, a null pointer is returned and the errno global variable
is set to indicate the error.

Error Codes
The auditpack subroutine fails if one or more of the following values is true:

EINVAL The Expand parameter is not one of the valid values (AUDIT_PACK or
AUDIT_UNPACK).

EINVAL The Expand parameter is AUDIT_UNPACK and the packed data in Buffer
does not unpack to its original size.

EINVAL The Expand parameter is AUDIT_PACK and the bin in the Buffer

parameter is already compressed, or the Expand parameter is
AUDIT_UNPACK and the bin in the Buffer parameter is already unpacked.

ENOSPC The auditpack subroutine is unable to allocate space for a new buffer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The auditread subroutine.
The auditcat command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-53

auditproc Subroutine

Purpose
Gets or sets the audit state of a process.
Library
Standard C Library (libc.a)
Syntax
#include <sys/audit.h>
int auditproc (ProcessID, Command, Argument, Length)
int ProcessID;
int Command;
char * Argument;
int Length;
Description

The auditproc subroutine queries or sets the auditing state of a process. There are two
parts to the auditing state of a process:

e The list of classes to be audited for this process. Classes are defined by the auditevents
subroutine. Each class includes a set of audit events. When a process causes an audit
event, that event may be logged in the audit trail if it is included in one or more of the
audit classes of the process.

¢ The audit status of the process. Auditing for a process may be suspended or resumed.
Functions that generate an audit record can first check to see whether auditing is
suspended. If process auditing is suspended, no audit events are logged for a process.
For more information, see the auditlog subroutine.

1-54 Technical Reference: Base Operating System

Parameters

ProcessID

Command

Argument

Length

Return Values

The process ID of the process to be affected. If ProcessID is 0, the
auditproc subroutine affects the current process.

The action to be taken. Defined in the audit.h file, valid values include:
AUDIT_KLIST_EVENTS

AUDIT_QEVENTS

AUDIT_EVENTS

AUDIT_QSTATUS

AUDIT_STATUS

Sets the list of audit classes to be audited for the
process and also sets the user’s default audit
classes definition within the kernel. The Argument
parameter is a pointer to a list of null-terminated
audit class names. The Length parameter is the
length of this list, including null bytes.

Returns the list of audit classes defined for the
current process if ProcesslID is 0. Otherwise, it
returns the list of audit classes defined for the
specified process ID. The Argument parameter is a
pointer to a character buffer. The Length parameter
specifies the size of this buffer. On return, this buffer
contains a list of null-terminated audit class names.
A null name terminates the list.

Sets the list of audit classes to be audited for the
process. The Argument parameter is a pointer to a
list of null-terminated audit class names. The Length
parameter is the length of this list, including null
bytes.

Returns the audit status of the current process. You
can only check the status of the current process. If
the ProcessID parameter is nonzero, a —1 is returned
and the errno global variable is set to EINVAL. The
Length and Argument parameters are ignored. A
return value of AUDIT_SUSPEND indicates that
auditing is suspended. A return value of
AUDIT_RESUME indicates normal auditing for this
process.

Sets the audit status of the current process. The
Length parameter is ignored, and the Process/D
parameter must be zero. If Argument is
AUDIT_SUSPEND, the audit status is set to suspend
event auditing for this process. If the Argument
parameter is AUDIT_RESUME, the audit status is
set to resume event auditing for this process.

A character pointer for the audit class buffer for an AUDIT_EVENT or
AUDIT_QEVENTS value of the Command parameter or an integer defining
the audit status to be set for an AUDIT_STATUS operation.

Size of the audit class character buffer.

The auditproc subroutine returns the following values upon successful completion:

e The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or
set the audit status (the Command parameter specified AUDIT_QSTATUS or
AUDIT_STATUS)

¢ Avalue of 0 if the call queried or set audit events (the Command parameter specified
AUDIT_QEVENTS or AUDIT_EVENTS)

Base Operating System Runtime Services (A-P) 1-55

Error Codes

If the auditproc subroutine fails if one or more of the following are true:

EINVAL An invalid value was specified for the Command parameter.

EINVAL The Command parameter is set to the AUDIT_QSTATUS or
AUDIT_STATUS value and the pid value is nonzero.

EINVAL The Command parameter is set to the AUDIT_STATUS value and the

Argument parameter is not set to AUDIT_SUSPEND or AUDIT_RESUME.

ENOSPC The Command parameter is AUDIT_QEVENTS, and the buffer size is
insufficient. In this case, the first word of the Argument parameter is set to
the required size.

EFAULT The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and
the Argument parameter points to a location outside of the process’
allocated address space.

ENOMEM Memory allocation failed.
EPERM The caller does not have root user authority.

Implementation Specifics

This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

1-56

The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine,
auditobj subroutine, auditwrite subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Technical Reference: Base Operating System

auditread, auditread_r Subroutines

Purpose
Reads an audit record.
Library
Security Library (libc.a)
Syntax
#include <sys/audit.h>
#include <stdio.h>
char *auditread (FilePointer,AuditRecord)
FILE *FilePointer;
struct aud_rec *AuditRecord;
char *auditread r (FilePointer,AuditRecord, RecordSize,
StreamInfo)
FILE *FilePointer;
struct aud_rec *AuditRecord;
size_t RecordSize;
void **StreamInfo;
Description
The auditread subroutine reads the next audit record from the specified file descriptor. Bins
on this input stream are unpacked and uncompressed if necessary.
The auditread subroutine can not be used on more than one FilePointer as the results can
be unpredictable. Use the auditread_r subroutine instead.
The auditread_r subroutine reads the next audit from the specified file descriptor. This
subroutine is thread safe and can be used to handle multiple open audit files simultaneously
by multiple threads of execution.
The auditread_r subroutine is able to read multiple versions of audit records. The version
information contained in an audit record is used to determine the correct size and format of
the record. When an input record header is larger than AuditRecord, an error is returned. In
order to provide for binary compatibility with previous versions, if RecordSize is the same
size as the original (struct aud_rec), the input record is converted to the original format and
returned to the caller.
Parameters

FilePointer Specifies the file descriptor from which to read.

AuditRecord Specifies the buffer to contain the header. The first short in this buffer
must contain a valid number for the header.

RecordSize The size of the buffer referenced by AuditRecord.

Streaminfo A pointer to an opaque datatype used to hold information related to the
current value of FilePointer. For each new value of FilePointer, a new
Streaminfo pointer must be used. Streaminfo must be initialized to
NULL by the user and is initialized by auditread_r when first used.
When FilePointer has been closed, the value of Streaminfo can be
passed to the free subroutine to be deallocated.

Base Operating System Runtime Services (A-P) 1-57

Return Values

If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of
the audit record is returned. The length of this buffer is returned in the ah_length field of
the header file. If this subroutine is unsuccessful, a null pointer is returned and the errno
global variable is set to indicate the error.

Error Codes
The auditread subroutine fails if one or more of the following is true:

EBADF The FilePointer value is not valid.
ENOSPC The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The auditpack subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-58 Technical Reference: Base Operating System

auditwrite Subroutine

Purpose
Writes an audit record.
Library
Security Library (libc.a)
Syntax
#include <sys/audit.h>
#include <stdio.h>
int auditwrite (Event, Result, Bufferl, Lengthl, Buffer2, LengthZ2
;e es)
char *Event;
int Result;
char *Bufferl, *Buffer2 ...;
int Lengthl, Length2 ...;
Description

The auditwrite subroutine builds the tail of an audit record and then writes it with the
auditlog subroutine. The tail is built by gathering the specified buffers. The last buffer
pointer must be a null.

If the auditwrite subroutine is to be called from a program invoked from the inittab file, the
setpcred subroutine should be called first to establish the process’ credentials.

Parameters

Event Specifies the name of the event to be logged.

Result Specifies the audit status of the event. Valid values are defined in
the sys/audit.h file and are listed in the auditlog subroutine.

Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note

that numerical values must be passed by reference. The correct size
can be computed with the sizeof C function.

Lengtht, Length2 Specifies the lengths of the corresponding buffers.

Return Values

If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a
value of —1 is returned and the errno global variable is set to indicate the error.

Error Codes
The auditwrite subroutine fails if the following is true:
ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.
Other error codes are returned by the auditlog subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The auditlog subroutine, setpcred subroutine.

The inittab file.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-59

authenticate Subroutine

Purpose

Library

Syntax

Verifies a user’s name and password.

Security Library (libc.a)

#include <stddef.h>

int authenticate (UserName, Response, Reenter, Message)
wchar_t *UserName;

wchar_t *Response;

int *Reenter;

wchar_t **Message;

Description

The authenticate subroutine maintains requirements users must satisfy to be authenticated
to the system. It is a recallable interface that prompts for the user’'s name and password.
The user must supply a character string at the prompt issued by the Message parameter.
The Response parameter returns the user’s response to the authenticate subroutine. The
calling program makes no assumptions about the number of prompt messages the user
must satisfy for authentication.

The Reenter parameter remains a nonzero value until the user satisfies all prompt
messages or answers incorrectly. Once the Reenter parameter is zero, the return code
signals whether authentication passed or failed.

The authenticate subroutine ascertains the authentication domains the user can attempt.
The subroutine reads the SYSTEM line from the user’s stanza in the /etc/security/user file.
Each token that appears in the SYSTEM line corresponds to a method that can be
dynamically loaded and processed. Likewise, the system can provide multiple or alternate
authentication paths.

The authenticate routine maintains internal state information concerning the next prompt
message presented to the user. If the calling program supplies a different user name before
all prompts are complete for the user, the internal state information is reset and prompt
messages begin again.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no
authentication required, the user is not required to respond to any prompt messages.
Otherwise, the user is always initially prompted to supply a password.

The authenticate subroutine can be called initially with the cleartext password in the
Response parameter. If the user supplies a password during the initial invocation but does
not have a password, authentication fails. If the user wants the authenticate subroutine to
supply a prompt message, the Response parameter is a null pointer on initial invocation.

The authenticate subroutine sets the AUTHSTATE environment variable used by name
resolution subroutines, such as the getpwnam subroutine. This environment variable
indicates the registry to which to user authenticated. Values for the AUTHSTATE
environment variable include DCE, compat, and token names that appear in a SYSTEM
grammar. A null value can exist if the cron daemon or other utilities that do not require
authentication is called.

1-60 Technical Reference: Base Operating System

Parameters

UserName
Response

Reenter

Message

Return Values

Points to the user’s name that is to be authenticated.

Specifies a character string containing the user’s response to an
authentication prompt.

Points to a Boolean value that signals whether the authenticate
subroutine has completed processing. If the Reenter parameter is a
nonzero value, the authenticate subroutine expects the user to satisfy
the prompt message provided by the Message parameter. If the
Reenter parameter is 0, the authenticate subroutine has completed
processing.

Points to a pointer that the authenticate subroutine allocates memory
for and fills in. This string is suitable for printing and issues prompt
messages (if the Reenter parameter is a nonzero value). It also issues
informational messages such as why the user failed authentication (if
the Reenter parameter is 0). The calling application is responsible for
freeing this memory.

Upon successful completion, the authenticate subroutine returns a value of 0. If this
subroutine fails, it returns a value of 1.

Error Codes

The authenticate subroutine is unsuccessful if one of the following values is true:

ENOENT
ESAD
EINVAL
ENOMEN

Indicates that the user is unknown to the system.
Indicates that authentication is denied.

Indicates that the parameters are not valid.
Indicates that memory allocation (malloc) failed.

Note: The DCE mechanism requires credentials on successful authentication that apply
only to the authenticate process and its children.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The ckuserID subroutine.

Base Operating System Runtime Services (A-P) 1-61

basename Subroutine

Purpose

Library

Return the last element of a path name.

Standard C Library (libc.a)

Syntax#include <libgen.h>char *basename (char *path)

Description

Given a pointer to a character string that contains a path name, the basename subroutine
deletes trailing ”/” characters from path, and then returns a pointer to the last component of
path. The */” character is defined as trailing if it is not the first character in the string.

If path is a null pointer or points to an empty string, a pointer to a static constant ”.” is
returned.

Return Values

Examples

The basename function returns a pointer to the last component of path.

The basename function returns a pointer to a static constant ”.” if path is a null pointer or
points to an empty string.

The basename function may modify the string pointed to by path and may return a pointer
to static storage that may then be overwritten by a subsequent call to the basename
subroutine.

Input string QOutput string
"/usr/lib” "lib”

"lusr/” usr”

" np

Implementation Specifics

This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The dirname subroutine.

1-62 Technical Reference: Base Operating System

bcopy, bcmp, bzero or ffs Subroutine

Purpose
Performs bit and byte string operations.

Library
Standard C Library (libc.a)

Syntax

#include <strings.h>

void bcopy (Source, Destination, Length)
const void *Source,

char *Destination;

size_t Length;

int bemp (String1, String2, Length)
const void *String1, *String2;

size_t Length;

void bzero (String,Length)
char *String;
int Length;

int ffs (/ndex)
int /ndex;

Description
Note: The bcopy subroutine takes parameters backwards from the strcpy subroutine.

The bcopy, bcmp, and bzero subroutines operate on variable length strings of bytes. They
do not check for null bytes as do the string routines.

The becopy subroutine copies the value of the Length parameter in bytes from the string in
the Source parameter to the string in the Destination parameter.

The bemp subroutine compares the byte string in the String? parameter against the byte
string of the String2 parameter, returning a zero value if the two strings are identical and a
nonzero value otherwise. Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the
Length parameter in bytes.

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the
index of that bit. Bits are numbered starting at 1. A return value of 0 indicates that the value
passed is 0.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The memcmp, memccpy, memchr, memcpy, memmove, memset subroutines, strcat,
strncat, strxfrm, strcpy, strncpy, or strdup subroutine, stremp, strncmp, strcasecmp,
strncasecmp, or strcoll subroutine, strlen, strchr, strrchr, strpbrk, strspn, strcspn,
strstr, or strtok subroutine, swab subroutine.

List of String Manipulation Services and Subroutines Overview in AlX General Programming
Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-63

bessel: jO, j1, jn, YO0, y1, or yn Subroutine

Purpose
Computes Bessel functions.
Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Syntax
#include <math.h>
double jO (x)
double x;
double jl (x)
double x;
double jn (n, x)
int n;
double x;
double y0 (x)
double x;
double yl (x)
double x;
double yn (n, x)
int n;
double x;
Description
Bessel functions are used to compute wave variables, primarily in the field of
communications.
The jO subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0
and 1, respectively. The jn subroutine returns the Bessel function of x of the first kind of
order n.
The y0 subroutine and y1 subroutine return the Bessel functions of x of the second kind, of
orders 0 and 1, respectively. The yn subroutine returns the Bessel function of x of the
second kind of order n. The value of x must be positive.
Note: Compile any routine that uses subroutines from the libm.a library with the —Im flag.
To compile the jO.c file, for example:
cc j0.c —-1m
Parameters

Specifies some double—precision floating—point value.
Specifies some integer value.

Return Values

When using libm.a (-Im), if x is negative, y0, y1, and yn return the value NaNQ. If xis 0,
y0, y1, and yn return the value —-HUGE_VAL.

When using libmsaa.a (—Imsaa), values too large in magnitude cause the functions jo0, j1,
y0, and y1 to return 0 and to set the errno global variable to ERANGE. In addition, a
message indicating TLOSS error is printed on the standard error output.

1-64 Technical Reference: Base Operating System

Nonpositive values cause y0, y1, and yn to return the value —-HUGE and to set the errno
global variable to EDOM. In addition, a message indicating argument DOMAIN error is
printed on the standard error output.

These error—handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-65

bindprocessor Subroutine

Purpose

Binds kernel threads to a processor.

Library

Standard C library (libc.a)

Syntax

#include <sys/processor.h>

int bindprocessor (What, Who, Where)

int What;
int Who;

cpu_t Where;

Description

The bindprocessor subroutine binds a single kernel thread, or all kernel threads in a
process, to a processor, forcing the bound threads to be scheduled to run on that processor.
It is important to understand that a process itself is not bound, but rather its kernel threads
are bound. Once kernel threads are bound, they are always scheduled to run on the chosen
processor, unless they are later unbound. When a new thread is created, it has the same
bind properties as its creator. This applies to the initial thread in the new process created by
the fork subroutine: the new thread inherits the bind properties of the thread which called
fork. When the exec subroutine is called, thread properties are left unchanged.

Parameters

What

Who

Where

Return Values

Specifies whether a process or a thread is being bound to a processor.
The What parameter can take one of the following values:

BINDPROCESS A process is being bound to a processor.

BINDTHREAD A thread is being bound to a processor.

Indicates a process or thread identifier, as appropriate for the What
parameter, specifying the process or thread which is to be bound to a
processor.

If the Where parameter is a logical processor identifier, it specifies the
processor to which the process or thread is to be bound. A value of
PROCESSOR_CLASS_ANY unbinds the specified process or thread,
which will then be able to run on any processor.

The sysconf subroutine can be used to retrieve information about the
number of processors in the system.

On successful completion, the bindprocessor subroutine returns 0. Otherwise, a value of
—1 is returned, and the errno global variable is set to indicate the error.

Error Codes

The bindprocessor subroutine is unsuccessful if one of the following is true:

1-66 Technical Reference: Base Operating System

EINVAL The What parameter is invalid, or the Where parameter indicates an
invalid processor number or a processor class which is not currently

available.
ESRCH The specified process or thread does not exist.
EPERM The caller does not have root user authority, and the Who parameter

specifies either a process, or a thread belonging to a process, having a
real or effective user ID different from that of the calling process.

Implementation Specifics
The bindprocessor subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The bindprocessor command.

The exec subroutine, fork subroutine, sysconf subroutine, thread_self subroutine.

Controlling Processor Use in AlX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-67

brk or sbrk Subroutine

Purpose
Changes data segment space allocation.
Library
Standard C Library (libc.a)
Syntax
#include <unistd .h>
int brk (EndDataSegment)
char *EndDataSegment;
void *sbrk (Increment)
intptr_t Increment;
Description
The brk and sbrk subroutines dynamically change the amount of space allocated for the
data segment of the calling process. (For information about segments, see the exec
subroutine. For information about the maximum amount of space that can be allocated, see
the ulimit and getrlimit subroutines.)
The change is made by resetting the break value of the process, which determines the
maximum space that can be allocated. The break value is the address of the first location
beyond the current end of the data region. The amount of available space increases as the
break value increases. The available space is initialized to a value of 0 at the time it is used.
The break value can be automatically rounded up to a size appropriate for the memory
management architecture.
The brk subroutine sets the break value to the value of the EndDataSegment parameter
and changes the amount of available space accordingly.
The sbrk subroutine adds to the break value the number of bytes contained in the
Increment parameter and changes the amount of available space accordingly. The
Increment parameter can be a negative number, in which case the amount of available
space is decreased.
Parameters

EndDataSegment Specifies the effective address of the maximum available data.
Increment Specifies any integer.

Return Values

Upon successful completion, the brk subroutine returns a value of 0, and the sbrk
subroutine returns the old break value. If either subroutine is unsuccessful, a value of —1 is
returned and the errno global variable is set to indicate the error.

Error Codes

The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space
remains unchanged if one or more of the following are true:

1-68 Technical Reference: Base Operating System

ENOMEM The requested change allocates more space than is allowed by a
system—imposed maximum. (For information on the system—imposed
maximum on memory space, see the ulimit system call.)

ENOMEM The requested change sets the break value to a value greater than or
equal to the start address of any attached shared—memory segment.
(For information on shared memory operations, see the shmat
subroutine.)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The exec subroutines, getrlimit subroutine, shmat subroutine, shmdt subroutine, ulimit
subroutine.

The _end, _etext, or _edata identifier.

Subroutine Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-69

bsearch Subroutine

Purpose
Performs a binary search.
Library
Standard C Library (libc.a)
Syntax
#include <stdlib.h>
void *bsearch (Key, Base, NumberOfElements, Size,
ComparisonPointer)
const void *Key;
const void *Base;
size_t NumberOfElements;
size_t Size;
int (*ComparisonPointer) (const void *, const void *);
Description
The bsearch subroutine is a binary search routine.
The bsearch subroutine searches an array of NumberOfElements objects, the initial
member of which is pointed to by the Base parameter, for a member that matches the object
pointed to by the Key parameter. The size of each member in the array is specified by the
Size parameter.
The array must already be sorted in increasing order according to the provided comparison
function ComparisonPointer parameter.
Parameters
Key Points to the object to be sought in the array.
Base Points to the element at the base of the table.

NumberOfElements Specifies the number of elements in the array.

ComparisonPointer Points to the comparison function, which is called with two
arguments that point to the Key parameter object and to an array
member, in that order.

Size Specifies the size of each member in the array.

Return Values

If the Key parameter value is found in the table, the bsearch subroutine returns a pointer to
the element found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the null
value. If two members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter, the comparison function compares its parameters
and returns a value as follows:

¢ [f the first parameter is less than the second parameter, the ComparisonPointer
parameter returns a value less than 0.

o [f the first parameter is equal to the second parameter, the ComparisonPointer parameter
returns a value of 0.

1-70 Technical Reference: Base Operating System

¢ |f the first parameter is greater than the second parameter, the ComparisonPointer
parameter returns a value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained
in the elements in addition to the values being compared.

The Key and Base parameters should be of type pointer—to—element and cast to type
pointer—to—character. Although declared as type pointer—to—character, the value returned
should be cast into type pointer—to—element.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The hsearch subroutine, Isearch subroutine, gsort subroutine.

Knuth, Donald E.; The Art of Computer Programming, Volume 3. Reading, Massachusetts,
Addison—Wesley, 1981.

Searching and Sorting Example Program and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-71

btowc Subroutine

Purpose
Single—byte to wide—character conversion.
Library
Standard Library (libc.a)
Syntax
#include <stdio.h>
#include <wchar.h>
wint_t btowc (intc);
Description

The btowc function determines whether c constitutes a valid (one—byte) character in the
initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values

The btowc function returns WEOF if ¢ has the value EOF or if (unsigned char) ¢ does not
constitute a valid (one—byte) character in the initial shift state. Otherwise, it returns the
wide—character representation of that character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wctob subroutine, the wehatr.h file.

1-72 Technical Reference: Base Operating System

_check _lock Subroutine

Purpose
Conditionally updates a single word variable atomically.
Library
Standard C library (libc.a)
Syntax
#include <sys/atomic_op.h>
boolean_t _check_lock (word addr, old val, new_val)
atomic_p word_addr;
int old val;
int new_val;
Parameters
word_addr Specifies the address of the single word variable.
old _val Specifies the old value to be checked against the value of the single word
variable.
new_val Specifies the new value to be conditionally assigned to the single word
variable.
Description

The _check_lock subroutine performs an atomic (uninterruptible) sequence of operations.
The compare_and_swap subroutine is similar, but does not issue synchronization
instructions and therefore is inappropriate for updating lock words.

Note: The word variable must be aligned on a full word boundary.

Return Values

FALSE Indicates that the single word variable was equal to the old value and has
been set to the new value.
TRUE Indicates that the single word variable was not equal to the old value and has

been left unchanged.

Related Information
The _clear_lock subroutine, _safe_fetch subroutine.

Base Operating System Runtime Services (A-P) 1-73

_clear_lock Subroutine

Purpose
Stores a value in a single word variable atomically.
Library
Standard C library (libc.a)
Syntax
#include <sys/atomic_op.h>
void _clear lock (word _addr, value)
atomic_p word_addr;
int value
Parameters
word_addr Specifies the address of the single word variable.
value Specifies the value to store in the single word variable.
Description

The _clear_lock subroutine performs an atomic (uninterruptible) sequence of operations.
This subroutine has no return values.

Note: The word variable must be aligned on a full word boundary.

Related Information
The _check_lock subroutine, _safe_fetch subroutine.

1-74 Technical Reference: Base Operating System

catclose Subroutine

Purpose
Closes a specified message catalog.
Library
Standard C Library (libc.a)
Syntax
#include <nl_types.h>
int catclose (CatalogDescriptor)
nl_catd CatalogDescriptor;
Description
The catclose subroutine closes a specified message catalog. If your program accesses
several message catalogs and you reach the maximum number of opened catalogs
(specified by the NL_MAXOPEN constant), you must close some catalogs before opening
additional ones. If you use a file descriptor to implement the nl_catd data type, the catclose
subroutine closes that file descriptor.
The catclose subroutine closes a message catalog only when the number of calls it
receives matches the total number of calls to the catopen subroutine in an application. All
message buffer pointers obtained by prior calls to the catgets subroutine are not valid when
the message catalog is closed.
Parameters

CatalogDescriptor Points to the message catalog returned from a call to the
catopen subroutine.

Return Values

The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the
number of calls it receives is fewer than the number of calls to the catopen subroutine.

The catclose subroutine returns a value of —1 if it does not succeed in closing the catalog.
The catclose subroutine is unsuccessful if the number of calls it receives is greater than the
number of calls to the catopen subroutine, or if the value of the CatalogDescriptor
parameter is not valid.

Implementation Specifics

This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The catgets subroutine, catopen subroutine.

For more information about the Message Facility, see Message Facility Overview for
Programming in AIX General Programming Concepts : Writing and Debugging Programs.

For more information about subroutines and libraries, see Subroutines Overview in AlX
General Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-75

catgets Subroutine

Purpose
Retrieves a message from a catalog.

Library
Standard C Library (libc.a)

Syntax

#include <nl_types>

char *catgets (CatalogDescriptor, SetNumber, MessageNumber, Strin

9)

nl_catd CatalogDescriptor;
int SetNumber, MessageNumber;
const char *String;

Description

The catgets subroutine retrieves a message from a catalog after a successful call to the
catopen subroutine. If the catgets subroutine finds the specified message, it loads it into an
internal character string buffer, ends the message string with a null character, and returns a
pointer to the buffer.

The catgets subroutine uses the returned pointer to reference the buffer and display the
message. However, the buffer can not be referenced after the catalog is closed.

Parameters

CatalogDescriptor ~ Specifies a catalog description that is returned by the catopen
subroutine.

SetNumber Specifies the set ID.

MessageNumber Specifies the message ID. The SetNumber and MessageNumber
parameters specify a particular message to retrieve in the catalog.

String Specifies the default character—string buffer.

Return Values

If the catgets subroutine is unsuccessful for any reason, it returns the user—supplied default
message string specified by the String parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The catclose subroutine, catopen subroutine.

For more information about the Message Facility, see Message Facility Overview for
Programming in AIX General Programming Concepts : Writing and Debugging Programs.

For more information about subroutines and libraries, see Subroutines Overview in A/X
General Programming Concepts : Writing and Debugging Programs.

1-76 Technical Reference: Base Operating System

catopen Subroutine

Purpose
Opens a specified message catalog.
Library
Standard C Library (libc.a)
Syntax
#include <nl_types.h>
nl_catd catopen (CatalogName, Parameter)
const char *CatalogName;
int Parameter;
Description

The catopen subroutine opens a specified message catalog and returns a catalog
descriptor used to retrieve messages from the catalog. The contents of the catalog
descriptor are complete when the catgets subroutine accesses the message catalog. The
nl_catd data type is used for catalog descriptors and is defined in the nl_types.h file.

If the catalog file name referred to by the CatalogName parameter contains a leading

/ (slash), it is assumed to be an absolute path name. If the catalog file name is not an
absolute path name, the user environment determines which directory paths to search. The
NLSPATH environment variable defines the directory search path. When this variable is
used, the setlocale subroutine must be called before the catopen subroutine.

A message catalog descriptor remains valid in a process until that process or a successful
call to one of the exec functions closes it.

You can use two special variables, %N and %L, in the NLSPATH environment variable. The
%N variable is replaced by the catalog name referred to by the call that opens the message
catalog. The %L variable is replaced by the value of the LC_MESSAGES category.

The value of the LC_MESSAGES category can be set by specifying values for the LANG,
LC_ALL, or LC_MESSAGES environment variable. The value of the LC_MESSAGES
category indicates which locale—specific directory to search for message catalogs. For
example, if the catopen subroutine specifies a catalog with the name mycmd, and the
environment variables are set as follows:

NLSPATH=../%N:./%N:/system/nls/%$L/%N:/system/nls/%N LANG=fr_FR
then the application searches for the catalog in the following order:

. ./mycmd

. /mycmd
/system/nls/fr_FR/mycmd
/system/nls/mycmd

If you omit the %N variable in a directory specification within the NLSPATH environment
variable, the application assumes that it defines a catalog name and opens it as such and
will not traverse the rest of the search path.

If the NLSPATH environment variable is not defined, the catopen subroutine uses the
default path. See the /etc/environment file for the NLSPATH default path. If the
LC_MESSAGES category is set to the default value C, and the LC__ FASTMSG
environment variable is set to t rue, then subsequent calls to the catgets subroutine
generate pointers to the program—supplied default text.

The catopen subroutine treats the first file it finds as a message file. If you specify a
non—message file in a NLSPATH, for example, /usr/bin/ls, catopen treats /usr/bin/ls as a

Base Operating System Runtime Services (A-P) 1-77

message catalog. Thus no messages are found and default messages are returned. If you
specify /tmp in a NLSPATH, /tmp is opened and searched for messages and default
messages are displayed.

Parameters

CatalogName Specifies the catalog file to open.

Parameter Determines the environment variable to use in locating the message
catalog. If the value of the Parameter parameter is 0, use the LANG
environment variable without regard to the LC_MESSAGES category to
locate the catalog. If the value of the Parameter parameter is the
NL_CAT_LOCALE macro, use the LC_MESSAGES category to locate
the catalog.

Return Values

The catopen subroutine returns a catalog descriptor. If the LC_MESSAGES category is set
to the default value C, and the LC__ FASTMSG environment variable is set to true, the
catopen subroutine returns a value of —1.

If the LC_MESSAGES category is not set to the default value C but the catopen subroutine
returns a value of —1, an error has occurred during creation of the structure of the nl_catd
data type or the catalog name referred to by the CatalogName parameter does not exist.

Implementation Specifics

This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

1-78

The catclose subroutine, catgets subroutine, exec subroutines, setlocale subroutine.
The environment file.

For more information about the Message Facility, see the Message Facility Overview for
Programming in AIX General Programming Concepts : Writing and Debugging Programs.

For more information about subroutines and libraries, see the Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

Technical Reference: Base Operating System

ccsidtocs or cstoccsid Subroutine

Purpose

Provides conversion between coded character set IDs (CCSID) and code set names.
Library

The iconv Library (libiconv.a)
Syntax

#include <iconv.h>

CCSID cstocecsid (*Codeset)
const char *Codeset;

char *ccsidtocs (CCSID)
CCSID CCSID;

Description

The estoccsid subroutine returns the CCSID of the code set specified by the Codeset
parameter. The ccsidtocs subroutine returns the code set name of the CCSID specified by
CCSID parameter. CCSIDs are registered Bull coded character set IDs.

Parameters
Codeset Specifies the code set name to be converted to its
corresponding CCSID.
CCSID Specifies the CCSID to be converted to its corresponding

code set name.

Return Values

If the code set is recognized by the system, the cstoccsid subroutine returns the
corresponding CCSID. Otherwise, null is returned.

If the CCSID is recognized by the system, the cesidtocs subroutine returns the
corresponding code set name. Otherwise, a null pointer is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

For more information about code set conversion, see Converters Overview for Programming
in AIX General Programming Concepts : Writing and Debugging Programs.

The National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-79

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed
Subroutine

Purpose

Library

Syntax

Gets and sets input and output baud rates.

Standard C Library (libc.a)

#include <termios.h>

speed_t cfgetospeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetospeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

speed_t cfgetispeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetispeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

Description

1-80

The baud rate subroutines are provided for getting and setting the values of the input and
output baud rates in the termios structure. The effects on the terminal device described
below do not become effective and not all errors are detected until the tcsetattr function is
successfully called.

The input and output baud rates are stored in the termios structure. The supported values
for the baud rates are shown in the table that follows this discussion.

The termios.h file defines the type speed_t as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed
to by the TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and
passed to the tcsetattr function. These values are discussed in the tcsetattr subroutine.

The following table lists possible baud rates:

Technical Reference: Base Operating System

Baud Rate Values

Name Description Name Description
BO Hang up B600 600 baud
B5 50 baud B1200 1200 baud
B75 75 baud B1800 1800 baud
B110 110 baud B2400 2400 baud
B134 134 baud B4800 4800 baud
B150 150 baud B9600 9600 baud
B200 200 baud B19200 19200 baud
B300 300 baud B38400 38400 baud

The termios.h file defines the name symbols of the table.

Parameters

TermiosPointer Points to a termios structure.
Speed Specifies the baud rate.

Return Values

The cfgetospeed and cfgetispeed subroutines return exactly the value found in the
termios data structure, without interpretation.

Both the cfsetospeed and cfsetispeed subroutines return a value of 0 if successful and —1
if unsuccessful.

Examples

To set the output baud rate to 0 (which forces modem control lines to stop being asserted),
enter:

cfsetospeed (&my_termios, BO);
tcsetattr (stdout, TCSADRAIN, &my_termios);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The tcsetattr subroutine.

The termios.h file.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-81

chacl or fchacl Subroutine

Purpose

Library

Syntax

Changes the permissions on a file.

Standard C Library (libc.a)

#include <sys/acl.h>
#include <sys/mode.h>

int chacl (Path, ACL, ACLSize)

char *Path;

struct acl *ACL;
int ACLSize;

int fchacl (FileDescriptor, ACL, ACLSize)
int FileDescriptor;

struct acl *ACL;

int ACLSize;

Description

The chacl and fchacl subroutines set the access control attributes of a file according to the
Access Control List (ACL) structure pointed to by the ACL parameter.

Parameters

Path
ACL

Specifies the path name of the file.

Specifies the ACL to be established on the file. The format of an ACL is
defined in the sys/acl.h file and contains the following members:

acl_len Specifies the size of the ACL (Access Control List) in
bytes, including the base entries.

Note: The entire ACL for a file cannot exceed one memory page (4096
bytes).

acl_mode Specifies the file mode.

The following bits in the acl_mode member are defined in the
sys/mode.h file and are significant for this subroutine:

S ISUID Enables the setuid attribute on an executable file.

S_ISGID Enables the setgid attribute on an executable file.
Enables the group—inheritance attribute on a directory.

S_ISVTX Enables linking restrictions on a directory.

S_IXACL Enables extended ACL entry processing. If this

attribute is not set, only the base entries (owner, group,
and default) are used for access authorization checks.

Other bits in the mode, including the following, are ignored:

u_access Specifies access permissions for the file owner.

g_access Specifies access permissions for the file group.

0_access Specifies access permissions for the default class of
others.

1-82 Technical Reference: Base Operating System

acl_ext[] Specifies an array of the extended entries for this
access control list.

The members for the base ACL (owner, group, and others) can contain
the following bits, which are defined in the sys/access.h file:

R_ACC Allows read permission.
W_ACC Allows write permission.
X_ACC Allows execute or search permission.

FileDescriptor ~ Specifies the file descriptor of an open file.
ACLSize Specifies the size of the buffer containing the ACL.

Note: The chacl subroutine requires the Path, ACL, and ACLSize parameters. The fchacl
subroutine requires the FileDescriptor, ACL, and ACLSize parameters.

ACL Data Structure for chacl
Each access control list structure consists of one struct acl structure containing one or
more struct acl_entry structures with one or more struct ace_id structures.

If the struct ace_id structure has id_type set to ACEID_USER or ACEID_GROUP, there is
only one id_data element. To add multiple IDs to an ACL you must specify multiple struct
ace_id structures when id_type is set to ACEID_USER or ACEID_GROUP. In this case, no
error is returned for the multiple elements, and the access checking examines only the first
element. Specifically, the errno value EINVAL is not returned for acl/_len being incorrect in
the ACL structure although more than one uid or gid is specified.

Return Values

Upon successful completion, the chacl and fchacl subroutines return a value of 0. If the
chacl or fchacl subroutine fails, a value of —1 is returned, and the errno global variable is
set to indicate the error.

Error Codes

The chacl subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ESTALE The process’ root or current directory is located in a virtual file
system that has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

The chacl or fchacl subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

Base Operating System Runtime Services (A-P) 1-83

EROFS The file specified by the Path parameter resides on a read—only file

system.

EFAULT The ACL parameter points to a location outside of the allocated address
space of the process.

EINVAL The ACL parameter does not point to a valid ACL.

