SO bydelell)

Bull DPX/20

SOMobject Base Toolkit
User’s Guide

AlIX

ORDER REFERENCE
86 A2 27AQ 01

Bull DPX/20

SOMobject Base Toolkit
User’s Guide

AlX

Software

June 1995

BULL S.A. CEDOC

Atelier de Reproduction
FRAN-231

331 Avenue Patton BP 428
49005 ANGERS CEDEX
FRANCE

ORDER REFERENCE
86 A2 27AQ 01

The following copyright notice protects this book under the Copyright laws of the United States and other
countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and making
derivative works.

Copyright © Bull S.A. 1992, 1995

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the USA and other countries licensed exclusively through X/Open.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

About This Book

This book accompanies the SOMobjects Base Toolkit, which consists of the base (or
core) capabilities in the System Object Model (SOM) of the SOMobjects Developer
Toolkit. The base system is a rich subset of the full-capability SOMobjects Developer
Toolkit. Because the current manual is a subset of chapters from the full SOMobjects
Developer Toolkit Users Guide, references herein to the “SOMobjects Developer Toolkit”
should be interpreted as capabilities of the SOMobjects Base Toolkit.

This manual explains how programmers using C, C++, and other languages can:
» Implement class libraries that exploit the SOM library-packaging technology,
 Develop client programs that use class libraries that were built using SOM, and

« Develop applications that use the frameworks supplied with this core version of the
SOMobijects Toolkit, class libraries that facilitate development of object-oriented
applications.

In addition to this book, refer to the SOMobjects Base Toolkit Programmer’s Reference
Manual during application development for specific information about the classes, methods,
functions, and macros of the SOMobjects Toolkit. Also, the SOMobjects Base Toolkit Quick
Reference Guide shows the syntax of each method or function, along with a one-sentence
description of its purpose, and gives syntax for the SOM Compiler commands and option
flags.

For purchasers of the full-capability SOMobjects system, the SOMobjects Developer
Toolkit: Emitter Framework Guide and Reference contains documentation of the Emitter
Framework of the SOMobjects Developer Toolkit. In addition, the SOMobjects Developer
Toolkit: Collection Classes Reference Manual describes the collection classes and methods
provided with the SOMobjects Developer Toolkit.

How This Book Is Organized
This book contains nine chapters, three appendices, a glossary, and an index.

e The first part (chapters 1 and 2) introduces the reader to the SOMobjects Toolkit, gives
an overview of the major elements of SOM, and provides a Tutorial containing several
evolutionary examples.

e The second part (chapter 3) describes how to develop client programs in C, C++, or other
languages to use classes that were implemented using SOM, including how to create
instances of a class and call methods on them.

¢ The third part (chapters 4 and 5) describes the SOM run-time environment, gives the
syntax of the SOM Interface Definition Language, provides directions for running the
SOM Compiler, and contains advanced information about SOM’s object model and how
to customize SOM for particular applications.

¢ The fourth part (chapters 6 through 9) contains information about the frameworks
composing the SOMobjects Toolkit: Distributed SOM (DSOM), the Interface Repository
Framework, and the Event Management Framework. This part also describes the utility
metaclasses provided with the SOMobjects Toolkit.

Preface iii

e The appendices describe customer support-procedures and error codes, and provide the
grammar for SOM IDL. The final appendix describes how to subclass a “Sockets” class
that facilitates inter-process communications required by the DSOM and Event
Management Frameworks.

e The Glossary provides brief definitions of terminology related to SOM and the
SOMobjects Toolkit. Finally, an extensive Index enables the reader to locate specific
information quickly.

Who Should Read This Book

iv

This book is for the professional programmer using C, C++, or another language who wishes
to:

¢ Use SOM to build object-oriented class libraries, or

» Write application programs using class libraries that others have implemented using
SOM, even if the programming language does not directly support object-oriented
programming.

The discussions in this book are expressed in the commonly used terminology of
object-oriented programming. A number of important terms are everyday English words that
take on specialized meanings. These terms appear in the Glossary at the back of this book.
You may find it worth consulting the Glossary if the unusual significance attached to an
otherwise ordinary word puzzles you.

This book assumes that you are an experienced programmer and that you have a general
familiarity with the basic notions of object-oriented programming. Practical experience using
an object-oriented programming language is helpful, but not essential.

If you would like a good introduction to object-oriented programming or a general survey of
the many aspects of the topic, you might enjoy reading one of the following books:

e Booch, G, Object-Oriented Design with Applications, Benjamin/Cummings 1991, ISBN
0-8053-0091-0.

e Budd, T, An Introduction to Object-Oriented Programming, Addison-Wesley 1991, ISBN
0-201-54709-0.

e Cox, B, and Novobilski, A, Object-Oriented Programming, An Evolutionary Approach 2nd
Edition, Addison-Wesley 1991, ISBN 0-201-54834-8.

SOMobjects Base Toolkit User’s Guide

Contents

Chapter 1. Introduction to the SOMobjects Toolkit

1.1 Background
1.2 Introducing SOM and the
The SOM Compiler
The SOM run-time library .

SOMobjects Toolkitt

Frameworks provided in the SOMobjects Toolkit

Distributed SOM

Interface Repository Framework

Persistence Framework
Replication Framework
Emitter Framework
Metaclass Framework .

1.3 What's New in SOMobjects Version 2.1 i ..
Generalenhancementst
SOMobjects enhancementsc i
DSOM enhancementsottt e e e
Metaclass Framework i e

New restrictions and deprecated methods L.

1.4 Overview of this book . ..

Chapter 2. Tutorial for Implementing SOMClassesccovvvennnn
2.1 Basic Concepts of the System Object Model (SOM)

Development of the Tutorial examples oo,
2.2 Basic Steps for Implementing SOM Classes ...,

Example 1 — Implementing a

Simple Class with One Method

Example 2 — Adding an Attribute tothe Helloclass

Attributes vs instance variables
Example 3 — Overriding an Inherited Method
Example 4 — Initializinga SOM Object it
Example 5 — Using Multiple Inheritance

Chapter 3. Using SOM Classes in Client Programsccvvuunn
3.1 An Example Client Program ... i e
3.2 Using SOM Classes — theBasics ...,

Declaring object variables

Creating instances of aclass ...
Using <classNames>New i
Using <className>Renew i,
Using <className>NewClass,

Invoking methods onobjects

Making typical method calls i

Required arguments

Short formvs long form

Required arguments
Accessing attributes . ..
Using ‘va_list’ methods

Using name-lookup method resolution

A name-lookup example

Preface

1-5

—_ o e e e e e e e
1

COOUNYNYNUOIOEOE® O hhdn

—_
]
—_

o 1
NOoO O =

2-13
2-14
2-16
2-19
2-21

3-11
3-11
3-12
3-14

Vi

Obtaining a method’s procedure pointer ...,
Offset resolution i
Name-lookup method resolution i i,

Method name or signature not known at compiletime
Dispatch-function method resolutionl

Using class Objects

Gettingtheclassof anobject i

Creatingaclass objecto e
Using <className>Renew or somRenew
Using <className>NewClass
Using somFindClass or somFindClsInFile

Referringto class objects ...t

Compiling and linKing o
3.3 Language-neutral Methods and Functions n...
Generating OUTPUL o
Getting information aboutaclass
Getting information aboutanobject
Methods ...
FUNCHONS .. e
DEbUGGING - - oo oot
Checking the validity of method calls
Exceptionsand errorhandling

Exceptiondeclarations i

Standard exceptions

The Environment

Setting an exceptionvaluec. i

Getting an exceptionvalue i

EXample .

MemOry Management

Using SOM equivalents to ANSI C functions

Clearing memory forobjects ... i

Clearing memory for the Environment

SOM manipulations using somld’s

Chapter 4. SOM IDL and the SOM Compilerccciiiiiiiinnnnn.
4.1 Interface vs Implementation
4.2 SOM Interface Definition Language i,
Include direCtives
Type and constant declarations i
Integral typPes . ..o
Floating pointtypes oo
Character type . ..o
Boolean type
Ot tYPE oo

ANy YD o
CONStrUCtEd tYPES . . o oot
Template types (sequences and strings) it
AT Y S ottt e
POINterS .

OB ECt tYPES - ot
Exception declarations i
Interface declarationsc. i e
Constant, type, and exception declarations
Attribute declarations i e

SOMobjects Base Toolkit User’s Guide

3-16
3-17
3-18
3-18
3-18
3-18
3-18
3-19
3-19
3-19
3-20
3-21
3-21
3-23
3-23
3-23
3-25
3-25
3-25
3-26
3-27
3-27
3-28
3-29
3-29
3-30
3-30
3-31
3-33
3-33
3-33
3-34
3-34

4-10
4-11
4-13
4-13

Method (operation) declarations

Oneway keyword
Parameter list ...
Raises expression

Context BXPreSSIiONt
Implementation statements
Modifier statements
Passthru statements i

Declaring instance

variables and staticdata variables

Comments withina SOM IDLfile
Designating ‘private’ methods and attributes
Defining multiple interfaces ina .idlfile
Scoping and name resolution

Name usage in client programst
Extensions to CORBA IDL permitted by SOMIDL

Pointer *’ types ..
Unsigned types ..

Implementation section
COMMENt PrOCESSING - - e
Generated headerfiles i

4.3 The SOM Compiler

Generating binding files
Environment variables affecting the SOM Compiler
Running the SOM Compiler e

4.4 The ‘pdl’ Facility ..

Chapter 5. Implementing ClassesinSOMcccciiiiiiiinnnns

5.1 The SOM Run-time

Environment

Run-time environment initialization
SOMObjectclass object ...
SOMClass class object
SOMClassMgr class object and SOMClassMgrObject

Parentclassvs. metaclass e

SOM-derived metaclassesooiiiii i i e e

5.2 Inheritance
5.3 Method Resolution
Offset resolution

Name-lookup resolution i
Dispatch-function resolution
Customizing method resolution i
The four kinds of SOM methods i

Static methods . ..
Nonstatic methods
Dynamic methods

Direct-call procedureso

5.4 Implementing SOM Classesttt
The implementationtemplate i
Stub procedures formethods
Extending the implementationtemplate L

Accessing internal

instance variables

Making parent method calls i
Converting C++ classesto SOMclassesccovviiiiiiinennn...
Running incremental updates of the implementation template file

Compiling and linking

Preface

4-14
4-14
4-14
4-15
4-16
4-16
4-16
4-25
4-26
4-27
4-27
4-28
4-28
4-29
4-29
4-30
4-30
4-30
4-30
4-30
4-31
4-31
4-34
4-36
4-40

5-1

5-2

5-2

5-2

5-2

5-3

5-5

5-8
5-11
5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-16
5-16
5-16
5-17
5-17
5-18
5-20
5-20
5-20
5-21
5-21
5-23

vii

viii

5.5 Initializing and Uninitializing Objects
Initializer methods
Declaring new initializersin SOMIDL

Considerations re: ‘somlnit’ initialization from earlier SOM releases

Implementing initializers
Selecting non-default ancestor initializercalls
Using initializers when creating new objects
Uninitialization i
Using 'somDestruct’ i
Acompleteexample
Implementationcodeol
Customizing the initialization of class objects
5.6 Creating a SOM Class Library
General guidelines for class library designers
Types of class libraries
Building exportfiles
Specifying the initialization function
Using Windows class libraries
Creating the import library
5.7 Customizing Memory Management
5.8 Customizing Class Loading and Unloading
Customizing class initialization
Customizing DLL loading ...,
Customizing DLL unloading ...,
5.9 Customizing Character Output
5.10 Customizing Error Handling

5.11 Customizing Mutual Exclusion Services (Thread Safety)

Chapter 6. Distributed SOM(DSOM)
6.1 Introduction
What is Distributed SOM? il
DSOMfeaturesooiiiiii i
Whentouse DSOM i,
Chapteroutlineo
Tutorialexample
Programming DSOM applications
Configuring DSOM applications
Running DSOM applications
DSOMand CORBA i
Advanced topiCs ...
Error reporting and troubleshooting

6.2 A Simple DSOM Example
The “Stack”interface i,
The “Stack” class implementation
Client program using a local stack
Client program using aremote stack
Using specific servers ...,

A note on finding existing objects
“Stack” server implementation
Compiling the application
Installing the implementation
Setting environment variables
Registering the class in the Interface Repository

Registering the server in the Implementation Repository

SOMobjects Base Toolkit User’s Guide

5-25
5-25
5-27
5-28
5-29
5-30
5-30
5-31
5-31
5-32
5-33
5-38
5-39
5-39
5-40
5-40
5-41
5-42
5-43
5-46
5-47
5-47
5-47
5-48
5-49
5-50
5-51

6-11
6-12
6-12
6-13
6-13
6-13
6-14
6-14

Running the application
Starting the DSOM daemon
Runningtheclient

“Stack” example run-time scenario

SUMMAry ...

6.3 Basic Client Programming

DSOM Object Manager

Initializing a client program

Exiting a client program

Creating remote objects
Creating an object in an arbitrary server .
Proxy objects
Servers and server objects
Creating an object in a specific server ..

Inquiring about a remote object’s implementation

Destroying remote objects
Destroying objects viaaproxy

Destroying objects via the DSOM Object Manager

Destroying objects via a server object . . .

Creating remote objects using user-defined metaclasses

Saving and restoring references to objects .
Finding existing objects
Finding serverobjects
Invoking methods on remote objects
Determining memory allocation and owne
Passing object references in method calls .
Memory management
Objects and object references
Environment structures
Blocksof memory
Memory management for method parame

rShip ..o

ters ...

The CORBA policy for parameter memory management
Caller frees parameters and returnresults

Allocation responsibilities

The ‘somdReleaseResources’ method and object-owned parameters

Writing clients that are also servers
Compiling and linking clients
6.4 Basic Server Programming
Server run-time objects
Server implementation definition
SOM Object Adapter (SOMOA)
Serverobjectl
Server activation
Initializing a server program

Initializing the DSOM run-time environment
Initializing the server’s ImplementationDef

Initializing the SOM Object Adapter
When initialization fails
Processingrequests
Exiting a server program
Managing objects in the server
Object references, ReferenceData, and th
Simple SOM object references
SOMDServer (default server-object class)
Creation and destruction of SOM objects

e ReferenceDatatable

Preface

6-14
6-14
6-15
6-15
6-16
6-17
6-17
6-17
6-18
6-18
6-19
6-19
6-20
6-20
6-21
6-21
6-22
6-22
6-22
6-23
6-23
6-24
6-25
6-25
6-26
6-26
6-26
6-26
6-26
6-26
6-27
6-27
6-27
6-28
6-28
6-29
6-29
6-30
6-30
6-30
6-31
6-31
6-31
6-32
6-32
6-32
6-32
6-33
6-33
6-33
6-34
6-34
6-35
6-35
6-36

ix

Mapping objects to object references i

Hints on the use of create vs. create_constant
Mapping object referencestoobjects o i
Dispatchingamethod i
Example: Writing a persistent objectserver
Identifying the source of arequest
Compiling and linking Servers e
6.5 Implementing Classes e
Using SOM class libraries i
Role of DSOM generic Server programouuuueeeeeannaannneen...
Role of SOM Object Adapter ... e
Role of SOMDSEIVENt e
Implementation constraints
Using other object implementations i ...
Wrapping a printer APl
Parameter memory management
Building and registering class libraries i
6.6 Configuring DSOM Applications
Preparing the environment o
Registering classinterfacesc i i
Registering servers and Classes
Implementation definitions
The ‘regimpl,” ‘pregimpl,” and ‘wregimpl’ registration utilities
Registration steps using ‘regimpl’ i
Command line interface to ‘regimpl’ o
Registration steps using ‘pregimpl’ or ‘wregimpl’,
Programmatic interface to the Implementation Repository
The ‘dsom’ server manager utility i i
Interpretation of ‘dsom’ messagescooiiiiiiiiiiiiia,
Programmatic interface to manage server processes
Verifying the DSOM environment with ‘'somdchk’
6.7 Running DSOM Applications i
Running the DSOM daemon (somdd),
Running DSOM SEIVErSot
6.8 DSOM as a CORBA-compliant Object Request Broker
Mapping OMG CORBA terminology onto DSOM
Object Request Broker run-time interfaces
Object references and proxy objects i
Creation of remote objects i
Interface definition language
Clanguage mappingcvuunii ettt
Dynamic Invocation Interface (DII) ...
Implementations and Servers i e
Object Adapterso
Extensions and limitations
6.9 Advanced TOPICS ottt
Peer vs. client-Server proCesSeSttt
Multi-threaded DSOM programsooiuuiinn et
Event-driven DSOM programs using EMan
Sample serverusing EMan ...
Dynamic Invocation Interface oo
The NamedValue structure i e
The NVLISt Classo e
Creating argument lists
Buildinga Request

SOMobjects Base Toolkit User’s Guide

6-36
6-36
6-37
6-38
6-38
6-40
6-41
6-42
6-42
6-42
6-42
6-42
6-43
6-44
6-44
6-45
6-46
6-47
6-47
6-48
6-48
6-48
6-49
6-49
6-51
6-52
6-54
6-55
6-56
6-56
6-56
6-58
6-58
6-58
6-59
6-59
6-59
6-61
6-63
6-63
6-63
6-63
6-63
6-64
6-65
6-67
6-67
6-67
6-67
6-68
6-70
6-70
6-71
6-72
6-72

Initiating a Request i 6-73

Example code 6-73
Creating user-supplied proxies ... 6-74
Customizing the default base proxy class ..., 6-76
SOCKELS Class . ..\ttt 6-77

6.10 Error Reporting and Troubleshooting o i iiian.. 6-78

Error reportingo 6-78

Error Codes ... 6-78
Troubleshooting hints 6-78

Checking the DSOM SELUDttt 6-78

Analyzing problem conditions 6-79

B.11 Limitationso e 6-82
Chapter 7. The Interface Repository Framework 7-1
7.1 IntroduCtion . ..o o 7-2
7.2 Using the SOM Compiler to Build an Interface Repository 7-3
7.3 Managing Interface Repository files i 7-4
The SOM IR file “SOm.ir" ... e 7-4
Managing IRs via the SOMIR environment variable 7-4
Placing ‘private’ information in the Interface Repository 7-5
7.4 Programming with the Interface Repository Objects 7-7
Methods introduced by Interface Repository classes 7-8
Accessing objects in the Interface Repository il 7-9
A word about memory management ... 7-11
Using TypeCode pseudo-objects 7-11

Providing ‘alignment’ information i 7-13

Using the ‘tk_foreign’ TypeCode, 7-14

TypeCode CoNStantsot 7-15

Using the IDL basic type ‘any’ ... e 7-15

Chapter 8. The Metaclass Frameworkcccoiiiiiiiirinnnnennns 8-1
A note about metaclass programming i 8-2

8.1 Framework Metaclasses for “Before/After” Behavior 8-3
The ‘SOMMBeforeAfter’ metaclass ..., 8-3
SOM IDL for ‘Barking’ metaclass ..., 8-4

C implementation for ‘Barking’ metaclass, 8-4
Composition of before/after metaclassest 8-5
Notes and advantages of ‘before/after’usage 8-6

8.2 The '‘SOMMSinglelnstance’ Metaclasscciiiiiiiin, 8-7
8.3 The '‘SOMMTraced’ Metaclassoiiiiiiiii e 8-8
SOM IDL for “TracedDog’ Class 8-9

8.4 Error COUES ..ottt 8-10
Chapter 9. The Event Management Frameworkc.ccvvvinnnn. 9-1
9.1 Event Management BasiCsoiiiiiiiii i 9-2
Model of EMan usaget 9-2
EVeNttypes ..o 9-2
Registration 9-3

Callbacks 9-3

Event Classeso 9-3

EMan parameters 9-3

Registering forevents i 9-4
Unregistering for events 9-5
An example callback procedure 9-5
Generating client events 9-5

Preface Xi

Xii

Examples of using otherevents
Processing events
Interactive applications
9.2 Event Manager Advanced TOPICSot
Threads and thread safety ... i
Writing an X or MOTIF application i,
Extending EMan
Using EMan from C++ ...
Using EMan from otherlanguages
Tipsonusing EMan
9.3 Limitations o
Use of EMan DLL e

Appendix A. SOMobjects ErrorCodesccoviiiiiiinnnrnnnnrnnnnss
SOMKernel Brror Codes
DSOM Error CoOBS ..ot ittt e e e e e e

Appendix B. SOM IDL Language Grammarcvvrenniunsennnnns

Appendix C. Implementing Sockets Subclassesccccvnnt.
Sockets IDL interfaceoouiii i
IDL for a Sockets subclass
Implementation considerations i
Example code

SOMobjects Base Toolkit User’s Guide

C-1
C-1

C-6
C-7

Chapter 1. Introduction to the SOMobjects Toolkit

Introduction to the SOMobjects Toolkit 1=1

1.1 Background

Object-oriented programming (or OOP) is an important new programming technology
that offers expanded opportunities for software reuse and extensibility. Object-oriented
programming shifts the emphasis of software development away from functional
decomposition and toward the recognition of units (called objects) that encapsulate both
code and data. As a result, programs become easier to maintain and enhance.
Object-oriented programs are typically more impervious to the “ripple effects” of subsequent
design changes than their non-object-oriented counterparts. This, in turn, leads to
improvements in programmer productivity.

Despite its promise, penetration of object-oriented technology to major commercial software
products has progressed slowly because of certain obstacles. This is particularly true of
products that offer only a binary programming interface to their internal object classes (i.e.,
products that do not allow access to source code).

The first obstacle that developers must confront is the choice of an object-oriented
programming language.

So-called “pure” object-oriented languages (such as Smalltalk) presume a complete
run-time environment (sometimes known as a virtual machine), because their semantics
represent a major departure from traditional, procedure-oriented system architectures. So
long as the developer works within the supplied environment, everything works smoothly
and consistently. When the need arises to interact with foreign environments, however (for
example, to make an external procedure call), the pure-object paradigm ends, and objects
must be reduced to data structures for external manipulation. Unfortunately, data structures
do not retain the advantages that objects offer with regard to encapsulation and code reuse.

“Hybrid” languages such as C++, on the other hand, require less run-time support, but
sometimes result in tight bindings between programs that implement objects (called “class
libraries”) and their clients (the programs that use them). That is, implementation detail is
often unavoidably compiled into the client programs. Tight binding between class libraries
and their clients means that client programs often must be recompiled whenever simple
changes are made in the library. Furthermore, no binary standard exists for C++ objects, so
the C++ class libraries produced by one C++ compiler cannot (in general) be used from C++
programs built with a different C++ compiler.

The second obstacle developers of object-oriented software must confront is that, because
different object-oriented languages and toolkits embrace incompatible models of what
objects are and how they work, software developed using a particular language or toolkit is
naturally limited in scope. Classes implemented in one language cannot be readily used
from another. A C++ programmer, for example, cannot easily use classes developed in
Smalltalk, nor can a Smalltalk programmer make effective use of C++ classes.
Object-oriented language and toolkit boundaries become, in effect, barriers to
interoperability.

Ironically, no such barrier exists for ordinary procedure libraries. Software developers
routinely construct procedure libraries that can be shared across a variety of languages, by
adhering to standard linkage conventions. Object-oriented class libraries are inherently
different in that no binary standards or conventions exist to derive a new class from an
existing one, or even to invoke a method in a standard way. Procedure libraries also enjoy
the benefit that their implementations can be freely changed without requiring client
programs to be recompiled, unlike the situation for C++ class libraries.

For developers who need to provide binary class libraries, these are serious obstacles. In
an era of open systems and heterogeneous networking, a single-language solution is
frequently not broad enough. Certainly, mandating a specific compiler from a specific
vendor in order to use a class library might be grounds not to include the class library with
an operating system or other general-purpose product.

The System Object Model (SOM) — the core of the SOMobjects Base Toolkit — provides
a solution to these problems.

1-2 SOMobjects Base Toolkit User’s Guide

1.2 Introducing SOM and the SOMobjects Toolkit

The System Object Model (SOM) is a new object-oriented programming technology for
building, packaging, and manipulating binary class libraries.

« With SOM, class implementors describe the interface for a class of objects (names of
the methods it supports, the return types, parameter types, and so forth) in a standard
language called the Interface Definition Language, or IDL.

e They then implement methods in their preferred programming language (which may be
either an object-oriented programming language or a procedural language such as C).

This means that programmers can begin using SOM quickly, and also extends the
advantages of OOP to programmers who use non-object-oriented programming languages.

A principal benefit of using SOM is that SOM accommodates changes in implementation
details and even in certain facets of a class’s interface, without breaking the binary interface
to a class library and without requiring recompilation of client programs. As a rule of thumb,
if changes to a SOM class do not require source-code changes in client programs, then
those client programs will not need to be recompiled. This is not true of many
object-oriented languages, and it is one of the chief benefits of using SOM. For instance,
SOM classes can undergo structural changes such as the following, yet retain full
backward, binary compatibility:

¢ Adding new methods,

¢ Changing the size of an object by adding or deleting instance variables,

* Inserting new parent (base) classes above a class in the inheritance hierarchy, and
¢ Relocating methods upward in the class hierarchy.

In short, implementors can make the typical kinds of changes to an implementation and its
interfaces that evolving software systems experience over time.

Unlike the object models found in formal object-oriented programming languages, SOM is
language-neutral. It preserves the key OOP characteristics of encapsulation, inheritance,
and polymorphism, without requiring that the user of a SOM class and the implementor of a
SOM class use the same programming language. SOM is said to be language-neutral for
four reasons:

1. All SOM interactions consist of standard procedure calls. On systems that have a
standard linkage convention for system calls, SOM interactions conform to those
conventions. Thus, most programming languages that can make external procedure
calls can use SOM.

2. The form of the SOM Application Programming Interface, or API (the way that
programmers invoke methods, create objects, and so on) can vary widely from
language to language, as a benefit of the SOM bindings. Bindings are a set of macros
and procedure calls that make implementing and using SOM classes more
convenient by tailoring the interface to a particular programming language.

3. SOM supports several mechanisms for method resolution that can be readily mapped
into the semantics of a wide range of object-oriented programming languages. Thus,
SOM class libraries can be shared across object-oriented languages that have
differing object models. A SOM object can potentially be accessed with three different
forms of method resolution:

 Offset resolution: roughly equivalent to the C++ “virtual function” concept. Offset
resolution implies a static scheme for typing objects, with polymorphism based
strictly on class derivation. It offers the best performance characteristics for SOM
method resolution. Methods accessible through offset resolution are called static
methods, because they are considered a fixed aspect of an object’s interface.

Introduction to the SOMobjects Toolkit 1=3

* Name-lookup resolution: similar to that employed by Objective-C and Smalltalk.
Name resolution supports untyped (sometimes called “dynamically” typed) access
to objects, with polymorphism based on the actual protocols that objects honor.
Name resolution offers the opportunity to write code to manipulate objects with little
or no awareness of the type or shape of the object when the code is compiled.

¢ Dispatch-function resolution: a unique feature of SOM that permits method
resolution based on arbitrary rules known only in the domain of the receiving object.
Languages that require special entry or exit sequences or local objects that
represent distributed object domains are good candidates for using
dispatch-function resolution. This technique offers the highest degree of
encapsulation for the implementation of an object, with some cost in performance.

4. SOM conforms fully with the Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA) standards.t In particular,

* Interfaces to SOM classes are described in CORBA’s Interface Definition Language,
IDL, and the entire SOMobjects Toolkit supports all CORBA-defined data types.

¢ The SOM bindings for the C language are compatible with the C bindings
prescribed by CORBA.

« All information about the interface to a SOM class is available at run time through a
CORBA-defined “Interface Repository.”

SOM is not intended to replace existing object-oriented languages. Rather, it is intended to
complement them so that application programs written in different programming languages
can share common SOM class libraries. For example, SOM can be used with C++to

 Provide upwardly compatible class libraries, so that when a new version of a SOM
class is released, client code needn’t be recompiled, so long as no changes to the
client’s source code are required.

¢ Allow other language users (and other C++ compiler users) to use SOM classes
implemented in C++.

¢ Allow C++ programs to use SOM classes implemented using other languages.

¢ Allow other language users to implement SOM classes derived from SOM classes
implemented in C++.

¢ Allow C++ programmers to implement SOM classes derived from SOM classes
implemented using other languages.

 Allow encapsulation (implementation hiding) so that SOM class libraries can be shared
without exposing private instance variables and methods.

¢ Allow dynamic (run-time) method resolution in addition to static (compile-time) method
resolution (on SOM objects).

¢ Allow information about classes to be obtained and updated at run time. (C++ classes
are compile-time structures that have no properties at run time.)

The SOM Compiler

The SOMobjects Toolkit contains a tool, called the SOM Compiler, that helps
implementors build classes in which interface and implementation are decoupled. The SOM
Compiler reads the IDL definition of a class interface and generates:

¢ an implementation skeleton for the class,
¢ bindings for implementors, and

¢ bindings for client programs.

FOMG is an industry consortium founded to advance the use of object technology in distributed, heterogeneous environments.

1-4 SOMobjects Base Toolkit User’s Guide

Bindings are language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to SOM that is
tailored to a particular programming language. For instance, C programmers can invoke
methods in the same way they make ordinary procedure calls. The C++ bindings “wrap”
SOM objects as C++ objects, so that C++ programmers can invoke methods on SOM
objects in the same way they invoke methods on C++ objects. In addition, SOM objects
receive full C++ typechecking, just as C++ objects do. Currently, the SOM Compiler can
generate both C and C++ language bindings for a class. The C and C++ bindings will work
with a variety of commercial products. Vendors of other programming languages may also
offer SOM bindings. Check with your language vendor about possible SOM support.

The SOM run-time library

In addition to the SOM Compiler, SOM includes a run-time library. This library provides,
among other things, a set of classes, methods, and procedures used to create objects and
invoke methods on them. The library allows any programming language to use SOM
classes (classes developed using SOM) if that language can:

 Call external procedures,
 Store a pointer to a procedure and subsequently invoke that procedure, and
* Map IDL types onto the programming language’s native types.

Thus, the user of a SOM class and the implementor of a SOM class needn’t use the same
programming language, and neither is required to use an object-oriented language. The
independence of client language and implementation language also extends to subclassing:
a SOM class can be derived from other SOM classes, and the subclass may or may not be
implemented in the same language as the parent class(es). Moreover, SOM’s run-time
environment allows applications to access information about classes dynamically (at run
time).

Frameworks provided in the SOMobjects Toolkit
In addition to SOM itself (the SOM Compiler and the SOM run-time library), the
SOMobjects Developer Toolkit provides a set of frameworks (class libraries) that can be
used in developing object-oriented applications. These include Distributed SOM, the
Interface Repository Framework, the Persistence Framework, the Replication Framework,
the Emitter Framework, and the Metaclass Framework, described below.

Note: SOMobjects Base Toolkit, the core version of SOMobjects shipped with this docu-
mentation, contains only Distributed SOM. the Interface Repository, and the Metaclass
frameworks. SOMobjects manuals are available individually.

Distributed SOM
Distributed SOM (or DSOM) allows application programs to access SOM objects across
address spaces. That is, application programs can access objects in other processes, even
on a different machine. DSOM provides this transparent access to remote objects through
its Object Request Broker (ORB): the location and implementation of the object are hidden
from the client, and the client accesses the object as if were local. DSOM in the
core-capability SOMobjects Base Toolkit supports distribution of objects among processes
within a single workstation. The full-capability version of DSOM also supports distribution
across a local area network consisting of AlX systems, OS/2 systems, Windows systems,
or some mix of these systems. Future releases may support larger, enterprise-wide
networks.

Interface Repository Framework
The Interface Repository is a database, optionally created and maintained by the SOM
Compiler, that holds all the information contained in the IDL description of a class of objects.
The Interface Repository Framework consists of the 11 classes defined in the CORBA
standard for accessing the Interface Repository. Thus, the Interface Repository Framework
provides run-time access to all information contained in the IDL description of a class of
objects. Type information is available as TypeCodes — a CORBA-defined way of encoding
the complete description of any data type that can be constructed in IDL.

Introduction to the SOMobijects Toolkit 1-5

Persistence Framework
The Persistence Framework is a collection of SOM classes that provide methods for
saving objects (either in a file or in a more specialized repository) and later restoring them.
This means that the state of an object can be preserved beyond the termination of the
process that creates it. This facility is useful for constructing object-oriented databases,
spreadsheets, and so forth. The Persistence Framework includes the following features:

¢ Objects can be stored singly or in groups.
* Objects can be stored in default formats or in specially designed formats.

¢ Objects of arbitrary complexity can be saved and restored.

Replication Framework
The Replication Framework is a collection of SOM classes that allows a replica (copy) of
an object to exist in multiple address spaces, while maintaining a single-copy image. In
other words, an object can be replicated in several different processes, while logically it
behaves as a single copy. Updates to any copy are propagated immediately to all other
copies. The Replication Framework handles locking, synchronization, and update
propagation, and guarantees mutual consistency among the replicas. The Replication
Framework includes these important features:

e Good response times for both readers and writers,

Fault-tolerance against node failures and message loss,

Simple coding rules (that can be automated) for building replicated objects,

Graceful degradation under wide-area networks, and

Minimal overhead when replication is not activated.

Emitter Framework
Finally, the Emitter Framework is a collection of SOM classes that allows programmers to
write their own emitters. Emitter is a general term used to describe a back-end output
component of the SOM Compiler. Each emitter takes as input information about an
interface, generated by the SOM Compiler as it processes an IDL specification, and
produces output organized in a different format. SOM provides a set of emitters that
generate the binding files for C and C++ programming (header files and implementation
templates). In addition, users may wish to write their own special-purpose emitters. For
example, an implementor could write an emitter to produce documentation files or binding
files for programming languages other than C/C++. The Emitter Framework is separately
documented in the SOMobjects Developer Toolkit: Emitter Framework Guide and
Reference.

Metaclass Framework
Finally, the Metaclass Framework is a collection of SOM metaclasses that provide
functionality that may be useful to SOM class designers for modifying the default semantics
of method invocation and object creation. These metaclasses are described in Chapter 8,
“The Metaclass Framework.”

1-6 SOMobjects Base Toolkit User’s Guide

1.3 What’s New in SOMobjects Version 2.1

Version 2.1 of the SOMobjects Developer Toolkit provides enhanced capabilities and
improved performance for both SOM and DSOM. In addition, the Toolkit now includes
support for DirectToSOM (DTS) C++ compilers. New metaclasses in the Metaclass
Framework allow class implementors to define classes that automatically possess certain
convenience facilities. Also, TCP/IP support is available for Windows users, and OS/2 users
can choose 32-bit TCP/IP.

In particular, SOMobjects Version 2.1 offers the following additions over Version 2.0:

General enhancements

C++ programmers can use DirectToSOM (DTS) C++ compilers (available from
independent software vendors) as an alternative to the SOMobjects Toolkit’s C++
bindings. (A DTS C++ compiler uses SOM classes to implement C++ objects.) The
support provided by SOMobjects for DTS C++ consists of various enhancements to the
SOM API (useful to SOM programmers in general), and a new emitter that produces
DTS C++ header files corresponding to SOM IDL. DTS C++ programs #include these
“.hh” header files, which are emitted as described under “Generating binding files” in
Chapter 4, “SOM IDL and the SOM Compiler.”

With this release, TCP/IP support is now available for SOMobjects For Windows. Also, for
OS/2 users only, SOMobjects now supports the 32—bit TCP/IP version 2.0, which offers
greater performance over the 16-bit TCP/IP version 1.2.1. These are described in your
SOMobjects Installation/Configuration Guide.

SOMobjects enhancements

A new default process whereby SOMobijects initializes and destroys objects more
efficiently (using the somDefaultlnit and somDestruct methods). See “Initializing and
Uninitializing Objects” in Chapter 5, “Implementing Classes in SOM.”

A new kind of method, nonstatic, that is similar to a C++ nonstatic member function. It is
normally invoked using offset resolution but can use any form of SOMobjects method
resolution. See “The four kinds of SOM methods” in Chapter 5, “Implementing Classes in
SOM” and the nonstatic modifier under “Modifier statements” in Chapter 4, “SOM IDL
and the SOM Compiler.”

A new kind of data, staticdata, that is similar to C++ static data members. A staticdata
variable is not stored in an object; rather, the ClassData structure of the implementing
class contains a pointer to the variable. See the staticdata modifier under “Modifier
statements” in Chapter 4, “SOM IDL and the SOM Compiler.”

Two new modifiers, somallocate and somdeallocate, used to indicate that a
user-written procedure should be executed to allocate/deallocate memory for class
instances when the somAllocate or somDeallocate method is invoked. See these
modifiers under “Modifier statements” in Chapter 4, “SOM IDL and the SOM Compiler.”

The ability to “cast” objects. See the methods somCastObj and somResetObj.

New support for loading/unloading class libraries. (This was introduced in SOMobjects
For Windows and is now applicable on OS/2 as well.) See the SOM_ClassLibrary
macro in the SOMobjects Developer Toolkit Programmers Reference Manual.

DSOM enhancements

A new command-line tool, dsom, for managing DSOM servers (starting, restarting,
stopping, querying, and so forth). See “The dsom server manager utility” in Chapter 6,
“Distributed SOM.” In addition, a corresponding programmatic interface is provided by
methods of the new SOMDServerMgr class. See that class and its methods in the
SOMobjects Developer Toolkit Programmers Reference Manual.

A new command-line tool, somdchk, that performs environment validation. See
“Verifying the DSOM environment with somdchk” in Chapter 6, “Distributed SOM.”

Introduction to the SOMobjects Toolkit 1-7

e New SOM IDL modifiers for memory management of parameters:
memory_management = corba, caller_owns_parameters, caller_owns_resulit,
object_owns_parameters, and object_owns_result. The individual modifiers are
described under “Modifier statements” in Chapter 4, “SOM IDL and the SOM Compiler.”
See “Memory management” in Chapter 6, “Distributed SOM,” for a complete discussion
of the subject. This memory-management support also includes the new method
somdReleaseResources and the functions somdExceptionFree and
SOMD_NoORBfree, described in the SOMobjects Developer Toolkit Programmers
Reference Manual.

e A graphical user interface to the DSOM ‘regimpl’ utility on OS/2, called pregimpl. See
“Registration steps using ‘pregimpl’ or ‘wregimpl’,” in Chapter 6, “Distributed SOM.”

e Support for the CORBA constant OBJECT_NIL. In addition, the is_nil method of
SOMDODbject can now be used for local objects as well as NULL pointers.

e Support for passing self-referential structs and unions (those valid in IDL) in remote
method calls.

e Support for local/remote transparency in DSOM'’s object-destruction methods. See
“Destroying remote objects.”

e Ability for users to define customized base proxy classes. See “Customizing the default
base proxy class.”

¢ Ability for users to specify an upper limit on the number of threads that a server can
spawn, via the SOMDNUMTHREADS environment variable. See this variable under
“Preparing the environment.”

e Improved error handling and performance improvements.

e More sample programs distributed with the SOMobjects Toolkit.

Metaclass Framework

o SOMMBeforeAfter — a metaclass that enables the programming of “before/after”
metaclasses, whose instances execute a particular method before and after each
method invocation. See Chapter 8, “The Metaclass Framework,” for information about
the new Metaclass Framework. Individual metaclasses, along with related classes and
methods, are documented in the SOMobjects Developer Toolkit Programmers Reference
Manual.

e SOMMTraced — a utility metaclass to do tracing.

New restrictions and deprecated methods

While implementing the Metaclass Framework, we learned that metaclasses must be
programmed so that the capabilities they implement will be preserved when various
metaclasses are combined (using multiple inheritance) into a SOM-derived metaclass. To
assure this result, the Metaclass Framework metaclasses have been programmed using a
“Cooperative Metaclass.” However, we are not yet ready to include the Cooperative
metaclass among the officially supported features of SOMobjects.

To prevent user-defined metaclasses from interfering with the operation of the Cooperative
Metaclass and consequently with the Metaclass Framework, SOMobjects programmers are
strongly urged to observe the following restriction when programming new metaclasses:

o User-defined metaclasses can introduce new class methods and class variables, but
should not override any of the methods introduced by the SOMClass class.

SOMobijects users whose metaclass programming requirements cannot be met within the
above restrictions will be given access to the Cooperative Metaclass and its documentation.
Note, however, that metaclasses developed using the Cooperative Metaclass may require
reprogramming when an officially supported Cooperative Metaclass is later introduced.

1-8 SOMobjects Base Toolkit User’s Guide

In addition, use of a number of (public) methods introduced by SOMClass is now
deprecated because they are useful only from overridden SOMClass methods. These
methods are listed under the heading “Deprecated methods” in the documentation for
SOMClass within the SOMobjects Developer Toolkit Programmers Reference Manual, until
such time as SOMobjects is ready to officially provide a framework within which their use
will not interfere with the internal operation of SOMobjects itself.

Introduction to the SOMobjects Toolkit 1-9

1.4 Overview of this book

This book is a subset of the SOMobjects Developer Toolkit Users Guide for the
full-capability SOMobjects Developer Toolkit. The omitted chapters describe capabilities not
included with the SOMobjects Base Toolkit. Chapters that are included appear in their
entirety, as written for the full-capability SOMobjects system, except for some references to
chapters/capabilities not included in the SOMobjects Base Toolkit. Because the current
manual is a subset, references herein to the “SOMobjects Developer Toolkit” should be
interpreted as referencing capabilities of the SOMobjects Base Toolkit.

Chapter 2 contains a Tutorial with six examples that illustrate techniques for implementing
classes in SOM. All readers should cover this tutorial.

Chapter 3 describes how an application program creates instances of a SOM class, how it

invokes methods, and so on. For readers interested only in using SOM classes, rather than
building them, chapters 2 and 3 may provide all of the information they need to begin using
SOM classes.

Chapter 4 provides more comprehensive information about the SOM system itself, including
operation of the SOM run-time environment, method resolution, and inheritance. This
chapter also describes how to create language-neutral class libraries using SOM, including
explanations of valid syntax components. All class implementors will need to reference this
chapter.

Chapter 5 deals with advanced topics for customizing SOM to better suit the needs of a
particular application.

Chapter 6 describes Distributed SOM and how to use it to access objects across address
spaces, even on different machines. Chapter 6 also describes how to customize DSOM.
Note that SOMobjects Base Toolkit supports only Workstation DSOM (distribution among
processes on a single machine), whereas SOMobjects Developer Toolkit also supports
Workgroup DSOM (distribution among a network of machines).

Chapter 7 describes the Interface Repository Framework of classes supplied with the
SOMobijects Toolkit.

Chapter 8 describes the Metaclass Framework and some utility metaclasses that SOM
provides to assist users in deriving new classes with special abilities to execute “before” and
“after” operations when a method call occurs, as well as other capabilities for modifying the
default semantics of method invocation and object creation.

Chapter 9 describes the Event Management Framework, which allows grouping of all
application events and waiting on multiple events in one place. The Event Manager is used
by both DSOM and the Replication Framework (the latter is not part of the SOMobjects
Base Toolkit).

Appendix A describes service and technical support policies for the SOMobjects Toolkit,
and contains lists of the error codes and messages that can be issued by the SOM kernel
or by the included frameworks.

Appendix B contains the SOM IDL language grammar.

Appendix C describes how to subclass a “Sockets” class that facilitates inter-process
communications required by the DSOM and Event Management Frameworks.

A Glossary and a thorough Index conclude this manual.

1-10 SOMobjects Base Toolkit User’s Guide

Chapter 2. Tutorial for Implementing SOM Classes

This tutorial contains five examples showing how SOM classes can be implemented to achieve
various functionality. Obviously, for any person who wishes to become a class implementor, this
tutorial is essential. However, even for those programmers who expect only to use SOM
classes that were implemented by others, the tutorial is also necessary, as it presents several
concepts that will help clarify the process of using SOM classes.

Tutorial for Implementing SOM Classes ~ 2-1

2.1 Basic Concepts of the System Object Model (SOM)

The System Object Model (SOM), provided by the SOMobjects Developer Toolkit, is a set
of libraries, utilities, and conventions used to create binary class libraries that can be used by
application programs written in various object-oriented programming languages, such as C++
and Smalltalk, or in traditional procedural languages, such as C and Cobol. The following
paragraphs introduce some of the basic terminology used when creating classes in SOM:

An object is an OOP entity that has behavior (its methods or operations) and state (its
data values). In SOM, an object is a run-time entity with a specific set of methods and
instance variables. The methods are used by a client programmer to make the object
exhibit behavior (that is, to do something), and the instance variables are used by the
object to store its state. (The state of an object can change over time, which allows the
object’s behavior to change.) When a method is invoked on an object, the object is said to
be the receiver or target of the method call.

An object’s implementation is determined by the procedures that execute its methods,
and by the type and layout of its instance variables. The procedures and instance vari-
ables that implement an object are normally encapsulated (hidden from the caller), so a
program can use the object’'s methods without knowing anything about how those meth-
ods are implemented. Instead, a user is given access to the object’s methods through its
interface (a description of the methods in terms of the data elements required as input and
the type of value each method returns).

An interface through which an object may be manipulated is represented by an object
type. That is, by declaring a type for an object variable, a programmer specifies an
interface that can be used to access that object. SOM IDL (the SOM Interface Definition
Language) is used to define object interfaces. The interface names used in these IDL
definitions are also the type names used by programmers when typing SOM object
variables.

In SOM, as in most approaches to object-oriented programming, a class defines the
implementation of objects. That is, the implementation of any SOM object (as well as its
interface) is defined by some specific SOM class. A class definition begins with an IDL
specification of the interface to its objects, and the name of this interface is used as the
class name as well. Each object of a given class may also be called an instance of the
class, or an instantiation of the class.

Inheritance, or class derivation, is a technique for developing new classes from existing
classes. The original class is called the base class, or the parent class, or sometimes the
direct ancestorclass. The derived class is called a child class or a subclass. The primary
advantage of inheritance is that a derived class inherits all of its parent’s methods and
instance variables. Also through inheritance, a new class can override (or redefine)
methods of its parent, in order to provide enhanced functionality as needed. In addition, a
derived class can introduce new methods of its own. If a class results from several
generations of successive class derivation, that class “knows” all of its ancestors’s meth-
ods (whether overridden or not), and an object (or instance) of that class can execute any
of those methods.

SOM classes can also take advantage of multiple inheritance, which means that a new
class is jointly derived from two or more parent classes. In this case, the derived class
inherits methods from all of its parents (and all of its ancestors), giving it greatly expanded
capabilities. In the event that different parents have methods of the same name that
execute differently, SOM provides ways for avoiding conflicts.

In the SOM run time, classes are themselves objects. That is, classes have their own
methods and interfaces, and are themselves defined by other classes. For this reason, a
classis often called a class object. Likewise, the terms class methods and class variables
are used to distinguish between the methods/variables of a class object vs. those of its
instances. (Note that the type of an object is not the same as the type of its class, which
as a “class object” has its own type.)

2-2 SOMobijects Base Toolkit User’s Guide

* A class that defines the implementation of class objects is called a metaclass. Just as an
instance of a class is an object, so an instance of a metaclass is a class object. Moreover,
just as an ordinary class defines methods that its objects respond to, so a metaclass
defines methods that a class object responds to. For example, such methods might
involve operations that execute when a class (that is, a class object) is creating an
instance of itself (an object). Just as classes are derived from parent classes, so meta-
classes can be derived from parent metaclasses, in order to define new functionality for
class objects.

+ The SOM system contains three primitive classes that are the basis for all subsequent
classes:

SOMObject — the root ancestor class for all SOM classes,

SOMClass — the root ancestor class for all SOM metaclasses, and

SOMClassMgr — the class of the SOMClassMgrObiject, an object created automatically
during SOM initialization, to maintain a registry of existing classes and
to assist in dynamic class loading/unloading.

SOMClass is defined as a subclass (or child) of SOMODbject and inherits all generic object
methods; this is why instances of a metaclass are class objects (rather than simply
classes) in the SOM run time. The adjacent figure illustrates typical relationships of
classes, metaclasses, and objects in the SOM run time. (This illustration does not include
the SOMClassMgrObject.)

Typical class, metaclass, and object relationships

—

TN
/
\\
A
SOMObject‘_ ________ —P»

Parent
class
“P!!

Metaclass
HM!!

|nstance—of subclass—of

O OO

metaclass class simple object

Legend:

Tutorial for Implementing SOM Classes ~ 2-3

SOM classes are designed to be language neutral. That is, SOM classes can be implemented
in one programming language and used in programs of another language. To achieve language
neutrality, the interface for a class of objects must be defined separately from its implementa-
tion. That is, defining interface and implementation requires two completely separate steps
(plus an intervening compile), as follows:

* An interface is the information that a program must know in order to use an object of a
particular class. This interface is described in an interface definition (which is also the
class definition), using a formal language whose syntax is independent of the program-
ming language used to implement the class’s methods. For SOM classes, this is the SOM
Interface Definition Language (SOM IDL). The interface is defined in a file known as the
IDL source file (or, using its extension, this is often called the .idl file).

An interface definition is specified within the interface declaration (or interface statement)
of the .idl file, which includes:
(a) the interface name (or class name) and the name(s) of the class’s parent(s), and
(b) the names of the class’s attributes and the signatures of its new methods.
(Recall that the complete set of available methods also includes all inherited
methods.)

Each method signature includes the method name, and the type and order of its argu-
ments, as well as the type of its return value (if any). Afttributes are instance variables for
which “set” and “get” methods will automatically be defined, for use by the application
program. (By contrast, instance variables that are not attributes are hidden from the user.)

* Once the IDL source file is complete, the SOM Compileris used to analyze the .idl file and
create the implementation template file, within which the class implementation will be
defined. Before issuing the SOM Compiler command, sc (or some on Windows), the
class implementor can set an environment variable that determines which emitters (out-
put-generating programs) the SOM Compiler will call and, consequently, which program-
ming language and operating system the resulting binding files will relate to. (Alternatively,
this emitter information can be placed on the command line for sc or somc.)

In addition to the implementation template file itself, the binding files include two language-
specific header files that will be #included in the implementation template file and in
application program files. The header files define many useful SOM macros, functions,
and procedures that can be invoked from the files that include the header files.

e The implementation of a class is done by the class implementor in the implementation
template file (often called just the implementation file or the template file). As produced by
the SOM Compiler, the template file contains stub procedures for each method of the
class. These are incomplete method procedures that the class implementor uses as a
basis for implementing the class by writing the corresponding code in the programming
language of choice.

In summary, the process of implementing a SOM class includes using the SOM IDL syntax to
create an IDL source file that specifies the interface to a class of objects — that is, the methods
and attributes that a program can use to manipulate an object of that class. The SOM Compiler
is then run to produce an implementation template file and two binding (header) files that are
specific to the designated programming language and operating system. Finally, the class
implementor writes language-specific code in the template file to implement the method proce-
dures.

At this point, the next step is to write the application (or client) program(s) that use the objects
and methods of the newly implemented class. (Observe, here, that a programmer could write
an application program using a class implemented entirely by someone else.) If not done
previously, the SOM compiler is run to generate usage bindings for the new class, as appropri-
ate for the language used by the client program (which may be different from the language in
which the class was implemented). After the client program is finished, the programmer com-
piles and links it using a language-specific compiler, and then executes the program. (Notice
again, the client program can invoke methods on objects of the SOM class without knowing how
those methods are implemented.)

2-4 SOMobijects Base Toolkit User’s Guide

Development of the Tutorial examples

* Example 1 — Implementing a simple class with one method
Prints a default message when the “sayHello” method is invoked
on an object of the “Hello” class.

* Example 2 — Adding an attribute to the Hello class
Defines a “msg” attribute for the “sayHello” method to use. The
client program “sets” a message; then the “sayHello” method
“gets” the message and prints it. (There is no defined message
when an object of the “Hello” class is first created.)

e Example 3 — Overriding an inherited method
Overrides the SOMobjects method somPrintSelf so that invok-
ing this method on an object of the “Hello” class will not only
display the class name and the object’s location, but will also
include the object’'s message attribute.

« Example 4 — Initializing a SOM object
Overrides the default initialization method, somDefaultlnit, to
illustrate how an object’s instance variables can be initialized
when the object is created.

e Example 5 — Using multiple inheritance
Extends the “Hello” class to provide it with multiple inheritance
(from the “Disk” and “Printer” classes). The “Hello” interface
defines an enum and an “output” attribute that takes its value
from the enum (either “screen”, “printer”, or “disk”). The client
program “sets” the form of “output” before invoking the “sayHel-

lo” method to send a “msg” (defined as in Example 4).

Tutorial for Implementing SOM Classes

2-5

2.2 Basic Steps for Implementing SOM Classes

Implementing and using SOM classes in C or C++ involves the following steps, which are
explicitly illustrated in the examples of this tutorial:

1. Define the interface to objects of the new class (that is, the interface declaration),
by creating a .idl file.

2. Runthe SOM Compiler on the .idl file (by issuing the sc command on AlX or OS/2, or
by issuing the somec command on Windows) to produce the following binding files:

» Template implementation file
a .c file for C programmers, or
a .C file (on AIX) or a .cpp file (on OS/2 or Windows) for C++ programmers;

» Header file to be included in the implementation file
a .ih file for C programmers, or
a .xih file for C++ programmers; and

* Header file to be included in client programs that use the class
a .h file for C clients, or
a .xh file for C++ clients.

To specify whether the SOM Compiler should produce C or C++ bindings, set the
value of the SMEMIT environment variable or use the “—s” option of the sc or some
command, as described in Section 4.3, “The SOM Compiler.” By default, the SOM
Compiler produces C bindings.

3. Customize the implementation, by adding code to the template implementation file.
4. Create a client program that uses the class.

5. Compile and link the client code with the class implementation, using a C or C++
compiler.

6. Execute the client program.

The following examples illustrate appropriate syntax for defining interface declarations in a .idl
file, including designating the methods that the class’s instances will perform. In addition, the
example template implementation files contain typical code that the SOM Compiler produces.
Explanations accompanying each example discuss topics that are significant to the particular
example; full explanations of the SOM IDL syntax are contained in Chapter 4, “SOM IDL and the
SOM Compiler.” Customization of each implementation file (step 3) is illustrated in both C and
C++.

Notes: (1) The Tutorial assumes you will work through the examples in order. If you do not do
so, the code that the SOM Compiler generates from your revised .idl file may vary slightly from
what you see in the Tutorial.

(2) When the SOMobjects Toolkit is installed, a choice is made between “somcorba” and
“somstars” for the style of C bindings the SOM Compiler will generate. The Tutorial examples
use the “somcorba” style, where an interface name used as a type indicates a pointer to an
object, as required by strict CORBA bindings. Consequently, as the examples show, a “*” does
not explicitly appear for types that are pointers to objects. If your system was installed for
“somstars” C bindings, you can set the environment variable SMADDSTAR=1 or use the SOM
Compiler option “—maddstar” to request bindings that use explicit pointer stars. For more
information, see “Declaring object variables” in Chapter 3,“Using SOM Classes in Client Pro-
grams” and “Object types” in Chapter 4, “SOM IDL and the SOM Compiler.”

2-6 SOMobijects Base Toolkit User’s Guide

Example

1 — Implementing a Simple Class with One Method

Example 1 defines a class “Hello” which introduces one new method, “sayHello”. When invoked
from a client program, the “sayHello” method will print the fixed string “Hello, World!” The
example follows the six steps described in the preceding topic, “Basic Steps for Implementing
SOM Classes.”

Define the interface to class “Hello”, which inherits methods from the root class SOMObject
and introduces one new method, “sayHello”. Define these IDL specifications in the file “hel-
lo.idl”.

The “interface” statement introduces the name of a new class and any parents (base classes) it
may have (here, the root class SOMObject). The body of the interface declaration introduces
the method “sayHello.” Observe that method declarations in IDL have syntax similar to C and
C++ function prototypes:

#include <somobj.idl> //# Get the parent class definition.

interface Hello : SOMObject
/* This is a simple class that demonstrates how to define the
* interface to a new class of objects in SOM IDL.
*/
{
void sayHello();
// This method outputs the string ”“Hello, World!”.
/* On Windows, use: string sayHello () ;
* This method returns the string ”“Hello, World!”. */
}i

Note that the method “sayHello” has no (explicit) arguments and returns no value (except on
Windows, which returns a string). The characters “//” start a line comment, which finishes at the
end of the line. The characters “/*” start a block comment that finishes with “*/”. Block comments
do not nest. The two comment styles can be used interchangeably. Throw-away comments are
also permitted in a .idl file; they are ignored by the SOM Compiler. Throw-away comments start
with the characters “//#” and terminate at the end of the line.

Note: For simplicity, this IDL fragment does not include a releaseorder modifier; consequently,
the SOM Compiler will issue a warning for the method “sayHello”. For directions on using the
releaseorder modifier to remove this warning, see the topic “Modifier statements” in Chapter 4,
“SOM IDL and the SOM Compiler.” (The warning does not prohibit continued use of the .idI file.)

Run the SOM Compiler to produce binding files and an implementation template. That is, issue
the sc command on AlX or OS/2, as follows:

> sc —-s””c;h;ih” hello.idl (for C bindings on AIX or 0S/2)

> sc —-s”xc;xh;xih” hello.idl (for C++ bindings on AIX or 0S/2)
On Windows, issue the somec command (started from the Run option on the File menu):

> somc —-sc;h;ih hello.idl (for C bindings on Windows)

> somc —-sxc;xh;xih hello.idl (for C++ bindings on Windows)

When set to generate C binding files, the SOM Compiler generates the following template
implementation file, named “hello.c”. The template implementation file contains stub proce-
dures for each new method; these are procedures whose bodies are largely vacuous, to be
filled in by the implementor. (Unimportant details have been removed for this tutorial.)

Tutorial for Implementing SOM Classes ~ 2-7

Under AIX or 0OS/2:

#include <hello.ih>

/*
* This method outputs the string "Hello, World!”.
*/

SOM_Scope wvoid SOMLINK sayHello(Hello somSelf, Environment *ev)

{
/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello”, "sayHello”);

}

Under Windows:

#include <hello.ih>

/*
* This method returns the string ”"Hello, World!”.
*/

SOM_Scope string SOMLINK sayHello (Hello somSelf, Environment ¥*ev)

{
/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello”, "sayHello”);

}

The terms “SOM_Scope” and “SOMLINK” appear in the prototype for all stub procedures, but
they are defined by SOM and are not of interest to the developer. In the method procedure for
the “sayHello” method, “somSelf” is a pointer to the target object (here, an instance of the class
“Hello”) that will respond to the method. A “somSelf” parameter appears in the procedure
prototype for every method, since SOM requires every method to act on some object.

The target object is always the first parameter of a method’s procedure, although it should not
be included in the method’s IDL specification. The second parameter (which also is notincluded
in the method’s IDL specification) is the parameter (Environment *ev). This parameter can be
used by the method to return exception information if the method encounters an error. (Contrast
the prototype for the “sayHello” method in steps 1 and 2 above.)

The remaining lines of the template above are not pertinent at this point. (For those interested,
they are discussed in section 5.4 of Chapter 5, “Implementing Classes in SOM.”) The file is now
ready for customization with the C code needed to implement method “sayHello”.

When set to generate C++ binding files, the SOM Compiler generates an implementation
template file, “hello.C” (on AlX) or “hello.cpp (on OS/2 or Windows), similar to the one above.
(Chapter 5 discusses the implementation template in more detail.)

Recall that, in addition to generating a template implementation file as shown above, the SOM
Compiler also generates implementation bindings (in a header file to be included in the imple-
mentation file) and usage bindings (in a header file to be included in client programs). These
files are named “hello.ih” and “hello.h” for C bindings, and are “hello.xih” and “hello.xh” for C++
bindings. Notice that the “hello.c” file shown above includes the “hello.ih” implementation
binding file.

3) Customize the implementation, by adding code to the template implementation file.

Modify the body of the “sayHello” method procedure in the “hello.c” (or, for C++,“hello.C” on AlX,
“hello.cpp” on OS/2) implementation file so that the “sayHello” method prints “Hello, World!”:

SOM_Scope void SOMLINK sayHello (Hello somSelf, Environment *ev)

{
/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello”, "sayHello”);

printf ("Hello, World!\n”);
/* On Windows, use: return (”"Hello, World!”); */

2-8 SOMobijects Base Toolkit User’s Guide

4) Create a client program that uses the class.

Write a program “main” that creates an instance (object) of the “Hello” class and invokes the
method “sayHello” on that object.

Under AIX or OS/2:
A C programmer would write the following program in “main.c”, which uses the bindings defined
in the “hello.h” header file:

#include <hello.h>

int main(int argc, char *argv[])

{
/* Declare a variable to point to an instance of Hello */
Hello obj;

/* Create an instance of the Hello class */
obj = HelloNew();

/* Execute the ”sayHello” method */
_sayHello (obj, somGetGlobalEnvironment ());

/* Free the instance: */
_somFree (obj) ;
return (0);

}

Notice the statement obj = HelloNew (); The “hello.h” header file automatically contains
the SOM-defined macro <className>New(), which is used to create an instance of the
<className> class (here, the “Hello” class).

Also notice that, in C, a method is invoked on an object by using the form:

_<methodName> (<objectName>, <environment_arg>, <other_method_args>)

as used above in the statement _sayHello (obj, somGetGlobalEnvironment ()).As
shown in this example, the SOM-provided somGetGlobalEnvironment function can be used
to supply the (Environment *) argument of the method.

Finally, the code uses the method somFree, which SOM also provides, to free the object
created by HelloNew (). Notice that somFree does not require an (Environment *) argu-
ment. This is because the method procedures for some of the classes in the SOMobjects Toolkit
(including SOMObiject, SOMClass, and SOMClassMgr) do not have an Environment param-
eter, to ensure compatibility with the first release of SOM. The documentation for each SOM-
kernel method in the SOMobjects Developer Toolkit Programmers Reference Manualindicates
whether an Environment parameter is used.

A C++ programmer would write the following program in “main.C” (on AlX) or “main.cpp” (on
0S/2), using the bindings defined in the “hello.xh” header file:

#include <hello.xh>
int main(int argc, char *argvl[])

{

/* Declare a variable to point to an instance of Hello */
Hello *obj;

/* Create an instance of the Hello class */
obj = new Hello;

/* Execute the ”sayHello” method */
obj->sayHello (somGetGlobalEnvironment ()) ;

obj->somFree () ;
return (0);

Tutorial for Implementing SOM Classes 2-9

Notice that the only argument passed to the “sayHello” method by a C++ client program is the
Environment pointer. (Contrast this with the invocation of “sayHello” in the C client program,
above.)

Under Windows:

The subsequent “main.c” file fragment uses bindings defined in the “hello.h” and “windows.h”
header files, and contains C code illustrating the WinMain and WndProc procedures that are
pertinent to Step 4. The macro SOM_MainProgram is recommended as the first line of
executed code in each executable Windows program, such as WinMain (note: it does not work
from a DLL). SOM_MainProgram combines execution of the somMainProgram function with
scheduling of the somEnvironmentEnd function, which frees classes introduced by your
application when they are no longer needed.

#include <windows.h>
#include <hello.h>

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)
{

< variable declarations here >

SOM_MainProgram() ;
/* Registers an exit procedure to ensure cleanup upon
* normal program termination. */

< rest of WinMain here >

}

Notice that the following WndProc code handles three messages: WM_CREATE, WM_PAINT,
and WM_DESTROY. It lets the Windows default procedure handle the rest. The “Hello” object is
created in response to the Window creation message (WM_CREATE) and is freed in response to
the Window destroy message (WM_DESTROQY). The “sayHello” method’s greeting is displayed
each time the window receives a WM_PAINT message. Notice that “obj” is declared static so that
it persists between calls.

long FAR PASCAL _export WndProc (HWND hwnd, UINT message,
UINT wParam, LONG lParam)
{

HDC hdc ;
PAINTSTRUCT ps ;
RECT rect ;

char sBuf [80];
static Hello obj;

switch (message)
{
case WM_CREATE:
obj = HelloNew();
return 0;

case WM_PAINT:
hdc = BeginPaint (hwnd, &ps) ;

GetClientRect (hwnd, é&rect) ;
strcpy (sBuf, _sayHello(obj,
somGetGlobalEnvironment ())) ;
DrawText (hdc, sBuf, -1, &rect,
DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

EndPaint (hwnd, &ps) ;
return 0 ;

2-10 SOMobjects Base Toolkit User’s Guide

case WM_DESTROY:
_somFree (obj);
PostQuitMessage (0) ;
return 0 ;

}

return DefWindowProc (hwnd, message, wParam, lParam) ;

}

A C++ programmer on Windows would write a “main.cpp” file that uses the bindings defined in
the “hello.xh” and “windows.xh” header files, with corresponding WinMain and WndProc code.

5) Compile and link the client code with the class implementation.

Note: On AIX or OS/2, the environment variable SOMBASE represents the directory in which
SOM has been installed.

Under AlX, for C programmers:

> xlc -I. —-ISSOMBASE/include -o hello main.c hello.c \
-L$SSOMBASE/1ib -lsomtk

Under AlX, for C++ programmers:

> x1C -I. -I$SOMBASE/include -o hello main.C hello.C \
-L$SSOMBASE/1ib -lsomtk

Under OS/2, for C programmers:

> set LIB=%SOMBASE%\1lib;%$LIB%
> icc -I. —-I%SOMBASE%\include -Fe hello main.c hello.c \
somtk.lib

Under OS/2, for C++ programmers:

> set LIB=%SOMBASE%\lib; %LIB%
> icc -I. -I\%$SOMBASE%\include -Fe hello main.cpp hello.cpp \
somtk.lib

Under Windows, for C programmers:

> cl -AL -Zp -D_WINl6 -F 5 —-I. -I%SOMBASES%\include \
—-Fehello main.c hello.c llibcew.lib libw.lib somtk.lib

where %SOMBASE% is replaced by the directory in which SOM was installed (the default
is c:\som). In makefiles, the expression $(SOMBASE) can be used. Note that the —F option
to set the stack size is unnecessary if STACKSIZE is specified in a .def file.

Important: In this manual, compile and link commands are demonstrated for Windows using
the Visual C++ compiler. Sample Makefiles shipped with SOMobjects For Windows also show
how to build with other compilers.

Under Windows, for C++ programmers:

> cl -ALu —Zp -D_WIN16 -F 5 -I. —-I%$SOMBASE$\include \
—-Fehello main.cpp hello.cpp llibcew.lib libw.lib somtk.lib

where %SOMBASE% is replaced by the directory in which SOM was installed (the default
is c:\som). In makefiles, the expression $(SOMBASE) can be used. Note that the —F option
to set the stack size is unnecessary if STACKSIZE is specified in a .def file.

6) Execute the client program.

> hello
Hello, World!

Example 2 will extend the “Hello” class to introduce an “attribute”.

Tutorial for Implementing SOM Classes 2-11

File extensions for SOM files

¢ IDL source file:
.idl for all users

Implementation template file:

.C for C, all systems

.C for C++, on AIX

.cpp for C++, on OS/2
or Windows

Header file for implementation file:

.ih for C
Xih for C++
e Header file for program file:
.h for C
.xh for C++

2-12 SOMobijects Base Toolkit User’s Guide

Example 2 — Adding an Attribute to the Hello class

Example 1 introduced a class “Hello” which has a method “sayHello” that prints the fixed string
“Hello, World!” Example 2 extends the “Hello” class so that clients can customize the output
from the method “sayHello”.

1) Modify the interface declaration for the class definition in “hello.idl.”

Class “Hello” is extended by adding an attribute that we call “msg”. Declaring an attribute is
equivalent to defining “get” and “set” methods. For example, specifying:

attribute string msg;

is equivalent to defining the two methods:

string _get_msg();
void _set_msg(in string msg);

Thus, for convenience, an attribute can be used (rather than an instance variable) in order to
use the automatically defined “get” and “set” methods without having to write their method
procedures. The new interface specification for “Hello” that results from adding attribute “msg”
to the “Hello” class is as follows (with some comment lines omitted):

#include <somobj.idl>

interface Hello : SOMObject

{
void sayHello();

attribute string msg;
//# This is equivalent to defining the methods:
//# string _get_msg/();
//# void _set_msg(string msqg);
i

2) Re-run the SOM Compiler on the updated .idl file, as in example 1. This produces new header
files and updates the existing implementation file, if needed, to reflect changes made to the .idl
file. In this example, the implementation file is not modified by the SOM Compiler.

3) Customize the implementation.

Customize the implementation file by modifying the print statement in the “sayHello” method
procedure. This example prints the contents of the “msg” attribute (which must be initialized in
the client program) by invoking the “_get_msg” method. Notice that, because the “_get_msg”
method name begins with an underscore, the method is invoked with two leading underscores
(for C only).

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{
/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello”, "sayHello”);

printf (”“%$s\n”, _ get_msg(somSelf, ev));

/* for C++, use somSelf->_get_msg(ev); */
}

This implementation assumes that“_set_msg” has been invoked to initialize the “msg” attribute

before the “_get_msg” method is invoked by the “sayHello” method. This initialization can be
done within the client program.

Tutorial for Implementing SOM Classes 2-13

4) Update the client program.

Modify the client program so that the “_set_msg” method is invoked to initialize the “msg”
attribute before the “sayHello” method is invoked. Notice that, because the “_set_msg” method
name begins with an underscore, the C client program invokes the method with two leading
underscores.

For C programmers:

#include <hello.h>

int main(int argc, char *argv[])

{

}

Hello obj;
obj = HelloNew();

/* Set the msg text */
__set_msg(obj, somGetGlobalEnvironment (), ”“Hello World Again”);

/* Execute the ”sayHello” method */
_sayHello (obj, somGetGlobalEnvironment ());

_somFree (obj);
return (0);

For C++ programmers:

#include <hello.xh>

int main(int argc, char *argv[])

{

}

Hello *obj;
obj = new Hello;

/* Set the msg text */
obj—>_set_msg(somGetGlobalEnvironment (), ”“"Hello World Again”);

/* Execute the ”sayHello” method */
obj->sayHello (somGetGlobalEnvironment ()) ;

obj->somFree () ;
return (0);

5) Compile and link the client program, as before.
6) Execute the client program:

> hello
Hello World Again

The next example extends the “Hello” class to override (redefine) one of the methods it inherits
from its parent class, SOMObject.

Attributes vs instance variables

As an alternative to defining “msg” as an attribute, an instance variable “message” could be
introduced, with “set_msg” and “get_msg” methods defined for setting and retrieving its value.
Instance variables are declared in an implementation statement, as shown below:

interface Hello

{

string get_msg() ;
void set_msg(in string msg);

#ifdef __ _SOMIDL__ _
implementation

{
}i

string message;

#endif

}i

2-14 SOMobijects Base Toolkit User’s Guide

As demonstrated in this example, one disadvantage to using an instance variable is that the
“get_msg” and “set_msg” methods must be defined in the implementation file by the class
implementor. For attributes, by contrast, default implementations of the “get” and “set” methods
are generated automatically by the SOM Compiler in the .ih and .xih header files.

Note: For some attributes (particularly those involving structures, strings, and pointers) the
default implementation generated by the SOM Compiler for the “set” method may not be
suitable. This happens because the SOM Compiler only performs a “shallow copy,” which
typically is not useful for distributed objects with these types of attributes. In such cases, it is
possible to write your own implementations, as you do for any other method, by specifying the
“noset/noget” modifiers for the attribute. (See the subtopic “Modifier statements” in Chapter 4,
“SOM IDL and the SOM Compiler.”)

Regardless of whether you let the SOM Compiler generate your implementations or not, if
access to instance data is required, either from a subclass or a client program, then this access
should be facilitated by using an attribute. Otherwise, instance data can be defined in the
“implementation” statement as above (using the same syntax as used to declare variables in C
or C++), with appropriate methods defined to access it. For more information about “imple-
mentation” statements, see the topic “Implementation statements” in Chapter 4.

As an example where instance variables would be used (rather than attributes), consider a
class “Date” that provides a method for returning the current date. Suppose the date is repre-
sented by three instance variables — “mm?”, “dd”, and “yy”. Rather than making “mm”, “dd”, and
“yy” attributes (and allowing clients to access them directly), “Date” defines “mm”, “dd”, and “yy”
as instance variables in the “implementation” statement, and defines a method “get_date” that
converts “mm”, “dd”, and “yy” into a string of the form “mm/dd/yy”:

interface Date

{
string get_date() ;

#ifdef _ SOMIDL_
implementation
{

long mm,dd, yy;
}i
#endif
}i

To access instance variables that a class introduces from within the class implementation file,
two forms of notation are available:

somThis—>variableName

or

_variableName

For example, the implementation for “get_date” would likely

access the “mm” instance variable as somThis—>mm or _mm,
access “dd” as somThis->dd or _dd, and
access “yy”’ as somThis—>yy Of _yy.

In C++ programs, the _ variableName form is available only if the programmer first defines the
macro VARIABLE_MACROS (that is, enter #define VARIABLE_MACROS) in the implementa-
tion file prior to including the .xih file for the class.

Tutorial for Implementing SOM Classes 2-15

Example 3 — Overriding an Inherited Method

An important aspect of OOP programming is the ability of a subclass to replace an inherited
method implementation with a new implementation especially appropriate to its instances. This
is called overriding a method. Sometimes, a class may introduce methods that every descen-
dant class is expected to override. For example, SOMObiject introduces the somPrintSelf
method, and a good SOM programmer will generally override this method when implementing a
new class.

The purpose of somPrintSelf is to print a brief description of an object. The method can be
useful when debugging an application that deals with a number of objects of the same class —
assuming the class designer has overridden somPrintSelf with a message that is useful in
distinguishing different objects of the class. For example, the implementation of somPrintSelf
provided by SOMODbject simply prints the class of the object and its address in memory.
SOMClass overrides this method so that, when somPrintSelf is invoked on a class object, the
name of the class will print.

This example illustrates how somPrintSelf might be overridden for the “Hello” class. An
important identifying characteristic of “Hello” objects is the message they hold; thus, the
following steps illustrate how somPrintSelf could be overridden in “Hello” to provide this
information.

Modify the interface declaration in “hello.idl.”

To override the somPrintSelf method in “Hello”, additional information must be provided in
“hello.idl” in the form of an implementation statement, which gives extra information about the
class, its methods and attributes, and any instance variables. (The previous examples omitted
the optional “implementation” statement, because it was not needed.)

In the current example, the “implementation” statement introduces the modifiers for the “Hello”
class, as follows.

#include <somobj.idl>

interface Hello : SOMObject

{
void sayHello();

attribute string msg;

#ifdef _ SOMIDL_
implementation
{
//# Method Modifiers:
somPrintSelf: override;
// Override the inherited implementation of somPrintSelf.
bi
#endif

}i

Here, “somPrintSelf:” introduces a list of modifiers for the (inherited) somPrintSelf method in
the class “Hello”. Modifiers are like C/C++ #pragma commands and give specific implementa-
tion details to the compiler. This example uses only one modifier, “override”. Because of the
“override” modifier, when somPrintSelf is invoked on an instance of class “Hello”, Hello’s
implementation of somPrintSelf (defined in the implementation file) will be called, instead of
the implementation inherited from the parent class, SOMObiject.

The “#ifdef __SOMIDL_ _” and “#endif” are standard C and C++ preprocessor commands that
cause the “implementation” statement to be read only when using the SOM IDL compiler (and
not some other IDL compiler).

2-16 SOMobjects Base Toolkit User’s Guide

2)

Re-run the SOM Compiler on the updated .idl file, as before. The SOM Compiler extends the
existing implementation file from Example 2 to include new stub procedures as needed (in this
case, for somPrintSelf). Below is a shortened version of the C language implementation file as
updated by the SOM Compiler; C++ implementation files are similarly revised. Notice that the
code previously added to the “sayHello” method is not disturbed when the SOM Compiler
updates the implementation file.

#include <hello.ih>

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{
/* HelloData *somThis = HelloGetData (somSelf); */

HelloMethodDebug (”"Hello”, ”sayHello”);

printf ("%$s\n”, _ _get_msg(somSelf, ev));

}

SOM_Scope void SOMLINK somPrintSelf (Hello somSelf)

{
HelloData *somThis = HelloGetData (somSelf);
HelloMethodDebug ("hello”, “somPrintSelf”);

Hello_parent_SOMObject_somPrintSelf (somSelf);
}

Note that the SOM Compiler added code allowing the “Hello” class to redefine somPrintSelf.
The SOM Compiler provides a default implementation for overriding the somPrintSelf method.
This default implementation simply calls the “parent method” [the procedure that the parent
class of “Hello” (SOMObiject) uses to implement the somPrintSelf method]. This parent
method call is accomplished by the macro Hello_parent_SOMObject_somPrintSelf,
defined in “hello.ih.”

Notice that the stub procedure for overriding the somPrintSelf method does not include an
Environment parameter. This is because somPrintSelf is introduced by SOMODbject, which
does not include the Environment parameter in any of its methods (to ensure backward
compatibility). The signature for a method cannot change after it has been introduced.

Customize the implementation.

Within the new somPrintSelf method procedure, display a brief description of the object,
appropriate to “Hello” objects. Note that the parent method call is not needed, so it has been
deleted. Also, direct access to instance data introduced by the “Hello” class is not required, so
the assignment to “somThis” has been commented out (see the first line of the procedure).

SOM_Scope void SOMLINK somPrintSelf (Hello somSelf)
{
/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug (”Hello”, ”somPrintSelf”);

somPrintf ("-- a %s object at location %X with msg: %s\n”,
_somGetClassName (somSelf),
somSelf,
__get_msg(somSelf,0));

Tutorial for Implementing SOM Classes 2-17

4) Update the client program to illustrate the change (also notice the new message text):
For C programmers:

#include <hello.h>

int main(int argc, char *argv[])
{
Hello obj;
Environment *ev = somGetGlobalEnvironment () ;

obj = HelloNew();

/* Set the msg text */
__set_msg(obj, ev, "Hi There”);

/* Execute the "somPrintSelf” method */
_somPrintSelf (obj);

_somFree (obj);
return (0);

}

For C++ programmers:

#include <hello.xh>

int main (int argc, char *argv[])
{
Hello *obj;
Environment *ev = somGetGlobalEnvironment () ;

obj = new Hello;

/* Set the msg text */
__set_msg(obj, ev, "Hi There”);

/* Execute the "somPrintSelf” method */
obj->somPrintSelf ();

obj->somFree () ;
return (0);

}

5) Compile and link the client program, as before.
6) Execute the client program, which now outputs the message:

> hello
—— a Hello object at location 20062838 with msg: Hi There

2-18 SOMobijects Base Toolkit User’s Guide

Example 4 — Initializing a SOM Object

The previous example showed how to override the method somPrintSelf, introduced by
SOMObject. As mentioned in that example, somPrintSelf should generally be overridden
when implementing a new class. Another method introduced by SOMObject that should
generally be overridden is somDefaultlnit. The purpose of somDefaultlnit is to provide a
“default” initializer for the instance variables introduced by a class.

This example shows how to override somDefaultlnit to give each “Hello” object’s message an
initial value when the object is first created. To learn more about initializers than shown in this
example (including how to introduce new initializers that take arbitrary arguments, and how to
explicitly invoke initializers) read Section 5.5, “Initializing and Uninitializing Objects,” in Chapter
5, “Implementing Classes in SOM.”

The overall process of overriding somDefaultlnit is similar to that of the previous example.
First, the IDL for “Hello” is modified. In addition to an override modifier, an init modifier is used
to indicate that a stub procedure for an initialization method is desired (the stub procedures for
initializers are different from those of normal methods).

1) Modify the interface declaration in “hello.idl.”

#include <somobj.idl>

interface Hello : SOMObject

{
void sayHello();

attribute string msg;

#ifdef _ SOMIDL_

implementation

{
//# Method Modifiers:
somPrintSelf: override;
somDefaultInit: override, init;

}i

#endif

i

2) Re-run the SOM Compiler on the updated hello.idl file, as before. The SOM Compiler extends
the existing implementation file. Below is the initializer stub procedure that the SOM Compiler
adds to the C language implementation file; C++ implementation files would be similarly revised:

SOM_Scope void SOMLINK
somDefaultInit (Hello somSelf, somInitCtrl *ctrl)
{
HelloData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
HelloMethodDebug (”Hello”, "somDefaultInit”);
Hello_BReginInitializer_somDefaultInit;

Hello_Init_SOMObject_somDefaultInit (somSelf, ctrl);
/*
* local Hello initialization code added by programmer

*/

Tutorial for Implementing SOM Classes 2-19

3) Customize the implementation.

Here, the “msg” instance variable is set in the implementation template (rather than in the client
program, as before). Thus, the “msg” is defined as part of the “Hello” object’s initialization.

SOM_Scope void SOMLINK
somDefaultInit (Hello somSelf, somInitCtrl *ctrl)

{

HelloData *somThis; /* set by BeginInitializer */

somInitCtrl globalCtrl;

somBooleanVector myMask;

HelloMethodDebug (”Hello”, "somDefaultInit”);

Hello_BeginInitializer_ somDefaultInit;

Hello_Init_SOMObject_somDefaultInit (somSelf, ctrl);

/*
* local Hello initialization code added by programmer
*/

__set_msg(somSelf, ”“Initial Message”);

}

4) Update the client program to illustrate default initialization.

#include <hello.h>
main ()
{
Hello h = HelloNew () ;

/* Execute the "somPrintSelf” method */
_somPrintSelf (h);

5) Compile and link the client program, as before.
6) Execute the client program:

> hello
—-— a Hello object at 200633A8 with msg: Initial Message

2-20 SOMobijects Base Toolkit User’s Guide

Example 5 — Using Multiple Inheritance

The “Hello” class is useful for writing messages to the screen. So that clients can also write
messages to printers and disk files, this example references two additional classes: “Printer”
and “Disk”. The “Printer” class will manage messages to a printer, and the “Disk” class will
manage messages sent to files. These classes can be defined as follows:

#include <somobj.idl>

interface Printer : SOMObject
{

void stringToPrinter (in string s) ;

// This method writes a string to a printer.
}i

#include <somobj.idl>

interface Disk : SOMObject

{
void stringToDisk(in string s) ;
// This method writes a string to disk.

i

This example assumes the “Printer” and “Disk” classes are defined separately (in “print.idl” and
“disk.idl”, for example), are implemented in separate files, and are linked with the other example
code. Given the implementations of the “Printer” and “Disk” interfaces, the “Hello” class can use
them by inheriting from them, as illustrated next.

1) Modify the interface declaration in “hello.idl”.

#include <somcls.idl>
#include <disk.idl>
#include <printer.idl>

interface Hello : Disk, Printer

{
void sayHello();

attribute string msg;

enum outputTypes {screen, printer, disk};
// Declare an enumeration for the different forms of output

attribute outputTypes output;
// The current form of output

#ifdef _ SOMIDL_

implementation {
somDefaultInit: override, init;
}i
#endif //# __SOMIDL_
}i

Notice that SOMODbiject is not listed as a parent of “Hello” above, because SOMObject is a
parent of “Disk” (and of “Printer”).

The IDL specification above declares an enumeration “outputTypes” for the different forms of
output, and an attribute “output” whose value will depend on where the client wants the output of
the “sayHello” method to go.

Note: SOM IDL allows the use of structures, unions (though with a syntax different from C or
C++), enumerations, constants, and typedefs, both inside and outside the body of an interface
statement. Declarations that appear inside an interface body will be emitted in the header file

Tutorial for Implementing SOM Classes 2-21

(that is, in “hello.h” or “hello.xh”). Declarations that appear outside of an interface body do not
appear in the header file (unless required by a special #pragma directive; see the SOM
Compiler options in Chapter 4).

SOM IDL also supports all of the C and C++ preprocessor directives, including conditional
compilation, macro processing, and file inclusion.

2) Re-run the SOM Compiler on the updated .idl file.

Unfortunately, when this is done, the implementation for somDefaultlnit is not correctly up-
dated to reflect the addition of two new parents to “Hello.” This is because the implementation-
file emitter never changes the bodies of existing method procedures. As a result, method
procedures for initializer methods are not given new parent calls when the parents of a class are
changed. One way to deal with this (when the parents of a class are changed) is to temporarily
rename the method procedures for initializer methods, and then run the implementation emitter.
Once this is done, the code in the renamed methods can be merged into the new templates,
which will include all the appropriate parent method calls. When this is done here, the new
implementation for somDefaultlnit would appear as:

SOM_Scope void SOMLINK
somDefaultInit (Hello somSelf, somInitCtrl *ctrl)
{
HelloData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
HelloMethodDebug (”Hello”, "“somDefaultInit”);
Hello_BeginInitializer somDefaultInit;

Hello_Init_Disk_somDefaultInit (somSelf, ctrl);
Hello_Init_Printer somDefaultInit (somSelf, ctrl);
/*
* local Hello initialization code added by programmer
*/
__set_msg(somSelf, ”“Initial Message”);

}

3) Continue to customize the implementation file, hello.c, as follows. Notice that the “sayHello”
method (last discussed in Example 2) is now modified to allow alternate ways of outputting a

“ ”

msg”.
SOM_Scope void SOMLINK sayHello (Hello somSelf, Environment *ev)
{
/* HelloData *somThis = HelloGetData (somSelf) ; */
HelloMethodDebug (”"Hello”, ”sayHello”) ;

switch (__get_output (somSelf, ev)) {
/* for C++, use: somSelf->_get_output (ev) */
case Hello_ screen:
printf (“%$s\n”, __ get_msg(somSelf, ev));

/* for C++, use: somSelf->_get_msg(ev) */
break;
case Hello_printer:
_stringToPrinter (somSelf, ev, _ get_msg(somSelf, ev));
/* for C++, use:
* somSelf->stringToPrinter (ev, somSelf->_get_msg(ev));
*/
break;
case Hello_disk:
_stringToDisk (somSelf, ev, _ get_msg(somSelf, ev));
/* for C++, use:
* somSelf->stringToDisk (ev, somSelf->_get_msg(ev));
*/
break;

2-22 SOMobijects Base Toolkit User’s Guide

The “switch” statement invokes the appropriate method depending on the value of the “output”
attribute. Notice how the “case” statements utilize the enumeration values of “outputTypes”
declared in “hello.idl” by prefacing the enumeration names with the class name (Hello_screen,
Hello_printer, and Hello_disk).

4) Update the client program, as illustrated next.

5)

#include <hello.h>
/* for C++, use "hello.xh” and <stdio.h> */

int main(int argc, char *argv|[])
{
Hello a = HelloNew();
Environment *ev = somGetGlobalEnvironment () ;

/* Invoke "sayHello” on an object and use each output */

_sayHello(a, ev) ; /* for C++, use: a->sayHello(ev);
__set_output (a, ev, Hello_printer) ;
/* CH+: a->_set_output (ev, Hello_printer);

_sayHello(a, ev) ;
__set_output (a, ev, Hello_disk) ;

/* CH+: a->_set_output (ev, Hello_disk); */
_sayHello(a, ev) ;

_somFree(a) ; /* for C++, use: a->somFree(); */
return (0);

Compile and link the client program as before, except also include the implementation files for
the “Printer” and “Disk” classes in the compilation.

Execute the client program. Observe that the message that prints is the “msg” defined in
Example 4 as part of the somDefaultlnit initialization of the “Hello” object.

Initial Message
Initial Message — goes to a Printer
Initial Message — goes to Disk

This tutorial has described features of SOM IDL that will be useful to C and C++ programmers.
SOM IDL also provides features such as full type checking, constructs for declaring private
methods, and constructs for defining methods that receive and return pointers to structures.
Chapter 4, “SOM IDL and the SOM Compiler,” gives a complete description of the SOM IDL
syntax and also describes how to use the SOM Compiler. In addition, Chapter 5, “Implementing
Classes in SOM,” provides helpful information for completing the implementation template, for
using initializers (somDefaultlnit or user-defined initialization methods), for defining SOM
class libraries, and for customizing various aspects of SOMobjects execution.

Tutorial for Implementing SOM Classes 2-23

*/
*/

2-24 SOMobijects Base Toolkit User’s Guide

Chapter 3. Using SOM Classes in Client Programs

This chapter discusses how to use SOM classes that have already been fully implemented.
That is, these topics describe the steps that a programmer uses to instantiate an object and
invoke some method(s) on it from within an application program.

Who should read this chapter?

* Programmers who wish to use SOM classes that were originally developed by someone
else will need to know the information in this chapter. These programmers often may not
need the information from any subsequent chapters.

By contrast, class implementors who are creating their own SOM classes should continue
with Chapter 4, “SOM IDL and the SOM Compiler,” and Chapter 5, “Implementing Classes
in SOM,” for complete information on the SOM Interface Definition Language (SOM IDL)
syntax and other details of class implementation.

Programs that use a class are referred to as client programs. A client program can be written in
C,in C++, orin another language. As noted, this chapter describes how client programs can use
SOM classes (classes defined using SOM, as described in Chapter 2, “Tutorial for Implement-
ing SOM Classes,” in Chapter 4, “SOM IDL and the SOM Compiler,” and in Chapter 5,
“Implementing Classes in SOM”). Using a SOM class involves creating instances of a class,
invoking methods on objects, and so forth. All of the methods, functions, and macros described
here can also be used by class implementors within the implementation file for a class.

Note: “Using a SOM class,” as described in this chapter, does notinclude subclassing the class
in a client program. In particular, the C++ compatible SOM classes made available in the .xh
binding file cannot be subclassed in C++ to create new C++ or SOM classes.

Some of the macros and functions described here are supplied as part of SOM’s C and C++
usage bindings. These bindings are functions and macros defined in header files to be included
in client programs. The usage bindings make it more convenient for C and C++ programmers to
create and use instances of SOM classes. SOM classes can be also used without the C or C++
bindings, however. For example, users of other programming languages can use SOM classes,
and C and C++ programmers can use a SOM class without using its language bindings. The
language bindings simply offer a more convenient programmer’s interface to SOM. Vendors of
other languages may also offer SOM bindings; check with your language vendor for possible
SOM support.

To use the C or C++ bindings for a class, a client program must include a header file for the class
(using the #include preprocessor directive). For a C language client program, the file <classFi-
leStem>.h must be included. For a C++ language client program, the file <classFileStem>.xh
must be included. The SOM Compiler generates these header files from an IDL interface
definition. The header files contain definitions of the macros and functions that make up the C or
C++ bindings for the class. Whether the header files include bindings for the class’s private
methods and attributes (in addition to the public methods and attributes) depends on the IDL
interface definition available to the user, and on how the SOM Compiler was invoked when
generating bindings.

Usage binding headers automatically include any other bindings upon which they may rely.
Client programs not using the C or C++ bindings for any particular class of SOM object (for
example, a client program that does not know at compile time what classes it will be using)
should simply include the SOM-supplied bindings for SOMODbiject, provided in the header file
“somobj.h” (for C programs) or “somobj.xh” (for C++ programs).

For each task that a user of a SOM class might want to perform, this chapter shows how the task
would be accomplished by:

¢ a C programmer using the C bindings,
¢ a C++ programmer using the C++ bindings, or
 a programmer not using SOM’s C or C++ language bindings.

If neither of the first two approaches is applicable, the third approach can always be used.

Using SOM Classes in Client Programs 3-1

3.1 An Example Client Program

Following is a C program that uses the class “Hello” (as defined in the Tutorial in Chapter 2). The
“Hello” class provides one attribute, “msg”, of type string, and one method, “sayHello”. The
“sayHello” method simply displays the value of the “msg” attribute of the object on which the
method is invoked.

#include <hello.h> /* include the header file for Hello */

int main (int argc, char *argv[])
{
/* declare a variable (obj) that is a
* pointer to an instance of the Hello class: */
Hello obj;

/* create an instance of the Hello class
* and store a pointer to it in obj: */
obj = HelloNew();

/* invoke method _set_msg on obj with the argument
* "Hello World Again”. This method sets the value of
* obj’s 'msg’ attribute to the specified string.
*/
__set_msg(obj, somGetGlobalEnvironment (), ”“Hello World Again”);

/* invoke method sayHello on obj. This method prints
* the value of obj’s ’'msg’ attribute. */
_sayHello (obj, somGetGlobalEnvironment ());

return (0) ;

}

The C++ version of the foregoing client program is shown below:

#include <hello.xh> /* include the header file for Hello */

int main(int argc, char *argv[])
{
/* declare a variable (obj) that is a
* pointer to an instance of the Hello class: */
Hello *obij;

/* create an instance of the Hello class
* and store a pointer to it in obj: */
obj = new Hello;

/* invoke method _set_msg on obj with the argument

* "Hello World Again”. This method sets the value of

* obj’s ’"msg’ attribute to the specified string. */
obj->_set_msqg(somGetGlobalEnvironment (), "“Hello World Again”);

/* invoke method sayHello on obj. This method prints
* the value of obj’s ’'msg’ attribute. */

obj->sayHello (somGetGlobalEnvironment ());

return (0) ;

}

These client programs both produce the output:

Hello World Again

3-2 SOMobjects Base Toolkit User’s Guide

3.2 Using SOM Classes — the Basics

This section describes the basic information needed to use SOM classes in a client program.

