Ol c5-2001

Bull DPX/20

SOMobjects Base Toolkit
Programmer’s Reference Manual

AlIX

ORDER REFERENCE
86 A2 28AQ 01

Bull DPX/20

SOMobjects Base Toolkit
Programmer’s Reference Manual

AlX

Software

June 1995

BULL S.A. CEDOC

Atelier de Reproduction
FRAN-231

331 Avenue Patton BP 428
49005 ANGERS CEDEX
FRANCE

ORDER REFERENCE
86 A2 28AQ 01

The following copyright notice protects this book under the Copyright laws of the United States and other
countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and making
derivative works.

Copyright © Bull S.A. 1992, 1995

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the USA and other countries licensed exclusively through X/Open.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

About This Book

This book gives reference material for the System Object Model (SOM) of the
SOMobjects Base Toolkit. In particular, it contains a reference page for every class,
method, function, and macro provided by the SOM run-time library, the DSOM run-time
library, the Interface Repository Framework, and the Event Management Framework. It also
includes documentation of the utility metaclasses provided by the SOMobjects Base Toolkit,
and each of their methods.

Also, the SOMobjects Base Toolkit Quick Reference Guide shows the syntax and purpose
for each entry of the current book, plus SOM Compiler commands/flags. In addition, refer to
the SOMobjects Base Toolkit Users Guide for introductory information.

Who Should Use This Book

This book is for the professional programmer using the SOMobjects Base Toolkit to build
object-oriented class libraries or application programs that use SOM class libraries or the
frameworks in the SOMobjects Base Toolkit.

This book assumes that you are an experienced programmer and that you have a general
familiarity with the basic notions of object-oriented programming. Practical experience using
an object-oriented programming language is helpful, but not essential.

How This Book Is Organized

At the highest level, this book is organized by framework. Within each framework, the
reference pages describe the classes in alphabetical order, with the methods of each class
given in alphabetical order following their corresponding class. Similarly, related functions
and SOM macros are given in separate alphabetical sequences in the corresponding
section. The reference page for a SOM class contains the following topics:

Description A description of the class.

File Stem The file stem for the class’s IDL interface specification (.idl) file and its
usage binding (.h/.xh) files.

Base Class The class’s direct base (parent) classes.

Ancestor Classes
The class’s ancestor (indirect base) classes.

Metaclass The class’s metaclass.

New Methods The names of the methods that the class introduces (grouped roughly
according to purpose). Each new method is documented on a separate
reference page.

Overriding Methods
The names of the methods that the class overrides from ancestor classes

The reference page for a method of a SOM class contains the following topics:
Purpose The purpose of the method in brief.

Syntax The method’s C/C++ procedure prototype (which includes the method
procedure’s return type and the names and types of its parameters). The
in/out/inout keywords associated with each of the method’s parameters in
the method’s IDL declaration are also shown. These keywords are shown
for information only; they are not actually present in the method procedure
prototype.

Description A description of the method’s use.

Parameters A description of each of the method procedure’s parameters.

Preface iii

Return Value A description of the method’s return value.

Example An example of using or overriding the method, if available. Although
methods of SOM classes are language neutral (that is, they can be invoked
from any programming language that can use SOM), the examples given
here are written in C.

Original Class The name of the class that introduces the method (the class is documented
separately in this book).

Related Information
Related methods and functions (and macros, for the SOM kernel) that can
be found in this book.

The reference page for a function has the following topics:
Purpose The purpose of the function in brief.

Syntax The function’s prototype (which includes the return type and the names and
types of the parameters).

Description A description of the function’s use.

Parameters A description of each of the function’s parameters.
Return Value A description of the function’s return value.
Example An example of using the function, if available.

Related Information
Related methods and functions (and macros, for the SOM kernel) that can
be found in this book.

The reference page for a macro has the following fields:
Purpose The purpose of the macro in brief.

Syntax The syntax for invoking the macro.

Description A description of the macro’s use.

Parameters A description of each of the macro’s parameters.

Expansion A description of the macro’s expansion (although the exact code expansion
is not always given).

Example An example of invoking the macro, if available.

Related Information
Related macros and functions that can be found in this book.

iv SOMobjects Base Toolkit Programmer’s Reference Manual

Contents

Chapter 1. SOM Kernel Referencecooeiiiiiiiiiiiiiiiiiiinnnnnnss

somApply Function .

somBeginPersistentlds Function
somBuUIldClass FUNGLION i e
somCheckld Function
somClassResolve FuNCtiono i e
somComparelds Function
somDataResolve Function
somEndPersistentlds Function
somEnvironmentEnd Function e
somEnvironmentNew Function i,
somExceptionFree Function
somExceptionld Function
somExceptionValue Function
somGetGlobalEnvironment Function
somldFromString Function

somlIsObj Function .
somLPrintf Function

somMainProgram Function
somParentNumResolve Function i
somParentResolve Function e
somPrefixLevel Function i e

somPrintf Function .

somRegisterld Function
somResolve FUNCHION
somResolveByName Function i
somSetException Function
somSetExpectedlds Function
somSetOutChar FUNCHION o e
somStringFromld Function
somTotalReglds Function
somUniqueKey Function

somVprintf Function
SOMCalloc Function

SOMClassInitFuncName Function et
SOMDeleteModule FUNCLIONot e

SOMEtrror Function
SOMFree Function .

SOMInitModule FUNCtion o e
SOMLoadModule FUNCLIONo e e

SOMMalloc Function

SOMOutCharRoutine Function i e
SOMRealloc FUNCLIONo

SOM_Assert Macro

SOM_ClassLibrary Macroouii e
SOM_CreateLocalEnvironment Macro ...
SOM_DestroyLocalEnvironment Macro ...,

SOM_Error Macro .
SOM_Expect Macro

Preface

1-1

Vi

SOM_GetClass MacCrO vv it e e ettt e
SOM_InItEnvironment Macrot it
SOM_MainProgram Macro e
SOM_NOTrace MacCroiuii it e et et
SOM_ParentNumResolve Macro ...ttt
SOM_ReS0OIVE MaCIOottt e e e
SOM _ResolveNoCheck Macroc i i
SOM_SubstituteClass Macroouiiii e
SOM Test MacCrottt e e e e e
SOM _TeStC MaCIO . ..o oottt e e e e e e e e
SOM_UninitEnvironment Macro i
SOM_WarnMsg MacrOt
SOMCIASS Classottt
somAddDynamicMethod Method
somAllocate Method e
somCheckVersion Method i e
somClassReady Method
somDeallocate Method i
somDescendedFrom Method i
somFindMethod, somFindMethodOk Methods
somFindSMethod, somFindSMethodOk Methods
somGetlnstancePartSize Method
somGetlnstanceSize Method
somGetinstanceToken Method
somGetMemberToken Method i e
somGetMethodData Method
somGetMethodDescriptor Method i
somGetMethodIindex Method e
somGetMethodToken Method i i
somGetName Method
somGetNthMethodData Method
somGetNthMethodIinfo Method i
somGetNumMethods Method i
somGetNumStaticMethods Method i,
somGetParents Method
somGetVersionNumbers Method i
somLookupMethod Method
somNew, somNewNolnit Methods i
somRenew, somRenewNolnit, somRenewNolnitNoZero, somRenewNoZero Methods

somSupportsMethod Method
SOMCIASSMQr Classot e
somClassFromld Method i e
somFindClass Method e
somFindClsInFile Method i e
somGetlnitFunction Method
somGetRelatedClasses Method i,
sombLoadClassFile Method i
somlLocateClassFile Method i
somMergelnto Method
somRegisterClass Method i
somSubstituteClass Method o
somUnloadClassFile Method i e
somUnregisterClass Method i
SOMODECE Class . .. oo ettt

SOMobjects Base Toolkit Programmer’s Reference Manual

1-56
1-57
1-58
1-59
1-60
1-61
1-62
1-63
1-64
1-65
1-66
1-67
1-68
1-72
1-74
1-75
1-77
1-78
1-79
1-80
1-82
1-83
1-85
1-86
1-87
1-88
1-89
1-90
1-91
1-92
1-93
1-94
1-95
1-96
1-97
1-98
1-99
1-101

1-102
1-104
1-105
1-107
1-108
1-110
1-112
1-114
1-116
1-117
1-118
1-120
1-121
1-123
1-124
1-126

somCastObj Method ... o e 1-128

somDefaultlnit Method 1-130
somDestruct Method 1-132
somDispatch, somClassDispatch Methods 1-134
somDispatchX Methods (Obsolete) ... 1-137
somDumpSelf Method 1-139
somDumpSelfint Method 1-140
somFree Method e 1-142
somGetClass Method 1-143
somGetClassName Method i 1-144
somGetSize Method 1-145
somlnit Method e 1-146
sOmMISA Method e 1-148
somlisinstanceOf Method 1-150
somPrintSelf Method 1-152
somResetObj Method 1-153
somRespondsTo Method 1-154
somUninit Method 1-155
Chapter 2. DSOM Framework Referencecccoiiiiiiiiiiiiinnnnnn. 21
NO S oottt e e e 2-2
get_next_response FUNCHiON i 2-3
ORBfree FUNCHON o e 2-4
send_multiple_requests Function i 2-5
somdExceptionFree Function 2-7
SOMD _Init FUNCHION o e e 2-8
SOMD _NoORBfree Function i i 2-9
SOMD_RegisterCallback Function i 2-10
SOMD Uninit Function e 2-12
Context_delete MacCro ...ttt e 2-13
Request_delete Macro 2-14
BOA Class . oot 2-16
change_implementation Method 2-17
create Method 2-18
deactivate_impl Method 2-20
deactivate_obj Method 2-21
dispose Method e 2-22
get id Methodo e 2-23
get_principal Method 2-24
impl_is_ready Method 2-25
obj_is_ready Method i 2-26
set_exception Method 2-27
Context Class ..ot e e e 2-28
create_child Method e 2-29
delete_values Method i e 2-30
destroy Method (for a Contextobject) oo i 2-31
get values Method e 2-32
set one value Method i 2-34
set values Method e 2-35
ImplementationDef Classo ittt e 2-36
IMPIRePOSItOry Class e 2-38
add_class_to_impldefMethod i 2-39
add_impldef Method 2-40
delete_impldef Method 2-41
find_all_impldefs Method i 2-42

Preface vii

viii

find_classes_by_impldef Method
find_impldef Method
find_impldef_by_alias Method i
find_impldef_by classMethod
remove class from allMethod
remove_class_from_impldef Method
update_impldef Method
NVLISt Class ... i ittt e e
add item Method
free Method o e e
free_memory Method
get_countMethod
get_item Method
set itemMethod e
ObJeCtMgr Classo oo
somdDestroyObject Method
somdGetldFromObject Method i
somdGetObjectFromld Method i
somdNewObject Method
somdReleaseObject Method i
ORB Class . .ottt i ettt e
create list Method i
create_operation_listMethod
get_default_contextMethod
object_to_string Method
string_to_object Method
Principal Class
Request Class
add_arg Method
destroy Method (for a Request object) i
get_response Method ... o
INVOKe Method o e
send Method
SOMDCHENtProxy Classt e e e
somdProxyFree Method
somdProxyGetClass Method i
somdProxyGetClassName Method
somdReleaseResources Method i
somdTargetFree Method
somdTargetGetClass Method i
somdTargetGetClassName Method
SOMDODJECE Classttt
create_request Method
create_request_args Method
duplicate Method
get_implementation Method
get_interface Method
is_constant Method i i e
is nilMethod e
is_proxy Method
is SOM ref Method i e e e
release Method i e
SOMDODJECIMGr Class . ..ottt e
somdFindAnyServerByClass Method i
somdFindServer Method i

SOMobjects Base Toolkit Programmer’s Reference Manual

2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-53
2-54
2-56
2-57
2-59
2-61
2-62
2-63
2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73
2-74
2-75
2-77
2-79
2-81
2-83
2-85
2-87
2-88
2-89
2-90
2-92
2-93
2-94
2-95
2-96
2-98
2-100
2-101
2-102
2-103
2-104
2-105
2-106
2-107
2-108
2-109
2-110

somdFindServerByName Method
somdFindServersByClass Method
SOMDServerClass
somdCreateObj Method
somdDeleteObj Method
somdDispatchMethod Method ...
somdGetClassObj Method

somdObjReferencesCached Method i ..

somdRefFromSOMObj Method ..
somdSOMObjFromRef Method ..
SOMDServerMgr Class
somdDisableServer Method
somdEnableServer Method
somdlsServerEnabled Method . ..
somdListServer Method
somdRestartServer Method
somdShutdownServer Method . ..
somdStartServer Method
SOMOACIasscovu...
activate_impl_failed Method
change_id Method
create_constant Method
create_SOM_ref Method
execute_next_request Method . ..
execute_request_loop Method . ..
get_SOM_object Method

Chapter 3. Interface Repository Framework Reference

AttributeDef Class
ConstantDefClass
ContainedClass
describe Method
within Method
ContainerClass
contents Method
describe_contents Method
lookup_name Method
ExceptionDef Class
InterfaceDef Class
describe_interface Method
ModuleDefClass
OperationDefClass
ParameterDefClass
Repository Class
lookup_id Method
lookup_modifier Method
release_cache Method
TypeDefClass
TypeCode_alignment Function ..
TypeCode_copy Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCodeNew Function
TypeCode_param_count Function

Preface

2-111
2-112
2-113
2-114
2-115
2-116
2-117
2-118
2-119
2-120
2-121
2-122
2-123
2-124
2-125
2-126
2-127
2-128
2-129
2-130
2-131
2-132
2-134
2-135
2-136
2-138

3-1

3-2

3-4

3-6

3-8
3-10
3-12
3-13
3-15
3-17
3-19
3-21
3-23
3-25
3-26
3-28
3-30
3-31
3-33
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-44
3-46

ix

TypeCode_parameter Function e
TypeCode_print FUNCHION o e i e
TypeCode_setAlignment Function o i
TypeCode_size FUNCHON i e e e

Chapter 4. Metaclass Framework Referencec.ccooiiiiiininannns
SOMMBeforeAfter Metaclass
sommAfterMethod Method
sommBeforeMethod Method i
SOMMSinglelnstance Metaclass ...
sommGetSinglelnstance Method o
SOMMTraced Metaclasst e

Chapter 5. Event Management Framework Reference
SOMECIlientEvent Classt e e e
somevGetEventClientDataMethod i
somevGetEventClientType Method i i
somevSetEventClientDataMethod i i
somevSetEventClientType Method i
SOMEEMaN Classcoiii i e e e
someChangeRegData Method i
someGetEManSem Method
someProcessEventMethod
someProcessEvents Method
someQueueEvent Method
someRegister Method
someRegisterEv Method
someRegisterProc Method
someReleaseEManSem Method i
someShutdown Method i
someUnRegister Method
SOMEEMRegisterData Classt e
someClearRegData Method i
someSetRegDataClientType Method i
someSetRegDataEventMask Method,
someSetRegDataSink Method i
someSetRegDataSinkMask Method i i
someSetRegDataTimerCount Method i ...
someSetRegDataTimerInterval Method i
SOMEEVENt Class ..o e
somevGetEventTime Method
somevGetEventType Method i
somevSetEventTime Method
somevSetEventType Method
SOMESINKEVENt Classot e e
somevGetEventSink Method
somevSetEventSink Method
SOMETIMerEvent Classiriii e e
somevGetEventinterval Method
somevSetEventinterval Method
SOMEWOrkProcEvent Classcoouiii e

SOMobjects Base Toolkit Programmer’s Reference Manual

3-47
3-49
3-50
3-51

5-10
5-11
5-12
5-13
5-14
5-16
5-18
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42

X-1

Chapter 1. SOM Kernel Reference

SOMObject
Class

<+— Denotes “is a subclass of”

SOM Kernel Class Organization

SOM Kernel Reference

1-1

somApply Function

Purpose

Syntax

Invokes an apply stub. Apply stubs are never invoked directly by SOM users, the somApply
function must be used instead.

boolean somApply (
SOMObiject objPtr,
somToken *retVal,
somMethodDataPtr mdPitr,
va_list args);

Description

somApply provides a single uniform interface through which it is possible to call any
method procedure. The interface is based on the caller passing: the object to which the
method procedure is to be applied; a return address for the method result; a
somMethodDataPtr indicating the desired method procedure; and an ANSI standard va_list
structure containing the method procedure arguments. Different method procedures expect
different argument types and return different result types, so the purpose of somApply is to
select an apply stub appropriate for the specific method involved, according to the supplied
method data, and then call this apply stub. The apply stub removes the arguments from the
va_list, calls the method procedure with these arguments, accepts the returned result, and
then copies this result to the location pointed to by retVal.

The method procedure used by the apply stub is determined by the content of the
somMethodData structure pointed to by mdPtr. The class methods somGetMethodData
and somGetNthMethodData are used to load a somMethodData structure. These
methods resolve static method procedures based on the receiving class’s instance method
table.

The SOM API requires that information necessary for selecting an apply stub be provided
when a new method is registered with its introducing class (by way of the methods
somAddStaticMethod or somAddDynamicMethod). This is required because SOM itself
needs apply stubs when dispatch method resolution is used. C and C++ implementation
bindings for SOM classes support this requirement, but SOM does not terminate execution
if this requirement is not met by a class implementor. Thus, it is possible that there may be
methods for which somApply cannot select an appropriate apply stub. The
somMethodData structure for the method can be inspected before calling somApply to
verify that the method data contains sufficient information to select an appropriate apply
stub: either the applyStub component or the stublnfo component of this structure must be
non-NULL. If these conditions are met, then somApply performs as described previously,
and a TRUE value is returned; otherwise FALSE is returned.

Parameters

objPtr A pointer to the object on which the method procedure is to be invoked.

retVal A pointer to the memory region into which the result returned by the method
procedure is to be copied. This pointer cannot be null (even in the case of
method procedures whose returned result is void).

maPtr A pointer to the somMethodData structure that describes the method
whose procedure is to be executed by the apply stub.

1-2 SOMobjects Base Toolkit: Programmer’s Reference Manual

args A pointer to a memory region in which all of the arguments to the method
procedure have been laid out in consecutive addresses, according to the
protocol implemented by va_lists. The first entry of the va_list must be
objPtr. Furthermore, all arguments on the va_list must appear in widened
form, as defined by ANSI C. For example, floats must appear as doubles,
and chars and shorts must appear as ints.

C++ Example

#include <somcls.xh>
#include <string.h>
#include <stdarg.h>
main ()
{ va_list args = (va_list) SOMMalloc (4);
va_list push args;
string result;
SOMClass *scObij;
somMethodData md;

somEnvironmentNew (); /* Init environment */
scObj = _SOMClass; /* The SOMClass object */

scObj->somGetMethodData (somIdFromString (”somGetName”), &md);
va_arg (push, SOMClass*) = scObj;

somApply (scObj, (somToken*)é&result, &md, args);
SOM_Assert (!strcmp (result,”SOMClass”), SOM_Fatal);
/* result is ”"SOMClass” */

}

Related Information

Methods: somGetMethodData, somGetNthMethodData, somGetRdStub,
somAddStaticMethod, somAddDynamicMethod (somcls.idl)

Data Structures: SOMObject (somobij.idl), somMethodData (somapi.h), somToken
(somapi.h), somMethodPtr (sombtype.h), va_list (stdarg.h)

SOM Kernel Reference 1-3

somBeginPersistentlds Function

Purpose
Tells SOM to begin a “persistent ID interval.”

Syntax
void somBeginPersistentlds ();

Description
The somBeginPersistentlds function informs the SOM ID manager that strings for any
new SOM IDs that are registered will not be freed or modified. This allows the ID manager
to use a pointer to the string in the unregistered ID as the master copy of the ID’s string,
rather than making a copy of the string. This makes ID handling more efficient.

C Example

#include <som.h>
/* This is the way to create somlds efficiently */

static string idlName = "whoami”;
static somId somId_idl = &idlName;
/*

somId_idl will be registered the first time it is used
in an operation that takes a somlId, or it can be explicitly
registered using somCheckId.

*/

main ()
{
somId idl, id2;
string id2Name = "“whereami”;

somEnvironmentNew () ;

somBeginPersistentIds () ;

idl = somCheckId (somId_idl); /* registers the id as persistent
*/

somEndPersistentIds () ;

id2 = somIdFromString (id2Name); /* registers the id */

SOM_Assert (!strcmp ("whoami”, somStringFromId(idl)),
SOM_Fatal);

SOM_Assert (!strcmp ("whereami”, somStringFromId(id2)),
SOM_Fatal);

idlName ”it does matter”; /* because it is persistent */
id2Name = ”it doesn’t matter”; /* because it is not persistent

*/

SOM_Assert (strcmp (“whoami”, somStringFromId(idl)), SOM_Fatal);
/* The idl string has changed */
SOM_Assert (!strcmp ("whereami”, somStringFromId(id2)),
SOM_Fatal) ;
/* the id2 string has not */
}

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somTotalReglds, somSetExpectedids, somEndPersistentlds,
somUniqueKey

1-4 SOMobjects Base Toolkit: Programmer’s Reference Manual

somBuildClass Function

Purpose
Automates the process of building a new SOM class object.
Syntax
void somBuildClass (
unsigned long inheritVars,
somStaticClassInfoPtr sciPtr,
long majorVersion,
long minorVersion);
Description
The somBuildClass function accepts declarative information defining a new class that is to
be built, and performs the activities required to build and register a correctly functioning
class object. The C and C++ implementation bindings use this function to create class
objects.
Parameters
inheritVars A bit mask that determines inheritance from parent classes. A mask
containing all ones is an appropriate default.
SciPtr A pointer to a structure holding static class information.
majorVersion The major version number for the class.
minorVersion The minor version number for the class.
Example

See any .ih or .xih implementation binding file for details on construction of the required
data structures.

Related Information
Data Structures: somStaticClassinfo (somapi.h)

SOM Kernel Reference 1-5

somCheckld Function

Purpose
Registers a SOM ID.

Syntax

somld somCheckld (somld id);

Description

The somCheckld function registers a SOM ID and converts it into an internal
representation. The input SOM ID is returned. If the ID is already registered, this function
has no effect.

Parameters
id The somld to be registered.

Return Value
The registered somid.

Example
See the somBeginPersistentlds function.

Related Information

Functions: somRegisterld, somldFromString, somStringFromid, somComparelds,
somTotalReglds, somSetExpectedlds, somBeginPersistentlds, somEndPersistentids,
somUniqueKey

Data Structures: somid (sombtype.h)

1-6 SOMobjects Base Toolkit: Programmer’s Reference Manual

somClassResolve Function

Purpose

Obtains a pointer to the procedure that implements a static method for instances of a
particular SOM class.

Syntax

somMethodPtr somClassResolve (SOMClass c/s, somMToken mToken);

Description

The somClassResolve function is used to obtain a pointer to the procedure that
implements the specified method for instances of the specified SOM class. The returned
procedure pointer can then be used to invoke the method. The somClassResolve function is
used to support “casted” method calls, in which a method is resolved with respect to a
specified class rather than the class of which an object is a direct instance. The
somClassResolve function can only be used to obtain a method procedure for a static
method (a method declared in an IDL specification for a class); dynamic methods do not
have method tokens.

The SOM language usage bindings for C and C++ do not support casted method calls, so
this function must be used directly to achieve this functionality. Whenever using SOM
method procedure pointers, it is necessary to indicate the use of system linkage to the
compiler. The way this is done depends on the compiler and the system being used.
However, C and C++ usage bindings provide an appropriate typedef for this purpose. The
name of the typedef is based on the name of the class that introduces the method, as
illustrated in the following example.

Parameters
cls A pointer to the class object whose instance method procedure is required.

mToken The method token for the method to be resolved. The SOM API requires
that if the class “XYZ” introduces the static method “foo”, then the method
token for “foo” is found in the class data structure for “XYZ” (called
XYZClassData) in the structure member named “foo” (that is, at
XYZClassData.foo). Method tokens can also be obtained using the
somGetMethodToken method.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method for the
specified class of SOM object.

SOM Kernel Reference 1-7

C++ Example

// SOM IDL for class A and class B
finclude <somobj.idl>
module scrExample {

interface A : SOMObject { void foo(); implementation {
callstyle=o0idl; }; };
interface B : A { 1implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample

#define SOM_Module_screxample_Source
#include <scrExample.xih>
#include <stdio.h>

SOM_Scope void SOMLINK scrExample_Afoo (scrExample_A *somSelf)
{ printf(”1\n”); }

SOM_Scope void SOMLINK scrExample_Bfoo (scrExample_B *somSelf)

{ printf (”2\n”); }
main ()
{
scrExample_B *objPtr = new scrExample_B;

// This prints 2
objPtr->foo();

// This prints 1
((somTD_scrExample_A_foo) /* A necessary method procedure
*/
somClassResolve (
_scrExample_A, // the A class object
scrExample_AClassData.foo) // the foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

// This prints 2
((somTD_scrExample_A_foo) /* A necessary method procedure
*/
somClassResolve (
_scrExample_B, // the B class object
scrExample_AClassData.foo) // the foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

}

Related Information

Functions: somResolveByName, somParentResolve, somParentNumResolve,
somResolve

Data Structures: somMethodPtr (sombtype.h), SOMClass (somcls.idl),
somMToken (somapi.h)

14

4

cast

cast

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,

somGetApplyStub, somGetMethodToken
Macros: SOM_Resolve, SOM_ResolveNoCheck

1-8 SOMobjects Base Toolkit: Programmer’s Reference Manual

somComparelds Function

Purpose
Determines whether two SOM IDs represent the same string.
Syntax
int somComparelds (somlid id7, somid id2);
Description
The somComparelds function returns 1 if the two input IDs represent strings that are equal;
otherwise, it returns 0.
Parameters
id1 The first SOM ID to be compared.
id2 The second SOM ID to be compared.

Return Value
Returns 1 if the two input IDs represent strings that are equal; otherwise, it returns 0.

C Example

#include <som.h>
main ()
{
somId idl, id2, id3;

somEnvironmentNew () ;

idl = somIdFromString (“this”);
id2 somIdFromString (“that”);
id3 somIdFromString (“this”);

SOM_Test (somCompareIds (idl, id3));
SOM_Test (! somComparelds (idl, id2));
}

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromld,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Data Structures: somld (sombtype.h)

SOM Kernel Reference 1-9

somDataResolve Function

Purpose
Accesses instance data within an object.

Syntax

somToken somDataResolve (SOMObject obj, somDToken dToken);

Description

The somDataResolve function is used to access instance data within an object. This
function is of use primarily to class implementors (rather than class clients) who are not
using the SOM C or C++ language bindings.

For C or C++ programmers with access to the C or C++ implementation bindings for a class,
instance data can be accessed using the <className>GetData macro (which expands to a
usage of somDataResolve).

Parameters
obj A pointer to the object whose instance data is required.
dToken A data token for the required instance data. The SOM API specifies that the
data token for accessing the instance data introduced by a class is found in

the instanceDataToken component of the auxiliary class data structure for
that class. The example which follows illustrates this.

Return Value
A somToken (that is, a pointer) that points to the data in obj identified by the dToken.

C Example

The following C/C++ expression evaluates to the address of the instance data introduced by
class “XYZ” within the object “obj”. This assumes that “obj” points to an instance of “XYZ” or
a subclass of “XYZ".

include <som.h>
somDataResolve (obj, XYZCClassData.instanceDataToken)

Related Information

Data Structures: somToken (somapi.h), SOMObject (somobij.idl),
somDToken (somapi.h)

1-10 SOMobjects Base Toolkit: Programmer’s Reference Manual

somEndPersistentlds Function

Purpose
Tells SOM to end a “persistent ID interval.”

Syntax

void somEndPersistentlds ();

Description

The somEndPersistentlds function informs the SOM ID manager that strings for any new
SOM IDs that are registered might be freed or modified by the client program. Thus, the ID
manager must make a copy of the strings.

Example
See the somBeginPersistentlds function.

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromld,
somComparelds, somTotalReglds, somSetExpectedids, somUniqueKey,
somBeginPersistentlds

SOM Kernel Reference 1-11

somEnvironmentEnd Function

Purpose

Provides general cleanup for applications.
Syntax

void somEnvironmentEnd ();
Description

The somEnvironmentEnd function is a general cleanup function that must be called by all

Windows applications before exiting. AIX and OS/2 programs may also invoke this function,
but it is not required on these systems because all necessary SOM cleanup is performed by
the operating system during program termination.

A convenience macro, SOM_MainProgram, which usually appears at the beginning of each
application, adds the somEnvironmentEnd function to the “atexit” list. If the “atexit”
mechanism does not work reliably with your compiler, or if you know that your program
bypasses the normal program termination sequence, you should insert an explicit call to
somEnvironmentEnd at the point where your main program exits. (All main programs for
Windows must begin either with the SOM_MainProgram macro or with a call to the
somMainProgram function.)

Related Information
Macros: SOM_MainProgram

1-12 SOMobjects Base Toolkit: Programmer’s Reference Manual

somEnvironmentNew Function

Purpose

Initializes the SOM runtime environment.
Syntax

SOMClassMgr somEnvironmentNew ();
Description

The somEnvironmentNew function creates the four primitive SOM objects (SOMObject,
SOMClass, SOMClassMgr, and SOMClassMgrObject) and initializes global variables used
by the SOM runtime environment. This function must be called before using any other SOM
functions or methods (with the exception of somSetExpectedlds). If the SOM runtime
environment has already been initialized, calling this function has no harmful effect.

Although this function must be called before using other SOM functions or methods, it
needn’t always be called explicitly, because the <className>New macros, the
<className>Renew macros, the new operator, and the <className>NewClass
procedures defined by the SOM C and C++ language bindings call somEnvironmentNew if
needed.

Return Value

A pointer to the single class manager object active at run time. This class manager can be
referred by the global variable SOMClassMgrObject.

Example

somEnvironmentNew () ;

Related Information

Functions: somExceptionld, somExceptionValue, somSetException,
somGetGlobalEnvironment

SOM Kernel Reference 1-13

somExceptionFree Function

Purpose
Frees the memory held by the exception structure within an Environment structure.

Syntax

void somExceptionFree (Environment *ev);

Description

The somExceptionFree function frees the memory held by the exception structure within
an Environment structure.

Parameters
ev A pointer to the Environment whose exception information is to be freed.

Example
See the somSetException function.

Related Information

Functions: somExceptionld, somExceptionValue, somSetException,
somGetGlobalEnvironment, somdExceptionFree (DSOM function)

Data Structures: Environment (somcorba.h)

1-14 SOMobjects Base Toolkit: Programmer’s Reference Manual

somExceptionid Function

Purpose
Gets the name of the exception contained in an Environment structure.

Syntax

string somExceptionld (Environment *ev);

Description

The somExceptionld function returns the name of the exception contained in the specified
Environment structure.

Parameters
ev A pointer to an Environment structure containing an exception.

Return Value

The somExceptionld function returns the name of the exception contained in the specified
Environment structure, as a string.

Example
See the somSetException function.

Related Information

Functions: somExceptionValue, somSetException, somGetGlobalEnvironment,
somdExceptionFree

Data Structures: string (somcorba.h), Environment (somcorba.h)

SOM Kernel Reference 1-15

somExceptionValue Function

Purpose
Gets the value of the exception contained in an Environment structure.

Syntax

somToken somExceptionValue (Environment *ev);

Description

The somExceptionValue function returns the value of the exception contained in the
specified Environment structure.

Parameters
ev A pointer to an Environment structure containing an exception.

Return Value

The somExceptionValue function returns a pointer to the value of the exception contained
in the specified Environment structure.

Example
See the somSetException function.

Related Information

Functions: somExceptionld, somdExceptionFree, somSetException,
somGetGlobalEnvironment

Data Structures: somToken (somapi.h), Environment (somcorba.h)

1-16 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetGlobalEnvironment Function

Purpose
Returns a pointer to the current global Environment structure.

Syntax

Environment *somGetGlobalEnvironment ();

Description

The somGetGlobalEnvironment function returns a pointer to the current global
Environment structure. This structure can be passed to methods that require an
(Environment *) argument. The caller can determine if the called method has raised an
exception by testing whether

ev—->_major != NO_EXCEPTION

If an exception has been raised, the caller can retrieve the name and value of the exception
using the somExceptionld and somExceptionValue functions.

Return Value
A pointer to the current global Environment structure.

Example
See the somSetException function.

Related Information

Functions: somExceptionld, somdExceptionFree, somSetException,
somExceptionValue

Data Structures: Environment (somcorba.h)

SOM Kernel Reference 1-17

somldFromString Function

Purpose
Returns the SOM ID corresponding to a given text string.

Syntax

somld somldFromString (string aString);

Description
The somldFromString function returns the SOM ID that corresponds to a given text string.

Ownership of the somld returned by somldFromString passes to the caller, which has the
responsibility to subsequently free the somld using SOMFree.

Parameters
aString The string to be converted to a SOM ID.

Return Value
Returns the SOM ID corresponding to the given text string.

Example
See the somBeginPersistentlds function.

Related Information

Functions: somCheckld, somRegisterld, somStringFromld, somComparelds,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Data Structures: somid (sombtype.h), string (somcorba.h)

1-18 SOMobjects Base Toolkit: Programmer’s Reference Manual

somlsObj Function

Purpose
Failsafe routine to determine whether a pointer references a valid SOM object.

Syntax
boolean somlsObj (somToken mem~Ptr);

Description
The somlsObj function returns 1 if its argument is a pointer to a valid SOM object, or
returns 0 otherwise. The function handles address faults, and does extensive consistency
checking to guarantee a correct result.

Parameters

memPtr A somToken (a pointer) to be checked.

Return Value
The somlsObj function returns 1 if objis a pointer to a valid SOM object, and 0 otherwise.

C++ Example

#include <stdio.h>
#include <som.xh>

void example (void *memPtr)
{
if (!somIsObj (memPtr))

printf ("“memPtr is not a valid SOM object.\n”);
else

printf ("memPtr points to an object of class %s\n”,
((SOMObject *)memPtr)->somGetClassName ());
}

Related Information
Data Structures: boolean (somcorba.h), somToken (somapi.h)

SOM Kernel Reference 1-19

somLPrintf Function

Purpose
Prints a formatted string in the manner of the C printf function, at the specified indentation
level.

Syntax
long somLPrintf (long /evel, string fmt, ...);

Description
The somLPrintf function prints a formatted string using SOMOutCharRoutine, in the same
manner as the C printf function. The implementation of SOMOutCharRoutine determines
the destination of the output, while the C printf function is always directed to stdout. (The
default output destination for SOMOutCharRoutine is stdout also, but this can be modified
by the user). The output is prefixed at the indicated level, by preceding it with 2*level
spaces.

Parameters
level The level at which output is to be placed.
fmt The format string to be output.
varargs The values to be substituted into the format string.

Return Value
Returns the number of characters written.

C Example

#include <somobj.h>
somLPrintf (5, ”“The class name is %s.\n”, _somGetClassName (ob7j));

Related Information
Functions: somVprintf, somPrefixLevel, somPrintf, SOMOutCharRoutine

Data Structures: string (somcorba.h)

1-20 SOMobjects Base Toolkit: Programmer’s Reference Manual

somMainProgram Function

Purpose

Performs SOM initialization on behalf of a new program.
Syntax

SOMClassMgr *somMainProgram ();
Description

The somMainProgram function informs SOM about the beginning of a new thread of
execution (called a task on Windows). The SOM Kernel then performs any needed
initialization, including the deferred execution of the SOMInitModule functions found in
statically-loaded class libraries. The somMainProgram function must appear near the
beginning of all Windows main programs, and may also be used in AIX or OS/2 programs.
When used, it supersedes any need to call the somEnvironmentNew function.

A convenience macro, SOM_MainProgram, which combines the execution of the
somMainProgram function with the scheduling of the somEnvironmentEnd function
during normal program termination, is available for C and C++ programmers.

Return Value
A pointer to the SOMClassMgr object.

Related Information
Functions: somEnvironmentNew, somEnvironmentEnd

Macros: SOM_MainProgram, SOM_ClassLibrary

SOM Kernel Reference 1-21

somParentNumResolve Function

Obtains a pointer to a procedure that implements a method, given a list of method tables.

somMethodPtr somParentNumresolve (

somMethod Tabs parentMtab,
int parentNum,
somMToken M Token);

Methods: somGetMethodData, somGetNthMethodData, somGetRdStub,
somAddStaticMethod, somAddDynamicMethod

The somParentNumResolve function is used to make parent method calls by the C and
C++ language implementation bindings. The somParentNumResolve function returns a
pointer to a procedure for performing the specified method. This pointer is selected from the
specified method table, which is intended to be the method table corresponding to a parent

For C and C++ programmers, the implementation bindings for SOM classes provide
convenient macros for making parent method calls (the “parent_” macros).

Purpose
Syntax
Description
class.
Parameters
parentMtab
parentNum
mToken

Return Value

A list of method tables for the parents of the class being implemented. The
SOM API specifies that the list of parent method tables for a given class be
stored in the auxiliary class data structure of the class, in the parentMtab
component. Thus, for the class “XYZ”, the parent method table list is found
in location XYZCClassData.parentMtab. Parent method table lists are
available from class objects by way of the method call somGetPClsMtabs.

The position of the parent for which the method is to be resolved. The order
of a class’s parents is determined by the order in which they are specified in
the interface statement for the class. (The first parent is number 1.)

The method token for the method to be resolved. The SOM API requires
that if the class “XYZ” introduces the static method foo, then the method
token for foo is found in the class data structure for “XYZ” (called
XYZClassData) in the structure member named foo (that is, at
XYZClassData.foo). Method tokens can also be obtained using the
somGetMethodToken method.

A somMethodPtr pointer to a procedure that implements the specified method, selected
from the specified method table.

1-22 SOMobjects Base Toolkit: Programmer’s Reference Manual

C++ Example

// SOM IDL for class A and class B
#include <somobj.idl>
module spnrExample {

interface A : SOMObject { void foo(); implementation {
callstyle=o0idl; }; 1};
interface B : A { implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample
#define SOM_Module_spnrexample_Source

#include <spnrExample.xih>

#include <stdio.h>

SOM_Scope void SOMLINK spnrExample_Afoo (spnrExample_A *somSelf);
{ printf(”1\n”); }

SOM_Scope void SOMLINK spnrExample_Bfoo (spnrExample_B *somSelf);
{ printf (”2\n”); }

main ()
{

spnrExample_B *objPtr = new spnrExample_B;

// This prints 2
objPtr->foo();

// This prints 1
((somTD_spnrExample_A_foo) /* This method procedure expression
cast

is necessary */

somParentNumResolve (

objPtr->somGetClass () —>somGetPClsMtabs (),

1,

spnrExample_AClassData.foo) // the foo method token
) /* end of method procedure expression */
(obijPtr); /* method arguments */

}

Related Information

Functions: somResolveByName, somResolve, somParentNumResolve,
somClassResolve

Data Structures: somMethodPtr (sombtype.h), somMethodTabs (somapi.h),
somMToken (somapi.h)

Methods: somGetPClsMtab, somGetPClsMtabs, somGetMethodToken
Macros: SOM_ParentNumResolve, SOM_Resolve, SOM_ResolveNoCheck

SOM Kernel Reference 1-23

somParentResolve Function

Purpose

Obtains a pointer to a procedure that implements a method, given a list of method tables.
Obsolete but still supported.

Syntax

somMethodPtr somParentResolve (somMethodTabs parentMiab,

Description

somMToken mToken);

The somParentResolve function is used by old, single-parent class binaries to make
parent method calls. The function is obsolete, but is still supported. The
somParentResolve function returns a pointer to the procedure that implements the
specified method. This pointer is selected from the first method table in the parentMtab list.

Parameters
parentMtab

mToken

Return Value

A list of parent method tables, the first of which is the method table for the
parent class for which the method is to be resolved. The SOM API specifies
that the list of parent method tables for a given class be stored in the
auxiliary class data structure of the class, in the parentMtab component.
Thus, for the class “XYZ”, the parent method table list is found in location
XYZCClassData.parentMtab. Parent method table lists are available from
class objects by way of the method call somGetPClsMtabs.

The method token for the method to be resolved. The SOM API requires
that if the class “XYZ” introduces the static method “foo”, then the method
token for “foo” is found in the class data structure for “XYZ” (called
XYZClassData) in the structure member named “foo” (that is, at
XYZClassData.foo). Method tokens can also be obtained using the
somGetMethodToken method.

A somMethodPtr pointer to the procedure that implements the specified method, selected
from the first method table.

Related Information

Functions: somResolveByName, somResolve, somParentNumResolve,
somClassResolve

Data Structures: somMethodPtr (sombtype.h), somMethodTabs (somapi.h),
somMToken (somapi.h)

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetApplyStub, somGetMethodToken

Macros: SOM_Resolve, SOM_ResolveNoCheck

1-24 SOMobjects Base Toolkit: Programmer’s Reference Manual

somPrefixLevel Function

Purpose
Outputs blanks to prefix a line at the indicated level.

Syntax
void somPrefixLevel (long /evel);

Description
The somPrefixLevel function outputs blanks (through the somPrintf function) to prefix the
next line of output at the indicated level. (The number of blanks produces is 2*level.) This
function is useful when overriding the somDumpSelflnt method, which takes the level as an
argument.

Parameters
level The level at which the next line of output is to start.

C/C++ Example

#include <som.h>
somPrefixLevel (5);

Related Information
Functions: somPrintf, somVprintf, somLPrintf, SOMOutCharRoutine

SOM Kernel Reference 1-25

somPrintf Function

Purpose
Prints a formatted string in the manner of the C printf function.

Syntax
long somPrintf (string fmt, ...);

Description
The somPrintf function prints a formatted string using function SOMOutCharRoutine, in
the same manner as the C printf function. The implementation of SOMOutCharRoutine
determines the destination of the output, while the C printf function is always directed to
stdout. (The default output destination for SOMOutCharRoutine is stdout also, but this can
be modified by the user.)

Parameters
fmt The format string to be output.
varargs The values to be substituted into the format string.

Return Value
Returns the number of characters written.

C Example

#include <somcls.h>
somPrintf ("The class name is %s.\n”, _somGetClassName (ob7j));

Related Information
Functions: somVprintf, somPrefixLevel, somLPrintf, SOMOutCharRoutine

1-26 SOMobjects Base Toolkit: Programmer’s Reference Manual

somRegisterld Function

Purpose
Registers a SOM ID and determines whether or not it was previously registered.

Syntax

int somRegisterld (somld id);

Description

The somRegisterld function registers a SOM ID and converts it into an internal
representation. If the ID is already registered, somRegisterld returns 0 and has no effect.
Otherwise, somRegisterld returns 1.

Parameters
id The somld to be registered.

Return Value

If the ID is already registered, somRegisterld returns 0. Otherwise, somRegisterld returns
1.

C Example
#include <som.h>
static string s = "unregistered”;
static somId sid = &s;
main ()

{

somEnvironmentNew () ;

SOM_Test (somRegisterId(sid) == 1);

SOM_Test (somRegisterId (somIdFromString (”registered”)) == 0);
}

Related Information

Functions: somCheckld, somldFromString, somStringFromld, somComparelds,
somTotalReglds, somSetExpectedids, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Data Structures: somld (sombtype.h)

SOM Kernel Reference 1-27

somResolve Function

Purpose
Obtains a pointer to the procedure that implements a method for a particular SOM object.

Syntax
somMethodPtr somResolve (SOMObject obj, somMToken mToken);

Description
The somResolve function returns a pointer to the procedure that implements the specified
method for the specified SOM object. This pointer can then be used to invoke the method.
The somResolve function can only be used to obtain a method procedure for a static
method (one declared in an IDL or OIDL specification for a class); dynamic methods are not
supported by method tokens.

For C and C++ programmers, the SOM usage bindings for SOM classes provide more
convenient mechanisms for invoking methods. These bindings use the SOM_Resolve and
SOM_ResolveNoCheck macros, which construct a method token expression from the
class name and method name, and call somResolve.

Parameters
obj A pointer to the object whose method procedure is required.

mToken The method token for the method to be resolved. The SOM API requires
that if the class “XYZ” introduces the static method foo, then the method
token for foo is found in the class data structure for “XYZ” (called
XYZClassData) in the structure member named “foo” (that is, at
XYZClassData.foo). Method tokens can also be obtained using the
somGetMethodToken method.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method for the
specified SOM object.

1-28 SOMobjects Base Toolkit: Programmer’s Reference Manual

C Example

// SOM IDL for class A and class B
#include <somobj.idl>
module srExample {

interface A : SOMObject { void foo(); implementation {
callstyle=o0idl; }; 1};
interface B : A { implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample
#define SOM_Module_srexample_Source

#include <srExample.ih>

#include <stdio.h>

SOM_Scope void SOMLINK srExample_Afoo (srExample_A *somSelf);
{ printf(”1\n”); }

SOM_Scope void SOMLINK srExample_Bfoo (srExample_B *somSelf);
{ printf (”2\n”); }

main ()

{
srExample_B objPtr = srExample_BNew();

/* This prints 2 */
((somTD_srExample_A_foo) /* this method procedure expression
cast is necessary */
somResolve (objPtr, srExample_AClassData.foo)
) /* end of method procedure expression */
(objPtr);
}

Related Information

Functions: somResolveByName, somParentResolve, somParentNumResolve,
somClassResolve

Data Structures: somMethodPtr (sombtype.h), somMToken (somapi.h)

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetMethodToken

Macros: SOM_Resolve, SOM_ResolveNoCheck

SOM Kernel Reference 1-29

somResolveByName Function

Purpose

Obtains a pointer to the procedure that implements a method for a particular SOM object.

somMethodPtr somResolveByName (SOMObiject obj, string methodName);

Description

The somResolveByName function is used to obtain a pointer to the procedure that
implements the specified method for the specified SOM object. The returned procedure
pointer can then be used to invoke the method. The C and C++ usage bindings use this
function to support name-lookup methods.

This function can be used for invoking dynamic methods. However, the C and C++ usage
bindings for SOM classes do not support dynamic methods, thus typedefs necessary for the
use of dynamic methods are not available as with static methods. The function somApply
provides an alternative mechanism for invoking dynamic methods that avoids the need for
casting procedure pointers.

Parameters

obj A pointer to the object whose method procedure is required.

methodName A character string representing the name of the method to be resolved.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method for the
specified SOM object.

C Example

Assuming the static method “setSound,” is introduced by the class "Animal”, the following
example will correctly invoke this method on an instance of "Animal” or one of its
descendent classes.

#include <animal.h>
example (Animal myAnimal)
{
somTD_Animal_setSound
setSoundProc = somResolveByName (myAnimal, ”setSound”);
setSoundProc (myAnimal, ”"Roar!”);

}

Related Information

Functions: somResolve, somParentResolve, somParentNumResolve,
somClassResolve

Data Structures: somMethodPtr (sombtype.h), SOMObject (somobij.idl),
string (somcorba.h)

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetApplyStub

Macros: SOM_Resolve, SOM_ResolveNoCheck

1-30 SOMobjects Base Toolkit: Programmer’s Reference Manual

somSetException Function

Purpose

Sets an exception value in an Environment structure.

Syntax

void somSetException (Environment *ey,

Description

enum exception_type major,
string exceptionName,
somToken params);

The somSetException function sets an exception value in an Environment structure.

Parameters
ev

major

A pointer to the Environment structure in which to set the exception. This
value must be either NULL or a value formerly obtained from the function
somGetGlobalEnvironment.

An integer representing the type of exception to set.

exceptionName The qualified name of the exception to set. The SOM Compiler defines, in

params

the header files it generates for an interface, a constant whose value is the
qualified name of each exception defined within the interface. This constant
has the name “ex_<exceptionName>", where <exceptionName> is the
qualified (scoped) exception name. Where unambiguous, the usage
bindings also define the short form “ex_<exceptionName>”, where
<exceptionName> is unqualified.

A pointer to an initialized exception structure value. No copy is made of this
structure; hence, the caller cannot free it. The somExceptionFree function
should be used to free the Environment structure that contains it.

SOM Kernel Reference 1-31

C Example

/* IDL declaration of class X: */
interface X : SOMObiject {
exception OUCH {long codel; long code2; 1};
void foo(in long arg) raises (OUCH);
i

/* implementation of foo method */
SOM_Scope void SOMLINK foo (X somSelf, Environment *ev, long arg)
{
X_OUCH *exception_params; /* X_OUCH struct is defined
in X’s usage bindings

*/

if (arg > 5) /* then this is a very bad error */

{

exception_params = (X_OUCH*)SOM_Malloc (sizeof (X_OUCH));
exception_params—->codel = arg;
exception_params—>code2 = arg-5;

somSetException (ev, USER_EXCEPTION, ex_X_OUCH,

exception_params) ;

/* the Environment ev now contains an X_OUCH exception,
with

* the specified exception_params struct. The constant

* ex_X_ OUCH is defined in foo.h. Note that
exception_params

* must be malloced.

*/

return;

}

main ()

{
Environment *ev;
X xX;

somEnvironmentNew () ;
x = Xnew();

ev somGetGlobalEnvironment () ;
X_foo(x, ev, 23);
if (ev->_major !'= NO_EXCEPTION) {
printf ("foo exception = %$s\n”, somExceptionId (ev));

printf (”"codel = %d\n”,
((X_OUCH*) somExceptionValue (ev)) ->codel) ;
/* finished handling exception. */

/* free the copied id and the original X_OUCH structure:
*/
somExceptionFree (ev) ;

}

Related Information

Functions: somExceptionld, somExceptionValue, somExceptionFree,
somGetGlobalEnvironment

Data Structures: Environment, exception_type, string (somcorba.h)

1-32 SOMobjects Base Toolkit: Programmer’s Reference Manual

somSetExpectedlds Function

Purpose
Tells SOM how many unique SOM IDs a client program expects to use.

Syntax
void somSetExpectedlds (unsigned long numlds);

Description
The somSetExpectedlds function informs the SOM runtime environment how many unique
SOM IDs a client program expects to use during its execution. This has the potential of
slightly improving the program’s space and time efficiency, if the value specified is accurate.
This function, if used, must be called prior to any explicit or implicit invocation of the
somEnvironmentNew function to have any effect.

Parameters
numlds The number of SOM IDs the client program expects to use.

C Example

#include <som.h>
somSetExpectedIds (1000);

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromld,
somComparelds, somTotalReglds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

SOM Kernel Reference 1-33

somSetOutChar Function

Purpose
Changes the behavior of the somPrintf function.

Syntax

void somSetOutChar (
somTD_SOMOutCharRoutine * outCharRtn);

Description

The somSetOutChar function is called to change the output character routine that
somPrintf invokes. By default, somPrintf invokes a character output routine that goes to
stdout.

The execution of somSetOutChar affects only the application (or thread) in which it occurs.
Thus, somSetOutChar is normally preferred over SOMOutCharRoutine for changing the

output routine called by somPrintf, since SOMOutCharRoutine remains in effect for
subsequent threads as well.

Some additional samples of somSetOutChar can be found in the somapi.h header file.

Parameters
outCharRtn A pointer to your routine that outputs a character in the way you want.

Example

#include <som.h>
static int irOutChar (char c);

static int irOutChar (char c)
{

(Customized code goes here)

somSetOutChar ((somTD_SOMOutCharRoutine *) irOutChar);
}

Related Information
Functions: somPrintf, SOMOutCharRoutine

1-34 SOMobjects Base Toolkit: Programmer’s Reference Manual

somStringFromld Function

Purpose
Returns the string that a SOM ID represents.

Syntax

string somStringFromld (somld id);

Description
The somStringFromld function returns the string that a given SOM ID represents.

Parameters
id The SOM ID for which the corresponding string is needed.

Return Value
Returns the string that the given SOM ID represents.

Example
See the somBeginPersistentlds function.

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somComparelds,
somTotalReglds, somSetExpectedids, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Data Structures: string (somcorba.h), somld (sombtype.h)

SOM Kernel Reference

1-35

somTotalReglds Function

Purpose

Returns the total number of SOM IDs that have been registered.

Syntax

unsignhed long somTotalReglds ();

Description

The somTotalReglds function returns the total number of SOM IDs that have been
registered so far. This value can be used as a parameter to the somSetExpectedids
function to advise SOM about expected ID usage in later executions of a client program.

Return Value
Returns the total number of SOM IDs that have been registered.

C Example

#include <som.h>
main ()
{ int i;
somId id;
somEnvironmentNew () ;
id = somIdFromString (”abc”)
i = somTotalReglds () ;
id = somIdFromString (”abc”);
SOM_Test (i == somTotalReglds);
}

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,

somEndPersistentlds

1-36 SOMobjects Base Toolkit: Programmer’s Reference Manual

somUniqueKey Function

Purpose
Returns the unique key associated with a SOM ID.

Syntax

unsigned long somUniqueKey (somiD id);

Description

The somUniqueKey function returns the unique key associated with a SOM ID. The unique
key for a SOM ID is a number that uniquely represents the string that the SOM ID
represents. The unique key for a SOM ID is the same as the unique key for another SOM ID

only if the two SOM IDs represent the same string.

Parameters

id The SOM ID for which the unique key is needed.

Return Value

An unsigned long representing the unique key of the specified SOM ID.

C Example
#include <som.h>
main ()

{
unsigned long k1, k2;

k1l = somUniqueKey (somIdFromString (”abc”))

k2
SOM_Test (k1 == k2);
}

Related Information

somUniqueKey (somIdFromString (”abc”));

14

4

Functions: somCheckld, somRegisterld, somldFromString, somStringFromld,

somComparelds, somTotalReglds, somSetExpectedids, somBeginPersistentlds,

somEndPersistentlds

Data Structures: somld (sombtype.h)

SOM Kernel Reference

1-37

somVprintf Function

Purpose
Prints a formatted string in the manner of the C vprintf function.

Syntax
long somVprintf (string fmt, va_list ap);

Description
The somVprintf function prints a formatted string using SOMOutCharRoutine, in the same
manner as the C vprintf function. The implementation of SOMOutCharRoutine determines
the destination of the output, while the C printf function is always directed to stdout. (The
default output destination for SOMOutCharRoutine is stdout also, but this can be modified
by the user.)