EINVAL The acl_len member in the ACL is not valid.

EIO An 1/O error occurred during the operation.

ENOSPC The size of the ACL parameter exceeds the system limit of one memory
page (4KB).

EPERM The effective user ID does not match the ID of the owner of the file, and

the invoker does not have root user authority.
The fchacl subroutine fails and the file permissions remain unchanged if the following is
true:
EBADF The file descriptor FileDescriptor is not valid.
If Network File System (NFS) is installed on your system, the chacl and fchacl subroutines

can also fail if the following is true:

ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path
prefix.

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The acl_chg subroutine, acl_get subroutine, acl_put subroutine, acl_set subroutine,
chmod subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-84 Technical Reference: Base Operating System

chdir Subroutine

Purpose
Changes the current directory.
Library
Standard C Library (libc.a)
Syntax
#include <unistd.h>
int chdir (Path)
const char *Path;
Description
The chdir subroutine changes the current directory to the directory indicated by the Path
parameter.
Parameters
Path A pointer to the path name of the directory. If the Path parameter refers to a

symbolic link, the chdir subroutine sets the current directory to the directory
pointed to by the symbolic link. If Network File System (NFS) is installed on
the system, this path can cross into another node.

The current directory, also called the current working directory, is the starting point of
searches for path names that do not begin with a / (slash). The calling process must have
search access to the directory specified by the Path parameter.

Return Values

Upon successful completion, the chdir subroutine returns a value of 0. Otherwise, a value
of —1 is returned and the errno global variable is set to identify the error.

Error Codes

The chdir subroutine fails and the current directory remains unchanged if one or more of
the following are true:

EACCES Search access is denied for the named directory.
ENOENT The named directory does not exist.
ENOTDIR The path name is not a directory.

The chdir subroutine can also be unsuccessful for other reasons. See "Appendix A. Base
Operating System Error Codes for Services That Require Path—Name Resolution”, on page
A-1 for a list of additional error codes.

If NFS is installed on the system, the chdir subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chroot subroutine.

Base Operating System Runtime Services (A-P) 1-85

The ed command.

Base Operating System Error Codes for Services That Require Path—Name Resolution, on
page A-1.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-86 Technical Reference: Base Operating System

chmod or fchmod Subroutine

Purpose
Changes file access permissions.

Library
Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int chmod (Path, Mode)
const char *Path;
mode_t Mode;

int fchmod (FileDescriptor, Mode)
int FileDescriptor;
mode_t Mode;

Description
The chmod subroutine sets the access permissions of the file specified by the Path
parameter. If Network File System (NFS) is installed on your system, this path can cross into
another node.

Use the fchmod subroutine to set the access permissions of an open file pointed to by the
FileDescriptor parameter.

The access control information is set according to the Mode parameter.

Parameters

FileDescriptor ~ Specifies the file descriptor of an open file.

Mode Specifies the bit pattern that determines the access permissions. The
Mode parameter is constructed by logically ORing one or more of the
following values, which are defined in the sys/mode.h file:

S_ISUID Enables the setuid attribute for an executable file. A
process executing this program acquires the access
rights of the owner of the file.

S_ISGID Enables the setgid attribute for an executable file. A
process executing this program acquires the access
rights of the group of the file. Also, enables the
group—inheritance attribute for a directory. Files created
in this directory have a group equal to the group of the
directory.

The following attributes apply only to files that are directly executable.
They have no meaning when applied to executable text files such as
shell scripts and awk scripts.

S_ISVTX Enables the link/unlink attribute for a directory. Files
cannot be linked to in this directory. Files can only be
unlinked if the requesting process has write permission
for the directory and is either the owner of the file or the
directory.

S_ISVTX Enables the save text attribute for an executable file.
The program is not unmapped after usage.

Base Operating System Runtime Services (A-P) 1-87

S_ENFMT Enables enforcement—mode record locking for a
regular file. File locks requested with the lockf
subroutine are enforced.

S_IRUSR Permits the file’s owner to read it.

S _IWUSR Permits the file’s owner to write to it.

S_IXUSR Permits the file’s owner to execute it (or to search the
directory).

S_IRGRP Permits the file’s group to read it.
S_IWGRP Permits the file’s group to write to it.

S_IXGRP Permits the file’s group to execute it (or to search the
directory).

S IROTH Permits others to read the file.

S IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the
directory).

Other mode values exist that can be set with the mknod subroutine but
not with the chmod subroutine.

Path Specifies the full path name of the file.

Return Values

Upon successful completion, the chmod subroutine and fchmod subroutines return a value
of 0. If the chmod subroutine or fchmod subroutine is unsuccessful, a value of —1 is
returned, and the errno global variable is set to identify the error.

Error Codes

The chmod subroutine is unsuccessful and the file permissions remain unchanged if one of
the following is true:

ENOTDIR A component of the Path prefix is not a directory.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT The named file does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

The fchmod subroutine is unsuccessful and the file permissions remain unchanged if the
following is true:

EBADF The value of the FileDescriptor parameter is not valid.

The chmod or fchmod subroutine is unsuccessful and the access control information for
a file remains unchanged if one of the following is true:

EPERM The effective user ID does not match the owner of the file, and the
process does not have appropriate privileges.

EROFS The named file resides on a read—only file system.

EIO An 1/O error occurred during the operation.

If NFS is installed on your system, the chmod and fchmod subroutines can also be
unsuccessful if the following is true:

1-88 Technical Reference: Base Operating System

ESTALE The root or current directory of the process is located in a virtual file
system that has been unmounted.

ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path
prefix.

If you receive the EBUSY error, toggle the enforced locking attribute in the Mode
parameter and retry your operation. The enforced locking attribute should never be used
on a file that is part of the Trusted Computing Base.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The acl_chg subroutine, acl_get subroutine, acl_put subroutine, acl_set subroutine, chacl
subroutine, statacl subroutine, stat subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-89

chown, fchown, Ichown, chownx, or fchownx Subroutine

Purpose
Changes file ownership.

Library
Standard C Library (libc.a)

Syntax

Syntax for the chown, fchown, and Ichown Subroutines: #include <sys/types.h>
#include <unistd.h>

int chown (Path, Owner, Group)
const char *Path;

uid_t Owner,;

gid_t Group;

int fchown (FileDescriptor, Owner, Group)
int FileDescriptor;

uid_t Owner;

gid_t Group;

int Ichown (Path, Owner, Group)
const char *fname

uid_t uid

gid_tgid

Syntax for the chownx and fchownx Subroutines: #include <sys/types.h>
#include <sys/chownx.h>

int chownx (Path, Owner, Group, Flags)
char *Path;

uid_t Owner,;

gid_t Group;

int Flags;

int fchownx (FileDescriptor, Owner, Group, Flags)
int FileDescriptor;

uid_t Owner,;

gid_t Group;

int Flags;

Description
The chown, chownx, fchown, fchownx, and Ichown subroutines set the file owner and
group IDs of the specified file system object. Root user authority is required to change the
owner of a file.

A function Ichown function sets the owner ID and group ID of the named file similarity to
chown function except in the case where the named file is a symbolic link. In this case
Ichown function changes the ownership of the symbolic link file itself, while chown function
changes the ownership of the file or directory to which the symbolic link refers.

1-90 Technical Reference: Base Operating System

Parameters

FileDescriptor ~ Specifies the file descriptor of an open file.

Flags Specifies whether the file owner ID or group ID should be changed. This
parameter is constructed by logically ORing the following values:

T_OWNER_AS_IS Ignores the value specified by the Owner
parameter and leaves the owner ID of the file
unaltered.

T_GROUP_AS_IS Ignores the value specified by the Group
parameter and leaves the group ID of the file
unaltered.

Group Specifies the new group of the file. If this value is —1, the group is not
changed. (A value of —1 indicates only that the group is not changed; it
does not indicate a group that is not valid. An owner or group ID cannot
be invalid.)

Owner Specifies the new owner of the file. If this value is —1, the owner is not
changed. (A value of —1 indicates only that the group is not changed; it
does not indicate a group that is not valid. An owner or group ID cannot
be invalid.)

Path Specifies the full path name of the file. If Path resolves to a symbolic
link, the ownership of the file or directory pointed to by the symbolic link
is changed.

Return Values
Upon successful completion, the chown, chownx, fchown, fchownx, and Ichown
subroutines return a value of 0. If the chown, chownx, fchown, fchownx, or Ichown
subroutine is unsuccessful, a value of —1 is returned and the errno global variable is set to
indicate the error.

Error Codes

The chown, chownx, or Ichown subroutine is unsuccessful and the owner and group of a
file remain unchanged if one of the following is true:

EACCESS Search permission is denied on a component of the Path parameter.

EDQUOT The new group for the file system object cannot be set because the
group’s quota of disk blocks or i-nodes has been exhausted on the
file system.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

EINVAL The owner or group ID supplied is not valid.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOENT A symbolic link was named, but the file to which it refers does not
exist; or a component of the Path parameter does not exist; or the
process has the disallow truncation attribute set; or the Path
parameter is null.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID does not match the owner of the file, and the
calling process does not have the appropriate privileges.

Base Operating System Runtime Services (A-P) 1-91

EROFS The named file resides on a read—only file system.

ESTALE The root or current directory of the process is located in a virtual file
system that has been unmounted.

The fchown or fchownx subroutine is unsuccessful and the file owner and group remain
unchanged if one of the following is true:

EBADF The named file resides on a read—only file system.

EDQUOT The new group for the file system object cannot be set because the
group’s quota of disk blocks or i-nodes has been exhausted on the file
system.

EIO An 1/O error occurred during the operation.

Security

Access Control: The invoker must have search permission for all components of the Path
parameter.

1-92 Technical Reference: Base Operating System

chpass Subroutine

Purpose
Changes file access permissions.

Library
Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax

#include <stddef.h>

int chpass (UserName, Response, Reenter, Message)
wchar t *UserName;

wchar_t *Response;

int *Reenter;

wchar_t **Message;

Description
The chpass subroutine maintains the requirements that the user must meet to change a
password. This subroutine is the basic building block for changing passwords and handles
password changes for local, NIS, and DCE user passwords.

The Message parameter provides a series of messages asking for old and new passwords,
or providing informational messages, such as the reason for a password change failing. The
first Message prompt is a prompt for the old password. This parameter does not prompt for
the old password if the user has a real user ID of 0 (zero) and is changing a local user, or if
the user has no current password. The chpass subroutine does not prompt a user with root
authority for an old password. It informs the program that no message was sent and that it
should invoke chpass again. If the user satisfies the first Message parameter’s prompt, the
system prompts the user to enter the new password. Each message is contained in the
Message parameter and is displayed to the user. The Response parameter returns the
user’s response to the chpass subroutine.

The Reenter parameter remains a nonzero value until the user satisfies all of the prompt
messages or until the user incorrectly responds to a prompt message. Once the Reenter
parameter is 0, the return code signals whether the password change completed or failed.

The chpass subroutine maintains internal state information concerning the next prompt
message to present to the user. If the calling program supplies a different user name before
all prompt messages are complete for the user, the internal state information is reset and
prompt messages begin again.

The chpass subroutine determines the administration domain to use during password
changes. It determines if the user is defined locally, defined in Network Information Service
(NIS), or defined in Distributed Computing Environment (DCE). Password changes occur
only in these domains. System administrators may override this convention with the registry
value in the /etc/security/user file. If the registry value is defined, the password change can
only occur in the specified domain. System administrators can use this registry value if the
user is administered on a remote machine that periodically goes down. If the user is allowed
to log in through some other authentication method while the server is down, password
changes remain to follow only the primary server.

The chpass subroutine allows the user to change passwords in two ways. For normal
(non—administrative) password changes, the user must supply the old password, either on
the first call to the chpass subroutine or in response to the first message from chpass. If
the user is root, real user ID of 0, local administrative password changes are handled by
supplying a null pointer for the Response parameter during the initial call

Base Operating System Runtime Services (A-P) 1-93

Users that are not administered locally are always queried for their old password.

The chpass subroutine is always in one of three states, entering the old password, entering
the new password, or entering the new password again. If any of these states need do not
need to be complied with, the chpass subroutine returns a null challenge.

Parameters

UserName Specifies the user’'s name whose password is to be changed.

Response Specifies a character string containing the user’s response to the last
prompt.

Reenter Points to a Boolean value used to signal whether chpass subroutine
has completed processing. If the Reenter parameter is a nonzero
value, the chpass subroutine expects the user to satisfy the prompt
message provided by the Message parameter. If the Reenter
parameter is 0, the chpass subroutine has completed processing.

Message Points to a pointer that the chpass subroutine allocates memory for
and fills in. This replacement string is then suitable for printing and
issues challenge messages (if the Reenter parameter is a nonzero
value). The string can also issue informational messages such as
why the user failed to change the password (if the Reenter
parameter is 0). The calling application is responsible for freeing this
memory.

Return Values
Upon successful completion, the chpass subroutine returns a value of 0. If the chpass
subroutine is unsuccessful, it returns the following values:

-1 Indicates the call failed in the thread safe library libs_r.a. ERRNO
will indicate the failure code.
1 Indicates that the password change was unsuccessful and the user

should attempt again. This return value occurs if a password
restriction is not met, such as if the password is not long enough.

2 Indicates that the password change was unsuccessful and the user
should not attempt again. This return value occurs if the user enters
an incorrect old password or if the network is down (the password
change cannot occur).

Error Codes
The chpass subroutine is unsuccessful if one of the following values is true:

ENOENT Indicates that the user cannot be found.

ESAD Indicates that the user did not meet the criteria to change the password.
EPERM Indicates that the user did not have permission to change the password.
EINVAL Indicates that the parameters are not valid.

ENOMEM Indicates that memory allocation (malloc) failed.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The authenticate subroutine.

1-94 Technical Reference: Base Operating System

chroot Subroutine

Purpose
Changes the effective root directory.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int chroot (const char *Path)
char *Path;

Description

The chroot subroutine causes the directory named by the Path parameter to become the
effective root directory. If the Path parameter refers to a symbolic link, the chroot subroutine
sets the effective root directory to the directory pointed to by the symbolic link. If Network
File System (NFS) is installed on your system, this path can cross into another node.

The effective root directory is the starting point when searching for a file’s path name that
begins with / (slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root
directory. The calling process must also have search access to the new effective root
directory.

The .. (double period) entry in the effective root directory is interpreted to mean the effective
root directory itself. Thus, this directory cannot be used to access files outside the subtree
rooted at the effective root directory.

Parameters

Path Pointer to the new effective root directory.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the errno global variable is set to indicate the error.

Error Codes

The chroot subroutine fails and the effective root directory remains unchanged if one or
more of the following are true:

ENOENT The named directory does not exist.
EACCES The named directory denies search access.
EPERM The process does not have root user authority.

The chroot subroutine can be unsuccessful for other reasons. See Appendix A. Base
Operating System Error Codes for Services that Require Path—Name Resolution, on page
A-1 for a list of additional errors.

Base Operating System Runtime Services (A-P) 1-95

If NFS is installed on the system, the chroot subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chdir subroutine.

The chroot command.
Base Operating System Error Codes for Services that Require Path—Name Resolution.

Appendix A. Base Operating System Error Codes for Services that Require Path—Name
Resolution, on page A-1.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-96 Technical Reference: Base Operating System

chssys Subroutine

Purpose
Modifies the subsystem objects associated with the SubsystemName parameter.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int chssys (SubsystemName, SRCSubsystem)
char *SubsystemName;
struct SRCsubsys *SRCSubsystem;

Description

The chssys subroutine modifies the subsystem objects associated with the specified
subsystem with the values in the SRCsubsys structure. This action modifies the objects
associated with subsystem in the following object classes:

e Subsystem Environment
e Subserver Type
¢ Notify

The Subserver Type and Notify object classes are updated only if the subsystem name has
been changed.

The SRCsubsys structure is defined in the /usr/include/sys/srcobij.h file.

The program running with this subroutine must be running with the group system.

Parameters

SRCSubsystem Points to the SRCsubsys structure.
SubsystemName Specifies the name of the subsystem.

Return Values

Upon successful completion, the chssys subroutine returns a value of 0. Otherwise, it
returns a value of —1 and the odmerrno variable is set to indicate the error, or a System
Resource Controller (SRC) error code is returned.

Error Codes
The chssys subroutine is unsuccessful if one or more of the following are true:

SRC_NONAME No subsystem name is specified.
SRC_NOPATH No subsystem path is specified.
SRC_BADNSIG Invalid stop normal signal.

SRC_BADFSIG Invalid stop force signal.

SRC_NOCONTACT Contact not signal, sockets, or message queues.
SRC_SSME Subsystem name does not exist.
SRC_SUBEXIST New subsystem name is already on file.

Base Operating System Runtime Services (A-P) 1-97

SRC_SYNEXIST
SRC_NOREC
SRC_SUBSYS2BIG
SRC_SYN2BIG
SRC_CMDARG2BIG
SRC_PATH2BIG
SRC_STDIN2BIG
SRC_STDOUT2BIG
SRC_STDERR2BIG
SRC_GRPNAM2BIG

Security

New subsystem synonym name is already on file.
The specified SRCsubsys record does not exist.
Subsystem name is too long.

Synonym name is too long.

Command arguments are too long.

Subsystem path is too long.

stdin path is too long.

stdout path is too long.

stderr path is too long.

Group name is too long.

Privilege Control: This command has the Trusted Path attribute. It has the following kernel

privilege:

SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode

644

644

644

Auditing Events:
Event
SRC_Chssys

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/objrepos/SRCsubsys
/etc/objrepos/SRCsubsvr
/etc/objrepos/SRCnotify
/dev/SRC

/dev/.SRC—unix

Related Information
The addssys subroutine, delssys subroutine.

1-98

File
/etc/objrepos/SRCsubsys
/etc/objrepos/SRCsubsvr
/etc/objrepos/SRCnotify

Information

SRC Subsystem Configuration object class.
SRC Subserver Configuration object class.
SRC Notify Method object class.

Specifies the AF_UNIX socket file.

Specifies the location for temporary socket files.

The chssys command, mkssys command, rmssys command.

System Resource Controller Overview in AIX 4.3 System Management Guide: Operating

System and Devices.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller
(SRC) Overview for Programmers in AIX General Programming Concepts : Writing and

Debugging Programs.

Technical Reference: Base Operating System

ckuseracct Subroutine

Purpose
Checks the validity of a user account.

Library
Security Library (libc.a)

Syntax

#include <login.h>

int ckuseracct (Name, Mode, TTY)
char *Name;

int Mode;

char *TTYy;

Description

Note: This subroutine is obsolete and is provided only for backwards compatibility. Use the
loginrestrictions subroutine, which performs a superset of the functions of the
ckuseracct subroutine, instead.

The ckuseracct subroutine checks the validity of the user account specified by the Name
parameter. The Mode parameter gives the mode of the account usage, and the TTY
parameter defines the terminal being used for the access. The ckuseracct subroutine
checks for the following conditions:

e Account existence
e Account expiration

The Mode parameter specifies other mode—specific checks.

Parameters

Name Specifies the login name of the user whose account is to be validated.

Mode Specifies the manner of usage. Valid values as defined in the login.h
file are listed below. The Mode parameter must be one of these or 0:

S_LOGIN Verifies that local logins are permitted for this account.

S_Su Verifies that the su command is permitted and that the
current process has a group ID that can invoke the su
command to switch to the account.

S DAEMON Verifies the account can be used to invoke daemon or
batch programs using the src or cron subsystems.

S_RLOGIN Verifies the account can be used for remote logins
using the rlogind or telnetd programs.

TTY Specifies the terminal of the originating activity. If this parameter is a
null pointer or a null string, no TTY origin checking is done.

Security

Files Accessed:

Base Operating System Runtime Services (A-P) 1-99

Mode File
r /etc/passwd
r /etc/security/user

Return Values

If the account is valid for the specified usage, the ckuseracct subroutine returns a value of
0. Otherwise, a value of —1 is returned and the errno global variable is set to the
appropriate error code.

Error Codes
The ckuseracct subroutine fails if one or more of the following are true:

ENOENT The user specified in the Name parameter does not have an account.
ESTALE The user’s account is expired.

EACCES The specified terminal does not have access to the specified account.
EACCES The Mode parameter is S_SU, and the current process is not permitted
to use the su command to access the specified user.

EACCES Access to the account is not permitted in the specified Mode.
EINVAL The Mode parameter is not one of S_LOGIN, S_SU, S DAEMON,
S_RLOGIN.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The ckuserlD subroutine, getpcred subroutine, getpenv subroutine, setpcred subroutine,
setpenv subroutine.

The login command, rlogin command, su command, telnet command.
The cron daemon.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-100 Technical Reference: Base Operating System

ckuserID Subroutine

Purpose
Authenticates the user.

Note: This subroutine is obsolete and is provided for backwards compatibility. Use the
authenticate subroutine, instead.

Library
Security Library (libc.a)

Syntax

#include <login.h>

int ckuserID (User, Mode)
int Mode;

char *User;

Description
The ckuserID subroutine authenticates the account specified by the User parameter. The
mode of the authentication is given by the Mode parameter. The login and su commands
continue to use the ckuserID subroutine to process the /etc/security/user auth1 and
auth2 authentication methods.

The ckuserID subroutine depends on the authenticate subroutine to process the SYSTEM
attribute in the /etc/security/user file. If authentication is successful, the passwdexpired
subroutine is called.

Errors caused by grammar or load modules during a call to the authenticate subroutine are
displayed to the user if the user was authenticated. These errors are audited with the
USER_Login audit event if the user failed authentication.

Parameters

User Specifies the name of the user to be authenticated.

Mode Specifies the mode of authentication. This parameter is a bit mask and
may contain one or more of the following values, which are defined in
the login.h file:

S_PRIMARY The primary authentication methods defined for the
User parameter are checked. All primary
authentication checks must be passed.

S_SECONDARY The secondary authentication methods defined for
the User parameter are checked. Secondary
authentication checks are not required to be
successful.

Primary and secondary authentication methods for each user are set in
the /etc/security/user file by defining the auth1 and auth2 attributes. If
no primary methods are defined for a user, the SYSTEM attribute is
assumed. If no secondary methods are defined, there is no default.

Security

Files Accessed:

Base Operating System Runtime Services (A-P) 1-101

Mode File

r /etc/passwd

r /etc/security/passwd
r /etc/security/user

r /etc/security/login.cfg

Return Values

If the account is valid for the specified usage, the ckuserlD subroutine returns a value of 0.
Otherwise, a value of —1 is returned and the errno global variable is set to indicate the error.

Error Codes
The ckuserID subroutine fails if one or more of the following are true:

ESAD Security authentication failed for the user.

EINVAL The Mode parameter is neither S_PRIMARY nor S_SECONDARY or
the Mode parameter is both S_PRIMARY and S_SECONDARY.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The authenticate subroutine, ckuseracct subroutine, getpcred subroutine,getpenv
subroutine, passwdexpired subroutine, setpcred subroutine, setpenv subroutine.

The login command, su command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-102 Technical Reference: Base Operating System

class, _class, finite, isnan, or unordered Subroutines

Purpose
Determines classifications of floating—point numbers.
Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Syntax
#include <math.h>
#include <float.h>
int
class (x)
double x;
#include <math.h>
#include <float.h>
int
_class(x)
double x;
#include <math.h>
int finite (x)
double x;
#include <math.h>
int isnan(x)
double x;
#include <math.h>
int unordered(x, V)
double x, y;
Description

The class subroutine, _class subroutine, finite subroutine, ishan subroutine, and
unordered subroutine determine the classification of their floating—point value. The
unordered subroutine determines if a floating—point comparison involving x and y would
generate the IEEE floating—point unordered condition (such as whether x or y is a NaN).

The class subroutine returns an integer that represents the classification of the
floating—point x parameter. Since class is a reversed key word in C++. The class
subroutine can not be invoked in a C++ program. The _class subroutine is an interface for
C++ program using the class subroutine. The interface and the return value for class and
_class subroutines are identical. The values returned by the class subroutine are defined in
the float.h header file. The return values are the following:

Base Operating System Runtime Services (A-P) 1-103

FP_PLUS_NORM Positive normalized, nonzero x

FP_MINUS_NORM Negative normalized, nonzero x
FP_PLUS_DENORM Positive denormalized, nonzero x
FP_MINUS_DENORM Negative denormalized, nonzero x
FP_PLUS_ZERO x=+0.0

FP_MINUS_ZERO x=-0.0

FP_PLUS_INF x = +INF

FP_MINUS_INF x =—INF

FP_NANS x = Signaling Not a Number (NaNS)
FP_NANQ x = Quiet Not a Number (NaNQ)

Since class is a reserved keyword in C++, the class subroutine cannot be invoked in a C++
program. The _class subroutine is an interface for the C++ program using the class
subroutine. The interface and the return values for class and _class subroutines are
identical.

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if
x is not +—, INF, NaNQ, or NaNS.

The isnan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ.
Otherwise, it returns 0.

The unordered subroutine returns a nonzero value if a floating—point comparison between
x and y would be unordered. Otherwise, it returns 0.

Note: Compile any routine that uses subroutines from the libm.a library with the —Im
flag. To compile the class.c file, for example, enter:

cc class.c —-1m

Parameters

X Specifies some double—precision floating—point value.
Specifies some double—precision floating—point value.

Error Codes

The finite, ishan, and unordered subroutines neither return errors nor set bits in the
floating—point exception status, even if a parameter is an NaNS.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
IEEE Standard for Binary Floating—Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987).

List of Numerical Manipulation Services and Subroutines Overview in AlX General
Programming Concepts : Writing and Debugging Programs.

1-104 Technical Reference: Base Operating System

clock Subroutine

Purpose
Reports central processing unit (CPU) time used.
Library
Standard C Library (libc.a)
Syntax
#include <time.h>
clock_t clock (void);
Description

The clock subroutine reports the amount of CPU time used. The reported time is the sum of
the CPU time of the calling process and its terminated child processes for which it has
executed wait, system, or pclose subroutines. To measure the amount of time used by a
program, the clock subroutine should be called at the beginning of the program, and that
return value should be subtracted from the return value of subsequent calls to the clock
subroutine. To find the time in seconds, divide the value returned by the clock subroutine by
the value of the macro CLOCKS_PER_SEC, which is defined in the time.h file.

Return Values
The clock subroutine returns the amount of CPU time used.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The getrusage, times subroutine, pclose subroutine, system subroutine, vtimes
subroutine, wait, waitpid, wait3 subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-105

close Subroutine

Purpose

Syntax

Closes the file associated with a file descriptor.

#include <unistd.h>

int close (
FileDescriptor)
int FileDescriptor;

Description

The close subroutine closes the file associated with the FileDescriptor parameter. If
Network File System (NFS) is installed on your system, this file can reside on another node.

All file regions associated with the file specified by the FileDescriptor parameter that this
process has previously locked with the lockf or fentl subroutine are unlocked. This occurs
even if the process still has the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open subroutine that specified O_DEFER,
and this was the last file descriptor, all changes made to the file since the last fsync
subroutine are discarded.

If the FileDescriptor parameter is associated with a mapped file, it is unmapped. The shmat
subroutine provides more information about mapped files.

The close subroutine attempts to cancel outstanding asynchronous I/O requests on this file
descriptor. If the asynchronous 1/O requests cannot be canceled, the application is blocked
until the requests have completed.

The close subroutine is blocked when another thread of the same process is using the file
descriptor.

When all file descriptors associated with a pipe or FIFO special file have been closed, any
data remaining in the pipe or FIFO is discarded. If the link count of the file is 0 when all file
descriptors associated with the file have been closed, the space occupied by the file is
freed, and the file is no longer accessible.

Note: If the FileDescriptor parameter refers to a device and the close subroutine
actually results in a device close, and the device close routine returns an error, the error
is returned to the application. However, the FileDescriptor parameter is considered
closed and it may not be used in any subsequent calls.

All open file descriptors are closed when a process exits. In addition, file descriptors may be
closed during the exec subroutine if the close—on—exec flag has been set for that file
descriptor.

Parameters

FileDescriptor Specifies a valid open file descriptor.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the errno global variable is set to identify the error. If the close subroutine is interrupted

1-106 Technical Reference: Base Operating System

by a signal that is caught, it returns a value of —1, the errno global variable is set to EINTR
and the state of the FileDescriptor parameter is closed.

Error Codes
The close subroutine is unsuccessful if the following is true:

EBADF The FileDescriptor parameter does not specify a valid open
file descriptor.

EINTR Specifies that the close subroutine was interrupted by a
signal.

The close subroutine may also be unsuccessful if the file being closed is NFS—mounted
and the server is down under the following conditions:

e The file is on a hard mount.

¢ The file is locked in any manner.

The close subroutine may also be unsuccessful if NFS is installed and the following is true:
ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The exec subroutines, fentl subroutine, ioctl subroutine, lockfx subroutine, open, openx,
or creat subroutine, pipe subroutine, socket subroutine.

The Input and Output Handling Programmer’s Overview in AlIX General Programming
Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-107

compare_and_swap Subroutine

Purpose
Conditionally updates or returns a single word variable atomically.
Library
Standard C library (libc.a)
Syntax
#include <sys/atomic_op.h>
boolean_t compare_and swap (word _addr, old _val_addr, new_val)
atomic_p word_addr;
int *old val addr;
int new_val;
Description
The compare_and_swap subroutine performs an atomic operation which compares the
contents of a single word variable with a stored old value. If the values are equal, a new
value is stored in the single word variable and TRUE is returned; otherwise, the old value is
set to the current value of the single word variable and FALSE is returned.
The compare_and_swap subroutine is useful when a word value must be updated only if it
has not been changed since it was last read.
Note: The word containing the single word variable must be aligned on a full word
boundary.
Note: I|f compare_and_swap is used as a locking primitive, insert an isync at the start of
any critical sections.
Parameters

word_adadr Specifies the address of the single word variable.

old_val_addr Specifies the address of the old value to be checked against (and
conditionally updated with) the value of the single word variable.

new_val Specifies the new value to be conditionally assigned to the single word
variable.

Return Values

TRUE Indicates that the single word variable was equal to the old value, and
has been set to the new value.
FALSE Indicates that the single word variable was not equal to the old value,

and that its current value has been returned in the location where the
old value was previously stored.

Implementation Specifics
The compare_and_swap subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The fetch_and_add subroutine, fetch_and_and subroutine, fetch_and_or subroutine.

1-108 Technical Reference: Base Operating System

compile, step, or advance Subroutine

Purpose
Compiles and matches regular—expression patterns.

Note: AIX commands use the regcomp, regexec, regfree, and regerror subroutines for
the functions described in this article.

Library
Standard C Library (libc.a)

Syntax

#define INIT declarations

#define GETC() getc_ code

##define PEEKC() peekc_code

#define UNGETC(c) ungetc_code
#define RETURN (pointer) return code
#define ERROR(val) error_code

#include <regexp.h>
#include <NLregexp.h>

char *compile (InString, ExpBuffer, EndBuffer, EndOfFile)
char *ExpBuffer;

char *InString, *EndBuffer;

int EndOfFile;

int step (String, ExpBuffer)
const char *String, *ExpBuffer;

int advance (String, ExpBuffer)
const char *String, *ExpBuffer;

Description
The /ustr/include/regexp.h file contains subroutines that perform regular—expression
pattern matching. Programs that perform regular—expression pattern matching use this
source file. Thus, only the regexp.h file needs to be changed to maintain regular expression
compatibility between programs.

The interface to this file is complex. Programs that include this file define the following six
macros before the #include <regexp.h> statement. These macros are used by the
compile subroutine:

INIT This macro is used for dependent declarations and initializations. It is
placed right after the declaration and opening { (left brace) of the
compile subroutine. The definition of the INIT buffer must end with a ;
(semicolon). INIT is frequently used to set a register variable to point
to the beginning of the regular expression so that this register variable
can be used in the declarations for the GETC, PEEKC, and UNGETC
macros. Otherwise, you can use INIT to declare external variables that
GETC, PEEKC, and UNGETC require.

GETC() This macro returns the value of the next character in the regular
expression pattern. Successive calls to the GETC macro should return
successive characters of the pattern.

Base Operating System Runtime Services (A-P) 1-109

PEEKC() This macro returns the next character in the regular expression.
Successive calls to the PEEKC macro should return the same
character, which should also be the next character returned by the
GETC macro.

UNGETC(c) This macro causes the parameter ¢ to be returned by the next call to
the GETC and PEEKC macros. No more than one character of
pushback is ever needed, and this character is guaranteed to be the
last character read by the GETC macro. The return value of the
UNGETC macro is always ignored.

RETURN(pointer) This macro is used for normal exit of the compile subroutine. The
pointer parameter points to the first character immediately following
the compiled regular expression. This is useful for programs that have
memory allocation to manage.

ERROR(val) This macro is used for abnormal exit from the compile subroutine. It
should never contain a return statement. The val parameter is an
error number. The error values and their meanings are:

Error Meaning

1 Interval end point too large

16 Bad number

25 \ digit out of range

36 lllegal or missing delimiter

41 No remembered search String

42 \ (?\) imbalance

43 Too many \.(

44 More than two numbers given in \{ \}
45 } expected after \.

46 First number exceeds second in \{ \}
49 []imbalance

50 Regular expression overflow

70 Invalid endpoint in range

The compile subroutine compiles the regular expression for later use. The InString
parameter is never used explicitly by the compile subroutine, but you can use it in your
macros. For example, you can use the compile subroutine to pass the string containing the
pattern as the InString parameter to compile and use the INIT macro to set a pointer to the
beginning of this string. The example in the Examples section uses this technique. If your
macros do not use InString, then call compile with a value of ((char *) 0) for this parameter.

The ExpBuffer parameter points to a character array where the compiled regular expression
is to be placed. The EndBuffer parameter points to the location that immediately follows the
character array where the compiled regular expression is to be placed. If the compiled
expression cannot fit in (EndBuffer—ExpBuffer) bytes, the call ERROR(50) is made.

The EndOfFile parameter is the character that marks the end of the regular expression. For
example, in the ed command, this character is usually / (slash).

The regexp.h file defines other subroutines that perform actual regular—expression pattern
matching. One of these is the step subroutine.

The String parameter of the step subroutine is a pointer to a null-terminated string of
characters to be checked for a match.

1-110 Technical Reference: Base Operating System

The Expbuffer parameter points to the compiled regular expression, obtained by a call to the
compile subroutine.

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it
does not match. If it matches, then step also sets two global character pointers: loc1, which
points to the first character that matches the pattern, and loc2, which points to the character
immediately following the last character that matches the pattern. Thus, if the regular
expression matches the entire string, loc1 points to the first character of the String
parameter and loc2 points to the null character at the end of the String parameter.

The step subroutine uses the global variable circf, which is set by the compile subroutine if
the regular expression begins with a * (circumflex). If this variable is set, step only tries to
match the regular expression to the beginning of the string. If you compile more than one
regular expression before executing the first one, save the value of circf for each compiled
expression and set circf to that saved value before each call to step.

Using the same parameters that were passed to it, the step subroutine calls a subroutine
named advance. The step function increments through the String parameter and calls the
advance subroutine until it returns a 1, indicating a match, or until the end of String is
reached. To constrain the String parameter to the beginning of the string in all cases, call
the advance subroutine directly instead of calling the step subroutine.

When the advance subroutine encounters an * (asterisk) or a \{ \} sequence in the regular
expression, it advances its pointer to the string to be matched as far as possible and
recursively calls itself, trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, the advance subroutine backs up along the string
until it finds a match or reaches the point in the string that initially matched the * or \{ \}. You
can stop this backing—up before the initial point in the string is reached. If the locs global
character is equal to the point in the string sometime during the backing—up process, the
advance subroutine breaks out of the loop that backs up and returns 0. This is used for
global substitutions on the whole line so that expressions such as s/y*//g do not loop

forever.

Note: In 64-bit mode, these interfaces are not supported: they fail with a return
code of 0. In order to use the 64-bit version of this functionality,
applications should migrate to the fnmatch, glob, regcomp, and regexec
functions which provide full internationalized regular expression
functionality compatible with ISO 9945—-1:1996 (IEEE POSIX 1003.1) and
with the UNIX98 specification.

Parameters

InString Specifies the string containing the pattern to be compiled. The InString
parameter is not used explicitly by the compile subroutine, but it may
be used in macros.

ExpBuffer Points to a character array where the compiled regular expression is to
be placed.