Declaring object variables

To declare an object variable, the name of an object interface defined in IDL is used as the type
of the variable. The exact syntax is slightly different for C vs. C++ programmers. Specifically,

<interfaceName> obj ; in C programs or
<interfaceName> *obj; in C++ programs

declares “obj” to be a pointer to an object that has type <interfaceName>. In SOM, objects of
this type are instances of the SOM class named <interfaceName>, or of any SOM class derived
from this class. Thus, for example,

Animal obj; in C programs or
Animal *obij; in C++ programs

declares “obj” as pointer to an object of type “Animal” that can be used to reference an instance
of the SOM class “Animal” or any SOM class derived from “Animal”. Note that the type of an
object need not be the same as its class; an object of type “Animal” might not be an instance of
the “Animal” class (rather, it might be an instance of some subclass of “Animal” — the “Cat”
class, perhaps).

All SOM objects are of type SOMObject, even though they may not be instances of the
SOMObiject class. Thus, if it is not known at compile time what type of object the variable will
point to, the following declaration can be used:

SOMObject obj; in C programs or
SOMObject *obj; in C++ programs.

Because the sizes of SOM objects are not known at compile time, instances of SOM classes
must always be dynamically allocated. Thus, a variable declaration must always define a
pointer to an object.

Note: in the C usage bindings, as within an IDL specification, an interface name used as a type
implicitly indicates a pointer to an object that has that interface (this is required by the CORBA
specification). The C usage bindings for SOM classes therefore hide the pointer with a C
typedef for <interfaceName>. But this is not appropriate in the C++ usage bindings, which
define a C++ class for <interfaceName>. Thus, itis not correctin C++to use a declaration of the
form:

<interfaceName> obj ; not valid in C++ programs

Note: If a C programmer also prefers to use explicit pointers to <interfaceName> types, then the
SOM Compiler option —-maddstar can be used when the C binding files are generated, and the
explicit “*” will then be required in declarations of object variables. (This option is required for
compatibility with existing SOM OIDL code. For information on using the —-maddstar option,
see “Running the SOM Compiler” in Chapter 4, “SOM IDL and the SOM Compiler.”)

Users of other programming languages must also define object variables to be pointers to the
data structure used to represent SOM objects. The way this is done is programming-language
dependent. The header file “somtypes.h” defines the structure of SOM objects for the C
language.

Using SOM Classes in Client Programs 3-3

Creating instances of a class

For C programmers with usage bindings, SOM provides the <className>New and the
<className>Renew macros for creating instances of a class.

These macros are illustrated with the following two examples, each of which creates a single
instance of class “Hello”:

obj = HelloNew();
obj HelloRenew (buffer) ;

Using <className>New

After verifying that the <className> class object exists, the <className>New macro invokes
the somNew method on the class object. This allocates enough space for a new instance of
<className>, creates a new instance of the class, initializes this new object by invoking
somDefaultlnit on it, and then returns a pointer to it. The <className>New macro automati-
cally creates the class object for <className>, as well as its ancestor classes and metaclass, if
these objects have not already been created.

After a client program has finished using an object created using the <className>New macro,
the object should be freed by invoking the method somFree on it :

_somFree (obj);

After uninitializing the object by invoking somDestruct on it, somFree calls the class object for
storage deallocation. This is important because storage for an object created using the <class-
Name>New macro is allocated by the class of the object. Thus, only the class of the object can
know how to reclaim the object’s storage.

Using <className>Renew

After verifying that the <className> class object exists, the <className>Renew macro
invokes the somRenew method on the class object. <className>Renew is only used when
the space for the object has been allocated previously. (Perhaps the space holds an old,
uninitialized object that is not needed anymore.) This macro converts the given space into a
new, initialized instance of <className> and returns a pointer to it. The programmer is
responsible for ensuring that the argument of <className>Renew points to a block of storage
large enough to hold an instance of class <className>. The SOM method somGetinstance-
Size can be invoked on the class to determine the amount of memory required. Like <class-
Name>New, the <className>Renew macro automatically creates any required class objects
that have not already been created.

Hint: When creating a large number of class instances, it may be more efficient to allocate at
once enough memory to hold all the instances, and then invoke <className>Renew once for
each object to be created, rather than performing separate memory allocations.

Using <className>NewClass

The C and C++ usage bindings for a SOM class also provide static linkage to a <class-
Name>NewClass function that can be used to create the class object. This can be useful if the
class object is needed before its instances are created.

3-4 SOMobjects Base Toolkit User’s Guide

For example, the following C code uses the function HelloNewClass to create the “Hello” class
object. The arguments to this function are defined by the usage bindings, and indicate the
version of the class implementation that is assumed by the bindings. (For more detail on
creation of classes, see the later topic, “Creating a class object.”) Once the class object has
been created, the example invokes the method somGetlnstanceSize on this class to deter-
mine the size of a “Hello” object, uses SOMMalloc to allocate storage, and then uses the
HelloRenew macro to create ten instances of the “Hello” class:

#include <hello.h>

main ()

{

SOMClass helloCls; /* A pointer for the Hello class object */

Hello objA[10]; /* an array of Hello instances */
unsigned char *buffer;
int 1i;

int size;

/* create the Hello class object: */
helloCls = HelloNewClass (Hello_MajorVersion, Hello_MinorVersion);

/* get the amount of space needed for a Hello instance:

* (somGetInstanceSize is a method provided by SOM.) */
size = _somGetInstanceSize (helloCls);
size = ((size+3)/4)*4; /* round up to doubleword multiple */

/* allocate the total space needed for ten instances: */
buffer = SOMMalloc (10*size);

/* convert the space into ten separate Hello instances: */
for (i=0; 1i<10; i++)
objA[i] = HelloRenew (buffer+i*size);

/* Uninitialize the objects and free them */
for (i=0; i<10; i++)
_somDestruct (objA[i],0,0);
SOMF'ree (buffer);
}

When an object created with the <className>Renew macro is no longer needed, its storage
must be freed using the dual to whatever method was originally used to allocate the storage.
Two method pairs are typical:

e For example, if an object was originally initialized using the <className>New macro,
then, as discussed previously, the client should use the somFree method on it.

* On the other hand, if the program uses the SOMMalloc function to allocate memory, as
illustrated in the example above, then the SOMFree function must be called to free the
objects’ storage (because SOMFree is the dual to SOMMalloc). Before this is done,
however, the objects in the region to be freed should be deinitialized by invoking the
somDestruct method on them. This allows each object to free any memory that it may
have been allocated without the programmer’s knowledge. (The somFree method also
calls the somDestruct method.)

Note: In the somDestruct method call above, the first zero indicates that memory should
not be freed by the class of the object (that is, the programmer will do it explicitly). The
second zero indicates that the class of the object is responsible for overall control of object
uninitialization. For further discussion, see Section 5.5, “Initializing and Uninitializing
Objects,” in Chapter 5, “Implementing Classes in SOM.”

Using SOM Classes in Client Programs 3-5

For C.+ programmers with usage bindings, instances of a class <className> can be
created with a new operator provided by the usage bindings of each SOM class. The new
operator automatically creates the class object for <className>, as well as its ancestor
classes and metaclass, if they do not yet exist. After verifying the existence of the desired class
object, the new operator then invokes the somNewNolnit method on the class. This allocates
memory and creates a new instance of the class, but it does not initialize the new object.

Initialization of the new object is then performed using one of the C++ constructors defined by
the usage bindings. (For further discussion, see Section 5.5, “Initializing and Uninitializing
Objects,” in Chapter 5, “Implementing Classes in SOM.”) Two variations of the new operator
require no arguments. When either is used, the C++ usage bindings provide a default construc-
tor that invokes the somDefaultInit method on the new object. Thus, a new object initialized by
somDefaultlnit would be created using either of the forms:

new <className>
new <className>()
For example:

obj = new Helloj;
objl = new Hello();

SOM objects created using the new operator should be freed using the delete operator, just as
for normal C++ objects:

delete obj;

When previously allocated space will be used to hold a new object, C++ programmers should
use the somRenew method, described below. C++ bindings do not provide a macro for this
purpose.

somNew and somRenew: C and C++ programmers, as well as programmers using other
languages, can create instances of a class using the SOM methods somNew and somRenew,
invoked on the class object. As discussed and illustrated above for the C bindings, the class
object must first be created using the <className>NewClass procedure (or, perhaps, using
the somFindClass method — see the section “Using class objects” later in this chapter).

The somNew method invoked on the class object creates a new instance of the class, initializes
the object using somDefaultlnit, and then returns a pointer to the new object. For instance, the
following C example creates a new object of the “Hello” class.

#include <hello.h>
main ()

{
SOMClass helloCls; /* a pointer to the Hello class */
Hello obj; /* a pointer to a Hello instance */

/* create the Hello class */

helloCls = HelloNewClass (Hello_MajorVersion, Hello_MinorVersion);
obj = _somNew (helloCls); /* create the Hello instance */

An object created using the somNew method should be freed by invoking the somFree method
on it after the client program is finished using the object.

3-6 SOMobjects Base Toolkit User’s Guide

The somRenew method invoked on the class object creates a new instance of a class using the
given space, rather than allocating new space for the object. The method converts the given
space into an instance of the class, initializes the new object using somDefaultlnit, and then
returns a pointer to the new object. The argument to somRenew must point to a block of
storage large enough to hold the new instance. The method somGetinstanceSize can be used
to determine the amount of memory required. For example, the following C++ code creates ten
instances of the “Hello” class:

#include <hello.xh>
#include <somcls.xh>
main ()
{
SOMClass *helloCls; // a pointer to the Hello class

Hello *objA[10]; // an array of Hello instance pointers
unsigned char *buffer;
int i;

int size;

// create the Hello class object
helloCls = HelloNewClass (Hello_MajorVersion, Hello_MinorVersion);

// get the amount of space needed for a Hello instance:
size = helloCls->somGetInstanceSize();
size = ((size+3)/4)*4; // round up to doubleword multiple

// allocate the total space needed for ten instances
buffer = SOMMalloc (10*size);

// convert the space into ten separate Hello objects
for (i=0; i<10; i++)
objA[i] = helloCls->somRenew (buffer+i*size);

// Uninitialize the objects and free them

for (i=0; 1i<10; i++)
objA[i]->somDestruct (0,0);

SOMF'ree (buffer);

}

The somNew and somRenew methods are useful for creating instances of a class when the
header file for the class is not included in the client program at compile time. (The name of the
class might be specified by user input, for example.) However, the <className>New macro
(for C) and the new operator (for C++) can only be used for classes whose header file is included
in the client program at compile time.

Objects created using the somRenew method should be freed by the client program that
allocated it, using the dual to whatever allocation approach was initially used. If the somFree
method is not appropriate (because the somNew method was not initially used), then, before
memory is freed, the object should be explicitly deinitialized by invoking the somDestruct
method on it. (The somFree method calls the somDestruct method. Refer to the previous C
example for Renew for an explanation of the arguments to somDestruct.)

Invoking methods on objects
This topic describes the general way to invoke methods in C/C++ and in other languages, and
then presents subtopics for more specialized situations.

Making typical method calls
For C programmers with usage bindings: To invoke a method in C, use the macro:

_<methodName> (receiver, args)

Using SOM Classes in Client Programs 3-7

(thatis, an underscore followed by the method name). Arguments to the macro are the receiver
of the method followed by all of the arguments to the method. For example:

_foo(obj, somGetGlobalEnvironment (), x, V);

This invokes method “foo” on “obj” (the remaining arguments are arguments to the method
“foo”). This expression can be used anywhere that a standard function call can be used in C.

Required arguments

In C, calls to methods defined using IDL require at least two arguments — a pointer to the
receiving object (the object responding to the method) and a value of type (Environment *).
The Environment data structure is specified by CORBA, and is used to pass environmental
information between a caller and a called method. For example, it is used to return exceptions.
(For more information on how to supply and use the Environment structure, see the section
entitled “Exceptions and error handling” later in this chapter.)

In the IDL definition of a method, by contrast, the receiver and the Environment pointer are not
listed as parameters to the method. (Unlike the receiver, the Environment pointer is consid-
ered a method parameter, even though itis never explicitly specified in IDL. For this reason, itis
called an implicit method parameter.) For example, if a method is defined in a .idl file with two
parameters, as in:

int foo (in char ¢, in float f);

then, with the C usage bindings, the method would be invoked with four arguments, as in:

intvar = _foo(obj, somGetGlobalEnvironment (), x, Vy);

where “obj” is the object responding to the method and “x” and “y” are the arguments corre-
sponding to “c” and “f”, above.

If the IDL specification of the method includes a context specification, then the method has an
additional (implicit) context parameter. Thus, when invoking the method, this argument must
follow immediately after the Environment pointer argument. (None of the SOM-supplied
methods require context arguments.) The Environment and context method parameters are
prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidl
modifier, then the (Environment *) and context arguments should not be supplied when
invoking the method. That is, the receiver of the method call is followed immediately by the
arguments to the method (if any). Some of the classes supplied in the SOMobjects Toolkit
(including SOMObject, SOMClass, and SOMClassMgr) are defined in this way, to ensure
compatibility with the previous release of SOM. The SOMobjects Developer Toolkit Program-
mers Reference Manual specifies for each method whether these arguments are used.

If you use a C expression to compute the first argument to a method call (the receiver), you
must use an expression without side effects, because the first argument is evaluated twice by
the _<methodName> macro expansion. In particular, a somNew method call or a macro call of
<className>New can not be used as the first argument to a C method call, because doing so
would create two new class instances rather than one.

Following the initial, required arguments to a method (the receiving object, the Environment, if
any, and the context, if any), you enter any additional arguments required by that method, as
specified in IDL. For a discussion of how IDL in/out/inout argument types map to C/C++ data
types, see the topic “Parameter list” in Chapter 4, “SOM IDL and the SOM Compiler.”

Short form vs long form

If a client program uses the bindings for two different classes that introduce or inherit two
different methods of the same name, then the _<methodName> macro described above (called
the short form) will not be provided by the bindings, because the macro would be ambiguous in
that circumstance. The following long form macro, however, is always provided by the usage
bindings for each class that supports the method:

<className>_<methodName> (receiver, args)

3-8 SOMobjects Base Toolkit User’s Guide

For example, method “foo” supported by class “Bar” can be invoked as:

Bar_foo (obj, somGetGlobalEnvironment (), x, V) (in C)

where “obj” has type “Bar” and “x” and “y” are the arguments to method “foo”.

In most cases (where there is no ambiguity, and where the method is not a va_list method, as
described in the subsequent subtopic “Using ‘va_list’ methods”), a C programmer may use
either the short or the long form of a method invocation macro interchangeably. However, only
the long form complies with the CORBA standard for C usage bindings. If you wish to write code
that can be easily ported to other vendor platforms that support the CORBA standard, use the
long form exclusively. The long form is always available for every method that a class supports.
The short form is provided both as a programming convenience and for source code compatibil-
ity with release 1 of SOM.

In order to use the long form, a programmer will usually know what type an object is expected to
have. If this is not known, but the different methods have the same signature, the method can be
invoked using hame-lookup resolution, as described in a following subtopic of this section.

For C++ programmers with usage bindings: To invoke a method, use the standard C++ form
shown below:

obj—><methodName> (args)

where args are the arguments to the method. For instance, the following example invokes
method “foo” on “obj”:

obj->foo (somGetGlobalEnvironment (), X, V)

Required arguments

All methods introduced by classes declared using IDL (except those having the SOM IDL
callstyle=oidl modifier) have at least one parameter — a value of type (Environment *). The
Environment data structure is used to pass environmental information between a caller and a
called method. For example, it is used to return exceptions. For more information on how to
supply and use the Environment structure, see the section entitled “Exceptions and error
handling” later in this chapter.

The Environment pointer is an implicit parameter. That is, in the IDL definition of a method, the
Environment pointer is not explicitly listed as a parameter to the method. For example, if a
method is defined in IDL with two explicit parameters, as in:

int foo (in char c¢, in float f);

then the method would be invoked from C++ bindings with three arguments, as in:

intvar = obj->foo (somGetGlobalEnvironment (), x, Vy);

where “obj” is the object responding to the method and “x” and “y” are the arguments corre-
sponding to “c” and “f”, above.

If the IDL specification of the method includes a context specification, then the method has a
second implicit parameter, of type context, and the method must be invoked with an additional
context argument. This argument must follow immediately after the Environment pointer
argument. (No SOM-supplied methods require context arguments.) The Environment and
context method parameters are prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidl
modifier, then the (Environment *) and context arguments should not be supplied when the
method is invoked. Some of the classes supplied in the SOMobjects Toolkit (including SOMOb-
ject, SOMClass, and SOMClassMgr) are defined in this way, to ensure compatibility with the
previous release of SOM. The SOMobjects Developer Toolkit Programmers Reference Manual
specifies for each method whether these arguments are used.

Following the initial, required arguments to a method (the receiving object, the Environment, if
any, and the context, if any), you enter any additional arguments required by that method, as
specified in IDL. For a discussion of how IDL in/out/inout argument types map to C/C++ data
types, see the topic “Parameter list” in Chapter 4, “SOM IDL and the SOM Compiler.”

Using SOM Classes in Client Programs 3-9

For non-C/C++ programmers: To invoke a static method (that is, a method declared when
defining an OIDL or IDL object interface) without using the C or C++ usage bindings, a program-
mer can use the somResolve procedure. The somResolve procedure takes as arguments
a pointer to the object on which the method is to be invoked and a method token for the desired
method. It returns a pointer to the method’s procedure (or raises a fatal error if the object does
not support the method). Depending on the language and system, it may be necessary to cast
this procedure pointer to the appropriate type; the way this is done is language-specific.

The method is then invoked by calling the procedure returned by somResolve, passing the
method’s receiver, the Environment pointer (if necessary), the context argument (if neces-
sary) and the remainder of the method’s arguments, if any. Note that the means for calling a
procedure, given a pointer returned by somResolve, is language-specific. (See the section
above for C programmers. The arguments to a method procedure are the same as the argu-
ments passed using the long form of the C-language method-invocation macro for that meth-
od.)

Using somResolve requires the programmer to know where to find the method token for the
desired method. Method tokens are available from class objects that support the method (via
the method somGetMethodToken), or from a global data structure, called the ClassData
structure, corresponding to the class that introduces the method. In C and C++ programs with
access to the definitions for ClassData structures provided by usage bindings, the method
token for method methodName introduced by class className may be accessed by the
following expression:

<className>ClassData.<methodName>

For example, the method token for method “sayHello” introduced by class “Hello” is stored at
location HelloClassData.sayHello, for Cand C++programmers. The way method tokens
are accessed in other languages is language-specific.

As an example of using offset resolution to invoke methods from a programming language
other than C/C++, one would do the following to create an instance of a SOM Class X in
Smalltalk:

1. Initialize the SOM run-time environment, if it has not previously been initialized, using
the somEnvironmentNew function.

2. If the class object for class X has not yet been created, use somResolve with
arguments SOMClassMgrObject (returned by somEnvironmentNew in step 1)
and the method token for the somFindClass method, to obtain a method procedure
pointer for the somFindClass method. Use the method procedure for
somFindClass to create the class object for class X: Call the procedure with
arguments SOMClassMgrObject, the result of calling the somldFromString
function with argument “X”, and the major and minor version numbers for class X (or
zero). The procedure returns the class object for class X.

3. Use somResolve with arguments representing the class object for X (returned by
somFindClass in step 2) and the method token for the somNew method, to obtain a
method procedure pointer for method somNew. (The somNew method is used to
create instances of class X.)

4. Call the method procedure for somNew (using the method procedure pointer
obtained in step 3) with the class object for X (returned by somFindClass in step 3)
as the argument. The procedure returns a new instance of class X.

In addition to somResolve, SOM also supplies the somClassResolve procedure. Instead of
an object, the somClassResolve procedure takes a class as its first argument, and then
selects a method procedure from the instance method table of the passed class. (The somRe-
solve procedure, by contrast, selects a method procedure from the instance method table of
the class of which the passed object is an instance.) The somClassResolve procedure
therefore supports casted method resolution. See the SOMobjects Developer Toolkit Program-
mers Reference Manual for more information on somResolve and somClassResolve.

3-10 SOMobjects Base Toolkit User’s Guide

If the programmer does not know at compile time which class introduces the method to be
invoked, or if the programmer cannot directly access method tokens, then the procedure
somResolveByName can be used to obtain a method procedure using name-lookup resolu-
tion, as described in the next section.

If the signature of the method to be invoked is not known at compile time, but can be discovered
at run time, use somResolve or somResolveByName to get a pointer to the somDispatch
method procedure, then use it to invoke the specific method, as described below under “Method
name or signature not known at compile time.”

Accessing attributes
In addition to methods, SOM objects can also have attributes. An attribute is an IDL shorthand
for declaring methods, and does not necessarily indicate the presence of any particular
instance data in an object of that type. Attribute methods are called “get” and “set” methods. For
example, if a class “Hello” declares an attribute called “msg”, then object variables of type
“Hello” will support the methods _get_msg and _set_msg to access or set the value of the
“msg” attribute. (Attributes that are declared as “readonly” have no “set” method, however.)

The “get” and “set” methods are invoked in the same way as other methods. For example, given
class “Hello” with attribute “msg” of type string, the following code segments set and get the
value of the “msg” attribute:

For C:

#include <hello.h>
Hello obj;
Environment *ev = somGetGlobalEnvironment () ;

obj = HelloNew();
__set_msg(obj, ev, "Good Morning”);/*note:two leading underscores */
printf (“%$s\n”, __get_msg(obj, ev));

For C++:

#include <hello.xh>

#include <stdio.h>

Hello *obj;

Environment *ev = somGetGlobalEnvironment () ;

obj = new Hello;
obj->_set_msg(ev, "Good Morning”);
printf ("%$s\n”, obj->_get_msg(ev));

Attributes available with each class, if any, are described in the documentation of the class itself
in the SOMobjects Developer Toolkit Programmers Reference Manual.

Using ‘va_list’ methods
SOM supports methods whose final argument is a va_list. A va_list is a datatype whose
representation depends on the operating system platform. On AlIX, OS/2 and Windows, a
va_listis simply a pointer to a block of memory that contains a number of arguments, sequen-
tially laid out in memory. In the future, SOMobjects may provide special facilities for creating a
va_list, but on the above systems the C/C++ va_arg macro can be used for this purpose. This is
illustrated below.

As a convenience, methods whose final argument is a va_list, such as:

void setMany (in short start, in short numArgs, in va_list ap);

can be invoked from C and C++ by specifying a variable number of arguments, as follows:

For C:
_setMany (aVector, somGetGlobalEnvironment(), 2, 4, 20, 12, 32, 41);

Using SOM Classes in Client Programs 3-11

For C++:

aVector->setMany (somGetGlobalEnvironment (), 2, 4, 20, 12, 32, 41);

C programmers must be aware that the short form of the invocation macro used above to pass a
variable number of arguments to a va_list method is only available in the absence of ambiguity.
The long-form macro (which is always available) requires an explicit va_list argument, as
described next.

Note: As mentioned above, the short form may not be available due to ambiguity in the
bindings. If a variable-argument interface is desired in such cases, however, you can inspect
the usage bindings to find the short form expansion and make use of this directly.

As an alternative to the preceding example, both C and C++ programmers can use an explicit
va_list argument, as suggested by the method definition. That is, to use a va_list argument, a
method must be invoked as <className>_<methodName>, where <className> is the name
of a class that supports the method.

For example, assume that class “Vector” supports the “setMany” method above. The following
code first constructs a variable of type va_list, uses the va_arg macro to store the arguments to
“setMany” in the va_list, and then invokes the “setMany” method with this variable:

For C:

va_list start_ap, ap;
Vector aVector = VectorNew();

start_ap = ap = (va_list) SOMMalloc (4 * sizeof (long));
va_arg(ap, long) = 20;
va_arg(ap, long) = 12;
va_arg(ap, long) = 32;
va_arg(ap, long) = 41;

Vector_setMany (aVector, somGetGlobalEnvironment (), 2, 4, start_ap);

For C++:

va_list start_ap, ap;

Vector *aVector = new Vector;

start_ap = ap = (va_list) SOMMalloc (4 * sizeof (long));
va_arg(ap, long) = 20;

va_arg(ap, long) = 12;

va_arg (ap, long) = 32;

va_arg(ap, long) = 41;

aVector—->Vector_setMany (somGetGlobalEnvironment (), 2, 4, start_ap);

Using name-lookup method resolution

For C/C++ programmers: Offset resolution is the most efficient way to select the method
procedure appropriate to a given method call. Client programs can, however, invoke a method
using “name-lookup” resolution instead of offset resolution. The C and C++ bindings for method
invocation use offset resolution by default, but methods defined with the namelookup SOM
IDL modifier result in C bindings in which the short form invocation macro uses name-lookup
resolution instead. Also, for both C and C++ bindings, a special lookup_<methodName>macro
is defined.

Name-lookup resolution is appropriate in the case where a programmer knows at compile time
which arguments will be expected by a method (that is, its signature), but does not know the
type of the object on which the method will be invoked. For example, name-lookup resolution
can be used when two different classes introduce different methods of the same name and
signature, and itis not known which method should be invoked (because the type of the object is
not known at compile time).

3-12 SOMobjects Base Toolkit User’s Guide

Name-lookup resolution is also used to invoke dynamic methods (that is, methods that have
been added to a class’s interface at run time rather than being specified in the class’s IDL
specification). For more information on name-lookup method resolution, see the topic “Method
Resolution” in Chapter 5, “Implementing Classes in SOM.”

For C: To invoke a method using name-lookup resolution, when using the C bindings for a
method that has been implemented with the namelookup modifier, use either of the following
macros:

_<methodName> (receiver, args)
lookup_<methodName> (receiver, args)

Thus, the short-form method invocation macro results in name-lookup resolution (rather than
offset resolution), when the method has been defined as a namelookup method. (The long
form of the macro for offset resolution is still available in the C usage bindings.) If the method
takes a variable number of arguments, then the first form shown above is used when supplying
a variable number of arguments, and the second form is used when supplying a va_list
argument in place of the variable number of arguments.

For C++: To invoke a method using name-lookup resolution, when using the C++ bindings for a
method that has been defined with the hamelookup modifier, use either of the following
macros:

lookup_<methodName> (receiver, args)
<className>_lookup_<methodName> (receiver, args)

If the method takes a variable number of arguments, then the first form shown above is used
when supplying a variable number of arguments, and the second form is used when supplying a
va_list argument in place of the variable number of arguments. Note that the offset-resolution
forms for invoking methods using the C++bindings are also still available, even if the method has
been defined as a namelookup method.

For C/C++: To invoke a method using name-lookup resolution, when the method has not been
defined as a hamelookup method:

¢ Use the somResolveByName procedure (described in the following section), or any of
the methods somLookupMethod, somFindMethod or somFindMethodOk to obtain a
pointer to the procedure that implements the desired method.

» Then, invoke the desired method by calling that procedure, passing the method’s intended
receiver, the Environment pointer (if needed), the context argument (if needed), and the
remainder of the method’s arguments, if any.

The somLookupMethod, somFindMethod and somFindMethodOK methods are invoked
on a class object (the class of the method receiver should be used), and take as an argument
the somld for the desired method (which can be obtained from the method’s name using the
somldFromString function). For more information on these methods, see the SOMobjects
Developer Toolkit Programmers Reference Manual.

Important Note: SOM provides many ways for a SOM user to acquire a pointer to a method
procedure. Once this is done, it becomes the user’s responsibility to make appropriate use of
this procedure.

« First, the procedure should only be used on objects for which this is appropriate. Other-
wise, run-time errors are likely to result.

e Second, when the procedure is used, it is essential that the compiler be given correct
information concerning the signature of the method and the linkage required by the
method. (On many systems, there are different ways to pass method arguments, and
linkage information tells a compiler how to pass the arguments indicated by a method'’s
signature).

Using SOM Classes in Client Programs ~ 3-13

SOM method procedures on OS/2 must be called with “system” linkage. On Windows, method
procedures use the C linkage convention. On AlX, there is only one linkage convention for
procedure calls. While C and C++ provide standard ways to indicate a method signature, the
way to indicate linkage information depends on the specific compiler and system. For each
method declared using OIDL or IDL, the C and C++ usage bindings therefore use condition-
al macros and a typedef to name a type that has the correct linkage convention. This type
name can then be used by programmers with access to the usage bindings for the class
that introduces the method whose procedure pointer is used. The type is named
somTD_<className>_<methodName>. This is illustrated in the following example, and fur-
ther details are provided in the section below, entitled “Obtaining a method’s procedure pointer.”

A name-lookup example

The following example shows the use of name-lookup by a SOM client programmer. Name-
lookup resolution is appropriate when a programmer knows that an object will respond to a
method of some given name, but does not know enough about the type of the object to use
offset method resolution. How can this happen? It normally happens when a programmer wants
to write generic code, using methods of the same name and signature that are applicable to
different classes of objects, and yet these classes have no common ancestor that introduces
the method. This can easily occur in single-inheritance systems (such as Smalltalk and SOM
release 1) and can also happen in multiple-inheritance systems such as SOM release 2 —
when class hierarchies designed by different people are brought together for clients’ use.

If multiple inheritance is available, it is always possible to create a common class ancestor into
which methods of this kind can be migrated. A refactoring of this kind often implements a
semantically pleasing generalization that unifies common features of two previously unrelated
class hierarchies. This step is most practical, however, when it does not require the redefinition
or recompilation of current applications that use offset resolution. SOM is unique in that it allows
this.

However, such refactoring must redefine the classes that originally introduced the common
methods (so the methods can be inherited from the new “unifying” class instead). A client
programmer who simply wants to create an application may not control the implementations of
the classes. Thus, the use of name-lookup method resolution seems the best alternative for
programmers who do not want to define new classes, but simply to make use of available ones.

For example, assume the existence of two different SOM classes, “classX” and “classY”,
whose only common ancestor is SOMObject, and who both introduce a method named
“reduce” that accepts a string as an argument and returns a long. We assume that the classes
were not designed in conjunction with each other. As a result, it is unlikely that the “reduce”
method was defined with a namelookup modifier. The following figure illustrates the class
hierarchy for this example.

3-14 SOMobjects Base Toolkit User’s Guide

7 N

SOMObject

D ——
Denotes “is a subclass of”

Following is a C++ generic procedure that uses name-lookup method resolution to invoke the
“reduce” method on its argument, which may be either of type “classX” or “classY”. Note that
there is no reason to include classY’s usage bindings, since the typedef provided for the
“reduce” method procedure in “classX” is sufficient for invoking the method procedure, indepen-
dently of whether the target object is of type “classX” or “classY”.

#include <classX.xh> // use classX’s method proc typedef

// this procedure can be invoked on a target of type
// classX or classY.

long generic_reducel (SOMObject *target, string arg)
{

somTD_classX_reduce reduceProc = (somTD_classX_reduce)
somResolveByName (target, ”“reduce”);
return reduceProc (target, arqg);

On the other hand, if the classes were designed in conjunction with each other, and the class
designer felt that programmers might want to write generic code appropriate to either class of
object, the namelookup modifier might have been used. This is a possibility, even with multiple
inheritance. However, it is much more likely that the class designer would use multiple inheri-
tance to introduce the “reduce” method in a separate class, and then use this other class as a
parent for both “classX” and “classY” (thereby allowing the use of offset resolution).

In any case, if the “reduce” method in “classX” were defined as a hamelookup method, the
following code would be appropriate. Note that the name-lookup support provided by “classX”
usage bindings is still appropriate for use on targets that do not have type “classX”. As a result,
the “reduce” method introduced by “classY” need not have been defined as a namelookup
method.

Using SOM Classes in Client Programs ~ 3-15

#include <classX.xh> // use classX’s name—lookup support

// this procedure can be invoked on a target of type
// classX or classY.

long generic_reduce2 (SOMObject *target, string argqg)
{

return lookup_reduce (target, arg);
}

For non-C/C++ programmers: Name-lookup resolution is useful for non-C/C++ programmers
when the type of an object on which a method must be invoked is not known at compile time
or when method tokens cannot be directly accessed by the programmer. To invoke a method
using name-lookup resolution when not using the C or C++ usage bindings, use the somResol-
veByName procedure to acquire a procedure pointer. How the programmer indicates the
method arguments and the linkage convention in this case is compiler specific.

The somResolveByName procedure takes as arguments a pointer to the object on which the
method is to be invoked and the name of the method, as a string. It returns a pointer to the
method’s procedure (or NULL if the method is not supported by the object). The method can
then be invoked by calling the method procedure, passing the method’s receiver, the Environ-
ment pointer (if necessary), the context argument (if necessary), and the rest of the method’s
arguments, if any. (See the section above for C programmers; the arguments to a method
procedure are the same as the arguments passed to the long-form C-language method-invoca-
tion macro for that method.)

As an example of invoking methods using name-lookup resolution using the procedure somRe-
solveByName, the following steps are used to create an instance of a SOM Class X in
Smalltalk:

1. Initialize the SOM run-time environment (if it is not already initialized) using the
somEnvironmentNew function.

2. If the class object for class X has not yet been created, use somResolveByName
with the arguments SOMClassMgrObject (returned by somEnvironmentNew in
step 1) and the string “somFindClass”, to obtain a method procedure pointer for
the somFindClass method. Use the method procedure for somFindClass to
create the class object for class X: Call the method procedure with these four
arguments: SOMClassMgrObject; the variable holding class X's somld (the result
of calling the somldFromString function with argument “X”); and the major and
minor version numbers for class X (or zero). The resultis the class object for class X.

3. Use somResolveByName with arguments the class object for X (returned by
somFindClass in step 2) and the string “somNew”, to obtain a method procedure
pointer for method somNew. (This somNew method is used to create instances of a
class.)

4. Call the method procedure for somNew (using the method procedure pointer
obtained in step 3) with the class object for X (returned by somFindClass in step 3)
as the argument. The result is a new instance of class X. How the programmer
indicates the method arguments and the linkage convention is compiler-specific.

Obtaining a method’s procedure pointer

Method resolution is the process of obtaining a pointer to the procedure that implements a
particular method for a particular object at run time. The method is then invoked subsequently
by calling that procedure, passing the method’s intended receiver, the Environment pointer (if
needed), the context argument (if needed), and the method’s other arguments, if any. C and
C++ programmers may wish to obtain a pointer to a method’s procedure for efficient repeated
invocations.

3-16 SOMobjects Base Toolkit User’s Guide

Obtaining a pointer to a method’s procedure is achieved in one of two ways, depending on
whether the method is to be resolved using offset resolution or name-lookup resolution.
Obtaining a method’s procedure pointer via offset resolution is faster, but it requires that the
name of the class that introduces the method and the name of the method be known at compile
time. It also requires that the method be defined as part of that class’s interface in the IDL
specification of the class. (See the topic “Method Resolution” in Chapter 5, “Implementing
Classes in SOM,” for more information on offset and name-lookup method resolution.)

Offset resolution

To obtain a pointer to a procedure using offset resolution, the C/C++ usage bindings provide the
SOM_Resolve and SOM_ResolveNoCheck macros. The usage bindings themselves use the
first of these, SOM_Resolve, for offset-resolution method calls. The difference in the two
macros is that the SOM_Resolve macro performs consistency checking on its arguments, but
the macro SOM_ResolveNoCheck, which is faster, does not. Both macros require the same
arguments:

SOM_Resolve(<receivers, <className>, <methodName>)
SOM_ResolveNoCheck(<receivers, <className>, <methodName>)

where the arguments are as follows:

receiver — The object to which the method will apply. It should be

specified as an expression without side effects.
className — The name of the class that introduces the method.
methodName — The name of the desired method.

These two names (className and methodName) must be given as tokens, rather than strings
or expressions. (For example, as Animal rather than “Animal”.) If the symbol SOM_TestOn is
defined and the symbol SOM_NoTest is not defined in the current compilation unit, then
SOM_Resolve verifies that receiver is an instance of className or some class derived from
className. If this test fails, an error message is output and execution is terminated.

The SOM_Resolve and SOM_ResolveNoCheck macros use the procedure somResolve to
obtain the entry-point address of the desired method procedure (or raise a fatal error if method-
Name is not introduced by className). This result can be directly applied to the method
arguments, or stored in a variable of generic procedure type (for example, somMethodPtr) and
retained for later method use. This second possibility would result in a loss of information,
however, for the reasons now given.

The SOM_Resolve or SOM_ResolveNoCheck macros are especially useful because they
castthe method procedure they obtain to the right type to allow the C or C++ compiler to call this
procedure with system linkage and with the appropriate arguments. This is why the result of
SOM_Resolve is immediately useful for calling the method procedure, and why storing the
result of SOM_Resolve in a variable of some “generic” procedure type results in a loss of
information. The correct type information can be regained, however, because the type used by
SOM_Resolve for casting the result of somResolve is available from C/C++ usage bindings
using the typedef name somTD_<className>_<methodName>. This type name describes a
pointer to a method procedure for methodName introduced by class className. If the final
argument of the method is a va_list, then the method procedure returned by SOM_Resolve or
SOM_ResolveNoCheck must be called with a va_list argument, and not a variable number of
arguments.

Below is a C example of using SOM_Resolve to obtain a method procedure pointer for method
“sayHello”, introduced by class “Hello”, and using it to invoke the method on “obj.” (Assume that
the only argument required by the “sayHello” method is the Environment pointer.)

somMethodProc *pj;

SOMObject obj = HelloNew();

p = SOM_Resolve (obj, Hello, sayHello);
((somTD_Hello_sayHello)p) (obj, somGetGlobalEnvironment ());

Using SOM Classes in Client Programs ~ 3-17

SOM_Resolve and SOM_ResolveNoCheck can only be used to obtain method procedures
for static methods (methods that have been declared in an IDL specification for a class) and not
methods that are added to a class at run time. See the SOMobjects Programmers Reference
Manual for more information and examples on SOM_Resolve and SOM_ResolveNoCheck.

Name-lookup method resolution

To obtain a pointer to a method’s procedure using hame-lookup resolution, use the somRe-
solveByName procedure (described in the following section), or any of the somLookupMe-
thod, somFindMethod and somFindMethodOK methods. These methods are invoked on a
class object that supports the desired method, and they take an argument specifying the a
somld for the desired method (which can be obtained from the method’s name using the
somldFromString function). For more information on these methods and for examples of their
use, see the SOMobjects Developer Toolkit Programmers Reference Manual.

Method name or signature not known at compile time
If the programmer does not know a method’s name at compile time (for example, it might be
specified by user input), then the method can be invoked in one of two ways, depending upon
whether its signature is known:

¢ Suppose the signature of the method is known at compile time (even though the method
name is not). In that case, when the name of the method becomes available at run time,
the somLookupMethod, somFindMethod or somFindMethodOk methods or the
somResolveByName procedure can be used to obtain a pointer to the method'’s proce-
dure using name-lookup method resolution, as described in the preceding topics. That
method procedure can then be invoked, passing the method’s intended receiver, the
Environment pointer (if needed), the context argument (if needed), and the remainder
of the method’s arguments.

« If the method’s signature is unknown until run time, then dispatch-function resolution is
indicated, as described in the next topic.

Dispatch-function method resolution

If the signature of the method is not known at compile time (and hence the method’s argument
list cannot be constructed until run time), then the method can be invoked at run time by (a)
placing the arguments in a variable of type va_list at run time and (b) either using the somGet-
MethodData method followed by use of the somApply function, or by invoking the somDis-
patch or somClassDispatch method. Using somApply is more efficient, since this is what the
somDispatch method does, but it requires two steps instead of one. In either case, the result
invokes a “stub” procedure called an apply stub, whose purpose is to remove the method
arguments from the va_list, and then pass them to the appropriate method procedure in the
way expected by that procedure. For more information on these methods and for examples of
their use, see the somApply function, and the somGetMethodData, somDispatch, and
somClassDispatch methods in the SOMobjects Programmers Reference Manual.

Using class objects

Using a class object encompasses three aspects: getting the class of an object, creating a new
class object, or simply referring to a class object through the use of a pointer.

Getting the class of an object
To get the class that an object is an instance of, SOM provides a method called somGetClass.
The somGetClass method takes an object as its only argument and returns a pointer to the
class object of which itis an instance. For example, the following statements store in “myClass”
the class object of which “obj” is an instance.

myClass = _somGetClass (obj); (for C)
myClass = obj->somGetClass(); (for C++)

Getting the class of an object is useful for obtaining information about the object; in some cases,
such information cannot be obtained directly from the object, but only fromiits class. The section

below entitled “Getting information about a class” describes the methods that can be invoked on
a class object after it is obtained using somGetClass.

3-18 SOMobjects Base Toolkit User’s Guide

The somGetClass method can be overridden by a class to provide enhanced or alternative
semantics for its objects. Because it is usually important to respect the intended semantics of a
class of objects, the somGetClass method should normally be used to access the class of an
object.

In afew special cases, itis not possible to make a method call on an object in order to determine
its class. For such situations, SOM provides the SOM_GetClass macro. In general, the
somGetClass method and the SOM_GetClass macro may have different behavior (if som-
GetClass has been overridden). This difference may be limited to side effects, but it is possible
for their results to differ as well. The SOM_GetClass macro should only be used when abso-
lutely necessary.

Creating a class object
A class object is created automatically the first time the <className>New macro (for C) or the
new operator (C++) is invoked to create an instance of that class. In other situations, however,
it may be necessary to create a class object explicitly, as this section describes.

Using <className>Renew or somRenew

It is sometimes necessary to create a class object before creating any instances of the class.
For example, creating instances using the <className>Renew macro or the somRenew
method requires knowing how large the created instance will be, so that memory can be
allocated for it. Getting this information requires creating the class object (see the example
under “Creating instances of a class” early in this chapter). As another example, a class object
must be explicitly created when a program does not use the SOM bindings for a class. Without
SOM bindings for a class, its instances must be created using somNew or somRenew, and
these methods require that the class object be created in advance.

Use the <className>NewClass procedure to create a class object :

* When using the C/C++ language bindings for the class, and

* When the name of the class is known at compile time.

Using <className>NewClass

The <className>NewClass procedure initializes the SOM run-time environment, if neces-
sary, creates the class object (unless it already exists), creates class objects for the ancestor
classes and metaclass of the class, if necessary, and returns a pointer to the newly created
class object. After its creation, the class object can be referenced in client code using the macro

_<className> (for C and C++ programs)
or the expression

<className>ClassData.classObject (for C and C++ programs).

The <className>NewClass procedure takes two arguments, the major version number and
minor version number of the class. These numbers are checked against the version numbers
built into the class library to determine if the class is compatible with the client’s expectations.
The class is compatible if it has the same major version number and the same or a higher minor
version number. If the class is not compatible, an error is raised. Major version numbers usually
only change when a significant enhancement or incompatible change is made to a class. Minor
version numbers change when minor enhancements or fixes are made. Downward compatibili-
ty is usually maintained across changes in the minor version number. Zero can be used in place
of version numbers to bypass version number checking.

Using SOM Classes in Client Programs ~ 3-19

When using SOM bindings for a class, these bindings define constants representing the major
and minor version numbers of the class at the time the bindings were generated. These
constants are named <className>_MajorVersion and <className>_MinorVersion. For ex-
ample, the following procedure call:

AnimalNewClass (Animal_MajorVersion, Animal_MinorVersion);

creates the class object for class “Animal”. Thereafter, _animal can be used to reference the
“Animal” class object.

The preceding technique for checking version numbers is not failsafe. For performance rea-
sons, the version numbers for a class are only checked when the class object is created, and not
when the class object or its instances are used. Thus, run-time errors may result when usage
bindings for a particular version of a class are used to invoke methods on objects created by an
earlier version of the class.

Using somFindClass or somFindClisInFile

To create a class object when not using the C/C++ language bindings for the class, or when the
class name is not known at compile time:

e First, initialize the SOM run-time environment by calling the somEnvironmentNew func-
tion (unless it is known that the SOM run-time environment has already been initialized).

e Then, use the somFindClass or somFindClsInFile method to create the class object.
(The class must already be defined in a dynamically linked library, or DLL.)

The somEnvironmentNew function initializes the SOM run-time environment. That is, it
creates the four primitive SOM objects (SOMClass, SOMObject, SOMClassMgr, and the
SOMClassMgrObiject), and it initializes SOM global variables. The function takes no argu-
ments and returns a pointer to the SOMClassMgrObiject.

Note: Although somEnvironmentNew must be called before using other SOM functions and
methods, explicitly calling somEnvironmentNew is usually not necessary when using the
C/C++ bindings, because the macros for <className>NewClass, <className>New, and
<className>Renew call it automatically, as does the new operator for C++. Calling somEnvi-
ronmentNew repeatedly does no harm.

After the SOM run-time environment has been initialized, the methods somFindClass and
somFindClsiInFile can be used to create a class object. These methods must be invoked on
the class manager, which is pointed to by the global variable SOMClassMgrObiject. (It is also
returned as the result of somEnvironmentNew.)

The somFindClass method takes the following arguments:

classld — A somld identifying the name of the class to be created.
The somldFromString function returns a classl/d given
the name of the class.

major version number — The expected major version number of the class.
minor version number — The expected minor version number of the class.

The version numbers are checked against the version numbers built into the class library to
determine if the class is compatible with the client’s expectations.

The somFindClass method dynamically loads the DLL containing the class’s implementa-
tion, if needed, creates the class object (unless it already exists) by invoking its <class-
Name>NewClass procedure, and returns a pointer to it. If the class could not be created,
somFindClass returns NULL. For example, the following C code fragment creates the class
“Hello” and stores a pointer to it in “myClass”:

SOMClassMgr cm = somEnvironmentNew () ;

somId classId = somIdFromString (”Hello”);

SOMClass myClass = _somFindClass (SOMClassMgrObject, classId,

Hello_MajorVersion, Hello_MinorVersion);

SOMFree (classId);

3-20 SOMobjects Base Toolkit User’s Guide

The somFindClass method uses somLocateClassFile to get the name of the library file
containing the class. If the class was defined with a “dliname” class modifier, then somLocate-
ClassFile returns that file name; otherwise, it assumes that the class name is the name of the
library file. The somFindClsInFile method is similar to somFindClass, except that it takes an
additional (final) argument — the name of the library file containing the class. The somFindCl-
sInFile method is useful when a class is packaged in a DLL along with other classes and the
“dllname” class modifier has not been given in the class’s IDL specification.

Warning: On AIX and Windows, the somFindClass and somFindClsInFile methods should
not be used to create a class whose implementation is statically linked with the client program.
Instead, the class object should be created using the <className>NewClass procedure
provided by the class’s .h/.xh header file. Static linkage is not created by simply including usage
bindings in a program, but by use of the offset-resolution method-invocation macros.

Referring to class objects

Saving a pointer as the class object is created: The <className>NewClass macro and
the somFindClass method, used to create class objects, both return a pointer to the newly
created class object. Hence, one way to obtain a pointer to a class object is to save the value
returned by <className>NewClass or somFindClass when the class object is created.

Getting a pointer after the class object is created: After a class object has been created,
client programs can also get a pointer to the class object from the class name. When the class
name is known at compile time and the client program is using the C or C++ language bindings,
the macro

_<className>

can be used to referto the class object for <className>. Also, when the class name is known at
compile time and the client program is using the C or C++ language bindings, the expression

<className>ClassData.classObject

refers to the class object for <className>. For example, _He1 1o refers to the class object for
class “Hello” in C or C++ programs, and HelloClassData.classObject refersto the class
object for class “Hello.” in C or C++ programs.

Getting a pointer to the class object from an instance: If any instances of the class are
known to exist, a pointer to the class object can also be obtained by invoking the somGetClass
method on such an instance. (See “Getting the class of an object,” above.)

Getting a pointer in other situations: If the class name is not known until run time, or if the
client program is not using the C or C++ language bindings, and no instances of the class are
known to exist, then the somClassFromld method can be used to obtain a pointer to a class
object after the class object has been created. The somClassFromld method should be
invoked on the class manager, which is pointed to by the global variable SOMClassMgrObiject.
The only argument to the method is a somld for the class name, which can be obtained using
the somldFromString function. The method somClassFromld returns a pointer to the class
object of the specified class. For example, the following C code stores in “myClass” a pointer to
the class object for class “Hello” (or NULL, if the class cannot be located):

SOMClassMgr cm = somEnvironmentNew () ;
somId classId = somIdFromString (”Hello”);
SOMClass myClass = _somClassFromId (SOMClassMgrObject, classId,

Hello_MajorVersion, Hello_MinorVersion);
SOMFree (classId);

Compiling and linking

This section describes how to compile and link C and C++ client programs. Compiling and linking
a client program with a SOM class is done in one of two ways, depending upon whether or not
the class is packaged as a library, as described below.

Using SOM Classes in Client Programs ~ 3-21

If the class is not packaged as a library (that is, the client program has the implementation
source code for the class, as in the examples given in the SOM IDL tutorial), then the client
program can be compiled together with the class implementation file as follows. (This assumes
that the client program and the class are both implemented in the same language, C or C++. If
thisis notthe case, then each module must be compiled separately to produce an object file and
the resulting object files linked together to form an executable.)

In the following examples, the environment variable SOMBASE refers to the directory in which
SOM has been installed. The examples also assume that the header files and the import library
for the “Hello” class reside in the “include” and “lib” directories where SOM has been installed. If
this is not the case, additional path information should be supplied for these files. For client
program “main” and class “Hello”:

Under AIX, for C programmers:
> xlc —-I. -ISSOMBASE/include main.c hello.c \
-L$SOMBASE/1lib —-lsomtk —o main

Under AIX, for C++ programmers:
> x1C -I. -IS$SOMBASE/include main.C hello.C \
-L$SOMBASE/1lib -lsomtk —-o main

Under 0S/2, for C programmers:
> set LIB=%SOMBASE%\1lib;%LIB%
> icc -I. —-I%SOMBASE%\include main.c hello.c somtk.lib

Under 0S/2, for C++ programmers:
> set LIB=%SOMBASE%\1lib; %$LIB%
> icc -I. —-I%SOMBASE%\include main.cpp hello.cpp somtk.lib

Under Windows, for C programmers:

> cl -AL -Zpl -I. -I%SOMBASE%\include \
main.c hello.c llibcew.lib libw.lib somtk.lib main.def

Under Windows, for C++ programmers:

> cl -AL -Zpl -I. -I%$SOMBASE%\include \
main.cpp hello.cpp llibcew.lib libw.lib somtk.lib main.def

Windows compiler notes: The SOM Compiler and runtime libraries under Windows only
provide support for Large Memory Model systems. The “~Oi” compile flag should be used
whenever a SOM Windows program contains or calls any functions that return floats or
doubles. The “—F” option can be used to set the stack size if STACKSIZE is not specified in a .def
file. Additionally, for this manual, compile and link commands are demonstrated using the Visual
C++ compiler. Sample Makefiles shipped with SOMobjects For Windows also show how to build
with other compilers.

If the class is packaged as a class library, then the client program, “main”, is compiled as
above, except that the class implementation file is not part of the compilation. Instead, the
“import library” provided with the class library is used to resolve the symbolic references that
appear in “main”. For example, to compile the C client program “main.c” that uses class “Hello”:

Under AIX:
> xlc —-I. —-ISSOMBASE/include main.c —-lc -LS$SSOMBASE/lib -lsomtk \
—lhello -o main
Under 0S/2:
> set LIB=%SOMBASE%\1lib; %$LIB%
> icc -I. —-I%SOMBASE%\include main.c somtk.lib hello.lib

Under Windows:

> cl -AL —-Zpl —-I. -I%$SOMBASE%\include \
main.c llibcew.lib libw.lib somtk.lib hello.lib main.def

Windows users: See also “Windows Compiler Notes” above.

3-22 SOMobjects Base Toolkit User’s Guide

3.3 Language-neutral Methods and Functions

This section describes methods, functions, and macros that client programs can use regardless
of the programming language in which they are written. In other words, these functions and
methods are not part of the C or C++ bindings.

Generating output

The following functions and methods are used to generate output, including descriptions of
SOM objects. They all produce their output using the character-output procedure held by the
global variable SOMOutCharRoutine. The default procedure for character output simply
writes the character to stdout, but it can be replaced to change the output destination of the
methods and functions below. (See Chapter 5 for more information on customizing SOM.)

somDumpSelf — (method) Writes a detailed description of an object, includ-
ing its class, its location, and its instance data. The receiver
of the method is the object to be dumped. An additional
argument is the “nesting level” for the description. [All lines
in the description will be indented by (2 * level) spaces.]

somPrintSelf — (method) Writes a brief description of an object, including
its class and location in memory. The receiver of the meth-
od is the object to be printed.

somPrintf — (function) SOM’s version of the C “printf” function. It gener-
ates character stream output via SOMOutCharRoutine. It
has the same interface as the C “printf” function.

somVprintf — (function) Represents the “vprint” form of somPrintf. Its
arguments are a formatting string and a va_list holding the
remaining arguments.

somPrefixLevel — (function) Generates (via somPrintf) spaces to prefix a
line at the indicated level. The return type is void. The
argument is an integer specifying the level. The number of
spaces generated is (2 * level).

somLPrintf — (function) Combines somPrefixLevel and somPrintf.
The first argument is the level of the description (as for
somPrefixLevel) and the remaining arguments are as for
somPrintf (or for the C “printf” function).

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific function or method.

Getting information about a class

The following methods are used to obtain information about a class or to locate a particular
class object:

somCheckVersion — Checks a class for compatibility with the specified major
and minor version numbers. The receiver of the method is
the SOM class about which information is needed. Addi-
tional arguments are values of the major and minor version
numbers. The method returns TRUE if the class is compat-
ible, or FALSE otherwise.

somClassFromid — Finds the class object of an existing class when given its
somld, but without loading the class. The receiver of the
method is the class manager (pointed to by the global
variable SOMClassMgrObject). The additional argument
is the class’s somld. The method returns a pointer to the
class (or NULL if the class does not exist).

Using SOM Classes in Client Programs ~ 3-23

somDescendedFrom

somFindClass

somFindClsinFile

somGetlnstancePartSize

somGetinstanceSize

somGetName

somGetNumMethods

somGetNumStaticMethods

somGetParents

somGetVersionNumbers

3-24 SOMobjects Base Toolkit User’s Guide

Tests whether one class is derived from another. The re-
ceiver of the method is the class to be tested, and the
potential ancestor class is the argument. The method re-
turns TRUE if the relationships exists, or FALSE otherwise.

Finds or creates the class object for a class, given the
class’s somld and its major and minor version numbers.
The receiver of the method is the class manager (pointed
to by the global variable SOMClassMgrObject). Addition-
al arguments are the class’s somld and the major and
minor version numbers. The method returns a pointer to
the class object, or NULL if the class could not be created.

Finds or creates the class object for a class. This method is
similar to somFindClass, except the user also provides
the name of a file to be used for dynamic loading, if needed.
The receiver of the method is the class manager (pointed
to by the global variable SOMClassMgrObject). Addition-
al arguments are the class’s somld, the major and minor
version numbers, and the file name. The method returns a
pointer to the class object, or NULL if the class could not be
created.

Obtains the size of the instance variables introduced by a
class. The receiver of the method is the class object. The
method returns the amount of space, in bytes, needed for
the instance variables.

Obtains the total size requirements for an instance of a
class. The receiver of the method is the class object. The
method returns the amount of space, in bytes, required for
the instance variables introduced by the class itself and by
all of its ancestor classes.

Obtains the name of a class. The receiver of the method is
the class object. The method returns the class name.

Obtains the number of methods available for a class. The
receiver of the method is the class object. The method
returns the total number of currently available methods
(static or otherwise, including inherited methods).

Obtains the number of static methods available for a class.
(A static method is one declared in the class’s interface
specification [.idl] file.) The receiver of the method is the
class object. The method returns the total number of avail-
able static methods, including inherited ones.

Obtains a sequence of the parent (base) classes of a spe-
cified class. The receiver of the method is the class object.
The method returns a pointer to a linked list of the parent
(base) classes (unless the receiver is SOMObject, for
which it returns NULL).

Obtains the major and minor version numbers of a class.
The receiver of the method is the class object. The return
type is void, and the two arguments are pointers to loca-
tions in memory where the method can store the major and
minor version numbers (of type long).

somSupportsMethod — Indicates whether instances of a given class support a
given method. The receiver of the somSupportsMethod
method is the class object. The argument is the somid for
the method in question. The somSupportsMethod meth-
od returns TRUE if the method is supported, or FALSE
otherwise.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific method.

Getting information about an object

The following methods and functions are used to obtain information about an object (instance)
or to determine whether a variable holds a valid SOM object.

Methods
somGetClass — Gets the class object of a specified object. The receiver of
the method is the object whose class is desired. The meth-
od returns a pointer to the object’s corresponding class
object.

somGetClassName — Obtains the class name of an object. The receiver of the
method is the object whose class name is desired. The
method returns a pointer to the name of the class of which
the specified object is an instance.

somGetSize — Obtains the size of an object. The receiver of the method is
the object. The method returns the amount of contiguous
space, in bytes, that is needed to hold the object itself (not
including any additional space that the object may be using
or managing outside of this area).

somlisA — Determines whether an object is an instance of a given
class or of one of its descendant classes. The receiver of
the method is the object to be tested. An additional argu-
ment is the name of the class to which the object will
be compared. This method returns TRUE if the object
is an instance of the specified class or if (unlike somlsins-
tanceOf) it is an instance of any descendant class of the
given class; otherwise, the method returns FALSE.

somlsinstanceOf — Determines whether an object is an instance of a specific
class (but not of any descendant class).The receiver of the
method is the object. The argument is the name of the
class to which the object will be compared. The method
returns TRUE if the object is an instance of the specified
class, or FALSE otherwise.

somRespondsTo — Determines whether an object supports a given method.
The receiver of the method is the object. The argument is
the somld for the method in question. (A somld can be
obtained from a string by using the somldFromString
function.) The somRespondsTo method returns TRUE if
the object supports the method, or FALSE otherwise.

Functions
somisObj — Takes as its only argument an address (which may not be
valid). The function returns TRUE (1) if the address con-
tains a valid SOM object, or FALSE (0) otherwise. This
function is designed to be failsafe.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific method or function.

Using SOM Classes in Client Programs ~ 3-25

Debugging
The following macros are used to conditionally generate output for debugging. All output
generated by these macros is written using the replaceable character-output procedure pointed
to by the global variable SOMOutCharRoutine. The default procedure simply writes the
character to stdout, but it can be replaced to change the output destination of the methods and
functions below. (See Chapter 5, “Implementing Classes in SOM,” for more information on
customizing SOM.)

Debugging output is produced or suppressed based on the settings of three global variables,
SOM_TraceLevel, SOM_WarnLevel, and SOM_AssertLevel:

* SOM_TracelLevel controls the behavior of the <className>MethodDebug macro;

¢ SOM_WarnLevel controls the behavior of the macros SOM_WarnMsg, SOM_TestC,
and SOM_Expect; and

* SOM_AssertLevel controls the behavior of the SOM_Assert macro.
Available macros for generating debugging output are as follows:

<className>MethodDebug

— (macro for C and C++ programmers using the SOM lan-
guage bindings for <className>)
The arguments to this macro are a class name and a
method name. If the SOM_TraceLevel global variable has
a nonzero value, the <className>MethodDebug macro
produces a message each time the specified method (as
defined by the specified class) is executed. This macro is
typically used within the procedure that implements the
specified method. (The SOM Compiler automatically gen-
erates calls to the <className>MethodDebug macro
within the implementation template files it produces.) To
suppress method tracing for all methods of a class, put the
following statement in the implementation file after includ-
ing the header file for the class:
#define <className>MethodDebug(c,m) \

SOM_NoTrace (c,m)

This can yield a slight performance improvement. The
SOMMTraced metaclass, discussed below, provides a
more extensive tracing facility that includes method pa-
rameters and returned values.

SOM _TestC — The SOM_TestC macro takes as an argument a boolean
expression. If the boolean expression is TRUE (nonzero)
and SOM_AssertLevel is greater than zero, then an in-
formational message is output. If the expression is FALSE
(zero) and SOM_WarnLevel is greater than zero, a warn-
ing message is produced.

SOM_WarnMsg — The SOM_WarnMsg macro takes as an argument a char-
acter string. If the value of SOM_WarnLevel is greater
than zero, the specified message is output.

SOM_Assert — The SOM_Assert macro takes as arguments a boolean
expression and an error code (an integer). If the boolean
expression is TRUE (nonzero) and SOM_AssertLevel is
greater than zero, then an informational message is out-
put. If the expression is FALSE (zero), and the error code
indicates a warning-level error and SOM_WarnLevel is
greater than zero, then a warning message is output. If the
expression is FALSE and the error code indicates a fatal
error, then an error message is produced and the process
is terminated.

3-26 SOMobjects Base Toolkit User’s Guide

SOM_Expect — The SOM_Expect macro takes as an argument a boolean
expression. If the boolean expression is FALSE (zero) and
SOM_WarnLevel is set to be greater than zero, then a
warning message is output. If condition is TRUE and
SOM_AssertLevel is set to be greater than zero, then an
informational message is output.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific macro.

The somDumpSelf and somPrintSelf methods can be useful in testing and debugging. The
somPrintSelf method produces a brief description of an object, and the somDumpSelf
method produces a more detailed description. See the SOMobjects Developer Toolkit Pro-
grammers Reference Manual for more information.

Checking the validity of method calls

The C and C++ language bindings include code to check the validity of method calls at run time.
If a validity check fails, the SOM_Error macro ends the process. (SOM_Error is described
below.) To enable method-call validity checking, place the following directive in the client
program prior to any #include directives for SOM header files:

#define SOM_TestOn

Alternatively, the —DSOM_TestOn option can be used when compiling the client program to
enable method-call validity checking.

Exceptions and error handling

In the classes provided in the SOM run-time library (that is, SOMClass, SOMObject, and
SOMClassMgr), error handling is performed by a user-replaceable procedure, pointed to by
the global variable SOMError, that produces an error message and an error code and, if
appropriate, ends the process where the error occurred. (Chapter 5 describes how to custom-
ize the error handling procedure.)

Each error is assigned a unique integer error code. Errors are grouped into three categories,
based on the last digit of the error code:

SOM_Ignore — This category of error represents an informational event.
The event is considered normal and can be ignored or
logged at the user’s discretion. Error codes having a last
digit of 2 belong to this category.

SOM_Warn — This category of error represents an unusual condition that
is not a normal event, but is not severe enough to require
program termination. Error codes having a last digit of 1
belong to this category.

SOM_Fatal — This category of error represents a condition that should
not occur or that would result in loss of system integrity if
processing were allowed to continue. In the default error
handling procedure, these errors cause the termination of
the process in which they occur. Error codes having a last
digit of 9 belong to this category.

The various codes for all errors detected by SOM are listed in Appendix A, “Customer Support
and Error Codes.”

Using SOM Classes in Client Programs ~ 3-27

When errors are encountered in client programs or user defined-classes, the following two
macros can be used to invoke the error-handling procedure:

SOM_Error — The SOM_Error macro takes an error code as its only
argument and invokes the SOM error handling procedure
(pointed to by the global variable SOMError) to handle the
error. The default error handling procedure prints a mes-
sage that includes the error code, the name of the source
file, and the line number where the macro was invoked. If
the last digit of the error code indicates a serious error (of
category SOM_Fatal), the process causing the error is
terminated. (Chapter 5 describes how to customize the
error handling procedure.)

SOM_Test — The SOM_Test macro takes a boolean expression as an
argument. If the expression is TRUE (nonzero) and the
SOM_AssertLevel is greater than zero, then an informa-
tional message is output. If the expression is FALSE (zero),
an error message is produced and the program is termi-
nated.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific macro.

Other classes provided by the SOMobjects Toolkit (including those in the Persistence, Replica-
tion, DSOM, and Interface Repository frameworks, and the utility classes and metaclasses)
handle errors differently. Rather than invoking SOMError with an error code, their methods
return exceptions via the (Environment *) inout parameter required by these methods. The
following sections describe the exception declarations, the standard exceptions, and how to set
and get exception information in an Environment structure.

Exception declarations

As discussed in Chapter 4 in Section 4.2 entitled “SOM Interface Definition Language,” a
method may be declared to return zero or more exceptions. IDL exceptions are implemented
by simply passing back error information after a method call, as opposed to the “catch/throw”
model where an exception is implemented by a long jump or signal. Associated with each type
of exception is a name and, optionally, a struct-like data structure for holding error information.
A method declares the types of exceptions it may return in a raises expression.

Below is an example IDL declaration of a “BAD_FLAG” exception, which may be “raised” by a
“checkFlag” method, as part of a “MyObject” interface:

interface MyObject {
exception BAD_FLAG { long ErrCode; char Reason[80]; };

void checkFlag(in unsigned long flag) raises (BAD_FLAG);
}i

An exception structure contains whatever information is necessary to help the caller under-
stand the nature of the error. The exception declaration can be treated like a struct definition:
that is, whatever you can access in an IDL struct, you can access in an exception declaration.
Alternatively, the structure can be empty, whereby the exception is just identified by its name.

The SOM Compiler will map the exception declaration in the above example to the following C
language constructs:

typedef struct BAD_FLAG {
long ErrCode;
char Reason([80];

} BAD_FLAG;

#define ex_BAD_FLAG "MyObject::BAD_FLAG”

3-28 SOMobjects Base Toolkit User’s Guide

When an exception is detected, the “checkFlag” method must call SOMMalloc to allocate a
“BAD_FLAG” structure, initialize it with the appropriate error information, and make a call to
somSetException (see “Setting an exception value,” below) to record the exception value in
the Environment structure passed in the method call. The caller, after invoking “checkFlag”,
can check the Environment structure that was passed to the method to see if there was an
exception, and if so, extract the exception value from the Environment (see “Getting an
exception value,” below.)

Standard exceptions

In addition to user-defined exceptions (those defined explicitly in an IDL file), there are several
predefined exceptions for system run-time errors. A system exception can be returned on any
method call. (That is, they are implicitly declared for every method whose class uses IDL call
style, and they do not appear in any raises expressions.) The standard exceptions are listed in
Table 2 of Section 4.5, “SOM Interface Definition Language”. Most of the predefined system
exceptions pertain to Object Request Broker errors. Consequently, these types of exceptions
are most likely to occur in DSOM applications (Chapter 6).

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO_MEMORY
standard exception has the following definition:

enum completion_status {YES, NO, MAYBE};
exception NO_MEMORY { unsigned long minor;
completion_status completed; };

The completion status value indicates whether the method was never initiated (NO), completed
execution prior to the exception (YES), or the completion status is indeterminate (MAYBE).

Since all the standard exceptions have the same structure, file “somcorba.h” (included by
“som.h”) defines a generic StExcep typedef which can be used instead of the specific typedefs:

typedef struct StExcep {
unsigned long minor;
completion_status completed;
} StExcep;

The standard exceptions are defined in an IDL module called StExcep, in the file named
“stexcep.idl”, and the C definitions can be found in “stexcep.h”.

The Environment

The Environment is a data structure that contains environmental information that can be
passed between a caller and a called object when a method is executed. For example, it is used
to pass information about the user id of a client, to return exception data to the client following a
method call, and so on.

A pointer to an Environment variable is passed as an argument to method calls (unless the
method’s class has the callstyle=oidl SOM IDL modifier). The Environment typedef is de-
fined in “som.h”, and an instance of the structure is allocated by the caller in any reasonable
way: on the stack (by declaring a local variable and initializing it using the macro SOM_InitEn-
vironment), dynamically (using the SOM_CreateLocalEnvironment macro), or by calling the
somGetGlobalEnvironment function to allocate an Environment structure to be shared by
objects running in the same thread.

For class libraries that use callstyle=oidl, there is no explicit Environment parameter. For

these libraries, exception information may be passed using the per-thread Environment
structure returned by the somGetGlobalEnvironment procedure.

Using SOM Classes in Client Programs ~ 3-29

Setting an exception value
To set an exception value in the caller’s Environment structure, a method implementation
makes a call to the somSetException procedure:

void somSetException (Environment *ev,
exception_type major,
string exception_name,
void *params);

where “ev” is a pointer to the Environment structure passed to the method, “major” is an
exception_type, “exception_name” is the string name of the exception (usually the constant
defined by the IDL compiler, for example, ex_BAD_FLAG), and “params” is a pointer to an
(initialized) exception structure which must be allocated by SOMMalloc:

typedef enum exception_type {
NO_EXCEPTION, USER_EXCEPTION, SYSTEM EXCEPTION
} exception_type;

It is important to reiterate that somSetException expects the params argument to be a
pointer to a structure that was allocated using SOMMalloc. When somSetException is called,
the client passes ownership of the exception structure to the SOM run-time environment. The
SOM run-time environment will free the structure when the exception is reset (that is, upon the
next call to somSetException), or when the somExceptionFree function is called.

Note that somSetException simply sets the exception value; it performs no exit processing. If
there are multiple calls to somSetException before the method returns, the caller will only see
the last exception value.

Getting an exception value
After a method returns, the calling client program can look at the Environment structure to see
if there was an exception. The Environment struct is mostly opaque, except for an exception
type field named _major:

typedef struct Environment {
exception_type _major;

} Environment;

If ev._major != NO_EXCEPTION, there was an exception returned by the call. The caller can
retrieve the exception name and value (passed as parameters in the somSetException call)
from an Environment struct via the following functions:

string somExceptionld (Environment *ev);
somToken somExceptionValue (Environment *ev);

The somExceptionld function returns the exception name, if any, as a string. The function
somExceptionValue returns a pointer to the value of the exception, if any, contained in the
exception structure. If NULL is passed as the Environment pointer in either of the above calls,
an implicit call is made to somGetGlobalEnvironment.

The somExceptionFree function will free any memory in the Environment associated with
the last exception:

void somExceptionFree (Environment *ev);

If preferred, developers can alternatively use the CORBA “exception_free” API to free the
memory in an Environment structure.

Note: File “somcorba.h” (included by “som.h”) provides the following aliases for strict com-
pliance with CORBA programming interfaces:

#ifdef CORBA_FUNCTION_NAMES

#define exception_id somExceptionId
#define exception_value somExceptionValue
#define exception_free somExceptionFree
#endif /* CORBA_FUNCTION_NAMES */

3-30 SOMobjects Base Toolkit User’s Guide

Example

The following IDL interface for a “MyQObject” object (in a file called “myobject.idl”) declares a
“BAD_FLAG” exception, which can be raised by the “checkFlag” method,:

interface MyObject ({
exception BAD_FLAG { long ErrCode; char Reason[80]; };

void checkFlag(in unsigned long flag) raises (BAD_FLAG);
}i

The SOM IDL compiler will map the exception to the following C language constructs, in
“myobject.h”:

typedef struct BAD_FLAG {
long ErrCode;
char Reason([80];

} BAD_FLAG;

#define ex_BAD_FLAG ”"MyObject::BAD_FLAG”

A client program that invokes the “checkFlag” method might contain the following error handling
code. (Note: The error checking code below lies in the user-written procedure, “ErrorCheck,” so
the code need not be replicated through the program.)

#include "”som.h”
#include "myobject.h”

boolean ErrorCheck (Environment *ev); /* prototype */

main ()

{
unsigned long flag;
Environment ev;
MyObject myobij;
char *exId;
BAD_FLAG *badFlag;
StExcep *stExValue;

myobj MyObjectNew () ;
flag 0x01L;
SOM InitEnvironment (&ev) ;

/* invoke the checkFlag method, passing the Environment param */
_checkFlag (myobj, &ev, flaqg);

/* check for exception */
if (ErrorCheck (&ev))
{

/* L. */

somExceptionFree (&ev) ; /* free the exception memory */

VA

Using SOM Classes in Client Programs ~ 3-31

/* error checking procedure */

boolean ErrorCheck (Environment *ev)
{
switch (ev._major)
{
case SYSTEM_ _EXCEPTION:
/* get system exception id and value */

exId = somExceptionId (ev);
stExValue = somExceptionValue (ev) ;
/* .. %/

return (TRUE) ;

case USER_EXCEPTION:
/* get user—-defined exception id and value */
exId = somExceptionId(ev);

if (strcmp(exId, ex_BAD_FLAG) == 0)

{
badFlag = (BAD_FLAG *) somExceptionValue (ev);
/* ... */

}

/* ... %/

return (TRUE) ;

case NO_EXCEPTION:
return (FALSE) ;
}

3-32 SOMobjects Base Toolkit User’s Guide

The implementation of the “checkFlag” method might contain the following error-handling code:

#include "som.h”
#include "myobject.h”

void checkFlag (MyObject somSelf, Environment *ev,
unsigned long flag)
{
BAD_FLAG *badFlag;
/* oL K/

if (/* flag is invalid */)

{
badFlag = (BAD_FLAG *) SOMMalloc(sizeof (BAD_FLAG));
badFlag->ErrCode = /* bad flag code */;
strcpy (badFlag->Reason, "“bad flag was passed”);
somSetException (ev, USER_EXCEPTION,

ex_BAD_FLAG, (void *)badFlag);

return;

/* oo x/

Memory management

The SOMobjects Toolkit provides several functions that can be used for memory management.

Using SOM equivalents to ANSI C functions
The memory management functions used by SOM are a subset of those supplied in the ANSI C
standard library. They have the same calling interface and the same return types as their ANSI
C equivalents, but include supplemental error checking. Errors detected by these functions are
passed to SOMError (described in the previous section). The correspondence between SOM
memory management functions and their ANSI C standard library equivalents is shown below:

Equivalent ANSI C

SOM Function Library Routine
SOMMalloc malloc
SOMCalloc calloc
SOMRealloc realloc
SOMFree free

SOMMalloc, SOMCalloc, SOMRealloc, and SOMFree are actually global variables that point
to the SOM memory management functions (rather than being the names of the functions
themselves), so that users can replace them with their own memory management functions if
desired. (See Chapter 5 forinformation on replacing the SOM memory management functions.)

Clearing memory for objects
The memory associated with objects initialized by a client program must also be freed by the
client. The SOM-provided method somFree is used to release the storage containing the
receiver object:

#include ”"origcls.h”
main ()
{
OrigCls myObject;
myObject = OrigClsNew ();
/* Code to use myObject */

_somFree (myObiject);

Using SOM Classes in Client Programs ~ 3-33

Clearing memory for the Environment
Any memory associated with an exception in an Environment structure is typically freed using
the somExceptionFree function. (Or, the CORBA “exception_free” API can be used.) The
somExceptionFree function takes the following form (also see “Example” in the previous topic
for an application example):

void somExceptionFree (Environment *ev);

Note: For information on managing the memory, objects, and exceptions used by DSOM
applications, see “Memory management for DSOM” in Chapter 6, “Distributed SOM (DSOM).”

SOM manipulations using somid’s

A somld is similar to a number that represents a zero-terminated string. A somld is used in
SOM to identify method names, class names, and so forth. For example, many of the SOM
methods that take a method or class name as a parameter require a value of type somld rather
than string. All SOM manipulations using somlds are case insensitive, although the original
case of the string is preserved.

During its first use with any of the following functions, a somld is automatically converted to an
internal representation (registered). Because the representation of a somld changes, a special
SOM type (somld) is provided for this purpose. Names and the corresponding somld can be
declared at compile time, as follows:

string example = "exampleMethodName”;
somId exampleId = &example;

or a somld can be generated at run time, as follows:

somId myMethodId;
myMethodId = somIdFromString (”exampleMethodName”) ;

SOM provides the following functions that generate or use a somld:

somldFromString — Finds the somld that corresponds to a string. The method
takes a string as its argument, and returns a value of type
somld that represents the string. The returned somld
must later be freed using SOMFree.

somStringFromid — Obtains the string that corresponds to a somld. The func-
tion takes a somld as its argument and returns the string
that the somld represents.

somComparelds — Determines whether two somld values are the same (that
is, represent the same string). This function takes two
somld values as arguments. It returns TRUE (1) if the
somlds represent the same string, or FALSE (0) other-
wise.

somCheckld — Determines whether SOM already knows a somld. The
function takes a somld as its argument. It verifies whether
the somld is registered and in normal form, registers it if
necessary, and returns the input somld.

somRegisterid — The same as somCheckld, except it returns TRUE (1) if
this is the first time the somld has been registered, or
FALSE (0) otherwise.

somUniqueKey — Finds the unique key for a somld. The function takes a
somld identifier as its argument, and returns the unique
key forthe somld — a number that uniquely represents the
string that the somld represents. This key is the same as
the key for another somld if and only if the other somid
refers to the same string as the input somld.

3-34 SOMobjects Base Toolkit User’s Guide

somTotalReglds — Finds the total number of somlds that have been regis-
tered, as an unsigned long. This function is used to deter-
mine an appropriate argument to somSetExpectedids,
below, in later executions of the program. The function
takes no input arguments.

somSetExpectedids — Indicates how many unique somlds SOM can expect to
use during program execution, which, if accurate, can im-
prove the space and time utilization of the program slightly.
This routine must be called before the SOM run-time envi-
ronmentis initialized (that is, before the function somEnvi-
ronmentNew is invoked and before any objects are
created). This is the only SOM function that can be invoked
before the SOM run-time environment is initialized. The
input argument is an unsigned long. The function has no
return value.

somBeginPersistentlds and somEndPersistentlds
— Delimit a time interval for the current thread during which it
is guaranteed that (a) any new somlds that are created will
refer only to static strings and (b) these strings will not be
subsequently modified or freed. These functions are useful
because somlds that are registered within a “persistent ID
interval” can be handled more efficiently.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific function.

Using SOM Classes in Client Programs ~ 3-35

3-36 SOMobjects Base Toolkit User’s Guide

Chapter 4. SOM IDL and the SOM Compiler

This chapter first discusses how to define SOM classes and then describes the SOM Compiler.
To allow a class of objects to be implemented in one programming language and used in
another (that is, to allow a SOM class to be language neutral), the interface to objects of this
class must be specified separately from the objects’ implementation.

To summarize: As a first step, a file known as the .idl file is used to declare classes and their
methods, using SOM’s language-neutral Interface Definition Language (IDL). Next, the SOM
Compiler is run on the .idl file to produce a template implementation file that contains stub
method procedures for the new and overridden methods; this preliminary code corresponds to
the computer language that will implement the class. Then, the class implementor fills in the
stub procedures with code that implements the methods (or redefines overridden methods) and
sets instance data. (This implementation process is the subject of Chapter 5, “Implementing
Classes in SOM.”) At this point, the implementation file can be compiled and linked with a client
program that uses it (as described in Chapter 3, “Using SOM Classes in Client Programs”).

Syntax for SOM IDL and the SOM Compiler are presented in this chapter, along with along with
helpful information for using them correctly.

SOM IDL and the SOM Compiler 4-1

4.1 Interface vs Implementation

The interface to a class of objects contains the information that a client must know to use an
object — namely, the names of its attributes and the signatures of its methods. The interface is
described in a formal language independent of the programming language used to implement
the object’'s methods. In SOM, the formal language used to define object interfaces is the
Interface Definition Language (IDL), standardized by CORBA.

The implementation of a class of objects (that is, the procedures that implement methods and
the variables used to store an object’s state) is written in the implementor’s preferred program-
ming language. This language can be object-oriented (for instance, C++) or procedural (for
instance, C).

A completely implemented class definition, then, consists of two main files:

» An IDL specification of the interface to instances of the class — the interface definition file
(or .idl file) and

¢ Method procedures written in the implementor’s language of choice — the implementa-
tion file.

The interface definition file has a .idl extension, as noted. The implementation file, however, has
an extension specific to the language in which it is written. For example, implementations
written in C have a .c extension, and implementations written in C++ have a .C (for AIX) or .cpp
(for OS/2 or Windows) extension.

To assist users in implementing SOM classes, the SOMobjects Toolkit provides a SOM Compil-
er. The SOM Compiler takes as input an object interface definition file (the .idl file) and produces
a set of binding files that make it convenient to implement and use a SOM class whose
instances are objects that support the defined interface. The binding files and their purposes are
as follows:

¢ An implementation template that serves as a guide for how the implementation file for the
class should look. The class implementor fills in this template file with language-specific
code to implement the methods that are available on the class’ instances.

e Header files to be included (a) in the class’s implementation file and (b) in client programs
that use the class.

These binding files produced by the SOM Compiler bridge the gap between SOM and the
object model used in object-oriented languages (such as C++), and they allow SOM to be used
with non-object-oriented languages (such as C). The SOM Compiler currently produces binding
files for the C and C++ programming languages. SOM can also be used with other programming
languages; the bindings simply offer a more convenient programmer’s interface to SOM.
Vendors of other languages may also offer SOM bindings; check with your language vendor for
possible SOM support.

The subsequent sections of this chapter provide full syntax for SOM IDL and the SOM Compil-
er.

4-2 SOMobjects Base Toolkit User’s Guide

4.2 SOM Interface Definition Language

This section describes the syntax of SOM’s Interface Definition Language (SOM IDL).
SOM IDL complies with CORBA’s standard for IDL;; it also adds constructs specific to SOM. (For
more information on the CORBA standard for IDL, see The Common Object Request Broker:
Architecture and Specification, published by Object Management Group and x/Open.) The full
grammar for SOM IDL is given in Appendix C. Instructions for converting existing OIDL-syntax
files to IDL are given in Appendix B. The current section describes the syntax and semantics of
SOM IDL using the following conventions:

Constants (words to be used literally, such as keywords) appear in bold.
User-supplied elements appear in italics.

{} Groups related items together as a single item.

[] Encloses an optional item.

* Indicates zero or more repetitions of the preceding item.

+ Indicates one or more repetitions of the preceding item.

| Separates alternatives.

_ Within a set of alternatives, an underscore indicates the default, if defined.

IDL is a formal language used to describe object interfaces. Because, in SOM, objects are
implemented as instances of classes, an IDL object interface definition specifies for a class of
objects what methods (operations) are available, their return types, and their parameter types.
For this reason, we often speak of an IDL specification for a class (as opposed to simply an
object interface). Constructs specific to SOM discussed below further strengthen this connec-
tion between SOM classes, and the IDL language.

IDL generally follows the same lexical rules as C and C++, with some exceptions. In particular:

¢ IDL uses the ISO Latin-1 (8859.1) character set (as per the CORBA standard).

» White space is ignored except as token delimiters.

e C and C++ comment styles are supported.

 IDL supports standard C/C++ preprocessing, including macro substitution, conditional
compilation, and source file inclusion.

« |dentifiers (user-defined names for methods, attributes, instance variables, and so on) are
composed of alphanumeric and underscore characters (with the first character alphabet-
ic) and can be of arbitrary length, up to an operating-system limit of about 250 characters.

« |dentifiers must be spelled consistently with respect to case throughout a specification.

« |dentifiers that differ only in case yield a compilation error.

» There is a single name space for identifiers (thus, using the same identifier for a constant
and a class name within the same naming scope, for example, yields a compilation error).

* Integer, floating point, character, and string literals are defined just as in C and C++.

The terms listed in Table 1 on the following page are reserved keywords and may not be used
otherwise. Keywords must be spelled using upper- and lower-case characters exactly as
shown in the table. For example, “void” is correct, but “Void” yields a compilation error.

A typical IDL specification for a single class, residing in a single .idl file, has the following form.
(Also see the later section, “Defining multiple interfaces in a .idl file.”) The order is unimportant,
except that names must be declared (or forward referenced) before they are referenced. The
subsequent topics of this section describe the requirements for these specifications:

Include directives (optional)
Type declarations (optional)
Constant declarations (optional)
Exception declarations (optional)
Interface declaration (optional)
Module declaration (optional)

SOM IDL and the SOM Compiler 4-3

Table 1. KEYWORDS FOR SOM IDL

any FALSE readonly
attribute float sequence
boolean implementation short
case in string
char inout struct
class interface switch
const long TRUE
context module TypeCode
default octet typedef
double oneway unsigned
enum out union
exception raises void

Include directives

The IDL specification for a class normally contains #include statements that tell the SOM
Compiler where to find the interface definitions (the .idl files) for:

e Each of the class’s parent (direct base) classes, and
e The class’s metaclass (if specified).

The #include statements must appear in the above order. For example,
if class “C” has parents “foo” and “bar” and metaclass “meta”,
then file “C.idlI” must begin with the following #include statements:

#include <foo.idl>
#include <bar.idl>
#include <meta.idl>

Asin C and C++, if a filename is enclosed in angle brackets (< >), the search for the file will begin
in system-specific locations. If the filename appears in double quotation marks (“), the search
for the file will begin in the current working directory, then move to the system-specific locations.

Type and constant declarations

IDL specifications may include type declarations and constant declarations as in C and C++,
with the restrictions/extensions described below. [Note: Readers unfamiliar with C might wish to
consult The C Programming Language (2nd edition, 1988, Prentice Hall) by Brian W. Kernighan
and Dennis M. Ritchie. See pages 36—40 for a discussion of type and constant declarations.]

IDL supports the following basic types (these basic types are also defined for C and C++ client
and implementation programs, using the SOM bindings):

Integral types
IDL supports only the integral types short, long, unsigned short, and unsigned long, which
represent the following value ranges:

short 215 2151

long 231 2811

unsigned short 0. 2161

unsigned long 0..2%2-1
Floating point types

IDL supports the float and double floating-point types. The float type represents the IEEE
single-precision floating-point numbers; double represents the IEEE double-precision floating-
point numbers. Note for Windows: Since returning floats and doubles by value may not be
compatible across Windows compilers, client programs should return floats and doubles by
reference.

4-4 SOMobjects Base Toolkit User’s Guide

Character type

Boolean type

Octet type

Any type

IDL supports a char type, which represents an 8-bit quantity. The ISO Latin-1 (8859.1) charac-
ter set defines the meaning and representation of graphic characters. The meaning and
representation of null and formatting characters is the numerical value of the character as
definedin the ASCII (ISO 646) standard. Unlike C/C++, type char cannot be qualified as signed
or unsigned. (The octet type, below, can be used in place of unsigned char.)

IDL supports a boolean type for data items that can take only the values TRUE and FALSE.

IDL supports an octet type, an 8-bit quantity guaranteed not to undergo conversion when
transmitted by the communication system. The octet type can be used in place of the unsigned
char type.

IDL supports an any type, which permits the specification of values of any IDL type. In the SOM
C and C++ bindings, the any type is mapped onto the following struct:

typedef struct any {
TypeCode _type;
void *_value;

} any;

The “_value” member for an any type is a pointer to the actual value. The “_type” member is a
pointer to an instance of a TypeCode that represents the type of the value. The TypeCode
provides functions for obtaining information about an IDL type. Chapter 7, “The Interface
Repository Framework,” describes TypeCodes and their associated functions.

Constructed types

In addition to the above basic types, IDL also supports three constructed types: struct, union,
and enum. The structure and enumeration types are specified in IDL the same as they are in C
and C++ [Kernighan—Ritchie references: struct, p. 128; union, p. 147; enum, p. 39], with the
following restrictions:

Unlike C/C++, recursive type specifications are allowed only through the use of the se-
quence template type (see below).

Unlike C/C++, structures, discriminated unions, and enumerations in IDL must be tagged.
For example, “struct { int a; ... }” is an invalid type specification. The tag introduces a new
type name.

In IDL, constructed type definitions need not be part of a typedef statement; furthermore, if
they are part of a typedef statement, the tag of the struct must differ from the type name
being defined by the typedef. For example, the following are valid IDL struct and enum
definitions:

struct myStruct {
long x;
double vy;
}; /* defines type name myStruct */

enum colors { red, white, blue }; /* defines type name colors */

By contrast, the following IDL definitions are not valid:

typedef struct myStruct { /* NOT VALID */
long x;
double vy;
} myStruct; /* myStruct has been redefined */

typedef enum colors { red, white, blue } colors; /* NOT VALID */

SOM IDL and the SOM Compiler 4-5

The valid IDL struct and enum definitions shown above are translated by the SOM Compiler
into the following definitions in the C and C++ bindings, assuming they were declared within the
scope of interface “Hello”:

typedef struct Hello_myStruct { /* C/C++ bindings for IDL struct */
long x;
double vy;

} Hello_myStruct;

typedef unsigned long Hello_colors; /* C/C++ bindings for IDL enum
*/

#define Hello_red 1UL

#define Hello_white 2UL

#define Hello_blue 3UL

When an enumeration is defined within an interface statement for a class, then within C/C++
programs, the enumeration names must be referenced by prefixing the class name. For
example, if the colors enum, above, were defined within the interface statement for class Hello,
then the enumeration names would be referenced as Hello _red, Hello_white, and Hello_blue.
Notice the first identifier in an enumeration is assigned the value 1.

Note for Windows: Since returning structs may not be compatible across all compilers, client
programs should, in general, return an object that contains a struct. For more information, see
“General guidelines for class library designers” in Chapter 5, “Implementing Classes in SOM.”

All types and constants generated by the SOM Compiler are fully qualified. That is, prepended
to them is the fully qualified name of the interface or module in which they appear. For example,
consider the following fragment of IDL:

module M {
typedef long long_t;
module N {
typedef long long_t;
interface I {
typedef long long_t;
}i
bi
bi

That specification would generate the following three types:

typedef long M_long_t;
typedef long M_N_long_t;
typedef long M _N_T_ long_t;

For programmer convenience, the SOM Compiler also generates shorter bindings, without the
interface qualification. Consider the next IDL fragment:

module M {
typedef long long_t;
module N {
typedef short short_t;
interface I {
typedef char char_t;
}i
bi
bi

In the C/C++ bindings of the preceding fragment, you can refer to “M_long_t" as “long_t",
to “M_N_short_t” as “short_t”, and to “M_N_| char_t” as “char_t”. However, these shorter
forms are available only when their interpretation is not ambiguous. Thus, in the first example
the shorthand for “M_N_1_long_t” would not be allowed, since it clashes with “M_long_t” and
“M_N_long_t". If these shorter forms are not required, they can be ignored by setting #de-
fine SOM_DONT_USE_SHORT_NAMES before including the public header files, or by using the
SOM Compiler option -mnouseshort so that they are not generated in the header files.

4-6 SOMobjects Base Toolkit User’s Guide

In the SOM documentation and samples, both long and short forms are illustrated, for both type
names and method calls. It is the responsibility of each user to adopt a style according to
personal preference. It should be noted, however, that CORBA specifies that only the long forms
must be present.

Union type

IDL also supports a union type, which is a cross between the C union and switch statements.
The syntax of a union type declaration is as follows:

union identifier switch (switch—type)
{ case+}

The “identifier” following the union keyword defines a new legal type. (Union types may also be
named using a typedef declaration.) The “switch—type” specifies an integral, character, bool-
ean, or enumeration type, or the name of a previously defined integral, boolean, character, or
enumeration type. Each “case” of the union is specified with the following syntax:

case—label+ type—spec declarator ;

where “type-spec”is any valid type specification; “declarator” is an identifier, an array declarator
(suchas, foo[311[51), orapointer declarator (such as, * foo); and each “case-label” has one of
the following forms:

case const—expr:
default:

The “const-expr” is a constant expression that must match or be automatically castable to the
“switch-type”. A default case can appear no more than once.

Unions are mapped onto C/C++ structs. For example, the following IDL declaration:

union Foo switch (long) {
case 1: long x;
case 2: float y;
default: char z;

bi

is mapped onto the following C struct:

typedef Hello_struct ({
long _d;
union {
long x;
float y;
char z;
}o_u;
} Hello_foo;

The discriminator is referred to as “_d”, and the union in the struct is referred to as “_u”. Hence,
elements of the union are referenced just as in C:

Foo wv;

/* get a pointer to Foo in v: */
switch (v—=>_d) {

case 1: printf(”x = %$1d\n”, v->_u.x); break;
case 2: printf(”y = $f\n”, v->_u.y); break;
default: printf(”z = %c\n”, v->_u.z); break;

}

Note: This example is from The Common Object Request Broker: Architecture and Specifi-
cation, revision 1.1, page 90.

SOM IDL and the SOM Compiler 4-7

Template types (sequences and strings)
IDL defines two template types not found in C and C++: sequences and strings. A sequence is
a one-dimensional array with two characteristics: a maximum size (specified at compile time)
and a length (determined at run time). Sequences permit passing unbounded arrays between
objects. Sequences are specified as follows:

sequence < simple—type [, positive—integer—const] >

where “simple-type” specifies any valid IDL type, and the optional “positive-integer-const” is a
constant expression that specifies the maximum size of the sequence (as a positive integer).

Note: The “simple—type” cannot have a ’*’ directly in the sequence statement. Instead, a
typedef for the pointer type must be used. For example, instead of:

typedef sequence<long *> seq_ longptr; // Error: ’"*’ not allowed.
use:

typedef long * longptr;
typedef sequence<longptr> seq_longptr; // Ok.

In SOM’s C and C++ bindings, sequences are mapped onto structs with the following mem-
bers:

unsigned long _maximum;
unsigned long _length;
simple—type *_buffer;

where “simple-type” is the specified type of the sequence. For example, the IDL declaration

typedef sequence<long, 10> wveclO;

results in the following C struct:

#ifndef _IDL_SEQUENCE_long_defined
#define _IDL_SEQUENCE_long_defined
typedef struct {

unsigned long _maximum;

unsigned long _length;

long *_buffer;
} _IDL_SEQUENCE_long;
#endif /* _IDL_SEQUENCE_long_defined */
typedef _IDL_SEQUENCE_long veclO;

and an instance of this type is declared as follows:
veclO v = {10L, 0L, (long *)NULL};

The “_maximum” member designates the actual size of storage allocated for the sequence,
and the “_length” member designates the number of values contained in the “_buffer” member.
For bounded sequences, it is an error to set the “_length” or “_maximum” member to a value
larger than the specified bound of the sequence.