Parameters
fmt The format string to be output.
ap A va_list representing the values to be substituted into the format string.

Return Value
Returns the number of characters written.

C Example

#include <som.h>

main ()

{
va_list args (va_list) SOMCalloc (20);
va_list push args;
float £ = 3.1415

char ¢ = "a’;

va_arg (push, int) = 1;

va_arg (push, double) = f; /* note ANSI widening */
va_arg(push, int) = c¢; /* here, too */

va_arg (push, char*) = "this is a test”;

somVprintf (”“%d, %$f, %c, %s\n”, args);

}

Related Information
Functions: somPrintf, somPrefixLevel, somLPrintf, SOMOutCharRoutine

Data Structures: string (somcorba.h), va_list (stdarg.h)

1-38 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOMCalloc Function

Purpose
Allocates sufficient zeroed memory for an array of objects of a specified size.

Syntax

somToken (*SOMCalloc) (size_t num, size_t size);

Description

The SOMCalloc function allocates an amount of memory equal to num*size (sufficient
memory for an array of num objects of size size). The SOMCalloc function has the same
interface as the C calloc function. It performs the same basic function as calloc with some
supplemental error checking. If an error occurs, the SOMError function is called. This
routine is replaceable by changing the value of the global variable SOMCalloc.

Parameters
num The number of objects for which space is to be allocated.

size The size of the objects for which space to is to be allocated.

Return Value
A pointer to the first byte of the allocated space.

Example
See the somVprintf function.

Related Information
Functions: SOMMalloc, SOMRealloc, SOMFree

Data Structures: somToken (somapi.h)

SOM Kernel Reference 1-39

SOMClassInitFuncName Function

Purpose

Returns the name of the function used to initialize classes in a DLL.
Syntax

string (*SOMClassInitFuncName) ();
Description

The SOMClassInitFuncName function is called by the SOM Class Manager to determine
what function to call to initialize the classes in a DLL. The default version returns the string
“SOMInitModule.” The function can be replaced (so that the Class Manager will invoke a
different function to initialize classes in a DLL) by changing the value of the global variable
SOMClasslInitFuncName.

Return Value
Returns the name of the function that should be used to initialize classes in a DLL.

C Example

#include <som.h>
string XYZFuncName () { return ”XYZ"”; }
main ()

{
SOMClassInitFuncName = XYZFuncName;

}

Related Information
Functions: SOMLoadModule, SOMDeleteModule

Data Structures: string (somcorba.h)

1-40 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOMDeleteModule Function

Purpose
Unloads a dynamically linked library (DLL).

Syntax
int (*SOMDeleteModule) (somToken modHandle);

Description

The SOMDeleteModule function unloads the specified dynamically linked library (DLL).
This routine is called by the SOM Class Manager to unload DLLs. SOMDeleteModule can
be replaced (thus changing the way the Class Manager unloads DLLS) by changing the
value of the global variable SOMDeleteModule.

Parameters

modHandle The somToken for the DLL to be unloaded. This token is supplied by the
SOMLoadModule function when it loads the DLL.

Return Value
Returns 0 if successful or a non-zero system-specific error code otherwise.

Related Information
Functions: SOMLoadModule, SOMClassInitFuncName

Data Structures: somToken (somapi.h)

SOM Kernel Reference 1-41

SOMError Function

Purpose
Handles an error condition.

Syntax

void (*SOMEtrror) (int errorCode, string fileName, int lineNum);

Description

The SOMError function inspects the specified error code and takes appropriate action,
depending on the severity of the error. The last digit of the error code indicates whether the
error is classified as SOM_Fatal (9), SOM_Warn (2), or SOM_lIgnore (1). The default
implementation of SOMETrror prints a message that includes the specified error code,
filename, and line number, and terminates the current process if the error is classified as
SOM_Fatal. The fileName and lineNum arguments specify where the error occurred. This
routine can be replaced by changing the value of the global variable SOMError.

For C and C++ programmers, SOM defines a convenience macro, SOM_Error, which
invokes the SOMError function and supplies the last two arguments.

Parameters
errorCode An integer representing the error code of the error.

fileName The name of the file in which the error occurred.

lineNum The line number where the error occurred.
Related Information

Macros: SOM_Test, SOM_TestC, SOM_WarnMsg, SOM_Assert, SOM_Expect,
SOM_Error

1-42 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOMFree Function

Purpose
Frees the specified block of memory.

Syntax
void (*SOMFree) (somToken ptn);

Description
The SOMFree function frees the block of memory pointed to by ptr. SOMFree should only
be called with a pointer previously allocated by SOMMalloc or SOMCalloc. The SOMFree
function has the same interface as the C free function. It performs the same basic function
as free with some supplemental error checking. If an error occurs, the SOMError function is
called. This routine is replaceable by changing the value of the global variable SOMFree.
To free an object (rather than a block of memory), use the somFree method, rather than this
function.

Parameters
ptr A pointer to the block of storage to be freed.

C Example

#include <som.h>
main ()

{
somToken ptr = SOMMalloc (20) ;

somFree (ptr) ;
}

Related Information
Functions: SOMCalloc, SOMMalloc, SOMRealloc

Methods: somFree

SOM Kernel Reference 1-43

SOMInitModule Function

Purpose
Invokes the class creation routines for the classes contained in an OS/2 or Windows class
library (DLL).

Syntax
SOMEXTERN void SOMLINK SOMinitModule (
long MajorVersion,
long MinorVersion,
string ClassName);

Description
On OS/2 or Windows, a class library (DLL) can contain the implementations for multiple
classes, all of which should be created when the DLL is loaded. On OS/2, when loading a
DLL, the SOM class manager determines the name of a DLL initialization function, and if the
DLL exports a function of this name, the class manager invokes that function (whose
purpose is to create the classes in the DLL). SOMInitModule is the default name for this
DLL initialization function.

On Windows, the SOM class manager does not call SOMInitModule. It must be called
from the default Windows DLL initialization function, LibMain. This call is made indirectly
through the SOM_ClassLibrary macro (see the example that follows).

Parameters
MajorVersion The major version number of the class that was requested when the library
was loaded.

MinorVersion The minor version number of the class that was requested when the library
was loaded.

ClassName The name of the class that was requested when the library was loaded.

Example

#include ”xyz.h”
#ifdef _ IBMC_

#pragma linkage (SOMInitModule, system)
fendif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
long minorVersion, string className)
{
SOM_IgnoreWarning (majorVersion); /* This function makes */
SOM_IgnoreWarning (minorVersion); /* no use of the passed */
SOM_IgnoreWarning (className) ; /* arguments. */
xyzNewClass (A_MajorVersion, A_MinorVersion);

1-44 SOMobjects Base Toolkit: Programmer’s Reference Manual

For Windows, also include the following function:

#include <windows.h>

int CALLBACK LibMain (HINSTANCE inst,
WORD ds,
WORD Heapsize,
LPSTR cmdLine)

SOM_IgnoreWarning (inst);
SOM_ignoreWarning (ds);
SOM_IgnoreWarning (heapSize);
SOM_IgnoreWarning (cmdLine);

SOM_ClassLibrary ("xyz.dll”);
return 1; /* Indicate success to loader */

}

Related Information
Functions: SOMClassInitFuncName

Methods: somGetlnitFunction
Macros: SOM_ClassLibrary

SOM Kernel Reference 1-45

SOMLoadModule Function

Purpose
Loads the dynamically linked library (DLL) containing a SOM class.

Syntax
int (*SOMLoadModule) (

string className,
string fileName,
string functionName,
long majorVersion,
long minorVersion,
somToken *modHandle);

Description

The SOMLoadModule function loads the dynamically linked library (DLL) containing a SOM
class. This routine is called by the SOM Class Manager to load DLLs. SOMLoadModule
can be replaced (thus changing the way the Class Manager loads DLLS) by changing the
value of the global variable SOMLoadModule.

Parameters
className The name of the class whose DLL is to be loaded.

fileName The name of the DLL library file. This can be either a simple name or a fully
qualified pathname.

functionName The name of the routine to be called after the DLL is loaded. The routine is
responsible for creating a class object for each class in the DLL. Typically,
this argument will have the value SOMInitModule, obtained from the
SOMClasslInitFuncName function. If no SOMInitModule entry exists in the
DLL, the default version of SOMLoadModule looks for a routine named
<className>NewClass instead. If neither entry point is found, the default
version of SOMLoadModule fails.

majorVersion The expected major version number of the class, to be passed to the
initialization routine of the DLL.

minorVersion The expected minor version number of the class, to be passed to the
initialization routine of the DLL.

modHandle The address where SOMLoadModule should place a token that can be
subsequently used by the SOMDeleteModule routine to unload the DLL.

Return Value
Returns 0 if successful or a non-zero system-specific error code otherwise.

Related Information
Functions: SOMDeleteModule, SOMClassInitFuncName

1-46 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOMMalloc Function

Purpose
Allocates the specified amount of memory.
Syntax
somToken (*SOMMalloc) (size_t size);
Description
The SOMMalloc function allocates size bytes of memory. The SOMMalloc function has the
same interface as the C malloc function. It performs the same basic function as malloc with
some supplemental error checking. If an error occurs, the SOMError function is called. This
routine is replaceable by changing the value of the global variable SOMMalloc.
Parameters

size The amount of memory to be allocated, in bytes.

Return Value
A pointer to the first byte of the allocated space.

Example
See the SOMFree function.

Related Information
Functions: SOMCalloc, SOMRealloc, SOMFree

SOM Kernel Reference 1-47

SOMOutCharRoutine Function

Purpose
Prints a character. This function is replaceable.

Syntax
int (*SOMOutCharRoutine) (char c);

Description

SOMOutCharRoutine is a replaceable character output routine. It is invoked by SOM
whenever a character is generated by one of the SOM error-handling or debugging macros.
The default implementation outputs the specified character to stdout. To change the
destination of character output, store the address of a user-written character output routine

in global variable SOMOutCharRoutine.

Another function, somSetOutChar, may be preferred over the SOMOutCharRoutine
function. The somSetOutChar function enables each application (or thread) to have a

customized character output routine.

Parameters
c The character to be output.

Return Value
Returns 0 if an error occurs and 1 otherwise.

Example

#include <som.h>

#pragma linkage (myCharacterOutputRoutine,

/* Define a replacement routine:

int SOMLINK myCharacterOutputRoutine

{

(Customized code goes here)

}

/* After the next stmt all output */
/* will be sent to the new routine
SOMOutCharRoutine = myCharacterOutputRoutine;

Related Information

Functions: somVprintf, somPrefixLevel, somLPrintf, somPrintf, somSetOutChar

1-48 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOMRealloc Function

Purpose
Changes the size of a previously allocated region of memory.

Syntax
somToken (*SOMRealloc) (somToken pir, size_t size);

Description
The SOMRealloc function changes the size of the previously allocated region of memory
pointed to by pir so that it contains size bytes. The new size may be greater or less than
the original size. The SOMRealloc function has the same interface as the C realloc
function. It performs the same basic function as realloc with some supplemental error
checking. If an error occurs, the SOMError function is called. This routine is replaceable by
changing the value of the global variable SOMRealloc.

Parameters

ptr A pointer to the previously allocated region of memory. If NULL, a new
region of memory of size bytes is allocated.

size The size in bytes for the re-allocated storage. If zero, the memory pointed
to by ptris freed.

Return Value

A pointer to the first byte of the re-allocated space. (A pointer is returned because the block
of storage may need to be moved to increase its size).

Related Information
Functions: SOMCalloc, SOMMalloc, SOMFree

SOM Kernel Reference 1-49

SOM_Assert Macro

Purpose
Asserts that a boolean condition is true.
Syntax
void SOM_Assert (
boolean condition,
long errorCode);
Description

The SOM_Assert macro is used to place boolean assertions in a program:

¢ If conditionis FALSE, and errorCode indicates a warning-level error and
SOM_WarnLevel is set to be greater than zero, then a warning message is output.

e If conditionis FALSE and errorCode indicates a fatal error, an error message is output
and the process is terminated.

e If conditionis TRUE and SOM_AssertLevel is set to be greater than zero, then an
informational message is output.

External (Global) Data

long SOM_WarnLevel; /* default = 0 */

long SOM_AssertLevel; /* default 0 */

Parameters
condition A boolean expression that is expected to be TRUE (nonzero).
errorCode The integer error code for the error to be raised if condition is FALSE.
Expansion

If condition is FALSE, and errorCode indicates a warning-level error and SOM_WarnLevel
is set to be greater than zero, then a warning message is output. If condition is FALSE and
errorCode indicates a fatal error, an error message is output and the process is terminated.
If conditionis TRUE and SOM_AssertLevel is set to be greater than zero, then an
information message is output.

Example

#include <som.h>
main ()
{
SOM_WarnLevel = 1;
SOM_Assert (2==2, 29);
}

Related Information
Macros: SOM_Expect, SOM_Test, SOM_TestC

1-50 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM_ClassLibrary Macro

Purpose
Identifies the file name of the DLL for a SOM class library in a Windows LibMain function.

Syntax
void SOM_ClassLibrary (string “libname.dll’);

Description

Each Windows SOM class library must supply a Windows LibMain function. In LibMain, the
SOM_ClassLibrary macro identifies both the actual file name of the library as it would
appear in a Windows LoadLibrary call and the location of the library’s SOMInitModule
function. This information is passed to the SOM Kernel, which in turn registers the library
and schedules the execution of the SOMInitModule function. This macro can also be used
in OS/2 class libraries within the context of a DLL “init/term” function.

Typically, the SOM Kernel invokes the SOMInitModule function of each statically loaded
class library during the execution of the somMainProgram function in the using application.
For dynamically loaded class libraries, SOMInitModule is invoked immediately upon
completion of the library’s LibMain (or an OS/2 DLL “init/term”) function.

Because the SOM_ClassLibrary macro expands to reference the SOMInitModule function,
either a declaration of the SOMInitModule function, or the function itself, should precede
the appearance of SOM_ClassLibrary in the current compilation unit, as shown in the
following example).

Parameters

libname.dll The name of the file containing the DLL (as the name would appear in a
Windows LoadLibrary call).

Example

/* This example illustrates the use of the SOM_ClassLibrary
macro in a Windows LibMain function */

#include <som.h>

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
long minorVersion,
string className) ;

#include <windows.h>

int CALLBACK LibMain (HINSTANCE inst,
WORD ds,
WORD Heapsize,
LPSTR cmdLine)

SOM_TIgnoreWarning (inst)
SOM_ignoreWarning (ds);
SOM_IgnoreWarning (heapSize);
SOM_TIgnoreWarning (cmdLine);

SOM_ClassLibrary (”"xyz.dl1l”);
return 1; /* Indicate success to loader */

}

Related Information
Macros: SOM_MainProgram

Functions: somMainProgram

SOM Kernel Reference 1-51

SOM_CreateLocalEnvironment Macro

Purpose
Creates and initializes a local Environment structure.

Syntax

Environment * SOM_CreateLocalEnvironment ();

Description

The SOM_CreateLocalEnvironment macro creates a local Environment structure. This
Environment structure can be passed to methods as the Environment argument so that
exception information can be returned without affecting the global environment.

Expansion
The SOM_CreateLocalEnvironment expands to an expression of type (Environment *).

C Example

Environment *ev;
ev = SOM CreatelLocalEnvironment () ;
_myMethod (obj, ev);

SOM_DestroyLocalEnvironment (ev) ;

Related Information

Macros: SOM_DestroyLocalEnvironment, SOM_InitEnvironment,
SOM_UninitEnvironment

Data Structures: Environment (somcorba.h)

Functions: somGetGlobalEnvironment

1-52 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM_DestroyLocalEnvironment Macro

Purpose
Destroys a local Environment structure.

Syntax

void SOM_DestroyLocalEnvironment (Environment * ev);

Description

The SOM_DestroyLocalEnvironment macro destroys a local Environment structure,
such as one created using the SOM_CreateLocalEnvironment macro.

Parameters
ev A pointer to the Environment structure to be discarded.

Expansion

The SOM_DestroyLocalEnvironment function first invokes the somExceptionFree
function on the Environment structure; then it invokes SOMFree on it to free the memory it
occupies.

Example

Environment *ev;
ev = SOM_CreatelocalEnvironment () ;
_myMethod (obj, ev);

SOM_DestroyLocalEnvironment (ev) ;

Related Information
Macros: SOM_CreateLocalEnvironment, SOM_UninitEnvironment

Functions: somExceptionFree

SOM Kernel Reference 1-53

SOM_Error Macro

Purpose
Reports an error condition.

Syntax
void SOM_Error (long errorCode);

Description
The SOM_Error macro invokes the SOMError error handling procedure with the specified
error code, supplying the filename and line number where the macro was invoked. The
default implementation of SOMError outputs a message containing the error code,
filename, and line number. Additionally, if the last digit of the error code indicates a serious
error (that is, value SOM_Fatal), the process is terminated.

Parameters
errorCode The integer error code for the error to be reported.

Expansion

The SOM_Error macro invokes the SOMError error handler, supplying the filename and
line number where the macro was invoked.

Related Information
Functions: SOMError

1-54 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM_Expect Macro

Purpose
Asserts that a boolean condition is expected to be true.
Syntax
void SOM_Expect (boolean condition);
Description
The SOM_Expect macro is used to place boolean assertions that are expected to be true
into a program:
o [f condition is FALSE and SOM_WarnLevel is set to be greater than zero, then a warning
message is output.
¢ If conditionis TRUE and SOM_AssertLevel is set to be greater than zero, then an
informational message is output.
Parameters
condition A boolean expression that is expected to be TRUE (nonzero).
Expansion
If condition is FALSE and SOM_WarnLevel is set to be greater than zero, then a warning
message is output. If conditionis TRUE and SOM_AssertLevel is set to be greater than
zero, then an information message is output.
Example

SOM_Expect (2==2) ;

Related Information
Macros: SOM_Assert, SOM_Test, SOM_TestC

SOM Kernel Reference 1-55

SOM_GetClass Macro

Purpose
Returns a pointer to the class object of which a SOM object is an instance.

Syntax
SOMClass SOM_GetClass (SOMObject objPtr);

Description

The SOM_GetClass macro returns the class object of which objis an instance. This is done
without recourse to a method call on the object. The somGetClass method introduced by
SOMObiject is also intended to return the class of which an object is an instance, and the
default implementation provided for this method by SOMODbiject uses the macro.

Important Note: It is generally recommended that the somGetClass method call be used,
since it cannot be known whether the class of an object wishes to provide special handling
when its address is requested from an instance. But, there are (rare) situations where a
method call cannot be made, and this macro can then be used. If you are unsure as to
whether to use the method or the macro, you should use the method.

Parameters
objPtr A pointer to the object whose class is needed.

C++ Example

#include <somcls.xh>
#include <animal.xh>
main ()
{
Animal *a = new Animal;
SOMClass clsl = SOM _GetClass (a);
SOMClass cls2 = a—->somGetClass();
if (clsl == cls2)
printf ("macro and method for getClass the same for
Animal\n”);
else
printf ("macro and method for getClass not same for
Animal\n”);

}

Related Information
Methods: somGetClass

1-56 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM _InitEnvironment Macro

Purpose

Initializes a local Environment structure.

Syntax

void SOM_InitEnvironment (Environment * ev);

Description

The SOM_InitEnvironment macro initializes a locally declared Environment structure.
This Environment structure can then be passed to methods as the Environment argument
so that exception information can be returned without affecting the global environment.

Parameters
ev A pointer to the Environment structure to be initialized.

Expansion
The SOM_InitEnvironment initializes an Environment structure to zero.

C Example

Environment ev;
SOM_InitEnvironment (&ev) ;
_myMethod (obj, &ev);

SOM_UninitEnvironment (&ev) ;

Related Information

Macros: SOM_DestroyLocalEnvironment, SOM_CreateLocalEnvironment,
SOM_UninitEnvironment

Functions: somGetGlobalEnvironment

SOM Kernel Reference 1-57

SOM_MainProgram Macro

Purpose

Identifies an application as a SOM program and registers an end-of-program exit procedure
to release SOM resources when the application terminates.

Syntax
SOMClassMgr SOM_MainProgram ();

Description

The SOM_MainProgram macro should appear near the beginning of each Windows
application program that uses SOM or a SOM class library. It can also be used in OS/2 or
AlX programs but is not generally required on these platforms. Any statically referenced
SOM class libraries are initialized during the execution of this macro, and an
end-of-program exit procedure is established to release SOM resources during normal
program termination. (This macro combines the execution of the C/C++ “atexit” function with
the SOM somMainProgram function and returns a reference to the global SOMClassMgr
object.)

Example

#include <som.h>
#include <windows.h>

int PASCAL WinMain (HINSTANCE inst,
WORD ds,
WORD Heapsize,
LPSTR cmdLine)

SOM_MainProgram () ;

/* Rest of main program follows */

}

Related Information
Functions: somMainProgram

Macros: SOM_ClassLibrary

1-58 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM_NoTrace Macro

Purpose
Used to turn off method debugging.

Syntax

SOM_NoTrace (<token> className, <token> methodName);

Description

The SOM_NoTrace macro is used to turn off method debugging. Within an implementation
file for a class, before #including the implementation (.ih or .xih) header file for the class,
#define the <className>MethodDebug macro to be SOM_NoTrace. Then,
<className>MethodDebug will have no effect.

Parameters

className The name of the class for which tracing will be turned off, given as a simple
token rather than a quoted string.

methodName The name of the method for which tracing will be turned off, given as a
simple token rather than a quoted string.

Expansion
The SOM_NoTrace macro has a null (empty) expansion.

Example
Within an implementation file:

#define AnimalMethodDebug (c,m) SOM_NoTrace (c,m)
#include <animal.ih>
/* Now AnimalMethodDebug does nothing */

SOM Kernel Reference 1-59

SOM_ParentNumResolve Macro

Purpose

Obtains a pointer to a method procedure from a list of method tables. Used by C and C++
implementation bindings to implement parent method calls.

Syntax

somMethodPtr SOM_ParentNumResolve (
<token> IntroClass,
long parentNum,
somMethodTabs parentMtabs,
<token> methodName);

Description

The SOM_ParentNumResolve macro invokes the somParentNumResolve function to
obtain a pointer to the static method procedure that implements the specified method for the
specified parent. The method is specified by indicating the introducing class, IntroClass, and
the method name, methodName.

Parameters

introClass The name of the class that introduces methodName. This name should be
given as a simple token, rather than a quoted string (for example, Animal
rather than “Animar’).

parentNum The position of the desired parent. The first (leftmost) parent of a class has
position 1.

parentMtabs A list of parent method tables acquired by invoking the somGetPClsMtabs
method on a class object.

methodName The name of the method to be resolved. This name should be given as a

simple token, rather than a quoted string (for example, setSound rather
than “setSound”).

Expansion

The expansion of the macro produces an expression that is appropriately typed for
application of the evaluated result to the indicated method’s arguments, as illustrated in the
following example.

Example

#include <somcls.h>

main ()
{
SOMClassMgr *cm = somEnvironmentNew () ;
somMethodTabs mList = _somGetPClsMtabs (_SOMClass);
SOM_ParentNumResolve (SOMObject, 1, mList, somDumpSelfInt)
(_SOMClass, 1) ;
}

Related Information
Functions: somParentNumResolve

Methods: somGetPClsMtabs

1-60 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM_Resolve Macro

Purpose

Syntax

Obtains a pointer to a static method procedure.

somMethodPtr SOM_Resolve (
SOMObiject objPtr,
<token> className,
<token> methodName);

Description

The SOM_Resolve macro invokes the somResolve function to obtain a pointer to the static
method procedure that implements the specified method for the specified object. This
pointer can be used for efficient repeated casted method invocations on instances of the
class of the object on which the resolution is done, or instances of subclasses of this class.
The name of the class that introduces the method and the name of the method must be
known to use this macro. Otherwise, use the somResolveByName, somFindMethod or
somFindMethodOk method.

The SOM_Resolve macro can only be used to obtain a method procedure for a static
method (one defined in the IDL specification for a class); not a dynamic method. Unlike the
SOM_ResolveNoCheck macro, the SOM_Resolve macro performs several consistency
checks on the object pointed to by objPtr.

Parameters

Expansion

Example

objPtr A pointer to the object to which the resolved method procedure will be
applied.

className The name of the class that introduces methodName. This name should be
given as a simple token, rather than a quoted string (for example, Animal
rather than “Animar’).

methodName The name of the method to be resolved. This name should be given as a
simple token, rather than a quoted string (for example, setSound rather
than “setSound”).

The SOM_Resolve macro uses the className and methodName to construct the method
token for the specified method, then invokes the somResolve function. Thus, the macro
expands to an expression that represents the entry-point address of the method procedure.
This value can be stored in a variable and used for subsequent invocations of the method.

Animal myObj = AnimalNew () ;

somMethodProc *procPtr;

procPtr = SOM Resolve (myObj, Animal, setSound);

/* note that procPtr will need to be typecast when it is used */

Related Information

Macros: SOM_ResolveNoCheck
Functions: somResolve, somClassResolve, somResolveByName
Methods: somFindMethod, somFindMethodOk, somDispatch, somClassDispatch

SOM Kernel Reference 1-61

SOM_ResolveNoCheck Macro

Purpose
Obtains a pointer to a static method procedure, without doing consistency checks.

Syntax
somMethodPtr SOM_ResolveNoCheck (
SOMObject objPrtr,
<token> className,
<token> methodName);

Description

The SOM_ResolveNoCheck macro invokes the somResolve function to obtain a pointer to
the method procedure that implements the specified method for the specified object. This
pointer can be used for efficient repeated invocations of the same method on the same type
of objects. The name of the class that introduces the method and the name of the method
must be known at compile time. Otherwise, use the somFindMethod or
somFindMethodOk method.

The SOM_ResolveNoCheck macro can only be used to obtain a method procedure for a
static method (one defined in the IDL specification for a class) and not a method added to a
class at run time. Unlike the SOM_Resolve macro, the SOM_ResolveNoCheck macro
does not perform any consistency checks on the object pointed to by objPtr.

Parameters
objPtr A pointer to the object to which the resolved method procedure will be
applied.

className The name of the class that introduces methodName. This name should be
given as a simple token, rather than a quoted string (for example, Animal
rather than “Animar’).

methodName The name of the method to be resolved. This name should be given as a
simple token, rather than a quoted string (for example, setSound rather
than “setSound’).

Expansion

The SOM_ResolveNoCheck macro uses the className and methodName to construct an
expression whose value is the method token for the specified method, then invokes the
somResolve function. Thus, the macro expands to an expression that represents the
entry-point address of the method procedure. This value can be stored in a variable and
used for subsequent invocations of the method.

Example

Animal myObj = AnimalNew () ;
somMethodProc *procPtr;
procPtr = SOM_ResolveNoCheck (myObj, Animal, setSound)

Related Information
Macros: SOM_Resolve

Functions: somResolve, somClassResolve, somResolveByName
Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk

1-62 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM_SubstituteClass Macro

Purpose
Provides a convenience macro for invoking the somSubstituteClass method.

Syntax

long SOM_SubstituteClass (
<token> oldClass,
<token> newClass);

Description
The method somSubstituteClass requires existing class objects as arguments. Therefore,
the macro SOM_SubstituteClass first assures that the classes named oldClass and
newClass exist, and then calls the method somSubstituteClass with these class objects as

arguments.
Parameters
oldClass The name of the class to be substituted, given as a simple token rather
than a quoted string.
newClass The name of the class that will replace oldClass, given as a simple token

rather than a quoted string.

Example
See the method somSubstituteClass.

Related Information
Methods: somSubstituteClass

SOM Kernel Reference 1-63

SOM_Test Macro

Purpose
Tests whether a boolean condition is true; if not, a fatal error is raised.
Syntax
void SOM_Test (boolean expression);
Description
The SOM_Test macro tests the specified boolean expression:
e |f the expression is TRUE and SOM_AssertLevel is set to a value greater than zero,
then an information message is output.
¢ [f the expression is FALSE, an error message is output and the process is terminated.
Note: The SOM_TestC macro is similar, except that it only outputs a warning message
in this situation.
Parameters

expression The boolean expression to test.

External (Global) Data

long SOM_AssertLevel; /* default is 0 */

Expansion

The SOM_Test macro tests the specified boolean expression. If the expression is TRUE
and SOM_AssertLevel is set to a value greater than zero, then an information message is
output. If the expression is FALSE, an error message is output and the process is
terminated.

C Example

#include <som.h>

main ()

{
SOM_Assertlevel = 1;
SOM_Test (1=1) ;

}

Related Information
Macros: SOM_Assert, SOM_Except, SOM_TestC

1-64 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM_TestC Macro

Purpose
Tests whether a boolean condition is true; if not, a warning message is output.
Syntax
void SOM_TestC (boolean expression);
Description
The SOM_TestC macro tests the specified boolean expression:
¢ |f the expression is TRUE and SOM_AssertLevel is set to a value greater than zero,
then an information message is output.
¢ [f the expression is FALSE and SOM_WarnLevel is set to a value greater than zero, then
a warning message is output.
Note: The SOM_Test macro is similar, except that it raises a fatal error in this situation.
Parameters

expression The boolean expression to test.

External (Global) Data

long SOM_AssertLevel; /* default is 0 */

long SOM_WarnLevel; /* default is 0 */

Expansion

The SOM_TestC macro tests the specified boolean expression. If the expression is TRUE
and SOM_AssertLevel is set to a value greater than zero, then an information message is
output. If the expression is FALSE and SOM_WarnLevel is set to a value greater than zero,
a warning message is output.

C Example

#include <som.h>
main ()
{
SOM_WarnLevel = 1;
SOM_TestC (1=1);
}

Related Information
Macros: SOM_Assert, SOM_Except, SOM_Test

SOM Kernel Reference 1-65

SOM_UninitEnvironment Macro

Purpose
Uninitializes a local Environment structure.

Syntax

void SOM_UninitEnvironment (Environment * ev);

Description

The SOM_UninitEnvironment macro uninitializes a locally declared Environment
structure.

Parameters
ev A pointer to the Environment structure to be uninitialized.

Expansion

The SOM_UninitEnvironment invokes the somExceptionFree function on the specified
Environment structure.

C Example

Environment ev;
SOM_InitEnvironment (&ev) ;
_myMethod (obj, &ev);

SOM_UninitEnvironment (&ev) ;

Related Information
Macros: SOM_DestroyLocalEnvironment, SOM_InitEnvironment

1-66 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOM_WarnMsg Macro

Purpose
Reports a warning message.

Syntax
void SOM_WarnMsg (string msg);

Description

If SOM_WarnLevel is set to a value greater than zero, the SOM_WarnMsg macro prints the
specified message, along with the flename and line number where the macro was invoked.

Parameters
msg The warning message to be output.

Expansion

If SOM_WarnLevel is set to a value greater than zero, the SOM_WarnMsg macro prints the
specified message, along with the filename and line number where the macro was invoked.

Related Information
Macros: SOM_Error

SOM Kernel Reference 1-67

SOMClass Class

Description

File Stem

Base

Metaclass

SOMClass is the root class for all SOM metaclasses. That is, all SOM metaclasses must be
subclasses of SOMClass or some other class derived from it. It defines the essential
behavior common to all SOM classes. In particular, it provides a suite of methods for
initializing class objects, generic methods for manufacturing instances of those classes, and
methods that dynamically obtain or update information about a class and its methods at run
time.

Just as all SOM classes are expected to have SOMObiject (or a class derived from
SOMObiject) as their base class, all SOM classes are expected to have SOMClass or a
class derived from SOMClass as their metaclass. Metaclasses define “class” methods
(sometimes called “factory” methods or “constructors”) that manufacture objects from any
class object that is defined as an instance of the metaclass.

To define your own class methods, define your own metaclass by subclassing SOMClass or
one of its subclasses. Three methods that SOMClass inherits and overrides from
SOMObiject are typically overridden by any metaclass that introduces instance
data—somlnit, somUninit, and somDumpSelfint. The new methods introduced in
SOMClass that are frequently overridden are somNew, somRenew, and somClassReady.
(See the descriptions of these methods for further information.)

Other reasons for creating a new metaclass include tracking object instances, automatic
garbage collection, interfacing to a persistent object store, or providing/managing
information that is global to a set of object instances.

somcls

SOMObject

SOMClass (SOMClass is the only class with itself as metaclass.)

Ancestor Classes

Types

SOMObject

typedef sequence <SOMClass> SOMClassSequence;

struct somOffsetinfo {

SOMClass cls;
long offset
b

typedef sequence <somOffsetinfo> SOMOffsets;

1-68 SOMobjects Base Toolkit: Programmer’s Reference Manual

New Methods

Attributes:
readonly attribute somOffsets sominstanceDataOffsets

_get_somlinstanceDataOffsets returns a sequence of structures, each of which indicates
an ancestor of the receiver class (or the receiver class itself) and the offset to the beginning
of the instance data introduced by the indicated class in an instance of the receiver class.
The somOffsets information can be used in conjunction with information derived from calls
to a SOM Interface Repository to completely determine the layout of SOM objects at
runtime.

C++ Example

#include <somcls.xh>

main ()
{
int 1i;
SOMClassMgr *scm = somEnvironmentNew () ;
somOffsets so = _SOMClass—>_get_somInstanceDataOffsets();

for (i=0; i<so._length; i++)
printf (“In an instance of SOMClass, %s data starts at
%d\n”,
so._buffer[i]->cls—>somGetName (),
so._buffer[i]->offset);

}

Introduced Methods

Group: Instance Creation (Factory)
somAllocate

somDeallocate
somNew, somNewNolnit
somRenew, somRenewNolnit, somRenewNolnitNoZero, somRenewNoZero

Group: Initialization/Termination
somAddDynamicMethod
somClassReady

Group: Access
somGetinstancePartSize
somGetinstanceSize
somGetinstanceToken
somGetMemberToken
somGetMethodData
somGetMethodDescriptor
somGetMethodindex
somGetMethodToken
somGetName
somGetNthMethodData
somGetNthMethodIinfo

somGetNumMethods

SOM Kernel Reference 1-69

somGetNumStaticMethods
somGetParents

somGetVersionNumbers

Group: Testing

somCheckVersion
somDescendedFrom

somSupportsMethod

Group: Dynamic

somFindMethod, somFindMethodOk
somFindSMethod, somFindSMethodOk
somLookupMethod

Overridden Methods

somDefaultlnit
somDestruct

somDumpSelfint

Deprecated Methods

Use of the following methods is discouraged. There are three reasons for this:

First, these methods are used in constructing classes, and this capability is provided by the
function somBuildClass. Class construction in SOM is currently a fairly complex activity,
and it is likely to become even more so as the SOMobjects kernel evolves. To avoid
breaking source code that constructs classes, you are advised to always use
somBuildClass to build SOM classes.

Note: The SOM language bindings always use somBuildClass.

Second, these methods are used for customizing aspects of SOM classes, such as method
resolution and object creation. Doing this requires that metaclasses override various
methods introduced by SOMClass. However, if this is done without the Cooperation
Framework that implements the SOM Metaclass Framework, SOMobjects cannot guarantee
that applications will function correctly. Unfortunately, the Cooperation Framework (while
available to SOM users as an experimental feature) is not officially supported by the
SOMobjects Toolkit. So, this is another reason why the following methods are deprecated.

Finally, some of these methods are now obsolete, so it seems appropriate that their use be
discouraged.

somAddStaticMethod
somGetApplyStub
somGetClassDatas
omGetClassMtab
somGetlnstanceOffset
somGetMethodOffset
somGetParent
somGetPClsMtab
somGetPClsMtabs
somGetRdStub

SOMobjects Base Toolkit: Programmer’s Reference Manual

somlnitClass
somlnitMIClass
somOverrideMtab
somOverrideSMethod
somSetClassData

somSetMethodDescriptor

SOM Kernel Reference

1-71

somAddDynamicMethod Method

Purpose

Adds a new dynamic instance method to a class. Dynamic methods are not part of the
declared interface to a class of objects, and are therefore not supported by implementation
and usage bindings. Instead, dynamic methods provide a way to dynamically add new
methods to a class of objects during execution. SOM provides no standard protocol for
informing a user of the existence of dynamic methods and the arguments they take.
Dynamic methods must be invoked using name-lookup or dispatch resolution.

IDL Syntax

void somAddDynamicMethod (
in somld methodla,
in somld methodDescriptor,
in somMethodPtr method,
in somMethodPtr applyStub);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somAddDynamicMethod method adds a new dynamic instance method to the
receiving class. This involves recording the method’s ID, descriptor, method procedure
(specified by method), and apply stub in the receiving class’s method data.

The arguments to somAddDynamicMethod should be non-null and obey the following
requirements. This is the responsibility of the implementor of a class, who in general has no
knowledge of whether clients of this class will require use of the applyStub argument.

Parameters

receiver A pointer to a SOM class object.
methodld A somld that names the method.

methodDescriptor
A somld appropriate for requesting information concerning the method
from the SOM IR. This is currently of the form
<className>::<methodName>.

method A pointer to the procedure that will implement the new method. The first
argument of this procedure is the address of the object on which it is being
invoked.

applyStub A pointer to a procedure that returns nothing and receives as arguments: a

method receiver; an address where the return value from the method call is
to be stored; a pointer to a method procedure; and a va_list containing the
arguments to the method. The applyStub procedure (which is usually called
by somDispatch) must unload its va_list argument into separate variables
of the correct type for the method, invoke its procedure argument on these
variables, and then copy the result of the procedure invocation to the
address specified by the return value argument.

1-72 SOMobjects Base Toolkit: Programmer’s Reference Manual

C Example

/* New dynamic method ”“newMethodl” for class "XXX"” */
static char *somMN_newMethodl = "newMethodl”;

static somId somId_newMethodl = &somMN_newMethodl;
static char *somDS_newMethodl "XXX::newMethodl”;
static somId somDI_newMethodl &somDS_newMethodl;

static void SOMLINK somAP_newMethodl (SOMObject somSelf,
void *___retVal,
somMethodProc *__ _methodPtr,
va_list __ap)

void* ___somSelf = va_arg(__ap, SOMObject);

int argl = va_arg(__ap, int);

SOM_IgnoreWarning(__retval);

((somTD_SOMObject_newMethodl) _ methodPtr) (__somSelf, argl);
}
main ()
{

_somAddDynamicMethod (

XXXClassData.classObject, /* Receiver (class object)
*/

somId_newMethodl, /* method name somId
*/

somDI_newMethodl, /* method descriptor somId
*/

(somMethodProc *) newMethodl, /* method procedure
*/

(somMethodProc *) somAP_newMethodl); /* method apply stub
*/
}

Original Class
SOMClass

Related Information
Methods: somGetMethodDescriptor

SOM Kernel Reference 1-73

somAllocate Method

Purpose
Supports class-specific memory allocation for class instances. Cannot be overridden.

IDL Syntax

string somAllocate (in long size);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
When building a class, the somBuildClass function is responsible for registering the
procedure that will be executed when this method is invoked on the class. The default
procedure registered by somBuildClass uses the SOMMalloc function, but the IDL
modifier somallocate can be used in the SOM IDL class implementation section to indicate
a different procedure. Users of this method should be sure to use the dual method,
somDeallocate, to free allocated storage. Also, if the IDL modifier somallocate is used to
indicate a special allocation routine, the IDL modifier somdeallocate should be used to
indicate a dual procedure to be called when the somDeallocate method is invoked.

Parameters
receiver A pointer to the class object whose memory allocation method is desired.

size The number of bytes to be allocated.

Return Value

string A pointer to the first byte of the allocated memory region, or NULL if
sufficient memory is not available.

C++ Example

#include <som.xh>

#include <somcls.xh>

main ()

{
SOMClassMgr *cm = somEnvironmentNew () ;
/* Use SOMClass’s instance allocation method */
string newRegion = _SOMClass—>somAllocate (20);

}

Original Class
SOMClass

Related Information
Methods: somDeallocate

1-74 SOMobjects Base Toolkit: Programmer’s Reference Manual

somCheckVersion Method

Purpose

Checks a class for compatibility with the specified major and minor version numbers. Not
generally overridden.

IDL Syntax

boolean somCheckVersion (
In long majorVersion,
In long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somCheckVersion method checks the receiving class for compatibility with the
specified major and minor version numbers. An implementation is compatible with the
specified version numbers if it has the same major version number and a minor version
number that is equal to or greater than minorVersion. The version number pair (0,0) is
considered to match any version.

This method is called automatically after creating a class object to verify that a dynamically
loaded class definition is compatible with a client application.

Parameters
receiver A pointer to the SOM class whose version information should be checked.

majorVersion This value usually changes only when a significant enhancement or
incompatible change is made to a class.

minorVersion This value changes whenever minor enhancements or fixes are made to a
class. Class implementors usually maintain downward compatibility across
changes in the minorVersion number.

Return Value

Returns 1 (true) if the implementation of this class is compatible with the specified major
and minor version number, and 0 (false) otherwise.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
myAnimal = AnimalNew () ;

if (_somCheckVersion (_Animal, 0, 0))

somPrintf (“Animal IS compatible with 0.0\n”);
else

somPrintf (“Animal IS NOT compatible with 0.0\n”);

if (_somCheckVersion (_Animal, 1, 1))

somPrintf (“Animal IS compatible with 1.1\n”);
else

somPrintf (“Animal IS NOT compatible with 1.1\n”);

_somFree (myAnimal) ;

}

SOM Kernel Reference 1-75

Assuming that the implementation of Animal is version 1.0, this program produces the
following output:

Animal IS compatible with 0.0
Animal IS NOT compatible with 1.1

Original Class
SOMClass

1-76 SOMobjects Base Toolkit: Programmer’s Reference Manual

somClassReady Method

Purpose

Indicates that a class has been constructed and is ready for normal use. Designed to be
overridden.

IDL Syntax

void somClassReady ();
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somClassReady method is invoked automatically by the somBuildClass function after
constructing and initializing a class object. The default implementation of this method
provided by SOMClass simply registers the newly constructed class with
SOMClassMgrObject. Metaclasses can override this method to augment class construction
with additional registration protocol.

To have special processing done when a class object is created, you must define a
metaclass for the class that overrides somClassReady. The final statement in any
overriding method should invoke the parent method to ensure that the class is properly
registered with SOMClassMgrObject. Users of the C and C++ implementation bindings for
SOM classes should never invoke the somClassReady method directly; it is invoked
automatically during class construction.

Parameters
receiver A pointer to the class object that should be registered.

Original Class
SOMClass

SOM Kernel Reference 1-77

somDeallocate Method

Purpose

Frees memory originally allocated by the somAllocate method from the same class object.
Cannot be overridden.

IDL Syntax

void somDeallocate (in string memPtr);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somDeallocate method is intended for use to free memory allocated using its dual
method, somAllocate. When building a class, the somBuildClass function is responsible
for registering the procedure that will be executed when this method is invoked on the class.
The default procedure registered by somBuildClass uses the SOMFree function, but the
IDL modifier somdeallocate can be used in the SOM IDL class implementation section to
indicate a different procedure. Users of this method should be sure that the dual method,
somAllocate, was originally used to allocate storage. Also, if the IDL modifier
somdeallocate is used to indicate a special deallocation routine, the IDL modifier
somallocate should be used to indicate a dual procedure to be called when somAllocate is
invoked.

Parameters

receiver A pointer to the class object whose somAllocate was originally used to
allocate the memory now to be freed.

memPtr A pointer to the first byte of the region of memory that is to be freed.

Original Class
SOMClass

Related Information
Methods: somAllocate

1-78 SOMobjects Base Toolkit: Programmer’s Reference Manual

somDescendedFrom Method

Purpose
Tests whether one class is derived from another. Not generally overridden.

IDL Syntax

boolean somDescendedFrom (in SOMClass aClassObj);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
Tests whether the receiver class is derived from a given class. For programs that use

classes as types, this method can be used to ascertain whether the type of one object is a

subtype of another.

This method considers a class object to be descended from itself.

Parameters
receiver A pointer to the class object to be tested.
aClassObj A pointer to the potential ancestor class.

Return Value
Returns 1 (true) if receiveris derived from aClassObj, and 0 (false) otherwise.

C Example

#include <dog.h>
/* ___

AnimalNewClass (0,0);
DogNewClass (0,0);

if (_somDescendedFrom (_Dog, _Animal))

somPrintf ("Dog IS descended from Animal\n”);
else

somPrintf ("Dog is NOT descended from Animal\n”);
if (_somDescendedFrom (_Animal, _Dog))

somPrintf ("Animal IS descended from Dog\n”);
else

somPrintf ("Animal is NOT descended from Dog\n”);

This program produces the following output:

Dog IS descended from Animal
Animal is NOT descended from Dog

Original Class
SOMClass

Related Information
Methods: somlisA, somlisinstanceOf

SOM Kernel Reference

1-79

somFindMethod, somFindMethodOk Methods

Purpose
Finds the method procedure for a method and indicates whether it represents a static
method or a dynamic method. Not generally overridden.

IDL Syntax

boolean somFindMethod (
in somld methodid,
out somMethodPtr m);

boolean somFindMethodOk (
in somld methodia,
out somMethodPtr m);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description
The somFindMethod and somFindMethodOk methods perform name-lookup method
resolution, determine the method procedure appropriate for performing the indicated
method on instances of the receiving class, and load m with the method procedure address.
For static methods, method procedure resolution is done using the instance method table of
the receiving class.

Name-lookup resolution must be used to invoke dynamic methods. Also, name-lookup can
be useful when different classes introduce methods of the same name, signature, and
desired semantics, but it is not known until runtime which of these classes should be used
as a type for the objects on which the method is to be invoked. If the signature of a method
is an unknown, then method procedures cannot be be used directly, and the somDispatch
method to be used after dynamically discovering the signature to allow the correct
arguments can be placed on a va_list.

As with any methods that return procedure pointers, these methods allow repeated
invocations of the same method procedure to be programmed. If this is done, it is up to the
programmer to prevent runtime errors by assuring that each invocation is performed either
on an instance of the class used to resolve the method procedure or of some class derived
from it. Whenever using SOM method procedure pointers, it is necessary to indicate the
arguments to be passed and the use of system linkage to the compiler, so it can generate a
correct procedure call. The way this is done depends on the compiler and the system being
used. However, C and C++ usage bindings provide an appropriate typedef for static
methods. The name of the typedef is based on the name of the class that introduces the
method, as illustrated in the following example.

Unlike the somFindMethod method, if the class does not support the specified method, the
somFindMethodOk method raises an error and halts execution.

If the class does not support the specified method, then *m is set to NULL and the return
value is meaningless. Otherwise, the returned result is true if the indicated method was a
static method.

1-80 SOMobjects Base Toolkit: Programmer’s Reference Manual

Parameters

receiver A pointer to the class object whose method is desired.

methodld An ID that represents the name of the desired method. The
somldFromString function can used to obtain an ID from the method’s
name.

m A pointer to the location in memory where a pointer to the specified

method’s procedure should be stored. Both methods store a NULL pointer
in this location (if the method does not exist) or a value that can be called.

Return Value

The somFindMethod and somFindMethodOk methods return TRUE when the method
procedure can be called directly and FALSE when the method procedure is a dispatch
function.

C Example

Assuming that the Animal class introduces the method setSound, the type name for the
setSound method procedure type will be somTD_Animal_setSound, as illustrated in the
following example:

#include <animal.h>
void main ()
{
Animal myAnimal;
somId somId_setSound;
somTD_Animal_setSound methodPtr;
Environment *ev = somGetGlobalEnvironment () ;

myAnimal = AnimalNew () ;
2 S —

: Next three lines are equivalent to
_setSound (myAnimal, ev, "Roar!!!”);
,, */
somId_setSound = somIdFromString (”setSound”);

_somFindMethod (_somGetClass (myAnimal),
somId_setSound, &methodPtr);
methodPtr (myAnimal, ev, "Roar!!!”);

_display (myAnimal, ev);
_somFree (myAnimal) ;

}

/*

Program Output:

This Animal says

Roar!!!

*/

Original Class
SOMClass

Related Information

Methods: somFindSMethod, somFindSMethodOk, somSupportsMethod,
somDispatch, somClassDispatch

Functions: somApply, somResolve, somClassResolve, somResolveByName,
somParentNumResolve

Macros: SOM_Resolve, SOM_ResolveNoCheck, SOM_ParentNumResolve

SOM Kernel Reference 1-81

somFindSMethod, somFindSMethodOk Methods

Purpose
Finds the method procedure for a static method. Not generally overridden.

IDL Syntax
somMethodPtr somFindSMethod (in somld methoaqld);

somMethodPtr somFindSMethodOk (in somld methodid);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somFindSMethod and somFindSMethodOk methods perform name-lookup
resolution in a similar fashion to somFindMethod and somFindMethodOk, but are
restricted to static methods. See the description of somFindMethod for a discussion of
name-lookup method resolution. Because these methods are restricted to resolving static
methods, their interface is slightly different from the somFindMethod interfaces; a method
procedure pointer is returned when lookup is successful; otherwise NULL is returned.

The somFindSMethodOk method is identical to somFindSMethod, except that an error is
raised if the indicated static method is not defined for the receiving class, and execution is

halted.
Parameters
receiver A pointer to a class object.
methodld A somld representing the name of the desired method.

Return Value

The somFindSMethod and somFindSMethodOk methods return a pointer to the method
procedure that supports the specified method for the class.

Example
See the somFindMethod example.

Original Class
SOMClass

Related Information
Methods: somFindMethod, somFindMethodOk Methods

1-82 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetlnstanceParitSize Method

Purpose
Returns the total size of the instance data structure introduced by a class. Not generally
overridden.
IDL Syntax
long somGetinstancePartSize ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetinstancePartSize method returns the amount of space needed in an object of
the specified class or any of its subclasses to contain the instance variables introduced by
the class.
Parameters
receiver A pointer to the class object whose instance data size is desired.

Return Value

The somGetinstancePartSize method returns the size, in bytes, of the instance variables
introduced by this class. This does not include the size of instance variables introduced by
this class’s ancestor or descendent classes. If a class introduces no instance variables, 0 is
returned.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
SOMClass animalClass;
int instanceSize;
int instanceOffset;
int instancePartSize;

myAnimal = AnimalNew ();
animalClass = _somGetClass (myAnimal);
instanceSize = _somGetInstanceSize (animalClass);
instanceOffset = _somGetInstanceOffset (animalClass);
instancePartSize = _somGetInstancePartSize (animalClass);
somPrintf (”Instance Size: %d\n”, instanceSize);
somPrintf (”Instance Offset: %d\n”, instanceOffset);
somPrintf (”Instance Part Size: %d\n”, instancePartSize);
_somFree (myAnimal);

}

/*

Output from this program:

Instance Size: 8

Instance Offset: 0

Instance Part Size: 4

*/

SOM Kernel Reference 1-83

Original Class
SOMClass

Related Information
Methods: somGetinstanceSize

1-84 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetlnstanceSize Method

Purpose
Returns the size of an instance of a class. Not generally overridden.
IDL Syntax
long somGetlnstanceSize ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetlnstanceSize method returns the total amount of space needed in an instance
of the specified class.
Parameters

receiver A pointer to the class object whose instance size is desired.

Return Value

The somGetlnstanceSize method returns the size, in bytes, of each instance of this class.
This includes the space required for instance variables introduced by this class and all of its
ancestor classes.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
SOMClass animalClass;
int instanceSize;
int instanceOffset;
int instancePartSize;

myAnimal = AnimalNew () ;
animalClass = _somGetClass (myAnimal);
instanceSize = _somGetInstanceSize (animalClass);
instanceOffset = _somGetInstanceOffset (animalClass);
instancePartSize = _somGetInstancePartSize (animalClass);
somPrintf (”Instance Size: %d\n”, instanceSize);
somPrintf (”Instance Offset: %d\n”, instanceOffset);
somPrintf (”Instance Part Size: %d\n”, instancePartSize);
_somFree (myAnimal);

}

/*

Output from this program:

Instance Size: 8

Instance Offset: 0

Instance Part Size: 4

*/

Original Class
SOMClass

Related Information
Methods: somGetlnstancePartSize

SOM Kernel Reference 1-85

somGetinstanceToken Method

Purpose
Returns a data access token for the instance data introduced by a class. Not generally
overridden.

IDL Syntax

somDToken somGetinstanceToken ();
Note: For backward compatibility, this method does not take an Environment parameter.

Description

Returns a data token “pointing” to the beginning of the instance data introduced by the
receiving class. This token can be passed to the function somDataResolve to locate this
instance data within an an instance of the receiver class or any class derived from it. Also
the instance data token for a class can be passed to the class method
somGetMemberToken to get a data token for a specific instance variables introduced by
the class (if the relative offset of this instance variable is known). This approach is used by
C and C++ implementation bindings to support public instance data for OIDL classes (IDL
classes currently have no public instance data).

A data token for the instance data introduced by a class is required by method procedures
that access data introduced by the method procedure’s defining class. For classes declared
using OIDL and IDL, the needed token is stored in the auxiliary class data structure, which
is an external data structure made statically available by the C and C++ language bindings
as <className>CClassData.instanceToken. Thus, this method call is not generally used by
C and C++ class implementors of classes declared using OIDL or IDL.

Parameters
receiver A pointer to a SOMClass object.

Return Value
Returns a data token for the beginning of the instance data introduced by the receiver.

Original Class
SOMClass

Related Information
Methods: somGetinstanceSize, somGetinstancePartSize, somGetMemberToken

Functions: somDataResolve

1-86 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetMemberToken Method

Purpose

Returns an access token for an instance variable. This is method is not generally
overridden.

IDL Syntax

somDToken somGetMemberToken (
long memberOffset,
somDToken instanceToken);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMemberToken method returns an access token for the data member at offset
memberOffset within the block of instance data identified by instanceToken. The returned
token can subsequently be passed to the somDataResolve function to locate the data
member.

Typically, only the code that implements a class declared using OIDL requires access to this
method, and this code is normally provided by implementation bindings. Thus C and C++
programmers do not normally invoke this method.