EndBuffer Points to the location that immediately follows the character array where
the compiled regular expression is to be placed.

EndOfFile Specifies the character that marks the end of the regular expression.

String Points to a null-terminated string of characters to be checked for a
match.

Examples
The following is an example of the regular expression macros and calls:

Base Operating System Runtime Services (A-P) 1-111

#define INIT register char *sp=instring;

#define GETC () (*sp++)
#define PEEKC () (*sp)
#define UNGETC (c) (-—sp)
#define RETURN (c) return;
#define ERROR(c) regerr ()

#include <regexp.h>
compile (patstr,expbuf, &expbuf[ESIZE], "\0’);

if (step (linebuf, expbuf))
succeed();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The regcmp or regex subroutine, regcomp subroutine, regerror subroutine, regexec
subroutine, regfree subroutine.

1-112 Technical Reference: Base Operating System

confstr Subroutine

Purpose
Gets configurable variables.

Library
Standard C library (libc.a)

Syntax

#include <unistd.h>

size_t confstr (int name, char* buf, size_t len);

Description
The confstr subroutine determines the current setting of certain system parameters, limits,
or options that are defined by a string value. It is mainly used by applications to find the
system default value for the PATH environment variable. Its use and purpose are similar to
those of the sysconf subroutine, but it returns string values rather than numeric values.

If the Len parameter is not 0 and the Name parameter has a system—defined value, the
confstr subroutine copies that value into a Len—byte buffer pointed to by the Buf parameter.
If the string returns a value longer than the value specified by the Len parameter, including
the terminating null byte, then the confstr subroutine truncates the string to Len—1 bytes
and adds a terminating null byte to the result. The application can detect that the string was
truncated by comparing the value returned by the confstr subroutine with the value
specified by the Len parameter.

Parameters

Name Specifies the system variable setting to be returned. Valid values for the
Name parameter are defined in the unistd.h file.

Buf Points to the buffer into which the confstr subroutine copies the value
of the Name parameter.

Len Specifies the size of the buffer storing the value of the Name parameter.

Return Values

If the value specified by the Name parameter is system—defined, the confstr subroutine
returns the size of the buffer needed to hold the entire value. If this return value is greater
than the value specified by the Len parameter, the string returned as the Buf parameter is
truncated.

If the value of the Len parameter is set to 0 and the Buf parameter is a null value, the
confstr subroutine returns the size of the buffer needed to hold the entire system—defined
value, but does not copy the string value. If the value of the Len parameter is set to 0 but
the Buf parameter is not a null value, the result is unspecified.

Error Codes
The confstr subroutine will fail if:

EINVAL The value of the name argument is invalid.

Example
To find out what size buffer is needed to store the string value of the Name parameter, enter:

confstr (_CS_PATH, NULL, (size_t) 0)

Base Operating System Runtime Services (A-P) 1-113

The confstr subroutine returns the size of the buffer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/usr/include/limits.h Contains system—defined limits.

/usr/include/unistd.h Contains system—defined environment variables.

Related Information
The pathconf subroutine, sysconf subroutine.
The unistd.h header file.

The XCU specification of getconf.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-114 Technical Reference: Base Operating System

conv Subroutines

Purpose

Translates characters.

Library

Standard C Library (libc.a)

Syntax

#include <ctype.h>

int
int

int
int

int
int

int
int

int
int

int

toupper (Character)
Character;

tolower (Character)
Character;

_toupper (Character)
Character;

_tolower (Character)
Character;

toascii (Character)
Character;

NCesc (Pointer, CharacterPointer)

NLchar *Pointer;
char *CharacterPointer;

int
int

int
int

int
int

int
int

int
int

int

NCtoupper (Xcharacter)
Xcharacter;

NCtolower (Xcharacter)
Xcharacter;

_NCtoupper (Xcharacter)
Xcharacter;

_NCtolower (Xcharacter)
Xcharacter;

NCtoNLchar (Xcharacter)
Xcharacter;

NCunesc (CharacterPointer, Pointer)

char *CharacterPointer;
NLchar *Pointer;

int
int

Description

NCflatchr (Xcharacter)
Xcharacter;

The toupper and the tolower subroutines have as domain an int, which is representable as
an unsigned char or the value of EOF: —1 through 255.

If the parameter of the toupper subroutine represents a lowercase letter and there is a
corresponding uppercase letter (as defined by LC_CTYPE), the result is the corresponding
uppercase letter. If the parameter of the tolower subroutine represents an uppercase letter,
and there is a corresponding lowercase letter (as defined by LC_CTYPE), the result is the

Base Operating System Runtime Services (A-P) 1-115

corresponding lowercase letter. All other values in the domain are returned unchanged. If
case—conversion information is not defined in the current locale, these subroutines
determine character case according to the "C” locale.

The _toupper and _tolower subroutines accomplish the same thing as the toupper and
tolower subroutines, but they have restricted domains. The _toupper routine requires a
lowercase letter as its parameter; its result is the corresponding uppercase letter. The
_tolower routine requires an uppercase letter as its parameter; its result is the
corresponding lowercase letter. Values outside the domain cause undefined results.

The NCxxxxxx subroutines translate all characters, including extended characters, as code
points. The other subroutines translate traditional ASCII characters only. The NCxxxxxx
subroutines are obsolete and should not be used if portability and future compatibility are a
concern.

The value of the Xcharacter parameter is in the domain of any legal NLchar data type. It
can also have a special value of —1, which represents the end of file (EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to the
current collating sequence configuration, the result is the corresponding uppercase letter. If
the parameter of the NCtolower subroutine represents an uppercase letter according to the
current collating sequence configuration, the result is the corresponding lowercase letter. All
other values in the domain are returned unchanged.

The _NCtoupper and _NCtolower routines are macros that perform the same function as
the NCtoupper and NCtolower subroutines, but have restricted domains and are faster.
The _NCtoupper macro requires a lowercase letter as its parameter; its result is the
corresponding uppercase letter. The _NCtolower macro requires an uppercase letter as its
parameter; its result is the corresponding lowercase letter. Values outside the domain cause
undefined results.

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that are
not part of an NLchar data type.

The NCesc subroutine converts the NLchar value of the Pointer parameter into one or
more ASCII bytes stored in the character array pointed to by the CharacterPointer
parameter. If the NLchar data type represents an extended character, it is converted into a
printable ASCII escape sequence that uniquely identifies the extended character. NCesc
returns the number of bytes it wrote. The display symbol table lists the escape sequence for
each character.

The opposite conversion is performed by the NCunesc macro, which translates an ordinary
ASCII byte or escape sequence starting at CharacterPointer into a single NLchar at Pointer.
NCunesc returns the number of bytes it read.

The NCflatchr subroutine converts its parameter value into the single ASCII byte that most
closely resembles the parameter character in appearance. If no ASCII equivalent exists, it
converts the parameter value to a ? (question mark).

Note: The setlocale subroutine may affect the conversion of the decimal point symbol and
the thousands separator.

Parameters

Character Specifies the character to be converted.
Xcharacter Specifies an NLchar value to be converted.
CharacterPointer Specifies a pointer to a single—byte character array.
Pointer Specifies a pointer to an escape sequence.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-116 Technical Reference: Base Operating System

Related Information

The Japanese conv subroutines, ctype subroutines, getc, fgetc, getchar, or getw
subroutine, getwc, fgetwc, or getwchar subroutine, setlocale subroutine.

List of Character Manipulation Services, National Language Support Overview for

Programming, Subroutines Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

Base Operating System Runtime Services (A-P) 1-117

copysign, nextafter, scalb, logb, or ilogb Subroutine

Purpose
Computes certain binary floating—point arithmetic functions.

Libraries

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>
#include <float.h>

double copysign (x, V)
double x, y;

double nextafter (x, y)
double x, y;

double scalb(x, y)
double x, y;

double logb (x)
double x;

int ilogb (x)
double x;

Description

These subroutines compute certain functions recommended in the IEEE Standard for Binary
Floating—Point Arithmetic. The other such recommended function is provided in the class
subroutine.

The copysign subroutine returns the x parameter with the same sign as the y parameter.

The nextafter subroutine returns the next representable neighbor of the x parameter in the
direction of the y parameter. If x equals y, the result is the x parameter.

The scalb subroutine returns the value of the x parameter times 2 to the power of the y
parameter.

The logb subroutine returns a floating—point double that is equal to the unbiased exponent
of the x parameter. Special cases are:

logb (NaN) = NaNQ
logb (infinity) = +INF
logb (0) = -INF

Note: When the x parameter is finite and not zero, then the logb (x) subroutine satisfies
the following equation:

1 < = scalb (|x], —-(int) logb (x)) < 2

The ilogb subroutine returns an integer that is equal to the unbiased exponent of the x
parameter. Special cases are:

ilogb (NaN) = LONG_MIN
ilogb (INF) = LONG_MAX
ilogb (0) = LONG_MIN

Compile any routine that uses subroutines from the libm.a library with the —Im flag. For
example: to compile the copysign.c file, enter:

cc copysign.c —-1m

1-118 Technical Reference: Base Operating System

Parameters

X Specifies a double—precision floating—point value.
Specifies a double—precision floating—point value.

Return Values

The nextafter subroutine sets the overflow bit in the floating—point exception status when
the x parameter is finite but the nextafter (x, y) subroutine is infinite. Similarly, when the
nextafter subroutine is denormalized, the underflow exception status flag is set.

The logb(0) subroutine returns an —INF value and sets the division—by—zero exception
status flag.

The ilogb(0) subroutine returns a LONG_MIN value and sets the division—by—zero
exception status flag.

Error Codes

If the correct value would overflow, the scalb subroutine returns +/-INF (depending on a
negative or positive value of the x parameter) and sets errno to ERANGE.

If the correct value would underflow, the scalb subroutine returns a value of 0 and sets
errno to ERANGE.

The logb function returns —-HUGE_VAL when the x parameter is set to a value of 0 and
sets errno to EDOM.

For the nextafter subroutine, if the x parameter is finite and the correct function value would
overflow, HUGE_VAL is returned and errno is set to ERANGE.

Base Operating System Runtime Services (A-P) 1-119

crypt, encrypt, or setkey Subroutine

Purpose
Encrypts or decrypts data.
Library
Standard C Library (libc.a)
Syntax
char *crypt (Pw, Salt)
const char *pPw, *Salt;
void encrypt (Block, EdFlag)
char Block[64];
int EdFlag;
void setkey (Key)
const char *Key;
Description
The crypt and encrypt subroutines encrypt or decrypt data. The crypt subroutine performs
a one—way encryption of a fixed data array with the supplied PW parameter. The subroutine
uses the Salt parameter to vary the encryption algorithm.
The encrypt subroutine encrypts or decrypts the data supplied in the Block parameter using
the key supplied by an earlier call to the setkey subroutine. The data in the Block parameter
on input must be an array of 64 characters. Each character must be an char 0 or char 1.
If you need to statically bind functions from libc.a for crypt do the following:
1. Create a file and add the following:
#!
____setkey
____encrypt
____crypt
2. Perform the linking.
3. Add the following to the make file:
-bI:YourFileName
where YourFileName is the name of the file you created in step 1. It should look like the
following:
LDFLAGS=bnoautoimp -bI:/lib/syscalls.exp -bI:YourFileName -1lc
Parameters
Block Identifies a 64—character array containing the values (char) 0 and
(char) 1. Upon return, this buffer contains the encrypted or decrypted
data.
EdFlag Determines whether the subroutine encrypts or decrypts the data. If this

parameter is 0, the data is encrypted. If this is a nonzero value, the data
is decrypted. If the /ust/lib/libdes.a file does not exist and the EdFlag
parameter is set to nonzero, the encrypt subroutine returns the
ENOSYS error code.

Key Specifies an 64—element array of 0’s and 1’s cast as a const char data
type. The Key parameter is used to encrypt or decrypt data.

1-120 Technical Reference: Base Operating System

PW Specifies an 8—character string used to change the encryption
algorithm. The first two characters of the PW parameter are the same
as the Salt parameter.

Salt Specifies a 2—character string chosen from the following:
A-Z Uppercase alpha characters
0-9 Numeric characters
Period
/ Slash

The Salt parameter is used to vary the hashing algorithm in one of 4096
different ways.

Return Values

The crypt subroutine returns a pointer to the encrypted password. The static area this
pointer indicates may be overwritten by subsequent calls.

Error Codes
The encrypt subroutine returns the following:

ENOSYS The encrypt subroutine was called with the EdFlag parameter which
was set to a nonzero value. Also, the /usr/lib/libdes.a file does not
exist.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

These subroutines are provided for compatibility with UNIX system implementations.

Related Information
The newpass subroutine.

The login command, passwd command, su command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-121

cs Subroutine

Purpose
Compares and swaps data.

Library
Standard C Library (libc.a)

Syntax

int cs (Destination, Compare, Value)

int *Destination;
int Compare;
int Value;

Description
Note: The cs subroutine is only provided to support binary compatibility with AIX Version
3 applications. When writing new applications, it is not recommended to use this
subroutine; it may cause reduced performance in the future. Applications should use the
compare_and_swap subroutine, unless they need to use unaligned memory locations.

The cs subroutine compares the Compare value with the integer pointed to by Destination
address. If they are equal, Value is stored in the integer pointed to by the Destination
address and cs returns 0. If the values are different, the ¢s subroutine returns 1, and the
value pointed to by Destination address is not affected. The compare and store operations
are executed atomically. Therefore, no process switches occur between them.

The ¢s subroutine can be used to implement interprocess communication facilities or to
manipulate data structures shared among several processes, such as linked lists stored in
shared memory.

The following example shows how a new element can be inserted in a null-terminated list
that is stored in shared memory and maintained by several processes:

struct elem {
struct elem *next;

bi
struct elem *list, *new_elem;
do
new_elem->next = list;
while (cs((int *)&list, (int) (new_elem->next),
(int)new_elem)) ;

Parameters

Destination Specifies the address of the integer to be compared with
the Compare value, and if need be, where Value will be
stored.

Compare Specifies the value to be compared with the integer pointed
by Destination parameter address.

Value Specifies the value stored in the integer pointed to by the
Destination address if the Destination and Compare values
are equal.

1-122 Technical Reference: Base Operating System

Return Codes

The ¢s subroutine returns a value of 0 if the two values compared are equal. If the values
are not equal, the ¢s subroutine returns a value of 1.

Error Codes

If the integer pointed by the Destination parameter references memory that does not belong
to the process address space, the SIGSEGV signal is sent to the process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The shmat subroutine, shmctl subroutine, shmdt subroutine, shmget subroutine,
sigaction, signal, or sigvec.

Program Address Space Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-123

csid Subroutine

Purpose
Returns the character set ID (charsetID) of a multibyte character.
Library
Standard C Library (libc.a)
Syntax
#include <stdlib.h>
int csid (String)
const char *String;
Description
The csid subroutine returns the charsetID of the multibyte character pointed to by the String
parameter. No validation of the character is performed. The parameter must point to a value
in the character range of the current code set defined in the current locale.
Parameters

String Specifies the character to be tested.

Return Values

Successful completion returns an integer value representing the charsetlD of the character.
This integer can be a number from 0 through n, where nis the maximum character set
defined in the CHARSETID field of the charmap. See "Understanding the Character Set
Description (charmap) Source File” in AIX 4.3 System Management Guide: Operating
System and Devices for more information.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbstowcs subroutine, wesid subroutine.

National Language Support Overview for Programming and Understanding the Character
Set Description (charmap) Source File in AIX 4.3 System Management Guide: Operating
System and Devices.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-124 Technical Reference: Base Operating System

ctermid Subroutine

Purpose
Generates the path name of the controlling terminal.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>
char *ctermid (String)
char *String;

Description

The ctermid subroutine generates the path name of the controlling terminal for the current
process and stores it in a string.

Note: File access permissions depend on user access. Access to a file whose path name
the ctermid subroutine has returned is not guaranteed.

The difference between the ctermid and ttyname subroutines is that the ttyname
subroutine must be handed a file descriptor and returns the actual name of the terminal
associated with that file descriptor. The ctermid subroutine returns a string (the /dev/tty file)
that refers to the terminal if used as a file name. Thus, the ttyname subroutine is useful only
if the process already has at least one file open to a terminal.

Parameters

String If the String parameter is a null pointer, the string is stored in an internal
static area and the address is returned. The next call to the ctermid
subroutine overwrites the contents of the internal static area.

If the String parameter is not a null pointer, it points to a character array
of at least L_ctermid elements as defined in the stdio.h file. The path
name is placed in this array and the value of the String parameter is
returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The isatty or ttyname subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-125

ctime, localtime, gmtime, mktime, difftime, asctime, or tzset
Subroutine

Purpose
Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

char *ctime (Clock)
const time_t *Clock;

struct tm *localtime (Clock)
const time_t *Clock;

struct tm *gmtime (Clock)
const time_t *Clock;

time_t mktime (Timeptr)
struct tm *Timeptr;

double difftime(Timel, Time0)
time_t TimeO, Timel;

char *asctime (Tm)
const struct tm *Tm;

void tzset ()

extern long int timezone;
extern int daylight;
extern char *tznamel];

Description
Attention: Do not use the tzset subroutine when linking with both libc.a and libbsd.a.
The tzset subroutine sets the global external variable called timezone, which conflicts
with the timezone subroutine in libbsd.a. This name collision may cause unpredictable
results.

Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a
multithreaded environment. See the multithread alternatives in the ctime_r, localtime_r,
gmtime_r, or asctime_r subroutine article.

The ctime subroutine converts a time value pointed to by the Clock parameter, which
represents the time in seconds since 00:00:00 Coordinated Universal Time (UTC),
January 1, 1970, into a 26—character string in the following form:

Sun Sept 16 01:03:52 1973\n\0
The width of each field is always the same as shown here.
The ctime subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime subroutine converts the long integer pointed to by the Clock parameter,
which contains the time in seconds since 00:00:00 UTC, 1 January 1970, into a tm
structure. The localtime subroutine adjusts for the time zone and for daylight—saving time, if
it is in effect. Use the time—zone information as though localtime called tzset.

The gmtime subroutine converts the long integer pointed to by the Clock parameter into a
tm structure containing the Coordinated Universal Time (UTC), which is the time standard
the operating system uses.

1-126 Technical Reference: Base Operating System

Note: UTC is the international time standard intended to replace GMT.

The tm structure is defined in the time.h file, and it contains the following members:

int tm_sec; /* Seconds (0 — 59) */

int tm_min; /* Minutes (0 - 59) */

int tm_hour; /* Hours (0 — 23) */

int tm_mday; /* Day of month (1 - 31) */

int tm_mon; /* Month of year (0 - 11) */

int tm_year; /* Year - 1900 */

int tm_wday; /* Day of week (Sunday = 0) */

int tm_yday; /* Day of year (0 — 365) */

int tm_isdst; /* Nonzero = Daylight saving time */

The mktime subroutine is the reverse function of the localtime subroutine. The mktime
subroutine converts the tm structure into the time in seconds since 00:00:00 UTC,

1 January 1970. The tm_wday and tm_yday fields are ignored, and the other components
of the tm structure are not restricted to the ranges specified in the /usr/include/time.h file.
The value of the tm_isdst field determines the following actions of the mktime subroutine:

0 Initially presumes that Daylight Savings Time (DST) is not in effect.

>0 Initially presumes that DST is in effect.

-1 Actively determines whether DST is in effect from the specified time and
the local time zone. Local time zone information is set by the tzset
subroutine.

Upon successful completion, the mktime subroutine sets the values of the tm_wday and
tm_yday fields appropriately. Other fields are set to represent the specified time since
January 1, 1970. However, the values are forced to the ranges specified in the
/usr/include/time.h file. The final value of the tm_mday field is not set until the values of
the tm_mon and tm_year fields are determined.

The difftime subroutine computes the difference between two calendar times: the
Time1 and —Time0 parameters.

The asctime subroutine converts a tm structure to a 26—character string of the same format
as ctime.

If the TZ environment variable is defined, then its value overrides the default time zone,
which is the U.S. Eastern time zone. The environment facility contains the format of the
time zone information specified by TZ. TZ is usually set when the system is started with the
value that is defined in either the /etc/environment or /etc/profile files. However, it can also
be set by the user as a regular environment variable for performing alternate time zone
conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to reflect
the setting of TZ. The tzset subroutine is called by ctime and localtime, and it can also be
called explicitly by an application program.

The timezone external variable contains the difference, in seconds, between UTC and local
standard time. For example, the value of timezone is 5 * 60 * 60 for U.S. Eastern Standard
Time.

The daylight external variable is nonzero when a daylight—saving time conversion should
be applied. By default, this conversion follows the standard U.S. conventions; other
conventions can be specified. The default conversion algorithm adjusts for the peculiarities
of U.S. daylight saving time in 1974 and 1975.

The tzname external variable contains the name of the standard time zone (tzname[0]) and
of the time zone when Daylight Savings Time is in effect (tzname[1]). For example:

char *tzname[2] = {”"EST”, "EDT"};

Base Operating System Runtime Services (A-P) 1-127

The time.h file contains declarations of all these subroutines and externals and the tm

structure.
Parameters
Clock Specifies the pointer to the time value in seconds.
Timeptr Specifies the pointer to a tm structure.
Time1 Specifies the pointer to a time_t structure.
Time0 Specifies the pointer to a time_t structure.
Tm Specifies the pointer to a tm structure.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The tzset subroutine returns no value.

The mktime subroutine returns the specified time in seconds encoded as a value of type
time_t. If the time cannot be represented, the function returns the value (time_t)-1.

The localtime and gmtime subroutines return a pointer to the struct tm.
The ctime and asctime subroutines return a pointer to a 26—character string.

The difftime subroutine returns the difference expressed in seconds as a value of type
double.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getenv subroutine, gettimer subroutine, strftime subroutine.

List of Time Data Manipulation Services in AlX 4.3 System Management Guide: Operating
System and Devices.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-128 Technical Reference: Base Operating System

ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine

Purpose
Converts the formats of date and time representations.

Library
Thread-Safe C Library (libc_r.a)

Syntax

#include <time.h>

char *ctime_r(Timer, BufferPointer)
const time_t *Timer;
char *BufferPointer;

struct tm *localtime_r (Timer, CurrentTime)
const time_t *Timer;
struct tm *CurrentTime;

struct tm *gmtime_r (Timer, XTime)
const time_t *Timer;
struct tm *XTime;

char *asctime_r (TimePointer, BufferPointer)
const struct tm *TimePointer;
char *BufferPointer;

Description

The ctime_r subroutine converts a time value pointed to by the Timer parameter, which
represents the time in seconds since 00:00:00 Coordinated Universal Time (UTC),
January 1, 1970, into the character array pointed to by the BufferPointer parameter. The
character array should have a length of at least 26 characters so the converted time value
fits without truncation. The converted time value string takes the form of the following
example:

Sun Sep 16 01:03:52 1973\n\0
The width of each field is always the same as shown here.
The ctime_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime_r subroutine converts the time_t structure pointed to by the Timer
parameter, which contains the time in seconds since 00:00:00 UTC, January 1, 1970, into
the tm structure pointed to by the CurrentTime parameter. The localtime_r subroutine
adjusts for the time zone and for daylight saving time, if it is in effect.

The gmtime_r subroutine converts the time_t structure pointed to by the Timer parameter
into the tm structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of
these subroutines, externals, and the tm structure.

The asctime_r subroutine converts the tm structure pointed to by the TimePointer
parameter into a 26—character string in the same format as the ctime_r subroutine. The
results are placed into the character array, BufferPointer. The BufferPointer parameter
points to the resulting character array, which takes the form of the following example:

char *tzname[2] = {”EST”, "EDT”};

Base Operating System Runtime Services (A-P) 1-129

Parameters

Timer Points to a time_t structure, which contains the number of seconds
since 00:00:00 UTC, January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.

CurrentTime Points to a tm structure. The result of the localtime_r subroutine is
placed here.

XTime Points to a tm structure used for the results of the gmtime_r
subroutine.

TimePointer Points to a tm structure used as input to the asctime_r subroutine.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The localtime_r and gmtime_r subroutines return a pointer to the tm structure.

The ctime_r and asctime_r subroutines return a pointer to a 26—character string.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Programs using this subroutine must link to the libpthreads.a library.

Files

/ust/include/time.h
Defines time macros, data types, and structures.

Related Information
The ctime, localtime, gmtime, mktime, difftime, asctime, tzset, or timezone subroutine.

Subroutines Overview, List of Time Data Manipulation Services, List of Multithread
Subroutines, and National Language Support Overview for Programming in AIX General
Programming Concepts : Writing and Debugging Programs.

1-130 Technical Reference: Base Operating System

ctype Subroutines

Purpose

Classifies characters.
Library

Standard Character Library (libc.a)
Syntax

#include <ctype.h>

int isalpha (Character)
int Character;

int isupper (Character)
int Character;

int islower (Character)
int Character;

int isdigit (Character)
int Character;

int isxdigit (Character)
int Character;

int isalnum (Character)
int Character;

int isspace (Character)
int Character;

int ispunct (Character)
int Character;

int isprint (Character)
int Character;

int isgraph (Character)
int Character;

int iscntrl (Character)
int Character;

int isascii (Character)
int Character;

Description

The ctype subroutines classify character—coded integer values specified in a table. Each of
these subroutines returns a nonzero value for True and 0 for False.

Base Operating System Runtime Services (A-P) 1-131

Note: The ctype subroutines should only be used on character data that can be
represented by a single byte value (0 through 255). Attempting to use the ctype
subroutines on multi-byte locale data may give inconsistent results. Wide character
classification routines (such as iswprint, iswlower, etc.) should be used with dealing with
multi-byte character data.

Locale Dependent Character Tests
The following subroutines return nonzero (True) based upon the character class definitions
for the current locale.

isalnum

isalpha

isupper

islower

isspace

ispunct

isprint

isgraph

iscntrl

Returns nonzero for any character for which the isalpha or isdigit
subroutine would return nonzero. The isalnum subroutine tests whether
the character is of the alpha or digit class.

Returns nonzero for any character for which the isupper or islower
subroutines would return nonzero. The isalpha subroutine also returns
nonzero for any character defined as an alphabetic character in the current
locale, or for a character for which none of the iscntrl, isdigit, ispunct, or
isspace subroutines would return nonzero. The isalpha subroutine tests
whether the character is of the alpha class.

Returns nonzero for any uppercase letter [A through Z]. The isupper
subroutine also returns nonzero for any character defined to be uppercase
in the current locale. The isupper subroutine tests whether the character is
of the upper class.

Returns nonzero for any lowercase letter [a through z]. The islower
subroutine also returns nonzero for any character defined to be lowercase
in the current locale. The islower subroutine tests whether the character is
of the lower class.

Returns nonzero for any white—space character (space, form feed, new
line, carriage return, horizontal tab or vertical tab). The isspace subroutine
tests whether the character is of the space class.

Returns nonzero for any character for which the isprint subroutine returns
nonzero, except the space character and any character for which the
isalnum subroutine would return nonzero. The ispunct subroutine also
returns nonzero for any locale—defined character specified as a
punctuation character. The ispunct subroutine tests whether the character
is of the punct class.

Returns nonzero for any printing character. Returns nonzero for any
locale—defined character that is designated a printing character. This
routine tests whether the character is of the print class.

Returns nonzero for any character for which the isprint character returns
nonzero, except the space character. The isgraph subroutine tests
whether the character is of the graph class.

Returns nonzero for any character for which the isprint subroutine returns
a value of False (0) and any character that is designated a control
character in the current locale. For the C locale, control characters are the
ASCII delete character (0177 or 0x7F), or an ordinary control character
(less than 040 or 0x20). The iscntrl subroutine tests whether the character
is of the cntrl class.

Locale Independent Character Tests
The following subroutines return nonzero for the same characters, regardless of the locale:

1-132 Technical Reference: Base Operating System

isdigit Characteris a digit in the range [0 through 9].

isxdigit Character is a hexadecimal digit in the range [0 through 9],
[A through F], or [a through f].
isascii Characteris an ASCII character whose value is in the

range 0 through 0177 (0 through 0x7F), inclusive.

Parameter

Character Indicates the character to be tested (integer value).

Return Codes

The ctype subroutines return nonzero (True) if the character specified by the Character
parameter is a member of the selected character class; otherwise, a 0 (False) is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The setlocale subroutine.

List of Character Manipulation Services and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-133

cuserid Subroutine

Purpose
Gets the alphanumeric user name associated with the current process.

Library
Standard C Library (libc.a)

Use the libc_r.a library to access the thread—safe version of this subroutine.

Syntax
#include <stdio.h>

char *cuserid (Name)
char *Name;

Description

The cuserid subroutine gets the alphanumeric user name associated with the current
process. This subroutine generates a character string representing the name of a process’s
owner.

Note: The cuserid subroutine duplicates functionality available with the getpwuid and
getuid subroutines. Present applications should use the getpwuid and getuid
subroutines.

If the Name parameter is a null pointer, then a character string of size 1_cuseridis
dynamically allocated with malloc, and the character string representing the name of the
process owner is stored in this area. The cuserid subroutine then returns the address of
this area. Multithreaded application programs should use this functionality to obtain thread
specific data, and then continue to use this pointer in subsequent calls to the curserid
subroutine. In any case, the application program must deallocate any dynamically allocated
space with the free subroutine when the data is no longer needed.

If the Name parameter is not a null pointer, the character string is stored into the array
pointed to by the Name parameter. This array must contain at least the number of
characters specified by the constant I._cuserid. This constant is defined in the stdio.h
file.

If the user name cannot be found, the cuserid subroutine returns a null pointer; if the Name
parameter is not a null pointer, a null character (\0’) is stored in Name [0].

Parameter

Name Points to a character string representing a user name.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The endpwent subroutine, getlogin, getpwent, getpwnam, getpwuid, or putpwent
subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-134 Technical Reference: Base Operating System

defssys Subroutine

Purpose
Initializes the SRCsubsys structure with default values.
Library
System Resource Controller Library (libsrc.a)
Syntax
#include <sys/srcobj.h>
#include <spc.h>
void defssys (SRCSubsystem)
struct SRCsubsys *SRCSubsystem;
Description
The defssys subroutine initializes the SRCsubsys structure of the
/usr/include/sys/srcobij.h file with the following default values:
Field Value
display SRCYES
multi SRCNO
contact SRCSOCKET
waittime TIMELIMIT
priority 20
action ONCE
standerr /dev/console
standin /dev/console
standout /dev/console
All other numeric fields are set to 0, and all other alphabetic fields are set to an empty string.
This function must be called to initialize the SRCsubsys structure before an application
program uses this structure to add records to the subsystem object class.
Parameters

SRCSubsystem Points to the SRCsubsys structure.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The addssys subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller
(SRC) Overview for Programmers in AIX General Programming Concepts : Writing and
Debugging Programs.

Base Operating System Runtime Services (A-P) 1-135

delssys Subroutine

Purpose
Removes the subsystem objects associated with the SubsystemName parameter.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int delssys (SubsystemName)
char *SubsystemName;

Description

The delssys subroutine removes the subsystem objects associated with the specified
subsystem. This removes all objects associated with that subsystem from the following
object classes:

e Subsystem
e Subserver Type
¢ Notify

The program running with this subroutine must be running with the group system.

Parameter

SubsystemNam Specifies the name of the subsystem.
e

Return Values

Upon successful completion, the delssys subroutine returns a positive value. If no record is
found, a value of 0 is returned. Otherwise, —1 is returned and the odmerrno variable is set
to indicate the error. See "Appendix B. ODM Error Codes”, on page B-1 for a description of
possible odmerrno values.

Security
Privilege Control:

SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode File

644 /etc/objrepos/SRCsubsys
644 /etc/objrepos/SRCsubsvr
644 /etc/objrepos/SRCnotify

Auditing Events:

Event Information
SRC_Delssys Lists in an audit log the name of the subsystem being removed.

1-136 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files
/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/etc/objrepos/SRCsubsvr SRC Subsystem Configuration object class.
/etc/objrepos/SRCnotify SRC Notify Method object class.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC—unix Specifies the location for temporary socket files.
/ust/include/sys/srcobj.h Defines object structures used by the SRC.
/ust/include/spc.h Defines external interfaces provided by the SRC

subroutines.

Related Information
The addssys subroutine, chssys subroutine.

The chssys command, mkssys command, rmssys command.

List of SRC Subroutines and System Resource Controller (SRC) Overview for Programmers
in AIX General Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-137

dirname Subroutine

Purpose
Report the parent directory name of a file path name.

Library
Standard C Library (libc.a)

Syntax

#include <libgen.h>

char *dirname (path)
char *path

Description

Given a pointer to a character string that contains a file system path name, the dirname
subroutine returns a pointer to a string that is the parent directory of that file. Trailing "/
characters in the path are not counted as part of the path.

If path is a null pointer or points to an empty string, a pointer to a static constant ”.” is
returned.

The dirname and basename subroutines together yield a complete path name. dirname
(path) is the directory where basename (path) is found.

Parameters

path Character string containing a file system path name.

Return Values

The dirname subroutine returns a pointer to a string that is the parent directory of path. If
path or *path is a null pointer or points to an empty string, a pointer to a string ”.” is returned.
The dirname subroutine may modify the string pointed to by path and may return a pointer
to static storage that may then be overwritten by sequent calls to the dirname subroutine.

Examples
A simple file name and the strings ”.” and ”..” all have ".” as their return value.
Input string Output string
/usr/lib /usr
lusr/ /
usr .
/ /

The following code reads a path name, changes directory to the appropriate directory, and
opens the file.

1-138 Technical Reference: Base Operating System

char path [MAXPATHEN], *pathcopy;
int fd;

fgets (path, MAXPATHEN, stdin);
pathcopy = strdup (path);

chdir (dirname (pathcopy));

fd = open (basename (path), O_RDONLY) ;

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The basename or chdir subroutine.

Base Operating System Runtime Services (A-P) 1-139

disclaim Subroutine

Purpose
Disclaims the content of a memory address range.
Syntax
#include <sys/shm.h>
int disclaim (Address, Length, Flag)
char *Address;
unsigned int Length, Flag;
Description
The disclaim subroutine marks an area of memory having content that is no longer needed.
The system then stops paging the memory area. This subroutine cannot be used on
memory that is mapped to a file by the shmat subroutine.
Parameters
Address Points to the beginning of the memory area.
Length Specifies the length of the memory area in bytes.
Flag Must be the value ZERO_MEM, which indicates that each memory

location in the address range should be set to 0.

Return Values
When successful, the disclaim subroutine returns a value of 0.

Error Codes

If the disclaim subroutine is unsuccessful, it returns a value of —1 and sets the errno global
variable to indicate the error. The disclaim subroutine is unsuccessful if one or more of the
following are true:

EFAULT The calling process does not have write access to the area of memory
that begins at the Address parameter and extends for the number of
bytes specified by the Length parameter.

EINVAL The value of the Flag parameter is not valid.
EINVAL The memory area is mapped to a file.

1-140 Technical Reference: Base Operating System

diclose Subroutine

Purpose
Closes and unloads a module loaded by the dlopen subroutine.

Syntax

#include <dlfcn.h>

int dlclose (Data);
void *Data;

Description

The diclose subroutine is used to remove access to a module loaded with the dlopen
subroutine. In addition, access to dependent modules of the module being unloaded is
removed as well.

Modules being unloaded with the diclose subroutine will not be removed from the process’s
address space if they are still required by other modules. Nevertheless, subsequent uses of
Data are invalid, and further uses of symbols that were exported by the module being
unloaded result in undefined behavior.

Parameters

Data A loaded module reference returned from a previous call to dlopen.

Return Values

Upon successful completion, 0 (zero) is returned. Otherwise, errno is set to EINVAL, and
the return value is also EINVAL. Even if the diclose subroutine succeeds, the specified
module may still be part of the process’s address space if the module is still needed by
other modules.

Error Codes

EINVAL The Data parameter does not refer to a module opened by dlopen that
is still open. The parameter may be corrupt or the module may have
been unloaded by a previous call to diclose.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The dlerror subroutine, dlopen subroutine, disym subroutine, load subroutine, loadquery
subroutine, unload subroutine, loadbind subroutine.

The Id command.