Before a sequence is passed as the value of an “in” or “inout” method parameter, the “_buffer”
member must point to an array of elements of the appropriate type, and the “_length” member
must contain the number of elements to be passed. (If the parameter is “inout” and the
sequence is unbounded, the “_maximum” member must also be set to the actual size of the
array. Upon return, “_length” will contain the number of values copied into “_buffer”, which must
be less than “_maximum”.) When a sequence is passed as an “out” method parameter or
received as the return value, the method procedure allocates storage for “_buffer” as needed,
the “_length” member contains the number of elements returned, and the “_maximum” member
contains the number of elements allocated. (The client is responsible for subsequently freeing
the memory pointed to by “ buffer”.)

C and C++ programs using SOM’s language bindings can refer to sequence types as:
_IDL_SEQUENCE_type

where “type” is the effective type of the sequence members. For example, the IDL type
sequence<long, 10> isreferred toina C/C++ program by the type name _1D1L_SEQUENCE_long.
If 1ongint is defined via atypedefto be type 1ong, thenthe IDL type sequence<longint, 10>is
also referred to by the type name _1D1,_SEQUENCE_long.

4-8 SOMobjects Base Toolkit User’s Guide

Arrays

Pointers

Object types

If the typedef is for a pointer type, then the effective type is the name of the pointer type. For
example, the following statements define a C/C++ type _IDL_SEQUENCE_longptr and not
_IDL_SEQUENCE_long:

typedef long * longptr;
typedef sequence<longptr> seq_longptr;

A string is similar to a sequence of type char. It can contain all possible 8-bit quantities except
NULL. Strings are specified as follows:
string [< positive—integer—const >]

where the optional “positive-integer-const” is a constant expression that specifies the maximum
size of the string (as a positive integer, which does not include the extra byte to hold a NULL as
required in C/C++). In SOM’s C and C++ bindings, strings are mapped onto zero-byte termi-
nated character arrays. The length of the string is encoded by the position of the zero-byte. For
example, the following IDL declaration:

typedef string<10> foo;

is converted to the following C/C++ typedetf:
typedef char *foo;

A variable of this type is then declared as follows:

foo s = (char *) NULL;

C and C++ programs using SOM’s language bindings can refer to string types by the type name
string.

When an unbounded string is passed as the value of an “inout” method parameter, the returned
value is constrained to be no longer than the input value. Hence, using unbounded strings as
“‘inout” parameters is not advised.

Multidimensional, fixed-size arrays can be declared in IDL as follows:
identifier { [positive—integer—const] }+

where the “positive-integer-const” is a constant expression that specifies the array size, in each
dimension, as a positive integer. The array size is fixed at compile time.

Although the CORBA standard for IDL does not include them, SOM IDL offers pointer types.
Declarators of a pointer type are specified as in C and C++:

type *declarator

where “type” is a valid IDL type specification and “declarator” is an identifier or an array
declarator.

The name of the interface to a class of objects can be used as a type. For example, if an IDL
specification includes an interface declaration (described below) for a class (of objects) “C1”,
then “C1” can be used as a type name within that IDL specification. When used as a type, an
interface name indicates a pointer to an object that supports that interface. An interface name
can be used as the type of a method argument, as a method return type, or as the type of a
member of a constructed type (a struct, union, or enum). In all cases, the use of an interface
name implicitly indicates a pointer to an object that supports that interface.

As explained in Chapter 3, SOM’s C usage bindings for SOM classes also follow this conven-
tion. However, within SOM’s C++ bindings, the pointer is made explicit, and the use of an
interface name as a type refers to a class instance itself, rather than a pointer to a class
instance. For example, to declare a variable “myobj” that is a pointer to an instance of class
“Foo” in an IDL specification and in a C program, the following declaration is required:

Foo myobij;

SOM IDL and the SOM Compiler 4-9

However, in a C++ program, the following declaration is required:
Foo *myobij;

If a C programmer uses the SOM Compiler option —maddstar, then the bindings generated for
C will also require an explicit ‘*” in declarations. Thus,

Foo myobj; in IDL requires
Foo *myobi; in both C and C++ programs.

This style of bindings for C is permitted for two reasons:

« |t more closely resembles the bindings for C++, thus making it easier to change to the C++
bindings at a later date; and

« ltis required for compatibility with existing SOM OIDL code.

Note: The same C and C++ binding emitters should not be run in the same SOM Compiler
command. For example,

sc "-sh;xh"” cls.idl // Not wvalid.

If you wish to generate both C and C++ bindings, you should issue the commands separately:

sc —-sh cls.idl
sc —sxh cls.idl

Exception declarations

IDL specifications may include exception declarations, which define data structures to be
returned when an exception occurs during the execution of a method. (IDL exceptions are
implemented by simply passing back error information after a method call, as opposed to the
“catch/throw” model where an exception is implemented by a long jump or signal.) Associated
with each type of exception is a name and, optionally, a struct-like data structure for holding
error information. Exceptions are declared as follows:

exception identifier { member* };
The “identifier” is the name of the exception, and each “member” has the following form:
type—spec declarators ;

where “type-spec” is a valid IDL type specification and “declarators” is a list of identifiers, array
declarators, or pointer declarators, delimited by commas. The members of an exception struc-
ture should contain information to help the caller understand the nature of the error. The
exception declaration can be treated like a struct definition; that is, whatever you can access in
an IDL struct, you can access in an exception declaration. Alternatively, the structure can be
empty, whereby the exception is just identified by its name.

If an exception is returned as the outcome of a method, the exception “identifier” indicates
which exception occurred. The values of the members of the exception provide additional
information specific to the exception. The topic “Method declarations” below describes how to
indicate that a particular method may raise a particular exception, and Chapter 3, “Using SOM
Classes in Client Programs,” describes how exceptions are handled, in the section entitled
“Exceptions and error handling.”

Following is an example declaration of a “BAD_FLAG” exception:

exception BAD_FLAG { long ErrCode; char Reason[80]; };

The SOM Compiler will map the above exception declaration to the following C language
constructs:

#define ex_BAD_FLAG ”"::BAD_FLAG”
typedef struct BAD_FLAG {

long ErrCode;

char Reason[80];
} BAD_FLAG;

4-10 SOMobjects Base Toolkit User’s Guide

Thus, the ex_BAD_FLAG symbol can be used as a shorthand for naming the exception.
An exception declaration within an interface “Hello”, such as this:

interface Hello {
exception LOCAL_EXCEPTION { long ErrCode; };
}i

would map onto:

#define ex_Hello_ LOCAL_EXCEPTION ”::Hello::LOCAL_EXCEPTION”
typedef struct Hello_LOCAL_EXCEPTION ({
long ErrCode;
} Hello_LOCAL_EXCEPTION;
#define ex_LOCAL_EXCEPTION ex_Hello_ LOCAL_EXCEPTION

In addition to user-defined exceptions, there are several predefined exceptions for system
run-time errors. The standard exceptions as prescribed by CORBA are shown in Table 2. These
exceptions correspond to standard run-time errors that may occur during the execution of any
method (regardless of the list of exceptions listed in its IDL specification).

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO_MEMORY
standard exception has the following definition:

enum completion_status {YES, NO, MAYBE};
exception NO_MEMORY { unsigned long minor;
completion_status completed; };

The “completion_status” value indicates whether the method was never initiated (NO), com-
pleted its execution prior to the exception (YES), or the completion status is indeterminate
(MAYBE).

Since all the standard exceptions have the same structure, somcorba.h (included by som.h)
defines a generic StExcep typedef which can be used instead of the specific typedefs:

typedef struct StExcep {
unsigned long minor;
completion_status completed;
} StExcep;

The standard exceptions shown in Table 2 are defined in an IDL module called StExcep, in the
file called stexcep.idl, and the C definitions can be found in stexcep.h.

Interface declarations

The IDL specification for a class of objects must contain a declaration of the interface these
objects will support. Because, in SOM, objects are implemented using classes, the interface
name is always used as a class name as well. Therefore, an interface declaration can be
understood to specify a class name, and its parent (direct base) class names. This is the
approach used in the following description of an interface declaration. In addition to the class
name and its parents names, an interface indicates new methods (operations), and any
constants, type definitions, and exception structures that the interface exports. An interface
declaration has the following syntax:

interface class—name [: parent—class1, parent—class2, ...]

{

constant declarations (optional)
type declarations (optional)
exception declarations (optional)
attribute declarations (optional)
method declarations (optional)
implementation statement (optional)
b

SOM IDL and the SOM Compiler 4-11

Table 2. STANDARD EXCEPTIONS DEFINED BY CORBA

module StExcep {
#define ex_body { unsigned long minor; completion_status completed; }
enum completion_status { YES, NO, MAYBE };
enum exception_type {NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION};
exception UNKNOWN ex_body; //the unknown exception
exception BAD_PARAM ex_body; // aninvalid parameter was passed
exception NO_MEMORY ex_body; // dynamic memory allocation failure
exception IMP_LIMIT ex_body; // violated implementation limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // error marshalling param/result
exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // op. implementation unavailable
exception BAD_TYPECODE ex_body; // bad typecode
exception BAD_OPERATION ex_body; //invalid operation
exception NO_RESOURCES ex_body; // insufficient resources for request
exception NO_RESPONSE ex_body; // response to req. not yet available
exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations out of order
exception TRANSIENT ex_body; //transient failure — reissue request
exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
exception INTF_REPOS ex_body; // error accessing interface repository
exception CONTEXT ex_body; // error processing context object
exception OBJ_ADAPTER ex_body; // failure detected by object adapter
exception DATA_CONVERSION ex_body; // data conversion error

b

Many class implementors distinguish a “class-name” by using an initial capital letter, but that is
optional. The “parent-class” (or base-class) names specify the interfaces from which the
interface of “class-name” instances is derived. Parent-class names are required only for the
immediate parent(s). Each parent class must have its own IDL specification (which must be
#included in the subclass’s .idl file). A parent class cannot be named more than once in the
interface statement header.

Note: In general, an “interface <className>" header must precede any subsequent imple-
mentation that references <className>. For more discussion of multiple interface state-
ments, refer to the later topic “Defining multiple interfaces in a .idl file.”

The following topics describe the various declarations/statements that can be specified within
the body of an interface declaration. The order in which these declarations are specified is
usually optional, and declarations of different kinds can be intermixed. Although all of the
declarations/statements are listed above as “optional,” in some cases using one of them may
mandate another. For example, if a method raises an exception, the exception structure must
be defined beforehand. In general, types, constants, and exceptions, as well as interface
declarations, must be defined before they are referenced, as in C/C++.

4-12 SOMobjects Base Toolkit User’s Guide

Constant, type, and exception declarations

The form of a constant, type, or exception declaration within the body of an interface
declaration is the same as described previously in this chapter. Constants and types defined
within an interface for a class are transferred by the SOM Compiler to the binding files it
generates for that class, whereas constants and types defined outside of an interface are not.

Global types (such as, those defined outside of an interface and module) can be emitted by
surrounding them with the following #pragmas:

#fpragma somemittypes on
typedef sequence <long, 10> veclO;
exception BAD_FLAG { long ErrCode; char Reason[80]; 1};
typedef long long_t;

#fpragma somemittypes off

Types, constants, and exceptions defined in a parent class are also accessible to the child
class. References to them, however, must be unambiguous. Potential ambiguities can be
resolved by prefacing a name with the name of the class that defines it, separated by the
characters “::” as illustrated below:

MyParentClass: :myType

The child class can redefine any of the type, constant, and exception names that have been
inherited, although this is not advised. The derived class cannot, however, redefine attributes
or methods. It can only replace the implementation of methods through overriding (as in
example 3 of the Tutorial). To refer to a constant, type, or exception “name” defined by a
parent class and redefined by “class-name,” use the “parent-name::name” syntax as before.

Note: A name reference such as MyParentClass: :myType required in IDL syntax is equiva-
lent to MyParentClass_myType in G/C++. For a full discussion of name recognition in SOM,
see “Scoping and name resolution” later in this chapter.

Attribute declarations

Declaring an attribute as part of an interface is equivalent to declaring two accessor methods:
one to retrieve the value of the attribute (a “get” method, named “_get_<attributeName>") and
one to set the value of the attribute (a “set” method, named “_set_<attributeName>").

Attributes are declared as follows:
[readonly]| attribute fype—spec declarators ;

where “type-spec” specifies any valid IDL type and “declarators” is a list of identifiers or pointer
declarators, delimited by commas. (An array declarator cannot be used directly when declaring
an attribute, but the type of an attribute can be a user-defined type that is an array.) The
optional readonly keyword specifies that the value of the attribute can be accessed but not
modified by client programs. (In other words, a readonly attribute has no “set” method.) Below
are examples of attribute declarations, which are specified within the body of an interface
statement for a class:

interface Goodbye: Hello, SOMObject

{
void sayByel();

attribute short xpos;

attribute char cl, c2;

readonly attribute float xyz;
}i

The preceding attribute declarations are equivalent to defining the following methods:

short _get_xpos();

void _set_xpos(in short xpos);
char _get_cl();

void _set_cl(in char cl);

char _get_c2();

void _set_c2(in char c2);

float _get_xyz();

SOM IDL and the SOM Compiler 4-13

Note: Although the preceding attribute declarations are equivalent to the explicit method
declarations above, these method declarations are notlegal IDL, because the method names
begin with an *_". All IDL identifiers must begin with an alphabetic character, not including *_".

Attributes are inherited from ancestor classes (indirect base classes). An inherited attribute
name cannot be redefined to be a different type.

Method (operation) declarations

Method (operation) declarations define the interface of each method introduced by the class. A
method declaration is similar to a C/C++ function definition:

[oneway | type—spec identifier (parameter—list) [raises—expr] [context—expr];

where “identifier” is the name of the method and “type-spec” is any valid IDL type (or the
keyword void, indicating that the method returns no value). Unlike C and C++ procedures,
methods that do not return a result must specify void as their return type. The remaining syntax
of a method declaration is elaborated in the following subtopics.

Note: Although IDL does not allow methods to receive and return values whose type is a pointer
to a function, it does allow methods to receive and return method names (as string values).
Thus, rather than defining methods that pass pointers to functions (and that subsequently
invoke those functions), programmers should instead define methods that pass method names
(and subsequently invoke those methods using one of the SOM-supplied method-dispatching
or method-resolution methods or functions, such as somDispatch).

Oneway keyword
The optional oneway keyword specifies that when a client invokes the method, the invocation
semantics are “best-effort”, which does not guarantee delivery of the call. “Best-effort” implies
that the method will be invoked at most once. A oneway method should not have any output
parameters and should have a return type of void. A oneway method also should not include a
“raises expression” (see below), although it may raise a standard exception.

If the oneway keyword is not specified, then the method has “at-most-once” invocation seman-
tics if an exception is raised, and it has “exactly-once” semantics if the method succeeds. This
means that a method that raises an exception has been executed zero or one times, and a
method that succeeds has been executed exactly once.

Note: Currently the “oneway” keyword, although accepted, has no effect on the C/C++ bind-
ings that are generated.

Parameter list
The “parameter-list” contains zero or more parameter declarations for the method, delimited by
commas. (The target object for the method is not explicitly specified as a method parameter in
IDL, nor are the Environment or Context parameters.) If there are no explicit parameters, the
syntax “()” must be used, rather than “(void)”. A parameter declaration has the following syntax:

{in|out | inout} type—spec declarator

where “type-spec” is any valid IDL type and “declarator” is an identifier, array declarator, or
pointer declarator.

In, out, inout parameters: The required in|out|inout directional attribute indicates whether
the parameter is to be passed from client to server (in), from server to client (out), or in both
directions (inout). A method must not modify an in parameter. If a method raises an exception,
the values of the return result and the values of the out and inout parameters (if any) are
undefined. When an unbounded string or sequence is passed as an inout parameter, the
returned value must be no longer than the input value.

The following are examples of valid method declarations in SOM IDL:

short methl (in char ¢, out float f);
oneway void meth2 (in char c);
float meth3();

4-14 SOMobjects Base Toolkit User’s Guide

Classes derived from SOMODbject can declare methods that take a pointer to a block of
memory containing a variable number of arguments, using a final parameter of type va_list.
The va_list must use the parameter name “ap”, as in the following example:

void MyMethod (in short numArgs, in va_list ap);

For in parameters of type array, C and C++ clients must pass the address of the first element of
the array. For in parameters of type struct, union, sequence or any, C/C++ clients must pass
the address of a variable of that type, rather than the variable itself.

For all IDL types except arrays, if a parameter of a method is out or inout, then C/C++ clients
must pass the address of a variable of that type (or the value of a pointer to that variable) rather
than the variable itself. (For example, to invoke method “meth1” above, a pointer to a variable of
type float must be passed in place of parameter “”.) For arrays, C/C++ clients must pass the
address of the first element of the array.

If the return type of a method is a struct, union, sequence, or any type, then for C/C++ clients,
the method returns the value of the C/C++ struct representing the IDL struct, union, se-
quence, or any. If the return type is string, then the method returns a pointer to the first
character of the string. If the return type is array, then the method returns a pointer to the first
element of the array.

The pointers implicit in the parameter types and return types for IDL method declarations are
made explicit in SOM’s C and C++ bindings. Thus, the stub procedure that the SOM Compiler
generates for method “meth1”, above, has the following signature:

SOM_Scope short SOMLINK methl (char c, float *f)

For C and C++ clients, if a method has an out parameter of type string, sequence, or any, then
the method must allocate the storage for the string, for the “_buffer” member of the struct that
represents the sequence, or for the “_value” member of the struct that represents the any. It is
then the responsibility of the client program to free the storage when it is no longer needed.
Similarly, if the return type of a method is string, sequence, any, or array, then storage must be
allocated by the method, and the client program is responsible for subsequently freeing it.

Note: The foregoing description also applies for the _get_<attributeName> method associated
with an attribute of type string, sequence, any, or array. Hence, the attribute should be
specified with a “noget” modifier to override automatic implementation of the attribute’s “get”
method. Then, needed memory can be allocated by the developer’s “get” method implementa-
tion and subsequently deallocated by the caller. (The “noget” modifier is described under the

topic “Modifier statements” later in this section.)

Raises expression
The optional raises expression (“raises-expr”) in a method declaration indicates which excep-
tions the method may raise. (IDL exceptions are implemented by simply passing back error
information after a method call, as opposed to the “catch/throw” model where an exception is
implemented by a long jump or signal.) A raises expression is specified as follows:

raises (identifier1, identifier2, ...")

where each “identifier” is the name of a previously defined exception. In addition to the
exceptions listed in the raises expression, a method may also signal any of the standard
exceptions. Standard exceptions, however, should not appear in a raises expression. If no
raises expression is given, then a method can raise only the standard exceptions. (See the
earlier topic “Exception declarations” for information on defining exceptions and for the list of
standard exceptions. See Chapter 3, the section entitled “Exceptions and error handling,” for
information on using exceptions.)

SOM IDL and the SOM Compiler 4-15

Context expression
The optional context expression (“context-expr”) in a method declaration indicates which
elements of the client’s context the method may consult. A context expression is specified as
follows:

context (identifier1, identifier2, ...)

where each “identifier” is a string literal made up of alphanumeric characters, periods, under-
scores, and asterisks. (The first character must be alphabetic, and an asterisk can only appear
as the last character, where it serves as a wildcard matching any characters. If convenient,
identifiers may consist of period-separated valid identifier names, but that form is optional.)

The Context is a special object that is specified by the CORBA standard. It contains a property
list— a set of property-name/string-value pairs that the client can use to store information about
its environment that methods may find useful. It is used in much the same way as environment
variables. It is passed as an additional (third) parameter to CORBA-compliant methods that are
defined as “context-sensitive” in IDL, along with the CORBA-defined Environment structure.

The context expression of a method declaration in IDL specifies which property names the
method uses. If these properties are present in the Context object supplied by the client, they
will be passed to the object implementation, which can access them via the get_values method
of the Context object. However, the argument that is passed to the method having a context
expression is a Context object, not the names of the properties. The client program must either
create a Context object and use the set_values or set_one_value method of the Context
class to set the context properties, or use the get_default_context method. The client program
then passes the Context object in the method invocation. Note that the CORBA standard also
allows properties in addition to those in the context expression to be passed in the Context
object.

In Chapter 3, “Using SOM Classes in Client Programs,” the topic “Invoking Methods” describes
the placement of a context parameter in a method call. See also chapter 6 of The Common
Object Request Broker: Architecture and Specificationfor a discussion of how clients associate
values with context identifiers. A description of the Context class and its methods is contained
in the SOMobjects Developer Toolkit: Programmers Reference Manual.

Implementation statements

A SOM IDL interface statement for a class may contain an implementation statement, which
specifies information about how the class will be implemented (version numbers for the class,
overriding of inherited methods, what resolution mechanisms the bindings for a particular
method will support, and so forth). If the implementation statement is omitted, default informa-
tion is assumed.

Because the implementation statement is specific to SOM IDL (and is not part of the CORBA
standard), the implementation statement should be preceded by an “#ifdef _ _SOMIDL_ _”
directive and followed by an “#endif” directive. (See Example 3 in the SOM IDL Tutorial
presented earlier.)

The syntax for the implementation statement is as follows:

#ifdef _ SOMIDL__
implementation

{

b

#endif
where each “implementation” can be a modifier statement, a passthru statement, or a
declarator of an instance variable, terminated by a semicolon. These constructs are described
below. An interface statement may not contain multiple implementation statements.

implementation*

Modifier statements
A modifier statement gives additional implementation information about IDL definitions, such
as interfaces, attributes, methods, and types. Modifiers can be unqualified or qualified.

4-16 SOMobjects Base Toolkit User’s Guide

An unqualified modifier is associated with the interface it is defined in. An unqualified modifier
statement has the following two syntactic forms:

modifier
modifier = value

where “modifier” is either a SOM Compiler-defined identifier or a user-defined identifier, and
where “value” is an identifier, a string enclosed in double quotes (“”), or a number.

For example:

filestem = foo;

nodata;

persistent;

dllname = "E:/som/dlls”;

A qualified modifier is associated with a qualifier. The qualified modifier has the syntax:

qualifier : modifier

qualifier : modifier = value

#pragma modifier qualifier : modifier
#pragma modifier qualifier : modifier = value

where “qualifier” is the identifier of an IDL definition or is user defined. If the “qualifier” is an IDL
definition introduced in the current interface, module, or global scope, then the modifier is
attached to that definition. Otherwise, if the qualifier is user defined, the modifier is attached to
the interface it occurs in. If a user-defined modifier is defined outside of an interface body (by
using #pragma modifier), then it is ignored.

For example, consider the following IDL file. (Notice that qualified modifiers can be defined with
the “qualifier” and “modifier[=value]” in either order. Also observe that additional modifiers can
be included by separating them with commas.)

#include <somobj.idl>
#include <somcls.idl>

typedef long newlInt;
#pragma somemittypes on
#pragma modifier newInt : nonportable;
#pragma somemittypes off
module M {
typedef long long_t;
module N {
typedef short short_t;
interface M_I : SOMClass ({
implementation {
somInit : override;
}i
}i
interface I : SOMObiject {
void op ();
#pragma modifier op : persistent;
typedef char char_t;
implementation {
releaseorder : op;
metaclass = M_1I;
callstyle = oidl;
mymod : a, b;
mymod : c, d;
e : mymod;
f : mymod;
op : persistent;

}i

SOM IDL and the SOM Compiler 4-17

From the preceding IDL file, modifiers are associated with the following definitions:

TypeDef ”::newlInt”
InterfaceDef "::M::N::M_1I” 1 modifier: override = somInit
InterfaceDef ”::M::N::I1"” 9 modifiers: metaclass = M_I,

1 modifier: nonportable

releaseorder = op
callstyle = oidl
mymod = a,b,c,d,e, f
= mymod

= mymod

= mymod

= mymod

= mymod

= mymod

O QOO

OperationDef ”::M::N::I::0p” 1 modifier: persistent

Notice how the modifiers for the user-defined qualifier “mymod”:

mymod :
mymod :
e
f

map onto:

mymod =

DO Q Q0w

a, b;
c, d;

: mymod;
: mymod;

a,b,c,d,e, f
mymod
mymod
mymod
mymod
mymod
mymod

This enables users to look up the modifiers with “mymod”, either by looking for “mymod” or by
using each individual value that uses “mymod”. These user-defined modifiers are available for
Emitter writers (see the Emitter Framework Guide and Reference) and from the Interface
Repository (see Chapter 7, “The Interface Repository Framework”).

SOM Compiler unqualified modifiers

Unqualified modifiers (described below) include the SOM Compiler-defined identifiers: ab-
stract, baseproxyclass, callstyle, classinit, directinitclasses, dllname, filestem, func-
tionprefix, majorversion, metaclass, memory_management, minorversion, somallo-
cate, and somdeallocate.

abstract

baseproxyclass = class —

callstyle = oidl

classinit = procedure —

4-18 SOMobjects Base Toolkit User’s Guide

Specifies that the class is intended for use as a parent for
subclass derivations, but not for creating instances.

Specifies the base proxy class to be used by DSOM when
dynamically creating a proxy class for the current class.
The base proxy class must be derived from the class
SOMDClientProxy. The SOMDClientProxy class will be
used if the baseproxyclass modifier is unspecified. (See
Chapter 6, “Distributed SOM,” for a discussion on custom-
izing proxy classes.)

Specifies that the method stub procedures generated by
SOM’s C/C++ bindings will not include the CORBA-specifie-
d (Environment *ev) and (context *ctx) parameters.

Specifies a user-written procedure that will be executed to
initialize the class object when itis created. If the classinit
modifier is specified in the .idl file for a class, the SOM
Compiler will provide a template for the procedure in the
implementation file it generates. The class implementor
can then fill in the body of this procedure template.

directinitclasses = “ancestor1, ancestor2, ...”

dllname = filename

filestem = stem

functionprefix = prefix

majorversion = number

Specifies the ancestor class(es) whose initializers (and
destructors) will be directly invoked by this class’s initializa-
tion (and destruction) routines. If this modifier is not explic-
itly specified, the default setting is the parents of the class.
For further information, see “Initializing and Uninitializing
Objects” in Chapter 5, “Implementing Classes in SOM.”

Specifies the name of the library file that will contain the
class’s implementation. If filename contains special char-
acters (e.g., periods, backslashes), then filename should
be surrounded by double quotes (). The filename speci-
fied can be either a full pathname, or an unqualified (or
partially qualified) filename. In the latter cases, the environ-
ment variable LIBPATH (on AIX or OS/2) or PATH (on
Windows) is used to locate the file.

Specifies how the SOM Compiler will construct file names
for the binding files it generates (<stemx>.h, <stems.c,
etc.). The default stem is the file stem of the .idl file for the
class.

Directs the SOM Compiler to construct method-procedure
names by prefixing method names with “prefix”. For exam-
ple, “functionprefix = xx;” within an implementation state-
mentwould resultin a procedure name of xx foo for method
foo. The default for this attribute is the empty string. If an
interface is defined in a module, then the default func-
tion prefix is the fully scoped interface name. Tip: Us-
ing a function prefix with the same name as the class
makes it easier to remember method-procedure names
when debugging.

When an .idl file defines multiple interfaces not contained
within a module, use of a function prefix for each interface
is essential to avoid name collisions. For example, if one
interface introduces a method and another interface in the
same .idl file overrides it, then the implementation file for
the classes will contain two method procedures of the
same name (unless function prefixes are defined for one of
the classes), resulting in a name collision at compile time.

Specifies the major version number of the current class
definition. The major version number of a class definition
usually changes only when a significant enhancement or
incompatible change is made to the class. The “number”
must be a positive integer less than 231-1. If a non-zero
major version number is specified, SOM will verify that any
code that purports to implement the class has the same
major version number. The default major version numberis
zero.

memory_management = corba

Specifies that all methods introduced by the class follow
the CORBA specification for parameter memory manage-
ment, except where a particular method has an explicit
modifier indicating otherwise (either “object_owns_result”
or “object_owns_parameters”). See the section in Chapter
6 entitled “Memory Management” for a discussion of the
CORBA memory-management requirements.

SOM IDL and the SOM Compiler 4-19

metaclass = class — Specifies the class’s metaclass. The specified metaclass
(or one automatically derived from it at run time) will be
used to create the class object for the class. If a metaclass
is specified, its .idl file (if separate) must be included in the
include section of the class’s .idl file. If no metaclass is
specified, the metaclass will be defined automatically.

minorversion = number — Specifies the minor version number of the current class
definition. The minor version number of a class definition
changes whenever minor enhancements or fixes are made
to a class. Class implementors usually maintain backward
compatibility across changes in the minor version number.
The “number” must be a positive integer less than 231—1. If
a non-zero minor version number is specified, SOM will
verify that any code that purports to implement the class
has the same or a higher minor version number. The de-
fault minor version number is zero.

somallocate = procedure — Specifies a user-written procedure that will be executed
to allocate memory for class instances when the somAl-
locate class method is invoked.

somdeallocate = procedure
— Specifies a user-written procedure that will be executed to
deallocate memory for class instances when the som-
Deallocate class method is invoked.

The following exampile illustrates the specification of unqualified interface modifiers:

implementation

{
filestem = hello;
functionprefix = hel;
majorversion = 1;
minorversion = 2;
classinit = hellolInit;
metaclass = M_Hello;

}i

SOM Compiler qualified modifiers

Qualified modifiers are categorized according to the IDL component (class, attribute, method,
or type) to which each modifier applies. Listed below are the SOM Compiler-defined identifiers
used as qualified modifiers, along with the IDL component to which it applies. Descriptions of all
qualified modifiers are then given in alphabetical order. Recall that qualified modifiers are
defined using the syntax qualifier : modifier{=value].

For classes:
releaseorder

For attributes:
indirect, nodata, noget, noset, and persistent

For methods:
caller_owns_parameters, caller_owns_result,
const, init, method, migrate, nhamelookup,
nocall, noenv, nonstatic, nooverride, noself,
object_owns_parameters, object_owns_result,
offset, override, procedure, reintroduce, and select

For variables:
staticdata

For types:
impctx

4-20 SOMobjects Base Toolkit User’s Guide

The following paragraphs describe each qualified modifier.

caller_owns_parameters = “p1, p2, ..., pn”

caller_owns_result

const

impctx

indirect

init

— Specifies the names of the method’s parameters whose

ownership is retained by (in the case of “in” parameters) or
transferred to (for “inout” or “out” parameters) the caller.
This modifier is only valid in the interface specification of
the method’s introducing class. This modifier only makes
sense for parameters whose IDL type is a data item that
can be freed (string, object, array, pointer, or TypeCode),
or a data item containing memory that can be freed (for
example, a sequence or any), or a struct or union.

For parameters whose type is an object, ownership applies
to the object reference rather than to the object (that is, the
caller should invoke release on the parameter, rather than
somFree).

Specifies that ownership of the return result of the method
is transferred to the caller, and that the caller is responsible
for freeing the memory. This modifier is only valid in the
interface specification of the method’s introducing class.
This modifier only makes sense when the method’s return
type is a data type that can be freed (string, object, array,
pointer, or TypeCode), or a data item containing memory
that can be freed (for example, a sequence or any). For
methods that return an object, ownership applies to the
object reference rather than to the object (that is, the caller
should invoke release on the result, rather than somFree).

Indicates that implementations of the related method
should not modify their target argument. SOM provides no
way to verify or guarantee that implementations do not
modify the targets of such methods, and the information
provided by this modifier is not currently of importance to
any of the Toolkit emitters. However, the information may
prove useful in the future. For example, since modifiers are
available in the Interface Repository, there may be future
uses of this information by DSOM.

Supports types that cannot be fully defined using IDL. For
full information, see “Using the tk_foreign TypeCode” in
Chapter 7, “The Interface Repository Framework.”

Directs the SOM Compiler to generate “get” and “set”
methods for the attribute that take and return a pointer to
the attribute’s value, rather than the attribute value itself.
For example, if an attribute x of type float is declared to be
an indirect attribute, then the “_get_x” method will return a
pointer to a float, and the inputto the “_set_x” method must
be a pointer to a float. (This modifier is provided for OIDL
compatibility only.)

Indicates that a method is an initializer method. For in-
formation concerning the use of this modifier, see “Initializ-
ing and Uninitializing Objects” in Chapter 5, “Implementing
Classes in SOM.”

SOM IDL and the SOM Compiler 4-21

method or nonstatic or procedure

migrate = ancestor

namelookup
nocall

nodata

noenv

noget

nonstatic
nooverride

noself

noset

4-22 SOMobjects Base Toolkit User’s Guide

— Indicates the category of method implementation. Refer to

the topic “The four kinds of SOM methods” in Chapter 5,
“Implementing Classes in SOM,” for an explanation of the
meanings of these different method modifiers. If none of
these modifiers is specified, the default is method. Meth-
ods with the procedure modifier cannot be invoked re-
motely using DSOM.

Indicates that a method originally introduced by this inter-
face has been moved upward to a specified <ancestor>
interface. When this is done, the method introduction must
be removed from this interface (because the method is
now inherited). However, the original releaseorder entry
for the method should be retained, and migrate should be
used to assure that clients compiled based on the original
interface will not require recompilation. The ancestor inter-
face is specified using a C—scoped interface name. For
example, “Module_InterfaceName”, not “Module::Inter-
faceName”. See the later topic “Name usage in client pro-
grams” for an explanation of C-scoped names.

See “offset or namelookup.”

Specifies that the related method should not be invoked on
an instance of this class even though it is supported by the
interface.

Directs the SOM Compiler not to define an instance vari-
able corresponding to the attribute. For example, a “time”
attribute would not require an instance variable to maintain
its value, because the value can be obtained from the
operating system. The “get” and “set” methods for “noda-
ta” attributes must be defined by the class implementor;
stub method procedures for them are automatically gener-
ated in the implementation template for the class by the
SOM Compiler.

Indicates that a direct-call procedure does not receive an
environment as an argument.

Directs the SOM Compiler not to automatically generate a
“get” method procedure for the attribute in the .ih/.xih bind-
ing file for the class. Instead, the “get” method must be
implemented by the class implementor. A stub method
procedure for the “get” method is automatically generated
in the implementation template for the class by the SOM
Compiler, to be filled in by the implementor.

See “method or nonstatic or procedure.”

Indicates that the method should not be overridden by
subclasses. The SOM Compiler will generate an error if
this method is overridden.

Indicates that a direct-call procedure does not receive a
target object as an argument.

Directs the SOM Compiler not to automatically generate a
“set” method procedure for the attribute in the .ih/.xih bind-
ing file for the class. Instead, the “set” method must be
implemented by the class implementor. A stub method
procedure for the “set” method is automatically generated
in the implementation template for the class by the SOM
Compiler.

Note: The “set” method procedure that the SOM Compiler
generates by default for an attribute in the .h/.xh binding file
(when the noset modifier is not used) does a shallow copy
of the value that is passed to the attribute. For some attrib-
ute types, including strings and pointers, this may not be
appropriate. For instance, the “set” method for an attribute
of type string should perform a string copy, rather than a
shallow copy, if the attribute’s value may be needed after
the client program has freed the memory occupied by the
string. In such situations, the class implementor should
specify the noset attribute modifier and implement the
attribute’s “set” method manually, rather than having SOM
implement the “set” method automatically.

object_owns_parameters = “p1, p2, ..., pn”

— Specifies the names of the method’s parameters whose
ownership is transferred to (in the case of “in” parameters)
or is retained by (for “inout” or “out” parameters) the object.

For “in” parameters, the object can free the parameter at

any time after receiving it. (Hence, the caller should not
reuse the parameter or pass it as any other object-owned
parameter in the same method call.) For “inout” and “out”
parameters, the object is responsible for freeing the pa-
rameter sometime before the object is destroyed. This
modifier is only valid in the interface specification of the
method’s introducing class. This modifier only makes
sense for parameters whose IDL type is a data item that
can be freed (string, object, array, pointer, or TypeCode),
or a data item containing memory that can be freed (for
example, a sequence or any), or a struct or union.

For parameters whose type is an object, ownership applies
to the object reference rather than to the object (that s, the
object will invoke release on the parameter, rather than
somFree). For “in” and “out” parameters whose IDL-to-
C/C++ mapping introduces a pointer, ownership applies
only to the data item itself, and not to the introduced point-
er. (For example, even if an “out string” IDL parameter
(which becomes a “string *” C/C++ parameter) is desig-
nated as “object-owned,” the object assumes ownership of
the string, but not of the pointer to the string.)

object_owns_result — Specifies that the object retains ownership of the return
result of the method, and that the caller must not free the
memory. The object is responsible for freeing the memory
sometime before the object is destroyed. This modifier is
only valid in the interface specification of the method’s
introducing class. This modifier only makes sense when
the method’s return type is a data type that can be freed
(string, object, array, pointer, or TypeCode), or a data item
containing memory that can be freed (for example, a se-
quence or any). For methods that return an object, owner-
ship applies to the object reference rather than to the object
(that is, the object will be responsible for invoking release
on the result, rather than somFree).

SOM IDL and the SOM Compiler 4-23

offset or namelookup

override

persistent

procedure

reintroduce

releaseorder: a, b, ¢, ...

4-24 SOMobjects Base Toolkit User’s Guide

— Indicates whether the SOM Compiler should generate

bindings for invoking the method using offset resolution or
name lookup. Offset resolution requires that the class of
the method’s target object be known at compile time. When
different methods of the same name are defined by several
classes, namelookup is a more appropriate technique for
method resolution than is offset resolution. (See Chapter 3,
the section entitled “Invoking Methods.”) The default modi-
fier is offset.

Indicates that the method is one introduced by an ancestor
class and that this class will re-implement the method. See
also the related modifier, select.

Indicates a persistent attribute of a persistent object. (See
Chapter 8, “Persistence Framework,” for a discussion of
persistent objects.)

See “method or nonstatic or procedure.”

Indicates that this interface will “hide” a method introduced
by some ancestor interface, and will replace it with another
implementation. Methods introduced as direct-call proce-
dures or nonstatic methods can be reintroduced. Howev-
er, static methods (the default implementation category for
SOM methods) cannot be reintroduced.

Specifies the order in which the SOM Compiler will place
the class’s methods in the data structures it builds to repre-
sent the class. Maintaining a consistent release order for a
class allows the implementation of a class to change with-
out requiring client programs to be recompiled.

The release order should contain every method name
introduced by the class (private and nonprivate), but
should not include any inherited methods, even if they are
overridden by the class. The “get” and “set” methods
defined automatically for each new attribute (named
“_get_<attributeName>" and *“_set <attributeName>”)
should also be included in the release order list. The order
of the names on the list is unimportant except that once a
name is on the list and the class has client programs, it
should not be reordered or removed, even if the method is
no longer supported by the class, or the client programs will
require recompilation. New methods should be added only
to the end of the list. If a method named on the list is to be
moved up in the class hierarchy, its name should remain on
the current list, but it should also be added to the release
order list for the class that will now introduce it.

If not explicitly specified, the release order will be deter-
mined by the SOM Compiler, and a warning will be issued
for each missing method. If new methods or attributes are
subsequently added to the class, the default release order
might change; programs using the class would then require
recompilation. Thus, it is advisable to explicitly give a re-
lease order.

select = parent — Used in conjunction with the override modifier, this indi-
cates that an inherited static method will use the imple-
mentation inherited from the indicated <parent> class. The
parentis specified using the C-scoped name. For example,
“Module_InterfaceName”, not “Module::InterfaceName”.
See the later topic “Name usage in client programs” for an
explanation of C-scoped names.

staticdata — Indicates that the declared variable is not stored within
objects, but, instead, that the ClassData structure for the
implementing class will contain a pointer to the staticdata
variable. This is similar in concept to C++ static data mem-
bers. The staticdata variable must also be included in the
releaseorder. The class implementor has responsibility
for loading the ClassData pointer during class initialization.
This can be facilitated by writing a special class initializa-
tion function and indicating its name using the classinit
unqualified modifier. Note: attributes can be declared as
staticdata. This is an important implementation technique
that allows classes to introduce attributes whose backing
storage is not inherited by subclasses.

The following exampile illustrates the specification of qualified modifiers:

implementation
{
releaseorder : opl, op3, op2, opd, op6b, X, V;
opl : persistent;
somDefaultInit : override, init;
op2: reintroduce, procedure;
op3: reintroduce, nonstatic;
op4d: override, select = ModuleName_parentInterfaceName;
op5: migrate = ModuleName_ancestorInterfaceName;
op6: procedure, noself, noenv;
long x;
x: staticdata;
y: staticdata; // y is an attribute
mymod : a, b;

}i

Passthru statements
A passthru statement (used within the body of an implementation statement, described
above) allows a class implementor to specify blocks of code (for C/C++ programmers, usually
only #include directives) that the SOM compiler will pass into the header files it generates.

Passthru statements are included in SOM IDL primarily for backward compatibility with the
SOM OIDL language, and their use by C and C++ programmers should be limited to #include
directives. C and C++ programmers should use IDL type and constant declarations rather than
passthru statements when possible. (Users of other languages, however, may require
passthru statements for type and constant declarations.)

The contents of the passthru lines are ignored by the SOM compiler and can contain anything
that needs to placed near the beginning of a header file for a class. Even comments contained in
passthru lines are processed without modification. The syntax for specifying passthru lines is
one of the following forms:

passthru language_suffix = literal+ ;
passthru /anguage_suffix_before = literal+ ;
passthru language_suffix_after = literal+ ;

where “language” specifies the programming language and “suffix” indicates which header files
will be affected. The SOM Compiler supports suffixes h, ih, xh, and xih. For both C and C-++,
“language” is specified as C.

SOM IDL and the SOM Compiler 4-25

Each “literal” is a string literal (enclosed in double quotes) to be placed verbatim into the
specified header file. [Double quotes within the passthru literal should be preceded by a
backslash. No other characters escaped with a backslash will be interpreted, and formatting
characters (newlines, tab characters, etc.) are passed through without processing.] The last
literal for a passthru statement must not end in a backslash (put a space or other character
between a final backslash and the closing double quote).

When either of the first two forms is used, passthru lines are placed before the #include
statements in the header file. When the third form is used, passthru lines are placed just after
the #include statements in the header file.

For example, the following passthru statement

implementation

{
passthru C_h = ”#include <foo.h>";

}i

results in the directive #include <foo.h> being placed at the beginning of the .h C binding file
that the SOM Compiler generates.

Declaring instance variables and staticdata variables
Declarators are used within the body of an implementation statement (described above) to
specify the instance variables that are introduced by a class, and the staticdata variables
pointed to by the class’s ClassData structure. These variables are declared using ANSI C
syntax for variable declarations, restricted to valid SOM IDL types (see “Type and constant
declarations,” above). For example, the following implementation statement declares two
instance variables, x and y, and a staticdata variable, z, for class “Hello,” :

implementation

{
short x;
long y;
double z;
z: staticdata;

}i

Instance variables are normally intended to be accessed only by the class’s methods and not by
client programs or subclasses’ methods. For data to be accessed by client programs or
subclass methods, attributes should be used instead of instance variables. (Note, however, that
declaring an attribute has the effect of also declaring an instance variable of the same name,
unless the “nodata” attribute modifier is specified.)

Staticdata variables, by contrast, are publicly available and are associated specifically with their
introducing class. They are, however, very different in concept from class variables. Class
variables are really instance variables introduced by a metaclass, and are therefore present in
any class that is an instance of the introducing metaclass (or of any metaclass derived from this
metaclass). As a result, class variables present in any given class will also be present in any
class derived from this class (that is, class variables are inherited). In contrast, staticdata
variables are introduced by a class (not a metaclass) and are (only) accessed from the class’s
ClassData structure — they are not inherited.

To declare an instance variable that is not a valid IDL type, a dummy typedef can be declared
before the interface declaration and a passthru statement then used to pass the real typedef
to the language-specific binding file(s). See also the section “Using the tk_foreign TypeCode”
in Chapter 7, “The Interface Repository Framework.” In the following example, the generic
SOM type somToken is used in the IDL file for the user’s type “myRealType”. The passthru

4-26 SOMobjects Base Toolkit User’s Guide

statement then causes an appropriate #include statement to be emitted into the C/C++ binding
file, so that the file defining type “MyRealType” will be included when the binding file processes:

typedef somToken myRealType;
interface myClass : SOMObject ({

implementation {
myRealType myInstVar;
passthru C_h = ”"#include <myTypes.h>";

}i
}i

Comments within a SOM IDL file

SOM IDL supports both C and C++ comment styles. The characters “//” start a line comment,
which finishes at the end of the current line. The characters “/*” start a block comment that
finishes with the “*/”. Block comments do not nest. The two comment styles can be used
interchangeably.

Comments in a SOM IDL specification must be strictly associated with particular syntactic
elements, so that the SOM Compiler can put them at the appropriate place in the header and
implementation files it generates. Therefore, comments may appear only in these locations (in
general, following the syntactic unit being commented):

* At the beginning of the IDL specification

e After a semicolon

» Before or after the opening brace of a module, interface statement,
implementation statement, structure definition, or union definition

» After a comma that separates parameter declarations or enumeration members

« After the last parameter in a prototype (before the closing parenthesis)

 After the last enumeration name in an enumeration definition
(before the closing brace)

« After the colon following a case label of a union definition

« After the closing brace of an interface statement

Numerous examples of the use of comments can be found in the Tutorial of Chapter 2.

Because comments appearing in a SOM IDL specification are transferred to the files that the
SOM Compiler generates, and because these files are often used as input to a programming
language compiler, it is best within the body of comments to avoid using characters that are not
generally allowed in comments of most programming languages. For example, the C language
does not allow “*/” to occur within a comment, so its use is to be avoided, even when using C++
style comments in the .idl file.

SOM IDL also supports throw-away comments. They may appear anywhere in an IDL specifi-
cation, because they are ignored by the SOM Compiler and are not transferred to any file it
generates. Throw-away comments start with the string “/#” and end at the end of the line.
Throw-away comments can be used to “comment out” portions of an IDL specification.

To disable comment processing (that is, to prevent the SOM Compiler from transferring com-
ments from the IDL specification to the binding files it generates), use the —c¢ option of the sc or
somc command when running the SOM Compiler (See Section 4.3, “The SOM Compiler”).
When comment processing is disabled, comment placement is not restricted, and comments
can appear anywhere in the IDL specification.

Designating ‘private’ methods and attributes

To designate methods or attributes within an IDL specification as “private,” the declaration
of the method or attribute must be surrounded with the preprocessor commands #if-
def _ PRIVATE__ (with two leading underscores and two following underscores) and #endif.
For example, to declare a method “foo” as a private method, the following declaration would
appear within the interface statement:

#ifdef _ PRIVATE_
void foo();
#endif

SOM IDL and the SOM Compiler 4-27

Any number of methods and attributes can be designated as private, either within a single
#ifdef orin separate ones. [Kernighan—Ritchie reference for the C preprocessor: pages 88-92.]

When compiling a .idl file, the SOM Compiler normally recognizes only public (nonprivate)
methods and attributes, as that is generally all that is needed. To generate header files for client
programs that do need to access private methods and attributes, the —p option should be
included when running the SOM Compiler. The resulting .h or .xh header file will then include
bindings for private, as well as public, methods and attributes. The —p option is described in the
topic “Running the SOM Compiler” later in this chapter.

The SOMobjects Toolkit also provides a pdl (Public Definition Language) emitter that can be
used with the SOM Compiler to generate a copy of a .idl file which has the portions designated
as private removed. The next main section of this chapter describes how to invoke the SOM
Compiler and the various emitters.

Defining multiple interfaces in a .idl file

A single .idl file can define multiple interfaces. This allows, for example, a class and its
metaclass to be defined in the same file. When a file defines two (or more) interfaces that
reference one another, forward declarations can be used to declare the name of an interface
before it is defined. This is done as follows:

interface class—name ;
The actual definition of the interface for “class-name” must appear later in the same .idl file.

If multiple interfaces are defined in the same .idl file, and the classes are not a class—metaclass
pair, they can be grouped into modules, by using the following syntax:

module module-name { definition+ };

where each “definition” is a type declaration, constant declaration, exception declaration,
interface statement, or nested module statement. Modules are used to scope identifiers (see
below).

Alternatively, multiple interfaces can be defined in a single .idl file without using a module to
group the interfaces. Whether or not a module is used for grouping multiple interfaces, the
languages bindings produced from the .idl file will include support for all of the defined inter-
faces.

Note: When multiple interfaces are defined in a single .idl file and a module statement is not
used for grouping these interfaces, it is necessary to use the functionprefix modifier to assure
that different names exist for functions that provide different implementations for a method. In
general, it is a good idea to always use the functionprefix modifier, but in this case it is
essential.

Scoping and name resolution

A .idl file forms a naming scope (or scope). Modules, interface statements, structures,
unions, methods, and exceptions form nested scopes. An identifier can only be defined once
in a particular scope. Identifiers can be redefined in nested scopes.

Names can be used in an unqualified form within a scope, and the name will be resolved by
successively searching the enclosing scopes. Once an unqualified name is defined in an
enclosing scope, that name cannot be redefined.

Fully qualified names are of the form:
scoped—name::identifier

For example, method name “meth” defined within interface “Test” of module “M1” would have
the fully qualified name:

Ml::Test::meth

A qualified name is resolved by first resolving the “scoped-name” to a particular scope, S, and
then locating the definition of “identifier” within that scope. Enclosing scopes of S are not
searched.

4-28 SOMobjects Base Toolkit User’s Guide

Qualified names can also take the form:

:zidentifier
These names are resolved by locating the definition of “identifier” within the smallest enclosing
module.

Every name defined in an IDL specification is given a global name, constructed as follows:

¢ Before the SOM Compiler scans a .idl file, the name of the current root and the name of the
current scope are empty. As each module is encountered, the string “::” and the module
name are appended to the name of the current root. At the end of the module, they are
removed.

e Aseachinterface, struct, union, or exception definition is encountered, the string “::” and the
associated name are appended to the name of the current scope. At the end of the definition,
they are removed. While parameters of a method declaration are processed, a new un-
named scope is entered so that parameter names can duplicate other identifiers.

e The global name of an IDL definition is then the concatenation of the current root, the current

scope, a “:i”, and the local name for the definition.

The names of types, constants, and exceptions defined by the parents of a class are accessible
in the child class. References to these names must be unambiguous. Ambiguities can be
resolved by using a scoped name (prefacing the name with the name of the class that defines it
and the characters “::”, as in “parent-class::identifier”). Scope names can also be used to refer
to a constant, type, or exception name defined by a parent class but redefined by the child class.

Name usage in client programs

Within a C or C++ program, the global name for a type, constant, or exception corresponding
to an IDL scoped name is derived by converting the string “::” to an underscore (“_") and
removing the leading underscore. Such names are referred to as C—scoped names. This
means that types, constants, and exceptions defined within the interface statement for a class
can be referenced in a C/C++ program by prepending the class name to the name of the type,
constant, or exception. For example, consider the types defined in the following IDL specifica-
tion:

typedef sequence<long, 10> mySeq;

interface myClass : SOMObject

{

enum color {red, white, blue};
typedef string<l00> longString;

}
These types could be accessed within a C or C++ program with the following global names:
mySedq,
myClass_color,
myClass_red,
myClass_white,
myClass_blue, and
myClass_longString

Type, constant, and exception names defined within modules similarly have the module name
prepended. When using SOM’s C/C++ bindings, the short form of type, constant, and exception
names (such as, color, longString) can also be used where unambiguous, except that
enumeration names must be referred to using the long form (for example: myClass_red and
not simply red).

Because replacing “::” with an underscore to create global names can lead to ambiguity if an IDL
identifier contains underscores, it is best to avoid the use of underscores when defining IDL
identifiers.

Extensions to CORBA IDL permitted by SOM IDL

The following topics describe several SOM-unique extensions of the standard CORBA syntax
that are permitted by SOM IDL for convenience. These constructs can be used in a .idl file
without generating a SOM Compiler error.

SOM IDL and the SOM Compiler 4-29

If you want to verify that an IDL file contains only standard CORBA specifications, the SOM
Compiler option —mcorba turns off each of these extensions and produces compiler errors
wherever non-CORBA specifications are used. (The SOM Compiler command and options are
described in the topic “Running the SOM Compiler” later in this chapter.)

Pointer **’ types
In addition to the base CORBA types, SOM IDL permits the use of pointer types (*'). As well as
increasing the range of base types available to the SOM IDL programmer, using pointer types
also permits the construction of more complex data types, including self-referential and mutual-
ly recursive structures and unions.

If self-referential structures and unions are required, then, instead of using the CORBA ap-
proach for IDL sequences, such as the following:

struct X {
sequence <X> self;
bi

it is possible to use the more typical C/C++ approach. For example:

struct X {
X *self;
bi

SOM IDL does not permit an explicit ™’ in sequence declarations. If a sequence is required for a
pointer type, then it is necessary to typedef the pointer type before use. For example:

sequence <long *> long_star_seq; // error.

typedef long * long_star;
sequence <long_star> long_star_seq; // OK.

Unsigned types
SOM IDL permits the syntax “unsigned <type>", where <type> is a previously declared type
mapping onto “short” or “long”. (Note that CORBA permits only “unsigned short” and “un-
signed long”.

Implementation section
SOM IDL permits an implementation section in an IDL interface specification to allow the
addition of instance variables, method overrides, metaclass information, passthru information,
and “pragma-like” information, called modifiers, for the emitters. See the topic “Implementa-
tion statements” earlier in this chapter.

Comment processing

The SOM IDL Compiler by default does not remove comments in the input source; instead, it
attaches them to the nearest preceding IDL statement. This facility is useful, since it allows
comments to be emitted in header files, C template files, documentation files, and so forth.
However, if this capability is desired, this does mean that comments cannot be placed with quite
as much freedom as with an ordinary IDL compiler. To turn off comment processing so that you
can compile .idl files containing comments placed anywhere, you can use the compiler option
—c or use “throw-away” comments throughout the .idl file (that is, comments preceded by //#);
as a result, no comments will be included in the output files.

Generated header files
CORBA expects one header file, <file>.h, to be generated from <file>.idl. However, SOM IDL
permits use of a class modifier, filestem, that changes this default output file name. (See
“Running the SOM Compiler” later in this chapter.)

4-30 SOMobjects Base Toolkit User’s Guide

4.3 The SOM Compiler

The SOM Compiler translates the IDL definition of a SOM class into a set of “binding files”
appropriate for the language that will implement the class’s methods and the language(s) that
will use the class. These bindings make it more convenient for programmers to implement and
use SOM classes. The SOM Compiler currently produces binding files for the C and C++
languages.

Important Note: C and C++ bindings cannot both be generated during the same execution of
the SOM compiler.

Generating binding files
The SOM Compiler operates in two phases:

« A precompile phase, in which a precompiler analyzes an OIDL or IDL class definition, and

¢ An emission phase, in which one or more emitter programs produce binding files.

Each binding file is generated by a separate emitter program. Setting the SMEMIT environment
variable determines which emitters will be used, as described below. Note: In the discussion
below, the <filestem> is determined by default from the name of the source .idl file with the
“.idlI”extension removed. Otherwise, a “filestem” modifier can be defined in the .idl file to specify
another file name (see “Modifier statements” above).

Note: When changes to definitions in the .idl file later become necessary, the SOM Compiler
should be rerun to update the current implementation template file, provided that the ¢ or xc
emitter is specified (either with the —s option or the SMEMIT environment variable, as described
below). For more information on generating updates, see “Running incremental updates of the
implementation template file” in Chapter 5, “Implementing Classes in SOM.”

The emitters for the C language produce the following binding files:

<filestem>.c — (produced by the ¢ emitter)

This is a template for a C source program that implements
a class’s methods. This will become the primary source file
for the class. (The other binding files can be generated
from the .idl file as needed.) This template implementation
file contains “stub” procedures for each method introduced
or overridden by the class. (The stub procedures are empty
of code except for required initialization and debugging
statements.)

After the class implementor has supplied the code for the
method procedures, running the ¢ emitter again will update
the implementation file to reflect changes made to the
class definition (in the .idl file). These updates include
adding new stub procedures, adding comments, and
changing method prototypes to reflect changes made to
the method definitions in the IDL specification. Existing
code within method procedures is not disturbed, however.

The .c file contains an #include directive for the .ih file,
described below.

The contents of the C source template is controlled by the
Emitter Framework file <SOMBASE>/include/ctm.efw. This
file can be customized to change the template produced.
For detailed information on changing the template file see
the Emitter Framework Guide and Reference.

SOM IDL and the SOM Compiler 4-31

<filestem>.h

<filestem>.ih

— (produced by the h emitter)

This is the header file to be included by C client programs
(programs that use the class). It contains the C usage
bindings for the class, including macros for accessing the
class’s methods and a macro for creating new instances of
the class. This header file includes the header files for the
class’s parent classes and its metaclass, as well as the
header file that defines SOM’s generic C bindings, som.h.

(produced by the ih emitter)

This is the header file to be included in the implementation
file (the file that implements the class’s methods — the .c
file). It contains the implementation bindings for the class,
including:

« a struct defining the class’s instance variables,

e macros for accessing instance variables,

* macros for invoking parent methods the class overrides,

the <className>GetData macro used by the method

procedures in the <filestem>.c file (see “Stub proce-

dures for methods” in Section 5.4 of Chapter 5),

* a <className>NewClass procedure for constructing
the class object at run time, and

« any IDL types and constants defined in the IDL interface.

The emitters for the C:+ language produce the following binding files:

<filestem>.C (for AIX) or <filestem>.cpp (for OS/2 or Windows)

4-32 SOMobjects Base Toolkit User’s Guide

— (produced by the xc emitter)

This is a template for a C++ source program that imple-
ments a class’s methods. This will become the primary
source file for the class. (The other binding files can be
generated from the .idl file as needed.) This template im-
plementation file contains “stub” procedures for each
method introduced or overridden by the class. (The stub
procedures are empty of code except for required initializa-
tion and debugging statements.)

After the class implementor has supplied the code for the
method procedures, running the xc emitter again will up-
date this file to reflect changes made to the class definition
(in the .idl file). These updates include adding new stub
procedures, adding comments, and changing method pro-
totypes to reflect changes made to the method definitions
inthe IDL specification. Existing code within method proce-
dures is not disturbed, however.

The C++implementation file contains an #include directive
for the .xih file, described below.

The contents of the C++ source template is controlled by
the Emitter Framework file <SOMBASE>/include/ctm.efw.
This file can be customized to change the template pro-
duced. For detailed information on changing the template
file see the Emitter Framework Guide and Reference.

<filestem>.xh

<filestem>.xih

— (produced by the xh emitter)

This is the header file to be included by C+- client programs
that use the class. It contains the usage bindings for the
class, including a C++ definition of the class, macros for
accessing the class’s methods, and the new operator for
creating new instances of the class. This header file in-
cludesthe header files for the class’s parent classes and its
metaclass, as well as the header file that defines SOM’s
generic C++ bindings, som.xh.

(produced by the xih emitter)

This is the header file to be included in the implementation
file (the file that implements the class’s methods). It con-
tains the implementation bindings for the class, including:

¢ a struct defining the class’s instance variables,

e macros for accessing instance variables,

* macros for invoking parent methods the class overrides,

the <className>GetData macro (see “Stub proce-

dures for methods” in Section 5.4 of Chapter 5),

* a <className>NewClass procedure for constructing
the class object at run time, and

¢ any IDL types and constants defined in the IDL interface.

Other files the SOM Compiler generates:

<filestem>.hh

<filestem>.pdl

— (produced by the hh emitter)

This file is a DirectToSOM C-++ header file that describes
a SOMobjects class in a way appropriate for DTS Cu++.
When running this emitter, you must include the noquali-
fytypes command-line modifier for the —m option of the
SOM Compiler command sc or somc.

(produced by the pdl emitter)

This file is the same as the .idl file from which it is produced
except that all items within the .idl file that are marked as
“private” have been removed. (An item is marked as pri-
vate by surrounding it with “#ifdef __PRIVATE__ " and “#en-
dif” directives.) Thus, the pdl (Public Definition Language)
emitter can be used to generate a “public” version of the .idl
file.

<filestem>.def (for OS/2 or Windows)

— (produced by the def emitter)

This file is used by the linker to package a class as alibrary.
To combine several classes into a single library, you must
merge the exports statements from each of their .def files
into a single .def file for the entire library. When packaging
multiple classes in a single library, you must also write a
simple C procedure named SOMInitModule and add it to
the export list. This procedure should call the routine
<className>NewClass for each class packaged in the
library. The SOMInitModule procedure is called by the
SOM Class Manager when the library is dynamically
loaded.

SOM IDL and the SOM Compiler 4-33

<filestem>.exp (for AIX) = — (produced by the exp emitter)

This file is used by the linker to package a class as a library.
To combine several classes into a single library, you must
merge the exports statements from each of their .exp files
into a single .exp file for the entire library. When packaging
multiple classes in a single library, you must also write a
simple C procedure named SOMInitModule and add it to
the export list. This procedure should call the routine
<className>NewClass for each class packaged in the
library. The SOMInitModule procedure is called by the
SOM Class Manager when the library is dynamically
loaded.

The Interface Repository (produced by the ir emitter)
See Chapter 7 for a discussion on the Interface Repository.

Note: The C/C++ bindings generated by the SOM Compiler have the following limitation: If two
classes named “ClassName” and “ClassNameC” are defined, the bindings for these two
classes will clash. That is, if a client program uses the C/C++ bindings (includes the .h/.xh
header file) for both classes, a name conflict will occur. Thus, class implementors should keep
this limitation in mind when naming their classes.

SOM users can extend the SOM Compiler to generate additional files by writing their own
emitters. To assist users in extending the SOM Compiler, SOM provides an Emitter Framework
— a collection of classes and methods useful for writing object-oriented emitters that the SOM
Compiler can invoke. For more information, see the Emitter Framework Guide and Reference.

Note re: porting SOM classes: The header files (binding files) that the SOM Compiler
generates will only work on the platform (operating system) on which they were generated.
Thus, when porting SOM classes from the platform where they were developed to another
platform, the header files must be regenerated from the .idl file by the SOM Compiler on that
target platform.

Environment variables affecting the SOM Compiler

To execute the SOM Compiler on one or more files that contain IDL specifications for one or
more classes, use the sc or somec command, as follows:

sc [—options] files (on AIX or OS/2)
somc [—options] files (on Windows)

where “files” specifies one or more .idl files.

Available “—options” for the command are detailed in the next topic. The operation of the SOM
Compiler (whether it produces C binding files or C++ binding files, for example) is also controlled
by certain environment variables that can be set before the s¢ or some command isissued. The
applicable environment variables are as follows:

SMEMIT — Determines which output files the SOM Compiler pro-
duces. Its value consists of a list of items separated by
semicolons for OS/2, or by semicolons or colons for AlIX.
Each item designates an emitter to execute. For example,
the statement:

SET SMEMIT=c;h;ih (for OS/2)
export SMEMIT="c;h;ih” (for AIX)

directs the SOM Compiler to produce the C binding files
“hello.c”, “hello.h”, and“hello.ih” from the “hello.idl” input
specification. By comparison,

SET SMEMIT=xc;xh;xih (for OS/2)
export SMEMIT="xc;xh;xih” (for AlX)

directs the SOM Compiler to produce C++ binding files
“hello.C” (for AIX) or “hello.cpp” (for OS/2), “hello.xh”, and
“hello.xih” from the “hello.idl” input specification.

4-34 SOMobjects Base Toolkit User’s Guide

SMINCLUDE

SMTMP

By default, all output files are placed in the same directory
as the input file. If the SMEMIT environment variable is not
set, then a default value of “h;ih” is assumed.

Windows note: The SMEMIT environmental variable can be
set by using the SET command before the somec command
is issued. For example:

SET SMEMIT=%“c;h;ih” (for Windows)

If you are running the SOM Compiler from a DOS box
under Windows, make sure to define SMEMIT before Win-
dows is started.

Specifies where the SOM Compiler should look for .idl files
#included by the .idl file being compiled. Its value should be
one or more directory names separated by a semicolon
when using OS/2 or Windows, or separated by a semicolon
or colon when using AIX. Directory names can be specified
with absolute or relative pathnames. For example:

SET SMINCLUDE=.; ..\MYSCDIR;C:\TOOLKT20\C\INCLUDE;

(for OS/2 or Windows)

export SMINCLUDE=.:myscdir:/u/som/include
(for AIX)

The default value of the SMINCLUDE environment variable
is the “include” subdirectory of the directory into which
SOM has been installed.

Specifies the directory that the SOM Compiler should use
to hold intermediate output files. This directory should not
coincide with the directory of the input or output files. For
AlX, the default setting of SMTMP is /tmp; for OS/2 or
Windows, the default setting of SMTMP is the root directory
of the current drive.

0S/2 or Windows example:
SET SMTMP=..\MYSCDIR\GARBAGE
tells the SOM Compiler to place the temporary files in the
GARBAGE directory.
Or, on OS/2 only:

SET SMTIMP=%TMP%

tells the SOM Compiler to use the same directory for tem-
porary files as given by the setting of the TMP environment
variable (the default location for temporary system files).
(On Windows, you cannot set one variable to another.)

AlX example:

export SMTMP=S$TMP
export SMTMP=../myscdir/garbage

SOM IDL and the SOM Compiler 4-35

SMKNOWNEXTS — Specifies additional emitters to which the SOM Compiler
should add a header. For example, if you were to write a
new emitter for Pascal, called “emitpas”, then by default
the SOM Compiler would not add any header comments to
it. However, by setting SMKNOWNEXTS=pas, as shown:

set SMKNOWNEXTS=pas (for OS/2 or
Windows)
export SMKNOWNEXTS=pas (for AIX)

the SOM Compiler will add a header to files generated
with the “emitpas” emitter. The “header” added is a SOM
Compiler-generated message plus any comments, such
as copyright statements, that appear at the head of your .idl
input file. For details on writing your own emitter, see the
Emitter Framework Guide and Reference.

SOMIR — Specifies the name (or list of names) of the Interface Re-
pository file. The ir emitter, if run, creates the Interface
Repository, or checks it for consistency if it already exists.
If the —u option is specified when invoking the SOM Com-
piler, the ir emitter also updates an existing Interface Re-
pository.

Running the SOM Compiler
The syntax of the command for running the SOM Compiler takes the forms:

sc [—options] files (on AIX or OS/2)
somc [—options] files (on Windows)

The “files” specified in the s¢ or some command denote one or more files containing the IDL
class definitions to be compiled. If no extension is specified, .idl is assumed. By default, the
<filestem> of the .idl file determines the filestem of each emitted file. Otherwise, a “filestem”
modifier can be defined in the .idl file to specify another name (see “Modifier statements”
discussed earlier).

Selected “—options” can be specified individually, as a string of option characters, or as a
combination of both. Any option that takes an argument either must be specified individually or
must appear as the final option in a string of option characters. Available options and their
purposes are as follows:

—-Cn Sets the maximum allowable size for a simple comment in the .idl file (default:
32767). This is only needed for very large single comments.

—-D name[=def]
Defines name as in a #define directive. The default def is 1. This option is the
same as the —D option for the C compiler. Note: This option can be used to
define __PRIVATE__ so that the SOM Compiler will also compile any methods
and attributes that have been defined as private using the directive #ifdef
__PRIVATE__; however, the —p option does the same thing more easily.

—E variable=value
Sets an environment variable. (See the previous topic for a discussion of the
available environment variables: SMEMIT, SMINCLUDE, SMTMP, and SMNOIR.)

—l dir When looking for #included files, looks first in dir, then in the standard
directories (same as the C compiler —I option).

-Sn Sets the total allowable amount of unique string space used in the IDL
specification for names and passthru lines (default: 32767). This is only
needed for very large .idl files.

-U name Removes any initial definition (via a #define preprocessor directive) of symbol
name.

4-36 SOMobjects Base Toolkit User’s Guide

—d directory
-hor-?

—i filename

Displays version information about the SOM Compiler.

Turns off comment processing. This allows comments to appear anywhere
within an IDL specification (rather than in restricted places), and it causes
comments not to be transferred to the output files that the SOM Compiler
produces.

Specifies a directory where all output files should be placed. If the —d option is
not used, all output files are placed in the same directory as the input file.

Produces a listing of this option list. (This option is typically used in an sc or
somc command that does not include a .idl file name).

Specifies the name of the class definition file. Use this option to override the
built-in assumption that the input file will have a .idl extension. Any filename
supplied with the —i option is used exactly as it is specified.

—m namel[=value]

Adds a global modifier. The currently supported global modifiers are as
follows:

addprefixes

addstar

Adds ‘functionprefixes’ to the method procedure prototypes during an
incremental update of the implementation template file. This option applies
only when rerunning the ¢ or xc emitter on an IDL file that previously did not
specify a functionprefix. A class implementor who later decides to use prefixes
should add a line in the ‘implementation’ section of the .idl file containing the
specification:

functionprefix = prefix

(as described earlier in the topic “Modifier statements”) and then rerun the c or
xc emitter using the —-maddprefixes option. The method procedure
prototypes in the implementation file will then be updated so that each method
name includes the assigned prefix. (This option does not support changes to
existing prefix names, nor does it apply for OIDL files.)

This option causes all interface references to have a ‘*’ added to them for the
C bindings. See the earlier section entitled “Object types” for further details.

comment=comment string

corba

where comment string can be either of the designations: “/*” or “//”. This
option indicates that comments marked in the designated manner in the .idl file
are to be completely ignored by the SOM Compiler and will not be included in
the output files. Note: Comments on lines beginning with “//#” are always
ignored by the SOM Compiler.

This option directs the SOM Compiler to compile the input definition according
to strict CORBA-defined IDL syntax. This means, for example, that comments
may appear anywhere and that pointers are not allowed. When the -mcorba
option is used, parts of a .idl file surrounded by #ifdef __ SOMIDL__ and #endif
directives are ignored. This option can be used to determine whether all
nonstandard constructs (those specific to SOM IDL) are properly protected by
#ifdef _ SOMIDL__ and #endif directives.

—m name[=value] (modifier options continued from the previous page)

CcscC

This option forces the OIDL compiler to be run. This is required only if you
want to compile an OIDL file that does not have an extension of .csc or .sc.

emitappend

noheader

This option causes emitted files to be appended at the end of existing files of
the same name.

This option ensures that the SOM Compiler does not add a header to the
beginning of an emitted file.

SOM IDL and the SOM Compiler 4-37

noint This option directs the SOM Compiler not to warn about the portability
problems of using int’s in the source.

nolock This option causes the Interface Repository Emitter emitir (see Chapter 7,
“Interface Repository Framework”) to leave the IR unlocked when updates are
made to it. This can improve performance on networked file systems. By not
locking the IR, however, there is the risk of multiple processes attempting to
write to the same IR, with unpredictable results. This option should only be
used when you know that only one process is updating an IR at once.

nopp This option directs the SOM Compiler not to run the SOM preprocessor on
the .idl input file.

noqualifytypes
This option prevents the use of C-scoped names in emitter output, and is used
in conjunction with the .hh emitter.

notc This option directs the SOM Compiler not to create TypeCode information
when emitting files. This is required only when the .idl files contain some
undeclared types. This option is typically used when compiling converted .csc
files that have not had typing information added.

nouseshort
This option directs the SOM Compiler not to generate short forms for type
names in the .h and .xh public header files. This can be useful to save disk
space.

pp=preprocessor
This option directs the SOM Compiler to use the specified preprocessor as the
SOM preprocessor, rather than the default “somcpp”. Any standard C/C++
preprocessor can be used as a preprocessor for IDL specifications.

tcconsts This option directs the SOM Compiler to generate TypeCode constants in the
.h and .xh public header files. Please refer to the Interface Repository
(described in Chapter 7) for more details.

Note: All command-line —m modifier options can be specified in the environment by chang-
ing them to UPPERCASE and prepending “SM” to them. For example, if you want to always
set the options “—mnotc” and “—maddstar”, set corresponding environment variables as
follows:

On OS/2 or Windows:
set SMNOTC=1
set SMADDSTAR=1

On AIX:
export SMNOTC=1
export SMADDSTAR=1

-p Causes the “private” sections of the IDL file to be included in the compilation
(that is, sections preceded by #ifdef _ PRIVATE__ that contain private
methods and attributes). Note: The —p option is equivalent to the earlier option
-D__PRIVATE__.

—r Checks that all names specified in the release order statement are valid
method names (default: FALSE).

—s string Substitutes string in place of the contents of the SMEMIT environment variable
for the duration of the current sc or somc command. This determines which
emitters will be run and, hence, which output files will be produced. (If a list of
values is given, on OS/2 only the list must be enclosed in double quotes.)

4-38 SOMobjects Base Toolkit User’s Guide

The —s option is a convenient way to override the SMEMIT environment
variable. In OS/2 for example, the command:

> SC —-s”h;c” EXAMPLE

is equivalent to the following sequence of commands:

SET OLDSMEMIT=%SMEMIT%
SET SMEMIT=H;C

SC EXAMPLE

SET SMEMIT=%OLDSMEMIT%

vV V V V

Similarly, in AIX the command:

> sc —-sh”;"”c example

is equivalent to the following sequence of commands:

export OLDSMEMIT=$SMEMIT
export SMEMIT=h";"”c

sc example

export SMEMIT=$OLDSMEMIT

vV V V V

Windows users: You should not use quotes in substitution strings of the —s
option for the somec command:

> somc -sh;ih *.idl Correct
> somc —-s”h;ih” *.idl Incorrect

-u Updates the Interface Repository (default: no update). With this option, the
Interface Repository will be updated even if the ir emitter is not explicitly
requested in the SMEMIT environment variable or the —s option.

-V Uses verbose mode to display informational messages (default: FALSE).
This option is primarily intended for debugging purposes and for writers of
emitters.

-w Suppresses warning messages (default: FALSE).

The following sample commands illustrate various options for the sc command (or similarly
with somc):

sc —-sc hello.idl Generates file “hello.c”.

sc —hv Generates a help message and displays the
version of the SOM Compiler currently available.

sc -vsh”;”ih hello.idl Generates “hello.h” and “hello.ih” with

informational messages. Note: On Windows,
omit the quotes (") when issuing this command.

sc —-sxc —-doutdir hello.idl
Generates “hello.xc” in directory “outdir”.

SOM IDL and the SOM Compiler 4-39

4.4 The ‘pdl’ Facility

As discussed earlier in this chapter, the SOM Compiler provides a pdl (Public Definition
Language) emitter. This emitter generates a file that is the same as the .idl file from which it is
produced, except that it removes all items within the .idl file that are marked as “private.” (An
item is marked as private by surrounding it with “#ifdef __PRIVATE_ _” and “#endif” directives.)
Thus, the pdl emitter can be used to generate a “public” version of a .idl file. (Generally, client
programs will need only the “public” methods and attributes.)

The SOMobjects Toolkit also provides a separate program, pdl, which performs the same
function, but can be invoked independently of the SOM Compiler. The pdl program is invoked
as follows:

pdl files

where “files” specifies one or more .idl files whose “PRIVATE” sections are to be removed.
Filenames must be completely specified (with the .idl extension).

The pdl command supports the following options. (Selected options can be specified individual-
ly, as a string of option characters, or as a combination of both. Any option that takes an
argument either must be specified individually or must appear as the final option in a string of
option characters.)

—d dir Specifies a directory in which the output files are to be placed. (The output files
are given the same name as the input files.) If no directory is specified, the
output files are named <fileStem>.pdl (where fileStem is the file stem of the
input file) and are placed in the current working directory.

—f Specifies that output files are to replace existing files with the same name,
even if the existing files are read—only. By default, files are replaced only if they
have write access.

—s smemit Specifies that, for each specified .idl file, the pdl program is to invoke the SOM
Compiler with smemit as the value of the —s option.

—-c cmd Specifies that, for each .idl file, the pdl program is to run the specified system
command. This command may contain a single occurrence of the string “%s”,
which will be replaced with the source file hame before the command is
executed. For example the option —c“sc —sh %s” has the same effect as using
the option —sh.

For example, to install public versions of the .idl files in the directory “pubinclude”, type:
pdl -d pubinclude *.idl

4-40 SOMobjects Base Toolkit User’s Guide

Chapter 5. Implementing Classes in SOM

This chapter begins with a more in-depth discussion of SOM concepts and the SOM run-time
environment than was appropriate in Chapter 2, “Tutorial for Implementing SOM Classes.”
Subsequent sections then provide information about completing an implementation template
file, updating the template file, compiling and linking, packaging classes in libraries, and other
useful topics for class implementors. During this process, you can refer to Chapter 4, “SOM IDL
and the SOM Compiler,” if you want to read the reference information or see the full syntax
related to topics discussed in this chapter. The current chapter ends with topics describing how
to customize SOMobjects execution in various ways.

Implementing Classes in SOM 5-1

5.1 The SOM Run-time Environment

As discussed in Chapter 1, the SOMobjects Developer Toolkit provides
¢ The SOM Compiler, used when creating SOM class libraries, and
¢ The SOM run-time library, for using SOM classes at execution time.

The SOM run-time library provides a set of functions used primarily for creating objects and
invoking methods on them. The data structures and objects that are created, maintained, and
used by the functions in the SOM run-time library constitute the SOM run-time environment.

A distinguishing characteristic of the SOM run-time environment is that SOM classes are
represented by run-time objects; these objects are called class objects. By contrast, other
object-oriented languages such as C++ treat classes strictly as compile-time structures that
have no properties at run time. In SOM, however, each class has a corresponding run-time
object. This has three advantages: First, application programs can access information about a
class at run time, including its relationships with other classes, the methods it supports, the size
of its instances, and so on. Second, because much of the information about a class is estab-
lished at run time rather than at compile time, application programs needn’t be recompiled when
this information changes. Finally, because class objects can be instances of user-defined
classes in SOM, users can adapt the techniques for subclassing and inheritance in order to
build object-oriented solutions to problems that are otherwise not easily addressed within an
OOP context.

Run-time environment initialization

When the SOM run-time environment is initialized, four primitive SOM objects are automatically
created. Three of these are class objects (SOMObject, SOMClass, and SOMClassMgr), and
one is an instance of SOMClassMgr, called the SOMClassMgrObject. Once loaded, applica-
tion programs can invoke methods on these class objects to perform tasks such as creating
other objects, printing the contents of an object, freeing objects, and the like. These four
primitive objects are discussed below.

In addition to creating the four primitive SOM objects, initialization of the SOM run-time environ-
ment also involves._initializing global variables to hold data structures that maintain the state of
the environment. Other functions in the SOM run-time library rely on these global variables.

For application programs written in C or C++ that use the language-specific bindings provided by
SOM, the SOM run-time environment is automatically initialized the first time any object is
created. Programmers using other languages must initialize the run-time environment explicitly
by calling the somEnvironmentNew function (provided by the SOM run-time library) before
using any other SOM functions or methods.

SOMObject class object

SOMObiject is the root class for all SOM classes. It defines the essential behavior common to
all SOM objects. All user-defined SOM classes are derived, directly or indirectly, from this class.
That is, every SOM class is a subclass of SOMObject or of some other class derived from
SOMObject. SOMObiject has no instance variables, thus objects that inherit from SOMObject
incur no size increase. They do inherit a suite of methods that provide the behavior required of
all SOM objects.

SOMClass class object

Because SOM classes are run-time objects, and since all run-time objects are instances of
some class, it follows that a SOM class object must also be an instance of some class.
The class of a class is called a metaclass. Hence, the instances of an ordinary class are
individuals (nonclasses), while the instances of a metaclass are class objects.

In the same way that the class of an object defines the “instance methods” that the object can
perform, the metaclass of a class defines the “class methods” that the class itself can perform.
Class methods (sometimes called factory methods or constructors) are performed by class
objects. Class methods perform tasks such as creating new instances of a class, maintaining a
count of the number of instances of the class, and other operations of a “supervisory” nature.
Also, class methods facilitate inheritance of instance methods from parent classes.

5-2 SOMobjects Base Toolkit User’s Guide

The distinction between instance methods and class methods, as well as that between objects,
classes, and metaclasses, is illustrated in Figure 1. For information on the distinction between
parent classes and metaclasses, see the section “Parent class vs. metaclass,” below.

Class methods vs. instance methods

Metaclass 4————’ ————
“M”

Class Methods Instance Methods

defined in meta- defined in

class “M” are per- class “C” are

formed by class performed by

“C” to produce 04 ...05

instances. -———

(“is an instance of”)

Figure 1. Class methods vs. instance methods.

SOMClass is the root class for all SOM metaclasses. That is, all SOM metaclasses must be
subclasses of SOMClass or of some metaclass derived from SOMClass. SOMClass defines
the essential behavior common to all SOM class objects. In particular, SOMClass provides:

 Six class methods for creating new class instances: somNew, somNewNolnit, somRe-
new, somRenewNolnit, somRenewNoZero, and somRenewNolnitNoZero.

¢ A number of class methods that dynamically obtain or update information about a class
and its methods at run time, including:
— sominitMIClass, for implementing multiple inheritance from parent classes,
— somOverrideSMethod, for overriding inherited methods, and
— somAddStaticMethod and somAddDynamicMethod, for introducing new methods.

SOMClass is a subclass (or child) of SOMObject. Hence, SOM class objects can also perform
the same set of basic instance methods common to all SOM objects. This is what allows SOM
classes to be real objects in the SOM run-time environment. SOMClass also has the unique
distinction of being its own metaclass (that is, SOMClass defines its own class methods).

A user-defined class can designate as its metaclass either SOMClass or another user-written
metaclass descended from SOMClass. If a metaclass is not explicitly specified, SOM deter-
mines one automatically.

SOMClassMgr class object and SOMClassMgrObject

The third primitive SOM class is SOMClassMgr. A single instance of the SOMClassMgr
class is created automatically during SOM initialization. This instance is referred to as the
SOMClassMgrObject, because it is pointed to by the global variable SOMClassMgrObject.
The object SOMClassMgrObiject has the responsibility to

« Maintain a registry (a run-time directory) of all SOM classes that exist within the current
process, and to

¢ Assist in the dynamic loading and unloading of class libraries.

For C/C++ application programs using the SOM C/C++ language bindings, the SOMClassM-
grObject automatically loads the appropriate library file and constructs a run-time object for the
class the first time an instance of a class is created. For programmers using other languages,
SOMClassMgr provides a method, somFindClass, for directing the SOMClassMgrObject to
load the library file for a class and create its class object.

Implementing Classes in SOM 5-3

Relationships among the four primitive SOM run-time objects are illustrated in Figure 2.
Again, the primitive classes supplied with SOM are SOMObject, SOMClass, and SOM-
ClassMgr. During SOM initialization, the latter class generates an instance called SOM-
ClassMgrObject. The left-hand side of Figure 2 shows parent-class relationships between the
built-in SOM classes, and the right-hand side shows instance/class relationships. That is, on
the left SOMODbiject is the parent class of SOMClass and SOMClassMgr. On the right SOM-
Class is the metaclass of itself, of SOMObject, and of SOMClassMgr, which are all class
objects at run time. SOMClassMgr is the class of SOMClassMgrObiject.

Primitive classes supplied Objects created during SOM
with SOM initialization

TN

SOMObject
class

SOMClassMgr
class

SOMObject

|
“netancerel |
Legend: = tance—of subclass—of /\
© O SOMCIassMgrObject

SOMCIassM r
\class object

N\~

metaclass class simple object

Figure 2. The SOM run-time environment provides four primitive objects, three of them class objects.

5-4 SOMobjects Base Toolkit User’s Guide

Parent class vs. metaclass

There is a distinct difference between the notions of “parent” (or base) class and “metaclass.”
Both notions are related to the fact that a class defines the methods and variables of its
instances, which are therefore called instance methods and instance variables.

A parent of a given class is a class from which the given class is derived by subclassing. (Thus,
the given class is called a child or a subclass of the parent.) A parent class is a class from which
instance methods and instance variables are inherited. For example, the parent of class “Dog”
might be class “Animal”. Hence, the instance methods and variables introduced by “Animal”
(such as methods for breathing and eating, or a variable for storing an animal’s weight) would
also apply to instances of “Dog”, because “Dog” inherits these from “Animal”, its parent class.
As a result, any given dog instance would be able to breath and eat, and would have a weight.

A metaclass is a class whose instances are class objects, and whose instance methods and
instance variables (as described above) are therefore the methods and variables of class
objects. For this reason, a metaclassis said to define class methods—the methods that a class
object performs. For example, the metaclass of “Animal” might be “AnimalMClass”, which
defines the methods that can be invoked on class “Animal” (such as, to create Animal instances
— objects that are not classes, like an individual pig or cat or elephant or dog).

Note: Itis important to distinguish the methods of a class object (that is, the methods that can be
invoked on the class object, which are defined by its metaclass) from the methods that the class
defines for its instances.

To summarize: the parent of a class provides inherited methods that the class’s instances can
perform; the metaclass of a class provides class methods that the class itselfcan perform. The
distinctions between parent class and metaclass are summarized in Figure 3.

Implementing Classes in SOM 5-5

Characteristics of parent class vs. metaclass

Metaclass

uMn

Legend: mstance—of subclass—of

O OO

metaclass class simple object

Any class “C” has both a metaclass and one or more parent class(es).

*The parent class(es) of “C” provide the inherited instance methods that individual
instances (objects “O;”) of class “C” can perform. Instance methods that an instance
“O;” performs mightinclude (a) initializing itself, (b) performing computations using its
instance variables, (c) printing its instance variables, or (d) returning its size. New
instance methods are defined by “C” itself, in addition to those inherited from C’s
parent classes.

e The metaclass “M” defines the class methods that class “C” can perform. For
example, class methods defined by metaclass “M” include those that allow “C” to (a)
inherit its parents’s instance methods and instance variables, (b) tell its own name,
(c) create new instances, and (d) tell how many instance methods it supports. These
methods are inherited from SOMClass. Additional methods supported by “M” might
allow “C” to count how many instances it creates.

e Each class “C” has one or more parent classes and exactly one metaclass. (The
single exception is SOMObject, which has no parent class.) Parent class(es) must
be explicitly identified in the IDL declaration of a class. (SOMObject is given as a
parent if no subsequently-derived class applies.) If a metaclass is not explicitly listed,
the SOM run time will determine an applicable metaclass.

e Aninstance of a metaclass is always another class object. For example, class “C” is
aninstance of metaclass “M”. SOMClass is the SOM-provided metaclass from which
all subsequent metaclasses are derived.

Figure 3. A class has both parent classes and a metaclass.

5-6 SOMobjects Base Toolkit User’s Guide

A metaclass has its own inheritance hierarchy (through its parent classes) that is independent
of its instances’ inheritance hierarchies. In Figure 4, a sequence of classes is defined (or
derived), stemming from SOMODbiject. The child class (or subclass) at the end of this line (“C5")
inherits instance methods from all of its ancestor classes (here, SOMObject and “C+”). An
instance created by “C2” can perform any of these instance methods. In an analogous manner,
aline of metaclasses is defined, stemming from SOMClass. Just as a new class is derived from
an existing class (such as SOMObject), a new metaclass is derived from an existing metaclass
(such as SOMClass). In this example, both SOMObject and class “C1” are instances of the
SOMClass metaclass, whereas class “C2” is an instance of metaclass “M2”, which inherits
from SOMClass.

Derivation of parent classes and metaclasses

Metaclass

anu

- » —P
instance—of subclass—of

O OO

metaclass class simple object

Legend:

Figure 4. Parent classes and metaclasses each have their own independent inheritance hierarchies.

Implementing Classes in SOM 5-7

SOM-derived metaclasses

As previously discussed, a class object can perform any of the class methods that its metaclass
defines. New metaclasses are typically created to modify existing class methods or introduce
new class method(s). Chapter 10, “Metaclass Framework,” discusses metaclass program-
ming.

Three factors are essential for effective use of metaclasses in SOM:

e First, every class in SOM is an object that is implemented by a metaclass.

e Second, programmers can define and name new metaclasses, and can use these meta-
classes when defining new SOM classes.

¢ Finally, and most importantly, metaclasses cannot interfere with the fundamental guarantee
required of every OOP system: specifically, any code that executes without method-resolu-
tion error on instances of a given class will also execute without method-resolution errors on
instances of any subclass of this class.

Surprisingly, SOM is currently the only OOP system that can make this final guarantee while
also allowing programmers to explicitly define and use named metaclasses. This is possible
because SOM automatically determines an appropriate metaclass that supports this guaran-
tee, automatically deriving new metaclasses by subclassing at run time when this is necessary.

To better understand this concept, consider the situation in Figure 5. Here, class “A” is an
instance of metaclass “AMeta”. Assume that “AMeta” supports a method “bar” and that “A”
supports a method “foo” that uses the expression “_bar(_somGetClass(somSelf)).” That is,
method “foo” invokes “bar” on the class of the object on which “foo” is invoked. For example,
when method “foo” is invoked on an instance of class “A” (say, object “O1”), this in turn invokes
“bar” on class “A” itself.

Example of metaclass incompatibility
(This cannot occur in SOM)

interface B:A { N /\
implementation { @e)a
metaclass = BMeta; / bar /
}i /
b //
/
/7
/
/
Legend: ———

instance—of subclass—of

O OO

metaclass class simple object

Figure 5. Example of Metaclass Incompatibility.

Now consider what happens when “A” is subclassed by “B”, a class that has the explicit
metaclass “BMeta” declared in its SOM IDL source file, as shown by the code in Figure 5. If the
class hierarchy were formed as in Figure 5, then an invocation of “foo” on “O,” would fail,
because metaclass “BMeta” does not support the “bar” method introduced by “AMeta”.

5-8 SOMobjects Base Toolkit User’s Guide

There is only one way that “BMeta” can support this specific method — by inheriting it from
“AMeta” (“BMeta” could introduce another method named “bar”, but this would be a different
method from the one introduced by “AMeta”). Therefore, in this example, because “BMeta” is
not a subclass of “AMeta”, “BMeta” cannot be allowed to be the metaclass of “B”. That is,
“BMeta” is not compatible with the requirements placed on “B” by the fundamental principle of
OOQRP referred to above. This situation is referred to as metaclass incompatibility.

SOM does not allow hierarchies with metaclass incompatibilities. Instead, SOM automatically
builds derived metaclasses when this is necessary. The resulting class hierarchy in this exam-
ple is depicted in Figure 6, where SOM has automatically built the metaclass “DerivedMeta-
class”. This ensures that the invocation of method “foo” on instances of class “B” will not fail, and
also ensures that the desired class methods provided by “BMeta” will be available on class “B”.

Example of a derived metaclass

instance—of subclass—of

O OO

metaclass class simple object

Legend:

Figure 6. Example of a Derived Metaclass.

There are three important aspects of SOM’s approach to derived metaclasses:

e First, the creation of SOM-derived metaclasses is integrated with programmer-specified
metaclasses. If a programmer-specified metaclass already supports all the class methods
and variables needed by a new class, then the programmer-specified metaclass will be used
as is.

¢ Second, if SOM must derive a different metaclass than the one explicitly indicated by the
programmer (in order to support all the necessary class methods and variables), then the
SOM-derived metaclass inherits from the explicitly indicated metaclass first. As a result, the
method procedures defined by the specified metaclass take precedence over other possibili-
ties (see the following section on inheritance and the discussion of resolution of ambiguity in
the case of multiple inheritance).

¢ Finally, the class methods defined by the derived metaclass invoke the appropriate initializa-
tion methods of its parents to ensure that the class variables of its instances are correctly
initialized.
As further explanation for the automatic derivation of metaclasses, consider the following
multiple-inheritance example. In Figure 7, class “C” does not have an explicit metaclass
declaration in its SOM IDL, yet its parents do. As a result, class “C” requires a derived
metaclass. (If you still have trouble following the reasoning behind derived metaclasses, ask
yourself the following question: What class should “C” be an instance of? After a bit of
reflection, you will conclude that, if SOM did not build the derived metaclass, you would have to
do so yourself.)

Implementing Classes in SOM 5-9

Multiple inheritance in SOM requires derived metaclasses

interface C : A,B {

implementation {

Legend: S |nﬁance—of subdass—of

O O O

metaclass class simple object

Figure 7. Multiple Inheritance requires Derived Metaclasses.

In summary, SOM allows and encourages the definition and explicit use of named metaclasses.
With named metaclasses, programmers can not only affect the behavior of class instances by
choosing the parents of classes, but they can also affect the behavior of the classes themselves
by choosing their metaclasses. Because the behavior of classes in SOM includes the imple-
mentation of inheritance itself, metaclasses in SOM provide an extremely flexible and powerful
capability allowing classes to package solutions to problems that are otherwise very difficult to
address within an OOP context.

At the same time, SOM is unique in that it relieves programmers of the responsibility for
avoiding metaclass incompatibility when defining a new class. At first glance, this might seem to
be merely a useful (though very important) convenience. But, in fact, it is absolutely essential,
because SOM is predicated on binary compatibility with respect to changes in class imple-
mentations.