Parameters
receiver A pointer to a SOMClass object.

memberOffset A 32-bit integer representing the offset of the required data member.

instanceToken A token, obtained from somGetinstanceToken, that identifies the
introduced portion of the class.

Return Value
Returns an access token for the specified data member.

Original Class
SOMClass

Related Information

Methods: somGetinstanceSize, somGetinstancePartSize, somGetinstanceToken
Functions: somDataResolve

SOM Kernel Reference 1-87

somGetMethodData Method

Purpose

Returns method information for a specified method, which must have been introduced by
the receiver class or an ancestor of that class. Not generally overridden.

IDL Syntax

boolean somGetMethodData (
in somld methodld,
out somMethodData mad);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somGetMethodData method loads a somMethodData structure with data describing
the method identified by the passed methodld. If methodld does not identify a method
known to the receiver, then false is returned; otherwise, true is returned after loading the
somMethodData structure with data corresponding to the indicated method.

Parameters
receiver A pointer to the class that produced the index value.
methodld A somld for the method’s name.
md A pointer to a somMethodData structure.

Return Value
Boolean true if successful; otherwise false.

C++ Example

#include <somcls.xh>

main

{
somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”) ;
somMethodData md;
boolean rc = _SOMClass—->somGetMethodData (gmiId, &md) ;
SOM_Test (rc && somComparelds (gmiId, md.id));

}

Related Information
Methods: somGetMethodIndex, somGetMethodData, somGetNthMethodinfo

Data Structures: somMethodData (somapi.h)

1-88 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetMethodDescriptor Method

Purpose
Returns the method descriptor for a method. Not generally overridden.

IDL Syntax

somld somGetMethodDescriptor (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodDescriptor method returns the method descriptor for a specified
method of a class. (A method descriptor is a somld that represents the identifier of an
attribute definition or a method definition in the SOM Interface Repository. It contains
information about the method’s return type and the types of its arguments.) If the class
object does not support the indicated method, NULL is returned.

Parameters
receiver A pointer to a SOMClass object.
methodld A somld method descriptor.

Return Value
The somGetMethodDescriptor method returns a somld method descriptor.

Example

somId myMethodDescriptor;
myMethodDescriptor = _somGetMethodDescriptor (_Animal,
somIdFromString (“setSound”)) ;

Original Class
SOMClass

Related Information

Methods: somAddDynamicMethod, somGetNthMethodIinfo, somGetMethodData,
somGetNthMethodData

SOM Kernel Reference 1-89

somGetMethodindex Method

Purpose
Returns a class-specific index for a method. Not generally overridden.

IDL Syntax
long somGetMethodIndex (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodindex method returns an index that can be used in subsequent calls to
the same receiving class to determine information about the indicated (static or dynamic)
method, via the methods somGetNthMethodData and somGetNthMethodinfo. The
method must be appropriate for use on an instance of the receiver class; otherwise, a —1 is
returned. The index of a method can change over time if dynamic methods are added to the
receiver class or its ancestors. Thus, in dynamic multi-threaded environments, a critical
region should be used to bracket the use of this method and of subsequent requests for
method information based on the returned index.

Parameters
receiver A pointer to a SOMClass object.
methodld A somld method ID.

Return Value
The somGetMethodIndex method returns a positive long if successful, and a —1 otherwise.

C++ Example

#include <somcls.xh>
main
{
somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”) ;

long index = _SOMClass—>somGetMethodIndex (gmiId) ;
somMethodData md;
boolean rc = _SOMClass->somGetNthMethodData (index, &md) ;

SOM_Test (rc && somComparelds (gmiId, md.id));
}

Original Class
SOMClass

Related Information
Methods: somGetNthMethodData, somGetNthMethodInfo

Data Structures: somMethodData (somapi.h)

1-90 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetMethodToken Method

Purpose
Returns a method access token for a static method. Not generally overridden.

IDL Syntax

somMToken somGetMethodToken (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodToken method returns a method access token for a static method with
the specified ID that was introduced by the receiver class or an ancestor of the receiver
class. This method token can be passed to the somResolve function (or one of the other
offset-based method resolution functions) to select a method procedure pointer from a
method table of an object whose class is the same as, or is derived from the class that
introduced the method.

Parameters
receiver A pointer to a SOMClass object.
methodld A somld identifying a method.

Return Value
The somGetMethodToken method returns a somMToken method-access token.

C Example

Assuming that the class Animal introduces the method setSound,

#include <animal.h>
main () {

somMToken tok;

Animal myAnimal;

somTD_Animal_setSound methodPtr; /* use typedef from animal.h
*/

Environment *ev = somGetGlobalEnvironment () ;

myAnimal = AnimalNew () ;

/*next 3 lines equivalent to _setSound(myAnimal, ev,
"Roar!!!1");*/

tok = _somGetMethodToken (_Animal, somIdFromString(“setSound”));

methodPtr = (somTD_Animal_setSound)somResolve (myAnimal, tok);

methodPtr (myAnimal, ev, “Roar!!!”);

_display (myAnimal, ev);

_somFree (myAnimal) ;

}

Original Class
SOMClass

Related Information
Methods: somGetNthMethodInfo, somGetMethodData

Functions: somResolve, somClassResolve, somParentNumResolve

SOM Kernel Reference 1-91

somGetName Method

Purpose
Returns the name of a class. Not generally overridden.

IDL Syntax

string somGetName ();
Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somGetName method returns the address of a zero-terminated string that gives the
name of the receiving class. This name may be used as a Repositoryld in the
Repository_lookup_id method (described in the SOM Interface Repository Framework
section) to obtain the IDL interface definition that corresponds to the receiving class.

The returned name is not necessarily the same as the statically known class name used by
a programmer to gain access to the class object (for example, via the method
somFindClass). This is because the method somSubstituteClass may have been used
to “shadow” the class having the static name used by the programmer.

Also, when the interface to a class’s instances is defined within an IDL module, the returned
name will not directly correspond to the names of the procedures and macros made
available by the SOMobjects C and C++ usage bindings for accessing class objects (for
example, the <className>NewClass procedure, or the _<className> macro). This is
because the <className> token used in constructing the names of these procedures and
macros uses an underscore character to separate the module name from the interface
name, while the actual name of the corresponding class uses two colon characters instead
of an underscore for this purpose.

The somGetName method is not generally overridden. The returned address is valid until
the class object is unregistered or freed.

Parameters
receiver The class whose name is desired.

Return Value
The somGetName method returns a pointer to the name of the class.

C++ Example

#include <animal.xh> /* assume Animal defined in the Zoo module
*/
#include <string.h>
main ()
{
string className = Zoo_AnimalNewClass (0, 0) —>somGetName () ;
SOM_Test (!strcmp (className, "Zoo::Animal”));

}

Original Class
SOMClass

Related Information
Methods: Repository_lookup_id, somSubstituteClass, somFindClass

1-92 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetNthMethodData Method

Purpose
Returns method information for the nth (static or dynamic) method known to a given class.
Not generally overridden.
IDL Syntax
boolean somGetNthMethodData (
in long index,

out somMethodData md)
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNthMethodData method loads a somMethodData structure with data
describing the method identified by the passed index. The index must have been produced
by a previous call to exactly the same receiver class; the same method will in general have
different indexes in different classes. If the index does not identify a method known to this
class, then false is returned; otherwise, true is returned after loading the somMethodData
structure with data corresponding to the indicated method.

Parameters
receiver A pointer to the class that produced the index value.
index An index returned as a result of a previous call of somGetMethodindex.
md A pointer to a somMethodData structure.

Return Value
Boolean true if successful; otherwise, false.

C++ Example

#include <somcls.xh>
main
{
somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”);

long index = _SOMClass->somGetMethodIndex (gmiId);
somMethodData md;
boolean rc = _SOMClass->somGetNthMethodData (index, &md) ;

SOM_Test (rc && somComparelds (gmild, md.id));
}

Related Information
Methods: somGetMethodIindex, somGetMethodData, somGetNthMethodInfo

Data Structures: somMethodData (somapi.h)

SOM Kernel Reference 1-93

somGetNthMethodIinfo Method

Purpose

Returns the somld of the nth (static or dynamic) method known to a given class. Also loads
a somld with a descriptor for the method. Not generally overridden.

IDL Syntax

somld somGetNthMethodinfo (
in long index,
out somld descriptor);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNthMethodInfo method returns the identifier of a method, and loads the
somld whose address is passed with the somld of the method descriptor. Method
descriptors are used to support access to information stored in a SOM Interface Repository.

Parameters
receiver A pointer to the class from which the index was obtained using method
somGetMethodindex.
index The nth method known to this class, whose method descriptor is desired.

descriptor A pointer to a somld that will be loaded with a somld for the descriptor.

Return Value

The somld for the indicated method, if a method with the indicated index is known to the
receiver; otherwise, NULL.

C++ Example

#include <somcls.xh>
main ()
{
somEnvironmentNew () ;
somId descriptor, icId = somIdFromString(”somInitClass”);

long ndx = _SOMClass->somGetMethodIndex (icId) ;
SOM_Test (
somCompareIds (
icId,

_SOMClass—>somGetNthMethodInfo (ndx, &descriptor));
SOMFree (icId) ;
SOMFree (descriptor) ;
}

Original Class
SOMClass

Related Information
Methods: somGetMethodIndex, somGetNthMethodData

Classes: Repository (repostry.idl)

1-94 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetNumMethods Method

Purpose
Returns the number of methods available for a class. Not generally overridden.

IDL Syntax
long somGetNumMethods ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somGetNumMethods method returns the number of methods currently supported by
the specified class, including inherited methods (both static and dynamic).

The value that the somGetNumMethods method returns is the total number of methods
currently known to the receiving class as being applicable to its instances. This includes
both static and dynamic methods, whether defined in this class or inherited from an
ancestor class.

Parameters
receiver A pointer to the class whose instance method count is desired.

Return Value

The somGetNumMethods method returns the total number of methods that are currently
available for the receiving class.

C Example

#include <animal.h>
main ()

{

int numMethods;

AnimalNewClass (Animal_MajorVersion, Animal_MinorVersion);

numMethods = _somGetNumMethods (_Animal) ;

somPrintf ("Number of methods supported by class: %d\n”,
numMethods) ;

}

Original Class
SOMClass

Related Information
Methods: somGetNumStaticMethods

SOM Kernel Reference 1-95

somGetNumStaticMethods Method

Purpose
Obtains the number of static methods available for a class. Not generally overridden.

IDL Syntax
long somGetNumStaticMethods ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNumStaticMethods method returns the number of static methods available in
the specified class, including inherited ones. Static methods are those that are represented
by entries in the class’s instance method table, and which can be invoked using method
tokens and offset resolution.

Parameters
receiver A pointer to the class whose static method count is desired.

Return Value

The somGetNumStaticMethods method returns the total number of static methods that
are available for instances of the receiving class.

C Example

#include <animal.h>
main ()
{

int numMethods;

AnimalNewClass (Animal_MajorVersion, Animal_MinorVersion);

numMethods = _somGetNumStaticMethods (_Animal);
somPrintf ("Number of static methods supported by class:
$d\n”,

numMethods) ;
}

Original Class
SOMClass

Related Information
Methods: somGetNumMethods

1-96 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetParents Method

Purpose
Gets a pointer to a class’s parent (direct base) classes. Not generally overridden.
IDL Syntax
SOMClassSequence somGetParents ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetParents method returns a sequence containing pointers to the parents of the
receiver.
Parameters
receiver A pointer to the class whose parent (base) classes are desired.

Return Value

The somGetParents method returns a sequence of pointers to the parents of the receiver,
or NULL otherwise (in the case of SOMObject). The sequence of parents is in left-to-right
order.

C Example

/* : Dog is a single-inheritance subclass of Animal. */
#include <dog.h>
main ()
{
Dog myDog;
SOMClass dogClass;
SOMClassSequence parents;
char *parentName;
int 1i;

myDog = DogNew () ;
dogClass = _somGetClass (myDog) ;
parents = _somGetParents (dogClass);
for (i=0; i<parents._length; i++)
somPrintf (”"-- parent %d is %s\n”, i,
_somGetName (parents._buffer[i]));
_somFree (myDog) ;
}
/*
Output from this program:
-— parent 0 is Animal

*/

Original Class
SOMClass

Related Information
Methods: somGetClass

SOM Kernel Reference 1-97

somGetVersionNumbers Method

Purpose

Gets the major and minor version numbers of a class’s implementation code. Not generally
overridden.

IDL Syntax

void somGetVersionNumbers (
out long majorVersion,
out long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetVersionNumbers method returns, via its output parameters, the major and
minor version numbers of the class specified by receiver. The class object must have
already been created (because the class object is the receiver of the method).

Parameters
receiver A pointer to a class object.
majorVersion A pointer where the major version number is to be stored.

minorVersion A pointer where the minor version number is to be stored.

C Example

#include <som.h>
main () {

long major, minor;
SOMClass myClass;

somEnvironmentNew () ;
myClass = _somFindClass (SOMClassMgrObject,
somIdFromString ("Animal”), 0, 0);
_somGetVersionNumbers (myClass, &major, &minor);
somPrintf ("The version numbers are %i and %i.\n”, major,
minor) ;

}

Original Class
SOMClass

Related Information
Methods: somCheckVersion

1-98 SOMobjects Base Toolkit: Programmer’s Reference Manual

somLookupMethod Method

Purpose
Performs name-lookup method resolution. Not generally overridden.

IDL Syntax
somMethodPtr somLookupMethod (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somLookupMethod method uses name-lookup resolution to return the address of the
method procedure that supports the indicated method on instances of the receiver class.
The method may be either static or dynamic. If the method is not supported by the
receiving class, then NULL is returned. The SOM C and C++ usage bindings support
name-lookup method resolution by invoking somLookupMethod on the class of the object
on which a name-lookup method invocation is made.

The somLookupMethod method is like somFindSMethod except that dynamic methods
can also be returned.

As always, in order to use a method procedure pointer such as that returned by
somLookupMethod, it is necessary to typecast the procedure pointer so that the compiler
can create the correct procedure call. This means that a programmer making explicit use of
this method must either know the signature of the identified method, and from this create a
typedef indicating system linkage and the appropriate argument and return types, or make
use of an existing typedef provided by C or C++ usage bindings for a SOM class that
introduces a static method with the desired signature.

Parameters
receiver A pointer to the class whose instance method for the indicated method is
desired.
methodld A somld of the method whose method-procedure pointer is needed.

Return Value
A pointer to the method procedure that supports the method indicated by method|d.

C++ Example

#include <somcls.xh>
#include <somcm.xh>
void main ()
{
somId fcpId = somIdFromString(”somFindClass”)
somId animalld = somIdFromString (”Animal”);
SOMClassMgr *cm = somEnvironmentNew () ;
somTD_SOMClassMgr_somFindClass findclassproc =
(somTD_SOMClassMgr_somFindClass)
_SOMClassMgr—>somLookupMethod (fcpId) ;
SOMClass *aCls = findclassproc(cm,animalId,0,0);

somFree (fcpId);
somFree (animalId);

SOM Kernel Reference 1-99

Original Class
SOMClass

Related Information

Methods: somFindSMethod, somFindSMethodOk Methods, somFindMethod,
somFindMethodOk Methods

1-100 SOMobjects Base Toolkit: Programmer’s Reference Manual

somNew, somNewNolInit Methods

Purpose
Creates a new instance of a class.

IDL Syntax
SOMObject somNew ();

SOMObject somNewNolnit ();

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somNew and somNewNolnit methods create a new instance of the receiving class.
Space is allocated as necessary to hold the new object.

When either of these methods is applied to a class, the result is a new instance of that
class. If the receiver class is SOMClass or a class derived from SOMClass, the new object
will be a class object; otherwise, the new object will not be a class object. The somNew
method invokes the somDefaultlnit method on the newly created object. The
somNewNolnit method does not.

Either method can fail to allocate enough memory to hold a new object and, if so, NULL is
returned.

The SOM Compiler generates convenience macros for creating instances of each class, for
use by C and C++ programmers. These macros can be used in place of this method.

Parameters
receiver A pointer to the class object that is to create a new instance.

Return Value
A pointer to the newly created SOMObject object, or NULL.

Example

#include <animal.h>

void main ()

{ Animal myAnimal;
2 2 —
: next 2 lines are functionally equivalent to
myAnimal = AnimalNew () ;

,,, */

/* Create class object:. */

AnimalNewClass (Animal_MajorVersion, AnimalMinorVersion);

myAnimal = _somNew (_Animal); /* Create instance of Animal
cls */

/* ... %/

_somFree (myAnimal) ; /* Free instance of Animal */

}

Original Class
SOMClass

Related Information
Methods: somRenew

SOM Kernel Reference 1-101

somRenew, somRenewNolnit, somRenewNolnitNoZero,
somRenewNoZero Methods

Purpose
Creates a new object instance using a passed block of storage.

IDL Syntax

SOMObject somRenew (in somToken memPtr);

SOMObject somRenewNolnit (in somToken memPtr);
SOMObject somRenewNolnitNoZero (in somToken memPtr);
SOMObject somRenewNoZero (in somToken memPtr);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description
The somRenew method creates a new instance of the receiving class by setting the
appropriate location in the passed memory block to the receiving class’s instance method
table. Unlike somNew, these “Renew” methods use the space pointed to by memPtr rather
than allocating new space for the object. The somRenew method automatically re-initializes
the object by first zeroing the object’s memory, and then invoking sominit;
somRenewNolnit zeros memory, but does not invoke somlnit. somRenewNolnitNoZero
only sets the method table pointer; while somRenewNoZero calls somlnit, but does not
zero memory first.

No check is made to ensure that the passed pointer addresses enough space to hold an
instance of the receiving class. The caller can determine the amount of space necessary by
using the somGetlinstanceSize method.

The C bindings produced by the SOM Compiler contain a macro that is a convenient
shorthand for _somRenew(_className).

Parameters
receiver A pointer to the class object that is to create the new instance.

memPtr A pointer to the space to be used to construct a new object.

Return Value
The value of newObject is returned, which is now a pointer to a valid, initialized object.

1-102 SOMobjects Base Toolkit: Programmer’s Reference Manual

Example

#include <animal.h>

main ()

{
void *myAnimalCluster;
Animal animals[5];
SOMClass animalClass;
int animalSize, i;

animalClass =
AnimalNewClass (Animal_MajorVersion,Animal_MinorVersion) ;

animalSize = _somGetInstanceSize (animalClass);

/* Round up to double-word multiple */

animalSize = ((animalSize+3)/4)*4;

/*

* Next line allocates room for 5 objects

* in a &odg.cluster” with a single memory-

* allocation operation.

*/
myAnimalCluster = SOMMalloc (5*animalSize);

/*

* The for-loop that follows creates 5 initialized

* Animal instances within the memory cluster.

*/

for (i=0; 1i<5; i++)

animals[i] =
_somRenew (animalClass, myAnimalCluster+(i*animalSize));

/* Uninitialize the animals explicitly: */

for (i=0; 1<5; i++)

_somUninit (animals[i]);

/*

* Finally, the next line frees all 5 animals

* with one operation.

*/
SOMFree (myAnimalCluster);

}

Original Class
SOMClass

Related Information
Methods: somGetinstanceSize, somlnit, somNew

SOM Kernel Reference 1-103

somSupportsMethod Method

Purpose
Returns a boolean indicating whether instances of a class support a given (static or
dynamic) method.

IDL Syntax

boolean somSupportsMethod (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somSupportsMethod method determines if instances of the specified class support
the specified (static or dynamic) method.

Parameters
receiver A pointer to the class object to be tested.

methodld An ID that represents the name of the method.

Return Value
The somSupportsMethod method returns 1 (true) if instances of the specified class
support the specified method, and 0 (false) otherwise.

Example

animal supports a setSound method;
animal does not support a doTrick method.

#include <animal.h>
main ()

{

SOMClass animalClass;

char *methodNamel = ”"”setSound”;
char *methodName2 = "doTrick”;
animalClass =

AnimalNewClass (Animal_MajorVersion, Animal_MinorVersion);
if (_somSupportsMethod (animalClass,
somIdFromString (methodNamel)))
somPrintf (“Animals respond to %s\n”, methodNamel) ;
if (_somSupportsMethod (animalClass,
somIdFromString (methodName?2)))
somPrintf (“Animals respond to %s\n”, methodName2) ;

}

/*
Output from this program:
Animals respond to setSound

*/

Original Class
SOMClass

Related Information
Methods: somRespondsTo

1-104 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOMClassMgr Class

Description
One instance of SOMClassMgr is created automatically during SOM initialization. This

File Stem

Base

Metaclass

instance (pointed to by the global variable, SOMClassMgrObject) acts as a run-time

registry for all SOM class objects that exist within the current process and assists in the
dynamic loading and unloading of class libraries.

You can subclass SOMClassMgr to augment the functionality of its registry. To have an

instance of your subclass replace the SOM-supplied SOMClassMgrObject, use the

somMergelnto method to place the existing registry information from
SOMClassMgrObiject into your new class-manager object.

somcm

SOMObject

SOMClass

Ancestor Classes

Types

Attributes

SOMObject

interface Repository;
SOMClass *SOMClassArray;

The following is a list of each available attribute with its corresponding type in parentheses,
followed by a description of its purpose.

sominterfaceRepository (Repository)
The SOM Interface Repository object. If the Interface Repository is not
available or cannot be initialized, this attribute returns NULL. The object
reference returned by this attribute is owned by the SOMClassMgr and

should not be freed.

somBRegisteredClasses (sequence<SOMClass>)
This is a “readonly” attribute that returns a sequence containing all of the
class objects registered in the current process. When you have finished
using the returned sequence, you should free the sequence’s buffer using
SOMFree. Here is a fragment of code written in C that illustrates the proper

use of this attribute:

sequence (SOMClass) clsList;

clsList = SOMClassMgr__ get_somRegisteredClasses
(SOMClassMgrObject) ;
somPrintf (”Currently registered classes:\n”);
for (i=0; i<clsList._length; i++)

somPrintf (”\t%s\n”, SOMClass_somGetName
(clsList._buffer[il));
SOMFree (clsList._buffer);

SOM Kernel Reference

1-105

New Methods

Group: Basic Functions
somLoadClassFile

somLocateClassFile
somRegisterClass
somUnloadClassFile
somUnregisterClass
Group: Access
somGetlnitFunction
somGetRelatedClasses
Group: Dynamic
somClassFromid
somFindClass
somFindClsInFile
somMergelnto

somSubstituteClass

Overridden Methods

somDumpSelf
somlnit

somUninit

1-106 SOMobjects Base Toolkit: Programmer’s Reference Manual

somClassFromid Method

Purpose

Finds a class object, given its somld, if it already exists. Does not load the class.
IDL Syntax

SOMClass somClassFromld (in somld classl/d);

Note: For backward compatibility, this method does not take an Environment parameter.
Description

Finds a class object, given its somld, if it already exists. Does not load the class.

Use the somClassFromld method instead of somFindClass when you do not want the

class to be automatically loaded if it does not already exist in the current process.
Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a

user-supplied subclass of SOMClassMgr).

classld The somld of the class. This can be obtained from the name of the class

using the somldFromString function.

Return Value

Returns a pointer to the class, or NULL if the class object does not yet exist.

C Example
#include <som.h>
main () |
SOMClass myClass;

char *myClassName = "Animal”;
somId animalIld;

somEnvironmentNew () ;

animalIld = somIdFromString (myClassName);
myClass = SOMClassMgr_ somClassFromId

if (!'myClass)

(SOMClassMgrObject,

animalId);

somPrintf (”Class %s has not been loaded.\n”, myClassName) ;

SOMFree (animalId);
}

This program produces the following output:

Class Animal has not yet been loaded.

Original Class
SOMClassMgr

Related Information
Methods: somFindClass, somFindClsInFile

SOM Kernel Reference 1-107

somFindClass Method

Purpose
Finds the class object for a class.

IDL Syntax

SOMClass somFindClass (
in somld classla,
in long majorVersion,
in long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somFindClass method returns the class object for the specified class. This method
first uses somLocateClassFile (see the following paragraph) to obtain the name of the file
where the class’s code resides, then uses somFindClsiInFile.

If the requested class has not yet been created, the somFindClass method attempts to
load the class dynamically by loading its dynamically linked library and invoking its “new
class” procedure.

The somLocateClassFile method uses the following steps:

1. If the entry in the Interface Repository for the class specified by class/d contains a
dliname modifier, this value is used as the file name for loading the library. (For
information about the dllname modifier, refer to the topic “Modifier statements” in
Chapter 4, “SOM IDL and the SOM Compiler,” of the SOMobjects Developer Toolkit
Users Guide.)

2. In the absence of a dllname modifier, the class name is assumed to be the file name for
the library. Use the somFindClsInFile method if you wish to explicitly pass the file name
as an argument.

If majorVersion and minorVersion are not both zero, they are used to check the class
version information against the caller’s expectations. An implementation is compatible with
the specified version numbers if it has the same major version number and a minor version
number that is equal to or greater than minorVersion.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).

classld The somld representing the name of the class.
majorVersion The class’s major version number.

minorVersion The class’s minor version number.

Return Values
A pointer to the requested class object, or NULL if the class could not be found or created.

1-108 SOMobjects Base Toolkit: Programmer’s Reference Manual

C Example

#include <som.h>

/*

* This program creates a class object
* (from a DLL) without requiring the
* usage binding file (.h or .xh) for
* the class.

*/

void main ()

{
SOMClass myClass;
somId animalId;

somEnvironmentNew () ;
animalIld = somIdFromString (”Animal”);

/* The next statement is equivalent to:
#include "animal.h”
myClass = AnimalNewClass (0, 0);

myClass = SOMClassMgr_somFindClass (SOMClassMgrObject,
animalId, 0, 0);
if (myClass)
somPrintf (”“myClass: %s\n”, SOMClass_somGetName
(myClass));
else
somPrintf (”Class %s could not be dynamically loaded\n”,
somStringFromId
(animalId)) ;
SOMFree (animallId);
}

This program produces the following output:

myClass: Animal

Original Class
SOMClassMgr

Related Information
Methods: somFindClsInFile, somLocateClassFile

SOM Kernel Reference 1-109

somFindClsInFile Method

Purpose
Finds the class object for a class, given a filename that can be used for dynamic loading.

IDL Syntax

SOMClass somFindClsinFile (
in somld classld,
in long majorVersion,
in long minorVersion,
in string file);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somFindClsInFile method returns the class object for the specified class. This method
is the same as somFindClass except that the caller provides the filename to be used if
dynamic loading is needed.

If the requested class has not yet been created, the somFindClsInFile method attempts to
load the class dynamically by loading the specified library and invoking its “new class”
procedure.

If majorVersion and minorVersion are not both zero, they are used to check the class
version information against the caller’s expectations. An implementation is compatible with
the specified version numbers if it has the same major version number and a minor version
number that is equal to or greater than minorVersion.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).

classld The somld representing the name of the class.
majorVersion The class’s major version number.
minorVersion The class’s minor version number.

file A string representing the filename to be used if dynamic loading is required.

Return Value
A pointer to the requested class object, or NULL if the class could not be found or created.

1-110 SOMobjects Base Toolkit: Programmer’s Reference Manual

C Example

#include <som.h>
/*
* This program loads a class and creates
* an instance of it without requiring the
* binding (.h) file for the class.
*
*/
void main ()
{
SOMObject myAnimal;
SOMClass animalClass;
char *animalName = ”"Animal”;

/*

* Filenames will be different for AIX, 0S/2 and Windows

*

* Set animalfile to ”C:\\MYDLLS\\ANIMAL.DLL” for 0S/2
or Windows.
* Set animalfile to ”/mydlls/animal.dl1l” for AIX.

*

*

*/
char *animalFile = ”/mydlls/animal.dll”;

somEnvironmentNew () ;

/* AIX filename */

animalClass = _somFindClsInFile (SOMClassMgrObject,
somIdFromString (animalName),

0, 0,

animalFile);

myAnimal = _somNew (animalClass);

somPrintf (”"The class of myAnimal is %s.\n”,

_somGetClassName (myAnimal)) ;
_somFree (myAnimal) ;
}
/*
Output from this program:
The class of myAnimal is Animal.

*/

Original Class

SOMClassMgr

Related Information

Methods: somFindClass

SOM Kernel Reference

1-111

somGetlnitFunction Method

Purpose
Obtains the name of the function that initializes the SOM classes in a class library.

IDL Syntax

string somGetInitFunction ();
Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somGetlnitFunction method supplies the name of the initialization function for OS/2
class libraries (DLLs) that contain more than one SOM class. The default implementation
returns the value of the global variable SOMClassInitFuncName, which by default is set to
the value “SOMInitModule”.

For AlX, the name of the class initialization function is not important, since AlX class
libraries should always be constructed as shared libraries with a designated entry point
which can be executed automatically by the loader when the class is loaded. Consequently,
the result of this method is not significant on AlX.

Similarly, if an OS/2 class library (DLL) has been constructed with a DLL initialization
function assigned by the linker, you can choose to invoke the <className>NewClass
functions for all of the classes in the DLL during DLL initialization. In this case (as on AlX),
there is no need to export a “SOMInitModule” function. On the other hand, if your compiler
does not provide a convenient mechanism for creating a DLL initialization function, you can
elect to export a function named “SOMInitModule” (or whatever name is ultimately returned
by the somGetlInitFunction method).

The OS/2 SOMClassMgrObiject, after loading a class library, will invoke the method
somGetlnitFunction to obtain the name of a possible initialization function. If this name has
been exported by the class library just loaded, the SOMClassMgrObject calls this function
to initialize the classes in the library. If the name has not been exported by the DLL, the
SOMClassMgrObject then looks for an exported name of the form
<className>NewClass, where <className> is the name of the class supplied with the
method that caused the DLL to be loaded. If the DLL exports this name, it is invoked to
create the named class.

On Windows, the SOM class manager does not call SOMInitModule. It must be called
from the default Windows DLL initialization function, LibMain. This call is made indirectly
through the SOM_ClassLibrary macro.

Regardless of the technique employed, the SOMClassMgrObject expects that all classes
packaged in a single class library will be created during this sequence.

This method is generally not invoked directly by users. User-defined subclasses of
SOMClassMgr, however, can override this method.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).

Return Value

The somGetlnitFunction method returns a string that names the initialization function of
class libraries. By default, this name is the value of the global variable
SOMClasslnitFuncName, the default value of which is SOMInitModule.

1-112 SOMobjects Base Toolkit: Programmer’s Reference Manual

Original Class
SOMClassMgr

Related Information
Methods: somFindClass, somFindClsInFile

Functions: SOMInitModule
Macros: SOM_ClassLibrary

SOM Kernel Reference 1-113

somGetRelatedClasses Method

Purpose

Returns an array of class objects that were all registered during the dynamic loading of a
class.

IDL Syntax
SOMClass * somGetRelatedClasses (in SOMClass classObj);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetRelatedClasses method returns an array of class objects that were all
registered during the dynamic loading of the specified class. These classes are considered
to define an affinity group. Any class is a member of at most one affinity group. The affinity
group returned by this call is the one containing the class identified by the classObj
parameter.

The first element in the array is either the class that caused the group to be loaded, or the
special value —1, which means that the class manager is currently in the process of
unregistering and deleting the affinity group (only class-manager objects would ever see this
value). The remainder of the array consists of pointers to class objects, ordered in reverse
chronological sequence to that in which they were originally registered. This list includes the
given argument, classObj, as one of its elements, as well as the class that caused the group
to be loaded (also given by the first element of the array). The array is terminated by a
NULL pointer as the last element.

Use SOMFree to release the array when it is no longer needed. If the supplied class was
not dynamically loaded, it is not a member of any affinity group and NULL is returned.

Parameters

receiver Usually a pointer to SOMClassMgrObiject, or a pointer to an instance of a
user-defined subclass of SOMClassMgr.

classObj A pointer to a SOMClass object.
Return Value

The somGetRelatedClasses method returns a pointer to an array of pointers to class
objects, or NULL, if the specified class was not dynamically loaded.

1-114 SOMobjects Base Toolkit: Programmer’s Reference Manual

Example

#include <som.h>

SOMClass myClass, *relatedClasses;
string className;

long 1i;

className = SOMClass_somGetName (myClass));
relatedClasses = SOMClassMgr_somGetRelatedClasses
(SOMClassMgrObject, myClass);
if (relatedClasses && *relatedClasses) {
somPrintf (”Class=%s, related classes are: ", className);
for (i=1; relatedClasses([i]; i++)
somPrintf (”%s ”,SOMClass_somGetName

(relatedClasses([i]));
somPrintf (”\n”);
somPrintf (”Class that caused loading was %s\n”,
relatedClasses[0] == (SOMClass) -1 ? "-1"

SOMClass_somGetName (relatedClasses[0]));
SOMFree (relatedClasses);
} else
somPrintf (”No classes related to %$s\n”, className);

Original Class
SOMClassMgr

Related Information
Methods: somGetlnitFunction

SOM Kernel Reference 1-115

somLoadClassFile Method

Purpose
Dynamically loads a class.

IDL Syntax

SOMClass somLoadClassFile (
in somld classl/a,
in long majorVersion,
in long minorVersion,
in string file);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
The SOMClassMgr object uses the somLoadClassFile method to load a class dynamically
during the execution of somFindClass or somFindClsInFile. A SOM class object
representing the class is expected to be created and registered as a result of this method.

The somLoadClassFile method can be overridden to load or create classes dynamically
using your own mechanisms. If you simply wish to change the name of the procedure that is
called to initialize the classes in a library, override somGetlnitFunction instead.

This method is generally not invoked directly by users. Instead, use somFindClass or
somFindClsInFile.

Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).
classld The somld representing the name of the class to load.

majorVersion The major version number used to check the compatibility of the class’s
implementation with the caller’s expectations.

minorVersion The minor version number used to check the compatibility of the class’s
implementation with the caller’s expectations.

file The name of the dynamically linked library file containing the class. The
name can be either a simple, unqualified name (without any extension) or a
fully qualified (or path) file name, as appropriate for your operating system.
For example, on OS/2, file could be c:\myhome\myapp\basename.dll
or else basename (butnotbasename.dll).

Return Value

The somLoadClassFile method returns a pointer to the class object, or NULL if the class
could not be loaded or the class object could not be created.

Original Class
SOMClassMgr

Related Information

Methods: somFindClass, somFindClsInFile, somGetlnitFunction,
somUnloadClassFile

1-116 SOMobjects Base Toolkit: Programmer’s Reference Manual

somLocateClassFile Method

Purpose
Determines the file that holds a class to be dynamically loaded.

IDL Syntax

string somLocateClassFile (
in somld classld,
in long majorVersion,
in long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The SOMClassMgr object uses the somLocateClassFile method when executing
somFindClass to obtain the name of a file to use when dynamically loading a class. The
default implementation consults the Interface Repository for the value of the dllname
modifier of the class; if no dlilname modifier was specified, the method simply returns the
class name as the expected filename.

If you override the somLocateClassFile method in a user-supplied subclass of
SOMClassMgr, the name you return can be either a simple, unqualified name without any
extension or a fully qualified file name. Generally speaking, you would not invoke this
method directly. It is provided to permit customization of subclasses of SOMClassMgr
through overriding.

Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).
classld The somld representing the name of the class to locate.

majorVersion The major version number used to check the compatibility of the class’s
implementation with the caller’s expectations.

minorVersion The minor version number used to check the compatibility of the class’s
implementation with the caller’s expectations.

Return Value
The somLocateClassFile method returns the name of the file containing the class.

Original Class
SOMClassMgr

Related Information

Methods: somFindClass, somFindClsInFile, somGetlnitFunction, somLoadClassFile,
somUnloadClassFile

SOM Kernel Reference 1-117

somMergelnto Method

Purpose
Transfers SOM class registry information to another SOMClassMgr instance.

IDL Syntax
void somMergelnto (in SOMClassMgr targel);

Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somMergelnto method transfers the SOMClassMgr registry information from one
object to another. The target object is required to be an instance of SOMClassMgr or one of
its subclasses. At the completion of this operation, the target object can function as a
replacement for the receiver. The receiver object (which is then in a newly uninitialized
state) is placed in a mode where all methods invoked on it will be delegated to the target
object. If the receiving object is the instance pointed to by the global variable
SOMClassMgrObject, then SOMClassMgrObiject is reassigned to point to the target
object.

Subclasses of SOMClassMgr that override the somMergelnto method should transfer their
section of the class manager object from the target to the receiver, then invoke their parent’s
somMergelnto method as the final step.

Invoke this method only if you are creating your own subclass of SOMClassMgr. Invoke
somMergelnto from your override of the SOMClassMgr’s somNew method.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).

target A pointer to another instance of SOMClassMgr or one of its subclasses.

1-118 SOMobjects Base Toolkit: Programmer’s Reference Manual

C Example

* The following example is a hypothetical

* implementation of an override of the somNew method

* in a subclass of SOMClassMgr. It illustrates the

* proper use of the somMergeInto method.

*/
SOM_Scope SOMAny * SOMLINK somNew (MySOMClassMgr somSelf)
{

SOMAny *newlnstance;

static int firstTime = 1;

/*
* Permit only one instance of MySOMClassMgr to be created.
*/

if (!firstTime)

return (SOMClassMgrObject);

newInstance = parent_SOMClassMgr_somNew (somSelf);
/*

* The next line will transfer the class registry

* information from SOMClassMgrObject into our

* new instance.

*/
_somMergeInto (SOMClassMgrObject, newlInstance);
/* As a result of the above operation

* SOMClassMgrObject is now set to point to the

* new instance of MySOMClassMgr.

*/
firstTime = 0;
return (newlInstance);

}

Original Class
SOMClassMgr

SOM Kernel Reference 1-119

somRegisterClass Method

Purpose
Adds a class object to the SOM run-time class registry.

IDL Syntax

void somRegisterClass (in SOMClass classOb));
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somRegisterClass method adds a class object to the SOM run-time class registry
maintained by SOMClassMgrObject.

All SOM run-time class objects should be registered with the SOMClassMgrObject. This is
done automatically during the execution of the somClassReady method as class objects
are created.

Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).
classObj A pointer to the class object to add to the SOM class registry.

Original Class
SOMClassMgr

Related Information
Methods: somUnregisterClass

1-120 SOMobjects Base Toolkit: Programmer’s Reference Manual

somSubstituteClass Method

Purpose

Causes the somFindClass, somFindClsInFile, and somClassFromld methods to
substitute one class for another.

IDL Syntax

long somSubstituteClass (
in string origClassName,
in string newClassName);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somSubstituteClass method causes the somFindClass, somFindClsInFile, and
somClassFromld methods to return the class named newClassName whenever they would
normally return the class named origClassName. This effectively results in class
newClassName replacing or substituting for class origClassName. For example, the
<origClassName>New macro will subsequently create instances of newClassName.

Some restrictions are enforced to ensure that this works well. Both class origClassName
and class newClassName must have been already registered before issuing this method,
and newClassName must be an immediate child of origClassName. In addition (although
not enforced), no instances should exist of either class at the time this method is invoked.

A convenience macro (SOM_SubstituteClass) is provided for C or C++ users. In one
operation, it creates both the old and the new class and then substitutes the new one in
place of the old. The use of both the somSubstituteClass method and the
SOM_SubstituteClass macro is illustrated in the following example.

Parameters

receiver Usually SOMClassMgrObject or a pointer to an instance of a user-defined
subclass of SOMClassMgr.

origClassName
A NULL terminated string containing the old class name.

newClassName
A NULL terminated string containing the new class name.

Return Value

The somSubstituteClass method returns a value of zero to indicate success; a non-zero
value indicates an error was detected.

SOM Kernel Reference 1-121

C Example

#include ”student.h”
finclude “mystud.h”

/* Macro form */
SOM_SubstituteClass (Student, MyStudent);

/* Direct use of the method, equivalent to
* the macro form above.

*/

{

SOMClass origClass, replacementClass;

origClass = StudentNewClass (Student_MajorVersion,
Student_MinorVersion) ;
replacementClass = MyStudentNewClass (MyStudent_MajorVersion,
MyStudent_MinorVersion) ;
SOMClassMgr_somSubstituteClass (
SOMClass_somGetName (origClass),
SOMClass_somGetName (replacementClass));

}

Original Class
SOMClassMgr

Related Information
Methods: somClassFromld, somFindClass, somFindClsInFile, somMergelnto

1-122 SOMobjects Base Toolkit: Programmer’s Reference Manual

somUnloadClassFile Method

Purpose
Unloads a dynamically loaded class and frees the class’s object.

IDL Syntax

long somUnloadClassFile (in SOMClass c/ass);
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somUnregisterClass method uses the somUnloadClassFile method to unload a
dynamically loaded class. This releases the class’s code and unregisters all classes in the
same affinity group. (Use somGetRelatedClasses to find out which other classes are in the
same affinity group.)

The class object is freed whether or not the class’ s shared library could be unloaded. If the
class was not registered, an error condition is raised and SOMError is invoked. This method
is provided to permit user-created subclasses of SOMClassMgr to handle the unloading of
classes by overriding this method. Do not invoke this method directly; instead, invoke
somUnregisterClass.

Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).
class A pointer to the class to be unloaded.

Return Value

The somUnloadClassFile method returns 0 if the class was successfully unloaded;
otherwise, it returns a system-specific non-zero error code from either the OS/2
DosFreeModule or the AlX unload system call or the Windows FreeLibrary system call.

Original Class
SOMClassMgr

Related Information

Methods: somClassFromld, somRegisterClass, somUnregisterClass,
somGetRelatedClasses

SOM Kernel Reference 1-123

somUnregisterClass Method

Purpose
Removes a class object from the SOM run-time class registry.
IDL Syntax
long somUnregisterClass (in SOMClass cl/ass);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somUnregisterClass method unregisters a SOM class and frees the class object. If
the class was dynamically loaded, it is also unloaded using somUnloadClassFile (which
causes its entire affinity group to be unloaded as well).
Parameters

receiver Usually SOMClassMgrObiject (or a pointer to an instance of a
user-supplied subclass of SOMClassMgr).

class A pointer to the class to be unregistered.

Return Value

The somUnregisterClass method returns 0 for a successful completion, or non-zero to
denote failure.

Example

#include <som.h>

void main ()

{
long rc; /* Return code */
SOMClass animalClass;

/* The next 2 lines declare a static form of somId */
string animalClassName = ”Animal”;
somId animalId = &animalClassName;

somEnvironmentNew () ;
animalClass = SOMClassMgr_somFindClass (SOMClassMgrObject,
animalId, 0, 0);

if (l'animalClass) {
somPrintf (”Could not load class.\n”);
return;

}
rc = SOMClassMgr_somUnregisterClass (SOMClassMgrObiject,
animalClass) ;

if (rc)
somPrintf (”Could not unregister class, error code:
$1d.\n"”,
rc);
else

somPrintf (”Class successfully unloaded.\n”);

1-124 SOMobjects Base Toolkit: Programmer’s Reference Manual

Original Class
SOMClassMgr

Related Information
Methods: somLoadClassFile, somRegisterClass, somUnloadClassFile

SOM Kernel Reference 1-125

SOMODbiject Class

SOMObiject is the root class for all SOM classes. That is, all SOM classes must be
subclasses of SOMObiject or of some other class derived from SOMObject. SOMObject
introduces no instance data, so objects whose classes inherit from SOMObject incur no
size increase. They do inherit a suite of methods that provide the behavior required of all
SOM objects. Three of these methods are typically overridden by any subclass that has
instance data — somDefaultlnit, somDestruct, and somDumpSelfint. See the
descriptions of these methods for more information.

File Stem

somobj

Base
None

Metaclass
SOMClass

Ancestor Classes

None

New Methods

Group: Initialization/Termination
somFree

somDefaultinit
somDestruct
somlinit

somUninit

Group: Access
somGetClass

somGetClassName
somGetSize

Group: Testing
somlisA

somlsinstanceOf

somRespondsTo

1-126 SOMobjects Base Toolkit: Programmer’s Reference Manual

Group: Dynamic
somDispatchA
somDispatchD
somDispatchL
somDispatchV
somDispatch
somClassDispatch
somCastObj
somResetObj

Group: Development Support
somDumpSelf

somDumpSelfint
somPrintSelf

Overridden Methods

None

SOM Kernel Reference 1-127

somCastObj Method

Purpose

Changes the behavior of an object to that defined by any ancestor of the true class of the
object.

IDL Syntax

boolean somCastObj (in SOMClass ancestor);

Description
The somCastObj method changes the behavior of an object so that its behavior will be that
of an instance of the indicated ancestor class (with respect to any method supported by the
ancestor). The behavior of the object on methods not supported by the ancestor remains
unchanged.

This operation actually changes the class of the object (since an object’s behavior is defined
by its class). The name of the new class is derived from the initial name of the object’s class
and the name of the ancestor class, as illustrated in the following example.

The somCastObj method may be used on an object multiple times, always with the
restriction that the ancestor class whose behavior is selected is actually an ancestor of the
true (original) class of the object.

Parameters
receiver A pointer to an object of type SOMObject.

ancestor A pointer to a class that is an ancestor of the actual class of the receiver.

Return Value
The somCastObj method returns 1 (TRUE) if the operation is successful and 0 (FALSE)
otherwise. The operation fails if ancestor is not actually an ancestor of the class of the
object.

Example

#include <som.h>
main ()
{

SOMClassMgr cm = somEnvironmentNew () ;

SOM_Test (1 == _somCastObj(cm, _SOMObject));
_somDumpSelf (cm, 0));
SOM_Test (1 == _somResetObj(cm));
_somDumpSelf (cm, 0);
}
/* output:
* {An instance of class SOMClassMgr->SOMObject
* at address 20061268
* o)
* {An instance of class SOMClassMgr at address 20061268
* <SOMClassMgr State Information>
* o}
*

/

1-128 SOMobjects Base Toolkit: Programmer’s Reference Manual

Original Class
SOMObject

Related Information
Methods: somResetObj

SOM Kernel Reference 1-129

somDefaultlnit Method

Purpose
Initializes instance variables and attributes in a newly created object. Replaces somlnit as
the preferred method for default object initialization. For performance reasons, it is
recommended that somDefaultlnit always be overridden by classes.

Syntax
void somDefaultlnit (inout somlInitCtrl ctr/);

Description

Every SOM class is expected to support a set of initializer methods. This set will always
include somDefaultlnit, whether or not the class explicitly overrides somDefaultlnit. All
other initializer methods for a class must be explicitly introduced by the class. See Section
5.5, “Initializing and Uninitializing Objects,” of the SOMobjects Developer Toolkit Users
Guide for complete information on introducing new initializers.

The purpose of an initializer method supported by a class is first to invoke initializer
methods of ancestor classes (those ancestors that are the class’s directinitclasses) and
then to place the instance variables and attributes introduced by the class into some
consistent state by loading them with appropriate values. The result is that, when an object
is initialized, each class that contributes to its implementation will run some initializer
method. The somDefaultlnit method may or may not be among the initializers used to
initialize a given object, but it is always available for this purpose.

Thus, the somDefaultlnit method may be invoked on a newly created object to initialize its
instance variables and attributes. The somDefaultlnit method is more efficient than somlnit
(the method it replaces), and it also prevents multiple initializer calls to ancestor classes.
The somlnit method is now considered obsolete when writing new code, although sominit
is still supported.

To override somDefaultlnit, the implementation section of the class’s .idl file should
include somDefaultlnit with the override and init modifiers specified. (The init modifier
signifies that the method is an initializer method.) No additional coding is required for the
resulting somDefaultinit stub procedure in the implementation template file, unless the
class implementor wishes to customize object initialization in some way.

If the .idl file does not explicitly override somDefaultlnit, then by default a generic method
procedure for somDefaultInit will be provided by the SOMobjects Toolkit. If invoked, this
generic method procedure first invokes somDefaultInit on the appropriate ancestor
classes, and then (for consistency with earlier versions of SOMobjects) calls any sominit
code that may have been provided by the class (if somlnit was overridden). Because the
generic procedure for somDefaultlnit is less efficient than the stub procedure that is
provided when somDefaultlnit is overridden, it is recommended that the .idl file always
override somDefaultlnit.

Note: It is not appropriate to override both somDefaultlnit and somlnit. If this is done, the
somlinit code will not be executed. The best way to convert an old class that
overrides sominit to use of the more efficient somDefaultlnit (if this is desired) is as
follows: (1) Replace the somlnit override in the class’s .idl file with an override for
somDefaultlnit, (2) run the implementation template emitter to produce a stub
procedure for somDefaultlnit, and then (3) simply call the class’s somlinit
procedure directly (not using a method invocation) from the somDefaultinit method
procedure.

1-130 SOMobjects Base Toolkit: Programmer’s Reference Manual

As mentioned previously, the object-initialization framework supported by SOMobjects
allows a class to support additional initializer methods besides somDefaultlnit. These
additional initializers will typically include special-purpose arguments, so that objects of the
class can be initialized with special capabilities or characteristics. For each new initializer
method, the implementation section must include the method name with the init modifier.
Also, the directinitclasses modifier can be used if, for some reason, the class implementor
wants to control the order in which ancestor initializers are executed.

Notes: It is recommended that the method name for an initializer method include the class
name as a prefix. A newly defined initializer method will include an implicit Environment
argument if the class does not use a callstyle=oidl modifier.

Important: There are important constraints associated with modification of the procedure
stubs for initializers. These are documented in Section 5.5 of the SOMobjects Developer
Toolkit Users Guide.

Parameters
receiver A pointer to an object.
ctrl A pointer to a somlnitCtrl data structure. SOMobjects uses this data
structure to control the initialization of the ancestor classes, thereby
ensuring that no ancestor class receives multiple initialization calls.
Example

// SOM IDL
#include <Animal.idl>

interface Dog : Animal
{
implementation {
releaseorder: ;
somDefaultInit: override, init;
bi
}i

Original Class
SOMObject

Related Information
Methods: somDestruct

SOM Kernel Reference 1-131

somDestruct Method

Purpose
Uninitializes the receiving object, and (if so directed) frees object storage after
uninitialization has been completed. Replaces somUninit as the preferred method for
uninitializing objects. For performance reasons, it is recommended that somDestruct
always be overridden. Not normally invoked directly by object clients.

Syntax
void somDestruct (in octet dofree, inout somDestructCtrl ctrl);

Description

Every class must support the somDestruct method. This is accomplished either by
overriding somDestruct (in which case a specialized stub procedure will be generated in
the implementation template file), or else SOMobjects will automatically provide a generic
procedure that implements somDestruct for the class. The generic procedure calls
somUninit (if this was overridden) to perform local uninitialization, then completes
execution of the method appropriately.

Because the specialized stub procedure generated by the template emitter is more efficient
than the generic procedure provided when somDestruct is not overridden, it is
recommended that somDestruct always be overridden. The stub procedure that is
generated in this case requires no modification for correct operation. The only modification
appropriate within this stub procedure is to uninitialize locally introduced instance variables.
See Section 5.5, “Initializing and Uninitializing Objects,” of the SOMobjects Developer
Toolkit Users Guide for further details.

Uninitialization with somDestruct executes as follows: For any given class in the ancestor
chain, somDestruct first uninitializes that class’s introduced instance variables (if this is
appropriate), and then calls the next ancestor class’s implementation of somDestruct,
passing 0 (that is, false) as the interim dofree argument. Then, after all ancestors of the
given class have been uninitialized, if the class’s own somDestruct method were originally
invoked with dofree as 1 (that is, true), then that object’s storage is released.

Note: It is not appropriate to override both somDestruct and somUninit. If this is done,
the somUninit code will not be executed. The best way to convert an old class that
overrides somUninit to use of the more efficient somDestruct (if this is desired) is
as follows: (1) Replace the somUninit override in the class’s .idl file with an override
for somDestruct, (2) run the emitter to produce a stub procedure for somDestruct
in the implementation template file, and then (3) simply call the class’s somUninit
procedure directly (not using a method invocation) from the somDestruct
procedure.

1-132 SOMobjects Base Toolkit: Programmer’s Reference Manual

Parameters

receiver A pointer to an object.

dofree A boolean indicating whether the caller wants the object storage freed after
uninitialization of the current class has been completed. Passing 1 (true)

indicates the object storage should be freed.

ctrl A pointer to a somDestructCtrl data structure. SOMobjects uses this data
structure to control the uninitialization of the ancestor classes, thereby
ensuring that no ancestor class receives multiple uninitialization calls. If a
user invokes somDestruct on an object directly, a NULL (that is, zero) ctrl
pointer can be passed. This instructs the receiving code to obtain a
somDestructCtrl data structure from the class of the object.

Example

// SOM IDL
#include <Animal.idl>

interface Dog : Animal
{
implementation {
releaseorder: ;

somDestruct:

}i
}i

Original Class
SOMObject

Related Information
Methods: somDefaultinit

override;

SOM Kernel Reference 1-133

somDispatch, somClassDispatch Methods

Purpose
Invokes a method using dispatch method resolution. The somDispatch method is designed
to be overridden. The somClassDispatch method is not generally overridden.
IDL Syntax
boolean somDispatch (
out somToken retValue,
in somld methodld,
in va_list args);
boolean somClassDispatch (
in SOMClass c/sObj,
out somToken retValue,
in somld methodld,
in va_list args);
Note: For backward compatibility, these methods do not take an Environment parameter.
Description

Both somDispatch and somClassDispatch perform method resolution to select a method
procedure, and then invoke this procedure on args. The “somSelf” argument for the
selected method procedure (called the “target object,” in the following text, to distinguish it
from the receiver of the somDispatch or somClassDispatch method call) is the first
argument included in the va_list, args.

For somDispatch, method resolution is performed using the class of the receiver; for
somClassDispatch, method resolution is performed using the argument class, c/sObj.
Because somClassDispatch uses c/sObj for method resolution, a programmer invoking
somDispatch or somClassDispatch should assure that the class of the target object is
either derived from or is identical to the class used for method resolution; otherwise, a
run-time error will likely result when the target object is passed to the resolved procedure.
Although not necessary, the receiver is usually also the target object.