The Shared Libraries and Shared Memory Overview and Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-141

dlerror Subroutine

Purpose
Return a pointer to information about the last dlopen, disym, or diclose error.
Syntax
#include <dlfcn.h>
char *dlerror (void);
Description

The dlerror subroutine is used to obtain information about the last error that occurred in a
dynamic loading routine (that is, dlopen , dilsym , or diclose). The returned value is a
pointer to a null-terminated string without a final newline. Once a call is made to this
function, subsequent calls without any intervening dynamic loading errors will return NULL.

Applications can avoid calling the dlerror subroutine, in many cases, by examining errno
after a failed call to a dynamic loading routine. If errno is ENOEXEC, the dlerror subroutine
will return additional information. In all other cases, dlerror will return the string
corresponding to the value of errno.

The dlerror function may invoke loadquery to ascertain reasons for a failure. If a call is
made to load or unload between calls to dlopen and dlerror, incorrect information may be
returned.

Return Values

A pointer to a static buffer is returned; a NULL value is returned if there has been no error
since the last call to dlerror. Applications should not write to this buffer; they should make a
copy of the buffer if they wish to preserve the buffer’s contents.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The load subroutine, loadbind subroutine, loadquery subroutine, unload subroutine,
dlopen subroutine, diclose subroutine, dlsym subroutine.

The Id command.

The Shared Libraries and Shared Memory Overview and Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-142 Technical Reference: Base Operating System

dlopen Subroutine

Purpose
Dynamically load a module into the calling process.

Syntax

#include <dlfcn.h>

void *dlopen (FilePath, Flags);

const char *FilePath;

int Flags;
Description

The dlopen subroutine loads the module specified by FilePath into the executing process’s
address space. Dependents of the module are automatically loaded as well. If the module is
already loaded, i t is not loaded again, but a new, unique value will be returned by the
dlopen subroutine.

The value returned by dlopen may be used in subsequent calls to dlsym and diclose. If an
error occurs during the operation, dlopen returns NULL.

If the main application was linked with the —brtl option, then the runtime linker is invoked by
dlopen. If the module being loaded was linked with runtime linking enabled, both
intra—module and inter—module references are overridden by any symbols available in the
main application. If runtime linking was enabled, but the module was not built enabled, then
all inter-module references will be overridden, but some intra—module references will not be
overridden.

If the module being opened with dlopen or any of its dependents is being loaded for the first
time, initialization routines for these newly—loaded routines are called (after runtime linking,
if applicable) before dlopen returns. Initialization routines are the functions specified with
the —binitfini: linker option when the module was built. (Refer to the Id command for more
information about this option.)

Notes:

1. The initialization functions need not have any special names, and multiple functions per
module are allowed.

2. If the module being loaded has read—other permission, the module is loaded into the
global shared library segment. Modules loaded into the global shared library segment
are not unloaded even if they are no longer being used. Use the slibclean command to
remove unused modules from the global shared library segment.

Use the environment variable LIBPATH to specify a list of directories in which dlopen
search es for the named module. The running application also contains a set of library
search paths that were specified when the application was linked; these paths are searched
after any paths found in LIBPATH. Also, the setenv subroutine

Base Operating System Runtime Services (A-P) 1-143

Flags

FilePath

Specifies the name of a file containing the loadable module. This
parameter can be contain an absolute path, a relative path, or no path
component. If FilePath contains a slash character, FilePath is used
directly, and no directories are searched.

If the FilePath parameter is /unix, dlopen returns a value that can be
used to look up symbols in the current kernel image, including those
symbols found in any kernel extension that was available at the time the
process began execution.

If the value of FilePath is NULL, a value for the main application is
returned. This allows dynamically loaded objects to look up symbols in
the main executable, or for an application to examine symbols available
within itself.

Specifies variations of the behavior of dlopen. Either RTLD_NOW or RTLD_LAZY must
always be specified. Other flags may be OR’ed with RTLD_NOW or RTLD_LAZY.

RTLD_NOW

RTLD_LAZY

RTLD_GLOBAL

RTLD_LOCAL

RTLD_MEMBER

Load all dependents of the module being loaded and resolve
all symbols.

Specifies the same behavior as RTLD_NOW. In a future
release of AlX, the behavior of the RTLD_LAZY may change
so that loading of dependent modules is deferred of resolution
of some symbols is deferred.

Allows symbols in the module being loaded to be visible when
resolving symbols used by other dlopen calls. These symbols
will also be visible when the main application is opened with
dlopen(NULL, mode).

Prevent symbols in the module being loaded from being used
when resolving symbols used by other dlopen calls. Symbols
in the module being loaded can only be accessed by calling
disym subroutine. If neither RTLD_GLOBAL nor
RTLD_LOCAL is specified, the default is RTLD_LOCAL. If
both flags are specified, RTLD_LOCAL is ignored.

The dlopen subroutine can be used to load a module that is a
member of an archive. The L_LOADMEMBER flag is used
when the load subroutine is called. The module name FilePath
names the archive and archive member according to the rules
outlined in the load subroutine.

RTLD_NOAUTODEFER Prevents deferred imports in the module being loaded from

being automatically resolved by subsequent loads. The
L_NOAUTODEFER flag is used when the load subroutine is
called.

Ordinarily, modules built for use by the dlopen and disym

sub routines will not contain deferred imports. However,
deferred imports can be still used. A module opened with
dlopen may provide definitions for deferred imports in the main
application, for modules loaded with the load subroutine (if the
L_NOAUTODEFER flag was not used), and for other modules
loaded with the dlopen subroutine (if the
RTLD_NOAUTODEFER flag was not used).

1-144 Technical Reference: Base Operating System

Return Values

Upon successful completion, dlopen returns a value that can be used in calls to the disym
and dlclose subroutines. The value is not valid for use with the loadbind and unload
subroutines.

If the dlopen call fails, NULL (a value of 0) is returned and the global variable errno is set. If
errno contains the value ENOEXEC, further information is available via the dlerror function.

Error Codes
See the load subroutine for a list of possible errno values and their meanings.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The diclose subroutine, dlerror subroutine, disym subroutine, load subroutine, loadbind
subroutine, loadquery subroutine, unload subroutine.

The Id command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-145

disym Subroutine

Purpose
Looks up the location of a symbol in a module that is loaded with dlopen.

Syntax

#include <dlfcn.h>

void *dlsym(Data, Symbol);

void *Data;

const char *Symbol;
Description

The disym subroutine looks up a named symbol exported from a module loaded by a
previous call to the dlopen subroutine. Only exported symbols are found by disym. See the
Id command to see how to export symbols from a module.

Data Specifies a value returned by a previous call to dlopen.

Symbol Specifies the name of a symbol exported from the referenced module.
The form should be a NULL—terminated string.

Note: C++ symbol names should be passed to dilsym in mangled form; dlsym does not
perform any name demangling on behalf of the calling application.

A search for the named symbol is based upon breadth—first ordering of the module and its
dependants. If the module was constructed using the —G or —brtl linker option, the module’s
dependants will include all modules named on the Id command line, in the original order.
The dependants of a module that was not linked with the —G or —brtl linker option will be
listed in an unspecified order.

Return Values
If the named symbol is found, its address is returned. If the named symbol is not found,
NULL is returned and errno is set to 0. If Data or Symbol are invalid, NULL is returned and
errno is set to EINVAL .

If the first definition found is an export of an imported symbol, this definition will satisfy the
search. The address of the imported symbol is returned. If the first definition is a deferred
import, the definition is ignored and the search continues.

If the named symbol refers to a BSs symbol (uninitialized data structure), the search
continues until an initialized instance of the symbol is found or the module and all of its
dependants have been searched . If an initialized instance is found, its address is returned;
otherwise, the address of the first uninitialized instance is returned.

Error Codes

EINVAL If the Data parameter does not refer to a module opened by dlopen that
is still loaded or if the Symbol parameter points to an invalid address,
the dlsym subroutine returns NULL and errno is set to EINVAL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The diclose subroutine, dlerror subroutine, dlopen subroutine, load subroutine, loadbind
subroutine, loadquery subroutine, unload subroutine.

The Id command.

1-146 Technical Reference: Base Operating System

drand48, erand48, jrand48, Icong48, Irand48, mrand48,
nrand48, seed48, or srand48 Subroutine

Purpose

Library

Syntax

Generate uniformly distributed pseudo—random number sequences.

Standard C Library (libc.a)

#include <stdlib.h>
double drand48 (void)

double erand48 (xsubi)
unsigned short int xsubi[3];

long int jrand48 (xsubi)
unsigned short int xsubi[3];

void lcong48 (Parameter)
unsigned short int Parameter[7];

long int 1lrand48 (void)
long int mrand48 (void)

long int nrand48 (xsubi)
unsigned short int xsubi[3];

unsigned short int *seed48 (Seedlé6v)
unsigned short int Seedlév(3];

void srand48 (SeedValue)
long int SeedValue;

Description

Attention: Do not use the drand48, erand48, jrand48, Icong48, Irand48, mrand48,
nrand48, seed48, or srand48 subroutine in a multithreaded environment.

This family of subroutines generates pseudo—-random numbers using the linear congruential
algorithm and 48-bit integer arithmetic.

The drand48 subroutine and the erand48 subroutine return positive double—precision
floating—point values uniformly distributed over the interval [0.0, 1.0).

The Irand48 subroutine and the nrand48 subroutine return positive long integers uniformly
distributed over the interval [0,2**31).

The mrand48 subroutine and the jrand48 subroutine return signed long integers uniformly
distributed over the interval [-2**31, 2**31).

The srand48 subroutine, seed48 subroutine, and lcong48 subroutine initialize the
random—number generator. Programs must call one of them before calling the drand48,
Irand48 or mrand48 subroutines. (Although it is not recommended, constant default
initializer values are supplied if the drand48, Irand48 or mrand48 subroutines are called
without first calling an initialization subroutine.) The erand48, nrand48, and jrand48
subroutines do not require that an initialization subroutine be called first.

The previous value pointed to by the seed48 subroutine is stored in a 48—bit internal buffer,
and a pointer to the buffer is returned by the seed48 subroutine. This pointer can be ignored
if it is not needed, or it can be used to allow a program to restart from a given point at a later
time. In this case, the pointer is accessed to retrieve and store the last value pointed to by

Base Operating System Runtime Services (A-P) 1-147

the seed48 subroutine, and this value is then used to reinitialize, by means of the seed48
subroutine, when the program is restarted.

All the subroutines work by generating a sequence of 48-bit integer values, x{j], according
to the linear congruential formula:

x[n+l] = (ax[n] + c¢)mod m, n is > = 0

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless the lcong48
subroutine has been called, the multiplier value a and the addend value c are:

SDEECE66D base 16 = 273673163155 base 8
c = B base 16 = 13 base 8

a

Parameters

xsubi Specifies an array of three shorts, which, when concatenated together,
form a 48-bit integer.

SeedValue Specifies the initialization value to begin randomization. Changing this
value changes the randomization pattern.

Seed16v Specifies another seed value; an array of three unsigned shorts that
form a 48-bit seed value.

Parameter Specifies an array of seven shorts, which specifies the initial xsubi

value, the multiplier value a and the add—in value c.

Return Values

The value returned by the drand48, erand48, jrand48, Irand48, nrand48, and mrand48
subroutines is computed by first generating the next 48—bit x{/] in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied

from the high—order (most significant) bits of x{/] and transformed into the returned value.

The drand48, Irand48, and mrand48 subroutines store the last 48-bit x{/] generated into an
internal buffer; this is why they must be initialized prior to being invoked.

The erand48, jrand48, and nrand48 subroutines require the calling program to provide
storage for the successive x[/] values in the array pointed to by the xsubi parameter. This is
why these routines do not have to be initialized; the calling program places the desired initial
value of x[/] into the array and pass it as a parameter.

By using different parameters, the erand48, jrand48, and nrand48 subroutines allow
separate modules of a large program to generate independent sequences of
pseudo—random numbers. In other words, the sequence of numbers that one module
generates does not depend upon how many times the subroutines are called by other
modules.

The lcong48 subroutine specifies the initial x{i] value, the multiplier value a, and the addend
value c. The Parameter array elements Parameter{0-2] specify x{i], Paramete{3-5] specify
the multiplier a, and Parameten6] specifies the 16—bit addend c. After lcong48 has been
called, a subsequent call to either the srand48 or seed48 subroutine restores the standard
a and c specified before.

The initializer subroutine seed48 sets the value of x[i] to the 48-bit value specified in the
array pointed to by the Seed16v parameter. In addition, seed48 returns a pointer to a 48—bit
internal buffer that contains the previous value of x/] that is used only by seed48. The
returned pointer allows you to restart the pseudo—random sequence at a given point. Use
the pointer to copy the previous x{/] value into a temporary array. Then call seed48 with a
pointer to this array to resume processing where the original sequence stopped.

The initializer subroutine srand48 sets the high—order 32 bits of x[i] to the 32 bits contained
in its parameter. The low order 16 bits of x|/] are set to the arbitrary value 330E16.

1-148 Technical Reference: Base Operating System

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The rand, srand subroutine, random, srandom, initstate, or setstate subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-149

drem or remainder Subroutine

Purpose
Computes the IEEE Remainder as defined in the IEEE Floating—Point Standard.
Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Syntax
#include <math.h>
double drem (x, y)
double x, y;
double remainder (double x, double y);
Description
The drem or remainder subroutines calculate the remainder r equal to x minus n to the x
power multiplied by y (r = x —n *y), where the n parameter is the integer nearest the exact
value of x dividedbyy (x/y).If In -x/y| = 1/2, thenthe nparameteris an even
value. Therefore, the remainder is computed exactly, and the absolute value of r (| r|) is
less than or equal to the absolute value of y divided by 2 (|y|/2) .
The IEEE Remainder differs from the fmod subroutine in that the IEEE Remainder always
returns an rparameter such that | r| is less than or equal to |y | /2, while FMOD returns
an rsuch that |r| isless than or equalto |y |. The IEEE Remainder is useful for argument
reduction for transcendental functions.
Note: Compile any routine that uses subroutines from the libm.a library with the —Im flag.
For example: compile the drem.c file:
cc drem.c —-1lm
Parameters

Specifies double—precision floating—point value.
Specifies a double—precision floating—point value.

Return Values

The drem or remainder subroutines return a NaNQ value for (x, 0) and (+/-INF, vy).

Error Codes

The remainder subroutine returns a NaNQ value for (x, 0.0) [x not equal to NaN] and
(+/~INF, y) [y not equal to NaN] and set errno to EDOM.

Implementation Specifics

This subroutine is part of Base Operating System (BOS) Runtime.
Note: For new development, the remainder subroutine is the preferred interface.

Related Information

The copysign, nextafter, scalb, logb, or ilog subroutine, floor, ceil, nearest, trunc, rint,
itrunc, fmod, fabs, or uitruns subroutine.

IEEE Standard for Binary Floating—Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854—-1987) describes the IEEE Remainder Function.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-150 Technical Reference: Base Operating System

_end, _etext, or edata Identifier

Purpose
Define the first addresses following the program, initialized data, and all data.
Syntax
extern _end;
extern _etext;
extern _edata;
Description

The external names _end, _etext, and _edata are defined by the loader for all programs.
They are not subroutines but identifiers associated with the following addresses:

_etext The first address following the program text.
_edata The first address following the initialized data region.
_end The first address following the data region that is not initialized. The

name end (with no underscore) defines the same address as does
_end (with underscore).

The break value of the program is the first location beyond the data. When a program
begins running, this location coincides with end. However, many factors can change the
break value, including:

The brk or sbrk subroutine

The malloc subroutine

The standard I/O subroutines

The —p flag with the cc command

Therefore, use the brk or sbrk(0) subroutine, not the end address, to determine the break
value of the program.

Implementation Specifics
These identifiers are part of Base Operating System (BOS) Runtime.

Related Information
The brk or sbrk subroutine, malloc subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-151

ecvt, fcvt, or gcvt Subroutine

Purpose

Library

Syntax

Converts a floating—point number to a string.

Standard C Library (libc.a)

#include <stdlib.h>

char *ecvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *fcvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *gecvt (Value, NumberOfDigits, Buffer;)
double Value;

int NumberOfDigits;

char *Buffer;

Description

The ecvt, fcvt, and gevt subroutines convert floating—point numbers to strings.

The ecvt subroutine converts the Value parameter to a nullterminated string and returns a
pointer to it. The NumberOfDigits parameter specifies the number of digits in the string. The
low—order digit is rounded according to the current rounding mode. The ecvt subroutine
sets the integer pointed to by the DecimalPointer parameter to the position of the decimal
point relative to the beginning of the string. (A negative number means the decimal point is
to the left of the digits given in the string.) The decimal point itself is not included in the
string. The ecvt subroutine also sets the integer pointed to by the Sign parameter to a
nonzero value if the Value parameter is negative and sets a value of 0 otherwise.

The fevt subroutine operates identically to the ecvt subroutine, except that the correct digit
is rounded for C or FORTRAN F—format output of the number of digits specified by the
NumberOfDigits parameter.

Note: In the F—format, the NumberOfDigits parameter is the number of digits desired after
the decimal point. Large numbers produce a long string of digits before the decimal
point, and then NumberOfDigits digits after the decimal point. Generally, the gevt
and ecvt subroutines are more useful for large numbers.

The gevt subroutine converts the Value parameter to a null-terminated string, stores it in
the array pointed to by the Buffer parameter, and then returns the Buffer parameter. The
gevt subroutine attempts to produce a string of the NumberOfDigits parameter significant
digits in FORTRAN F—format. If this is not possible, the E—format is used. The gcvt
subroutine suppresses trailing zeros. The string is ready for printing, complete with minus
sign, decimal point, or exponent, as appropriate. The radix character is determined by the
current locale (see setlocale subroutine). If the setlocale subroutine has not been called
successfully, the default locale, POSIX, is used. The default locale specifies a . (period) as
the radix character. The LC_NUMERIC category determines the value of the radix character
within the current locale.

The ecvt, fevt, and gevt subroutines represent the following special values that are
specified in ANSVI/IEEE standards 754—1985 and 854—1987 for floating—point arithmetic:

1-152 Technical Reference: Base Operating System

Quiet NaN Indicates a quiet not—a—number (NaNQ)
Signalling NaN Indicates a signaling NaNS
Infinity Indicates a INF value

The sign associated with each of these values is stored in the Sign parameter.

Note: A value of 0 can be positive or negative. In the IEEE floating—point, zeros also have
signs and set the Sign parameter appropriately.

Attention: All three subroutines store the strings in a static area of memory whose
contents are overwritten each time one of the subroutines is called.

Parameters

Value Specifies some double—precision floating—point value.
NumberOfDigits Specifies the number of digits in the string.

DecimalPointer Specifies the position of the decimal point relative to the beginning of
the string.

Sign Specifies that the sign associated with the return value is placed in the
Sign parameter. In IEEE floating—point, since 0 can be signed, the Sign
parameter is set appropriately for signed 0.

Buffer Specifies a character array for the string.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The atof, strtod, atoff, or strtof subroutine, fp_read_rnd, or fp_swap_rnd subroutine,
printf subroutine, scanf subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

IEEE Standard for Binary Floating—Point Arithmetic (ANSI/IEEE Standards 754—1985 and
854-1987).

Base Operating System Runtime Services (A-P) 1-153

erf, erfl, erfc, or erfcl Subroutine

Purpose
Computes the error and complementary error functions.

Libraries

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double erf (x)
double x;

long double erfl (x)
long double x;

double erfc (x)
double x;

long double erfcl (x)
long double x;

Description

The erf and erfl subroutines return the error function of the x parameter, defined for the erf
subroutine as the following:

erf(x) = (2/sqrt(pi) * (integral [0 to x] of exp (- (t**2)) dt)
erfc(x) = 1.0 - erf(x)

The erfe and erfcl subroutines are provided because of the extreme loss of relative
accuracy if er £ (x) is called for large values of the x parameter and the result is subtracted
from 1. For example, 12 decimal places are lost when calculating (1.0 - erf (5)).

Note: Compile any routine that uses subroutines from the libm.a library with the —Im flag.
To compile the erf.c file, for example, enter:

cc erf.c —-1m

Parameters

X Specifies a double—precision floating—point value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exp, expm1, log, log10, log1p, or pow subroutine, sqrt or cbrt subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128-Bit long double Floating—Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

1-154 Technical Reference: Base Operating System

errlog Subroutine

Purpose
Logs an application error to the system error log.
Library
Run-Time Services Library (librts.a)
Syntax
#include <sys/errids.h>
int errlog (ErrorStructure, Length)
void *ErrorStructure;
unsigned int Length;
Description

The errlog subroutine writes an error log entry to the /dev/error file. The errlog subroutine
is used by application programs.

The transfer from the err_rec structure to the error log is by a write subroutine to the
/dev/error special file.

The errdemon process reads from the /dev/error file and writes the error log entry to the
system error log. The timestamp, machine ID, node ID, and Software Vital Product Data
associated with the resource name (if any) are added to the entry before going to the log.

Base Operating System Runtime Services (A-P) 1-155

Parameters

1-156

ErrorStructure Points to an error record structure containing an error
record. Valid error record structures are typed in the
/ust/include/sys/err_rec.h file. The two error record
structures available are err_rec and err_rec0. The err_rec
structure is used when the detail_data field is required.
When the detail_data field is not required, the
err_recO structure is used.

struct err_recO {
unsigned int error_id;
char resource_name [ERR_NAMESIZE];
}i
struct err_rec {
unsigned int error_id;
char resource_name [ERR_NAMESIZE];
char detail_datal[l];
bi

The fields of the structures err_rec and err_recO are:

error_id Specifies an index for the system error
template database, and is assigned by the
errupdate command when adding an error
template. Use the errupdate command
with the —h flag to get a #define
statement for this 8—digit hexadecimal
index.

resource_name
Specifies the name of the resource that
has detected the error. For software errors,
this is the name of a software component
or an executable program. For hardware
errors, this is the name of a device or
system component. It does not indicate
that the component is faulty or needs
replacement instead, it is used to
determine the appropriate diagnostic
modules to be used to analyze the error.

detail_data
Specifies an array from 0 to
ERR_REC_MAX bytes of user—supplied
data. This data may be displayed by the
errpt command in hexadecimal,
alphanumeric, or binary form, according to
the data_encoding fields in the error
log template for this error_id field.

Length Specifies the length in bytes of the err_rec structure, which
is equal to the size of the error_id and
resource_name fields plus the length in bytes of the
detail_data field.

Technical Reference: Base Operating System

Return Values

0 The entry was logged successfully.
-1 The entry was not logged.

Implementation Specifics

Files

The errlog subroutine is part of Base Operating System (BOS) Runtime.

/dev/error Provides standard device driver interfaces required by the
error log component.

/ust/include/sys/errids.h Contains definitions for error IDs.

/usr/include/sys/err_rec.h Contains structures defined as arguments to the errsave
kernel service and the errlog subroutine.

/var/adm/ras/errlog Maintains the system error log.

Related Information

The errclear command, errdead command, errinstall command, errlogger command,
errmsg command, errpt command, errstop command, errupdate command.

The /dev/error special file.
The errdemon daemon.
The errsave kernel service.

Error Logging Overview in AIX Version 4.3 Problem Solving Guide and Reference.

Base Operating System Runtime Services (A-P) 1-157

exec: execl, execle, execlp, execv, execve, execvp, or exect

Subroutine
Purpose
Executes a file.
Library
Standard C Library (libc.a)
Syntax

#include <unistd.h>

extern
char **environ;

int execl (

Path,

ArgumentO0 [, Argumentl, ...], 0)

const char *Path, *Argument(O, *Argument
1, ...;

int execle (
Path,
ArgumentO [, Argumentl, ...]1, O,

EnvironmentPointer)

const

char *Path, *ArgumentO, *Argum
ent

1, ...;

char *const EnvironmentPointer[1;

int execlp (

File,

Argument(0 [, Argumentl

ro--21,0)

const char *File, *Argument(O, *Argument
1, ...;

int execv (

Path,

ArgumentV)

const char *Path;

char *const ArgumentV[];

1-158 Technical Reference: Base Operating System

int execve (
Path,
ArgumentV,

EnvironmentPointer)

const char *Path;

char

*const ArgumentV[], *EnvironmentPointer

[1;

int execvp (

File,

ArgumentV)

const char *File;

char *const ArgumentV[];

int exect (

Path,

ArgumentV,

EnvironmentPointer)

char *Path, *ArgumentV, *EnvironmentPointer [1;

Description
The exec subroutine, in all its forms, executes a new program in the calling process. The
exec subroutine does not create a new process, but overlays the current program with a
new one, which is called the new—process image. The new—process image file can be one
of three file types:

¢ An executable binary file in XCOFF file format. .

¢ An executable text file that contains a shell procedure (only the execlp and execvp
subroutines allow this type of new—process image file).

¢ A file that names an executable binary file or shell procedure to be run.

The new—process image inherits the following attributes from the calling process image:
session membership, supplementary group IDs, process signal mask, and pending signals.

The last of the types mentioned is recognized by a header with the following syntax:

#! Path [String]

The #! is the file magic number, which identifies the file type. The path name of the file to be
executed is specified by the Path parameter. The String parameter is an optional character
string that contains no tab or space characters. If specified, this string is passed to the new
process as an argument in front of the name of the new—process image file. The header
must be terminated with a new—line character. When called, the new process passes the
Path parameter as ArgumentV[0]. If a String parameter is specified in the new process
image file, the exec subroutine sets ArgumentV[0] to the String and Path parameter values
concatenated together. The rest of the arguments passed are the same as those passed to
the exec subroutine.

Base Operating System Runtime Services (A-P) 1-159

The exec subroutine attempts to cancel outstanding asynchronous I/O requests by this
process. If the asynchronous I/O requests cannot be canceled, the application is blocked
until the requests have completed.

The exec subroutine is similar to the load subroutine, except that the exec subroutine does
not have an explicit library path parameter. Instead, the exec subroutine uses the LIBPATH
environment variable. The LIBPATH variable is ignored when the program that the exec
subroutine is run on has more privilege than the calling program, for example, the suid
program.

The exect subroutine is included for compatibility with older programs being traced with the
ptrace command. The program being executed is forced into hardware single—step mode.

Note: exect is not supported in 64—bit mode.

Parameters
Path Specifies a pointer to the path name of the new—process
image file. If Network File System (NFS) is installed on your
system, this path can cross into another node. Data is
copied into local virtual memory before proceeding.
File Specifies a pointer to the name of the new—process image

file. Unless the File parameter is a full path name, the path
prefix for the file is obtained by searching the directories
named in the PATH environment variable. The initial
environment is supplied by the shell.

Note: The execlp subroutine and the execvp
subroutine take File parameters, but the rest of the exec
subroutines take Path parameters. (For information
about the environment, see the environment
miscellaneous facility and the sh command.)

Argument0 [, Argument1, ...] Point to null-terminated character strings. The strings
constitute the argument list available to the new process.
By convention, at least the Argument0 parameter must be
present, and it must point to a string that is the same as the
Path parameter or its last component.

ArgumentV Specifies an array of pointers to null-terminated character
strings. These strings constitute the argument list available
to the new process. By convention, the ArgumentV
parameter must have at least one element, and it must
point to a string that is the same as the Path parameter or
its last component. The last element of the ArgumentV
parameter is a null pointer.

EnvironmentPointer An array of pointers to null-terminated character strings.
These strings constitute the environment for the new
process. The last element of the EnvironmentPointer
parameter is a null pointer.

When a C program is run, it receives the following parameters:

main (ArgumentCount,

ArgumentV, EnvironmentPointer)

int ArgumentCount;

char *ArgumentV[], *EnvironmentPointer]

1;

In this example, the ArgumentCount parameter is the argument count, and the ArgumentV
parameter is an array of character pointers to the arguments themselves. By convention,

1-160 Technical Reference: Base Operating System

the value of the ArgumentCount parameter is at least 1, and the ArgumentV[0] parameter
points to a string containing the name of the new—process image file.

The main routine of a C language program automatically begins with a runtime start—off
routine. This routine sets the environ global variable so that it points to the environment
array passed to the program in EnvironmentPointer. You can access this global variable by
including the following declaration in your program:

extern char **environ;

The execl, execv, execlp, and execvp subroutines use the environ global variable to pass
the calling process current environment to the new process.

File descriptors open in the calling process remain open, except for those whose
close—on—exec flag is set. For those file descriptors that remain open, the file pointer is
unchanged. (For information about file control, see the fentl.h file.)

The state—of—conversion descriptors and message—catalog descriptors in the new process
image are undefined. For the new process, an equivalent of the setlocale subroutine,
specifying the LC_ALL value for its category and the ”C” value for its locale, is run at
startup.

If the new program requires shared libraries, the exec subroutine finds, opens, and loads
each of them into the new—process address space. The referenced counts for shared
libraries in use by the issuer of the exec are decremented. Shared libraries are searched for
in the directories listed in the LIBPATH environment variable. If any of these files is remote,
the data is copied into local virtual memory.

The exec subroutines reset all caught signals to the default action. Signals that cause the
default action continue to do so after the exec subroutines. Ignored signals remain ignored,
the signal mask remains the same, and the signal stack state is reset. (For information
about signals, see the sigaction subroutine.)

If the SetUserID mode bit of the new—process image file is set, the exec subroutine sets the
effective user ID of the new process to the owner ID of the new—process image file.
Similarly, if the SetGrouplD mode bit of the new—process image file is set, the effective
group ID of the new process is set to the group ID of the new—process image file. The real
user ID and real group ID of the new process remain the same as those of the calling
process. (For information about the Set/D modes, see the chmod subroutine.)

At the end of the exec operation the saved user ID and saved group ID of the process are
always set to the effective user ID and effective group ID, respectively, of the process.

When one or both of the set ID mode bits is set and the file to be executed is a remote file,
the file user and group IDs go through outbound translation at the server. Then they are
transmitted to the client node where they are translated according to the inbound translation
table. These translated IDs become the user and group IDs of the new process.

Note: setuid and setgid bids on shell scripts do not affect user or group IDs of the
process finally executed.

Profiling is disabled for the new process.

The new process inherits the following attributes from the calling process:

¢ Nice value (see the getpriority subroutine, setpriority subroutine, nice subroutine)
e Process ID

e Parent process ID

e Process group ID

e semadj values (see the semop subroutine)

e tty group ID (see the exit, atexit, or _exit subroutine, sigaction subroutine)

Base Operating System Runtime Services (A-P) 1-161

Examples

trace flag (see request 0 of the ptrace subroutine)

Time left until an alarm clock signal (see the incinterval subroutine, setitimer subroutine,
and alarm subroutine)

Current directory

Root directory

File—mode creation mask (see the umask subroutine)
File size limit (see the ulimit subroutine)

Resource limits (see the getrlimit subroutine, setrlimit subroutine, and vlimit
subroutine)

tms_utime ,tms_stime ,tms_cutime ,and tms_ctime fields of the tms
structure (see the times subroutine)

Login user ID

Upon successful completion, the exec subroutines mark for update the st_atime field of
the file.

1.

To run a command and pass it a parameter, enter:
execlp(”1i”, "1i”, "-al”, 0);

The execlp subroutine searches each of the directories listed in the PATH environment
variable for the li command, and then it overlays the current process image with this
command. The execlp subroutine is not returned, unless the li command cannot be
executed.

Note: This example does not run the shell command processor, so operations
interpreted by the shell, such as using wildcard characters in file names, are not valid.

To run the shell to interpret a command, enter:

execl (”/usr/bin/sh”, ”sh”, "-c”, "1i -1 *.c”,
0);

This runs the sh command with the —c flag, which indicates that the following parameter
is the command to be interpreted. This example uses the execl subroutine instead of the
execlp subroutine because the full path name /usr/bin/sh is specified, making a path
search unnecessary.

Running a shell command in a child process is generally more useful than simply using
the exec subroutine, as shown in this example. The simplest way to do this is to use the
system subroutine.

The following is an example of a new—process file that names a program to be run:

#! /usr/bin/awk -f

{ for (i = NF; i > 0; —--i) print $i }

If this file is named reverse , entering the following command on the command line:

reverse chapterl chapter?

This command runs the following command:

/usr/bin/awk —-f reverse chapterl chapter?

Note: The exec subroutines use only the first line of the new—process image file and
ignore the rest of it. Also, the awk command interprets the text that follows a # (pound
sign) as a comment.

1-162 Technical Reference: Base Operating System

Return Values

Upon successful completion, the exec subroutines do not return because the calling
process image is overlaid by the new—process image. If the exec subroutines return to the
calling process, the value of —1 is returned and the errno global variable is set to identify the
error.

Error Codes
If the exec subroutine is unsuccessful, it returns one or more of the following error codes:

EACCES The new—process image file is not an ordinary file.
EACCES The mode of the new—process image file denies execution permission.

ENOEXEC The exec subroutine is neither an execlp subroutine nor an execvp
subroutine. The new—process image file has the appropriate access
permission, but the magic number in its header is not valid.

ENOEXEC The new—process image file has a valid magic number in its header, but
the header is damaged or is incorrect for the machine on which the file is to

be run.

ETXTBSY The new—process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

ENOMEM The new process requires more memory than is allowed by the
system—-imposed maximum, the MAXMEM compiler option.

E2BIG The number of bytes in the new—process argument list is greater than the

system—imposed limit. This limit is defined as the NCARGS parameter
value in the sys/param.h file.

EFAULT The Path, ArgumentV, or EnviromentPointer parameter points outside of
the process address space.
EPERM The SetUserID or SetGrouplD mode bit is set on the process image file.

The translation tables at the server or client do not allow translation of this
user or group ID.

If the exec subroutine is unsuccessful because of a condition requiring path name
resolution, it returns one or more of the following error codes:

EACCES Search permission is denied on a component of the path prefix.
Access could be denied due to a secure mount.

EFAULT The Path parameter points outside of the allocated address space
of the process.

EIO An input/output (I/0O) error occurred during the operation.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of a path name exceeded 255 characters and the
process has the disallow truncation attribute (see the ulimit
subroutine), or an entire path name exceeded 1023 characters.

ENOENT A component of the path prefix does not exist.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOENT The path name is null.

ENOTDIR A component of the path prefix is not a directory.

ESTALE The root or current directory of the process is located in a virtual

file system that has been unmounted.

Base Operating System Runtime Services (A-P) 1-163

In addition, some errors can occur when using the new—process file after the old process
image has been overwritten. These errors include problems in setting up new data and
stack registers, problems in mapping a shared library, or problems in reading the
new—process file. Because returning to the calling process is not possible, the system sends
the SIGKILL signal to the process when one of these errors occurs.

If an error occurred while mapping a shared library, an error message describing the reason
for error is written to standard error before the signal SIGKILL is sent to the process. If a
shared library cannot be mapped, the subroutine returns one of the following error codes:

ENOENT One or more components of the path name of the shared library
file do not exist.

ENOTDIR A component of the path prefix of the shared library file is not a
directory.

ENAMETOOLONG A component of a path name prefix of a shared library file
exceeded 255 characters, or an entire path name exceeded 1023

characters.

EACCES Search permission is denied for a directory listed in the path
prefix of the shared library file.

EACCES The shared library file mode denies execution permission.

ENOEXEC The shared library file has the appropriate access permission, but
a magic number in its header is not valid.

ETXTBSY The shared library file is currently open for writing by some other
process.

ENOMEM The shared library requires more memory than is allowed by the
system—imposed maximum.

ESTALE The process root or current directory is located in a virtual file

system that has been unmounted.

If NFS is installed on the system, the exec subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Note: Currently, a Graphics Library program cannot be overlaid with another Graphics
Library program. The overlaying program can be a nongraphics program. For additional
information, see the /usr/Ipp/GL/README file.

Related Information

The alarm or incinterval subroutine, chmod or fchmod subroutine, exit subroutine, fcntl
subroutine, fork subroutine, getrusage or times subroutine, nice subroutine, profil
subroutine, ptrace subroutine.

The semop subroutine, settimer subroutine, sigaction, signal, or sigvec subroutine,
shmat subroutine, system subroutine, ulimit subroutine, umask subroutine.

The awk command, ksh command, sh command.
The environment file.

The XCOFF object (a.out) file format.

The varargs macros.

Asynchronous I/O Overview in AIX Kernel Extensions and Device Support Programming
Concepits.