A programmer might, at one pointintime, know the metaclasses of all ancestor classes of a new
subclass, and, as a result, be able to explicitly derive an appropriate metaclass for the new
class. Nevertheless, SOM must guarantee that this new class will still execute and perform
correctly when any of its ancestor class’s implementations are changed (which could even
include specifying different metaclasses). Derived metaclasses allow SOM to make this guar-
antee. A SOM programmer need never worry about the problem of metaclass incompatibility;
SOM does this for the programmer. Instead, explicit metaclasses can simply be used to “add in”
whatever behavior is desired for a new class. SOM automatically handles anything else that is
needed. Chapter 10 provides useful examples of such metaclasses. A SOM programmer
should find numerous applications for the techniques that are illustrated there.

5-10 SOMobjects Base Toolkit User’s Guide

5.2 Inheritance

One of the defining aspects of an object model is its characterization of inheritance. This section
describes SOM’s model for inheritance.

A class in SOM defines an implementation for objects that support a specific interface:

e The interface defines the methods supported by objects of the class, and is specified
using SOM IDL.

e The implementation defines what instance variables implement an object’s state and
what procedures implement its methods.

New classes are derived (by subclassing) from previously existing classes through inheritance,
specialization, and addition. Subclasses inherit interface from their parent classes: any method
available on instances of a class is also available on instances of any class derived from it
(either directly or indirectly). Subclasses also inherit implementation (the procedures that
implement the methods) from their parent classes unless the methods are overridden (rede-
fined or specialized). In addition, a subclass may introduce new instance methods and instance
variables that will be inherited by other classes derived from it.

SOM also supports multiple inheritance. That is, a class may be derived from (and may inherit
interface and implementation from) multiple parent classes. Note: Multiple inheritance is avail-
able only to SOM classes whose interfaces are specified in IDL, and not to SOM classes whose
interfaces are specified in SOM’s earlier interface definition language, OIDL. See Appendix B
for information on how to automatically convert existing OIDL files to IDL.

It is possible under multiple inheritance to encounter potential conflicts or ambiguities with
respect to inheritance. All multiple inheritance models must face these issues, and resolve the
ambiguities in some way. For example, when multiple inheritance is allowed, it is possible that a
class will inherit the same method or instance variable from different parents (because each of
these parents has some common ancestor that introduces the method or instance variable). In
this situation, a SOM subclass inherits only one implementation of the method or instance
variable. (The implementation of an instance variable within an object is just the location where
it is stored. The implementation of a method is a procedure pointer, stored within a method
table.) The following illustration addresses the question of which method implementation would
be inherited.

Consider the situation in Figure 8. Class “W” defines a method “foo”, implemented by procedure
“proc1”. Class “W” has two subclasses, “X” and “Y”. Subclass “Y” overrides the implementation
of “foo” with procedure “proc2”. Subclass “X” does not override “foo”. In addition, classes “X”
and “Y” share a common subclass, “Z”. That is, the IDL interface statement for class “Z” lists its
parents as “X” and “Y” in that order.

The question is thus: which implementation of method “foo” does class “Z” inherit — procedure
“proc1” defined by class “W”, or procedure “proc2” defined by class “Y”? The procedure for
performing inheritance that is defined by SOMClass resolves this ambiguity by using the left
path precedence rule: when the same method is inherited from multiple ancestors, the proce-
dure used to support the method is the one used by the leffmost ancestor from which the
method is inherited. (The ordering of parent classes is determined by the order in which the
class implementor lists the parents in the IDL specification for the class.)

In Figure 8, then, class “Z” inherits the implementation of method “foo” defined by class “W”
(procedure “proci”), rather than the implementation defined by class “Y” (procedure “proc2”),
because “X” is the leftmost ancestor of “Z” from which the method “foo” is inherited. This rule
may be interpreted as giving priority to classes whose instance interfaces are mentioned firstin
IDL interface definitions.

Implementing Classes in SOM 5-11

Resolution of multiple-inheritance ambiguities

foo — proci

foo —» prc:\ /)o —» proc2

foo —» 2?2

Method resolution in class “Z”:
foo = left path precedence: proci (not proc2)

Figure 8. SOMClass uses the left path precedence rule to resolve some multiple inheritance
ambiguities.

If a class implementor decides that the default inherited implementation is not appropriate (for
example, procedure “proc2” is desired), then SOM IDL allows the class designer to select the
parent whose implementation is desired. For more information concerning this approach, see
the select modifier, which is documented in the topic “Modifier statements” in Chapter 4, “SOM
IDL and the SOM Compiler.”

Note: Alternatively, an explicit metaclass for class “Z” could be introduced to change the way
methods are inherited. However, this would be a fairly serious step to take — it would also affect
the semantics of inheritance for all of Z’s descendant classes. Also, this would be done by
overriding somInitMIClass, which is strongly discouraged until such time that SOMobjects
includes the Cooperative Metaclass among its officially supported interface to the Metaclass
Framework.

Resolution of multiple-inheritance ambiguities

bar (of type T7) bar (of type T2)

? bar ?

Figure 9. Some multiple inheritance ambiguities are illegal in IDL.

5-12 SOMobjects Base Toolkit User’s Guide

Another conflict that may arise with the use of multiple inheritance is when two ancestors of a
class define different methods (in general, with different signatures) with the same name. For
example, consider Figure 9. Class “X” defines a method “bar” with type T7, and class “Y”
defines a method “bar” with type T2. Class “Z” is derived from both “X” and “Y”, and “Z” does not
override method “bar”.

This example illustrates a method name that is “overloaded” — that is, used to name two
entirely different methods (note that overloading is completely unrelated to overriding). This is
not necessarily a difficult problem to handle. Indeed, the run-time SOM API allows the construc-
tion of a class that supports the two different “bar” methods illustrated in Flgure 9. (They are
implemented using two different method-table entries, each of which is associated with its
introducing class.)

However, the interface to instances of such classes cannot be defined using IDL. IDL specifi-
cally forbids the definition of interfaces in which method names are overloaded. Furthermore,
within SOM itself, the use of such classes can lead to anomalous behavior unless care is taken
to avoid the use of name-lookup method resolution (discussed in the following section), since, in
this case, a method name alone does not identify a unique method. For this reason, (statically
declared) multiple-inheritance classes in SOM are currently restricted to those whose instance
interfaces can be defined using IDL. Thus, the above example cannot be constructed with the
aid of the SOM Compiler.

Implementing Classes in SOM 5-13

5.3 Method Resolution

Method resolution is the step of determining which procedure to execute in response to a
method invocation. For example, consider this scenario:

¢ Class “Dog” introduces a method “bark”, and
¢ A subclass of “Dog”, called “BigDog”, overrides “bark”, and

¢ A client program creates an instance of either “Dog” or “BigDog” (depending on some
run-time criteria) and invokes method “bark” on that instance.

Method resolution is the process of determining, at run time, which method procedure to
execute in response to the method invocation (either the method procedure for “bark” defined
by “Dog”, or the method procedure for “bark” defined by “BigDog”). This determination depends
on whether the receiver of the method (the object on which it is invoked) is an instance of “Dog”
or “BigDog” (or perhaps depending on some other criteria).

SOM allows class implementors and client programs considerable flexibility in deciding how
SOM performs method resolution. In particular, SOM supports three mechanisms for method
resolution, described in order of increased flexibility and increased computational cost: offset
resolution, name-lookup resolution, and dispatch-function resolution.

Offset resolution

When using SOM’s C and C++ language bindings, offset resolution is the default way of
resolving methods, because it is the fastest. For those familiar with C++, this is roughly equiva-
lent to the C++ “virtual function” concept.

Although offset resolution is the fastest technique for method resolution, it is also the most
constrained. Specifically, using offset resolution requires these constraints:

¢ The name of the method to be invoked must be known at compile time,

e The name of the class that introduces the method must be known at compile time
(although not necessarily by the programmer), and

e The method to be invoked must be part of the introducing class’s static (IDL) interface
definition.

To perform offset method resolution, SOM first obtains a method token from a global data
structure associated with the class that introduced the method. This data structure is called the
ClassData structure. It includes a method token for each method the class introduces. The
method token is then used as an “index” into the receiver’'s method table, to access the
appropriate method procedure. Because it is known at compile time which class introduces the
method and where in that class’s ClassData structure the method’s token is stored, offset
resolution is quite efficient. The cost of offset method resolution is currently about twice the cost
of calling a C function using a pointer loaded with the function address.

An object’s method table is a table of pointers to the procedures that implement the methods
that the object supports. This table is constructed by the object’s class and is shared among the
class instances. The method table built by class (for its instances) is referred to as the class’s
instance method table. This is useful terminology, since, in SOM, a class is itself an object with a
method table (created by its metaclass) used to support method calls on the class.

Usually, offset method resolution is sufficient; however, in some cases, the more flexible
name-lookup resolution is required.

5-14 SOMobjects Base Toolkit User’s Guide

Name-lookup resolution

Name-lookup resolution is similar to the method resolution techniques employed by Objec-
tive-C and Smalltalk. It is currently about five times slower than offset resolution. It is more
flexible, however. In particular, name-lookup resolution, unlike offset resolution, can be used
when:

* The name of the method to be invoked isn’t known until run time, or
¢ The method is added to the class interface at run time, or
¢ The name of the class introducing the method isn’t known until run time.

For example, a client program may use two classes that define two different methods of the
same name, and it might not be known until run time which of the two methods should be
invoked (because, for example, it will not be known until run time which class’s instance the
method will be applied to).

Name-lookup resolution is performed by a class, so it requires a method call. (Offset resolution,
by contrast, requires no method calls.) To perform name-lookup method resolution, the class of
the intended receiver object obtains a method procedure pointer for the desired method that is
appropriate for its instances. In general, this will require a name-based search through various
data structures maintained by ancestor classes.

Offset and name-lookup resolution achieve the same net effect (that is, they select the same
method procedure); they just achieve it differently (via different mechanisms for locating the
method’s method token). Offset resolution is faster, because it does not require searching for
the method token, but name-lookup resolution is more flexible.

When defining (in SOM IDL) the interface to a class of objects, the class implementor can
decide, for each method, whether the SOM Compiler will generate usage bindings that support
name-lookup resolution for invoking the method. Regardless of whether this is done, however,
application programs using the class can have SOM use either technique, on a per-method-call
basis. Chapter 3, “Using SOM Classes in Client Programs,” describes how client programs
invoke methods.*

Dispatch-function resolution

Dispatch-function resolution is the slowest, but most flexible, of the three method-resolution
techniques. Dispatch functions permit method resolution to be based on arbitrary rules
associated with the class of which the receiving object is an instance. Thus, a class implemen-
tor has complete freedom in determining how methods invoked on its instances are resolved.

With both offset and name-lookup resolution, the net effect is the same — the method proce-
dure that is ultimately selected is the one supported by the class of which the receiver is an
instance. For example, if the receiver is an instance of class “Dog”, then Dog’s method proce-
dure will be selected; but if the receiver is an instance of class “BigDog”, then BigDog’s method
procedure will be selected.

By contrast, dispatch-function resolution allows a class of instances to be defined such that the
method procedure is selected using some other criteria. For example, the method procedure
could be selected on the basis of the arguments to the method call, rather than on the receiver.
For more information on dispatch-function resolution, see the description and examples for the
somDispatch, and somOverrideMtab methods in the SOMobjects Developer Toolkit Pro-
grammers Reference Manual.

Customizing method resolution

Customizing method resolution requires the use of metaclasses that override SOMClass
methods. This is not recommend without use of the Cooperative Metaclass that guarantees
correct operation of SOMobjects in conjunction with such metaclasses. SOMobjects users who
require this functionality should request access to the experimental Cooperative Metaclass
used to implement the SOMobjects Metaclass Framework. Metaclasses implemented using
the Cooperative Metaclass may have to be reprogrammed in the future when SOMobjects
introduces an officially supported Cooperative Metaclass.

Implementing Classes in SOM 5-15

The four kinds of SOM methods

SOM supports four different kinds of methods: static methods, nonstatic methods, dynamic
methods, and direct-call procedures. The following paragraphs explain these four method
categories and the kinds of method resolution available for each.

Static methods

These are similar in concept to C++ virtual functions. Static methods are normally invoked using
offset resolution via a method table, as described above, but all three kinds of method resolution
are applicable to static methods. Each different static method available on an object is given a
different slot in the object’s method table. When SOMobjects Toolkit language bindings are
used to implement a class, the SOM IDL method modifier can be specified to indicate that a
given method is static; however, this modifier is rarely used since it is the default for SOM
methods.

Static methods introduced by a class can be overridden (redefined) by any descendant classes
of the class. When SOMobjects language bindings are used to implement a class, the SOM IDL
override modifier is specified to indicate that a class overrides a given inherited method. When
a static method is resolved using offset resolution, it is not important which interface is acces-
sing the method — the actual class of the object determines the method procedure that is
selected.

Note: All SOM IDL modifiers are described in the topic “Modifier statements” in Chapter 4,
“SOM IDL and the SOM Compiler.”

Nonstatic methods
These methods are similar in concept to C++ nonstatic member functions (that is, C++ functions
that are not virtual member functions and are not static member functions). Nonstatic methods
are normally invoked using offset resolution, but all three kinds of method resolution are
applicable to nonstatic methods. When the SOMobjects language bindings are used to imple-
ment a class, the SOM IDL nonstatic modifier is used to indicate that a given method is
nonstatic.

Like static methods, nonstatic methods are given individual positions in method tables. Howev-
er, nonstatic methods cannot be overridden. Instead, descendants of a class that introduces a
nonstatic method can use the SOM IDL reintroduce modifier to “hide” the original nonstatic
method with another (nonstatic or static) method of the same name and signature. When a
nonstatic method is resolved, selection of the specific method procedure is determined by the
interface that is used to access the method.

Dynamic methods
These methods are not declared when specifying an object interface using IDL. Instead, they
are registered with a class object at run time using the method somAddDynamicMethod.
Because there is no way for SOM to know about dynamic methods before run time, offset
resolution is not available for dynamic methods. Only name-lookup or dispatch-function resolu-
tion can be used to invoke dynamic methods. Dynamic methods cannot be overridden.

Direct-call procedures

These are similar in concept to C++ static member functions. Direct-call procedures are not
given positions in SOM method tables, but are accessed directly from a class’s ClassData
structure. Strictly speaking, none of the previous method-resolution approaches apply for
invoking a direct-call procedure, although SOMobjects language bindings provide the same
invocation syntax for direct-call procedures as for static or nonstatic methods. Direct-call
procedures cannot be overridden, but they can be reintroduced. When SOMobjects language
bindings are used to implement a class, the SOM IDL procedure modifier is used to indicate
that a given method is a direct-call procedure. Note: Methods having the procedure modifier
cannot be invoked remotely using DSOM.

5-16 SOMobjects Base Toolkit User’s Guide

5.4 Implementing SOM Classes

The interface to a class of objects contains the information that a client must know to use an
object — namely, the signatures of its methods and the names of its attributes. The interface is
described in a formal language independent of the programming language used to implement
the object’'s methods. In SOM, the formal language used to define object interfaces is the
Interface Definition Language (described in Chapter 4, “SOM IDL and the SOM Compiler”).

The implementation of a class of objects (that is, the procedures that implement the methods
and the instance variables that store an object’s state) is written in the implementor’s preferred
programming language. This language can be object-oriented (for instance, C++) or procedural
(for instance, C).

A completely implemented class definition, then, consists of two main files:

¢ An IDL specification of the interface to instances of the class — the interface definition file
(or .idl file) and

» Method procedures written in the implementor’s language of choice — the implementa-
tion file.

The SOM Compiler provides the link between those two files: To assist users in implementing
classes, the SOM Compiler produces a template implementation file — a type-correct guide for
how the implementation of a class should look. Then, the class implementor modifies this
template file to fully implement the class’s methods. That process is the subject of the remain-
der of this chapter.

The SOM Compiler can also update the implementation file to reflect changes subsequently
made to a class’s interface definition file (the .idl file). These incremental updates include
adding new stub procedures, adding comments, and changing method prototypes to reflect
changes made to the method declarations in the IDL specification. These updates to the
implementation file, however, do not disturb existing code in the method procedures. These
updates are discussed further in “Running incremental updates of the implementation template
file” later in this section.

For C programmers, the SOM Compiler generates a <filestem>.c file. For C++ programmers,
the SOM Compiler generates a <filestem>.C file (for AlX) or a <filestem>.cpp file (for OS/2 or
Windows). To specify whether the SOM Compiler should generate a C or C++ implementation
template, set the value of the SMEMIT environment variable, or use the —s option when running
the SOM Compiler. (See “The SOM Compiler” in Chapter 4, “SOM IDL and the SOM Compil-
er.”)

Note: As this chapter describes, a SOM class can be implemented by using C++ to define the
instance variables introduced by the class and to define the procedures that implement the
overridden and introduced methods of the class. Be aware, however, that the C++ class defined
by the C++ usage bindings for a SOM class (described in Chapter 3) cannot be subclassed in
C++ to create new C++ or SOM classes.t

The implementation template
Consider the following IDL description of the “Hello” class:

#include <somobj.idl>

interface Hello : SOMObiject
{

void sayHello();

// This method outputs the string ”"Hello, World!”.
}i

T The reason why the C++ implementation of a SOM class involves the definition of C++ procedures (not C++ methods) to support
SOM methods is that there is no language-neutral way to call a C++ method. Only C++ code can call C++ methods, and this calling
code must be generated by the same compiler that generates the method code. In contrast, the method procedures thatimplement
SOM methods mustbe callable from any language, without knowledge on the part of the object client as to which language is used to
implement the resolved method procedure.

Implementing Classes in SOM 5-17

From this IDL description, the SOM Compiler generates the following C implementation tem-
plate, hello.c (a C++ implementation template, hello.C or hello.cpp, is identical except that the
#included file is <hello.xih> rather than <hello.ih>):

#define Hello_Class_Source
#include <hello.ih>

/*
* This method outputs the string "Hello, World!”.
*/

SOM_Scope void SOMLINK sayHello (Hello somSelf, Environment *ev)

{
/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello”,”sayHello”);

}

The first line defines the “Hello_Class_Source” symbol, which is used in the SOM-generated
implementation header files for C to determine when to define various functions, such as
“HelloNewClass.” For interfaces defined within a module, the directive “#define <class-
Name>_Class_Source” is replaced by the directive “#define SOM_Module_<module-
Name>_Source”.

The second line (#include <hello.ih> for C,or #include <hello.xih> for C++) includes
the SOM-generated implementation header file. This file defines a struct holding the class’s
instance variables, macros for accessing instance variables, macros for invoking parent meth-
ods, and so forth.

Stub procedures for methods
For each method introduced or overridden by the class, the implementation template includes
a stub procedure — a procedure that is empty except for an initialization statement, a debug-
ging statement, and possibly a return statement. The stub procedure for a method is preceded
by any comments that follow the method’s declaration in the IDL specification.

For method “sayHello” above, the SOM Compiler generates the following prototype of the stub
procedure:

SOM_Scope void SOMLINK sayHello (Hello somSelf, Environment *ev)

The “SOM_Scope” symbol is defined in the implementation header file as either “extern” or
“static,” as appropriate. The term “void” signifies the return type of method “sayHello”. The
“SOMLINK” symbol is defined by SOM; it represents the keyword needed to link to the C or C++
compiler, and its value is system-specific. Using the “SOMLINK” symbol allows the code to work
with a variety of compilers without modification.

Following the “SOMLINK” symbol is the name of the procedure thatimplements the method. If no
functionprefix modifier has been specified for the class, then the procedure name is the same
as the method name. If a functionprefix modifier is in effect, then the procedure name is
generated by prepending the specified prefix to the method name. For example, if the class
definition contained the following statement:

functionprefix = xx_;
then the prototype of the stub procedure for method “sayHello” would be:
SOM_Scope void SOMLINK xx_sayHello (Hello somSelf, Environment *ev)
The functionprefix cannot be

<classname>__

since this is used in method invocation macros defined by the C usage bindings.

Following the procedure name is the formal parameter list for the method procedure. Because
each SOM method always receives at least one argument (a pointer to the SOM object that
responds to the method), the first parameter name in the prototype of each stub procedure is
called somSelf. (The macros defined in the implementation header file rely on this convention.)
The somSelf parameter is a pointer to an object that is an instance of the class being imple-
mented (here, class “Hello”) or an instance of a class derived from it.

5-18 SOMobjects Base Toolkit User’s Guide

Unless the IDL specification of the class included the callstyle=oidl modifier, then the formal
parameter list will include one or two additional parameters before the parameters declared in
the IDL specification: an (Environment *ev) input/output parameter, which permits the return
of exception information, and, if the IDL specification of the method includes a context specifica-
tion, a (Context *ctx) input parameter. These parameters are prescribed by the CORBA
standard. For more information on using the Environment and Context parameters, see the
section entitled “Exceptions and error handling” in Chapter 3, “Using SOM Classes in Client
Programs,” and the book The Common Object Request Broker: Architecture and Specification,
published by Object Management Group and X/Open.

The first statement in the stub procedure for method “sayHello” is the statement:

/* HelloData *somThis = HelloGetData (somSelf); */

This statement is enclosed in comments only when the class does not introduce any instance
variables. The purpose of this statement, for classes that do introduce instance variables, is to
initialize a local variable (somThis) that points to a structure representing the instance vari-
ables introduced by the class. The somThis pointer is used by the macros defined in the “Hello”
implementation header file to access those instance variables. (These macros are described
below.) In this example, the “Hello” class introduces no instance variables, so the statement is
commented out. If instance variables are later added to a class that initially had none, then the
comment characters can be removed if access to the variable is required.

The “HelloData” type and the “HelloGetData” macro used to initialize the somThis pointer are
defined in the implementation header file. Within a method procedure, class implementors can
use the somThis pointer to access instance data, or they can use the convenience macros
defined for accessing each instance variable, as described below.

To implement a method so that it can modify a local copy of an object’s instance data without
affecting the object’s real instance data, declare a variable of type <className>Data (for ex-
ample, “HelloData”) and assign to it the structure that somThis points to; then make the
somThis pointer point to the copy. For example:

HelloData myCopy = *somThis;
somThis = &myCopy;

Next in the stub procedure for method “sayHello” is the statement:

HelloMethodDebug (”"Hello”, “sayHello”) ;

This statement facilitates debugging. The “HelloMethodDebug” macro is defined in the imple-
mentation header file. It takes two arguments, a class name and a method name. If debugging
is turned on (that s, if global variable SOM_TraceLevel is set to one in the calling program), the
macro produces a message each time the method procedure is entered. (See Chapter 3,
“Using SOM Classes in Client Programs,” for information on debugging with SOM.)

Debugging can be permanently disabled (regardless of the SOM_TraceLevel setting in the
calling program) by redefining the <className>MethodDebug macro as SOM_NoTrace(c,m)
following the #include directive for the implementation header file. (This can yield a slight
performance improvement.) For example, to permanently disable debugging for the “Hello”
class, insert the following lines in the hello.c implementation file following the line “#include
hello.ih” (or “#include hello.xih,” for classes implemented in C++):

#undef HelloMethodDebug
#define HelloMethodDebug(c,m) SOM_NoTrace (c,m)

The way in which the stub procedure ends is determined by whether the method is a new or an
overriding method.

e For non-overriding (new) methods, the stub procedure ends with a return statement
(unless the return type of the method is void). The class implementor should customize
this return statement.

Implementing Classes in SOM 5-19

» For overriding methods, the stub procedure ends by making a “parent method call” for
each of the class’s parent classes. If the method has a return type that is not void, the last
of these parent method calls is returned as the result of the method procedure. The class
implementor can customize this return statement if needed (for example, if some other
value is to be returned, or if the parent method calls should be made before the method
procedure’s own processing). See the next section for a discussion of parent method
calls.

If a classinit modifier was specified to designate a user-defined procedure that will initialize the
“Hello” class object, as in the statement:

classinit = HInit;
then the implementation template file would include the following stub procedure for “HInit”, in
addition to the stub procedures for Hello’'s methods:

void SOMLINK HInit (SOMClass *cls)
{

}

This stub procedure is then filled in by the class implementor. If the class definition specifies a
functionprefix modifier, the classinit procedure name is generated by prepending the speci-
fied prefix to the specified classinit name, as with other stub procedures.

Extending the implementation template

To implement a method, add code to the body of the stub procedure. In addition to standard C or
C++ code, class implementors can also use any of the functions, methods, and macros SOM
provides for manipulating classes and objects. Chapter 3, “Using SOM Classes in Client
Programs,” discusses these functions, methods, and macros.

In addition to the functions, methods, and macros SOM provides for both class clients and class
implementors, SOM provides two facilities especially for class implementors. They are for (1)
accessing instance variables of the object responding to the method and (2) making parent
method calls, as follows.

Accessing internal instance variables
To access internal instance variables, class implementors can use either of the following forms:

_variableName
somThis—variableName

To access internal instance variables “a”, “b”, and “c”, for example, the class implementor could
use either _a, _b, and _c, or somThis—a, somThis—>b, and somThis—>c. These expressions
can appear on either side of an assignment statement. The somThis pointer must be properly
initialized in advance using the <className>GetData procedure, as shown above.

Instance variables can be accessed only within the implementation file of the class that
introduces the instance variable, and not within the implementation of subclasses or within
client programs. (To allow access to instance data from a subclass or from client programs, use
an attribute rather than an instance variable to represent the instance data.) For C++ program-
mers, the _variableName form is available only if the macro VARIABLE_MACROS is defined
(thatis, #define VARIABLE_MACROS) in the implementation file prior to including the .xih file for
the class.

Making parent method calls
In addition to macros for accessing instance variables, the implementation header file that the
SOM Compiler generates also contains definitions of macros for making “parent method calls.”
When a class overrides a method defined by one or more of its parent classes, often the new
implementation simply needs to augment the functionality of the existing implementation(s).
Rather than completely re-implementing the method, the overriding method procedure can
conveniently invoke the procedure that one or more of the parent classes uses to implement
that method, then perform additional computation (redefinition) as needed. The parent method
call can occur anywhere within the overriding method. (See Example 3 of the SOM IDL tutorial.)

5-20 SOMobjects Base Toolkit User’s Guide

The SOM-generated implementation header file defines the following macros for making
parent-method calls from within an overriding method:

<className>_parent_<parentClassName>_<methodName>
(for each parent class of the class overriding the method), and

<className>_parents_<methodName>.

For example, given class “Hello” with parents “File” and “Printer” and overriding method soml-
nit (the SOM method that initializes each object), the SOM Compiler defines the following
macros in the implementation header file for “Hello”:

Hello_parent_Printer_somInit
Hello_parent_File_somInit
Hello_parents_somInit

Each macro takes the same number and type of arguments as <methodName>. The <class-
Name>_parent_<parentClassName>_<methodName> macro invokes the implementation of
<methodName> inherited from <parentClassName>. Hence, using the macro “Hello_par-
ent_File_somlInit” invokes File’s implementation of sominit.

The <className>_parents_<methodName> macro invokes the parent method for each par-
ent of the child class that supports <methodName>. That is, “Hello_parents_somlInit” would
invoke File’s implementation of sominit, followed by Printer’s implementation of somlnit. The
<className>_parents_<methodName> macro is redefined in the binding file each time the
class interface is modified, so that if a parent class is added or removed from the class
definition, or if <methodName> is added to one of the existing parents, the macro <class-
Name>_parents_<methodName> will be redefined appropriately.

Converting C++ classes to SOM classes
For C++ programmers implementing SOM classes, SOM provides a macro that simplifies the
process of converting C++ classes to SOM classes. This macro allows the implementation of
one method of a class to invoke another new or overriding method of the same class on the
same receiving object by using the following shorthand syntax:

_methodName (argl, arg2, ...)

For example, if class Xintroduces or overrides methods m1 and m2, then the C++ implementa-
tion of method m1 can invoke method m2 on its somSelf argument using _m2(arg, arg2, ...),
rather than somSelf->m2(arg1, arg2, ...), as would otherwise be required. (The longer form is
also available.) Before the shorthand form in the implementation file is used, the macro METH-
OD_MACROS must be defined (that is, use #define METHOD_MACROS) prior to including the
xih file for the class.

Running incremental updates of the implementation template file
Refining the .idl file for a class is typically an iterative process. For example, after running the
IDL source file through the SOM Compiler and writing some code in the implementation
template file, the class implementor realizes that the IDL class interface needs another method
or attribute, a method needs a different parameter, or any such changes.

As mentioned earlier, the SOM Compiler (when run using the ¢ or xc emitter) assists in this
development by reprocessing the .idl file and making incremental updates to the current
implementation file. This modify-and-update process may in fact be repeated several times
before the class declaration becomes final. Importantly, these updates do not disturb existing
code for the method procedures. Included in the incremental update are these changes:

 Stub procedures are inserted into the implementation file for any new methods added to
the .idl file.

« New comments in the .idl file are transferred to the implementation file, reformatted
appropriately.

« If the interface to a method has changed, a new method procedure prototype is placed in
the implementation file. As a precaution, however, the old prototype is also preserved
within comments. The body of the method procedure is left untouched (as are the method
procedures for all methods).

Implementing Classes in SOM 5-21

« Similarly left intact are preprocessor directives, data declarations, constant declarations,
non-method functions, and additional comments — in essence, everything else in the
implementation file.

Some changes to the .idl file are not reflected automatically in the implementation file after an
incremental update. The class implementor must manually edit the implementation file after
changes such as these in the .idl file:

¢ Changing the name of a class or a method.

» Changing the parents of a class (see also “If you change the parents of a class...” later in
this topic).

¢ Changing a functionprefix class modifier statement.

¢ Changing the content of a passthru statement directed to the implementation (.c, .C, or
.cpp) file. As previously emphasized, however, passthru statements are primarily recom-
mended only for placing #include statements in a binding file (.ih, .xih, .h, or .xh file) used
as a header file in the implementation file or in a client program.

e If the class implementor has placed “forward declarations” of the method procedures in
the implementation file, those are not updated. Updates occur only for method prototypes
that are part of the method procedures themselves.

Considerations to ensure that updates work
To ensure that the SOM Compiler can properly update method procedure prototypes in the
implementation file, class implementors should avoid editing changes such as the following:

¢ A method procedure name should not be enclosed in parentheses in the prototype.

¢ A method procedure name must appear in the first line of the prototype, excluding
comments and whitespace. Thus, a newline must not be inserted before the procedure
name.

Error messages occur while updating an existing implementation file if it contains syntax that is
not ANSI C. For example, “old style” method definitions such as the example on the left generate

errors:
Invalid “old” syntax Required ANSI C
void foo (x) void foo (short x) {
short x;

{ }
}

Similarly, error messages occur if anything in the .idl file would produce an implementation file
thatis not syntactically valid for C/C++ (such as nested comments). If update errors occur, either
the .idl file or the implementation file may be at fault. One way to track down the problemis to run
the implementation file through the C/C++ compiler. Or, move the existing implementation file to
another directory, generate a completely new one from the .idl file, and then run it through the
C/C++ compiler. One of these steps should pinpoint the error, if the compiler is strict ANSI.

5-22 SOMobjects Base Toolkit User’s Guide

Conditional compilation (using #if and #ifdef directives) in the implementation file can be
another source of errors, because the SOM Compiler does not invoke the preprocessor (it
simply recognizes and ignores those directives). The programmer should be careful when
using conditional compilation, to avoid a situation such as shown below; here, with apparently
two open braces and only one closing brace, the ¢ or xc emitter would report an unexpected

end-of-file:

Invalid syntax Required matching braces
#ifdef FOOBAR #ifdef FOOBAR

{ {
#else }

{ #else

- {

#endif

} }

If you change the parents of a class...

Because the implementation-file emitters never change any existing code within a previously
generated implementation file, changing the parents of a class requires extremely careful
attention by the programmer. For example, for overridden methods, changing a class’s parents
may invalidate previous parent-method calls provided by the template, and require the addition
of new parent-method calls. Neither of these issues is addressed by the incremental update of
previously generated method-procedure templates.

The greatest danger from changing the parents of a class, however, concerns the ancestor-in-
itializer calls provided in the stub procedures for initializer methods. (For further information on
ancestor initializer calls, see “Initializing and Uninitializing Objects” later in this chapter.) Unlike
parent-method calls, ancestor-initializer calls are not optional — they must be made to all
classes specified in a directinitclasses modifier, and these calls should always include the
parents of the class (the default when no directinitclasses modifier is given). When the
parents of a class are changed, however, the ancestor-initializer calls (which must be made in a
specific order) are not updated.

The easiest way to deal with this problem is to change the method name of the previously
generated initializer stub procedure in the implementation template file. Then, the SOM Compil-
er can correctly generate a completely new initializer stub procedure (while ignoring the re-
named procedure). Once this is done, your customization code from the renamed initializer
procedure can be “merged” into the newly generated one, after which the renamed initializer
procedure can be deleted.

Compiling and linking
After you fill in the method stub procedures, the implementation template file can be compiled

and linked with a client program as shown below. In these examples, the environment variable
SOMBASE represents the directory in which SOM has been installed.

For AIX: When the client program (main.c) and the implementation file (hello.c)
are written in C:

> xlc -I. —-I$SOMBASE/include —-o hello main.c hello.c \
-LSSOMBASE/1ib -lsomtk

When the client program and the implementation file are written in C++:
> x1C —-I. -I$SSOMBASE/include -o hello main.C hello.C \
-L$SSOMBASE/1ib —lsomtk
For OS/2: When the client program (main.c) and the implementation file (hello.c) are in C:

> set LIB=%SOMBASE%\1lib; $LIB%
> icc -I. -I%SOMBASE%\include -Fe hello \
main.c hello.c somtk.lib

Implementing Classes in SOM 5-23

When the client program and the implementation file are written in C++:

> set LIB=%SOMBASE%\1lib;%$LIB%
> icc -I. -I%SOMBASE%\include -Fe hello \
main.cpp hello.cpp somtk.lib

For Windows: When the client program (main.c) and the implementation file (hello.c) are in C:

> cl -AL -Zpl -I. -I%SOMBASE%\include -Fehello \
main.c hello.c llibcew.lib libw.lib somtk.lib main.def

When the client program and the implementation file are written in C++:

> cl -AL -Zpl -I. -I%SOMBASE%\include -Fehello \
main.cpp hello.cpp llibcew.lib libw.lib somtk.lib main.def

Windows compiler notes: The SOM Compiler and runtime libraries under Windows only
provide support for Large Memory Model systems. The “—Oi” compile flag should be used
whenever a SOM Windows program contains or calls any functions that return floats or
doubles. The “—F” option can be used to set the stack size if STACKSIZE is not specified in a .def
file. Additionally, for this manual, compile and link commands are demonstrated using the Visual
C++compiler. Sample Makefiles shipped with SOMobjects For Windows also show how to build
with other compilers.

For all users: If the class definition (in the .idl file) changes, run the SOM Compiler again. This
will generate new header files, and it will update the implementation file to include any:

* New comments,
¢ Stub procedures for any new methods, and

¢ Revised method procedure prototypes for methods whose signatures have been changed
in the .idl file.

After rerunning the SOM Compiler, add to the implementation file the code for any newly added
method procedures, and recompile the implementation file with the client program.

5-24 SOMobjects Base Toolkit User’s Guide

5.5 Initializing and Uninitializing Objects

This section discusses the initialization and uninitialization of SOM objects. Subsequent topics
introduce the methods and capabilities that the SOMobjects Developer Toolkit provides to
facilitate this.

Object creation is the act that enables the execution of methods on an object. In SOM, this
means storing a pointer to a method table into a word of memory. This single act converts raw
memory into an (uninitialized) SOM object that starts at the location of the method table pointer.

Object initialization, on the other hand, is a separate activity from object creation in SOM.
Initialization is a capability supported by certain methods available on an object. An object’s
class determines the implementation of the methods available on the object, and thus deter-
mines its initialization behavior.

The instance variables encapsulated by a newly created object must be brought into a consis-
tent state before the object can be used. This is the purpose of initialization methods. Because,
in general, every ancestor of an object’s class contributes instance data to an object, it is
appropriate that each of these ancestors contribute to the initialization of the object.

SOM thus recognizes initializers as a special kind of method. One advantage of this approach
is that special metaclasses are not required for defining constructors (class methods) that take
arguments. Furthermore, a class can define multiple initializer methods, thus enabling its
different objects to be initialized supporting different characteristics or capabilities. This results
in simpler designs and more efficient programs.

The SOMobjects Toolkit provides an overall framework that class designers can easily exploit
in order to implement default or customized initialization of SOM objects. This framework is fully
supported by the SOM Toolkit emitters that produce the implementation template file. The
following sections describe the declaration, implementation, and use of initializer (and uninitial-
izer) methods.

Important: All code written prior to SOMobjects Release 2.1 using documented guidelines for
the earlier initialization approach based on the somlnit method (as well as all existing class
binaries) continues to be fully supported and useful.

Initializer methods

As noted above, in the SOMobjects Toolkit each ancestor of an object contributes to the
initialization of that object. Initialization of an object involves a chain of ancestor-method calls
that, by default, are automatically determined by the SOM Compiler emitters. The SOMobjects
framework for initialization of objects is based on the following approach:

1. SOMobjects recognizes initializers as a special kind of method, and supports a
special mechanism for ordering the execution of ancestor-initializer method proce-
dures. The SOMODbject class introduces an initializer method, somDefaultInit, that
uses this execution mechanism.

2. The SOM Compiler’s emitters provide special support for methods that are declared
as initializers in the .idl file. To supplement the somDefaultinit method, SOM class
designers can also declare additional initializers in their own classes.

Two SOM IDL modifiers are provided for declaring initializer methods and controlling their
execution, init and directinitclasses:

¢ The init modifier is required in order to designate a given method is an initializer; that
is, to indicate that the method both uses and supports the object-initialization protocol
described here.

¢ The directinitclasses modifier can be used to control the order of execution of
initializer method procedures provided by the different ancestors of the class of an
object.

For full definitions of init and directinitclasses, see the topic “Modifier statements” in Chapter
4,“SOM IDL and the SOM Compiler.”

Implementing Classes in SOM 5-25

Every SOM class has a list that defines (in sequential order) the ancestor classes whose
initializer method procedures the class should invoke. If a class’s IDL does not specify an
explicit directinitclasses modifier, the default for this list is simply the class’s parents — in
left-to-right order.

Using the directinitclasses list and the actual run-time class hierarchy above itself, each class
inherits from SOMClass the ability to create a data structure of type somlInitCtrl. This structure
is used to control the execution of initializers. Moreover, it represents a particular visit-ordering
that reaches each class in the transitive closure of directinitclasses exactly once. Toinitialize a
given object, this visit-ordering occurs as follows: While recursively visiting each ancestor class
whose initializer method procedure should be run, SOMobjects first runs the initializer method
procedures of all of that class’s directinitclasses if they have not already been run by another
class’s initializers, with ancestor classes always taken in left-to-right order.

For example, Figure 10 shows an inheritance hierarchy along with the ordering produced when
an instance of the class numbered 7 is initialized, assuming that each class simply uses its
parents as its directinitclasses. Note that the class numbered 3 is at the top of a diamond.

A default initializer ordering

Q O ©
%
\

of

Figure 10. A default initializer ordering of a class’s inheritance hierarchy.

©

©)

©
©

In this example, the somInitCtrl data structure for class 7 is what tells node 6 in Figure 10 not to
invoke node 3’s initializer code (because it has already been executed). The code that deals
with the somlInitCtrl data structure is generated automatically within the implementation
bindings for a class, and need not concern a class implementor.

As illustrated by this example, when an instance of a given class (or some descendant class) is
initialized, only one of the given class’s initializers will be executed, and this will happen exactly
once (under control of the ordering determined by the class of the object being initialized).

The somlnitCtrl structure solves a problem originally created by the addition of multiple
inheritance to SOMobjects 2.0. With multiple inheritance, any class can appear at the top of a
multiple inheritance diamond. Previously, whenever this happened, the class could easily
receive multiple initialization calls. In the current version of the SOMobjects Toolkit, however,
the somlInitCtrl structure prevents this from happening.

5-26 SOMobjects Base Toolkit User’s Guide

Declaring new initializers in SOM IDL

When defining SOMobjects classes, programmers can easily declare and implement new
initializers. Classes can have as many initializers as desired, and subclassers can invoke
whichever of these they want. When introducing new initializers, developers must adhere to the
following rules:

e Allinitializer methods take a somlInitCtrl data structure as an initial inout parameter (its
type is defined in the SOMobjects header file somapi.h), and

o All initializers return void.

Accordingly, the somDefaultlnit initializer introduced by SOMObiject takes a somlinitCtrl
structure as its (only) argument, and returns void. Here is the IDL syntax for this method, as
declared in somobij.idl:

void somDefaultlnit (inout somlInitCtrl ctrl);

When introducing a new initializer, it is also necessary to specify the init modifier in the
implementation section. The init modifier is what tells emitters that the new method is actually
an initializer, so the method can be properly supported from the language bindings. As de-
scribed below, this support includes the generation of special initializer stub procedures in the
implementation template file, as well as bindings containing ancestor-initialization macros and
object constructors that invoke the class implementor’s new initializers.

It is a good idea to begin the names of initializer methods with the name of the class (or some
other string that can be unique for the class). This is important because all initializers available
on a class must be newly introduced by that class (that is, you cannot override initializers —
except for somDefaultlnit). Using a class-unique name means that subclasses will not be
unnecessarily constrained in their choice of initializer names.

Here are two classes that introduce new initializers:

interface Examplel : SOMObject
{
void Examplel withName (inout somInitCtrl ctrl, in string name);
void Examplel_withSize (inout somInitCtrl ctrl, in long size);
void Examplel_withNandS (inout somInitCtrl ctrl, in string name,
in long size);
implementation {
releaseorder: Examplel_withName,
Examplel_withSize,
Examplel_withNandS;
somDefaultInit: override, init;
somDestruct: override;
Examplel_ withName: init;
Examplel_withSize: init;
Examplel_withNandS: init;
}i
}i

interface Example2 : Examplel
{
void Example2_withName (inout somInitCtrl ctrl, in string name);
void Example2_ withSize (inout somInitCtrl ctrl, in long size);
implementation {
releaseorder: Example2_withName,
Example2_withSize;
somDefaultInit: override, init;
somDestruct: override;
Example2_withName: init;
Example2_withSize: init;
}i
}i

Implementing Classes in SOM 5-27

Here, interface “Example1” declares three new initializers. Notice the use of inout sominitCtrl
as the first argument of each initializer, and also note that the init modifier is used in the
implementation section. These two things are required to declare initializers. Any number of
initializers can be declared by a class. “Example2” declares two initializers.

“Example1” and “Example2” both override the somDefaultlnit initializer. This initializer method
is introduced by SOMODbject and is special for two reasons: First, somDefaultlnit is the only
initializer that can be overridden. And, second, SOMobjects arranges that this initializer will
always be available on any class (as further explained below).

Historically in the SOMobjects Toolkit, object-initialization methods by default have invoked the
somlnit method, which class implementors could override to customize initialization as ap-
propriate. SOMobjects continues to support this approach, so that existing code (and class
binaries) will execute correctly. However, the somDefaultlnit method is now the preferred form
of initialization because it offers greatly improved efficiency.

Even if no specialized initialization is needed for a class, you should still override the somDe-
faultlnit method in the interest of efficiency. If you do not override somDefaultlnit, then a
generic (and therefore less efficient) somDefaultlnit method procedure will be used for your
class. This generic method procedure firstinvokes somDefaultlnit on the appropriate ancestor
classes. Then (for consistency with earlier versions of SOMobjects), it checks to determine if
the class overrides somlnit and, if so, calls any customized somlinit code provided by the
class.

When you override somDefaultlnit, the emitter’s implementation template file will include a
stub procedure similar to those used for other initializers, and you can fill it in as appropriate
(or simply leave it as is). Default initialization for your class will then run much faster than with
the generic method procedure. Examples of initializer stub procedures (and customizations)
are given below.

In summary, the initializers available for any class of objects are somDefaultlnit (which you
should always override) plus any new initializers explicitly declared by the class designer.
Thus, “Example1” objects may be initialized using any of four different initializers (the three that
are explicitly declared, plus somDefaultlnit). Likewise, there are three initializers for the
“Example2” objects. Some examples of using initializers are provided below.

Considerations re: ‘'sominit’ initialization from earlier SOM releases
To re-emphasize: All code written prior to SOMobjects Release 2.1 using documented guide-
lines for the earlier initialization approach based on the somlInit method (as well as all existing
class binaries) continues to be fully supported and useful.

Prior to SOMobjects 2.1, initialization was done with initializer methods that would simply
“chain” parent-method calls upward, thereby allowing the execution of initializer method proce-
dures contributed by all ancestors of an object’s class. This chaining of initializer calls was not
supported in any special way by the SOM API. Parent-method calls are simply one of the
possible idioms available to users of OOP in SOM, easily available to a SOM class designer as
a result of the support provided by the SOMobjects Toolkit emitters for parent-method calls.

So, SOM did not constrain initialization to be done in any particular way or require the use of any
particular ordering of the method procedures of ancestor classes. But, SOM did provide an
overall framework that class designers could easily utilize in order to implement default initial-
ization of SOM objects. This framework is provided by the somlinit object-initialization method
introduced by the SOMODbject class and supported by the SOM Toolkit emitters. The emitters
create an implementation template file with stub procedures for overridden methods that
automatically chain parent-method calls upward through parent classes. Many of the class
methods that perform object creation called somlnit automatically. [Note: These will now call
somDefaultlnit, which in turn calls somlnit for legacy code, as described in the previous topic.]

Because it takes no arguments, somlnit best served the purpose of a default initializer. SOM
programmers also had the option of introducing additional “non-default” initialization methods
that took arguments. In addition, by using metaclasses, they could introduce new class meth-
ods as object constructors that first create an object (generally using somNewNolnit) and then
invoke some non-default initializer on the new object.

5-28 SOMobjects Base Toolkit User’s Guide

For a number of reasons, the somlinit framework has been augmented by recognizing initializ-
ers as a special kind of method in SOMobjects. One advantage of this approach is that special
metaclasses are no longer required for defining constructors that take arguments. Instead,
because the init modifier identifies initializers, usage-binding emitters can now provide these
constructors. This results in simpler designs and more efficient programs.

Although somDefaultlnit replaces somlnit as the no-argument initializer used for SOM ob-
jects, all previous use of somlnit is still supported by the SOMobjects Developers Toolkit on
AlX, OS/2 and 16-bit Windows. You may continue to use somlnit on these systems if you like,
although this is somewhat less efficient than using somDefaultlnit.

However, you cannot use both methods. In particular, if a class overrides both somDefaultInit
and sominit, its sominit code will never be executed. It is recommended that you always
override somDefaultlnit for object initialization. For one thing, it is likely that when SOMobjects
is ported to new systems, somlnit (and somUninit) may not be supported on those systems.
Thus, code written using these (obsolete) methods will be less portable.

Implementing initializers
When new initializers are introduced by a class, as in the preceding examples, the implementa-
tion template file generated by the SOM Toolkit C and C++ emitters automatically contains an
appropriate stub procedure for each initializer method, for the class implementor’s use. The
body of an initializer stub procedure consists of two main sections:

e The first section performs calls to ancestors of the class to invoke their initializers.

e The second section is used by the programmer to perform any “local” initializations
appropriate to the instance data of the class being defined.

In the first section, by default, the parents of the new class are the ancestors whose initializers
are called. When something else is desired, the IDL directinitclasses modifier can be used
to explicitly designate the ancestors whose initializer methods should be invoked by a new
class’s initializers.

Important: Under no circumstances can the number or the ordering of ancestor initializer calls
in the first section of an initializer stub procedure be changed. The control masks used by
initializers are based on these orderings. (If you want to change the number or ordering of
ancestor initializer calls, you must use the directinitclasses modifier.) The ancestor initializer
calls themselves can be modified as described below.

Each call to an ancestor initializer is made using a special macro (much like a parent call) that is
defined for this purpose within the implementation bindings. These macros are defined for all
possible ancestor initialization calls. Initially, an initializer stub procedure invokes the default
ancestor initializers provided by somDefaultlnit. However, a class implementor can replace
any of these calls with a different initializer call, as long as it calls the same ancestor (see the
example in the next topic). Non-default initializer calls generally take other arguments in
addition to the control argument.

In the second section of an initializer stub procedure, the programmer provides any class-spe-
cific code that may be needed for initialization. For example, the “Example2_withName” stub
procedure is shown below. As with all stub procedures produced by the SOMobijects imple-
mentation-template emitters, this code requires no modification to run correctly.

SOM_Scope void SOMLINK Example2_ withName (Example2 *somSelf,
Environment *ev,
somInitCtrl* ctrl,
string name)

Example2Data *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;

Example2MethodDebug ("Example2”, "withName”) ;

/*
* first section -- calls to ancestor initializers
*/
Example2 BeginInitializer Example2 withName;
Example2_ Init_Examplel_ somDefaultInit (somSelf, ctrl);

Implementing Classes in SOM 5-29

/*
* second section -- local Example2 initialization code
*/

}

In this example, notice that the “Example2_withName” initializer is an IDL callstyle method, so
it receives an Environment argument. In contrast, somDefaultlnit is introduced by the
SOMObiject class (so it has an OIDL callstyle initializer, without an environment).

Important: If a class is defined where multiple initializers have exactly the same signature, then
the C++usage bindings will not be able to differentiate among them. That is, if there are multiple
initializers defined with environment and long arguments, for example, then C++ clients would
not be able to make a call using only the class name and arguments, such as:

new Example2(env, 123);

Rather, C++ users would be forced to first invoke the somNewNolnit method on the class to
create an uninitialized object, and then separately invoke the desired initializer method on the
object. This call would pass a zero for the control argument, in addition to passing values for
the other arguments. For further discussion of client usage, see “Using initializers when creat-
ing new objects” later in this chapter.

Selecting non-default ancestor initializer calls
Often, it will be appropriate (in the first section of an initializer stub procedure) to change the
invocation of an ancestor’'s somDefaultlnit initializer to some other initializer available on the
same class. The rule for making this change is simple: Replace somDefaultInit with the name
of the desired ancestor initializer, and add any new arguments that are required by the replace-
ment initializer. Important: Under no circumstances can you change anything else in the first
section.

This example shows how to change an ancestor-initializer call correctly. Since there is a known
“Example1_withName” initializer, the following default ancestor-initializer call (produced within
the stub procedure for “Example2_withName”) can be changed from

Example2_Init_Examplel_somDefaultInit (somSelf, ctrl);

to

Example2_Init_Examplel_ Examplel_withName (somSelf, ev, ctrl, name);

Notice that the revised ancestor-initializer call includes arguments for an Environment and a
name, as defined by the “Example1_withname” initializer.

Using initializers when creating new objects
There are several ways that client programs can take advantage of the somDefaultInit object
initialization. If desired, clients can use the SOM API directly (rather than taking advantage of
the usage bindings). Also, the general object constructor, somNew, can always be invoked on a
class to create and initialize objects. This call creates a new object and then invokes somDe-
faultlnit on it.

To use the SOM API directly, the client code should first invoke the somNewNolnit method on
the desired class object to create a new, uninitialized object. Then, the desired initializer is
invoked on the new object, passing a null (that is, 0) control argument in addition to whatever
other arguments may be required by the initializer. For example:

/* first make sure the Example2 class object exists */
Example2NewClass (Example2_MajorVersion, Example2_ MinorVersion);

/* then create a new, uninitialized Example2 object */
myObject = _somNewNoInit (_Example?2);

/* then initialize it with the desired initializer */
Example2_withName (myObject, env, 0, ”“MyName”);

5-30 SOMobjects Base Toolkit User’s Guide

Usage bindings hide the details associated with initializer use in various ways and make calls
more convenient for the client. For example, the C usage bindings for any given class already
provide a convenience macro, <className>New, that first assures existence of the class
object, and then calls somNew on it to create and initialize a new object. As explained above,
somNew will use somDefaultlnit to initialize the new object.

Also, the C usage bindings provide object-construction macros that use somNewNolnit
and then invoke non-default initializers. These macros are named using the form <class-
Name>New_<initializerName>. For example, the C usage bindings for “Example2” allow using
the following expression to create, initialize, and return a new “Example2” object:

Example2New_Example2_withName (env, “AnyName”);

In the C++ bindings, initializers are represented as overloaded C++ constructors. As a result,
there is no need to specify the name of the initializer method. For example, using the C++
bindings, the following expressions could be used to create a new “Example2” object:

new Example2; // will use somDefaultInit
new Example?2(); // will use somDefaultInit
new Example2 (env,“A.B.Normal”); // will use Example2_withName
new Example2 (env,123); // will use Example2_withSize

Observe that if multiple initializers in a class have exactly the same signatures, the C++ usage
bindings would be unable to differentiate among the calls, if made using the forms illustrated
above. In this case, a client could use somNewNolnit first, and then invoke the specific
initializer, as described in the preceding paragraphs.

Uninitialization
An object should always be uninitialized before its storage is freed. This is important because it
also allows releasing resources and freeing storage not contained within the body of the object.
SOMobjects handles uninitialization in much the same way as for initializers: An uninitializer
takes a control argument and is supported with stub procedures in the implementation template
file in a manner similar to initializers.

Only a single uninitialization method is needed, so SOMObject introduces the method that
provides this function: somDestruct. As with the default initializer method, a class designer
who requires nothing special in the way of uninitialization need not be concerned about modify-
ing the default somDestruct method procedure. However, your code will execute faster if the
.idl file overrides somDestruct so that a non-generic stub-procedure code can be provided for
the class. Note that somDestruct was overridden by “Example1” and “Example2” above. No
specific IDL modifiers other than override are required for this.

Like an initializer template, the stub procedure for somDestruct consists of two sections: The
first section is used by the programmer for performing any “local” uninitialization that may be
required. The second section (which consists of a single EndDestructor macro invocation)
invokes somDestruct on ancestors. The second section must not be modified or removed by
the programmer. It must be the final statement executed in the destructor.

Using ‘somDestruct’
It is rarely necessary to invoke the somDestruct method explicitly. This is because object
uninitialization is normally done just before freeing an object’s storage, and the mechanisms
provided by SOMobijects for this purpose will automatically invoke somDestruct. For example,
if an object were created using somNew or somNewNolnit, or by using a convenience macro
provided by the C language bindings, then the somFree method can be invoked on the object
to delete the object. This automatically calls somDestruct before freeing storage.

C++ users can simply use the delete operator provided by the C++ bindings. This destructor
calls somDestruct before the C++ delete operator frees the object’s storage.

Implementing Classes in SOM 5-31

Onthe other hand, if an object is initially created by allocating memory in some special way and
subsequently some somRenew methods are used, somFree (or C++ delete) is probably not
appropriate. Thus, the somDestruct method should be explicitly called to uninitialize the object
before freeing memory.

A complete example

The following example illustrates the implementation and use of initializers and destructors
from the C++ bindings. The first part shows the IDL for three classes with initializers. For variety,
some of the classes use callstyle OIDL and others use callstyle IDL.

#include <somobj.idl>

interface A : SOMObject ({
readonly attribute long a;
implementation {
releaseorder: _get_a;
functionprefix = A;
somDefaultInit: override, init;
somDestruct: override;
somPrintSelf: override;
}i
bi

interface B : SOMObject {
readonly attribute long b;
void BwithInitialValue (inout somInitCtrl ctrl,
in long initialValue);
implementation {
callstyle = OIDL;
releaseorder: _get_b, BwithInitialValue;
functionprefix = B;
BwithInitialValue: init;
somDefaultInit: override, init;
somDestruct: override;
somPrintSelf: override;
bi
bi

interface C : A, B {
readonly attribute long c;
void CwithInitialValue (inout somInitCtrl ctrl,
in long initialValue);
void CwithInitialString(inout somInitCtrl ctrl,
in string initialString);
implementation {

releaseorder: _get_c, CwithInitialString,
CwithInitialValue;
functionprefix = C;

CwithInitialString: init;
CwithInitialValue: init;
somDefaultInit: override, init;
somDestruct: override;
somPrintSelf: override;

}i

5-32 SOMobjects Base Toolkit User’s Guide

Implementation code
Based on the foregoing class definitions, the next example illustrates several important aspects
of initializers. The following code is a completed implementation template and an example client
program for the preceding classes. Code added to the original template is given in bold.

/*

* This file generated by the SOM Compiler and Emitter Framework.
* Generated using:

* SOM Emitter emitxtm.dll: 2.22

*/

#define SOM_Module_ctorfullexample_Source
#define VARIABLE_MACROS

#define METHOD_MACROS

#include <ctorFullExample.xih>

#include <stdio.h>

SOM_Scope void SOMLINK AsomDefaultInit (A *somSelf,
somInitCtrl* ctrl)
{
AData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
AMethodDebug (”A”, "somDefaultInit”) ;

A_BeginInitializer_ somDefaultInit;
A_TInit_SOMObject_sombDefaultInit (somSelf, ctrl);

/*
* local A initialization code added by programmer
*/

—a =1;

}

SOM_Scope void SOMLINK AsomDestruct (A *somSelf, octet dofree,
somDestructCtrl* ctrl)
{
AData *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;
somBooleanVector myMask;
AMethodDebug ("A"”, "somDestruct”) ;
A_BeginDestructor;

/*
* local A deinitialization code added by programmer
*/

A_EndDestructor;

SOM_Scope SOMObject* SOMLINK AsomPrintSelf (A *somSelf)

AData *somThis = AGetData (somSelf);
AMethodDebug (”A”,”somPrintSelf”);

somPrintf (” {an instance of %s at location %X with (a=%d)}\n”,

somGetClassName () , somSelf, get_a((Environment*)0));
return (SOMObject*) ((void*)somSelf);

Implementing Classes in SOM 5-33

SOM_Scope void SOMLINK BBwithInitialValue (B *somSelf,
somInitCtrl* ctrl,
long initialValue)

BData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
BMethodDebug (”B”, ”"BwithInitialvValue”);

B_BeginInitializer_withInitialValue;
B_Init_SOMObject_somDefaultInit (somSelf, ctrl);

/*
* local B initialization code added by programmer
*/
_b = initialValue;
}

SOM_Scope void SOMLINK BsomDefaultInit (B *somSelf,
somInitCtrl* ctrl)
{
BData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
BMethodDebug (”B”, "somDefaultInit”) ;

B_BeginInitializer_somDefaultInit;
B_Init_SOMObject_somDefaultInit (somSelf, ctrl);

/*

* local B initialization code added by programmer
*/

_b = 2;

}

SOM_Scope void SOMLINK BsomDestruct (B *somSelf, octet doFree,
somDestructCtrl* ctrl)
{
BData *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;
somBooleanVector myMask;
BMethodDebug (”B”, "somDestruct”) ;
B_BeginDestructor;

/*
* local B deinitialization code added by programmer

*/

B_EndDestructor;

}

SOM_Scope SOMObject* SOMLINK BsomPrintSelf (B *somSelf)

{
BData *somThis = BGetData (somSelf);
BMethodDebug (”"B”, ”"somPrintSelf”) ;

printf (”“{an instance of %s at location %X with (b=%d)}\n”,
_somGetClassName () , somSelf, get_b());
return (SOMObject*) ((void*)somSelf);

Note: The following initializer for a C object accepts a string as an argument, converts this to an
integer, and uses this for ancestor initialization of “B.” This illustrates how a default ancestor
initializer call is replaced with a non-default ancestor initializer call.

5-34 SOMobjects Base Toolkit User’s Guide

SOM_Scope void SOMLINK CCwithInitialString(C *somSelf,

SOM_

SOM_

Environment *ev,
somInitCtrl* ctrl,

string initialString)

CDhata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;

CMethodDebug (”C”,”CwithInitialString”);

C_BeginInitializer_withInitialString;

C_Init_A_somDefaultInit (somSelf, ctrl);

C_Init_ B BwithInitialValue (somSelf, ctrl,
atoi(initialString)-11);

/*
* local C initialization code added by programmer

*/

_c = atoi(initialString);

Scope void SOMLINK CsomDefaultInit (C *somSelf,
somInitCtrl* ctrl)

CDhata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
CMethodDebug (”C”, ”"somDefaultInit”) ;

C_BeginInitializer_somDefaultInit;
C_Init_A_somDefaultInit (somSelf, ctrl);
C_Init_B_somDefaultInit (somSelf, ctrl);

/*
* local C initialization code added by programmer
*/

c = 3;

Scope void SOMLINK CsomDestruct (C *somSelf, octet doFree,

somDestructCtrl* ctrl)

CDhata *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;

somBooleanVector myMask;
CMethodDebug (”C"”, ”"somDestruct”) ;
C_BeginDestructor;

/*
* local C deinitialization code added by programmer

*/

C_EndDestructor;

Implementing Classes in SOM

5-35

SOM_Scope SOMObject* SOMLINK CsomPrintSelf (C *somSelf)
{
CData *somThis = CGetData (somSelf);
CMethodDebug (”C”, ”"somPrintSelf”);

printf (”"{an instance of %s at location %X with”
7 (a=%d, b=%d, c=%d)}\n”,

_somGetClassName () , somSelf,
__get_a((Environment¥*)0),
_get b(),
__get_c((Environment*)0));

return (SOMObject*) ((void*)somSelf);

}

SOM_Scope void SOMLINK CCwithInitialValue(C *somSelf,
Environment *ev,
somInitCtrl* ctrl,
long initialValue)

CDhata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;

CMethodDebug (”C”,”CwithInitialValue”);

C_BeginInitializer_withInitialValue;
C_Init_A_somDefaultInit (somSelf, ctrl);
C_Init_B BwithInitialValue (somSelf, ctrl, initialValue-11);

/*
* local C initialization code added by programmer
*/

_c = initialValue;

}

Here is a C++ program that creates instances of “A”, “B”, and “C” using the initializers defined
above.

main ()

{
SOM_TraceLevel = 1;

A *a = new A;
a->somPrintSelf ();
delete aj;

printf (”\n”);

B *b = new B();
b->somPrintSelf () ;
delete b;

printf (”\n”);

b = new B(22);
b->somPrintSelf () ;
delete b;

printf ("\n”);

C *c = new C;
c->somPrintSelf () ;
delete c;

printf (”"\n”);

c = new C((Environment*)0, 44);
c—>somPrintSelf ();

delete cj;

printf (”"\n”);

5-36 SOMobjects Base Toolkit User’s Guide

¢ = new C((Environment*)O0,
c—>somPrintSelf ();
delete c;

"66") ;

The output from the preceding program is as follows:

"ctorFullExample.C”: 18:
"ctorFullExample.C”: 48:
”./ctorFullExample.xih”: 292:

{an instance of A at location 20063C38 with

"ctorFullExample.C”: 35:

"ctorFullExample.C”: 79:
"ctorFullExample.C”: 110:
”./ctorFullExample.xih”: 655:

{an instance of B at location 20064578 with

"ctorFullExample.C”: 97:

"ctorFullExample.C”: 62:
"ctorFullExample.C”: 110:
”./ctorFullExample.xih”: 655:

{an instance of B at location 20064578 with

"ctorFullExample.C”: 97:

"ctorFullExample.C”: 150:
"ctorFullExample.C”: 18:
"ctorFullExample.C”: 79:
"ctorFullExample.C"' 182:

’./ctorFullExample.xih”: 292:

”./ctorFullExample.xih”: 655:
”./ctorFullExample.xih”:

"ctorFullExample.C”: 169:
"ctorFullExample.C”: 35:
"ctorFullExample.C”: 97:

"ctorFullExample.C”: 196:
"ctorFullExample.C”: 18:
"ctorFullExample.C”: 62:
"ctorFullExample.C"- 182:
’./ctorFullExample.xih”: 292:
”./ctorFullExample.xih”: 655:
”./ctorFullExample.xih”:

"ctorFullExample.C”: 169:
"ctorFullExample.C”: 35:
"ctorFullExample.C”: 97:

"ctorFullExample.C”: 132:
"ctorFullExample.C”: 18:
"ctorFullExample.C”: 62:
"ctorFullExample.C”: 182:
”./ctorFullExample.xih”: 292:
”./ctorFullExample.xih”: 655:
”./ctorFullExample.xih”:

"ctorFullExample.C”: 169:
"ctorFullExample.C”: 35:
"ctorFullExample.C”: 97:

1104:
{an instance of C at location 20065448 with

1104:
{an instance of C at location 20065448 with

1104:
{an instance of C at location 20065448 with

In A:somDefaultInit
In A:somPrintSelf
In A:A_get_a

(a=1)}
In A:somDestruct

In B:somDefaultInit
In B:somPrintSelf
In B:B_get_b

(b=2)}
In B:somDestruct

In B:BwithInitialValue
In B:somPrintSelf

In B:B_get_b

(b=22)}

In B:somDestruct

In C:somDefaultInit
In A:somDefaultInit
In B:somDefaultInit
In C:somPrintSelf
In A:A_get_a
In B:B_get_b
In C:C_get_c
(a=1, b=2, c=3)}
In C:somDestruct
In A:somDestruct
In B:somDestruct
In C:CwithInitialValue
In A:somDefaultInit
In B:BwithInitialValue
In C:somPrintSelf
In A:A_get_a
In B:B_get_Db
In C:C_get_c
(a=1, b=33, c=44)}
In C:somDestruct
In A:somDestruct
In B:somDestruct
In C:CwithInitialString
In A:somDefaultInit
In B:BwithInitialValue
In C:somPrintSelf
In A:A_get_a
In B:B_get_b
In C:C_get_c
(a=1, b=55, c=66)}

In C:somDestruct
In A:somDestruct
In B:somDestruct

Implementing Classes in SOM

5-37

Customizing the initialization of class objects

As described previously, the somDefaultlnit method can be overridden to customize the
initialization of objects. Because classes are objects, somDefaultlnit is also invoked on
classes when they are first created (generally by invoking the somNew method on a meta-
class). For a class object, however, somDefaultinit normally just sets the name of the class to
“unknown,” after which the somInitMIClass method must be used for the major portion of class
initialization. Of course, metaclasses can override somDefaultlnit to initialize introduced class
variables that require no arguments for their initialization.

Note: Because somNew does not call somInitMIClass, class objects returned from invoca-
tions of somNew on a metaclass are not yet useful class objects.

The somlinitMIClass method (introduced by SOMClass) is invoked on a new class object
using arguments to indicate the class name and the parent classes from which inheritance is
desired (among other arguments). This invocation is made by whatever routine is used to
initialize the class. (For SOM classes using the C or C++ implementation bindings, this is
handled by the somBuildClass procedure, which is called by the implementation bindings
automatically.) The somlInitMIClass method is often overridden by a metaclass to influence
initialization of new classes in some way. Typically, the overriding procedure begins by making
parent method calls, and then performs additional actions thereafter.

However, without use of the Cooperative Metaclass to guarantee correct operation of SOMob-
jects in general, none of the methods introduced by SOMClass should be overridden. As a
result, customizing the initialization of class objects (other than through overriding somDefaul-
tinit for initialization of class variables) is not recommended in SOMobjects 2.1. Users whose
applications require this should request access to the experimental Cooperative Metaclass
used to implement the SOMobjects Metaclass Framework. But, metaclasses implemented
using the experimental Cooperative Metaclass may require reprogramming when SOMobjects
introduces an officially supported Cooperative Metaclass.

5-38 SOMobjects Base Toolkit User’s Guide

5.6 Creating a SOM Class Library

One of the principal advantages of SOM is that it makes “black box” (or binary) reusability
possible. Consequently, SOM classes are frequently packaged and distributed as class li-
braries. A class library holds the actual implementation of one or more classes and can be
dynamically loaded and unloaded as needed by applications. Importantly, class libraries can
also be replaced independently of the applications that use them and, provided that the class
implementor observes simple SOM guidelines for preserving binary compatibility, can evolve
and expand over time.

General guidelines for class library designers

One of the most important features of SOM is that it allows you to build and distribute class
libraries in binary form. Because there is no “fragile base class” problem in SOM, client
programs that use your libraries (by subclassing your classes or by invoking the methods in
your classes) will not need to be recompiled if you later produce a subsequent version of the
library, provided you adhere to some simple restrictions.

1. You should always maintain the syntax and the semantics of your existing interfaces.
This means that you cannot take away any exposed capabilities, nor add or remove
arguments for any of your public methods.

2. Always maintain the releaseorder list, so that it never changes except for additions to
the end. The releaseorder should contain all of your public methods, the one or two
methods that correspond to each public attribute, and a placeholder for each private
method (or private attribute method).

3. Assign a higher minorversion number for each subsequent release of a class, so that
client programmers can determine whether a new feature is present or not. Change the
majorversion number only when you deliberately wish to break binary compatibility.
(See the topic “Modifier statements” in Chapter 4, “SOM IDL and the SOM Compiler” for
explanations of the releaseorder, minorversion and majorversion modifiers.)

4. Under Windows, you should avoid the use of methods or attributes that return structures.
Inthe DOS/Windows environment, there is no universally agreed upon calling convention
for returning structures that is observed by all popular language compilers. Instead,
define attributes that return pointers to structures, or define methods that take an out
parameter for passing a structure back to the caller.

Note that you can always avoid this problem in classes of your own design. However,
some of the attributes and methods in the frameworks that come with the SOMobjects
Toolkit do return structures. Many of these are dictated by the OMG CORBA standard,
and could not be avoided. For each of these methods two common calling conventions
have been implemented:

¢ Microsoft convention, where the address of the structure is returned in AX:DX,
and

¢ Borland convention, where the caller provides a hidden first argument to receive
a copy of the returned structure.

No action is needed on your part to use the Microsoft convention. To use the Borland
convention, you should include the file BCCSTRUC.H following any other “includes” of
SOM headers.

5. With each new release of your class library, you have significant degrees of freedom to
change much of the implementation detail. You can add to or reorganize your instance
variables, add new public or private methods, inject new base classes into your class
hierarchies, change metaclasses to more derived ones, and relocate the implementation
of methods upward in your class hierarchies. Provided you always retain the same
capabilities and semantics that were present in your first release, none of these changes
will break the client programs that use your libraries.

Implementing Classes in SOM 5-39

Types of class libraries

Since class libraries are not programs, users cannot execute them directly. To enable users to
make direct use of your classes, you must also provide one or more programs that create the
classes and objects that the user will need. This section describes how to package your classes
in a SOM class library and what you must do to make the contents of the library accessible to
other programs.

On AIX, class libraries are actually produced as AIX shared libraries, whereas on OS/2 or
Windows they appear as dynamically-linked libraries (or DLLs). The term “DLL” is sometimes
used to refer to either an AIX, an OS/2, or a Windows class library, and (by convention only) the
file suffix “.dll” is used for SOM class libraries on all platforms.

A program can use a class library containing a given class or classes in one of two ways:

1. If the programmer employs the SOM bindings to instantiate the class and invoke its
methods, the resulting client program contains static references to the class. The operat-
ing system will automatically resolve those references when the program is loaded, by
also loading the appropriate class library.

2. Ifthe programmer uses only the dynamic SOM mechanisms for finding the class and in-
voking its methods (for example, by invoking somFindClass, somFindMethod, som-
LookupMethod, somDispatch, somResolveByName, and so forth), the resulting cli-
ent program does not contain any static references to the class library. Thus, SOM will
load the class library dynamically during execution of the program. Note: For SOM to be
able to load the class library, the dliname modifier must be set in the .idl file. (See the
topic “Modifier statements” in Chapter 4, “SOM IDL and the SOM Compiler.”)

Because the provider of a class library cannot predict which of these ways a class will be used,
SOM class libraries must be built such that either usage is possible. The first case above
requires the class library to export the entry points needed by the SOM bindings, whereas the
second case requires the library to provide an initialization function to create the classes it
contains. The following topics discuss each case.

Building export files

The SOM Compiler provides an “exp” emitter for AIX and a “def” emitter for OS/2 or Windows to
produce the necessary exported symbols for each class. For example, to generate the neces-
sary exports for a class “A”, issue the sc or somc command with one of the following —s options.
(For adiscussion of the sc or somc command and options, see “Running the SOM Compiler”in
Chapter 4, “SOM IDL and the SOM Compiler.”)

For AlX, this command generates an “a.exp” file:
sc —sexp a.idl
For 0S/2, this command generates an “a.def” file:
sc —sdef a.idl
For Windows, this command generates an “a.def” file:

somc —-sdef a.idl

Typically, a class library contains multiple classes. To produce an appropriate export file for
each class that the library will contain, you can create a new export file for the library itself by
combining the exports from each “exp” or “def” file into a single file. Following are examples of a
combined export “exp” file for AIX and a combined “def” file for OS/2 or Windows. Each example
illustrates a class library composed of three classes, “A”, “B”, and “C”.

5-40 SOMobjects Base Toolkit User’s Guide

AIX “exp” file:

#! abc.dll
ACClassData
AClassData
ANewClass

BCClassData
BClassData
BNewClass

CCClassDbhata
CClassData
CNewClass

0S/2 “def” file:

LIBRARY abc INITINSTANCE
DESCRIPTION ’abc example class library’
PROTMODE
DATA MULTIPLE NONSHARED LOADONCALL
EXPORTS

ACClassData

AClassData

ANewClass

BCClassData

BClassData

BNewClass

CCClassDbhata

CClassData

CNewClass

Windows “def” file:

LIBRARY abc
DESCRIPTION ’'abc example class library’
EXETYPE WINDOWS
STUB "WINSTUB.EXE'
PROTMODE
DATA MOVEABLE SINGLE SHARED LOADONCALL
CODE MOVEABLE DISCARDABLE
HEAPSIZE 4096
STACKSIZE 4096
EXPORTS
_ACClassbhata
_AClassData
_ANewClass
_BCClassData
_BClassData
_BNewClass
_CCClassDbhata
_CClassDbhata
_CNewClass

Other symbols in addition to those generated by the “def” or “exp” emitter can be included if
needed, but this is not required by SOM. One feature of SOM is that a class library needs no
more than three exports per class (by contrast, many OOP systems require externals for every
method as well). One required export is the name of a procedure to create the class (<class-
Name>NewClass), and the others are two external data structures that are referenced by the
SOM bindings.

Specifying the initialization function

An initialization function for the class library must be provided to support dynamic loading of the
library by the SOM Class Manager. The SOM Class Manager expects that, whenever it loads a
class library, the initialization function will create and register class objects for all of the classes
contained in the library. These classes are then managed as a group (called an affinity group).

Implementing Classes in SOM 5-41

One class in the affinity group has a privileged position — namely, the class that was specifical-
ly requested when the library was loaded. If that class (that is, the class that caused loading to
occur) is subsequently unregistered, the SOM Class Manager will automatically unregister all of
the other classes in the affinity group as well, and will unload the class library. Similarly, if the
SOM Class Manager is explicitly asked to unload the class library, it will also automatically
unregister and free all of the classes in the affinity group.

It is the responsibility of the class-library creator to supply the initialization function. The
interface to the initialization function is given by the following C/C++ prototype:

#ifdef __ IBMC__
#pragma linkage (SOMInitModule, system)
#endif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
long minorVersion,
string className);

The parameters provided to this function are the className and the major/minor version
numbers of the class that was requested when the library was loaded (that is, the class that
caused loading). The initialization function is free to use or to disregard this information;
nevertheless, if it fails to create a class object with the required name, the SOM Class Manager
considers the load to have failed. As a rule of thumb, however, if the initialization function
invokes a <className>NewClass procedure for each class in the class library, this condition
will always be met. Consequently, the parameters supplied to the initialization function are not
needed in most cases.

Here is a typical class-library initialization function, written in C, for a library with three classes
(“A”, “B”, and “C”):

#include "a.h”

#include ”"b.h”

#include "c.h”

#ifdef ___IBMC___

#pragma linkage (SOMInitModule, system)
#endif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
long minorVersion, string className)

{
SOM_TIgnoreWarning (majorVersion); /* This function makes */
SOM_IgnoreWarning (minorVersion); /* no use of the passed */
SOM_IgnoreWarning (className) ; /* arguments. */
ANewClass (A_MajorVersion, A_MinorVersion);
BNewClass (B_MajorVersion, B_MinorVersion);
CNewClass (C_MajorVersion, C_MinorVersion);

The source code for the initialization function can be added to one of the implementation files
for the classes in the library, or you can put it in a separate file and compile it independently.

Using Windows class libraries
Some additional considerations apply for Windows class libraries: Each class library must also
supply a Windows LibMain function. The LibMain function is invoked automatically whenever a
Windows DLL is loaded, and is responsible for identifying the library and its SOMInitModule
function to the SOM Kernel. Here is an example of a typical Windows LibMain function for a
SOM class library as it would appear in a C or C++ program:

#include <som.h>

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
long minorVersion,
string className) ;

5-42 SOMobjects Base Toolkit User’s Guide

#include <windows.h>

int CALLBACK LibMain (HINSTANCE inst,
WORD ds,
WORD Heapsize,
LPSTR cmdLine)

SOM_IgnoreWarning (inst);
SOM_ignoreWarning (ds);
SOM_IgnoreWarning (heapSize);
SOM_IgnoreWarning (cmdLine);

SOM_ClassLibrary (”xyz.dll”);
return 1; /* Indicate success to loader */

}

The only operative statement in the LibMain function is the macro SOM_ClassLibrary, which
identifies the actual file name of the library as it would appear in a Windows LoadLibrary call,
and internally generates a reference to the library’s SOMInitModule function. This information
is passed to the SOM Kernel, which in turn registers the library and schedules the execution of
the SOMInitModule function.

Typically, the SOM Kernel invokes the SOMInitModule function of each statically loaded class
library during execution of the SOM_MainProgram macro within the using application; other-
wise, SOMInitModule is invoked immediately upon completion of the dynamic loading of a
class library by an already executing application. Regardless of the loading mechanism, the
SOM Kernel guarantees that the SOMInitModule function executes exactly once for each
class library.

Creating the import library

Finally, for each of your class libraries, you should create an import library that can be used
by client programs (or by other class libraries that use your classes) to resolve the references
to your classes.

Here is an example illustrating all of the steps required to create a class library (“abc.dll”) that
contains the three classes “A”, “B”, and “C”.

1. Compile all of the implementation files for the classes that will be included in the library.
Include the initialization function also.

For AIX written in C:

xlc -I. —-I$SOMBASE/include -c a.c
xlc —-I. —-I$SOMBASE/include -c b.c
xlc -I. —-I$SOMBASE/include -c c.c
xlc -I. —-I$SOMBASE/include -c¢ initfunc.c

For AIX written in C++:

x1C -I. —-I$SOMBASE/include -c a.C
x1C —-I. —-I$SOMBASE/include -c b.C
x1C -I. —-I$SOMBASE/include -c c.C
x1C —-I. -IS$SSOMBASE/include -c initfunc.C

For OS/2 written in C:

icc -I. -I%SOMBASE%\include -Ge- -c a.c
icc —-I. —-I%SOMBASE%\include -Ge- -c b.c
icc -I. -I%SOMBASE%$\include -Ge- -c c.c
icc -I. —-I%SOMBASE%\include —-Ge—- —-c initfunc.c

Note: The “—Ge” option is not used in all the compilers. It indicates that the object files will go
into a DLL.

For OS/2 written in C++:

icc -I. —-I%SOMBASE%\include -Ge- -c a.cpp
icc —-I. —-I%SOMBASE%\include -Ge- -c b.cpp
icc -I. —-I%SOMBASE%\include -Ge- -c c.cpp
icc -I. —-I%SOMBASE%\include -Ge- -c initfunc.cpp

Implementing Classes in SOM 5-43

Note: The “—Ge” option is not used by all the compilers. It indicates that the object files will go
into a DLL.

For Windows, written in C:

cl -Alw -G2s —-zZpl -I. -I%SOMBASE%\include -c a.
cl -ALw -G2s —-Zpl -I. —-I%SOMBASE%\include -c Db.
cl -ALw -G2s —-Zpl -I. -I%SOMBASE%\include -c c.c

cl -ALlw -G2s —-Zpl -I. -I%SOMBASE%$\include -c initfunc.c

C
C

Note: If your Windows program uses floats or doubles, also use the “—QOi” flag.
For Windows, written in C++:

cl -ALfu -G2s -Zpl -I. -I%SOMBASE%\include -c a.cpp
cl -ALfu -G2s —-Zpl -I. —-I%SOMBASE%\include -c b.cpp
cl -ALfu -G2s -Zpl -I. -I%SOMBASE%\include -c c.cpp
cl -ALfu -G2s -Zpl -I. -I%SOMBASES%$\include -c initfunc.cpp

Note: If your Windows program uses floats or doubles, also use the “—Oi” flag.
2. Produce an export file for each class.

For AIX:
sc —-sexp a.idl b.idl c.idl

For OS/2:
sc —sdef a.idl b.idl c.idl

For Windows:
somc —-sdef a.idl b.idl c.idl

3. Manually combine the exported symbols into a single file.

For AIX, create a file “abc.exp” from “a.exp”, “b.exp”, and “c.exp”. Do not include the
initialization function (SOMInitModule) in the export list.

For OS/2, create a file “abc.def” from “a.def”, “b.def”, and “c.def”. Include the initialization
function (SOMInitModule) in the export list so that all classes will be initialized automatical-
ly, unless your initialization function does not need arguments and you explicitly invoke it
yourself from an OS/2 DLL initialization routine.

For Windows, create a file “abc.def” from “a.def’, “b.def”, and “c.def’. There is no need to
include the SOMInitModule function in the export list for Windows programs.

4. Using the object files and the export file, produce a binary class library.
For AIX:

1d -0 abc.dll -bE:abc.exp —e SOMInitModule -H512 -T512 \
a.o b.o c.o initfunc.o -lc -LS$SSOMBASE/lib -lsomtk

The —o option assigns a name to the class library (“abc.dll”). The —bE: option designates the
file with the appropriate export list. The —e option designates SOMInitModule as the
initialization function. The —H and —T options must be supplied as shown; they specify the
necessary alignment information for the text and data portions of your code. The —l options
name the specific libraries needed by your classes. If your classes make use of classes in
other class libraries, include a -l option for each of these also. The Id command looks for a
library named “lib<x>.a”, where <x> is the name provided with each —I option. The —L option
specifies the directory where the “somtk” library resides.

For OS/2:

set LIB=%SOMBASE%\1lib; %LIB%

1ink386 /noi /packd /packc /align:16 /exepack \
a.obj b.obj c.obj initfunc.obj, abc.dll,,0s2386 somtk, \
abc.def

If your classes make use of classes in other class libraries, include the names of their import
libraries immediately after “somtk” (before the next comma).

5-44 SOMobjects Base Toolkit User’s Guide

For Windows:

link a.obj b.obj c.obj initfunc.obj, abc.dll, nul, \
ldllcew libw %$SOMBASE%\somtk, abc.def

Note: /noi should not be used unless all symbols are exported as ordinals.

If your classes make use of classes in other class libraries, also include the names of their
import libraries immediately after “somtk” (before the next comma).

. Create an import library that corresponds to the class library, so that programs and other
class libraries can use (import) your classes.

For AIX:

ar ruv libabc.a abc.exp 4 Note the use of the “.exp” file, not a “.0” file

The first filename (“libabc.a”) specifies the name to give to the import library. It should be of
the form “lib<x>.a”, where <x> represents your class library. The second filename
(“abc.exp”) specifies the exported symbols to include in the import library.

Caution: Although AlX shared libraries can be placed directly into an archive file (“lib<x>.a”),
this is not recommended! A SOM class library should have a corresponding import library
constructed directly from the combined export file.

For 0OS/2:
implib /noi abc.lib abc.def

The first filename (“abc.lib”) specifies the name for the import library and should always have
a suffix of “.lib”. The second filename (“abc.def”) specifies the exported symbols to include in
the import library. Note: SOMInitModule should be included in the <x>.dll but not in <x>.lib.
If you are using an export file that contains the symbol SOMInitModule, delete it first;
SOMInitModule should not appear in your import library because it needs not be exported.
SOMInitModule should be included when creating your file <x>.dll because all classes in
the <x>.dll will be initialized.

For Windows:
implib abc.lib abc.def

The first filename (“abc.lib”) specifies the name for the import library and should always have
a suffix of “.lib”. The second filename (“abc.def”) specifies the exported symbols to include in
the import library.

Implementing Classes in SOM 5-45

5.7 Customizing Memory Management

SOM is designed to be policy free and highly adaptable. Most of the SOM behavior can be
customized by subclassing the built-in classes and overriding their methods, or by replacing
selected functions in the SOM run-time library with application code. The next five sections
contain more advanced topics describing how to customize the various aspects of SOM
behavior: memory management, dynamic class loading and unloading, character output, error
handling, and method resolution. Information on customizing Distributed SOM is provided in
Chapter 6.

The memory management functions used by the SOM run-time environment are a subset of
those supplied in the ANSI C standard library. They have the same calling interface and return
the equivalent types of results as their ANSI C counterparts, but include some supplemental
error checking. Errors detected in these functions result in the invocation of the error-handling
function to which SOMError points.

The correspondence between the SOM memory-management function variables and their
ANSI standard library equivalents is given in Table 1 below.

SOM Function ANSI Standard C
Variable Library Function Return type Argument types
SOMCalloc calloc() somToken size_t, size_t
SOMFree free() void somToken
SOMMalloc malloc() somToken size t
SOMRealloc realloc() somToken somToken, size_t

Table 1. Memory-Management Functions

An application program can replace SOM’s memory management functions with its own
memory management functions to change the way SOM allocates memory (for example, to
perform all memory allocations as suballocations in a shared memory heap). This replacement
is possible because SOMCalloc, SOMMalloc, SOMRealloc, and SOMFree are actually
global variables that point to SOM’s default memory management functions, rather than being
the names of the functions themselves. Thus, an application program can replace SOM’s
default memory management functions by assigning the entry-point address of the user-de-
fined memory management function to the appropriate global variable. For example, to replace
the default free procedure with the user-defined function MyFree (which must have the same
signature as the ANSI C free function), an application program would require the following
code:

#include <som.h>
/* Define a replacement routine: */
void myFree (somToken memPtr)

{

(Customized code goes here)

}
SOMFree = MyFree;

Note: In general, all of these routines should be replaced as a group. For instance, if an ap-
plication supplies a customized version of SOMMalloc, it should also supply corre-
sponding SOMCalloc, SOMFree, and SOMRealloc functions that conform to this
same style of memory management.

5-46 SOMobjects Base Toolkit User’s Guide

5.8 Customizing Class Loading and Unloading

SOM uses three routines that manage the loading and unloading of class libraries (referred to
here as DLLs). These routines are called by the SOMClassMgrObject as it dynamically loads
and registers classes. If appropriate, the rules that govern the loading and unloading of DLLs
can be modified, by replacing these functions with alternative implementations.

Customizing class initialization

The SOMClasslInitFuncName function has the following signature:
string (*SOMClassInitFuncName) ();

This function returns the name of the function that will initialize (create class objects for) all of
the classes that are packaged together in a single class library. (This function name applies
to all class libraries loaded by the SOMClassMgrObject.) The SOM-supplied version of SOM-
ClassInitFuncName returns the string “SoMInitModule”. The interface to the library initial-
ization function is described under the topic “Creating a SOM Class Library” earlier in this
chapter.

Customizing DLL loading

To dynamically load a SOM class, the SOMClassMgrObiject calls the function pointed to by the
global variable SOMLoadModule to load the DLL containing the class. The reason for making
public the SOMLoadModule function (and the following SOMDeleteModule function) is to
reveal the boundary where SOM touches the operating system. Explicit invocation of these
functions is never required. However, they are provided to allow class implementors to insert
their own code between the operating system and SOM, if desired. The SOMLoadModule
function has the following signature:

long (*SOMLoadModule) (string className,
string fileName,
string functionName,
long majorVersion,
long minorVersion,
somToken *modHandle);

This function is responsible for loading the DLL containing the SOM class className and
returning either the value zero (for success) or a nonzero system-specific error code. The
output argument modHandle is used to return a token that can subsequently be used by the
DLL-unloading routine (described below) to unload the DLL. The default DLL-loading routine
returns the DLL’'s module handle in this argument. The remaining arguments are used as
follows:

Argument Usage

fileName — Thefile name of the DLL to be loaded, which can be either a
simple name or a full path name.

functionName — The name of the routine to be called after the DLL is suc-
cessfully loaded by the SOMClassMgrObject. This rou-
tine is responsible for creating the class objects for the
class(es) contained in the DLL. Typically, this argument
has the value “SoMInitModule”, which is obtained from
the function SOMClassInitFuncName described above.
If no SOMInitModule entry exists in the DLL, the default
DLL-loading routine looks in the DLL for a procedure with
the name <className>NewClass instead. If neither entry
point can be found, the default DLL-loading routine fails.

majorVersion — The major version number to be passed to the class initial-
ization function in the DLL (specified by the functionName
argument).

Implementing Classes in SOM 5-47

minorVersion — The minor version number to be passed to the class initial-

ization function in the DLL (specified by the functionName
argument).

An application program can replace the default DLL-loading routine by assigning the entry point

address of the new DLL-loading function (such as MyLoadModule) to the global variable
SOMLoadModule, as follows:

#include <som.h>

/* Define a replacement routine: */

long myLoadModule (string className, string fileName,
string functionName, long majorVersion,
long minorVersion, somToken *modHandle)

{
(Customized code goes here)

}

SOMLoadModule = MyLoadModule;

Customizing DLL unloading

To unload a SOM class, the SOMClassMgrObiject calls the function pointed to by the global
variable SOMDeleteModule. The SOMDeleteModule function has the following signature:

long (*SOMDeleteModule) (in somToken modHandle);

This function is responsible for unloading the DLL designated by the modHandle parameter
and returning either zero (for success) or a nonzero system-specific error code. The parameter

modHandle contains the value returned by the DLL loading routine (described above) when the
DLL was loaded.

An application program can replace the default DLL-unloading routine by assigning the entry

point address of the new DLL-unloading function (such as, MyDeleteModule) to the global
variable SOMDeleteModule, as follows:

#include <som.h>

/* Define a replacement routine: */
long myDeleteModule (somToken modHandle)
{

(Customized code goes here)

}

SOMDeleteModule = MyDeleteModule;

5-48 SOMobjects Base Toolkit User’s Guide

5.9 Customizing Character Output

The SOM character-output function is invoked by all of the SOM error-handling and debugging
macros whenever a character must be generated (see “Debugging” and “Exceptions and error
handling”in Chapter 3, “Using SOM Classes in Client Programs”). The default character-output
routine, pointed to by the global variable SOMOutCharRoutine, simply writes the character to
“stdout,” then returns 1 if successful, or 0 otherwise.

For convenience, SOMOutCharRoutine is supplemented by the somSetOutChar function.
The somSetOutChar function enables each task to have a customized character output
routine, thus it is often preferred for changing the output routine called by somPrintf (because
SOMOutCharRoutine would remain in effect for subsequent tasks). On Windows, the som-
SetOutChar function is required (rather than SOMOutCharRoutine); it is optional on other
operating systems.

An application programmer might wish to supply a customized replacement routine to:
 Direct the output to stderr,

« Record the output in a log file,

Collect characters and handle them in larger chunks,
e Send the output to a window to display it,

¢ Place the output in a clipboard, or

¢ Some combination of these.

With SOMOutCharRoutine, an application program would use code similar to the following to
install the replacement routine:

#include <som.h>

#pragma linkage (myCharacterOutputRoutine, system)
/* Define a replacement routine: */

int SOMLINK myCharacterOutputRoutine (char c)

{

(Customized code goes here)

}

/* After the next stmt all output */
/* will be sent to the new routine */
SOMOutCharRoutine = myCharacterOutputRoutine;

With somSetOutChar, an application program would use code similar to the following to install
the replacement routine:

#include <som.h>
static int irOutChar (char c);

static int irOutChar (char c¢)

{

(Customized code goes here)

somSetOutChar ((somTD_SOMOutCharRoutine *) irOutChar);

Implementing Classes in SOM 5-49

5.10 Customizing Error Handling

When an error occurs within any of the SOM-supplied methods or functions, an error-handling
procedure is invoked. The default error-handling procedure supplied by SOM, pointed to by the
global variable SOMError, has the following signature:

void (*SOMEtrror) (int errorCode, string fileName, int lineNum);

The default error-handling procedure inspects the errorCode argument and takes appropriate
action, depending on the last decimal digit of errorCode (see “Exceptions and error handling” in
Chapter 3, “Using SOM Classes in Client Programs,” for a discussion of error classifications). In
the default error handler, fatal errors terminate the current process. The remaining two argu-
ments (fileName and lineNum), which indicate the name of the file and the line number within
the file where the error occurred, are used to produce an error message.

An application programmer might wish to replace the default error handler with a customized
error-handling routine to:

¢ Record errors in a way appropriate to the particular application,

« Inform the user through the application’s user interface,

» Attempt application-level recovery by restarting at a known point, or
e Shut down the application.

An application program would use code similar to the following to install the replacement
routine:

#include <som.h>

/* Define a replacement routine: */

void myErrorHandler (int errorCode, string fileName, int lineNum)
{

(Customized code goes here)

}

/* After the next stmt all errors */
/* will be handled by the new routine */
SOMError = myErrorHandler;

When any error condition originates within the classes supplied with SOM, SOM is left in an
internally consistent state. If appropriate, an application program can trap errors with a custom-
ized error-handling procedure and then resume with other processing. Application program-
mers should be aware, however, that all methods within the SOM run-time library behave
atomically. Thatis, they either succeed or fail; but if they fail, partial effects are undone wherever
possible. This is done so that all SOM methods remain usable and can be re-executed following
an error.