The somDispatch and somClassDispatch methods supersede the somDispatch X
methods. Unlike the somDispatch X methods, which are restricted to few return types, the
somDispatch and somClassDispatch methods make no assumptions concerning the
result returned by the method to be invoked. Thus, somDispatch and somClassDispatch
can be used to invoke methods that return structures. The somDispatch X methods now
invoke somDispatch, so overriding somDispatch serves to override the somDispatch X
methods as well.

1-134 SOMobjects Base Toolkit: Programmer’s Reference Manual

Parameters
receiver

clsObj

retValue

methodld

args

Return Value

A pointer to the object whose class will be used for method resolution by
somDispatch.

A pointer to the class that will be used for method resolution by
somClassDispatch.

The address of the area in memory where the result of the invoked method
procedure is to be stored. The caller is responsible for allocating enough
memory to hold the result of the specified method. When dispatching
methods that return no result (that is, void), a NULL may be passed as this
argument.

A somld identifying the method to be invoked. A string representing the
method name can be converted to a somld using the somldFromString
function.

A va_list containing the arguments to be passed to the method identified
by methodld. The arguments must include a pointer to the target object as
the first entry. As a convenience for C and C++ programmers, SOM’s
language bindings provide a varargs invocation macro for va_list methods
(such as somDispatch and somClassDispatch). The following example
illustrates this.

A boolean representing whether or not the method was successfully dispatched is returned.
The reason for this is that somDispatch and somClassDispatch use the function
somApply to invoke the resolved method procedure, and somApply requires an apply stub
for successful execution. In support of old class binaries SOM does not consider a NULL
apply stub to be an error. As a result, somApply may fail. If this happens, then false is
returned; otherwise, true is returned.

SOM Kernel Reference 1-135

C Example

Given class Key that has an attribute keyval of type long and an overridden method for
somPrintSelf that prints the value of the attribute (as well as the information printed by
SOMObject’s implementation of somPrintSelf), the following client code invokes methods
on Key objects using somDispatch and somClassDispatch. (The Key class was defined

with

the callstyle=oidl class modifier, so the Environment argument is not required of its

methods.)

#include <key.h>

main ()

{

SOMObject obj;

long k1 = 7, k2;

Key myKey = KeyNew () ;

va_list push, args = SOMMalloc(8);

somId setId = somIdFromString(”_set_keyval”);
somId getId = somIdFromString (”_get_keyval”);
somId prtld somIdFromString (”_somPrintSelf”);

/* va_list invocation of setkey and getkey : */

push = args;

va_arg (push, SOMObject) = myKey;

va_arg (push, long) = k1;
SOMObject_somDispatch (myKey, (somToken*)0, setId,args);
push = args;

va_arg (push, SOMObject) = myKey;

SOMObject_somDispatch (myKey, (somToken*) &k2,getId, args);
printf (”“va_list _set_keyval and _get_keyval: %$i\n”, k2);

/* varargs invocation of setkey and getkey : */
_somDispatch (myKey, (somToken*)0, setlId, myKey, kl1);
_somDispatch (myKey, (somToken*)&k2, getId, myKey);
printf (”“varargs _set_keyval and _get_keyval: %$i\n”, k2);

/* illustrate somclassDispatch ”casting” (use varargs form) */
printf ("somPrintSelf on myKey as a Key:\n”);
_somClassDispatch (myKey,_Key, (somToken*) &obj2,prtId, myKey,0);
printf (“somPrintSelf on myKey as a SOMObject:\n”);

somClassDispatch (myKey,_SOMObject, (somToken*) &obj,prtId, myKey, 0)

4

}
This

SOMFree (args); SOMFree (setlId); SOMFree (getlId); SOMFree (prtld);
_somfFree (myKey) ;

program produces the following output:

va_list _set_keyval and _get_keyval: 7
varargs _set_keyval and _get_keyval: 7
somPrintSelf on myKey as a Key:

{

An instance of class Key at address 2005B2F8}
—-— with key value 7

somPrintSelf on myKey as a SOMObject:

{

An instance of class Key at address 2005B2F8}

Original Class
SOMObject

Related Information
Functions: somApply

1-136 SOMobjects Base Toolkit: Programmer’s Reference Manual

somDispatch X Methods (Obsolete)

Purpose

Invoke a method using dispatch method resolution

IDL Syntax

somToken somDispatchA (
in somld methodld,
in somld descriptor,
in va_list args);

double somDispatchD (
in somld methodla,
in somld descriptor,
in va_list args);

long somDispatchlL (
in somld methodld,
in somld descriptor,
in va_list args);

void somDispatchV (
in somld methodld,
in somld descriptor,
in va_list args);

. These methods are obsolete.

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somDispatch X methods are superseded by the more general somDispatch method,

and are retained solely for backward compatibility.

The somDispatchX methods invoke on the receiving object the method identified by
methodld, with arguments specified by args. The target object for the method invocation is

the receiving object, which is not included in the arguments.

Parameters
receiver A pointer to the object on which the dispatched method is invoked.
methodld A somld that represents the method to be invoked.
descriptor A somld that represents the types of the arguments being passed in the
args va_list. This parameter is not used in the current
implementation, so a NULL value can be substituted.
args A va_list containing the arguments to be passed to the method identified

by methodld. The arguments do not include the target for the dispatched

method.

SOM Kernel Reference 1-137

Return Value

Four families of return values are supported, corresponding to the four forms of the
somDispatch X method. The somDispatch X method chosen should have a return type
compatible with the result of the method identified by methodld. Within each of the four
families, only the largest representation is supported.

The four families are:

Pointer somDispatchA returns an address as a somToken.

Floating point somDispatchD returns a floating point number as a double.

Integer somDispatchlL returns an integer as a long.
Void somDispatchV returns void. It is used for methods that do not return a
result.

Original Class
SOMObject

Related Information
Methods: somDispatch

Functions: somApply

1-138 SOMobjects Base Toolkit: Programmer’s Reference Manual

somDumpSelf Method

Purpose
Writes out a detailed description of the receiving object. Intended for use by object clients.
Not generally overridden.
IDL Syntax
void somDumpSelf (in long /evel);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somDumpSelf method performs some initial setup, and then invokes the
somDumpSelfint method to write a detailed description of the receiver, including its state.
Parameters
receiver A pointer to the object to be dumped.
level The nesting level for describing compound objects. It must be greater than
or equal to 0. All lines in the description will be preceded by “2 * level”
spaces.
Example

See the somDumpSelfint method.

Original Class
SOMObject

Related Information
Methods: somDumpSelfint

SOM Kernel Reference 1-139

somDumpSelfint Method

Purpose

Outputs the internal state of an object. Intended to be overridden by class implementors.
Not intended to be directly invoked by object clients.

IDL Syntax

void somDumpSelfint (in long /evel);
Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somDumpSelfint method should be overridden by a class implementor, to write out the
instance data stored in an object. This method is invoked by the somDumpSelf method,
which is used by object clients to output the state of an object.

The procedure used to override this method for a new class should begin by calling the
parent class form of this method on each of the class parents, and should then write a
description of the instance variables introduced by new class. This will result in a description
of all the class’s instance variables. The C and C++ implementation bindings provide a
convenient macro for performing parent method calls on all parents, as illustrated in the
following examples.

The character output routine pointed to by SOMOutCharRoutine should be used for output.
The somLPrintf function is especially convenient for this, since level is handled
appropriately.

Parameters

C Example

receiver A pointer to the object to be dumped.

level The nesting level for describing compound objects. It must be greater than
or equal to 0. All lines in the description should be preceded by “2 * level”
spaces.

Following is a method overriding somDumpSelfint for class “List”, which has two attributes,
val (which is a long) and next (which is a pointer to a “List” object).

SOM_Scope void SOMLINK somDumpSelfInt (List somSelf, int level)

{
ListData *somThis = ListGetData (somSelf);
Environment *ev = somGetGlobalEnvironment () ;

List_parents_somDumpSelfInt (somSelf, level);

somLPrintf (level, ”This item: %i\n”, _ get_val (somSelf, ev);

somLPrintf (level, ”Next item: \n”);

if (__get_next (somSelf, ev) != (List) NULL)
somDumpSelfInt (get_next (somSelf, ev), level+l);

else

somLPrintf (level+l, ”NULL\n”);

1-140 SOMobjects Base Toolkit: Programmer’s Reference Manual

Following is a client program that invokes the somDumpSelf method on “List” objects:

#include <list.h>

main ()
{
List L1, L2;
long x =7, y = 13;
Environment *ev = somGetGlobalEnvironment () ;

L1 = ListNew();

L2 = ListNew();

__set_wval(Ll, ev, Xx);
__set_next(Ll, ev, (List) NULL);
__set_val (L2, ev, Vy);
__set_next (L2, ev, L1);

_somDumpSelf (L2, 0) ;

_somFree (L1l);
_somFree (L2);

}
Following is the output produced by this program:

{An instance of class List at 0x2005EAS8
This item: 13
Next item:
1 This item: 7
1 Next item:
2 NULL

Original Class
SOMObject

Related Information
Methods: somDumpSelf, somPrintSelf

SOM Kernel Reference 1-141

somFree Method

Purpose

Releases the storage used by an object and frees the object. Intended for use by object
clients. Not generally overridden.

IDL Syntax

void somFree ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somFree method releases the storage containing the receiver object by calling the
method somDeallocate. No future references should be made to the receiver once this is
done. Before releasing storage, somFree calls somUninit to allow storage pointed to the
object to be freed.

The somFree method should not be called on objects created by somRenew, thus the
method is normally only used by code that also created the object.

Note: SOM also supplies a function, SOMFree, which is used to free a block of memory.
This function should not be used on objects.

Parameters
receiver A pointer to the object to be freed.

C Example

#include <animal.h>

void main ()

{

Animal myAnimal;

/*

* Create an obiject.

*/
myAnimal = AnimalNew () ;
/* oL r/

/* Free it when finished. */
_somFree (myAnimal) ;

}

Original Class
SOMObject

Related Information
Methods: somNew, somNewNolnit, somUninit

Functions: SOMFree

1-142 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetClass Method

Purpose
Returns a pointer to an object’s class object. Not generally overridden.

IDL Syntax
SOMClass somGetClass ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

somGetClass obtains a pointer to the receiver’s class object. The somGetClass method is
typically not overridden.

Important : For C and C++ programmers, SOM provides a SOM_GetClass macro that
performs the same function. This macro should only be used only when absolutely
necessary (that is, when a method call on the object is not possible), since it bypasses
whatever semantics may be intended for the somGetClass method by the implementor of
the receiver’s class. Even class implementors do not know whether a special semantics for
this method is inherited from ancestor classes. If you are unsure of whether the method or
the macro is appropriate, you should use the method call.

Parameters
receiver A pointer to the object whose class is desired.

Return Value
A pointer to the object’s class object.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
int numMethods;
SOMClass animalClass;

myAnimal = AnimalNew ();
animalClass = _somGetClass (myAnimal);
SOM_Test (animalClass == _Animal);

}

Original Class
SOMObject

Related Information
Macros: SOM_GetClass

SOM Kernel Reference 1-143

somGetClassName Method

Purpose
Returns the name of the class of an object. Not generally overridden.
IDL Syntax
string somGetClassName ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetClassName method returns a pointer to a zero-terminated string that gives the
name of the class of an object.
This method is not generally overridden; it simply invokes somGetName on the class of the
receiver. Refer to somGetName for more information on the returned string,
Parameters

receiver A pointer to the object whose class name is desired.

Return Value
The somGetClassName method returns a pointer to the name of the class.

C Example

#include <animal.h>

main ()

{
Animal myAnimal;
SOMClass animalClass;
char *className;

myAnimal = AnimalNew () ;

className = _somGetClassName (myAnimal) ;
somPrintf (”“Class name: 3%s\n”, className);
_somFree (myAnimal) ;

}

/*

Output from this program:
Class name: Animal

*/

Original Class
SOMObject

Related Information
Methods: somGetName

1-144 SOMobjects Base Toolkit: Programmer’s Reference Manual

somGetSize Method

Purpose
Returns the size of an object. Not generally overridden.

IDL Syntax

long somGetSize ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetSize method returns the total amount of contiguous space used by the

receiving object.

The value returned reflects only the amount of storage needed to hold the SOM
representation of the object. The object might actually be using or managing additional

space outside of this area.

The somGetSize method is not generally overridden.

Parameters

receiver A pointer to the object whose size is desired.

Return Value

The somGetSize method returns the size, in bytes, of the receiver.

C Example

#include <animal.h>
void main ()
{
Animal myAnimal;
int animalSize;

myAnimal = AnimalNew () ;
animalSize = _somGetSize (myAnimal) ;
somPrintf (”Size of animal (in bytes): %d\n”, animalSize);

_somFree (myAnimal) ;

}

/*

Output from this program:
Size of animal (in bytes): 8
*/

Original Class
SOMObject

Related Information
Methods: somGetinstancePartSize, somGetinstanceSize

SOM Kernel Reference 1-145

somlnit Method

Purpose
Initializes instance variables or attributes in a newly created object. Designed to be
overridden.
Note: The newer somDefaultlnit method is suggested instead.
IDL Syntax
void somlinit ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description

The somlnit method is invoked to cause a newly created object to initialize its instance
variables or attributes.

Note: The newer somDefaultlnit method performs object initialization more efficiently and
is now the preferred approach for overriding initialization in an implementation file.
(The somlnit method still executes correctly as before.)

Because instances of SOMObject do not have any instance data, the default
implementation does nothing. It is provided as a convenience to class implementors so that
initialization of objects can be done in a uniform way across all classes (by overriding
somilnit). This method is called automatically by somNew during object creation.

A companion method, somUninit, is called whenever an object is freed. These two
methods should be designed to work together, with somlnit priming an object for its first
use, and somUninit preparing the object for subsequent release.

If objects of your class contain instance variables or attributes, override the sominit method
to initialize the instance variables or attributes when instances of the class are created.
When overriding this method, always call all parent (base) classes’ versions of this method
before doing your own initialization, as follows:

1. The overriding implementation should invoke the parent method for each parent. For
users of the C or C++ implementation bindings, this can be done in either of two ways:

a. By calling a <className>_parents_<methodName> macro (which automatically
invokes all parent methods) or

b. By calling the <className>_parent_<parentName>_<methodName> macro on each
parent separately.

For more information on parent method calls, see the topic “Extending the
Implementation Template” in Chapter 5, “Implementing Classes in SOM,” of the SOM
Toolkit User’s Guide.

2. The code must be written so that it can be executed multiple times without harm on the
same object. This is necessary because, under multiple inheritance, parent method calls
that progress up the inheritance hierarchy may encounter the same ancestor class more
than once (where different inheritance paths “join” when followed backward). A check
can be made to determine whether a particular invocation of somlnit is the first on a
given object by examining the contents of its instance variables; all the instance
variables of a newly created SOM object are set to zero before somlinit is invoked on
that object.

1-146 SOMobjects Base Toolkit: Programmer’s Reference Manual

More information and examples on object initialization (especially regarding the
somDefaultlnit method) are given in the topic “Initializing and Uninitializing Objects” in
Chapter 5, “Implementing Classes in SOM,” of the SOM Toolkit User’s Guide.

Parameters

receiver A pointer to the object to be initialized.

C Example

Following is the implementation for a class Animal that introduces an attribute sound of type
string and overrides somlnit and somUninit, along with a main program that creates and

then frees an instance of class Animal:

#define Animal_Class_Source
#include <animal.ih>
#include <string.h>

SOM_Scope void SOMLINK somInit

{

AnimalData *somThis = AnimalGetData

(Animal somSelf)

(somSelf);

Environment *ev = somGetGlobalEnvironment () ;

Animal_parents_somInit

__set_sound(somSelf,

(somSelf);
if (!__get_sound(somSelf,

SOMMalloc (100)) ;
strcpy (__get_sound(somSelf,

"Unknown Noise”);

somPrintf (”New Animal Initialized\n”);

}

SOM_Scope void SOMLINK somUninit

{

AnimalData *somThis = AnimalGetData

(Animal somSelf)

(somSelf);

Environment *ev = somGetGlobalEnvironment () ;

if (__get_sound(somSelf,

SOMFree (__get_sound(somSelf,
__set_sound(somSelf, ev,

(char*)0);

somPrintf (”Animal Uninitialized\n”);

Animal_parents_somUninit

}

/* main program */
#include <animal.h>
void main ()
{
Animal myAnimal;
myAnimal = AnimalNew ();
_somFree (myAnimal);

/*

Program output:

New Animal Initialized
Animal Uninitialized

*/

Original Class
SOMObiject

Related Information

(somSelf);

Methods: somDefaultlnit, somNew, somRenew, somDestruct, somUninit

SOM Kernel Reference 1-147

somlisA Method

Purpose
Tests whether an object is an instance of a given class or of one of its subclasses. Not
generally overridden.
IDL Syntax
boolean somlsA (in SOMClass aClass);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
Use the somisA method to determine if an object can be treated like an instance of aClass.
SOM guarantees that if somlsA returns true, then the receiver will respond to all (static or
dynamic) methods supported by aClass.
Parameters
receiver A pointer to the object to be tested.
aClass A pointer to the class that the object should be tested against.

Return Value

The somlsA methods returns 1 (true) if the receiving object is an instance of the specified
class or (unlike somisinstanceOf) of any of its descendant classes, and 0 (false) otherwise.

C Example
#include <dog.h>
/* ________________________________
Dog is derived from Animal.
________________________________ */
main ()
{
Animal myAnimal;
Dog myDog;
SOMClass animalClass;
SOMClass dogClass;
myAnimal = AnimalNew () ;
myDog = DogNew () ;
animalClass = _somGetClass (myAnimal);
dogClass = _somGetClass (myDog);
if (_somIsA (myDog, animalClass))
somPrintf (”“myDog IS an Animal\n”);
else
somPrintf (”myDog IS NOT an Animal\n”);
if (_somIsA (myAnimal, dogClass))
somPrintf (”"myAnimal IS a Dog\n”);
else

somPrintf (”"myAnimal IS NOT a Dog\n”);
_somFree (myAnimal);
_somFree (myDog);
}
/*
Output from this program:
myDog IS an Animal
myAnimal IS NOT a Dog
*/

1-148 SOMobjects Base Toolkit: Programmer’s Reference Manual

Original Class
SOMObject

Related Information

Methods: somDescendedFrom, somlisinstanceOf, somRespondsTo,
somSupportsMethod

SOM Kernel Reference 1-149

somlislnstanceOf Method

Purpose
Determines whether an object is an instance of a specific class. Not generally overridden.

IDL Syntax

boolean somilsinstanceOf (in SOMClass aClass);
Note: For backward compatibility, this method does not take an Environment parameter.

Description

Use the somlsinstanceOf method to determine if an object is an instance of a specific
class. This method tests an object for inclusion in one specific class. It is equivalent to the

expression:
(aClass == somGetClass (receiver))
Parameters
receiver A pointer to the object to be tested.
aClass A pointer to the class that the object should be an instance of.

Return Value

The somlsinstanceOf method returns 1 (true) if the receiving object is an instance of the
specified class, and 0 (false) otherwise.

C Example

#include <dog.h>
22—

Animal myAnimal;

Dog myDog;

SOMClass animalClass;
SOMClass dogClass;

myAnimal = AnimalNew ();

myDog = DogNew () ;

animalClass = _somGetClass (myAnimal);

dogClass = _somGetClass (myDog);

if (_somIsInstanceOf (myDog, animalClass))
somPrintf (”“myDog is an instance of Animal\n”);

if (_somIsInstanceOf (myDog, dogClass))
somPrintf (”myDog is an instance of Dog\n”);

if (_somIsInstanceOf (myAnimal, animalClass))
somPrintf (”“myAnimal is an instance of Animal\n”);
if (_somIsInstanceOf (myAnimal, dogClass))

somPrintf (”"myAnimal is an instance of Dog\n”);
_somFree (myAnimal);
_somFree (myDog);
}
/*
Output from this program:
myDog is an instance of Dog
myAnimal is an instance of Animal

*/

1-150 SOMobjects Base Toolkit: Programmer’s Reference Manual

Original Class
SOMObject

Related Information
Methods: somDescendedFrom, somlisA

SOM Kernel Reference 1-151

somPrintSelf Method

Purpose
Outputs a brief description that identifies the receiving object. Designed to be overridden.

IDL Syntax
SOMObject somPrintSelf ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

somPrintSelf should output a brief string containing key information useful to identify the
receiver object, rather than a complete dump of the receiver object state as provided by
somDumpSelfint. The somPrintSelf method should use the character output routine
SOMOutCharRoutine (or any of the somPrintf functions) for this purpose. The default
implementation outputs the name of the receiver object’s class and the receiver’s address in
memory.

Because the most specific identifying information for an object will often be found within
instance data introduced by the class of an object, it is likely that a class implementor that
overrides this method will not need to invoke parent methods in order to provide a useful
string identifying the receiver object.

Parameters
receiver A pointer to the object to be described.

Return Value
The somPrintSelf method returns a pointer to the receiver object as its result.

C Example

#include <animal.h>

main ()

{
Animal myAnimal;
myAnimal = AnimalNew () ;
/* ... %/
_somPrintSelf (myAnimal);
_somFree (myAnimal);

}
/*
Output from this program:

{An instance of class Animal at address 0001CECO}
*/

Original Class
SOMObject

Related Information
Methods: somDumpSelf, somDumpSelfint

1-152 SOMobjects Base Toolkit: Programmer’s Reference Manual

somResetObj Method

Purpose
Resets an object’s class to its true class after use of the somCastObj method.

Syntax

boolean somResetODbj ();

Description

The somResetObj method resets an object’s class to its true class after use of the
somCastObj method.

Parameters
receiver A pointer to a SOM object.

Return Value
The somResetObj method returns 1 (TRUE) always.

Example

#include <som.h>

main ()

{
SOMClassMgr cm = somEnvironmentNew () ;
SOM_Test (1 == _somCastObj(cm, _SOMObject));
_somDumpSelf (cm, 0));
SOM_Test (1 == _somResetObj(cm));

_somDumpSelf (cm, O0);

output:
{An instance of class SOMClassMgr—->SOMObject
at address 20061268
}
{An instance of class SOMClassMgr at address 20061268
. <SOMClassMgr State Information> ...

R S S T T S

~

}

Original Class
SOMObject

Related Information
Methods: somCastObj

SOM Kernel Reference 1-153

somRespondsTo Method

Purpose
Tests whether the receiving object supports a given method. Not generally overridden.

IDL Syntax

boolean somRespondsTo (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somRespondsTo method tests whether a specific (static or dynamic) method can be
invoked on the receiver object. This test is equivalent to determining whether the class of
the receiver supports the specified method on its instances.

Parameters
receiver A pointer to the object to be tested.

methodld A somld that represents the name of the desired method.

Return Value
The somRespondsTo method returns TRUE if the specified method can be invoked on the
receiving object, and FALSE otherwise.

C Example

: Animal supports a setSound method;
Animal does not support a doTrick method.

#include <animal.h>

main ()

{
Animal myAnimal;
char *methodNamel
char *methodName?2

"setSound”;
"doTrick”;

myAnimal = AnimalNew () ;
if (_somRespondsTo (myAnimal, SOM_IdFromString (methodNamel)))
somPrintf ("“myAnimal responds to %s\n”, methodNamel) ;
if (_somRespondsTo (myAnimal, SOM_IdFromString (methodName2)))
somPrintf ("myAnimal responds to %s\n”, methodName2) ;
_somFree (myAnimal) ;
}
/*
Output from this program:
myAnimal responds to setSound

*/

Original Class
SOMObiject

Related Information
Methods: somSupportsMethod

1-154 SOMobjects Base Toolkit: Programmer’s Reference Manual

somUninit Method

Purpose

Un-initializes the receiving object. Designed to be overridden by class implementors. Not
normally invoked directly by object clients.

IDL Syntax

void somUninit ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somUninit method performs the inverse of object initialization. Class implementors that
introduce instance data that points to allocated storage should override somUninit so
allocated storage can be freed when an object is freed.

This method is called automatically by somFree to clean up anything necessary (such as
extra storage dynamically allocated to the object) before somFree releases the storage
allocated to the object itself.

Code responsible for freeing an object must first know that there will be no further
references to this object. Once this is known, this code would normally invoke somFree
(which calls somUninit). In cases where somRenew was used to create an object instance,
however, somFree cannot be called (for example, the storage containing the object may
simply be a location on the stack), and in this case, somUninit must be called explicitly.

When overriding this method, always call the parent-class versions of this method after
doing your own un-initialization. Furthermore, just as with somlnit, because your method
may be called multiple times (due to multiple inheritance), you should zero out references
to memory that is freed, and check for zeros before freeing memory and calling the parent
methods.

Parameters
receiver A pointer to the object to be un-initialized.

SOM Kernel Reference 1-155

C Example

Following is the implementation for a class Animal that introduces an attribute sound of type
string and overrides somlnit and somUninit, along with a main program that creates and
then frees an instance of class Animal.

#define Animal_Class_Source
#include <animal.ih>
#include <string.h>

SOM_Scope void SOMLINK somInit (Animal somSelf)
{

AnimalData *somThis = AnimalGetData (somSelf);
Environment *ev = somGetGlobalEnvironment () ;
Animal_parents_somInit (somSelf);
if (!_get_sound(somSelf, ev)) {

__set_sound(somSelf, ev, SOMMalloc (100));

strcpy (__get_sound(somSelf, ev), "Unknown Noise”);

somPrintf (”New Animal Initialized\n”);
}

SOM_Scope void SOMLINK somUninit (Animal somSelf)
{

AnimalData *somThis = AnimalGetData (somSelf);
Environment *ev = somGetGlobalEnvironment () ;
if (__get_sound(somSelf, ev)) {

SOMFree (__get_sound(somSelf, ev);
__set_sound(somSelf, ev, (char*)0);
somPrintf (”“Animal Uninitialized\n”);
Animal_parents_somUninit (somSelf);

}

/* main program */
#include <animal.h>
void main ()
{
Animal myAnimal;
myAnimal = AnimalNew () ;
_somFree (myAnimal);

/*

Program output:

New Animal Initialized
Animal Uninitialized

*/

Original Class
SOMObject

Related Information
Methods: somlnit, somNew, somRenew

1-156 SOMobjects Base Toolkit: Programmer’s Reference Manual

Chapter 2. DSOM Framework Reference

BOA /“/“ Request SOMDServer

Context Im IRepOSItory Ob]ectM r Pr|nC|paI SOMDServengr
N\~

SOMOA

N/

ImplementationDef SOMDObjectMgr SOMDObject
o’ N o

)

SOMDClientProxy

(

< Denotes “is a subclass of”

DSOM Framework Class Organization

DSOM Framework Reference 2-1

Notes

The following information should be considered when using the Distributed SOM (DSOM)
framework.

DSOM and CORBA

Distributed SOM (DSOM) is a framework that supports access to objects in a distributed
application. DSOM can be viewed as both:

e An extension to basic SOM facilities

¢ Animplementation of the “Object Request Broker” (ORB) technology defined by the Object
Management Group (OMG), in the Common Object Request Broker Architecture (CORBA)
specification and standard, Revision 1.1. The CORBA 1.1 specification is published by
x/Open and the Object Management Group (OMG).

One of the primary contributions of CORBA is the specification of basic runtime interfaces
for writing portable, distributable object-oriented applications. SOM and DSOM implement
those runtime interfaces, according to the CORBA specification.

In addition to the published CORBA 1.1 interfaces, it was necessary for DSOM to introduce
several of its own interfaces, in those areas where:

e CORBA 1.1 did not specify the full interface (for example, ImplementationDef,
Principal),

e CORBA 1.1 did not address the function specified by the interface (for example,
“lifecycle” services for object creation and deletion), or

e The functionality of a CORBA 1.1 interface has been enhanced by DSOM.

Any such interfaces have been noted on the reference page for each DSOM class.

A Note on Method Naming Conventions

The SOM Toolkit frameworks (including DSOM) and CORBA have slightly different
conventions for naming methods. Methods introduced by the SOM Toolkit frameworks use
prefixes to indicate the framework to which each method belongs, and use capitalization to
separate words in the method names (for example, somdFindServer). Methods introduced
by CORBA have no prefixes, are all lower case, and use underscores to separate words in
the method names (such as, impl_is_ready).

DSOM, more than the other SOM Toolkit frameworks, uses a mix of both conventions. The
method and class names introduced by CORBA 1.1 are implemented as specified, for
application portability. Methods introduced by DSOM to enhance a CORBA-defined class
also use the CORBA naming style. The SOM Toolkit convention for method naming is used
for non-CORBA classes which are introduced by DSOM.

2-2 SOMobjects Base Toolkit: Programmer’s Reference Manual

get_next_response Function

Purpose
Returns the next Request object to complete, after starting multiple requests in parallel.
C Syntax
ORBStatus get_next_response (
Environment* eny,
Flags response_flags,
Request *req);
Description
The get_next_response function returns a pointer to the next Request object to complete
after starting multiple requests in parallel. This is a synchronization function used in
conjunction with the send_multiple_requests function. There is no specific order in which
requests will complete.
If the response_flags field is set to 0, this function will not return until the next request
completion. If the caller does not want to become blocked, the RESP_NO_WAIT flag should
be specified.
Parameters
env A pointer to the Environment structure for the caller.

response_flags A Flags (unsigned long) variable, used to indicate whether the caller wants
to wait for the next request to complete (0), or not wait (RESP_NO_WAIT).

req A pointer to a Request object variable. The address of the next Request
object which completes is returned in the Request variable.

Return Value

The get_next_response function may return a non-zero ORBStatus value, which indicates
a DSOM error code. (See the SOM Toolkit User’s Guide for more information on DSOM
error codes.)

Example
See the example for the send_multiple_requests function.

Related Information
Functions: send_multiple_requests

Methods: send, get_response, invoke

This function is described in section 6.3, “Deferred Synchronous Routines”, of the CORBA
1.1 specification.

DSOM Framework Reference 2-3

ORBfree Function

Purpose
Frees memory allocated by DSOM for return values and out arguments.

C Syntax
void ORBfree (void* ptr);

Description
The ORBfree function is used to free memory for method return values or out arguments
which are placed in memory allocated by DSOM (versus the calling program). For example,
strings, arrays, sequence buffers, and “any” values are returned in memory which is
dynamically allocated by DSOM.

Parameters
ptr A pointer to memory that has been dynamically allocated by DSOM for a

method return value or out argument.
Example

#include <somd.h>
#include <myobject.h> /* provided by user */

MyObject obij;
Environment ev;
string str;

/* assume myMethod has the following IDL declaration
* in the MyObject interface:

*

* wvoid myMethod(out string s);
*/
_myMethod (obj, &ev, é&str);

/* free storage */
ORBfree (str) ;

Related Information
Functions: SOMD_NoORBfree

This function is described in section 5.16, “Argument Passing Considerations”, and section
5.17, “Return Result Passing Considerations”, of the CORBA 1.1 specification.

2-4 SOMobjects Base Toolkit: Programmer’s Reference Manual

send_multiple_requests Function

Purpose
Initiates multiple Requests in parallel.
C Syntax
ORBStatus send_multiple_requests (
Request regs[],
Environment* eny,
long count,
Flags invoke_flags);
Description
The send_multiple_requests function initiates multiple Requests “in parallel”. (The actual
degree of parallelism is system dependent.) Each Request object is created using the
create_request method, defined on SOMDClientProxy. Like the send method, this
function returns to the caller immediately without waiting for the Requests to finish. The
caller waits for the request responses using the get_next_response function.
Parameters
reqs The address of an array of Requests objects which are to be initiated in
parallel.
env A pointer to the Environment structure for the caller.
count The number of Request objects in regs.

invoke_flags A Flags (unsigned long) value, used to indicate the following options:

INV_NO_RESPONSE
Indicates the caller does not intend to get any results or out
parameter values from any of the requests. The requests
can be treated as if they are oneway operations.

INV_TERM_ON_ERR
If one of the requests causes an error, the remaining
requests are not sent.

The above flag values may be “or’-ed together.

Return Value

The send_multiple_requests function may return a non-zero ORBStatus value, which
indicates a DSOM error code. (See the SOM Toolkit User’s Guide for more information on
DOSM error codes.)

DSOM Framework Reference 2-5

Example

#include <somd.h>

/* sum a set of values in parallel */
int parallel_sum(Environment *ev, int n, SOMDObject *obijs)

{

int index, sum = 0;

Request *next;

Request *regs = (Request*) SOMMalloc(n * sizeof (Request));
NamedValue *results = (NamedValue¥*)

SOMMalloc (n * sizeof (Namedvalue)) ;

for (i=0; 1 < n; i++)
(void) _create_request ((Context *)NULL, "”_get_count”, NULL,
& (result[i]), &(regsl[i]), (Flags)O0);

(void) send_multiple_requests (regs, ev, n, (Flags)O0);

for (i=0, 1 < n; i++) {

(void) get_next_response (ev, (Flags)0, &next);
index = (next - regs);

sum += * ((int*)results[index].argument._value);

}

return (sum) ;

}

Related Information
Functions: get_next_response

Methods: send, get_response, invoke

This function is described in section 6.3, “Deferred Synchronous Routines”, of the CORBA
1.1 specification.

2-6 SOMobjects Base Toolkit: Programmer’s Reference Manual

somdExceptionFree Function

Purpose

Frees the memory held by the exception structure within an Environment structure,
regardless of whether the exception was returned by a local or a remote method call.

C Syntax

void somdExceptionFree (Environment *ev);

Description

The somdExceptionFree function frees the memory held by the exception structure within
an Environment structure, regardless of whether the exception was returned by a local or a
remote method call.

When a DSOM client program invokes a remote method and the method returns an
exception in the Environment structure, it is the client’s responsibility to free the exception.
This is done by calling either exception_free or somdExceptionFree on the Environment
structure in which the exception was returned. (The two functions are equivalent. The
exception_free function name is #defined in the som.h or som.xh file to provide strict
CORBA compliance of function names.) There is a similar function, somExceptionFree,
available for SOM programmers; DSOM programmers, however, can use
somdExceptionFree to free all exceptions (regardless of whether they were returned from
a local or a remote method call).

Parameters

ev The Environment structure whose exception information is to be freed.

Example

X_foo(x, ev, 23); /* make a remote method call */
if (ev->major != NO_EXCEPTION)
{

printf ("foo exception = %$s\n”, somExceptionId(ev));
/* ... handle exception ... */

somdExceptionFree (ev); /* free exception */

}

Related Information

Functions: somExceptionFree, somExceptionld, somExceptionValue,
somSetException (all SOM kernel functions)

Data structures: Environment (somcorba.h)

DSOM Framework Reference 2-7

SOMD _Init Function

Purpose
Initializes DSOM in the calling process.

C Syntax

void SOMD _Init (Environment* env);

Description
Initializes DSOM in the calling process. This function should be called before any other
DSOM functions or methods. This function should only be invoked (a) at the beginning of a
DSOM program (client or server), to initialize the program, or (b) after SOMD_Uninit has
been invoked, to reinitialize the program. If the program has already been initialized with
SOMD _Init, then invoking SOMD_Init again has no effect.

An effect of calling SOMD_Init is that the global variables SOMD_ObjectMgr,
SOMD_ImplRepObject, and SOMD_ORBObiject, are initialized with pointers to the (single)
instances of the SOMDObjectMgr, ImplRepository, and ORB objects.

Parameters
env A pointer to the Environment structure for the caller.

Return Value
None. (However, the global variables SOMD_ObjectMgr, SOMD_ImplRepObject, and
SOMD_ORBODbiject are set implicitly.)

Example

finclude <somd.h>
Environment ev;

/* initialize Environment */
SOM_InitEnvironment (&ev) ;

/* initialize DSOM runtime */

SOMD_Init (&ev) ;

/* Free DSOM resources */
SOMD_Uninit (&ev) ;

Related Information
SOM Toolkit User’s Guide.

2-8 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOMD_NoORBfree Function

Purpose

Specifies to DSOM that the client program will use the SOMFree function to free memory
allocated by DSOM, rather than using the ORBfree function.

C Syntax
void SOMD_NoORBfree ();

Description

The SOMD_NoORBfree function is used in a DSOM client program to specify to DSOM that
the client program will use the SOMFree function to free memory allocated by DSOM, rather
than using the ORBfree function.

Typically, a DSOM client program will use SOMFree to free memory returned from local
method calls and ORBfree to free memory returned from remote method calls. The
SOMD_NoORBfree function allows programmers to use a single function (SOMFree) to
free blocks of memory, regardless of whether they were allocated locally or by DSOM in
response to a remote method call.

SOMD_NoORBfree, if used, should be called just after calling SOMD_Init in the client
program. In response to this call, DSOM will not keep track of the memory it allocates for
the client. Instead, it will assume that the client program will be responsible for walking all
data structures returned from remote method calls, calling SOMFree for each block of
memory within.

Example

SOMD_Init ();
SOMD_NoORBfree () ;

/* rest of client program */

Related Information
Functions: ORBfree, SOMFree

DSOM Framework Reference 2-9

SOMD_RegisterCallback Function

Purpose
Registers a callback function for handling DSOM request events.

C Syntax
void SOMLINK SOMD_RegisterCallback (SOMEEMan emanObj, EMRegProc *func);

Description

When writing event-driven applications where there are event sources other than DSOM
requests (for example, user input, mouse clicks, and so forth), DSOM cannot be given
exclusive control of the “main loop,” such as when execute_request_loop is

called. Instead, the application should use the Event Management (EMan) framework to
register and process all application events.

The SOMD_RegisterCallback function is used to register a user-supplied DSOM event
handler function with EMan. The caller need only supply an address of the event handler
function, and the instance of the EMan object — the details of registration are implemented
by SOMD_RegisterCallback.

Callback functions should have the SOMLINK keyword explicitly specified, except on
Windows. Using an explicit SOMLINK keyword on Windows will preclude the ability of an
application to support multiple instances.

Note: The function SOMD_RegisterCallback must be declared with “system linkage” on
0S/2.

Parameters
emanObj A pointer to an instance of SOMEEman, the Event Manager object.

func A pointer to an event handler function which will be called by EMan
whenever a DSOM request arrives. This function must have the following
prototype (equivalent to the EMRegProc type defined in the eman.h file):

#ifdef _ 0S2_
#pragma linkage (func, system)
#endif

void SOMLINK func (SOMEEvent event, void *eventData)

/* On Windows, using the SOMLINK keyword precludes
* the support of multiple instances. */

2-10 SOMobjects Base Toolkit: Programmer’s Reference Manual

Example

#include <somd.h>
#include <eman.h>

#ifdef __0S2___

#pragma linkage (SOMD_RegisterCallback, system)
#pragma linkage (DSOMEventCallBack, system)
#endif

/* On Windows, this example would omit the SOMLINK keyword. */
void SOMLINK DSOMEventCallBack (SOMEEvent event, void *eventData)
{

Environment ev;
SOM_InitEnvironment (&ev) ;

_execute_request_loop (SOMD_SOMOAObject, &ev, SOMD_NO_WAIT);
}

main ()

{

eman = SOMEEmanNew () ;
SOMD_RegisterCallback (eman, DSOMEventCallBack);

_someProcessEvents (eman, &ev); /* main loop */

}

Related Information

See Chapter 12 of the SOM Toolkit User’s Guide for a description of the Event Management
(EMan) framework, for writing event-driven applications.

DSOM Framework Reference 2-11

SOMD_Uninit Function

Purpose
Free system resources allocated for use by DSOM.

C Syntax
void SOMD_Uninit (Environment* env);

Description
Frees system resources (such as, shared memory segments, semaphores) allocated to the
calling process for use by DSOM. This function should be called before a process exits, to
ensure system resources are reused.
No DSOM functions or methods should be called after SOMD_Uninit has been called. After
SOMD_Uninit is called, the program can be reinitialized by calling SOMD_Init.
(SOMD_Uninit would then need to be called again before program termination, to
uninitialize the program.)

Parameters
env A pointer to the Environment structure for the caller.

Example

#include <somd.h>
Environment ev;

/* initialize Environment */
SOM_InitEnvironment (&ev) ;

/* initialize DSOM runtime */
SOMD_Init (&ev);

/* Free DSOM resources */
SOMD_Uninit (&ev) ;

Related Information
See Chapter 6 on DSOM in the SOM Toolkit User’s Guide.

2-12 SOMobjects Base Toolkit: Programmer’s Reference Manual

Context_delete Macro

Purpose
Deletes a Context object.

Syntax

ORBStatus Context_delete (
Context ctxobj,
Environment *eny,
Flags del_flag);

Description

The Context_delete macro deletes the specified Context object. This macro maps to the
destroy method of the Context class.

Parameters
ctxobj A pointer to the Context object to be deleted.
env A pointer to the Environment structure for the caller.
del _flag A bitmask (unsigned long). If the flag CTX_DELETE_DESCENDANTS is
specified, the macro deletes the specified Context object and all of its
descendant Context objects. A zero value indicates that the flag is not set.
Expansion

Context_destroy (ctxobj, env, del_flag)

Example

#include <somd.h>

Environment ev;
Context cxt, newcxt;
long rc;

/* get the process’ default Context */
rc = _get_default_context (SOMD_ORBObject, &ev, &cxt);

/* make newcxt a child Context of the default Context (cxt) */
rc = _create_child(cxt, &ev, "myContext”, &newcxt);

/* assuming no descendent Contexts have been
* created from newcxt, we can destroy newcxt with flags=0
*/

rc = Context_delete (newcxt, &ev, (Flags) 0);

Related Information
Methods: Context_destroy

DSOM Framework Reference 2-13

Request_delete Macro

Purpose
Deletes the memory allocated by the ORB for a Request object.

Syntax

ORBStatus Request_delete (
Request reqobj,
Environment *env);

Description

The Request_delete macro deletes the specified Request object and all associated
memory. This macro maps to the destroy method of the Request class.

Parameters

reqobj A pointer to the Request object to be deleted.

env A pointer to the Environment structure for the caller.
Expansion

Request_destroy (reqobj, env)

2-14 sOMobjects Base Toolkit: Programmer’s Reference Manual

Example

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>
#include <foo.h> /* provided by user */
/* assume following method declaration in interface Foo:
long methodLong (in long inLong, inout long inoutLong) ;
then the following code sends a request to execute the call:
result = methodLong (fooObj, &ev, 100,200);
using the DII without waiting for the result. Then, later,
waits for and then uses the result.
/
Environment ev;
NVList arglist;
long rc;
Foo fooObj;
Request reqObij;
NamedValue result;

X5 ok ok ok X X

/* see the Example code for invoke to see how the request
* is built

*/

/* Create the Request, reqObj */
rc = _create_request (fooObj, &ev, (Context *)NULL, "methodLong”,
arglist, &result, &reqgObj, (Flags)O0);

/* Finally, send the request */
rc = _send(regObj, &ev, (Flags)O0);

/* do some work, i.e. don’t wait for the result */

/* wait here for the result of the request */
rc = _get_response (reqObj, &ev, (Flags)O0);

/* use the result */
if (result->argument._value == 9600) {...}

/* throw away the reqObj */
Request_delete (reqObj, &ev);

Related Information
Methods: Request_destroy

DSOM Framework Reference 2-15

BOA Class

Description

The Basic Object Adapter (BOA) defines the basic interfaces that a server process uses to
access services of an Object Request Broker like DSOM. The BOA defines methods for
creating and exporting object references, registering implementations, activating
implementations and authenticating requests.

For more information on the Basic Object Adapter, refer to Chapter 9 in the CORBA 1.1
specification.

Note: DSOM treats the BOA interface as an abstract class, which merely defines basic
runtime interfaces (introduced in the CORBA specification) but does not implement
those interfaces. Thus, there is no point in instantiating a BOA object. If a BOA
object is created, any methods invoked on it will return a NO_IMPLEMENT
exception. Instead, the SOM Object Adapter (SOMOA) subclass provides DSOM
implementations for BOA methods. When a BOA method is invoked on the SOMOA
object, the desired behavior will occur.

File Stem

boa

Base
SOMObject

Metaclass
SOMMSinglelnstance

Ancestor Classes
SOMObject

Subclasses
SOMOA

New Methods

change_implementation
create

deactivate_impl
deactivate_obj

dispose

get_id

get_principal
impl_is_ready
obj_is_ready

set_exception

2-16 SOMobjects Base Toolkit: Programmer’s Reference Manual

change_implementation Method

Purpose
Changes the implementation associated with the referenced object. (Not implemented.)

IDL Syntax
void change_implementation (

in SOMDObject obj,
in ImplementationDef imp/);

Description

The change_implementation method is defined by the CORBA specification, but has a null
implementation in DSOM. This method always returns a NO_IMPLEMENT exception.

In CORBA 1.1, the change_implementation method is provided to allow an application to
change the implementation definition of an object.

However, in DSOM, the ImplementationDef identifies the server which implements an
object. In these terms, changing an object’s implementation (that is, server) would result in a
change in the object’s location. In DSOM, moving objects from one server to another is
considered an application-specific task, and hence, no default implementation is provided.

It is possible, however, to change the program which implements an object’s server, or
change the class library which implements an object’s class. To modify the program
associated with an ImplementationDef, use the update_impldef method defined on
ImplIRepository. To change the implementation of an object’s class, replace the
corresponding class library with a new (upward-compatible) one.

Parameters
receiver A pointer to a BOA (SOMOA) object for the server.
env A pointer to the Environment structure for the method caller.
obj A pointer to the SOMDODbject object which refers to the application object
whose implementation is to be changed.
impl A pointer to the ImplementationDef object representing the new

implementation of the application object.
Return Value
The SOMOA implementation always returns a NO_IMPLEMENT exception, with a minor
code of SOMDERROR_NotImplemented.

Original Class
BOA

DSOM Framework Reference 2-17

create Method

Purpose
Creates a “reference” for a local application object which can be exported to remote clients.

IDL Syntax

typedef sequence<octet,1024> ReferenceData; // in somdtype.idl

SOMDODbject create (
in ReferenceData id,
in InterfaceDef intf,
in ImplementationDef imp/);

Description

The create method creates a SOMDODbiject which is used as a “reference” to a local
application object. An object reference is simply an object which is used to refer to another
target object — one may think of it as an “ID”, “link”, or “handle.” Object references are
important in DSOM in that their values can be externalized (that is, can be represented in a
string form) for transmission between processes, storage in files, and so on. In DSOM, the
proxy objects in client processes are remote object references.

To create an object reference, the caller specifies the ImplementationDef of the calling
process, the InterfaceDef of the target application object, and up to 1024 bytes of
ReferenceData which is used by the application to identify and activate the application
object. When subsequent method calls specify the object reference as a parameter, the
application will use the reference to find and/or activate the referenced object.

Note that (as specified in CORBA 1.1) each call to create returns a unique object reference,
even if the same parameters are used in subsequent calls. For each reference, the
ReferenceData is stored in the reference data file (and backup file, if any) for the server.

The SOMOA class introduces a change_id method which allows a server to modify the
ReferenceData of one of its references. (The change_id method is notin the CORBA 1.1
specification.)

Ownership of the returned SOMDODbject is transferred to the caller.

Parameters

receiver A pointer to a BOA (SOMOA) object for the server.

env A pointer to the Environment structure for the method caller.

id A pointer to the ReferenceData structure containing application-specific
information describing the target object.

intf A pointer to the InterfaceDef object which describes the interface of the
target object.

impl A pointer to the ImplementationDef object which describes the application

(server) process which implements the target object.

2-18 SOMobjects Base Toolkit: Programmer’s Reference Manual

Return Value

The create method returns a pointer to a SOMDODbiject which refers to a local application
object.

Example

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

Environment ev;

ReferenceData id;

InterfaceDef intfdef;

SOMDObject objref;

string fname; /* a file name to be saved with reference */

/* create the id for the reference */
id._maximum = id._length = strlen(fname)+1;
id._buffer = (string) SOMMalloc (strlen (fname)+1);
strcpy (id._buffer, fname) ;

/* get the interface def object for interface Foo*/
intfdef = _lookup_id(SOM_InterfaceRepository, &ev, "Foo”);

objref = _create (SOMD_SOMOAODbject,
&ev, id, intfdef, SOMD_ImplDefObiject);

Original Class
BOA

Related Information
Methods: change_id, create_constant, create_SOM_ref, dispose, get_id

DSOM Framework Reference 2-19

deactivate_impl Method

Purpose
Indicates that a server implementation is no longer ready to process requests.

IDL Syntax

void deactivate_impl (
in ImplementationDef impl);

Description

The deactivate_impl method indicates that the implementation is no longer ready to
process requests.

Parameters
receiver A pointer to a BOA (SOMOA) object for the server.
env A pointer to the Environment structure for the method caller.
impl A pointer to the ImplementationDef object representing the
implementation to be deactivated.
Example

#include <somd.h>
ORBStatus rcj;
/* server initialization code ... */

/* signal DSOM that server is ready */
_impl_is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

for(rc = 0;rc==0;) {
rc = _execute_next_request (SOMD_SOMOAObject, &ev, waitFlaqg);
/* perform app specific code between messages here, e.g.,*/
numMessagesProcessed++;

}

/* signal DSOM that server is deactivated */
_deactivate_impl (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject) ;

Original Class
BOA

Related Information

Methods: impl_is_ready, activate_impl_failed, execute_next_request,
execute_request_loop

2-20 SOMobjects Base Toolkit: Programmer’s Reference Manual

deactivate_obj Method

Purpose
Indicates that an object server is no longer ready to process requests. (Not implemented.)

IDL Syntax

void deactivate_obj (
in SOMDObject ob));

Description

The deactivate_obj method is defined by the CORBA specification, but has a null
implementation in DSOM. This method always returns a NO_IMPLEMENT exception.

CORBA 1.1 distinguishes between servers that implement many objects (“shared”), versus
servers that implement a single object (“unshared”). The deactivate_obj method is meant
to be used by unshared servers, to indicate that the object (that is, server) is no longer
ready to process requests.

DSOM does not distinguish between servers that implement a single object versus servers
that implement multiple objects, so this method has no implementation.

Parameters
receiver A pointer to a BOA (SOMOA) object for the server.
env A pointer to the Environment structure for the method caller.
obj A pointer to a SOMDODbject which identifies the object (server) to be

deactivated.

Original Class
BOA

Related Information
Methods: deactivate_impl, impl_is_ready, obj_is_ready

DSOM Framework Reference 2-21

dispose Method

Purpose

Destroys an object reference.
IDL Syntax

void dispose (

in SOMDObject ob));

Description

The dispose method disposes of an object reference.
Parameters

receiver A pointer to a BOA object for the server.

env A pointer to the Environment structure for the method caller.

obj A pointer to the object reference to be destroyed.
Example

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

SOMDObject objref;
ReferenceData id;

InterfaceDef intfdef;

objref =
_create (SOMD_SOMOAObject, &ev, 1id, intfdef, SOMD_ImplDefObject);

_dispose (SOMD_SOMOAObject, &ev, objref);

Original Class
BOA

Related Information
Methods: create, create_constant, create_ SOM _ref, get_id

2-22 SOMobjects Base Toolkit: Programmer’s Reference Manual

get_id Method

Purpose
Returns reference data associated with the referenced object.

IDL Syntax

ReferenceData get_id (
in SOMDObject ob));

Description
The get_id method returns the reference data associated with the referenced object.

Parameters
receiver A pointer to a BOA (SOMOA) object for the server.
env A pointer to the Environment structure for the method caller.
obj A pointer to a SOMDODbject object for which to return the ReferenceData.

Return Value

The get_id method returns a ReferenceData structure associated with the referenced
object.

Example

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

SOMDObject objref;
ReferenceData idl, id2;

InterfaceDef intfdef;

objref =
_Ccreate (SOMD_SOMOAObject, &ev, idl, intfdef, SOMD_ImplDefObject);

/* get the ReferenceData from a SOMDObject */
id2 = _get_id (SOMD_SOMOAObject, &ev, obijref);

Original Class
BOA

Related Information
Methods: create, create_constant, dispose

DSOM Framework Reference 2-23

get_principal Method

Purpose
Returns the ID of the principal that issued the request.
IDL Syntax
Principal get_principal (
in SOMDObject obj,
in Environment* req_ev);
Description
The get_principal method returns the ID of the principal that issued a request.
Parameters
receiver A pointer to a BOA (SOMOA) object for the server.
env A pointer to the Environment structure for the method caller.
obj A pointer to the object reference which is the target of the method call.
req_ev A pointer to the Environment object passed as input to the request.

Return Value

The get_principal method returns a pointer to a Principal object which identifies the user
and host from which a request originated.

Example

#include <somd.h>

/* assumed context: inside a method implementation */
void methodBody (SOMObject *somSelf, Environment *ev, ...)
{

Principal p;

SOMDObject selfRef;

Environment localev;

SOMInitEnvironment (&localev) ;
/* get a reference to myself from the server object */
selfRef =

somdRefFromSOMObJj (SOMD_ServerObject, &ev, somSelf);

/* get principal information from the SOMOA */

p = _get_principal (SOMD_SOMOAObject, &localev, selfRef, ev);
printf ("user = %s, host = %$s\n”,
__get_userName (p), __get_hostName (p));

}

Original Class
BOA

Related Information
Classes: Principal

2-24 SOMobjects Base Toolkit: Programmer’s Reference Manual

impl_is_ready Method

Purpose
Indicates that the implementation is ready to process requests.

IDL Syntax
void impl_is_ready (
in ImplementationDef impl);

Description

The impl_is_ready method Indicates that the implementation is ready to process requests.
Parameters

receiver A pointer to a BOA (SOMOA) object for the server.

env A pointer to the Environment structure for the method caller.

impl A pointer to the ImplementationDef object indicating which implementation

is ready.

Example

#include <somd.h> /* needed by all servers */

main (int argc, char **argv)
{
Environment ev;
SOM_InitEnvironment (&ev) ;

/* Initialize the DSOM run-time environment */
SOMD_Init (&ev);

/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject =

_find_impldef (SOMD_ImplRepObiject, &ev, argv[l]);

/* Tell DSOM that the server is ready to process requests */
impl is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

}

Original Class
BOA

Related Information

Methods: deactivate_impl, activate_impl_failed, obj_is_ready, execute_request_loop,
execute_next_request

DSOM Framework Reference 2-25

obj_is_ready Method

Purpose
Indicates that an object (server) is ready to process requests. (Not implemented.)