1-164 Technical Reference: Base Operating System

exit, atexit, or _exit Subroutine

Purpose
Terminates a process.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

void exit (Status)
int Status;

void _exit (Status)
int Status;

#include <sys/limits.h>

int atexit (Function)
void (*Function) (void);

Description

The exit subroutine terminates the calling process after calling the standard 1/O library
_cleanup function to flush any buffered output. Also, it calls any functions registered
previously for the process by the atexit subroutine. The atexit subroutine registers functions
called at normal process termination for cleanup processing. Normal termination occurs as
a result of either a call to the exit subroutine or a return statement in the main function.

Each function a call to the atexit subroutine registers must return. This action ensures that
all registered functions are called.

Finally, the exit subroutine calls the _exit subroutine, which completes process termination
and does not return. The _exit subroutine terminates the calling process and causes the
following to occur:

¢ The _exit subroutine attempts to cancel outstanding asynchronous I/O requests by this
process. If the asynchronous I/O requests cannot be canceled, the application is blocked
until the requests have completed.

¢ All of the file descriptors open in the calling process are closed. If Network File System
(NFS) is installed on your system, some of these files can be remote. Because the _exit
subroutine terminates the process, any errors encountered during these close operations
go unreported.

¢ [f the parent process of the calling process is running a wait call, it is notified of the
termination of the calling process and the low—order 8 bits (that is, bits 0377 or OxFF) of
the Status parameter are made available to it.

e [f the parent process is not running a wait call when the child process terminates, it may
still do so later on, and the child’s status is returned to it at that time.

¢ The parent process is sent a SIGCHLD signal when a child process terminates; however,
since the default action for this signal is to ignore it, the signal is usually not seen.

e Terminating a process by exiting does not terminate its child processes.

e Each attached shared memory segment is detached and the shm_nattch value in the
data structure associated with its shared memory identifier is decremented by 1.

¢ For each semaphore for which the calling process has set a semadj value, that semadj
value is added to the semval of the specified semaphore. (The semop subroutine
provides information about semaphore operations.)

Base Operating System Runtime Services (A-P) 1-165

If the process has a process lock, text lock, or data lock, an unlock routine is performed.
(See the plock subroutine.)

An accounting record is written on the accounting file if the system accounting routine is
enabled. (The acct subroutine provides information about enabling accounting routines.)

Locks set by the fentl, lockf, and flock subroutines are removed.

If the parent process of the calling process is not ignoring a SIGCHLD signal, the calling
process is transformed into a zombie process, and its parent process is sent a SIGCHLD
signal to notify it of the end of a child process.

A zombie process occupies a slot in the process table, but has no other space allocated
to it either in user or kernel space. The process table slot that it occupies is partially
overlaid with time—accounting information to be used by the times subroutine. (See the
sys/proc.h file.)

A process remains a zombie until its parent issues one of the wait subroutines. At this
time, the zombie is /aid to rest (deleted), and its process table entry is released.

Terminating a process does not terminate its child processes. Instead, the parent process
ID of all of the calling—process child processes and zombie child processes is set to the
process ID of init. The init process inherits each of these processes, and catches their
SIGCHLD signals and calls the wait subroutine for each of them.

If the process is a controlling process, the SIGHUP signal is sent to each process in the
foreground process group of the controlling terminal belonging to the calling process.

If the process is a controlling process, the controlling terminal associated with the session
is disassociated from the session, allowing it to be acquired by a new controlling process.

If the exit of the process causes a process group to become orphaned, and if any
member of the newly orphaned process group is stopped, a SIGHUP signal followed by a
SIGCONT signal will be sent to each process in the newly orphaned process group.

Note: The system init process is used to assist cleanup of terminating processes. If the

Parameters

code for the init process is replaced, the program must be prepared to accept
SIGCHLD signals and issue a wait call for each.

Status Indicates the status of the process.

Function Specifies a function to be called at normal process termination for
cleanup processing. You may specify a number of functions to the limit
set by the ATEXIT_MAX function, which is defined in the sys/limits.h
file. A pushdown stack of functions is kept so that the last function
registered is the first function called.

Return Values

Upon successful completion, the atexit subroutine returns a value of 0. Otherwise, a
nonzero value is returned. The exit and _exit subroutines do not return a value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The acct subroutine, lockfx, lockf, or flock subroutines, sigaction, sigvec, or signal
subroutine, times subroutine, wait, waitpid, or wait3 subroutine.

Asynchronous I/O Overview in AIX Kernel Extensions and Device Support Programming
Concepits.

1-166 Technical Reference: Base Operating System

exp, expl, expm1, log, logl, log10, log10l, log1p, pow, or powl
Subroutine

Purpose

Libraries

Syntax

Computes exponential, logarithm, and power functions.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>

double exp (x)
double x;

long double expl (x)
long double x;

double expml (x)
double x;

double log (x)
double x;

long double logl (x)
long double x;

double loglO0 (x)
double x;

long double logl0l (x)
long double x;

double loglp (x)
double x;

double pow (x,)
double x, y;

long double powl (x, y)
long double x, y;

Description

These subroutines are used to compute exponential, logarithm, and power functions.
The exp and expl subroutines returns exp (x) .
The expm1 subroutine returns exp (x)-1.

The log and logl subroutines return the natural logarithm of the x parameter. The value of
the x parameter must be positive.

The log10 and log10I subroutines return the logarithm base 10 of the x parameter . The
value of x must be positive.

The log1p subroutine returns 1og (1 + x).

The pow and powl subroutines return x**y. If the x parameter is negative or 0, then the y
parameter must be an integer. If the y parameter is 0, then the pow and powl subroutines
return 1.0 for all the x parameters.

The expm1 and log1p subroutines are useful to guarantee that financial calculations of (
(1+x**n) —1) / x, are accurate when the x parameter is small (for example, when calculating
small daily interest rates).

Base Operating System Runtime Services (A-P) 1-167

expml (n * loglp(x))/x
These subroutines also simplify writing accurate inverse hyperbolic functions.

Note: Compile any routine that uses subroutines from the libm.a library with the —Im flags.
For example: to compile the pow.c file, enter:

cc pow.c —Im
Parameters
Specifies some double—precision floating—point value.

Specifies some double—precision floating—point value.

Error Codes
When using the libm.a library:

exp If the correct value would overflow, the exp subroutine returns a
HUGE_VAL value and the errno global variable is set to a ERANGE
value.

log If the x parameter is less than 0, the log subroutine returns a NaNQ

value and sets errno to EDOM. If x= 0, the log subroutine returns a
—HUGE_VAL value but does not modify errno.

log10 If the x parameter is less than 0, the log10 subroutine returns a NaNQ
value and sets errno to EDOM. If x= 0, the log10 subroutine returns a
—HUGE_VAL value but does not modify errno.

pow If the correct value overflows, the powsubroutine returns a HUGE_VAL
value and sets errno to ERANGE. If the x parameter is negative and
the y parameter is not an integer, the pow subroutine returns a NaNQ
value and sets errno to EDOM. If x=0 and the y parameter is negative,
the pow subroutine returns a HUGE_VAL value but does not modify
errno.

powl If the correct value overflows, the powlsubroutine returns a HUGE_VAL
value and sets errno to ERANGE. If the x parameter is negative and
the y parameter is not an integer, the powl subroutine returns a NaNQ
value and sets errno to EDOM. If x=0 and the y parameter is negative,
the powl subroutine returns a HUGE_VAL value but does not modify
errno.

When using libmsaa.a(-Imsaa):

exp If the correct value would overflow, the exp subroutine returns a
HUGE_VAL value. If the correct value would underflow, the exp
subroutine returns 0. In both cases errno is set to ERANGE.

expl If the correct value would overflow, the expl subroutine returns a
HUGE_VAL value. If the correct value would underflow, the expl
subroutine returns 0. In both cases errno is set to ERANGE.

log If the x parameter is not positive, the log subroutine returns a
—HUGE_VAL value, and sets errno to a EDOM value. A message
indicating DOMAIN error (or SING error when x = 0) is output to
standard error.

logl If the x parameter is not positive, the logl subroutine returns the
—HUGE_VAL value, and sets errno to EDOM. A message indicating
DOMAIN error (or SING error when x = 0) is output to standard error.

1-168 Technical Reference: Base Operating System

log10 If the x parameter is not positive, the log10 subroutine returns a
—HUGE_VAL value and sets errno to EDOM. A message indicating
DOMAIN error (or SING error when x = 0) is output to standard error.

log10l If the x parameter is not positive, the log10l subroutine returns a
—HUGE_VAL value and sets errno to EDOM. A message indicating
DOMAIN error (or SING error when x = 0) is output to standard error.

pow If x=0 and the y parameter is not positive, or if the x parameter is
negative and the y parameter is not an integer, the pow subroutine
returns 0 and sets errno to EDOM. In these cases a message indicating
DOMAIN error is output to standard error. When the correct value for
the pow subroutine would overflow or underflow, the pow subroutine

returns:
+HUGE_VAL
OR
-HUGE_VAL
OR
0
When using either the libm.a library or the libsaa.a library:
expl If the correct value overflows, the expl subroutine returns a HUGE_VAL
value and errno is set to ERANGE.
logl If x<0, the logl subroutine returns a NaNQ value
log10I If x < 0, log10l returns the value NaNQ and sets errno to EDOM. If x
equals 0, log10l returns the value —-HUGE_VAL but does not modify
errno.
powl If the correct value overflows, powl returns HUGE_VAL and errno to

ERANGE. If x is negative and y is not an integer, powl returns NaNQ
and sets errno to EDOM. If x = zero and y is negative, powl returns a
HUGE_VAL value but does not modify errno.

These error—handling procedures may be changed with the matherr subroutine when using
the libmsaa.a library.

Implementation Specifics

The exp, expl, expm1, log, logl, log10, log10l, log1p, pow, or powl subroutines are part
of Base Operating System (BOS) Runtime.

The expm1 and log1p subroutines are not part of the ANSI C Library.

Related Information
The hypot or cabs subroutine, matherr subroutine, sinh, cosh, or tanh subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128-Bit long double Floating—Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-169

fattach Subroutine

Purpose
Attaches a STREAMS—-based file descriptor to a file.

Library
Standard C Library (libc.a)

Syntax

#include <stropts.h>
int fattach(int fildes, const char *path);

Description
The fattach subroutine attaches a STREAMS-based file descriptor to a file, effectively
associating a pathname with fildes. The fildes argument must be a valid open file descriptor
associated with a STREAMS file. The path argument points to a pathname of an existing
file. The process must have appropriate privileges, or must be the owner of the file named
by path and have write permission. A successful call to fattach subroutine causes all
pathnames that name the file named by path to name the STREAMS file associated with
fildes, until the STEAMS file is detached from the file. A STREAMS file can be attached to
more than one file and can have several pathnames associated with it.

The attributes of the named STREAMS file are initialized as follows: the permissions, user
ID, group ID, and times are set to those of the file named by path, the number of links is set
to 1, and the size and device identifier are set to those of the STREAMS file associated with
fildes. If any attributes of the named STREAMS file are subsequently changed (for example,
by chmod subroutine), neither the attributes of the underlying file nor the attributes of the
STREAMS file to which fildes refers are affected.

File descriptors referring to the underlying file, opened prior to an fattach subroutine,
continue to refer to the underlying file.

Parameters
fildes A file descriptor identifying an open STREAMS—-based object.
path An existing pathname which will be associated with fildes.
Return Value

0 Successful completion.
-1 Not successful and errno set to one of the following.

Errno Value

EACCES Search permission is denied for a component of the path prefix, or
the process is the owner of path but does not have write permission
on the file named by path.

EBADF The file referred to by fildes is not an open file descriptor.

ENOENT A component of path does not name an existing file or path is an
empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID of the process is not the owner of the file

named by path and the process does not have appropriate privilege.

1-170 Technical Reference: Base Operating System

EBUSY The file named by path is currently a mount point or has a
STREAMS file attached to it.

ENAMETOOLONG The size of path exceeds {PATH_MAX}, or a component of path is
longer than {NAME_MAX]}.

ELOOP Too many symbolic links wer encountered in resolving path.
EINVAL The fildes argument does not refer to a STREAMS file.
ENOMEM Insufficient storage space is available.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Specifics

The fdetach subroutine, isastream subroutine.

Base Operating System Runtime Services (A-P) 1-171

fchdir Subroutine

Purpose
Directory pointed to by the file descriptor becomes the current working directory.
Library
Standard C Library (libc.a)
Syntax
#include <unistd.h>
int fchdir (int Fildes)
Description
The fchdir subroutine causes the directory specified by the Fildes parameter to become the
current working directory.
Parameter

Fildes A file descriptor identifying an open directory obtained from a call to the
open subroutine.

Return Values

0 Successful completion
-1 Not successful and errno set to one of the following.

Error Codes

EACCES Search access if denied.
EBADF The file referred to by Fildes is not an open file descriptor.
ENOTDIR The open file descriptor does not refer to a directory.

Related Information
The chdir subroutine, chroot subroutine, open subroutine.

1-172 Technical Reference: Base Operating System

fclear or fclear64 Subroutine

Purpose

Library

Syntax

Makes a hole in a file.

Standard C Library (libc.a)

off t fclear (FileDescriptor, NumberOfBytes)
int FileDescriptor;
off t NumberOfBytes;

Note: The fclear64 subroutine applies to Version 4.2 and later releases.

off64_t fclear64 (FileDescriptor, NumberOfBytes)
int FileDescriptor;
off64_t NumberOfBytes;

Description

Note: The fclear64 subroutine applies to Version 4.2 and later releases.

The fclear and fclear64 subroutines zero the number of bytes specified by the
NumberOfBytes parameter starting at the current file pointer for the file specified in the
FileDescriptor parameter. If Network File System (NFS) is installed on your system, this file
can reside on another node.

The fclear subroutine can only clear up to OFF_MAX bytes of the file while fclear64 can
clear up to the maximum file size.

The fclear and fclear64 subroutines cannot be applied to a file that a process has opened
with the O_DEFER mode.

Successful completion of the fclear and fclear64 subroutines clear the SetUserID bit
(S_ISUID) of the file if any of the following are true:

e The calling process does not have root user authority.

e The effective user ID of the calling process does not match the user ID of the file.
¢ The file is executable by the group (S_IXGRP) or others (S_IXOTH).

This subroutine also clears the SetGrouplD bit (S_ISGID) if:

¢ The file does not match the effective group ID or one of the supplementary group IDs of
the process,

OR
¢ The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGrouplID bits can occur even if the subroutine fails
because the data in the file was modified before the error was detected.

In the large file enabled programming environment, fclear is redefined to be fclear64.

Base Operating System Runtime Services (A-P) 1-173

Parameters

FileDescriptor

NumberOfBytes

Return Values

Indicates the file specified by the FileDescriptor parameter must be
open for writing. The FileDescriptor is a small positive integer used
instead of the file name to identify a file. This function differs from the
logically equivalent write operation in that it returns full blocks of binary
zeros to the file system, constructing holes in the file.

Indicates the number of bytes that the seek pointer is advanced. If you
use the fclear and fclear64 subroutines past the end of a file, the rest
of the file is cleared and the seek pointer is advanced by
NumberOfBytes. The file size is updated to include this new hole, which
leaves the current file position at the byte immediately beyond the new
end—offile pointer.

Upon successful completion, a value of NumberOfBytes is returned. Otherwise, a value of
—1 is returned and the errno global variable is set to indicate the error.

Error Codes

The fclear and fclear64 subroutines fail if one or more of the following are true:

EIO
EBADF
EINVAL
EMFILE
EAGAIN

EFBIG

EFBIG

I/O error.

The FileDescriptor value is not a valid file descriptor open for writing.
The file is not a regular file.

The file is mapped O_DEFER by one or more processes.

The write operation in the fclear subroutine failed due to an enforced
write lock on the file.

The current offset plus NumberOfBytes is exceeds the offset maximum
established in the open file description associated with FileDescriptor.

An attempt was made to write a file that exceeds the process’ file size
limit or the maximum file size. If the user has set the environment
variable XPG_SUS_ENV=0N prior to execution of the process, then the
SIGXFSZ signal is posted to the process when exceeding the process’
file size limit.

If NFS is installed on the system the fclear and fclear64 subroutines can also fail if the

following is true:

ETIMEDOUT

The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The open, openx, or creat subroutine, truncate or ftruncate subroutines.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-174 Technical Reference: Base Operating System

fclose or fflush Subroutine

Purpose
Closes or flushes a stream.
Library
Standard C Library (libc.a)
Syntax
#include <stdio.h>
int fclose (Stream)
FILE *Stream;
int f£flush (Stream)
FILE *Stream;
Description
The fclose subroutine writes buffered data to the stream specified by the Stream
parameter, and then closes the stream. The fclose subroutine is automatically called for all
open files when the exit subroutine is invoked.
The fflush subroutine writes any buffered data for the stream specified by the Stream
parameter and leaves the stream open. The fflush subroutine marks the st_ctime and
st_mtime fields of the underlying file for update.
If the Stream parameter is a null pointer, the fflush subroutine performs this flushing action
on all streams for which the behavior is defined.
Parameters

Stream Specifies the output stream.

Return Values

Upon successful completion, the fclose and fflush subroutines return a value of 0.
Otherwise, a value of EOF is returned.

Error Codes

If the fclose and fflush subroutines are unsuccessful, the following errors are returned
through the errno global variable:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the
Stream parameter and the process would be delayed in the write
operation.

EBADF The file descriptor underlying Stream is not valid.

EFBIG An attempt was made to write a file that exceeds the process’ file size
limit or the maximum file size. See the ulimit subroutine.

EFBIG The file is a regular file and an attempt was made to write at or beyond
the offset maximum associated with the corresponding stream.

EINTR The fflush subroutine was interrupted by a signal.

Base Operating System Runtime Services (A-P) 1-175

EIO The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP signal is set, the process is
neither ignoring nor blocking the SIGTTOU signal and the process
group of the process is orphaned. This error may also be returned
under implementation—dependent conditions.

ENOSPC No free space remained on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal is sent to the process.

ENXIO A request was made of a non—existent device, or the request was

outside the capabilities of the device

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The close subroutine, exit, atexit, or _exit subroutine, fopen, freopen, or fdopen
subroutine, setbuf, setvbuf, setbuffer, or setlinebuf subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-176 Technical Reference: Base Operating System

fcntl, dup, or dup2 Subroutine

Purpose
Controls open file descriptors.

Library
Standard C Library (libc.a)

Syntax #include <fcntl.h>

int fentl (FileDescriptor, Command, Argument)
int FileDescriptor, Command, Argument;

#include <unistd.h>

int dup2(Old, New)
int Old, New;

int dup(FileDescriptor)
int FileDescriptor,;

Description

The fentl subroutine performs controlling operations on the open file specified by the
FileDescriptor parameter. If Network File System (NFS) is installed on your system, the
open file can reside on another node. The fentl subroutine is used to:

¢ Duplicate open file descriptors.

e Set and get the file—descriptor flags.

e Set and get the file—status flags.

¢ Manage record locks.

¢ Manage asynchronous I/O ownership.
¢ Close multiple files.

The fentl subroutine can provide the same functions as the dup and dup2 subroutines.

General Record Locking Information
A lock is either an enforced or advisory lock and either a read or a write lock.

Attention: Buffered I/O does not work properly when used with file locking. Do not use
the standard 1/0 package routines on files that are going to be locked.

For a lock to be an enforced lock, the Enforced Locking attribute of the file must be set; for
example, the S_ENFMT bit must be set, but the S_IXGRP, S_IXUSR, and S_IXOTH bits
must be clear. Otherwise, the lock is an advisory lock. A given file can have advisory or
enforced locks, but not both. The description of the sys/mode.h file includes a description
of file attributes.

When a process holds an enforced lock on a section of a file, no other process can access
that section of the file with the read or write subroutine. In addition, the open and ftruncate
subroutines cannot truncate the locked section of the file, and the fclear subroutine cannot
modify the locked section of the file. If another process attempts to read or modify the
locked section of the file, the process either sleeps until the section is unlocked or returns
with an error indication.

When a process holds an advisory lock on a section of a file, no other process can lock that
section of the file (or an overlapping section) with the fentl subroutine. (No other
subroutines are affected.) As a result, processes must voluntarily call the fentl subroutine in
order to make advisory locks effective.

Base Operating System Runtime Services (A-P) 1-177

When a process holds a read lock on a section of a file, other processes can also set read
locks on that section or on subsets of it. Read locks are also called shared locks.

A read lock prevents any other process from setting a write lock on any part of the protected
area. If the read lock is also an enforced lock, no other process can modify the protected
area.

The file descriptor on which a read lock is being placed must have been opened with read
access.

When a process holds a write lock on a section of a file, no other process can set a read
lock or a write lock on that section. Write locks are also called exclusive locks. Only one
write lock and no read locks can exist for a specific section of a file at any time.

If the lock is also an enforced lock, no other process can read or modify the protected area.
The following general rules about file locking apply:

e Changing or unlocking part of a file in the middle of a locked section leaves two smaller
sections locked at each end of the originally locked section.

¢ |f the calling process holds a lock on a file, that lock can be replaced by later calls to the
fentl subroutine.

¢ All locks associated with a file for a given process are removed when the process closes
any file descriptor for that file.

e Locks are not inherited by a child process after a fork subroutine is run.

Note: Deadlocks due to file locks in a distributed system are not always detected. When
such deadlocks can possibly occur, the programs requesting the locks should set
time—out timers.

Locks can start and extend beyond the current end of a file but cannot be negative relative
to the beginning of the file. A lock can be set to extend to the end of the file by setting the
1_lenfield to 0. If such a lock also has the 1_start and 1_whence fields set to 0, the
whole file is locked. The 1_1len, 1_start, and 1_whence locking fields are part of the
flock structure.

Note: The following description applies to AIX Version 4.3 and later releases.

When an application locks a region of a file using the 32 bit locking interface (F_SETLK),
and the last byte of the lock range includes MAX_OFF (2 Gb — 1), then the lock range for
the unlock request will be extended to include MAX_END (2 » ~ 63 — 1).

Parameters

FileDescriptor ~ Specifies an open file descriptor obtained from a successful call to the
open, fentl, or pipe subroutine. File descriptors are small positive
integers used (instead of file names) to identify files.

Argument Specifies a variable whose value sets the function specified by the
Command parameter. When dealing with file locks, the Argument
parameter must be a pointer to the FLOCK structure.

Command Specifies the operation performed by the fentl subroutine. The fentl
subroutine can duplicate open file descriptors, set file—descriptor flags,
set file descriptor locks, set process IDs, and close open file descriptors.

Duplicating File Descriptors

1-178 Technical Reference: Base Operating System

F_DUPFD Returns a new file descriptor as follows:

¢ Lowest—numbered available file descriptor greater than or equal to
the Argument parameter

e Same object references as the original file

e Same file pointer as the original file (that is, both file descriptors
share one file pointer if the object is a file)

e Same access mode (read, write, or read—write)

e Same file status flags (That is, both file descriptors share the same
file status flags.)

¢ The close-on-exec flag (FD_CLOEXEC bit) associated with the
new file descriptor is cleared

Setting File—Descriptor Flags

F_GETFD Gets the close—on—exec flag (FD_CLOEXEC bit) that is associated
with the file descriptor specified by the FileDescriptor parameter. The
Argument parameter is ignored. File descriptor flags are associated with
a single file descriptor, and do not affect others associated with the
same file.

F_SETFD Assigns the value of the Argument parameter to the close—on—exec
flag (FD_CLOEXEC bit) that is associated with the FileDescriptor
parameter. If the FD_CLOEXEC flag value is 0, the file remains open
across any calls to exec subroutines; otherwise, the file will close upon
the successful execution of an exec subroutine.

F_GETFL Gets the file—status flags and file—access modes for the open file
description associated with the file descriptor specified by the
FileDescriptor parameter. The open file description is set at the time the
file is opened and applies only to those file descriptors associated with
that particular call to the file. This open file descriptor does not affect
other file descriptors that refer to the same file with different open file
descriptions.

The file—status flags have the following values:
O_APPEND Set append mode.
O_NONBLOCK No delay.

The file—access modes have the following values:
O_RDONLY Open for reading only.
O_RDWR Open for reading and writing.
O_WRONLY Open for writing only.

The file access flags can be extracted from the return value using the
O_ACCMODE mask, which is defined in the fentl.h file.

F_SETFL Sets the file status flags from the corresponding bits specified by the
Argument parameter. The file—status flags are set for the open file
description associated with the file descriptor specified by the
FileDescriptor parameter. The following flags may be set:

Base Operating System Runtime Services (A-P) 1-179

O_APPEND or FAPPEND
O_NDELAY or FNDELAY
O_NONBLOCK or FNONBLOCK
O_SYNC or FSYNC

FASYNC

The O_NDELAY and O_NONBLOCK flags affect only operations
against file descriptors derived from the same open subroutine. In BSD,
these operations apply to all file descriptors that refer to the object.

Setting File Locks

F_GETLK Gets information on the first lock that blocks the lock described in the
flock structure. The Argument parameter should be a pointer to a type
struct flock, as defined in the flock.h file. The information retrieved by
the fentl subroutine overwrites the information in the struct flock
pointed to by the Argument parameter. If no lock is found that would
prevent this lock from being created, the structure is left unchanged,
except for lock type (1_type) which is set to F_UNLCK.

F_SETLK Sets or clears a file—segment lock according to the lock description
pointed to by the Argument parameter. The Argument parameter should
be a pointer to a type struct flock, which is defined in the flock.h file.
The F_SETLK option is used to establish read (or shared) locks
(F_RDLCK), or write (or exclusive) locks (F_WRLCK), as well as to
remove either type of lock (F_UNLCK). The lock types are defined by
the fentl.h file. If a shared or exclusive lock cannot be set, the fentl
subroutine returns immediately.

F_SETLKW Performs the same function as the F_SETLK option unless a read or
write lock is blocked by existing locks, in which case the process sleeps
until the section of the file is free to be locked. If a signal that is to be
caught is received while the fcntl subroutine is waiting for a region, the
fentl subroutine is interrupted, returns a —1, sets the errno global
variable to EINTR. The lock operation is not done.

Note: F_GETLK64, F_SETLK64, and F_SETLKW64 apply to Version 4.2 and later
releases.

1-180 Technical Reference: Base Operating System

F_GETLK64 Gets information on the first lock that blocks the lock described in the
flock64 structure. The Argument parameter should be a pointer to an
object of the type struct flock64, as defined in the flock.h file. The
information retrieved by the fentl subroutine overwrites the information
in the struct flock64 pointed to by the Argument parameter. If no lock is
found that would prevent this lock from being created, the structure is
left unchanged, except for lock type (1_type) which is set to
F_UNLCK.

F_SETLK64 Sets or clears a file—segment lock according to the lock description
pointed to by the Argument parameter. The Argument parameter should
be a pointer to a type struct flock64, which is defined in the flock.h
file. The F_SETLK option is used to establish read (or shared) locks
(F_RDLCK), or write (or exclusive) locks (F_WRLCK), as well as to
remove either type of lock (F_UNLCK). The lock types are defined by
the fentl.h file. If a shared or exclusive lock cannot be set, the fentl
subroutine returns immediately.

F_SETLKW64 Performs the same function as the F_SETLK option unless a read or
write lock is blocked by existing locks, in which case the process sleeps
until the section of the file is free to be locked. If a signal that is to be
caught is received while the fentl subroutine is waiting for a region, the
fentl subroutine is interrupted, returns a —1, sets the errno global
variable to EINTR. The lock operation is not done.

Setting Process ID

F_GETOWN Gets the process ID or process group currently receiving SIGIO and
SIGURG signals. Process groups are returned as negative values.

F_SETOWN Sets the process or process group to receive SIGIO and SIGURG
signals. Process groups are specified by supplying a negative Argument
value. Otherwise, the Argument parameter is interpreted as a process
ID.

Closing File Descriptors

F_CLOSEM Closes all file descriptors from FileDescriptor up to the number specified
by the OPEN_MAX value.

Old Specifies an open file descriptor.
New Specifies an open file descriptor that is returned by the dup2
subroutine.

Compatibility Interfaces

The lockfx Subroutine
The fentl subroutine functions similar to the lockfx subroutine, when the Command
parameter is F_SETLK, F_SETLKW, or F_GETLK, and when used in the following way:

fentl (FileDescriptor, Command, Argument)

is equivalent to:

lockfx (FileDescriptor, Command, Argument)
The dup and dup2 Subroutines

The fentl subroutine functions similar to the dup and dup2 subroutines, when used in the
following way:

dup (FileDescriptor)

is equivalent to:

Base Operating System Runtime Services (A-P) 1-181

fcntl (FileDescriptor, F_DUPFD, 0)

dup2 (01ld, New)

is equivalent to:

close (New);
fcntl (Old,

F_DUPFD, New)

The dup and dup2 subroutines differ from the fentl subroutine in the following ways:

e |f the file descriptor specified by the New parameter is greater than or equal to
OPEN_MAX, the dup2 subroutine returns a —1 and sets the errno variable to EBADF.

e |f the file descriptor specified by the Old parameter is valid and equal to the file descriptor
specified by the New parameter, the dup2 subroutine will return the file descriptor
specified by the New parameter, without closing it.

e [f the file descriptor specified by the Old parameter is not valid, the dup2 subroutine will
be unsuccessful and will not close the file descriptor specified by the New parameter.

e The value returned by the dup and dup2 subroutines is equal to the New parameter
upon successful completion; otherwise, the return value is —1.

Return Values

Upon successful completion, the value returned depends on the value of the Command
parameter, as follows:

Command
F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETOWN
F_SETOWN
F_GETLK
F_SETLK
F_SETLKW
F_CLOSEM

Return Value

A new file descriptor

The value of the flag (only the FD_CLOEXEC bit is defined)
A value other than —1

The value of file flags

A value other than —1

The value of descriptor owner
A value other than —1

A value other than —1

A value other than —1

A value other than —1

A value other than —1.

If the fentl subroutine fails, a value of —1 is returned and the errno global variable is set to

indicate the error.

Error Codes

The fentl subroutine is unsuccessful if one or more of the following are true:

EACCES

EBADF
EDEADLK

The Command argument is F_SETLK; the type of lock is a shared or
exclusive lock and the segment of a file to be locked is already
exclusively—locked by another process, or the type is an exclusive lock
and some portion of the segment of a file to be locked is already
shared—locked or exclusive—locked by another process.

The FileDescriptor parameter is not a valid open file descriptor.

The Command argument is F_SETLKW; the lock is blocked by some
lock from another process and putting the calling process to sleep,
waiting for that lock to become free would cause a deadlock.

1-182 Technical Reference: Base Operating System

EMFILE The Command parameter is F_DUPFD, and the maximum number of
file descriptors are currently open (OPEN_MAX).

EINVAL The Command parameter is F_DUPFD, and the Argument parameter is
negative or greater than or equal to OPEN_MAX.

EINVAL An illegal value was provided for the Command parameter.

EINVAL An attempt was made to lock a fifo or pipe.

ESRCH The value of the Command parameter is F_SETOWN, and the process

ID specified as the Argument parameter is not in use.

EINTR The Command parameter was F_SETLKW and the process received a
signal while waiting to acquire the lock.

EOVERFLOW The Command parameter was F_GETLK and the block lock could not
be represented in the flock structure.

The dup and dup2 subroutines fail if one or both of the following are true:

EBADF The Old parameter specifies an invalid open file descriptor or the New
parameter specifies a file descriptor that is out of range.
EMFILE The number of file descriptors exceeds the OPEN_MAX value or there

is no file descriptor above the value of the New parameter.

If NFS is installed on the system, the fentl subroutine can fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

If FileDescriptor refers to a terminal device or socket, then asynchronous /O facilities can
be used. These facilities are normally enabled by using the ioctl subroutine with the
FIOASYNC, FIOSETOWN, and FIOGETOWN commands. However, a BSD—compatible
mechanism is also available if the application is linked with the libbsd.a library.

When using the libbsd.a library, asynchronous /O is enabled by using the F_SETFL
command with the FASYNC flag set in the Argument parameter. The F_GETOWN and
F_SETOWN commands get the current asynchronous I/O owner and set the asynchronous
I/0O owner.

All applications containing the fentl subroutine must be complied with _BSD set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the
BSD libbsd.a library.

Related Information

The close subroutine, execl, excecv, execle, execve, execlp, execvp, or exect
subroutines, fork subroutine, ioctl or ioctlx subroutine, lockf subroutine, open, openx, or
creat subroutines, read subroutine, write subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-183

fdetach Subroutine

Purpose
Detaches STREAMS-based file from the file to which it was attached.
Library
Standard C Library (libc.a)
Syntax
#include <stropts.h>
int fdetach (const char *path);
Parameters
path Pathname of a file previous associated with a STREAMS-based object
using the fattach subroutine.
Description

The fdetach subroutine detaches a STREAMS-based file from the file to which it was
attached by a previous call to fattach subroutine. The path argument points to the
pathname of the attached STREAMS file. The process must have appropriate privileges or
be the owner of the file. A successful call to fdetach subroutine causes all pathnames that
named the attached STREAMS file to again name the file to which the STREAMS file was
attached. All subsequent operations on path will operate on the underlying file and not on
the STREAMS file.

All open file descriptors established while the STREAMS file was attached to the file
referenced by path will still refer to the STREAMS file after the fdetach subroutine has
taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a
successful call to fdetach subroutine has the same effect as performing the last close
subroutine on the attached file.

The umount command may be used to detach a file name if an | application exits before
performing fdetach subroutine.

Return Value

0 Successful completion.
-1 Not successful and errno set to one of the following.

Errno Value

EACCES Search permission is denied on a component of the path prefix.

EPERM The effective user ID is not the owner of path and the process does
not have appropriate privileges.

ENOTDIR A component of the path prefix is not a directory.

ENOENT A component of path parameter does not name an existing file or
pathis an empty string.

EINVAL The path parameter names a file that is not currently attached.

ENAMETOOLONG The size of path parameter exceeds {PATH_MAX]}, or a component
of pathis longer than {NAME_MAX]}.

1-184 Technical Reference: Base Operating System

ELOOP Too many symbolic links were encountered in resolving the path
parameter.

ENOMEM Insufficient storage space is available.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fattach subroutine, isastream subroutine.

Base Operating System Runtime Services (A-P) 1-185

feof, ferror, clearerr, or fileno Macro

Purpose
Checks the status of a stream.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int feof (Stream)
FILE *Stream;

int ferror (Stream)
FILE *Stream;

void clearerr (Stream)
FILE *Stream;

int fileno (Stream)
FILE *Stream;

Description

The feof macro inquires about the end—of-file character (EOF). If EOF has previously been
detected reading the input stream specified by the Stream parameter, a nonzero value is
returned. Otherwise, a value of 0 is returned.

The ferror macro inquires about input or output errors. If an I/O error has previously
occurred when reading from or writing to the stream specified by the Stream parameter, a
nonzero value is returned. Otherwise, a value of 0 is returned.

The clearerr macro inquires about the status of a stream. The clearerr macro resets the
error indicator and the EOF indicator to a value of O for the stream specified by the Stream
parameter.

The fileno macro inquires about the status of a stream. The fileno macro returns the
integer file descriptor associated with the stream pointed to by the Stream parameter.
Otherwise a value of —1 is returned.

Parameters

Stream Specifies the input or output stream.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, or fdopen subroutine, open subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-186 Technical Reference: Base Operating System

fetch_and_add Subroutine

Purpose
Updates a single word variable atomically.
Library
Standard C library (libc.a)
Syntax
#include <sys/atomic_op.h>
int fetch_and_add (word addr, value)
atomic_p word_addr;
int value;
Description
The fetch_and_add subroutine increments one word in a single atomic operation. This
operation is useful when a counter variable is shared between several threads or
processes. When updating such a counter variable, it is important to make sure that the
fetch, update, and store operations occur atomically (are not interruptible). For example,
consider the sequence of events which could occur if the operations were interruptible:
1. A process fetches the counter value and adds one to it.
2. A second process fetches the counter value, adds one, and stores it.
3. The first process stores its value.
The result of this is that the update made by the second process is lost.
Traditionally, atomic access to a shared variable would be controlled by a mechanism such
as semaphores. Compared to such mechanisms, the fetch_and_add subroutine requires
very little overhead, and provided that the counter variable fits in a single machine word, this
subroutine provides a highly efficient way of performing this operation.
Note: The word containing the counter variable must be aligned on a full word boundary.
Parameters
word_addr Specifies the address of the word variable to be incremented.
value Specifies the value to be added to the word variable.