5-50 SOMobjects Base Toolkit User’s Guide

5.11 Customizing Mutual Exclusion Services (Thread Safety)

The SOM kernel and the other SOMobjects frameworks (DSOM, Persistence, Replication, and
so on), have been made thread safe with respect to multi-threaded processes. As used here,
“thread safe” means that the SOMobjects run time has been implemented using critical sec-
tions to protect sections of the code which must only be executed by a single thread in a
multi-threaded application process at one time. Critical sections in SOM are implemented using
mutual exclusion semaphores, or “mutex semaphores,” designed to block individual threads
(as opposed to an entire process).

Some operating systems provide native multi-threading (for example, OS/2 and AIX 4.1). On
other operating systems that do not support native multi-threading (such as, AIX 3.2), thread
support may be provided as part of particular programming environments (like DCE) or li-
braries.

It is vital that SOM critical sections employ the mutex services that are provided by the thread
package used by the application. Consequently, SOM provides a mechanism for defining and
customizing mutex services.

Five mutex service functions are used to implement critical sections in SOM. These functions
are called indirectly via the global pointer variables defined below. A somToken parameter
(called “sem”below) is used as a generic “handle” to refer to a mutex semaphore —usually itis a
pointer to a mutex semaphore variable or data structure. The actual representation of the mutex
semaphore is hidden by the functions.

unsigned long (*SOMCreateMutexSem) (somToken *sem);

The referenced function creates a mutex semaphore, whose handle is returned as an
output parameter in the somToken variable, “sem”.

If the call succeeds, a 0 is returned. Otherwise, a hon-zero error code is returned.

unsigned long (*SOMRequestMutexSem) (somToken sem);

The referenced function requests ownership of the mutex semaphore identified by the
parameter, sem. If the semaphore is not currently owned by another thread, ownership is
assigned to the calling thread. Otherwise, the calling thread is blocked until the sema-
phore is released by the current owner.

Important: If the same thread calls SOMRequestMutexSem multiple times, a reference
count must be kept, so that the semaphore is released only after the same number of
calls to SOMReleaseMutexSem. Some, but not all, thread packages provide refer-
ence counting automatically, via “counting semaphores.”

If the call succeeds, a 0 is returned. Otherwise, a non-zero error code is returned.

unsigned long (*SOMReleaseMutexSem) (somToken sem);

The referenced function releases ownership of the mutex semaphore identified by the
parameter, sem.

Important: If the same thread calls SOMRequestMutexSem multiple times, a reference
count must be kept, so that the semaphore is released only after the same number of
calls to SOMReleaseMutexSem. Some, but not all, thread packages provide refer-
ence counting automatically, via “counting semaphores.”

If the call succeeds, a 0 is returned. Otherwise, a non-zero error code is returned.

unsigned long (*SOMDestroyMutexSem) (somToken sem);

The referenced function destroys the a mutex semaphore identified by the parameter,
sem.

If the call succeeds, a 0 is returned. Otherwise, a non-zero error code is returned.

unsigned long (*SOMGetThreadlId) () ;

Implementing Classes in SOM 5-51

The referenced function returns a small integer identifier for the calling thread. The ID
cannot be associated with any other thread in the process. The ID is used as an index for
table lookups.

If threads are not supported, the function must return 0.

The actual mutex service function prototypes and global variable declarations are found in file
“somapi.h”.

If the underlying operating system supports native multi-threading (for example, OS/2, AIX 4.1),
SOM provides appropriate default mutex service function implementations. On those operating
systems that do not support native multi-threading, the default mutex service functions have
null implementations.

An application may want to use threading services different from those provided by the underly-
ing operating system (if any); for example, DCE applications will want to use DCE threads. In
that case, the default mutex service functions can be replaced by application-defined functions.

An application program would use code similar to the following to install the replacement
routines:

#include <som.h>
/* Define a replacement routine: */
unsigned long myCreateMutexSem (somToken *sem)
{
(Customized code goes here)

}

SOMCreateMutexSem = myCreateMutexSem;

It is important to install custom mutex service functions before any SOM calls are made.

5-52 SOMobjects Base Toolkit User’s Guide

Chapter 6. Distributed SOM (DSOM)

Distributed SOM (DSOM) 6-1

6.1 Introduction

Notice: The SOMobjects Base Toolkit provides the capability for implementing Workstation
DSOM (distribution among processes on a single machine). Implementing an applica-
tion that is distributed across a network of machines requires Workgroup DSOM,
which is available only in the full-capability SOMobjects Developer Toolkit.

What is Distributed SOM?

Whereas the power of SOM technology comes from the fact that SOM insulates the client of an
object from the object’s implementation, the power of DSOM lies in the fact that DSOM
insulates the client of an object from the object’s location.

Distributed SOM (or DSOM) provides a framework that allows application programs to access
objects across address spaces. That is, application programs can access objects in other
processes, even on different machines. Both the location and implementation of an object are
hidden from a client, and the client accesses the object (via method calls) in the same manner
regardless of its location.

DSOM currently supports two types of distribution: distribution among processes on the same
machine — referred to as Workstation DSOM — and distribution among a network of machines
— referred to as Workgroup DSOM. DSOM runs on the AIX (Release 3.2 and above), OS/2
(Release 2.0 and above), and Windows (Release 3.1 and above) operating systems. A
Workstation DSOM application can run on a machine in any environment using core capabilities
of the SOMobijects system. Under the full-capability SOMobjects Developer Toolkit, Workgroup
DSOM supports distribution across local area networks comprised of OS/2, AlX, and Windows
systems. Future releases of DSOM may support large, enterprise-wide networks.

Support for TCP/IP and NetWare IPX/SPX is provided on AIX, OS/2, and Windows. NetBIOS
support is provided for OS/2 and Windows. DSOM communications is extensible in that an
application can provide its own transport (see Appendix C of the SOMobjects Base Toolkit
Users Guide).

DSOM can be viewed in two ways:

¢ As an extension to the System Object Model, that allows a program to invoke methods on
SOM objects in other processes, and

¢ As an Object Request Broker (ORB), that is, a standardized “transport” for distributed
object interaction. In this respect, DSOM complies with the Common Object Request
Broker Architecture (CORBA) specification, published by the Object Management Group
(OMG) and x/Open™.

This chapter describes DSOM from both perspectives.

DSOM features

Here is a quick summary of some of DSOM’s more important features:

e Uses the standard SOM Compiler, Interface Repository, language bindings, and class
libraries. DSOM provides a growth path for non-distributed SOM applications.

e Allows an application program to access a mix of local and remote objects. The fact that an
object is remote is transparent to the program.

e Provides run-time services for creating, destroying, identifying. locating, and dispatching
methods on remote objects. These services can be overridden or augmented to suit the
application.

e Uses existing interprocess communication (IPC) facilities for Workstation communication,
and common local area network (LAN) transport facilities for Workgroup communications.
Support for TCP/IP, Netware IPX/SPX, and NetBIOS is provided. DSOM communications is
extensible in that an application can provide its own transport (see Appendix C of this User’s
Guide).

6-2 SOMobjects Base Toolkit User’s Guide

e Provides support for writing multi-threaded (on OS/2 and AIX) and event-driven programs.

¢ Provides a default object server program, which can be easily used to create SOM objects
and make those objects accessible to one or more client programs. If the default server
program is used, SOM class libraries are loaded upon demand, so no server programming or
compiling is necessary.

e Complies with the CORBA 1.1 specification, which is important for application portability.

When to use DSOM
DSOM should be used for those applications that require sharing of objects among multiple
programs. The object actually exists in only one process (this process is known as the object’s
server); the other processes (known as clients) access the object via remote method invoca-
tions, made transparently by DSOM.

DSOM should also be used for applications that require objects to be isolated from the main
program. This is usually done in cases where reliability is a concern — either to protect the object
from failures in other parts of the application, or (less often), to protect the application from an
object.

Note that some distributed applications may have special performance, reliability, or coopera-
tive processing requirements, to which the SOM Replication framework is better suited. The
Replication framework is oriented toward “groupware” (multi-party cooperative processing)
applications, and has facilities for fault tolerance and recovery. The Replication framework is
distinct from DSOM in that it maintains a complete replica of an object in each participant’s
address space, while DSOM establishes remote connections to shared objects. The Replica-
tion Framework is available only in the full-capability SOMobjects Developer Toolkit.

Chapter outline

Tutorial example
First, a complete example shows how an existing SOM class implementation (a “Stack”) can be
used, without modification, with DSOM to create a distributed “Stack” application. Using the
“Stack” example as backdrop, the basic DSOM interfaces are introduced.

Programming DSOM applications
All DSOM applications involve three kinds of programming:

e Client programming: writing code that uses objects;
e Server programming: writing code that implements and manages objects; and
e |/mplementing classes: writing code that implements objects.

Three sections — “Basic Client Programming”, “Basic Server Programming”, and “Implement-
ing Classes” — describe how to create DSOM applications from these three points of view. In
turn, the structure and services of the relevant DSOM run-time environment are explained.

Note: The three sections are presented in the order above to aid in their explanation. However,
the actual programming tasks are likely to be performed in the opposite order!

Additional examples are provided in these sections to illustrate DSOM services.

Configuring DSOM applications
The section “Configuring DSOM Applications” explains what is necessary to set up a DSOM
application, once the application has been built.

Running DSOM applications
The section “Running DSOM Applications” explains what is necessary to run a DSOM applica-
tion, once it has been built and configured.

DSOM and CORBA
Those readers interested in using DSOM as a CORBA-compliant ORB should read the section
entitled “DSOM as a CORBA-compliant Object Request Broker.” That section answers the
question: How are CORBA concepts implemented in DSOM?

Distributed SOM (DSOM) 6-3

Advanced topics
The section on “Advanced Topics” covers the following:

e “Peer vs. client-server processes” demonstrates how peer-to-peer object interactions are
supported in DSOM.

e “Dynamic Invocation Interface” details DSOM support for the CORBA dynamic invocation
interface to dynamically build and invoke methods on remote objects.

e “Creating user-supplied proxy classes” describes how to override proxy generation by the
DSOM run time and, instead, install a proxy object supplied by the user.

e “Customizing the default base proxy class” discusses how the SOMDClientProxy class can
be subclassed to define a customized base class that DSOM will use during dynamic
proxy-class generation.

e “Sockets class” describes how DSOM uses Sockets subclasses.
Error reporting and troubleshooting

The section on “Error Reporting and Troubleshooting” discusses facilities to aid in problem
diagnosis.

6-4 SOMobjects Base Toolkit User’s Guide

6.2 A Simple DSOM Example

A sample “Stack” application is presented in this section as a tutorial introduction to DSOM. It
demonstrates that, for simple examples like a “Stack”, after very little work the class can be
used to implement distributed objects that are accessed remotely. The example first presents
the “Stack” application components and the steps that the implementor must perform before
the application can be run, and then describes the run-time activity that results from executing
the application. This run-time scenario introduces several of the key architectural components
of the DSOM run-time environment.

The source code for this example is provided with the DSOM samples in the SOMobjects
Developer Toolkit.

The “Stack” interface

The example starts with the assumption that the class implementor has successfully built a
SOM class library DLL, called “stack.dll”, in the manner described in Section 5.6, “Creating a
SOM Class Library,” of Chapter 5, “Implementing Classes in SOM.” The DLL implements the
following IDL interface.

#include <somobj.idl>

interface Stack: SOMObject
{
const long stackSize = 10;
exception STACK_OVERFLOW({};
exception STACK_UNDERFLOW({};
boolean full();
boolean empty();
long top() raises (STACK_UNDERFLOW) ;
long pop() raises (STACK_UNDERFLOW) ;
void push(in long element) raises (STACK_OVERFLOW) ;

#ifdef _ SOMIDL_

implementation

{
releaseorder: full, empty, top, pop, push;
somDefaultInit: override;
long stackTop; // top of stack index
long stackValues[stackSize]; // stack elements
dllname = ”"”stack.dll”;

}i

#endif

}i

This DLL could have been built without the knowledge that it would ever be accessed remotely
(that is, built following the procedures in Chapter 5). Note, however, that some DLLs may
require changes in the way their classes pass arguments and manage memory, in order to be
used by remote clients. (See the topic “Implementation Constraints” in Section 6.5, “Implement-
ing Classes.”)

Distributed SOM (DSOM) 6-5

The “Stack” class implementation

#define Stack_Class_Source
#include <stack.ih>

SOM_Scope boolean SOMLINK full (Stack somSelf, Environment *ev)
{
StackData *somThis = StackGetData (somSelf);
StackMethodDebug (”Stack”,”full”);

/* Return TRUE if stack is full. */
return (_stackTop == stackSize);

SOM_Scope boolean SOMLINK empty (Stack somSelf, Environment *ev)
{

StackData *somThis = StackGetData (somSelf);

StackMethodDebug (”Stack”, "empty”) ;

/* Return TRUE if stack is empty.*/
return (_stackTop == 0);

SOM_Scope long SOMLINK top(Stack somSelf, Environment *ev)
{
StackData *somThis = StackGetData (somSelf);
StackMethodDebug (”Stack”, "top”) ;

if (_stackTop > 0)
{
/* Return top element in stack without removing it from
* the stack.
*/
return (_stackValues|[_stackTop-1]);
}
else
{
somSetException (ev, USER_EXCEPTION,
ex_STACK_UNDERFLOW, NULL);
return (-1L);

SOM_Scope long SOMLINK pop(Stack somSelf, Environment *ev)
{
StackData *somThis = StackGetData (somSelf);
StackMethodDebug (”Stack”, "pop”) ;

if (_stackTop > 0)
{
/* Return top element in stack and remove it from the
* stack.
*/
_stackTop—-—;
return (_stackValues|[_stackTop]);
}
else
{
somSetException (ev, USER_EXCEPTION,
ex_STACK_UNDERFLOW, NULL);
return (-1L);

6-6 SOMobjects Base Toolkit User’s Guide

SOM_Scope void SOMLINK push(Stack somSelf,
Environment *ev, long el)
{
StackData *somThis = StackGetData (somSelf);
StackMethodDebug (”Stack”, "push”) ;

if (_stackTop < stackSize)

{
/* Add element to top of the stack. */
_stackValues|[_stackTop] = el;
_stackTop+t++;

}

else
{
somSetException (ev, USER_EXCEPTION,
ex_STACK_OVERFLOW, NULL);

SOM_Scope void SOMLINK somDefaultInit (Stack somSelf,
somInitCtrl* ctrl)
{
StackData *somThis;
somInitCtrl globalCtrl;
somBooleanVector myMask;
StackMethodDebug (”Stack”, "somDefaultInit”);
Stack_BeginInitializer_somDefaultInit;

Stack_TInit_SOMObject_somDefaultInit (somSelf, ctrl);

/* stackTop is index into stackValues for next pushed
* stack element.
* stackValues[0.. (stackSize-1)] holds stack elements.
*/

_stackTop = 0;

Client program using a local stack

A simple client program written to use a local “Stack” object is displayed below. This C program
is shown so that the differences between a local and remote client program can be highlighted.

#include <stack.h>
boolean OperationOK (Environment *ev);

int main(int argc, char *argvl[])
{

Environment ev;

Stack stk;

long num = 100;

SOM_InitEnvironment (&ev) ;

/* The StackNewClass invocation 1s optional and unnecessary
* in the client program when the class object is created in
* the SOMInitModule function that is invoked during DLL
* initialization.

*/

StackNewClass (Stack_MajorVersion, Stack_MinorVersion);

stk = StackNew() ;

Distributed SOM (DSOM) 6-7

/* Verify successful object creation */
if (stk != NULL)
{
while (!_full(stk, &ev))
{
_push(stk, &ev, num);
somPrintf ("Top: %d\n”, _top(stk, &ev));
num += 100;
}

/* Test stack overflow exception */
_push (stk, &ev, num);
OperationOK (&ev) ;

while (!_empty(stk, &ev))
{

somPrintf ("Pop: %d\n”, _pop(stk, &ev));
}

/* Test stack underflow exception */

somPrintf ("Top Underflow: %d\n”, _top(stk, &ev));
OperationOK (&ev) ;

somPrintf ("Pop Underflow: %d\n”, _pop(stk, &ev));
OperationOK (&ev) ;

_push(stk, &ev, —-10000);
somPrintf ("Top: %d\n”, _top(stk, &ev));
somPrintf ("Pop: %d\n”, _top(stk, &ev));

_somFree (stk);

}
SOM_UninitEnvironment (&ev) ;

return (0);

}

boolean OperationOK (Environment *ev)

{

char *exID;

switch (ev->_major)
{
case SYSTEM_EXCEPTION:
exID = somExceptionId(ev);
somPrintf (”System exception: %s\n”, exID);
somdExceptionFree (ev);
return (FALSE);

case USER_EXCEPTION:
exID = somExceptionId(ev);
somPrintf ("User exception: %$s\n”, exID);
somdExceptionFree (ev) ;
return (FALSE);

case NO_EXCEPTION:
return (TRUE);

default:
somPrintf (“Invalid exception type in Environment.\n”);
somdExceptionFree (ev);
return (FALSE);

6-8 SOMobjects Base Toolkit User’s Guide

Client program using a remote stack

The preceding program has been rewritten below to use DSOM to create and access a “Stack”
object somewhere in the system. The exact location of the object does not matter to the
application — it just wants a “Stack” object. Note that the stack operations of the two programs
are identical. The main differences lie in stack creation and destruction, as highlighted below.
(Also see “Memory management” later for more information on allocating and freeing memory.)

#include <somd.h>
#include <stack.h>

int main(int argc, char *argv[])

{

Environment ev;
Stack stk;
long num = 100;

SOM_InitEnvironment (&ev) ;
SOMD_ Init (&ev);

/* The StackNewClass invocation is optional and unnecessary
* in the client program when the class object is created in
* the SOMInitModule function that is invoked during DLL
* initialization.

*/
StackNewClass (Stack_MajorVersion, Stack_MinorVersion);
stk = _somdNewObject (SOMD_ObjectMgr, &ev, ”Stack”, "”);

/* Verify successful object creation */
if (OperationOK (&ev))
{
while (!_full (stk, &ev))
{
_push(stk, &ev, num);
somPrintf ("Top: %d\n”, _top(stk, &ev));
num += 100;

}

/* Test stack overflow exception */
_push(stk, &ev, num);
OperationOK (&ev) ;

while (!_empty(stk, &ev))
{

somPrintf ("Pop: %d\n”, _pop(stk, &ev));
}

/* Test stack underflow exception */

somPrintf ("Top Underflow: %d\n”, _top(stk, &ev));
OperationOK (&ev) ;

somPrintf ("Pop Underflow: %d\n”, _pop(stk, &ev));
OperationOK (&ev) ;

_push(stk, &ev, -10000);
somPrintf ("Top: %d\n”, _top(stk, &ev));
somPrintf ("Pop: %d\n”, _top(stk, &ev));

_somdDestroyObject (SOMD_ObjectMgr, &ev, stk);

if (OperationOK (&ev))
{
somPrintf (”Stack test successfully completed.\n”);
}
}

SOMD_Uninit (&ev) ;
SOM_UninitEnvironment (&ev) ;

return (0) ;

Distributed SOM (DSOM) 6-9

boolean OperationOK (Environment *ev)

{

char *exID;

switch (ev->_major)
{
case SYSTEM_EXCEPTION:
exID = somExceptionId(ev);
somPrintf (”"System exception: %$s\n”, exID);
somdExceptionFree (ev);
return (FALSE);

case USER_EXCEPTION:
exID = somExceptionId(ev);
somPrintf ("User exception: %s\n”, exID);
somdExceptionFree (ev);
return (FALSE);

case NO_EXCEPTION:
return (TRUE);

default:
somPrintf (“Invalid exception type in Environment.\n”);
somdExceptionFree (ev);
return (FALSE);

}
Let’s step through the differences.

First, every DSOM program must include the file <somd.h> (or, when using C ++, <somd.xh>).
This file defines constants, global variables, and run-time interfaces used by DSOM. Usually,
this file is sufficient to establish all necessary DSOM definitions.

Next, DSOM requires its own initialization call.
SOMD_Init (&ev);

The call to SOMD_Init initializes the DSOM run-time environment. SOMD _Init must be called
before any DSOM run-time calls are made. A side-effect of calling SOMD_Init is that a run-time
object, called the DSOM Object Manager, is created and a pointer to it is stored in the global
variable SOMD_ObjectMgr, for programming convenience. The DSOM Object Manager pro-
vides basic run-time support for clientsto find, create, destroy, and identify objects. The Object
Manager is discussed in detail in the section entitled “Basic Client Programming.”

Next, the local stack creation statement,
stk = StackNew () ;

was replaced by
stk = _somdNewObject (SOMD_ObjectMgr, &ev, ”“Stack”, "");

The call to somdNewObject asks the DSOM Object Manager (SOMD_ObjectMgr) to create a
“Stack” object, wherever it can find an implementation of “Stack”. (There are other methods with
which one can request specific servers.) If no object could be created, NULL is returned and an
exception is raised. Otherwise, the object returned is a “Stack” proxy.

Note: On AlX, the following call may be needed before the somdNewODbject call, if the “Stack”
classimplementation has been linked directly with the program executable (vs. using adynamic
link library, or DLL). This call will properly initialize the class for use by DSOM (this initialization is
done in SOMInitModule for DLLs):

StackNewClass (Stack_MajorVersion, Stack_MinorVersion);

A proxyis an object that is a local representative for a remote target object. A proxy inherits the
target object’s interface, so it responds to the same methods. Operations invoked on the proxy
are not executed locally, but are forwarded to the “real” target object for execution. The client
program always has a proxy for each remote target object on which it operates.

6-10 SOMobjects Base Toolkit User’s Guide

From this point on, the client program treats the “Stack” proxy exactly as it would treat a local
“Stack”. The “Stack” proxy takes responsibility for forwarding requests to and yielding results
from the remote “Stack”. For example,

_push (stk, &ev, num) ;

causes a message representing the method call to be sent to the server process containing the
remote object. The DSOM run time in the server process decodes the message and invokes the
method on the target object. The result (in this case, just an indication of completion) is then
returned to the client process in a message. The DSOM run time in the client process decodes
the result message and returns any result data to the caller.

At the end of the original client program, the local “Stack” was destroyed by the statement,

_somFree (stk) ;

whereas in the client program above, the “Stack” proxy and the remote “Stack” are destroyed by
the statement,

_somdDestroyObject (SOMD_ObjectMgr, &ev, stk);

If the client only wants to release its use of the remote object (freeing the proxy) without
destroying the remote object, it can call the somdReleaseObject method instead of somd-
DestroyObiject.

Finally, the client must shut down DSOM, so that any operating system resources acquired by
DSOM for communications or process management can be returned:

SOMD_Uninit (&ev) ;

This call must be made at the end of every DSOM program.

Using specific servers
In DSOM, the process that manages a target object is called the object’s server. Servers are
implemented as programs that use SOM classes. Server implementations are registered with
DSOM in an Implementation Repository — the Implementation Repository is a database
queried by clients in order to find desired servers, and queried by DSOM in order to activate
those servers upon demand.

The example above placed no constraints on the DSOM Object Manager as to where the
remote “Stack” object should be created. The somdNewObiject call creates a remote object of
a specified class in an arbitrary server that implements that class. However, the DSOM Object
Manager provides methods for finding specific servers.

For example, the client program above can be modified slightly to find a specific server named
“StackServer”, which has already been registered in DSOM’s Implementation Repository.
(Note that the programmer knew or discovered that the “StackServer” server implementation
supports the “Stack” class.) The highlighted lines below show the changes that were made:

#include <somd.h>
#include <stack.h>

int main(int argc, char *argv[]) {
Stack stk;
Environment e;
SOMDServer server;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);

server =
_somdFindServerByName (SOMD_ObjectMgr, &ev, ”“StackServer”);

stk = _somdCreateObj(server, &ev, ”Stack”, "”);

_push (stk, &ev,100) ;

_push (stk, &ev, 200) ;

Distributed SOM (DSOM) 6-11

_pop (stk, &ev) ;
if (!_empty(stk, &ev)) somPrintf ("Top: %d\n”, _top(stk,&ev));

_somdDeleteObj (server, &ev, stk);
_somdReleaseObject (SOMD_ObjectMgr, &ev, stk);
_somdReleaseObject (SOMD_ObjectMgr, &ev, server);
SOMD_Uninit (&ev) ;

SOM_UninitEnvironment (&ev) ;

return(0);

}

This version of the program replaces the somdNewObject operation with calls to somdFind-
ServerByName and somdCreateObj. The somdFindServerByName method consults the
Implementation Repository to find the DSOM server implementation whose name is “Stack-
Server”, and creates a server proxy, which provides a connection to that server. Every DSOM
server process has a server object that defines methods to assist in the creation and manage-
ment of objects in that server. Server objects must be instances of SOMDServer or one of its
subclasses. The somdFindServerByName returns a proxy to the SOMDServer object in the
named server.

Once the client has the server proxy, it can create and destroy objects in that server. The
somdCreateObj call creates an object of the class “Stack” in the server named “StackServer”.

To free the remote “Stack” object, the example shows a somdDeleteObj request on the stack
object’s server. Next, somdReleaseObject requests are made on the DSOM Object Manager,
to free the stack proxy and the server proxy in the client. (Note that these three calls are
equivalent to the somdDestroyObiject call in the previous example.)

A note on finding existing objects

The two examples above show how a remote, transient object can be created by a client, for its
exclusive use. It is also likely that clients will want to find and use objects that are already in
existence. In that case, the calls to somdNewObject or somdCreateObj would be replaced
with other “lookup” calls on some directory object that would take an object name or identifier
and return a proxy to the remote object.

Such a directory object could be implemented by the application as a persistent SOM object,
using DSOM to share it among processes.

The basic mechanisms that DSOM provides for naming and locating objects will be discussed
in section 6.3, “Basic Client Programming.”

“Stack” server implementation

A server consists of three parts. First, a “main” program, when run, provides an address space
for the objects it manages, and one or more process “threads” that can execute method calls.
(Windows and AIX 3.2 currently do not have multi-thread support, while OS/2 and AIX 4.1 do.)
Second, a server object, derived from the SOMDServer class, provides methods used to
manage objects in the server process. Third, one or more class libraries provide object imple-
mentations. Usually these libraries are constructed as dynamically linked libraries (DLLs), so
they can be loaded and linked by a server program dynamically.

In this simple example, we can use the default DSOM server program, which is already
compiled and linked. The default server behaves as a simple server, in that it simply receives
requests and executes them, continuously. The default server creates its server object from the
class, SOMDServer. The default server will load any class libraries it needs upon demand.

The “Stack” class library, “stack.dll”, can be used without modification in the distributed applica-
tion. This is possible because the “Stack” class is “well formed” — there are no methods that
implicitly assume the client and the object are in the same address space.

Thus, by using the default server and the existing class library, a simple “Stack” server can be
provided without any additional programming!

6-12 SOMobjects Base Toolkit User’s Guide

An application may require more functionality in the server program or the server object than the
default implementations provide. A discussion on how to implement server programs and
server objects is found later in this chapter, in section 6.4, “Basic Server Programming”.

Compiling the application

DSOM programs and class libraries are compiled and linked like any other SOM program or
library. The header file “somd.h” (or for C++, “somd.xh”) should be included in any source
program that uses DSOM services. DSOM run-time calls can be resolved by linking with the
SOMobjects Toolkit library: “libsomtk.a” on AIX and “somtk.lib” on OS/2 or Windows. (The
DSOM DLL(s) — “somd.dll” for AIX or OS/2, or “somd1.dll” and “somd2.dIl” for Windows — wiill
be loaded at run time.)

For more information, see “Compiling and linking” in Chapter 3, “Using SOM Classes in Client
Programs,” and the same topic in Chapter 5, “Implementing Classes in SOM.”

Installing the implementation

Before the application can be run, certain environment variables must be set and the stack
class and server implementations must be registered in the SOM Interface Repository and
DSOM Implementation Repository.

Setting environment variables
Several environment variables are used by SOM and DSOM. These variables need to be set
before registering the DSOM application in the Interface and Implementation Repositories.

For this example, the following environment variables could be set as shown. A full description
of the environment variables and how to set them is given in section 6.6, “Configuring DSOM.”

On AIX (in the syntax of the default shell, /bin/ksh):

export HOSTNAME=machine3

export SOMIR=$SOMBASE/etc/som.ir:/u/myuserid/my.ir
export SOMDDIR=/u/myuserid/somddir

export LIBPATH=SLIBPATH:S$SOMBASE/lib:/u/myuserid/lib

On OS/2:

set USER=pat
set HOSTNAME=machine3
set SOMDDIR=c:\somddir

rem *** The following variables are set in CONFIG.SYS by

rem *** the install program on 0S/2, assuming ”c:\som” is the
rem *** value of $SOMBASES% supplied by the user.

set SOMIR=c:\som\etc\som.ir;som.ir

set LIBPATH=.;c:\som\lib; <previous LIBPATH>

On Windows:

set USER=pat
set HOSTNAME=machine3
set SOMDDIR=c:\somddir

rem *** The following variables are usually set in AUTOEXEC.BAT
rem *** by the install program on Windows, assuming ”c:\som”
rem *** is the value of %$SOMBASE% supplied by the user.

set SOMIR=c:\som\etc\som.ir;som.ir

set PATH=.;c:\som\lib; <previous PATH>

USER identifies the user of a DSOM client application. DSOM sends the USER ID with every
remote method call, in case the remote object wishes to perform any access-control checking.
This is discussed later in the section “Basic Server Programming.” (Note that USER is usually
set automatically by AIX when a user logs in.)

HOSTNAME identifies the name of each machine running DSOM.

Distributed SOM (DSOM) 6-13

SOMIR gives a list of files that together constitute the Interface Repository. The IR is used by
DSOM to guide the construction and interpretation of request messages. For DSOM, it is
preferable to use full pathnames in the list of IR files, since the IR will be shared by several
programs that may not all reside in the same directory.

SOMDDIR gives the name of a directory used to store DSOM configuration files, including the
Implementation Repository.

LIBPATH (on AlIX and OS/2) or PATH (on Windows) gives a list of directories where DLLs can be
found.

Registering the class in the Interface Repository
Before an object can be accessed remotely by DSOM, it is necessary to register the class’s
interface and implementation in the Interface Repository (IR). DSOM uses the interface in-
formation when transforming local method calls on proxies into request messages transmitted
to remote objects.

DSOM servers also consult the IR to find the name of the DLL for a dynamically loaded class.
The DLL name for the “Stack” class must be specified using the dliname="stack.dll” modifier
in the implementation statement of the “Stack” IDL. The Interface Repository is described in
detail in Chapter 7, “The Interface Repository Framework.”

The IDL specification of “Stack” is compiled into the Interface Repository using the following
command:

sc —u -sir stack.idl (on AlX or OS/2)
somc —-u -sir stack.idl (on Windows)

When a class has not been compiled into the Interface Repository, DSOM will generate a
run-time error when an attempt is made to invoke a method from that class. The error indicates
that the method’s descriptor was not found in the IR.

Registering the server in the Implementation Repository
It is necessary to register a description of a server’s implementation in the Implementation
Repository. DSOM uses this information to assist clients in finding servers, and in activating
server processes upon demand.

For this example, where the default server is used, we need only to identify the server’s name,
and the class that the server implements. This is accomplished using the regimpl utility
discussed in section 6.6, “Configuring DSOM Applications”. The following commands define a
default server, named “StackServer”, which supports the Stack class:

regimpl -A -1 StackServer
regimpl —-a -i StackServer -c Stack

Running the application

Starting the DSOM daemon
Before running a DSOM application, the DSOM daemon, somdd, must be started.

e On AlX or OS/2, the daemon can be started manually from the command line, or it could be
started automatically from a start-up script run at boot time. It may be run in the background
with the commands somdd& on AIX and start somdd on OS/2. (The somdd program
requires no parameters. An optional —q parameter can be used to set “quiet” mode, to
suppress messages.)

¢ On Windows, the daemon can be started with the DSOM Daemon icon in the SOM icon
group or started in Windows from the Run option of the File menu. The DSOM Daemon icon
will change colors to indicate that the daemon is ready, after which client and server pro-
grams can be started.

The somdd daemon is responsible for establishing a “binding” (that is, a connection) between a
client process and a server. It will activate the desired server automatically, if necessary.

6-14 SOMobjects Base Toolkit User’s Guide

Running the client
Once the DSOM daemon is running, the application may be started. This is accomplished by
running the client program. If the StackServer is not running, it will be started automatically by
the DSOM daemon when the client attempts to invoke a method on one of its objects.

“Stack” example run-time scenario

The following scenario steps through the actions taken by the DSOM run time in response to
each line of code in the second “Stack” client program presented above. The illustration
following the scenario is an illustration of the processes, and the objects within them, that
participate in these actions.

e [nitialize an environment for error passing:

SOM_InitEnvironment (&ev) ;

¢ |[nitialize DSOM:

SOMD_Init (&ev);

This causes the creation of the DSOM Object Manager (with SOMDObjectMgr interface).
The global variable SOMD_ObjectMgr points to this object.

¢ |Initialize “Stack” class object:

StackNewClass (Stack_MajorVersion, Stack_MinorVersion);

¢ Find the “StackServer” implementation and assign its proxy to the variable server:

server = _somdFindServerByName (SOMD_ObjectMgr, &ev, "StackServer”);

This causes the creation of the server proxy object in the client process. Proxy objects are
shown as shaded circles. Note that the “real” server object in the server process is not
created at this time. In fact, the server process has not yet been started.

¢ Ask the server object to create a “Stack” and assign “Stack” proxy to variable stk:

stk = _somdCreateObj(server, &ev, ”Stack”, "");

This causes somdd, the DSOM daemon (already running), to activate the stack server
process (by starting the “generic” server program). The stack server process, upon activa-
tion, creates the “real” SOMDServer object in the server process. The SOMDServer object
works with the DSOM run time to create a local “Stack” object and return a “Stack” proxy to
the client. (The details of this procedure are deferred until section 6.4, “Basic Server Pro-
gramming”.)

¢ Ask the “Stack” proxy to push 100 onto the remote stack:
_push (stk, &ev,100) ;

This causes a message representing the method call to be marshalled and sent to the server
process. In the server process, DSOM demarshals the message and, with the help of the
SOMDServer, locates the target “Stack” object upon which it invokes the method (“push”).
The result (which is void in this case) is then passed back to the client process in a message.

¢ Invoke more “Stack” operations on the remote stack, via the proxy:

_push (stk, &ev, 200) ;
_pop (stk, &ev) ;
if (!_empty(stk,&ev)) t = _top(stk, &ev);

e Explicitly destroy both the remote stack, the stack proxy, and the server proxy:

_somdDeleteObj(server, &ev, stk);
_somdReleaseObject (SOMD_ObjectMgr, &ev, stk);
_somdReleaseObject (SOMD_ObjectMgr, &ev, server);

e Free the error-passing environment:

SOM_UninitEnvironment (&ev) ;

Distributed SOM (DSOM) 6-15

Summary

This scenario has introduced the key processes in a DSOM application: client, server, and
somdd. Also introduced are the key objects that comprise the DSOM run-time environment:
the SOMD_ObijectMgr in the client process and the SOMD_ServerObject in the server
process.

This example has introduced the key concepts of building, installing, and running a DSOM
application. It has also introduced some (though not all) of the key components that comprise
the DSOM application run-time environment, as pictured below.

The following sections, “Basic Client Programming”, “Basic Server Programming”, and “Imple-
menting Classes” provide more detail on how to use, manage, and implement remote objects,
respectively.

Components of DSOM application run-time environment

CLIENT SERVER

DSOM

Object Mgr

Hreall!
server

INTERFACE
REPOSITORY

IMPLEMENTATION
REPOSITORY

6-16 SOMobjects Base Toolkit User’s Guide

6.3 Basic Client Programming

For the most part, client programming in DSOM is exactly the same as client programming in
SOM, since DSOM transparently hides the fact that an object is remote when the client
accesses the object.

However, a client application writer also needs to know how to create, locate, use, save, and
destroy remote objects. (This is not done using the usual SOM bindings.) The DSOM run-time
environment provides these services to client programs primarily through the DSOM Object
Manager. These run-time services will be detailed in this section. Examples of how an applica-
tion developer uses these services are provided throughout the section.

DSOM Object Manager

DSOM defines a DSOM Object Manager, which provides services needed by clients to create,
find and use objects in the DSOM run time environment.

The DSOM Object Manager is derived from an abstract, generic “object manager” class, called
ObjectMgr. This abstract ObjectMgr class defines a basic set of methods that support object
creation, location (with implicit activation), and destruction.

As an abstract class, ObjectMgr defines only an interface — there is no implementation
associated with ObjectMgr. Consequently, an application should not create instances of the
ObjectMgr class.

An abstract Object Manager class was defined under the expectation that applications will often
need simultaneous access to objects implemented and controlled by a variety of object sys-
tems. Such object systems may include other ORBs (in addition to DSOM), persistent object
managers, object-oriented databases, and so forth. It is likely that each object system will
provide the same sort of basic services for object creation, location, and activation, but each
using a different interface.

Thus, the ObjectMgr abstract class defines a simple and “universal” interface that can be
mapped to any object system. The application would only have to understand a single, common
ObjectMgr interface. Under this scheme, specific object managers are defined by subclassing
the ObjectMgr class and overriding the ObjectMgr methods to map them into the object
system-specific programming interfaces.

DSOM’s Object Manager, SOMDObijectMgr, is defined as a specific class of ObjectMgr. It
defines methods for:

¢ Finding servers that implement particular kinds of objects

e Creating objects in servers

e Obtaining object identifiers (string ids)

e Finding objects, given their identifiers

¢ Releasing and destroying objects

These functions will be discussed in the remainder of this section.

Note: The OMG has standardized an “object lifecycle” service, which includes support for
creating and destroying distributed objects. The DSOM Object Manager may be
augmented in the future with an OMG-compliant lifecycle service.

Initializing a client program

A client application must declare and initialize the DSOM run time before attempting to create or
access a remote object. The SOMD_Init procedure initializes all of the DSOM run time,
including the SOMDODbjectMgr object. The global variable SOMD_ObjectMgr is initialized to
point to the local DSOM Object Manager.

A client application must also initialize all application classes used by the program. For each
class, the corresponding <className>NewClass call should be made.

Distributed SOM (DSOM) 6-17

Note: Innon-distributed SOM programs, the <className>New macro (and the new operator
provided for each class by the SOM C++ bindings) implicitly calls the procedure <class-
Name>NewClass when creating a new object. This is not currently possible in DSOM
because, when creating remote objects, DSOM uses a generic method that is not class
specific.

This was shown in the “Stack” example in section 6.2. In a similar example of an application that
uses “Car” and “Driver” objects, the initialization code might look like this:

#include <somd.h> /* needed by all clients */
#include <Car.h> /* needed to access remote Car */
#include <Driver.h> /* needed to access remote Driver */

main ()

{

Environment ev; /* ev used for error passing */
SOM_InitEnvironment (&ev) ;

/* Do DSOM initialization */
SOMD_TInit (&ev);

/* Initialize application classes */
CarNewClass (Car_MajorVersion, Car_MinorVersion);
DriverNewClass (Driver_MajorVersion, Driver_MinorVersion);

}

As shown, client programs should include the “somd.h”file (or, for C++ programs, the “somd.xh”
file) in order to define the DSOM run-time interfaces.

Note also that, since Environments are used for passing error results between a method and
its caller, an Environment variable (ev) must be declared and initialized for this purpose.

The calls to “CarNewClass” and “DriverNewClass” are required if the client will be creating or
accessing Cars and Drivers. The procedures “CarNewClass” and “DriverNewClass” create
class objects for the classes “Car” and “Driver”. When a DSOM Object Manager method like
somdNewObiject is invoked to create a “Car”, it expects the “Car” class object to exist. If the
class does not yet exist, the “ClassNotFound” exception will be returned.

Exiting a client program

At the end of a client program, the SOMD_Uninit procedure must be called to free DSOM
run-time objects, and to release system resources such as semaphores, shared memory
segments, and so on.

For example, the exit code in the client program might look like this:
ééMD_Uninit(&ev);

SOM_UninitEnvironment (&ev) ;

}

Observe also the SOM_UninitEnvironment call, which frees any memory associated with the
specified Environment structure.

Note: When a Windows DSOM client receives a WM_QUIT message while processing a remote
method invocation, DSOM will clean up and terminate the client without returning to the client’s
WinProc or WinMain.

Creating remote objects
Distributed objects can be created in several different ways in DSOM.
e The client can create an object on any server that implements that class of object.

e The client can find a specific server upon which to create an object.

6-18 SOMobjects Base Toolkit User’s Guide

e A server can create an object and register a reference to the object in some well-known
directory. (An object reference contains information that reliably identifies a particular ob-
ject.)

The first two cases are discussed immediately below. The last case is discussed near the end of
this section.

Creating an object in an arbitrary server
Following is an example of how to create a new remote object in the case where the client does
not care in which server the object is created. In this situation, the client defers these decisions
to the DSOM Object Manager (SOMD_ObjectMgr) by using the somdNewObject method
call, which has this IDL definition:

// (from file om.idl)

SOMObject somdNewObject (in Identifier objclass, in string hints);

// Returns a new object of the named class. This is a "basic”
// creation method, where the decisions about where and how to
// create the object are mostly left up to the Object Manager.
// However, the Object Manager may optionally define creation
// "hints” which the client may specify in this call.

Here is the example of a how a remote “Car” would be created using somdNewObiject:

#include <somd.h>
#include <Car.h>

main ()

{
Environment ev;
Car car;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

/* create the class object */
CarNewClass (Car_MajorVersion, Car_MinorVersion);

/* create a Car object on some server, let the
Object Manager choose which one */
car = _somdNewObject (SOMD_ObjectMgr, &ev, ”“Car”, "");

}

The main argument to the somdNewODbject method call is a string specifying the name of the
class of the desired object. The last argument is a string that may contain “hints” for the Object
Manager when choosing a server. In this example, the client is providing no hints. (Currently, the
DSOM Object Manager simply passes the hints to the server object in a somdCreateObj call.)

Proxy objects
As far as the client program is concerned, when a remote object is created, a pointer to the
object is returned. However, what is actually returned is a pointer to a proxy object, which is a
local representative for the remote target object.

Proxies are responsible for ensuring that operations invoked on it get forwarded to the “real”
target object that it represents. The DSOM run time creates proxy objects automatically,
wherever an object is returned as a result of some remote operation. The client program will
always have a proxy for each remote target object on which it operates. Proxies are described
further in the sections entitled “DSOM as a CORBA-compliant Object Request Broker” and
“Advanced Topics”.

In the example above, a pointer to a “Car” proxy is returned and put in the variable “car”. Any
subsequent methods invoked on “car” will be forwarded and executed on the corresponding
remote “Car” object.

Distributed SOM (DSOM) 6-19

Proxy objects inherit behavior from the SOMDClientProxy class.

Servers and server objects
In DSOM, the process that manages a target object is called the object’s server. Servers are
implemented as programs that use SOM classes. The example above placed no constraints on
the DSOM Object Manager as to which server should create the remote “Car” object. However,
if the client desires more control over distribution of objects, the DSOM Object Manager
provides methods for finding specific servers.

Server implementations are registered with DSOM in an Implementation Repository. Server
implementations are described by a unique ID, a unique (user-friendly) name, the program
name that implements the server, the classes that are implemented by the server, the machine
on which the server is located, whether the server is multi-threaded, and so forth. (See section
6.6 for more information on registering server implementations.) A client can ask the DSOM
Object Manager to find a particular server:

e By name,
e ByID,
e By aclass it supports.

When a client asks for a “server”, itis given (a proxy to) a server objectthat provides interfaces
for managing the objects in the server. There is one server object per server process. All server
objects are instances of the SOMDServer class, or its subclasses. The default method pro-
vided by SOMDServer for creating objects is:

// (from file somdserv.idl)
SOMObject somdCreateObj(in Identifier objclass, in string hints);

// Creates an object of the specified class. This method
// may optionally define creation ”"hints” which the client
// may specify in this call. (Hints are ignored by default.)

Section 6.4 explains how to create application-specific server objects, derived from SOMD-
Server, which override SOMDServer methods and introduce their own methods for object
management.

Creating an object in a specific server
The following example demonstrates how a client application creates a new object in a remote
server chosen by the client. The DSOM Object Manager method somdFindServerByName is
used to find and create a proxy to the server object for the server implementation named
“‘myCarServer”. The method somdCreateObj is then invoked on the server object to create the
remote “Car”. A proxy to the remote “Car” is returned. (The “Stack” client presented in the
previous section used the same methods to create a remote “Stack”.)

/* find a specific Car server */
server =
_somdFindServerByName (SOMD_ObJjectMgr, &ev, “myCarServer”);

/* create a remote Car object on that server */
car = _somdCreateObj(server, &ev, "Car”, "");

}

Note: Ifthe specified server does notprovide any implementation of the desired class, a NULL
pointer will be returned and a “ClassNotFound” exception will be raised.

6-20 SOMobjects Base Toolkit User’s Guide

Three other methods can be invoked on the DSOM Object Manager to find server implementa-
tions: somdFindServer, somdFindServersByClass, and somdFindAnyServerByClass.
The IDL declarations of these methods follow:

SOMDServer somdFindServer (in ImplId serverid);
sequence<SOMDServer> somdFindServersByClass (in Identifier objclass);

SOMDServer somdFindAnyServerByClass (in Identifier objclass);

The somdFindServer method is similar to the somdFindServerByName method, except that
the server’s implementation ID (of type Implld) is used to identify the server instead of the
server’s user-friendly name (or “alias”). The implementation ID is a unique string generated by
the Implementation Repository during server registration. (See section 6.6 for more details.)

The somdFindServersByClass method, given a class name, returns a sequence of all serv-
ers that support the given class. The client program may then choose which server to use,
based on the server’s name, program, or other implementation attributes (for example, the
server is multi-threaded). (See the topic below, “Inquiring about a remote object’s implementa-
tion.”)

Finally, the somdFindAnyServerByClass method simply selects any one of the server imple-
mentations registered in the Implementation Repository that supports the given class, and
returns a server proxy for that server.

Once the server proxy is obtained, methods like somdCreateObj, shown in the example
above, can be invoked upon it to create new objects.

Inquiring about a remote object’s implementation
A client may wish to inquire about the (server) implementation of a remote object. All objectsin a
server, including the “server object”, share the same implementation definition. This is common
when using the somdFindServersByClass call, where a sequence of server proxies is re-
turned, and some choice must be made about which to use.

When a proxy is obtained by a client, the client can inquire about the underlying server
implementation by obtaining its corresponding ImplementationDef. An ImplementationDef
object contains a set of attributes that describe a server implementation. To get the Imple-
mentationDef associated with a remote object, the get_implementation method (implement-
ed on SOMDODbject and inherited by SOMDClientProxy) can be called.

For example, if a program has a proxy for a remote server object, it can get the Implementation-
Def for the server with method calls similar to the following:

ImplementationDef implDef;

SOMDServer server;

implDef = _get_implementation (server, &ev);

Once the ImplementationDef has been obtained, the application can access its attributes
using the _get_impl_xxx methods.

The ImplementationDef class is discussed further in section 6.6, “Configuring DSOM.”

Destroying remote objects

There are several ways of destroying objects or their proxies in DSOM, just as there are several
ways to create objects. Remote objects can be asked to destroy themselves, or, the SOMDOb-
jectMgr and the SOMDServer can participate in the deletion.

Distributed SOM (DSOM) 6-21

Destroying objects via a proxy
DSOM provides means for deleting remote objects via their proxies. For example, if somFree is
invoked on a proxy, the somFree call gets forwarded directly to the target object, just like any
other target method call. For example,

_somFree (car);
frees the remote car. Note that, by default, invoking somFree on the proxy does not free the

proxy, only the remote object. However, the following call can be issued as part of a client-pro-
gram initialization, so that invoking somFree on a proxy frees both the remote object and the

proxy:
__set_somd2lsomFree (SOMD_ObjectMgr, ev, TRUE);

All subsequent invocations of somFree on a proxy object will result in both the remote object
and the proxy being freed.

To be explicit about whether the proxy or the remote object is being deleted, the methods
somdTargetFree and somdProxyFree, defined on proxies, can be used:

_somdTargetFree (car, é&ev);

frees the remote “Car” (but not the proxy) and

_somdProxyFree (car, &ev);

frees the proxy (but not the remote “Car”).

Note: CORBA specifies a third method for deleting object references. (Proxies are a special-
ized type of object reference.) The method

_release(car, &ev);

deletes the proxy (but not the target object).

Destroying objects via the DSOM Object Manager
Having created a remote object with somdNewObject or somdCreateObj, the remote object
and its local proxy may be destroyed by invoking the method somdDestroyObject on the
DSOM Object Manager using the proxy as an argument. For example,

/* create the car */
car = _somdNewObject (SOMD_ObjectMgr, &ev, ”“Car”, "");

/* destroy the car (and its proxy) */
_somdDestroyObject (SOMD_ObjectMgr, é&ev, car);

If the client does not want to destroy the remote object, but is finished working with it, the
somdReleaseObject method should be used instead. For example,

_somdReleaseObject (SOMD_ObjectMgr, &ev, car);

This deletes the local proxy, but not the remote object.

Both somdDestroyObject and somdReleaseObject are defined on the ObjectMgr, so that
the Object Manager is aware of the client’s actions, in case it wants to do any bookkeeping.

The object passed to either the somdDestroyObject method or the somdReleaseObject
method can be either a local SOM object or a DSOM proxy object. When a local SOM object is
passed, somdDestroyObject has the same behavior as somFree. If a local SOM object is
passed to somdReleaseObject, however, this has no effect.

Destroying objects via a server object
The somdDestroyObject method described above sends a request to delete a remote object
to the object’s server. It does so to ensure that the server has an opportunity to participate in, if
not perform, the deletion. The method defined on the SOMDServer class for destroying objects
is somdDeleteObj. If the client has a proxy for the server object, it can also invoke somdDele-
teObj directly, instead of calling somdDestroyObject.

6-22 SOMobijects Base Toolkit User’s Guide

Destroying objects via the server object, rather than asking the object itself (as in somFree or
somdTargetFree), allows the server object do any clean-up that is needed. For simple applica-
tions, this may not be necessary, but for applications that provide their own application-tailored
server objects, it may be critical. See, for example, the persistent server example in the Section
6.4, entitled “Basic Server Programming.”

Creating remote objects using user-defined metaclasses

An application may wish to define its own constructor methods for a particular class, via a
user-supplied metaclass. In this case, the somdNewObject method should not be used, since
it simply calls the default constructor method, somNew, defined by SOMClass.

Instead, the application can obtain a proxy to the actual class object in the server process. It can
do so via the somdGetClassObj method, invoked on the SOMDServer proxy returned by one
of the somdFindServerXxx methods. The application-defined constructor method can then be
invoked on the proxy for the remote class object.

Note: The sameissues apply to destructor methods. If the application defines its own destruc-
tor methods, they can be called via the class object returned by somdGetClassObj, as
opposed to calling somdDestroyObject.

The following example creates a new object in a remote server using an application-defined
constructor method, “makeCar”, which is assumed to have been defined in the metaclass of
“Car”, named “MetaCar”.

#include <somd.h>
#include <Car.h>
main()
{
Environment ev;
SOMDServer server;
Car car;
MetaCar carClass;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);

/* find a Car server */
server = _somdFindAnyServerByClass (SOMD_ObjectMgr, &ev, “Car”);

/* get the class object for Car */
carClass = (MetaCar) _somdGetClassObij (server, &ev, “Car”);

/* create the car object */
car = _makeCar (carClass, &ev, “Red”, “Toyota”, “2-door”);

Saving and restoring references to objects

A proxy is a kind of “object reference”. An object reference contains information that is used to
identify a target object.

To enable clients to save references to remote objects (in a file system, for example) or
exchange references to remote objects (with other application processes), DSOM must be able
to externalize proxies. To “externalize a proxy” means to create a string ID for a proxy that can
be used by any process to identify the remote target object. DSOM must also support the
translation of string IDs back into proxies.

The DSOM Object Manager defines two methods for converting between proxies and their
string ids: somdGetldFromObject and somdGetObjectFromid.

Here is an example client program that creates a remote “Car” object. It generates a string ID
corresponding to the proxy, and saves the string ID to a file for later use.

Distributed SOM (DSOM) 6-23

#include <stdio.h>
#include <somd.h>
#include <Car.h>
main()
{
Environment ev;
Car car;
string somdObjectId;
FILE* file;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev);

/* create a remote Car object */
car = _somdNewObject (SOMD_ObjectMgr, &ev, "Car”, "");

/* save the reference to the object */

somdObjectId = _somdGetIdFromObject (SOMD_ObjectMgr, &ev, car);
file = fopen(”/u/joe/mycar”, "w");

fprintf (file, "%s”, somdObjectId);

Next is an example client program that retrieves the string ID and regenerates a valid proxy for
the original remote “Car” object (assuming the remote “Car” object can still be found in the
server).

Environment ev;

Car car;

char buffer[256];
string somdObjectId;
FILE* file;

/* restore proxy from its string form */

file = fopen(”/u/joe/mycar”, "r");

somdObjectId = (string) buffer;

fscanf (file, ”%s”, somdObjectId);

car = _somdGetObjectFromId (SOMD_ObjectMgr, &ev, somdObjectId);

Once the proxy has been regenerated, methods can be invoked on the proxy and they will be
forwarded to the remote target object, as always.

Note: The somdGetldFromObject and somdGetObjectFromld methods directly corre-
spond to the CORBA methods ORB_object_to_string and ORB_string_to_object,
defined on the ORB class.

Finding existing objects

The SOMDObjectMgr and SOMDServer classes support the methods described above,
which allow clients to create objects in servers. However, it is also likely that clients will want to
find and use objects that have already been created, usually by the servers that implement
them. For example, a print service will create printer objects, and must then export them to
clients. In that case, the calls to somdNewObject or somdCreateObj would be replaced with
other “lookup” calls on some directory (server) object which would take an object name or
identifier and return a proxy to a corresponding remote object. Likewise, the server that owns
the object would register the exported object in the directory.

It is important to understand that DSOM does not provide a directory service such as the one
described. But such a directory object could be implemented by the application, where a table or
collection object maps object names to proxies. The string ids for the proxies in the directory
object could be saved using a file (as above) or a persistent object (via the Persistence
Framework of the SOMobjects Developer Toolkit). A directory server implemented using
DSOM could be used to share the directory among processes.

6-24 SOMobjects Base Toolkit User’s Guide

Upon alookup call, the directory server could find the corresponding proxy (or its string ID) in the
directory, and return it to the caller.

Finding server objects
The DSOM Object Manager can be used to find server object proxies using the somdFindSer-
verXxx methods. However, it is important to point out that an application can also augment
those services, by managing server proxies itself. Server proxies can be maintained in an
application-specific directory, stored in a file, or passed from process to process, just as any
other proxies.

Invoking methods on remote objects

As described earlier, DSOM proxies are local representatives of remote objects, and as such,
they can be treated like the target objects themselves. Method calls are invoked in exactly the
same manner as if the object is local. This is true both for method calls using the static bindings
(as most of our examples have shown), as well as for dynamic dispatching calls, where SOM
facilities (such as the somDispatch method) are used to construct method calls at run time.

CORBA 1.1 also defines a dynamic invocation interface that is implemented by DSOM. It is
described later in section 6.9, “Advanced Topics”.

The DSOM run time is responsible for transporting any input method argument values supplied
by the caller (defined by legal IDL types) to the target object in a remote call. Likewise, the
DSOM run time transports the return value and any output argument values back to the caller
following the method call.

Note: DSOM uses the Interface Repository (IR) to discover the “signature” of a method (that
is, the method’s prototype). It is important that the contents of the IR match the method
bindings used by the application program (that is, the same IDL file is used to update the
IR and to generate bindings).

DSOM can make remote invocations only of methods whose parameter types are among the
following IDL types: basic types (short, long, unsigned short, unsigned long, float,
double, char, boolean, octet), enum, struct, union, sequence, string, array, any, and
object. The members of a struct, union, sequence, or array, and the value of an any, must
also be from the above list of supported DSOM types.

In addition to the preceding types, DSOM also supports method parameters of type pointer to
one of the above types (for example, long*). Pointers to pointers are not supported, however,
and pointers embedded within one of the above types (for example, a pointer within a struct)
are not supported. The “void *” type is also not supported. Currently, DSOM has the limitation
that NULL pointer values cannot be returned as inout or out method arguments, although it is
expected that this limitation will be addressed in a future release.

Types declared as SOMFOREIGN types are not currently supported by DSOM. Because the
SOM somld type is declared as a SOMFOREIGN type, this implies that any method having a
parameter of type somld cannot be invoked remotely using DSOM. This restriction includes
the SOM methods: somRespondsTo, somSupportsMethod, somGetMethodDescriptor,
somGetMethodIndex, and somGetNthMethodInfo.

When a method parameter is an object type (that is, an instance of SOMODbject or some class
derived from SOMObiject), a client program making a remote invocation of that method must
pass an object reference for that parameter, rather than passing a local SOMODbject, unless the
client program is also a DSOM server program, in which case DSOM will automatically convert
the local object into an object reference.

Methods having the procedure SOM IDL modifier cannot be invoked remotely using DSOM.
This is because these “methods” are called directly, rather than via the normal method resolu-
tion mechanisms on which DSOM relies.

Distributed SOM (DSOM) 6-25

Determining memory allocation and ownership
When a method is invoked that returns a result of type string, sequence, or array, DSOM will
allocate memory in the client’s address space for the result. Ownership of this memory be-
comes the responsibility of the client program. When the client program has finished using it,
the client should free the memory using the ORBfree function, rather than using free or
SOMFree. (This is because the memory has been allocated by DSOM using special memory
management techniques; therefore, the client should ask DSOM to also free the memory.)

When invoking a method using DSOM, the client program is responsible for providing storage
for all in arguments and for all inout/out arguments, with the following exceptions: DSOM will
allocate storage for a string or for the _buffer field of a sequence when used as an out
argument, and will allocate storage for the _value field of an any when used as an inout or out
argument. This storage becomes the responsibility of the client program and should later be
freed using ORBfree. For a string or sequence used as an inout argument, the out result is
constrained to be no larger than the size of the in argument allocated by the client.

Passing object references in method calls

When pointers to objects are returned as method output values (as in the previous examples),
DSOM automatically converts the object pointers (in the server) to object proxies in the client.

Likewise, when a client passes object (proxy) pointers as input arguments to a method, DSOM
automatically converts the proxy argumentin the client to an appropriate object reference in the
server.

Note: If the proxy is for an object that is in the same server as the target object, DSOM gives
the object reference to the server object for resolution to a SOM object pointer. Other-
wise, DSOM leaves the proxy alone, since the proxy must refer to an object in some
process other than the target’s server.

Memory management

DSOM programs must manage four different kinds of memory resources: objects, object
references, Environment structures, and blocks of memory. There are different techniques for
allocating and releasing each kind of resource.

Objects and object references

Creating and destroying remote objects was discussed previously in this section (see “Creating
remote objects” and “Destroying remote objects”). Creating and destroying local objects is
described in section 3.2, “Using SOM Classes — the Basics,” in Chapter 3, “Using SOM
Classesin Client Programs.” Object references are typically created automatically by DSOM as
needed by the client program. They are also released in the client program by using either the
release method or the somdProxyFree method. (The two methods are equivalent.)

Environment structures

When a client invokes a method and the method returns an exception in the Environment
structure, it is the client’s responsibility to free the exception. This is done by calling either
exception_free or somdExceptionFree on the Environment structure in which the exception
was returned. (The two functions are equivalent.) A similar function, somExceptionFree, is
available for SOM programmers; however DSOM programmers can use somdExceptionFree
to free all exceptions (regardless of whether they were returned from a local or remote method
call).

Blocks of memory

For allocating and releasing blocks of memory within a client program, SOM provides the
SOMMalloc and SOMFree functions (analogous to the C “malloc” and “free” functions). The
“Memory Management” section of Chapter 3 describes these functions. To release memory
allocated by DSOM in response to a remote method call, however, DSOM client programs
should use the ORBfree function.

6-26 SOMobijects Base Toolkit User’s Guide

For example, when a method is invoked that returns a result of type string, sequence, or array,
DSOM will allocate memory for the result in the client’'s address space. Ownership of this
memory becomes the responsibility of the client program. When finished using this memory, the
client program should free it using the ORBfree function, rather than free or SOMFree. This is
because the memory has been allocated by DSOM using special memory-management tech-
niques; therefore, the client should ask DSOM to also free the memory. If the storage is freed
using SOMFree rather than ORBfree, then memory leaks will result.

The differences between the SOMFree and ORBfree functions are twofold:

¢ First, SOMFree should only be used to free memory not allocated by DSOM (for exam-
ple, memory the client program allocated itself using SOMMalloc), while ORBfree
should be used to free memory allocated by DSOM in response to a remote method call.

e Second, SOMFree only frees a single block of memory (in the same way that the C “free”
function does), while ORBfree will free an entire data structure, including any allocated
blocks of memory within in. For example, if a remote method call returns a sequence of
structs, and each struct contains a string, ORBfree will free, with a single call, not only the
sequence’s “_buffer” member, but also each struct and all the strings within the structs.
Freeing a similar data structure using SOMFree would require multiple calls (one for each

call to SOMMalloc used to build the data structure).

Some programmers may wish to use a single function to free blocks of memory, regardless of
whether they were allocated locally or by DSOM in response to a remote method call. For these
programmers, DSOM provides a function, SOMD_NoORBfree, which can be called just after
calling SOMD_Init in the client program. (It requires no arguments and returns no value.) This
function specifies that the client program will free all memory blocks using SOMFree, rather
than ORBfree. In response to this call, DSOM will not keep track of the memory it allocates for
the client. Instead, it assumes that the client program will be responsible for walking all data
structures returned from remote method calls, while calling SOMFree for each block of memory
within.

Memory management for method parameters

For each method, five SOM IDL modifiers are available to specify the method’s memory-man-
agement policy (thatis, whether the caller or the object owns the parameters’ memory after the
method is invoked). These modifiers are memory_management, caller_owns_result, call-
er_owns_parameters, object_owns_result, and object_owns_parameters. For a com-
plete description of these modifiers and their meanings, see the section entitled “Implementa-
tion Statements” in Chapter 4, “SOM IDL and the SOM Compiler.”

Note that the memory-management policy for a particular parameter applies to the parameter
and allthe memory embedded within it (for example, if a structis owned by the caller, then so are
all the struct's members). Also note that the “object-owned” memory-management policy,
specified by the object_owns_result and object_owns_parameters modifiers, is not sup-
ported by DSOM for methods invoked using the Dynamic Invocation Interface (DII). (This is
because the “object-owned” policy is not CORBA-compliant, and because it precludes reusing
Request objects to invoke a method multiple times.)

The CORBA policy for parameter memory management
When a class contains the SOM IDL modifier memory_management = corba, this signifies
that all methods introduced by the class follow the CORBA specification for parameter memory
management, except where a particular method has an explicit modifier (object_owns_result
or object_owns_parameters) that indicates otherwise. The remainder of this section de-
scribes the CORBA specification for parameter memory management.

Caller frees parameters and return results

The CORBA memory-management policy specifies that the caller of a method is responsible for
freeing all parameters and the return result after the method call is complete. This applies
regardless of whether the parameter was allocated by the caller or the object (or, in the case of a
remote method call, by DSOM). In other words, the CORBA policy asserts that parameters are
uniformly “caller-owned”.

Distributed SOM (DSOM) 6-27

Allocation responsibilities

Whether the parameter or return result should be allocated by the caller or by the object
depends on the fype of the parameter and its mode (“in”, “inout”, “out”, or “return”). In general,
the caller is responsible for allocating storage for most parameters and return results. More
specifically, CORBA requires that storage for all “in” arguments, for all “inout” or “out” argu-
ments, and for all “return” results must be provided by the client program, with certain excep-

tions as itemized below.
The object is responsible for allocating storage as follows:

« for strings when used as “out” arguments or as “return” results,

« for the “_buffer” field of sequences when used as “out” arguments
or as “return” results,

« for the “_value” field of anys when used as “inout” or “out” arguments
or as “return” results,

« for pointer types when used as “inout” or “out” arguments or as
“return” results,

« for arrays when used as “return” results, and

« for objects when used as “inout” or “out” arguments or as “return”
results.
Note: For “inout” strings and sequences, the “out” result is constrained
to be no larger than the size of the “in” argument allocated by the client.

Ownership of memory allocated in the above cases becomes the responsibility of the client
program. For remote method calls, when a remote object allocates memory for a parameter or
“return” value, DSOM subsequently allocates memory in the client’s address space for the
parameter or result. For a parameter/result that is an object (rather than a block of memory)
DSOM automatically creates an object reference (a proxy object) in the client’s address space.
In each case, the memory or the proxy object becomes the responsibility of the client program
and should later be freed by the client, using ORBfree for blocks of memory or release for proxy
objects.

The ‘'somdReleaseResources’ method and object-owned parameters
As stated earlier, the CORBA policy asserts that method parameters and return results are
uniformly caller-owned. This means the method callerhas the responsibility for freeing memory
after invoking a method, regardless of whether the memory was allocated by the caller or the
object.

A class implementor can designate certain method parameters and results as object-owned,
however, by using the object_owns_result and object_owns_parameters SOM IDL modifi-
ers. These modifiers signify that the object, rather than the caller, is responsible for freeing the
memory associated with the parameter/result. For “in” parameters, the object can free the
memory any time after receiving it; for “inout” and “out” parameters, and for return results, the
object will free the memory sometime before the object is destroyed. (See the section entitled
“Implementation statements” in Chapter 4, “SOM IDL and the SOM Compiler,” for more in-
formation on these modifiers.)

When a DSOM client program makes a remote method invocation, via a proxy, and the method
being invoked has an object-owned parameter or return result, then the client-side memory
associated with the parameter/result will be owned by the caller’s proxy, and the server-side
memory will be owned by the remote object. The memory owned by the caller’s proxy will be
freed when the proxy is released by the client program. (The time at which the server-side
memory will be freed depends on the implementation of the remote object.)

A DSOM client can also instruct a proxy object to free all memory that it owns on behalf of the
client without releasing the proxy (assuming that the client program is finished using the
object-owned memory), by invoking the somdReleaseResources method on the proxy object.
Calling somdReleaseResources can prevent unused memory from accumulating in a proxy.

6-28 SOMobjects Base Toolkit User’s Guide

For example, consider a client program repeatedly invoking a remote method “get_string”,
which returns a string that is designated (in SOM IDL) as “object-owned”. The proxy on which
the method is invoked will store the memory associated with all the returned strings, even if the
strings are not unique, until the proxy is released. If the client program only uses the last result
returned from “get_string”, then unused memory accumulates in the proxy. The client program
can prevent this by invoking somdReleaseResources on the proxy object periodically (for
example, each time it finishes using the result of the last “get_string” call).

Writing clients that are also servers

In many applications, processes may need to play both client and server roles. That is, objects
in the process may make requests of remote objects on other servers, but may also implement
and export objects, requiring that it be able to respond to incoming requests. Details of how to
write programs in this peer-to-peer style are explained in section 6.9, “Advanced Topics”.

Compiling and linking clients

All client programs must include the header file “somd.h” (or for C++, “somd.xh”) in addition to
any “<className>.h" (or “<className>.xh”) header files they require from application
classes. All DSOM client programs must link to the SOMobjects Toolkit library: “libsomtk.a” on
AlIX and “somtk.lib” on OS/2 or Windows. For more information, see the topic “Compiling and
linking” in Chapter 3, “Using SOM Classes in Client Programs.”

Distributed SOM (DSOM) 6-29

6.4 Basic Server Programming

Server programs execute and manage object implementations. That is, they are responsible
for:

¢ Notifying the DSOM daemon that they are ready to begin processing requests,
e Accepting client requests,

e Loading class library DLLs when required,

¢ Creating/locating/destroying local objects,

e Demarshalling client requests into method invocations on their local objects,

e Marshalling method invocation results into responses to clients, and

e Sending responses back to clients.

As mentioned previously, DSOM provides a simple, “generic” server program that performs all
of these tasks. All the server programmer needs to provide are the application class library(ies)
DLL that the implementor wants to distribute. Optionally, the programmer can also supply an
application-specific server class, derived from SOMDServer. (The SOMDServer class can be
used by default.) The server program does the rest automatically.

The “generic” server program is called somdsvr and can be found in /usr/lpp/som/bin/
somdsvr on AlX and in $SOMBASE%\bin\somdsvr.exe on OS/2 or Windows.

Some applications may require additional flexibility or functionality than what is provided by the
generic server program. In that case, application-specific server programs can be developed.
This section discusses the steps involved in writing such a server program.

To create a server program, a server writer needs to know what services the DSOM run-time
environment will provide and how to use those services to perform the duties (listed above) of a
server. The DSOM run-time environment provides several key objects that can be used to
perform server tasks. These objects and the services they provide will be discussed in this
section. Examples showing how to use the run-time objects to write a server are also shown.

Server run-time objects
There are three DSOM run-time objects that are important in a server:
e The server’s implementation definition (ImplementationDef),
e The SOM Object Adapter (SOMOA), and

e The application-specific server object (an instance of either SOMDServer or a class derived
from SOMDServer).

Server implementation definition
A server’s implementation definition must be registered in the Implementation Repository
before a server can be used. When a client attempts to invoke a method on a remote object,
DSOM consults the Implementation Repository to find the location of the target object’s server.

An implementation definition is represented by an object of class ImplementationDef, whose
attributes describe a server’s ID, user-assigned alias, host name, program pathname, the class
of its server object, whether or not it is multi-threaded, and so forth. Implementation 1Ds
uniquely identify servers within the Implementation Repository, and are used as keys into the
Implementation Repository when retrieving the ImplementationDef for a particular server.

Itis possible to change the implementation characteristics of a server, even to the point of using
a completely different server program on another machine (with Workgroup DSOM). Thus, the
implementation ID identifies a logical server, and the ImplementationDef describes the cur-
rent implementation of that logical server.

See the topic “Registering Servers and Classes” in section 6.6 for details on server registration.
Two registration methods are described: “manual” (via the regimpl, the wregimpl, or the
pregimpl utility), and “programmatic,” via ImplRepository methods.

6-30 SOMobjects Base Toolkit User’s Guide

When a server is initialized, it must retrieve a copy of its ImplementationDef, and keep itin a
global variable (SOMD_ImpIDefObject). This variable is used by the DSOM run time. (Client-
only programs may leave the SOMD_ImplDefObject variable set to NULL.)

SOM Object Adapter (SOMQOA)
The SOM Object Adapter (SOMOA) is the main interface between the server application and
the DSOM run time. The SOMOA is responsible for most of the server duties listed at the
beginning of this section. In particular, the SOMOA object handles all communications and
interpretation of inbound requests and outbound results. When clients send requests to a
server, the requests are received and processed by the SOMOA.

The SOMOA works together with the server object to create and resolve DSOM references to
local objects, and dispatch methods on objects.

There is one SOMOA object per server process. (The SOMOA class is implemented as a single
instance class.)

Server object
Each server process contains a single server object, which has the following responsibilities for
managing objects in the server:

¢ Provides an interface to client applications for basic object creation and destruction services,
as well as any other application-specific object-management services that may be required
by clients. For example, a print server may have a method that returns a list of all printers
managed by that server. Clients may call this method to find out what printers are available.

e Provides an interface to the SOM Object Adapter for support in the creation and manage-
ment of DSOM object references (which are used to identify an object in the server), and for
dispatching requests.

The server class, SOMDServer, defines the base interface that must be supported by any
server object. In addition, SOMDServer provides a default implementation that is suited to
managing transient SOM objects in a server. This section will show how an application might
override the basic SOMDServer methods and introduce new methods in order to tailor the
server object functionality to a particular application.

Server activation
Server programs may be activated either
e Automatically by the DSOM daemon, somdd, or
e Manually via command line invocation, or under application control.

When a server is activated automatically by somdd, it will be passed a single argument (in
argv[1]) that is the implementation ID assigned to the server implementation when it was
registered into the Implementation Repository (discussed above and in section 6.6, “Configur-
ing DSOM Applications”). This is useful when the server program cannot know until activation
which “logical” server it is implementing. (This is true for the generic server provided with
DSOM.) The implementation ID is used by the server to retrieve its ImplementationDef from
the Implementation Repository.

A server that was not activated by somdd may obtain its ImplementationDef from the
Implementation Repository in any manner that is convenient: by ID, by alias, and so forth.
Moreover, a server may choose to “register itself” dynamically, as part of its initialization. To do
s0, the server would use the programmatic interface to the Implementation Repository.

For example, suppose that the server program “myserver” was designed so that it could be
activated either automatically or manually. This requires that it be written to expect the imple-
mentation ID as its first argument, and to use that argument to retrieve its ImplementationDef
from the Implementation Repository. If an application defines a server in the Implementation
Repository whose implementation ID is 2bcdc4£2-0£62£780-7£-00-10005aa8afdc,
then “myserver” could be run as that server by invoking the following command:

myserver 2bcdc4f2-0£62£780-7£-00-10005aa8afdc

Distributed SOM (DSOM) 6-31

AlX users should be aware that, unless the SetUserID mode bit is set on the file containing the
server program, the UID for the server process will be inherited from the somdd process. To set
the SetUserID mode bit from the AIX command line, type one of the following commands:

chmod 4000 <filename> —or—
chmod u+s <filename>

where “<filename>" denotes the name of the file containing the server program. For additional
details, see the “chmod” command in InfoExplorer or consult the man pages.

Initializing a server program

Initializing the DSOM run-time environment
The first thing the server program should do is to initialize the DSOM run time by calling the
SOMD_Init function. This causes the various DSOM run-time objects to be created and
initialized, including the Implementation Repository (accessible via the global variable
SOMD_ImplRepObject), which is used in the next initialization step.

Initializing the server’s ImplementationDef
Next, the server program is responsible for initializing its ImplementationDef, referred to by
the global variable SOMD_ImplDefObject. It is initialized to NULL by SOMD_Init. (For client
programs it should be left as NULL.) If the server implementation was registered with the
Implementation Repository before the server program was activated (as will be the case for all
servers that are activated automatically by somdd), then the ImplementationDef can be
retrieved from the Implementation Repository. Otherwise, the server program can register its
implementation with the Implementation Repository dynamically (as shown in section 6.6,
“Configuring DSOM applications”).

The server can retrieve its ImplementationDef from the Implementation Repository by invok-
ing the find_impldef method on SOMD_ImpIRepObiject. It supplies, as a key, the imple-
mentation ID of the desired ImplementationDef.

The following code shows how a server program might initialize the DSOM run-time environ-
ment and retrieve its ImplementationDef from the Implementation Repository.

#include <somd.h> /* needed by all servers */
main (int argc, char **argv)
{

Environment ev;

SOM_InitEnvironment (&ev) ;

/* Initialize the DSOM run-time environment */
SOMD_Init (&ev) ;

/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject =

_find_impldef (SOMD_ImplRepObject, &ev, argv([l]);

}

Initializing the SOM Object Adapter
The next step the server must take before itis ready to accept and process requests from clients
is to create a SOMOA object and initialize the global variable SOMD_SOMOAObject to point to
it. This is accomplished by the assignment:

SOMD_SOMOAObject = SOMOANew () ;

Note: The SOMOA object is not created automatically by SOMD_Init because it is only
required by server processes.

After the global variables have been initialized, the server can do any application-specific
initialization required before processing requests from clients. Finally, when the server is ready
to process requests, it must call the impl_is_ready method on the SOMOA:

_impl_is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

6-32 SOMobjects Base Toolkit User’s Guide

The SOMOA will then set up a communications port for incoming messages, which it registers
with the DSOM daemon. Once the DSOM daemon has been notified of the server’s port, it
assists client applications in “binding” (that is, establishing a connection) to that server.

The impl_is_ready method also causes the server object, whose class is defined in the
server’s ImplementationDef, to be created. The server object can be referenced through the
global variable, SOMD_ServerObiject.

When initialization fails
It is possible that a server will encounter some error when initializing itself. Servers must
attempt to notify DSOM that their activation failed, using the activate_impl_failed method.
This method is called as follows:

/* tell the daemon (via SOMOA) that activation failed */
_activate_impl_failed (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject, rc);

Server writers should be aware, however, that until the server’'s SOMD_ImplDefObject has
been initialized, it is not possible to call the _activate_impl_failed method on the DSOM
daemon.

Note: A server program should not call activate_impl_failed once it has called
impl_is_ready.

Processing requests

The SOMOA is the object in the DSOM run-time environment that receives client requests and
transforms them into method calls on local server objects. In order for SOMOA to listen for a
request, the server program must invoke one of two methods on SOMD_SOMOAObject. If the
server program wishes to turn control over to SOMD_SOMOAODbject completely (that is,
effectively have SOMD_SOMOAODbject go into an infinite request-processing loop), then it
invokes the execute_request_loop method on SOMD_SOMOAODbiject as follows:

rc = _execute_request_loop (SOMD_SOMOAObject, &ev, SOMD_WAIT);

Note: This is the way the DSOM-provided “generic” server program interacts with
SOMD_SOMOAODbiject.

The execute_request_loop method takes an input parameter of type Flags. The value of this
parameter should be either SOMD_WAIT or SOMD_NO_WAIT. If SOMD_WAIT is passed as
argument, execute_request_loop will return only when an error occurs. If SOMD_NO_WAIT is
passed, it will return when there are no more outstanding messages to be processed.
SOMD_NO_WAIT is usually used when the server is being used with the event manager. See the
topic “Peer vs. client-server processes” in section 6.9, “Advanced Topics,” for more details.

If the server wishes to incorporate additional processing between request executions, it can
invoke the execute_next_request method to receive and execute requests one at a time:

for(;;) |

rc = _execute_next_request (SOMD_SOMOAObject, &ev, SOMD_NO_WAIT);
/* perform app-specific code between messages here, e.g., */
if (!'rc) numMessagesProcessed++;

}

Just like execute_request_loop, execute_next_request has a Flags argument that can take
one of two values: SOMD_WAIT or SOMD_NO_WAIT. If execute_next_request is invoked with
the SOMD_NO_WAIT flag and no message is available, the method returns immediately with a
return code of SOMDERROR_NoMessages. If a request is present, it will execute it. Thus, it is
possible to “poll” for incoming requests using the SOMD_NO_WAIT flag.

Exiting a server program

When a server program exits, it should notify the DSOM run time that it is no longer accepting
requests. This should be done whether the program exits normally, or as the result of an error. If
this is not done, somdd will continue to think that the server program is active, allowing clients
to attempt to connect to it, as well as preventing a new copy of that server from being activated.

Distributed SOM (DSOM) 6-33

To notify DSOM when the server program is exiting, the deactivate_impl method defined on
SOMOA should be called. For example,

/* tell DSOM (via SOMOA) that server is now terminating */
_deactivate_impl (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

Note: For robustness, it would be worthwhile to add appropriate “exit handlers” or “signal
handlers” to your application servers that call the deactivate_impl method upon abnor-
mal program termination. This ensures that the DSOM daemon is made aware of the
server’s termination, so that client connections are no longer allowed.

Finally, at the end of a server program, the SOMD_Uninit procedure must be called to free
DSOM run-time objects, and to release semaphores, shared memory segments, and any other
system resources.

For example, the exit code in the server program might look like this:

SOMD_Uninit (&ev) ;
SOM_UninitEnvironment (&ev) ;

}

Observe also the SOM_UninitEnvironment call, which frees any memory associated with the
specified Environment structure.

When a Windows DSOM server application receives a WM_QUIT message while processing
incoming requests, the execute_request_loop method will return SOMDERROR_WMQUIT.
When the server receives SOMDERROR_WMQUIT, it should perform its usual clean up and
termination procedures.

Managing objects in the server

Object references, ReferenceData, and the ReferenceData table
One of SOMOA’s responsibilities is to support the creation of object references (SOMDOb-
jects). Recall from the “Stack” example discussion (in Section 6.2) that an object reference is
an exportable “handle” to an object and that proxies are examples of object references. The
SOMOA interface supports three operations for creating object references: create,
create_constant, and create_SOM_ref.

The create and create_constant methods allow a server to associate application-specific data
about an object with an object reference for that object. This data, called reference data, is
represented in a sequence of up to 1024 bytes of information about the object. This sequence,
defined by the type ReferenceData, may contain the object’s location, state, or any other
characteristics meaningful to the application. Usually, ReferenceData is used by a server
process to locate or activate an object in the server. ReferenceData, and hence the methods
create and create_constant, are usually only used in connection with persistent objects
(objects whose lifetimes exceed that of the process that created them).

The create method differs from the create_constant method in the following way: Reference-
Data associated with an object reference constructed by create_constant is immutable
whereas the the ReferenceData associated with an object reference created by create can be
changed (via the change_id method). References created with create_constant return true
when the method is_constant is invoked on them.

The create method stores the ReferenceData in a ReferenceData table associated with the
server, while create_constant maintains the ReferenceData as a constant part of the object
reference. The ReferenceData associated with an object reference (whether it was
constructed using create or create_constant) can be retrieved via the SOMOA method
get_id.

The IDL SOMOA interface declarations of create, create_constant, get_id, and change _id,
and the SOMDObject interface declaration of is_constant are presented below.

6-34 SOMobjects Base Toolkit User’s Guide

/* From the SOMOA interface */

sequence <octet,1024> Referencedata;
SOMDObject create (in ReferenceData id, in InterfaceDef intf,
in ImplementationDef impl);

SOMDObject create_constant (in ReferenceData id,
in InterfaceDef intf,
in ImplementationDef impl);

ReferenceData get_id(in SOMDObject objref);
void change_id(in SOMDObject objref, in ReferenceData id);
/* From the SOMDObject interface */

boolean is_constant () ;

An example of how ReferenceData can be used by an application follows the description of
SOMDServer objects in the next section.

Simple SOM object references
In order to efficiently support the generation and interpretation of references to SOM objects,
the SOMOA defines another method called create_SOM _ref.

The create_SOM_ref method creates a simple DSOM reference (SOMDODbject) for a local
SOM object. The reference is “special” in that, unlike create and create_constant, there is no
user-supplied ReferenceData associated with the object and because the reference is only
valid while the SOM object exists in memory. The SOMObiject to which it refers can be retrieved
viathe get_SOM_object method. The is_SOM_ref method can be used to tell if the reference
was created using create_SOM_ref or not. The IDL declarations for create_SOM_ref,
get_SOM_object, and is_SOM_ref are displayed below:

/* from SOMOA’s interface */

SOMDOb ject create_SOM_ref (in SOMObject somobij,
in ImplementationDef impl);

SOMObject get_SOM object (in SOMDObject somref);
/* from SOMDObject’s interface */

boolean is_SOM ref ();

SOMDServer (default server-object class)
Every server has a server object that implements three kinds of activities:

e Creation and destruction of SOM objects
¢ Mapping between SOMObjects and SOMDODbjects, and
¢ Dispatching methods on SOM objects

Additional, application-specific server methods (for initialization, server control, etc.) can be
defined in a subclass of the SOMDServer class. The class of the server object to be used with a
server is contained in the server’s ImplementationDef.

Distributed SOM (DSOM) 6-35

Following are the IDL declarations of the SOMDServer operations:
// methods called by a client

SOMObject somdCreateObj(in Identifier objclass, in string hints);
void somdDeleteObj(in SOMObject somobi) ;
SOMClass somdGetClassObij (in Identifier obijclass);
// methods called by SOMOA
SOMDObject somdRefFromSOMObj (in SOMObject somobij);
SOMObject somdSOMObjFromRef (in SOMDObject objref);

void somdDispatchMethod (in SOMObject somobj,
out somToken retValue,
in somId methodId,
in va_list ap);

Creation and destruction of SOM objects
The SOMDServer class defines methods for the basic creation of SOM objects in the server
process (somdCreateObj), and for finding the SOM class object for a specified class (somd-
GetClassObj). With somdGetClassObj, a client can get a proxy to a class object on the
server, so that methods introduced in the class’s metaclass (for example, class-specific
constructors, etc.) may be invoked directly on the class object. Examples of client use of these
two methods were presented earlier in Sections 6.2 and 6.3.

With somdDeleteObj, the client can involve the server object in object destruction. (The
methods somdTargetFree and somFree are defined on the objects themselves and do not
involve the server object.) Involving the server object in object creation and destruction can be
important for applications that need more control over how objects are created and destroyed,
or if the application needs to keep track of an object’s creation and destruction.

Mapping objects to object references
SOMDServer also defines methods that implement mappings between SOMObjects and
SOMDODbjects (object references) and a method for dispatching method calls on SOM objects.
These methods are used by the SOM Object Adapter (SOMOA) when converting remote
requests into method calls and results into responses.

Recall from the topic “Proxy objects” in Section 6.3, “Basic Client Programming”, that servers
return proxies to remote objects as method results, not the remote objects themselves. Recall
also that class libraries need not be designed to be distributed (that is, the code that implements
the classes need not be aware of the existence of proxy objects at all). Thus, it is up to the
DSOM run-time environment to ensure that proxies, rather than remote objects, are returned to
clients. The SOMD_SOMOAObject and SOMD_ServerObject work together to perform this
service. Whenever a result from a remote method call includes a SOMODbject, the SOMD_SO-
MOAObject invokes the somdRefFromSOMObj method on SOMD_ServerObject, asking it
to create a SOMDODbiject from the SOMObiject.

The default implementation (or SOMDServer’s implementation) for somdRefFromSOMODbj
uses the create_SOM_ref method to return a “simple” reference for the SOMObject. Applica-
tion-specific server objects (instances of a subclass of SOMDServer) may elect to use create
or create_constant to construct the object reference if the application requires ReferenceDa-
ta to be stored.

Hints on the use of create vs. create _constant
Enough context now exists so that the following question may be answered: “If object refer-
ences constructed with create support changeable ReferenceData, but object references
constructed with create_constant do not, why would | ever want to use create_constant?”

Invocations of create add entries to a table called the ReferenceData Table. The ReferenceDa-
ta Table is persistent; that is, ReferenceData saved in it persists between server activations.

6-36 SOMobjects Base Toolkit User’s Guide

Two calls to create with the same arguments do not return the same SOMDObiject (per CORBA
1.1 specifications). That is, if create is called twice with the same arguments, two entries in the
ReferenceData Table will be created. If a server using create wishes to avoid cluttering up the
ReferenceData Table with multiple references to the same object, it must maintain a table of its
own to keep track of the references it has created to avoid calling create twice with the same
arguments.

The create_constant method stores the ReferenceData as part of the SOMDODbiject’s state;
thatis, it does not add entries to the ReferenceData Table. The create_constant method, then,
might be used by a server that does not want to maintain a table of references nor pay the
penalty of cluttering up the ReferenceData Table with multiple entries.

Mapping object references to objects

The somdSOMObjFromRef method maps SOMDODbjects to SOMObjects. This method is
invoked by SOMOA on the server object, for each object reference found as a parameter in a
request.

The default implementation for somdSOMODbjFromRef returns the address of the SOMOb-
ject for which the specified object reference was created (using the somdRefFromSOMODbj
method). If the object reference was not created by the same server process, then an exception
(BadObijref) is raised. The default implementation does not, however, verify that the original
object (for which the object reference was created) still exists. If the original object has been
deleted (for example, by another client program), then the address returned will not represent a
valid object, and any methods invoked on that object pointer will result in server failure.
Note: The default implementation of somdSOMObjFromRef does not check that the original
object address is still valid because the check is very expensive and seriously degrades server
performance.

To have a server verify that all results from somdSOMObjFromRef represent valid objects,
server programmers can subclass SOMDServer and override the somdSOMObjFromRef
method to perform a validity check on the result (using the somlsObj function). For example, a
subclass “MySOMDServer” of SOMDServer could implement the somdSOMObjFromRef
method as follows:

SOM_Scope SOMObject SOMLINK somdSOMObjFromRef (MySOMDServer somSelf,
Environment * ev,
SOMDObject objref)

SOMObject obij;
StExcep_INV_OBJREF *ex;

/* MySOMDServerData *somThis = MySOMDServerGetData (somSelf); */
MySOMDServerMethodDebug ("MySOMDServer”, "”somdSOMObjFromRef”);

obj = MySOMDServer_parent_SOMDServer_somdSOMObjFromRef (somSelf,
ev, obijref);

if (somIsObj(ob7j))

return (obj);
else {

ex = (StExcep_INV_OBJREF ¥*)

SOMMalloc (sizeof (StExcep_INV_OBJREF)) ;

ex—>minor = SOMDERROR_BadObjref;

ex—->completed = NO;

somSetException (ev, USER_EXCEPTION,

ex_StExcep_INV_OBJREF, ex);
return (NULL) ;

Distributed SOM (DSOM) 6-37

Dispatching a method
After SOMOA (with the help of the local server object) has resolved all the SOMDODbijects
present in a request, it is ready to invoke the specified method on the target. Rather than
invoking somDispatch directly on the target, it calls the somdDispatchMethod method on
the server object. The parameters to somdDispatchMethod are the same as the parameters
for SOMODbject::somDispatch (see the SOMobjects Developer Toolkit Programmers Refer-
ence Manual for a complete description).

The default implementation for somdDispatchMethod in SOMDServer simply invokes SO-
MObject::somDispatch on the specified target object with the supplied arguments. The
reason for this indirection through the server object is to give the server object a chance to
intercept method calls coming into the server process, if desired.

Example: Writing a persistent object server

This section shows an example of how to provide a server class implementation for persistent
SOM objects. (The Persistence Framework of the full-capability SOMobjects Developer Tool-
kit can be used to write a persistent object server; an example of that type is given in the
SOMobjects Developer Toolkit Users Guide.) All of the persistent object management is
contained in the server class; this class can be used with the DSOM “generic” server program,
somdsvr.

The following example describes a user-supplied server class “MyPServer” that is derived from
SOMDServer. The “MyPServer” class introduces five new methods:

isPObj
assignRefDataToPObj
deletePObj
getRefDataFromPObj and
activatePObjFromRefData

and overrides four SOMDServer methods:

somdCreateObj
somdDeleteObj
somdRefFromSOMODbj and
somdSOMObjFromRef.

The example shows how a server class might use and manage ReferenceData in object
references to find and activate persistent objects.

The IDL specification for “MyPServer” follows:

interface MyPServer : SOMDServer {
boolean isPObj (in SOMObject obj);
void assignRefDataToPObj(in SOMObject pobj);
void deletePObj(in SOMObject pobj);
ReferenceData getRefDataFromPObj(in SOMObject pobij);
SOMObject activatePObjFromRefData (in ReferenceData rd);
#ifdef _ SOMIDIL_
implementation {
somdCreateObj : override;
somdDeleteObj : override;
somdRefFromSOMObj : override;
somdSOMObjFromRef : override:
bi
fendif
}i

The “isPObj” method returns TRUE if the object passed to it is a persistent object. It is imple-
mented as follows:

SOM_Scope boolean SOMLINK

isPObj (MyPServer somSelf, Environment *ev, SOMObject obj) {
return (obj && _somIsA(obj, MyPersistentObjectNewClass (0, 0));

}

6-38 SOMobjects Base Toolkit User’s Guide

The following two procedures override SOMDServer’s implementations of somdCreateObj
and somdDeleteObj.

SOM_Scope SOMObject SOMLINK
somdCreateObj (MyPServer somSelf, Environment *ev,
Identifier objclass, string hints)

/* create the object as usual */
SOMObject obj
parent_somdCreateObj (somSelf, ev, objclass, hints);
/* if obj is persistent, assign Ref Data to it */
if (_isPObj(somSelf, ev, obj))) {
_assignRefDataToPObj (somSelf, ev, obj)

}

return (ob7j) ;

The implementation of somdCreateObj first creates the object as usual by employing the
implementation of SOMDServer (MyPServer’s parent). If the newly created object is persis-
tent, the job of “assignRefDataToPObj” is to associate with the object a piece of data that (1)
identifies the object, (2) is retrievable from the object, and (3) can be coerced into Reference-
Data so that it can be used to create a SOMDODbject (an object reference).

SOM_Scope void SOMLINK
somdDeleteOb]j (MyPServer somSelf, Environment *ev, SOMObject obj)
{
/* 1s obj persistent, have the persistence framework delete it */
if (_isPObj(somSelf, ev, obj)) {
_deletePObj (somSelf, ev, obj);
} else /* obj is not persistent, so delete as usual */
parent_somdDeleteObj (somSelf, ev, obj);

The somdDeleteObj implementation, when the object to be deleted is persistent, invokes
“deletePObj” to delete the object. When the object is not persistent, the SOMDServer imple-
mentation of somdDeleteObj deletes the object.