IDL Syntax
void obj_is_ready (
in SOMDObject obj,
in ImplementationDef imp);

Description

The obj_is_ready method is defined by the CORBA specification, but has a null
implementation in DSOM. This method always returns a NO_IMPLEMENT exception.

CORBA 1.1 distinguishes between servers that implement many objects (“shared”), versus
servers that implement a single object (“unshared”). The obj_is_ready method is meant to
be used by unshared servers, to indicate that the object (that is, server) is ready to process
requests.

DSOM does not distinguish between servers that implement a single object versus servers
that implement multiple objects, so this method has no implementation.

Parameters
receiver A pointer to a BOA (SOMOA) object for the server.
env A pointer to the Environment structure for the method caller.
obj A pointer to a SOMDODbject which identifies the object (server) that is
ready.
impl A pointer to the ImplementationDef object representing the object that is
ready.

Original Class
BOA

Related Information
Methods: impl_is_ready, deactivate_impl, deactivate_obj, activate_impl_failed

2-26 SOMobjects Base Toolkit: Programmer’s Reference Manual

set_exception Method

Purpose
Returns an exception to a client.

IDL Syntax

void set_exception (
in exception_type major,
in string except_name,
in void* param);

Description

The set_exception method returns an exception to the client. The major parameter can
have one of three possible values:

NO_EXCEPTION — indicates a normal outcome of the operation. It is not necessary to
invoke set_exception to indicate a normal outcome; it is the default
behavior if the method simply returns.

USER_EXCEPTION — indicates a user-defined exception.
SYSTEM_EXCEPTION — indicates a system-defined exception.

Parameters
receiver A pointer to a BOA (SOMOA) object for the server.
env A pointer to the Environment structure for the method caller.
major One of the exception types NO_EXCEPTION, USER_EXCEPTION, or

SYSTEM_EXCEPTION.
except_name A string representing the exception type identifier.

param A pointer to the associated data.

Example

#include <somd.h>
#include <myobject.h> /* provided by user */

/* assuming following IDL declarations in the MyObject interface:
* exception foo;

* void myMethod() raises (BadCall);

* then within the implementation of myMethod, the

* following call can raise a BadCall exception: */

_set_exception (SOMD_SOMOAODb ject,
&ev, USER_EXCEPTION, ex_MyObject_BadCall, NULL);

Original Class
BOA

DSOM Framework Reference 2-27

Context Class

Description

The Context class implements the CORBA Context object described in section 6.5
beginning on page 116 of CORBA 1.1. A Context object contains a list of properties, each
consisting of a name and a string value associated with that name. Context objects are
created/accessed by the get_default_context method defined in the ORB object.

File Stem

cntxt

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods

create_child
delete_values
destroy *
get_values
set_one_value
set_values

(* The destroy method was defined as delete in CORBA 1.1, which conflicts with the delete
operator in C++. However, there is a Context_delete macro defined for CORBA
compatibility.)

Overridden Methods

somlinit

2-28 SOMobjects Base Toolkit: Programmer’s Reference Manual

create_child Method

Purpose
Creates a child of a Context object.

IDL Syntax

ORBStatus create_child (
in Identifier ctx_name,
out Context child_ctx);

Description
The create_child method creates a child Context object.
The returned Context object is chained to its parent. That is, searches on the child Context

object will look in the parent (and so on, up the Context tree), if necessary, for matching
property names.

Parameters
receiver A pointer to the Context object for which a child is to be created.
env A pointer to the Environment structure for the method caller.
ctx_name The name of the child Context to be created.
child_ctx The address where a pointer to the created child Context object is to be

stored.

Return Value

The create_child method returns an ORBStatus value representing the return code from
the operation.

Example
#include <somd.h>
Environment ev;
Context cxt, newcxt;

long rcj;

/* get the process’ default Context */

rc = _get_default_context (SOMD_ORBObject, &ev, &cxt);
/* make newcxt a child Context of the default Context (cxt) */
rc = _create_child(cxt, &ev, "myContext”, &newcxt);

Original Class
Context

DSOM Framework Reference 2-29

delete values Method

Purpose
Deletes property value(s).

IDL Syntax

ORBStatus delete_values (
in Identifier prop _name);

Description

The delete_values method deletes the specified property value(s) from a Context object.
If prop_name has a trailing wildcard character(“*”), then all property names that match will
be deleted.

Search scope is always limited to the specified Context object.

If no matching property is found, an exception is returned.

Parameters
receiver A pointer to the Context object from which values will be deleted.

env A pointer to the Environment structure for the method caller.

prop_name An identifier specifying the property value(s) to be deleted.

Return Value

The delete_values method returns an ORBStatus value representing the return code from
the operation.

Example

#include <somd.h>

Environment ev;
Context cxt, newcxt;
long rc;

/* get the process’ default Context */
rc = _get_default_context (SOMD_ORBObject, &ev, &cxt);
/* make newcxt a child Context of the default Context (cxt) */

rc = _create_child(cxt, &ev, "myContext”, &newcxt);
rc = _set_one_value (newcxt, &ev, "username”, "Jjoe”);
rc = _delete_values (newcxt, &ev, "“username”);

Original Class
Context

Related Information
Methods: set_one_value, set_values, get_values

2-30 SOMobjects Base Toolkit: Programmer’s Reference Manual

destroy Method (for a Context object)

Purpose
Deletes a Context object.

IDL Syntax

ORBStatus destroy (
in Flags del_flag);

Description
The destroy method deletes the specified Context object.

NOTE: This method is called “delete” in the CORBA 1.1 specification. However, the word
“delete” is a reserved operator in C++, so the name “destroy” was chosen as an alternative.
For CORBA compatibility, a macro defining Context_delete as an alias for destroy has
been included in the C header files.

Parameters
receiver A pointer to the Context object to be deleted.

env A pointer to the Environment structure for the method caller.

del_flag A bitmask (unsigned long). If the option flag
CTX_DELETE_DESCENDENTS is specified, the method deletes the
indicated Context object and all of its descendent Context objects. Or, a
zero value indicates the flag is not set.

Return Value

The destroy method returns an ORBStatus value representing the return code from the
operation.

Example
#include <somd.h>
Environment ev;
Context cxt, newcxt;

long rcj;

/* get the process’ default Context */

rc = _get_default_context (SOMD_ORBObject, &ev, &cxt);
/* make newcxt a child Context of the default Context (cxt) */
rc = _create_child(cxt, &ev, "myContext”, &newcxt);

/* assuming no descendent Contexts have been
* created from newcxt, we can destroy newcxt with flags=0

*/
rc = _destroy (newcxt, &ev, (Flags) 0);

Original Class
Context

DSOM Framework Reference 2-31

get_values Method

Purpose
Retrieves the specified property values.

IDL Syntax

ORBStatus get_values (
in Identifier start_scope,
in Flags op_flags,
in Identifier prop_name,
out NVList values);

Description

The get_values method retrieves the specified Context property values(s). If prop_name
has a trailing wildcard character(**”), then all matching properties and their values are
returned. OWNERSHIP of the returned NVList object is transferred to the caller.

If no properties are found, an error is returned and no property list is returned.

Scope indicates the level at which to initiate the search for the specified properties. If a
property is not found at the indicated level, the search continues up the Context object tree
until a match is found or all Context objects in the chain have been exhausted.

If scope name is omitted, the search begins with the specified Context object. If the
specified scope name is not found, an exception is returned.

Parameters

receiver A pointer to the Context object from which the properties are to be
retrieved.

env A pointer to the Environment structure for the method caller.

start_scope An Identifier specifying the name of the Context object at which search for
the properties should commence.

op_flags A bitmask (long). The operation flag CTX_RESTRICT_SCOPE may be
specified. Searching is limited to the specified search scope or Context
object.

prop_name An Identifier specifying the name of the property value(s) to return.

values The address to store a pointer to the resulting NVList object.
Return Value

The get_values method returns an ORBStatus value representing the return code from the
operation.

2-32 SOMobjects Base Toolkit: Programmer’s Reference Manual

Example

#include <somd.h>

Environment ev;
Context cxtl, cxt2;
string *cxtlprops;
long rc, i, numprops;
NVList nvp;

for (i= numprops; i > 0; i--) {

/* get the value of the *cxtlprops property from cxtl */

rc = _get_values (cxtl, &ev, NULL, (Flags) 0, *cxtlprops, &nvp);
/* and if found then update cxt2 with that name-value pair */
if (rc == 0) rc = _set_values(cxt2, &ev, nvp);

_free(nvp, &ev) ;

cxtlprops++;

}

Original Class
Context

Related Information
Methods: set_one_value, set_values, delete_values

DSOM Framework Reference 2-33

set one value Method

Purpose
Adds a single property to the specified Context object.

IDL Syntax

ORBStatus set_one_value (
in Identifier prop_name,
in string value);

Description
The set_one_value method adds a single property to the specified Context object.

Parameters
receiver A pointer to the Context object to which the value is to be added.
env A pointer to the Environment structure for the method caller.
prop_name The name of the property to be added. The prop_name should not end in
an asterisk.
value The value of the property to be added.

Return Value

The set_one_value method returns an ORBStatus value representing the return code from
the operation.

Example
#include <somd.h>
Environment ev;
Context cxt, newcxt;

long rc;

/* get the process’ default Context */

rc = _get_default_context (SOMD_ORBObject, &ev, &cxt);

/* make newcxt a child Context of the default Context (cxt) */
rc = _create_child(cxt, &ev, "myContext”, &newcxt);

rc = _set_one_value (newcxt, &ev, "username”, "Jjoe”);

Original Class
Context

Related Information
Methods: set_values, get_values, delete_values

2-34 SOMobjects Base Toolkit: Programmer’s Reference Manual

set values Method

Purpose
Adds/changes one or more property values in the specified Context object.

IDL Syntax

ORBStatus set values (
in NVList values);

Description
The set_values method sets one or more property values in the specified Context object.
In the NVList, the flags field must be set to zero, and the TypeCode field associated with an
attribute value must be TC_string.

Parameters
receiver A pointer to the Context object for which the properties are to be set.

env A pointer to the Environment structure for the method caller.

values A pointer to an NVList object containing the properties to be set. The
property names in the NVList should not end in an asterisk.

Return Value
The set_values method returns an ORBStatus value representing the return code from the
operation.

Example

#include <somd.h>

Environment ev;
Context cxtl, cxt2;
string *cxtlprops;
long rc, i, numprops;
NVList nvp;

for (i= numprops; i > 0; i--) {
/* get the value of the *cxtlprops property from cxtl */
rc = _get_values(cxtl, &ev, NULL, (Flags) 0, *cxtlprops, &nvp);
/* and if found then update cxt2 with that name-value pair */
if (rc == 0) rc = _set_values(cxt2, &ev, nvp);
_free(nvp, &ev) ;
cxtlprops++;

}

Original Class
Context

Related Information
Methods: set_one_value, get_values, delete_values

DSOM Framework Reference 2-35

ImplementationDef Class

Description

The ImplementationDef class defines attributes necessary for the DSOM daemon to find
and activate the implementation of an object.

File Stem

Base

Metaclass

Note: Details of the ImplementationDef object are not currently defined in the CORBA
1.1 specification; the attributes which have been defined are required by DSOM.

impldef

SOMObject

SOMClass

Ancestor Classes

Attributes

SOMObiject

The following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

impl_id (string)

Contains the DSOM-generated identifier for a server implementation.

impl_alias (string)

Contains the “alias” (user-friendly name) for a server implementation.

impl_program (string)

Contains the name of the program or command file which will be executed
when a process for this server is started automatically by somdd. If the full
pathname is not specified, the directories specified in the PATH
environment variable will be searched for the named program or command
file.

Optionally, the server program can be run under control of a “shell” or
debugger, by specifying the shell or debugger name first, followed by the
name of the server program. (A space separates the two program names.)
For example,

dbx myserver

Servers that are started automatically by somdd will always be passed
their impl_id as the first parameter.

impl_flags (Flags)

Contains a bit-vector of flags used to identify server options. Currently, the
IMPLDEF_MULTI_THREAD flag indicates that each request should be
executed on a separate thread (OS/2 only). IMPLDEF_DISABLE_SVR
indicates that the server process has been disabled from starting.

impl_server_class (string)

Contains the name of the SOMDServer class or subclass created by the
server process.

2-36 SOMobjects Base Toolkit: Programmer’s Reference Manual

Notes

impl_refdata_file (string)
Contains the full pathname of the file used to store ReferenceData for the
server.

impl_refdata_bkup (string)
Contains the full pathname of the backup mirror file used to store
ReferenceData for the server.

impl_hostname (string)
Contains the hostname of the machine where the server is located.

Currently, when stored in the Implementation Repository, file names used in
ImplementationDefs are limited to 255 bytes. Implementations aliases used in
ImplementationDefs are limited to 50 bytes. Class names used in ImplementationDefs
are limited to 50 bytes. Hostnames are limited to 32 bytes.

DSOM Framework Reference 2-37

ImplRepository Class

Description

The ImplRepository class defines operations necessary to query and update the DSOM
Implementation Repository.

Note: The Implementation Repository is described in concept in the CORBA 1.1
specification, but no standard interfaces have been defined. These interfaces have all been
introduced by DSOM. In addition to using the following interfaces, the DSOM
Implementation Repository can be queried and updated using the regimpl tool.

File Stem

implrep

Base
SOMObject

Metaclass
SOMMSinglelnstance

Ancestor Classes
SOMObiject

New Methods

add_class_to_impldef
add_impldef

delete_impldef
find_all_impldefs
find_classes_by_impldef
find_impldef
find_impldef_by_alias
find_impldef_by class
remove_class_from_all
remove_class_from_impldef

update_impldef

Overridden Methods

somlinit

somUninit

2-38 SOMobjects Base Toolkit: Programmer’s Reference Manual

add_class_to_impldef Method

Purpose
Associates a class with a server.
IDL Syntax
void add_class_to_impldef (
in Implld implid,
in string classname);
Description
Associates a class, identified by name, with a server, identified by its Implld. This type of
association is used to lookup server implementations via the find_impldef_by class
method.
Parameters
receiver A pointer to the ImplRepository object.
env A pointer to the Environment structure for the method caller.
implid The Implld identifier for the ImplementationDef of the desired server.

classname A string identifying the class name.

Return Value
An exception is returned if there was an error updating the Implementation Repository.

Example

#include <somd.h>

Environment ev;

SOMDServer server;
ImplementationDef impldef;
ImplId implid;

server = _somdFindServerByName (SOMD_ObjectMgr, &ev, ”stackServer”) ;

impldef = _get_implementation (server, &ev);
implid = __get_impl_id(impldef, &ev);

_add_class_to_impldef (SOMD_ImplRepObiject, &ev,implid, "Queue”) ;

Original Class
ImplIRepository

DSOM Framework Reference 2-39

add_impldef Method

Purpose
Adds an implementation definition to the Implementation Repository.

IDL Syntax
void add_impldef (
in ImplementationDef impldef);

Description
Adds the specified ImplementationDef object to the Implementation Repository.

Note: the impl_id field of the ImplementationDef is ignored. A new impl_id value will be
created for the newly added ImplementationDef.

Parameters
receiver A pointer to the ImplIRepository object.
env A pointer to the Environment structure for the method caller.
impldef A pointer to the ImplementationDef object to add to the Implementation

Repository.

Return Value
An exception is returned if there was an error updating the Implementation Repository.

Example

#include <somd.h>

Environment ev;
ImplementationDef impldef;

impldef = ImplementationDefNew () ;
_ _set_impl_program(impldef, &ev,”/u/servers/myserver”) ;

/* set more of the impldef’s attributes here */

_add_impldef (SOMD_ImplRepObject, &ev, impldef) ;

Original Class
ImplRepository

2-40 SOMobjects Base Toolkit: Programmer’s Reference Manual

delete_impldef Method

Purpose
Deletes an implementation definition from the Implementation Repository.

IDL Syntax

void delete_impldef (
in Implld implid);

Description

Deletes the specified ImplementationDef object from the Implementation Repository.
Parameters

receiver A pointer to the ImplRepository object.

env A pointer to the Environment structure for the method caller.

implid The Implld that identifies the server implementation of interest.

Return Value
An exception is returned if there was an error updating the Implementation Repository.

Example

#include <somd.h>

Environment ev;
ImplementationDef impldef;

impldef =
_find_impldef_by_name (SOMD_ImplRepObject, &ev, "stackServer”) ;
_delete_impldef (SOMD_ImplRepObiject, &ev,___get_impl_id(impldef, &ev));

Original Class
ImplRepository

DSOM Framework Reference 2-41

find_all_impldefs Method

Purpose
Returns all the implementation definitions in the Implementation Repository.
Syntax
ORBStatus find_all_impldefs (out sequence<implementationDef> outimpldefs);
Description
The find_all_impldefs method searches the Implementation Repository and returns all the
ImplementationDef objects in it.
Parameters
receiver A pointer to an object of class ImplRepository.
ev A pointer to the Environment structure for the calling method.

outimpldefs A sequence of ImplementationDefs is returned.

Return Value
A zero is returned to indicate success; otherwise, a DSOM error code is returned.

Example

#include <somd.h>

Environment ev;
sequence (ImplementationDef) impldefs;

find all_impldefs (SOMD_ImplRepObject, &ev, &impldefs);

Original Class
ImplRepository

2-42 SOMobjects Base Toolkit: Programmer’s Reference Manual

find_classes_by _impldef Method

Purpose

Returns a sequence of class names associated with a server.
IDL Syntax

sequence<string> find_classes_by_impldef (

in Implld implid);

Description

The find_classes_by_impldef method searches the class index and returns the sequence

of class names supported by a server with the specified implid.
Parameters

receiver A pointer to the ImplRepository object.

env A pointer to the Environment structure for the method caller.

implid The Implld that identifies the server implementation of interest.

Return Value

A sequence of strings is returned. Ownership of the sequence structure, the string array
buffer, and the strings themselves is transferred to the caller.

An exception is returned if there was an error reading the Implementation Repository.

Example

#include <somd.h>

Environment ev;

SOMDServer server;
ImplementationDef impldef;
ImplId implid;

sequence (string) classes;

server = _find_server_by_name (SOMD_ObjectMgr, &ev, "stackServer”);

impldef = _get_implementation (server, &ev);
implid = __get_impl_id(impldef, &ev);
classes = _find_classes_by impldef (SOMD_ImplRepObject, &ev,implid);

Original Class
ImplIRepository

DSOM Framework Reference 2-43

find_impldef Method

Purpose
Returns a server implementation definition given its ID.

IDL Syntax

ImplementationDef find_impldef (
in Implld implid);

Description
Finds and returns the ImplementationDef object whose ID is implid.
Parameters
receiver A pointer to the ImplRepository object.
env A pointer to the Environment structure for the method caller.
implid The Implld of the desired ImplementationDef.

Return Value

A copy of the desired ImplementationDef object is returned. Ownership of the object is
transferred to the caller.

An exception is returned if there was an error reading the Implementation Repository.

Example
#include <somd.h>
main (int argc, char **argv)
{

Environment ev;
SOM_InitEnvironment (&ev) ;

/* Initialize the DSOM run-time environment */
SOMD_Init (&ev);

/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject =

_find_impldef (SOMD_ImplRepObject, &ev, argv[l]);

/* Tell DSOM that the server is ready to process requests */
_impl_is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObiject);

}

Original Class
ImplRepository

2-44 sOMobjects Base Toolkit: Programmer’s Reference Manual

find_impldef_by alias Method

Purpose
Returns a server implementation definition, given its user-friendly alias.

IDL Syntax

ImplementationDef find_impldef by alias (
in string alias_name);

Description

Finds and returns the ImplementationDef object whose alias is alias_name.
Parameters

receiver A pointer to the ImplRepository object.

env A pointer to the Environment structure for the method caller.

alias_name User-friendly name used to identify the implementation.

Return Value

A copy of the desired ImplementationDef object is returned, and ownership of the object is
transferred to the caller. Or, if the specified alias is not found in the Implementation
Repository, NULL is returned.

An exception is returned if there was an error reading the Implementation Repository.

Example

#include <somd.h>

Environment ev;
ImplementationDef impldef;

impldef =
_find_impldef_by_name (SOMD_ImplRepObject, &ev,”stackServer”);
_delete_impldef (SOMD_ImplRepObject, &ev,__get_impl_id(impldef, &ev));

Original Class
ImplRepository

DSOM Framework Reference 2-45

find_impldef_by class Method

Purpose
Returns a sequence of implementation definitions for servers that are associated with a
specified class.

IDL Syntax

sequence<implementationDef> find_impldef_by_class (
in string classname);

Description
Returns a sequence of ImplementationDefs for those servers that have registered an
association with a specified class. Typically, a server will be associated with the classes it
knows how to implement by registering its known classes via the add_class_to_impldef

method.
Parameters
receiver A pointer to the ImplRepository object.
env A pointer to the Environment structure for the method caller.
classname A string whose value is the class name of interest.

Return Value

Copies of all ImplementationDef objects are returned in a sequence. Ownership of the
sequence structure, the object array buffer, and the objects themselves is transferred to the
caller.

An exception is returned if there was an error reading the Implementation Repository.

Example

#include <somd.h>

Environment ev;
sequence (ImplementationDef) impldefs;

impldefs =
_find_impldef_ by class (SOMD_ImplRepObject, &ev,”Stack”);

Original Class
ImplRepository

2-46 SOMobjects Base Toolkit: Programmer’s Reference Manual

remove_class_from_all Method

Purpose
Removes the association of a particular class from all servers.

Syntax

void remove_class_from_all (in string className);

Description

The remove_class_from_all method removes the className from all of the
ImplementationDefs.

Parameters
receiver A pointer to an object of class ImplRepository.
ev A pointer to the Environment structure for the calling method.

className A string whose value is the class name of interest.

Example

#include <somd.h>
Environment ev;

remove_class_from_all (SOMD_ImplRepObject, &ev, "Stack”);

Original Class
ImplIRepository

DSOM Framework Reference

2-47

remove_class_from_impldef Method

Purpose
Removes the association of a particular class with a server.
IDL Syntax
void remove_class_from_impldef (
in Implld implid,
in string classname);
Description
Removes the specified class name from the set of class names associated with the server
implementation identified by implid.
Parameters
receiver A pointer to the ImplRepository object.
env A pointer to the Environment structure for the method caller.
implid A pointer to an ImplRepository object.
classname A string whose value is the class name of interest.

Return Value
An exception is returned if there was an error updating the Implementation Repository.

Example

#include <somd.h>

Environment ev;

SOMDServer server;
ImplementationDef impldef;
ImplId implid;

server = _find_server_by_name (SOMD_ObjectMgr, &ev, "stackServer”) ;

impldef = _get_implementation (server, &ev);
implid = _ _get_impl_id(impldef, &ev);

_remove_class_from impldef (SOMD_ImplRepObject,
&ev,implid, "Queue”) ;

Original Class
ImplRepository

2-48 SOMobjects Base Toolkit: Programmer’s Reference Manual

update_impldef Method

Purpose
Updates an implementation definition in the Implementation Repository.

IDL Syntax

void update_impldef (
in ImplementationDef impldef);

Description
Replaces the state of the specified ImplementationDef object in the Implementation
Repository. The ID of the impldef determines which object gets updated in the
Implementation Repository.

Parameters
receiver A pointer to the ImplRepository object.
env A pointer to the Environment structure for the method caller.
impldef A pointer to an ImplementationDef object, whose values are to be saved

in the Implementation Repository.

Return Value
An exception is returned if there was an error updating the Implementation Repository.

Example

#include <somd.h>

Environment ev;
SOMDObject objref;
ImplementationDef impldef;

impldef = _get_implementation (objref, &ev);

_ _set_impl_program(impldef, &ev,”/u/joe/bin/myserver”) ;
_update_impldef (SOMD_ImplRepObject, &ev, impldef) ;

Original Class
ImplRepository

DSOM Framework Reference 2-49

NVList Class

Description

The type NamedValue is a standard datatype defined in CORBA (see the CORBA 1.1 page
106). It can be used either as a parameter type or as a mechanism for describing
arguments to a request. The NVList class implements the NVList object used for
constructing lists composed of NamedValues. NVLists can be used to describe arguments
passed to request operations or to pass lists of property names and values to context object
routines. Additional information about NVList is contained in Chapter 6 of the CORBA 1.1
specification.

File Stem

nvlist

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods

add_item
free
free_memory
get_count
get_item *
set_item*

(* These methods were added by DSOM to supplement the published CORBA 1.1
methods.)

Overridden Methods

somlinit

2-50 SOMobjects Base Toolkit: Programmer’s Reference Manual

add_item Method

Purpose
Adds an item to the specified NVList.
IDL Syntax
ORBStatus add_item (
in Identifier item_name,
in TypeCode item_type,
in void* value,
in long value _len,
in Flags item_flags);
Description
The add_item method adds an item to the end of the specified list.
Parameters
receiver A pointer to the NVList object to which the item will be added.
env A pointer to the Environment structure for the method caller.

item_name The name of the item to be added.

item_type The data type of the item to be added.

value A pointer to the value of the item to be added.
value_len The length of the item value to be added.
item_flags A Flags bitmask (unsigned long). The item_flags can be one of the

following values to indicate parameter direction:

ARG_IN The argument is input only.

ARG_OUT The argument is output only.

ARG_INOUT The argument is input/output.

In addition, item_flags may also contain the following values:

IN_COPY_VALUE
An internal copy of the argument is made and used.

DEPENDENT_LIST
Indicates that a specified sublist must be freed when the
parent list is freed.

Return Value

The add_item method returns an ORBStatus value representing the return code from the
operation.

Example
#include <somd.h>
Environment ev;
NVList plist;
ORBStatus rc;

rc

= _create_list (SOMD_ORBObject, &ev, 0, &plist);
rc = _add_item(plist, &ev, "firstname”, TC_string, "Joe”, 3, 0);
rc = _add_item(plist, &ev, ”lastname”, TC_string, "”Schmoe”, 5, 0);

DSOM Framework Reference 2-51

Original Class
NVList

Related Information
Methods: free, free_memory, get_count, get_item, set_item, create_list

2-52 SOMobjects Base Toolkit: Programmer’s Reference Manual

free Method

Purpose
Frees a specified NVList.

IDL Syntax
ORBStatus free ();

Description

The free method frees an NVList object and any associated memory. It makes an implicit
call to the free_memory method.

Parameters
receiver A pointer to the NVList object to be freed.
env A pointer to the Environment structure for the method caller.

Return Value
The method returns an ORBStatus value representing the return code from the operation.

Example
#include <somd.h>
Environment ev;
long nargs;
NVList arglist;
ORBStatus rc;
rc = _create_list (SOMD_ORBObject, &ev, nargs, &arglist);

rc= _free(arglist, &ev);

Original Class
NVList

Related Information
Methods: free_memory

Functions: ORBfree

DSOM Framework Reference 2-53

free_memory Method

Purpose
Frees any dynamically allocated out-arg memory associated with the specified list.

IDL Syntax
ORBStatus free_memory ();

Description

The free_memory method frees any dynamically allocated out-arg memory associated with
the specified list, without freeing the list object itself. This would be useful when invoking a
DIl request multiple times with the same NVList.

Parameters
receiver A pointer to the NVList object whose out-arg memory is to be freed.
env A pointer to the Environment structure for the method caller.

Return Value

The free_memory method returns an ORBStatus value representing the return code from
the operation.

Example

#include <somd.h>

#include <repostry.h>

#include <intfacdf.h>

#include <foo.h> /* provided by user */

/* assume following method declaration in interface Foo:
long methodLong (in long inLong, inout long inoutLong);
then the following code repeatedly invokes a request:
result = methodLong(fooObj, &ev, 100, 200);
* using the DIT.
*/

* %

Environment ev;
NVList arglist;
NamedValue result;
long rc;

Foo fooObj;
Request reqObij;

/* See example code for ”invoke” to see how the argList is built */

/* Create the Request, regObj */

rc = _create_request (foo0Obj, &ev, (Context *)NULL, "methodLong”,
arglist, &result, &reqObj, (Flags)O0);

/* Repeatedly invoke the Request */

for (;;) |

rc = _invoke (regObj, &ev, (Flags)O0);

rc= _free_memory (arglist, &ev); /* free out args */

}

2-54 SOMobjects Base Toolkit: Programmer’s Reference Manual

Original Class
NVList

Related Information
Methods: free

Functions: ORBfree

DSOM Framework Reference

2-55

get_count Method

Purpose

Returns the total number of items allocated for a list.
IDL Syntax

ORBStatus get_count (

out long count);

Description

The get_count method returns the total number of allocated items in the specified list.
Parameters

receiver A pointer to the NVList object on which count is desired.

env A pointer to the Environment structure for the method caller.

count A pointer to where the method will store the long integer count value.

Return Value

The get_count method returns an ORBStatus value representing the return code from the
operation.

Example
#include <somd.h>
Environment ev;
long nargs, list_size;
NVList arglist;
ORBStatus rcj;
rc = _create_list (SOMD_ORBObject, &ev, nargs, &arglist);

rc = _get_count (arglist, &ev, &list_size);

Original Class
NVList

Related Information
Methods: add_item, get_item, set_item, create_list

2-56 SOMobjects Base Toolkit: Programmer’s Reference Manual

get_item Method

Purpose

Returns the contents of a specified list item.

IDL Syntax

ORBStatus get_item (

Description

in long item_number,

out Identifier item_name,
out TypeCode item_type,
out void* value,

out long value_len,

out Flags item_flags);

The get_item method gets an item from the specified list. ltems are numbered from 0
through N. The mode flags can be one of the following values:

The get_item method transfers ownership of storage allocated for the item value to the

caller.

Parameters
receiver

env

item_number

item_name
item_type
value

value _len

item_flags

Return Value

A pointer to an NVList object.
A pointer to the Environment structure for the method caller.

The position (index) of the item in the list. The item_number ranges from 0
to n—1, where n is the total number of items in the list.

A pointer to where the name of the item should be returned.

A pointer to where the data type of the item should be returned.

A pointer to where a pointer to the value of the item should be returned.
A pointer to where the length of the item value should be returned.

A Flags bitmask (unsigned long). The item_flags can be one of the
following values indicating parameter direction.

ARG_IN The argument is input only.
ARG_OUT The argument is output only.
ARG_INOUT The argument is input/output.

In addition, item_flags can have the following values:

IN_COPY_VALUE
Indicates a copy of the argument is contained and used by
the NVList.

DEPENDENT_LIST
Indicates that a specified sublist must be freed when the
parent list is freed.

The get_item method returns 0 for success, or a DSOM error code for failure (often
because item_number+1 exceeds the number of items in the list).

DSOM Framework Reference 2-57

Example

#include <somd.h>

Environment ev;
long i, nArgs;
ORBStatus rc;
Identifier name;
TypeCode typeCode;
void *value;

long len;

Flags flags;
NVList argList;

/* get number of args */
rc = _get_count (argList, ev, &nArgs);
for (i = 0; 1 < nArgs; i++) {
/* get item description */
rc = _get_item(arglist,

&ev,

i,

&name,

&typeCode,

&value,

&len,

&flags);

Original Class
NVList

Related Information
Methods: add_item, set_item, create_list

2-58 SOMobjects Base Toolkit: Programmer’s Reference Manual

set_item Method

Purpose
Sets the contents of an item in a list.
IDL Syntax
ORBStatus set_item (
in long item_number,
in Identifier item_name,
in TypeCode item_type,
in void* value,
in long value_len,
in Flags item_flags);
Description
The set_item method sets the contents of an item in the list.
Parameters
receiver A pointer to an NVList which contains the item to be set.
env A pointer to the Environment structure for the method caller.

item_number The position (index) of the item in the list. The item_number ranges from 0
to n—1, where n is the total number of items in the list.

item_name The name of the set item.

item_type The data type of the set item.

value A pointer to the value of the set item.

value_len The length of the set item value.

item_flags A Flags bitmask (unsigned long). The item_flags can be one of the

following values to indicate parameter direction:

ARG_IN The argument is input only.

ARG_OUT The argument is output only.

ARG_INOUT The argument is input/output.

In addition, item_flags may also contain the following values:

IN_COPY_VALUE
Indicates an internal copy of the argument is made and
used.

DEPENDENT_LIST
Indicates that a specified sublist must be freed when the
parent list is freed.

Return Value

The set_item method returns 0 on successful completion or a DSOM error code upon
failure (often because item_number+1 exceeds the number of items in the list).

DSOM Framework Reference 2-59

Example

#include <somd.h>

Environment ev;
long i, nArgs;
ORBStatus rc;
Identifier name;
TypeCode typeCode;
void *value;

long len;

Flags flags;
NVList argList;

/* get number of args */
rc = _get_count (argList, ev, &nArgs);
for (i = 0; 1 < nArgs; i++) {
/* change item description */
rc = _set_item(arglList,

&ev,

i,

name,

typeCode,

value,

len,

flags);

}

Original Class
NVList

Related Information
Methods: add_item, get_item, create_list

2-60 sOMobjects Base Toolkit: Programmer’s Reference Manual

ObjectMgr Class

Description

The ObjectMgr class provides a uniform, universal abstraction for any sort of object
manager. Object Request Brokers, persistent storage managers, and OODBMSs are
examples of object managers.

This is an abstract base class, which defines the “core” interface for an object manager. It
provides basic methods that:

e Create a new object of a certain class,
e Return a (persistent) ID for an object,
¢ Return a reference to an object associated with an ID,

¢ Free an object (that is, release any local memory associated with the object without
necessarily destroying the object itself), or

¢ Destroy an object.

Note: The ObjectMgr is an abstract class and should not be instantiated. Any subclass of
ObjectMgr must provide implementations for all ObjectMgr methods. In DSOM, the class
SOMDODbjectMgr provides a DSOM-specific implementation.

File Stem

om

Base
SOMObiject

Metaclass
SOMMSinglelnstance

Ancestor Classes
SOMObiject

Subclasses
SOMDObjectMgr

New Methods
somdDestroyObject Method *

somdGetldFromObject Method *
somdGetObjectFromid Method *
somdNewODbject Method *
somdReleaseObject Method *

(* This class and its methods were added by DSOM to supplement the published CORBA
1.1 interfaces.)

DSOM Framework Reference 2-61

somdDestroyObject Method

Purpose
Requests destruction of the target object.

IDL Syntax

void somdDestroyObject (
in SOMObiject ob));

Description

The somdDestroyObject method indicates that the object manager should destroy the
specified object. Storage associated with the object is freed.

In DSOM, the SOMDObjectMgr forwards the deletion request to the remote server, and
then frees the local proxy object.

Parameters
receiver A pointer to an ObjectMgr object.
env A pointer to the Environment structure for the method caller.
obj A pointer to the object to be freed.

Example

#include <somd.h>

Stack stk;
Environment ev;
SOMDServer server;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);
StackNewClass (0,0);
server =
_somdFindAnyServerByClass (SOMD_ObjectMgr, &ev,”Stack”);
stk = _somdCreateObj(server, &ev, "Stack”, ”");

_somdDestroyObject (SOMD_ObjectMgr, &ev, stk);

Original Class
ObjectMgr

Related Information
Methods: somdReleaseObject, somdCreateObj, somdTargetFree, release

2-62 SOMobjects Base Toolkit: Programmer’s Reference Manual

somdGetldFromObject Method

Purpose
Returns an ID for an object managed by a specified Object Manager.

IDL Syntax

string somdGetldFromObiject (
in SOMObiject ob));

Description

The somdGetldFromObject method returns the persistent ID for an object managed by the
specified Object Manager. This ID is unambiguous — it always refers to the same object.

The somdGetldFromObject method transfers ownership of storage allocated for the string

to the caller.
Parameters
receiver A pointer to an ObjectMgr object.
env A pointer to the Environment structure for the method caller.
obj A pointer to the object for which an ID is needed.

Return Value

The somdGetldFromObject method returns a string representing the ID of the specified
object.

Example

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

string somdObjectId;

/*note that ”SOMDObject Identifiers” are just strings */

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

/* create a remote Car object */
car = _somdNewObject (SOMD_ObjectMgr, &ev, “Car”, "");

/* save the reference to the object */

somdObjectId = _somdGetIdFromObject (SOMD_ObjectMgr, &ev, car);
FileWrite (”/u/joe/mycar”, somdObjectId);

Original Class
ObjectMgr

Related Information
Methods: somdGetObjectFromid

DSOM Framework Reference 2-63

somdGetObjectFromid Method

Purpose
Finds and activates an object implemented by a specified object manager, given its ID.

IDL Syntax

SOMObject somdGetObjectFromid (
in string id);

Description

The somdGetObjectFromld method finds and activates an object implemented by this
object manager, given its ID.

The somdGetObjectFromld method transfers ownership to the caller.

Parameters
receiver A pointer to an ObjectMgr object.

env A pointer to the Environment structure for the method caller.

id A string representing an object ID.

Return Value
The somdGetObjectFromld method returns a pointer to the object with the specified ID.

Example

#include <somd.h>
#include <car.h>
Environment ev;

Car car;

string somdObjectId;

/* restore proxy from its string form */

FileRead (”/u/joe/mycar”, &somdObjectId);
car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

Original Class
ObjectMgr

Related Information
Methods: somdGetldFromObject

2-64 SOMobjects Base Toolkit: Programmer’s Reference Manual

somdNewObject Method

Purpose

Returns a new object of the named class.

IDL Syntax

SOMObject somdNewObject (

Description

in Identifier objclass,
in string hints);

The somdNewObject method returns a new object of the class specified by objclass.
Application-specific creation options can be supplied via the hints parameter.

In DSOM, the SOMDODbjectMgr selects a random server which has advertised knowledge
of the desired class objclass, and forwards the creation request to that server. The hints
field is currently ignored by the SOMDObjectMgr.

Parameters

receiver A pointer to an ObjectMgr object.

env

objclass An Identifier representing the type of the new object.

hints

Return Value

A pointer to the Environment structure for the method caller.

A string which may optionally be used to specify special creation options.

The somdNewObject method returns a SOMODbject. Ownership of the new object is
transferred to the caller.

Example

#include <somd.h>
#include <stack.h> /* provided by user */

Stack stk;
Environment ev;
SOMDServer server;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev);

StackNewClass (0,0);

stk = _somdNewObject (SOMD_ObjectMgr, é&ev, "Stack”,

_somdDestroyObject (SOMD_ObjectMgr, &ev, stk);

Original Class
ObjectMgr

Related Information
Methods: somdDestroyObject, somdReleaseObject

"") .
’

DSOM Framework Reference 2-65

somdReleaseObject Method

Purpose
Indicates that the client has finished using the object.
IDL Syntax
void somdReleaseObiject (
in SOMObiject ob));
Description
The somdReleaseObject method indicates that the client has finished using the specified
object. This allows the object manager to free the bookkeeping information associated with
the object, if any. The object may also be passivated, but it is not destroyed.
In DSOM, somdReleaseObject causes the client’s proxy for the target object of interest to
be freed; the target object is not freed.
Parameters
receiver A pointer to an ObjectMgr object.
env A pointer to the Environment structure for the method caller.
obj A pointer to the object to be released.
Example

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

string somdObjectId;

/* restore proxy from its string form */

FileRead (”/u/joe/mycar”, &somdObjectId);

car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

_somdReleaseObject (SOMD_ObjectMgr, &ev, car);

Original Class
ObjectMgr

Related Information
Methods: somdDestroyObject, somdNewObject, somdTargetFree, release

2-66 SOMobjects Base Toolkit: Programmer’s Reference Manual

ORB Class

Description

The ORB class implements the CORBA ORB object described in Chapter 8 of the CORBA
1.1 specification. The ORB class defines operations for converting object references to

strings and converting strings to object references. The ORB also defines operations used
by the Dynamic Invocation Interface for creating lists (NVlists) and determining the default

context.

File Stem

orb

Base
SOMObiject

Metaclass
SOMMSinglelnstance

Ancestor Classes
SOMObject

New Methods

create_list
create_operation_list
get_default_context
object_to_string

string_to_object

DSOM Framework Reference

2-67

create_list Method

Purpose
Creates an NVList of the specified size.
IDL Syntax
ORBStatus create_list (
in long count,
out NVList new _lisi);
Description
Creates an NVList list of the specified size, typically for use in Requests.
Ownership of the allocated new _listis transferred to the caller.
Parameters
receiver A pointer to the ORB object.
env A pointer to the Environment structure for the method caller.
count An integer representing the number of elements to allocate for the list.
new_list A pointer to the address where the method will store a pointer to the

allocated NVList object.

Return Value

The create_list method returns an ORBStatus value representing the return code of the
operation.

Example
#include <somd.h>
Environment ev;
long nargs = 5;
NVList arglist;
ORBStatus rc;

rc = _create_list (SOMD_ORBObject, &ev, nargs, &arglist);

Original Class
ORB

Related Information
Methods: create_operation_list

2-68 SOMobjects Base Toolkit: Programmer’s Reference Manual

create_operation_list Method

Purpose
Creates an NVList initialized with the argument descriptions for a given operation.
IDL Syntax
ORBStatus create_operation_list (
in OperationDef oper,
out NVList new _lisi);
Description
Creates an NVList list for the specified operation, for use in Requests invoking that
operation.
Parameters
receiver A pointer to the ORB object.
env A pointer to the Environment structure for the method caller.
oper A pointer to the OperationDef object representing the operation for which
the NVList is to be initialized.
new_list A pointer to where the method will store a pointer to the resulting argument
list.

Return Value
The create_operation_list method returns an ORBStatus value representing the return
code of the operation.

Ownership of the allocated new_list is transferred to the caller.

Example

#include <somd.h>

Environment ev;
OperationDef opdef;
NVList arglist;
long rc;

/* Get the OperationDef from the Interface Repository. */
opdef = _lookup_1id(SOM_InterfaceRepository,
&ev, "Foo:methodLong”);
/* Create a NamedValue list for the operation. */
rc= _create_operation_list (SOMD_ORBObject, &ev, opdef, &arglist);

Original Class
ORB

Related Information
Methods: create_list

DSOM Framework Reference 2-69

get_default_context Method

Purpose
Returns the default process Context object.
IDL Syntax
ORBStatus get_default_context (
out Context ctx);
Description
The get_default_context method gets the default process Context object.
Ownership of the allocated Context object is transferred to the caller.
Parameters
receiver A pointer to the ORB object.
env A pointer to the Environment structure for the method caller.
ctx A pointer to where the method will store a pointer to the returned Context
object.

Return Value

The get_default_context method returns an ORBStatus return code: 0 indicates success,
while a non-zero value is a DSOM error code (see Chapter 6 of the SOM Toolkit User’s
Guide).

Example
#include <somd.h>
Environment ev;
Context cxt;

long rc;

rc = _get_default_context (SOMD_ORBObject, &ev, &cxt);

Original Class
ORB

2-70 SOMobjects Base Toolkit: Programmer’s Reference Manual

object_to_string Method

Purpose
Converts an object reference to an external form (string) which can be stored outside the
ORB.
IDL Syntax
string object_to_string (
in SOMDObject ob));
Description
The object_to_string method converts the object reference to a form (string) which can be
stored externally.
Ownership of allocated memory is transferred to the caller.
Parameters
receiver A pointer to the ORB object.
env A pointer to the Environment structure for the method caller.
obj A pointer to a SOMDODbject object representing the reference to be
converted.

Return Value
The object_to_string method returns a string representing the external (string) form of the
referenced object.

Example

#include <somd.h>
#include <car.h>

Environment ev;
Car car;
string objrefstr;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

/* create a remote Car object */
car = _somdNewObject (SOMD_ObjectMgr, &ev, “Car”, "");

/* save the reference to the object */

objrefstr = _object_to_string (SOMD_ORBObject, &ev, car);
FileWrite (”/u/joe/mycar”, objrefstr);

Original Class
ORB

Related Information
Methods: string_to_object

DSOM Framework Reference 2-71

string_to_object Method

Purpose
Converts an externalized (string) form of an object reference into an object reference.
IDL Syntax
SOMDObject string_to_object (
in string str);
Description
The string_to_object method converts the externalized (string) form of an object reference
into an object reference.
Parameters
receiver A pointer to the ORB object.
env A pointer to the Environment structure for the method caller.
str A pointer to a character string representing the externalized form of the

object reference.

Return Value
The string_to_object method returns a SOMDODbject object.

Example

#include <somd.h>
#include <car.h>

Environment ev;
Car car;
string objrefstr;

/* restore proxy from its string form */

FileRead (”/u/joe/mycar”, &objrefstr);
car = _string_to_object (SOMD_ORBObject, &ev, objrefstr);

Original Class
ORB

Related Information
Methods: object_to_string

2-72 SOMobjects Base Toolkit: Programmer’s Reference Manual

Principal Class

Description

File Stem

Base

Metaclass

The Principal class defines attributes which identify the user id and host name of the
originator of a specific request. This information is typically used for access control.

A Principal object is returned by the get_principal method of the SOM Object Adapter. The
parameters of the get_principal method identify the environment and target object
associated with a particular request — the SOMOA uses this information to create a
Principal object which identifies the caller.

Note: Details of the Principal object are not currently defined in the CORBA 1.1
specification; the attributes which have been defined are required by DSOM.

principl

SOMObject

SOMClass

Ancestor Classes

Attributes

SOMObject

Listed below is each available attribute, with its corresponding type in parentheses, followed
by a description of its purpose:

userName (string)
Identifies the name of the user associated with the request invocation.
(Currently, this value is obtained from the USER environment variable in the
process which invoked the request.)

hostName (string)
Identifies the name of the host from where the request originated.
(Currently, this value is obtained from the HOSTNAME environment
variable in the process which invoked the request.)

DSOM Framework Reference 2-73

Request Class

Description
The Request class implements the CORBA Request object described in section 6.2 on
page 108 of CORBA 1.1. The Request object is used by the dynamic invocation interface to
dynamically create and issue a request to a remote object. Request objects are created by
the create_request method in SOMDObiject.

File Stem

request

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObiject

New Methods
add_arg

destroy *
get_response
invoke

send

(* The destroy method was defined as delete in CORBA 1.1, which conflicts with the delete
operator in C++. However, there is a Request_delete macro defined for CORBA
compatibility.)

Overridden Methods

somlinit

somUninit

2-74 SOMobjects Base Toolkit: Programmer’s Reference Manual

add_arg Method

Purpose
Incrementally adds an argument to a Request object.

IDL Syntax

ORBStatus add_arg (
in Identifier name,
in TypeCode arg type,
in void* value,
in long /en,
in Flags arg flags);

Description

The add_arg method incrementally adds an argument to a Request object. The Request
object must have been created using the create_request method with an empty argument

list.
Parameters
receiver A pointer to a Request object.
env A pointer to the Environment structure for the method caller.
name An identifier representing the name of the argument to be added.
arg_type The typecode for the argument to be added.
value A pointer to the argument value to be added.
len The length of the argument.
arg_flags A Flags bitmask (unsigned long). The arg_flags parameter may take one of

the following values to indicate parameter direction:
ARG_IN The argument is input only.

ARG_OUT The argument is output only.

ARG_INOUT The argument is input/output.

In addition, arg_flags may also contain the following values:

IN_COPY_VALUE
An internal copy of the argument is to be made and used.

DEPENDENT_LIST
Indicates that a specified sublist must be freed when
the parent list is freed.

DSOM Framework Reference 2-75

Return Value

The add_arg method returns an ORBStatus value representing the return code of the
operation.

Example

#include <somd.h>

finclude <repostry.h>

#include <intfacdf.h>

#include <foo.h> /* provided by user */

/* assume following method declaration in interface Foo:

* long methodLong (in long inLong, inout long inoutLong);
* then the following code builds a request to execute the call:
* result = methodLong(fooObj, &ev, 100,200);

*using the DITI.

*/

Environment ev;

OperationDef opdef;
Description desc;
OperationDescription *opdesc;
long rc;

long valuel = 100;

long value2 200;

Foo fooObj;

Request reqObij;

NamedValue result;

/* Get the OperationDef from the Interface Repository. */
opdef = _lookup_id(SOM_InterfaceRepository,
&ev, "Foo::methodLong”);

/* Get the operation description structure. */
desc = _describe (opdef, &ev);
opdesc = (OperationDescription *) desc.value._value;

/* Fill in the TypeCode field for result. */
result.argument._type = opdesc—->result;

/* Create the Request, reqgObj */
rc = _create_request (fooObj, &ev, (Context *)NULL, "methodLong”,
(NVList *)NULL, &result, &reqObj, (Flags)O0);

/* Add argl info onto the request */
_add_arg(reqObij, &ev,
"inLong”, TC_long, &valuel, sizeof(long), (Flags)O0);
/* Add arg2 info onto the request */
_add_arg(reqObij, &ev,
"inoutLong”, TC_long, &value2, sizeof(long), (Flags)O0);

Original Class

Request

2-76 SOMobjects Base Toolkit: Programmer’s Reference Manual

destroy Method (for a Request object)

Purpose
Deletes the memory allocated by the ORB for a Request object.

IDL Syntax
ORBStatus destroy ();

Description
The destroy method deletes the Request object and all associated memory.

Note: This method is called “delete” in the CORBA 1.1 specification. However, the word
“delete” is a reserved operator in C++, so the name “destroy” was chosen as an
alternative. For CORBA compatibility, a macro defining Request_delete as an alias
for destroy has been included in the C header files.

Parameters
receiver A pointer to a Request object.
env A pointer to the Environment structure for the method caller.

Return Value

The destroy method returns an ORBStatus value representing the return code of the
operation.

DSOM Framework Reference 2-77

Example

#include <somd.h>

finclude <repostry.h>

#include <intfacdf.h>

#include <foo.h> /* provided by user */

/

assume following method declaration in interface Foo:
long methodLong (in long inLong, inout long inoutLong);
then the following code sends a request to execute the call:
result = methodLong(fooObj, &ev, 100,200);
using the DII without waiting for the result. Then, later,

waits for and then uses the result.
/

Environment ev;

NVList arglist;

long rc;

Foo fooObj;

Request reqObij;

NamedValue result;

ok X X ok % %

/* see the Example code for invoke to see how the request

* is built

*/

/* Create the Request, regObj */

rc = _create_request (foo0Obj, &ev, (Context *)NULL, "methodLong”,

arglist, &result, &reqgObj, (Flags)O0);

/* Finally, send the request */
rc = _send(reqObj, &ev, (Flags)O0);

/* do some work, i.e. don’t wait for the result */

/* wait here for the result of the request */
rc = _get_response (regObj, &ev, (Flags)O0);

/* use the result */
if (result->argument._value == 9600) {...}

/* throw away the reqObj */
_destroy (regqObj, &ev);

Original Class
Request

Related Information
Methods: invoke, send, get_response

2-78 SOMobjects Base Toolkit: Programmer’s Reference Manual

get_response Method

Purpose
Determines whether an asynchronous Request has completed.

IDL Syntax

ORBStatus get_response (
in Flags response_flags);

Description

The get_response method determines whether the asynchronous Request has completed.
Parameters

receiver A pointer to a Request object.

env A pointer to the Environment structure for the method caller.

response_flags A Flags bitmask (unsigned long) containing control information for the
get_response method. The response_flags argument may have the
following value:

RESP_NO_WAIT
Indicates the caller does not want to wait for a response.

Return Value

The get_response method returns an ORBStatus value representing the return code of the
operation.

DSOM Framework Reference 2-79

Example

#include <somd.h>

finclude <repostry.h>

#include <intfacdf.h>

#include <foo.h> /* provided by user */

/

ok X X ok % %

assume following method declaration in interface Foo:
long methodLong (in long inLong, inout long inoutLong);
then the following code sends a request to execute the call:
result = methodLong(fooObj, &ev, 100,200);
using the DII without waiting for the result. Then, later,
waits for and then uses the result.

Environment ev;
NVList arglist;
long rc;

Foo fooObj;
Request reqObij;
NamedValue result;

/*

*

*/

/*

rc

/*

rc
/*
/*

rc

/*
if

Original Class

see the Example code for invoke to see how the request
is built

Create the Request, reqObj */
= _create_request (foo0Obj, &ev, (Context *)NULL, "methodLong”,
arglist, &result, ®Obj, (Flags)O0);

Finally, send the request */
= _send(reqgObij, &ev, (Flags)O0);

do some work, i.e. don’t wait for the result */

wait here for the result of the request */
= _get_response (reqObj, &ev, (Flags)O0);

use the result */
(result->argument._value == 9600) {...}

Request

Related Information
Methods: invoke, send

Macros: Request_delete

2-80 SOMobjects Base Toolkit: Programmer’s Reference Manual

invoke Method

Purpose

Invokes a Request synchronously, waiting for the response.

IDL Syntax

ORBStatus invoke (

Description

in Flags invoke_flags);

The invoke method sends a Request synchronously, waiting for the response.

Parameters
receiver

env

invoke_flags

Return Value

A pointer to a Request object.
A pointer to the Environment structure for the method caller.

A Flags bitmask (unsigned long) representing control information for the
invoke method. There are currently no flags defined for the invoke
method.

The invoke method returns an ORBStatus value representing the return code of the

operation.

Example

#include
#include
#include
#include

/

then

using

/

L

<somd.h>

<repostry.h>

<intfacdf.h>

<foo.h> /* provided by user */

assume following method declaration in interface Foo:

long methodLong (in long inLong, inout long inoutLong);
the following code builds and then invokes

a request to execute the call:

result = methodLong (fooObj, &ev, 100,200);
the DII.