Return Values
This subroutine returns the original value of the word.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information

The fetch_and_and subroutine, fetch_and_or subroutine, compare_and_swap
subroutine.

Base Operating System Runtime Services (A-P) 1-187

fetch_and_and or fetch_and_or Subroutine

Purpose
Sets or clears bits in a single word variable atomically.

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

uint fetch_and_and (word _addr, mask)
atomic_p word addr;
int mask;

uint fetch_and or (word _addr, mask)
atomic_p word addr;
int mask;

Description

The fetch_and_and and fetch_and_or subroutines respectively clear and set bits in one
word, according to a bit mask, in a single atomic operation. The fetch_and_and subroutine
clears bits in the word which correspond to clear bits in the bit mask, and the fetch_and_or
subroutine sets bits in the word which correspond to set bits in the bit mask.

These operations are useful when a variable containing bit flags is shared between several
threads or processes. When updating such a variable, it is important that the fetch, bit clear
or set, and store operations occur atomically (are not interruptible). For example, consider
the sequence of events which could occur if the operations were interruptible:

1. A process fetches the flags variable and sets a bit in it.

2. A second process fetches the flags variable, sets a different bit, and stores it.
3. The first process stores its value.

The result is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such
as semaphores. Compared to such mechanisms, the fetch_and_and and fetch_and_or
subroutines require very little overhead, and provided that the flags variable fits in a single
machine word, they provide a highly efficient way of performing this operation.

Note: The word containing the flag bits must be aligned on a full word boundary.

Parameters

word_adadr Specifies the address of the single word variable whose bits are to be
cleared or set.

mask Specifies the bit mask which is to be applied to the single word variable.

Return Values
These subroutines return the original value of the word.

Implementation Specifics
These subroutines are part of the Base Operating System (BOS) Runtime.

Related Information
The fetch_and_add subroutine, compare_and_swap subroutine.

1-188 Technical Reference: Base Operating System

finfo or ffinfo Subroutine

Purpose
Returns file information.
Library
Standard C library (libc.a)
Syntax
#include <sys/finfo.h>
int finfo(Pathl, cmd, buffer, length)
const char *Pathl;
int cmd;
void “*buffer;
int length;
int ffinfo (fd, cmd, buffer, length)
int fd;
int cmd;
void “*buffer;
int length;
Description
The finfo and ffinfo subroutines return specific file information for the specified file.
Parameters
Path1 Path name of a file system object to query.
fd File descriptor for an open file to query.
cmd Specifies the type of file information to be returned.
buffer User supplied buffer which contains the file information upon
successful return. /usr/include/sys/finfo.h describes the buffer.
length Length of the query buffer.
Commands

F_PATHCONF When the F_PATHCONF command is specified, a file’s implementation
information is returned.

Note: AIX provides another subroutine which retrieves file
implementation characteristics, pathconf command. While the
finfo and ffinfo subroutines can be used to retrieve file
information, it is preferred that programs use the pathconf
interface.

F_DIOCAP When the F_DIOCAP command is specified, the file’s direct 1/0
capability information is returned. The buffer supplied by the application
is of type struct diocapbuf *.

Return Values
Upon successful completion, the finfo and ffinfo subroutines return a value of 0 and the user
supplied buffer is correctly filled in with the file information requested. If the finfo or ffinfo
subroutines were unsuccessful, a value of —1 is returned and the global errno variable is set
to indicate the error.

Base Operating System Runtime Services (A-P) 1-189

Error Codes

EACCES
EINVAL

ENAMETOOLONG
ENOENT

ENOTDIR
EBADF

Implementation Specifics

Search permission is denied for a component of the path prefix.

If the length specified for the user buffer is greater than
MAX_FINFO_BUF.

If the command argument is not supported. If F_DIOCAP command
is specified and the file object does not support Direct I/O.

The length of the Path parameter string exceeds the PATH_MAX
value.

The named file does not exist or the Path parameter points to an
empty string.

A component of the path prefix is not a directory.
File descriptor provided is not valid.

These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The pathconf subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and

Debugging Programs.

1-190 Technical Reference: Base Operating System

flockfile, ftrylockfile, funlockfile Subroutine

Purpose
Provides for explicit application—level locking of stdio (FILE*) objects.
Library
Standard Library (libc.a)
Syntax
#include <stdio.h>
void flockfile (FILE * file)
int ftrylockfile (FILE * file)
void funlockfile (FILE * file)
Description

The flockfile, ftrylockfile and funlockfile functions provide for explicit application—level
locking of stdio (FILE*) objects. These functions can be used by a thread to delineate a
sequence of 1/0 statements that are to be executed as a unit.

The flockfile function is used by a thread to acquire ownership of a (FILE*) object.

The ftrylockfile function is used by a thread to acquire ownership of a (FILE*) object if the
object is available; ftrylockfile is a non—blocking version of flockfile. The funlockfile
function is used to relinquish the ownership granted to the thread. The behavior is undefined
if a thread other than the current owner calls the funlockfile function.

Logically, there is a lock count associated with each (FILE*) object. This count is implicitly
initialised to zero when the (FILE*) object is created. The (FILE*) object is unlocked when
the count is zero. When the count is positive, a single thread owns the (FILE*) object. When
the flockfile function is called, if the count is zero or if the count is positive and the caller
owns the (FILE*) object, the count is incremented. Otherwise, the calling thread is
suspended, waiting for the count to return to zero. Each call to funlockfile decrements the
count. This allows matching calls to flockfile (or successful calls to ftrylockfile) and
funlockfile to be nested.

All functions that reference (FILE*) objects behave as if they use flockfile and funlockfile
internally to obtain ownership of these (FILE*) objects.

Return Values

None for flockfile and funlockfile. The function ftrylock returns zero for success and
non-zero to indicate that the lock cannot be acquired.

Implementation Specifics

Realtime applications may encounter priority inversion when using FILE locks. The problem
occurs when a high priority thread "locks” a FILE that is about to be "unlocked” by a low
priority thread, but the low priority thread is preempted by a medium priority thread. This
scenario leads to priority inversion; a high priority thread is blocked by lower priority threads
for an unlimited period of time. During system design, realtime programmers must take into
account the possibility of this kind of priority inversion. They can deal with it in a number of
7434 ways, such as by having critical sections that are guarded by FILE locks execute at a
high priority, so that a thread cannot be preempted while executing in its critical section.

Future Directions

These subroutines are part of Base Operating System (BOS) suroutines.

Base Operating System Runtime Services (A-P) 1-191

Related Information
The getc_unlocked subroutine.

The getchar_unlocked subroutine.
The putc_unlocked subroutine.
The putchar_unlocked subroutine.
The stdio.h file.

1-192 Technical Reference: Base Operating System

floor, floorl, ceil, ceill, nearest, trunc, rint, itrunc, uitrunc, fmod,
fmodl, fabs, or fabsl Subroutine

Purpose
Thefloor subroutine, floorl subroutine, ceil subroutine, ceill subroutine, nearest
subroutine, trunc subroutine, and rint subroutine round floating—point numbers to
floating—point integer values.
The itrunc subroutine and uitrunc subroutine round floating—point numbers to signed and
unsigned integers, respectively.
The fmod subroutine and fmodl subroutine compute the modulo remainder. The fabs
subroutine and fabsl subroutine compute the floating—point absolute value.
Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Standard C Library (libc.a) (separate syntax follows)
Syntax

#include <math.h>

double floor (x)
double x;

long double floorl (x)
long double x;

double ceil (x)
double x;

long double ceill (x)
long double x;

double nearest (x)
double x;

double trunc (x)
double x;

double fmod (x,YV)
double x, y;

long double fmodl (x)
long double x, y;

double fabs (x)
double x;

long double fabsl (x)
long double x;

Standard C Library (libc.a)

#include <stdlib.h>
#include <limits.h>

double rint (x)
double x;

int itrunc (x)
double x;

unsigned int uitrunc (x)
double x;

Base Operating System Runtime Services (A-P) 1-193

Description

The floor subroutine and floorl subroutines return the largest floating—point integer value
not greater than the x parameter.

The ceil subroutine and ceill subroutine return the smallest floating—point integer value not
less than the x parameter.

The nearest subroutine returns the nearest floating—point integer value to the x parameter.
If x lies exactly halfway between the two nearest floating—point integer values, an even
floating—point integer is returned.

The trunc subroutine returns the nearest floating—point integer value to the x parameter in
the direction of 0. This is equivalent to truncating off the fraction bits of the x parameter.

The rint subroutine returns one of the two nearest floating—point integer values to the x
parameter. To determine which integer is returned, use the current floating—point rounding
mode as described in the IEEE Standard for Binary Floating—Point Arithmetic.

If the current rounding mode is round toward —INF, rint(x) is identical to floor(x).

If the current rounding mode is round toward +INF, rint(x) is identical to ceil(x).

If the current rounding mode is round to nearest, rint(x) is identical to nearest(x).
If the current rounding mode is round toward zero, rint(x) is identical to trunc(x).

Note: The default floating—point rounding mode is round to nearest. All C main programs
begin with the rounding mode set to round to nearest.

The itrunc subroutine returns the nearest signed integer to the x parameter in the direction
of 0. This is equivalent to truncating the fraction bits from the x parameter and then
converting x to a signed integer.

The uitrunc subroutine returns the nearest unsigned integer to the x parameter in the
direction of 0. This action is equivalent to truncating off the fraction bits of the x parameter
and then converting x to an unsigned integer.

The fmod subroutine and fmodl subroutine compute the modulo floating—point remainder of
x/y. The fmod and fmodl subroutines return the value x—iy for a i such that if y is nonzero,
the result has the same sign as x and magnitude less than the magnitude of y.

The fabs and fabsl subroutines return the absolute value of x, |x|.

Note: Compile any routine that uses subroutines from the libm.a library with the —la flag.
To compile the £1oor. c file, for example, enter:

cc floor.c -1m

Parameters
X Specifies a double—precision floating—point value. For the floorl, ceill,
fmodl, and fabsl subroutines, specifies a long double—precision
floating—point value.
y Specifies a double—precision floating—point value. For the floorl, ceill,

fmodl, and fabsl subroutines, specifies some long double—precision
floating—point value.

Error Codes
The itrunc and uitrunc subroutines return the INT_MAX value if x is greater than or equal
to the INT_MAX value and the INT_MIN value if x is equal to or less than the INT_MIN
value. The itrunc subroutine returns the INT_MIN value if x is a Quiet NaN(not—a—number)
or Silent NaN. The uitrunc subroutine returns 0 if x is a Quiet NaN or Silent NaN. (The
INT_MAX and INT_MIN values are defined in the limits.h file.) The uitrunc subroutine
INT_MAX if x is greater than INT_MAX and 0 if x is less than or equal 0.0

1-194 Technical Reference: Base Operating System

The fmod and fmodl subroutines for (x/0) return a Quiet NaN and set the errno global
variable to a EDOM value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The itrunc, uitrunc, trunc, nearest, and rint subroutines are not part of the ANSI C Library.

Files

float.h Contains the ANSI C FLT_ROUNDS macro.

Related Information
The fp_read_rnd on fp_swap_rnd subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128-Bit long double Floating—Point Format in AIX General Programming Concepts :
Writing and Debugging Programs.

IEEE Standard for Binary Floating—Point Arithmetic (ANSI/IEEE Standards 754—1985 and
854-1987).

Base Operating System Runtime Services (A-P) 1-195

fmtmsg Subroutine

Display a message in the specified format on standard error, the console, or both.

int fmtmsg (long Classification,

The fmtmsg subroutine can be used to display messages in a specified format instead of
the traditional printf subroutine interface.

Base on a message’s classification component, the fmtmsg subroutine either writes a
formatted message to standard error, the console, or both.

A formatted message consists of up to five parameters. The Classification parameter is not
part of a message displayed to the user, but defines the source of the message and directs
the display of the formatted message.

Purpose
Library
Standard C Library (libc.a)
Syntax
#include <fmtmsg.h>
const char *Label,
int Severity,
cont char *Text;
cont char *Action,
cont char *Tag)
Description
Parameters

Classification

Contains identifiers from the following groups of major classifications
and subclassifications. Any one identifier from a subclass may be used
in combination with a single identifier from a different subclass. Two or
more identifiers from the same subclass should not be used together,
with the exception of identifiers from the display subclass. (Both display
subclass identifiers may be used so that messages can be displayed to
both standard error and system console).

major classifications
Identifies the source of the condition. Identifiers are:
MM_HARD (hardware), MM_SOFT (software), and
MM_FIRM (firmware).

message source subclassifications
Identifies the type of software in which the problem is
detected. Identifiers are: MM_APPL (application),
MM_UTIL (utility), and MM_OPSYS (operating
system).

display subclassification
Indicates where the message is to be displayed.
Identifiers are: MM_PRINT to display the message on
the standard error stream, MM_CONSOLE to display
the message on the system console. One or both
identifiers may be used.

1-196 Technical Reference: Base Operating System

status subclassifications
Indicates whether the application will recover from the
condition. Identifiers are:MM_RECOVER (recoverable)
and MM_RECOV (non—recoverable).

An additional identifier, MM_NULLMC, identifies that no classification
component is supplied for the message.

Label Identifies the source to the message. The format is two fields separated
by a colon. The first field is up to 10 bytes, the second field is up to 14
bytes.

Severity

Text Describes the error condition that produced the message. The

character string is not limited to a specific size. If the character string is
null then a message will be issued stating that no text has been
provided.

Action Describes the first step to be taken in the error—recovery process. The
fmtmsg subroutine precedes the action string with the prefix: TO FIX:.
The Action string is not limited to a specific size.

Tag An identifier which references online documentation for the message.
Suggested usage is that tag includes the Label and a unique identifying
number. A sample tagis UX:cat:146.

Environment Variables

The MSGVERB (message verbosity) environment variable controls the behavior of the
fmtmsg subroutine.

MSGVERSB tells the fmtmsg subroutine which message components it is to select when
writing messages to standard error. The value of MSGVERB is a colon—separated list of
optional keywords. MSGVERB can be set as follows:

MSGVERB=[keyword[:keyword[:...]]]
export MSGVERB

Valid keywords are: Label, Severity, Text, Action, and Tag. If MSGVERB contains a keyword
for a component and the component’s value is not the component’s null value, fmtmsg
subroutine includes that component in the message when writing the message to standard
error. If MSGVERB does not include a keyword for a message component, that component
is not included in the display of the message. The keywords may appear in any order. If
MSGVERSB is not defined, if its value is the null string, if its value is not of the correct format,
of if it contains keywords other than the valid ones listed previously, the fmtmsg subroutine
selects all components.

MSGVERB affects only which components are selected for display to standard error. All
message components are included in console messages.

Application Usage
One or more message components may be systematically omitted from messages
generated by an application by using the null value of the parameter for that component.
The table below indicates the null values and identifiers for fmtmsg subroutine parameters.

Parameter Type Null-Value Identifier

label char* (char*)0 MM_NULLLBL
severity int 0 MM_NULLSEV
class long oL MM_NULLMC
text char* (char®)0 MM_NULLTXT

Base Operating System Runtime Services (A-P) 1-197

action char* (char’0 MM_NULLACT
tag char* (charm0 MM_NULLTAG

Another means of systematically omitting a component is by omitting the component
keywords when defining the MSGVERB environment variable.

Return Values
The exit codes for the fmtmsg subroutine are the following:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_MOMSG The function was unable to generate a message on standard error.
MM_NOCON The function was unable to generate a console message.

Examples
1. The following example of the fmtmsg subroutine:

fmtmsg (MM_PRINT, ”UX:cat”, MM_ERROR, ”"”illegal option”,
"refer tp cat in user’s reference manual”, "UX:cat:001")

produces a complete message in the specified message format:

UX:cat ERROR: illegal option
TO FIX: refer to cat in user’s reference manual UX:cat:001

2. When the environment variable MSGVERB is set as follows:
MSGVERB=severity:text:action
and the Example 1 is used, the fmtmsg subroutine produces:
ERROR: illegal option

TO FIX: refer to cat in user’s reference manual UX:cat:001

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The printf routine.

1-198 Technical Reference: Base Operating System

fnmatch Subroutine

Purpose
Matches file name patterns.
Library
Standard C Library (libc. a)
Syntax
#include <fnmatch.h>
int fnmatch (Pattern, String, Flags);
int Flags;
const char *Pattern, *String;
Description
The fnmatch subroutine checks the string specified by the String parameter to see if it
matches the pattern specified by the Pattern parameter.
The fnmatch subroutine can be used by an application or command that needs to read a
dictionary and apply a pattern against each entry; the find command is an example of this.
It can also be used by the pax command to process its Pattern variables, or by applications
that need to match strings in a similar manner.
Parameters

Pattern Contains the pattern to which the String parameter is to be compared.
The Pattern parameter can include the following special characters:

* (asterisk) Matches zero, one, or more characters.

? (question mark) Matches any single character, but will not match 0
(zero) characters.

[1 (brackets) Matches any one of the characters enclosed
within the brackets. If a pair of characters
separated by a dash are contained within the
brackets, the pattern matches any character that
lexically falls between the two characters in the
current locale.

String Contains the string to be compared against the Pattern parameter.

Flags Contains a bit flag specifying the configurable attributes of the
comparison to be performed by the fnmatch subroutine.

The Flags parameter modifies the interpretation of the Pattern and
String parameters. It is the bitwise inclusive OR of zero or more of the
following flags (defined in the fnmatch.h file):

FNM_PATHNAME Indicates the / (slash) in the String parameter
matches a / in the Pattern parameter.

FNM_PERIOD Indicates a leading period in the String parameter
matches a period in the Pattern parameter.

FNM_NOESCAPE Enables quoting of special characters using the \
(backslash).

If the FNM_ PATHNAME flag is set in the Flags parameter, a / (slash) in the String
parameter is explicitly matched by a / in the Pattern parameter. It is not matched by either

Base Operating System Runtime Services (A-P) 1-199

the * (asterisk) or ? (question—mark) special characters, nor by a bracket expression. If the
FNM_PATHNAME flag is not set, the / is treated as an ordinary character.

If the FNM_PERIOD flag is set in the Flags parameter, then a leading period in the String
parameter only matches a period in the Pattern parameter; it is not matched by either the
asterisk or question—mark special characters, nor by a bracket expression. The setting of
the FNM_PATHNAME flag determines a period to be leading, according to the following
rules:

e |f the FNM_PATHNAME flag is set, a . (period) is leading only if it is the first character in
the String parameter or if it immediately follows a /.

e |f the FNM_PATHNAME flag is not set, a . (period) is leading only if it is the first character
of the String parameter. If FNM_PERIOD is not set, no special restrictions are placed on
matching a period.

If the FNM_NOESCAPE flag is not set in the Flags parameter, a \ (backslash) character in
the Pattern parameter, followed by any other character, will match that second character in
the String parameter. For example, \\ will match a backslash in the String parameter. If the
FNM_NOESCAPE flag is set, a \ (backslash) will be treated as an ordinary character.

Return Values

If the value in the String parameter matches the pattern specified by the Pattern parameter,
the fnmatch subroutine returns 0. If there is no match, the fnmatch subroutine returns the
FNM_NOMATCH constant, which is defined in the fnmatch.h file. If an error occurs, the
fnmatch subroutine returns a nonzero value.

Implementation Specifics

These subroutines are part of Base Operating System (BOS) Runtime.

/usr/include/fnmatch.h Contains system—defined flags and constants.

Related Information

The glob subroutine, globfree subroutine, regcomp subroutine, regfree subroutine,
regerror subroutine, regexec subroutine.

The find command, pax command.

Files, Directories, and File Systems for Programmers and Understanding Internationalized
Regular Expression Subroutines Ln AIX General Programming Concepts : Writing and
Debugging Programs

1-200 Technical Reference: Base Operating System

fopen, fopen64, freopen, freopen64 or fdopen Subroutine

Purpose
Opens a stream.
Library
Standard C Library (libc.a)
Syntax
#include <stdio.h>
FILE *fopen (Path, Type)
const char *Path, *Type;
FILE *fopen64 (Path, Type)
char *Path, *Type;
FILE *freopen (Path, Type, Stream)
const char *Path, *Type;
FILE *Stream;
FILE *freopen64 (Path, Type, Stream)
char *Path, *Type;
FILE *Stream;
FILE *fdopen (FileDescriptor, Type)
int FileDescriptor;
const char *Type;
Description

The fopen and fopen64 subroutines open the file named by the Path parameter and
associate a stream with it and return a pointer to the FILE structure of this stream.

When you open a file for update, you can perform both input and output operations on the
resulting stream. However, an output operation cannot be directly followed by an input
operation without an intervening fflush subroutine call or a file positioning operation (fseek,
fseeko, fseeko64, fsetpos, fsetpos64 or rewind subroutine). Also, an input operation
cannot be directly followed by an output operation without an intervening flush or file
positioning operation, unless the input operation encounters the end of the file.

When you open a file for appending (that is, when the Type parameter is set to a), it is
impossible to overwrite information already in the file.

If two separate processes open the same file for append, each process can write freely to
the file without destroying the output being written by the other. The output from the two
processes is intermixed in the order in which it is written to the file.

Note: If the data is buffered, it is not actually written until it is flushed.

The freopen and freopen64 subroutines first attempt to flush the stream and close any file
descriptor associated with the Stream parameter. Failure to flush the stream or close the file
descriptor is ignored.

The freopen and freopen64 subroutines substitute the named file in place of the open
stream. The original stream is closed regardless of whether the subsequent open succeeds.
The freopen and freopen64 subroutines returns a pointer to the FILE structure associated
with the Stream parameter. The freopen and freopen64 subroutines is typically used to
attach the pre—opened streams associated with standard input (stdin), standard output
(stdout), and standard error (stderr) streams to other files.

Base Operating System Runtime Services (A-P) 1-201

The fdopen subroutine associates a stream with a file descriptor obtained from an openx
subroutine, dup subroutine, creat subroutine, or pipe subroutine. These subroutines open
files but do not return pointers to FILE structures. Many of the standard I/O package
subroutines require pointers to FILE structures.

The Type parameter for the fdopen subroutine specifies the mode of the stream, such as r
to open a file for reading, or a to open a file for appending (writing at the end of the file). The
mode value of the Type parameter specified with the fdopen subroutine must agree with the
mode of the file specified when the file was originally opened or created.

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Parameters
Path Points to a character string that contains the name of the file to be
opened.
Type Points to a character string that has one of the following values:
r Opens a text file for reading.
w Creates a new text file for writing, or opens and
truncates a file to 0 length.
a Appends (opens a text file for writing at the end of the
file, or creates a file for writing).
rb Opens a binary file for reading.
wb Creates a binary file for writing, or opens and truncates
afile to 0.
ab Appends (opens a binary file for writing at the end of
the file, or creates a file for writing).
r+ Opens a file for update (reading and writing).
W+ Truncates or creates a file for update.
a+ Appends (opens a text file for writing at end of file, or
creates a file for writing).
r+b , rb+ Opens a binary file for update (reading and writing).
w+b , wb+ Creates a binary file for update, or opens and truncates
a file to 0 length.
a+b , ab+ Appends (opens a binary file for update, writing at the
end of the file, or creates a file for writing).
Note: The operating system does not distinguish between text and
binary files. The b value in the Type parameter value is ignored.
Stream Specifies the input stream.

FileDescriptor ~ Specifies a valid open file descriptor.

Return Values

If the fdopen, fopen, fopen64, freopen or freopen64 subroutine is unsuccessful, a null
pointer is returned and the errno global variable is set to indicate the error.

Error Codes

The fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the following
is true:

1-202 Technical Reference: Base Operating System

EACCES

ELOOP
EINTR
EISDIR

ENAMETOOLONG

ENFILE
ENOENT

ENOSPC

ENOTDIR
ENXIO

EOVERFLOW

EROFS

ETXTBSY

Search permission is denied on a component of the path prefix, the
file exists and the permissions specified by the mode are denied, or
the file does not exist and write permission is denied for the parent
directory of the file to be created.

Too many symbolic links were encountered in resolving path.
A signal was received during the process.

The named file is a directory and the process does not have write
access to it.

The length of the filename exceeds PATH_MAX or a pathname
component is longer than NAME_MAX.

The maximum number of files allowed are currently open.

The named file does not exist or the File Descriptor parameter points
to an empty string.

The file is not yet created and the directory or file system to contain
the new file cannot be expanded.

A component of the path prefix is not a directory.

The named file is a character— or block—special file, and the device
associated with this special file does not exist.

The named file is a regular file and the size of the file cannot be
represented correctly in an object of type off_t.

The named file resides on a read—only file system and does not
have write access.

The file is a pure—procedure (shared—text) file that is being executed
and the process does not have write access.

The fdopen, fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the

following is true:

EINVAL
EINVAL
EMFILE
EMFILE
ENAMETOOLONG

ENOMEM

The value of the Type argument is not valid.

The value of the mode argument is not valid.

FOPEN_MAX streams are currently open in the calling process.
STREAM_MAX streams are currently open in the calling process.

Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

Insufficient storage space is available.

The freopen and fopen subroutines are unsuccessful if the following is true:

EOVERFLOW The named file is a size larger than 2 Gigabytes.

The fdopen subroutine is unsuccessful if the following is true:

EBADF The value of the File Descriptor parameter is not valid.

Implementation Specifics

These subroutines are part of Base Operating System (BOS) Runtime.

POSIX

w Truncates to 0 length or creates text file for writing.

W+ Truncates to 0 length or creates text file for update.

Base Operating System Runtime Services (A-P) 1-203

a Opens or creates text file for writing at end of file.
a+ Opens or creates text file for update, writing at end of file.

SAA

At least eight streams, including three standard text streams, can open simultaneously. Both
binary and text modes are supported.

Related Information

The fclose or fflush subroutine, fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64,
fgetpos, fgetpos64 or fsetpos subroutine, open, open64, openx, or creat subroutine,
setbuf, setvbuf, setbuffer, or setlinebuf subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-204 Technical Reference: Base Operating System

fork or vfork Subroutine

fork, f_fork, or vfork Subroutine

Purpose
Creates a new process.
Libraries
fork and vfork: Standard C Library (libc.a)
fork, f_fork, and vfork: Standard C Library (libc.a)
Syntax
#include <unistd.h>
pid_t fork (void)
pid_t f_fork (void)
int vfork (void)
Description

The fork subroutine creates a new process. The new process (child process) is an almost
exact copy of the calling process (parent process). The child process inherits the following
attributes from the parent process:

e Environment
e Close—on—exec flags (described in the exec subroutine)

e Signal handling settings (such as the SIG_DFL value, the SIG_IGN value, and the
Function Address parameter)

e Set user ID mode bit

e Set group ID mode bit

¢ Profiling on and off status

¢ Nice value

e All attached shared libraries
e Process group ID

e tty group ID (described in the exit, atexit, or _exit subroutine, signal subroutine, and
raise subroutine)

e Current directory

e Root directory

e File—mode creation mask (described in the umask subroutine)

e File size limit (described in the ulimit subroutine)

¢ Attached shared memory segments (described in the shmat subroutine)
¢ Attached mapped file segments (described in the shmat subroutine)

e Debugger process ID and multiprocess flag if the parent process has multiprocess
debugging enabled (described in the ptrace subroutine).

The child process differs from the parent process in the following ways:

e The child process has only one user thread; it is the one that called the fork subroutine.

Base Operating System Runtime Services (A-P) 1-205

e The child process has a unique process ID.
e The child process ID does not match any active process group ID.
e The child process has a different parent process ID.

e The child process has its own copy of the file descriptors for the parent process.
However, each file descriptor of the child process shares a common file pointer with the
corresponding file descriptor of the parent process.

¢ All semadj values are cleared. For information about semadj values, see the semop
subroutine.

* Process locks, text locks, and data locks are not inherited by the child process. For
information about locks, see the plock subroutine.

e |f multiprocess debugging is turned on, the trace flags are inherited from the parent;
otherwise, the trace flags are reset. For information about request 0, see the ptrace
subroutine.

e The child process utime, stime, cutime, and cstime subroutines are set to 0. (For more
information, see the getrusage, times, and vtimes subroutines.)

e Any pending alarms are cleared in the child process. (For more information, see the
incinterval, setitimer, and alarm subroutines.)

e The set of signals pending for the child process is initialized to the empty set.

¢ The child process can have its own copy of the message catalogue for the parent
process.

e The set of signals pending for the child process is initialized as an empty set.

Attention: If you are using the fork or vfork subroutines with an Enhanced X-Windows,
X Toolkit, or Motif application, open a separate display connection (socket) for the forked
process. If the child process uses the same display connection as the parent, the X
Server will not be able to interpret the resulting data. See the Implementation Specifics
section for more information.

The f_fork subroutine is similar to fork, except for:

e ltis required that the child process calls one of the exec functions immediately after it is
created. Since the fork handlers are never called, the application data, mutexes and the
locks are all undefined in the child process.

Return Values

Upon successful completion, the fork subroutine returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Otherwise, a value of
—1 is returned to the parent process, no child process is created, and the errno global
variable is set to indicate the error.

Error Codes
The fork subroutine is unsuccessful if one or more of the following are true:

EAGAIN Exceeds the limit on the total number of processes running either
systemwide or by a single user, or the system does not have the
resources necessary to create another process.

ENOMEM Not enough space exists for this process.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-206 Technical Reference: Base Operating System

The vfork subroutine is supported as a compatibility interface for older Berkeley Software
Distribution (BSD) system programs and can be used by compiling with the Berkeley
Compatibility Library (libbsd.a).

In the Version 4 of the operating system, the parent process does not have to wait until the
child either exits or executes, as it does in BSD systems. The child process is given a new
address space, as in the fork subroutine. The child process does not share any parent
address space.

Attention: When using the fork or vfork subroutines with an Enhanced X-Windows, X
Toolkit, or Motif application, a separate display connection (socket) should be opened for
the forked process. Use the XOpenDisplay or the XtOpenDisplay subroutines to open
the separate connection. The child process should never use the same display
connection as the parent. Display connections are embodied with sockets, and sockets
are inherited by the child process. Any attempt to have multiple processes writing to the
same display connection results in the random interleaving of X protocol packets at the
word level. The resulting data written to the socket will not be valid or undefined X
protocol packets, and the X Server will not be able to interpret it.

Attention: Although the fork and vfork subroutine may be used with Graphics Library
applications, the child process must not make any additional Graphics Library subroutine
calls. The child application inherits some, but not all of the graphics hardware resources
of the parent. Drawing by the child process may hang the graphics adapter, the
Enhanced X Server, or may cause unpredictable results and place the system into an
unpredictable state.

Note: Some Graphics Library subroutines, such as the winopen subroutine, implicitly
create an X display connection. This connection may be obtained with the getXdpy
subroutine.

For additional information, see the /ust/Ipp/GL/README file.

Related Information

The alarm subroutine, bindprocessor subroutine, exec subroutine, exit, atexit, or _exit
subroutine, getrusage or times subroutine, getXdpy subroutine, incinterval subroutine,
nice subroutine, plock subroutine, pthread_atfork subroutine, ptrace subroutine, raise
subroutine, semop subroutine, setitimer subroutine, shmat subroutine, setpriority or
getpriority subroutine, sigaction, sigvec, or signal subroutine, ulimit subroutine, umask
subroutine, wait, waitpid, or wait3 subroutine, winopen subroutine, XOpenDisplay
subroutine, XtOpenDisplay subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Process Duplication and Termination in AIX General Programming Concepts : Writing and
Debugging ProgramsLK provides more information about forking a multi-threaded process.

Base Operating System Runtime Services (A-P) 1-207

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, or fp_disable Subroutine

Purpose

Library

Syntax

These subroutines allow operations on the floating—point trap control.

Standard C Library (libc.a)

#include <fptrap.h>

int fp_any_ enable()
int fp_is_enabled (Mask)
fptrap t Mask;

void fp_enable_all()
void fp_enable (Mask)
fptrap t Mask;

void fp_disable_all()
void fp_disable (Mask)
fptrap_t Mask;

Description

Floating point traps must be enabled before traps can be generated. These subroutines aid
in manipulating floating—point traps and identifying the trap state and type.

In order to take traps on floating point exceptions, the fp_trap subroutine must first be
called to put the process in serialized state, and the fp_enable subroutine or fp_enable_all
subroutine must be called to enable the appropriate traps.

The header file fptrap.h defines the following names for the individual bits in the
floating—point trap control:

TRP_INVALID Invalid Operation Summary
TRP_DIV_BY_ZERO Divide by Zero
TRP_OVERFLOW Overflow
TRP_UNDERFLOW Underflow

TRP_INEXACT Inexact Result

Parameters

Mask A 32-bit pattern that identifies floating—point traps.

Return Values

The fp_any_enable subroutine returns 1 if any floating—point traps are enabled. Otherwise,
0 is returned.

The fp_is_enabled subroutine returns 1 if the floating—point traps specified by the Mask
parameter are enabled. Otherwise, 0 is returned.

The fp_enable_all subroutine enables all floating—point traps.
The fp_enable subroutine enables all floating—point traps specified by the Mask parameter.

The fp_disable_all subroutine disables all floating—point traps.

1-208 Technical Reference: Base Operating System

The fp_disable subroutine disables all floating—point traps specified by the Mask
parameter.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The fp_clr_flag, fp_set_flag, fp_read_flag, fp_swap_flag subroutine, fp_invalid_op,
fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp subroutines,
fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr,
fp_iop_invemp subroutines, fp_read_rnd, and fp_swap_rnd subroutines, fp_trap
subroutine.

Floating—Point Processor Overview in Hardware Technical Information-General
Architectures.

The IEEE Standard for Binary Floating—Point Arithmetic (ANSI/IEEE Standards 754—1985
and 854—-1987).

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-209

fp_clr_flag, fp_set flag, fp_read_flag, or fp_swap_flag

Subroutine
Purpose
Allows operations on the floating—point exception flags.
Library
Standard C Library (libc.a)
Syntax
#include <float.h>
#include <fpxcp.h>
void fp_clr_flag(Mask)
fpflag t Mask;
void fp_set_flag(Mask)
fpflag t Mask;
fpflag t fp_read_flag()
fpflag t fp_swap_ flag(Mask)
fpflag t Mask;
Description

These subroutines aid in determining both when an exception has occurred and the
exception type. These subroutines can be called explicitly around blocks of code that may
cause a floating—point exception.

According to the IEEE Standard for Binary Floating—Point Arithmetic, the following types of
floating—point operations must be signaled when detected in a floating—point operation:

Invalid operation

Division by zero

Overflow

Underflow
¢ |nexact

An invalid operation occurs when the result cannot be represented (for example, a sqrt
operation on a number less than 0).

The IEEE Standard for Binary Floating—Point Arithmetic states: "For each type of exception,
the implementation shall provide a status flag that shall be set on any occurrence of the
corresponding exception when no corresponding trap occurs. It shall be reset only at the
user’s request. The user shall be able to test and to alter the status flags individually, and
should further be able to save and restore all five at one time.”

Floating—point operations can set flags in the floating—point exception status but cannot
clear them. Users can clear a flag in the floating—point exception status using an explicit
software action such as the fp_swap_flag (0) subroutine.

The fpxcp.h file defines the following names for the flags indicating floating—point exception
status:

FP_INVALID Invalid operation summary
FP_OVERFLOW Overflow
FP_UNDERFLOW Underflow
FP_DIV_BY_ZERO Division by 0
FP_INEXACT Inexact result

1-210 Technical Reference: Base Operating System

In addition to these flags, the operating system supports additional information about the
cause of an invalid operation exception. The following flags also indicate floating—point
exception status and defined in the fpxep.h file. The flag number for each exception type
varies, but the mnemonics are the same for all ports. The following invalid operation detail
flags are not required for conformance to the IEEE floating—point exceptions standard:

FP_INV_SNAN Signaling NaN

FP_INV_ISI INF — INF
FP_INV_IDI INF / INF
FP_INV_ZDz 0/0

FP_INV_IMZ INF x 0
FP_INV_CMP Unordered compare

FP_INV_SQRT Square root of a negative number
FP_INV_CVI Conversion to integer error
FP_INV_VXSOFT Software request

Parameters

Mask A 32-bit pattern that identifies floating—point exception flags.

Return Values
The fp_clr_flag subroutine resets the exception status flags defined by the Mask parameter
to O (false). The remaining flags in the exception status are unchanged.