The following two procedures override SOMDServer’s implementations of the methods som-
dRefFromSOMObj and somdSOMObjFromRef:

SOM_Scope SOMDObject SOMLINK
somdRe fFromSOMOb j (MyPServer somSelf, Environment *ev,
SOMObject obj)

SOMDObject objref;

/* is obj persistent */
if (_isPObj (somSelf, ev, obj {
/* Create an object reference based on identifying data. */
ReferenceData rd = _getRefDataFromPObj (somSelf, ev, obj);
InterfaceDef intf =
_lookup_id (SOM_InterfaceRepository,ev, somGetClassName (obJ));
objref = _create_constant (SOMD_SOMOAObject, ev, &rd, intf,
SOMD_ImplDefObject) ;
_somFree (intf) ;
SOMFree (rd._buffer);
} else /* obj is not persistent, so get Ref in usual way */
objref = parent_somdRefFromSOMObj (somSelf, ev, obj);
return (objref) ;

}

Distributed SOM (DSOM) 6-39

Method somdRefFromSOMODj is responsible for producing a SOMDObject (the “Ref” in
somdRefFromSOMODbj) from a SOMObject. As mentioned earlier, SOMOA exports two
methods for creating SOMDODbjects: create and create_constant. This implementation uses
create_constant because it does not want to store the ReferenceData in the ReferenceData
Table. If it did use create and store the ReferenceData in the persistent table, the server object
would either (1) have to keep a persistent table that maps SOMObjects to SOMDObjects so
that it didn’t call create twice with the same arguments (recall that create always returns a
new SOMDObject even when called twice with the same arguments), or (2) fill up the Referen-
ceData table with SOMDODbjects that contain the same ReferenceData.

The prerequisites for asking SOMOA to create a SOMDODbject are (1) some ReferenceData to
be associated with the SOMDODbject, (2) an InterfaceDef that describes the interface of
the object, and (3) an ImplementationDef that describes the object’s implementation. The
InterfaceDef is retrieved from the SOM Interface Repository using the object’s class name as
key. The ImplementationDef is held in the variable SOMD_ImplDefObject that is set when
the server process is initialized. The “MyPServer” method “getRefDataFromPObj” is used to
retrieve the identifying data from the object and coerce it into ReferenceData. With these three
arguments, SOMOA’s create_constant is called to create the SOMDODbject.

SOM_Scope SOMObject SOMLINK
somdSOMOb jFromRef (MyPServer somSelf, Environment *ev,
SOMDObject objref)

{ SOMObject obj;

/* test if objref is mine */

if (_is_constant (objref, ev)) {
/* objref was mine, activate persistent object myself */
ReferenceData rd = _get_id (SOMD_SOMOAObject, ev, objref);
obj = _activatePObjFromRefData (somSelf, ev, &rd);
SOMFree (rd._buffer);

} else

/* it’s not one of mine, let parent activate object */
obj = parent_somdSOMObjFromRef (somSelf, ev, objref);
return obj;

}

This implementation of somdSOMODbjFromRef is a little different from the others in that the
server object must determine whether the SOMDODbject is one that it created (that is, one that
represents a persistent object), or is just a SOMDObject that was created by the SOMDServer
code (its parent). This is done by asking the SOMDObiject if it is a “constant” object reference
(that is, one created by create_constant). If the SOMDODbject says that it is a “constant”, then
the “MyPServer” may safely assume that the SOMDODbject represents a persistent object that
it created. If the SOMDODbject is determined to represent a persistent object, then its Referen-
ceData is used to locate/activate the object it represents (via the method “activatePObjFrom-
RefData”).

Identifying the source of a request

CORBA 1.1 specifies that a Basic Object Adapter should provide a facility for identifying the
principal (or user) on whose behalf a request is being performed. The get_principal method,
defined by BOA and implemented by SOMOA, returns a Principal object, which identifies the
caller of a particular method. From this information, an application can perform access control
checking.

In CORBA 1.1, the interface to Principal is not defined, and is left up to the ORB implementa-
tion. In the current release of DSOM, a Principal object is defined to have two attributes:

userName (string)
— ldentifies the name of the user who invoked a request.
hostName (string)

— ldentifies the name of the host from which the request originated.

6-40 SOMobjects Base Toolkit User’s Guide

Currently, the value of the userName attribute is obtained from the USER environment variable
in the calling process. Likewise, the hostName attribute is obtained from the HOSTNAME
environment variable. This facility is intended to provide basic information about the source of a
request, and currently, is not based on any specific authentication (or “login”) scheme. More
rigorous authentication and security mechanisms will be considered for future DSOM imple-
mentations.

The IDL prototype for the get_principal method, defined on BOA (SOMOA) is as follows:

Principal get_principal (in SOMDObject obj,
in Environment *req_ev);

This call will typically be made either by the target object or by the server object, when a method
callis received. The get_principal method uses the Environment structure associated with the
request, and an object reference for the target object, to produce a Principal object that defines
the request initiator.

Note: CORBA 1.1 defines a “tk_Principal” TypeCode which is used to identify the type of
Principal object arguments in requests, in case special handling is needed when
building the request. Currently, DSOM does not provide any special handling of objects
of type “tk_Principal”; they are treated like any other object.

Compiling and linking servers

The server program must include the “somd.h” header file. Server programs must link to the
SOMobijects Toolkit library: “libsomtk.a” on AlX, and “somtk.lib” on OS/2 or Windows.

For more information, see the topic “Compiling and linking” in Chapter 5, “Implementing
Classes in SOM.”

Distributed SOM (DSOM) 6-41

6.5 Implementing Classes

DSOM has been designed to work with a wide range of object implementations, including SOM
class libraries as well as non-SOM object implementations. This section describes the neces-
sary steps in using SOM classes or non-SOM object implementations with DSOM.

Using SOM class libraries

It is quite easy to use SOM classes in multi-process DSOM-based applications as exemplified
by the sample DSOM application presented in section 6.2, “A Simple DSOM Example”. In fact,
in many cases, existing SOM class libraries may be used in DSOM applications without
requiring any special coding or recoding for distribution. This is possible through the use of
DSOM’s generic server program, which uses SOM and the SOM Object Adapter (SOMOA) to
load SOM class libraries on demand, whenever an object of a particular class is created or
activated.

The topic “Registering servers and classes” in section 6.6 “Configuring DSOM Applications”
discusses how to register a server implementation consisting of a DSOM generic server
process and one or more SOM class libraries.

Role of DSOM generic server program
The generic server program provides basic server functionality: it continuously receives and
executes requests (via an invocation of the SOMOA’s execute_request_loop method), until
the server is stopped. Some requests result in the creation of SOM objects; the generic server
program will find and load the DLL for the object’s class automatically, if it has not already been
loaded.

When generic server program functionality is not sufficient for the particular application, ap-
plication-specific server programs can be developed. For example, some applications may
want to interact with a user or 1/O device between requests. The previous section, entitled
“Basic Server Programming,” discussed the steps involved in writing a server program.

Role of SOM Object Adapter

The SOM Object Adapter is DSOM’s standard object adapter. It provides basic support for
receiving and dispatching requests on objects. As an added feature, the SOMOA and the
server process’s server object collaborate to automate the task of converting SOM object
pointers into DSOM object references, and vice versa. That is, whenever an object pointer is
passed as an argument to a method, the SOMOA and the server object convert the pointerto a
DSOM object reference (since a pointer to an object is meaningless outside the object’s
address space).

Role of SOMDServer

The server process’s server object (whose default class is SOMDServer) is responsible for
creating/destroying objects on the server via somdCreateObj, somdGetClassObj, and
somdDeleteObj, for mapping between object references (SOMDObjects) and SOMObjects
via somdRefFromSOMObj and somdSOMObjFromRef, and for dispatching remote re-
quests to server process objects via somdDispatchMethod. These last three methods are
invoked on the server object by the SOMOA when objects are to be returned to clients, when
incoming requests contain object references, and when the method is ready to be dispatched,
respectively. By partitioning out these mapping and dispatching functions into the server object,
the application can more easily customize them, without having to build object adapter sub-
classes.

SOMDServer can be subclassed by applications that want to manage object location, object
activation, and method dispatching. An example of such an application (which provides a server
class implementation for persistent SOM objects) is shown in section 6.4, “Basic Server
Programming.”

These features of SOMOA and SOMDServer make it possible to take existing SOM classes,
which have been written for a single-address space environment, and use them unchangedina
DSOM application. More information on the SOMOA and server objects can be found in the
“Basic Server Programming” section.

6-42 SOMobjects Base Toolkit User’s Guide

Implementation constraints
The generic server program (somdsvr), the SOMOA, and the SOMDServer make it easy to
use SOM classes with DSOM. However, if there are any parts of the class implementation that
were written expecting a single-process environment, the class may have to be modified to
behave properly in a client-server environment. Some common implementation practices to
avoid are listed below:

Printing to standard output. Any text printed by a method will appear at the server, as
opposed to the client. In fact, the server may not be attached to a text display device or
window, so the text may be lost completely. It is preferred that any textual output generated
by a method be returned as an output string.

Note: Passing textual output between the client program and the called method via an “inout
string” parameter is strongly discouraged. As discussed in the CORBA 1.1 specification
(page 94), the size of the output string is constrained by the size of the input string. If there
was no input string value, the size of the output string would be constrained to 0 bytes.
Instead, it is preferred that textual data be returned either as an output string (DSOM
provides the storage), or by passing a character array buffer (client provides the storage).

Creating and deleting objects. Methods that create or delete objects may have to be
modified if the created objects are intended to be remote. The calls to create local objects are
different than the calls to create remote objects.

Using pointers to client-allocated memory in instance variables. Consider the follow-
ing example: A class has a method that accepts a pointer to a data value created by the client
(for example, a string or a struct), and simply stores the pointer in an instance variable or
attribute. However, in DSOM, the called method is passed a pointer to a copy of the value (in
the request message body), but the copy is freed at the end of the request. If the data value is
meant to persist between requests, the object is responsible for making its own copy of it.
(The implementation of the “_set_printerName” method in the topic “Wrapping a printer API”
later in this section is an example of a method performing such a copy.)

Using “procedure” methods. Methods having the procedure SOM IDL modifier cannot
be invoked remotely using DSOM. This is because these “methods” are called directly, rather
than via the normal method resolution mechanisms on which DSOM relies.

In addition to those coding practices which simply do not “port” to a distributed environment,
there are a few other restrictions that are imposed by DSOM'’s (current) implementation.

¢ Using parameter types not supported by DSOM. DSOM can make remote invocations

only of methods whose parameter types are among the following IDL types: basic types
(short, long, unsigned short, unsigned long, float, double, char, boolean, octet),
enum, struct, union, sequence, string, array, any, and object (an interface name, desig-
nating a pointer to an object that supports that interface). The members of a struct, union,
sequence, or array, and the value of an any, must also be from the above list of supported
DSOM types.

In addition to the above types, DSOM also supports method parameters of type pointer to
one of the above types (for example, long*). Pointers to pointers are not supported, howev-
er, and pointers embedded within one of the above types (for example, a pointer within a
struct) are not supported. The “void *” type is also not supported. Currently, DSOM has the
limitation that NULL pointer values cannot be returned as inout or out method arguments,
although it is expected that this limitation will be addressed in a future release.

Types declared as SOMFOREIGN types are not currently supported by DSOM.

Packing of structures used as method arguments. If a compiler option is used to pack or
optimize storage of structs (including reordering of struct members) or unions, it is impor-
tant to indicate the exact alignment of the structures using alignment modifiers expressed in
the implementation section of the IDL file. This information must then be updated in the
Interface Repository. See the topic “Providing ‘alignment’ information” in Chapter 7, “The
Interface Repository Framework.”

Distributed SOM (DSOM) 6-43

Some applications may need to associate specific identification information with an object, to
support application-specific object location or activation. In that case, an application server
should create object references explicitly, using the create or create_constant method in
SOMOA. A logical place to put these calls is in a subclass of SOMDServer, as it is the server
object that is responsible for producing/activating objects from object references.

Using other object implementations

As an Object Request Broker, DSOM must support a wide range of object implementations,
including non-SOM implementations. For example, in a print spooler application, the imple-
mentation of a print queue object may be provided by the operating system, where the methods
on the print queue are executable programs or system commands. As another example,
consider an application that uses a large, existing class library that is not implemented using
SOM. Finally, consider a class library where persistence is implemented by something other
than the Persistence Framework.

In each of these examples, the application must participate in object identification, activation,
initialization, and request dispatching. Each server supplies a server object (derived from
SOMDServer) that works in conjunction with the SOMOA for this purpose.

Wrapping a printer API
Presented below is a simple example showing how an existing API could be “wrapped” as SOM
objects. The API is admittedly trivial, but it is hoped that readers understand this simple
example well enough to create more sophisticated applications of their own.

The “API” wrapped in this example is comprised of two OS/2 system calls. The first one asks for
a file to be printed on a specific printer:

print /D:<printerName> <filename>

The second one asks for the file currently being printed on device <printerName> to be
cancelled.

print /D:<printerName> /C

Two IDL interfaces are declared in the module “PrinterModule”: “Printer” and “PrinterServer”.
The “Printer” interface wraps the two system calls. The “PrinterServer” interface describes a
subclass of SOMDServer. “PrinterModule::PrinterServer” will be the class of the server object

in the print-server application.

#include <somdserv.idl>

module PrinterModule ({
interface Printer : SOMObject ({
attribute string printerName;
void print (in string fname);
void cancel () ;
#ifdef _ SOMIDL_
implementation {
printerName: noset;
i
#endif
bi

interface PrinterServer : SOMDServer {
#ifdef _ SOMIDL_
implementation {
somdCreateObj: override;
somdRefFromSOMObj: override;
somdSOMOb jFromRef: override;
bi
#endif
}i

}i

6-44 SOMobijects Base Toolkit User’s Guide

Note that the “Printer” interface defines one attribute, “printerName”, that will be used to identify
the printer. It will be set when a “Printer” is created. Printer’s two operations, “print” and “cancel”,
correspond to the two system commands the interface is encapsulating. The “PrinterServer”
interface does not introduce any new attributes or operations. It does specify that three of
SOMDServer’s methods will have their implementations overridden. The three method proce-
dures below show how the “Printer” interface is implemented for the “_set_printerName”,
“print”, and “cancel” methods.

SOM_Scope void SOMLINK PrinterModule_Printer_set_printerName (
PrinterModule_Printer somSelf, Environment *ev, string printerName)

{
PrinterModule_PrinterData *somThis =
PrinterModule_PrinterGetData (somSelf) ;

if (_printerName) SOMFree (_printerName) ;
_printerName = (string)SOMMalloc (strlen (printerName) + 1);
strcpy (_printerName, printerName);

SOM_Scope void SOMLINK PrinterModule_Printerprint (
PrinterModule_Printer somSelf, Environment *ev, string fname)
{
long rc;
PrinterModule_PrinterData *somThis =
PrinterModule_PrinterGetData (somSelf) ;
string printCommand = (string)
SOMMalloc (strlen(_printerName) + strlen(fname) + 10 + 1);

sprintf (printCommand, "print /D:%s %s”,_printerName, fname) ;
rc = system(printCommand) ;
if (rc) raiseException(ev,rc);

SOM_Scope void SOMLINK PrinterModule_Printercancel (
PrinterModule_Printer somSelf, Environment *ev)
{
long rc;
PrinterModule_PrinterData *somThis =
PrinterModule_PrinterGetData (somSelf) ;
string printCommand =
(string) SOMMalloc (strlen(_printerName) + 12 + 1);

sprintf (printCommand, "print /D:%s /C”,_printerName);
rc = system(printCommand) ;
if (rc) raiseExeception(ev,rc);

Note: The implementation of the “raiseException” procedure shown in the example above
must be provided by the application. However, it is not shown in this example.

The three method procedures that implement the “PrinterServer” interface’s three overridden
methods of SOMDServer are very similar to the method procedures of the “MyPServer”
server-object class presented in the previous section (6.4), and therefore have not been shown.

Parameter memory management

There are five SOM IDL modifiers available for specifying the memory-management policy for
the parameters of a method (regardless of whether the caller or the object owns the parameters’
memory after the method is invoked). These modifiers are:
memory_management, caller_owns_result, caller_owns_parameters,
object_owns_result, and object_owns_parameters.

Distributed SOM (DSOM) 6-45

See the section entitled “Implementation Statements” in Chapter 4, “SOM IDL and the SOM
Compiler,” for a complete description of these modifiers and their meanings. Note that the
memory-management policy for a particular parameter applies to the parameter and all the
memory embedded within it (for example, if a struct is owned by the caller, then so are all the
struct’'s members).

When a class contains the memory_management = corba SOM IDL modifier, this signifies
that all methods introduced by the class follow the CORBA specification for parameter memory
management, except where a particular method has an explicit modifier (object_owns_result
or object_owns_parameters) that indicates otherwise. For a description of the CORBA specifi-
cation, see the earlier subtopic entitled “The CORBA policy for parameter memory manage-
ment” (under the topic “Memory Management” in Section 6.3 of this chapter).

Building and registering class libraries

The generic server uses SOM’s run-time facilities to load class libraries dynamically. Thus,
dynamically linked libraries (DLLs) should be created for the classes, just as they would be for
non-distributed SOM-based applications. For more information, see the topic “Creating a SOM
class library” in Chapter 5, “Implementing Classes in SOM.”

During the development of the DLL, it is important to remember the following steps:

e Export a routine called SOMInitModule in the DLL, which will be called by SOM to
initialize the class objects implemented in that library. SOMInitModule should contain a
<className>NewClass call for each class in the DLL.

e For each class in the DLL, specify the DLL name in the class’s IDL file. The DLL name is
specified using the dliname=<name> modifier in the implementation statement of the
interface definition. If not specified, the DLL filename is assumed to be the same as the
class name.

¢ For each class in the DLL, compile the IDL description of the class into the Interface
Repository. This is accomplished by invoking the following command syntax:

sc —sir -u stack.idl (On AIX or OS/2)
somc —-sir —u stack.idl (on Windows)

Note: If the classes are not compiled into the Interface Repository, DSOM will generate a
run-time error (30056: SOMDERROR_BadDescriptor) when an attempt is made to lookup
the signature of a method in the class (for example, on a method call).

¢ Putthe DLL in one of the directories listed in LIBPATH for AlX or OS/2, or listed in PATH for
Windows. (This is necessary for 0S/2, AIX, and Windows.)

6-46 SOMobjects Base Toolkit User’s Guide

6.6 Configuring DSOM Applications

Preparing the environment

Some environment variables must be defined before running DSOM. Unless noted, these
environment variables are required in all operating-system environments.

HOSTNAME=<name> —

USER=<name> —

SOMIR=<file(s)> —

SOMSOCKETS=<name> —

SOMDDIR=<directory> —

SOMDPORT=<integer> —

SOMDTIMEOUT=<integer> —

Each machine that is running DSOM must have its HOST-
NAME variable set.

USER specifies the name of the DSOM user running a
client program.

SOMIR specifies a list of files (separated by a colon on AIX
or by a semicolon on OS/2 and Windows) which together
make up the Interface Repository. See Chapter 7, “The
Interface Repository Framework,” for more information on
how to set this variable.

Note: For DSOM, it is preferable to use full pathnames in
the list of IR files, since the IR will be shared by several
programs that may not all be started in the same directory.

SOMSOCKETS specifies the name of the SOM Sockets
subclass that implements the sockets services.

Note: For Workstation DSOM, this variable is effectively
ignored. (However, it may be used by the Event Manage-
ment Framework.)

SOMDDIR specifies the directory where various DSOM files
should be located, including the Implementation Reposito-
ry files. See the later section in this chapter entitled “Regis-
tering servers and classes” for more information.

Note: If this value is not set, DSOM will attempt to use a
default directory: $SOMBASE/etc/dsom on AlX, and %SOM-
BASE%\ETC\DSOM on 0S/2 and Windows.

In DSOM, servers, clients and DSOM daemons communi-
cate with each other using a “sockets” abstraction. In par-
ticular, DSOM clients establish connections to DSOM
servers by communicating with the DSOM daemon,
somdd, running on each server machine. The daemon is
designed to listen for client requests on a well-known port.

Normally, somdd will look in the /etc/services (for AIX) or
%ETC%\SERVICES (for 0S/2 and Windows) file for its well-
known port number. However, if the user has set the SOMD-
PORT environment variable, the value of SOMDPORT will
be used and the “services” file will not be consulted. The
user should pick a 16-bitinteger thatis not likely to be in use
by another application (check the “services” file for ports
reserved for use on your machine). Typically, values below
1024 are reserved and should not be used.

Note: If there is no “services” file and the SOMDPORT envi-
ronment variable is not set, DSOM will use a default port
number (currently 9393).

SOMDTIMEOUT specifies how long a receiver should wait
for a message, or how long a sender should wait for an
acknowledgement. The value should be expressed in se-
conds. The default value is 600 seconds (10 minutes).

Distributed SOM (DSOM) 6-47

SOMDDEBUG=<integer> — SOMDDEBUG may optionally be set to enable DSOM run-
time error messages. If setto 0, error reporting is disabled.
If setto 1, error reporting is enabled. Error reports may be
directed to the file named by SOMDMESSAGELOG, if set.

SOMDMESSAGELOG=<file> — SOMDMESSAGELOG may optionally be setto the name ofa
file where DSOM run-time error messages are recorded. If
not set, error messages will be reported on the standard
output device.

SOMDNUMTHREADS=<integer>

— SOMDNUMTHREADS may optionally be set to the maxi-
mum number of request threads created per server. If
SOMDNUMTHREADS is not set, then a separate thread will
be created for each request (when using somdsvr on
0S/2 as a multi-threaded server).

Registering class interfaces

DSOM relies heavily on the Interface Repository for information on method signatures (that s,
adescription of the method’s parameters and return value). It is important to compile the IDL for
all application classes into the IR before running the application.

For each class inthe DLL, compile the IDL description of the class into the Interface Repository.
This is accomplished by invoking the following command syntax:

sc —-sir -u stack.idl (On AIX or OS/2)
somc -sir -u stack.idl (On Windows)

If the default SOM IR (supplied with the SOMobjects Toolkit and Runtimes) is not used by the
application, the user’s IR must include the interface definitions for:

e the appropriate Sockets class (if the SOMSOCKETS environment variable is set),
e the server class (derived from SOMDServer), and

¢ the definitions of the standard DSOM exceptions (found in file “stexcep.idl”) that may be
returned by a method call.

Registering servers and classes

Implementation definitions
The Implementation Repository holds ImplementationDef objects. The ImplementationDef
class defines attributes necessary for the SOMOA to find and activate the implementation of an
object. Details of the ImplementationDef object are not currently defined in the CORBA 1.1
specification; the attributes that have been defined are required by DSOM.

Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

impl_id (string)

— Contains the DSOM-generated identifier for a server implementation.
impl_alias (string)

— Contains the “alias” (user-friendly name) for a server implementation.
impl_program (string)

— Contains the name of the program or command file which will be executed when a
process for this server is started automatically by somdd. If the full pathname is
not specified, the directories specified in the PATH environment variable will be
searched for the named program or command file.

6-48 SOMobjects Base Toolkit User’s Guide

— Optionally, the server program can be run under control of a “shell” or debugger,
by specifying the shell or debugger name first, followed by the name of the server
program. (A space separates the two program names.) For example,

dbx myprogram

will start the program “myprogram” under control of “dbx”.

— Servers that are started automatically by somdd will always be passed their
impl_id as the first parameter, in order to retrieve their ImplementationDef (if
desired).

impl_flags (Flags)

— Contains a bit-vector of flags used to identify server options (for example, the
IMPLDEF_MULTI_THREAD flag indicates multi-threading).

impl_server_class (string)

— Contains the name of the SOMDServer class or subclass created by the server
process.

impl_refdata_file (string)
— Contains the full pathname of the file used to store ReferenceData for the server.
impl_refdata_bkup (string)

— Contains the full pathname of the backup mirror file used to store ReferenceData
for the server. This file can be used to restore a copy of the primary file in case it
becomes corrupted. (It would be a good idea to keep the primary and backup files
in different disk volumes.)

impl_hostname (string)

— Contains the hostname of the machine where the server is located.

The ‘regimpl,” ‘pregimpl,” and ‘wregimpl’ registration utilities

Before an implementation (a server program and class libraries) can be used by client applica-
tions, it must be registered with DSOM by running the implementation registration utility,
regimpl (on AlX), pregimpl (on OS/2) or wregimpl (on Windows). The regimpl utility can also
be executed from the DOS command line; this facility is available primarily for use in batch files.
During execution of regimpl, pregimpl, or wregimpl, DSOM updates its database to include
the new server implementation and the associated classes. This enables DSOM to find and, if
necessary, to activate the server so that clients can invoke methods on it.

Typically, DSOM users employ the generic SOM-object server program, described below. A
discussion on how to write a specific (non-generic) server program is found in the earlier
section, “Basic Server Programming.”

Registration steps using ‘regimpl’
Registering a server implementation and its classes requires the steps described in the follow-
ing paragraphs.

First, make sure the SOMDDIR environment variable is defined to the name of the Implementa-
tion Repository directory, as discussed in the section “Preparing the Environment.”

Then, to run the regimpl utility, at the system prompt enter:

> regimpl

Distributed SOM (DSOM) 6-49

This brings up the DSOM Implementation Registration Utility menu, shown below. To begin
registering the new implementation, select “1.Add” from the IMPLEMENTATION OPERATIONS
section — that is, at the “Enter operation:” prompt, enter “1” (as shown in bold):

DSOM IMPLEMENTATION REGISTRATION UTILITY
(C) Copyright IBM Corp. 1992,1993. All rights reserved.

Implementation data being loaded from: /u/xyz/dsomRepos/

[IMPLEMENTATION OPERATIONS]
1.Add 2.Delete 3.Change
4.Show one 5.Show all 6.List aliases
[CLASS OPERATIONS]
7.Add 8.Delete 9.Delete from all 10.List classes
[SAVE & EXIT OPERATIONS]
11.Save data 12.Exit
Enter operation: 1

The regimpl utility then issues several prompts for information about the server implementa-
tion (typical responses are shown in bold as an example).

Implementation alias. Enter a “shorthand” name for conveniently referencing the registered
server implementation while using regimpl:

Enter an alias for new implementation: myServer

Program name. Enter the name of the program that will execute as the server. This may be the
name of one of the DSOM generic servers (discussed under the later topic “Running DSOM
Servers”) or a user-defined name for one of these servers. Note: If the program is located in
PATH, only the program name needs to be specified. Otherwise, the pathname must be speci-
fied.

Enter server program name: (default: somdsvr) <return>

Multi-threading. Specify whether or not the server expects the SOM Object Adapter (SOMOA)
to run each method in a separate thread or not. Notes: This option is only meaningful on OS/2.
It is the responsibility of the class implementor to ensure that the methods being executed by
the server are “thread safe”.

Allow multiple threads in the server? [y/n] (default: no) : n

Server class. Enter the name of the SOMDServer class or subclass that will manage the
objects in the server.

Enter server class (default: SOMDServer) : <return>

Reference data file name. Enter the full pathname of the file used to store ReferenceData
associated with object references created by this server. Note: A file name is required only if the
server is using the create method to generate object references.

Enter object reference file name (optional) : <return>

Backup reference data file name. Enter the full pathname of the backup file used to mirror the
primary ReferenceData file for this server. Note: a file name is required only if (1) a primary
reference data file has been specified, and (2) the application desires an online backup to be
maintained. This file can be used to restore a copy of the primary file should it become
corrupted.

Enter object reference backup file name (optional) : <return>

Host machine name. This is the name of the machine on which the server program code is
stored. The same name should be indicated in the HOSTNAME environment variable. (If “local-
host” is entered, the contents of the HOSTNAME environment variable will be used.

Enter host machine name: (default: localhost) <return>

The regimpl system next displays a summary of the information defined thus far, and asks for

confirmation before adding it. Enter “y” to save the implementation information in the Imple-
mentation Repository.

6-50 SOMobjects Base Toolkit User’s Guide

Implementation id.........: 2befc82b-13all1le00-7£f-00-10005ac9272a

Implementation alias......: myServer
Program name..............: somdsvr
Multithreaded.............: No

Server class..............: SOMDServer

Object reference file.....:
Object reference backup...:
Host Name.................: localhost

The above implementation is about to be added. Add? [y/n] ¥y

Implementation ’'myServer’ successfully added

Add class. Once the serverimplementation is added, the complete menu reappears. The next
series of prompts and entries will identify the classes associated with this server. To begin, from
the CLASS OPERATIONS section, select “7.Add”:

[IMPLEMENTATION OPERATIONS]

1.Add 2.Delete 3.Change

4.Show one 5.Show all 6.List aliases

[CLASS OPERATIONS]

7.Add 8.Delete 9.Delete from all 10.List classes
[SAVE & EXIT OPERATIONS]

11.Save data 12.Exit

Enter operation: 7
Class name. Enter the name of a class associated with the implementation alias.
Enter name of class: classl

Implementation alias. Enter the alias for the server that implements the new class (this should
be the same alias as given above).

Enter alias of implementation that implements class: myServer

Class ’'classl’ now associated with implementation ’'myServer’
The top-level menu will then reappear. Repeat the previous three steps until all classes have
been associated with the server.

Then, from the SAVE & EXIT OPERATIONS section, select “11.Save data” to complete the
registration. Finally, select “12.Exit” to exit the regimpl utility.

[IMPLEMENTATION OPERATIONS]

1.Add 2.Delete 3.Change

4.Show one 5.Show all 6.List aliases

[CLASS OPERATIONS]

7.Add 8.Delete 9.Delete from all 10.List classes
[SAVE & EXIT OPERATIONS]

11.Save data 12.Exit

Enter operation: 11

Enter operation: 12

Command line interface to ‘regimpl’
The regimpl utility also has a command line interface. The command flags correspond to the
interactive commands described above. The syntax of the regimpl commands follow.

Note: The regimpl command and any optional regimpl command flags can be entered at a
system prompt, and the command will execute as described below. For OS/2 and Windows
users, this text-based interface is particularly useful in batch files.

To enter interactive mode:
regimpl

Distributed SOM (DSOM) 6-51

To add an implementation:

regimpl -A -i <str> [-p <str>] [-v <str>] [-f <str>] [-b <str>]
h <str>] [-m {on]off}] [-z <str>]

To update an implementation:

regimpl -U -i <str> [-p <str>] [-v <str>] [-f <str>] [-Db <str>]
[-h <str>] [-m {on|off}]

To delete one or more implementations:
regimpl -D -i <str> [-1 ...]
To list all, or selected, implementations:
regimpl -L [-1i <str> [-1 ...]]
To list all implementation aliases:
regimpl -S
To add class associations to one or more implementations:
regimpl -a -c <str> [-c ...] -1 <str> [-1 ...]
To delete class associations from all, or selected, implementations:
regimpl -d -¢c <str> [-c ...] [-1 <str> [-1 ...]]
To list classes associated with all, or selected, implementation:
regimpl -1 [-i <str> [-1 ...]]

The following parameters are used in the commands described above:

-i <str> = Implementation alias name (maximum of 16 —-i names)
-p <str> = Server program name (default: somdsvr)

-v <str> = Server-class name (default: SOMDServer)

-f <str> = Reference data file name (optional)

-b <str> = Reference data backup file name (optional)

-h <str> = Host machine name (default: localhost)

-m {on|off} = Enable multi-threaded server (optional)

-z <str> = Implementation ID

-c <str> = Class name (maximum of 16 —-c names)

Registration steps using ‘pregimpl’ or ‘wregimpl’

The pregimpl utility is a Presentation Manager version of regimpl, the DSOM implementation
definition utility. Similarly, the wregimpl utility is a Windows version of regimpl. The pregimpl
and wregimpl utilities offer all the functionality of regimpl except its command-line arguments
(described earlier in “Command line interface to ‘regimpl™). In addition, the pregimpl and
wregimpl utilities provide an intuitive GUI interface in place of regimpl’s text-based interface.
Before proceeding, you should first familiarize yourself with the basic registration process
described earlier in “Registration steps using ‘regimpl!’.”

Note: OS/2 or Windows users can execute the text-interface regimpl utility by entering “re-
gimpl” at a system prompt, as described in the previous topic, “Command line interface to
‘regimpl’.” This facility is available primarily for use in batch files.

You can start the pregimpl or wregimpl utility conveniently in either of two ways:
e From the Register Impls icon in the SOMobjects icon group, or
e From the Run option of the File menu.

With pregimpl or wregimpl, you can view, add, change or delete DSOM implementation
definitions, as well as view, add or delete implementation class definitions. These basic func-
tions are accessible from the main menu in the initial window that displays when you start
pregimpl or wregimpl. Thus, the main menu offers the choices:

File

Implementations

Classes

6-52 SOMobjects Base Toolkit User’s Guide

To work with an implementation definition, first click /mplementations on the main menu (or
press Alt—l). The pulldown menu that appears shows the options:

View
Add
Change
Delete

To add animplementation definition, click Add on the pulldown menu (or press A). This will bring
up the Add Implementations dialog box, where you can define or change fields as necessary.
The “Alias” field is the only blank field for which a setting is mandatory. For this, you should enter
a “shorthand” name for conveniently referencing the registered server implementation while
using pregimpl or wregimpl; for example: myServer.

Except for the “Alias” setting, the remainder of the fields may be left either blank or with the
default settings that are provided (see “Registration steps using ‘regimpl’” for descriptions of the
defaults). If you should clear a field that originally contained a default, then when the imple-
mentation is applied, pregimpl or wregimpl will still use the default setting. [Note: The imple-
mentation-ID (“Impl ID”) field is also displayed. This is not an editable field but is shown for
information purposes.]

Once the definition is complete, click Apply (or press Alt—A) to add the definition. Click Discard
(or Alt—D) to discard a new definition. You can select Exit (or Alt—X) at any time to exit the dialog
box. (Message boxes or confirmation windows typically appear after you make entries.)

To change an implementation definition, click Change from the Implementations pulldown
menu (or press C). Inthe Change Implementations dialog box that appears, you can select the
desired implementation by scrolling though the list box on the left and highlighting your choice.
Each time an implementation is highlighted, details of its definition will appear in the edit fields
on the right. You can change any of the fields except the implementation-1D. Once the changes
are made, click Apply (or Alt—A) or Discard (or Alt-D) as desired. Click Exit (or Alt—X) to exit the
dialog box.

The View and Delete implementations functions work similarly to the Change Implementations
function above. That is, you can highlight a selection in the list box on the left, and details of its
definition will appear in the edit fields on the right. In the Delete Implementations dialog box,
click Delete Current Implementation to delete a selected implementation definition. For either
function, click Exit (or Alt—X) to exit the dialog box.

To work with class definitions, first click Classes from the main menu (or press Alt—C). This
produces a pulldown menu with the options:

View
Add
Delete

To add classes, select Add on the Classes pulldown menu (or press A). From the resulting Add
Classes dialog box, you can select an implementation by scrolling through the list box on the left
and highlighting your choice. When an implementation is selected, the classes associated with
it will display in the list box on the right. To add a new class name to the highlighted implementa-
tion, enter the name in the edit field at the bottom right, and click Add Class (or press Alt—A). The
new class name will then appear in the list box on the right.

The current class name will not be cleared from the edit field, so that more implementations may
be selected, if appropriate, and the same class can be added to them. Or, you can enter another
new class name and add it to the implementation as described above. Exit (or Alt—X) may be
selected at any time to exit the dialog box.

To view classes, select View from the Classes pulldown menu (or press V). When you highlight
an implementation in the list box on the left, the classes associated with the implementation will
be shown in the list box on the right.

To switch key order, select the “Classes” radio button under “Display keyed by”. This causes all
of the defined classes to appear in the list box on the left. When you highlight a class name, all of
the implementations associated with that class will appear in the list box on the right. Exit (or
Alt—=X) may be selected at any time to exit the dialog box.

Distributed SOM (DSOM) 6-53

To delete classes, select Delete from the Classes pulldown menu (or press D). When you
highlight an implementation in the list box on the left, the classes associated with the imple-
mentation will be shown in the list box on the right. You can then highlight a class and click
Delete Class (or Alt-D) to delete the class from the highlighted implementation. A confirmation
window will appear next, which will also give you the option of deleting the class from all
implementations. Exit (or Alt—X) may be selected at any time to exit the dialog box.

Important: Please note that any changes are saved internally in memory, but are not written to
the database until you save the changes by clicking File (or Alt—F) from the main menu and then
Save (or S) from the resulting pulldown menu. Conversely, you can abort all changes and
reload the original database by clicking File (Alt—F) and then Abort+Reload (A). To exit the
pregimpl or wregimpl program, click File (Alt—F) and then Exit (X).

Programmatic interface to the Implementation Repository
The Implementation Repository can be accessed and updated dynamically using the program-
matic interface provided by the ImplRepository class (defined in “implrep.idl”). The global
variable SOMD_ImpIRepObject is initialized by SOMD_Init to point to the ImplRepository
object. The following methods are defined on it:

void add impldef (in ImplementationDef impldef);

— Adds an implementation definition to the Implementation
Repository. (Note: The value of the “impl_id” attribute is
ignored. A unique Implld will be generated for the newly
added ImplementationDef.)

void delete_impldef (in ImplId implid);

— Deletes animplementation definition from the Implementa-
tion Repository, given the ID of the implementation defini-
tion.

void update_impldef (in ImplementationDef impldef);

— Updates the implementation definition (defined by the
“impl_id” of the supplied ImplementationDef) in the Im-
plementation Repository.

ImplementationDef find impldef (in ImplId implid);

— Returns a server implementation definition given its ID.

ImplementationDef £find_ impldef by alias (in string alias_name);

— Returns a server implementation definition, given its user-
friendly alias.

sequence<ImplementationDef> find impldef by class (
in string classname);

— Returns a sequence of ImplementationDefs for those
servers that have an association with the specified class.
Typically, a server is associated with the classes it knows
how to implement, by registering its known classes via the
add_class_to_impldef method.

ORBStatus find_all_impldefs (
out sequence<ImplementationDef> outimpldefs);

— Retrieves all ImplementationDef objects in the Imple-
mentation Repository.

The following methods maintain an association between server implementations and the
names of the classes they implement. These methods effectively maintain a mapping of
<className, Implid>.

6-54 SOMobjects Base Toolkit User’s Guide

void add_class_to_impldef (in ImplId implid,
in string classname);

— Associates a class, identified by name, with a server, iden-
tified by its Implld. This type of association is used to
lookup server implementations via the find_impl-
def_by_class method.

void remove_class_from impldef (
in ImplId implid,
in string classname);

— Removes the association of a particular class with a server.

void remove_class_from all (
in string classname);

— Removes the association of a particular class from all serv-
er implementations in the Implementation Repository.

sequence<string> find classes_by impldef (in ImplId implid);

— Returns a sequence of class names associated with a
server.

With the ImplRepository programmatic interface, it is possible for an application to define
additional server implementations at run time.

The ‘dsom’ server manager utility
The dsom utility is a command-line utility program used to manage server processes. At
present, server processes that can be managed are limited to those present in the Implementa-
tion Repository. The choice of Implementation Repository is determined by the environment
variable SOMDDIR. The dsom utility can be used to start, restart, stop, list, enable, or disable
server processes. The syntax of the dsom command is as follows:

dsom <cmads { impl_alias1 [impl_alias2...] | *}

where <cmd> can be any one of the terms: start, restart, stop, list, disable, or enable. Each
impl_alias is the server-alias name for a server process. All forms of the command take one or
more server-alias names, or a wild card character “*”. The “*” will be replaced with all of the
server-alias names present in the Implementation Repository.

For example, to start one or more server processes, the command takes the form:
dsom start { impl_aliasl [impl_alias2 ...] | * }
To restart one or more server processes:
dsom restart { impl_aliasl [impl_alias2 ...] | * }
To stop one or more server processes:
dsom stop { impl_aliasl [impl_alias2 ...] | * }
To list the status of one or more server processes:
dsom list { impl_aliasl [impl_alias2 ...] | * }

To prevent the server processes from starting, use the disable command. To disable one or
more Sserver processes:

dsom disable { impl_aliasl [impl_alias2 ...] | * }

A previously disabled server process can be enabled by the enable command. To enable one or
more server processes:

dsom enable { impl_aliasl [impl_alias2 ...] | * }

Distributed SOM (DSOM) 6-55

Interpretation of ‘dsom’ messages

The messages generated by the dsom utility have a one-to-one mapping on the DSOM error
codes. Knowing this mapping will aid in a better understanding of the dsom return messages.
The following six messages are mapped onto the DSOM error code of 0 (success):

‘dsom’ cmd Message
start **Started server process™*
restart **Restarted server process**
list **Server process currently running**
stop **Stopped server process**
disable **Successfully disabled server™
enable **Successfully enabled server**

The messages generated by the dsom utility commands are mapped onto DSOM error codes,

as follows:
DSOM error code Message
SOMDERROR_ServerNotFound **Server process not running**
SOMDERROR_NotProcessOwner **Cannot stop server; Not process owner**
SOMDERROR_NoSocketsClass **Cannot find Sockets class™*
SOMDERROR_NoRemoteComm **Not enabled for Workgroup™*
SOMDERROR_CommTimeOut **Client timed out**
SOMDERROR_SendError **Send Error**
SOMDERROR_SocketSend **Send Error**
SOMDERROR_ Serverlnactive **Server activation pending**
SOMDERROR_NoSOMDInit **Unable to create global LocServ Object**
SOMDERROR_UnknownError **Command not supported by daemon**
SOMDERROR_ServerDisabled **Server process is currently disabled**

SOMDERROR_CouldNotStartProcess **Server process cannot be started**

SOMDERROR_ServerToBeDeleted **Current server process marked for deletion;
try again**

Any other error **Request unsuccessful; Unknown error**

In addition, if the impl_alias specified with any dsom utility command is not present in the
Implementation Repository, DSOM will generate the message: **Server alias not found in
Implementation Repository™™.

Programmatic interface to manage server processes

Server processes can also be managed by using the programmatic interface provided by the
SOMDServerMgr class. For descriptions of the SOMDServerMgr class and its corresponding
methods, see the DSOM section of the SOMobjects Developer Toolkit Programmers Refer-
ence Manual.

Verifying the DSOM environment with ‘somdchk’

The somdchk program evaluates the environment to verify whether DSOM can operate
correctly. As described in the preceding topics of Sections 6.5 “Implementing Classes” and 6.6
“Configuring DSOM Applications,” to operate correctly DSOM must be able to find the appropri-
ate libraries (DLLs), the Interface Repository, and the Implementation Repository. The settings
of various environment variables help DSOM find the path to the libraries and repositories.

The somdchk program generates messages that evaluate the DSOM environment. It deter-
mines whether the necessary SOM DLLs can be located, whether DSOM is enabled for
workgroup (cross-machine) communication, whether Interface and Implementation Reposito-
ries can be located, and it displays the settings of important environment variables. In its
“verbose” mode, somdchk gives the default settings for DSOM environment variables and
explains how DSOM uses them.

6-56 SOMobjects Base Toolkit User’s Guide

On AlX or OS/2, the program is invoked from the command line using the syntax given below.
The optional verbose setting can be turned on by including the —v option with the command:

somdchk [-v]

On Windows, the somdchk program can be invoked by double clicking on the SOMDCHK icon.
The resulting messages will appear in the message window.

The following example shows sample output from the somdchk —v command on AlX. Output
on other platforms would look similar.

DS OM ENVIRONMENT EVALUATTION

SOMBASE = /usr/lpp/som
SOMBASE should not be set to the base directory of the SOMObjects
Toolkit Enablers.

Searching for important DLLs.....
/usr/lpp/som/lib/som.dll found.

/usr/lpp/som/1lib/somd.dl1l found.
/usr/lpp/som/lib/soms.dll found.
/usr/lpp/som/lib/somst.dll found.

/usr/lpp/som/1lib/somd.dll IS Workgroup Enabled.
Workgroup Enabled DLL permits inter-machine communication.

SOMSOCKETS = TCPIPSockets

SOMSOCKETS must be set. Valid settings are:
TCPIPSockets for TCPIP.
IPXSockets for NetWare.

SOMDDIR = /u/raviv/impl_rep/
Valid Implementation Repository found in /u/raviv/impl_rep/
SOMDDIR may be set to a valid directory in which the Implementation
Repository resides.
Default is /usr/lpp/som/etc/dsom

SOMIR = /u/raviv/raviv.ir
SOMIR may be set to a list of file names which together form the
Interface Repository.
Default is ./som.ir
/u/raviv/raviv.ir found.

SOMDPORT = 3001
SOMDPORT may be set to a ’'well-known port’. Default value is 9393.

SOMDTIMEOUT = (null).
SOMDTIMEOUT may be set to the number of seconds to timeout.
Default value is 600.

SOMDDEBUG = 2
SOMDDEBUG may be set to 1 to enable runtime error messages.
Default value is O.

SOMDMESSAGELOG = (null).
SOMDMESSAGELOG may be set to the name of a file where messages may
be logged.

Default is stdout.

Distributed SOM (DSOM) 6-57

6.7 Running DSOM Applications

Prior to starting the DSOM processes, the DSOM executables should be installed and the
DSOM environment variables should be set appropriately, as discussed in the earlier section,
“Configuring DSOM Applications.”

Running the DSOM daemon (somdd)
To run a DSOM application, the DSOM daemon, somdd, must be started

e On AlX or OS/2, the daemon can be started manually from the command line, or could be
started automatically from a start-up script run at boot time. It may be run in the background
with the commands somdd& on AlX, and start somdd on OS/2. The somdd command has
the following syntax:

somdd [-q]

where the optional —q flag signifies “quiet” mode. By default, somdd will produce a “ready”
message when the DSOM daemon is ready to process requests, and it will produce diagnos-
tic messages as errors are encountered if the SOMDDEBUG environment variable is setto 1.
In quiet mode, however, the “ready” message will not appear, and diagnostic messages will
not appear even if SOMDDEBUG is set. Alternatively, if the SOMDMESSAGELOG environment
variable is set, diagnostic error messages will be sent directly to the specified message log
file, regardless of whether the —q flag is specified.

e On Windows, the daemon can be started with the DSOM Daemon icon in the SOM icon
group or started in Windows from the Run option of the File menu. The DSOM Daemon icon
will change colors to indicate that the daemon is ready, after which client and server pro-
grams can be started.

The somdd daemon is responsible for “binding” a client process to a server process and will
activate the desired server if necessary. The binding procedure is such that the client will
consultthe Implementation Repository to find out which machine contains a desired server, and
will then contact the DSOM daemon on the server’s machine to retrieve the server’'s commu-
nications address (a port). Servers are activated dynamically as separate processes.

Running DSOM servers
Once the somdd daemon is running, application programs can be started. If the application
uses the generic SOM server, somdsvr, it can be started either from the command line or
automatically upon demand. When starting somdsvr from the command line, the server’s
implementation ID or alias must be supplied as an argument. The command syntax for starting
a generic SOM server is:

somdsvr [impl_id | —a alias]
For example, the command
$ somdsvr 2ad2688fb-00389c00-7f-00-10005ac900d8
would start a somdsvr for an implementation with the specified ID. Likewise, the command

S somdsvr -—a myServer

would start a somdsvr that represents an implementation of “myServer”.

6-58 SOMobjects Base Toolkit User’s Guide

6.8 DSOM as a CORBA-compliant Object Request Broker

The Object Management Group (OMG) consortium defines the notion of an Object Request
Broker (ORB) that supports access to remote objects in a distributed environment. Thus,
Distributed SOM is an ORB. SOM and DSOM together comply with the OMG’s specification of
the Common Object Request Broker Architecture (CORBA).

Since the interfaces of SOM and DSOM are largely determined by the CORBA specification, the
CORBA components and interfaces are highlighted in this section.

The CORBA specification defines the components and interfaces that must be present in an
ORB, including the:

« Interface Definition Language (IDL) for defining classes (discussed in Chapter 4, “SOM
IDL and the SOM Compiler”),

e C usage bindings (procedure-call formats) for invoking methods on remote objects,

« Dynamic Invocation Interface and an Interface Repository, which support the construction
of requests (method calls) at run time (for example, for interactive desktop applications),
and

« Object Request Broker run-time programming interfaces.

SOM and DSOM were developed to comply with these specifications (with only minor exten-
sions to take advantage of SOM services). Although the capabilities of SOM are integral to the
implementation of DSOM, the application programmer need not be aware of SOM as the
implementation technology for the ORB.

This section assumes some familiarity with The Common Object Request Broker: Architecture
and Specification, Revision 1.1 (also referred to as “CORBA 1.1”). The specification is published
jointly by the Object Management Group and x/Open™ . The mapping of some CORBA 1.1
terms and concepts to DSOM terms and concepts is described in the remainder of this section.

Mapping OMG CORBA terminology onto DSOM

This section discusses how various CORBA concepts and terms are defined in terms of DSOM’s
implementation of the CORBA 1.1 standard.

Object Request Broker run-time interfaces
In the previous sections, the SOMDObjectMgr and SOMDServer classes were introduced.
These are classes defined by DSOM to provide basic support in managing objects in a
distributed application. These classes are built upon Object Request Broker interfaces de-
fined by CORBA for building and dispatching requests on objects. The ORB interfaces, SOM-
DObjectMgr and SOMDServer, together provide the support for implementing distributed ap-
plications in DSOM.

CORBA 1.1 defines the interfaces to the ORB components in IDL. In DSOM, the ORB compo-
nents are implemented as SOM classes whose interfaces are expressed using the same
CORBA 1.1 IDL. Thus, an application can make calls to the DSOM run time using the SOM
language bindings of its choice.

Interfaces for the following ORB run-time components are defined in CORBA 1.1, and are
implemented in DSOM. They are introduced briefly here, and discussed in more detail through-
out this chapter. (See the SOMobjects Developer Toolkit Programmers Reference Manual for
the complete interface definitions.)

Object — The Obiject interface defines operations on an “object ref-
erence”, which is the information needed to specify an
object within the ORB.

In DSOM, the class SOMDObiject implements the CORBA
1.1 Object interface. (The “SOMD” prefix was added to
distinguish this class from SOMODbject.) The subclass
SOMDClientProxy extends SOMDObject with support
for proxy objects.

Distributed SOM (DSOM) 6-59

ORB

ImplementationDef

InterfaceDef

Request

NVList

Context

Principal

BOA

6-60 SOMobjects Base Toolkit User’s Guide

— (Object Request Broker) The ORB interface defines utility

routines for building requests and saving references to
distributed objects. The global variable SOMD_ORBObject
is initialized by SOMD_Init and provides the reference to
the ORB object.

An ImplementationDef object is used to describe an ob-
ject’s implementation. Typically, the ImplementationDef
describes the program that implements an object’s server,
how the program is activated, and so on.

(CORBA 1.1 introduces ImplementationDef as the name
of the interface, but leaves the remainder of the IDL specifi-
cation to the particular ORB. DSOM defines an interface
for ImplementationDef.)

ImplementationDef objects are stored in the Implementa-
tion Repository (defined in DSOM by the ImplRepository
class).

An InterfaceDef object is used to describe an IDL interface
in a manner that can be queried and manipulated at run
time when building requests dynamically, for example.

InterfaceDef objects are stored in the Interface Repository
(described fully in Chapter 7, “The Interface Repository
Framework?).

A Request object represents a specific request on an
object, constructed at run time. The Request object con-
tains the target object reference, operation (method)
name, a list of input and output arguments. A Request can
be invoked synchronously (wait for the response), asynch-
ronously (initiate the call, and later, get the response), or as
a “oneway” call (no response expected).

An NVList is a list of NamedValue structures, used pri-
marily in building Request objects. A NamedValue struc-
ture consists of a name, typed value, and some flags indi-
cating how to interpret the value, how to allocate/free the
value’s memory, and so on.

A Context object contains a list of “properties” that repre-
sent information about an application process’s environ-
ment. Each Context property consists of a
<name,string_value> pair, and is used by application pro-
grams or methods much like the “environment variables”
commonly found in operating systems like AlX, OS/2, and
Windows. IDL method interfaces can explicitly list which
properties are queried by a method, and the ORB will pass
those property values to a remote target object when mak-
ing a request.

A Principal object identifies the principal (“user”) on whose
behalf a request is being performed.

(CORBA 1.1 introduces the name of the interface, Princi-
pal, but leaves the remainder of the IDL specification to the
particular ORB. DSOM defines an interface for Principal.)

(Basic Object Adapter) An Object Adapter provides the
primary interface between animplementation and the ORB
“core”. An ORB may have a number of Object Adapters,
with interfaces that are appropriate for specific kinds of
objects.

The Basic Object Adapter is intended to be a general-
purpose Object Adapter available on all CORBA-compliant
Object Request Brokers. The BOA interface provides sup-
port for generation of object references, identification of the
principal making a call, activation and deactivation of ob-
jects and implementations, and method invocation on ob-
jects.

In DSOM, BOA is defined as an abstract class. The SO-
MOA (SOM Object Adapter) class, derived from BOA, is
DSOM’s primary Object Adapter implementation. The SO-
MOA interface extends the BOA interface with several of
its own methods that are not defined by CORBA 1.1.

Object references and proxy objects
CORBA 1.1 defines the notion of an object reference, which is the information needed to specify
an object in the ORB. An object is defined by its ImplementationDef, InterfaceDef, and
application-specific “reference data” used to identify or describe the object. An object reference
is used as a handle to a remote object in method calls. When a server wants to export a
reference to an object it implements, it supplies the object’s ImplementationDef, Interface-
Def, and reference data to the Object Adapter, which returns the reference.

The structure of an object reference is opaque to the application, leaving its representation up to
the ORB.

In DSOM, an object reference is represented as an object that can simply be used to identify the
object on that server. The DSOM class that implements simple object references is called
SOMDODbiject (corresponding to Object in CORBA 1.1.) However, in a client’s address space,
DSOM represents the remote object with a proxy object in order to allow the client to invoke
methods on the target object as if it were local. When an object reference is passed from a
server to a client, DSOM dynamically and automatically creates a proxy in the client for the
remote object. Proxies are specialized forms of SOMDObject; accordingly, the base proxy
class in DSOM, SOMDClientProxy, is derived from SOMDODbject.

In order to create a proxy object, DSOM must first build a proxy class. It does so automatically
using SOM facilities for building classes at run time. The proxy class is constructed using
multiple inheritance: the proxy object functionality is inherited from SOMDClientProxy, while
just the interface of the target class is inherited. (See the illustration below.)

Distributed SOM (DSOM) 6-61

Construction of a proxy class in DSOM

7\

SOMDObiject

)

D

SOMDClientProxy

N/

\ . .
abstract inheritance
“Stack__Proxy” (interface only)

In the newly derived proxy class, DSOM overrides each method inherited from the target class
with a “remote dispatch” method that forwards an invocation request to the remote object.
Consequently, the proxy object provides location transparency, and the client code invokes
operations (methods) on the remote object using the same language bindings as if it were a
local target object.

For example, recall the “Stack” class used in the tutorial example given earlier. When a server
returns a reference to a remote “Stack” object to the client, DSOM builds a “Stack_ _Proxy”
class (note two underscores in the name), derived from SOMDClientProxy and “Stack”, and
creates a proxy object from that class. When the client invokes the “push” method on the proxy,

_push (stk, &ev, 100);

the method is redispatched using the remote-dispatch method of the SOMDClientProxy class,
and the method is forwarded to the target object.

CORBA defines several special operations on object references that operate on the local
references (proxies) themselves, rather than on the remote objects. These operations are
defined by the classes SOMOA (SOM Object Adapter), SOMDObject (which is DSOM’s
implementation of CORBA’s Object “pseudo-class”) and ORB (Object Request Broker class).
Some of these operations are listed below, expressed in terms of their IDL definitions.

SOMOA methods (inherited from BOA):

sequence <octet,1024> ReferenceData;
SOMDObject create (in ReferenceData id, in InterfaceDef intf,
in ImplementationDef impl);

— Creates and returns an object reference.

6-62 SOMobjects Base Toolkit User’s Guide

SOMDODbject methods:
SOMDObject duplicate ();

— Creates and returns a duplicate object reference.

void release ();

— Destroys an object reference.

boolean is_nil ();

— Tests to see if the object reference is NULL.
ORB methods:

string object_to_string (SOMDObject obj);

— Converts an object reference to a (storable) string form.
SOMDObject string to_object (string str);

— Converts a string form back to the original object reference.

Creation of remote objects
The OMG has standardized an “object lifecycle service,” built on top of the ORB, for creating
and destroying remote objects. Currently, DSOM provides its own interfaces for creating and
destroying objects (see “Basic Client Programming”), but a future release may provide an
OMG-compliant lifecycle service as well.

Interface definition language
The CORBA specification defines an Interface Definition Language, IDL, for defining object
interfaces. The SOM Compiler compiles standard IDL interface specifications, but it also allows
the class implementor to include implementation information that will be used in the imple-
mentation bindings for a particular language.

Note: Before IDL, SOM (version 1.0) had its own Object Interface Definition Language
(OIDL). SOM classes specified using OIDL must be converted to IDL before they can be
used with DSOM. The SOMobjects Developer Toolkit provides a migration tool for this
purpose. (See Appendix B of the SOMobjects Developer Toolkit User’s Guide.)

C language mapping
The CORBA specification defines the mapping of method interface definitions to C language
procedure prototypes, hence SOM defines the same mapping. This mapping requires passing
a reference to the target object and a reference to an implementation-specific Environment
structure as the first and second parameters, respectively, in any method call.

The Environment structure is primarily used for passing error information from a method back
to its caller. See also the topic “Exceptions and Error Handling” in Chapter 3, “Using SOM
Classes in Client Programs,” for a description of how to “get” and “set” error information in the
Environment structure.

Dynamic Invocation Interface (DIl)

The CORBA specification defines a Dynamic Invocation Interface (DII) that can be used to
dynamically build requests on remote objects. This interface is described in section 6 (page
105) of the CORBA 1.1 document, and is implemented in DSOM. The DSOM implementation of
the DIl is described later in this chapter, in the topic entitled “Dynamic Invocation Interface”
under Section 6.9, “Advanced Topics.” Note that, in DSOM, somDispatch is overridden so that
method invocations on proxy objects are forwarded to the remote target object. SOM applica-
tions can use the SOM somDispatch method for dynamic method calls whether the object is
local or remote.

Implementations and servers
The CORBA specification defines the term implementation as the code that implements an
object. The implementation usually consists of a program and class libraries.

Distributed SOM (DSOM) 6-63

Servers are processes that execute object implementations. CORBA 1.1 defines four activation
policies for server implementations: shared, unshared, server-per-method, and persistent, as
follows.

¢ A shared server implements multiple objects (of arbitrary classes) at the same time, and
allows multiple methods to be invoked at the same time.

e An unshared server, conversely, implements only a single object, and handles one
request at a time.

e The server-per-method policy requires a separate process to be created for each request
on an object and, usually, a separate program implements each method.

Under the shared, unshared, and server-per-method activation policies, servers are
activated automatically (on demand).

¢ A persistent server, by contrast, is a shared server that is activated “by hand” (for
example, from the command shell or from a startup script), vs. being activated automati-
cally when the first method is dispatched to it.

The term “persistent server” refers to the relative lifetime of the server: it is “always running”
when DSOM is running. (CORBA implies that persistent servers are usually started at ORB boot
time.) It should not be assumed, however, that a “persistent” server necessarily implements
persistent objects (that persist between ORB reboots).

In DSOM, specific process models are implemented by the server program. That is, DSOM
simply starts a specified program when a client attempts to connect to a server. The four CORBA
activation policies, or any other policies, can be implemented by the application as necessary.
For example,

¢ an object that requires a server-per-method implementation could itself spawn a process at
the beginning of each method execution. Alternatively, the server object in the “main” server
can spawn a process before each method dispatch.

e a dedicated server could be registered for each object that requires an unshared server
implementation (separate process). This may be done dynamically (see the topic “Program-
matic interface to the Implementation Repository” earlier in this chapter).

An ImplementationDef object, as defined by the CORBA specification, describes the charac-
teristics of a particular implementation. In DSOM, an ImplementationDef identifies an imple-
mentation’s unique ID, the program name, its location, and so forth. The ImplementationDef
objects are stored in an Implementation Repository, which is represented in DSOM by an
ImplRepository object.

A CORBA-compliant ORB must provide the mechanisms for a server program to register itself
with the ORB. To “register itself with the ORB” simply means to tell the ORB enough information
about the server process so that the ORB will be able to locate, activate, deactivate, and
dispatch methods to the server process. DSOM supports these mechanisms, so that server
programs written in arbitrary languages can be used with DSOM. (See also the next topic,
“Object Adapters.”)

In addition to the generic registration mechanisms provided by all CORBA-compliant ORBs,
DSOM provides extra support for using SOM-class DLLs. DSOM provides a generic server
program that automatically registers itself with DSOM, loads SOM-class DLLs on demand, and
dispatches incoming requests on SOM objects. Thus, by using the generic server program
(when appropriate), a user may be able to avoid writing any server program code.

Object Adapters
An Object Adapter (OA) provides the mechanisms that a server process uses to interact with
DSOM, and vice versa. That is, an Object Adapter is responsible for server activation and
deactivation, dispatching methods, activation and deactivation of individual objects, and provid-
ing the interface for authentication of the principal making a call.

DSOM defines a Basic Object Adapter (BOA) interface, described in the CORBA specification,
as an abstract class (a class having no implementation, only an interface specification). The
BOA interface represents generic Object Adapter methods that a server written in an arbitrary
language can use to register itself and its objects with the ORB. Because it is an abstract class
having no implementation, however, the BOA class should not be directly instantiated.

6-64 SOMobjects Base Toolkit User’s Guide

DSOM provides a SOM Object Adapter, SOMOA, derived from the BOA interface, that uses
SOM Compiler and run-time support to accomplish dispatching of methods (that is, accepting
messages, turning them into method invocations, and routing the invocations to the target
object in the server process). SOMOA can be used to dispatch methods on either SOM or
non-SOM object implementations, as described in the sections “Implementing Classes” and
“Basic Server Programming.” It is possible to use non-SOM based implementations with
SOMOA, and often there is no additional programming required to use implementations (class
libraries) already developed using SOM.

The SOMOA works in conjunction with the application-defined server object to map between
objects and object references, and to dispatch methods on objects. By partitioning out these
mapping and dispatching functions into the server object, the application can more easily
customize them, without having to build object adapter subclasses.

SOMOA introduces two methods that handle execution of requests received by the server:

execute_request_loop
execute_next_request

Typically, execute_request_loop is used to receive and execute requests, continuously, in the
server’'s main thread. The execute_next_request method allows a single request to be
executed. Both methods have a non-blocking option: when there are no messages pending, the
method call will return instead of wait.

On OS/2, if the server implementation has been registered as “multi-threaded” (via an IMPL-
DEF_MULTI_THREAD flag in the ImplementationDef), SOMOA will automatically run each
request in a separate thread. If the “multi-thread” flag is not set, the server implementation can
still choose to manage its own threads.

The generic server program provided by DSOM (described in the preceding topic) uses
execute_request_loop to receive and execute requests on SOM objects.

Extensions and limitations
The DSOM implementation has the following extensions and limitations in its implementation of
the CORBA specification:

¢ As just described, the current release of DSOM supports a simple server activation policy,
which is equivalent to the “shared” and “persistent” policies defined by CORBA. DSOM does
not explicitly support the “unshared” or “server-per-method” server activation policies. Poli-
cies other than the basic activation scheme must be implemented by the application.

¢ DSOM provides null implementations for the obj_is_ready or deactivate_obj methods,
defined by the BOA interface for the unshared server activation policy.

e DSOM does not support the change_implementation method, defined by the BOA inter-
face to allow an application to change the implementation definition associated with an
object. In DSOM, the ImplementationDef identifies the server which implements an object.
In these terms, changing an object’s ImplementationDef would result in a change in the
object’s server ID. Any existing object references that have the old server ID would be
rendered invalid.

It is possible, however, to change the program which implements an object’s server, or
change the class library which implements an object’s class. To modify the program
associated with an ImplementationDef, use the update_impldef method defined on Impl-
Repository. To change the implementation of an object’s class, replace the corresponding
class library with a new (upward-compatible) one.

e The OUT_LIST_MEMORY, IN_COPY_VALUE, and DEPENDENT_LIST flags, used with the Dy-
namic Invocation Interface, are not yet supported.

e The SOM Object Adapter (SOMOA) provides a method (change_id) to update the Referen-
ceData associated with an object reference created by the create call. This is useful if the
information which describes the object must be changed without invalidating copies of the
existing object reference. CORBA defines no such method; change_id is an extension to the
standard BOA methods.

Distributed SOM (DSOM) 6-65

e The SOMOA provides some specialized object reference types which, in certain situations,
are more efficient or easier to use than standard object references.

e DSOM supports the SOM extension to IDL that allows method parameters that are pointers.
Structure, sequence, and array parameters may only contain pointers to objects (not arbi-
trary types).

6-66 SOMobjects Base Toolkit User’s Guide

6.9 Advanced Topics

Peer vs. client-server processes

The client-server model of distributed computing is appropriate when it is convenient (or
necessary) to centralize the implementation and management of a set of shared objects in one
or more servers. However, some applications require more flexibility in the distribution of
objects among processes. Specifically, it is often useful to allow processes to manage and
export some of their objects, as well as access remote objects owned by other processes. In
these cases, the application processes do not adhere to a strict client-server relationship —
instead, they cooperate as “peers”, behaving both as clients and as servers.

Peer applications must be written to respond to incoming asynchronous requests, in addition to
performing their normal processing. In a multi-threaded system (like OS/2), this is best accom-
plished by dedicating a separate process thread that handles DSOM communications and
dispatching. In systems that do not currently support multi-threading (like AIX and Windows),
peer applications must be structured as event-driven programs.

Multi-threaded DSOM programs
In a system that supports multi-threading, like OS/2, the easiest way to write a peer DSOM
program is to dedicate a separate thread to perform the usual “server” processing. This body of
this thread would contain the same code as the simple servers described in section 6.4, “Basic
Server Programming.”

DSOM_thread (void *params)
{

Environment ev;
SOM_InitEnvironment (&ev) ;

/* Initialize the DSOM run-time environment */
SOMD_Init (&ev);

/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject =

_find_impldef (SOMD_ImplRepObject, &ev, *(ImplId *)params);

/* Create SOM Object Adapter and begin executing requests */
SOMD__SOMOAObject = SOMOANew () ;
_impl_is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);
_execute_request_loop (SOMD_SOMOAObject, &ev, SOMD_WAIT);

Note: The DSOM run time is “thread safe”; that is, DSOM protects its own data structures and
objects from race conditions and update conflicts. However, it is the application’s responsibility
to implement its own concurrency control for concurrent thread access to local shared applica-
tion objects.

Event-driven DSOM programs using EMan
EMan (see Chapter 9 on “The Event Management Framework”) is not a replacement for
threads, but it supports processing of asynchronous requests. EMan allows a program to
handle events from multiple input sources — but the handlers run on a single thread, under
control of EMan’s main loop.

DSOM provides a runtime function, SOMD_RegisterCallback, which is used by DSOM to
associate user-supplied event handlers with DSOM’s communications sockets and message
queues with EMan. Example code is shown below.

Distributed SOM (DSOM) 6-67

DSOM server programs which use EMan must be very careful not to get into deadlock situa-
tions. This is quite easy to do with DSOM, since method calls are synchronous. If two cooperat-
ing processes simultaneously make calls on each other, a deadlock could result. Likewise, if a
method call on remote object B from A requires a method call back to A, a deadlock cycle will
exist. (Of course, the number of processes and objects which create the cyclic dependency
could be greater than two.) To illustrate:

Potential deadlocks exist using EMan and DSOM

register(B, A)

DEADLOCK!
(then wait Syr:ﬁh(rjonollljs
method calls

forresponse) block, awaiting
responses ...

for requests

get_data(A) that will never

be serviced.
(then wait
for response)
notify(B)
- OK!
Note: oneway mes-
sages may be used
_ hotify(A) to avoid deadlock.

—_————

The application developer must be careful to avoid situations where cooperating processes are
likely to make calls upon each other, creating a cyclic dependency. Some applications may find
it appropriate to use oneway messages to avoid deadlock cycles, since oneway messages do
not cause a process to block. It may also be possible for an application to defer the actual
processing of a method that may “call back” an originating process, by scheduling work using
EMan client events.

Sample server using EMan

The following server code has been distilled from one of the DSOM sample applications
provided with SOMobjects Developer Toolkit. It is an example of a server which has an interval
timer that signals another server (via DSOM) whenever its timer “pops”. Thus, it is both a client
(of the server it signals) and a server (because it can receive timer notifications from other
servers).

The IDL for the server object class to be used by this server program is as follows. Note that the
“noteTimeout” method is oneway, in order to avoid deadlock.

interface PeerServer : SOMDServer
{ oneway void noteTimeout (in string serverName) ;
// Notification that a timer event occurred in server serverName

}i

The example server program is outlined as follows. It is assumed that “eman.h” has been
included by the program.

e Perform DSOM initialization up to, but not including, asking SOMOA to start handling
requests.

6-68 SOMobjects Base Toolkit User’s Guide

MyEMan = SOMEEManNew () ;
SOM_InitEnvironment (&ev) ;
SOM_InitEnvironment (&peerEv) ;
SOMD_Init (&ev) ;

somPrintf ("What is the alias for this server? ”);
gets (thisServer);

SOMD_ImplDefObject = _find_impldef by alias (SOMD_ImplRepObject,
&ev, thisServer);

SOMD__SOMOAObject = SOMOANew () ;

_impl_is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject);

¢ Register a “DSOM event” with EMan, having EMan callback to a procedure that asks the
SOMOA to process any pending DSOM requests.

void SOMD_RegisterCallback (SOMEEman emanObj, EMRegProc *func);

void DSOMEventCallBack (SOMEEvent event, void *eventData)
{ Environment ev;

SOM_InitEnvironment (&ev) ;

_execute_request_loop (SOMD_SOMOAObject, &ev, SOMD_NO_WAIT) ;
}

SOMD_RegisterCallback (MyEMan, DSOMEventCallBack) ;

e Ask user to provide “target server’s alias”, where the target server is that this server will
signal when its timer “pops”. Then get a proxy for that server.

somPrintf ("What is the alias for the target server? ”);
gets (inbuf) ;
RemotePeer = _somdFindServerByName (SOMD_ObjectMgr, é&ev, inbuf);

e Ask user to provide the timer’s interval (in milliseconds)

somPrintf ("What is the timer interval, in millseconds? ”);
gets (inbuf) ;
Interval = atoi (inbuf);

¢ Register a timer event with EMan, having EMan call back a procedure that will invoke the
notification method on the target server.

void TimerEventCallBack (SOMEEvent event, void *eventData)
{ Environment ev;

SOM_InitEnvironment (&ev) ;

/* call the peer, with a oneway message */

_noteTimeout (RemotePeer, &ev, thisServer);

}

data = SOMEEMRegisterDataNew () ;

_someClearRegData (data, &ev);
_someSetRegDataEventMask (data, &ev, EMTimerEvent, NULL);
_someSetRegbhataTimerInterval (data, &ev, Interval);

somPrintf ("Type <Enter> key when ready to go: ");

gets (inbuf) ;

regld = _someRegisterProc (MyEMan, é&ev, data, TimerEventCallBack,
NULL) ;

Important: Do not use someRegister or someRegisterEv to register “callback methods” that
would be executed on proxy objects. Instead, write a callback routine that invokes the desired
method on the proxy, like the one shown above, and register that routine using the method
someRegisterProc.

Note: EMan currently uses the methods someRegister and someRegisterEv to obtain the
address of a method-procedure to call when a specified event occurs. If EMan directly calls the
method-procedure versus somDispatch, the method call will not be forwarded to the remote
object as desired.

Distributed SOM (DSOM) 6-69

e Start the EMan event processing loop.

_someProcessEvents (MyEMan, é&ev);

Before the sample is run, two server implementations should be registered with regimpl. The
implementations are identical except for their aliases. One may be called “peerServer1” and the
other “peerServer2”. The “PeerServer” class should be specified as their server-object class.

Whenever peerServer1’s timer pops, the Event Manager causes a method, “noteTimeout”, to
be sent to the server object in peerServer2. PeerServer2’s server object executes this method
by displaying a message on its window. Whenever peerServer2’s timer pops, a similar se-
quence occurs with peerServer1. The two servers will run continuously until interrupted.

Dynamic Invocation Interface

DSOM supports the CORBA dynamic invocation interface (DII), which clients can use to dynam-
ically build and invoke requests on objects. This section describes how to use the DSOM DII.
Currently, DSOM supports dynamic request invocation only on objects outside the address
space of the request initiator, via proxies. The somDispatch method (non-CORBA) can be used
to invoke methods dynamically on either local or remote objects, however.

To invoke a request on an object using the DII, the client must explicitly construct and initiate the
request. A request is comprised of an object reference, an operation, a list of arguments for the
operation, and a return value from the operation. A key to proper construction of the request is
the correct usage of the NamedValue structure and the NVList object. The return value for an
operation is supplied to the request in the form of a NamedValue structure. In addition, it is
usually most convenient to supply the arguments for a request in the form of an NVList object,
which is an ordered set of NamedValues. This section begins with a description of NamedVa-
lues and NVLists and then details the procedure for building and initiating requests.

The NamedValue structure
The NamedValue structure is defined in C as:

typedef unsigned long Flags;

struct NamedValue {

Identifier name; // argument name

any argument; // argument

long len; // length/count of arg value
Flags arg_modes; // argument mode flags

}i
where:

name is an ldentifier string as defined in the CORBA specification, and
arg is an any structure with the following declaration:

struct any {
TypeCode _tvype;
void* _value;

}i

_type is a TypeCode, which has an opaque representation with operations defined oniitto allow
access to its constituent parts. Essentially the Typecode is composed of a field specifying the
CORBA type represented and possibly additional fields needed to fully describe the type. See
Chapter 7 of this manual for a complete explanation of TypeCodes.

_value is a pointer to the value of the any structure. Important: The contents of “_value” should
always be a pointerto the value, regardless of whether the value is a primitive, a structure, or is
itself a pointer (as in the case of object references, strings and arrays). For object references,
strings and arrays, _value should contain a pointer to the pointer that references the value.
For example:

string testString;
any testAny;

testAny._value = &testString;

6-70 SOMobijects Base Toolkit User’s Guide

len is the number of bytes that the argument value occupies. The following table gives the
length of data values for the C language bindings. The value of len must be consistent with the

TypeCode.
Data type Length
short sizeof (short)
unsigned short sizeof (unsigned short)
long sizeof (long)
unsigned long sizeof (unsigned long)
float sizeof (float)
double sizeof (double)
char sizeof (char)
boolean sizeof (boolean)
octet sizeof (octet)
string strlen(string) - does not include ’'\0’ byte
enum E{} sizeof (unsigned long)
union U sizeof (U)
struct S{} sizeof (S
Object 1
array N of type T1 Length (T1) *N

sequence V of type T2 Length(T2)*V - V is the actual # of elements

The arg_modes field is a bitmask (unsigned long) and may contain the following flag values:

ARG_IN the associated value is an input-only argument
ARG_OUT the associated value is an output-only argument
ARG_INOUT the associated argument is an in/out argument

These flag values identify the parameter passing mode when the NamedValue represents a
method parameter. Additional flag values have specific meanings for Request and NVList
methods and are listed with their associated methods.

The NVList class

An NVList contains an ordered set of NamedValues. The CORBA specification defines several
operations that the NVList supports. The IDL prototypes for these methods are as follows:

// get the number of elements in the NVList
ORBStatus get_count (
out long count);

// add an element to an NVList
ORBStatus add_item/(
in Identifier item_name,

in TypeCode item_type,
in wvoid* value,
in Flags item_flags);

// free the NVList and any associated memory
ORBStatus free();

// free dynamically allocated memory associated with the list
ORBStatus free_memory () ;

In DSOM, the NVList is a full-fledged object with methods for getting and setting elements:

//set the contents of an element in an NVList
ORBStatus set_item/(

in long item_number, /* element # to set */
in Identifier item_name,

in TypeCode item_type,

in wvoid* item_value,

in long value_len,

in Flags item_flags);

Distributed SOM (DSOM) 6-71

// get the contents of an element in an NVList
ORBStatus get_item(

in long item_number, /* element # to get */
out Identifier item_name,

out TypeCode item_type,

out void* item_value,

out long value_len,

out Flags item_flags);

See the SOMobjects Developer Toolkit Programmers Reference Manualfor a detailed descrip-
tion of the methods defined on the NVList object.

Creating argument lists
A very important use of the NVList is to pass the argument list for an operation when creating a
request. CORBA 1.1 specifies two methods, defined in the ORB class, to build an argument list:
create_list and create_operation_list. The IDL prototypes for these methods are as follows:

ORBStatus create_list (
in long count, /* # of items */
out NVList new_list);

ORBStatus create_operation_list (
in OperationDef oper,
out NVList new_list);

The create_list method returns an NVList with the specified number of elements. Each of the
elements is empty. It is the client’s responsibility to fill the elements in the list with the correct
information using the set_item method. Elements in the NVList must contain the arguments in
the same order as they were defined for the operation. Elements are numbered from 0 to
count—1.

The create_operation_list method returns an NVList initialized with the argument descrip-
tions for a given operation (specified by the OperationDef). The arguments are returned in the
same order as they were defined for the operation. The client only needs to fill in the item_value
and value_len in the elements of the NVList.

In addition to these CORBA-defined methods, DSOM provides a third version, defined in the
SOMDODbiject class. The IDL prototype for this method is as follows:

ORBStatus create_request_args (
in Identifier operation,
out NVList arg_list,
out NamedValue result);

Like create_operation_list, the create_request_args method creates the appropriate
NVList for the specified operation. In addition, create_request_args initializes the NamedVa-
lue that will hold the result with the expected return type. The create_request_args method is
defined as a companion to the create_request method, and has the advantage that the
InterfaceDef for the operation does not have to be retrieved from the Interface Repository.

Note: The create_request_args methodis not definedin CORBA 1.1. Hence, the create_op-
eration_list method, defined on the ORB class, should be used instead when writing
portable CORBA-compliant programs.

Building a Request
There are two ways to build a Request object. Both begin by calling the create_request
method defined by the SOMDODbiject class. The IDL prototype for create_requestis as follows:

ORBStatus create_request (

in Context ctx,

in Identifier operation,
in NVList arg_list,
inout NamedValue result,

out Request request,

in Flags reqg_flags);

6-72 SOMobijects Base Toolkit User’s Guide

The arg_list can be constructed using the procedures described above and is passed to the
Request object in the create_request call. Alternatively, arg_listcan be specified as NULL and
repetitive calls to add_arg can be used to specify the argument list. The add_arg method,
defined by the Request class, has the following IDL prototype:

ORBStatus add_arg(
in Identifier name,

in TypeCode arg_type,

in void* value,

in long len,

in Flags arg_flags);

The “arg_modes” field of the result NamedValue parameter to create_request is ignored.

Initiating a Request
There are two ways to initiate a request, using either the invoke or send method defined by the
Request class. The IDL prototypes for these two operations are as follows:

ORBStatus invoke (
in Flags invoke_flags);

ORBStatus send (
in Flags send_flags);

The invoke method calls the ORB, which handles the remote method invocation and returns
the result. This method will block while awaiting return of the result.

The send method calls the ORB but does not wait for the operation to complete before
returning. To determine when the operation is complete, the client must call the get_response
method (also defined by the Request class), which has this IDL prototype:

ORBStatus get_response (
in Flags response_flags);

The following flag is defined for get_response:
RESP_NO_WAIT Means that the caller does not want to wait for aresponse.

get_response determines whether a request has competed. If the RESP_NO_WAIT flag is set,
get_response returns immediately even if the request is still in progress. If RESP_NO_WAIT is
not set, get_response waits until the request is done before returning.

Example code
Below is an incomplete example showing how to use the DIl to invoke a request having the
following method procedure prototype:

string _testMethod(testObject obj,
Environment *ev,
long input_value,

)

Distributed SOM (DSOM) 6-73

main ()
{
ORBStatus rc;
Environment ev;
SOMDObject obj;
NVList arglist;
NamedValue result;
Context ctx;
Request reqObij;
OperationDef opdef;
Description desc;
OperationDescription opdesc;
static long input_value = 999;

SOM_InitEnvironment (&ev) ;
SOMD_TInit (&ev);

/* create the argument list */
/* get the operation description from the interface repository */

opdef = _lookup_id(SOM_InterfaceRepository, *ev,
"testObject::testMethod”);

desc = _describe (opdef, &ev);

opdesc = (OperationDescription *) desc.value._value;

/* fill in the TypeCode field for the result */
result.argument._type = opdesc—>result;

/* Initialize the argument list */
rc = _create_operation_list (SOMD_ORBObject, &ev, opdef,
&arglist);

/* get default context */
rc = _get_default_context (SOMD_ORBObject, é&ev, &ctx);

/* put value and length into the NVList */
_get_item(arglist, &ev, 0, &name, &tc, &dummy, &dummylen,
&flags);

_set_item(arglist, &ev, 0, name, tc, &input_value,
sizeof (input_value), flags);

/* create the request - assume the object reference came from
somewhere —— from a file or returned by a previous request */
rc = _create_request (obj, &ev, ctx, "testMethod”,

arglist, &result, &reqgObj, (Flags)O0);

/* invoke request */
rc = invoke (reqObij, &ev, (Flags)O0);

/* print result */
printf (“result: $%$s\n”, * (string*) (result.argument._value));
return (0) ;

Creating user-supplied proxies

DSOM uses a proxy object in the client’s address space to represent the remote object. As
mentioned earlier in this chapter, the proxy object encapsulates the operations necessary to
forward and invoke methods on the remote object and return the results. By default, proxy
generation is done automatically by the DSOM run time. However, if desired, the programmer
can cause a user-supplied proxy class to be loaded instead of letting the run time dynamically
generate a default proxy class. User-supplied proxies can be useful in specialized circum-
stances when local processing or data caching is desired.

6-74 SOMobijects Base Toolkit User’s Guide

To build a user-supplied proxy class, it is necessary to understand a bit about how dynamic
proxy classes are constructed by the DSOM run time. The DSOM run time constructs a proxy
class by creating an instance of a class that inherits the interface and implementation of
SOMDClientProxy, and the interface (but not the implementation) of the target class. The
methods in the interface of the target object are all overridden to call the somDispatch method.
(For more details, see “Object references and proxy objects” in section 6.8.)

Every SOM object contains the somDispatch method, inherited from SOMODbject. This meth-
od is used to dynamically dispatch a method on an object, and can be overridden with applica-
tion-specific dispatching mechanisms. In SOMDClientProxy, the somDispatch method is
overridden to forward method calls to the corresponding remote target object.

So, in effect, when a method is called on a default proxy object created by the DSOM run time, it
redispatches the method to the remote object using DSOM'’s version of somDispatch.

Below is a simple example of a user-supplied proxy class. In this particular example, the proxy
object maintains a local, unshared copy of an attribute (“attribute_long”) defined in the remote
object (“Foo”), while forwarding method invocations (“method1”) on to the remote object. The
resultis that, when multiple clients are talking to the same remote “Foo” object, each clienthas a
local copy of the attribute but all clients share the “Foo” object’s implementation of “method1”.

Note: Itis important to understand that simply setting the attribute in one client’s proxy does
not affect the value of the attribute in other proxies. Maintaining consistency of the
cached data values, if desired, is the responsibility of the user-supplied proxy class.

Following is the IDL file for the “Foo” class:
// foo.idl

#include <somdtype.idl>
#include <somobj.idl>

interface Foo : SOMObject
{

string methodl (out string a, inout long b,
in ReferenceData c¢);
attribute long attribute_long;

implementation

{
releaseorder: methodl, _set_attribute_long,

_get_attribute_long;

dllname="foo.dll"”;
somDefaultInit: override;

}i

}i

The user-supplied proxy class is created by using multiple inheritance between SOMDClient-

Proxy and the target object (in this case “Foo”). Thus, the IDL file for the user-supplied proxy
class “Foo__Proxy” (note the two underscores) is as follows:

// fooproxy.idl

#include <somdcprx.idl>
#include <foo.idl>

interface Foo_ Proxy : SOMDClientProxy, Foo

{

implementation
{
dllname="fooproxy.dll”;
methodl: override;
}i
}i

When a dynamic proxy class is created by the DSOM run time, the methods inherited from the
target class are automatically overridden to use somDispatch. When you build a user-supplied
proxy, you need to do this explicitly. This is why “method1” is overridden in the implementation
section of the “fooproxy.idl” file.

Distributed SOM (DSOM) 6-75

The implementation of “method1”, which was added to the template produced by the SOM
Compiler, simply calls the somDispatch method on “somSelf’. Because “Foo__Proxy” has
inherited the implementation of SOMDCIlientProxy, calling somDispatch within “method1”
sends the method to the remote “Foo” object.

/* foo.c */

#include <somdtype.h>
#include <fooproxy.ih>

SOM_Scope string SOMLINK methodl (Foo_ Proxy somSelf,
Environment *ev,
string* a, long* b,
ReferenceData* c¢)

string ret_str;
somId methodId;

/* Foo__ProxyData *somThis = Foo__ProxyGetData (somSelf); */
Foo__ProxyMethodDebug (“Foo__Proxy”,”methodl”);

/* redispatch method, remotely */

methodId = somIdFromString (”"methodl”);

_somDispatch (somSelf, (void**)&ret_str,
methodId, somSelf, ev, a, b, c);

SOMFree (methodId);

return ret_str;

In summary, to build a user-supplied proxy class:

e Create the .idl file with the proxy class inheriting from both SOMDClientProxy and from
the target class.
Important: The user-supplied proxy class must be named “<targetClassName>_ _Proxy”
(with two underscores in the name) and SOMDClientProxy must be the first classin the list
of parent classes; for example,

interface Foo_ _Proxy : SOMDClientProxy, Foo

Putting SOMDClientProxy first ensures that its version of somDispatch will be used to
dispatch remote method calls.

In the implementation section of the .idl file, override all methods that are to be invoked on
the target class. Do not override methods that are to be invoked on the local proxy.

e Compile the .idl file. Be sure the Interface Repository gets updated with the .idl file. In the
implementation file, for each overridden method, call somDispatch with the method name
and parameters passed into the overridden method. If the proxy class provides an imple-
mentation for the somlnit or somDefaultlnit method, then it is important to ensure that
calling that method more than once on the same proxy object has no negative effect.

e Buildthe DLL and place itin one of the directories listed in LIBPATH for AIX and OS/2, or listed
in PATH for Windows. Before creating the default proxy, the DSOM run time checks the
LIBPATH for a DLL containing the class named “<targetClassName>__Proxy”. If sucha DLL
is found, DSOM loads it instead of dynamically generating a proxy class.

Customizing the default base proxy class

Continuing the example from the previous topic, imagine that an application derives 100
subclasses from the “Foo” class. If the application wishes to cache the “Foo::attribute_long”
attribute in the proxies for all remote Foo-based objects, the application could supply 100
user-supplied proxy classes, developed in the manner described above. However, this would
become a very tedious and repetitive task!

6-76 SOMobjects Base Toolkit User’s Guide

Alternatively, it is possible to provide a customized base proxy class for use in the dynamic
generation of DSOM proxy classes. This allows an application to provide a customized base
proxy class, from which other dynamic DSOM proxy classes can be derived. This is particularly
useful in situations where an application would like to enhance many or all dynamically gener-
ated proxy classes with a common feature.

As described in the previous topic, proxy classes are derived from the SOMDClientProxy class
by default. It is the SOMDClientProxy class that overrides somDispatch in order to forward
method calls to remote objects.

The SOMDClientProxy class can be customized by deriving a subclass in the usual way (being
careful not to replace somDispatch or other methods that are fundamental to implementing the
proxy’s behavior). To extend the above example further, the application might define a base
proxy class called “MyClientProxy” that defines a long attribute called “attribute_long,” which
will be inherited by Foo-based proxy classes.

The SOM IDL modifier baseproxyclass can be used to specify which base proxy class DSOM
should use during dynamic proxy-class generation. To continue the example, if the class
“MyClientProxy” were used to construct the proxy class for a class “XYZ,” then the baseproxy-
class modifier would be specified as follows:

// xyz.idl

#include <somdtype.idl>
#include <foo.idl>

interface XYZ : Foo

{

implementation

{

baseproxyclass = MyClientProxy;
}i
bi

It should be noted that:
e Base proxy classes must be derived from SOMDClientProxy.

e If a class “XYZ” specifies a custom base-proxy class, as in the above example, sub-
classes of “XYZ” do not inherit the value of the baseproxyclass modifier. If needed, the
baseproxyclass modifier must be specified explicitly in each class.

Sockets class

To aid in portability, DSOM has been written to use a common communications interface, which
is implemented by one or more available local protocols.

The common communications interface is represented as an abstract class, called Sockets,
and is based on the familiar “sockets” interface. Several protocol implementations are sup-
ported as Sockets subclasses: TCPIPSockets (and TCPIPSockets32 for OS/2) for TCP/IP, the
class NBSockets for NetBIOS, and the class IPXSockets for NetWare IPX/SPX. (The libraries
included in a particular SOMobjects run-time package will vary.)

There is one case where a Sockets subclass is not required: the DSOM Workstation run-time
package uses shared memory to pass messages within a single machine, and bypasses the
use of a Sockets subclass. (The SOMSOCKETS environment variable is ignored.)

When the Event Management Framework (EMan) is used with DSOM, a Sockets subclass will
be needed to support EMan, whether or not the application runs completely within a single
machine.

Appendix C, “Implementing Sockets Subclasses,” describes how an application might provide
its own Sockets subclass implementation, for special circumstances.

Distributed SOM (DSOM) 6-77

6.10 Error Reporting and Troubleshooting

Error reporting

Error codes

When the DSOM run-time environment encounters an error during execution of a method or
procedure, a SYSTEM_EXCEPTION will be raised. The standard system exceptions are dis-
cussed in the topic “Exceptions and Error Handling” in Chapter 3 “Using SOM Classes in Client
Programs.” The “minor” field of the returned exception value will contain a DSOM error code.
The DSOM error codes are listed below.

Although a returned exception value can indicate that a DSOM run-time error occurred, it may
be difficult for the user or application to determine what caused the error. Consequently, DSOM
has been enabled to report run-time error information, for interpretation by support personnel.
These error messages take the following form:

DSOM <type> error: <code> [<name>] at <file>:<line>

where the arguments are as follows:

type SYSTEM_EXCEPTION type,
code DSOM error code,
name symbol for DSOM error code (from “somderr.h”),
file source-file name where the error occurred, and
line line number where the error occurred.

For example,

DSOM NO_MEMORY error: 30001 [SOMDERROR_NoMemory] at somdobj.c:250

indicates that a “NO_MEMORY” error (error code 30001) occurred in file “somdobj.c” at line 250.
This information is not usually meaningful to the user; it provides support personnel with a
starting point for problem analysis. There will often be a sequence of error messages; together
they indicate the context in which the error occurred. It is important to give all reported mes-
sages to support personnel for analysis.

There is an environment variable, SOMDDEBUG, which is used to activate error reporting. There
is a corresponding global variable that can be set by an application program; it is declared as:

extern long SOMD_Debugflag;

Error reporting is normally disabled. To enable error reporting, the environment variable SOMD-
DEBUG should be set to a value greater than 0. To disable error reporting, SOMDDEBUG should
be set to a value less than or equal to 0.

By default, error messages will display on the standard output device. Error messages can also
be redirected to a log file. For this, the environment variable SOMDMESSAGELOG should be
set to the pathname of the log file. The SOMD_Init procedure opens the file named in SOMD-
MESSAGELOG (if any), during process initialization.

The error codes that may be encountered when using DSOM are listed in Appendix A, “SOMob-
jects Error Codes,” which contains the codes for the entire SOMobjects Toolkit.

Troubleshooting hints

The following hints may prove helpful as you develop and test your DSOM application.

Checking the DSOM setup

This checklist will help you make certain that the DSOM environment is set up correctly.

1. Use the somdchk tool to verify the settings of various DSOM environment variables.
Note that if the SOMIR environment variable contains relative pathnames, the client
programs, server programs, and somdd daemon must be started from the same
directory. (Instead, it is recommended that SOMIR contain full pathnames.)

6-78 SOMobjects Base Toolkit User’s Guide

2. For all application classes, IDL must be compiled into the Interface Repository. You
can verify that a class exists in the Interface Repository by executing “irdump
<class>" on AIX or OS/2, or, on Windows, click on the IRDUMP icon and browse for
the appropriate class. See “Registering class interfaces” for more information.

3. An implementation (a server program and class libraries) must be registered with
DSOM by running the regimpl utility. See “Registering servers and classes” for more
information.

4. Verify that all class libraries and networking libraries are in directories specified in
LIBPATH.

Analyzing problem conditions
The DSOM error codes mentioned below can be obtained directly by the application from the
“minor” field of the exception data returned in a system exception, or from an error report
message when SOMDDEBUG is set to a positive integer value (see the earlier topic, “Error
reporting”).

Symptom: When running regimpl, a “PERSIST_STORE” exception is returned. The DSOM
error code is SOMDERROR_IO or SOMDERROR_NolmplDatabase.

e This may indicate that the Implementation Repository files are not found or cannot be
accessed. Verify that SOMDDIR is set correctly, to a directory that has granted read/write
permission to the DSOM user. (It is best if the directory name is fully qualified.) If the
SOMDDIR variable is not set, verify that the default directory ($SSOMBASE/etc/dsom on AlX,
and %SOMBASE%\etc\dsom on OS/2 or Windows) has been set up with the correct permis-
sions. Ensure that the the files contained in the directory all have read/write permission
granted to the DSOM user.