Environment ev;

Operatio
Descript
Operatio
NVList a
long rcj;
long val
long val

nDef opdef;
ion desc;
nDescription *opdesc;

rglist;
uel = 100;
ue2 = 200;

Foo fooObij;

Request

NamedVal
Identifi
TypeCode

reqObij;

ue result;
er name;
tc;

void *dummy;
long dummylen;

Flags f1l

ags;

DSOM Framework Reference 2-81

/* Get the OperationDef from the Interface Repository. */

opdef = _lookup_id(SOM_InterfaceRepository,

&ev, "Foo::methodLong”);

/* Create a NamedValue list for the operation.
rc= _create_operation_list (SOMD_ORBObject,

/* Insert argl info into arglist */
_get_item(arglist, &ev,

0, &name, &tc, &dummy, &dummylen,
_set_item(arglist, &ev,0, name, tc, &valuel,

/* Insert arg2 info into arglist */
_get_item(arglist, s&ev,

1, &name, &tc, &dummy, &dummylen,
_set_item(arglist, &ev,1, name, tc, &value2,

/* Get the operation description structure.

desc = _describe (opdef, &ev);

opdef, &arglist);

sizeof (long), flags);

sizeof (long), flags);

opdesc = (OperationDescription *) desc.value._value;

/* Fill in the TypeCode field for result.
result.argument._type = opdesc—->result;

/* Create the Request, reqgObj */

rc = _create_request (fooObj, &ev, (Context *)NULL,
arglist, &result, ®Obj, (Flags)O0);

/* Finally, invoke the request */
rc = _invoke (regObj, é&ev, (Flags)O0);

/* Print results */

printf ("result: %d, value2: %d\n”,
(long) (result.argument._value),
value?2);

Original Class
Request

Related Information
Methods: send, get_response

Macros: Request_delete

2-82 SOMobjects Base Toolkit: Programmer’s Reference Manual

"methodLong”,

send Method

Purpose
Invokes a Request asynchronously.

IDL Syntax

ORBStatus send (
in Flags invoke_flags);

Description

The send method invokes the Request asynchronously. The response must eventually be
checked by invoking either the get_response method or the get_next_response function.

Parameters
receiver A pointer to a Request object.
env A pointer to the Environment structure for the method caller.

invoke_flags A Flags bitmask (unsigned long) containing send method control
information. The argument invoke_flags can have the following value:

INV_NO_RESPONSE
Indicates that the invoker does not intend to wait for a
response, nor does it expect any of the output arguments
(inout or out) to be updated.

Return Value

The send method returns an ORBStatus value representing the return code from the
operation.

DSOM Framework Reference 2-83

Example

#include <somd.h>
finclude <repostry.h>
#include <intfacdf.h>

#include <foo.h> /* provided by user */

assume following method declaration in interface Foo:
long methodLong (in long inLong, inout long inoutLong);

/*

*

* then the following code sends

* a request to execute the call:

* result = methodLong (fooObj, &ev, 100,200);
* using the DIT.

*/

Environment ev;
NVList arglist;
long rc;

Foo fooObj;
Request reqObij;
NamedValue result;

/* see the Example code for invoke to see how the request

* is built

*/

/* Create the Request, reqObj */
rc = _create_request (fooObj, &ev,
arglist, &result, &reqObj,

/* Finally, send the request */
rc = _send(reqObj, &ev, (Flags)O0);

Original Class
Request

Related Information
Methods: invoke, get_response

Macros: Request_delete

2-84 sSOMobjects Base Toolkit: Programmer’s Reference Manual

(Context *)NULL, "methodLong”,
(Flags)0);

SOMDClientProxy Class

Description
The SOMDCIlientProxy class implements DSOM proxy objects in Clients.
SOMDClientProxy overrides the usual somDispatch methods with versions that build a
DSOM Request for remote invocation and dispatch it to the remote object. It is intended
that the implementation of this “generic” proxy class will be used to derive specific proxy
classes via multiple inheritance. The remote dispatch method is inherited from this client
proxy class, while the desired interface — and language bindings — are inherited from the
target class (but not the implementation).

SOMDClientProxy Animal

N

Animal_Proxy

File Stem

somdcprx

Base
SOMDObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

SOMDObiject

New Methods

somdProxyFree *
somdProxyGetClass *
somdProxyGetClassName *
somdReleaseResources *
somdTargetFree *
somdTargetGetClass *
somdTargetGetClassName *

(* This class and its methods were added by DSOM to supplement the published CORBA
1.1 interfaces.)

DSOM Framework Reference 2-85

Overridden methods
create_request

create_request_args

is_proxy

release

somDispatch

somDispatchA, somDispatchD, somDispatchL, somDispatchV
somFree

somGetClass

somGetClassName

somlnit

somUninit

2-86 SOMobjects Base Toolkit: Programmer’s Reference Manual

somdProxyFree Method

Purpose
Executes somFree on the local proxy object.

IDL Syntax

void somdProxyFree ();

Description
The somdProxyFree method executes the somFree method call on the local proxy object.
This method has been provided when the application program wants to be explicit about
freeing the proxy object vs. the target object.

Parameters
receiver A pointer to the SOMDClientProxy object.
env A pointer to the Environment structure for the method caller.

Return Value
somdProxyFree has no return value.

Example

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

string somdObjectId;

/* restore proxy from its string form */

FileRead (”/u/joe/mycar”, &somdObjectId);

car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

_somdProxyFree (car, &ev);

Original Class
SOMDClientProxy

Related Information
Methods: release, somdReleaseObject

DSOM Framework Reference 2-87

somdProxyGetClass Method

Purpose
Returns the class object for the local proxy object.

IDL Syntax
SOMClass somdProxyGetClass ();

Description

The somdProxyGetClass method executes the somGetClass method call on the local
proxy object and returns a pointer to the proxy’s class object. This method has been
provided when the application program wants to be explicit about getting the class object
for the proxy object vs. the target object.

Parameters
receiver A pointer to the SOMDClientProxy object.

env A pointer to the Environment structure for the method caller.

Return Value

The somdProxyGetClass method returns a pointer to the class object for the local proxy
object.

Example

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

SOMClass carProxyClass;
string somdObjectId;

/* restore proxy from its string form */
FileRead (”/u/joe/mycar”, &somdObjectId);
car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

carProxyClass = _somdProxyGetClass (car, &ev);

Original Class
SOMDClientProxy

2-88 SOMobjects Base Toolkit: Programmer’s Reference Manual

somdProxyGetClassName Method

Purpose
Returns the class name for the local proxy object.

IDL Syntax
string somdProxyGetClassName ();

Description
The somdProxyGetClassName method executes the somGetClassName method call on
the local proxy object and returns the proxy’s class name. This method has been provided
when the application program wants to be explicit about getting the class name of the proxy
object vs. the target object.

Parameters
receiver A pointer to the SOMDClientProxy object for the desired remote target

object.

env A pointer to the Environment structure for the method caller.

Return Value

The somdProxyGetClassName method returns a string containing the class name of the
local proxy object.

Example

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

string carProxyClassName;
string somdObjectId;

/* restore proxy from its string form */
FileRead (”/u/joe/mycar”, &somdObjectId);
car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

carProxyClassName = _somdProxyGetClassName (car, &ev);

Original Class
SOMDClientProxy

DSOM Framework Reference 2-89

somdReleaseResources Method

Purpose

Instructs a proxy object to release any memory it is holding as a result of a remote method
invocation in which a parameter or result was designated as “object-owned”.

IDL Syntax

void somdReleaseResources ();

Description

The somdReleaseResources method instructs a proxy object to release any memory it is
holding as a result of a remote method invocation in which a parameter or result was
designated as “object-owned”.

When a DSOM client program makes a remote method invocation, via a proxy, and the
method being invoked has an object-owned parameter or return result, the client-side
memory associated with the parameter/result will be owned by the caller’s proxy, and the
server-side memory will be owned by the remote object. The memory owned by the caller’s
proxy will be freed when the proxy is released by the client program. (The time at which the
server-side memory will be freed depends on the implementation of the remote object.)

A DSOM client can also instruct a proxy object to free all memory that it owns on behalf of
the client without releasing the proxy (assuming that the client program is finished using the
object-owned memory), by invoking the somdReleaseResources method on the proxy
object. Calling somdReleaseResources can prevent unused memory from accumulating in
a proxy.

For example, consider a client program repeatedly invoking a remote method “get_string”,
which returns a string that is designated (in SOM IDL) as “object-owned”. The proxy on
which the method is invoked will store the memory associated with all of the returned
strings, even if the strings are not unique, until the proxy is released. If the client program
only uses the last result returned from “get_string”, then unused memory accumulates in the
proxy. The client program can prevent this by invoking somdReleaseResources on the
proxy object periodically (for example, each time it finishes using the result of the last
“get_string” call).

Parameters

Example

receiver A pointer to the SOMDClientProxy object to release resources.

ev A pointer to the Environment structure for the method call.

string mystring;

/* remote invocation of get_string on proxy x,

* where method get_string has the SOM IDL modifier
* "object_owns_result”.

*/

mystring = X_get_string(x, ev);

/* ... use mystring ... */

/* when finished using mystring, instruct the
* proxy that it can free it.
*/

_somdReleaseResources (X, ev);

2-90 SOMobjects Base Toolkit: Programmer’s Reference Manual

Original Class
SOMDClientProxy

Related Information
Methods: release

DSOM Framework Reference 2-91

somdTargetFree Method

Purpose
Forwards the somFree method call to the remote target object.

IDL Syntax

void somdTargetFree ();

Description

The somdTargetFree method forwards the somFree method call to the remote target
object. This method has been provided when the application program wants to be explicit
about freeing the remote target object vs. the proxy object.

Parameters
receiver A pointer to the SOMDClientProxy object for the desired remote target
object.
env A pointer to the Environment structure for the method caller.

Return Value
somdTargetFree has no return value.

Example

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

string somdObjectId;

/* restore proxy from its string form */

FileRead (”/u/joe/mycar”, &somdObjectId);

car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

_somdTargetFree (car, é&ev);

Original Class
SOMDClientProxy

Related Information
Methods: release, somdDestroyObject

2-92 SOMobjects Base Toolkit: Programmer’s Reference Manual

somdTargetGetClass Method

Purpose
Returns (a proxy for) the class object for the remote target object.

IDL Syntax
SOMClass somdTargetGetClass ();

Description
The somdTargetGetClass method forwards the somGetClass method call to the remote
target object and returns a pointer to the class object for that object. This method has been
provided when the application program wants to be explicit about getting the class object
for the remote target object vs. the local proxy.

Parameters
receiver A pointer to the SOMDClientProxy object for the desired remote target

object.

env A pointer to the Environment structure for the method caller.

Return Value

The somdTargetGetClass method returns a pointer to the class object for the remote
target object.

Example

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

SOMClass carClass;
string somdObjectId;

/* restore proxy from its string form */
FileRead (”/u/joe/mycar”, &somdObjectId);
car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

carClass = _somdTargetGetClass (car, &ev);

Original Class
SOMDClientProxy

Related Information
Methods: somdProxyGetClass

DSOM Framework Reference 2-93

somdTargetGetClassName Method

Purpose
Returns the class name for the remote target object.

IDL Syntax

string somdTargetGetClassName ();

Description

The somdTargetGetClassName method forwards the somGetClassName method call to
the remote target object and returns the class name for that object. This method has been
provided when the application program wants to be explicit about getting the class name of
the remote target object vs. the proxy object.

Parameters

receiver A pointer to the SOMDClientProxy object for the desired remote target
object.

env A pointer to the Environment structure for the method caller.

Return Value

The somdTargetGetClassName method returns a string containing the class name of the
remote target object.

Example

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

string carClassName;
string somdObjectId;

/* restore proxy from its string form */
FileRead (”/u/joe/mycar”, &somdObjectId);
car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

carClassName = _somdTargetGetClassName (car, &ev);

Original Class
SOMDClientProxy

Related Information
Methods: somdProxyGetClassName

2-94 sOMobjects Base Toolkit: Programmer’s Reference Manual

SOMDODbject Class

Description

The SOMDODbject class implements the methods that can be applied to all CORBA object
references: for example, get_implementation, get_interface, is_nil, duplicate, and
release. (In the CORBA 1.1 specification, these methods are described in Chapter 8.)

In DSOM, there is also another derivation of this class: SOMDClientProxy. This subclass
inherits the implementation of SOMDODbiject, but extends it by overriding somDispatch with
a “remote dispatch” method, and caches the binding to the server process. Whenever a
remote object is accessed, it is represented in the client process by a SOMDClientProxy
object.

File Stem

somdobj

Base
SOMObiject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods

create_request
create_request_args *
duplicate
get_implementation
get_interface
is_constant *

is_nil

is_proxy *

is_ SOM_ref *

release

(* These methods were added by DSOM to supplement the published CORBA 1.1
interfaces.)

Overridden methods
somlinit

somUninit

somDumpSelfint

DSOM Framework Reference 2-95

create_request Method

Purpose

Creates a request to execute a particular operation on the referenced object.

IDL Syntax

ORBStatus create_request (

Description

in Context cix,

in Identifier operation,

in NVList arg _list,

inout NamedValue result,
out Request request,

in Flags req_flags);

The create_request method creates a request to execute a particular operation on the
referenced object. (For more information on the create_request call, see CORBA 1.1 page

109.)

In DSOM, this method is meaningful only when invoked on a SOMDClientProxy object. If
invoked on a SOMDObject which is not a client proxy, an exception is returned.

Parameters
receiver

env
ctx
operation

arg_list

result

request

req_flags

Return Value

A pointer to a SOMDODbject object.

A pointer to the Environment structure for the method caller.

A pointer to the Context object of the requested operation.

The name of the operation to be performed on the target object, receiver.

A pointer to a list of arguments (NVList). If this argument is NULL, the
argument list can be assembled by repeated calls to the add_arg method
on the Request object created by calling this method.

A pointer to a NamedValue structure where the result of applying operation
to receiver should be stored.

A pointer to storage for the address of the created Request object.
A Flags bitmask (unsigned long) that may contain the following flag value:

OUT_LIST_MEMORY
Indicates that any out-arg memory is associated with the
argument list. When the list structure is freed, any
associated out-arg memory is also freed. If
OUT_LIST_MEMORY is specified, an argument list must
also have been specified on the create_request call.

The create_request method returns an ORBStatus value as the status code for the

request.

2-96 SOMobjects Base Toolkit: Programmer’s Reference Manual

Example

#include <somd.h>

#include <repostry.h>

#include <intfacdf.h>

#include <foo.h> /* provided by user */

/* assume following method declaration in interface Foo:

* long methodLong (in long inLong, inout long inoutLong);
* then the following code builds a request to execute the call:
* result = methodLong(fooObj, &ev, 100,200);

*using the DITI.

*/

Environment ev;
OperationDef opdef;
Description desc;
OperationDescription *opdesc;
NVList arglist;
long rc;

long valuel = 100;
long value2 = 200;
Foo fooObj;

Request reqObij;
NamedValue result;
Identifier name;
TypeCode tc;

void *dummy;

long dummylen;
Flags flags;

/* Get the OperationDef from the Interface Repository. */
opdef = _lookup_id(SOM_InterfaceRepository,
&ev, "Foo::methodLong”);
/* Create a NamedValue list for the operation. */
rc= _create_operation_list (SOMD_ORBObject, &ev, opdef, &arglist);

/* Insert argl info into arglist */
_get_item(arglist, ¢&ev,

0, &name, é&tc, &dummy, &dummylen, &flags);
_set_item(arglist, &ev,0, name, tc, &valuel, sizeof(long), flags);

/* Insert arg2 info into arglist */
_get_item(arglist, ¢&ev,

1, &name, &tc, &dummy, &dummylen, &flags);
_set_item(arglist, &ev,1l, name, tc, &value2, sizeof(long), flags);

/* Get the operation description structure. */
desc = _describe (opdef, é&ev);
opdesc = (OperationDescription *) desc.value._value;

/* Fill in the TypeCode field for result. */
result.argument._type = opdesc—->result;

/* Finally, create the Request, reqObj */

rc = _create_request (fooObj, &ev, (Context *)NULL, “methodLong”,
arglist, &result, &reqObj, (Flags)O0);

Original Class
SOMDODbject

Related Information
Methods: create_request_args, create_list, create_operation_list

DSOM Framework Reference 2-97

create_request_args Method

Purpose
Creates an argument list appropriate for the specified operation.

IDL Syntax

ORBStatus create_request_args (
in Identifier operation,
out NVList arg list.
out NamedValue resuli);

Description
The create_request_args method creates the appropriate arg _list (NVList) for the
specified operation. It is similar in function to the create_operation_list method. Its value is
that it also creates the result structure whereas create_operation_list does not.

In DSOM, this method is meaningful only when invoked on a SOMDClientProxy object. If
invoked on a SOMDObject which is not a client proxy, an exception is returned.

Parameters
receiver A pointer to the SOMDODbject object to create the request.
env A pointer to the Environment structure for the method caller.
operation The ldentifier of the operation for which the argument list is being created.
arg_list A pointer to the location where the method will store a pointer to the
resulting argument list.
result A pointer to the NamedValue structure which will be used to hold the result.

The resulfs type field is filled in with the TypeCode of the expected result.
Return Value

The create_request_args method returns an ORBStatus value representing the return
code of the request.

2-98 SOMobjects Base Toolkit: Programmer’s Reference Manual

Example

#include <somd.h>

#include <repostry.h>

#include <intfacdf.h>

#include <foo.h> /* provided by user */

/* assume following method declaration in interface Foo:
long methodLong (in long inLong, inout long inoutLong);
then the following code builds a request to execute the call:
result = methodLong(fooObj, &ev, 100,200);
* using the DITI.
*/

X

Environment ev;
OperationDef opdef;
Description desc;
OperationDescription *opdesc;
NVList arglist;
long rc;

long valuel = 100;
long value2 = 200;
Foo fooObj;

Request reqObij;
NamedValue result;
Identifier name;
TypeCode tc;

void *dummy;

long dummylen;
Flags flags;

/* Get the OperationDef from the Interface Repository. */
opdef = _lookup_1id(SOM_InterfaceRepository,
&ev, "Foo::methodLong”);
/* Create a NamedValue list for the operation. */
rc= _create_request_args (fooObj, ¢&ev,
"methodLong”, &arglist, &result);

/* Insert argl info into arglist */
_get_item(arglist, ¢&ev,

0, &name, é&tc, &dummy, &dummylen, &flags);
_set_item(arglist, &ev,0, name, tc, &valuel, sizeof(long), flags);

/* Insert arg2 info into arglist */
_get_item(arglist, ¢&ev,

1, &name, &tc, &dummy, &dummylen, &flags);
_set_item(arglist, &ev,1l, name, tc, &value2, sizeof(long), flags);

/* Finally, create the Request, reqObj */

rc = _create_request (fooObj, &ev, (Context *)NULL, "methodLong”,
arglist, &result, &reqgObj, (Flags)O0);

Original Class
SOMDObject

Related Information
Methods: duplicate, release, create_request, create_operation_list

DSOM Framework Reference 2-99

duplicate Method

Purpose
Makes a duplicate of an object reference.
IDL Syntax
SOMDObject duplicate ();
Description
The duplicate method makes a duplicate of the object reference. The release method
should be called to free the object.
Parameters
receiver A pointer to a SOMDODbject object.
env A pointer to the Environment structure for the method caller.

Return Value

The duplicate method returns a SOMDODbiject that is a duplicate of the receiver. Ownership
of the returned object is transferred to the caller.

Example
finclude <somd.h>
Environment ev;
SOMObject obj;
SOMDObject objrefl, objref?2;

objrefl = _create_SOM_ref (SOMD_SOMOAObject, é&ev, obj);
objref2 = _duplicate (objrefl, &ev);

_release (objref2, &ev) ;

Original Class
SOMDObject

Related Information
Methods: release, create, create_constant, create_ SOM_ref

2-100 SsOMobjects Base Toolkit: Programmer’s Reference Manual

get_implementation Method

Purpose
Returns the implementation definition for the referenced object.

IDL Syntax

ImplementationDef get_implementation ();

Description

The get_implementation method returns the implementation definition object for the
referenced object.

Parameters
receiver A pointer to a SOMDODbject object.
env A pointer to the Environment structure for the method caller.

Return Value

The get_implementation method returns the ImplementationDef object for the receiver.
Ownership of the returned object is transferred to the caller.

Example

#include <somd.h>

long flags;

Environment ev;

SOMDObject objref;
ImplementationDef impldef;

impldef = _get_implementation (objref, &ev);
flags = __get_impl_flags (impldef, &ev);

Original Class
SOMDObject

Related Information
Methods: get_interface

DSOM Framework Reference 2-101

get_interface Method

Purpose
Returns the interface definition object for the referenced object.
IDL Syntax
InterfaceDef get_interface ();
Description
The get_interface method returns the interface definition object for the referenced object.
Parameters
receiver A pointer to a SOMDODbject object.
env A pointer to the Environment structure for the method caller.

Return Value

The get_interface method returns a pointer to the InterfaceDef object associated with the
reference receiver. Ownership of the InterfaceDef object is passed to the caller.

Example

#include <somd.h>
finclude <repostry.h>
#include <intfacdf.h>

Environment ev;
SOMDObject objref;

InterfaceDef intf;

intf = _get_interface (objref, gev);

Original Class
SOMDObject

Related Information
Methods: get_implementation

2-102 sOMobjects Base Toolkit: Programmer’s Reference Manual

is_constant Method

Purpose

Tests to see if the object reference is a constant (that is, its ReferenceData is a constant
value associated with the reference).

IDL Syntax

boolean is_constant ();

Description

The is_constant method tests to see if the object reference was created using the
create_constant method in the SOMOA class.

Parameters
receiver A pointer to a SOMDODbject object.
env A pointer to the Environment structure for the method caller.

Return Value

The is_constant method returns TRUE if the object reference was generated by the
method create_constant. Otherwise, is_constant returns FALSE.

Example

#include <somd.h>

Environment ev;
SOMDObject objref;

/* This code might be part of the code

* that overrides the somdSOMObjFromRef method, i.e.

* in an implementation of a subclass of SOMDServer called
* myServer

*/

if (_is_constant (objref, &ev))
id = _get_id(objref, &ev);

Related Information
Methods: create, create_constant, is_proxy, is_SOM_ref, is_nil

DSOM Framework Reference 2-103

is_nil Method

Purpose
Tests to see if the object reference is nil.

IDL Syntax

boolean is_nil ();

Description
The is_nil method tests to see if the specified object reference is nil.

Parameters
receiver A pointer to any object, either a SOMObject or a SOMDODbject. The
pointer can be NULL.

env A pointer to the Environment structure for the method caller.

Return Value
The is_nil method returns TRUE if the object reference is empty. Otherwise, is_nil returns
FALSE.

Example

finclude <somd.h>
Environment ev;

SOMDObject objref;
SOMObject somobij;

/* This code might be part of the code
* that overrides the somdSOMObJjFromRef method, i.e.
* in an implementation of a subclass of SOMDServer called
* myServer
*/
if (_is_nil (objref, s&ev) ||
_somIsA (objref, SOMDClientProxyNewClass (0, 0)) ||
_is_SOM_ref (objref, &ev)) {
somobj = myServer_parent_SOMDServer_somdSOMOb jFromRef
(somSelf, &ev, obijref);
}
else {
/* do the myServer-specific stuff to create/find somobj here */
}

return somobij;

Related Information
Methods: create, is_constant, is_proxy, is_SOM_ref

2-104 sOMobjects Base Toolkit: Programmer’s Reference Manual

is_proxy Method

Purpose
Tests to see if the object reference is a proxy.
IDL Syntax
boolean is_proxy();
Description
The is_proxy method tests to see if the specified object reference is a proxy object.
Parameters
receiver A pointer to a SOMDODbject object.
env A pointer to the Environment structure for the method caller.

Return Value
The is_proxy method returns TRUE if the object reference is a proxy object. Otherwise,
is_proxy returns FALSE.

Example

#include <somd.h>

SOMDObject objref;
Environment ev;
Context ctx;
NVlist arglist;
NamedValue result;
Request reqObij;

if (_is_proxy (objref, &ev)) {
/* create a remote request for target object */

rc = _create_request (obj, &ev, ctx,
"testMethod”, arglist, &result, &reqObj,
(Flags)0);

Original Class
SOMDObject

Related Information
Methods: is_nil, is_constant, is_ SOM_ref, string_to_object

DSOM Framework Reference 2-105

is SOM_ref Method

Purpose
Tests to see if the object reference is a simple reference to a SOM object.
IDL Syntax
boolean is_ SOM_ref ();
Description
The is_SOM_ref method tests to see if the specified object reference is a simple (transient)
reference to a SOM object.
Parameters
receiver A pointer to a SOMDODbject object.
env A pointer to the Environment structure for the method caller.

Return Value

The is_SOM_ref method returns TRUE if the object reference is a simple (transient)
reference to a SOM object. Otherwise, is_SOM_ref returns FALSE.

Example

#include <somd.h>

SOMDObject objref;
Environment ev;
SOMObject obj;

if (_is_SOM ref (objref, &ev))

/* we know objref is a simple reference, so we can ... */
obj = _get_SOM_object (SOMD_SOMOAObject, é&ev, objref);

Original Class
SOMDObject

Related Information
Methods: create_ SOM_ref, get_SOM_object, is_proxy, is_nil, is_constant

2-106 SOMobjects Base Toolkit: Programmer’s Reference Manual

release Method

Purpose

Releases the memory associated with the specified object reference.
IDL Syntax

void release ();
Description

The release method releases the memory associated with the object reference.
Parameters

receiver A pointer to a SOMDODbject object.

env A pointer to the Environment structure for the method caller.
Example

#include <somd.h>

SOMDObject objref;

Environment ev;

SOMObject obj;

objref = _create_SOM_ref (SOMD_SOMOAObject, &ev, obij);

_release (objref, &ev);

Original Class
SOMDObject

Related Information

Methods: duplicate, somdReleaseObject, somdProxyFree, create, create_constant,
create_SOM_ref, somdReleaseResources

DSOM Framework Reference 2-107

SOMDODbjectMgr Class

Description

The SOMDODbjectMgr class is derived from ObjectMgr class and provides the DSOM
implementations for the ObjectMgr methods.

File Stem

somdom

Base
ObjectMgr

Metaclass
SOMMSinglelnstance

Ancestor Classes
ObjectMgr

SOMObject

Attribute

Listed below is an available SOMDODbjectMgr attribute, with its corresponding type in
parentheses, followed by a description of its purpose:

somd21somFree (boolean)
Determines whether or not somFree, when invoked on a proxy object, will
free the proxy object along with the remote object. The default value is
FALSE, indicating that only the remote object will be freed when somFree
is invoked on a proxy object. Setting this attribute to TRUE as part of
client-program initialization, for example,

__set_somd2lsomdFree (SOMD_ObjectMgr, ev, TRUE);

has the effect that all subsequent invocations of somFree on proxy objects
will free both the remote object and the proxy.

New Methods
somdFindAnyServerByClass *

somdFindServer *
somdFindServerByName *
somdFindServersByClass *

(* This class and its methods were added by DSOM to supplement the published CORBA
1.1 interfaces.)

Overridden Methods
somdDestroyObject

somdGetldFromObject
somdGetObjectFromid
somdNewObject
somdReleaseObject

somlinit

2-108 sOMobjects Base Toolkit: Programmer’s Reference Manual

somdFindAnyServerByClass Method

Purpose
Finds a server capable of creating the specified object.

IDL Syntax

SOMDServer somdFindAnyServerByClass (
in Identifier objclass);

Description

The somdFindAnyServerByClass method finds a server capable of creating an object of
the specified type with the specified properties.

Parameters
receiver A pointer to a SOMDODbjectMgr object.
env A pointer to the Environment structure for the method caller.
objclass An Identifier specifying the class of the object the server needs to be able

to create.

Return Value

The somdFindAnyServerByClass method returns a pointer to a SOMDServer proxy. Or, if
no server can be found in the Implementation Repository that implements the specified
class, NULL is returned.

Example

#include <somd.h>
#include <stack.h> /* provided by user */

Stack stk;
Environment ev;
SOMDServer server;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);
StackNewClass (0,0);
server =
_somdFindAnyServerByClass (SOMD_ObjectMgr, &ev, "”Stack”);
stk = _somdCreateObj(server, &ev, ”Stack”, "");

_somdDestroyObject (SOMD_ObjectMgr, &ev, stk);

Original Class
SOMDObjectMgr

Related Information
Methods: somdFindServer, somdFindServerByName, somdFindServersByClass

DSOM Framework Reference 2-109

somdFindServer Method

Purpose
Finds a server given its ImplementationDef ID.

IDL Syntax

SOMDServer somdFindServer (
in Implid serverid);

Description

The somdFindServer method finds a server capable of creating an object of the specified
type with the specified properties.

Parameters
receiver A pointer to a SOMDObjectMgr object.
env A pointer to the Environment structure for the method caller.
serverid An Implld string which identifies the ImplementationDef of the desired

server.

Return Value
The somdFindServer method returns a pointer to a SOMDServer proxy.

Example

#include <somd.h>
#include <stack.h> /* provided by user */

Stack stk;
Environment ev;
SOMDServer server;
ImplId implid;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev);

StackNewClass (0,0);

server = _somdFindServer (SOMD_ObjectMgr, &ev, implid);
stk = _somdCreateObj(server, &ev, "Stack”, ”");

_somdDestroyObject (SOMD_ObjectMgr, &ev, stk);

Original Class
SOMDODbjectMgr

Related Information

Methods:, somdFindServerByName, somdFindServersByClass,
somdFindAnyServerByClass

2-110 SsOMobjects Base Toolkit: Programmer’s Reference Manual

somdFindServerByName Method

Purpose
Finds a server given its ImplementationDef name (alias).

IDL Syntax

SOMDServer somdFindServerByName (
in string servername);

Description
The somdFindServerByName method finds a server with the specified name.

Parameters
receiver A pointer to a SOMDODbjectMgr object.
env A pointer to the Environment structure for the method caller.

servername An string which specifies the name of the ImplementationDef of the
desired server.

Return Value
The somdFindServerByName method returns a pointer to a SOMDServer proxy.

Example

#include <somd.h>
#include <stack.h> /* provided by user */

Stack stk;
Environment ev;
SOMDServer server;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);
StackNewClass (0,0);
server =
_somdFindServerByName (SOMD_ObjectMgr, &ev, "stackServer”);
stk = _somdCreateObj(server, &ev, ”Stack”, "");

_somdDestroyObject (SOMD_ObjectMgr, &ev, stk);

Original Class
SOMDObjectMgr

Related Information
Methods: somdFindServer, somdFindServersByClass, somdFindAnyServerByClass

DSOM Framework Reference 2-111

somdFindServersByClass Method

Purpose
Finds all servers capable of creating a particular object.

IDL Syntax

sequence<SOMDServer> somdFindServersByClass (
in Identifier objclass);

Description

The somdFindServersByClass method finds all servers capable of creating a particular
object with the specified properties.

Parameters
receiver A pointer to a SOMDObjectMgr object.
env A pointer to the Environment structure for the method caller.
objclass An Identifier representing the type of the object the server needs to be able

to create.

Return Value

The somdFindServersByClass method returns a sequence of SOMDServer objects
capable of creating the specified object.

Example

#include <somd.h>
#include <stack.h> /* provided by user */

Stack stk;

Environment ev;

sequence (SOMDServer) servers;

SOMDServer server;

SOMDServer chooseServer (sequence (SOMDServer) servers);

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);
StackNewClass (0,0);

servers = _somdFindServersByClass (SOMD_ObjectMgr, &ev, "Stack”);
server = chooseServer (servers);
stk = _somdCreateObj(server, é&ev, "Stack”, "");

_somdDestroyObject (SOMD_ObjectMgr, &ev, stk);

Original Class
SOMDObjectMgr

Related Information
Methods: somdFindServer, somdFindServerByName, somdFindAnyServerByClass

2-112 SsOMobjects Base Toolkit: Programmer’s Reference Manual

SOMDServer Class

Description

The SOMDServer class is a base class that defines and implements methods for managing
objects in a DSOM server process. This includes methods for the creation and deletion of
SOM obijects, and for getting the SOM class object for a specified class. The SOMDServer
class also defines and implements methods for the mapping between object references
(SOMDODbijects) and SOM objects, and dispatching methods on objects.

Application-specific methods for managing application objects can be introduced in
subclasses of SOMDServer.

File Stem
SOMDServer

Base
SOMObiject

Metaclass
SOMMSinglelnstance

Ancestor Classes
SOMObject

New Methods
somdCreateObj *

somdDeleteObj *
somdDispatchMethod *
somdGetClassObj *
somdObjReferencesCached *
somdRefFromSOMODbj *
somdSOMObjFromRef *

(* This class and its methods were added by DSOM to supplement the published CORBA
1.1 interfaces.)

DSOM Framework Reference 2-113

somdCreateObj Method

Purpose
Creates an object of the specified class.
IDL Syntax
SOMObject somdCreateObj (
in ldentifier objclass,
in string hints);
Description
The somdCreateObj method creates an object of the specified class.
Parameters
receiver A pointer to a SOMDServer object capable of creating an instance of the
specified class.
env A pointer to the Environment structure for the method caller.
objclass The class of the object for which an instance is to be created.
hints A string which may optionally be used to specify special creation options.

Return Value
The somdCreateObj method returns a SOMODbject of the class specified by objclass.

Example

#include <somd.h>
finclude <stack.h> /* provided by user */

Stack stk;
Environment ev;
SOMDServer server;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);
StackNewClass (0,0) ;
server =
_somdFindServerByName (SOMD_ObjectMgr, &ev,”stackServer”);
stk = _somdCreateObj (server, &ev, "Stack”, ”");

_somdDestroyObject (SOMD_ObjectMgr, é&ev, stk);

Original Class
SOMDServer

2-114 sOMobjects Base Toolkit: Programmer’s Reference Manual

somdDeleteObj Method

Purpose
Deletes the specified object.

IDL Syntax

void somdDeleteObj (
in SOMObject somobj);

Description
The somdDeleteObj method deletes the specified object.

Parameters
receiver A pointer to a SOMDServer object.
env A pointer to the Environment structure for the method caller.
somobj An object “managed” by the server object.

Example

#include <somd.h>
#include <stack.h> /* provided by user */

Stack stk;
Environment ev;
SOMDServer server;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);
StackNewClass (0,0);
server =
_somdFindServerByName (SOMD_ObjectMgr, &ev,”stackServer”);
stk = _somdCreateObj(server, &ev, ”Stack”, "");

_somdDeleteObj (server, &ev, stk);

Original Class
SOMDServer

DSOM Framework Reference 2-115

somdDispatchMethod Method

Purpose
Dispatch a method on the specified SOM object.

IDL Syntax
void somdDispatchMethod (
in SOMObject somobj,
out somToken retValue,
in somld methodld,
in va_list ap);

Description

The somdDispatchMethod method is used to intercept method calls on objects in a server.
When a request arrives, the request parameters are extracted from the message, and the
target object is resolved. Then, the SOMOA dispatches the method call on the target object
using the somdDispatchMethod method.

The default implementation will call somDispatch on the target object with the parameters
as specified. This method can be overridden to intercept and process the method calls
before they are dispatched.

Parameters
receiver A pointer to a SOMDServer object.
env A pointer to the Environment structure for the method caller.
somobj A pointer to an object “managed” by the server object.
retValue A pointer to the storage area allocated to hold the method result value, if
any.
methodld A somld for the name of the method which is to be dispatched.
ap A pointer to a va_list array of arguments to the method call.

Return Value

The somdDispatchMethod method will return a result, if any, in the storage whose address
is in retValue.

Example

#include <somd.h>

/* overridden somdDispatchMethod */

void somdDispatchMethod (SOMDServer *somself, Environment *ev,
SOMObject *somobij, somToken *retValue,
somId methodId, va_list ap)

{

printf (”“dispatching %s on %$x\n”, SOM_StringFromId (methodId),

somob) ;

SOMObject_somDispatch (somobj, ev, retValue, methodId, ap);

}

Original Class
SOMDServer

2-116 SOMobjects Base Toolkit: Programmer’s Reference Manual

somdGetClassObj Method

Purpose
Creates a class object for the specified class.

IDL Syntax

SOMClass somdGetClassObj (
in Identifier objclass);

Description
The somdGetClassObj method creates a class object of the specified type.

Parameters
receiver A pointer to a SOMDServer object.
env A pointer to the Environment structure for the method caller.
objclass An identifier specifying the type of the class object to be created.

Return Value
The somdGetClassObj method returns a SOMClass object of the type specified.

Example

#include <somd.h>
#include <stack.h> /* provided by user */

SOMClass stkclass;
Environment ev;
SOMDServer server;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
StackNewClass (0,0);

server =
_somdFindServerByName (SOMD_ObjectMgr, &ev,”stackServer”);
stkclass = _somdGetClassObj (server, &ev, ”Stack”, "");

Original Class
SOMDServer

DSOM Framework Reference 2-117

somdObjReferencesCached Method

Purpose

Indicates whether a server object retains ownership of the object references it creates via
the somdRefFromSOMODbj method.

Syntax

boolean somdObjReferencesCached ();

Description

The somdObjReferencesCached method indicates whether a server object retains
ownership of the object references it creates via the somdRefFromSOMObj method. The
default implementation returns FALSE, meaning that the server turns over ownership of the
object references it creates to the caller. Subclasses of SOMDServer that implement object
reference caching should override this method to return TRUE.

Parameters
receiver A pointer to an object of class SOMDServer.

ev A pointer to the Environment structure for the calling method.

Return Value

The method returns FALSE by default; overriding implementations may return TRUE to
indicate that a subclass of SOMDServer implements object reference caching.

Example

SOMDobject objref;
objref = _somdRefFromSOMObj (serverObj, ev, myobj);

/* code to use objref */

if (!_somdObjReferencesCached (serverObj, ev))
_release (objref, ev);

Original Class
SOMDServer

Related Information
Methods: somdRefFromSOMODbj

2-118 SsOMobjects Base Toolkit: Programmer’s Reference Manual

somdRefFromSOMODbj Method

Purpose
Returns an object reference corresponding to the specified SOM object.

IDL Syntax

SOMDODbject somdRefFromSOMODbj (
in SOMObject somobj);

Description

The somdRefFromSOMObj method creates a simple (transient) reference to a SOM
object. This method is called by SOMOA as part of converting the results of a local method
call into a result message for a remote client.

By default the somdRefFromSOMODbj method turns over ownership of the object reference
it creates to the caller. However, if a subclass of SOMDServer overrides
somdRefFromSOMODbj to implement object reference caching, then that subclass should
also override the method somdObjReferencesCached to report that caching by returning

TRUE.
Parameters
receiver A pointer to a SOMDServer object.
env A pointer to the Environment structure for the method caller.
somobj A pointer to the SOM object for which a DSOM reference is to be created.

Return Value

The somdRefFromSOMObj method returns a DSOM reference (that is, a SOMDODbject)
for the SOM object specified.

Example

#include <somd.h>
#include <stack.ih> /* user—generated */

SOMDObject obijref;
Environment ev;
SOMObject obj;

/* myServer specific code up here */

/* one might want to make this call as part of the code

* that overrides the somdRefFromSOMObj method, i.e.

* in an implementation of a subclass of SOMDServer called

* myServer

*/
objref =

myServer_parent_SOMDServer_somdRefFromSOMObj (somSelf, &ev, obj);

Original Class
SOMDServer

Related Information
Method: somdObjReferencesCached

DSOM Framework Reference 2-119

somdSOMObjFromRef Method

Purpose
Returns the SOM object corresponding to the specified object reference.
IDL Syntax
SOMObject somdSOMObjFromRef (
in SOMDODbject objref);
Description
The somdSOMODbjFromRef method returns the SOM object associated with the DSOM
object reference, objref. This method is called by SOMOA as part of converting a remote
request into a local method call on an object.
Parameters
receiver A pointer to a SOMDServer object.
env A pointer to the Environment structure for the method caller.
objref A pointer to the DSOM obiject reference to the SOM object.

Return Value

Example

The somdSOMODbjFromRef method returns the SOM object associated with the supplied
DSOM reference.

#include <somd.h>
finclude <stack.ih> /* user—-generated */

SOMDOb ject objref;
Environment ev;
SOMObject obj;

/* myServer specific code up here */

/* one might want to make this call as part of the code

* that overrides the somdRefFromSOMObj method, i.e.

* in an implementation of a subclass of SOMDServer called

* myServer

*/
obj =
myServer_parent_SOMDServer_somdSOMObjFromRef (somSelf, &ev,objref);

Original Class

SOMDServer

2-120 SOMobjects Base Toolkit: Programmer’s Reference Manual

SOMDServerMgr Class

Description

The SOMDServerMgr class provides a programmatic interface to manage server
processes. At present, the server processes that can be managed are limited to those
present in the Implementation Repository. The choice of Implementation Repository is
determined by the environment variable SOMDDIR.

File Stem

servmgr

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObiject

New Methods

somdDisableServer
somdEnableServer
somdisServerEnabled
somdListServer
somdRestartServer
somdShutdownServer
somdStartServer

DSOM Framework Reference 2-121

somdDisableServer Method

Purpose
Disables a server process from starting until it is explicitly enabled again.

IDL Syntax

ORBStatus somdDisableServer (in string server_alias);

Description

The somdDisableServer method disables the server process associated with the server
alias. Once a server process has been disabled, it cannot be restarted until it is explicitly
enabled again. Initially, all server processes are enabled by default. Note: If the server
process to be disabled is currently running, then it is first stopped before disabling. If the
method is unsuccessful in stopping the server, the disable method fails.

Parameters
receiver A pointer to an object of class SOMDServerMgr.
ev A pointer to the Environment structure for the calling method.

server_alias The implementation alias of the server to be disabled.

Return Value
Returns 0 for success or a DSOM error code for failure.

Example
#include <somd.h>
#include <servmgr.h>

SOMDServerMgr servmgr;

string server_alias = "MyServer”;
ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e) ;

SOMD_TInit (&e);

servmgr = SOMDServerMgrNew () ;

rc = _somdDisableServer (servmgr, &e, server_alias);

Original Class
SOMDServerMgr

Related Information
Methods: somdEnableServer

2-122 SsOMobjects Base Toolkit: Programmer’s Reference Manual

somdEnableServer Method

Purpose

Enables a server process so that it can be started when required. Initially, all server
processes are enabled by default.

IDL Syntax

ORBStatus somdEnableServer (in string server_alias);

Description

The somdEnableServer method enables a server process associated with the server alias.
Initially, all server processes are enabled by default. Server processes can be disabled by
using the somdDisableServer method.

Parameters
receiver A pointer to an object of class SOMDServerMgr.
ev A pointer to the Environment structure for the calling method.

server_alias The implementation alias of the server to be enabled.

Return Value
Returns 0 for success or a DSOM error code for failure.

Example

SOMDServerMgr servmgr;

string server_alias = ""MyServer”;
ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e);
SOMD_Init (&e);
servmgr = SOMDServerMgrNew () ;

/* disable the server */
rc = _somdDisableServer (servmgr, &e, server_alias);

/* do some processing */

/* enable the server */
rc = _somdEnableServer (servmgr, &e, server_alias);

Original Class
SOMDServerMgr

Related Information
Methods: somdDisableServer

DSOM Framework Reference 2-123

somdIisServerEnabled Method

Purpose
Determines whether a server process is enabled or not.
IDL Syntax
boolean somdisServerEnabled (in ImplementationDef impldef);
Description
The somdlsServerEnabled method returns a boolean corresponding to the current state
(enabled/disabled) of the server process.
Parameters
receiver A pointer to an object of class SOMDServerMgr.
ev A pointer to the Environment structure for the calling method.
impldef A pointer to the ImplementationDef object for the server, obtained using

the find_impldef_by_alias method when it is invoked on the global
SOMD_ImplRepObiject.

Return Value
Returns TRUE if the server is enabled; otherwise, FALSE is returned.

Example

#include <somd.h>
#include <servmgr.h>

SOMDServerMgr servmgr;
ImplementationDef impldef;

string server_alias = "MyServer”;
boolean rc;

Environment e;

SOM_InitEnvironment (&e) ;
SOMD_Init (&e);

impldef = _find impldef_by_alias (SOMD_ImplRepObject,
&e, server_alias);
servmgr = SOMDServerMgrNew () ;

/* 1f server is disabled then enable it*/
if (!_somdIsServerEnabled (servmgr, &e, impldef))
rc = _somdEnableServer (servmgr, &e, server_alias);

Original Class
SOMDServerMgr

Related Information
Methods: somdDisableServer, somdEnableServer

2-124 sOMobjects Base Toolkit: Programmer’s Reference Manual

somdListServer Method

Purpose
Queries the state of a server process.

IDL Syntax
ORBStatus somdListServer (in string server_alias);

Description
The somdListServer method is invoked to query the status of the server process
associated with the server alias. If the server process is running, the return code will be 0
indicating success. Status codes of SOMDERROR_ServerDisabled or
SOMDERROR_ServerNotFound may also be returned. The former return code indicates
that the server process has been disabled (refer somdDisableServer) and the latter
indicates that the server process is not currently running.

Parameters
receiver A pointer to an object of class SOMDServerMgr.
ev A pointer to the Environment structure for the calling method.

server_alias The implementation alias of the server to be listed.

Return Value
Returns 0 if the server process is running; otherwise, a DSOM error code is returned.

Example

#include <somd.h>
#include <servmgr.h>

SOMDServerMgr servmgr;

string server_alias = "MyServer”;
ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e) ;
SOMD_Init (&e);

servmgr = SOMDServerMgrNew () ;
rc = _somdListServer (servmgr, &e, server_alias);
if ('rc) /* server is running */
rc = _somdShutdownServer (servmgr, &e, server_alias);
else i1f (rc == SOMDERROR_ServerNotFound)
/* server 1is not running */
rc = _somdStartServer (servmgr, &e, server_alias);

Original Class
SOMDServerMgr

DSOM Framework Reference 2-125

somdRestartServer Method

Purpose
Restarts a server process.

IDL Syntax

ORBStatus somdRestartServer (in string server_alias);

Description

The somdRestartServer method is invoked to restart a server process. If the server
process currently exists, it will be stopped and started again. If the server process does not
exist, a new server process will still be started. If the server process cannot be stopped
and/or started for any reason, the method returns a DSOM error code.

Parameters
receiver A pointer to an object of class SOMDServerMgr.
ev A pointer to the Environment structure for the calling method.

server_alias The implementation alias of the server to be restarted.

Return Value
Returns 0 for success or a DSOM error code for failure.

Example

#include <somd.h>
#include <servmgr.h>

SOMDServerMgr servmgr;

string server_alias = "MyServer”;
ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e) ;

SOMD_Init (&e);

servmgr = SOMDServerMgrNew () ;

rc = _somdRestartServer (servmgr, &e, server_alias);

Original Class
SOMDServerMgr

2-126 SOMobjects Base Toolkit: Programmer’s Reference Manual

somdShutdownServer Method

Purpose
Stops a server process.
IDL Syntax
ORBStatus somdShutdownServer (in string server_alias);
Description
The somdShutdownServer method is invoked to stop a server process. If the server
process corresponding to the server alias exists, it will be stopped and a code indicating
success is returned. If the server process does not exist, then the
SOMDERROR_ServerNotFound error is returned.
Note: On AIX, this method will fail to stop the server process if the process owner
executing this method is not the same as that of either the server process or root.
Parameters
receiver A pointer to an object of class SOMDServerMgr.
ev A pointer to the Environment structure for the calling method.

server_alias The implementation alias of the server to be stopped.

Return Value
Returns 0 for success or a DSOM error code for failure.

Example

#include <somd.h>
#include <servmgr.h>

SOMDServerMgr servmgr;

string server_alias = "MyServer”;
ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e);

SOMD_Init (&e);

servmgr = SOMDServerMgrNew () ;

rc = _somdShutdownServer (servmgr, &e, server_alias);

Original Class
SOMDServerMgr

DSOM Framework Reference 2-127

somdStartServer Method

Purpose
Starts a server process.

IDL Syntax
ORBStatus somdStartServer (in string server_alias);

Description
The somdStartServer method is invoked to start a server process. If the server process
does not exist, the server process is started and the code indicating success is returned. If
the server process already exists, then the return code will still indicate success and the
server process will be undisturbed.

Parameters
receiver A pointer to an object of class SOMDServerMgr.
ev A pointer to the Environment structure for the calling method.

server_alias The implementation alias of the server to be started.

Return Value
Returns 0 for success or a DSOM error code for failure.

Example

#include <somd.h>
#include <servmgr.h>

SOMDServerMgr servmgr;

string server_alias = "MyServer”;
ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e) ;

SOMD_Init (&e);

servmgr = SOMDServerMgrNew () ;

rc = _somdStartServer (servmgr, &e, server_alias);

Original Class
SOMDServerMgr

2-128 SsOMobjects Base Toolkit: Programmer’s Reference Manual

SOMOA Class

Description

The SOMOA class is DSOM'’s basic object adapter. SOMOA is a subclass of the abstract
BOA class, and provides implementations of all the BOA methods. The SOMOA class also
introduces methods for receiving and dispatching requests on SOM objects. SOMOA
provides some additional methods for creating and managing object references.

File Stem

somoa

Base
BOA

Metaclass
SOMMSinglelnstance

Ancestor Classes
BOA SOMObiject

New Methods

activate_impl_failed *
change_id *
create_constant *
create_SOM _ref *
execute_next_request *
execute_request_loop *
get_SOM_object *

(* This class and its methods were added by DSOM to supplement the published CORBA
1.1 interfaces.)

Overridden Methods

change_implementation
create

deactivate_impl
deactivate_obj

dispose

get_id

get_principal
impl_is_ready
obj_is_ready

set_exception

DSOM Framework Reference 2-129

activate_impl_failed Method

Purpose
Sends a message to the DSOM daemon indicating that a server did not activate.

IDL Syntax
void activate_impl_failed (
in ImplementationDef implDef,
in long rc);

Description

The activate_impl_failed method sends a message to the DSOM daemon (somdd)
indicating that the server did not activate.

Parameters
receiver A pointer to the SOMOA object that attempted to activate the
implementation.
env A pointer to the Environment structure for the method caller.
implDef A pointer to the ImplementationDef object representing the
implementation that failed to activate.
rc A return code designating the reason for failure.
Example

#include <somd.h> /* needed by all servers */
main (int argc, char **argv)

{

Environment ev;

SOM_InitEnvironment (&ev) ;

/* Initialize the DSOM run-time environment */
SOMD_Init (&ev) ;

/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_TImplDefObject =

_find_impldef (SOMD_ImplRepObject, &ev, argv([1l]);

/* create the SOMOA */
SOMD__SOMOAObject = SOMOANew () ;

/* suppose something went wrong with server initialization */
/* tell the daemon (via SOMOA) that activation failed */

_activate_impl_failed (SOMD_SOMOAObject,
&ev, SOMD_ImplDefObject, rc);

Original Class
SOMOA

2-130 SOMobjects Base Toolkit: Programmer’s Reference Manual

change_id Method

Purpose
Changes the reference data associated with an object.

IDL Syntax
void change _id (
in SOMDODbject objref,
in ReferenceData id);

Description
The change_id changes the ReferenceData associated with the object identified by objref.
The ReferenceData previously stored in the SOMOA's reference data table is replaced with
the value of id. The new ID cannot be larger than the maximum size of the original
ReferenceData (usually specified as 1024 bytes).

Parameters
receiver A pointer to the SOMOA object managing the implementation.

env A pointer to the Environment structure for the method caller.
objref A pointer to the SOMDObject which identifies the object.

id A pointer to the ReferenceData structure representing the object to be
created.

Example

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

Environment ev;

ReferenceData id;

InterfaceDef intfdef;

SOMDObject objref;

string fname; /* file name to be saved with reference */

/* create the id for the reference */
id._maximum = id._length = strlen (fname)+1;
id._buffer = (string) SOMMalloc (strlen (fname)+1);
strcpy (id._buffer, fname) ;

/* get the interface def object for interface Foo*/
intfdef = _lookup_id(SOM_InterfaceRepository, &ev, "Foo”);

objref = _create_constant (SOMD_SOMOAObject,
&ev, id, intfdef, SOMD_TImplDefObiject);

DSOM Framework Reference 2-131

create_constant Method

Purpose
Creates a “constant” object reference.

IDL Syntax

SOMDODbject create_constant (
in ReferenceData id,
in InterfaceDef intf,
in ImplementationDef impl);

Description

The create_constant method is a variant of the create method. Like create, it creates an
object reference for an object with the specified interface and associates the supplied
ReferenceData with the object reference. The ReferenceData can later be retrieved using
the get_id method. Unlike create, this method creates a “constant” reference whose ID
value cannot be changed. (See the change_id Method on page 2-131.) This is because the
ID is maintained as a constant part of the object reference state, versus stored in the
reference data table for the server.

This method would be used whenever the application prefers not to maintain an object’s
ReferenceData in the server’s reference data table.

Parameters

receiver A pointer to the SOMOA object managing the implementation.

env A pointer to the Environment structure for the method caller.

id A pointer to the ReferenceData structure containing application-specific
information describing the target object.

intf A pointer to the InterfaceDef object which describes the interface of the
target object.

impl A pointer to the ImplementationDef object which describes the application

(server) process which implements the target object.
Return Value

The create_constant method returns a pointer to a SOMDObject. Ownership of the new
object reference is transferred to the caller.

2-132 sOMobjects Base Toolkit: Programmer’s Reference Manual

Example

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

Environment ev;

ReferenceData id;

InterfaceDef intfdef;

SOMDObject objref;

string fname; /* file name to be saved with reference */

/* create the id for the reference */
id._maximum = id._length = strlen(fname)+1;
id._buffer = (string) SOMMalloc (strlen (fname)+1);
strcpy (id._buffer, fname) ;

/* get the interface def object for interface Foo*/
intfdef = _lookup_id(SOM_InterfaceRepository, &ev, "Foo”);

objref = _create_constant (SOMD_SOMOAObject,
&ev, id, intfdef, SOMD_TImplDefObiject);

Original Class
SOMOA

Related Information
Methods: create, create_ SOM_ref, dispose, get_id, is_constant

DSOM Framework Reference 2-133

create_ SOM_ref Method

Purpose
Creates a simple, transient DSOM reference to a SOM object.