The fp_set_flag subroutine sets the exception status flags defined by the Mask parameter
to 1 (true). The remaining flags in the exception status are unchanged.

The fp_read_flag subroutine returns the current floating—point exception status. The flags
in the returned exception status can be tested using the flag definitions above. You can test
individual flags or sets of flags.

The fp_swap_flag subroutine writes the Mask parameter into the floating—point status and
returns the floating—point exception status from before the write.

Users set or reset multiple exception flags using fp_set_flag and fp_clr_flag by ANDing or
ORIing definitions for individual flags. For example, the following resets both the overflow
and inexact flags:

fp_clr_flag (FP_OVERFLOW | FP_INEXACT)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable, or
fp_disable_all subroutine, fp_any_xcp, fp_divbyzero, fp_inexact, fp_invalid_op,
fp_overflow, fp_underflow subroutines, fp_iop_infdinf, fp_iop_infmzr, fp_iop_infsinf,
fp_iop_invemp, fp_iop_snan, or fp_iop_zrdzr subroutines, fp_read_rnd or fp_swap_rnd
subroutine.

IEEE Standard for Binary Floating—Point Arithmetic (ANSI/IEEE Standards 754—1985 and
854—1987) describes the IEEE floating—point exceptions.

Floating—Point Exceptions Overview and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-211

fp_cpusync Subroutine

Purpose
Queries or changes the floating—point exception enable (FE) bit in the Machine Status
register (MSR).

Note: This subroutine has been replaced by the fp_trapstate subroutine. The
fp_cpusync subroutine is supported for compatibility, but the fp_trapstate subroutine
should be used for development.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_cpusync (Flag);
int Flag;

Description

The fp_cpusync subroutine is a service routine used to query, set, or reset the Machine
Status Register (MSR) floating—point exception enable (FE) bit. The MSR FE bit determines
whether a processor runs in pipeline or serial mode. Floating—point traps can only be
generated by the hardware when the processor is in synchronous mode.

The fp_cpusync subroutine changes only the MSR FE bit. It is a service routine for use in
developing custom floating—point exception—handling software. If you are using the
fp_enable or fp_enable_all subroutine or the fp_sh_trap_info or fp_sh_set_stat
subroutine, you must use the fp_trap subroutine to place the process in serial mode.

Parameters

Flag Specifies to query or modify the MSR FE bit:

FP_SYNC_OFF Sets the FE bit in the MSR to Off, which disables
floating—point exception processing immediately.

FP_SYNC_ON Sets the FE bit in the MSR to On, which enables
floating—exception processing for the next
floating—point operation.

FP_SYNC_QUERY Returns the current state of the process (either
FP_SYNC_ON or FP_SYNC_OFF) without
modifying it.

If called with any other value, the fp_cpusync subroutine returns FP_SYNC_ERROR.

Return Values

If called with the FP_SYNC_OFF or FP_SYNC_ON flag, the fp_cpusync subroutine returns
a value indicating which flag was in the previous state of the process.

If called with the FP_SYNC _QUERY flag, the fp_cpusync subroutine returns a value
indicating the current state of the process, either the FP_SYNC_OFF or FP_SYNC_ON flag.

Error Codes

If the fp_cpusync subroutine is called with an invalid parameter, the subroutine returns
FP_SYNC_ERROR. No other errors are reported.

1-212 Technical Reference: Base Operating System

Related Information

The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or

fp_disable subroutine, fp_clr_flag, fpset_flag, fp_read_flag, or fp_swap_flag subroutine,
sigaction, sigvec, or signal subroutine.

Floating—Point Processor Overview in Hardware Technical Information-General
Architectures.

Floating—Point Exceptions Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

Base Operating System Runtime Services (A-P) 1-213

fp_flush_imprecise Subroutine

Purpose
Forces imprecise signal delivery.
Library
Standard C Library (libc.a)
Syntax
#include <fptrap.h>
void fp_flush_imprecise ()
Description
The fp_flush_imprecise subroutine forces any imprecise interrupts to be reported. To
ensure that no signals are lost when a program voluntarily exits, use this subroutine in
combination with the atexit subroutine.
Example

The following example illustrates using the atexit subroutine to run the fp_flush_imprecise
subroutine before a program exits:

#include <fptrap.h>
#include <stdlib.h>
#include <stdio.h>
if (O0!=atexit (fp_flush_imprecise))
puts (”"Failure in atexit (fp_flush_imprecise) ”);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The atexit subroutine, fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, or fp_disable subroutine, fp_clr_flag, fp_read_flag, fp_swap_flag, or
fpset_flag subroutine, fp_cpusync subroutine, fp_trap subroutine sigaction subroutine.

Floating—Point Exceptions Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-214 Technical Reference: Base Operating System

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow,
fp_inexact, fp_any_xcp Subroutine

Purpose
Tests to see if a floating—point exception has occurred.

Library
Standard C Library (libc.a)

Syntax
#include <float.h>
#include <fpxcp.h>
int
fp_invalid op()
int fp_divbyzero ()

int fp_overflow()

int fp_underflow()
int

fp_inexact ()

int fp_any xcp()

Description
These subroutines aid in determining when an exception has occurred and the exception
type. These subroutines can be called explicitly after blocks of code that may cause a
floating—point exception.

Return Values
The fp_invalid_op subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set. Otherwise, a value of 0 is returned.

The fp_divbyzero subroutine returns a value of 1 if a floating—point divide—by—zero
exception status flag is set. Otherwise, a value of 0 is returned.

The fp_overflow subroutine returns a value of 1 if a floating—point overflow exception status
flag is set. Otherwise, a value of 0 is returned.

The fp_underflow subroutine returns a value of 1 if a floating—point underflow exception
status flag is set. Otherwise, a value of 0 is returned.

The fp_inexact subroutine returns a value of 1 if a floating—point inexact exception status
flag is set. Otherwise, a value of 0 is returned.

The fp_any_xcp subroutine returns a value of 1 if a floating—point invalid operation,
divide—by—zero, overflow, underflow, or inexact exception status flag is set. Otherwise, a
value of 0 is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable fp_disable_all, or
fp_disable subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag
subroutine, fp_read_rnd or fp_swap_rnd subroutine.

Base Operating System Runtime Services (A-P) 1-215

Floating—Point Processor Overview in Hardware Technical Information-General
Architectures.

Floating—Poin t Exceptions Overview and Subroutines Overview in AlX General
Programming Concepts : Writing and Debugging Programs.

1-216 Technical Reference: Base Operating System

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr,
fp_iop_infmazr, fp_iop_invemp, fp_iop_sqrt, fp_iop_convert, or
fp_iop_vxsoft Subroutines

Purpose
Tests to see if a floating—point exception has occurred.

Library
Standard C Library (libc.a)

Syntax

#include <float.h>
#include <fpxcp.h>

int fp_iop_snan()
int fp_iop_infsinf()
int

fp_iop_infdinf ()

int fp_iop_zrdzr()
int

fp_iop_infmzr ()

int fp_iop_invcmp ()
int

fp_iop_sqrt()

int fp_iop_convert ()
int

fp_iop_vxsoft ();

Description

These subroutines aid in determining when an exception has occurred and the exception
type. These subroutines can be called explicitly after blocks of code that may cause a
floating—point exception.

Return Values

The fp_iop_snan subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set due to a signaling NaN (NaNS) flag. Otherwise, a value of 0 is
returned.

The fp_iop_infsinf subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set due to an INF-INF flag. Otherwise, a value of 0 is returned.

The fp_iop_infdinf subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set due to an INF/INF flag. Otherwise, a value of 0 is returned.

The fp_iop_zrdzr subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set due to a 0.0/0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_infmzr subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set due to an INF*0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_invemp subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set due to a compare involving a NaN. Otherwise, a value of 0 is
returned.

The fp_iop_sqrt subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set due to the calculation of a square root of a negative number.
Otherwise, a value of 0 is returned.

Base Operating System Runtime Services (A-P) 1-217

The fp_iop_convert subroutine returns a value of 1 if a floating—point invalid—operation
exception status flag is set due to the conversion of a floating—point number to an integer,
where the floating—point number was a NaN, an INF, or was outside the range of the integer.
Otherwise, a value of 0 is returned.

The fp_iop_vxsoft subroutine returns a value of 1 if the VXSOFT detail bit is on. Otherwise,
a value of 0 is returned.

1-218 Technical Reference: Base Operating System

fp_raise_xcp Subroutine

Purpose
Generates a floating—point exception.

Library
Standard C Library (libc.a)

Syntax

#include <fpxcp.h>

int fp_raise_xcp(
mask)
fpflag_t mask;

Description

The fp_raise_xcp subroutine causes any floating—point exceptions defined by the mask
parameter to be raised immediately. If the exceptions defined by the mask parameter are
enabled and the program is running in serial mode, the signal for floating—point exceptions,
SIGFPE, is raised.

If more than one exception is included in the mask variable, the exceptions are raised in the
following order:

1. Invalid

2. Dividebyzero
3. Underflow
4. Overflow

5. Inexact

Thus, if the user exception handler does not disable further exceptions, one call to the
fp_raise_xcp subroutine can cause the exception handler to be entered many times.

Parameters

mask Specifies a 32-bit pattern that identifies floating—point traps.

Return Values

The fp_raise_xcp subroutine returns 0 for normal completion and returns a nonzero value if
an error occurs.

Related Information

The fp_any_enable, fp_clir_flag, fp_read_flag, fp_swap_flag, or fpset_flag subroutine,
fp_cpusync subroutine, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or
fp_disable subroutine, fp_trap subroutine, sigaction subroutine.

Base Operating System Runtime Services (A-P) 1-219

fp_read_rnd or fp_swap_rnd Subroutine

Purpose
Read and set the IEEE floating—point rounding mode.
Library
Standard C Library (libc.a)
Syntax
#include <float.h>
fprnd t fp_read rnd()
fprnd_t fp_swap_rnd(RoundMode)
fprnd_t RoundMode;
Description
The fp_read_rnd subroutine returns the current rounding mode. The fp_swap_rnd
subroutine changes the rounding mode to the RoundMode parameter and returns the value
of the rounding mode before the change.
Floating—point rounding occurs when the infinitely precise result of a floating—point operation
cannot be represented exactly in the destination floating—point format (such as
double—precision format).
The IEEE Standard for Binary Floating—Point Arithmetic allows floating—point numbers to be
rounded in four different ways: round toward zero, round to nearest, round toward +INF, and
round toward —INF. Once a rounding mode is selected it affects all subsequent
floating—point operations until another rounding mode is selected.
Note: The default floating—point rounding mode is round to nearest. All C main programs
begin with the rounding mode set to round to nearest.
The encodings of the rounding modes are those defined in the ANS/I C Standard. The
float.h file contains definitions for the rounding modes. Below is the float.h definition, the
ANSI C Standard value, and a description of each rounding mode.
float.h Definition ANSI Value Description
FP_RND_RZ 0 Round toward 0
FP_RND_RN 1 Round to nearest
FP_RND_RP 2 Round toward +INF
FP_RND_RM 3 Round toward —INF
The fp_swap_rnd subroutine can be used to swap rounding modes by saving the return
value from fp_swap_rnd(RoundMode). This can be useful in functions that need to force a
specific rounding mode for use during the function but wish to restore the caller’s rounding
mode on exit. Below is a code fragment that accomplishes this action:
save_mode = fp_swap_rnd (new_mode);
....desired code using new_mode
(void) fp_swap_rnd(save_mode); /*restore caller’s mode*/
Parameters

RoundMode Specifies one of the following modes: FP_RND_RZ, FP_RND_RN,
FP_RND_RP, or FP_RND_RM.

1-220 Technical Reference: Base Operating System

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information

The floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, or fabs subroutine,
fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,fp_disable_all, or fp_disable
subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Base Operating System Runtime Services (A-P) 1-221

fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine

Purpose

Library

Syntax

From within a floating—point signal handler, determines any floating—point exception that
caused the trap in the process and changes the state of the Floating—Point Status and
Control register (FPSCR) in the user process.

Standard C Library (libc.a)

#include <fpxcp.h>
#include <fptrap.h>
#include <signal.h>

void fp_sh_info(scp, fcp, struct_size)
struct sigcontext *scp;

struct fp_sh_info *fcp;

size_t struct_size;

void fp_sh_trap_info(scp, fcp)
struct sigcontext *scp;
struct fp_ctx *fcp;

void fp_sh_set_stat (scp, fpscr)
struct sigcontext *scp;
fpstat_t fpscr;

Description

fp_sh_info

These subroutines are for use within a user—written signal handler. They return information
about the process that was running at the time the signal occurred, and they update the
Floating—Point Status and Control register for the process.

Note: The fp_sh_trap_info subroutine is maintained for compatibility only. It has been
replaced by the fp_sh_info subroutine, which should be used for development.

These subroutines operate only on the state of the user process that was running at the
time the signal was delivered. They read and write the sigcontext structure. They do not
change the state of the signal handler process itself.

The state of the signal handler process can be modified by the fp_any_enable,
fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable subroutine.

The fp_sh_info subroutine returns information about the process that caused the trap by
means of a floating—point context (fp_sh_info) structure. This structure contains the
following information:

typedef struct fp_sh_info {

fpstat_t fpscr;
fpflag_t trap;
short trap_mode;
char flags;
char extra;

} fp_sh_info_t;
The fields are:

1-222 Technical Reference: Base Operating System

fpscr The Floating—Point Status and Control register (FPSCR) in the user
process at the time the interrupt occurred.

trap A mask indicating the trap or traps that caused the signal handler to be
entered. This mask is the logical OR operator of the enabled
floating—point exceptions that occurred to cause the trap. This mask can
have up to two exceptions; if there are two, the INEXACT signal must
be one of them. If the mask is 0, the SIGFPE signal was raised not by a
floating—point operation, but by the kill or raise subroutine or the kill
command.

trap_mode The trap mode in effect in the process at the time the signal handler
was entered. The values returned in the fp_sh_info.trap_mode file use
the following argument definitions:

FP_TRAP_OFF Trapping off

FP_TRAP_SYNC Precise trapping on

FP_TRAP_IMP_REC Recoverable imprecise trapping on

FP_TRAP_IMP Non-recoverable imprecise trapping on
flags This field is interpreted as an array of bits and should be accessed with

masks. The following mask is defined:

FP_IAR_STAT If the value of the bit at this mask is 1, the

exception was precise and the IAR points to
the instruction that caused the exception. If the
value bit at this mask is 0, the exception was
imprecise.

fp_sh_trap_info
The fp_sh_trap_info subroutine is maintained for compatibility only. The fp_sh_trap_info
subroutine returns information about the process that caused the trap by means of a
floating—point context (fp_ctx) structure. This structure contains the following information:

fpstat_t fpscr;
fpflag_t trap;

The fields are:

fpscr The Floating—Point Status and Control register (FPSCR) in the user
process at the time the interrupt occurred.
trap A mask indicating the trap or traps that caused the signal handler to be

entered. This mask is the logical OR operator of the enabled
floating—point exceptions that occurred to cause the trap. This mask can
have up to two exceptions; if there are two, the INEXACT signal must
be one of them. If the mask is 0, the SIGFPE signal was raised not by a
floating—point operation, but by the Kill or raise subroutine or the Kill
command.

fp_sh_set_stat
The fp_sh_set_stat subroutine updates the Floating—Point Status and Control register
(FPSCR) in the user process with the value in the fpscr field.

The signal handler must either clear the exception bit that caused the trap to occur or
disable the trap to prevent a recurrence. If the instruction generated more than one
exception, and the signal handler clears only one of these exceptions, a signal is raised for
the remaining exception when the next floating—point instruction is executed in the user
process.

Base Operating System Runtime Services (A-P) 1-223

Parameters

fep Specifies a floating—point context structure.

scp Specifies a sigcontext structure for the interrupt.

struct_size Specifies the size of the fp_sh_info structure.

foscr Specifies which Floating—Point Status and Control register to update.

Related Information

The fp_any_enable, fp_disable_all, fp_disable, fp_enable_all, fp_enable, or
fp_is_enabled subroutine, fp_clr_flag, fp_read_flag, fp_set _flag, or fp_swap_flag
subroutine, fp_trap subroutine.

Floating—Point Exceptions Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-224 Technical Reference: Base Operating System

fp_trap Subroutine

Purpose
Queries or changes the mode of the user process to allow floating—point exceptions to
generate traps.
Library
Standard C Library (libc.a)
Syntax
#include <fptrap.h>
int fp_trap(flag)
int flag;
Description

The fp_trap subroutine queries and changes the mode of the user process to allow or
disallow floating—point exception trapping. Floating—point traps can only be generated when
a process is executing in a traps—enabled mode.

The default state is to execute in pipelined mode and not to generate floating—point traps.

Note: The fp_trap routines only change the execution state of the process. To generate
floating—point traps, you must also enable traps. Use the fp_enable and
fp_enable_all subroutines to enable traps.

Before calling the fp_trap(FP_TRAP_SYNC) routine, previous floating—point operations can
set to True certain exception bits in the Floating—Point Status and Control register (FPSCR).
Enabling these exceptions and calling the fp_trap(FP_TRAP_SYNC) routine does not
cause an immediate trap to occur. That is, the operation of these traps is edge—sensitive,
not level-sensitive.

The fp_trap subroutine does not clear the exception history. You can query this history by
using any of the following subroutines:

e fp_any xcp

e fp_divbyzero
e fp_iop_convert
e fp_iop_infdinf
e fp_iop_infmzr
e fp_iop_infsinf
e fp_iop_invemp
e fp_iop_snhan
o fp_iop_sqrt

e fp_iop_vxsoft
o fp_iop_zrdzr
e fp_inexact

e fp_invalid_op
e fp_overflow

e fp_underflow

Base Operating System Runtime Services (A-P) 1-225

Parameters

flag Specifies a query of or change in the mode of the user process:

FP_TRAP_OFF Puts the user process into trapping—off mode
and returns the previous mode of the process,
either FP._TRAP_SYNC, FP_TRAP_IMP,
FP_TRAP_IMP_REC, or FP_TRAP_OFF.

FP_TRAP_QUERY Returns the current mode of the user process.

FP_TRAP_SYNC Puts the user process into precise trapping
mode and returns the previous mode of the
process.

FP_TRAP_IMP Puts the user process into non—recoverable

imprecise trapping mode and returns the
previous mode.

FP_TRAP_IMP_REC Puts the user process into recoverable
imprecise trapping mode and returns the
previous mode.

FP_TRAP_FASTMODE Puts the user process into the fastest trapping
mode available on the hardware platform.

Note: Some hardware models do not support all modes. If an
unsupported mode is requested, the fp_trap subroutine returns
FP_TRAP_UNIMPL.

Return Values
If called with the FP_TRAP_OFF, FP_TRAP_IMP, FP_TRAP_IMP_REC, or
FP_TRAP_SYNC flag, the fp_trap subroutine returns a value indicating which flag was in
the previous mode of the process if the hardware supports the requested mode. If the
hardware does not support the requested mode, the fp_trap subroutine returns
FP_TRAP_UNIMPL.

If called with the FP_TRAP_QUERY flag, the fp_trap subroutine returns a value indicating
the current mode of the process, either the FP_TRAP_OFF, FP_TRAP_IMP,
FP_TRAP_IMP_REC, or FP_TRAP_SYNC flag.

If called with FP_TRAP_FASTMODE, the fp_trap subroutine sets the fastest mode
available and returns the mode selected.

Error Codes

If the fp_trap subroutine is called with an invalid parameter, the subroutine returns
FP_TRAP_ERROR.

If the requested mode is not supported on the hardware platform, the subroutine returns
FP_TRAP_UNIMPL.

1-226 Technical Reference: Base Operating System

fp_trapstate Subroutine

Purpose
Queries or changes the trapping mode in the Machine Status register (MSR).

Note: This subroutine replaces the fp_cpusync subroutine. The fp_cpusync subroutine
is supported for compatibility, but the fp_trapstate subroutine should be used for
development.

Library
Standard C Library (libc.a)

Syntax

#include <fptrap.h>
int fp_trapstate (int)

Description

The fp_trapstate subroutine is a service routine used to query or set the trapping mode.
The trapping mode determines whether floating—point exceptions can generate traps, and
can affect execution speed. See Floating—Point Exceptions Overview in AIX General
Programming Concepts : Writing and Debugging Programs for a description of precise and
imprecise trapping modes. Floating—point traps can be generated by the hardware only
when the processor is in a traps—enabled mode.

The fp_trapstate subroutine changes only the trapping mode. It is a service routine for use
in developing custom floating—point exception—handling software. If you are using the
fp_enable or fp_enable_all subroutine or the fp_sh_info or fp_sh_set_stat subroutine,
you must use the fp_trap subroutine to change the process’ trapping mode.

Parameters

flag Specifies a query of, or change in, the trap mode:

FP_TRAPSTATE_OFF Sets the trapping mode to Off and returns the
previous mode.

FP_TRAPSTATE_QUERY Returns the current trapping mode without
modifying it.

FP_TRAPSTATE_IMP Puts the process in non—recoverable imprecise
trapping mode and returns the previous state.

FP_TRAPSTATE_IMP_REC
Puts the process in recoverable imprecise trapping
mode and returns the previous state.

FP_TRAPSTATE_PRECISE
Puts the process in precise trapping mode and
returns the previous state.

FP_TRAPSTATE_FASTMODE
Puts the process in the fastest trap—generating
mode available on the hardware platform and
returns the state selected.

Note: Some hardware models do not support all modes. If an unsupported
mode is requested, the fp_trapstate subroutine returns
FP_TRAP_UNIMPL and the trapping mode is not changed.

Base Operating System Runtime Services (A-P) 1-227

Return Values

If called with the FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,
FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE flag, the fp_trapstate
subroutine returns a value indicating the previous mode of the process. The value may be
FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or
FP_TRAPSTATE_PRECISE. If the hardware does not support the requested mode, the
fp_trapstate subroutine returns FP_TRAP_UNIMPL.

If called with the FP_TRAP_QUERY flag, the fp_trapstate subroutine returns a value
indicating the current mode of the process. The value may be FP_TRAPSTATE_OFF,
FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

If called with the FP_TRAPSTATE_FASTMODE flag, the fp_trapstate subroutine returns a
value indicating which mode was selected. The value may be FP_TRAPSTATE_OFF,
FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The fp_any_enable, fp_disable_all, fp_disable, fp_enable_all, fp_enable, or
fp_is_enabled subroutine, fp_clr_flag, fp_read_flag, fpset_flag, or fp_swap_flag
subroutine, sigaction, signal, or sigvec subroutine.

The Floating—Point Processor Overview in Hardware Technical Information-General
Architectures.

Floating—Point Exceptions Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-228 Technical Reference: Base Operating System

fread or fwrite Subroutine

Purpose

Library

Syntax

Reads and writes binary files.

Standard C Library (libc.a)

#include <stdio.h>

size_t fread ((void *)

Pointer, Size, NumberOfItems, Stream)

size t Size, NumberOfItems;

FILE *Stream;

size_t fwrite (Pointer, Size, NumberOfItems, Stream)
const void *Pointer;

size_t Size, NumberOfItems;

FILE *Stream;

Description

The fread subroutine copies the number of data items specified by the NumberOfltems
parameter from the input stream into an array beginning at the location pointed to by the
Pointer parameter. Each data item has the form *Pointer.

The fread subroutine stops copying bytes if an end—of-file (EOF) or error condition is
encountered while reading from the input specified by the Stream parameter, or when the
number of data items specified by the NumberOfltems parameter have been copied. This
subroutine leaves the file pointer of the Stream parameter, if defined, pointing to the byte
following the last byte read. The fread subroutine does not change the contents of the
Stream parameter.

The st_atime field will be marked for update by the first successful run of the fgetc, fgets,
fgetwe, fgetws, fread, fscanf, getc, getchar, gets, or scanf subroutine using a stream
that returns data not supplied by a prior call to the ungetc or ungetwe subroutine.

Note: The fread subroutine is a buffered read subroutine library call. It reads data in 4KB
blocks. For tape block sizes greater than 4KB, use the open subroutine and read
subroutine.

The fwrite subroutine writes items from the array pointed to by the Pointer parameter to the
stream pointed to by the Stream parameter. Each item’s size is specified by the Size
parameter. The fwrite subroutine writes the number of items specified by the
NumberOfltems parameter. The file—position indicator for the stream is advanced by the
number of bytes successfully written. If an error occurs, the resulting value of the
file—position indicator for the stream is indeterminate.

The fwrite subroutine appends items to the output stream from the array pointed to by the
Pointer parameter. The fwrite subroutine appends as many items as specified in the
NumberOfltems parameter.

The fwrite subroutine stops writing bytes if an error condition is encountered on the stream,
or when the number of items of data specified by the NumberOfltems parameter have been
written. The fwrite subroutine does not change the contents of the array pointed to by the
Pointer parameter.

The st_ctime and st_mt ime fields will be marked for update between the successful run
of the fwrite subroutine and the next completion of a call to the fflush or fclose subroutine
on the same stream, the next call to the exit subroutine, or the next call to the abort
subroutine.

Base Operating System Runtime Services (A-P) 1-229

Parameters

Pointer
Size

NumberOfitems
Stream

Return Values

Points to an array.

Specifies the size of the variable type of the array pointed to by the
Pointer parameter. The Size parameter can be considered the same as
a call to sizeof subroutine.

Specifies the number of items of data.
Specifies the input or output stream.

The fread and fwrite subroutines return the number of items actually transferred. If the
NumberOfltems parameter contains a 0, no characters are transferred, and a value of 0 is
returned. If the NumberOfltems parameter contains a negative number, it is translated to a
positive number, since the NumberOfltems parameter is of the unsigned type.

Error Codes

If the fread subroutine is unsuccessful because the 1/0O stream is unbuffered or data needs
to be read into the I/O stream’s buffer, it returns one or more of the following error codes:

EAGAIN

EBADF

EINTR

Indicates that the O_NONBLOCK flag is set for the file descriptor
specified by the Stream parameter, and the process would be delayed
in the fread operation.

Indicates that the file descriptor specified by the Stream parameter is
not a valid file descriptor open for reading.

Indicates that the read operation was terminated due to receipt of a
signal, and no data was transferred.

Note: Depending upon which library routine the application binds to, this subroutine may
return EINTR. Refer to the signal subroutine regarding sa_restart.

EIO

ENOMEM
ENXIO

Indicates that the process is a member of a background process group

attempting to perform a read from its controlling terminal, and either the
process is ignoring or blocking the SIGTTIN signal or the process group
has no parent process.

Indicates that insufficient storage space is available.
Indicates that a request was made of a nonexistent device.

If the fwrite subroutine is unsuccessful because the I/O stream is unbuffered or the I/O
stream’s buffer needs to be flushed, it returns one or more of the following error codes:

EAGAIN

EBADF

EFBIG

EINTR

EIO

Indicates that the O_NONBLOCK flag is set for the file descriptor
specified by the Stream parameter, and the process is delayed in the
write operation.

Indicates that the file descriptor specified by the Stream parameter is
not a valid file descriptor open for writing.

Indicates that an attempt was made to write a file that exceeds the file
size of the process limit or the systemwide maximum file size.

Indicates that the write operation was terminated due to the receipt of a
signal, and no data was transferred.

Indicates that the process is a member of a background process group
attempting to perform a write to its controlling terminal, the TOSTOP
signal is set, the process is neither ignoring nor blocking the SIGTTOU
signal, and the process group of the process is orphaned.

1-230 Technical Reference: Base Operating System

ENOSPC Indicates that there was no free space remaining on the device
containing the file.

EPIPE Indicates that an attempt is made to write to a pipe or first—in—first—out
(FIFO) process that is not open for reading by any process. A SIGPIPE
signal is sent to the process.

The fwrite subroutine is also unsuccessful due to the following error conditions:

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device, or the
request was outside the capabilities of the device.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The abort subroutine, exit subroutine, fflush or fclose subroutine, fopen, freopen, or
fdopen subroutine, getc, getchar, fgetc, or getw subroutine, getwce, fgetwce, or getwchar
subroutine, gets or fgets subroutine, getws or fgetws subroutine, open subroutine, print,
fprintf, or sprintf subroutine, putc, putchar, fputc, or putw subroutine, putwe, putwchar,
or fputwc subroutine, puts or fputs subroutine, putws or fputws subroutine, read
subroutine, scanf, fscanf, sscanf, or wsscanf subroutine, ungetc or ungetwc subroutine,
write subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-231

freeaddrinfoSubroutine

Purpose
To free memory allocated by getaddrinfo. This includes the addrinfo structures, the socket
address structures, and canonical host name strings pointed to by the addrinfo structures.
Library
Library (libc.a)
Syntax
#include <sys/socket.h>
#include <netdb.h>
void freeaddrinfo (ai)
struct addrinfo *ai;
Description

This function frees any dynamic storage pointed to by elements of ai, as well as the space
for ai itself. Also, it will descend the linked list, repeating this process for all nodes in the list
until a NULL ai_next pointer is encountered.

Related Information
The getaddrinfo subroutine, gai_strerror, and getnameinfo subroutine.

1-232 Technical Reference: Base Operating System

frevoke Subroutine

Purpose
Revokes access to a file by other processes.

Library
Standard C Library (libc.a)

Syntax

int frevoke (FileDescriptor)
int FileDescriptor;

Description
The frevoke subroutine revokes access to a file by other processes.

All accesses to the file are revoked, except through the file descriptor specified by the
FileDescriptor parameter to the frevoke subroutine. Subsequent attempts to access the file,
using another file descriptor established before the frevoke subroutine was called, fail and
cause the process to receive a return value of —1, and the errno global variable is set to
EBADF.

A process can revoke access to a file only if its effective user ID is the same as the file
owner ID or if the invoker has root user authority.

Note: The frevoke subroutine has no affect on subsequent attempts to open the file. To
ensure exclusive access to the file, the caller should change the mode of the file
before issuing the frevoke subroutine. Currently the frevoke subroutine works only
on terminal devices.

Parameters

FileDescriptor A file descriptor returned by a successful open subroutine.

Return Values
Upon successful completion, the frevoke subroutine returns a value of 0.

If the frevoke subroutine fails, it returns a value of —1 and the errno global variable is set to
indicate the error.

Error Codes
The frevoke subroutine fails if the following is true:

EBADF The FileDescriptor value is not the valid file descriptor of a terminal.

EPERM The effective user ID of the calling process is not the same as the file
owner ID.

EINVAL Revocation of access rights is not implemented for this file.

Base Operating System Runtime Services (A-P) 1-233

frexp, frexpl, Idexp, Idexpl, modf, or modfl Subroutine

Purpose
Manipulates floating—point numbers.

Library
Standard C Library (libc.a)

Syntax

#include <math.h>

double frexp (Value, Exponent)
double Value;
int *Exponent;

long double frexpl (Value, Exponent)
long double Value;
int Exponent;

double ldexp (Mantissa, Exponent)
double Mantissa;
int Exponent ;

long double ldexpl (Mantissa, Exponent)
long double Mantissa;
int Exponent;

double modf (Value, IntegerPointer)
double Value, *IntegerPointer;

long double modfl (Value, IntegerPointer)
long double Value, *IntegerPointer;

Description

Every nonzero number can be written uniquely as x * 2**n, where the mantissa (fractional

part) x is in the range 0.5 <= |x| < 1.0, and the exponent nis an integer.

The frexp subroutine breaks a floating—point number into a normalized fraction and an
integral power of 2. It stores the integer in the object pointed to by the Exponent parameter
and returns the fraction part. The frexpl subroutine performs the same function for numbers

in the long double data type.

The Idexp subroutine multiplies a floating—point number by an integral power of 2. The
Idexpl subroutine performs the same function for numbers in the long double data type.

The modf subroutine breaks the Value parameter into an integral and fractional part, each
of which has the same sign as the value. It stores the integral part in a double variable at
the location pointed to by the IntegerPointer parameter. The modfl subroutine performs the

same function for numbers in the long double data type.

Parameters

Value Specifies a double—precision floating—point value.

Exponent For the frexp subroutine, specifies an integer pointer to store the
exponent; for the Idexp subroutine, specifies an integer value.

Mantissa Specifies a double—precision floating—point value.

IntegerPointer Specifies a pointer to the double variable in which to store the signed

integral part.

1-234 Technical Reference: Base Operating System

Return Values

The frexp and frexpl subroutines return a value x such that x is in the range 0.5 <= |x| < 1.0
oris 0, and the Value parameter equals x * 2**(* Exponent). If the Value parameter is 0, the
object pointed to by the *Exponent parameter and x are also 0. If the Value parameter is a
NaN (not—a—number), x is a NaNQ, and the object pointed to by the *Exponent parameter is
set to LONG_MIN. If the Value parameter is +INF, then +INF is returned and the object
pointed to by the *Exponent parameter is set to INT_MAX. If the Value parameter is —INF,
then —INF is returned and the object pointed to by the *Exponent parameter is set to
INT_MIN.

The Idexp and Idexpl subroutines return the value x * 2**(Exponent).

The modf and modfl subroutines return the signed fractional part of the Value parameter
and stores the signed integral part in the object pointed to by the IntegerPointer parameter.
If the Value parameter is a NaN value, then a NaNQ value is returned, and a NaNQ is
stored in the object pointed to by the IntegerPointer parameter. If the Value parameter is
+/—INF, then +/— 0.0 is returned, and +/—INF is stored in the object pointed to by the
IntegerPointer parameter.

Error Codes

If the result of the Idexp or Idexpl subroutine overflows, then +/—- HUGE_VAL is returned,
and the global variable errno is set to ERANGE.

If the result of the Idexp or Idexpl subroutine underflows, 0 is returned, and the errno
global variable is set to a ERANGE value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The scanf, fscanf, or sscanf subroutine, sgetl or sputl subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128-Bit long Double Floating—Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-235

fscntl Subroutine

Purpose
Controls file system control operations.
Library
Standard C Library (libc.a)
Syntax
#include <sys/types.h>
int fsentl (vfs_id, Command, Argument, ArgumentSize)
int vfs id;
int Command;
char *Argument;
int ArgumentSize;
Description
The fsentl subroutine performs a variety of file system—specific functions. These functions
typically require root user authority.
At present, only one file system, the Journaled File System, supports any commands via the
fscntl subroutine.
Note: Application programs should not call this function, which is reserved for system
management commands such as the chfs command.
Parameters
vis_id Identifies the file system to be acted upon. This information is returned
by the stat subroutine in the st_vfs field of the stat.h file.
Command Identifies the operation to be performed.
Argument Specifies a pointer to a block of file system specific information that

defines how the operation is to be performed.
ArgumentSize Defines the size of the buffer pointed to by the Argument parameter.

Return Values

Upon successful completion, the fsentl subroutine returns a value of 0. Otherwise, a value
of —1 is returned and the errno global variable is set to indicate the error.

Error Codes
The fscntl subroutine fails if one or both of the following are true:

EINVAL The vfs_id parameter does not identify a valid file system.
EINVAL The Command parameter is not recognized by the file system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chfs command.

The stat.h file.

Understanding File—System Helpers in AIX General Programming Concepts : Writing and
Debugging Programs explains file system helpers and examines file system—helper
execution syntax.

1-236 Technical Reference: Base Operating System

fseek, fseeko, fseekob64, rewind, ftell, ftello, ftello64, fgetpos,
fgetpos64, fsetpos, or fsetpos64 Subroutine

Purpose

Repositions the file pointer of a stream.
Library

Standard C Library (libc.a)
Syntax

#include <stdio.h>

int fseek (Stream, Offset, Whence)
FILE *Stream;

long int Offset;

int Whence;

void rewind (Stream)
FILE *Stream;

long int ftell (Stream)
FILE *Stream;

int fgetpos (Stream, Position)
FILE *Stream;
fpos_t *Position;

int fsetpos (Stream, Position)
FILE *Stream;
const fpos_t *Position;

Note: The fseeko, fseeko64, ftello, ftello64, fgetpos64, and fsetpot64 subroutines
apply to Version 4.2 and later releases.

int fseeko (Stream, Offset, Whence)
FILE *Stream;

off t Offset;

int Whence;

int fseeko64 (Stream, Offset, Whence)
FILE *Stream;

off64_t Offset;

int Whence;

off t int ftello (Stream)
FILE *Stream;

off64_t int ftello64 (Stream)
FILE *Stream;

int fgetpos64 (Stream, Position)
FILE *Stream;
fpos64_t *Position;

int fsetpos64 (Stream, Position)
FILE *Stream;
const fpos64_t *Position;

Description

Note: The fseeko, fseeko64, ftello, ftello64, fgetpos64, and fsetpot64 subroutines apply
to Version 4.2 and later releases.