Symptom: When starting somdd, a “COMM_FAILURE” exception is returned.

¢ [fthe DSOM error code is SOMDERROR_SocketBind or SOMDERROR_DuplicateQueue, this
may indicate that there is already an instance of somdd running. If this is true, and the
current instance of somdd does not seem to be responding properly, delete all instances of
somdd and restart a new copy of somdd.

Otherwise, some other communications error caused the failure. Verify that the DSOM
environment variables (including HOSTNAME) are set correctly. Also, if SOMSOCKETS is set,
verify that the IR contains the appropriate Sockets interface definition.

Symptom: When starting up a server program, an exception is returned with a DSOM error
code of SOMDERROR_ ServerAlreadyExists.

¢ This may indicate that a server process that is already running has already registered itself
with the DSOM daemon, somdd, using the implementation ID of the desired server pro-
gram.

Symptom: On OS/2, an operating system error occurs indicating a “stack overflow” condition
soon after a the first call to a class DLL. Rebuilding the DLL with a larger stack size does not
help.

e This sometimes occurs when a DLL uses, but does not initialize, the C run time for OS/2. To
perform the proper initialization, a function named “_DLL_InitTerm” must be included in the
DLL, and it must invoke the C Set/2 initialization function, “ CRT _Init.” The _DLL_InitTerm
function is invoked automatically when the DLL is loaded.

An example _DLL_InitTerm function is included in the DSOM sample code shipped with the
SOMobjects Developer Toolkit for OS/2, in the file “initterm.c”.

Symptom: When running a DSOM application that uses EMan, an error message is displayed
asking that the SOMSOCKETS be set.

¢ This may indicate a need to specify the Sockets subclass to be used with the application.
Current choices are TCPIPSockets for TCP/IP (and TCPIPSockets32 on OS/2), NBSockets
for NetBIOS, and IPXSockets for NetWare IPX/SPX. Note: Each SOMobjects package
contains an appropriate subset of Sockets subclasses. Workstation DSOM includes TCPIP-
Sockets (and TCPIPSockets32 on OS/2) for TCP/IP. Workgroup DSOM also includes
NBSockets for NetBIOS and IPXSockets for NetWare.

Distributed SOM (DSOM) 6-79

Symptom: A remote method invocation fails and a “DISPATCH” exception is returned. The
DSOM error code is SOMDERROR_BadDescriptor.

e This may indicate that the interface describing the method cannot be found in the Interface
Repository. Verify that SOMIR is set correctly, and that the IR contains all interfaces used by
your application.

If the default SOM IR (supplied with the SOMobjects Toolkit and Runtimes) is not used by the
application, the user’s IR must include the interface definitions for the appropriate Sockets
class, server class (derived from SOMDServer), and the definitions of the standard DSOM
exceptions (found in file “stexcep.idl”) that may be returned by a method call.

Symptom: A SOMDERROR_ClassNotFound error is returned by a client either when creat-
ing a remote object using somdNewObiject, or when finding a server object using somd-
FindAnyServerByClass. (These methods are defined on the SOMDObjectMgr class.)

e This sometimes occurs when the class name specified in calls to somdNewObject or
somdFindAnyServerByClass cannot be found in the Implementation Repository. Make
sure that the class name has been associated with at least one of the server implementa-
tions.

Symptom: A SOMDERROR_ClassNotFound error is returned by a server when creating a new
object using somdNewObject, somdCreateObj, or somdGetClassObj.

e This error may result if the DLL for the class cannot be found. Verify that:
— the interface of the object can be found in the IR;

—the class name is spelled correctly and is appropriately scoped (for example, the “Printer”
class in the “PrintServer” module must have the identifier “PrintServer::Printer”).

e This error can also result when the shared library is statically linked to the server program,
but the <className>NewClass procedures have not been called to initialize the classes.

Symptom: When invoking a method returns a proxy for a remote object in the client, a
SOMDERROR_NoParentClass error occurs.

e This error may result whenthe class libraries used to build the proxy class are statically linked
to the program, but the <className>NewClass procedures have not been called to initialize
the classes.

Symptom: Following a method call, the SOM run-time error message, “A target object failed
basic validity checks during method resolution” is displayed.

e Usually this means that the method call was invoked using a bad object pointer, or the object
has been corrupted.

Symptom: Aremote object has an attribute or instance variable that is, or contains, a pointer to
a value in memory (for example, a string, a sequence, an “any”). The attribute or instance
variable value is set by the client with one method call. When the attribute or instance variable is
queried in a subsequent method call, the value referenced by the pointer is “garbage”.

e This may occur because DSOM makes a copy of argument values in a client call, for use in
the remote call. The argument values are valid for the duration of that call. When the remote
call is completed, the copies of the argument values are freed.

In a DSOM application, a class cannot assume that the client has allocated and will manage
the space for object instance values, because the client may be in a different address space.
If a data value is meant to persist between requests, the object is responsible for making its
own copy of the value.

Symptom: A method defines a (char *) parameter that is used to pass a string input value to an
object. The object attempts to print the string value, but it appears to be “garbage”.

e DSOM will support method arguments that are of type “pointer-to-X” (pointer types are a
SOM extension), by deferencing the pointer in the call, and copying the base value. The
pointer-to-value is reconstructed on the server before the actual method call is made.

While (char *) is commonly used to refer to NULL-terminated strings in C programs, (char *)
could also be a pointer to a single character or to an array of characters. Thus, DSOM
interprets the argument type literally as a pointer-to-one-character.

6-80 SOMobjects Base Toolkit User’s Guide

To correctly pass strings or array arguments, the appropriate CORBA type should be used
(for example, “string” or “char foo[4]”).

Symptom: A segmentation violation occurs when passing an “any” argument to a method call,
where the “any” value is a string, array, or object reference. Note: The NamedValues used in DlI
calls use “any” fields for the argument values.

e This error may occur because the “ value” field of the “any” structure does not contain the
address of a pointer to the target string, array, or object reference, as it should. (A common
mistake is to set the “ value” field to the address of the string, array, or object reference
itself.)

Symptom: When a server program or a server object makes a call to get_id or to
get_SOM_object on a SOMDODbject, an “OBJ_ADAPTER” exception is returned with an error
code of SOMDERROR_WrongRefType.

¢ This error may occur when the operation get_id is called on a SOMDODbject that does not
have any user-supplied ReferenceData (that is, the SOMDODbject is a proxy, is nil, or is a
simple “SOM ref” created by create_SOM_ref). Likewise, this error may occur when the
operation get_ SOM_object is called on a SOMDODbject that was not created by the
create_ SOM_ref method.

Symptom: A segmentation fault occurs when a SOMD_Uninit call is executed.

e This error could occur if the application has already freed any of the DSOM run-time
objects that were allocated by the SOMD_lInit call, including SOMD_ObjectMgr,
SOMD_ImpIRepObject and SOMD_ORBObiject.

Symptom: Unexplained program crashes.

e Verify that all DSOM environment variables are set, as described in the earlier section
“Configuring DSOM Applications”. Verify that all class libraries are in directories specified in
LIBPATH for AIX and OS/2, or specified in PATH for Windows. Verify that the contents of the
Interface Repository, specified by SOMIR, are correct. Verify that the contents of the Imple-
mentation Repository, specified by SOMDDIR, are correct. Verify that somdd is running. Set
SOMDDEBUG to 1 to obtain additional DSOM error messages.

Distributed SOM (DSOM) 6-81

6.11 Limitations

The following list indicates known limitations of Distributed SOM at the time of this release.

1.

Currently, objects cannot be moved from one server to another without changing the
object references (that is, deleting the object, and creating it anew in another server).
This yields all copies of the previous reference invalid.

The change_implementation method is not supported. This method, defined by the
BOA interface, is intended to allow an application to change the implementation
definition associated with an object. However, in DSOM, changing the server
implementation definition may render existing object references (which contain the
old server ID) invalid.

Currently, DSOM has a single server activation policy, which corresponds to CORBA’s
“shared” activation policy for dynamic activation, and “persistent” activation policy for
manual activation. Other activation policies, such as “server-per-method” and
“unshared” are not directly supported, and must be implemented by the application.

Since the unshared server policy is not directly supported, the obj_is_ready and
deactivate_obj methods, defined in the BOA interface, have null implementations.

If a server program terminates without calling deactivate_impl, subsequent
attempts to start that server may fail. The DSOM daemon believes the server is still
running until it is told it has stopped. Attempts to start a server that is believed to exist
results in an error (SOMDERROR_ ServerAlreadyExists).

Currently, file names used in ImplementationDefs are limited to 255 bytes.
Implementations aliases used in ImplementationDefs are limited to 50 bytes. Class
names used in the Implementation Repository are limited to 50 bytes. Hostnames
are limited to 32 bytes.

The OUT_LIST_MEMORY, IN_COPY_VALUE, and DEPENDENT_LIST flags, used with
the Dynamic Invocation Interface, are not yet supported.

Otherimportant notes concerning DSOM are documented in the “README” file in the SOMBASE
root directory ($SOMBASE on AlX, and %SOMBASE% on 0S/2 or Windows).

6-82 SOMobjects Base Toolkit User’s Guide

Chapter 7. The Interface Repository Framework

The Interface Repository Framework 7-1

7.1 Introduction

The SOM Interface Repository (IR) is a database that the SOM Compiler optionally creates and
maintains from the information supplied in IDL source files. The Interface Repository contains
persistent objects that correspond to the major elements in IDL descriptions. The SOM
Interface Repository Framework is a set of classes that provide methods whereby executing
programs can access these objects to discover everything known about the programming
interfaces of SOM classes.

The programming interfaces used to interact with Interface Repository objects, as well as the
format and contents of the information they return, are architected and defined as part of the
Object Management Group’s CORBA standard. The classes composing the SOM Interface
Repository Framework implement the programming interface to the CORBA Interface Reposito-
ry. Accordingly, the SOM Interface Repository Framework supports all of the interfaces de-
scribed in The Common Object Request Broker: Architecture and Specification (OMG Docu-
ment Number 91.12.1, Revision 1.1, chapter 7).

As an extension to the CORBA standard, the SOM Interface Repository Framework permits
storage in the Interface Repository of arbitrary information in the form of SOM IDL modifiers.
Thatis, within the SOM-unique implementation section of an IDL source file or through the use
of the #pragma modifier statement, user-defined modifiers can be associated with any ele-
ment of an IDL specification. (See the section entitled “SOM Interface Definition Language” in
Chapter 4, “Implementing Classes in SOM.”) When the SOM Compiler creates the Interface
Repository from an IDL specification, these potentially arbitrary modifiers are stored in the IR
and can then be accessed via the methods provided by the Interface Repository Framework.

This chapter describes, first, how to build and manage interface repositories, and second, the
programming interfaces embodied in the SOM Interface Repository Framework.

7-2 SOMobijects Base Toolkit User’s Guide

7.2 Using the SOM Compiler to Build an Interface Repository

The SOMobjects Toolkit includes an Interface Repository emitter that is invoked whenever the
SOM Compiler is run using an sc command with the —u option (which “updates” the interface
repository). The IR emitter can be used to create or update an Interface Repository file. The IR
emitter expects that an environment variable, SOMIR, was first set to designate a file name for
the Interface Repository. For example, to compile an IDL source file named “newcls.idl” and
create an Interface Repository named “newcls.ir”, use a command sequence similar to the
following:

For OS/2:

set SOMIR=c:\myfiles\newcls.ir
sc —u newcls

For AIX:

export SOMIR=~/newcls.ir
sSC —u newcls

For Windows:
Note: Ensure that no spaces separate the environment variable “SOMIR”, the equals sign “=”,
and the value being set.

set SOMIR=c:\myfiles\newcls.ir
somc —u newcls

If the SOMIR environment variable is not set, the Interface Repository emitter creates a file
named “som.ir” in the current directory.

The sc or somc command runs the Interface Repository emitter plus any other emitters
indicated by the environment variable SMEMIT (described in the topic “Running the SOM
Compiler” in Chapter 4, “Implementing Classes in SOM”). To run the Interface Repository
emitter by itself, issue the sc or somec command with the —s option (which overrides SMEMIT)
set to “ir”. For example:

sc —u -sir newcls (On OS/2 or AlX)
somc -u -sir newcls (On Windows)

or equivalently,

sc —usir newcls (On OS/2 or AlX)
somc -usir newcls (On Windows)

The Interface Repository emitter uses the SOMIR environment variable to locate the designated
IR file. If the file does not exist, the IR emitter creates it. If the named interface repository already
exists, the IR emitter checks all of the “type” information in the IDL source file being compiled for
internal consistency, and then changes the contents of the interface repository file to agree with
with the new IDL definition. For this reason, the use of the —u compiler flag requires that all of the
types mentioned in the IDL source file must be fully defined within the scope of the compilation.
Warning messages from the SOM Compiler about undefined types result in actual error mes-
sages when using the —u flag.

The additional type checking and file updating activity implied by the —u flag increases the time it
takes to run the SOM Compiler. Thus, when developing an IDL class description from scratch,
where iterative changes are to be expected, it may be preferable not to use the —u compiler
option until the class definition has stabilized.

The Interface Repository Framework 7-3

7.3 Managing Interface Repository files

Just as the number of interface definitions contained in a single IDL source file is optional,
similarly, the number of IDL files compiled into one interface repository file is also at the
programmer’s discretion. Commonly, however, all interfaces needed for a single project or
class framework are kept in one interface repository.

The SOM IR file “som.ir”

The SOMobjects Toolkit includes an Interface Repository file (“som.ir”) that contains objects
describing all of the types, classes, and methods provided by the various frameworks of the
SOMobjects Toolkit. Since all new classes will ultimately be derived from these predefined
SOM classes, some of this information also needs to be included in a programmer’s own
interface repository files.

For example, suppose a new class, called “MyClass”, is derived from SOMObject. When the
SOM Compiler builds an Interface Repository for “MyClass”, that IR will also include all of the
information associated with the SOMODbject class. This happens because the SOMObject
class definition is inherited by each new class; thus, all of the SOMObject methods and
typedefs are implicitly contained in the new class as well.

Eventually, the process of deriving new classes from existing ones would lead to a great deal of
duplication of information in separate interface repository files. This would be inefficient, waste-
ful of space, and extremely difficult to manage. For example, to make an evolutionary change to
some class interface, a programmer would need to know about and subsequently update all of
the interface repository files where information about that interface occurred.

One way to avoid this dilemma would be to keep all interface definitions in a single interface
repository (such as “som.ir”). This is not recommended, however. A single interface repository
would soon grow to be unwieldy in size and become a source of frequent access contention.
Everyone involved in developing class definitions would need update access to this one file, and
simultaneous uses might result in longer compile times.

Managing IRs via the SOMIR environment variable

The SOMobjects Toolkit offers a more flexible approach to managing interface repositories.
The SOMIR environment variable can reference an ordered list of separate IR files, which
process from left to right. Taken as a whole, however, this gives the appearance of a single,
logical interface repository. A programmer accessing the contents of “the interface repository”
through the SOM Interface Repository framework would not be aware of the division of informa-
tion across separate files. It would seem as though all of the objects resided in a single interface
repository file.

A typical way to utilize this capability is as follows:

e The first (leftmost) Interface Repository in the SOMIR list would be “som.ir”. This file
contains the basic interfaces and types needed in all SOM classes.

e The second file in the list might contain interface definitions that are used globally across
a particular enterprise.

e A third interface repository file would contain definitions that are unique to a particular
department, and so on.

e The final interface repository in the list should be set aside to hold the interfaces needed
for the project currently under development.

Developers working on different projects would each set their SOMIR environment variables to
hold slightly different lists. For the most part, the leftmost portions of these lists would be the
same, but the rightmost interface repositories would differ. When any given developer is ready
to share his/her interface definitions with other people outside of the immediate work group, that
person’s interface repository can be promoted to inclusion in the master list.

With this arrangement of IR files, the more stable repositories are found at the left end of the list.
For example, a developer should never need to make any significant changes to “som.ir”,
because these interfaces are defined by IBM and would only change with a new release of the
SOMobjects Toolkit.

7-4 SOMobjects Base Toolkit User’s Guide

The Interface Repository Framework only permits updates in the rightmost file of the SOMIR
interface repository list. That is, when the SOM Compiler —u flag is used to update the Interface
Repository, only the final file on the IR list will be affected. The information in all preceding
interface repository files is treated as “read only”. Therefore, to change the definition of an
interface in one of the more global interface repository files, a developer must overtly construct
a special SOMIR list that omits all subsequent (that is, further to the right) interface repository
files, or else petition the owner of that interface to make the change.

It is important that the rightmost filename in the SOMIR interface repository list not appear
elsewhere in the list. For example, the following setting for SOMIR:

$SOMBASES$\ETC\SOM. IR; SOM. IR; C:\IR\COMPANY.IR; SOM. IR

would cause problems when attempting to update the SOM.IR file, because SOM.IR appears
twice in the list.

Here is an example that illustrates the use of multiple IR files with the SOMIR environment
variable. In this example, the SOMBASE environment variable represents the directory in which
the SOMobjects Toolkit files have been installed. Only the “myown.ir” interface repository file
will be updated with the interfaces found in files “myclassi.idl”, “myclass2.idl”, and “my-
class3.idl”.

For OS/2:

set BASE_IRLIST=%SOMBASE%\IR\SOM.IR;C:\IR\COMPANY.IR;C:\IR\DEPT10.IR
set SOMIR=%BASE_IRLIST%;D:\MYOWN.IR

set

SMINCLUDE=. ; $SOMBASE%\INCLUDE; C: \COMPANY\INCLUDE; C: \DEPT10\INCLUDE
sc —usir myclassl

sc -usir myclass2

sc -usir myclass3

For AIX:

export BASE_TIRLIST=$SOMBASE/ir/som.ir:/usr/local/ir/company.ir:\
/usr/local/ir/deptl0.1ir

export SOMIR=$BASE_IRLIST:~/myown.ir

export SMINCLUDE=. :$SOMBASE/INCLUDE:/usr/local/company/include:\
/usr/local/deptl0/include

sc —usir myclassl

sc —usir myclass2

sc -usir myclass3

For Windows:

The following example (of multiple IR files with the SOMIR environment variable) will work
correctly only if it is executed from within a .BAT file. (Otherwise, the %BASE_IRLIST% is not
interpreted but is taken literally.)

set BASE_IRLIST=%SOMBASE%\IR\SOM.IR;C:\IR\COMPANY.IR;C:\IR\DEPT10.IR
set SOMIR=%BASE_IRLIST%;D:\MYOWN.IR

set

SMINCLUDE=. ; $SOMBASE%\INCLUDE; C: \COMPANY\INCLUDE; C: \DEPT10\INCLUDE
somc -usir myclassl

somc —-usir myclass2

somc -usir myclass3

Placing ‘private’ information in the Interface Repository
When the SOM Compiler updates the Interface Repository in response to the —u flag, it uses all
of the information available from the IDL source file. However, ifthe _ PRIVATE__ preprocessor
variable is used to designate certain portions of the IDL file as private, the preprocessor actually
removes that information before the SOM Compiler sees it. Consequently, private information
will not appear in the Interface Repository unless the —p compiler option is also used in
conjunction with —u. For example:

sc —up myclassl (On AlX or OS/2)
somc —-up myclassl (On Windows)

The Interface Repository Framework 7-5

This command will place all of the information in the “myclass1.idl” file, including the private
portions, in the Interface Repository.

If you are using tools that understand SOM and rely on the Interface Repository to describe the
types and instance datain your classes, you may need to include the private sections from your
IDL source files when building the Interface Repository.

7-6 SOMobjects Base Toolkit User’s Guide

7.4 Programming with the Interface Repository Objects

The SOM Interface Repository Framework provides an object-oriented programming interface
to the IDL information processed by the SOM Compiler. Unlike many frameworks that require
you to inherit their behavior in order to use it, the Interface Repository Framework is useful in its
own right as a set of predefined objects that you can access to obtain information. Of course, if
you need to subclass a class to modify its behavior, you can certainly do so; but typically this is
not necessary.

The SOM Interface Repository contains the fully-analyzed (compiled) contents of all informa-
tion in an IDL source file. This information takes the the form of persistent objects that can be
accessed from a running program. There are ten classes of objects in the Interface Repository
that correspond directly to the major elements in IDL source files; in addition, one instance of
another class exists outside of the IR itself, as follows:

Contained — All objects in the Interface Repository are instances of
classes derived from this class and exhibit the common
behavior defined in this interface.

Container — Some objects in the Interface Repository hold (or contain)
other objects. (For example, a module [ModuleDef] can
contain an interface [InterfaceDef].) All Interface Reposi-
tory objects that hold other objects are instances of classes
derived from this class and exhibit the common behavior
defined by this class.

ModuleDef — Aninstance of this class exists for each module defined in
an IDL source file. ModuleDefs are Containers, and they
can hold ConstantDefs, TypeDefs, ExceptionDefs, In-
terfaceDefs, and other ModuleDefs.

InterfaceDef — Aninstance of this class exists for each interface namedin
an IDL source file. (One InterfaceDef corresponds to one
SOM class.) InterfaceDefs are Containers, and they
can hold ConstantDefs, TypeDefs, ExceptionDefs,
AttributeDefs, and OperationDefs.

AttributeDef — Aninstance of this class exists for each attribute defined in
an IDL source file. AttributeDefs are found only inside of
(contained by) InterfaceDefs.

OperationDef — An instance of this class exists for each operation (meth-
od) defined in an IDL source file. OperationDefs are Con-
tainers that can hold ParameterDefs. OperationDefs are
found only inside of (contained by) InterfaceDefs.

ParameterDef — Aninstance of this class exists for each parameter of each
operation (method) defined in an IDL source file. Parame-
terDefs are found only inside of (contained by) Operation-
Defs.

TypeDef — An instance of this class exists for each typedef, struct,
union, or enum defined in an IDL source file. TypeDefs
may be found inside of (contained by) any Interface Repos-
itory Container except an OperationDef.

ConstantDef — An instance of this class exists for each constant defined
in an IDL source file. ConstantDefs may be found inside
(contained by) of any Interface Repository Container ex-
cept an OperationDef.

ExceptionDef — Aninstance of this class exists for each exception defined
in an IDL source file. ExceptionDefs may be found inside
of (contained by) any Interface Repository Container ex-
cept an OperationDef.

The Interface Repository Framework 7-7

Repository — One instance of this class exists for the entire SOM Inter-
face Repository, to hold IDL elements that are global in
scope. The instance of this class does not, however, reside
within the IR itself.

Methods introduced by Interface Repository classes

The Interface Repository classes introduce nine new methods, which are briefly described
below. Many of the classes simply override methods to customize them for the corresponding
IDL element; this is particularly true for classes representing IDL elements that are only
contained within another syntactic element. Full descriptions of each method are found in the
SOMobjects Developer Toolkit: Programmers Reference Manual.

» Contained class methods (all IR objects are instances of this class and exhibit this behavior):

describe — Returns a structure of type Description containing all in-
formation defined in the IDL specification of the syntactic
element corresponding to the target Contained object. For
example, for a target InterfaceDef object, the describe
method returns information about the IDL interface decla-
ration. The Description structure contains a “name” field
with an identifier that categorizes the description (such as,
“InterfaceDescription”) and a “value” field holding an “any”
structure that points to another structure containing the IDL
information for that particular element (in this example, the
interface’s IDL specifications).

within — Returns a sequence designating the object(s) of the IR
within which the target Contained object is contained. For
example, for atarget TypeDef object, it might be contained
within any other IR object(s) except an OperationDef ob-
ject.

 Container class methods (some IR objects contain other objects and exhibit this behavior):

contents — Returns a sequence of pointers to the object(s) of the IR
that the target Container object contains. (For example,
for a target InterfaceDef object, the contents method
returns a pointer to each IR object that corresponds to a
part of the IDL interface declaration.) The method provides
options for excluding inherited objects or for limiting the
search to only a specified kind of object (such as Attribute-
Defs).

describe_contents — Combines the describe and contents methods; returns a
sequence of ContainerDescription structures, one for
each object contained by the target Container object.
Each structure has a pointer to the related object, as well
as “name” and “value” fields resulting from the describe
method.

lookup_name — Returns a sequence of pointers to objects of a given name
contained within a specified Container object, or within
(sub)objects contained in the specified Container object.

¢ ModuleDef class methods:

— Override describe and within.

¢ InterfaceDef class methods:

describe_interface — Returns a description of all methods and attributes of a
given interface definition object that are held in the Inter-
face Repository.

— Also overrides describe and within.

7-8 SOMobjects Base Toolkit User’s Guide

o AttributeDef class method:

— Overrides describe.
* OperationDef class method:

— Overrides describe.
* ParameterDef class method:

— Overrides describe.
¢ TypeDef class method:

— Overrides describe.
» ConstantDef class method:

— Overrides describe.
* ExceptionDef class method:

— Overrides describe.
* Repository class methods:

lookup_id — Returns the Contained object that has a specified Repo-
sitoryld.
lookup_modifier — Returns the string value held by a SOM or user-defined

modifier, given the name and type of the modifier, and the
name of the object that contains the modifier.

release_cache — Releases, from the internal object cache, the storage used
by all currently unreferenced Interface Repository objects.

Accessing objects in the Interface Repository

As mentioned above, one instance of the Repository class exists for the entire SOM Interface
Repository. This object does not, itself, reside in the Interface Repository (hence it does not
exhibit any of the behavior defined by the Contained class). It is, however, a Container, and it
holds all ConstantDefs, TypeDefs, ExceptionDefs, InterfaceDefs, and ModuleDefs that are
global in scope (that is, not contained inside of any other Containers).

When any method provided by the Repository class is used to locate other objects in the
Interface Repository, those objects are automatically instantiated and activated. Consequently,
when the program is finished using an object from the Interface Repository, the client code
should release the object using the somFree method.

All objects contained in the Interface Repository have both a “name” and a “Repository ID”
associated with them. The name is not guaranteed to be unique, but it does uniquely identify an
object within the context of the object that contains it. The Repository ID of each object is
guaranteed to uniquely identify that object, regardless of its context.

For example, two TypeDef objects may have the same name, provided they occur in separate
name scopes (ModuleDefs or InterfaceDefs). In this case, asking the Interface Repository to
locate the TypeDef object based on its name would result in both TypeDef objects being
returned. On the other hand, if the name is looked up from a particular ModuleDef or Interface-
Def object, only the TypeDef object within the scope of that ModuleDef or InterfaceDef would
be returned. By contrast, once the Repository ID of an object is known, that object can always
be directly obtained from the Repository object via its Repository ID.

C or C++programmers can obtain an instance of the Repository class using the Repository-
New macro. Programmers using other languages (and C/C++ programmers without static
linkage to the Repository class) should invoke the method somGetinterfaceRepository on
the SOMClassMgrObject. For example,

For C or C++ (static linkage):

#include <repostry.h>
Repository repo;

repo = RepositoryNew () ;

The Interface Repository Framework 7-9

From other languages (and for dynamic linkage in C/C++):

1. Use the somEnvironmentNew function to obtain a pointer to the SOMClassMgrOb-
ject, as described in Chapter 3, “Using SOM Classes in Client Programs.”

2. Use the somResolve or somResolveByName function to obtain a pointer to the som-
GetlInterfaceRepository method procedure.

3. Invoke the method procedure on the SOMClassMgrObject, with no additional argu-
ments, to obtain a pointer to the Repository object.

After obtaining a pointer to the Repository object, use the methods it inherits from Container
or its own lookup_id method to instantiate objects in the Interface Repository. As an example,
the contents method shown in the C fragment below activates every object with global scope in
the Interface Repository and returns a sequence containing a pointer to every global object:

#include <containd.h>

Environment *ev;
int i;

/* Behavior common to all IR objects */

sequence (Contained) everyGlobalObject;

ev = SOM_CreatelocalEnvironment () ;

/* Get an environment to use */

printf (”"Every global object in the Interface Repository:\n”);

everyGlobalObject

= Container_contents (repo, ev, "all”, TRUE);

for (i=0; i < everyGlobalObject._length; i++) {
Contained aContained;

aContained = (Contained) everyGlobalObject._buffer[i];

printf (”Name:

%$s, Id: %s\n”,

Contained__ _get_name (aContained, ev),
Contained__get_id (aContained, ev));
SOMObject_somFree (aContained);

Taking this example one step further, here is a complete program that accesses every object in
the entire Interface Repository. It, too, uses the contents method, but this time recursively calls
the contents method until every object in every container has been found:

#include <stdio.h>
#include <containd
#include <repostry

void showContainer

main ()

{

int count = 0;

.h>
.h>

(Container ¢, int *next);

Repository repo;

repo = RepositoryNew ();

printf ("Every
showContainer

object in the Interface Repository:\n\n”);
((Container) repo, &count);

SOMObject_somFree (repo);
printf (”%d objects found\n”, count);

exit (0);
}

void showContainer

{

(Container ¢, int *next)

Environment *ev;

int 1i;

sequence (Contained) everyObject;

ev = SOM_CreateLocalEnvironment (); /* Get an environment */

everyObject =

7-10 SOMobijects Base Toolkit User’s Guide

Container_contents (c, ev, "all”, TRUE);

for (i=0; i<everyObject._length; i++) {
Contained aContained;

(*next) ++;
aContained = (Contained) everyObject._buffer[i];
printf (”%6d. Type: %-12s id: %$s\n”, *next,
SOMOb ject_somGetClassName (aContained),
Contained__get_id (aContained, ev));
if (SOMObject_somIsA (aContained, _Container))
showContainer ((Container) aContained, next);
SOMObject_somFree (aContained);

}

Once an object has been retrieved, the methods and attributes appropriate for that particular
object can then be used to access the information contained in the object. The methods
supported by each class of object in the Interface Repository, as well as the classes them-
selves, are documented in the SOMobjects Developer Toolkit: Programmers Reference Manu-
al.

A word about memory management

Several conventions are built into the SOM Interface Repository with regard to memory man-
agement. You will need to understand these conventions to know when it is safe and appropri-
ate to free memory references and also when it is your responsibility to do so.

All methods that access attributes (such as, the _get_<attribute> methods) always return
either simple values or direct references to data within the target object. This is necessary
because these methods are heavily used and must be fast and efficient. Consequently, you
should never free any of the memory references obtained through attributes. This memory will
be released automatically when the object that contains it is freed.

For all methods that give out object references (there are five: within, contents, look-
up_name, lookup_id, and describe_contents), when finished with the object, you are ex-
pected to release the object reference by invoking the somFree method. (This is illustrated in
the sample program that accesses all Interface Repository objects.) Do not release the object
reference until you have either copied or finished using all of the information obtained from the
object.

The describe methods (describe, describe_contents, and describe_interface) return
structures and sequences that contain information. The actual structures returned by these
methods are passed by value (and hence should only be freed if you have allocated the memory
used to receive them). However, you may be required to free some of the information contained
in the returned structures when you are finished. Consult the specific method in the SOMob-
jects Developer Toolkit: Programmers Reference Manual for more details about what to free.

During execution of the describe and lookup methods, sometimes intermediate objects are
activated automatically. These objects are kept in an internal cache of objects that are in use,
but for which no explicit object references have been returned as results. Consequently, there is
no way to identify or free these objects individually. However, whenever your program is
finished using all of the information obtained thus far from the Interface Repository, invoking the
release cache method causes the Interface Repository to purge its internal cache of these
implicitly referenced objects. This cache will replenish itself automatically if the need to do so
subsequently arises.

Using TypeCode pseudo-objects

Much of the detailed information contained in Interface Repository objects is represented in the
form of TypeCodes. TypeCodes are complex data structures whose actual representation is
hidden. A TypeCode is an architected way of describing in complete detail everything that is
known about a particular data type in the IDL language, regardless of whether it is a (built-in)
basic type or a (user-defined) aggregate type.

The Interface Repository Framework ~ 7-11

Conceptually, every TypeCode contains a “kind” field (which classifies it), and one or more
parameters that carry descriptive information appropriate for that particular category of Type-
Code. For example, if the data type is long, its TypeCode would contain a “kind” field with the
value tk_long. No additional parameters are needed to completely describe this particular data
type, since long is a basic type in the IDL language.

By contrast, if the TypeCode describes an IDL struct, its “kind” field would contain the value
tk_struct, and it would possess the following parameters: a string giving the name of the struct,
and two additional parameters for each member of the struct: a string giving the member name
and another (inner) TypeCode representing the member’s type. This example illustrates the
fact that TypeCodes can be nested and arbitrarily complex, as appropriate to express the type
of data they describe. Thus, a structure that has N members will have a TypeCode of tk_struct
with 2N+1 parameters (a name and TypeCode parameter for each member, plus a name for
the struct itself).

A tk_union TypeCode representing a union with N members has 3N+2 parameters: the type
name of the union, the switch TypeCode, and a label value, member name and associated
TypeCode for each member. (The label values all have the same type as the switch, except that
the default member, if present, has a label value of zero octet.)

A tk_enum TypeCode (which represents an enum) has N+1 parameters: the name of the
enum followed by a string for each enumeration identifier. A tk_string TypeCode has a single
parameter: the maximum string length, as an integer. (A maximum length of zero signifies an
unbounded string.)

A tk_sequence TypeCode has two parameters: a TypeCode for the sequence elements, and
the maximum size, as an integer. (Again, zero signifies unbounded.)

A tk_array TypeCode has two parameters: a TypeCode for the array elements, and the array
length, as an integer. (Arrays must be bounded.)

The tk_objref TypeCode represents an object reference; its parameter is a repository ID that
identifies its interface.

A complete table showing the parameters of all possible TypeCodes is given in the SOMob-
jects Developer Toolkit Programmers Reference Manual; see the TypeCode_kind function of
the Interface Repository Framework.

TypeCodes are not actually “objects” in the formal sense. TypeCodes are referred to in the
CORBA standard as pseudo-objects and described as “opaque”. This means that, in reality,
TypeCodes are special data structures whose precise definition is not fully exposed. Their
implementation can vary from one platform to another, but all implementations must exhibit a
minimal set of architected behavior. SOM TypeCodes support the architected behavior and
have additional capability as well (for example, they can be copied and freed).

Although TypeCodes are not objects, the programming interfaces that support them adhere to
the same conventions used for IDL method invocations in SOM. That is, the first argument is
always a TypeCode pseudo-object, and the second argument is a pointer to an Environment
structure. Similarly, the names of the TypeCode functions are constructed like SOM’s C-lan-
guage method—invocation macros (all functions that operate on TypeCodes are named Type-
Code_<function—name>). Because of this ostensible similarity to an IDL class, the TypeCode
programming interfaces can be conveniently defined in IDL as shown below.

interface TypeCode {

enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array,

// The remaining enumerators are SOM-unique extensions
// to the CORBA standard.
//
tk_pointer, tk_self, tk_foreign
bi

7-12 SOMobijects Base Toolkit User’s Guide

exception Bounds {};

// This exception is returned if an attempt is made
// by the parameter () operation (described below) to
// access more parameters than exist in the receiving
// TypeCode.

boolean equal (in TypeCode tc);

// Compares the argument with the receiver and returns TRUE
// 1f both TypeCodes are equivalent. This is NOT a test for
// identity.

TCKind kind () ;
// Returns the type of the receiver as a TCKind.

long param_count ();
// Returns the number of parameters that make up the
// receiving TypeCode.

any parameter (in long index) raises (Bounds);
// Returns the indexed parameter from the receiving TypeCode.

// Parameters are indexed from 0 to param_count ()-1.

//

// The remaining operations are SOM-unique extensions.
//

short alignment ();

// This operation returns the alignment required for an instance
// of the type described by the receiving TypeCode.

TypeCode copy (in TypeCode tc);
// This operation returns a copy of the receiving TypeCode.

void free (in TypeCode tc);

// This operation frees the memory associated with the

// receiving TypeCode. Subsequently, no further use can be
// made of the receiver, which, in effect, ceases to exist.

void print (in TypeCode tc);

// This operation writes a readable representation of the
// receiving TypeCode to stdout. Useful for examining

// TypeCodes when debugging.

void setAlignment (in short align);
// This operation overrides the required alignment for an
// instance of the type described by the receiving TypeCode.

long size (in TypeCode tc);

// This operation returns the size of an instance of the
// type represented by the receiving TypeCode.

i

A detailed description of the programming interfaces for TypeCodes is given in the SOMobjects
Developer Toolkit: Programmers Reference Manual.

Providing ‘alignment’ information
In addition to the parameters in the TypeCodes that describe each type, a SOM-unique
extension to the TypeCode functionality allows each TypeCode to carry alignment information
as a “hidden” parameter. Use the TypeCode_alignment function to access the alignment
value. The alignment value is a short integer that should evenly divide any memory address
where an instance of the type will occur.

If no alignment information is provided in your IDL source files, all TypeCodes carry default
alignment information. The default alignment for a type is the natural boundary for the type,
based on the natural boundary for the basic types of which it may be composed. This informa-
tion can vary from one hardware platform to another. The TypeCode will contain the default
alignment information appropriate to the platform where it was defined.

The Interface Repository Framework 7-13

To provide alignment information for the types and instances of types in your IDL source file, use
the “align=N" modifier, where N is your specified alignment. Use standard modifier syntax of the
SOM Compiler to attach the alignment information to a particular elementin the IDL source file.
In the following example, a1ign=1 (that is, unaligned or no alignment) is attached to the struct
“abc” and to one particular instance of struct “def” (the instance data item “y”).

interface 1 {

struct abc {
long a;
char b;
long c;

}i

struct def {
char 1;
long m;

}i

void foo ();

implementation {

//# instance data
abc x;
def vy;
def z;

//# alignment modifiers
abc: align=1;
y: align=1;
}i
}i
Be aware that assigning the required alignment information to a type does not guarantee that
instances of that type will actually be aligned as indicated. To ensure that, you must find a way to
instruct your compiler to provide the desired alignment. In practice, this can be difficult exceptin
simple cases. Most compilers can be instructed to treat all data as aligned (that is, default
alignment) or as unaligned, by using a compile-time option or #pragma. The more important
consideration is to make certain that the TypeCodes going into the Interface Repository
actually reflect the alignment that your compiler provides. This way, when programs (such as
the DSOM Framework) need to interpret the layout of data during their execution, they will be
able to accurately map your data structures. This happens automatically when using the normal
default alignment.

If you wish to use unaligned instance data when implementing a class, place an “unattached”
align=1 modifierinthe implementation section. An unattached a1ign=n modifieris presumed
to pertain to the class’s instance data structure, and will by implication be attached to all of the
instance data items.

When designing your own public types, be aware that the best practice of all (and the one that
offers the best opportunity for language neutrality) is to lay out your types carefully so that it will
make no difference whether they are compiled as aligned or unaligned!

Using the ‘tk_foreign’ TypeCode
TypeCodes can be used to partially describe types that cannot be described in IDL (for
example, a FILE type in C, or a specific class type in C++). The SOM-unique extension tk_for-
eign is used for this purpose. A tk_foreign TypeCode contains three parameters:

1. The name of the type,
2. An implementation context string, and
3. Alength.

7-14 SOMobjects Base Toolkit User’s Guide

The implementation context string can be used to carry an arbitrarily long description that
identifies the context where the foreign type can be used and understood. If the length of the
type is also known, it can be provided with the length parameter. If the length is not known or is
not constant, it should be specified as zero. If the length is not specified, it will default to the size
of a pointer. A tk_foreign TypeCode can also have alignment information specified, just like
any other TypeCode.

Using the following steps causes the SOM Compiler to create a foreign TypeCode in the
Interface Repository:

1. Define the foreign type as a typedef SOMFOREIGN in the IDL source file.

2. Use the #pragma modifier statement to supply the additional information for the
TypeCode as modifiers. The implementation context information is supplied
using the “impctx” modifier.

3. Compile the IDL file using the —u option to place the information in the Interface
Repository.

For example:

typedef SOMFOREIGN Point;
#pragma modifier Point: impctx="C++ Point class”,length=12,align=4;

If a foreign type is used to define instance data, structs, unions, attributes, or methods in an
IDL source file, itis your responsibility to ensure that the implementation and/or usage bindings
contain an appropriate definition of the type that will satisfy your compiler. You can use the
passthru statement in your IDL file to supply this definition. However, it is not recommended
that you expose foreign data in attributes, methods, or any of the public types, if this can be
avoided, because there is no guarantee that appropriate usage binding information can be
provided for all languages. If you know that all users of the class will be using the same
implementation language that your class uses, you may be able to disregard this recommenda-
tion.

TypeCode constants
TypeCodes are actually available in two forms: In addition to the TypeCode information
provided by the methods of the Interface Repository, TypeCode constants can be generated by
the SOM Compiler in your C or C++ usage bindings upon request. A TypeCode constant
contains the same information found in the corresponding IR TypeCode, but has the advantage
that it can be used as a literal in a C or C++ program anywhere a normal TypeCode would be
acceptable.

TypeCode constants have the form TC_<typename>, where <typename> is the name of a
type (that is, a typedef, union, struct, or enum) that you have defined in an IDL source file. In
addition, all IDL basic types and certain types dictated by the OMG CORBA standard come with
pre-defined TypeCode constants (such as TC_long, TC_short, TC_char, and so forth). A full
list of the pre-defined TypeCode constants can be found in the file “somtcnst.h”. You must
explicitly include this file in your source program to use the pre-defined TypeCode constants.

Since the generation of TypeCode constants can increase the time required by the SOM
Compiler to process your IDL files, you must explicitly request the production of TypeCode
constants if you need them. To do so, use the “tcconsts” modifier with the —m option of the sc or
somc command. For example, the command

sc -sh -mtcconsts myclass.idl (On AIX or Windows)
somc -sh -mtcconsts myclass.idl (On Windows)

will cause the SOM Compiler to generate a “myclass.h” file that contains TypeCode constants
for the types defined in “myclass.idl”.

Using the IDL basic type ‘any’
Some Interface Repository methods and TypeCode functions return information typed as the
IDL basic type any. Usually this is done when a wide variety of different types of data may need
to be returned through a common interface. The type any actually consists of a structure with
two fields: a _type field and a _value field. The _value field is a pointer to the actual datum that
was returned, while the _type field holds a TypeCode that describes the datum.

The Interface Repository Framework 7=-15

In many cases, the context in which an operation occurs makes the type of the datum apparent.
If so, there is no need to examine the TypeCode unless it is simply as a consistency check. For
example, when accessing the first parameter of a tk_struct TypeCode, the type of the result
will always be the name of the structure (a string). Because this is known ahead of time, there is
no need to examine the returned TypeCode in the any _type field to verify that it is a tk_string
TypeCode. You can justrely on the fact thatit is a string; or, you can check the TypeCode in the
_type field to verify it, if you so choose.

An IDL any type can be used in an interface as a way of bypassing the strong type checking that
occurs in languages like ANSI C and C++. Your compiler can only check that the interface
returns the any structure; it has no way of knowing what type of data will be carried by the any
during execution of the program. Consequently, in order to write C or C++ code that accesses
the contents of the any correctly, you must always cast the _value field to reflect the actual type
of the datum at the time of the access.

Here is an example of a code fragment written in C that illustrates how the casting must be done
to extract various values from an any:

#include <som.h> /* For "any” & "Environment” typedefs */
#include <somtc.h> /* For TypeCode_kind prototype */

any result;
Environment *ev;

printf (“"result._value = ");
switch (TypeCode_kind (result._type, ev)) {

case tk_string:
printf (”%$s\n”, *((string *) result._value));
break;

case tk_long:
printf (”%1d\n”, *((long *) result._value));
break;

case tk_boolean:
printf (”%d\n”, *((boolean *) result._value));
break;

case tk_float:
printf (”%f\n”, *((float *) result._value));
break;

case tk_double:
printf (”%f\n”, *((double *) result._value));
break;

default:
printf (”something else!\n”);

}

Note: Of course, an any has no restriction, per se, on the type of datum that it can carry.
Frequently, however, methods that return an any or that accept an any as an argument do place
semantic restrictions on the actual type of data they can accept or return. Always consult the
reference page for a method that uses an any to determine whether it limits the range of types
that may be acceptable.

7-16 SOMobjects Base Toolkit User’s Guide

Chapter 8. The Metaclass Framework

In SOM, classes are objects. Metaclasses are classes and thus are objects, too. Figure 1
depicts the relationship of these sets of objects. Included are the three primitive class objects of
the SOM run time: SOMClass, SOMObject, and SOMClassMgr.

Primitive objects of the SOM run time

Set of Objects

Set of Classes

Set of Metaclasses

Y 7 N\
SOMClassMgr iO@ect
A

Legend:

instance—of subclass—of

SOMClassMgrObject
LR N0 00
metaclass class ordinary object

Figure 1. The primitive objects of the SOM run time.

The important point to observe here is that any class that is a subclass of SOMClass is a
metaclass. This chapter describes metaclasses that are available in SOMobjects Toolkit. There
are two kinds of metaclasses:

Framework metaclasses — metaclasses for building new metaclasses, and
Utility metaclasses — metaclasses to help you write applications.

Briefly, the SOMobjects Toolkit provides the following metaclasses of each category for use by
programmers:

e framework metaclasses:

SOMMBeforeAfter — Used to create a metaclass that has “before” and “after”
methods for all methods (inherited or introduced) invoked
on instances of its classes.

e Utility metaclasses:
SOMMSinglelnstance — Used to create a class that may have at most one instance.
SOMMTraced — Provides tracing for every invocation of all methods on

instances of its classes.

The diagram in Figure 2 depicts the relationship of these metaclasses to SOMClass (for
completeness, the figure includes the metaclasses that are derived). The following sections
describe each metaclass more fully. The ellipses indicate that there are additional metaclasses
being used that are not part of the public interface.

The Metaclass Framework 8-1

Metaclass Framework class organization

7\
S

7N\
SOMMBeforeAfter

S\

(72}
O>
=
p— o o (@)
<n_:
(7
»

SOMMSinglelnstance

Legend: instance—of subclass—of U

O O O

metaclass class ordinary object

Figure 2. Class organization of the Metaclass Framework.

A note about metaclass programming

SOM metaclasses are carefully constructed so that they compose (see Section 8.1 below). If
you need to create a metaclass, you can introduce new class methods, and new class variables,
but you should not override any of the methods introduced by SOMClass. If you need more than
this, request access to the experimental Cooperative metaclass used to implement the Meta-
class Framework metaclasses described in this chapter.

8-2 SOMobjects Base Toolkit User’s Guide

8.1 Framework Metaclasses for “Before/After” Behavior
The ‘SOMMBeforeAfter’ metaclass

SOMMBeforeAfter is a metaclass that allows the user to create a class for which a particular
method is invoked before each invocation of every method, and for which a second method is
invoked after each invocation. SOMMBeforeAfter defines two methods: sommBeforeMe-
thod and sommAfterMethod. These two methods are intended to be overridden in the child of
SOMMBeforeAfter to define the particular “before” and “after” methods needed for the client
application.

As further depicted in Figure 3, the “Barking” metaclass overrides the sommBeforeMethod
and sommAfterMethod with a method that emits one bark when invoked. Thus, one can create
the “BarkingDog” class, whose instances (such as “Lassie”) bark twice when “disturbed” by a
method invocation.

A hierarchy of metaclasses 7\
SOMMBeforeAfter
N\~

/
Y\

A N

7 Legen instance—of subclass—of

s O O

metaclass class ordinary object

Figure 3. A hierarchy of metaclasses

The SOMMBeforeAfter metaclass is designed to be subclassed; a subclass (or child) of
SOMMBeforeAfter is also a metaclass. The subclass overrides sommBeforeMethod or
sommAfterMethod or both. These (redefined) methods are invoked before and after any
method supported by instances of the subclass (these methods are called primary methods).
That is, they are invoked before and after methods invoked on the ordinary objects that are
instances of the class objects that are instances of the subclass of SOMMBeforeAfter.

The sommBeforeMethod returns a boolean value. This allows the “before” method to control
whether the “after” method and the primary method get invoked. If sommBeforeMethod
returns TRUE, normal processing occurs. If FALSE is returned, neither the primary method nor
the corresponding sommAfterMethod is invoked. In addition, no more deeply nested before/
after methods are invoked (see “Composition of before/after metaclasses” below). This facility
can be used, for example, to allow a before/after metaclass to provide secure access to an
object. The implication of this convention is that, if sommBeforeMethod is going to return
FALSE, it must do any post-processing that might otherwise be done in the “after” method.

Caution: somlnit and somFree are among the methods that get before/after behavior. This
implies the following two obligations are imposed on the programmer of a SOMMBeforeAfter
class. First, the implementation must guard against sommBeforeMethod being called before
somlnit has executed, and the object is not yet fully initialized. Second, the implementation
must guard against sommAfterMethod being called after somFree, at which time the object no
longer exists (see the example “C implementation for ‘Barking’ metaclass” below).

The Metaclass Framework 8-3

The following example shows the IDL needed to create a Barking metaclass. Just run the
appropriate emitter to get an implementation binding, and then provide the appropriate “before”
behavior and “after” behavior.

SOM IDL for ‘Barking’ metaclass

#ifndef Barking_idl
#define Barking_idl

#include <sombacls.idl>
interface Barking : SOMMBeforeAfter
{
#ifdef ___SOMIDL__ _
implementation
{
//# Class Modifiers
filestem = barking;
callstyle = idl;

//# Method Modifiers
sommBeforeMethod : override;
sommAfterMethod : override;

bi

#endif /* __SOMIDL__ */

bi

#endif /* Barking_idl */

The next example shows an implementation of the Barking metaclass in which no barking
occurs when somFree is invoked.

C implementation for ‘Barking’ metaclass

fdefine Barking_Class_Source
#include <barking.ih>

static char *somMN_somFree "somFree”;
static somId somId_somFree = &somMN_somFree;

SOM_Scope boolean SOMLINK sommBeforeMethod (Barking somSelf,
Environment *ev,
SOMObject obiject,
somId methodId,
va_list ap)

if (!somCompareIlds(methodId, somId_somFree)
printf ("WOOE"”);

SOM_Scope void SOMLINK sommAfterMethod (Barking somSelf,
Environment *ev,
SOMObject object,
somId methodId,
somId descriptor,
somToken returnedvalue,
va_list ap)

if (!somComparelds(methodId, somId_somFree)
printf ("WOOF");

8-4 SOMobjects Base Toolkit User’s Guide

Composition of before/after metaclasses

Consider Figure 4 in which there are two before/after metaclasses — “Barking” (as before) and
“Fierce”, which has a sommBeforeMethod and sommAfterMethod that both growl! (that is,
both make a “grrrr” sound when executed). The preceding discussion demonstrated how to
create a “FierceDog” or a “BarkingDog”, but has not yet addressed the question of how to
compose these properties of fierce and barking. Composability means having the ability to
easily create either a “FierceBarkingDog” that goes “grrr woof woof grrr” when it responds to a
method call or a “BarkingFierceDog” that goes “woof grrr grrr woof” when it responds to a
method call.

Example for composition of A\
before/after metaclasses SOMMBeforeAfter
7 N\
Fierce Barking

Legend: T mstance—of subclass—of

@ O FierceDog
X—r

metaclass class ordinary object

Figure 4. Example for composition of before/after metaclasses.

There are several ways to express such compositions. Figure 5 depicts SOM IDL fragments for
three techniques in which composition can be indicated by a programmer. These are denoted
as Technique 1, Technique 2, and Technique 3, each of which creates a “FierceBarkingDog”
class, named “FB-17, “FB-2”, and “FB-3", respectively, as follows:

« In Technique 1, a new metaclass (“FierceBarking”) is created with both the “Fierce” and
“Barking” metaclasses as parents. An instance of this new metaclass (thatis, “FB-17) is a
“FierceBarkingDog” (assuming “Dog” is a parent).

* InTechnique 2, a new class is created which has parents that are instances of “Fierce” and
“Barking” respectively. That is, “FB-2” is a “FierceBarkingDog” also (assuming “Fierce-
Dog” and “BarkingDog” do not further specialize “Dog”).

« In Technique 3, “FB-3”, which also is a “FierceBarkingDog”, is created by declaring that its
parentis a “BarkingDog” and that its explicit (syntactically declared) metaclass is “Fierce”.

Technique 1 Technique 2 Technique 3
interface FB-1 : Dog interface FB-2 : FierceDog, interface FB-3 : BarkingDog
{ BarkingDog {

{
implementation implementation
{ implementation {
metaclass = FierceBarking; { metaclass = Fierce;
I |3 |8
I I I

Figure 5. Three techniques for composing before/after metaclasses.

The Metaclass Framework 8-5

Figure 6 combines the diagrams for the techniques in Figure 5 and shows the actual class
relationships. Note that the explicit metaclass in the SOM IDL of “FB-1" is its derived class,
“FierceBarking”. The derived metaclass of “FB-2” is also “FierceBarking”. Lastly, the
derived metaclass of “FB-3” is not the metaclass explicitly specified in the SOM IDL; rather, it
too is “FierceBarking.”

SOMMBeforeAfter
N\

7\

FierceBarking

T

Figure 6. The combined diagram depicting the three techniques for creating a “FierceBarkingDog”.

Notes and advantages of ‘before/after’ usage
Notes on the dispatching of before/after methods:

¢ A before (after) method is invoked just once per primary method invocation.
e The dispatching of before/after methods is thread-safe.

e The dispatching of before/after methods is fast. The time overhead for dispatching a primary
method is on the order of Ntimes the time to invoke a before/after method as a procedure,
where N is the total number of before/after methods to be applied.

In conclusion, consider an example that clearly demonstrates the power of the composition of
before/after metaclasses. Suppose you are creating a class library that will have n classes.
Further suppose there are p properties that must be included in all combinations for all classes.
Potentially, the library must have n2P classes. Let us hypothesize that (fortunately) all these
properties can be captured by before/after metaclasses. In this case, the size of the library is
n+p.

The user of such a library need only produce those combinations necessary for a given
application. In addition, note that there is none of the usual programming. Given the IDL for a
combination of before/after metaclasses, the SOM compiler generates the implementation of
the combination (in either C or C++) with no further manual intervention.

8-6 SOMobjects Base Toolkit User’s Guide

8.2 The ‘SOMMSinglelnstance’ Metaclass

Sometimes it is necessary to define a class for which only one instance can be created. This is
easily accomplished with the SOMMSinglelnstance metaclass. Suppose the class “Collie” is
an instance of SOMMSinglelnstance. The first call to CollieNew creates the one possible
instance of “Collie”; hence, subsequent calls to CollieNew return the first (and only) instance.

Any class whose metaclass is SOMMSinglelnstance gets this requisite behavior; nothing
further needs to be done. The firstinstance created is always returned by the <className>New
macro.

Alternatively, the method sommGetSinglelnstance does the same thing as the <class-
Name>New macro. This method invoked on a class object (for example, “Collie”) is useful
because the call site explicitly shows that something special is occurring and that a new object is
not necessarily being created. For this reason, one might prefer the second form of creating a
single-instance object to the first.

Instances of SOMMSinglelnstance keep a count of the number of times somNew and somm-
GetSinglelnstance are invoked. Each invocation of somFree decrements this count. An
invocation of somFree does not actually free the single instance until the count reaches zero.

SOMMSinglelnstance overrides somRenew, somRenewNolnit, somRenewNolnitNoZero,
and somRenewNoZero so that a proxy is created in the space indicated in the somRenew*
call. This proxy redispatches all methods to the single instance, which is always allocated in
heap storage. Note that all of these methods (somRenew*) increment the reference count;
therefore, somFree should be called on these objects, too. In this case, somFree decrements
the reference and frees the single instance (and, of course, takes no action with respect to the
storage indicated in the original somRenew* call).

If a class is an instance of SOMMSinglelnstance, all of its subclasses are also instances of
SOMMSinglelnstance. Be aware that this also means that each subclass is allowed to have
only a single instance. (This may seem obvious. However, it is a common mistake to create a
framework class that must have a single instance, while at the same time expecting users of the
framework to subclass the single instance class. The result is that two single-instance objects
are created: one for the framework class and one for the subclass. One technique that can
mitigate this scenario is based on the use of somSubstituteClass. In this case, the creator of
the subclass must substitute the subclass for the framework class — before the instance of the
framework class is created.)

The Metaclass Framework 8-7

8.3 The ‘SOMMTraced’ Metaclass

SOMMTraced is a metaclass that facilitates tracing of method invocations. If class “Collie” is an
instance of SOMMTraced (if SOMMTraced is the metaclass of “Collie”), any method invoked
on an instance of “Collie” is traced. That is, before the method begins execution, a message
prints (to standard output) giving the actual parameters. Then, after the method completes
execution, a second message prints giving the returned value. This behavior is attained merely
by being an instance of the SOMMTraced metaclass.

If the class being traced is contained in the Interface Repository, actual parameters are printed
as part of the trace. If the class is not contained in the Interface Repository, an ellipsis is printed.

To be more concrete, consider Figure 7. Here, the class “Collie” is a child of “Dog” and is an
instance of SOMMTraced. Because SOMMTraced is the metaclass of “Collie,” any method
invoked on “Lassie” (an instance of “Collie”) is traced.

All methods invoked on “Collie”
are traced Vi

SOMMBeforeAfter

SOMMTraced

P . —— e c—
- Legend'instance—of subclass—of

~ oNe

metaclass class ordinary object

Figure 7. All methods (inherited or introduced) that are invoked on “Collie” are traced.

It is easy to use SOMMTraced: Just make a class an instance of SOMMTraced in order to get
tracing.

There is one more step for using SOMMTraced: Nothing prints unless the environment variable
SOMM_TRACED is set. If it is set to the empty string, all traced classes print. If SOMM_TRACED is
not the empty string, it should be set to the list of names of classes that should be traced. For
example, the following command turns on printing of the trace for “Collie”, but not for any other
traced class:

export SOMM_TRACED=Collie (on AIX)
SET SOMM_TRACED=Collie (on 0S/2 or Windows)

8-8 SOMobjects Base Toolkit User’s Guide

The example below shows the IDL needed to create a traced dog class: Just run the appropriate
emitter to get an implementation binding.

SOM IDL for ‘TracedDog’ class

#include "dog.idl”
#include <somtrcls.idl>
interface TracedDog : Dog
{
#ifdef _ SOMIDL_
implementation
{
//# Class Modifiers
filestem = trdog;
metaclass = SOMMTraced;
}i
#endif /* __SOMIDL__ */
}i

The Metaclass Framework 8-9

8.4 Error Codes

It is possible to receive the following messages from the Metaclass Framework while an
application is running.

60001 An attempt was made to construct a class with SOMMSinglelnstance as a
metaclass constraint. (This may occur indirectly because of the construction of
a derived metaclass). The initialization of the class failed because somlInitMI-
Class defined by SOMMSinglelnstance is in conflict with another metaclass
that has overridden somNew. That is, some other metaclass has already
claimed the right to return the value for somNew.

60002 An attempt was made to construct a class with SOMMSinglelnstance as a
metaclass constraint. (This may occur indirectly because of the construction of
a derived metaclass). The initialization of the class failed because somlInitMI-
Class defined by SOMMSinglelnstance is in conflict with another metaclass
that has overridden somFree. That is, some other metaclass has already
claimed this right to override somFree.

60004 Aninvocation of somrReplnit was made with alogging type other than ‘o’ or ‘v’.

60005 The sommBeforeMethod or the sommAfterMethod was invoked on a
SOMRReplicableObject whose logging type is other than ‘o’ or ‘'v’. This error
cannot occur normally. The likely cause is that some method invoked on anoth-
er object has overwritten this object’s memory.

60006 A Before/After Metaclass must override both sommBeforeMethod and som-
mAfterMethod. This message indicates an attempt to create a Before/After
Metaclass where only one of the above methods is overridden.

8-10 SOMobjects Base Toolkit User’s Guide

Chapter 9. The Event Management Framework

The Event Management Framework is a central facility for registering all events of an applica-
tion. Such a registration facilitates grouping of various application events and waiting on multi-
ple events in a single event-processing loop. This facility is used by the DSOM Framework to
wait on events of interest. The Event Management Framework must also be used by any
interactive application that contains DSOM or replicated objects.

The Event Management Framework 9-1

9.1 Event Management Basics

The Event Management Framework consists of an Event Manager (EMan) class, a Registration
Data class and several Event classes. It provides a way to organize various application events
into groups and to process all events in a single event-processing loop. The need for this kind of
facility is seen very clearly in interactive applications that also need to process some back-
ground events (say, messages arriving from a remote process). Such applications must main-
tain contact with the user while responding to events coming from other sources.

One solution in a multi-threaded environment is to have a different thread service each different
source of events. For a single-threaded environment it should be possible to recognize and
process all events of interest in a single main loop. EMan offers precisely this capability. EMan
can be useful even when multiple threads are available, because of its simple programming
model. It avoids contention for common data objects between EMan event processing and
other main-loop processing activity.

Model of EMan usage

The programming model of EMan is similar to that of many GUI toolkits. The main program
initializes EMan and then registers interest in various types of events. The main program ends
by calling a non-returning function of EMan that waits for events and dispatches them as and
when they occur. In short, the model includes steps that:

1. Initialize the Event Manager,
2. Register with EMan for all events of interest, and
3. Hand over control to EMan to loop forever and to dispatch events.

The Event Manager is a SOM object and is an instance of the SOMEEMan class. Since any
application requires only one instance of this object, the SOMEEMan class is an instance of the
SOMMSinglelnstance class. Creation and initialization of the Event Manager is accomplished
by a function call to SOMEEmanNew.

Currently, EMan supports the four kinds of events described in the following topic. An applica-
tion can register or unregister for events in a callback routine (explained below) even after
control has been turned over to EMan.

Note: Under Windows, a single event processing loop must necessarily incorporate the pro-
gram’s message processing loop. See “Processing Events” below for a description of how this is
accomplished by EMan.

Event types
Event types are categorized as follows:

* Timer events
These can be either one-time timers or interval timers.

¢ Sink events (sockets, file descriptors, and message queues)

On AlX, this includes file descriptors for input/output files, sockets, pipes, and message
queues. On OS/2 and Windows, only TCP/IP sockets are supported.

Note: On OS/2 and Windows, the Sockets classes for NetBIOS (NBSockets) and Novell
IPX/SPX (IPXSockets) are primarily intended for use by DSOM and the Replication
Framework, not for general application programming. (The Replication Framework is
available as part of the full-capability SOMobjects Developer Toolkit.)

¢ Client events (any event that the application wants to queue with EMan)

These events are defined, created, processed, and destroyed by the application. EMan
simply acts as a place to queue these events for processing. EMan dispatches these client
events whenever it sees them. Typically, this happens immediately after the event is
queued.

¢ Work procedure events (procedures that can be called when there is no other event)

These are typically background procedures that the application intends to execute when
there are spare processor cycles. When there are no other events to process, EMan calls
all registered work procedures.

9-2 SOMobjects Base Toolkit User’s Guide

The Event Management Framework is extendible (that is, other event types can be added to it)
through subclassing. The event types currently supported by EMan are at a sufficiently low level
so as to enable building other higher level application events on top of them. For example, you
can build an X-event handler by simply registering the file descriptor for the X connection with
EMan and getting notified when any X-event occurs.

Registration

This topic illustrates how to register for an event type.

Callbacks

The programmer decides what processing needs to be done when an event occurs and then
places the appropriate code either in a procedure or in a method of an object. This procedure
or method is called a callback. (The callback is provided to EMan at the time of registration and
is called by EMan when a registered event occurs.) The signature of a callback is fixed by the
framework and must have one of the following three signatures:

void SOMLINK EMRegProc (SOMEEvent, wvoid *);
void SOMLINK EMMethodProc (SOMObject, SOMEEvent, void *);
void SOMLINK EMMethodProcEv (SOMObject, Environment *Ev,
SOMEEvent, wvoid *);
/* On 0S/2, they all use ”"system” linkage */
/* On Windows, the SOMLINK keyword is NOT included if the
* application is intended to support multiple instances. */

The three specified prototypes correspond to a simple callback procedure, a callback method
using OIDL call style, and a callback method using IDL call style. The parameter type SOMEEv-
ent refers to an event object passed by EMan to the callback. Event objects are described
below.

Note: When the callbacks are methods, EMan calls these methods using Name-lookup
Resolution (see Chapter 4, Section 4.3 on Method Resolution). One of the implications is that
at the time of registration EMan queries the target object’s class object to provide a method
pointer for the method name supplied to it. Eman uses this pointer for making event callbacks.

Event classes
All event objects are instances of either the SOMEEvent class or a subclass of it. The hierar-
chy of event classes is as follows:

SOMObiject SOMEEvent

SOMETimerEvent
SOMECIlientEvent
SOMESinkEvent
SOMEWorkProcEvent

When called by EMan, a callback expects the appropriate event instance as a parameter. For
example, a callback registered for a timer event expects a SOMETimerEvent instance from
EMan.

EMan parameters
Several method calls in the Event Management Framework make use of bit masks and
constants as parameters (for example, EMSinkEvent or EMInputReadMask). These methods
are defined in the include file “eventmsk.h”. When a user plans to extend the Event Manage-
ment Framework, care must be taken to avoid name and value collisions with the definitions in
“eventmsk.h”. For convenience, the contents of the “eventmsk.h” file are shown below.

The Event Management Framework 9-3

#ifndef H_EVENTMASKDEF
#define H_EVENTMASKDEF

/* Event Types */

#define EMTimerEvent 54
#define EMSignalEvent 55
#define EMSinkEvent 56
#define EMWorkProcEvent 57
#define EMClientEvent 58
#define EMMsgQEvent 59

/* Sink input/output condition mask */

#define EMInputReadMask (1L<<0)
#define EMInputWriteMask (1L<<1)
#define EMInputExceptMask (1L<<2)

/* Process Event mask */

#define EMProcessTimerEvent ()
#define EMProcessSinkEvent ()
#define EMProcessWorkProcEvent (1L<<2)
#define EMProcessClientEvent ()
#define EMProcessAllEvents ()

#endif /* H_EVENTMASKDEF */

Registering for events
In addition to the event classes, the Event Management Framework uses a registration data
class (SOMEEMRegisterData) to capture all event-related registration information. The proce-
dure for registering interest in an event is as follows:

1. Create an instance of the SOMEEMRegisterData class (this will be referred to as
a “RegData” object).

2. Set the event type of “RegData.”

3. Setthevarious fields of “RegData” to supply information about the particular event for
which an interest is being registered.

4. Call the registration method of EMan, using “RegData” and the callback method
information as parameters. The callback information varies, depending upon wheth-
er it is a simple procedure, a method called using OIDL call style, or a method called
using IDL call style.

The following code segment illustrates how to register input interest in a socket “sock” and
provide a callback procedure “ReadMsg”.

data = SOMEEMRegisterDataNew (); /* create a RegData object */
_someClearRegData (data, Ev);
_someSetRegDataEventMask (data, Ev, EMSinkEvent,NULL); /* Event type */
_someSetRegDataSink (data, Ev, sock); /* provide the socket id */
_someSetRegDataSinkMask (data,Ev, EMInputReadMask);
/*input interest */
regld = _someRegisterProc (some_gEMan, Ev, data,
(EMRegProc *) ReadMsg, "UserData”);
/* some_gEMan points to EMan. The last parameter "userData” is any
* data the user wants to be passed to the callback procedure as a
* second parameter */

9-4 SOMobjects Base Toolkit User’s Guide

Unregistering for events

One can unregister interest in a given event type at any time. To unregister, you must provide
the registration id returned by EMan at the time of registration. Unregistering a non-existent
event (such as, an invalid registration id) is a no-op. The following example unregisters the
socket registered above:

_someUnRegister (some_gEMan, Ev, regId);

An example callback procedure
The following code segment illustrates how to write a callback procedure:

void SOMLINK ReadMsg(SOMEEvent event, void *targetData)
{
int sock;
printf (”"Data = %s\n”, targetData);
switch(_somevGetEventType (event)) {
case EMSinkEvent:
printf (”“callback: Perceived Sink Event\n”);

sock = _somevGetEventSink (event) ;
/* code to read the message off the socket */
break;

default: printf (”"Unknown Event type in socket callback\n”);
}

/* On 0S/2, "system” linkage is also required. */
/* On Windows, callbacks do not use the SOMLINK keyword if
* the application is intended to support multiple instances. */

Generating client events

While the other events are caused by the operating system (for example, Timer), by I/O devices,
or by external processes, client events are caused by the application itself. The application
creates these events and enqueues them with EMan. When client events are dispatched, they
are processed in a callback routine just like any other event. The following code segment
illustrates how to create and enqueue client events.

clientEventl = SOMEClientEventNew () ; /* create a client event */
_somevSetEventClientType (clientEventl, Ev, "“"MyClientType”);
_somevSetEventClientData(clientEventl, Ev,

"I can give any data here”);
/* assuming that ”“MyClientType” is already registered with EMan */
/* enqueue the above event with EMan */
_someQueueEvent (some_gEMan, Ev, clientEventl);

Examples of using other events

The sample program shipped with the Event Management Framework illustrates the tasks
listed below. (Due to its large size, the source code is not included here.)

 Registering and unregistering for Timer events.
¢ Registering and unregistering for Workproc events.

* Registering an AlIX Message Queue, sending messages on it, and unregistering the
Message Queue.

 Registering a stream socket that listens to incoming connection requests. Also, sockets
connecting, accepting a connection, and sending/receiving messages through EMan.

* Registering a file descriptor on AlX and reading one line of the file at a time in a callback.

Processing events

After all registrations are finished, an application typically turns over control to EMan and is
completely event driven thereafter. Typically, an application main program ends with the follow-
ing call to EMan:

_someProcessEvents (some_gEMan, Ev);

The Event Management Framework 9-5

An equivalent way to process events is to write a main loop and call someProcessEvent from
inside the main loop, as indicated:

while (1) { /* do forever */
_someProcessEvent (some_gEMan, Ev, EMProcessTimerEvent |
EMProcessSinkEvent |
EMProcessClientEvent |
EMProcessWorkProcEvent);
/*** Do other main loop work, as needed. ***/

}

The second way allows more precise control over what type of events to process in each call.
The example above enables all four types to be processed. The required subset is formed by
logically OR’ing the appropriate bit constants (these are defined in “eventmsk.h)”. Another
difference is that the second way is a non-blocking call to EMan. Thatis, if there are no events to
process, control returns to the main loop immediately, whereas someProcessEvents is a
non-returning blocking call. For most applications, the first way of calling EMan is better, since it
does not waste processor cycles when there are no events to process.

For Windows:

The _someProcessEvents method incorporates a standard window-message-processing
loop into its event processing loop. In order to allow timer events to operate, messages are
retrieved using PeekMessage rather than GetMessage. If you do not wish to use timer events,
or if you want to perform other processing in your message loop (such as, translating accelera-
tors), then you should use _someProcessEvent, as follows:

while (GetMessage (&msg, NULL, NULL, NULL))
{

if (!TranslateAccelerator (hwndMain, haccel, &msg))
{

TranslateMessage (&msqg) ;

DispatchMessage (&msq) ;
}

_someProcessEvent (some_gEMan, Ev, EMProcessTimerEvent |
EMProcessSinkEvent |
EMProcessClientEvent |
EMProcessWorkProcEvent);

Interactive applications

Note: This topic does not apply to SOMobjects For Windows, as user input is processed in
the message loop that is incorporated into EMan.

Interactive applications need special attention when coupled with EMan. Once control is turned
over to EMan by calling someProcessEvents, a single-threaded application (for example, on
AIX) has no way of responding to keyboard input. The user must register interest in “stdin” with
EMan and provide a callback function that handles keyboard input. In a multi-threaded environ-
ment (for example, 0S/2), this problem can be solved by spawning a thread to execute some-
ProcessEvents and another to handle keyboard input. (These two options are illustrated in the
sample program shipped with the Event Management Framework.)

9-6 SOMobjects Base Toolkit User’s Guide

9.2 Event Manager Advanced Topics

Threads and thread safety

As indicated earlier, on OS/2, interactive programs call someProcessEvents in one thread and
process keyboard input in a separate thread. (This recommended usage is illustrated in the
sample program). The event manager object (EMan) is thread safe in the sense that concurrent
method invocations on EMan are serialized. Even when someProcessEvents is invoked in a
thread and other methods of EMan are invoked from other threads, EMan still preserves its data
integrity. However, when Eman dispatches an event, a callback can call methods on the same
data objects as the other interactive thread(s). The user must protect such data objects using
appropriate concurrency control techniques (for example by using semaphores).

One must also be aware of some deadlock possibilities. Consider the following situation. EMan
code holds some SOMobjects Toolkit semaphores while it is running (for example, while in
someProcessEvents). A user-defined object protects its data by requiring its methods to
acquire and release a sempahore on the object. If a separate thread running in this object were
to call an operation that requires a SOMobjects Toolkit semaphore (which is currently held by
EMan) and if concurrently EMan dispatches an event whose callback invokes a method of this
object, a deadlock occurs. Two possibilities exist to cope with such a situation: One is to acquire
all needed semaphores ahead of time, and the other is to abort the operation when you fail to
obtain a semaphore. To achieve mutual exclusion with EMan, you can call the methods some-
GetEManSem and someReleaseEmanSem. These methods acquire and release the SO-
Mobject Developer Toolkit semaphores that EMan uses.

Writing an X or MOTIF application

Although the Event Manager does not recognize X events, an X or MOTIF application can be
integrated with EMan as follows. First, the necessary initialization of X or MOTIF should be
performed. Next, using the Xlib macro “ConnectionNumber” or the “XConnectionNumber”
function, you can obtain the file descriptor of the X connection. This file descriptor can be
registered with EMan as a sink. It can be registered for both input events and exception events.
When there is any activity on this X file descriptor, the developer-provided callback is invoked.
The callback can receive the X-event, analyze it, and do further dispatching.

Extending EMan

The current event manager can be extended without having access to the source code. The use
of EMan in an X or MOTIF application mentioned above is just one such example. Several other
extensions are possible. For example, new event types can be defined by subclassing either
directly from SOMEEvent class or from any of its subclasses in the framework. There are three
main problems to solve in adding a new event type:

» How to register a new event type with EMan?
* How to make EMan recognize the occurrence of the new event?

« How to make EMan create and send the new event object (a subclass of SOMEEvent) to
the callback when the event is dispatched?

Because the registration information is supplied with appropriate “set” methods of a RegData
object, the RegData object should be extended to include additional methods. This can be
achieved by subclassing from SOMEEMRegisterData and building a new registration data
class that has methods to “set” and “get” additional fields of information that are needed to
describe the new event types fully. To handle registrations with instances of new registration
data subclass, we must also subclass from SOMEEMan and override the someRegister and
the someUnRegister methods. These methods should handle the information in the new fields
introduced by the new registration data class and call parent methods to handle the rest.

The Event Management Framework 9-7

Making EMan recognize the occurrence of the new event is primarily limited by the primitive
events EMan can wait on. Thus the new event would have to be wrapped in a primitive event that
EMan canrecognize. Forexample, to wait on a message queue on OS/2 concurrently with other
EMan events, a separate thread can be made to wait on the message queue and to enqueue a
client event with EMan when a message arrives on this message queue. We can thus bring
multiple event sources into the single EMan main loop.

The third problem of creating new event objects unknown to EMan can be easily done by
applying the previous technique of wrapping the new event in terms of a known event. In a
callback routine of the known event, we can create and dispatch the new event unknown to
EMan. Of course, this does introduce an intermediate callback routine which would not be
needed if EMan directly understood the new event type.

A general way of extending EMan is to look for newly defined event types by overriding
someProcessEvent and someProcessEvents in a subclass of EMan.

Using EMan from C++

The Event Management framework can be used from C++ just like any other framework in the
SOMobjects Toolkit. You must ensure that the C++ usage bindings (that is, the .xh files) are
available for the Event Management Framework classes. These .xh files are generated by the
SOM Compiler in the SOMobjects Toolkit when the -s option includes an xh emitter.

Using EMan from other languages

The event manager and the other classes can be used from other languages, provided usage
bindings are available for them. These usage bindings are produced from .idl files of the
framework classes by the appropriate language emitter.

Tips on using EMan
The following are some do’s and don’ts for EMan:

e Eman callback procedures or methods must return quickly. You cannot wait for long
periods of time to return from the callbacks. If such long delays occur, then the applica-
tion may not notice some subsequent events in time to process them meaningfully (for
example, a timer event may not be noticed until long after it occurred).

« [t follows from the previous tip that you should not do independent “select” system calls on
file descriptors while inside a callback. (This applies to sockets and message queues, as
well.) In general, a callback should not do any blocking of system calls. If an application
must do this, then it must be done with a small timeout value.

e Since EMan callbacks must return quickly, no callback should wait on a semaphore
indefinitely. If a callback has to obtain some semaphores during its processing, then the
callback should try to acquire all of them at the very beginning, and should be prepared
to abort and return to EMan if it fails to acquire the necessary semaphores.

¢ EMan callback methods are called using name-lookup resolution. Therefore, the parame-
ters to an EMan registration call must be such that the class object of the object parameter
must be able to provide a pointer to the method indicated by the method parameter.
Although this requirement is satisfied in a majority of cases, there are exceptions. For
example, if the object is a proxy (in the DSOM sense) to a remote object, then the “real”
class object cannot provide a meaningful method pointer. Also note that, when somDis-
patch is overridden, the effect of such an override will not apply to the callback from
EMan. Do not use a method callback in these situations; instead, use a procedure call-
back.

9-8 SOMobjects Base Toolkit User’s Guide

9.3 Limitations

The presentimplementation of the Event Management framework has the limitations described
below. For a more up-to-date list of limitations, refer to the README file on EMan in the
SOMobjects Developer Toolkit.

e EMan supports registering a maximum of 64 AIX message queues.

e EMan can only wait on file descriptors (including files, pipes, sockets, and message
queues) on AlX, and socket identifiers on OS/2 and Windows.

e EMan supports registering a maximum of FILENO (the AIX limit on maximum number of
open files) file descriptors on AIX. On OS/2 and Windows, the maximum number of socket
identifiers depends on the underlying Sockets class.

Use of EMan DLL

The Event Manager Framework uses a Sockets “select” call to wait on multiple sockets. . Atthe
time of EMan creation, the SOMEEMan class object loads one of the Sockets subclass DLLs,
based on the value of the environment variable SOMSOCKETS. This environment variable
should name the implementation class of sockets (see Appendix C describing the Sockets
abstract class and the specific implementation DLLs available with the SOMobjects Toolkit.)
The current choices for this environment variable are TCPIPSockets (and TCPIPSockets32
for OS/2), NBSockets, and IPXSockets.

The Event Management Framework 9-9

9-10 SOMobjects Base Toolkit User’s Guide

Appendix A. SOMobjects Error Codes

SOMobjects Error Codes A-1

SOM Kernel Error Codes

Following are error codes with messages/explanations for the SOM kernel and the various
frameworks of the SOMobjects Developer Toolkit.

Value
20011

20029
20039
20049

20059

20069

20079

20089
20099
20109
20119
20121
20131
20149
20159

20169

20179
20189
20199
20219

20229

Symbolic Name and Description

SOMERROR_CCNuliClass
The somDescendedFrom method was passed a null class argument.

SOMERROR_SompntOverflow
The internal buffer used in somPrintf overflowed.

SOMERROR_MethodNotFound
somFindMethodOk failed to find the indicated method.

SOMERROR_StaticMethodTableOverflow
A Method-table overflow occurred in somAddStaticMethod.

SOMERROR_DefaultMethod
The somDefaultMethod was called; a defined method probably was not added before
it was invoked.

SOMERROR_MissingMethod
The specified method was not defined on the target object.

SOMERROR_BadVersion
An attempt to load, create, or use a version of a class-object implementation is
incompatible with the using program.

SOMERROR_Nullid
The SOM_Checkld was given a null ID to check.

SOMERROR_OutOfMemory
Memory is exhausted.

SOMERROR_TestObjectFailure
The somObjectTest found problems with the object it was testing.

SOMERROR_FailedTest
The somTest detected a failure; generated only by test code.

SOMERROR_ClassNotFound
The somFindClass could not find the requested class.

SOMERROR_OIldMethod
An old-style method name was used; change to an appropriate name.

SOMERROR_CouldNotStartup
The somEnvironmentNew failed to complete.

SOMERROR_NotRegistered
The somUnloadClassFile argument was not a registered class.

SOMERROR_BadOverride
The somOverrideSMethod was invoked for a method that was not defined in a parent
class.

SOMERROR_NotimplementedYet
The method raising the error message is not implemented yet.

SOMERROR_MustOverride
The method raising the error message should have been overridden.

SOMERROR_BadArgument
An argument to a core SOM method failed a validity test.

SOMERROR_NoParentClass
During the creation of a class object, the parent class could not be found.

SOMERROR_NoMetaClass
During the creation of a class object, the metaclass object could not be found.

A-2 SOMobjects Base Toolkit User’s Guide

DSOM Error Codes

The following table lists the error codes that may be encountered when using DSOM. (Obsolete
messages have been removed, thus message numbers do not compose a full sequence.)

Value Description
30001 SOMDERROR_NoMemory

Memory is exhausted.
30002 SOMDERROR_Notimplemented

Function or method has a null implementation.
30004 SOMDERROR_IO

I/0O error while accessing a file located in SOMDDIR.
30008 SOMDERROR_HostAddress

Unable to retrieve local host address.
30019 SOMDERROR_NoMessages

No messages available (and caller specified “no wait”).
30020 SOMDERROR_UnknownAddress

Invalid client or server address.
30023 SOMDERROR_CommTimeOut

Communications timeout. Make sure the DSOM daemon is running.
30026 SOMDERROR_NoHostName

Unable to get host name.
30029 SOMDERROR_BadEnvironment

Invalid Environment value in request message.
30031 SOMDERROR_BadNVList

Invalid Named Value List (NVList).
30032 SOMDERROR_BadFlag

Bad flag in NVList item.
30033 SOMDERROR_BadLength

Bad length in NVList item.
30034 SOMDERROR_BadObjref

Invalid object reference.
30036 SOMDERROR_UnknownReposlid

Attempt to use invalid Interface Repository identifier.
30037 SOMDERROR_NVListAccess

Invalid NVList object in request message.
30038 SOMDERROR_NVIndexError

Attempt to use an out-of-range NVList index.
30039 SOMDERROR_SysTime

Error retrieving system time.
30041 SOMDERROR_CouldNotStartProcess

System error: Unable to start a new process.
30042 SOMDERROR_NoServerClass

No SOMDServer (sub)class specified for server implementation.
30043 SOMDERROR_NoSOMDInit

SOM or DSOM has not been initialized.
30045 SOMDERROR_NolmplDatabase

Could not open Implementation Repository database.
30046 SOMDERROR_ImpINotFound

Implementation not found in implementation repository.

SOMobjects Error Codes A-3

30047

30048

30049

30050

30052

30053

30055

30056

30059

30060

30061

30062

30063

30064

30065

30066

30072

30089

30090

30091

30092

30093

30096

SOMDERROR_ClassNotFound

Class not found in implementation repository.
SOMDERROR_ServerNotFound

Server not found in somdd'’s active server table.
SOMDERROR_ServerAlreadyExists

Server already exists in somdd’s active server table.
SOMDERROR_ServerNotActive

Server is not active.

SOMDERROR_ObjectNotFound

Could not find desired object.
SOMDERROR_NoParentClass

Unable to find / load parent class during proxy class creation.
SOMDERROR_BadTypeCode

Invalid type code.

SOMDERROR_BadDesctiptor

Invalid method descriptor.

SOMDERROR_KeyNotFound

Internal object key not found.
SOMDERROR_CtxInvalidPropName

lllegal context property name.
SOMDERROR_CtxNoPropFound

Could not find property name in context.
SOMDERROR_CtxStartScopeNotFound

Could not find specified context start scope.
SOMDERROR_CtxAccess

Error accessing context object.
SOMDERROR_CouldNotStartThread

System error: Unable to start a new thread.
SOMDERROR_AccessDenied

System error: Access to a system resource (file, queue, shared
memory, etc.) is denied.

SOMDERROR_BadParm

Invalid parameter supplied to an operating system call.
SOMDERROR_NoSpace

System error: No space left on device.
SOMDERROR_WrongRefType

Operation attempted on an object reference is incompatible with the
reference type.

SOMDERROR_MustOverride

This method has no default implementation and must be overridden.
SOMDERROR_NoSocketsClass

Could not find/load Sockets class.
SOMDERROR_EManRegData

Unable to register DSOM events with the Event Manager.
SOMDERROR_NoRemoteComm

Remote communications is disabled (for Workstation DSOM).
SOMDERROR_GlobalAtomError

On Windows only, an error occurred while adding a segment name to
the Windows atom table.

A-4 SOMobjects Base Toolkit User’s Guide

30097 SOMDERROR_NamedMemoryTableError
On Windows only, an error occurred while creating or deleting a
(named) shared memory segment.

30098 SOMDERROR_WMQUIT
On Windows only, indicates DSOM received a Windows WM_QUIT
message. The developer of a server application should check for
SOMDERROR_WMQUIT returned from method execute_request_loop
and handle the error by cleaning up and exiting.

30105 SOMDERROR_DuplicatelmplEntry
Implementation repository identifier already exists. Add wait time
between ‘regimpl’ calls.

30106 SOMDERROR_InvalidSOMSOCKETS
SOMSOCKETS environment variable set inorrectly.
30107 SOMDERROR_IRNotFound
Interface Repository not found.
30108 SOMDERROR_ClassNotInIR
Attempt to create an object whose Class is not in the Interface Repository.
30110 SOMDERROR_SocketError

A communications socket error has occurred. Make sure the DSOM
daemon is running.

30111 SOMDERROR_PacketError

A communications packet error has occurred.
30112 SOMDERROR_Marshal

A marshalling error has occurred.
30113 SOMDERROR_NotProcessOwner

On AIX only, the server cannot be killed because you are not the
process owner.

30114 SOMDERROR_Serverinactive
The requested server is not running.
30115 SOMDERROR_ServerDisabled

The server has been disabled by the program servmgr.

XXXXX SOMDERROR_OperatingSystem
On AlX, this is the value of the C error variable “errno” defined in errno.h;
on OS/2 and Windows, it is the DOS API return code.

SOMobjects Error Codes A-5

A-6 SOMobjects Base Toolkit User’s Guide

specification

definition

module

interface

interface_dcl

inheritance

export

scoped_name

const_dcl

const_type

const_expr

or_expr

XOr_expr

and_expr

shift_expr

add_expr

mult_expr

Appendix B. SOM IDL Language Grammar

[comment] definition+

type_dcl
const_dcl
interface

module
pragma_stm

comment
comment
comment

[]
[]
[]
[]

comment

module identifier [comment]

{ [comment]

definition+ }

interface identifier
interface_dcl

interface identifier [inheritance] [comment]
{ [comment] export* } [comment]

. scoped_name {, scoped_name}*

type_dcl j [comment]

const_dcl y [comment]

attr_dcl ; [comment]

op_dcl ; [comment]

implementation_body , [comment]
pragma_stm

identifier

.« identifer

scoped_name .. identifer

const const_type identifier = const_expr

integer_type

char_type

boolean_type
floating_ pt_type

string type
scoped_name

or_expr

XOr__expr

or_expr | xor_expr

and_expr

xor_expr *

shift_expr
and_expr &

add_expr
shift_expr
shift_expr

mult_expr
add_expr +
add_expr -

unary_expr

and_expr

shift_expr

>> add_expr
<< add_expr

mult_expr
mult_expr

mult_expr * unary_expr
mult_expr [/ unary_expr
mult_expr % unary_expr

SOM IDL Language Grammar B-1

unary_expr ! unary_operator primary_expr
| primary_expr

unary_operator : -

primary_expr : scoped_name
| literal
| (const_expr)

literal : Integer_literal
| string literal
| character_ literal
| floating pt_literal
| boolean_literal

type_dcl : typedef type declarator
| constr_type_spec

type_declarator : type_spec declarator {, declarator}*

type_spec : simple_type spec
| constr_type_ spec

simple_type spec : base_type_spec
| template_type_spec
| scoped_name

base_type_spec : floating pt_type
integer_type
char_type
boolean_type
octet_type
any_type
voidptr_type

template_type spec : sequence_type
| string_ type

constr_type_ spec : Struct_type
| union_type
| enum_type

declarator : [stars] std _declarator

std_declarator : simple _declarator
| complex_declarator

simple_declarator : identifier
complex_declarator : array_declarator
array_declarator : simple _declarator fixed _array_size+t
fixed array_size : [const_expr]
floating_pt_type : float
| double
integer_type : signed_int

| unsigned_int

signed_1int : long
| short

B-2 SOMobjects Base Toolkit User’s Guide

unsigned_int : unsigned signed_int

char_type : char

boolean_type : boolean

octet_type : octet

any_type : any

voidptr_type : void stars

struct_type : (struct|exception) identifier
| (struct|exception) [comment]

{ [comment] member* }
member : type_declarator , [comment]

union_type : union identifier
| union identifier switch
(switch _type_spec) [comment]
{ [comment] case+ }

switch_type_spec : Integer_type
| char_type
| boolean_type
| enum_type
| scoped_name

case : case_label+ element_spec 5 [comment]
case_label : case const_expr . [comment]
| default :© [comment]
element__spec : type_spec declarator
enum_type : enum identifier { identifier

{, identifier}* [comment] }

sequence_type : sequence < simple type spec , const_expr >
| sequence < simple_type_spec >

string type : string < const_expr >
| string
attr_dcl : [readonly] attribute simple type spec

declarator {, declarator}*

op_dcl : [oneway] op_type spec [stars] identifier
parameter_dcls [raises_expr] [context_expr]

op_type_spec : simple_type spec
| wvoid
parameter_dcls : (param_dcl {, param dcl}* [comment])
()
param_dcl : param_attribute simple type_spec declarator
param_attribute : in
| out
| inout
raises_expr : raises (scope_name+)

SOM IDL Language Grammar B-3

context_expr : context (context_string {, context_string}*)

implementation_body : implementation [comment]
{ [comment] implementation+ }

implementation : modifier stm
| pragma_stm
| passthru
| member
pragma_stm : #pragma modifier modifier_ stm

| #pragma somtemittypes on
| #pragma somtemittypes off

modifier stm : smidentifier . [modifier {, modifier}*] ,
[comment]

| modifier j [comment]
modifier : smidentifier

| smidentifier = modifier_value

modifier_value : smidentifier
| string literal
| integer_literal

| keyword
passthru : passthru identifier = string literal+ ,
[comment]
smidentifier : identifer
| _identifier
stars | *+

B-4 SOMobjects Base Toolkit User’s Guide

Appendix C. Implementing Sockets Subclasses

Distributed SOM (DSOM) requires basic message services for inter-process communications.
The Event Management Framework must be integrated with the same communication services
in order to handle communications events.

To maximize their portability to a wide variety of local area network transport protocols, the
DSOM and Event Management Frameworks have been written to use a common communica-
tions interface, which is implemented by one or more SOM class libraries using available local
protocols.

The common communications interface is based on the “sockets” interface used with TCP/IP,
since its interface and semantics are fairly widespread and well understood. The IDL interface is
named Sockets. There is no implementation associated with the Sockets interface by default;
specific protocol implementations are supplied by subclass implementations.

Note: The Sockets classes supplied with the SOMobjects Developer Toolkit and Enabler
packages are only intended to support the DSOM and Event Management
Frameworks. These class implementations are not intended for general application

usage.
Available Sockets subclasses by SOMobjects product are as follows:

e For AlX:
TCPIPSockets class for TCP/IP,
IPXSockets class for NetWare IPX/SPX, and
NBSockets class for NetBIOS.

e For OS/2 and Windows:
TCPIPSockets class (a) for TCP/IP for Windows or (b) for TCP/IP 1.2.1 on OS/2,
TCPIPSockets32 class for TCP/IP 2.0 on OS/2 only (see Note below),
IPXSockets class for NetWare IPX/SPX, and
NBSockets class for NetBIOS.

Note: The TCPIPSockets32 class gives greater performance overthe TCPIPSockets class on
0S/2, but requires the 32-bit version of TCP/IP (version 2.0) rather than the 16-bit
version of TCP/IP (version 1.2.1).

Application developers may need to develop their own Sockets subclass if the desired trans-
port protocol or product version is not one of those supported by the SOMobjects run-time
packages. This appendix explains how to approach the implementation of a Sockets subclass,
if necessary. Warning: this may be a non-trivial exercise!

Sockets IDL interface

The base Sockets interface is expressed in IDL in the file somssock.idl, listed below. There is
a one-to-one mapping between TCP/IP socket APIs and the methods defined in the Sockets
interface.

Please note the following:

¢ The semantics of each of the Sockets methods must be that of the corresponding TCP/IP
call. Currently, only Internet address family (AF_INET) addresses are used by the frame-
works.

(The TCP/IP sockets API is not documented as part of the SOMobjects Developer Toolkit.
The implementor is referred to the programming references for IBM TCP/IP for AIX or OS/2,
or to similar references that describe the sockets interface for TCP/IP.)

¢ Datatypes, constants, and macros which are part of the Sockets interface are definedin a
Cinclude file, soms.h. This file is supplied with the SOMobjects Toolkit, and is not shown
in this manual.

¢ The Sockets interface is expressed in terms of a 32-bit implementation.