IDL Syntax

SOMDODbject create_ SOM_ref (
in SOMObject somobj,
in ImplementationDef imp/);

Description
The create_SOM_ref method creates a simple DSOM reference (SOMDODbject) for a local
SOM object. The reference is “special” in that there is no explicit ReferenceData associated
with the object. Also, this object reference is only valid while the target SOM object exists.

The SOMObject associated with the SOM_ref can be retrieved via the get_SOM_object
method. The is_SOM_ref method of SOMDODbiject can be used to determine whether the
reference was created using create_SOM_ref or not.

Parameters
receiver A pointer to the SOMOA object managing the implementation.
env A pointer to the Environment structure for the method caller.
somobj A pointer to the local SOMODbject to be referenced.
impl A pointer to the ImplementationDef of the calling server process.

Return Value

The create_SOM_ref method returns a pointer to a SOMDODbject. Ownership of the new
object reference is transferred to the caller.

Example

#include <somd.h>

SOMDObject objref;
Environment ev;
SOMObject obj;

/* one might want to make this call as part of the code
* that overrides the somdRefFromSOMObJj method, i.e.
* in an implementation of a subclass of SOMDServer.

*/
objref = _create_SOM_ref (SOMD_SOMOAObject, &ev, obj);

Original Class
SOMOA

Related Information
Methods: get_SOM_object, is_ SOM_ref

2-134 sOMobjects Base Toolkit: Programmer’s Reference Manual

execute_next_request Method

Purpose
Receive a request message, execute the request, and return to the caller.

IDL Syntax

ORBStatus execute_next_request (
in Flags waitFlag);

Description

The execute_next_request method receives the next request message, executes the
request, and sends the result to the caller.

If the server’s ImplementationDef indicates the server is multi-threaded (the impl_flags
has the IMPLDEF_MULTI_THREAD flag set), each request will be run by SOMOA in a
separate thread.

Parameters
receiver A pointer to the SOMOA object managing the implementation.
env A pointer to the Environment structure for the method caller.
waitFlag A Flags value (unsigned long) indicating whether the method should block

if there is no message pending (SOMD_WAIT) or return with an error
(SOMD_NO_WAIT).

Return Value

The execute_next_request method returns an ORBStatus value representing the return
value for the operation. SOMDERROR_NoMessages is returned if the method is invoked
with SOMD_NO_WAIT and no message is available.

Example

#include <somd.h>

/* server initialization code ... */
SOM_InitEnvironment (&ev) ;

/* signal DSOM that server is ready */
_impl_is_ready (SOMD_SOMOAObJject, &ev, SOMD_ImplDefObject);

while (ev._major == NO_EXCEPTION) {
(void) _execute_next_request (SOMD_SOMOAObject, &ev, SOMD_WAIT) ;
/* perform appl-specific code between messages here, e.g.,*/
numMessagesProcessed++;

}

Original Class
SOMOA

Related Information
Methods: execute_request_loop

DSOM Framework Reference 2-135

execute_request_loop Method

Purpose

Receives a request message, executes the request, and returns the result to the calling
client.

IDL Syntax

ORBStatus execute_request_loop (
in Flags waitFlag);

Description

The execute_request_loop method initiates a loop that waits for a request message,
executes the request, and returns the result to the client who invoked the request. When
called with the SOMD_WAIT flag, this method loops infinitely (or until an error). When called
with the SOMD_NO_WAIT flag, this method loops as long as it finds a request message to
process.

The SOMD_NO_WAIT flag is useful when writing event-driven applications where there are
event sources other than DSOM requests (for example, user input). In this case, DSOM
cannot be given exclusive control. Instead, a DSOM event handler can be written using the
SOMD_NO_WAIT option, to process all pending requests before returning control to the
event manager.

If the server’s ImplementationDef indicates the server is multi-threaded (the impl_flags
has the IMPLDEF_MULTI_THREAD flag set), each request will be run by SOMOA in a
separate thread (OS/2 only).

Parameters
receiver A pointer to the SOMOA object managing the implementation.

env A pointer to the Environment structure for the method caller.

waitFlag A Flags bitmask (unsigned long) indicating whether the method should
block (SOMD_WAIT) or return to the caller (SOMD_NO_WAIT) when there
is no request message pending.

Return Value

The execute_request_loop method may return an OBJ_ADAPTER exception which
contains an DSOM error code for the operation. SOMDERROR_NoMessages is returned as
an ORBStatus code if the method is invoked with SOMD_NO_WAIT and no message is
pending.

Example
#include <somd.h>
/* server initialization code ... */

_impl_is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

/* turn control over to SOMOA */
(void) _execute_request_loop (SOMD_SOMOAObject, &ev, SOMD_WAIT);

Original Class
SOMOA

2-136 SOMobjects Base Toolkit: Programmer’s Reference Manual

Related Information
Functions: SOMD_RegisterCallback

Methods: execute_next_request

See Chapter 12 of the SOM Toolkit User’s Guide for a description of the Event Management
(EMan) framework, for writing event-driven applications.

DSOM Framework Reference 2-137

get SOM_object Method

Purpose
Get the SOM object associated with a simple DSOM reference.

IDL Syntax

SOMObject get_SOM_object (
in SOMDODbject somref);

Description

The get_SOM_object method returns the SOM object associated with a reference created
by the create_SOM_ref method.

Parameters
receiver A pointer to the SOMOA object managing the implementation.
env A pointer to the Environment structure for the method caller.
somref A pointer to a SOMDODbject created by the create_SOM_ref method.

Return Value
The get_SOM_object method returns the SOM object associated with the reference.

Example
#include <somd.h>
SOMDObject objref;
Environment ev;

SOMObject obj;

if (_is_SOM_ref (objref, &ev))

/* we know objref is a simple reference, so we can ... */
obj = _get_SOM_object (SOMD_SOMOAObject, &ev, objref);
Original Class
SOMOA

Related Information
Methods: create_ SOM_ref, is_ SOM_ref

2-138 SsOMobjects Base Toolkit: Programmer’s Reference Manual

Chapter 3. Interface Repository Framework Reference

7N\

SOMObiject

)

T

7\ 7N 7\ 7\
ConstantDef ParameterDef InterfaceDef OperationDef
N/ \/ \/ Y
Atmef EX@ ef @f M(Ql_le\Def R@)ry

<+—— Denotes “is a subclass of”

Interface Repository Framework Class Organization

Interface Repository Framework Reference 3-1

AttributeDef Class

Description

The AttributeDef class provides the interface for attribute definitions in the Interface
Repository.

File Stem
attribdf

Base
Contained

Metaclass
SOMClass

Ancestor Classes

Contained
SOMObject
Types
enum AttributeMode {NORMAL, READONLY};
struct AttributeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;
AttributeMode mode;
b
The describe method, inherited from Contained, returns an AttributeDescription structure
in the value member of the Description structure (defined in the Contained class).
Attributes

Following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the attribute. The TypeCode
returned by the “_get_” form of the type attribute is contained in the
receiving AttributeDef object, which retains ownership. Thus, the returned
TypeCode should not be freed. To obtain a separate copy, use the
TypeCode_copy operation. The “_set_” form of the attribute makes a
private copy of the TypeCode you supply, to keep in the receiving object.
You retain ownership of the passed TypeCode.

mode (AttributeMode)
The AttributeMode of the attribute (NORMAL or READONLY).

3-2 SOMobjects Base Toolkit Programmer’s Reference Manual

New Methods

None.

Overriding Methods

somlnit
somUninit
somDumpSelf
somDumpSelfint

describe

Interface Repository Framework Reference 3-3

ConstantDef Class

Description
The ConstantDef class provides the interface for constant definitions in the Interface
Repository.

File Stem

constdef

Base
Contained

Metaclass
SOMClass

Ancestor Classes

Contained
SOMObject
Types
struct ConstantDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;
any value;
|5
The describe method, inherited from Contained, returns a ConstantDescription structure
in the value member of the Description structure (defined in the Contained class).
Attributes

Following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of constant.The TypeCode
returned by the “_get_” form of the type attribute is contained in the
receiving ConstantDef object, which retains ownership. Thus, the returned
TypeCode should not be freed. To obtain a separate copy, use the
TypeCode_copy operation. The “_set_” form of the attribute makes a
private copy of the TypeCode you supply, to keep in the receiving object.
You retain ownership of the passed TypeCode.

value (any) The value of the constant.

3-4 SOMobjects Base Toolkit Programmer’s Reference Manual

New Methods

None.

Overriding Methods

somlnit
somUninit
somDumpSelf
somDumpSelfint

describe

Interface Repository Framework Reference 3-5

Contained Class

Description
The Contained class is the most generic form of interface for objects in SOM’s
CORBA-compliant Interface Repository (IR). All objects contained in the IR inherit this
interface.

File Stem

containd

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes

SOMObject
Types
typedef string Repositoryld;
struct Description {
Identifier name;
any value;
b
Attributes

All attributes of the Contained class provide access to information kept within the receiving
object. The “_get_” form of the attribute returns a memory reference that is only valid as
long as the receiving object has not been freed (using _somFree). The “_set_” form of the
attribute makes a (deep) copy of your data and places it in the receiving object. You retain
ownership of all memory references passed using the “_set_” attributes.

Following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

name (ldentifier)
A simple name that identifies the Contained object within its containment
hierarchy.

The name may not be unique outside of the containment hierarchy; thus it
may require qualification by ModuleDef name and/or InterfaceDef name.

id (Repositoryld)
The value of the id field of the Contained object. This is a string that
uniquely identifies any object in the IR; thus it needs no qualification. Note
that Repositorylds have no relationship to the SOM type somld.

defined_in (Repositoryld)
The value of the defined _in field of the Contained object. This ID uniquely
identifies the container where the Contained object is defined. Objects
without global scope that do not appear within any other object are, by
default, placed in the Repository object.

3-6 SOMobjects Base Toolkit Programmer’s Reference Manual

somModifiers (sequence<somModifiers)
The somModifiers attribute is a sequence containing all modifiers
associated with the object in the “implementation” section of the SOM IDL
file where the receiving object is defined.

Note: This attribute is a SOM-unique extension of the Interface
Repository; it is not stipulated by the CORBA specification.

New Methods

describe
within
Overriding Methods
somFree
sominit
somUninit
somDumpSelf

somDumpSelfint

Interface Repository Framework Reference 3-7

describe Method

Purpose
Returns a structure containing information defined in the IDL specification that corresponds
to a specified Contained object in the Interface Repository.

IDL Syntax
Description describe ();

Description
The describe method returns a structure containing information defined in the IDL
specification of a Contained object. The specified object represents a component of an IDL
interface (class) definition maintained within the Interface Repository.
When finished using the information in the returned Description structure, the client code
must release the storage allocated for it. To free the associated storage, use a call similar to
this:

if (desc.value._value)
SOMFree (desc.value._value);

Warning: The describe method returns pointers to elements within objects (for example,
name). Thus, the somFree method should not be used to release any of these objects
while the describe information is still needed.

Parameters

receiver A pointer to the Contained object in the Interface Repository for which a
Description is needed.

ev A pointer to the Environment structure for the caller.

Return Value

3-8

The describe method returns a structure of type Description containing information
defined in the IDL specification of the receiving object.

The name field of the Description is the name of the type of description. The name values
are from the following set:

{*"ModuleDescription”, “InterfaceDescription”, “AttributeDescription”,
“OperationDescription”, “ParameterDescription”, “TypeDescription”,
“ConstantDescription”, “ExceptionDescription”}

The value field is a structure of type any whose value field is a pointer to a structure of the
type named by the name field of the Description. This structure provides all of the
information contained in the IDL specification of the receiver. For example, if the describe
method is invoked on an object of type AttributeDef, the name field of the returned
Description will contain the identifier “AttributeDescription” and the value field will contain
an any structure whose value field is a pointer to an AttributeDescription structure.

SOMobjects Base Toolkit Programmer’s Reference Manual

Example
Here is a code fragment written in C that uses the describe method:

#include <containd.h>
#include <attribdf.h>
#include <somtc.h>

AttributeDef attr; /* An AttributeDef object (also a Contained) */
Description desc; /* .value field will be an AttributeDescription
*/

AttributeDescription *ad;

Environment *ev;

desc = Contained_describe (attr, ev);
ad = (AttributeDescription *) desc.value._value;
printf (”Attribute name: %s, defined in: %s\n”,
ad->name, ad->defined_in);
printf (”"Attribute type: ”);
TypeCode_print (ad->type, ev);
printf (”Attribute mode: %s\n”, ad->mode == AttributeDef_READONLY °?
"READONLY” : "NORMAL") ;
SOMFree (desc.value._value); /* Finished with describe output */
SOMObject_somFree (attr); /* Finished with AttributeDef object
*/

Original Class
Contained

Related Information
Methods: within

Interface Repository Framework Reference 3-9

within Method

Purpose
Returns a list of objects (in the Interface Repository) that contain a specified Contained
object.
IDL Syntax
sequence<Container> within ();
Description
The within method returns a sequence of objects within the Interface Repository that
contain the specified Contained object. If the receiving object is an InterfaceDef or
ModuleDef, it can only be contained by the object that defines it. Other objects can be
contained by objects that define or inherit them.
If the object is global in scope, the sequence returned by within will have its _length field
set to zero.
When finished using the sequence returned by this method, the client code is responsible
for releasing each of the Containers in the sequence and freeing the sequence buffer. In C,
this can be accomplished as follows:
if (seq._length) {
long 1i;
for (i=0; i<seqg._length; i++)
_somFree (seq._buffer[i]); /* Release each Container obj
*/
SOMFree (seq._buffer); /* Release the sequence buffer */
}
Parameters
receiver A pointer to a Contained object for which containing objects are needed.
ev A pointer to the Environment structure for the caller.

Return Value

The within method returns a sequence of Container objects that contain the specified
Contained object.

3-10 SOMobjects Base Toolkit Programmer’s Reference Manual

Example

Here is a code fragment written in C that uses the within method:

#include <containd.h>
#include <containr.h>

Contained anObj;
Environment *ev;
sequence (Container)
long 1i;

sc;

sc = Contained_within (anObj, ev);
printf (”%s is contained in (or inherited by) :\n”,
Contained___get_name (anObj, ev));
for (i=0; i<sc._length; i++) {
printf (”\t%s\n”,
Contained__get_name ((Contained) sc._buffer[i], ev));
SOMObject_somFree (sc._buffer[il]);
}
if (sc._length)
SOMFree (sc._buffer);

Original Class
Contained

Related Information
Methods: describe

Interface Repository Framework Reference 3-11

Container Class

Description

The Container class is a generic interface that is common to all of the SOM
CORBA-compliant Interface Repository (IR) objects that can hold or contain other objects. A
Container object can be one of three types: ModuleDef, InterfaceDef, or OperationDef.

File Stem

containr

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes

SOMObject
Types
typedef string InterfaceName;
// Valid values for InterfaceName are limited to the following set:
/I {“AttributeDef”, “ConstantDef”, “ExceptionDef”, “InterfaceDef”,
/Il “ModuleDef”, “ParameterDef”, “OperationDef”, “TypeDef”, “all”’}
struct ContainerDescription {
Contained *contained_object;
Identifier name;
any value;
b
New Methods
contents

describe_contents

lookup_name

Overriding Methods

sominit
somUninit
somDumpSelf

somDumpSelfint

3-12 SOMobjects Base Toolkit Programmer’s Reference Manual

contents Method

Purpose

Returns a sequence indicating the objects contained within a specified Container object of
the Interface Repository.

IDL Syntax

sequence<Contained> contents (
in InterfaceName /imit_type,
in boolean exclude inherited);

Description

The contents method returns a list of objects contained by the specified Container object.
Each object represents a component of an IDL interface (class) definition maintained within
the Interface Repository.

The contents method is used to navigate through the hierarchy of objects within the
Interface Repository: starting with the Repository object, this method can list all of the
objects in the Repository, then all of the objects within the ModuleDef objects, then all
within the InterfaceDef objects, and so on.

If the limit_type is set to “all”, objects of all interface types are returned; otherwise, only
objects of the requested interface type are returned. Valid values for InterfaceName are
limited to the following set:

{“AttributeDef”, “ConstantDef”, “ExceptionDef”, InterfaceDef”, “ModuleDef”,
“ParameterDef”, “OperationDef”, “TypeDef”, “all”}

If exclude_inherited is set to TRUE, any inherited objects will not be returned.

When finished using the sequence returned by this method, the client code is responsible
for releasing each of the objects in the sequence and freeing the sequence buffer. In C, this
can be accomplished as follows:

if (seqg._length) {

long i;

for (i=0; i<seq._length; i++)

SOMObject_somFree (seq._buffer[i]); /* Release each object

*/

SOMFree (seq._buffer); /* Release the buffer
*/
}

Parameters
receiver A pointer to a Container object whose contained objects are needed.

ev A pointer to the Environment structure for the caller.

limit_type The name of one interface type (see the previous list of valid types) or “all”,
to specify what type of objects the contents method should search for.

exclude_inherited
A boolean value: TRUE to exclude any inherited objects, or FALSE to
include all objects.

Interface Repository Framework Reference 3-13

Return Value

The contents method returns a sequence of pointers to objects contained within the
specified Container object.

Example
Here is a code fragment written in C that uses the contents method:

#include <containr.h>

Container anObij;
Environment *ev;
sequence (Contained) sc;
long 1i;

sc = Container_ contents (anObj, ev, ”all”, TRUE);
printf (”%s contains the following objects:\n”,
SOMObject_somIsA (anObj, _Contained) *?
Contained__get_name ((Contained) anObj, ev)
"The Interface Repository”);
for (i=0; i<sc._length; i++) {
printf (”\t%s\n”,
Contained___get_name (sc._buffer[i], ev));
SOMObject_somFree (sc._buffer[il]);
}
if (sc._length)
SOMFree (sc._buffer);
else
printf (”\t[nonel\n”);

Original Class
Container

Related Information
Methods: describe_contents, lookup_name

3-14 SOMobjects Base Toolkit Programmer’s Reference Manual

describe _contents Method

Purpose

Returns a sequence of descriptions of the objects contained within a specified Container
object of the Interface Repository.

IDL Syntax

sequence<ContainerDescription> describe_contents (
in InterfaceName /imit_type,
in boolean exclude inherited,
in long max_returned_objs);

Description

The describe_contents method combines the operations of the contents method and the
describe method. That is, for each object returned by the contents operation, the
description of the object is returned by invoking its describe operation. Each object
represents a component of an IDL interface (class) definition maintained within the Interface
Repository.

If the limit_type is set to “all”, objects of all interface types are returned; otherwise, only
objects of the requested interface type are returned. Valid values for InterfaceName are
limited to the following set:

{“AttributeDef”, “ConstantDef”, “ExceptionDef”, “InterfaceDef”, “ModuleDef”,
“ParameterDef”, “OperationDef”, “TypeDef”, “all”}

If exclude_inherited is set to TRUE, any inherited objects will not be returned.

The max_returned_objs argument is used to limit the number of objects that can be
returned. If max_returned_objs is set to —1, the results for all contained objects will be
returned.

When finished using the sequence returned by this method, the client code is responsible
for freeing the value._value field in each description, releasing each of the objects in the
sequence, and freeing the sequence buffer. In C, this can be accomplished as follows:

if (seq._length) {
long 1i;
for (i=0; i<seq._length; i++) {
if (seq._buffer[i].value._value)
/* Release each description */
SOMFree (seq._buffer[i].value._value);
SOMObject_somFree (seq._buffer[i].contained_obiject);
/* Release each object */

}
SOMFree (seq._buffer); /* Release the buffer */

}

Parameters

receiver A pointer to a Container object whose contained object descriptions are
needed.

ev A pointer to the Environment structure for the caller.

limit_type The name of one interface type (see the previous valid list) or “all”, to
specify what type of objects the describe_contents method should return.

Interface Repository Framework Reference 3-15

exclude _inherited
A boolean value: TRUE to exclude any inherited objects, or FALSE to
include all objects.

max_returned_objs
A long integer indicating the maximum number of objects to be returned by
the method, or —1 to indicate no limit is set.

Return Value

The describe_contents method returns a sequence of ContainerDescription structures,
one for each object contained within the specified Container object. Each
ContainerDescription structure has a contained_object field, which points to the contained
object, as well as name and value fields, which are the result of the describe method.

Example
Here is a code fragment written in C that uses the describe_contents method:

#include <containr.h>

Container anObij;

Environment *ev;

sequence (ContainerDescription) sc;
long 1i;

sc = Container_ describe_contents (anObj, ev, "”all”, FALSE, -1L);

printf (”%s defines or inherits the following objects:\n”,
SOMObject_somIsA (anObj, _Contained) ?
Contained__get_name ((Contained) anObj, ev)

"The Interface Repository”);
for (i=0; i<sc._length; i++) {
printf (”\t%s\n”, sc._buffer[i].name);
if (sc._buffer[i].value._value)
SOMFree (sc._buffer[i].value._value);
SOMObject_somFree (sc._buffer[i].contained_obiject);
}
if (sc._length)
SOMFree (sc._buffer);
else
printf (”\t[nonel\n”);

Original Class
Container

Related Information
Methods: contents, describe, lookup_name

3-16 SOMobjects Base Toolkit Programmer’s Reference Manual

lookup_name Method

Purpose
Locates an object by name within a specified Container object of the Interface Repository,
or within objects contained in the Container object.
IDL Syntax
sequence<Contained> lookup_name (
in Identifier search_name,
in long levels to search,
in InterfaceName /imit_type,
in boolean exclude_inherited);
Description
The lookup_name method locates an object by name within a specified Container object,
or within objects contained in the Container object. The search_name parameter specifies
the name of the object to be found. Each object represents a component of an IDL interface
(class) definition maintained within the Interface Repository.
The levels_to_search argument controls whether the lookup is constrained to the specified
Container object or whether objects contained within the Container object are also
searched. The levels_to_search value should be —1 to search the Container and all
contained objects; it should be 1 to search only the Container itself.
If limit_type is set to “all”, the lookup locates an object of the specified name with any
interface type; otherwise, the search locates the object only if it has the designated interface
type. Valid values for InterfaceName are limited to the following set:
{“AttributeDef”, “ConstantDef”, “ExceptionDef”, “InterfaceDef”, “ModuleDef”,
“ParameterDef”, “OperationDef”, “TypeDef”, “all”}
If exclude_inherited is set to TRUE, any inherited objects will not be returned.
When finished using the sequence returned by this method, the client code is responsible
for releasing each of the objects in the sequence and freeing the sequence buffer. In C, this
can be accomplished as follows:
if (seqg._length) {
long 1i;
for (i=0; i<seqg._length; i++)
SOMObject_somFree (seq._buffer[i]);
/* Release each object */
SOMFree (seq._buffer); /* Release the buffer */
}
Parameters
receiver A pointer to a Container object in which to locate the object.
ev A pointer to the Environment structure for the caller.

search_name The name of the object to be located.

levels to_search
A long having the value 1 or —1.

limit_type The name of one interface type (see the previous list of valid items) specify
what type of object to search for.

exclude_inherited
A boolean value: TRUE to exclude an object when it is inherited, or FALSE
to return the object from wherever it is found.

Interface Repository Framework Reference 3-17

Return Value

The lookup_name method returns a sequence of pointers to objects of the given name
contained within the specified Container object, or within objects contained in the
Container object.

Example
Here is a code fragment written in C that uses the lookup_name method:

#include <containr.h>
#include <containd.h>
#include <repostry.h>

Container repo;
Environment *ev;
sequence (Contained) sc;
long 1i;

Identifier nameToFind;

repo = (Container) RepositoryNew ();
sc = Container_lookup_name (repo, ev, nameToFind, -1, "all”,
TRUE) ;
printf (”%d object%s found:\n”,
sc._length, sc._length == 1 2 7" : "s");

for (i=0; i<sc._length; i++) {
printf (”\t%s\n”,
Contained__get_id (sc._buffer[i], ev));
SOMObject_somFree (sc._buffer[i]);
}
if (sc._length)
SOMFree (sc._buffer);

Original Class
Container

Related Information
Methods: contents, describe_contents

3-18 SOMobjects Base Toolkit Programmer’s Reference Manual

ExceptionDef Class

Description

File Stem

Base

Metaclass

The ExceptionDef class provides the interface for exception definitions in the Interface
Repository.

excptdef

Contained

SOMClass

Ancestor Classes

Types

Attributes

Contained
SOMObject

struct ExceptionDescription {

Identifier name;
Repositoryld id;
Repositoryld defined _in;
TypeCode type;

b
The describe method, inherited from Contained, returns an ExceptionDescription

structure in the value member of the Description structure (defined in the Contained
class).

Following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the exception. The TypeCode
returned by the “_get_” form of the type attribute is contained in the
receiving ExceptionDef object, which retains ownership. Thus the returned
TypeCode should not be freed. To obtain a separate copy, use the
TypeCode_copy operation. The “_set_” form of the attribute makes a
private copy of the TypeCode you supply, to keep in the receiving object.
You retain ownership of the passed TypeCode.

Interface Repository Framework Reference 3-19

New Methods

None.

Overriding Methods

somlnit
somUninit
somDumpSelf
somDumpSelfint

describe

3-20 SOMobjects Base Toolkit Programmer’s Reference Manual

InterfaceDef Class

Description

File Stem

Base

Metaclass

The InterfaceDef class provides the interface for interface definitions in the Interface

Repository.

intfacdf

Contained, Container

SOMClass

Ancestor Classes

Types

Contained
Container
SOMObject

struct FullinterfaceDescription {

Identifier name;
Repositoryld id;
Repositoryld defined _in;

sequence<OperationDef::OperationDescription> operation;
sequence<AttributeDef::AttributeDescription> attributes;

1

struct InterfaceDescription {

Identifier name;
Repositoryld id;
Repositoryld defined _in;

b

The describe method, inherited from Contained, returns an InterfaceDescription structure
in the value member of the Description structure (defined in the Contained class). The
describe_contents method, inherited from Container, returns a sequence of these
Description structures, each carrying a reference to an InterfaceDescription structure in
its value member.

Implementation note: The two sequences “OperationDescription” and “AttributeDescription”
are built dynamically within the FulllnterfaceDescription structure, due to the InterfaceDef
class’s inheritance from the Contained class.

Interface Repository Framework Reference 3-21

Attributes

All attributes of the InterfaceDef class provide access to information kept within the
receiving InterfaceDef object. The “_get_” form of the attribute returns a memory reference
that is only valid as long as the receiving object has not been freed (using _somFree). The

“

"_set_” form of the attribute makes a (deep) copy of your data and places it in the receiving
InterfaceDef object. You retain ownership of all memory references passed using the

' _set_” attribute forms.

Following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

base_interfaces (sequence<Repositoryld>)

The sequence of Repositorylds for all of the interfaces that the receiving
interface inherits.

instanceData (TypeCode)
The TypeCode of a structure whose members are the internal instance
variables, if any, described in the SOM implementation section of the
interface.

Note: This attribute is a SOM-unique extension of the Interface
Repository; it is not stipulated by the CORBA specifications.

New Methods

describe_interface

Overriding Methods

somlnit
somUninit
somDumpSelf
somDumpSelfint
describe

within

3-22 SOMobjects Base Toolkit Programmer’s Reference Manual

describe_interface Method

Purpose
Returns (from the Interface Repository) a description of all the methods and attributes of an
interface definition.
IDL Syntax
FullinterfaceDescription describe_interface ();
Description
The describe_interface method returns a description of all the methods and attributes of
an interface definition that are held in the Interface Repository.
When finished using the FulllnterfaceDescription returned by this method, the client code
is responsible for freeing the _buffer fields of the two sequences it contains. In C, this can
be accomplished as follows:
if (fid.operation._length)
SOMFree (fid.operation._buffer); /* Release the buffer
*/
if (fid.attributes._length)
SOMFree (fid.attributes._buffer); /* Release the buffer
*/
Parameters
receiver A pointer to an object of class InterfaceDef representing the Interface
Repository object where an interface definition is stored.
ev A pointer where the method can return exception information if an error is

encountered.
Return Value

The describe_interface method returns a description of all the methods and attributes of
an interface definition that are held in the Interface Repository.

Interface Repository Framework Reference 3-23

Example
Here is a code fragment written in C that uses the describe_interface method:

#include <intfacdf.h>

InterfaceDef idef;
Environment *ev;
FullInterfaceDescription fid;
long 1i;

fid = InterfaceDef describe_interface (idef, ev);
printf (”The %s interface has the following attributes:\n”,
Contained__get_name ((Contained) idef, ev));
if (!fid.attributes._length)
printf (”\t[nonel\n”);
else {
for (i=0; i<fid.attributes._length; i++)
printf (”\t%s\n”, fid.attributes._buffer[i].name);
SOMFree (fid.attributes._buffer);

}

printf (”and the following methods:\n”)
if (!fid.operation._length)
printf (”\t[nonel\n”);
else {
for (i=0; i<fid.operation._length; i++)
printf (”\t%s\n”, fid.operation._buffer([i].name);
SOMFree (fid.operation._buffer);
}

Original Class
InterfaceDef

3-24 sOMobjects Base Toolkit Programmer’s Reference Manual

ModuleDef Class

Description
The ModuleDef class provides the interface for module definitions in the Interface
Repository.

File Stem

moduledf

Base
Contained, Container

Metaclass
SOMClass

Ancestor Classes

Contained

Container

SOMObject

Types

struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;

b

The describe method, inherited from Contained, returns a ModuleDescription structure in
the value member of the Description structure (defined in the Contained class). The
describe_contents method, inherited from Container, returns a sequence of these
Description structures, each carrying a reference to a ModuleDescription structure in its
value member.

New Methods

None.

Overriding Methods

somlnit
somUninit
somDumpSelf
somDumpSelfint
describe

within

Interface Repository Framework Reference 3-25

OperationDef Class

Description
The OperationDef class provides the interface for operation (method) definitions in the
Interface Repository.

File Stem
operatdf

Base
Contained, Container

Metaclass
SOMClass

Ancestor Classes
Contained

Container
SOMObject

Types

typedef Identifier Contextldentifier;
enum OperationMode {NORMAL, ONEWAY};

struct OperationDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode result;

OperationMode mode;
sequence<Contextldentifier> contexis;
sequence<ParameterDef::ParameterDescription> parameter,;
sequence<ExceptionDef::ExceptionDescription> exceptions;
b
The describe method, inherited from Contained, returns an OperationDescription
structure in the value member of the Description structure (defined in the Contained
class). The describe_contents method, inherited from Container, returns a sequence of
these Description structures, each carrying a reference to an OperationDescription
structure in its value member.

3-26 SOMobjects Base Toolkit Programmer’s Reference Manual

Attributes

Following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

result (TypeCode)
The TypeCode that represents the type of the operation (method). The
TypeCode returned by the “_get_” form of the type attribute is contained in
the receiving OperationDef object, which retains ownership. Thus the
returned TypeCode should not be freed. To obtain a separate copy, use the
TypeCode_copy operation. The “_set_” form of the attribute makes a
private copy of the TypeCode you supply, to keep in the receiving object.
You retain ownership of the passed TypeCode.

mode (OperationMode)
The OperationMode of the operation (method), either NORMAL or
ONEWAY.

contexts (sequence<Contextldentifiers)
The list of Contextldentifiers associated with the operation (method). The
“_get_” form of the attribute returns a sequence whose buffer is owned by
the receiving OperationDef object. You should not free it. The “_set_” form
of the attribute makes a (deep) copy of the passed sequence; you retain
ownership of the original storage.

New Methods

None.

Overriding Methods

somlnit
somUninit
somDumpSelf
somDumpSelfint

describe

Interface Repository Framework Reference 3-27

ParameterDef Class

Description

The ParameterDef class provides the interface for parameter definitions in the Interface
Repository.

File Stem

paramdef

Base
Contained

Metaclass
SOMClass

Ancestor Classes

Contained
SOMObject
Types
enum ParameterMode {IN, OUT, INOUT};
struct ParameterDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;
ParameterMode mode;
b
The describe method, inherited from Contained, returns a ParameterDescription
structure in the value member of the Description structure (defined in the Contained
class).
Attributes
Following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:
type (TypeCode)
The TypeCode that represents the type of the parameter. The TypeCode
returned by the “_get_” form of the type attribute is contained in the
receiving ParameterDef object, which retains ownership. Hence, the
returned TypeCode should not be freed. To obtain a separate copy, use the
TypeCode_copy operation. The “_set_” form of the attribute makes a
private copy of the TypeCode you supply, to keep in the receiving object.
You retain ownership of the passed TypeCode.
mode (ParameterMode)
The ParameterMode of the parameter (IN, OUT, or INOUT).
New Methods

None.

3-28 SOMobjects Base Toolkit Programmer’s Reference Manual

Overriding Methods

sominit
somUninit
somDumpSelf
somDumpSelfint

describe

Interface Repository Framework Reference 3-29

Repository Class

Description

The Repository class provides global access to SOM’s CORBA-compliant Interface
Repository (IR), which is discussed in Chapter 7, “The Interface Repository Framework,” of
the SOM Toolkit User’s Guide.

File Stem

repostry

Base
Container

Metaclass
SOMClass

Ancestor Classes

SOMObject
Types
struct RepositoryDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;

b

The inherited describe_contents method returns an instance of the
RepositoryDescription structure in the value member of the Description structure defined
in the Container interface.

New Methods
lookup_id

lookup_modifier

release_cache

Overriding Methods

describe_contents
somlnit

somUninit
somFree
somDumpSelf

somDumpSelfint

3-30 SOMobjects Base Toolkit Programmer’s Reference Manual

lookup_id Method

Purpose
Returns the object having a specified Repositoryld.
IDL Syntax
Contained lookup_id (
in Repositoryld search_id);
Description
The lookup_id method returns the object having a Repositoryld given by the specified
search_id argument. The returned object represents a component of an IDL interface
(class) definition maintained within the Interface Repository.
When finished using the object returned by this method, the client code is responsible for
releasing it, using the somFree method.
Parameters
receiver A pointer to an object of class Repository representing SOM’s Interface
Repository.
ev A pointer where the method can return exception information if an error is
encountered.
search_id An ID value of type Repositoryld that uniquely identifies the desired object

in the Interface Repository.

Return Value
The lookup_id method returns the Contained object that has the specified Repositoryld.

Example
Here is a code fragment written in C that uses the lookup_id method:

#include <containd.h>
#include <repostry.h>

Repository repo;
Environment *ev;

Contained c;

RepositoryId objectToFind;

repo = RepositoryNew ();
c = Repository_lookup_id (repo, ev, objectToFind);
if (c) {

printf (”lookup_id found object of type: %s, named: %$s\n”,
SOMObject_somGetClassName (c), Contained_ get_name (c,
ev));
SOMObject_somFree (c);
}

Interface Repository Framework Reference 3-31

Original Class
Repository

Related Information
Methods: lookup_modifier, lookup_name, contents, within

3-32 SOMobjects Base Toolkit Programmer’s Reference Manual

lookup_modifier Method

Purpose

Returns the value of a given SOM modifier for a specified object [that is, for an object that
is a component of an IDL interface (class) definition maintained within the Interface
Repository].

IDL Syntax
string lookup_modifier (
in Repositoryld id,
in string modifier);

Description

The lookup_modifier method returns the string value of the given SOM modifier for an
object with the specified Repositoryld within the Interface Repository. For a discussion of
SOM modifiers, see the topic “Modifier statements” in Chapter 4, “Implementing SOM
Classes,” of the SOM Toolkit User’s Guide.

If the object with the given Repositoryld does not exist or does not possess the modifier,
then NULL (or zero) is returned. If the object exists but the specified modifier does not have
a value, a zero-length string value is returned.

Note: The lookup_modifier method is not stipulated by the CORBA specifications; it is a
SOM-unique extension to the Interface Repository.

Parameters
receiver A pointer to an object of class Repository representing SOM’s Interface
Repository.

ev A pointer where the method can return exception information if an error is
encountered.
id The Repositoryld of the object whose modifier value is needed.

modifier The name of a specific (SOM or user-specified) modifier whose string value
is needed.

Return Value
The lookup_modifier method returns the string value of the given SOM modifier for an
object with the specified Repositoryld, if it exists. If an existing modifier has no value, a

zero-length string value is returned. If the object cannot be found, then NULL (or zero) is
returned.

When the string value is no longer needed, client code must free the space for the string
(using SOMFree).

Interface Repository Framework Reference 3-33

Example
Here is a code fragment written in C that uses the lookup_modifier method:

#include <repostry.h>

Repository repo;
Environment *ev;
RepositoryId objectId;
string filestem;1i

repo = RepositoryNew ();
filestem = Repository lookup _modifier (repo, ev, objectId,

"filestem”);
if (filestem) {
printf
("The %s object’s filestem modifier has the wvalue
\"%S\"\n",
objectId, filestem);
SOMFree (filestem);
} else
printf (”No filestem modifier could be found for %s\n”,
objectId);

Original Class
Repository

Related Information
Methods: lookup_id, lookup_name

3-34 SOMobjects Base Toolkit Programmer’s Reference Manual

release cache Method

Purpose

Permits the Repository object to release the memory occupied by Interface Repository
objects that have been implicitly referenced.

Syntax

void release_cache ();

Description

This method allows the Repository object to release the memory occupied by implicitly
referenced Interface Repository objects. Some methods (such as describe_contents and
lookup_name) may cause some objects to be instantiated that are not directly accessible
through object references that have been returned to the user. These objects are kept in an
internal Interface Repository cache until the release_cache method is used to free them.
The internal cache continuously replenishes itself over time as the need arises.

Parameters

receiver A pointer to an object of class Repository representing SOM’s Interface
Repository.

ev A pointer where the method can return exception information if an error is
encountered.

Example

#include <repostry.h>

Repository repo;
Environment *ev;
sequence (ContainerDescription) scd;

scd = Container_describe_contents (
(Container) repo, ev, "TypeDef”, TRUE, -1);
Repository_ release_cache (repo, ev);

Original Class
Repository

Related Information

See the section entitled “A word about memory management” in Chapter 7 of the SOM
Toolkit User’s Guide.

Interface Repository Framework Reference 3-35

TypeDef Class

Description
The TypeDef class provides the interface for typedef definitions in the Interface Repository.

File Stem
typedef

Base
Contained

Metaclass
SOMClass

Ancestor Classes
Contained

SOMObject

Types
struct TypeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
TypeCode type;
The describe method, inherited from Contained, returns a TypeDescription structure in
the value member of the Description structure (defined in the Contained class).

Attributes

Following is a list of each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the typedef. The TypeCode
returned by the “_get_” form of the type attribute is contained in the
receiving TypeDef object, which retains ownership. Hence, the returned
TypeCode should not be freed. To obtain a separate copy, use the
TypeCode_copy operation. The “_set_” form of the attribute makes a
private copy of the TypeCode you supply, to keep in the receiving object.
You retain ownership of the passed TypeCode.

New Methods

None.

Overriding Methods

somlnit
somUninit
somDumpSelf
somDumpSelfint

describe

3-36 SOMobjects Base Toolkit Programmer’s Reference Manual

TypeCode_alignment Function

Purpose
Supplies the alignment value for a given TypeCode.

IDL Syntax
short TypeCode_alignment ();

Description

This function returns the alignment information associated with the given TypeCode. The
alignment value is a short integer that should evenly divide any memory address where an
instance of the type described by the TypeCode will occur.

Parameters
fc The TypeCode whose alignment information is desired.
ev A pointer to an Environment structure.

Return Value
A short integer containing the alignment value.

Related Information

Functions: TypeCodeNew, TypeCode_equal, TypeCode_free, TypeCode_kind,
TypeCode_param_count, TypeCode_parameter, TypeCode_print,
TypeCode_setAlignment, TypeCode_size

Interface Repository Framework Reference 3-37

TypeCode_copy Function

Purpose
Creates a new copy of a given TypeCode.

IDL Syntax
TypeCode TypeCode_copy ();

Description

The TypeCode_copy function creates a new copy of a given TypeCode. TypeCodes are
complex data structures whose actual representation is hidden, and may contain internal
references to strings and other TypeCodes. The copy created by this function is
guaranteed not to refer to any previously existing TypeCodes or strings, and hence can be
used long after the original TypeCode is freed or released (TypeCodes are typically
contained in Interface Repository objects whose memory resources are released by the
_somFree method).

All of the memory used to construct the TypeCode copy is allocated dynamically and should
be subsequently freed only by using the TypeCode_free function.

This function is a SOM-unique extension to the CORBA standard.

Parameters
fc The TypeCode to be copied.
ev A pointer to an Environment structure. The CORBA standard mandates

the use of this structure as a standard way to return exception information
when an error condition is detected.

Return Value

A new TypeCode with no internal references to any previously existing TypeCodes or
strings. If a copy cannot be created successfully, the value NULL is returned. No
exceptions are raised by this function.

Related Information

Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_free,
TypeCode_kind, TypeCode_param_count, TypeCode_parameter, TypeCode_print,
TypeCode_setAlignment, TypeCode_size

3-38 SOMobjects Base Toolkit Programmer’s Reference Manual

TypeCode_equal Function

Purpose
Compares two TypeCodes for equality.

IDL Syntax

boolean TypeCode_equal (
TypeCode tc2);

Description

The TypeCode_equal function can be used to determine if two distinct TypeCodes
describe the same underlying abstract data type.

Parameters
fc One of the TypeCodes to be compared.
ev A pointer to an Environment structure. The CORBA standard mandates
the use of this structure as a standard way to return exception information
when an error condition is detected.
tc2 The other TypeCode to be compared.

Return Value

Returns TRUE (1) if the TypeCodes tc and tc2 describe the same data type, with the same
alignment. Otherwise, FALSE (0) is returned. No exceptions are raised by this function.

Related Information

Functions: TypeCodeNew, TypeCode_alignment, TypeCode_copy, TypeCode_free,
TypeCode_kind, TypeCode_param_count, TypeCode_parameter, TypeCode_print,
TypeCode_setAlignment, TypeCode_size

Interface Repository Framework Reference 3-39

TypeCode_free Function

Purpose
Destroys a given TypeCode by freeing all of the memory used to represent it.

IDL Syntax
void TypeCode_free ();

Description

The TypeCode_free function destroys a given TypeCode by freeing all of the memory used
to represent it. TypeCodes obtained from the TypeCode_copy or TypeCodeNew functions
should be freed using TypeCode_free. TypeCodes contained in Interface Repository
objects should never be freed. Their memory is released when a _somFree method
releases the Interface Repository object.

The TypeCode_free operation has no effect on TypeCode constants. TypeCode constants
are static TypeCodes declared in the header file somtcnst.h or generated in files emitted
by the SOM Compiler. Since TypeCode constants may be used interchangeably with
dynamically created TypeCodes, it is not considered an error to attempt to free a
TypeCode constant with the TypeCode_free function.

This function is a SOM-unique extension to the CORBA standard.

Parameters
fc The TypeCode to be freed.
ev A pointer to an Environment structure. The CORBA standard mandates

the use of this structure as a standard way to return exception information
when an error condition is detected.

Return Value
None. No exceptions are raised by this function.

Related Information

Functions: TypeCodeNew, TypeCode_alignment, TypeCode_copy, TypeCode_equal,
TypeCode_kind, TypeCode_param_count, TypeCode_parameter, TypeCode_print,
TypeCode_setAlignment, TypeCode_size

3-40 SOMobjects Base Toolkit Programmer’s Reference Manual

TypeCode_kind Function

Purpose
Categorizes the abstract data type described by a TypeCode.
IDL Syntax
TCKind TypeCode_kind ();
enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal,
tk_obijref, tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_pointer, tk_self, tk_foreign
b
Description

The TypeCode_kind function can be used to classify a TypeCode into one of the
categories listed in the TCKind enumeration. Based on the “kind” classification, a
TypeCode may contain 0 or more additional parameters to fully describe the underlying
data type.

The following table indicates the number and function of these additional parameters.
TCKind entries not listed in the table are basic data types and do not have any additional
parameters. The designation “N” refers to the number of members in a struct or union, or
the number of enumerators in an enum.

Interface Repository Framework Reference 3-41

TypeCode Information per TCKind Category
TCKind Parameters Type Function
tk_objref 1 string The ID of the corresponding
InterfaceDef in the Interface
Repository.
tk_struct 2N+1 string The name of the struct.
—next 2 repeat for each member—
string The name of the struct
member.
TypeCode The type of the struct
member.
tk_union 3N+2 string The name of the union.
TypeCode The type of the
discriminator.
—next 3 repeats for each enumerator—
long The label value.
string The name of the member.
TypeCode The type of the member.
tk_enum N+1 string The name of the enum.
—next repeats for each enumerator—
string The name of the
enumerator.
tk_string 1 long The maximum string length
or 0.
tk_sequence 2 TypeCode The type of element in the
sequence.
long The maximum number of
elements or 0.
tk_array 2 TypeCode The type of element in the
array.
long The maximum number of
elements.
tk_pointer* 1 TypeCode The type of the referenced
datum.
tk_self* 1 string The name of the referenced
enclosing struct or union.
tk_foreign* 3 string The name of the foriegn
type.
string The implementation context.
long The size of an instance.

Note: *The TCKind values tk_pointer, tk_self, and tk_foreign are SOM-unique
extensions to the CORBA standard. They are provided to permit TypeCodes to
describe types that cannot be expressed in standard IDL.

3-42 SOMobjects Base Toolkit Programmer’s Reference Manual

Parameters
tc

ev

Return Value

The tk_pointer TypeCode contains only one parameter—a TypeCode which
describes the data type that the pointer references. The tk_self TypeCode is used
to describe a “self-referential” structure or union without introducing unbounded
recursion in the TypeCode. For example, the following C struct:

struct node {
long count;
struct node *next;

}i
could be described with a TypeCode created as follows:

TypeCode tcForNode;

tcForNode = TypeCodeNew (tk_struct, ”“node”,
"count”, TypeCodeNew (tk_long),
"next”, TypeCodeNew (tk_pointer,
TypeCodeNew (tk_self, ”"node”)));

The tk_foreign TypeCode provides a more general escape mechanism, allowing
TypeCodes to be created that partially describe non-IDL types. Since these foreign
TypeCodes carry only a partial description of a type, the “implementation context”
parameter can be used by a non-IDL execution environment to recognize other
types that are known or understood in that environment. For more information about
using foreign TypeCodes in SOM IDL files see the SOM Toolkit User’s Guide.

Note that the use of self-referential structures, pointers, or foreign types is beyond
the scope of the CORBA standard, and may result in a loss of portability or
distributability in client code.

The TypeCode whose TCKind categorization is requested.

A pointer to an Environment structure. The CORBA standard mandates
the use of this structure as a standard way to return exception information
when an error condition is detected.

Returns one of the enumerators listed in the TCKind enumeration shown previously. No
exceptions are raised by this function.

Related Information
Functions: TypeCodeNew, TypeCode_alignment, TypeCode_copy, TypeCode_equal,
TypeCode_free, TypeCode_param_count, TypeCode_parameter, TypeCode_print,
TypeCode_setAlignment, TypeCode_size

Interface Repository Framework Reference 3-43

TypeCodeNew Function

Purpose

Syntax

Creates a new TypeCode instance.

TypeCode TypeCodeNew (TCKind tag, ...);

[The actual parameters indicated by “...” are variable in number and type, depending on the
value of the tag parameter.] There are no implicit parameters to this function.

TypeCodeNew (tk_objref, string interfaceld);

TypeCodeNew (tk_string, long maxLength);

TypeCodeNew (tk_sequence, TypeCode seqTC, long maxLength);
TypeCodeNew (tk_array, TypeCode arrayTC, long length);
TypeCodeNew (tk_pointer, TypeCode pirTC);

TypeCodeNew (tk_self, string structOrUnionName);

TypeCodeNew (tk_foreign, string typename, string impCitx, long instSize);

TypeCodeNew (tk_struct, string name,
string mbrName, TypeCode mbrTC, [...,]
[mbrName and mbrTC repeat as needed]
NULL);

TypeCodeNew (tk_union, string name, TypeCode swTC,
long flag, long labelValue, string mbrName, TypeCode mbrTC, [...,]
[flag, labelValue, mbrName and mbrTC repeat as needed]
NULL);

TypeCodeNew (tk_enum, string name,
string enumld, [...,]
[enumlds repeat as needed]
NULL);

TypeCodeNew (TCKind allOtherTagValues);

Description

The TypeCodeNew function creates a new instance of a TypeCode from the supplied
parameters. TypeCodes are complex data structures whose actual representation is
hidden. The number and types of arguments required by TypeCodeNew varies depending
on the value of the first argument. All of the valid invocation sequences are shown in the
previous section. There are no implicit parameters to this function.

All TypeCodes created by TypeCodeNew should be destroyed (when no longer needed)
using the TypeCode_free function.

This function is a SOM-unique extension to the CORBA standard.

Parameters
tag The type or category of TypeCode to create.
interfaceld A string containing the fully-qualified interface name that is the subject of an
object reference type.
name A string that gives the name of a struct, union, or enum.
mbrName A string that gives the name of a struct or union member element.
enumld A string that gives the name of an enum enumerator.

3-44 SOMobjects Base Toolkit Programmer’s Reference Manual

structOrUnionName

A string that gives the name of a struct or union that has been previously
named in the current TypeCode and is the subject of a self-referential
pointer type. See the footnote on tk_self in the table given in the
TypeCode_kind function description for an example of what this means
and how it is applied.

maxLength The maximum permitted length of a string or a sequence. The value 0
(zero) means that the string or sequence is considered unbounded.

length The maximum number of elements that can be stored in an array. All IDL
arrays are bounded, hence a value of zero denotes an array of zero
elements.

flag One of the following constant values used to distinguish a labeled case in
an IDL discriminated union switch statement from the default case:
TCREGULAR_CASE The value 1
TCDEFAULT_CASE The value 2

labelValue The actual value associated with a regular labeled case in an IDL
discriminated union switch statement. If preceded by the argument
TCDEFAULT _CASE, the value zero should be used.

mbrTC A TypeCode that represents the data type of a struct or union member.

swTC A TypeCode that represents the data type of the discriminator in an IDL
union statement.

seqTC A TypeCode that describes the data type of the elements in a sequence.

arrayTC A TypeCode that describes the data type of the elements of an array.

ptrTC A TypeCode that describes the data type referenced by a pointer.

typename A string that provides the name of a foreign type.

impCitx A string that identifies an implementation context where a foreign type is
understood.

instSize A long that holds the size of a foreign type instance. If the size is variable or
is not known, the value zero should be used.

allOtherTagValues

Return Value

One of the values: tk_null, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk float, tk_double, tk_boolean, tk_char, tk_octet, tk_any,
tk_TypeCode, or tk_Principal

All of these tags represent basic IDL data types that do not require any
other descriptive parameters.

A new TypeCode instance, or NULL if the new instance could not be created.

Related Information

Functions: TypeCode_alignment, TypeCode_copy, TypeCode_equal, TypeCode_free,
TypeCode_kind, TypeCode_param_count, TypeCode_paramater, TypeCode_print,
TypeCode_setAlignment, TypeCode_size

Interface Repository Framework Reference 3-45

TypeCode_param_count Function

Purpose
Obtains the number of parameters available in a given TypeCode.

IDL Syntax

long TypeCode_param_count ();

Description

The TypeCode_param_count function can be used to obtain the actual number of
parameters contained in a specified TypeCode. Each TypeCode contains sufficient
parameters to fully describe its underlying abstract data type. Refer to the table given in the
description of the TypeCode_kind function.

Parameters
fc The TypeCode whose parameter count is desired.
ev A pointer to an Environment structure. The CORBA standard mandates

the use of this structure as a standard way to return exception information
when an error condition is detected.

Return Value

Returns the actual number of parameters associated with the given TypeCode, in
accordance with the table shown in the TypeCode_kind description. No exceptions are
raised by this function.

Related Information

Functions: TypeCodeNew, TypeCode_alignment, TypeCode_copy, TypeCode_equal,
TypeCode_free, TypeCode_kind, TypeCode_paramater, TypeCode_print,
TypeCode_setAlignment, TypeCode_size

3-46 SOMobjects Base Toolkit Programmer’s Reference Manual

TypeCode_parameter Function

Purpose
Obtains a specified parameter from a given TypeCode.
IDL Syntax
any TypeCode_parameter (
long index);
Description
The TypeCode_parameter function can be used to obtain any of the parameters contained
in a given TypeCode. Refer to the table shown in the description of the TypeCode_kind
function for a list of the number and type of parameters associated with each category of
TypeCode.
Parameters
fc The TypeCode whose parameter is desired.
ev A pointer to an Environment structure. The CORBA standard mandates
the use of this structure as a standard way to return exception information
when an error condition is detected.
index The number of the desired parameter. Parameters are numbered from 0 to
N-1, where N is the value returned by the Typecode_param_count
function.

Return Value
Returns the requested parameter in the form of an any. This function raises the Bounds
exception if the value of the index exceeds the number of parameters available in the given
TypeCode. Because the values exist within the specified TypeCode, you should not free
the results returned from this function.

An any is a basic IDL data type that is represented as the following structure in C or C++:

typedef struct any {
TypeCode _type;
void * _value;
} any;

Interface Repository Framework Reference 3-47

Since all TypeCode parameters have one of only three types (string, TypeCode, or long),
the _type member will always be set to TC_string, TC_TypeCode, or TC_long, as
appropriate. The _value member always points to the actual parameter datum. For
example, the following code can be used to extract the name of a structure from a
TypeCode of kind tk_struct in C:

#include <repostry.h> /* Interface Repository class */
#include <typedef.h> /* Interface Repository TypeDef class */
#include <somtcnst.h> /* TypeCode constants */

TypeCode x;

Environment *ev = somGetGlobalEnvironment ();
TypeDef aTypeDefObij;

sequence (Contained) sc;

any parm;

string name;

Repository repo;

/* 1st, obtain a TypeCode from an Interface Repository object,
* or use a TypeCode constant.