Base Operating System Runtime Services (A-P) 1-237

The fseek, fseeko and fseeko64 subroutines set the position of the next input or output
operation on the I/O stream specified by the Stream parameter. The position if the next
operation is determined by the Offset parameter, which can be either positive or negative.

The fseek, fseeko and fseeko64 subroutines set the file pointer associated with the
specified Stream as follows:

o |f the Whence parameter is set to the SEEK_SET value, the pointer is set to the value of
the Offset parameter.

e |f the Whence parameter is set to the SEEK_CUR value, the pointer is set to its current
location plus the value of the Offset parameter.

e [f the Whence parameter is set to the SEEK_END value, the pointer is set to the size of
the file plus the value of the Offset parameter.

The fseek, fseeko, and fseeko64 subroutine are unsuccessful if attempted on a file that
has not been opened using the fopen subroutine. In particular, the fseek subroutine cannot
be used on a terminal or on a file opened with the popen subroutine. The fseek and fseeko
subroutines will also fail when the resulting offset is larger than can be properly returned.

The rewind subroutine is equivalent to calling the fseek subroutine using parameter values
of (Stream,SEEK_SET,SEEK_SET), except that the rewind subroutine does not return a
value.

The fseek, fseeko, fseeko64 and rewind subroutines undo any effects of the ungetc and
ungetwec subroutines and clear the end—of-file (EOF) indicator on the same stream.

The fseek, fseeko, and fseeko64 function allows the file—position indicator to be set
beyond the end of existing data in the file. If data is written later at this point, subsequent
reads of data in the gap will return bytes of the value 0 until data is actually written into the

gap.

A successful calls to the fsetpos or fsetpos64 subroutines clear the EOF indicator and
undoes any effects of the ungetc and ungetwc subroutines.

After an fseek, fseeko, fseeko64 or a rewind subroutine, the next operation on a file
opened for update can be either input or output.

ftell, ftello and ftello64 subroutines return the position current value of the file—position
indicator for the stream pointed to by the Stream parameter. ftell and ftello will fail if the
resulting offset is larger than can be properly returned.

The fgetpos and fgetpos64 subroutines store the current value of the file—position indicator
for the stream pointed to by the Stream parameter in the object pointed to by the Position
parameter. The fsetpos and fsetpos64 set the file—position indicator for Stream according
to the value of the Position parameter, which must be the result of a prior call to fgetpos or
fgetpos64 subroutine. fgetpos and fsetpos will fail if the resulting offset is larger than can
be properly returned.

Parameters
Stream Specifies the input/output (I/0) stream.
Offset Determines the position of the next operation.
Whence Determines the value for the file pointer associated with the Stream
parameter.
Position Specifies the value of the file—position indicator.

Return Values

Upon successful completion, the fseek, fseeko and fseeko64 subroutine return a value of
0. Otherwise, it returns a value of —1.

1-238 Technical Reference: Base Operating System

Upon successful completion, the ftell, ftello and ftello64 subroutine return the offset of the
current byte relative to the beginning of the file associated with the named stream.
Otherwise, a long int value of —1 is returned and the errno global variable is set.

Upon successful completion, the fgetpos, fgetpos64, fsetpos and fsetpos64 subroutines
return a value of 0. Otherwise, a nonzero value is returned and the errno global variable is
set to the specific error.

The errno global variable is used to determine if an error occurred during a rewind

subroutine call.

Error Codes

If the fseek, fseeko, fseeko64, ftell, ftello, ftello64 or rewind subroutine are unsuccessful
because the stream is unbuffered or the stream buffer needs to be flushed and the call to
the subroutine causes an underlying Iseek or write subroutine to be invoked, it returns one
or more of the following error codes:

EAGAIN

EBADF

EFBIG

EFBIG

EINTR

EIO

ENOSPC

EPIPE

EINVAL

ESPIPE

EOVERFLOW

EOVERFLOW

ENXIO

Indicates that the O_NONBLOCK flag is set for the file descriptor,
delaying the process in the write operation.

Indicates that the file descriptor underlying the Stream parameter is not
open for writing.

Indicates that an attempt has been made to write to a file that exceeds
the file—size limit of the process or the maximum file size.

Indicates that the file is a regular file and that an attempt was made to
write at or beyond the offset maximum associated with the
corresponding stream.

Indicates that the write operation has been terminated because the
process has received a signal, and either no data was transferred, or
the implementation does not report partial transfers for this file.

Indicates that the process is a member of a background process group
attempting to perform a write subroutine to its controlling terminal, the
TOSTOP flag is set, the process is not ignoring or blocking the
SIGTTOU signal, and the process group of the process is orphaned.
This error may also be returned under implementation—dependent
conditions.

Indicates that no remaining free space exists on the device containing
the file.

Indicates that an attempt has been made to write to a pipe or FIFO that
is not open for reading by any process. A SIGPIPE signal will also be
sent to the process.

Indicates that the Whence parameter is not valid. The resulting
file—position indicator will be set to a negative value. The EINVAL error
code does not apply to the ftell and rewind subroutines.

Indicates that the file descriptor underlying the Stream parameter is
associated with a pipe or FIFO.

Indicates that for fseek, the resulting file offset would be a value that
cannot be represented correctly in an object of type long.

Indicates that for fseeko, the resulting file offset would be a value that
cannot be represented correctly in an object of type off t.

Indicates that a request was made of a non—existent device, or the
request was outside the capabilities of the device.

The fgetpos and fsetpos subroutines are unsuccessful due to the following conditions:

1-239

Base Operating System Runtime Services (A-P)

EINVAL Indicates that either the Stream or the Position parameter is not valid.
The EINVAL error code does not apply to the fgetpos subroutine.

EBADF Indicates that the file descriptor underlying the Stream parameter is not
open for writing.
ESPIPE Indicates that the file descriptor underlying the Stream parameter is

associated with a pipe or FIFO.

The fseek, fseeko, ftell, ftello, fgetpos, and fsetpos subroutines are unsucessful under
the following condition:

EOVERFLOW The resulting could not be returned properly.

Implementation Specifics
These subroutines are part of Base Operating system (BOS) Runtime.

Related Information
The closedir subroutine, fopen, fopen64, freopen, freopen64 or fdopen subroutine,
Iseek or Iseek64 subroutine, opendir, readdir, rewinddir, seekdir, or telldir subroutine,
popen subroutine, ungetc or ungetwc subroutine, write, writex, writev, or writevx
subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-240 Technical Reference: Base Operating System

fsync Subroutine

Purpose
Writes changes in a file to permanent storage.
Library
Standard C Library (libc.a)
Syntax
#include <unistd.h>
int fsync (FileDescriptor)
int FileDescriptor;
Description

The fsync subroutine causes all modified data in the open file specified by the

FileDescriptor parameter to be saved to permanent storage. On return from the fsync

subroutine, all updates have been saved on permanent storage.

Data written to a file that a process has opened for deferred update (with the O_DEFER

flag) is not written to permanent storage until another process issues an fsync subroutine

against this file or runs a synchronous write subroutine (with the O_SYNC flag) on this file.

See the fentl.h file and the open subroutine for descriptions of the O_DEFER and O_SYNC

flags respectively.

Note: The file identified by the FileDescriptor parameter must be open for writing when the
fsync subroutine is issued or the call is unsuccessful. This restriction was not
enforced in BSD systems.

Parameters

FileDescriptor A valid, open file descriptor.

Return Values

Upon successful completion, the fsync subroutine returns a value of 0. Otherwise, a value
of —1 is returned and the errno global variable is set to indicate the error.

Error Codes
The fsync subroutine is unsuccessful if one or more of the following are true:

EIO An 1/O error occurred while reading from or writing to the file system.

EBADF The FileDescriptor parameter is not a valid file descriptor open for
writing.

EINVAL The file is not a regular file.

EINTR The fsync subroutine was interrupted by a signal.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The open, openx, or creat subroutine, sync subroutine, write, writex, writev, or writevx
subroutine.
The fentl.h file.
Files, Directories, and File Systems Overview for Programmers in AIX General
Programming Concepts : Writing and Debugging Programs contains information about
i—nodes, file descriptors, file—space allocation, and more.

Base Operating System Runtime Services (A-P) 1-241

ftok Subroutine

Purpose
Generates a standard interprocess communication key.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/ipc.h>

key t ftok (Path, ID)
char *Path;
int ID;

Description

Attention: If the Path parameter of the ftok subroutine names a file that has been
removed while keys still refer to it, the ftok subroutine returns an error. If that file is then
re—created, the ftok subroutine will probably return a key different from the original one.

Attention: Each installation should define standards for forming keys. If standards are
not adhered to, unrelated processes may interfere with each other’s operation.

The ftok subroutine returns a key, based on the Path and ID parameters, to be used to
obtain interprocess communication identifiers. The ftok subroutine returns the same key for
linked files if called with the same /D parameter. Different keys are returned for the same file
if different /D parameters are used.

All interprocess communication facilities require you to supply a key to the msgget,
semget, and shmget subroutines in order to obtain interprocess communication identifiers.
The ftok subroutine provides one method for creating keys, but other methods are possible.
For example, you can use the project ID as the most significant byte of the key, and use the
remaining portion as a sequence number.

Parameters

Path Specifies the path name of an existing file that is accessible to the
process.

ID Specifies a character that uniquely identifies a project.

Return Values

When successful, the ftok subroutine returns a key that can be passed to the msgget,
semget, or shmget subroutine.

Error Codes
The ftok subroutine returns the value (key_t)-1 if one or more of the following are true:

¢ The file named by the Path parameter does not exist.
e The file named by the Path parameter is not accessible to the process.

e The ID parameter has a value of 0.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-242 Technical Reference: Base Operating System

Related Information
The msgget subroutine, semget subroutine, shmget subroutine.

Subroutines Overview and Understanding Memory Mapping in AIX General Programming
Concepts : Writing and Debugging Programs.

Base Operating System Runtime Services (A-P) 1-243

ftw or ftw64 Subroutine

Purpose
Walks a file tree.

Library
Standard C Library (libc.a)

Syntax

#include <ftw.h>

int ftw (Path, Function, Depth)

char *Path;

int (*Function(const char*, const struct stat*, int);
int Depth;

int ftwé64 (Path, Function, Depth)

char *Path;

int (*Function(const char*, const struct stat64*, int);
int Depth;

Description

The ftw and ftw64 subroutines recursively searches the directory hierarchy that descends
from the directory specified by the Path parameter.

For each file in the hierarchy, the ftw and ftw64 subroutines call the function specified by
the Function parameter. ftw passes it a pointer to a null-terminated character string
containing the name of the file, a pointer to a stat structure containing information about the
file, and an integer. ftw64 passes it a pointer to a null-terminated character string containing
the name of the file, a pointer to a stat64 structure containing information about the file, and
an integer.

The integer passed to the Function parameter identifies the file type with one of the
following values:

FTW_F Regular file

FTW_D Directory

FTW_DNR Directory that cannot be read

FTW_SL Symbolic Link

FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW-DNR, the files and subdirectories contained in that directory are not
processed.

If the integer is FTW-NS, the stat structure contents are meaningless. An example of a file
that causes FTW-NS to be passed to the Function parameter is a file in a directory for
which you have read permission but not execute (search) permission.

The ftw and ftw64 subroutines finish processing a directory before processing any of its
files or subdirectories.

The ftw and ftw64 subroutines continue the search until the directory hierarchy specified by
the Path parameter is completed, an invocation of the function specified by the Function
parameter returns a nonzero value, or an error is detected within the ftw and ftw64
subroutines, such as an /O error.

1-244 Technical Reference: Base Operating System

The ftw and ftw64 subroutines traverse symbolic links encountered in the resolution of the
Path parameter, including the final component. Symbolic links encountered while walking
the directory tree rooted at the Path parameter are not traversed.

The ftw and ftw64 subroutines use one file descriptor for each level in the tree. The Depth
parameter specifies the maximum number of file descriptors to be used. In general, the ftw
and ftw64 subroutines runs faster if the value of the Depth parameter is at least as large as
the number of levels in the tree. However, the value of the Depth parameter must not be
greater than the number of file descriptors currently available for use. If the value of the
Depth parameter is 0 or a negative number, the effect is the same as if it were 1.

Because the ftw and ftw64 subroutines are recursive, it is possible for it to terminate with a
memory fault due to stack overflow when applied to very deep file structures.

The ftw and ftw64 subroutines use the malloc subroutine to allocate dynamic storage
during its operation. If the ftw and ftw64 subroutined is terminated prior to its completion,
such as by the longjmp subroutine being executed by the function specified by the Function
parameter or by an interrupt routine, the ftw and ftw64 subroutines cannot free that storage.
The storage remains allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have the function specified by the Function
parameter return a nonzero value the next time it is called.

Parameters
Path Specifies the directory hierarchy to be searched.
Function Specifies the file type.
Depth Specifies the maximum number of file descriptors to be used. Depth

cannot be greater than OPEN_MAX which is described in the
sys/limits.h header file.

Return Values

If the tree is exhausted, the ftw and ftw64 subroutines returns a value of 0. If the subroutine
pointed to by fn returns a nonzero value, ftw and ftw64 subroutines stops its tree traversal
and returns whatever value was returned by the subroutine pointed to by fn. If the ftw and
ftw64 subroutines detects an error, it returns a —1 and sets the errno global variable to
indicate the error.

Error Codes
If the ftw or ftw64 subroutines detect an error, a value of —1 is returned and the errno
global variable is set to indicate the error.

The ftw and ftw64 subroutine are unsuccessful if:

EACCES Search permission is denied for any component of the Path
parameter or read permission is denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while
_POSIX_NO _TRUNC is in effect.

ENOENT The Path parameter points to the name of a file that does not exist
or points to an empty string.
ENOTDIR A component of the Path parameter is not a directory.

The ftw subroutine is unsuccessful if:

EOVERFLOW A file in Path s of a size larger than 2 Gigabytes.

Implementation Specifics
This subroutines is part of Base Operating System (BOS) Runtime.

Base Operating System Runtime Services (A-P) 1-245

Related Information

The malloc, free, realloc, calloc, mallopt, mallinfo, or alloca subroutine, setjmp or
longjmp subroutine, signal subroutine, stat subroutine.

Searching and Sorting Example Program and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-246 Technical Reference: Base Operating System

fwide Subroutine

Purpose
Set stream orientation.
Library
Standard Library (libc.a)
Syntax
#include <stdio.h>
#include <wchar.h>
int fwid (FILE * stream, int mode),
Description

The fwide function determines the orientation of the stream pointed to by stream. If mode is
greater than zero, the function first attempts to make the stream wide—orientated. If mode is
less than zero, the function first attempts to make the stream byte—orientated. Otherwise,
mode is zero and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide does not change it.

Because no return value is reserved to indicate an error, an application wishing to check for
error situations should set errno to 0, then call fwide, then check errno and if it is non—zero,
assume an error has occurred.

Return Values

The fwide function returns a value greater than zero if, after the call, the stream has
wide—orientation, a value less than zero if the stream has byte—orientation, or zero if the
stream has no orientation.

Errors
The fwide function may fail if:

EBADF The stream argument is not a valid stream.

Implementation Specifics

A call to fwide with mode set to zero can be used to determine the current orientation of a
stream.

Related Information
The wchar.h file

Base Operating System Runtime Services (A-P) 1-247

fwprintf, wprintf, swprintf Subroutines

Purpose
Print formatted wide—character output.
Library
Standard Library (libc.a)
Syntax
#include <stdio.h>
#include <wchar.h>
int fwprintf (FILE * stream, const wchar_t * format,...)
int wprintf (const wchar_t * format,..)
int swprintf (wchar t *s, size_ t n, const wchar_t * format,...)
Description

The fwprintf function places output on the named output stream. The wprintf function
places output on the standard output stream stdout. The swprintf function places output
followed by the null wide—character in consecutive wide—characters starting at *s; no more
than n wide—characters are written, including a terminating null wide—character, which is
always added (unless n is zero).

Each of these functions converts, formats and prints its arguments under control of the
format wide—character string. The format is composed of zero or more directives: ordinary
wide—characters, which are simply copied to the output stream and conversion
specifications , each of which results in the fetching of zero or more arguments. The
results are undefined if there are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments are evaluated but are otherwise
ignored.

EX Conversions can be applied to the nth argument after the format in the argument list,
rather than to the next unused argument. In this case, the conversion wide—character %
(see below) is replaced by the sequence %n$, where n is a decimal integer in the range [1,
{NL_ARGMAX}], giving the position of the argument in the argument list. This feature
provides for the definition of format wide—character strings that select arguments in an order
appropriate to specific languages (see the EXAMPLES section).

In format wide—character strings containing the %n$ form of conversion specifications,
numbered arguments in the argument list can be referenced from the format wide—character
string as many times as required.

In format wide—character strings containing the % form of conversion specifications, each
argument in the argument list is used exactly once.

All forms of the fwprintf functions allow for the insertion of a language—dependent radix
character in the output string, output as a wide—character value. The radix character is
defined in the program’s locale (category LC_NUMERIC). In the POSIX locale, or in a locale
where the radix character is not defined, the radix character defaults to a period (.).

EX Each conversion specification is introduced by the % wide—character or by the
wide—character sequence %n$,after which the following appear in sequence:

e Zero or more flags (in any order), which modify the meaning of the conversion
specification.

e An optional minimum field width. If the converted value has fewer wide—characters than
the field width, it will be padded with spaces by default on the left; it will be padded on the
right, if the left-adjustment flag (-), described below, is given to the field width. The field
width takes the form of an asterisk (*), described below, or a decimal integer.

1-248 Technical Reference: Base Operating System

An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x and X conversions; the number of digits to appear after the radix character for the e, E
and f conversions; the maximum number of significant digits for the g and G conversions;
or the maximum number of wide—characters to be printed from a string in s conversions.
The precision takes the form of a period (.) followed either by an asterisk (*), described
below, or an optional decimal digit string, where a null digit string is treated as 0. If a
precision appears with any other conversion wide—character, the behaviour is undefined.

An optional | (ell) specifying that a following ¢ conversion wide—character applies to a
wint_t argument; an optional | specifying that a following s conversion wide—character
applies to a wehar_t argument; an optional h specifying that a following d, i, 0, u, x or X
conversion wide—character applies to a type short int or type unsigned short int
argument (the argument will have been promoted according to the integral promotions,
and its value will be converted to type short int or unsigned short int before printing);
an optional h specifying that a following n conversion wide—character applies to a pointer
to a type short int argument; an optional | (ell) specifying that a following d, i, o0, u, x or X
conversion wide—character applies to a type long int or unsigned long int argument; an
optional | (ell) specifying that a following n conversion wide—character applies to a pointer
to a type long int argument; or an optional L specifying that a following e, E, f, g or G
conversion wide—character applies to a type long double argument. If an h, | or L
appears with any other conversion wide—character, the behavior is undefined.

A conversion wide—character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an
argument of type int supplies the field width or precision. Arguments specifying field width,
or precision, or both must appear in that order before the argument, if any, to be converted.
A negative field width is taken as a — flag followed by a positive field width. A negative
precision is taken as if EX the precision were omitted. In format wide—character strings
containing the %n$ form of a conversion specification, a field width or precision may be
indicated by the sequence *m$, where m is a decimal integer in the range [1,
{NL_ARGMAX}] giving the position in the argument list (after the format argument) of an
integer argument containing the field width or precision, for example:

wprintf (L”%1d:%2$.*%35d:%4$.*35d\n”, hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only
exception to this is that %% can be mixed with the %n$ form. The results of mixing
numbered and unnumbered argument specifications in a format wide—character string are
undefined. When numbered argument specifications are used, specifying the Nth argument
requires that all the leading arguments, from the first to the (N—1)th, are specified in the
format wide—character string.

The flag wide—characters and their meanings are:

The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g
or %G) will be formatted with thousands’ grouping wide—characters. For other
conversions the behaviour is undefined. The non—monetary grouping
wide—character is used.

The result of the conversion will be left—justified within the field. The
conversion will be right—justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or —). The
conversion will begin with a sign only when a negative value is converted if
this flag is not specified.

space If the first wide—character of a signed conversion is not a sign or if a signed

conversion results in no wide—characters, a space will be prefixed to the
result. This means that if the space and + flags both appear, the space flag will
be ignored.

Base Operating System Runtime Services (A-P) 1-249

This flag specifies that the value is to be converted to an alternative form. For
0 conversion, it increases the precision (if necessary) to force the first digit of
the result to be 0. For x or X conversions, a non—zero result will have 0x (or
0X) prefixed to it. For e, E, f, g or G conversions, the result will always contain
a radix character, even if no digits follow it. Without this flag, a radix character
appears in the result of these conversions only if a digit follows it. For g and G
conversions, trailing zeros will not be removed from the result as they
normally are. For other conversions, the behavior is undefined.

0 Ford, i, 0, u, x, X, e, E, f, g and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding
is performed. If the 0 and — flags both appear, the 0 flag will be ignored. For d,
i, 0, U, x and X conversions, if a precision is specified, the 0 flag will be
ignored. If the 0 and ’ flags both appear, the grouping wide—characters are
inserted before zero padding. For other conversions, the behavior is
undefined.

The conversion wide—characters and their meanings are:

d,i The int argument is converted to a signed decimal in the style [-] dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting 0 with an explicit
precision of 0 is no wide—characters.

o The unsigned int argument is converted to unsigned octal format in the style
dddd. The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it will be expanded
with leading zeros. The default precision is 1. The result of converting 0 with
an explicit precision of 0 is no wide—characters.

u The unsigned int argument is converted to unsigned decimal format in the
style dddd. The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
converting 0 with an explicit precision of 0 is no wide—characters.

X The unsigned int argument is converted to unsigned hexadecimal format in
the style dddd; the letters abcdef are used. The precision specifies the
minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting 0 with an explicit precision of 0 is no
wide—characters.

X Behaves the same as the x conversion wide—character except that letters
ABCDEF are used instead of abcdef.
f The double argument is converted to decimal notation in the style [-]

ddd.ddd, where the number of digits after the radix character is equal to the
precision specification. If the precision is missing, it is taken as 6; if the
precision is explicitly 0 and no # flag is present, no radix character appears. If
a radix character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

The fwprintf family of functions may make available wide—character string
representations for infinity and NaN.

1-250 Technical Reference: Base Operating System

e E The double argument is converted in the style [-] d.ddde +/— dd, where there
is one digit before the radix character (which is non—zero if the argument is
non—zero) and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is 0 and no # flag is
present, no radix character appears. The value is rounded to the appropriate
number of digits. The E conversion wide—character will produce a number with
E instead of e introducing the exponent. The exponent always contains at
least two digits. If the value is 0, the exponent is 0.

The fwprintf family of functions may make available wide—character string
representations for infinity and NaN.

g,G The double argument is converted in the style f or e (or in the style E in the
case of a G conversion wide—character), with the precision specifying the
number of significant digits. If an explicit precision is 0, it is taken as 1. The
style used depends on the value converted; style e (or E) will be used only if
the exponent resulting from such a conversion is less than —4 or greater than
or equal to the precision. Trailing zeros are removed from the fractional portion
of the result; a radix character appears only if it is followed by a digit.

The fwprintf family of functions may make available wide—character string
representations for infinity and NaN.

c If no | (ell) qualifier is present, the int argument is converted to a
wide—character as if by calling the btowe function and the resulting
wide—character is written. Otherwise the wint_t argument is converted to
wchar_t, and written.

s If no | (ell) qualifier is present, the argument must be a pointer to a character
array containing a character sequence beginning in the initial shift state.
Characters from the array are converted as if by repeated calls to the
mbrtowc function, with the conversion state described by an mbstate_t
object initialised to zero before the first character is converted, and written up
to (but not including) the terminating null wide—character. If the precision is
specified, no more than that many wide—characters are written. If the precision
is not specified or is greater than the size of the array, the array must contain a
null wide—character.

If an | (ell) qualifier is present, the argument must be a pointer to an array of
type wchar_t. Wide characters from the array are written up to (but not
including) a terminating null wide—character. If no precision is specified or is
greater than the size of the array, the array must contain a null
wide—character. If a precision is specified, no more than that many
wide—characters are written.

P The argument must be a pointer to void. The value of the pointer is converted
to a sequence of printable wide—characters, in an implementation—dependent
manner. The argument must be a pointer to an integer into which is written the
number of wide—characters written to the output so far by this call to one of the
fwprintf functions. No argument is converted.

C Same as Ic.
S Same as Is.
% Output a % wide—character; no argument is converted. The entire conversion

specification must be %%.

If a conversion specification does not match one of the above forms, the behavior is
undefined.

In no case does a non—existent or small field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the
conversion result. Characters generated by fwprintf and wprintf are printed as if fputwc
had been called.

Base Operating System Runtime Services (A-P) 1-251

The st_ctime and st_mtime fields of the file will be marked for update between the call to a
successful execution of fwprintf or wprintf and the next successful completion of a call to
fflush or fclose on the same stream or a call to exit or abort.

Return Values

Upon successful completion, these functions return the number of wide—characters
transmitted excluding the terminating null wide—character in the case of swprintf or a
negative value if an output error was encountered.

Error Codes

For the conditions under which fwprintf and wprintf will fail and may fail, refer to fputwe .In
addition, all forms of fwprintf may fail if:

EILSEQ A wide—character code that does not correspond to a valid character
has been detected
EINVAL There are insufficient arguments.
In addition, wprintf and fwprintf may fail if:
ENOMEM Insufficient storage space is available.
Examples
To print the language—independent date and time format, the following statement could be
used:

wprintf (format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide—character string:
L"%s, %$s %d, $%$d:%.2d\n”

producing the message:
Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide—character string:

L”%1S%s, %35d. %2$s, %$4$d:%5$.2d\n”
producing the message:

Sonntag, 3. July, 10:02

Implementation Specifics
These subroutines are part of Base Operating System (BOS) subroutines.

Related Information
The btowc subroutine.

The fputwc subroutine.
The fwscanf subroutine.
The setlocale subroutine.
The mbrtowc subroutine.
The stdio.h file.

The wchar.h file.

The XBD specification, Chapter 5, Locale.

1-252 Technical Reference: Base Operating System

fwscanf, wscanf, swscanf Subroutines

Purpose
Convert formatted wide—character input
Library
Standard Library (libc.a)
Syntax
#include <stdio.h>
#include <wchar.h>
int fwscanf (FILE * stream, const wchar_t * format, ...);
int wscanf (const wchar_t * format, ...);
int swscanf (const wchar_t * s, const wchar_t * format, ...);
Description

The fwscanf function reads from the named input stream. The wscanf function reads from
the standard input stream stdin. The swscanf function reads from the wide—character string
s. Each function reads wide—characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control wide—character string
format described below, and a set of pointer arguments indicating where the converted input
should be stored. The result is undefined if there are insufficient arguments for the format. If
the format is exhausted while arguments remain, the excess arguments are evaluated but
are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion wide—character % (see
below) is replaced by the sequence %n$, where n is a decimal integer in the range [1,
{NL_ARGMAX}]. This feature provides for the definition of format wide—character strings
that select arguments in an order appropriate to specific languages. In format
wide—character strings containing the %n$ form of conversion specifications, it is
unspecified whether numbered arguments in the argument list can be referenced from the
format wide—character string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the
two forms cannot normally be mixed within a single format wide—character string. The only
exception to this is that %% or %* can be mixed with the %n$ form.

The fwscanf function in all its forms allows for detection of a language—dependent radix
character in the input string, encoded as a wide—character value. The radix character is
defined in the program’s locale (category LC_NUMERIC). In the POSIX locale, or in a locale
where the radix character is not defined, the radix character defaults to a period (.).

The format is a wide—character string composed of zero or more directives. Each directive is
composed of one of the following: one or more white—space wide—characters (space, tab,
newline, vertical-tab or form—feed characters); an ordinary wide—character (neither % nor a
white—space character); or a conversion specification. Each conversion specification is
introduced by a % or the sequence %n$ after which the following appear in sequence:

¢ An optional assignment—suppressing character *.
e An optional non—zero decimal integer that specifies the maximum field width.

e An optional size modifier h, | (ell) or L indicating the size of the receiving object. The
conversion wide—characters c, s and [must be preceded by | (ell) if the corresponding
argument is a pointer to wchar_t rather than a pointer to a character type. The
conversion wide—characters d, i and n must be preceded by h if the corresponding
argument is a pointer to short int rather than a pointer to int, or by I (ell) if it is a pointer
to long int. Similarly, the conversion wide—characters o, u and x must be preceded by h if

Base Operating System Runtime Services (A-P) 1-253

the corresponding argument is a pointer to unsigned short int rather than a pointer to
unsigned int, or by | (ell) if it is a pointer to unsigned long int. The conversion
wide—characters e, f and g must be preceded by | (ell) if the corresponding argument is a
pointer to double rather than a pointer to float,or by L if it is a pointer to long double. If
an h, | (ell) or L appears with any other conversion wide—character, the behavior is
undefined.

¢ A conversion wide—character that specifies the type of conversion to be applied. The
valid conversion wide—characters are described below.

The fwscanf functions execute each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white—space wide—characters is executed by reading
input until no more valid input can be read, or up to the first wide—character which is not a
white—space wide—character, which remains unread.

A directive that is an ordinary wide—character is executed as follows. The next
wide—character is read from the input and compared with the wide—character that comprises
the directive; if the comparison shows that they are not equivalent, the directive fails, and
the differing and subsequent wide—characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion wide—character. A conversion specification is executed
in the following steps:

Input white—space wide—characters (as specified by iswspace) are skipped, unless the
conversion specification includes a [, ¢ or n conversion character.

An item is read from the input, unless the conversion specification includes an n conversion
wide—character. An input item is defined as the longest sequence of input wide—characters,
not exceeding any specified field width, which is an initial subsequence of a matching
sequence. The first wide—character, if any, after the input item remains unread. If the length
of the input item is 0, the execution of the conversion specification fails; this condition is a
matching failure, unless end—offile, an encoding error, or a read error prevented input from
the stream, in which case it is an input failure.

Except in the case of a % conversion wide—character, the input item (or, in the case of a %n
conversion specification, the count of input wide—characters) is converted to a type
appropriate to the conversion wide—character. If the input item is not a matching sequence,
the execution of the conversion specification fails; this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed
in the object pointed to by the first argument following the format argument that has not
already received a conversion result if the conversion specification is introduced by %, or in
the nth argument if introduced by the wide—character sequence %n$. If this object does not
have an appropriate type, or if the result of the conversion cannot be represented in the
space provided, the behavior is undefined. The following conversion wide—characters are
valid:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of westol with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be
a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for
the subject sequence of westol with 0 for the base argument. In the absence of a
size modifier, the corresponding argument must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected
for the subject sequence of westoul with the value 8 for the base argument. In
the absence of a size modifier, the corresponding argument must be a pointer to
unsigned int.

1-254 Technical Reference: Base Operating System

ef,g

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of westoul with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be
a pointer to unsigned int.

Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of westoul with the value 16 for the base
argument. In the absence of a size modifier, the corresponding argument must be
a pointer to unsigned int.

Matches an optionally signed floating—point number, whose format is the same as
expected for the subject sequence of westod . In the absence of a size modifier,
the corresponding argument must be a pointer to float.

If the fwprintf family of functions generates character string representations for
infinity and NaN (a 7858 symbolic entity encoded in floating—point format) to
support the ANSI/IEEE Std 754:1985 standard, the fwscanf5 family of functions
will recognise them as input.

Matches a sequence of non white—space wide—characters. If no | (ell) qualifier is
present, characters from the input field are converted as if by repeated calls to the
wcertomb function, with the conversion state described by an mbstate_t object
initialised to zero before the first wide—character is converted. The corresponding
argument must be a pointer to a character array large enough to accept the
sequence and the terminating null character, which will be added automatically.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence and the terminating null wide—character,
which will be added automatically.

Matches a non—empty sequence of wide—characters from a set of expected
wide—characters (the scanset). If no | (ell) qualifier is present, wide—characters
from the input field are converted as if by repeated calls to the wertomb function,
with the conversion state described by an mbstate_t object initialised to zero
before the first wide—character is converted. The corresponding argument must
be a pointer to a character array large enough to accept the sequence and the
terminating null character, which will be added automatically.

If an | (ell) qualifier is present, the corresponding argument must be a pointer to
an array of wchar_t large enough to accept the sequence and the terminating null
wide—character, which will be added automatically

The conversion specification includes all subsequent widw characters in the
format string up to and including the matching right square bracket (]). The
wide—characters between the square brackets (the scanlist) comprise the
scanset, unless the wide—character after the left square bracket is a circumflex
(™), in which case the scanset contains all wide—characters that do not appear in
the scanlist between the circumflex and the right square bracket. If the conversion
specification begins with [] or [], the right square bracket is included in the
scanlist and the next right square bracket is the matching right square bracket that
ends the conversion specification; otherwise the first right square bracket is the
one that ends the conversion specification. If a — is in the scanlist and is not the
first wide—character, nor the second where the first wide—character is a *;, nor the
last wide—character, the behavior is implementation—dependent.

Matches a sequence of wide—characters of the number specified by the field width
(1 if no field width is present in the conversion specification). If no | (ell) qualifier is
present, wide—characters from the input field are converted as if by repeated calls
to the wertomb function, with the conversion state described by an mbstate_t
object initialised to zero before the first wide—character is converted. The
corresponding argument must be a pointer to a character array large enough to
accept the sequence. No null character is added.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence. No null wide—character is added.

Base Operating System Runtime Services (A-P) 1-255

p Matches an implementation—dependent set of sequences, which must be the
same as the set of sequences that is produced by the %p conversion of the
corresponding fwprintf functions. The corresponding argument must be a pointer
to a pointer to void. The interpretation of the input item is
implementation—dependent. If the input item is a value converted earlier during
the same program execution, the pointer that results will compare equal to that
value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to the
integer into which is to be written the number of wide—characters read from the
input so far by this call to the fwscanf functions. Execution of a %n conversion
specification does not increment the assignment count returned at the completion
of execution of the function.

C Same as Ic.
S Same as Is.
% Matches a single %; no conversion or assignment occurs. The complete

conversion specification must be %%.
If a conversion specification is invalid, the behavior is undefined.

The conversion characters E, G and X are also valid and behave the same as, respectively,
e, g and x.

If end—offile is encountered during input, conversion is terminated. If end—offile occurs
before any wide—characters matching the current conversion specification (except for %n)
have been read (other than leading white—space, where permitted), execution of the current
conversion specification terminates with an input failure. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if any) is terminated with an input failure.

Reaching the end of the string in swscanf is equivalent to encountering end—of—file for
fwscanf.

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including newline) is left unread unless matched by a conversion
specification. The success of literal matches and suppressed assignments is only directly
determinable via the %n conversion specification.

The fwscanf and wscanf functions may mark the st_atime field of the file associated with
stream for update. The st_atime field will be marked for update by the first successful
execution of fgetc, fgetwc, fgets, fgetws, fread, getc, getwce, getchar, getwchar, gets,
fscanf or fwscanf using stream that returns data not supplied by a prior call to ungetc.

Return Values
Upon successful completion, these functions return the number of successfully matched
and assigned input items; this number can be 0 in the event of an early matching failure. If
the input ends before the first matching failure or conversion, EOF is returned. If a read
error occurs the error indicator for the stream is set, EOF is returned, and errno is set to
indicate the error.

Error Codes
For the conditions under which the fwscanf functions will fail and may fail, refer to fgetwec.
In addition, fwscanf may fail if:

EILSEQ Input byte sequence does not form a valid character.
EINVAL There are insufficient arguments.
Examples
The call:

1-256 Technical Reference: Base Operating System

int i, n; float x; char name[50];
n = wscanf (L”%d%f%s”, &i, &x, name);

with the input line:
25 54.32E-1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the
string Hamster.

The call:

int i; float x; char name[50];
(void) wscanf (L”%2d%f%*d %$[0123456789]"”, &i, &x, name);

with input:
56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar will return the character a.

Implementation Specifics

In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

Related Information
The getwe subroutine.

The fwprintf subroutine.
The setlocale subrou