Implementing Sockets Subclasses C-1

e Some of the method parameters and return values are expressed using pointer types, for
example:

hostent *somsGethostent ();

This has been done to map TCP/IP socket interfaces as directly as possible to their IDL
equivalent. (Use of strict CORBA IDL was not a primary goal for the Sockets interface,
since it is only used internally by the frameworks.)

e The Sockets class and its subclasses are single instance classes.

Following is a listing of the file somssock.idl. Each socket call is briefly described with a
comment.

// 96F8647, 96F8648 (C) Copyright IBM Corp. 1992, 1993
// All Rights Reserved
// Licensed Materials - Property of IBM

#ifndef somssock_idl
#define somssock_idl

#include <somobj.idl>
#include <snglicls.idl>

interface Sockets : SOMObject

{
//# The following typedefs are fully defined in <soms.h>.
typedef SOMFOREIGN sockaddr;

#pragma modifier sockaddr : impctx="C”, struct;
typedef SOMFOREIGN iovec;

#fpragma modifier iovec : impctx="C”, struct;
typedef SOMFOREIGN msghdr;

#pragma modifier msghdr : impctx="C”, struct;
typedef SOMFOREIGN fd_set;

#pragma modifier fd_set : impctx="C"”, struct;
typedef SOMFOREIGN timeval;

#pragma modifier timeval : impctx="C”, struct;
typedef SOMFOREIGN hostent;

#pragma modifier hostent : impctx="C”, struct;
typedef SOMFOREIGN servent;

fpragma modifier servent : impctx="C”, struct;
typedef SOMFOREIGN in_addr;

#pragma modifier in_addr : impctx="C”, struct;

long somsAccept (in long s, out sockaddr name, out long
namelen) ;
// Accept a connection request from a client.

long somsBind (in long s, inout sockaddr name, in long namelen);
// Binds a unique local name to the socket with descriptor s.

long somsConnect (in long s, inout sockaddr name,

in long namelen);
// For streams sockets, attempts to establish a connection
// between two sockets. For datagram sockets, specifies the
// socket’s peer.

hostent *somsGethostbyaddr (in char *addr, in long addrlen,

in long domain);
// Returns a hostent structure for the host address specified on
// the call.

hostent *somsGethostbyname (in string name);
// Returns a hostent structure for the host name specified on
// the call.

hostent *somsGethostent ();
// Returns a pointer to the next entry in the hosts file.

C-2 SOMobjects Base Toolkit User’s Guide

unsigned long somsGethostid ();
// Returns the unique identifier for the current host.

long somsGethostname (in string name, in long namelength);
// Retrieves the standard host name of the local host.

long somsGetpeername (in long s, out sockaddr name,
out long namelen);
// Gets the name of the peer connected to socket s.

servent *somsGetservbyname (in string name, in string protocol);
// Retrieves an entry from the /etc/services file using the
// service name as a search key.

long somsGetsockname (in long s, out sockaddr name,
out long namelen);
// Stores the current name for the socket specified by the s
// parameter into the structure pointed to by the name
// parameter.

long somsGetsockopt (in long s, in long level, in long optname,
in char *optval, out long option);

// Returns the values of socket options at various protocol

// levels.

unsigned long somsHtonl (in unsigned long a);
// Translates an unsigned long integer from host-byte order to
// network—-byte order.

unsigned short somsHtons (in unsigned short a);
// Translates an unsigned short integer from host-byte order to
// network-byte order.

long somsIoctl (in long s, in long cmd, in char *data,
in long length);
// Controls the operating characteristics of sockets.

unsigned long somsInet_addr (in string cp);

// Interprets character strings representing numbers expressed
// in standard ’.’ notation and returns numbers suitable for use
// as internet addresses.

unsigned long somsInet_lnaof (in in_addr addr);
// Breaks apart the internet address and returns the local
// network address portion.

in_addr somsInet_makeaddr (in unsigned long net,

in unsigned long 1lna);
// Takes a network number and a local network address and
// constructs an internet address.

unsigned long somsInet_netof (in in_addr addr);
// Returns the network number portion of the given internet
// address.

unsigned long somsInet_network (in string cp);

// Interprets character strings representing numbers expressed
// in standard ’.’ notation and returns numbers suitable for use
// as network numbers.

string somsInet_ntoa (in in_addr addr);
// Returns a pointer to a string expressed in the dotted-decimal
// notation.

long somsListen (in long s, in long backlog);

// Creates a connection request queue of length backlog to queue
// incoming connection requests, and then waits for incoming

// connection requests.

Implementing Sockets Subclasses C-3

unsigned long somsNtohl (in unsigned long a);
// Translates an unsigned long integer from network-byte order
// to host-byte order.

unsigned short somsNtohs (in unsigned short a);
// Translates an unsigned short integer from network-byte order
// to host-byte order.

long somsReadv (in long s, inout iovec iov, in long iovcnt);
// Reads data on socket s and stores it in a set of buffers
// described by iov.

long somsRecv (in long s, in char *buf, in long len,
in long flags);
// Receives data on streams socket s and stores it in buf.

long somsRecvfrom (in long s, in char *buf, in long len,
in long flags, out sockaddr name, out long namelen);
// Receives data on datagram socket s and stores it in buf.

long somsRecvmsg (in long s, inout msghdr msg, in long flags);
// Receives messages on a socket with descriptor s and stores
// them in an array of message headers.

long somsSelect (in long nfds, inout fd_set readfds,
inout fd_set writefds, inout fd_set exceptfds,
inout timeval timeout);
// Monitors activity on a set of different sockets until a
// timeout expires, to see if any sockets are ready for reading
// or writing, or if an exceptional condition is pending.

long somsSend (in long s, in char *msg, in long len,
in long flags);
// Sends msg on streams socket s.

long somsSendmsg (in long s, inout msghdr msg, in long flags);
// Sends messages passed in an array of message headers on a
// socket with descriptor s.

long somsSendto (in long s, inout char msg, in long len,
in long flags, inout sockaddr to, in long tolen);
// Sends msg on datagram socket s.

long somsSetsockopt (in long s, in long level, in long optname,
in char *optval, in long optlen);
// Sets options associated with a socket.

long somsShutdown (in long s, in long how);
// Shuts down all or part of a full-duplex connection.

long somsSocket (in long domain, in long type,

in long protocol);
// Creates an endpoint for communication and returns a socket
// descriptor representing the endpoint.

long somsSoclose (in long s);
// Shuts down socket s and frees resources allocated to the
// socket.

long somsWritev (in long s, inout iovec iov, in long iovcnt);
// Writes data on socket s. The data is gathered from the
// buffers described by iov.

attribute long serrno;
// Used to pass error numbers.

C-4 SOMobjects Base Toolkit User’s Guide

#ifdef _ SOMIDL_
implementation
{
releaseorder:
somsAccept,

somsGethostbyname,
somsGethostname,

somsGetsockopt,
somsInet_addr,

somsInet_netof,
somsListen,
somsRecv,
somsSend,
somsShutdown,
_set_serrno,

//# Class modifiers
callstyle=idl;
metaclass =
majorversion=1;
dll="soms.dll”;
}i

#endif /* __SOMIDIL__ */

bi

fendif /* somssock_idl

IDL for a Sockets subclass

somsBind,

somsHtonl,
somsInet_lnaof,

somsInet_network,
somsNtohl,
somsRecvfrom,
somsSendmsg,

somsSocket,
_get_serrno,

somsGethostbyaddr,
somsGethostid,

somsConnect,
somsGethostent,
somsGetpeername, somsGetsockname,
somsHtons, somsIoctl,
somsInet_makeaddr,
somsInet_ntoa,
somsNtohs, somsReadv,
somsRecvmsg, somsSelect,
somsSendto, somsSetsockopt,
somsSoclose, somsWritev,
somsGetservbyname;

SOMMSingleInstance;
minorversion=1;

*/

Sockets subclasses inherit their entire interface from Sockets. All methods are overridden.

For example, here is a listing of the TCPIPSockets IDL description.

// 96F8647, 96F8648 (C)
// All Rights Reserved
// Licensed Materials -

#ifndef tcpsock_idl
#define tcpsock_idl

#include <somssock.idl>
#include <snglicls.idl>

interface TCPIPSockets
{
#ifdef _ SOMIDL_ _
implementation
{
//# Class modifiers
callstyle=idl;
majorversion=1l;

Copyright IBM Corp. 1992, 1993

Property of IBM

Sockets

minorversion=1;

dllname="somst.dll”;
metaclass=SOMMSingleInstance;

Implementing Sockets Subclasses C-5

//# Method modifiers
somsAccept: override;
somsBind: override;
somsConnect: override;
somsGethostbyaddr: override;
somsGethostbyname: override;
somsGethostent: override;
somsGethostid: override;
somsGethostname: override;
somsGetpeername: override;
somsGetservbyname: override;
somsGetsockname: override;
somsGetsockopt: override;
somsHtonl: override;
somsHtons: override;
somsIoctl: override;
somsInet_addr: override;
somsInet_lnaof: override;
somsInet_makeaddr: override;
somsInet_netof: override;
somsInet_network: override;
somsInet_ntoa: override;
somsListen: override;
somsNtohl: override;
somsNtohs: override;
somsReadv: override;
somsRecv: override;
somsRecvfrom: override;
somsRecvmsg: override;
somsSelect: override;
somsSend: override;
somsSendmsg: override;
somsSendto: override;
somsSetsockopt: override;
somsShutdown: override;
somsSocket: override;
somsSoclose: override;
somsWritev: override;
_set_serrno: override;
_get_serrno: override;
}i

#endif /* __SOMIDL__ */

bi

#endif /* tcpsock_idl */

Implementation considerations

e Only the AF_INET address family must be supported. That is, the DSOM and Event
Manager frameworks both use Internet addresses and port numbers to refer to specific
sockets.

e On 0S/2, the SOMobijects run-time libraries were built using the C Set/2 32-bit compiler. If
the underlying subclass implementation uses a 16-bit subroutine library, conversion of the
method call arguments may be required. (This mapping of arguments is often referred to
as “thunking.”)

¢ Sockets subclasses to be used in multi-threaded environments should be made thread-
safe. Thatis, itis possible that concurrent threads may make calls on the (single) Sockets
object, so data structures must be protected within critical regions, as appropriate.

¢ Valid values for the serrno attribute are defined in the file soms.h. The subclass imple-
mentation should map local error numbers into the appropriate corresponding Sockets
error numbers.

C-6 SOMobjects Base Toolkit User’s Guide

Example code

The following code fragment shows an example of the implementation of the somsBind
method of the TCPIPSockets subclass, for both AIX and OS/2. The sample illustrates that, for
TCP/IP, the implementation is basically a one-to-one mapping of Sockets methods onto TCP/IP
calls. For other transport protocols, the mapping from the socket abstraction to the protocol’s
API may be more difficult.

For AlX, the mapping from Sockets method to TCP/IP call is trivial.

SOM_Scope long SOMLINK somsBind (TCPIPSockets somSelf,
Environment *ev,
long s, Sockets_sockaddr* name,
long namelen)

long rc;
TCPIPSocketsMethodDebug ("TCPIPSockets”, ”somsBind”) ;
rc = (long) bind((int)s, name, (int)namelen);

if (rc == -1)
__set_serrno(somSelf, ev, errno);

return rc;

On OS/2, however, the TCP/IP Release 1.2.1 library is a 16-bit library. Consequently, many of
the method calls require conversion (“thunking”) of 32-bit parameters into 16-bit parameters,
before the actual TCP/IP calls can be invoked. For example, the function prototype for the
somsBind method is defined as:

SOM_Scope long SOMLINK somsBind (TCPIPSockets somSelf,
Environment *ev,
long s, Sockets_sockaddr* name,
long namelen) ;

whereas the file socket.h on OS/2 declares the bind function with the following prototype:

short _Farlé6 _Cdecl bind(short /*s*/, void * _Segl6 /*name*/,
short /*len*/);

In this case, the pointer to the “name” structure, passed as a 32-bit address, cannot be used
directly in the bind call: a 16-bit address must be passed instead. This can be accomplished by
dereferencing the 32-bit pointer provided by the “name” parameter in the somsBind call,
copying the caller’'s Sockets_sockaddr structure into a local structure (“name16”), and then
passing the address of the local structure (“&name16”) as a 16-bit address in the bind call.

Implementing Sockets Subclasses C-7

SOM_Scope long SOMLINK somsBind (TCPIPSockets somSelf,
Environment *ev,
long s, Sockets_sockaddr* name,
long namelen)

long rc;
Sockets_sockaddr namel6;

TCPIPSocketsMethodDebug ("TCPIPSockets”, ”somsBind”) ;

/* copy user’s parameter into a local structure */

memcpy ((char *)&namel6, (char *) ((sockaddr32 *)name), namelen);
rc = (long) bind((short)s, (void *)&namel6, (short)namelen);
if (rc == -1)

_ _set_serrno(somSelf, ev, tcperrno());

return rc;

For Windows, a developer would follow the OS/2 example for implementing the bind
function with 16—bit addresses (but using the IPXSockets class for NetWare IPX/SPX or the
NBSockets class for NetBIOS, rather than the TCPIPSockets class).

C-8 SOMobjects Base Toolkit User’s Guide

Glossary

Note: In the following definitions, words shown in jtalics are terms for which separate glossary
entries are also defined.

abstract class
A class thatis not designed to be instantiated, but serves as a base class for
the definition of subclasses. Regardless of whether an abstract class inherits
instance data and methods from parent classes, it will always introduce meth-
ods that must be overridden in a subclass, in order to produce a class whose
objects are semantically valid.

affinity group An array of class objects that were all registered with the SOMClassMgr
object during the dynamic loading of a class. Any class is a member of at most
one affinity group.

ancestor class
A class from which another class inherits instance methods, attributes, and
instance variables, either directly or indirectly. A direct descendant of an
ancestor class is called a child class, derived class, or subclass. A direct
ancestor of a class is called a parent class, base class, or superclass.

aggregate type
A user-defined data type that combines basic types (such as, char, short, float,
and so on) into a more complex type (such as structs, arrays, strings, se-
guences, unions, or enums).

apply stub A procedure corresponding to a particular method that accepts as argu-
ments: the object on which the method is to be invoked, a pointer to a location
in memory where the method’s result should be stored, a pointer to the meth-
od’s procedure, and the method’s arguments in the form of ava_list. The apply
stub extracts the arguments from the va_list, invokes the method with its
arguments, and stores its result in the specified location. Apply stubs are
registered with class objects when instance methods are defined, and are
invoked using the somApply function. Typically, implementations that over-
ride somDispatch call somApply to invoke a method on ava_list of arguments.

attribute A specialized syntax for declaring “set” and “get” methods. Method names
corresponding to attributes always begin with “_set_” or “_get_”. An attribute
name is declared in the body of the interface statement for a class. Method
procedures for get/set methods are automatically defined by the SOM Compil-
erunless an attribute is declared as “noget/noset”. Likewise, a corresponding
instance variable is automatically defined unless an attribute is declared as
“nodata”. IDL also supports “readonly” attributes, which specify only a “get”
method. (Contrast an attribute with an instance variable.)

auxiliary class data structure

A structure provided by the SOM API to support efficient static access to
class-specific information used in dealing with SOM objects. The structure’s
name is <className>CClassData. Its first component (parentMtab) is a list of
parent-class method tables (used to support efficient parent method calls). Its
second component (instanceDataToken) is the instance token for the class
(generally used to locate the instance data introduced by method procedures
that implement methods defined by the class).

base class See parent class.

behavior (of an object)
The methods that an object responds to. These methods are those either
introduced or inherited by the class of the object. See also state.

Glossary G—-1

bindings Language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to
SOM that is tailored to a particular programming language. The SOM Compiler
generates binding files for C and C++. These binding files include an imple-
mentation template for the class and two header files, one to be included in the
class’s implementation file and the other in client programs.

BOA (basic object adapter) class
A CORBA interface (represented as an abstract class in DSOM), which de-
fines generic object-adapter (OA) methods that a server can use to register
itself and its objects with an ORB (object request broker). See also SOMOA
(SOM object adapter) class.

callback A user-provided procedure or method to the Event Management Framework
that gets invoked when a registered event occurs. (See also event).

casted dispatching
A form of method dispatching that uses casted method resolution; that is, it
uses a designated ancestor class of the actual target object’s class to deter-
mine what procedure to call to execute a specified method.

casted method resolution
A method resolution technique that uses a method procedure from the
method table of an ancestor of the class of an object (rather than using a
procedure from the method table of the object’s own class).

child class A class that inherits instance methods, attributes, and instance variables
directly from another class, called the parent class, base class, or superclass,
or indirectly from an ancestor class. A child class may also be called a derived
class or subclass.

class A way of categorizing objects based on their behavior (the methods they
support) and shape (memory layout). A class is a definition of a generic object.
In SOM, a class is also a special kind of object that can manufacture other
objects that all have a common shape and exhibit similar behavior. The specifi-
cation of what comprises the shape and behavior of a set of objects is referred
to as the “definition” of a class. New classes are defined in terms of existing
classes through a technique known as inheritance. See also class object.

class variable Instance data of a class object. All instance data of an object is defined
(through either introduction or inheritance) by the object’s class. Thus, class
variables are defined by metaclasses.

class data structure

A structure provided by the SOM API to support efficient static access to
class-specific information used in dealing with SOM objects. The structure’s
name is <className>ClassData. lts first component (classObject) is a point-
er to the corresponding class object. The remaining components (named after
the instance methods and instance variables) are method tokens or data
tokens, in order as specified by the class’s implementation. Data tokens are
only used to support data (public and private) introduced by classes declared
using OIDL; IDL attributes are supported with method tokens.

class manager

An object that acts as a run-time registry for all SOM class objects that exist
within the current process and which assists in the dynamic loading and
unloading of class libraries. A class implementor can define a customized
class manager by subclassing SOMClassMgr class to replace the SOM-sup-
plied SOMClassMgrObject. This is done to augment the functionality of the
default class-management registry (for example, to coordinate the automatic
quiescing and unloading of classes).

G—2 SOMobjects Base Toolkit User’'s Guide

class method

class object

client code

constructor

(Also known as factory method or constructor.) A class method is a method
that a class object responds to (as opposed to an instance method). A class
method that class <X> responds to is provided by the metaclass of class <X>.
Class methods are executed without requiring any instances of class <X> to
exist, and are frequently used to create instances of the class.

The run-time object representing a SOM class. In SOM, a class object can
perform the same behavior common to all objects, inherited from SOMObject.

(Or client program or client.) An application program, written in the program-
mer’s preferred language, which invokes methods on objects that are
instances of SOM classes. In DSOM, this could be a program that invokes a
method on a remote object.

See class method.

context expression

CORBA

data token

derived class

An optional expression in a method’s IDL declaration, specifying identifiers
whose value (if any) can be used during SOM’s method resolution process
and/or by the target object as it executes the method procedure. If a context
expression is specified, then a related Context parameter is required when the
method is invoked. (This Context parameter is an implicit parameterin the IDL
specification of the method, but it is an explicit parameter of the method'’s
procedure.) No SOM-supplied methods require context parameters.

The Common Object Request Broker Architecture established by the Object
Management Group. Interface Definition Language used to describe the
interface for SOM classes is fully compliant with CORBA standards.

Avalue that identifies a specific instance variable within an object whose class
inheritsthe instance variable (as a result of being derived, directly or indirectly,
from the class that introduces the instance variable). An object and a data
token are passed to the SOM run-time procedure, somDataResolve, which
returns is a pointer to the specific instance variable corresponding to the data
token. (See also instance token.)

See subclass and subclassing.

derived metaclass

descriptor

directive

dirty object

(Or SOM-derived metaclass.) A metaclass that SOM creates automatically
(often even when the class implementor specifies an explicit metaclass) as
needed to ensure that, for any code that executes without method-resolution
error on an instance of a given class, the code will similarly execute without
method-resolution error on instances of any subclass of the given class.
SOM’s ability to derive such metaclasses is a fundamental necessity in order
to ensure binary compatibility for client programs despite any subsequent
changes in class implementations.

(Or method descriptor.) An ID representing the identifier of a method definition
or an attribute definition in the Interface Repository. The IR definition contains
information about the method’s return type and the type of its arguments.

A message (a pre-defined character constant) received by a replica from the
Replication Framework. Indicates a potential failure situation.

A persistent object that has been modified since it was last written to persistent
storage.

dispatch-function resolution

Dispatch-function resolution is the slowest, but most flexible, of the three
method-resolution techniques SOM offers. Dispatch functions permit method
resolution to be based on arbitrary rules associated with an object’s class.
Thus, a class implementor has complete freedom in determining how methods
invoked onits instances are resolved. See also dispatch method and dynamic
dispatching.

Glossary G—3

dispatch method
A method (such as somDispatch or somClassDispatch) that is invoked (and
passed an argument list and the ID of another method) in order to determine
the appropriate method procedure to execute. The use of dispatch methods
facilitates dispatch-function resolution in SOM applications and enables
method invocation on remote objects in DSOM applications. See also dynamic
dispatching.

dynamic dispatching
Method dispatching using dispatch-function resolution; the use of dynamic
method resolution at run time. See also dispatch-function resolution and dy-
namic method.

Dynamic Invocation Interface (DII)
The CORBA-specified interface, implemented in DSOM, that is used to dynam-
ically build requests on remote objects. Note that DSOM applications can also
use the somDispatch method for dynamic method calls when the object is
remote. See also dispatch method.

dynamic method

A method that is not declared in the IDL interface statement for a class of
objects, but is added to the interface at run time, after which instances of the
class (or of its subclasses) will respond to the registered dynamic method.
Because dynamic methods are not declared, usage bindings for SOM classes
cannot support their use; thus, offset method resolution is not available.
Instead, name-lookup or dispatch-function method resolution must be used to
invoke dynamic methods. (There are currently no known uses of dynamic
methods by any SOM applications.) See also method and static method.

encapsulation
An object-oriented programming feature whereby the implementation details
of a class are hidden from client programs, which are only required to know the
interface of a class (the signatures of its methods and the names of its
attributes) in order to use the class’s methods and attributes.

encoder/decoder
In the Persistence Framework, a class that knows how to read/write the
persistent object format of a persistent object. Every persistent object is
associated with an Encoder/Decoder, and an encoder/decoder object is
created for each attribute and instance variable. An Encoder/Decoder is
supplied by the Persistence Framework by default, or an application can
define its own.

entry class In the Emitter Framework, a class that represents some syntactic unit of an
interface definition in the IDL source file.

Environment parameter
A CORBA-required parameter in all method procedures, it represents a
memory location where exception information can be returned by the object of
amethod invocation. [Certain methods are exempt (when the class contains a
modifier of callstyle=oidl), to maintain upward compatibility for client programs
written using an earlier release.]

emitter Generically, a program that takes the output from one system and converts the
information into a different form. Using the Emitter Framework, selected out-
put from the SOM Compiler (describing each syntactic unit in an /DL source
file) is transformed and formatted according to a user-defined template. Exam-
ple emitter output, besides the implementation template and language bind-
ings, might include reference documentation, class browser descriptions, or
“pretty” printouts.

event The occurrence of a condition, or the beginning or ending of an activity that is of
interest to an application. Examples are elapse of a time interval, sending or
receiving of a message, and opening or closing afile. (See also event manager
and callback.)

G—4 SOMobjects Base Toolkit User’'s Guide

event manager (EMan)
The chief component of the Event Management Framework that registers
interest in various events from calling modules and informs them through
callbacks when those events occur.

factory method See class method.
ID See somld.

IDL source file
A user-written .idl file, expressed using the syntax of the Interface Definition
Language (IDL), which describes the interface for a particular class (or
classes, for a module). The IDL source file is processed by the SOM Compiler
to generate the binding files specific to the programming languages of the
class implementor and the client application. (This file may also be called the
“IDL file,” the “source file,” or the “interface definition file.”)

implementation
(Or object implementation.) The specification of what instance variables im-
plement an object’s state and what procedures implement its methods (or
behaviors). In DSOM, a remote object’s implementation is also characterized
by its server implementation (a program).

Implementation Repository
A database used by DSOM to store the implementation definitions of DSOM
servers.

implementation statement
An optional declaration within the body of the interface definition of a class ina
SOM IDL source file, specifying information about how the class will be imple-
mented (such as, version numbers for the class, overriding of inherited meth-
ods, or type of method resolution to be supported by particular methods). This
statement is a SOM-unique statement; thus, it must be preceded by the term
“#ifdef _ SOMIDL__ " and followed by “#endif”. See also interface declaration.

implementation template
A template file containing stub procedures for methods that a class
introduces or overrides. The implementation template is one of the binding
files generated by the SOM Compiler when it processes the IDL source file
containing class interface declarations. The class implementor then custom-
izes the implementation, by adding language-specific code to the method
procedures.

implicit method parameter
A method parameter that is notincluded in the IDL interface specification of a
method, but which is a parameter of the method’s procedure and which is
required when the method is invoked from a client program. Implicit parame-
ters include the required Environment parameter indicating where exception
information can be returned, as well as a Context parameter, if needed.

incremental update
A revision to an implementation template file that results from reprocessing of
the IDL source file by the SOM Compiler. The updated implementation file will
contain new stub procedures, added comments, and revised method proto-
types reflecting changes made to the method definitions in the IDL specifica-
tion. Importantly, these updates do not disturb existing code that the class
implementor has defined for the prior method procedures.

Glossary G—=5

inheritance The technique of defining one class (called a subclass, derived class, or child
class) as incremental differences from another class (called the parent class,
base class, superclass, or ancestor class). From its parents, the subclass
inherits variables and methods for its instances. The subclass can also
provide additional instance variables and methods. Furthermore, the sub-
class can provide new procedures for implementing inherited methods. The
subclass is then said to override the parent class’s methods. An overriding
method procedure can elect to call the parent class’s method procedure.
(Such a call is known as a parent method call.)

inheritance hierarchy
The sequential relationship from a root class to a subclass, through which the
subclass inherits instance methods, attributes, and instance variables from all
of its ancestors, either directly or indirectly. The root class of all SOM classes is
SOMObject.

instance (Or object instance or just object.) A specific object, as distinguished from a
class of objects. See also object.

instance method
A method valid for an object instance (as opposed to a class method, which is
valid for a class object). An instance method that an object responds to is
defined by its class or inherited from an ancestor class.

instance token
A data token that identifies the first instance variable among those introduced
by a given class. The somGetinstanceToken methodinvoked on a class object
returns that class’s instance token.

instance variables
(Or, instance data.) Variables declared for use within the method procedures
of a class. An instance variable is declared within the body of the implementa-
tion statement in a SOM IDL source file. An instance variable is “private” to the
class and should not be accessed by a client program. (Contrast an instance
variable with an attribute.)

interface The information that a client must know to use a class— namely, the names of
its attributes and the signatures of its methods. The interface is described in a
formal language (the Interface Definition Language, IDL) that is independent
of the programming language used to implement the class’s methods.

interface declaration
(Or interface statement.) The statement in the IDL source file that specifies
the name of a new class and the names of its parent class(es). The “body” of
the interface declaration defines the signature of each new method and any
attribute(s) associated with the class. In SOM IDL, the body may also include
an implementation statement (where instance variables are declared or a
modifier is specified, for example to override a method).

Interface Definition Language (IDL)
The formal language (independent of any programming language) by which
the interface for a class of objects is defined in a .idl file, which the SOM Com-
piler then interprets to create an implementation template file and bind-
ing files. SOM'’s Interface Definition Language is fully compliant with stan-
dards established by the Object Management Group’s Common Object
Request Broker Architecture (CORBA).

Interface Repository (IR)
The database that SOM optionally creates to provide persistent storage of
objects representing the major elements of interface definitions. Creation and
maintenance of the IR is based on information supplied in the IDL source file.
The SOM IR Framework supports all interfaces described in the CORBA
standard.

G—6 SOMobjects Base Toolkit User’'s Guide

Interface Repository Framework
A set of classes that provide methods whereby executing programs can
access the persistent objects of the Interface Repository to discover every-
thing known about the programming interfaces of SOM classes.

macro An alias for executing a sequence of hidden instructions; in SOM, typically the
means of executing a command known within a binding file created by the
SOM Compiler.

metaclass A class whose instances are classes. In SOM, any class descended from

SOMClass is a metaclass. The methods a class inherits from its metaclass
are sometimes called class methods (in Smalltalk) or factory methods (in
Objective-C) or constructors. See also class method.

metaclass incompatibility
A situation where a subclass does not include all of the class variables or
respond to all of the class methods of its ancestor classes. This situation can
easily arise in OOP systems that allow programmers to explicitly specify
metaclasses, but is not allowed to occur in SOM. Instead, SOM automatically
prevents this by creating and using derived metaclasses whenever neces-
sary.

method A combination of a procedure and a name, such that many different proce-
dures can be associated with the same name. In object-oriented program-
ming, invoking a method on an object causes the object to execute a specific
method procedure. The process of determining which method procedure to
execute when a method is invoked on an object is called method resolution.
(The CORBA standard uses the term “operation” for method invocation). SOM
supports two different kinds of methods: static methods and dynamic meth-
ods. See also static method and dynamic method.

method descriptor See descriptor.

method ID A number representing a zero-terminated string by which SOM uniquely repre-
sents a method name. See also soml/d.

method procedure
A function or procedure, written in an arbitrary programming language, that
implements a method of a class. A method procedure is defined by the class
implementor within the implementation template file generated by the SOM
Compiler.

method prototype
A method declaration that includes the types of the arguments. Based on
method definitions in an IDL source file, the SOM Compiler generates method
prototypes in the implementation template. A class implementor uses the
method prototype as a basis for writing the corresponding method procedure
code. The method prototype also shows all arguments and their types that are
required to invoke the method from a client program.

method resolution
The process of selecting a particular method procedure, given a method name
and an object instance. The process results in selecting the particular function/
procedure that implements the abstract method in a way appropriate for the
designated object. SOM supports a variety of method-resolution mechanisms,
including offset method resolution, name-lookup resolution, and dispatch-
function resolution.

method table A table of pointers to the method procedures thatimplement the methods that
an object supports. See also method token.

Glossary G—7

method token A value thatidentifies a specific method introduced by a class. A method token
is used during method resolution to locate the method procedure that imple-
ments the identified method. The two basic method-resolution procedures are
somResolve (which takes as arguments an object and a method token, and
returns a pointer to a procedure that implements the identified method on the
given object) and somClassResolve (which takes as arguments a class and a
method token, and returns a pointer to a procedure that implements the
identified method on an instance of the given class).

modifier Any of a set of statements that control how a class, an attribute, or a method
will be implemented. Modifiers can be defined in the implementation statement
of a SOM IDL source file. The implementation statement is a SOM-unique
extension of the CORBA specification. [User-defined modifiers can also be
specified for use by user-written emitters or to store information in the Interface
Repository, which can then be accessed via methods provided by the Interface
Repository Framework.]

module The organizational structure required within an IDL source file that contains
interface declarations for two (or more) classes that are not a class—metaclass
pair. Such interfaces must be grouped within a module declaration.

multiple inheritance
The situation in which a class is derived from (and inherits interface and
implementation from) multiple parent classes.

name-lookup method resolution
Similar to the method resolution techniques employed by Objective-C and
Smalltalk. It is significantly slower than offset resolution. Name-lookup resolu-
tion, unlike offset resolution, can be used when the name of the method to be
invoked is not known until run time, or the method is added to the class
interface at run time, or the name of the class introducing the method is not
known until run time.

naming scope See scope.

object (Or object instance or just instance.) An entity that has state (its data values)
and behavior (its methods). An object is one of the elements of data and
function that programs create, manipulate, pass as arguments, and so forth.
An object is a way to encapsulate state and behavior. Encapsulation permits
many aspects of the implementation of an object to change without affecting
client programs that depend on the object’s behavior. In SOM, objects are
created by other objects called classes.

object adapter (OA)

A CORBA term denoting the primary interface a server implementation uses
to access ORB functions; in particular, it defines the mechanisms that a
server uses to interact with DSOM, and vice versa. This includes server
activation/deactivation, dispatching of methods, and authentication of the
principal making a call. The basic object adapter described by CORBA is
defined by the BOA (basic object adapter) abstract class; DSOM’s primary
object adapter implementation is provided by the SOMOA (SOM Object
Adapter) class.

object definition See class.
object implementation See implementation.
object instance See instance and object.

object reference
A CORBA term denoting the information needed to reliably identify a particular
object. This concept is implemented in DSOM with a proxy object in a client
process, or a SOMDOQObject in a server process. See also proxy object and
SOMDObject.

G—8 SOMobjects Base Toolkit User’'s Guide

object request broker (ORB) See ORB.

offset method resolution

The default mechanism for performing method resolution in SOM, because it
is the fastest (nearly as fast as an ordinary procedure call). It is roughly
equivalent to the C++ “virtual function” concept. Using offset method resolution
requires that the name of the method to be invoked must be known at compile
time, the name of the class that introduces the method must be known at
compile time (although not necessarily by the programmer), and the method to
be invoked must be a static method.

OIDL The original language used for declaring SOM classes. The acronym stands
for Object Interface Definition Language. OIDL is still supported by SOM
release 2, but it does not include the ability to specify multiple inheritance
classes.

one-copy serializable
The consistency property of the Replication Framework which states that the
concurrent execution of methods on a replicated object is equivalent to the
serial execution of those same methods on a nonreplicated object.

OOP An acronym for “object-oriented programming.”
operation See method.

operation logging
In the Replication Framework, a technique for maintaining consistency among
replicas of a replicated object, whereby the execution of a method that
updates the object is repeated at the site of each replica.

ORB (object request broker)
A CORBA term designating the means by which objects transparently make
requests (thatis, invoke methods) and receive responses from objects, wheth-
er they are local or remote. With SOMobjects Developer Toolkit and Runtimes,
this functionality is implemented in the DSOM Framework. Thus, the DSOM
(Distributed SOM) system is an ORB. See also BOA (basic object adapter)
class and SOMOA (SOM object adapter) class.

override (Or overriding method.) The technique by which a class replaces (redefines)
the implementation of a method that it inherits from one of its parent classes.
An overriding method can elect to call the parent class’s method procedure as
part of its own implementation. (Such a call is known as a parent method call.)

parent class A class from which another class inherits instance methods, attributes, and
instance variables. A parent class is sometimes called a base class or super-
class.

parent method call
A technique where an overriding method calls the method procedure of its
parent class as part of its own implementation.

persistent object
An object whose state can be preserved beyond the termination of the pro-
cess that created it. Typically, such objects are stored in files.

polymorphism

An object-oriented programming feature that may take on different meanings
in different systems. Under various definitions of polymorphism, (a) a method
or procedure call can be executed using arguments of a variety of types, or
(b) the same variable can assume values of different types at different times,
or (c) amethod name can denote more than one method procedure. The SOM
system reflects the third definition (for example, when a SOM class overrides
a parent class definition of a method to change its behavior). The term literally
means “having many forms.”

principal The user on whose behalf a particular (remote) method call is being per-
formed.

Glossary G—9

procedure A small section of code that executes a limited, well-understood task when
called from another program. In SOM, a method procedure is often referred to
as a procedure. See also method procedure.

process A series of instructions (a program or part of a program) that a computer
executes in a multitasking environment.

proxy object InDSOM, a SOM object inthe client's address space that represents aremote
object. The proxy object has the same interface as the remote object, but each
method invoked on the proxy is overridden by a dispatch method that
forwards the invocation request to the remote object. Under DSOM, a proxy
object is created dynamically and automatically in the client whenever a re-
mote method returns a pointer to an object that happens to be remote.

readers and writers
In the Replication Framework, different processes can access the same repli-
cated object in different modes. A “reader” is a process that does not intend to
update the object, but wants to continually watch the object as other processes
update it. A “writer” is a process that wants to update the object, as well as
continually watch the updates performed by others.

receiver See target object.

redispatch stub

A procedure, corresponding to a particular method, which has the same
signature as the method’s procedure but which invokes somDispatch to dis-
patch the method. The somOverrideMtab method can be used to replace the
procedure pointers in a class’s method table with the corresponding redis-
patch stubs. This is done when overriding somDispatch to customize method
resolution so that all static method invocations will be routed through somDis-
patch for selection of an appropriate method procedure. (Dynamic methods
have no entries in the method table, so they cannot be supported with redis-
patch functionality.)

reference data
Application-specific data that a server uses to identify or describe an object in
DSOM. The data, represented by a sequence of up to 1024 bytes, is registered
with DSOM when a server creates an object reference. A server can later ask
DSOM to return the reference data associated with an object reference. See
also object reference.

replica When an object is replicated among a set of processes (using the Replication
Framework), each process is said to have a replica of the object. From the view
point of any application model, the replicas together represent a single object.

replicated object
An object for which replicas (copies) exist. See replica.

run-time environment
The data structures, objects, and global variables that are created, main-
tained, and used by the functions, procedures, and methods in the SOM
run-time library.

scope (Or naming scope.) That portion of a program within which an identifier name
has “visibility” and denotes a unique variable. In SOM, an IDL source file forms
a scope. An identifier can only be defined once within a scope; identifiers can
be redefined within a nested scope. In a .idl file, modules, interface state-
ments, structures, unions, methods, and exceptions form nested scopes.

serializable See one-copy serializable.

server (Or server implementation.) In DSOM, a process, running in a distributed
environment, that executes the implementation of an object. DSOM provides a
default server implementation that can dynamically load SOM class libraries,
create SOM objects, and make those objects accessible to clients. Develop-
ers can also write application-specific servers for use with DSOM.

G—10 SOMobjects Base Toolkit User’'s Guide

server object

shadowing

signature

In DSOM, every server has an object that defines methods for managing
objects in that server. These methods include object creation, object destruc-
tion, and maintaining mappings between object references and the objects
they reference. A server object must be an instance of the class SOMDServer
(or one of its subclasses). See also object reference and SOMDObject.

In the Emitter Framework, a technique that is required when any of the entry
classesare subclassed. Shadowing causes instances of the new subclass(es)
(rather than instances of the original entry classes) to be used as input for
building the object graph, without requiring a recompile of emitter framework
code. Shadowing is accomplished by using the macro SOM_SubstituteClass.

The collection of types associated with a method (the type of its return value, if
any, as well as the number, order, and type of each of its arguments).

sister class object

Sockets class

SOM Compiler

SOMClass

SOMClassMgr

A duplicate of a class object that is created in order to save a copy of the
class’s original method table before replacing the method table to customize
method resolution. The sister class object is created so that some original
method procedures can be called by the replacement method procedures.

A class that provides a common communications interface to Distributed
SOM, the Replication Framework, and the Event Management Framework.
The Sockets class provides the base interfaces (patterned after TCP/IP sock-
ets); the subclasses TCPIPSockets, NBSockets, and IPXSockets provide ac-
tual implementations for TCP/IP, Netbios, and Netware IPX/SPX, respectively.

A tool provided by the SOM Toolkit that takes as input the interface definition
file for a class (the .idl file) and produces a set of binding files that make it more
convenient to implement and use SOM classes.

One of the three primitive class objects of the SOM run-time environment.
SOMClass is the root (meta)class from which all subsequent metaclasses are
derived. SOMClass defines the essential behavior common to all SOM
class objects.

One of the three primitive class objects of the SOM run-time environment.
During SOM initialization, a single instance (object) of SOMClassMgr is
created, called SOMClassMgrObject. This object maintains a directory of all
SOM classes that exist within the current process, and it assists with dynamic
loading and unloading of class libraries.

SOM-derived metaclass See derived metaclass.

SOMDObject

somlid

SOMObiject

The class thatimplements the notion of a CORBA “object reference” in DSOM.
An instance of SOMDObiject contains information about an object’'s server
implementation and interface, as well as a user-supplied identifier.

A pointer to a number that uniquely represents a zero-terminated string. Such
pointers are declared as type somld. In SOM, somld’s are used to represent
method names, class names, and so forth.

One of the three primitive class objects of the SOM run-time environment.
SOMObiject is the root class for all SOM (sub)classes. SOMObiject defines the
essential behavior common to all SOM objects.

SOMOA (SOM object adapter) class

somSelf

In DSOM, a class that dispatches methods on a server's objects, using the
SOM Compiler and run-time support. The SOMOA class implements methods
defined in the abstract BOA class (its base class). See also BOA class.

Within method procedures in the implementation file for a class, a parameter
pointing to the target object that is an instance of the class being implement-
ed. It is local to the method procedure.

Glossary G—11

somThis Within method procedures, a local variable that points to a data structure
containing the instance variables introduced by the class. If no instance
variables are specified in the SOM IDL source file, then the somThis assign-
ment statement is commented out by the SOM Compiler.

state (of an object)
The data (attributes, instance variables and their values) associated with an
object. See also behavior.

static method Any method that can be accessed through offset method resolution. Any
method declared in the IDL specification of a class is a static method. See also
method and dynamic method.

stub procedures
Method procedures in the implementation template generated by the SOM
Compiler. They are procedures whose bodies are largely vacuous, to be filled
in by the implementor.

subclass A class that inherits instance methods, attributes, and instance variables
directly from another class, called the parent class, base class, superclass, or
indirectly from an ancestor class. A subclass may also be called a child class or
derived class.

subclassing The process whereby a new class, as it is created (or derived), inherits
instance methods, attributes, and instance variables from one or more pre-
viously defined ancestor classes. The immediate parent class(es) of a new
class must be specified in the class’s interface declaration. See also inheri-
tance.

superclass See parent class.

symbol In the Emitter Framework, any of a (standard or user-defined) set of names
(such as, className) that are used as placeholders when building a text
template to pattern the desired emitter output. When a template is emitted, the
symbols are replaced with their corresponding values from the emitter’s sym-
bol table. Other symbols (such as, classSN) have values that are used by
section-emitting methods to identify major sections of the template (which are
correspondingly labeled as “classS” or by a user-defined name).

target object (Or receiver.) The object responding to a method call. The target object is
always the first formal parameter of a method procedure. For SOM’s C-lan-
guage bindings, the target object is the first argument provided to the method
invocation macro, _methodName.

usage bindings
The language-specific binding files for a class that are generated by the SOM
Compiler for inclusion in client programs using the class.

value logging Inthe Replication Framework, a technique for maintaining consistency among
replicas of a replicated object, whereby the new value of the object is distrib-
uted after the execution of a method that updates the object.

view—data paradigm
A Replication Framework construct similar to the Model-View-Controller para-
digm in SmallTalk. The “view” object contains only presentation-specific in-
formation, while the “data” object contains the stafe of the application. The
“view” and “data” are connected by means of an “observation” protocol that
lets the “view” be notified whenever the “data” changes.

writers See readers and writers.

G—12 SOMobjects Base Toolkit User’'s Guide

A

abstract modifier, 4-18
activate_impl_failed method, 6-33
Activation policies, DSOM servers, 6-64
add_arg method, 6-73
add_class_to_impldef method, 6-55
add_impldef method, 6-54
add_item method, 6-71
‘addstar’ compiler option, 4-37
After methods, 8-3
Aggregate type, 7-11
alignment method, 7-13
Ancestor class, 3-24
Ancestor initialization with somDefault method,
5-26
‘any’ IDL type, 4-5
ARG_IN flag value, 6-71
ARG_INOUT flag value, 6-71
ARG_OUT flag value, 6-71
Array declarations in IDL, 4-9
Atomic type, 7-11
AttributeDef class, 7-7
Attributes
“set” and “get” methods for, 3-11
accessing from client programs, 3-11
modifier statements for, 4-20
private attributes, 4-27
readonly attributes, 3-11
syntax for declarations, 4-13
tutorial example, 2-13, 2-14
Attributes vs instance variables, 2-14

Base class, 5-5
Base proxy classes, 6-76
baseproxyclass modifier, 4-18, 6-77
Basic Object Adapter, 6-64
Before methods, 8-3
Binary compatibility of SOM classes, 1-3
Binding files for client programs, 3-1
Binding files for SOM classes, 1-3, 1-5, 2-6, 4-2,
4-31

porting to another platform, 4-34
BOA class, 6-60, 6-64
Boolean IDL type, 4-5
Bounds exception, 7-13

C

C++ classes converted to SOM classes, 5-21
METHOD_MACROS for, 5-21
C/C++ binding files for SOM classes, 1-5, 4-2,
4-31, 4-32
limitations of, 4-34
C/C++ usage bindings, 3-1
Callback procedures/methods, 9-3
caller_owns_parameters modifier, 4-21, 6-27
caller_owns_result modifier, 4-21, 6-27
callstyle = oidl modifier, 3-8, 3-9, 4-18
Casted method resolution, 3-10
change_id method, 6-34
char IDL type, 4-5

Character output
customizing, 5-49
from SOM methods/functions, 3-23
Child class, 5-5
Class categories
base class, 5-5
child class, 5-5
metaclass, 5-2
parent class, 5-5
parent class vs metaclass, 5-5
root class, 5-2
subclass, 5-5
Class data structure, 3-10, 5-14
Class libraries
creating, 5-39
guidelines for, 5-39
loading, 3-20
packaging, for DSOM, 6-46
provided by SOMobjects Toolkit, 8-1
Class name, getting, 3-24, 3-25
Class names as types, 4-9
Class objects, 3-18, 5-2
creating from a client program, 3-19
customizing initialization, 5-47
getting information about, methods for, 3-23,
3-25
getting the class of an object, 3-18
size of, getting, 3-24
using, 3-18
Class variables, 4-26
classinit modifier, 4-18
_<className> macro, 3-21
<className>_Class_Source symbol, 5-18
<className>ClassData.classObject, 3-21
<className>_MajorVersion constant, 3-20
<className>MethodDebug macro, 3-26
<className> <methodName> macro, 3-8
<className>_MinorVersion constant, 3-20
<className>New macro, 2-9, 3-4, 3-7
invalid as first C method argument, 3-8
<className>NewClass procedure, 5-47
for creating class objects, in C/C++, 3-4, 3-19
<className>New_<initializerName> macro, 5-31
<className>Renew macro, 3-4
Client events, 9-2
Client programming in DSOM, 6-17
client initialization, 6-17
client termination, 6-18
compiling and linking, 6-13, 6-29
creating objects
arbitrary server, 6-19
specific server, 6-20
using metaclasses, 6-23
creating remote objects, 6-18
destroying objects
via a proxy, 6-22
via a server object, 6-22
via DSOM object manager, 6-22
DSOM object manager, 6-17
finding existing objects, 6-24
finding servers, 6-21
memory allocation and ownership, 6-26

Index X-1

memory management, 6-26
method invocation, 6-25
failure, 6-80
object lifecycle service, 6-17, 6-63
object references, 6-23, 6-26
proxy objects, 6-19
server objects, 6-20
Client programs, 3-1
compiling and linking, 2-11, 3-21
creating objects in, 3-4, 5-30
executing (Tutorial example), 2-11
header files, 3-1, 4-2
initializer methods in, 5-30
method invocations, 2-9, 4-14
testing and debugging, 3-26
Comments in IDL files, 2-7
syntax of, 4-27
Compiling and linking, 2-11, 3-21, 5-23, 5-43
DSOM client programs, 6-13, 6-29
DSOM servers, 6-41
const modifier, 4-21
Constant declarations in IDL, 4-4, 4-13
ConstantDef class, 7-7
Constructed IDL types
enum, 4-5
struct, 4-5
union, 4-7
Contained class, 7-7
Container class, 7-7
Context class, 6-60
Context expression in method declarations, 3-8,
3-9, 4-16
Context parameter in method calls, 3-8, 3-9
copy method, 7-13
CORBA compliance of SOM system, 1-4, 4-3,
6-59, 7-2
create method, 6-34, 6-36, 6-62
create_constant method, 6-34, 6-36, 6-40
create_list method, 6-72
create_operation_list method, 6-72
create_request method, 6-72
create_request_args method, 6-72
create_SOM_ref method, 6-35
Creating objects in client programs, 3-4
Critical sections (thread safety), 5-51
Customization features of SOM, 5-46
character output, 5-49
class loading and unloading, 5-47
class objects initialized/uninitialized, 5-38
error handling, 5-50
memory management, 5-46
method resolution, 5-15
objects initialized/uninitialized, 5-25

D

deactivate_impl method, 6-34
Debugging, 3-26
client programs, 3-26
macros and global variables for, 3-26
statements in stub procedures, 5-19
with SOMMTraced metaclass, 8-8
def emitter, 4-33, 4-34
Deinitialization of objects, 5-31

X-2 SOMobjects base Toolkit User’s Guide

delete operator, use after ‘new’ operator, in C++,
3-6, 5-31
delete_impldef method, 6-54
Derived metaclasses, 5-8
descriptor (method descriptor), 6-14, 6-46
Direct-call procedures, 5-16
directinitclasses modifier, 4-19, 5-23, 5-25, 5-29
Dispatch methods, 3-18
Dispatch-function method resolution, 3-18, 5-15,
5-16
Distributed SOM (DSOM), 6-1
advanced topics, 6-67
analyzing problem conditions, 6-79
base proxy classes, customizing, 6-76
checklist for DSOM setup, 6-78
classes, registering, 6-14
client programming, 6-17
compiling clients, 6-13
configuring applications, 6-13, 6-14, 6-47
DSOM daemon (somdd), 6-14, 6-58
‘dsom’ server manager utility, 6-55
Dynamic Invocation Interface, 6-70, 6-73
EMan used with, 6-67
potential deadlocks of, 6-68
environment variables, 6-13, 6-47, 6-78
error codes, A-3
error reporting, 6-78
error-message form, 6-78
existing objects, finding, 6-12
existing SOM libraries, using, 6-12
features of, 6-2
header files, 6-10, 6-29, 6-41
implementation registration, 6-14, 6-49
Implementation Repository, 6-47, 6-54, 6-64
implementing classes for use with, 6-42
introduction to, 1-5
library files, 6-29, 6-41, 6-46
memory allocation and ownership, 6-26
memory management by client, 6-26
CORBA policy of, 6-27
of method parameters, 6-27
of object-owned parameters, 6-28
moving objects, 6-82
multi-threaded applications, customizing, 5-51
peer processes, 6-67
pregimpl utility, 6-49, 6-52
interactive interface, 6-52
proxy classes, constructing, 6-62
proxy classes (default base classes), 6-76
proxy objects, 6-10, 6-19, 6-61
regimpl utility, 6-14, 6-49
command line interface, 6-51
interactive interface, 6-49
run-time components, 6-16
running applications, 6-14, 6-58
server objects, 6-12, 6-20, 6-31, 6-35
server programming, 6-30
server proxy, 6-12
servers, 6-11, 6-38, 6-48
activation policies, 6-64
somdsvr command syntax, 6-58
Sockets class use, 6-77
Sockets class, implementing, C-1

SOM object adapter (SOMOA class), 6-31,
6-32, 6-42, 6-62, 6-65
‘somdchk’ program, 6-56
troubleshooting hints, 6-78
tutorial example, 6-5
user-supplied proxies, 6-74
using SOM classes, 6-42
vs Replication Framework, 6-3
when to use, 6-3
workgroup DSOM, 6-2
workstation DSOM, 6-2
wregimpl utility, 6-49, 6-52
interactive interface, 6-52
DLL loading, 3-20
dliname modifier, 3-21, 4-19
double IDL type, 4-4
DSOM applications, configuring, 6-14, 6-47
‘dsom’ server manager utility, 6-55
environment variables, 6-47
pregimpl registration utility, 6-49, 6-52
interactive interface, 6-52
regimpl registration utility, 6-49
command line interface, 6-51
interactive interface, 6-49
registering class interfaces, 6-48
server implementation definitions, 6-48
‘somdchk’ program, 6-56
updating Implementation Repository, 6-54
wregimpl registration utility, 6-49, 6-52
interactive interface, 6-52
DSOM classes, implementing, 6-42
constraints, 6-43
generic server role, 6-42
non-SOM classes, 6-44
SOM object adapter (SOMOA) role, 6-42
SOMDServer role, 6-42
subclassing SOMDServer, 6-44
using DLLs, 6-46
DSOM daemon (somdd), 6-14, 6-47, 6-58
DSOM method arguments
‘any’ values, 6-81
(char *) values, 6-80
pointer types, 6-66, 6-80
strings, inout, 6-43
structures, packing/optimizing, 6-43
supported and unsupported types, 6-43
DSOM method invocation, failure, 6-80
‘dsom’ server manager utility, 6-55
—DSOM_TestOn compile option, 3-27
duplicate method, 6-63
Dynamic class loading, 3-20
Dynamic dispatching, 3-18
Dynamic Invocation Interface (DII), 6-59, 6-63,
6-70, 6-73
Dynamic methods, 5-16
Dynamically linked library (DLL)
creating, 5-39
customizing loading, 5-47
guidelines for, 5-39
on OS/2, 5-40

E

EMan event manager, 9-1
See also “Event Management Framework”
Emitter Framework, introduction to, 1-6
Emitters
def emitter, 4-33, 4-34
for C binding files (c, h, ih), 4-31
for C++ binding files (xc, xh, xih), 4-32
ir emitter, 4-34, 7-3
pdl emitter, 4-33
enum IDL type, 4-5
tutorial example, 2-21
Environment structure, 3-8, 3-29
Environment variables
as SOM Compiler controls, 4-34
DSOM, 6-13, 6-47, 6-78
DSOM ‘somdchk’ program for, 6-56
HOSTNAME environment variable, 6-13, 6-41,
6-47
SMEMIT environment variable, 4-34
SMINCLUDE environment variable, 4-35
SMTMP environment variable, 4-35
SOMDDEBUG environment variable, 6-48,
6-78
SOMDDIR environment variable, 6-14, 6-47
SOMDMESSAGELOG environment variable,
6-48, 6-78
SOMDNUMTHREADS environment variable,
6-48
SOMDPORT environment variable, 6-47
SOMDTIMEOUT environment variable, 6-47
SOMIR environment variable, 4-36, 6-14, 6-47,
7-3
SOMM_TRACED environment variable, 8-8
SOMSOCKETS environment variable, 6-47,
6-77
USER environment variable, 6-13, 6-41, 6-47
equal method, 7-13
Error codes, A-1
DSOM, A-3
SOM kernel, A-2
Error handling, 3-27
customizing, 5-50
Environment variable, 3-29
exception values, setting/getting, 3-30
exceptions, 3-28
standard exceptions, 3-29
Event classes of Event Management Framework,
9-3
Event Management Framework, 9-1
advanced topics, 9-7
basics of, 9-2
callback procedures/methods, 9-3
client events, generating, 9-5
‘ConnectionNumber’ macro, 9-7
EMan DLL, 9-9
EMan parameters, 9-3
event classes, 9-3

Index X-3

event types
client events, 9-2
sink events, 9-2
timer events, 9-2
work procedure events, 9-2
‘eventmsk.h’ include file, 9-3
extending EMan, 9-7
interactive applications, 9-6
limitations, 9-9
message queues, 9-2
MOTIF applications, 9-7
multi-threaded applications, customizing, 5-51
processing events, 9-5
RegData object, 9-4
registering for events, 9-4
Sockets class, implementing, C-1
SOMEEMan class, 9-2
SOMEEMREegisterData class, 9-4
SOMSOCKETS environment variable, 9-9
thread safety, 9-7
tips on using EMan, 9-8
unregistering for events, 9-5
exception IDL declarations, 4-10, 4-13
table of standard CORBA exceptions, 4-12
ExceptionDef class, 7-7
exception_free function, 3-30
exception_id function, 3-30
Exceptions, 3-28
setting/getting values, 3-30
exception_value function, 3-30
execute_next_request method, 6-33, 6-65
execute_request_loop method, 6-33, 6-65

F

filestem modifier, 4-19
find_all_impldefs method, 6-54
find_impldef method, 6-32, 6-54
find_impldef_by_alias method, 6-54
find_impldef_by_class method, 6-54
find_impldef_classes method, 6-55
float IDL type, 4-4
Floating point IDL types
double, 4-4
float, 4-4
Frameworks
as SOMobijects Toolkit class libraries, 1-5
Distributed SOM (DSOM), 1-5, 6-1
Emitter Framework, 1-6
Event Management Framework, 9-7
Interface Repository Framework, 1-5, 7-1
Metaclass Framework, 1-6, 8-1
Persistence Framework, 1-6
Replication Framework, 1-6
free method, 6-71, 7-13
free_memory method, 6-71
functionprefix modifier, 4-19, 4-28, 4-37, 5-22
Functions for generating output, 3-23

G

Generating output
customization of, 5-49
from SOM methods/functions, 3-23
get<attribute> method, 3-11, 4-15
tutorial example, 2-13

X-4 SOMobjects base Toolkit User’s Guide

get_count method, 6-71

get_id method, 6-34

get_implementation method, 6-21

get_item method, 6-72

get_principal method, 6-40

get_response method, 6-73

get_SOM_object method, 6-35

Global variables
SOM_AssertLevel, 3-26
SOMCalloc, 5-46
SOMCreateMutexSem, 5-51
SOMD_DebugFlag, 6-78
SOMDeleteModule, 5-48
SOMDestroyMutexSem, 5-51
SOMD_ImplDefObject, 6-31, 6-32
SOMD_ImplRepObject, 6-32, 6-54
SOMD_ObjectMgr, 6-10, 6-15, 6-17
SOMD_ORBObject, 6-60
SOMD_ ServerObiject, 6-33
SOMD_SOMOAObject, 6-32
SOMEtrror, 3-27, 5-50
SOMFree, 5-46
SOMGetThreadld, 5-51
SOMLoadModule, 5-47
SOMMalloc, 5-46
SOMOutCharRoutine, 3-23, 3-26, 5-49
SOMRealloc, 5-46
SOMReleaseMutexSem, 5-51
SOMRequestMutexSem, 5-51
SOM_Tracelevel, 3-26, 5-19
SOM_WarnlLevel, 3-26

Grammar of SOM IDL syntax, B-1

H

Header files for DSOM, 6-29, 6-41

Header files for SOM classes, 4-2, 4-4, 5-

HOSTNAME environment variable, 6-13,
6-47

ID manipulation, somld’s, 3-34

Identifier names, naming scope restrictions, 4-28

#ifdef SOMIDL__ statement, 2-16

impctx modifier, 4-21

impl_is_ready method, 6-32

Implementation of objects, 6-63

Implementation Repository, 6-47, 6-48, 6-54, 6-64
pregimpl utility, 6-49, 6-52
regimpl utility, 6-14, 6-49
wregimpl utility, 6-49, 6-52

Implementation statement, 2-14, 2-16
syntax of, 4-16

Implementation templates, 1-5, 4-2
accessing internal instance variables, 5-20
bindings, 1-5, 4-2, 4-31
<className>MethodDebug procedure in, 5-19
customizing implementations, 5-46
customizing the stub procedures, 2-8, 2-20,

5-20
#tdefine <className>_Class_Source
statement, 5-18

#include header file, 4-2, 4-4, 5-18
incremental updates of, 2-22, 4-31, 5-17, 5-21
method procedures, 2-8, 5-18

18
6-41,

parent-method calls in, 5-20
somSelf usage, 5-18
somThis usage, 5-19
syntax of SOM Compiler output, 5-17
syntax of stub procedures for initializer
methods, 2-19, 5-29
syntax of stub procedures for methods, 2-7,
5-18
ImplementationDef class, 6-21, 6-30, 6-48, 6-54,
6-64
attributes of, 6-48
Implicit method parameter, 3-8
ImplRepository class, 6-54, 6-64
‘i’ and ‘out’ parameters, 4-14

#include directive in implementation templates, 4-2,

5-18
IDL syntax of, 4-4
Incremental updates of implementation template
file, 4-31, 5-17, 5-21
indirect modifier, 4-21
Inheritance, 5-5, 5-11
Inherited methods, overriding, 2-16
init modifier, 4-21, 5-25
tutorial example, 2-19
Initialization
of DSOM client programs, 6-17
of SOM run-time environment, 5-2
Initializer methods, 5-25
declaring new initializers, 5-27
implementing initializers in .idl file, 5-29
non-default initializer calls, 5-30
somDefaultInit method, 5-25
tutorial example, 2-19
use in client programs, 5-30
Instance variable declarators, syntax of, 4-26
Instance variables, accessing in method
procedures, 5-20
Instance variables vs attributes, 2-14
Integral IDL types, 4-4
long, 4-4
short, 4-4
unsigned short or long, 4-4
Interface Definition Language, 1-3
SOM classes defined in, 4-2, 4-3
syntax of IDL specifications, 4-3
Interface names as types, 4-9
Interface Repository, 1-5, 6-14, 6-46, 7-1
accessing objects in, 7-9
classes, 7-7
emitter, 7-3
files, 7-4
memory management in, 7-11
objects, 7-7
‘private’ information in, 7-5
Interface Repository Framework, 7-1
environment variables, 7-3, 7-4
introduction to, 1-5
Interface statement
declarations in, 2-21
defining, 2-7
multiple interfaces defined, 4-28
syntax of, 4-11
Interface vs implementation, 4-2
InterfaceDef class, 7-7

invoke method, 6-73

Invoking methods, 3-7
from C client programs, 3-7
from C++ client programs, 3-9
from other client programs, 3-10
initializer methods, 5-30

IPXSockets class, C-1

ir emitter, 4-34, 7-3

is_constant method, 6-34

is_nil method, 6-63

is SOM_ref method, 6-35

K

kind method, 7-13

L

Language bindings, 1-5, 4-2, 4-31
Language-neutral methods and functions, 3-23
Libraries
building export files, 5-40
creating import library, 3-22, 5-43
dynamically linked libraries, 5-39
dynamically linked libraries on OS/2, 5-40
guidelines for class libraries, 5-39
packaging classes in libraries, 5-39
shared libraries on AlX, 5-40
specifying initialization function, 5-41
Linking, 2-11, 3-21, 5-23
DSOM client programs, 6-29
DSOM servers, 6-41
Loading classes and DLLs, 5-47
long IDL type, 4-4
lookup_id method, 7-10

Macros
<className>_lookup_<methodName>, 3-13
<className> <methodName>, 3-8, 3-12
<className>New, 3-8
<className>New <initializerName>, 5-31
lookup_<methodName>, 3-13
_<methodName>, 3-7
SOM_Assert, 3-26
SOM_CreatelLocalEnvironment, 3-29
SOM_Error, 3-27, 3-28
SOM_Expect, 3-27
SOM_GetClass, 3-19
SOM _ InitEnvironment, 3-29, 3-31
SOM_Resolve, 3-17
SOM_ResolveNoCheck, 3-17
SOM_Test, 3-28
SOM_TestC, 3-26
SOM_WarnMsg, 3-26
va_arg, 3-11

—maddstar compiler option, 4-37

Major and minor version numbers, 3-19

majorversion modifier, 4-19

Memory allocation/ownership in DSOM, 6-26

Memory management, 3-33
in DSOM, 6-26

CORBA policy for, 6-27
for method parameters, 6-27
for object—owned parameters, 6-28

Index X-5

Memory management customization features, 5-46
SOMCalloc global variable, 5-46
SOMFree global variable, 5-46
SOMMalloc global variable, 5-46
SOMRealloc global variable, 5-46

memory_management modifier, 4-19, 6-27

Message queues, 9-2

Metaclass Framework, 8-1
before/after behavior, 8-3
error codes, 8-10
introduction to, 1-6
SOMMBeforeAfter metaclass, 8-3
SOMMSinglelnstance metaclass, 8-7
SOMMTraced metaclass, 8-8

metaclass modifier, 4-20

Metaclasses, 5-2, 5-8, 8-1
metaclass incompatibility, 5-9
SOM-derived, 5-8
use in DSOM, 6-23

Method call validity checking, 3-27

Method declarations in IDL, 2-7
context expression, 4-16
in, out, inout parameters, 4-14
initializer methods, 5-27
oneway keyword, 4-14
parameter list, 4-14
raises expression, 4-15
syntax of, 4-14

Method invocations, 3-7
Context parameters, 3-8, 3-9
dynamic dispatching, 3-18
Environment variable, 3-8, 3-29
error handling, 3-27
exception values, setting/getting, 3-30
exceptions, 3-28
for client programs in C, 3-7
for client programs in C++, 3-9
for client programs in other languages, 3-10
for initializer methods, 5-30
format of, 2-9, 3-7, 4-14
from Smalltalk, 3-10, 3-16
implicit method parameters, 3-8
method name/signature unknown at compile

time, 3-18
obtaining method procedure pointers, 3-16
receiving object of, 3-8
short form vs long form, 3-8
standard exceptions, 3-29
va_list methods, 3-11
validity checking, 3-27

method modifier, 4-22, 5-16

Method procedure pointers, 3-16
obtaining with name-lookup method resolution,

3-18
obtaining with offset method resolution, 3-17

Method procedures, 2-8, 5-18

Method resolution
by kinds of SOM methods, 5-16
customizing, 5-15
dispatch-function resolution, 3-18, 5-15
introduction to, 1-3, 5-14
method procedure pointers, 3-16
name-lookup resolution, 3-12, 3-18, 4-28, 5-15,

5-16

X-6 SOMobjects base Toolkit User’s Guide

offset resolution, 3-10, 3-12, 3-17, 5-14
Method table, 5-14
Method tokens, 3-10, 3-11, 3-16, 5-14
Method tracing, 3-26, 8-8
METHOD_MACROS for C++ bindings, 5-21
_<methodName> macro, 3-7
Methods
class methods vs instance methods, 5-2
customizing stub procedures in implementation
templates, 5-20
direct-call procedures, 5-16
dynamic methods, 5-16
for generating output, 3-23
four kinds of SOM methods, 5-16
get<attribute>, in Tutorial, 2-13
getting the number of, 3-24
inherited, 2-16
initializer methods, 5-25
tutorial example, 2-19
invoking in client programs, 3-7
modifiers, 2-16, 4-16, 4-20
nonstatic methods, 5-16
overriding, 2-16, 5-27, 5-38
tutorial example, 2-16, 2-19
procedures of, 2-8
__set_<attribute>, in Tutorial, 2-14, 2-20
somFree, in tutorial, 2-9
static methods, 5-16
stub procedures in implementation template,
2-7,5-18
syntax of IDL method declarations, 4-14
Methods and functions, language-neutral, 3-23
migrate modifier, 4-22
minorversion modifier, 4-20
Modifier statements, 2-16, 4-16, 7-2
attribute modifiers
indirect, 4-21
nodata, 4-22
noget, 4-22
noset, 4-22
persistent, 4-24
class modifiers, 4-16
abstract, 4-18
baseproxyclass, 4-18, 6-77
callstyle, 4-18
classinit, 4-18
directinitclasses, 4-19
dliname, 4-19
filestem, 4-19
functionprefix, 4-19
majorversion, 4-19
memory_management, 4-19, 6-27
metaclass, 4-20
minorversion, 4-20
releaseorder, 4-24
somallocate, 4-20
somdeallocate, 4-20
data modifiers, staticdata, 4-25
method modifiers
caller_owns_parameters, 4-21, 6-27
caller_owns_result, 4-21, 6-27
const, 4-21
init, 4-21
method, 4-22

migrate, 4-22
namelookup, 4-24
nocall, 4-22
noenv, 4-22
nonstatic, 4-22
nooverride, 4-22
noself, 4-22
object_owns_parameters, 4-23,
object_owns_result, 4-23, 6-27,
offset, 4-24
override, 4-24
procedure, 4-22
reintroduce, 4-24
select, 4-25
#pragma modifier, 4-17
qualified, 4-17, 4-20
syntax of, 4-16
type modifiers, impctx, 4-21
unqualified, 4-16, 4-18
Module statement, syntax of, 4-28
ModuleDef class, 7-7
Multi-threaded applications, thread safety, 5-51
Multiple inheritance, 5-11
tutorial example, 2-21
Multiple interfaces in a SOM IDL file, syntax of,
4-28
Multi-threaded DSOM programs, 6-67
Mutual exclusion (mutex) services, customizing,
5-51

N

NamedValue structure, 6-70

Name-lookup method resolution, 3-12, 3-18, 4-28,
5-16

namelookup modifier, 4-24

Naming scopes, 4-28

NBSockets class, C-1

New macro (<className>New), 2-9

‘new’ operator in C++ client programs, 3-6, 3-7,
5-30, 5-31

NO_EXCEPTION exception, 3-30

nocall modifier, 4-22

nodata modifier, 4-22

noenv modifier, 4-22

noget modifier, 4-15, 4-22

Nonstatic methods, 5-16

nonstatic modifier, 4-22, 5-16

nooverride modifier, 4-22

noself modifier, 4-22

noset modifier, 4-22

Number of methods, getting, 3-24

NVList class, 6-60, 6-71, 6-72

o)

Object Adapter, 6-42, 6-64

Object lifecycle service, 6-63

Object oriented programming, 1-2
class libraries for, 1-2

Object pseudo—class, 6-62

Object references in DSOM, 6-19, 6-61
creating in the SOMOA, 6-34
passing in method calls, 6-26
saving, 6-23

Object Request Broker (ORB), 6-59

6-27, 6-28
6-28

Object size, getting, 3-24
Object variables
declaring in client programs, 3-3
object type, 3-3
object_owns_parameters modifier, 4-23, 6-27, 6-28
object_owns_result modifier, 4-23, 6-27, 6-28
ObjectMgr abstract class, 6-17
object_to_string method, 6-24, 6-63
octet IDL type, 4-5
Offset method resolution, 3-10, 3-13, 3-17, 5-14,
5-16
vs name-lookup method resolution, 3-12
offset modifier, 4-24
‘oneway’ keyword of method declarations, 4-14
Oneway messages in DSOM, 6-68
Operation declarations, 4-14
OperationDef class, 7-7
ORB (Object Request Broker), 6-59
ORB class, 6-60, 6-62
‘out’ parameter, 4-14
Overloaded method, 5-13
override modifier, 4-24, 5-16
tutorial example, 2-16, 2-19
Overriding of methods
inherited methods (tutorial example), 2-16
somDefaultlnit, 5-27
tutorial example, 2-16, 2-19

P

Packaging SOM classes, customizing, 5-47
param_count method, 7-13
parameter method, 7-13
ParameterDef class, 7-7
Parent class vs metaclass, 5-5
Parent class, getting, 3-24
passthru statement, syntax of, 4-25
pdl emitter, 4-33
pdl program, command syntax and options, 4-40
Peer processes in DSOM, 6-67
Persistence Framework
introduction to, 1-6
multi-threaded applications, customizing, 5-51
persistent modifier, 4-24
Persistent servers, 6-64
Pointer SOM IDL declarations, 4-9
Porting classes to another platform, 4-34
#pragma modifier statement, 4-17
pregimpl utility, 6-49, 6-52
interactive interface, 6-52
Principal class, 6-40, 6-60
print method, 7-13
Printing output
customization of, 5-49
from SOM methods/functions, 3-23
Private methods and attributes, syntax of, 4-27
procedure modifier, 4-22, 5-16
Proxy classes
customizing default base classes, 6-76
user-supplied, 6-74
Proxy objects (in DSOM), 6-10, 6-19, 6-61, 6-62
Pseudo—objects, 7-12

Q

Qualified modifiers, 4-17, 4-20

Index X-7

Qualified names for a naming scope, 4-28
R

‘raises’ expression in method declarations, 4-15
Receiving object, 3-8
ReferenceData type, 6-34
RegData objects, 9-4
See also “Event Management Framework”
regimpl utility, 6-14, 6-49
command line interface, 6-51
interactive interface, 6-49
Registration of classes, customizing, 5-47
reintroduce modifier, 4-24, 5-16
release method, 6-22, 6-63
releaseorder modifier, 4-24
Remote objects
creating, 6-18
moving, 6-82
remove_class_from_all method, 6-55
remove_class_from_impldef method, 6-55
Replication Framework
introduction to, 1-6
multi-threaded applications, customizing, 5-51
Sockets class, implementing, C-1
Repository class, 7-9
Repository ID, 7-9
Request class, 6-60, 6-72
RESP_NO_WAIT flag, 6-73
Return codes, A-1
DSOM, A-3
SOM kernel, A-2
Run-time environment, 5-2
initialization of, 3-20, 5-2
primitive class objects created, 5-2
run-time library, 1-5

S

sc command to run SOM Compiler, 2-7, 4-36
compiler options, 4-36
Scoping in IDL, 4-28
select modifier, 4-25
send method, 6-73
sequence IDL type, 4-8
Server activation (in DSOM), 6-31
Server implementation definition (in DSOM), 6-30
Server objects (in DSOM), 6-12, 6-20, 6-31, 6-35
Server programming in DSOM, 6-30
authentication, 6-41
compiling and linking servers, 6-41
generic server program (somdsvr), 6-30, 6-38
identifying source of a request, 6-40
object references, 6-34
server implementation definition, 6-30
server objects, 6-31, 6-35
servers
activation, 6-31
dispatching methods, 6-38
initialization, 6-32
mapping objects to references, 6-36
mapping references to objects, 6-37
processing requests, 6-33
termination, 6-33

X-8 SOMobjects base Toolkit User’s Guide

SOM object adapter (SOMOA class), 6-31
initializing, 6-32

SOM object references, 6-35

subclassing SOMDServer, 6-38

use with Persistence Framework, 6-38
Server proxy (in DSOM), 6-12
Server—per—method servers, 6-64
Servers, 6-3, 6-11, 6-20, 6-30, 6-64

activation and deactivation, 6-31, 6-33, 6-42,

6-49, 6-58, 6-64

activation policies, 6-64

compiling and linking, 6-41

‘dsom’ server manager utility, 6-55

finding a specific server, 6-20

generic (somdsvr), 6-30, 6-42, 6-58, 6-64, 6-65

implementation definitions, 6-30, 6-48

initializing the SOMOA, 6-32

persistent, 6-38, 6-64

server objects, 6-31

server—per—method, 6-64

shared, 6-64

SOMDServer server-object class, 6-35, 6-42,

6-44
somdsvr command syntax, 6-58
unshared, 6-64

set<attribute> method, 3-11

tutorial example, 2-14, 2-20
setAlignment method, 7-13
set_item method, 6-71
Shared libraries on AlX, creating, 5-40
Shared servers, 6-64
short IDL type, 4-4
Sink events, 9-2
size method, 7-13
Size of objects, getting, 3-24
Smalltalk, 3-10, 3-16
SMEMIT environment variable, 4-34
SMINCLUDE environment variable, 4-35
SMTMP environment variable, 4-35
Sockets class, C-1
implementation considerations, C-6
implementation example, C-7
implementing subclasses, C-1
interface definition, C-1
soms.h file, C-1
somssock.idl file, C-1
IPXSockets subclass, C-1
NBSockets subclass, C-1
subclass interface definition, C-5
TCPIPSockets subclass, C-1
use with DSOM, 6-77
SOM bindings, 1-3, 1-5, 2-6
for C/C++ client programs, 3-1
for SOM classes, 4-2, 4-31
SOM classes, 4-2, 5-2
attributes vs instance variables, 2-14
implementation, 6-63
implementing, 5-17
inheritance, 5-5, 5-11
interface vs implementation, 4-2, 5-11
metaclasses, 5-2
multiple inheritance, 2-21, 5-11

parent class vs metaclass, 5-5 method invocations, 2-9, 3-7

primitive SOM class objects, 5-2 short form vs long form, 3-8
using with DSOM, 6-42 va_list methods, 3-11
SOM classes, customizing loading/unloading, 5-47 object variables, declaring, 3-3
class initialization, 5-47 __set_<attribute> method, 2-14, 2-20, 3-11
<classname>NewClass procedure, 5-47 SOM header files for C/C++, 3-1
DLL loading, 5-47 standard exceptions, 3-29
DLL unloading, 5-48 va_list methods, 3-11
SOMClassInitFuncName function, 5-47 SOM Compiler, 4-31
SOMDeleteModule global variable, 5-48 actions of, 5-17
SOMInitModule function, 5-47 and Interface Repository, 7-3
SOMLoadModule global variable, 5-47 binding files generated, 4-31
SOM classes, implementing, 5-17 C binding files, 4-31
attributes vs instance variables, 2-14 C++ binding files, 4-32
<className>New macro, 2-9 environment variables affecting, 4-34
comments in, 2-7 implementation template created, 5-17
customizing the implementation template, 2-8 incremental updates of implementation
header files, 4-2, 4-4, 5-18 template, 2-22, 4-31, 5-17, 5-21
implementation templates, 2-7, 4-2 introduction to, 1-4
interface definition file (.idl file), 4-2 sc command and options, 4-36
Interface Definition Language (IDL), 4-2 sc command to run SOM Compiler, 2-7
interface statement, 2-7 somc command and options, 4-36
interface vs implementation, 4-2 somc command to run SOM Compiler, 2-7
method declarations, 2-7 SOM ID manipulation, 3-34
method invocations, 2-9, 4-14 SOM IDL language grammar, B-1
method procedures, 2-8 SOM IDL syntax, 4-3
modifiers, 2-16, 4-16 attribute declarations, 2-13, 4-13
overriding an inherited method, 2-16 comments, 4-27
porting classes to another platform, 4-34 constant declarations, 4-4, 4-13
steps required, 2-6 exception declarations, 4-10, 4-13
stub method procedures, 2-7 forward declarations to interfaces, 4-28
tutorial, 2-6 grammar of IDL, B-1
SOM classes, usage in client programs, 3-1, 3-18 #ifdef _ SOMIDL__ statement, 2-16
C/C++ usage bindings, 3-1 implementation statement, 2-14, 2-16, 4-16
checking the validity of method calls, 3-27 #include directive, 4-4
<className>New macro, 2-9 initializer methods, 5-27
creating class objects, in C/C++, 3-19 instance variables, 4-26
creating class objects, in other languages, 3-6 interface declarations, 2-7, 4-11
creating instances, in C, 3-4 keywords, 4-4
creating instances, in C++, 3-6 method declarations, 2-7, 4-14
creating instances, in other languages, 3-6 modifier statements, 4-16, 7-2
debugging macros, 3-26 module statement definition, 4-28
deleting instances, in C++, 3-6 multiple interfaces in .idl file, 4-28
Environment structure, 3-8, 3-29 name resolution, 4-28
Environment variable, 3-29 naming scopes, 4-28
error handling, 3-27 override modifier, 4-24
example program, 2-9, 3-2 passthru statement, 4-25
exception values, setting/getting, 3-30 private methods and attributes, 4-27
exceptions, 3-28 scopes, 4-28
freeing instances, in C, 3-4 staticdata variables, 4-26
generating output, methods/functions for, 3-23 type declarations, 4-4, 4-13
get<attribute> method, 2-13 SOM objects, customizing
getting information about a class, methods for, initialization/uninitialization, 5-25
3-23 changing parents of a class, 5-23
getting information about an object, <className>New macro, in C, 5-31
methods/functions for, 3-25 <className>New_ <initializerName> macro, in
getting the class of an object, 3-18 C, 5-31
language-neutral methods/functions available, customizing class objects, 5-38
3-23 example, 5-32
manipulations using somld’s, 3-34 initializer methods, 5-25
memory allocation with SOMMalloc function, initializing, 5-25
3-5, 3-7 new initializers declared, 5-27
memory management, 3-33 ‘new’ operator, in C++, 5-31

Index X-9

non-default initializer calls, 5-30
somDefaultInit method, 5-25, 5-38
somDestruct method, 5-31
somFree method, 5-31
somlnit method, 5-25
somInitMIClass method, 5-38
somUninit method, 5-29
uninitializing, 5-31
SOM system
binary compatibility of SOM classes, 1-3
bindings (language bindings), 1-3, 1-5, 4-2,
4-31

class libraries from, 1-3, 5-39
CORBA compliance, 1-4, 4-3, 6-59
error codes, A-2
Interface Definition Language (IDL), 1-3
language-neutral characteristics, 1-3, 1-5
method resolution, 5-14
parent class vs metaclass, 5-5
primitive class objects created, 5-2
run-time environment initialization, 5-2
run-time library of, 1-5
SOM Compiler, introduction to, 1-4
SOMClass metaclass, 5-2
SOMClassMgr class, 5-3
SOMClassMgrObject, 5-3
SOMObiject root class, 5-2
som.ir Interface Repository file, 7-4
somAddDynamicMethod method, 5-16
somallocate modifier, 4-20
somApply function, 3-18
SOM_Assert macro, 3-26
SOM_AssertLevel global variable, 3-26
somc command to run SOM Compiler, 4-36
compiler options, 4-36
somc command to run SOM Compiler, 2-7
SOMCalloc function, 3-33, 5-46
SOMCalloc global variable, 5-46
SOMClass metaclass, 5-2
somClassDispatch method, 3-18
somClassFromld method, 3-21
SOMClasslnitFuncName function, 5-47
SOMClassMgr class, 5-3
SOMClassMgrObject, 3-20, 5-3
somClassResolve procedure, 3-10
somcorba.h file, 3-29, 3-30
SOM_CreatelLocalEnvironment macro, 3-29
‘somdchk’ program, 6-56
SOMDClientProxy class, 6-61, 6-75, 6-77
somdCreateObj method, 6-12, 6-20, 6-36, 6-39
somdd DSOM daemon, 6-14, 6-47, 6-58
SOMDDEBUG environment variable, 6-48, 6-78
SOMD_DebugFlag global variable, 6-78
somdDeleteObj method, 6-12, 6-22, 6-36, 6-39
somdDestroyObject method, 6-11, 6-22
SOMDDIR environment variable, 6-14, 6-47
somdDispatchMethod, 6-36
somdeallocate modifier, 4-20
somDefaultinit method, 5-25, 5-38
indirect calls in programs, 5-30
initializing class objects, 5-38
overriding in .idl file, 5-28
tutorial example, 2-19
use by ‘new’ operator, 3-6, 5-31

X-10 SOMobjects base Toolkit User’'s Guide

use by somNew method, 3-4, 3-6, 5-30
SOMDeleteModule global variable, 5-48
SOM-derived metaclasses, 5-8
somDestruct method, 5-31

overriding, 5-31

use after SOMMalloc function, 3-5, 3-7

use by somFree method, 3-4, 5-31

use in programs, 5-31
somdFindAnyServerByClass method, 6-21
somdFindServer method, 6-21
somdFindServerByName method, 6-12, 6-20
somdFindServersByClass method, 6-21
somdGetClassObj method, 6-36
somdGetldFromObject method, 6-24
somdGetObjectFromld method, 6-24
SOMD_ImplDefObiject global variable, 6-31, 6-32
SOMD_ImplRepObject global variable, 6-32, 6-54
SOMD_Init function, 6-10, 6-18, 6-32, 6-78
somDispatch method, 3-18
somdNewObject method, 6-10, 6-19
SOMD_NO_WAIT flag, 6-33
SOMDMESSAGELOG environment variable, 6-48,

6-78
SOMDNUMTHREADS environment variable, 6-48
SOMDObiject class, 6-59, 6-61, 6-62
SOMDObjectMgr class, 6-15, 6-17
SOMD_ObjectMgr global variable, 6-10, 6-15, 6-17
SOMD_ORBObject global variable, 6-60
SOMDPORT environment variable, 6-47
somdProxyFree method, 6-22
somdRefFromSOMObj method, 6-36, 6-39
SOMD_RegisterCallback function, 6-67
somdReleaseObject method, 6-11, 6-12, 6-22
somdReleaseResources method, 6-28
SOMDServer class, 6-12, 6-35, 6-42, 6-44
SOMD_ServerObject global variable, 6-33
SOMD_SOMOAObiject global variable, 6-32
somdSOMODbjFromRef method, 6-36, 6-39
somdsvr program (in DSOM), 6-30, 6-38

command syntax, 6-58
somdTargetFree method, 6-22
SOMDTIMEOUT environment variable, 6-47
SOMD_Uninit function, 6-11, 6-34
SOMD_WAIT flag, 6-33
SOMEEMan class, 9-2

See also “Event Management Framework”
SOMEEMRegisterData class, 9-4

See also “Event Management Framework”
SOMEEvent class, 9-3

See also “Event Management Framework”
somEnvironmentNew function, 3-20
somError function, 3-33
SOMEtrror global variable, 3-27, 5-50
SOM_Error macro, 3-27, 3-28
somExceptionFree function, 3-30, 3-34

example of, 3-31
somExceptionld function, 3-30, 3-32
somExceptionValue function, 3-30, 3-32
SOM_Expect macro, 3-27
SOM_Fatal error code, 3-27
somFindClass method, 3-6, 3-10, 3-20
somFindClsIn File method, 3-20, 3-21
somFindMethod method, 3-13, 3-18
somFindMethodOK method, 3-13, 3-18

SOMFree function, 3-33, 5-46
use after SOMMalloc function, 3-5, 3-7, 5-46
SOMFree global variable, 5-46
somFree method
called by somDestruct method, 5-31
tutorial example, 2-9
use after <className>New macro, in C, 3-4
use after somNew method, 3-6, 3-7, 5-31
use after somNewNolnit method, 5-31
use on a proxy in DSOM, 6-22
SOM_GetClass macro, 3-19
somGetClass method, 3-18, 3-21
somGetGlobalEnvironment procedure, 3-29
somGetlnstanceSize method
use with <className>Renew macro, 3-4
use with somRenew method, 3-7
somGetInterfaceRepository method, 7-9
somGetMethodData method, 3-18
som.h header file for C programs, 3-1, 3-29
somld ID type, 3-34
SOM_Ignore error code, 3-27
somlnit method, use before somDefaultlnit
method, 5-28
somInitCtrl data structure, 5-26
SOM _InitEnvironment macro, 3-29, 3-31
somInitMIClass method, 5-38
SOMInitModule function, 5-47
usage when creating DLLs, 5-42, 5-44
SOM_InterfaceRepository macro, 7-9
SOMIR environment variable, 4-36, 6-14, 6-47,
7-3, 7-4
SOMLoadModule global variable, 5-47
somLocateClassFile method, 3-21
somLookupMethod method, 3-18
sommAfterMethod method, 8-3
SOM_MainProgram macro, 2-10
SOMMalloc function, 3-33, 5-46

somDestruct and SOMFree used after, 3-5, 3-7

SOMMalloc global variable, 5-46
SOMMBeforeAfter metaclass, 8-3
sommBeforeMethod method, 8-3
sommGetSinglelnstance method, 8-7
SOMMSinglelnstance metaclass, 8-7
SOMM_TRACED environment variable, 8-8
SOMMTraced metaclass, 8-8
somNew method

called by <className>New macro, 5-31

for creating instances, not in C/C++, 3-6, 5-30

for creating instances, with classname from

user input, 3-7

invalid as first C method argument, 3-8

use in C/C++, 3-6
somNewNolnit method, 3-6, 5-30

called directly using SOM API, 5-30

for C++ initializers with same signature, 5-30,

5-31

use by ‘new’ operator, 3-6, 5-30
SOM_NoTest symbol, 3-17
SOM_NoTrace macro, 5-19
SOMOA (SOM object adapter) class, 6-31, 6-32,

6-42, 6-62, 6-65

SOMObiject class, 5-2
SOMobjects Toolkit

frameworks of, introduction to, 1-5

introduction to, 1-3
release 2.1 enhancements, 1-7
SOMOutCharRoutine global variable, 3-23, 3-26,
5-49
somPrintSelf method, 2-16
SOMRealloc function, 3-33, 5-46
SOMRealloc global variable, 5-46
somRenew method
for creating instances in given space, 3-6
use by <className>Renew macro, 3-4
SOM_Resolve macro, 3-17
somResolve procedure, without C/C++ bindings,
3-10
somResolveByName function, 3-11, 3-16, 3-18
SOM_ResolveNoCheck macro, 3-17
soms.h file with Sockets class, C-1
somSelf pointer, syntax in implementation
template, 5-18
somSetException procedure, 3-30
somSetOutChar function, 5-49
SOMSOCKETS environment variable, 6-47, 6-77,
9-9
somssock.idl file, C-1
somTD type definition, 3-17
SOM_Test macro, 3-28
SOM_TestC macro, 3-26
SOM_TestOn directive, 3-27
SOM_TestOn symbol, 3-17
somThis assignment, syntax in implementation
template, 5-19
SOM_TraceLevel global variable, 3-26
somUninit method, use before somDestruct
method, 5-29
SOM_Warn error code, 3-27
SOM_WarnLevel global variable, 3-26
SOM_WarnMsg macro, 3-26
som.xh header file for C++ programs, 3-1
Standard exceptions, 3-29
Static methods, 3-18, 5-16
staticdata modifier, 4-25
staticdata variable declarators, syntax of, 4-26
StExcep type, 3-29
stexcep.idl file, 3-29
string IDL type, 4-8
string_to_object method, 6-24, 6-63
struct IDL type, 4-5
Stub procedures, 2-7, 5-19, 5-29
for initializer methods, 5-29
Subclass, 5-5
System exceptions, 3-29
SYSTEM_EXCEPTION exception, 6-78

T

TCKind enumeration, 7-12
TCPIPSockets class, C-1
Testing
client programs, 3-26
method call validity checking, 3-27
with SOMMTraced metaclass, 8-8
Thread safety, 5-51
Timer events, 9-2
tk_<type> enumerator names, 7-12
Tracing methods, 3-26, 8-8

Index X-11

Tutorial for implementing SOM classes, 2-6

attribute definition, 2-13

attributes vs instance variables, 2-14

<className>New macro, 2-9

client program using the class, 2-9

comments, 2-7

compiling and linking client code, 2-11

customizing initializer stub procedures, 2-20

customizing the implementation template, 2-8

enum type, 2-21

example 1: defining a simple method, 2-7

example 2: defining an attribute, 2-13

example 3: overriding an inherited method,
2-16

example 4: initializing objects, 2-19

example 5: using multiple inheritance, 2-21

executing the client program, 2-11

get<attribute> method, 2-13

#ifdef _ SOMIDL__ statement, 2-16

implementation statement, 2-14, 2-16

implementation template with stub procedures,
2-7

interface statement, 2-7

method declaration, 2-7

method invocation form, 2-9

method procedures, 2-8

modifiers, 2-16

multiple inheritance, 2-21

sc command to run SOM Compiler, 2-7

__set_<attribute> method, 2-14, 2-20

somc command to run SOM Compiler, 2-7

somFree method, 2-9

Type declarations in IDL, 4-4, 4-13

any, 4-5

array, 4-9

boolean, 4-5

char, 4-5

constructed types, 4-5
double, 4-4

enum, 4-5

exception, 4-10

float, 4-4

floating point types, 4-4
integral types, 4-4
long, 4-4

object types, 4-9

octet, 4-5

pointer, 4-9

sequence, 4-8

short, 4-4

SOM-unique extensions, 4-29

X-12 SOMobjects base Toolkit User’'s Guide

string, 4-8
struct, 4-5
template types, 4-8
union, 4-7
unsigned short or long, 4-4
TypeCode pseudo—objects, 7-11
‘any’ type usage, 7-15
‘alignment’ modifier for, 7-13
foreign data types for, 7-14
methods for, 7-12
TypeCode constants, 7-15
TypeCode types, 4-5
TypeDef class, 7-7
Types provided by SOM
somld, 3-34
somMethodProc, 3-17
somTD_<className>_ <methodName>, 3-17
StExcep, 3-29

U

Uninitialization of objects, 5-31, 5-38

union IDL type, 4-7

Unloading classes and DLLs, 5-47

Unqualified modifiers, 4-16, 4-18

Unshared servers, 6-64

unsigned short or long IDL type, 4-4

update_impldef method, 6-54

Updating the implementation template file, 2-22,
4-31, 5-17, 5-21

Usage bindings, 1-3, 1-5, 3-1, 4-2, 4-31

USER environment variable, 6-13, 6-41, 6-47

Utility metaclasses, 8-1

\'

va_arg macro, 3-11
va_list type, 3-11
Variable argument list
defining a va_list argument in .idl file, 4-15
using a va_list in programs, 3-11, 3-13
VARIABLE_MACROS for C++ bindings, 2-15
Version numbers, 3-19, 3-23
getting, 3-24
in customizing DLL loading, 5-47

W

Work procedure events, 9-2
Workgroup DSOM, 6-2
Workstation DSOM, 6-2
wregimpl utility, 6-49, 6-52
interactive interface, 6-52

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull DPX/20 SOMobject Base Toolkit User’s Guide

N¢ Reférence / Reference N2 : 86 A2 27AQ 01 Daté / Dated : June 1995

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement
Si vous désirez une réponse écrite, veuillez indiquer ci-apres votre adresse postale compléte.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :
SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé a un responsable BULL ou envoyez-le directement a :

Please give this technical publication remark form to your BULL representative or mail to:

BULL S.A. CEDOC

Atelier de Reproduction
FRAN-231

331 Avenue Patton BP 428
49005 ANGERS CEDEX
FRANCE

BULL S.A. CEDOC

Atelier de Reproduction
FRAN-231

331 Avenue Patton BP 428
49005 ANGERS CEDEX
FRANCE

o«
w
=
o)
)
z
w
3
of
=z
<
aQ
go
<A
]
[a N

ORDER REFERENCE
86 A2 27AQ 01

UUlotTl 1Co 111dlyquto UT UTLUUPTC puul UVLTTIIT 1To ©TUYUTLLTOS.
Use the cut marks to get the labels.

DPX/20
AIX

SOMobject Base
Toolkit
User’s Guide

86 A2 27AQ 01

DPX/20
AIX

SOMobject Base
Toolkit
User’s Guide

86 A2 27AQ 01

DPX/20
AIX

SOMobject Base
Toolkit
User’s Guide

86 A2 27AQ 01