*/
repo = RepositoryNew ();
sc = _lookup_name (repo, ev,

"AttributeDescription”, -1, "TypeDef”, TRUE);
if (sc._length) {

aTypeDefObj = sc._buffer[0];

x = __get_type (aTypeDefObij, ev);

}
else

x = TC_AttributeDescription;

if (TypeCode_kind (x, ev) == tk_struct) {
parm = TypeCode_parameter (x, ev, 0); /* Get structure name */
if (TypeCode_kind (parm._type, ev) != tk_string) ({

printf (”"Error, unexpected TypeCode: ”);
TypeCode_print (parm._type, ev);

} else {
name = * ((string *)parm._value);
printf (”The struct name is %s\n”, name);
}
} else {

printf (”TypeCode is not a tk_struct: ”);
TypeCode_print (x, ev);
}

Related Information

Functions: TypeCodeNew, TypeCode_alignment, TypeCode_copy, TypeCode_equal,
TypeCode_free, TypeCode_kind, TypeCode_param_count, TypeCode_print,
TypeCode_setAlignment, TypeCode_size

3-48 SOMobjects Base Toolkit Programmer’s Reference Manual

TypeCode_print Function

Purpose
Writes all of the information contained in a given TypeCode to stdout.

IDL Syntax
void TypeCode_print ();

Description

The TypeCode_print function can be used during program debugging to inspect the
contents of a TypeCode. It prints (in a human-readable format) all of the information
contained in the TypeCode. The format of the information shown by TypeCode_print is the
same form that could be used by a C programmer to code the corresponding
TypeCodeNew function call to create the TypeCode.

This function is a SOM-unique extension to the CORBA standard.

Parameters
tc The TypeCode to be examined.
ev A pointer to an Environment structure. The CORBA standard mandates

the use of this structure as a standard way to return exception information
when an error condition is detected.

Return Value
None. No exceptions are raised by this function.

Related Information

Functions: TypeCodeNew, TypeCode_alignment, TypeCode_copy, TypeCode_equal,
TypeCode_free, TypeCode_kind, TypeCode_param_count, TypeCode_parameter,
TypeCode_setAlignment, TypeCode_size

Interface Repository Framework Reference 3-49

TypeCode_setAlignment Function

Purpose
Overrides the default alignment value associated with a given TypeCode.

IDL Syntax

void TypeCode_setAlignment (short alignment);

Description

The TypeCode_setAlignment function overrides the default alignment value associated
with a given TypeCode.

Parameters
tc The TypeCode to receive the new alignment value.
ev A pointer to an Environment structure.
alignment A short integer that specifies the alignment value.

Related Information

Functions: TypeCodeNew, TypeCode_alignment, TypeCode_equal, TypeCode_free,
TypeCode_kind, TypeCode_param_count, TypeCode_parameter, TypeCode_print,
TypeCode_size

3-50 SOMobjects Base Toolkit Programmer’s Reference Manual

TypeCode_size Function

Purpose

Provides the minimum size of an instance of the abstract data type described by a given
TypeCode.

IDL Syntax
long TypeCode_size ();

Description

The TypeCode_size function is used to obtain the minimum size of an instance of the
abstract data type described by a given TypeCode.

This function is a SOM-unique extension to the CORBA standard.

Parameters
fc The TypeCode whose instance size is desired.
ev A pointer to an Environment structure. The CORBA standard mandates

the use of this structure as a standard way to return exception information
when an error condition is detected.

Return Value

The amount of memory needed to hold an instance of the data type described by a given
TypeCode. No exceptions are raised by this function.

Related Information

Functions: TypeCodeNew, TypeCode_alignment, TypeCode_copy, TypeCode_equal,
TypeCode_free, TypeCode_kind, TypeCode_param_count, TypeCode_parameter,
TypeCode_print, TypeCode_setAlignment

Interface Repository Framework Reference 3-51

3-52 SOMobjects Base Toolkit Programmer’s Reference Manual

Chapter 4. Metaclass Framework Reference

)

(o}

MClass

7
|

y —
)

SOMMBeforeAfter SOMMSinglelnstance
7 NS4
Legend

------- > _

7N\ Instance of Subclass of
SOMMTraced
& O O
Metaclass Class Ordinary Object

Metaclass Class Organization

Metaclass Framework Reference

4-1

SOMMBeforeAfter Metaclass

Description

File Stem

SOMMBeforeAfter is a metaclass that defines two methods (sommBeforeMethod and
sommAfterMethod), which are invoked before and after each invocation of every instance
method. SOMMBeforeAfter is designed to be subclassed. Within the subclass, each of the
two methods should be overridden with a method procedure appropriate to the particular
application. The before and after methods are invoked on instances (ordinary objects) of a
class whose metaclass is the subclass (or child) of SOMMBeforeAfter, whenever any
method (inherited or introduced) of the class is invoked.

Warning: The somDefaultlnit and somFree methods are among the methods that get
before/after behavior. This implies that the following two obligations are imposed on the
programmer of a SOMMBeforeAfter class. First, your implementation must guard against
calling the sommBeforeMethod before somDefaultlnit has executed, when the object is
not yet fully initialized. Second, the implementation must guard against calling
sommAfterMethod after somFree, at which time the object no longer exists.

SOMMBeforeAfter is thread-safe.

sombacls

New Methods

None.

Overriding Methods

somDefaultlnit

somlnitMIClass

4-2 SOMobjects Base Toolkit Programmer’s ReferenceManual

sommAfterMethod Method

Specifies a method that is automatically called after execution of each client method.

void sommAfterMethod (

in SOMObiject object,
in somld methodID,

in void *returnedvalue,
in va_list ap);

The sommAfterMethod specifies a method that is automatically called after execution of
each client method. The sommAfterMethod method is introduced in the
SOMMBeforeAfter metaclass. The default implementation does nothing until it is
overridden. The sommAfterMethod method is not called directly by the user. To define the
desired “after” method, sommAfterMethod must be overridden in a metaclass that is a
subclass (child) of the SOMMBeforeAfter metaclass.

Warning: somFree is among the methods that get before/after behavior, which implies that
the following obligation is imposed on the programmer of a sommAfterMethod. Specifically,
care must be taken to guard against sommAfterMethod being called after somFree, at
which time the object no longer exists.

Refer to the diagram in the following section for further clarification of these arguments.

Purpose
IDL Syntax
Description
Parameters
receiver
ev
object
methodld
returnedvalue
ap

A pointer to an object (class) of metaclass SOMMBeforeAfter representing
the class object that supports the method (such as, “myMethod”) for which
the “after” method will apply.

A pointer where the method can return exception information if an error is
encountered. The dispatch method of SOMMBeforeAfter sets this
parameter to NULL before dispatching the first sommBeforeMethod.

A pointer to the instance of the receiver on which the method is invoked.
The SOM ID of the method (such as, “myMethod”) that was invoked.

A pointer to the value returned by invoking the method (“myMethod”) on an
object.

The list of input arguments to the method (“myMethod”).

Metaclass Framework Reference 4-3

Example
The following figure shows an invocation of “myMethod” on “myObject”. Because
“myObject” is an instance of a class whose metaclass is a subclass of SOMMBeforeAfter,
“‘myMethod” is followed by an invocation of sommAfterMethod (note the user does not
actually code the method). The adjacent figure illustrates the meaning of the parameters to

sommAfterMethod.
7\
SOMMBeforeAfter
7/
myMethod(myObject,...) 7N\
aMetaclass
sommAfterMethod(receiver, ev, myObject, ...) \v_/
“receiver”
Legend: -
Instance of Subclass of “myObject”
Metaclass Class Ordinary Object

An Example of Using sommAfterMethod

Original Class
SOMMBeforeAfter

Related Information
Methods: sommBeforeMethod

4-4 SOMobjects Base Toolkit Programmer’s ReferenceManual

sommBeforeMethod Method

Purpose
Specifies a method that is automatically called before execution of each client method.

IDL Syntax
boolean sommBeforeMethod (
in SOMObiject object,
in somld methodID,
in va_list ap);

Description

The sommBeforeMethod specifies a method that is automatically called before execution
of each client method. The sommBeforeMethod method is not called directly by the user.
To define the desired “before” method, sommBeforeMethod must be overridden in a
metaclass that is a subclass (child) of SOMMBeforeAfter. The default implementation does
nothing until it is overridden.

Warning: somDefaultlnit is among the methods that get before/after behavior, which
implies that the following obligation is imposed on the programmer of a
sommBeforeMethod. Specifically, care must be taken to guard against
sommBeforeMethod being called before the somDefaultlnit method has executed and the
object is not yet fully initialized.

Parameters
Refer to the diagram in the following section for further clarification of these arguments.

receiver A pointer to an object (class) of metaclass SOMMBeforeAfter representing
the class object that supports the method (such as, “myMethod”) for which
the “before” method will apply.

ev A pointer where the method can return exception information if an error is
encountered. The dispatch method of SOMMBeforeAfter sets this
parameter to NULL before dispatching the first sommBeforeMethod.

object A pointer to the instance of the receiver on which the method is invoked.
methodld The SOM ID of the method (such as, “myMethod”) that was invoked.
ap The list of input arguments to the method (“myMethod”).

Return Value

A boolean that indicates whether or not before/after dispatching should continue. If the
value is TRUE, normal before/after dispatching continues. If the value is FALSE, the
dispatching skips to the sommAfterMethod associated with the preceding
sommBeforeMethod. This implies that the sommBeforeMethod must do any
post-processing that might otherwise be done by the sommAfterMethod. Because
before/after methods are paired within a SOMMBeforeAfter metaclass, this design
eliminates the complexity of communicating to the sommAfterMethod that the
sommBeforeMethod returned FALSE.

Metaclass Framework Reference 4-5

Example
The following figure shows an invocation of “myMethod” on “myObject”. Because
“myObject” is an instance of a class whose metaclass is a subclass of SOMMBeforeAfter,
“‘myMethod” is preceded by an invocation of sommBeforeMethod (note the user does not
actually code the method). The adjacent figure illustrates the meaning of the parameters to

sommBeforeMethod.
7\
SOMMBeforeAfter
N7/
sommBeforeMethod(receiver, ev, myObiject, ...) 7N\
aMetaclass

(

myMethod(myObject,...)

N

’
/
1

7\

“receiver”

N~

’
’

Legend
------- > _
Instance of Subclass of “myObject”
Metaclass Class Ordinary Object

An Example of Using sommBeforeMethod

Original Class
SOMMBeforeAfter

Related Information
Methods: sommAfterMethod

4-6 SOMobjects Base Toolkit Programmer’s ReferenceManual

SOMMSinglelnstance Metaclass

Description

SOMMSinglelnstance can be specified as the metaclass when a class implementor is

defining a class for which only one instance can ever be created. The first call to
<className>New in C, the new operator in C++, or the somNew method creates the one
possible instance of the class. Thereafter, any subsequent “new” calls return the first (and

only) instance.

Alternatively, the method sommGetSinglelnstance can be used to accomplish the same
purpose. The method offers an advantage in that the call site explicitly shows that
something special is occurring and that a new object is not necessarily being created.

SOMMSinglelnstance is thread-safe.

File Stem

snglicls

Base Class
SOMClass

Metaclass
SOMClass

Ancestor Classes
SOMClass

SOMObject

New Methods

sommGetSinglelnstance

Overriding Methods

somlnit

somNew

Metaclass Framework Reference

4-7

sommGetSinglelnstance Method

Purpose

Gets the one instance of a specified class for which only a single instance can exist.

IDL Syntax
SOMObject sommGetSinglelnstance ();

Description

The sommGetSinglelnstance method gets a pointer to the one instance of a class for
which only a single instance can exist. A class can have only a single instance when its

metaclass is the SOMMSinglelnstance metaclass (or is a subclass of it).

The first call to <className>New in C, the new operator in C++, or the somNew method
creates the one possible instance of the class. Thereafter, any subsequent “new” calls
return the first (and only) instance. Using the sommGetSinglelnstance method offers an
advantage, however, in that the call site explicitly shows that something special is occurring

and that a new object is not necessarily being created. (That is, the

sommGetSinglelnstance method creates the single instance if it does not already exist.)

Parameters

receiver A pointer to a class object whose metaclass is SOMMSinglelnstance (or is

a subclass of it).

ev A pointer where the method can return exception information if an error is

encountered.

Return Value

The sommGetSinglelnstance method returns a pointer to the single instance of the

specified class.

Example

Suppose the class “XXX” is an instance of SOMMSinglelnstance; then the following C

code fragment passes the assertions.

x1l = XXXNew () ;

X2 = XXXNew () ;

assert (x1 == x2);

x3 = _sommGetSingleInstance(_somGetClass(x1), env
assert (x2 == x3);

Note that the method sommGetSinglelnstance is invoked on the class object, because
sommGetSinglelnstance is a method introduced by the metaclass SOMMSinglelnstance.

Original Class
SOMMSinglelnstance

4-8 SOMobjects Base Toolkit Programmer’s ReferenceManual

SOMMTraced Metaclass

Description
SOMMTraced is a metaclass that facilitates tracing of method invocations. Whenever a
method (inherited or introduced) is invoked on an instance (simple object) of a class whose
metaclass is SOMMTraced, a message prints to standard output giving the method
parameters; then, after completion, a second message prints giving the returned value.

There is one more step for using SOMMTraced: nothing prints unless the environment
variable SOMM_TRACED is set. If it is set to the empty string, all traced classes print. If the
environment variable SOMM_TRACED is not the empty string, it should be set to the list of
names of classes that should be traced. For example, for csh users, the following command
turns on printing of the trace for “Collie” and “Chihuahua”, but not for any other traced class:

setenv SOMM_TRACED ”Collie Chihuahua”
SOMMTraced is thread-safe.

File Stem

somtrcls

Base Class
SOMMBeforeAfter

Ancestor Classes
SOMMBeforeAfter

SOMClass
SOMObject

Attributes

boolean sommTracelsOn
This attribute indicates whether or not tracing is turned on for a class. This
gives dynamic control over the trace facility.

New Methods

None.

Overriding Methods

somlinitMIClass
sommAfterMethod

sommBeforeMethod

Metaclass Framework Reference 4-9

4-10 SOMobjects Base Toolkit Programmer’s ReferenceManual

Chapter 5. Event Management Framework Reference

»n
§>
(@]
K=
)
Q

)
——(

SOMMEEMan SOMEEvent SOME@isterData

—

—(

7N N\ N

SOMECIlientEvent SOMESinkEvent SOMETimerEvent SOMEWorkProcEvent

(
(
(
(

<+— Denotes “is a subclass of”

Event Management Framework Class Organization

Event Management Framework Reference

5-1

SOMECIientEvent Class

Description

This class describes generic client events within the Event Manager (EMan). Client Events
are defined, created, processed and destroyed entirely by the application. The application
can queue several types of client events with EMan. When a client event occurs, EMan
passes an instance of this class to the callback routine. The callback can query this object
about its type and obtain any event-specific information.

File Stem

clientev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent

SOMObject

New Methods

somevGetEventClientData
somevGetEventClientType
somevSetEventClientData

somevSetEventClientType

Overriding Methods

somlinit

5-2 SOMobjects Base Toolkit Programmer’s Reference Manual

somevGetEventClientData Method

Purpose
Returns the user-defined data associated with a client event.
IDL Syntax
void* somevGetEventClientData ();
Description
This method returns the user-defined data (if any) associated with the Client Event object.
This associated data for a given client event type is passed to EMan at the time of
registration.
Parameters
receiver A pointer to an object of class SOMECIlientEvent.
ev A pointer to the Environment structure for the calling method.

Return Value
A pointer to user-defined client event data.

Original Class
SOMECIlientEvent

Related Information
Methods: somevSetEventClientData

Event Management Framework Reference ~ 95-3

somevGetEventClientType Method

Purpose
Returns the type name of a client event.

IDL Syntax
string somevGetEventClientType ();

Description

This method returns the client event type of the Client Event object. Client event type is a
string name assigned to the event by the application at the time of registering the event.

Parameters
receiver A pointer to an object of class SOMECIlientEvent.
ev A pointer to the Environment structure for the calling method.

Return Value
A null terminated string identifying the client event type.

Original Class
SOMECIlientEvent

Related Information
Methods: somevSetEventClientType

5-4 SOMobjects Base Toolkit Programmer’s Reference Manual

somevSetEventClientData Method

Purpose
Sets the user-defined data of a client event.

IDL Syntax

void somevSetEventClientData (
in void* clientData);

Description

This method sets the user-defined event data (if any) of the Client Event object. This
associated data for a given client event type is passed to EMan at the time of registration.

Parameters
receiver A pointer to an object of class SOMECIlientEvent.
ev A pointer to the Environment structure for the calling method.
clientData A pointer to user-defined data for this client event.

Original Class
SOMECIlientEvent

Related Information
Methods: somevGetEventClientData

Event Management Framework Reference ~ 9-5

somevSetEventClientType Method

Purpose
Sets the type name of a client event.
IDL Syntax
void somevSetEventClientType (
in string clientType);
Description
This method sets the client event type field of the Client Event object. Client event type is a
string name assigned to the event by the application at the time of registering the event.
Parameters
receiver A pointer to an object of class SOMECIientEvent.
ev A pointer to the Environment structure for the calling method.
clientType A null terminated character string identifying the client event type. The

contents of this string are entirely up to the user. However, while using class
libraries that also use client events one must make sure that there are no
name collisions.

Original Class
SOMECIientEvent

Related Information
Methods: somevGetEventClientType

5-6 SOMobjects Base Toolkit Programmer’s Reference Manual

SOMEEMan Class

Description

The Event Manager class (EMan) is used to handle several input events. The main purpose
of this class is to provide a service that can do a blocked (or timed) wait on several event
sources concurrently. Typically, in a main program, one registers an interest in an event type
with EMan and specifies a callback (a procedure or a method) to be invoked when the event
of interest occurs. After all the necessary registrations are complete, the main program ends
with a call to someProcessEvents in EMan. This call is non-returning. EMan then waits on
all registered event sources. The application is completely event driven at this point (that is,
it does something only when an event occurs). The control returns to EMan after processing
each event. Further registrations can be done from within the callback routines.
Unregistrations can also be done from within the callback routines.

For applications that want to have their own main loop, EMan provides a non-blocking call
(the someProcessEvent method), which processes just one event (if any) and returns to
the main loop immediately. Note that when this call is the only one in the application’s main
loop, CPU cycles are wasted in constantly polling for events. In this situation, the
non-returning form of the someProcessEvents call is preferable.

AIX Specifics

On AIX this event manager supports Timer, Sink (any file, pipe, socket, or Message Queue),
Client and WorkProc events.

0S/2 and Windows Specifics

On OS/2 and Windows, this event manager supports Timer, Sink (sockets only), Client, and
WorkProc events.

Thread Safety

File Stem

To cope with multi-threaded applications on OS/2, the event-manager methods are mutually
exclusive (that is, at any time only one thread can be executing inside of EMan). If an
application thread needs to stop EMan from running (that is, to achieve mutual exclusion
with EMan), it can use the two methods someGetEManSem and someReleaseEManSem
to acquire and release EMan semaphores. On AlX or Windows, since threads are not
supported (at present), calling these two methods has no effect.

eman

Base Class

Metaclass

SOMObject

SOMMSinglelnstance

Ancestor Classes

SOMObiject

Event Management Framework Reference 5-7

New Methods

someGetEManSem
someChangeRegData
someProcessEvent
someProcessEvents
someQueueEvent
someRegister
someRegisterEv
someRegisterProc
someReleaseEManSem
someShutdown

someUnRegister

Overriding Methods

somlnit

somUninit

5-8 SOMobjects Base Toolkit Programmer’s Reference Manual

someChangeRegData Method

Purpose
Changes the registration data associated with a specified registration ID.

IDL Syntax

void someChangeRegData (
in long registrationld,
in SOMEEMRegisterData registerData);

Description

This method is called to change the registration data associated with an existing registration
of EMan. The existing registration is identified by the registrationld parameter. This ID must
be the one returned by EMan when the event interest was originally registered with EMan.
Further, the registration must be active (that is, it must not have been unregistered). The
result of providing a non-existent or invalid registration ID is a “no op”.

Parameters
receiver A pointer to an object of class SOMEEMan.
ev A pointer to the Environment structure for the calling method.

registrationld The registration ID of the event interest whose data is being changed.

registerData A pointer to the registration data object whose contents will replace the
existing registration information with EMan.

Example

#include <eman.h>
SOMEEMan *EManPtr;
SOMEEMRegisterData *data;
Environment *Ev;

long RegId;

_someChangeRegData (EManPtr, Ev, RegId, data);

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someRegisterProc

Event Management Framework Reference ~ 95-9

someGetEManSem Method

Purpose

Acquires EMan semaphores to achieve mutual exclusion with EMan’s activity.

IDL Syntax

void someGetEManSem ();

Description

When EMan is used on OS/2, multiple threads can invoke methods on EMan concurrently.
EMan protects its internal data by acquiring SOM toolkit semaphores. The same
semaphores are made available to users of EMan through the methods
someGetEManSem and someReleaseEManSem. If an application desires to prevent
EMan event processing from interfering with its own activity (in another thread, of course),
then it can call the someGetEManSem method and acquire EMan semaphores. EMan
activity will resume when the application thread releases the same semaphores by calling
someReleaseEManSem.

Callers should not hold this semaphore for too long, since it essentially stops EMan activity
for that duration and may cause EMan to miss some important event processing. The
maximum duration for which one can hold this semaphore depends on how frequently
EMan must process events.

On AIX or Windows, calling this method has no effect.

Parameters

Example

receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

#include <eman.h>
SOMEEMan *EManPtr;
Environment *Ev;

_someGetEManSem (EManPtr, Ev);
/* Do the work that needs mutual exclusion with EMan */
_someReleaseEManSem (EManPtr, EvV);

Original Class

SOMEEMan

Related Information

Methods: someReleaseEManSem

5-10 SOMobjects Base Toolkit Programmer’s Reference Manual

someProcessEvent Method

Purpose
Processes one event.
IDL Syntax
void someProcessEvent (
in unsigned long mask);
Description
Processes one event. This call is non-blocking. If there are no events to process it returns
immediately. The mask specifies which events to process. The mask is formed by OR’ing
the bit constants specified in the eventmsk.h file.
Parameters
receiver A pointer to an object of class SOMEEMan.
ev A pointer to the Environment structure for the calling method.
mask A bit mask indicating the types of events to look for and process.
Example
#include <eman.h>
main ()
{
Environment *testEnv = somGetGlobalEnvironment () ;

SOMEEMan *some_gEMan SOMEEManNew () ;
/* Do some registrations */

while (1) {
_someProcessEvent (some_gEMan, testEnv,
EMProcessTimerEvent |
EMProcessSinkEvent |
EMProcessClientEvent);
/*** Do other main loop work, if needed. ***/

}

} /* end of main */

Original Class
SOMEEMan

Related Information
Methods: someProcessEvents, someRegister, someRegisterEv, someRegisterProc

Event Management Framework Reference 5-11

someProcessEvents Method

Purpose
Processes infinite events.
IDL Syntax
void someProcessEvents ();
Description
This call loops forever waiting for events and dispatching them. The only way this can be
broken is by calling someShutdown in a callback routine. It is a programming error to call
this method without having registered interest in any events with EMan. Typically, a call to
this method is the last statement in the main program of an application.
Parameters
receiver A pointer to an object of class SOMEEMan.
ev A pointer to the Environment structure for the calling method.
Example
#include <eman.h>
main ()
{

Environment *testEnv = somGetGlobalEnvironment () ;
SOMEEMan *some_gEMan = SOMEEManNew () ;
/* Do some registrations */

_someProcessEvents (some_gEMan, testEnv) ;
} /* end of main */

Original Class
SOMEEMan

Related Information
Methods: someProcessEvent, someRegister, someRegisterEv, someRegisterProc

5-12 SOMobjects Base Toolkit Programmer’s Reference Manual

someQueueEvent Method

Purpose
Enqueues the specified client event.

IDL Syntax
void someQueueEvent (

in SOMECIlientEvent eveni);

Description
Client events are defined, created, processed and destroyed by the application. EMan
simply provides a means to enqueue and dequeue client events. Client events can be used
in several ways. For example, if an application component wants to handle an input
message arriving on a socket at a later time than when it arrives, it can receive the message
in the socket callback routine, create a client event out of it, and queue it with EMan. EMan
can be asked for the client event at a later time when the application is ready to handle it.
Client events can also be useful to hide the origin of event sources (that is, the original
event handlers receive the events and create client events in their place).
Dequeue is not a user-visible operation. Once a client event is queued, only EMan can
dequeue it.

Parameters
receiver A pointer to an object of class SOMEEMan.
ev A pointer to the Environment structure for the calling method.
event A pointer to the SOMECIientEvent object.

Example

#include <eman.h>
SOMEClientEvent *clientEventl;

clientEventl = SOMEClientEventNew () ;

/* create a client event of type ”“ClientTypel” */
_somevSetEventClientType (clientEventl, testEnv, ”ClientTypel”);
_somevSetEventClientData (clientEventl, testEnv, "Test Msg”);

/* whenever it is desired to cause this client event to happen,
call someQueueEvent Method with this clientEvent */
_someQueueEvent (some_gEMan, env, clientEventl);

Original Class

SOMEEMan

Event Management Framework Reference 5-13

someRegister Method

Purpose
Registers an object/method pair with EMan, given a specified registerData object.

IDL Syntax

long someRegister (
in SOMEEMRegisterData registerData,
in SOMObiject targetObject,
in string targetMethod,
in void *fargetData);

Description
This method allows for registering an event of interest with EMan, with an object method as
the callback. It is assumed that the target method has been declared as using OIDL
callstyle. The event of interest and its details are filled in a registration data object

registerData. The information about the callback routine is indicated by targetObject and
targetMethod.

A mismatch between the target method'’s callstyle and the registration method used (that is,
someRegister vs. someRegisterEv) can result in unpredictable results.

Note: The target method is called using name-lookup method resolution.

Parameters
receiver A pointer to an object of class SOMEEMan.
ev A pointer to the Environment structure for the calling method.

registerData A pointer to the registration data object that contains all the necessary
information about the event for which an interest is being registered with
EMan.

targetObject A pointer to the object that is the target of the callback method.
targetMethod The name of the callback method.

targetData A pointer to a data structure to be passed to the callback method when the
event occurs.

Return Value
The registration ID.

Example

#include <eman.h>
#include <emobj.h>

Environment *testEnv = somGetGlobalEnvironment ();

some_gEMan = SOMEEManNew ();/* create an EMan object */

data = SOMEEMRegisterDataNew(); /* create a reg data object */
target = EMObjectNew(); /* create a target object */

/* reRegister a timer event */

_someClearRegData (data, env);

_someSetRegDataEventMask (data, env, EMTimerEvent, NULL);

_someSetRegDataTimerInterval (data, env, 100);

regIdl = _someRegister (some_gEMan, env, data, target,
"eventMethod”, "Timer 100");

5-14 sSOMobjects Base Toolkit Programmer’s Reference Manual

Original Class
SOMEEMan

Related Information
Methods: someRegisterEv, someRegisterProc, someUnRegister

Also see the callstyle modifier of the SOM Interface Definition Language described in
Chapter 4, “Implementing SOM Classes” of the SOM Toolkit User’s Guide.

Event Management Framework Reference 5-15

someRegisterEv Method

Purpose

Registers the (object, method, Environment parameter) combination of a callback with
EMan, given a specified registerData object.

IDL Syntax

long someRegisterEv (
in SOMEEMRegisterData registerData,
in SOMObject targetObject,
inout Environment callbackEy,
in string targetMethod,
in void *fargetData);

Description

This method allows for registering an event interest with EMan with an object method as
callback. The callbackEv is used as the environment pointer when EMan makes the
callback. It is assumed that the target method has been declared as using IDL callstyle. The
event of interest and its details are filled in a registration data object registerData. The
information about the callback routine is indicated by targetObject and targetMethod.

A mismatch in the target method’s callstyle and the registration method called
(someRegister vs. someRegisterEv) can result in unpredictable results.

Note: The target method is called using name-lookup method resolution.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registerData A pointer to registration data object that contains all the necessary
information about the event for which an interest is being registered with
EMan.

targetObject A pointer to the object which is the target of the callback method
callbackEv A pointer to the Environment structure to be passed to the callback method
targetMethod The name of the callback method.

targetData A pointer to a data structure to be passed to the callback method when the

event occurs.

Return Value
The registration ID.

5-16 SOMobjects Base Toolkit Programmer’s Reference Manual

Example

#include <eman.h>
#include <emobj.h>

Environment *testEnv = somGetGlobalEnvironment () ;
Environment *targetEv = somGetGlobalEnvironment () ;
some_gEMan = SOMEEManNew ();/* create an EMan object */

data = SOMEEMRegisterDataNew(); /* create a reg data object */

target = EMObjectNew(); /* create a target object */

/* reRegister a timer event */

_someClearRegData (data, env);

_someSetRegDataEventMask (data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval (data, env, 100);

regldl = _someRegisterEv(some_gEMan,env, data, target,targetEv,

"eventMethod”, ”“Timer 100");
/* eventMethod of target is assumed to use callstyle=idl */

Original Class

SOMEEMan

Related Information

Methods: someRegister, someRegisterProc, someUnRegister

Also see the callstyle modifier in the SOM Interface Definition Language described in
Chapter 4, “Implementing SOM Classes,” in the SOM Toolkit User’s Guide.

Event Management Framework Reference

5-17

someRegisterProc Method

Purpose
Register the procedure with EMan given the specified registerData.

IDL Syntax

long someRegisterProc (
in SOMEEMRegisterData registerData,
in EMRegProc *fargetProcedure,
in void *fargetData);

Description

The someRegisterProc method allows for registering an event of interest with EMan, with a
specified procedure as the callback. The event of interest and its details are provided
through a registration data object registerData. The information about the callback
procedure is indicated by targetProcedure.

Parameters
receiver A pointer to an object of class SOMEEMan.
ev A pointer to the Environment structure for the calling method.

registerData A pointer to registration data object that contains all the necessary
information about the event for which an interest is being registered with
EMan.

targetProcedure

A pointer to the procedure (callback) that is called when the registered
event occurs.

targetData A pointer to a data structure to be passed to the callback procedure when
the event occurs.

Return Value
The registration ID.

Example

#include <eman.h>
void MyCallBack (SOMEEvent *event, wvoid *somedata) {
}

Environment *testEnv = somGetGlobalEnvironment () ;
some_gEMan = SOMEEManNew ();/* create an EMan object */
data = SOMEEMRegisterDataNew(); /* create a reg data object */

/* reRegister a timer event */

_someClearRegData (data, env);

_someSetRegDataEventMask (data, env, EMTimerEvent, NULL);

_someSetRegDataTimerInterval (data, env, 100);

regIdl = _someRegisterProc(some_gEMan, env, data,
MyCallBack, ”Timer 100");

5-18 SOMobjects Base Toolkit Programmer’s Reference Manual

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someUnRegister

Event Management Framework Reference 5-19

someReleaseEManSem Method

Purpose

Releases the semaphore obtained by the someGetEManSem method.

IDL Syntax

void someReleaseEManSem ();

Description

When EMan is used on OS/2, multiple threads can invoke methods on EMan concurrently.
EMan protects its internal data by acquiring SOM toolkit semaphores. The same
semaphores are made available to users of EMan through the methods
someGetEManSem and someReleaseEManSem. If an application desires to prevent
EMan’s event processing from interfering with its own activity (in another thread, of course),
then it can call the someGetEManSem method and acquire EMan semaphores. EMan
activity will resume when the application thread releases the same semaphores by calling
someReleaseEManSem.

Callers should not hold this semaphore for too long, since it essentially stops EMan activity
for that duration and may cause EMan to miss some important event processing. The
maximum duration for which one can hold this semaphore depends on how frequently
EMan must process events.

On AIX or Windows, calling this method has no effect.

Parameters

Example

receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

#include <eman.h>
SOMEEMan *EManPtr;
Environment *Ev;

_someGetEManSem (EManPtr, Ev);
/* Do the work that needs mutual exclusion with EMan */
_someReleaseEManSem (EManPtr, EvV);

Original Class

SOMEEMan

Related Information

Methods: someGetEManSem

5-20 SOMobjects Base Toolkit Programmer’s Reference Manual

someShutdown Method

Purpose
Shuts down an EMan event loop. (That is, this makes the someProcessEvents return!)

IDL Syntax

void someShutdown ();

Description
This can be called from a callback routine to break the someProcessEvents loop.

Parameters

receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.
Example

#include <eman.h>
SOMEEMan *some_gEMan;

void MyCallBack (SOMEEvent *event, void *somedata) {

_someShutdown (some_gEMan, env);

}

main ()

{

Environment *testEnv = somGetGlobalEnvironment () ;
SOMEEMan *some_gEMan = SOMEEManNew () ;
/* Do some registrations. At least one involving MyCallBack */

_someProcessEvents (some_gEMan, testEnv);

}

Original Class
SOMEEMan

Related Information
Methods: someProcessEvents

Event Management Framework Reference 5-21

someUnRegister Method

Purpose
Unregisters the event interest associated with a specified registrationld within EMan.

IDL Syntax

void someUnRegister (
in long registrationld);

Description

When an application is no longer interested in a given event, it can unregister the event
interest from EMan. EMan will stop making callbacks on this event, even if the event source
continues to be active and generates events.

Parameters
receiver A pointer to an object of class SOMEEMan.
ev A pointer to the Environment structure for the calling method.

registrationld The registration ID of the event that needs to be unregistered.

Example

#include <eman.h>
long regIdl;

/* Register a timer */
regIdl = _someRegisterEv(some_gEMan,env, data, target,targetEv,
"eventMethod”, ”“Timer 100");

/* Unregister the timer */
_someUnRegister (some_gEMan, env, regldl);

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someRegisterProc

5-22 SOMobjects Base Toolkit Programmer’s Reference Manual

SOMEEMRegisterData Class

Description

This class is used for holding registration information for event types to be registered with
EMan. EMan extracts all needed information from this object and saves the information in
its internal data structures. An instance of this class must be created, properly initialized,
and passed to the registration methods of EMan for registering interest in any kind of event.

File Stem

emregdat

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObiject

New Methods

someClearRegData
someSetRegDataClientType
someSetRegDataEventMask
someSetRegDataSink
someSetRegDataSinkMask
someSetRegDataTimerCount
someSetRegDataTimerInterval

Overriding Methods

somlnit

somUninit

Event Management Framework Reference 5-23

someClearRegData Method

Purpose
Clears the registration data.

IDL Syntax

void someClearRegData ();

Description

This method initializes all fields of a RegData object to their default values.
Parameters

receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

Original Class
SOMEEMRegisterData

5-24 SOMobjects Base Toolkit Programmer’s Reference Manual

someSetRegDataClientType Method

Purpose
Sets the type name for a client event.

IDL Syntax

void someSetRegDataClientType (
in string clientType);

Description

Client events are defined, created, processed, and destroyed entirely by the application.
The application can queue several types of client events with EMan. This method sets the
client event type field of the registration data object. Thus, this information is communicated
to EMan, helping it deal with enqueueing and dequeing the different client events.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

clientType A null-terminated character string identifying the client event type. The
contents of this string are entirely up to the user. However, while using class
libraries that also use client events, one must make sure that there are no
name collisions.

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

Event Management Framework Reference 5-25

someSetRegDataEventMask Method

Purpose
Sets the generic event mask within the registration data using NULL terminated event type
list.

IDL Syntax
void someSetRegDataEventMask (

in long eventType,
in va_list ap);

Description
This allows setting the event mask within the registration data object. Essentially, this tells
EMan what kind of event is being registered with it. The event type list is a series of
constants defined in the eventmsk.h file. Although the current interface supports a NULL
terminated list of event types, currently each registration with EMan names only one event
type. Thus, one usually gives only one named constant as the event type and follows it with
a NULL parameter (see the following example).

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.
ev A pointer to the Environment structure for the calling method.
eventType A bit constant indicating the type of event being registered with EMan.
ap Additional event types (usually NULL).

Example

#include <eman.h>
long regIdl;
int msgsock;

/* Register msgsock socket with EMan for further communication */

_someClearRegData (data, env);
_someSetRegDataEventMask (data, env, EMSinkEvent, NULL);

/* The above call enables EMan to know (during registration) that
we are talking about a Sink Event */

_someSetRegDataSink (data, env, msgsock);
_someSetRegDataSinkMask (data, env, EMInputReadMask);

regld = _someRegisterProc(some_gEMan, env, data,
ReadSocketAndPrint, "“READMSG”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someSetRegDataSink, someClearRegData

5-26 SOMobjects Base Toolkit Programmer’s Reference Manual

someSetRegDataSink Method

Purpose
Sets the file descriptor (or socket ID, or message queue ID) for the sink event.
IDL Syntax
void someSetRegDataSink (
in long sink);
Description
This method enables setting the true type of an event object. Typically, a subclass of Event
calls this method (or overrides this method) to set the event type to indicate its true
class(type).
Parameters
receiver A pointer to an object of class SOMEEMRegisterData.
ev A pointer to the Environment structure for the calling method.
sink An integer value indicating the file descriptor for input/output. It can also be

a socket ID, pipe ID or a message queue ID.

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

Event Management Framework Reference 5-27

someSetRegDataSinkMask Method

Purpose
Sets the sink mask within the registration data object.

IDL Syntax

void someSetRegDataSinkMask (
in unsigned long sinkmask);

Description

The sink mask within the registration data allows one to express interest in different events
of the same event source. For example, using this mask one can express interest in being
notified when there is input for reading, when the resource is ready for writing output, or just
when exceptions occur.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.
ev A pointer to the Environment structure for the calling method.
sinkmask A bit mask indicating the types of events of interest on a given sink.
Example

#include <eman.h>
long regIdl;
int msgsock;

/* Register msgsock socket with EMan for further communication */
_someClearRegData (data, env);
_someSetRegDataEventMask (data, env, EMSinkEvent, NULL);
_someSetRegDataSink (data, env, msgsock);
_someSetRegDataSinkMask (data, env,

EMInputReadMask |EMInputExceptMask) ;

/* The above call expresses interest in knowing when there is

input to be read from the socket and when there is an exception
condition associated with this socket. */
regld = _someRegisterProc(some_gEMan, env, data,

ReadSocketAndPrint, "“READMSG”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someSetRegDataSink, someClearRegData

5-28 SOMobjects Base Toolkit Programmer’s Reference Manual

someSetRegDataTimerCount Method

Purpose
Sets the number of times the timer will trigger, within the registration data.

IDL Syntax

void someSetRegDataTimerCount (
in long counti);

Description

The someSetRegDataTimerCount method sets the number of times the timer will trigger,
within the registration data. The default behavior is for the timer to trigger indefinitely.

Parameters

receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

count An integer indicating the number of times the timer event has to occur.
Example

#include <eman.h>
long regldl;

/* Register a timer */

_someClearRegData (data, env);

_someSetRegDataEventMask (data, env, EMTimerEvent, NULL);

_someSetReghataTimerInterval (data, env, 100);

_someSetRegDataTimerCount (data, env, 1);

/* make this a one time timer event */

regIldl = _someRegister(some_gEMan,env, data, target,
"eventMethod”, "“Timer 100");

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

Event Management Framework Reference 5-29

someSetRegDataTimerlnterval Method

Purpose
Sets the timer interval within the registration data.

IDL Syntax

void someSetRegDataTimerlInterval (
in long interval);

Description

This call allows setting the timer interval (in milliseconds) within the registration data object.
Parameters

receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

interval An integer indicating the timer interval in milliseconds.
Example

#include <eman.h>
long regIdl;

/* Register a timer */

_someClearRegData (data, env);

_someSetRegDataEventMask (data, env, EMTimerEvent, NULL);

_someSetRegDataTimerInterval (data, env, 100);

/* Sets the timer interval to 100 milliseconds */

regIdl = _someRegister (some_gEMan,env, data, target,
"eventMethod”, "Timer 100");

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

5-30 SOMobjects Base Toolkit Programmer’s Reference Manual

SOMEEvent Class

Description
This is the base class for all generic events within the Event Manager (EMan). It simply
timestamps an event before it is passed to a callback routine. The event type is set to the
true type by a subclass. The types currently used by the Event Management Framework are
defined in the eventmsk.h file. Any subclass of this class must avoid name and value
collisions with the eventmsk.h file.

File Stem

event

Base
SOMODbiject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods

somevGetEventTime
somevGetEventType
somevSetEventTime

somevSetEventType

Overriding Methods

somlnit

Event Management Framework Reference 5-31

somevGetEventTime Method

Purpose
Returns the time of the generic event in milliseconds.

IDL Syntax

unsigned long somevGetEventTime ();

Description

EMan timestamps every event before dispatching it. The current time is obtained from the
operating system (for example, using a gettimeofday call), is converted to milliseconds,
and is given as the value of the timestamp. When this function is called, the event
timestamp is returned.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
An event timestamp in milliseconds.

Original Class
SOMEEvent

Related Information
Methods: somevSetEventTime

5-32 SOMobjects Base Toolkit Programmer’s Reference Manual

somevGetEventType Method

Purpose
Returns the type of the generic event.

IDL Syntax

unsigned longsomevGetEventType ();

Description

This method returns the true type of a given event object (for example, to identify the
particular subclass of the event object). The type is an integer valued constant defined in
the eventmsk.h file.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
A type value (an integer constant defined in the eventmsk.h file).

Original Class
SOMEEvent

Related Information
Methods: somevSetEventType

Event Management Framework Reference 5-33

somevSetEventTime Method

Purpose
Sets the time of the generic event (time is in milliseconds).

IDL Syntax

void somevSetEventTime (
in unsigned long time);

Description

EMan timestamps every event before dispatching it. The current time is obtained from the
operating system (for example, using a gettimeofday call), converted to milliseconds, and
is given as the value of the timestamp. When an event occurs, EMan sets the timestamp of
the event by calling this method.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

time The time of day expressed in milliseconds.

Original Class
SOMEEvent

Related Information
Methods: somevGetEventTime

5-34 SOMobjects Base Toolkit Programmer’s Reference Manual

somevSetEventType Method

Purpose
Sets the type of the generic event.
IDL Syntax
void somevSetEventType (
in unsigned long type);
Description
This method enables setting the true type of an event object. Typically, a subclass of
SOMEEvent calls this method (or overrides this method) to set the event type to indicate its
true type.
Parameters
receiver A pointer to an object of class SOMEEvent.
ev A pointer to the Environment structure for the calling method.
type An integer value indicating the type of the event (a constant defined in the

eventmsk.h file).

Original Class
SOMEEvent

Related Information
Methods: somevGetEventType

Event Management Framework Reference 5-35

SOMESinkEvent Class

Description

This class describes a sink event that is generated by EMan when it notices activity on a
registered sink. On AlX, a sink refers to any file descriptor (file open for reading or writing),
any pipe descriptor, a socket ID or a message queue ID. On OS/2 or Windows, a sink refers
to a socket ID. One can register for three types of interest in a sink: Read interest, Write
interest, and Exception interest. (See the eventmsk.h file to determine the appropriate bit
constants and see the someSetRegDataSinkMask method for their use.)

EMan passes an instance of this class as a parameter to the callback registered for Sink
Events. The callback can query the instance for some information on the sink.

File Stem

sinkev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent

SOMObiject

New Methods

somevGetEventSink

somevSetEventSink

Overriding Methods

somlinit

5-36 SOMobjects Base Toolkit Programmer’s Reference Manual

somevGetEventSink Method

Purpose
Returns the sink, or source of I/O, of the generic sink event.

IDL Syntax

long somevGetEventSink ();

Description

The sink ID in the SinkEvent is returned. For message queues it is the queue ID, for files it
is the file descriptor, for sockets it is the socket ID, and for pipes it is the pipe descriptor.

Parameters
receiver A pointer to an object of class SOMESinkEvent.
ev A pointer to the Environment structure for the calling method.

Return Value

An integer value indicating the file descriptor for input/output. It can also be a socket ID,
pipe ID or a message queue ID.

Original Class
SOMESinkEvent

Related Information
Methods: somevSetEventSink

Event Management Framework Reference 5-37

somevSetEventSink Method

Purpose
Sets the sink, or source of I/0O, of the generic sink event.
IDL Syntax
void somevSetEventSink (
in long sink);
Description
The sink ID in the SinkEvent is set. For message queues, it is the queue ID; for files it is the
file descriptor; for sockets it is the socket ID; and for pipes it is the pipe descriptor.
Parameters
receiver A pointer to an object of class SOMESinkEvent.
ev A pointer to the Environment structure for the calling method.
sink An integer value indicating the file descriptor for input/output. It can also be

a socket ID, pipe ID, or a message queue ID.

Original Class
SOMESinkEvent

Related Information
Methods: somevGetEventSink

5-38 SOMobjects Base Toolkit Programmer’s Reference Manual

SOMETimerEvent Class

Description

This class describes a timer event that is generated by EMan when any of its registered

timers pops.

EMan passes an instance of this class as a parameter to the callbacks registered for Timer
Events. The callback can query the instance for information on the timer interval and on any

generic event properties.

File Stem

timerev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent

SOMObject

New Methods

somevGetEventinterval

somevSetEventinterval

Overriding Methods

somlnit

Event Management Framework Reference

5-39

somevGetEventinterval Method

Purpose
Returns the interval of the generic timer event (time in milliseconds).

IDL Syntax

void somevGetEventinterval ();

Description

The somevGetEventinterval method returns the interval of the generic timer event (time in
milliseconds).

Parameters
receiver A pointer to an object of class SOMETimerEvent.
ev A pointer to the Environment structure for the calling method.

Return Value
The interval time in milliseconds.

Original Class
SOMETimerEvent

Related Information
Methods: somevSetEventinterval

5-40 SOMobjects Base Toolkit Programmer’s Reference Manual

somevSetEventinterval Method

Purpose
Sets the interval of the generic timer event (in milliseconds).

IDL Syntax

void somevSetEventinterval (
in long interval);

Description
The somevSetEventinterval method sets the interval of the generic timer event (in
milliseconds).

Parameters
receiver A pointer to an object of class SOMETimerEvent.
ev A pointer to the Environment structure for the calling method.
interval The timer interval in milliseconds.

Original Class
SOMETimerEvent

Related Information
Methods: somevGetEventinterval

Event Management Framework Reference

5-41

SOMEWorkProcEvent Class

Description
This class describes a work procedure event object. It currently has no methods of its own.
However, it sets the event type in its super class to say “EMWorkProcEvent” to help identify
itself. These events are created and dispatched by EMan when a work procedure
(something that the application wants to run when no other events are happening) is
registered with EMan.

EMan passes an instance of this class as a parameter to the callback registered for
WorkProc Events.

File Stem

workprev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent

SOMObject

New Methods

None.

Overriding Methods
SOMClass

somlinit

5-42 SOMobjects Base Toolkit Programmer’s Reference Manual

Index

A

activate_impl_failed method, 2-130
add_arg method, 2-75
add_class_to_impldef method, 2-39
add_impldef method, 2-40
add_item method, 2-51
AttributeDef class, 3-2
See also “Interface Repository Framework”

Before/After methods. See “Metaclass Framework,

SOMMBeforeAfter metaclass”
BOA class, 2-16
See also “DSOM Framework”

C

change_id method, 2-131
change_implementation method, 2-17
ConstantDef class, 3-4

See also “Interface Repository Framework”
Contained class, 3-6

See also “Interface Repository Framework”
Container class, 3-12

See also “Interface Repository Framework”
contents method, 3-13
Context class, 2-28

See also “DSOM Framework”
Context_delete macro, 2-13
create method, 2-18
create_child method, 2-29
create_constant method, 2-132
create_list method, 2-68
create_operation_list method, 2-69
create_request method, 2-96
create_request_args method, 2-98
create_ SOM_ref method, 2-134

D

deactivate_impl method, 2-20
deactivate_obj method, 2-21
delete_impldef method, 2-41
delete_values method, 2-30
describe method, 3-8
describe_contents method, 3-15
describe_interface method, 3-23
destroy method (Context object), 2-31
destroy method (Request object), 2-77
dispose method, 2-22
DSOM Framework, 2-1
BOA class, 2-16
change_implementation method, 2-17
create method, 2-18
deactivate_impl method, 2-20
deactivate_obj method, 2-21
dispose method, 2-22
get_id method, 2-23
get_principal method, 2-24

impl_is_ready method, 2-25
obj_is_ready method, 2-26
set_exception method, 2-27
Context class, 2-28
create_child method, 2-29
delete_values method, 2-30
destroy method (Context object), 2-31
get_values method, 2-32
set_one_value method, 2-34
set_values method, 2-35
Functions
get_next_response function, 2-3
ORBfree function, 2-4
send_multiple_requests function, 2-5
somdExceptionFree function, 2-7
SOMD _ Init function, 2-8
SOMD_NoORBfree function, 2-9
SOMD_RegisterCallback function, 2-10
SOMD__Uninit function, 2-12
ImplementationDef class, 2-36
impl_alias attribute, 2-36
impl_flags attribute, 2-36
impl_hostname attribute, 2-37
impl_id attribute, 2-36
impl_program attribute, 2-36
impl_refdata_bkup attribute, 2-37
impl_refdata_file attribute, 2-37
impl_server_class attribute, 2-36
ImplRepository class, 2-38
add_class_to_impldef method, 2-39
add_impldef method, 2-40
delete_impldef method, 2-41
find_all_impldefs method, 2-42
find_classes_by impldef method, 2-43
find_impldef method, 2-44
find_impldef_by alias method, 2-45
find_impldef_by_class method, 2-46
remove_class_from_all method, 2-47
remove_class_from_impldef method, 2-48
update_impldef method, 2-49
Macros
Context_delete macro, 2-13
Request_delete macro, 2-14
NVList class, 2-50
add_item method, 2-51
free method, 2-53
free_memory method, 2-54
get_count method, 2-56
get_item method, 2-57
set_item method, 2-59
ObjectMgr class, 2-61
somdDestroyObject method, 2-62
somdGetldFromObject method, 2-63
somdGetObjectFromld method, 2-64
somdNewObject method, 2-65
somdReleaseObject method, 2-66
ORB class, 2-67
create_list method, 2-68

Index X-1

create_operation_list method, 2-69
get_default_context method, 2-70
object_to_string method, 2-71
string_to_object method, 2-72
Principal class, 2-73
hostName attribute, 2-73
userName attribute, 2-73
Request class, 2-74
add_arg method, 2-75
destroy method (Request object), 2-77
get_response method, 2-79
invoke method, 2-81
send method, 2-83
SOMDClientProxy class, 2-85
somdProxyFree method, 2-87
somdProxyGetClass method, 2-88
somdProxyGetClassName method, 2-89
somdReleaseResources method, 2-90
somdTargetFree method, 2-92
somdTargetGetClass method, 2-93
somdTargetGetClassName method, 2-94
SOMDObiject class, 2-95
create_request method, 2-96
create_request_args method, 2-98
duplicate method, 2-100
get_implementation method, 2-101
get_interface method, 2-102
is_constant method, 2-103
is_nil method, 2-104
is_proxy method, 2-105
is SOM_ref method, 2-106
release method, 2-107
SOMDObjectMgr class, 2-108
somd21somFree attribute, 2-108
somdFindAnyServerByClass method,
2-109
somdFindServer method, 2-110
somdFindServerByName method, 2-111
somdFindServersByClass method, 2-112
SOMDServer class, 2-113
somdCreateObj method, 2-114
somdDeleteObj method, 2-115
somdDispatchMethod method, 2-116
somdGetClassObj method, 2-117
somdObjReferencesCached method,
2-118
somdRefFromSOMODbj method, 2-119
somdSOMObjFromRef method, 2-120
SOMDServerMgr class, 2-121
somdDisableServer method, 2-122
somdEnableServer method, 2-123
somdlsServerEnabled method, 2-124
somdListServer method, 2-125
somdRestartServer method, 2-126
somdShutdownServer method, 2-127
somdStartServer method, 2-128
SOMOA class, 2-129
activate_impl_failed method, 2-130
change_id method, 2-131
create_constant method, 2-132
create_SOM_ref method, 2-134
execute_next_request method, 2-135
execute_request_loop method, 2-136
get_SOM_object method, 2-138

duplicate method, 2-100
E

EMan, 5-1
See also “Event Management Framework”
Event Management Framework, 5-1
SOMECIientEvent class, 5-2
somevGetEventClientData method, 5-3
somevGetEventClientType method, 5-4
somevSetEventClientData method, 5-5
somevSetEventClientType method, 5-
SOMEEMan class, 5-7
someChangeRegData method, 5-9
someGetEManSem method, 5-10
someProcessEvent method, 5-11
someProcessEvents method, 5-12
someQueueEvent method, 5-13
someRegister method, 5-14
someRegisterEv method, 5-16
someRegisterProc method, 5-18
someReleaseEManSem method, 5-20
someShutdown method, 5-21
someUnRegister method, 5-22
SOMEEMRegisterData class, 5-23
someClearRegData method, 5-24
someSetRegDataClientType method, 5-25
someSetRegDataEventMask method, 5-26
someSetRegDataSink method, 5-27
someSetRegDataSinkMask method, 5-28
someSetRegDataTimerCount method,
5-29
someSetRegDataTimerlInterval method,
5-30
SOMEEvent class, 5-31
somevGetEventTime method, 5-32
somevGetEventType method, 5-33
somevSetEventTime method, 5-34
somevSetEventType method, 5-35
SOMESinkEvent class, 5-36
somevGetEventSink method, 5-37
somevSetEventSink method, 5-38
SOMETimerEvent class, 5-39
somevGetEventinterval method, 5-40
somevSetEventinterval method, 5-41
SOMEWorkProcEvent class, 5-42
ExceptionDef class, 3-19
See also “Interface Repository Framework”
execute_next_request method, 2-135
execute_request_loop method, 2-136

F

find_all_impldefs method, 2-42
find_classes_by_impldef method, 2-43
find_impldef method, 2-44
find_impldef_by alias method, 2-45
find_impldef_by_class method, 2-46
free method, 2-53

free_memory method, 2-54

G

get_count method, 2-56
